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Global Exponential Stability
of a Class of Memristor-Based RNN
and Its Application to Design Stable
Voltage Circuits
Zhao Yao1,2 and Yingshun Li 2*

1Army Academy of Armored Forces, Changchun, China, 2School of Control Science and Engineering, Dalian University of
Technology, Dalian, China

In this article, we study the global exponential stability of the equilibrium point for a class
of memristor-based recurrent neural networks (MRNNs). The MRNNs are based on a
realistic memristor model and can be implemented by a very large scale of integration
circuits. By introducing a proper Lyapunov functional, it is proved that the equilibrium point
of the MRNN is globally exponentially stable under two less conservative assumptions.
Furthermore, an algorithm is proposed for the design of MRNN-based circuits with
stable voltages. Finally, an illustration example is performed to show the validation of
the proposed theoretical results; an MRNN-based circuit with stable voltages is designed
according to the proposed algorithm.

Keywords: memristor, voltage, circuit, recurrent neural network, stability

1 INTRODUCTION

Recurrent networks have been one of the necessary tools to character system states since their
wide applications in optimization (Li et al., 2021; Ma and Bian, 2021), games (Wu et al., 2019, 2021;
Cheng et al., 2021), control (Yang et al., 2015; Jianmin et al., 2021; Toyoda and Wu, 2021), and so
on (Wang et al., 2007; Shen et al., 2020; Shen and Raksincharoensak, 2021). In recent years, a new
type of recurrent network was proposed based on a new two-terminal circuit element called
the memristor (Chua, 1971; Strukov et al., 2008). Note that a memristor works like a biological
synapse (Anthes, 2011; Qin et al., 2015) and has the ability of automatic information storage.
Thus, memristors replaced resistors as synapses in recurrent neural networks, that is, memristor-
based recurrent neural networks (MRNNs) (Anthes, 2011; Wen et al., 2013; Zhang et al., 2013). In
recent years, the stability and stabilization of Boolean networks have been extensively investigated
(Chen et al., 2018; Guo et al., 2019, 2021).

MRNNs have been a promising architecture in neuromorphic systems by virtue of their
non-volatility, high-density, and physical storable feature. According to the realistic structure of
MRNNs, several different mathematical models for MRNNs were proposed (Hu and Wang, 2010;
Wu et al., 2011; Li et al., 2014; Chen et al., 2015; Jianmin et al., 2019). Meanwhile, notice that the
MRNN, a special recurrent network, depends on the stability of its equilibrium points in application
scenarios. Therefore, many interesting works were addressed to analyze the stability for the
MRNNs (Hu andWang, 2010;Wu et al., 2011; Li et al., 2014; Chen et al., 2015; Jianmin et al., 2019).
A mathematical model of MRNN was proposed, and its global uniform asymptotic stability was
investigated in a Lyapunov sense (Hu andWang, 2010). A simplemodel ofMRNNwas introduced by
Wu et al. (2011) by means of the typical current–voltage characteristics of memristors. A stochastic
MRNN was proposed by Li et al. (2014) based on the work by Wang et al. (2007), in which there
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was some unavoidable noise in real networks. Furthermore,
the global exponential stability for the stochastic MRNN
was studied under the framework of Filppov’s solution; three
sufficient conditions with the form of linear inequalities were
provided to determine the global exponential stability of
the stochastic MRNN. The global asymptotic stability and
synchronization of a class of fractional-order memristor-based
delayed neural networks were investigated by Chen et al. (2015).
The existence and global exponential stability were discussed by
Jianmin et al. (2019) for an uncertain MRNN with mixed time
delay under two assumptions.

Motivated by the aforementioned works, the global
exponential stability of the equilibrium point is investigated for
a class of MRNNs with time-varying delay, and its application
to stabilize the voltage in a circuit network is carried out in
this study. A sufficient condition is obtained for the global
exponential stability of MRNNs. Based on this condition, an
algorithm is proposed to stabilize the voltage of the MRNN-
based circuit. The time-varying delay was considered in the
activation functions of MRNN in this study. In addition, the
activation functions in the MRNN are not necessarily non-
decreasing, while the activation functions are non-decreasing
in the works by Hu and Wang (2010); Wu et al. (2011);
Li et al. (2014); Chen et al. (2015); Jianmin et al. (2019). Thus,
the MRNN considered in this study is the extension from
the view of activation functions compared with those in the
works by Hu and Wang (2010); Wu et al. (2011); Li et al. (2014);
Chen et al. (2015); Jianmin et al. (2019). Meanwhile, the stable
voltage is a necessary prerequisite for obtaining high-
quality electric energy in power systems, such as wind
power converters (Kobravi et al., 2007). Consequently, the
obtained theretical results are successfully applied to design
the MRNN-based circuit system with global exponential
stability, which makes it possible to apply the MRNN to power
converters.

The structure of this article is given as follows: an MRNN
with time-varying delay and some notations is introduced in
Section 2. In Section 3, the global exponential stability of the
equilibrium point for the MRNN is obtained, and an example is
given to show the effectiveness of the obtained results. Then, an
algorithm to design the MRNN-based circuit with stable voltage
is proposed, and a simple application is carried out in Section 4.
Finally, the main conclusions are given in Section 5.

2 MEMRISTOR-BASED RECURRENT
NEURAL NETWORK

In this section, some notations are introduced, and an MRNN
is described under two assumptions based on the mathematical
models by Wen et al. (2013); Jianmin et al. (2019).

Notation: ℝ denotes the set of real numbers. x =
(x1,x2,…,xm)T is anm− dimensional column, and the superscript
T stands for the transpose operator. ∥ x ∥≔ (∑mi=1x

2
i )

1/2. A = (aij) ∈

ℝm×m is a matrix. ∥ A ∥= √λM(ATA), where λM(A) represents
the maximum eigenvalue of A. I ∈ ℝm×m stands for an identity

matrix. For a real symmetric matrix A, A > 0(A < 0) means that
A is positive (negative) definite.

Consider the following MRNN, which was originated from
Wen et al. (2013),

Ci ̇xi (t) = −[
n

∑
j=1
( 1
Rfij
+ 1
Rgij
)+Wi (xi (t))]xi (t)

+
n

∑
j=1

signij

Rfij
fj (xj (t)) +

n

∑
j=1

signij

Rgij
gj (xj (t − τj (t))) + Ii.

(1)

Here, fj(⋅) is the activation function, τj(⋅) is the time-varying
delay, Ci is the capacitance of the capacitor, and xi(t) is the
voltage of the capacitor. Rfij is the resistor between the feedback
function fj(xj(t)) and the state xi(t), and Rgij is the resistor between
the feedback function gj(xj(t− τj(t))) and the state xi(t). signij is
defined as

signij = {
1, if i ≠ j;
0, if i = j.

(2)

Wi[xi(t)] is thememductance of the i− thmemristor satisfying

Wi (xi (t)) = {
W′i , if xi (t) ≤ 0;
W′′i , if xi (t) > 0.

(3)

Ii is an external input or bias and i, j = 1,2,…,n. Let

W̃i =
W′′i −W

′
i

2Ci
. (4)

From Jianmin et al. (2019), the MRNN (Eq. 1) is transformed
into:

̇xi (t) = −dixi (t) − W̃i|xi (t) | +
n

∑
j=1

aijfj (xj (t))

+
n

∑
j=1

bijgj (xj (t − τj (t))) +Ui. (5)

Here,

di =
n

∑
j=1
[ 1
CiRfij

+ 1
CiRgij

+
W′i +W

′′
i

2Ci
],

aij =
signij

CiRfij

, bij =
signij

CiRgij

, Ui =
Ii
Ci
.

(6)

Next, let D = diag{d1,d2,…,dn}, W̃ = diag{W̃1,W̃2,…,W̃n},
A = (aij)n×n,B = (bij)n×n, |x(t)| = (|x1(t)|, |x2(t)|,…, |xn(t)|)

T , τ(t) =
(τ1(t),τ2(t),…,τn(t))T , and U = (U1,U2,…,Un)T . Then, Eq. 5 is
rewritten as:

̇x (t) = −Dx (t) − W̃ |x (t) | +Af (x (t)) +Bg (x (t − τ (t))) +U . (7)

In addition, there are two assumptions and one lemma,
which will be needed in the sequel, for the MRNN (Eq. 7).
The first assumption about the activation function fi is from
Wen et al. (2013).The second assumption about the time-varying
delay τj is fromWen et al. (2013).
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S1. For i ∈ {1,2,…,n}, the activation function fi is bounded
continuous, and ∀r1, r2 ∈ ℝ, there exists real number li > 0 such
that

0 ≤
fi (r1) − fi (r2)

r1 − r2
≤ li. (8)

Here, we set Lf = diag{l1, l2,…, ln}.
For i ∈ {1,2,…,n}, the activation function gi is bounded

continuous, gi(0) = 0, and ∀r1, r2 ∈ ℝ, there exists real number
l′i > 0 such that

−l′i ≤
gi (r1) − gi (r2)

r1 − r2
≤ l′i . (9)

Here, we set Lg = diag{l
′
1, l
′
2,…, l

′
n}.

S2. For i ∈ {1,2,…,n}, τi(t) satisfies

0 ≤ τi (t) ≤ τ i, ̇τi (t) ≤ μi < 1. (10)

Here, we let τ =max {τ1,…,τn}, and μ =max{μ1,…,μn}.
Remark 1. From Eq. 9, the activation functions gi[xi(t)] are

non-monotonic in this study. On the other hand, we notice that
the activation functions of MRNNs in the works by Hu and
Wang (2010; Wu et al. (2011); Li et al. (2014); Chen et al. (2015);
Jianmin et al. (2019) are non-decreasing. Thus, Eq. 1 is the
extension from the view of activation functions compared with
those references.

3 GLOBALLY EXPONENTIAL STABILITY

In this section, we will prove that the MRNN (Eq. 1) is
globally exponentially stable under the assumptions S1 and S2.
A sufficient condition with the form of linear matrix inequalities
can be obtained for globally exponential stability of MRNN by
constructing a suitable Lyapunov functional.

Theorem 1. Assume that S1 and S2 hold. If there exist a matrix
P = diag{p1,p2,…,pn} > 0, a constant k > 0, and small enough
constants ξ > 0 and ϑ > 0 such that

Φ≔ ξP − 2PD+ 2P|W̃ | + (1+ 1
k
) I + 2ϑ(ξLfP + LfP|W̃ |)

+
(1+ ϑ)
1− μ
∥ PB ∥2 eξτLgLg < 0,

Ψ≔ −2ϑL−1f PD+ ϑ (PA+ATP) + ϑI + k ∥ PA ∥2 I < 0. (11)

Then, the equilibrium point of the MRNN (Eq. 1) is globally
exponentially stable.

Proof: To simplify the proof, we make the following
transformation:

z = x − x∗, (12)

where x∗ is the equilibrium point of theMRNN (Eq. 1).Then, the
MRNN (Eq. 1) can be rewritten equivalently as

̇z (t) = −Dz (t) − W̃ (|z (t) + x∗| − |x∗|)
+Af (z (t)) +Bg (z (t − τ (t))) , (13)

where f(z(t)) = f(z(t) + x∗) − f(x∗) and g(z(t− τ(t))) = g(z(t −
τ(t)) + x∗) − g(x∗). It is obvious that fi(0) = 0 and gi(0) = 0. By
the assumption S1, we get

fT (z (t))z (t) ≥ fT (z (t))L−1f f (z (t)) ,

fT (z (t))z (t) ≤ zT (t)Lf z (t) ,
g (z (t)) ≤ Lg |z (t) |.

(14)

We define a Lyapunov functional as follows:

V (t,z) =V0 (t,z) +V1 (t,z) +V2 (t,z) , (15)

where

V0 (t,z) = eξtzTPz,

V1 (t,z) = 2ϑeξt
n

∑
i=1

pi∫
zi

0
fi (s)ds,

V2 (t,z) = η
n

∑
i=1 ∫

t

t−τi(t)
g2

i (zi (s))e
ξ(s+τi)ds.

(16)

Here, ξ, ϑ are small positive constants, and η is a positive
constant to be determined.

First, calculating the time derivative of V0(t,z) along the
trajectories of the MRNN (Eq. 13), we have

d
dt
V0 (t,z (t)) = ξe

ξtzT (t)Pz (t) + 2eξtzT (t)P ̇z (t)

= ξeξtzT (t)Pz (t) − 2eξtzT (t)PDz (t)
− 2eξtzT (t)PW̃ (|z (t) + x∗| − |x∗|)
+ 2eξtzT (t)PAf (z (t))
+ 2eξtzT (t)PBg (z (t − τ (t))) . (17)

In addition,

−2eξtzT (t)PW̃ (|z (t) + x∗| − |x∗|) ≤ 2eξt|z (t) |TP|W̃ |
× | (|z (t) + x∗| − |x∗|) |
≤ 2eξt|z (t) |TP|W̃ | ⋅ |z (t) |
= 2eξtzT (t)P|W̃ |z (t) , (18)

2eξtzT (t)PAf (z (t))

≤ eξt [1
k
zT (t)z (t) +fT (z (t))k ∥ PA ∥2 f (z (t))] , (19)

2eξtzT (t)PBg (z (t − τ (t))) ≤ eξt [zT (t)z (t) +gT (z (t − τ (t)))
× ∥ PB ∥2 g (z (t − τ (t)))] . (20)

Here, the parameter k is a positive constant. Substituting
Eqs 18–20 into Eq. 17, we obtain

d
dt
V0 (t,z (t)) ≤ e

ξtzT (t)[ξP − 2PD+ 2P|W̃ | + (1+ 1
k
) I]z (t)

+eξtfT(z (t))k ∥ PA ∥2f (z (t))+eξtgT (z (t − τ (t)))
× ∥ PB ∥2 g (z (t − τ (t))) . (21)
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Second, by calculating the time derivative ofV1(t,z) along the
trajectories of the MRNN (Eq. 13), it follows

d
dt
V1 (t,z (t)) = 2ξϑeξt

n

∑
i=1

pi∫
zi

0
fi (s)ds+ 2ϑeξtfT (z (t))P ̇z (t)

≤ 2ξϑeξtfT (z (t))Pz (t) − 2ϑeξtfT (z (t))PDz (t)
− 2ϑeξtfT (z (t))PW̃ (|z (t) + x∗| − |x∗|)
+ 2ϑeξtfT (z (t))PAf (z (t)) + 2ϑeξtfT (z (t))PB
×g (z (t − τ (t))) . (22)

By Eq. 14, we have

2ξϑeξtfT (z (t))Pz (t) ≤ 2ξϑeξtzT (t)LfPz (t) ,
− 2ϑeξtfT (z (t))PDz (t) ≤ −2ϑeξtfT (z (t))L−1f PDf (z (t)) ,

(23)

− 2ϑeξtfT (z (t))PW̃ (|z (t) + x∗| − |x∗|)
≤ 2ϑeξt|z (t) |TLfP|W̃ ∥ z (t) |
= 2ϑeξtzT (t)LfP|W̃ |z (t) .

(24)

Notice that

2ϑeξtfT (z (t))PBg (z (t − τ (t)))
≤ ϑeξtfT (z (t))f (z (t)) + eξtgT (z (t − τ (t)))ϑ ∥ PB ∥2

×g (z (t − τ (t))) . (25)

Substituting Eqs 23–25 into Eq. 22, we have

d
dt
V1 (t,z (t))

≤ 2ξϑeξtzT (t)LfPz (t) − 2eξtfT (z (t))ϑL−1f PDf (z (t))

+ 2ϑeξtzT (t)LfP|W̃ |z (t) + 2ϑeξtfT (z (t))PAf (z (t))
+ ϑeξtfT (z (t))f (z (t)) + eξtgT (z (t − τ (t)))ϑ ∥ PB ∥2

×g (z (t − τ (t)))
= 2ϑeξtzT (t)[ξLfP + LfP|W̃ |]z (t) + 2eξtfT (z (t))

× [−ϑL−1f PD+ ϑPA+ 1
2
ϑI]f (z (t))

+ eξtgT (z (t − τ (t)))ϑ ∥ PB ∥2 g (z (t − τ (t))) . (26)

Third, calculating the time derivative of V2(t,z) along the
trajectories of the MRNN (Eq. 13), we have

d
dt
V2 (t,z (t))

= η
n

∑
i=1

eξ(t+τi)g2
i (zi (t)) − η

n

∑
i=1
(1− ̇τi (t))eξ(t−τi(t)+

τi)

×g2
i (zi (t − τi (t)))

≤ ηeξ(t+τ)gT (z (t))g (z (t)) − η(1− μ)eξtgT (z (t − τ (t)))
×g (z (t − τ (t)))
≤ eξtz (t)T [ηeξτLgLg]z (t) − η(1− μ)eξtgT (z (t − τ (t)))
×g (z (t − τ (t))) . (27)

Hence, by Eqs 21, 26, 27, we have
d
dt
V (t,z (t))

= d
dt
V0 (t,z (t)) +

d
dt
V1 (t,z (t)) +

d
dt
V2 (t,z (t))

≤ eξtzT (t)[ξP − 2PD+ 2P|W̃ | + (1+ 1
k
) I

+2ϑ(ξLfP + LfP|W̃ |) + ηeξ
τLgLg]z (t)

+eξtfT(z (t))[−2ϑL−1f PD+ϑ (PA+ATP)+ ϑI +k ∥ PA ∥2 I]

×f (z (t)) + eξtgT (z (t − τ (t))) [(1+ ϑ) ∥ PB ∥2 −η(1− μ)]
×g (z (t − τ (t))) . (28)

Let η = (1+ϑ)
1−μ
∥ PB ∥2 in Eq. 28. It means that

d
dt
V (t,z (t))

≤ eξtzT (t)[ξP − 2PD+ 2P|W̃ | + (1+ 1
k
) I

+2ϑ(ξLfP + LfP|W̃ |) +
(1+ ϑ)
1− μ
∥ PB ∥2 eξτLgLg]z (t)

+ eξtfT (z (t))[−2ϑL−1f PD+ ϑ (PA+ATP) + ϑI

+ k ∥ PA ∥2 I]f (z (t))
= eξtzT (t)Φz (t) + eξtfT (z (t))Ψf (z (t)) . (29)

Since Φ < 0, Ψ < 0, and by Eq. 29, we have
d
dt
V (t,z (t)) ≤ 0, (30)

which means that eξtzT(t)Pz(t) =V0(t,z(t)) ≤V(t,z(t)) ≤
V(0,z(0)). More precisely,

∥ x (t) − x∗ ∥=∥ z (t) ∥≤Me
− ξ2 t
, (31)

where M = [pV(0,z(0))]
1
2 and p =max{pi ∶ i = 1,…,n}, that is,

the unique equilibrium point x∗ of the MRNN (Eq. 1) is globally
exponentially stable.

Remark 2. Motivated by the representation of the Lyapunov
functional in the work by Jianmin et al. (2019), we construct a
new Lyapunov functional V(t,x(t)), in order to overcome the
difficulty brought by the nonmonotone activation functions in
MRNN (Eq. 1) in the proof of Theorem 1.

Now, we give an example to illustrate that the equilibrium
point of the MRNN is globally exponentially stable when the
conditions inTheorem 1 are satisfied.

Example 1. Consider an MRNN (Eq. 1) with four state
voltages, for which the parameter values of MRNN (Eq. 1) are
originated from the work by Jianmin et al. (2019), especially the
capacitors C1 = 2, C2 = 3, C3 = 2, and C4 = 7; the external inputs
I1 = 9, I2 = 3, I3 = 9.5, and I4 = 6; the memductances W′1 = 1,
W′2 = 3, W

′
3 = 9.5, and W′4 = 1 for xi(t) ≤ 0; the memductances

W′′1 = 4, W
′′
2 = 1.5, W

′′
3 = 2, and W′′4 = 3.5 for xi(t) ≥ 0; and the

resistors Rf ≔ (Rfij) and Rg ≔ (Rgij) are given as follows:

Rf =
[[[

[

1 3 1.5 2
2 4 6 12
1.8 2.6 3.5 4
7 3 4 3

]]]

]

,
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Rg =
[[[

[

1 3 1.5 2
2 2 2 2
1.8 2.6 3.5 4
7 3 4 3

]]]

]

.

Next, by the aforementioned parameters and Eqs 2–6, it
follows that D, W̃ , U, A, and B. Let the activation functions

fi (xi (t)) =
1
2
(|xi (t) + 1| − |xi (t) − 1|) ,

gi (xi (t)) = sin(xi (t)) ,

and the time-varying delays

τi (t) = 1.8+ 0.5sint,

for i = 1,2,3,4. It is obvious that the assumptions S1 and S2
are satisfied. Then, by assumptions S1 and S2, we have L =
diag{1,1,1,1}, τ = 2.3, and μ = 0.5.

Now, by fixing the parameters k = 1000, ξ = 0.001, and
ϑ = 0.001 in Theorem 1 and substituting the matrices A,B,D,W̃
into the linear matrix inequalities (Eq. 11), we get a positive
definite diagonal matrix

P = diag {0.0499,0.0499,0.0499,0.0499} ,

namely, by Theorem 1, the equilibrium point of the MRNN
(Eq. 1) is globally exponentially stable.

The initial values of the neural network (Eq. 1) are set at
(0.1,0.1,0.1,0.1)T, (0.5,0.5,0.5,0.5)T, and (0.9,0.9,0.9,0.9)T. The
solution trajectories of Eq. 1 are illustrated in Figure 1. From
Figure 1, we see that the equilibrium point of the MRNN is
globally exponentially stable, which shows the validation of the
obtained result fromTheorem 1.

FIGURE 1 | Solution trajectories of the MRNN (1).

4 AN ALGORITHM TO DESIGN THE
MRNN-BASED CIRCUIT WITH STABLE
VOLTAGES

Note that the stable voltage is a necessary prerequisite for
obtaining high-quality electric energy in power systems. In
this section, the two linear inequalities in Theorem 1 are used
to design the MRNN-based circuit with globally exponentially
stable voltages, which make it possible to apply the MRNN
to power converters. The design process is described by the
following four steps:
Step 1: Fix the values of capacitor Ci, external input Ii, and the
resistors Rfij and Rgij in Eq. 1 for i, j = 1,2,…,n.
Step 2: For the given time-varying delay τi(t) and the activation
functions fi,gi, calculate the matrices Lf,Lg in the assumption S1
and the parameters τ and μ in the assumption S2.
Step 3: Determine the parameters W′i and W′′i in the

memductance Wi(xi(t)) of the i− th memristor in Eq. 1 for
i = 1,2,…,n.

• Fix a matrix P > 0 and the parameters k, ξ, and ϑ in
Theorem 1.
• Substitute Ci, Ii, Rfij , and Rgij into aij, bij, and Ui in Eq. 6 to

obtain matrices A, B, D, and U.
• Substitute the matrices P, D, A, B, and U into the linear

matrix inequalities (11).
• Solve Eq. 11 to obtain the matrix W̃ .
• CalculateW′i andW′′i by the di and W̃i in Eq. 5.

Step 4: By substitutingCi, Ii,Rfij ,Rgij ,W
′
i , andW

′′
i into Eq. 1, the

MRNN-based circuit with stable voltages is obtained.
Remark 3. From Step 3, the parameters W′i and W′′i in the

MRNN (Eq. 1) can be determined at the same time by the
parameter di and W̃i for i = 1,2,…,n in (6). Consequently, we can
select or make thememristor guarantee theMRNN-based circuit
with stable voltage when the other elements are given beforehand
by means of the proposed algorithm.

Next, we will design an MRNN-based circuit with four
stable voltages by the proposed algorithm, where the activation
functions and some of the parameters in theMRNN-based circuit
in this example are the same as those in the first example.

Example 2. It is declared that the activation functions fi(xi(t)),
gi(xi(t)), the time-varying delay τi(t), and the values of parameters
Ci, Ii, Rfij , and Rgij for the MRNN-based circuit are the same as
those in the first example. Next, by Step 3, we determine the
values of W′i and W′′i in the memductance Wi[xi(t)] of the i− th
memristor in Eq. 1 for i, j = 1,2,3,4.

• Fix the values of parameters k = 1000, ξ = 0.001, and
ϑ = 0.001 in Theorem 1 and a matrix P = diag{5,5,5,5} > 0
and D = diag{30,20,25,10}. Substitute the matrices P, D, B,
and U into the linear matrix inequalities (11). Then, solve
Eq. 11 to obtain the matrix W̃ :

W̃ = {25.5148,15.9082,20.7115,6.3017} .

• Calculate W′i and W′′i by di and W̃i in Eq. 6,
especially W′′1 = 60.9574, W′′2 = 56.3541, W′′3 = 47.3558,
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FIGURE 2 | Solution trajectories of the designed MRNN-based circuit.

W′′4 = 17.1508; W′1 = 35.4426, W′2 = 40.4459, W′3 =
26.6443, andW′4 = 10.8492.

By Step 4, substituting Ci, Ii, Rfij , Rgij ,W
′
i , andW′′i into Eq. 1,

we obtain the MRNN-based circuit with stable voltages. The
initial values of Eq. 1 are given as same as those in Example 1.
The solution trajectories of the designed MRNN-based circuit
are depicted in Figure 2, which means that we obtain a MRNN-
based circuit with stable voltages through selecting the suitable
parameter values in the memductance of the memristor.

5 CONCLUSION

In this study, the global exponential stability of the equilibrium
point of theMRNN is investigated for a class of general activation
functions. A sufficient condition with the form of linear matrix

inequalities is obtained for the global exponential stability.
Furthermore, the proposed results are applied to design the
MRNN-based circuits with stable voltages. From the view of
the MRNN-based circuit, some elements of the MRNN-based
circuit with stable voltages can be determined by the proposed
algorithm. Note that the earth’s environmental pollution and
the lack of energy restrict the survival and development of the
human society.Wind energy, an environment-friendly renewable
resource, has become one of the effective ways to solve these
two difficulties. The conversion of wind energy into electric
energy can rely on wind power converters. The mathematical
model of the power system of new wind turbines was described
by a recurrent network. Thus, further research will focus on
transforming the output voltage of the wind power converter to
ensure the stable amplitude of its output voltage based onMRNN
with stability.
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Short-TermWind Power Prediction via
Spatial Temporal Analysis and Deep
Residual Networks
Huajin Li*

School of Architecture and Civil Engineering, Chengdu University, Chengdu, China

Wind power is a rapidly growing source of clean energy. Accurate short-term forecasting of
wind power is essential for reliable energy generation. In this study, we propose a novel
wind power forecasting approach using spatiotemporal analysis to enhance forecasting
performance. First, the wind power time-series data from the target turbine and adjacent
neighboring turbines were utilized to form a graph structure using graph neural networks
(GNN). The graph structure was used to compute the spatiotemporal correlation between
the target turbine and adjacent turbines. Then, the prediction models were trained using a
deep residual network (DRN) for short-term wind power prediction. Considering the wind
speed, the historic wind power, air density, and historic wind power in adjacent wind
turbines within the supervisory control and data acquisition (SCADA) system were utilized.
A comparative analysis was performed using conventional machine-learning approaches.
Industrial data collected from Hami County, Xinjiang, China, were used for the case study.
The computational results validate the superiority of the proposed approach for short-term
wind-power forecasting.

Keywords: wind power forecasting, spatial temporal analysis, graph neural networks, deep residual network,
SCADA

1 INTRODUCTION

To a large extent, wind energy can curb energy crises and global warming (Kumar et al., 2016). This
renewable energy resource is valuable to both humans and the environment. However, its natural
dynamics and uncertainty can deteriorate the system reliability of grid networks (Li et al., 2021a; Li
et al., 2021b). Therefore, high-quality forecasting of short-term wind power is of great significance
and practicability for optimal power system planning and reasonable arrangement of system reserves
(He and Kusiak 2017; Onyang et al., 2019a; Onyang et al., 2019b).

According to the literature, wind power forecasting models can be primarily categorized as
conventional statistical and artificial intelligence (AI) models. Conventional statistical models are
usually time-series models that are capable of characterizing the linear fluctuations of wind power
series. Han et al. (2017) utilized autoregressive moving average (ARMA) to fit a time-series wind
power dataset. Yunus et al. (2015) employed an autoregressive integrated moving average
(ARIMA) to forecast short-term wind speed data, and then integrated a physics model to
forecast short-term wind power. Kavasseri and Seetharaman (2009) adopted the fractional
ARIMA model to forecast the day-ahead wind power generation. Maatallah et al. (2015)
recursively forecasted short-term wind power using the Hammerstein autoregressive model. In
general, statistical models have exhibited good forecasting performance in very short-term wind-
power forecasting tasks.
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With advances in technology (Ouyang et al., 2017; Ouyang
et al. 2019c; Ouyang et al. 2019d; Long et al., 2021; Li et al., 2022;
Long et al., 2022), AI-based models are now being widely utilized
in wind-power forecasting tasks (Tang et al., 2020; Shen et al.,
2021). Wang et al. (2019) trained a support vector machine
(SVM) as a regression model to forecast short-term wind
power. Wang et al. (2015) used an improved version of the
SVM, namely the least square support vector machine (LSSVM),
to forecast wind power using the data collected from a wind farm
in northern China. Yin et al. (2017) employed a single hidden
feedforward neural network called an extreme learning machine
(ELM) to forecast the wind power. Crisscross optimization was
used to optimize the ELM model. Mezaache et al. (2016)
proposed using the kernel ELM (KELM) to predict wind
power in wind farms. Deo et al. (2018) developed a multi-
layer perceptron (MLP), whose parameters were optimized by
the firefly algorithm, to predict wind. Chen et al. (2020) trained a
back-propagation neural network (BPNN) to forecast short-term
wind power. Liu et al. (2018) integrated a long short-term
memory recurrent neural network (LSTM-RNN) with
variational model decomposition to construct a short-term
wind-power prediction approach. Wan et al. (2016) performed
day-ahead wind power forecasting using a deep belief network
(DBN) and deep features were learned from the power data. In
summary, the AI-based models are superior in terms of
forecasting accuracy and efficiency (Shen et al., 2020).

Most wind power forecasting models are applied to single wind
turbines, and the data include wind speed, air density, and other
related variables (Lee et al., 2015; Huang et al., 2018; Ulazia et al.,
2019; Long et al., 2020). Nevertheless, the power output from
adjacent wind turbines in the neighborhood can also improve the
wind power forecasting performance. In recent years, there has been
an increasing interest in using graphs to solve time-series forecasting
problems. The graph structure can handle non-Euclidean data
structures (Scarselli et al., 2009). The graph neural network
(GNN) (Gori et al., 2005) which learns graph structures, has
become a new actively-studied topic of research. It has been
successfully applied in many fields, including recommendation
systems (Han et al., 2020), traffic volume prediction (Chen et al.,
2019), and surface water quality prediction (Bi et al., 2020).

In this study, we propose a combinatory framework that
integrates the GNN and Deep Residual Network (DRN) for
short-term wind power prediction. First, the wind power from a
single turbine is defined as the outtarget output. The historical wind
power data from the target turbine and adjacent turbines are learned
by the GNN and a graph structure with correlations of the wind
power among the selected turbines is obtained. The DRN can then
serve as a regression model to predict the wind power of the target
turbine in the near future. The DRN considers the supervisory
control and data acquisition (SCADA) variables and historic wind
power from adjacent turbines as the input and the future wind power
of the target turbine as the output. The computational experiments
validated the superiority of the proposed approach.

The main contributions of this study are summarized below:

• This paper used graph neural network (GNN) to produce a
graph structure between the target turbine power and power

generated by adjacent turbines. The graph structure
indicates correlation among the power outputs and
enhanced power prediction outcome.

• The deep residual network (DRN) is introduced to reinforce
the short-term wind power prediction performance. The
impact of filter size on the prediction performance are
thoroughly investigated.

The remainder of this study is organized as follows. Section 2
provides a detailed introduction to the methods used in this
study. Section 3 presents experimental results. Section 4
summarizes the results of this study.

2 METHODOLOGY

2.1 Graph Neural Network
As we all know, a graph is a kind of structured data, which
comprises a series of objects (nodes) and relationship types
(edges) (Scarselli et al., 2008). As a type of non-Euclidean
data, graph analysis applied to node classification, link
prediction, and clustering. Recently, GNN, a neural network
model, has been used for fire detection because of its powerful
ability for data processing in graph structures. They resemble
convolutional neural networks (CNN) in terms of local
connections, weight sharing, and multilayer networks. A GNN
can generate reasoning graphs from unstructured data, which
makes it advantageous over CNN.

The basic idea of a GNN is to embed nodes based on their local
neighbor information (Luo et al., 2020). Intuitively, it aggregates
the information of each node and its neighbors using a neural
network. To obtain information about its neighbor nodes, the
average method, which utilizes the neural network for
aggregation, is used to aggregate the neighbor node
information of a node.

As shown in Figure 1, the prediction task can be defined as
follows: a GNN is built, the historical wind power data
X ∈ RN×Tin×D (where N denotes the number of wind power
generators, Tin denotes the length of the time window, D
denotes the feature dimension of inputs) is set as the input,
the spatial connectivity between each wind power generator, and
the output of wind power for a prediction period Y ∈ RN×Tout

(where Tout denotes the forecast step). Based on the spatial-
temporal dependencies between wind power generators, more
positive deep features can be obtained for the next step.

2.2 Deep Residual Network
In the practice of deep learning, there are problems in which the
learning efficiency is lowered, and accuracy cannot be effectively
improved owing to the deepening of the network. The essence of this
problem is the loss of effective information caused by the deepening
of the training process, commonly known as the network-
degradation problem. In contrast to overfitting, this problem
causes an overall decline in the training and testing accuracy.

He et al. (2016) proposed the DRN, a new network which
provides an idea for effectively solving the problem of gradient
disappearance when the network depth increases. A DRN can
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solve this problem in two ways, namely, identity mapping and
residual mapping (Sun et al., 2020a; Sun et al., 2020b). If the
network has reached the optimum and continues to deepen, the
residual mapping will be pushed to 0, leaving only identity
mapping. Thus, the network is in the optimal state, and its
performance will not decrease with the deepening of the network.

During residual learning, input x passes through a few stacked
nonlinear layers (Boroumand et al., 2018).Anydesiredmapping canbe
expressed as h(x), which can directly use a shortcut connection named
identitymapping x, while the stacked nonlinear layers can be used to fit
a residual mapping function F(x) = h(x) − x. Therefore, assuming that
the two weight layers fit the residual function F(x), let h(x) = F(x) + x.
In practice, the residualmapping F(x) are found to be easier to optimize
than h(x). The details of the residual block are expressed as follows:

yl � h(xl) + F(xl,Wl) (1)
xl+1 � f (yl) (2)

where xl is the input of the lth block of the residual network and
xl+1 is the output. h(xl) � xl denotes identity mapping and f()
denotes the activation function.

Eq. 3 can be obtained recursively:

xL � xl +∑L−1
i�l F(xi,Wi) (3)

The input of the Lth residual block can be expressed as the sum
of the input of a shallow residual block and all the complex
identity mappings. Introducing a loss function ε, the parameter
learning can be described as

δε

δxl
� δε

δxL
⎛⎝1 + δ

δxl
∑L−1

i�l F(xi,Wi)⎞⎠ (4)

Explicit modification of the network structure and residual
mapping make it easier for the network to learn the optimal
solution. In this study, the filter size and filter number were
selected to optimize the computational performance.

2.3 Benchmark
In this study, three benchmarking machine learning algorithms,
namely, neural network, support vector regression, and extreme
learning machine, were compared with the proposed method in
power prediction.

Neural networks (NN) are the underlying models of AI that
have a wide range of applications in many fields (Ouyang et al.,
2019a). The NN model with the backpropagation optimization
mode was selected in this work. The number of hidden layers
with values of 3, 4, and five and the number of hidden neurons
in each hidden layer with values of 10, 20, 30, 40, and 50 were
all evaluated in the training process via 10-fold cross
validation. The activation function used in NN is the
sigmoid function.

The (SVR) algorithm is used to find a regression plane and
position all the data in a set closest to the plane (Li et al., 2020).
The SVR parameters included the capacity factor C and
γ � 1/2σ2. The values of C (1, 10, 100, 1,000, 10,000), and σ
(0.0001, 0.001, 0.01, 0.1, 1) were all evaluated in the training
process via 10-fold cross-validation. The kernel function used in
SVR is the RBF function.

An extreme learning machine (ELM) is a type of machine
learning algorithm based on a single hidden layer feedforward
neural network that is suitable for both supervised and
unsupervised learning. The number of hidden neurons with
values of 5, 10, 15, . . ., 100 were evaluated during the training
process via 10-fold cross-validation. The activation function used
in ELM is the sigmoid function (Li et al., 2018).

2.4 Evaluation Metrics
In this study, the mean square error (MSE) and coefficient of
determination (R2) were used to assess the prediction accuracy of
the proposed framework. Here, R2 measures the percentage of the
variance explained by the prediction outcome. It basically
interprets what percentage of variance of the actual outcome
are explained by the prediction outputs.

FIGURE 1 | Schematic diagram of the graph neural network.
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MSE � 1
n
∑n

i�1

∣∣∣∣∣∣∣∣∣∣
yi − yi
yi

∣∣∣∣∣∣∣∣∣∣ (5)

R2 �
∑(�y − yi)2

∑(�y − yi)2 (6)

whereyi, yi, �y, and n represent the actual power, predicted power,
average value of yi, and number of test datasets, respectively.

3 CASE STUDY AND DATA COLLECTION

The SCADA dataset used in this study was recorded at a wind
farm named Kushui Wind Farm, which is located in the Gobi
Desert in the east of the camel circle, approximately 120 km away
from Hami City, Xinjiang, China. The wind farm is located in an
alpine area at an altitude of 1,135—1,395 m that is rich in wind

energy potential. The entire wind farm has many wind turbines
distributed on open and flat terrain. Detailed information about
the location is presented in Figure 2.

According to Table 1, the SCADA system collected datasets of
individual wind turbines, usually including the wind speed (unit:
m/s), wind direction (unit: rad), temperature (unit: °C), barometric
pressure (unit: kPa), humidity (unit: %), and wind power (unit:
kW). In this case, to predict the wind power, the inputs based on
domain knowledge included the first five parameters above.

4 RESULTS

4.1 GNN
In this section, extensive experiments are presented to validate
the effectiveness of the proposed approach. The dataset
utilized for the experiments was collected from a wind farm

FIGURE 2 | Location of the case study wind farm in Hami County, Xinjiang, China.

TABLE 1 | Summary of the dataset in the case study.

Variable name Unit Description

Wind speed m/s The rate at which air moves relative to a fixed location on the earth
Wind direction Rad Refers to the direction of the wind
Temperature °C A numerical value used to measure the temperature of an object
Barometric pressure kPa The atmospheric pressure acting on a unit area
Humidity % Meteorological elements indicating moisture content and moisture content in the air
Historic wind power from adjacent wind turbines kW The generated wind power from adjacent wind turbines
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located in Hami, Xinjiang, China, and the data collected were
obtained using the SCADA system. We select only the power-
related SCADA variables, as listed in Table 1. In this study, we
collected the SCADA variables from a single target turbine and
the historic wind power from its adjacent turbines, which are
the neighbors of the target turbine.

A heterogeneous graph was constructed among the six
turbines to learn the unified representation power time
series of the target turbine. In the graph, the measured real-
time power from the target turbine was treated as the target
node, and the historical power series from adjacent turbines
were defined as the source nodes. Inner-modality attention
and inter-modality attention were used to learn the different
contributions of graph-structured sources to the target node.
Weight values denote the correlation between the source and
target nodes. After computing all the weights, a threshold of
0.5 was implemented to determine whether the link between
the two nodes was worth retaining. In the final step, a learned
graph structure was utilized to determine the number of inputs
of wind power generated in adjacent turbines into the
prediction model to forecast the power of the target turbine
in the short term.

4.2 Hyper-Parameters of DRN
In this section, the hyper-parameters of DRN are studied.
Three experiments were designed to evaluate the effect of the
filter size on the computation, as well as four experiments for
filter number. Owing to the limitations of the hardware, the
filter sizes were set as 2 × 2, 3 × 3, and 4 × 4, while the filter
numbers were set as 16, 32, 64, and 128.

For the filter size, the DRN is trained with a filter number of
16, which indicates that three reference computational results can
be obtained during the validation set. Figure 3A shows that the
maximum and minimum RMSE appear at the first and second
filter sizes, respectively. The RMSE increases with the filter size.
As shown in Figure 3B, the best R2 of 0.958 is obtained when the
filter size is 3 × 3.

Next, a computation was conducted using a filter size of 3 ×
3 and various values of the filter number, as mentioned above.
Figure 3C shows that the RMSE decreases when filter number
increases, and the optimal solution occurs when the filter
number is 64, possibly owing to the overfitting of the model

with continuously increasing filter numbers. Figure 3D
provides the same evidence for the computation. Therefore,
the best performance is achieved when the filter size and
number are 3 × 3 and 64, respectively.

4.3 Wind Power Prediction
Experiments were performed with three selected algorithms
were performed using two measurement metrics (RMSE and
R2) to comprehensively evaluate the prediction performance
of the proposed method. The hyperparameters of all the
algorithms were tuned. In each training-validation
experiment, the steps of input time and output time
range were 1, 2, . . ., 20. In all the experiments conducted,
the wind power was predicted for different input and
output time steps. The relevant computational behavior is
shown in Figure 4, which shows the correspondence
between the predicted power obtained numerically and
experimentally.

According to Figure 4, the RMSE from all the algorithms
decreases when the input time step increases, whereas it
increases when the output time step increases. When the
same length of historical data is input, longer the output steps
yield larger prediction errors. Furthermore, a deeper analysis
of the results for R2 indicated good linearity between the
predicted and measured wind power values and the error
occurring in the long-term horizon of the output time step.
The two measurement metrics yielded similar results.
Overall, the computational results demonstrated that the
proposed method based on DRN significantly
outperformed the other three benchmarking machine
learning algorithms, exhibiting the lowest RMSE and
maximal R2 with increasing input time step and output
time step. The DRN exhibited its outperformance in terms
of prediction in the temporal domain owing to its ability to
handle redundant information.

Moreover, this study also investigated the influence of the size
of the training samples on the prediction results. Three
approaches based on NN, SVR, and ELM were adopted to
demonstrate the superiority of the DRN model. The
hyperparameters of all the algorithms were selected from
previous results, and the data samples ranged from
400—4,000, at intervals of 200.

FIGURE 3 | Tuning the filter size and filter number for DRN.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 9204075

Li Short-Term Wind Power Prediction

1615

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


From Figure 5, it can be observed that the prediction
performance varies with the training data size. As the
training data size increases, the RMSE of NN decreases
from 116.61 to 80.07 kW. The smallest RMSE values of
SVR, ELM, and DRN were 74.74, 66.25 and 60.28 kW,
respectively. The R2 of the DRN increases from 0.941 to
0.976, and the maximal R2 values of the other three
algorithms were 0.862, 0.908, and 0.943, respectively. The
computational results imply that the worst case result from
DRN surpasses the other best cases. This phenomenon
provides strong evidence for DRN optimization.

Table 2 shows that the proposed DRN-based method
produces the lowest prediction error and best prediction
performance based on the case study presented. The mean
values of the RMSE from NN, SVR, ELM, and DRN were
99.32, 88.26, 80.53, and 70.19, respectively. The Std. for the
four methods are 10.79, 12.36, 10.46, and 5.93, respectively.
For R2, the mean value from DRN is 0.96, which possesses the
most advantages compared to NN, SVR, and ELM. This
phenomenon indicates that the proposed method for wind-
power prediction is a statistical outlier and can be utilized to
further improve related prediction tasks.

FIGURE 4 | Impact of input/output size on the prediction performance.
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5 CONCLUSION

In this study, we present a data-driven short-term wind power
prediction framework that integrates GNN and DRN. GNN was
used to obtain a graph structure to describe the correlation between
the power of the target turbine and that generated by adjacent turbines.
The DRN was trained to predict the short-term wind power. The
SCADAvariables, alongwith the power generation of adjacent turbines,
were all considered as inputs of the forecasting model. A comparative
analysiswas conducted against other benchmark forecasting algorithms.

Computational results demonstrated that the graph structure can
effectively capture the spatial-temporal relationships among adjacent
turbines.Comparative analysis demonstrated that theDRNhas superior
power in short-termwind power forecasting. The proposed approach is
expected to be useful to field engineers at wind farms. Ouyang
et al., 2019c.
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SCADA Data Based Wind Power
Interval Prediction Using LUBE-Based
Deep Residual Networks
Huajin Li*

School of Architecture and Civil Engineering, Chengdu University, Chengdu, China

Wind is a pollution-free renewable energy source. It has attracted increasing attention
owing to the decarbonization of electricity generation. However, owing to the dynamic
nature of wind speed, ensuring a stable supply of wind energy to electric grid networks is
challenging. Therefore, accurate short-term forecasting of wind power prediction plays a
key role for wind farm engineers. With the boom in AI technologies, deep-learning-based
forecasting models have demonstrated superior performance in wind power forecasting.
This paper proposes a short-term deep-learning-based interval prediction algorithm for
forecasting short-term wind power generation in wind farms. The proposed approach
combines the lower upper bound estimation (LUBE) method and a deep residual network
(DRN). Wind farm data collected in northwestern China are selected for this empirical
study. The proposed approach is compared with three benchmark short-term forecasting
approaches. Extensive experiments conducted on the data collected from five wind
turbines in 2021 indicate that the proposed algorithm is efficient, stable, and reliable.

Keywords: SCADA data, wind power, deep residual networks, LUBE approach, interval prediction

1 INTRODUCTION

Wind power, a major source of renewable energy, has been widely developed worldwide to
supplement and replace traditional fossil fuels (He and Kusiak 2017; Javed et al., 2020). Owing to
the intermittent and stochastic nature of wind, wind power systems face challenges in terms of
reliability and stability. Thus, high-quality wind power predictions are expected in practice
(Long et al., 2020; Long et al., 2021).

According to a literature review, point estimation plays a dominant role in wind power
prediction. Haykin (1994) experimented with multiple architectures of neural networks to
explore the power of wind-turbine energy prediction. Kelouwani et al. (2004) first used a neural
network and wind speed to forecast wind power based on power curves. Tascikaraoglu and
Uzunoglu (2014) proposed the use of an autoregressive integrated moving average model to
forecast short-term wind power. Ren et al. (2014) applied adaboost-backpropagation to improve
the neural network algorithm and achieved an improved wind power prediction performance.
Wu and Peng, (2017) performed short-term wind power prediction using k-means clustering
with a bagging neural network. Zhang et al. (2016) adopted a probabilistic support vector
machine to predict short-term wind power. Deng et al. (2020) trained deep neural networks
(DNNs) to forecast short-term wind power. Li et al. (2021a) introduced a framework called
ICEEMDAN to decompose wind power time-series data and discovered that the prediction
performance was enhanced. Li et al. (2021b) trained a deep belief network to forecast short-term
wind power and used EWMA control charts to monitor abnormal wind power prediction errors.
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In summary, the point-based prediction of wind power has
already achieved promising performance in practice (Long
et al., 2022).

High-quality wind power forecasting is expected to reduce
uncertainty at various time scales (Ouyang et al., 2017; Huang
et al., 2018; Tang et al., 2020). However, point estimation,
which outputs a deterministic value, fails to provide sufficient
consideration of the prediction uncertainty (Shen and Shen
2018; Ouyang et al., 2020). In comparison, interval prediction
with a certain confidence level is gaining popularity among
scholars and engineers (Shen et al., 2020). Unlike the point
estimation approach, interval prediction quantifies the
uncertainty of wind power and provides probabilistic
estimation in the temporal domain.

Among various interval prediction methods, the interval
prediction model based on the lower and upper bound
estimation (LUBE) (Khosravi et al., 2010) approach has
become the most popular and has attracted considerable
attention. Following the LUBE architecture, a prediction
algorithm with two outputs instead of a single output was
utilized. The two outputs, which represent the upper and
lower bounds, share the same input data vector and hidden
layer. Both the loss function and training strategy are identical
for both outputs (Sun et al., 2020a).

In this paper, we propose a combination of the LUBE
approach with a deep residual network (DRN) for short-
term wind power prediction. The DRN is first modified
with two outputs that represent the upper and lower
bounds of the prediction interval. The LUBE approach was
then utilized to train the DRN algorithm. Here, the coverage
width-based criterion (CWC) was selected as the objective
function to optimize the DRN, and the Adam optimizer was
adopted to optimize the CWC. Field data collected from a wind
farm located in northwest China were used for the case study.

The main contributions of this paper can be concluded as
follows:

• A new approach combining a DRN and the LUBEmethod is
proposed for wind power interval prediction.

• Supervisory control and data acquisition (SCADA) data
considering wind speed, wind direction, ambient
temperature, air density, historic power output, gearbox
bearing temperature, rotor speed, and pitch angle are
utilized as inputs for power interval prediction.

The remainder of this paper is organized as follows. Section
2 introduces the DRN structure, the LUBE approach, other
popular interval prediction algorithms, and evaluation
metrics. Section 3 introduces the dataset and the variables
used for interval prediction. Section 4 presents the
computational results. Section 5 concludes the paper.

2 METHODOLOGY

2.1 Deep Residual Network
DNNs have achieved promising performances in both
classification and regression tasks (Li et al., 2020; Li et al.,
2022). However, in practice, gradient vanishing or explosion
during the training process presents a challenge. The DRN,
which incorporates the residual unit into the DNNs, is capable
of offering superior performance in supervised learning tasks,
such as image classification, target detection, and statistical
anomaly detection (Sun et al., 2020b; Shen et al., 2021; Shen
and Raksincharoensak, 2021).

According to a literature review (He et al., 2016), a single
residual unit can be expressed as follows:

Xl+1 � f(Xl + F(Xl)) (1)

FIGURE 1 | Deep residual network integrated with LUBE approach.
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where Xl and Xl+1 represent the input and output of the residual
unit, respectively; F() denotes the residual function that contains
a convolution operator, batch normalization, and rectified linear
unit (ReLU); and f() represents a ReLU activation function. The
output of the residual function is added to the input and passed
through the ReLU activation function. During the training
process, the gradient of the loss function with respect to any
hidden layer can be derived using the chain rule used in
backpropagation.

Compared with the conventional DNN architecture, the
DRN has two major advantages: first, it does not experience the
problem of gradient vanishing or explosion during the training
process; second, the backpropagation step enables gradient
progression from the deeper layer to the shallow layer. Thus,
the residual characteristics enable a smooth transfer of
information between the deeper and shallow layers. This
guarantees successful training of the DRN in practice.

2.2 Lower Upper Bound Estimation
Approach With Deep Residual Network
A common misconception in practice during interval prediction
is that data follow a certain distribution (Shen et al., 2019).
Although such an assumption can simplify the construction of
prediction intervals (PIs), it can cause other problems concerning
the possible deviation of the data from the pre-assumed
distribution (Ouyang et al., 2019b; Ouyang et al., 2019c).

Khosravi et al. (2010) first proposed the LUBE approach for
interval prediction in 2011. The proposed approach is based on
the PI of neural networks and aims to train neural networks by
minimizing the objective function of the PI. Instead of a single
output for point-based estimation, the LUBE approach involves
two outputs: the upper and lower boundaries of the PI. Here, the
PI includes the predicted values within a certain range, along with
a computed probability as the confidence level, which is based on
historical data. Generally, high-quality interval prediction refers

TABLE 1 | SCADA variables utilized in this study.

Environmental Unit Electrical Unit Mechanical Unit Control Unit

Wind speed m/s Historic wind power MW Gearbox bearing temperature °F Pitch angle °

Wind direction ° Rotor speed rpm
Ambient temperature °F
Air density kg/m3

FIGURE 2 | Changes of CWC at different training epochs.

FIGURE 3 | Changes of CWC at different prediction horizons.
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to the actual measured values that fall within the PI as much as
possible, whereas the PI is as narrow as possible.

In this study, the LUBE approach was incorporated with a
DRN to provide PIs for short-term wind energy. Figure 1 shows
the revised version of the DRN that was applied using the LUBE
approach. Figure 1A shows the general neural network
architecture using the LUBE approach for interval prediction.
It contains an input layer, hidden layer, and two output layers that
represent both the lower and upper boundaries of the PIs. The PI
denotes the interval between the two boundaries, and a correct
prediction implies that the actual value falls within the PI. The
hidden layers of the DRN differ from those in conventional
neural networks. Instead of a layer with hidden nodes (see
Figure 1B), the DRN contains residual blocks as hidden
layers. As shown in Figure 1C, each residual block inputs the
data into a residual function, and the output of the residual
function is concatenated with the original input. It then passes
through the ReLU activation function, as described in
Section 2.1.

According to Figure 1, the main advantage of the proposed
method that uses a DRN and the LUBE approach for short-term
wind power forecasting is evident: it simplifies the process of PI

construction. The LUBE approach uses a feed-forward strategy to
estimate the lower and upper boundaries of the PI. By outputting
two point forests that represent the two boundaries, the actual
short-term wind power is expected to fall within the PI.

2.3 Other Interval Prediction Algorithms
Besides the DRN, there are other popular benchmark interval
prediction algorithms, such as artificial neural networks
(ANN), extreme learning machines (ELM), and kernel
extreme learning machines (KELM). They achieved
promising results in other time-series interval prediction
tasks and were also selected and trained in this study for
comparative analysis against the proposed DRN using the
same LUBE approach.

The ANN is a nonparametric supervised learning analytic
algorithm, that is, widely used for classification and regression
tasks (Li et al., 2018). It is capable of performing high-quality
predictions, as it is modeled after the processes of learning in a
cognitive system. The ANN can accurately and effectively extract
patterns from the dataset and construct mapping relationships
between inputs and outputs. A typical ANN architecture contains
an input layer, one or more hidden layers, and an output layer.
The output of each neuron inside the layers is based on the
neuron of the previous layer and its associated weights, which can
be expressed by Eq. 2:

αij � fj
⎛⎝∑n(j−1)

k�1 (αk(j−1) p ωki(j−1)) + bij⎞⎠ (2)

where αij and bij are the output and bias of the ith neuron in the
jth hidden layer, respectively; αk(j−1) and ωki(j−1) represent the
output and weight of the neuron from the previous layer,

FIGURE 4 | Constructed PIs and actual target wind power of the test dataset.

TABLE 2 | Summary of the interval prediction performance.

Algorithm Evaluation metrics

PICP(%) Std (%) PINAW (%) Std (%) CWC Std

ANN 91.37 5.82 16.83 3.71 0.24 0.03
ELM 89.76 4.97 23.97 5.82 0.27 0.06
KELM 92.01 4.64 15.88 3.13 0.19 0.04
DRN 92.45 5.24 13.23 4.29 0.18 0.03
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respectively; n(j−1) is the total number of neurons in layer (j − 1)
and fj() is the activation function of the jth layer.

An ELM is a novel single-hidden-layer feedforward neural
network (SLFN) proposed by Huang et al. (2018). It randomly
initializes the linking weights and biases, and contains a limited
number of hidden neurons defined by the users. With only one
hidden layer, the ELM is capable of obtaining unique optimal
output weights using only a one-step calculation, and thus obtains
a high training speed. For a given dataset with input xj and target
output tj, the ELM in a regression task can be expressed by Eq. 3
and the optimization task can be expressed by Eq. 4:

oj � ∑n

i�1βiG(xj,ωi, bi) (3)
min
β

����oj − tj
���� (4)

where ωi and bi are the weights and bias for the connection
between the ith node in the hidden layer and the input vector xj,
respectively; βi is the weight vector between the ith node in the
hidden layer and the output; and oj is the prediction output from
the ELM. Here, Eq. 3 can be written as Hβ � T, where H is the
hidden layer output matrix and T is the target output matrix. The
solution is expressed in Eq. 5 as follows:

β̂ � H†T (5)
where H† is the Moore–Penrose pseudoinverse of the hidden
layer output matrix of H.

KELM is an improved version of the ELM and has a higher
generalization capacity and less chance of overfitting (Iosifidis
et al., 2015). Compared with the vanilla ELM, it introduces a
kernel function k(xi, xj) when the feature mapping H is
unknown. Here, the kernel function k(xi, xj) is a substitution
of the ELM’s arbitrary feature mapping, and the output weight
becomes robust. The kernel serves as a function to describe the
relationship between data points which enhances the
performance of feature mapping for ELM. The generalization
capacity on both regression and classification problem is
improved by introducing the kernel function in ELM. Various
kernel functions can be utilized for KELM, such as polynomial,
linear, and radial basis function (RBF) kernels. In practice, the
RBF kernel demonstrates considerable learning capacity in
interval prediction tasks with fewer hyperparameters. Thus,
the RBF kernel was considered in this task, and it can be
expressed by Eq. 6:

k(xi, xj) � exp( − g
����xi − xj

����2) (6)
where g is the kernel parameter.

2.4 Objective Function and Evaluation
Metrics
Once the PIs are constructed, it is essential to evaluate the
quality of their output from interval prediction algorithms. In
general, interval prediction algorithms aim to predict an
interval that encompasses predicted points under a certain
confidence level (Ouyang et al., 2019a). Thus, the prevailing

two dimensions, i.e., the coverage rate and interval width, are
key quantitative metrics for the quality evaluation of the
constructed PIs.

First, the PI coverage probability (PICP) (Khosravi et al., 2011)
was utilized to measure the coverage rate. The PICP can be
computed using Eq. 7:

PICP � 1
N

∑N

i�1ci (7)

where N is the total number of samples measured and ci is the
number of samples that fall into the PI. The value of ci is binary
and is either 0 or 1.

Second, the PI normalized average width (PINAW) (Kavousi-
Fard et al., 2015) was introduced in this study to evaluate the PI
width. The PINAW can be computed as follows:

PINAW � 1
RN

∑N

i�1(ui − li) (8)

whereN is the total number of samples measured, ui and li are the
upper and lower bounds of the ith sample, respectively, and R is
the total range of the prediction target.

In addition, the coverage width-based criterion (CWC)
(Taormina and Chau, 2015), which considers both the PI
width and coverage, was computed in this study. The
computation of the CWC can be achieved using Eq. 9.

CWC � PINAW(1 + γ(PICP)e−η(PICP−μ)) (9)
where the parameters η and μ are used to define the penalty term
e−η(PICP−μ) to maintain the balance between PINAW and PICP;
and γ() is used to reduce the risk of the PI constraint violation
during the training process. The CWC is utilized as the objective
function in this study.

3 DATASET SUMMARY

Field data were collected from a wind farm located in
northwestern China in 2021. The wind farm contains more
than 200 wind turbines, all of which have a rated power of
16 MW. To manage the wind turbines, the wind farm installed
a standard SCADA system, which is principally used for
performance monitoring. The SCADA system provides a
considerable amount of data collected at a 10-min
resolution. In total, more than 100 variables were collected
by the SCADA system in real time, and they varied widely in
terms of scale and type. The top eight SCADA variables related
to wind power were selected in this study and are summarized
in Table 1.

According to Table 1, eight prevailing SCADA variables
were utilized as inputs for the interval prediction task in this
study. Half of the selected variables were environmental
factors and the others were either the electrical or
mechanical characteristics of the wind turbine measured.
The selected variables overlap with those used by the
majority of related studies, confirming the validity of the
selection.
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4 EXPERIMENTAL RESULTS

To perform short-term wind power forecasting, experiments were
conducted to train the DRN following the LUBE approach. In this
study, the entire day dataset was utilized as the training dataset and
the 10-min following wind power as the target output. The CWC
was selected as the objective function, and theAdamoptimizer tuned
the hyperparameters of the DRN.

Figure 2 displays the training process of the DRN together with
those of three other benchmark interval forecasting algorithms:
ANN, ELM, and KELM. All the tested interval forecasting
algorithms were trained using the LUBE approach, as described
in Section 2.2. In total, 100 training epochs were set for all the
interval forecasting algorithms. It can be observed that using DRN,
the CWC converges around the first 20 epochs, which is significantly
higher than the CWC from other interval prediction algorithms.
This demonstrates the superiority of the proposed interval
prediction approach using the DRN.

In addition, this study also explored the relationship between the
prediction horizon and CWC.Here, as see Figure 3, instead of single
10-min ahead power forecasting, we also tested the interval
prediction performance of multiple horizons from 20-min ahead
to 200-min ahead. Intuitively, the CWC for all the algorithms
escalates as the prediction horizon increases. Comparatively, the
CWC values of DRN escalate slower than those of the other
algorithms, which confirms its outperformance in interval
prediction tasks in longer prediction horizons.

Finally, 10-min ahead short-term wind power forecasting was
performed on the test dataset, as presented in Figure 4, which
includes the interval forecasting outcome from a whole day in four
different seasons. The PIs denote the 95% confidence interval within
which the actual power falls, and the target represents the measured
wind power according to the SCADA system. A summary of interval
forecasting on the test data is provided in Table 2.

As summarized in Table 2, all the tested algorithms in this study
were trained using the LUBE approach and examined using the same
test dataset. The proposed DRN produced the highest PICP and the
lowest PINAW and CWC values. All evaluation metrics were
computed as mean and standard deviation. The computational
results confirmed the superiority of the proposed approach.

5 CONCLUSION

In this paper, we propose an interval prediction approach that
provides probabilistic short-term wind turbine power
generation. SCADA data at 10-min resolution were
collected from a wind farm in northwestern China for the
case studies. A DRN integrated with the LUBE approach was
proposed in a short-term interval forecasting framework. A
comparative analysis was performed with three other popular
interval prediction algorithms. The computational results
confirmed that the interval prediction error of the short-
term wind power increased as the prediction horizon
became more distant. The proposed approach using a DRN
produced the best results for power interval prediction. The
application of this model requires the development of new
wind turbine control approaches.
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Assisting Smart Construction With
Reliable Edge Computing Technology
Qiang Yue1*, Song Mu2, Longguan Zhang2, Zhun Wang1,3, Zhonghua Zhang2, Xing Zhang2,
Yongge Wang1,3 and Zhuang Miao1,3

1Institute of Artificial Intelligence, Hebi, China, 2China Railway Engineering Equipment Group Mechanical and Electrical
Engineering Co., Ltd, Chengdu, China, 3Zhongke Xingyun (Hebi) Digital Technology Innovation Co., Ltd, Hebi, China

Although smart construction tools are already assisting the construction sector, still major
reforms are considerably seen in the coming years with Artificial Intelligence of Things
(AIoT). The purpose of this work was to develop a down-to-earth reliable edge-computing
design and plan, which can be utilized to bolster savvy development situations with high
quality of service. The number of devices connected to industrial processes is growing in
tandem with the advancement of sophisticated technologies and the use of the AIoT. Big
data are created as gadgets grow more integrated and need more computing power.
However, as the amount of big data generated grows, processing and analytical issues
arise. Cloud computing technologies are now being used to solve processing and
analytical challenges. However, by using edge computing technologies, greater
emphasis is placed on executing calculations as near to the device as feasible. As a
result of these facts, this article suggests the arrangement plan, which depends on the
most recent cloud and computer program designing approaches and advances, and gives
flexibility, interoperability, and adjustment to construction companies’ particular needs.

Keywords: smart construction, artificial intelligence of things, reliable edge computing, quality of service, qos, big
data

INTRODUCTION

Fundamental aspects influencing the uninterrupted functionality of the Internet within the future era
of the internet, with millions and billions of tools, will be: 1) the big, rapid, and diversified
information obtained by them and their consumers, 2) the population boom of tools and their
expert systems, and 3) need for huge, flexible infrastructure, and services to access and extract
knowledge from these huge datasets to aid in making critical, data-driven judgments. Now, a key
roadblock to the adoption of sophisticated AIoT applications in the construction industry is their
unacceptably low quality of service, which limits real-time processing capabilities. Several reviews of
past AIoT implementations in the construction industry have been published in recent years
(Avizienis et al., 2004; Braun et al., 2015).

Within the last 5 years, artificial intelligence (AI) has made great progress, and it has managed to
establish a footing within construction firms, from concept to construction. The use of constructively
alternative analyses to enhance the precision of estimated costs, precise deadlines, and decrease on-
site risks is the possible use of AI in the design and planning stage (Bonomi et al., 2012; Kim et al.,
2013; and Khodadadi et al., 2015). Furthermore, better productivity, enhanced work procedures, and
a lower risk of accidents on construction sites are also advantages of AI in the construction stage.

Indeed, stringent quality of service criteria, i.e., dependability requirements, are required for such
applications to realize their commercial value. To continuously analyze data from cameras, sensors,
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robotics, smartphones, and smart apps, for example, requires
extensive networking, processing, and memory resources; in
addition, control loops and feedback for signage and actuators
are available. Our strategy will be based on the existing cloud
service design along with reliability of solutions in general. Cloud
computing, according to Mell et al (Dave et al., 2016) is an
architecture that allows universally requisite accessibility to a
group of computing resources over the internet that is shared,
such as servers, networks, applications, storing, and services,
those can be established and maintained with no difficulty.

In response to slowing growth, the need for investment and
research in AI technology is being investigated (Avizienis et al.,
2004; Braun et al., 2015; and Dave et al., 2016). The goal was to
simplify operations and boost efficiency. Avoiding cost overruns,
enhancing site security, and effectively managing projects are all
advantages of AI for the construction sector (Foster et al., 2008;
Bai et al., 2012; Jin et al., 2014; Prasad et al., 2015; Chen et al.,
2016). The following AI sectors of big data and analytics, robotics,
automation, data integration, and wearable technology have
already experienced significant growth (Wang et al., 2007;
Golparvar-Fard et al., 2012).

RELATED WORKS—SMART
CONSTRUCTION AND EDGE COMPUTING

A collection of cyber-physical systems (CPSs) uses real-time
monitoring to prevent the breakdown of temporary (Bonomi
et al., 2012) structures. A cloud-premised dataset and mobile app
are part of their approach. It has an impact on the issue of crane-
to-immobile-object collisions, which they are attempting to
reduce (Khodadadi et al., 2015). A natural-world computation,
a network of anti-collision systems that cautions of an impending
collision and applies appropriate precautionary methods, might
be their answer. The works show methods for construction site
safety that use various monitoring technologies to prevent
accidents between construction equipment and pedestrians.
Their approach is based on the premise of tags and warning
devices that use radio frequency identification as well as
communication protocol and interfaces.

AI is increasingly used at construction sites, and the future
success of the project depends heavily on the efficient use of these
technologies. Several communication software models and supply
management availabilities are presented to help with the
development process (Wang et al., 2007; Bai et al., 2012).
Golparvar-Fard et al (2012) state that material handling has a
substantial impact on the development process; as a result, they
may provide a software model prototype for efficiently handling
building materials with minimal human participation Villari et al
(2016) provide web-premised offerings that may combine
radiofrequency identification technology with smart devices to
boost the efficiency of information and knowledge exchange on
building sites. Mell and Grance (2012), Swain et al (2015), Jegen
-Perrin et al (2016), Li et al (2021a), and Li et al (2021b) looked at
methods for real-time data, task management, site and
monitoring, and exchange using a multi-tier computer
architecture in their research.

Next, NVivo was used to perform content analysis to analyze
word frequency, concepts, and technology to identify the main
topics of tweets about AI applications in the construction
industry. The reasons for this choice are:

i. AI is beginning to be recognized by some of Australia’s top
construction businesses. These businesses are effectively
utilizing AI in their initiatives to save money and time.

ii. A national AI strategy and roadmap are being developed in
Australia. To summarize, the development of AI in cities and
industries is being carefully planned to prevent becoming
simply organic.

iii. In Australia, social media is widely used and has evolved into
a source of information for conveying the common view of AI
in the construction business.

The lack of communication on construction sites is a common
source of accidents, and it should also create a slew of serious on-
site issues and delays.

Several studies specialize in the utilization of varied AIoT
devices in construction. Avizienis et al (2004) discussed how the
Internet of Things (IoT) and associated protocols can help to
improve the development management system. Le et al (2014)
and Roman et al (2018) described a tower crane safety monitoring
system powered by AIoT that successfully monitors the safety of
the tower production process. The majority of AIoT apps
developed so far have been built to operate natively or on
Web browsers, with no measures in place to reduce
application/system downtime or data loss.

APPLIED METHODOLOGY

Methodology
The recognized test is to characterize a bunch of edge computing
technologies as shown in Figure 1 that can be utilized to oversee
smart AIoT construction. Inside the shrewd conditions, different

FIGURE 1 | Reliable edge-computing technology and smart AIoT
construction.
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savvy applications are sent to help computerization. The essential
objective of the services for edge management was to add to
higher quality of service, in contrast, with existing cloud
frameworks and hence likewise to have the option to meet
rigid trustworthiness necessities of each expected brilliant
application.

The current work adopts a hierarchical strategy. In light of
edge and haze figuring definitions (Chae, 2009), leaving
innovation surveys (Chae and Yoshida, 2010; Yi et al., 2015),
the distinguished specialized necessities of the possible
applications, and experience acquired over cutting edge-
distributed computing and programming projects, a sufficient
calculated methodology for edge registering in development is
ready. It characterizes the vital administrations that can be
utilized to acquire high quality of service. Following the
engineering and plan, two praiseworthy edge-processing
applications were created to show the feasibility of the
methodology and the potential advantages while meeting the
expected quality of service. The applications that have been
chosen to show the methodology are connected with video
correspondences and documents of the executives, which are
agents for different functionalities required inside well-informed
development conditions.

Necessities
Brilliant frameworks in the development area must be planned as
dependable. Framework reliability addresses the framework’s
capacity to convey administration that can be sensibly trusted.
From a framework disappointment viewpoint, the reliability can
be additionally characterized as the frameworks capacity to stay
away from disappointments that are successive or serious, and
longer blackout lengths than it is ok with the client (Beach et al.,
2013; Datta et al., 2016), for instance, to perform security and
business basic activities.

At the point when the key trustworthiness prerequisites are
not fulfilled, extreme results are inescapable. For example, this
can cause extra monetary expenses, compromised well-being at
the building site, development process delays, loss of notoriety,
and numerous different repercussions. Overall, giving the
necessary steadfastness to AIoT building locales, where time-
basic applications are utilized, certain trustworthiness credits
must be tended to and fulfilled consistently.

Approaches and Methods for Cloud and
Edge Computing
Cloud computing is widely utilized today owing to features like
seamless scalability, configuration, and pay-per-use (Stankovski
and Petcu, 2014). In the recent decade, it has been extensively
explored, developed, and utilized in a variety of fields. Past
initiatives have been supplemented by the new generation of
edges and cloud computing projects, including SWITCH, which
focuses on system software for ENTICE, AIoT, and Big Data that
focuses on innovative cloud computing storage solutions.
Advanced novel techniques have evolved, such as osmotic
computing (Shi et al., 2016a). They recommend building apps
out of microservices, and they are carried out at the edge network

systems. Contrary to popular belief, cloud computing is still a
centralized computing architecture; new computing concepts
decentralize computing by extending processing capability to
the network edge. Cloud computing concentrates on
processing operations inside this network, among end devices
and cloud computing data centers (Prasad et al., 2015). Edge
computing, on the other hand, brings processes even nearer to
data resources, allowing any devices on to the edge to process data
(Kim et al., 2013). Although edge and cloud computing are
distinct computer tactics, they have comparable aims, and
hence edge and cloud computing may be thought of as the
two sides of a single coin.

There are currently data-centric technologies (Chae, 2009;
Chae and Yoshida, 2010) available that enable near-data
computing and significant AIoT compatibility. At the network
edge, decentralized computing technologies bring services closer
to users. Their objectives include reducing delays, lowering data
transport and processing costs, and increasing scalability.
Additionally, it is feasible to turn edge devices into
virtualization platforms (Ren and Wu, 2014; Shi et al., 2016b).
Container-based virtualization, for example, may be utilized to
create edge-computing architectures. A container, in general,
includes the application data code, all essential info libraries,
and, if necessary, the data code. As a result, both functionality and
data are included in a container instance.

Modern Software Tools and Techniques
Parallel to the advancement of virtualization technology, software
engineering methodologies and tools have also made significant
strides in recent years. Rapid extreme programming, application
development, behavior-driven development, test-driven
development, and other modern software development and
engineering approaches are only a few examples. Component-
based software engineering, in general, facilitates such
advancement. It encourages closer collaboration among
development, business, and IT operations teams.

Modifying the Edge Computing Technology
Edge compute clusters (Raspberry PIs, microservers, routers, and
more computational capabilities close to the environment that is
smart) as well as public and private clouds are two types of
infrastructure for computation that might be utilized to execute
AIoT applications (that is, data center computing capacity). The
initial stage in this procedure is for a smart application
administrator to examine their edge-computing requirements.

Figure 2 shows a layered edge-computing architecture that
divides services into three levels. Because apps are built up of
software modules, they may be used at any stage of development.
The first stage of the first would operate on AIoT devices in the
field, while the second would run on edge-computing nodes, and
the third on the most suited public cloud from the virtual bunches
indefinitely. Various AIoT devices, such as video-camera-fitted
headsets, might function on batteries and send data to the cloud
regularly.

Due to their high networking resource requirements, edge
computing must be used for time-critical software applications.
Relying on the circumstance, the intelligent environment
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operator can determine how many edge-computing devices are
required to ensure that smart applications run reliably. In total,
three high-performance microservers, for example, located near a
medium-sized intelligent construction atmospheric environment,
may be sufficient to provide good quality of service and
dependency. Furthermore, sections of the applications with no
time-critical needs can be placed in a dataset center, lowering
operational expenses.

The infrastructure of high standard flexibility enabled by the
ENTICE and SWITCH services fundamentally implies that the
system may operate AIoT applications without the requirement
for ongoing management. The Kubernetes-premised orchestrator
can swiftly stop and start containers servicing specific AIoT units
throughout the entire range of computing, such as in the dataset
center, at the edge, and even in transportable AIoT device-
integrated computer systems (on which an operating system
and an orchestrator are installed and running). As a result,
this is a fully complete system capable of running, updating,
extending, building, deleting, and managing software services in
real-time.

The orchestrator that has been built may be utilized to
effectively expand containers horizontally as consumption
grows, allowing for excellent service availability. Of course,
this translates to increased operation safety near the smart
construction environment. To guarantee dependable operation,
an availability parameter can be used that specifies how many

service copies should be operating at the same time. Furthermore,
as a result of the applications’ rapid recovery process, the
orchestrator ensures a more stable continuous delivery of
services—applications are monitored closely by a collection of
assets that are able to monitor elements, and an alerting trigger
creates warnings so when service quality thresholds (e.g., jitter,
latency, and bandwidth) are exceeded.

Edge Computing
Edge computing can be made up of a variety of gateway routers,
devices, tiny servers, and small data centers with energy
consumption ranging from 1–5 kW. All of these computer
systems have an operating system in common. Core OS,
RancherOS, and nearly any Linux-based systems are examples
of operating systems that can effortlessly handle Docker
containers. An IP gateway is a specialized device that connects
AIoT devices to the Internet. IP gateways such as the TA900e or
Cisco-ASA are examples of IP gateways, whereas AIoT devices
and sensors include video communications, cellphones,
temperature, air quality, and humidity transmitters, among
others. Naturally, a system operator would be required to set
up such a system and regularly monitor it using the monitoring
components. The study did not focus on the forms of
communication (wired and wireless) between the AIoT and
the software services running at the network edge. This is an
aspect about which the intended architecture is agnostic.

FIGURE 2 | Layered architecture for reliable edge-computing technology and smart AIoT construction.

TABLE 1 | Open-source Web communication applications.

<! --Col Count:5--> Google Meet Microsoft Teams Jio Meet Zoom

Chat Y N N Y
Videoconference Y Y Y Y
Screen-sharing N Y Y Y
Encryption Y Y N Y
Record N N Y Y
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The AIoT devices that have been deployed can broadcast
video, sensor data, and audio in real-time. Computing devices
that run container-based services then interact and analyze their
data directly.

In time-critical scenarios, such as probable collisions or
accidents, when an immediate response to events is required,
on-site data processing may be required. Furthermore, edge
processing enables more efficient data processing in the cloud
at reduced prices. The edge-processed data is then forwarded to
network gateways, which transfer it to the most appropriate
virtual data center entity (bunches).

Communication
Efficient communication and a range of signal solutions are
necessitated for the success of any construction operation on
one or many constructional projects. Communication through
video may require for every construction project’s success to be
enhanced with several time-consuming functions, such as real-
time video analysis to detect security and safety issues, augmented
reality environments to increase cooperation and project
collaboration, and construction site delays and blunders.

Construction businesses, site teams, surveyors, architects,
engineers, and other site employees need to communicate often;
therefore, videoconferencing eliminates the need for face-to-face
meetings. As a result, face-to-face discussions may be held at any
moment at a lower cost, and interaction across office-to-office, site-
to-site, and project work-to-project work teams is easier. In
addition to meetings, videoconferencing participants can use to
discuss a video from the worksite and resolve potential on-site
issues, regardless of their geographic location. This type of
communication might lead to improved cooperation, faster
delivery of solutions, and lower manufacturing costs. As a
result, it serves as an example of a critical application.

Open-source software can be utilized to create an edge-
computing application. Google Meet, Microsoft Teams, Jio
Meet, and Zoom were all viewed as open-source video
conferencing apps. Table 1 compares and contrasts their
functions.

The Construction Process Is Being
Documented
Documentation is a regular problem in various sectors, and it also
performs an important role in the building phase. Although this is
not a significant issue for minor building projects, some recent
firms are attempting to solve it. Delays and data loss are likely in
larger projects; thus, documentation is vital. New AIoT devices,

such as radiofrequency identification sensor data, video
surveillance, and tags, may assist record the entire process
using new formats and methodologies, all of which are Big
Data problems (veracity of data, variety, volume, and velocity).
In such circumstances, using cloud-premised solutions may be
able to overcome the obstacles.

This application is time-critical because it must run to avoid
any delays, and everything is performed in real-time. The overall
purpose of this application was to provide a file-sharing
mechanism among building process participants with a high
level of service quality.

CONCLUSION

The innovation of this study, in comparison to other current
methods used for construction automation outlined in Section 2,
is the innovative edge-computing architecture and creation of a
reliable AIoT construction system. Artificial intelligence (AI) is a
powerful instrument with the potential to transform and disrupt
the construction sector. In total, two AIoT applications with
strong quality of service requirements are used to showcase the
methodology, which is based on the created design. This
revolutionary design can accommodate a variety of smart
applications for a variety of building project demands and
sizes. Furthermore, software services, such as analytic services
like data mining, machine learning, and simulations, may be
created using containers and used successfully in the current
edge-computing architecture. As a result, deploying cloud
environments adjacent to construction sites might provide
seamless construction site administration and communication,
reducing costs and increasing dependability. The current state of
knowledge about emerging construction technologies and their
application areas is insufficient.
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As an important function of the advanced driver assistance system (ADAS), the reversing
assistant (RA) achieves trajectory retracing by applying accurate position estimation
and tracking control. To overcome the problem of the modeling complexity in dead
reckoning for the reversing assistant function, the heading angular rate is compensated
by using the extreme learning machine (ELM) to improve the positioning accuracy.
In addition, considering the time delay of the steering system, a tracking controller
with a feed-forward of the recorded steering angle and a self-tuning PID feedback
controller is designed based on the preview-and-following scheme. Vehicle experiments
under various reversing scenarios prove that the proposed positioning method and
tracking control scheme are effective, the overall lateral error is less than 10 cm, and
the heading angle error is less than 1°, which meets the requirements of performance
indicators.

Keywords: reversing assistant, extreme learning machine, dead reckoning, tracking control, self-tuning PID

1 INTRODUCTION

In order to improve driving safety and comfort, a fully autonomous reversing assistant (RA) function
is developed and designed by automotive engineers. The merit of the RA function can make the
vehicle automatically reverse back to the starting position of the original route with a maximum
support of 50 m, and therefore, it is quite helpful for unskilled drivers, especially under some
complicated driving scenarios such as narrow roads.

The core techniques of the RA function include vehicle position estimation and trajectory
tracking control. Currently, commonly used vehicle positioning technologies include dead
reckoning (Skog and Handel, 2009; Alvarez et al., 2012; Wang et al., 2014), inertial navigation
(Woodman, 2007; Leppäkoski et al., 2013), satellite positioning (Leppäkoski et al., 2013;
Jiménez et al., 2014; Li et al., 2022), visual positioning (Woodman, 2007; Beauregard, 2009), and
lidar-based positioning (Shin et al., 2010; Hess et al., 2016). Each method has its own advantages
and shortage and can be selected according to the specific application scenario. Among them,
dead reckoning is favored because of its advantages such as no external sensor, low cost,
fast sampling frequency, and high short-time positioning accuracy. However, its long-distance
positioning deviation is large due to the accumulation of systematic and non-systematic errors.
To overcome the aforementioned problems, the mainstream approach is to use multi-source
and multi-sensor information fusion technology to integrate other positioning information and
dead reckoning information, to achieve the overall positioning accuracy (Alvarez et al., 2012;
Wang et al., 2014; Zhang et al., 2015; Jian et al., 2020). In addition, there are also attempts to improve
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positioning accuracy by compensating and optimizing the
angle information in dead reckoning (Tian et al., 2014;
Chen et al., 2016; Ho et al., 2016). For tracking control,
geometric relation-based control methods (Coulter, 1992;
Thrun et al., 2006; Li et al., 2021a; Le et al., 2021), model-based
control methods (Guo and Fancher, 1983; Ziegler et al., 2014;
Bayuwindra et al., 2016), and preview-and-following
theory-based control methods (Guo and Guan, 1993;
Falcone et al., 2007; Marino et al., 2011; Shen et al., 2020) are
commonly used at present.

Recently, machine learning techniques have attained much
attention in many research fields, such as data-driven modeling
(Ourmazd, 2020;Cui et al., 2021), prediction (Huang et al., 2006;
Liu et al., 2019; Zhou et al., 2021), control (Kang and Gao,
2020; Zhou et al., 2021; Wu et al., 2022), and fault diagnosis (He
and Kusiak, 2017; Li et al., 2021b). Machine learning allows a
controller to improve its performance by learning from previous
events, in the same way humans learn from experiences.
Due to the system complexity of the ADAS, the traditional
designs based on the mechanism analysis become more difficult,
and then the machine learning techniques have been well
studied and gradually adopted (Moujahid et al., 2018). As an
efficient learning algorithm with lower computational burden,
an extreme learning machine (ELM) has gained much attention
in ADAS. The ELM is mainly designed for training single
hidden layer feed-forward neural networks, and its hidden nodes
are randomly initiated, and then determined without time-
consuming iteratively tuning (Huang et al., 2006, 2015).

Based on the aforementioned analysis, in view of the
requirement of low cost and high precision of RA positioning
scheme, a dead reckoning method with a redundant design
based on vehicle signals such as wheel speed and front-wheel
angle is proposed; at the same time, in order to compensate the
accumulated errors caused by the internal and external errors of
the system, the ELM is introduced to correct the heading angle
and improve the overall positioning accuracy. In terms of tracking
control, considering the characteristics of the RA function and
engineering needs, the preview-and-following control scheme
is used to realize tracking, namely, using the current vehicle
position and vehicle motion to calculate the vehicle position
at a certain amount of preview time, and the target tracking
point of the desired trajectory is determined based on the vehicle
position at the preview point, which can deal with time delay
greatly; on the basis of the preview, the following controller is
designed by using a feed-forward plus self-tuning PID feedback
control algorithm. Finally, functional verification is carried out
in different scenarios. Experimental results demonstrate that
the positioning and control method designed in this study is
effective, and the key performance indexes such as lateral error
and heading angle error meet the design requirements.

2 DEAD RECKONING AND
COMPENSATION

Dead reckoning calculates the location and the heading of the
vehicle’s center of gravity (CG) based on vehicle signals such as
four-wheel speeds and steering wheel angle. Also a confidence

evaluation method of the CG position was designed to avoid the
increase in positioning error due to the slip of individual wheels.
At the same time, considering the unpredictable disturbance such
as the change of wheel diameter caused by load and the uneven
ground, the accurate position estimation model is difficult to
be established. Then, an extreme learning machine is adopted
to compensate for the model error to improve the positioning
accuracy.

2.1 Dead Reckoning Based on Yaw Angle
The schematic diagram of the vehicle coordinates is illustrated
in Figure 1. The CG of the vehicle starting time is taken as the
origin of coordinates. At low speed, the sideslip angle of the CG
is ignored; the yaw rate of the body is calculated according to the
Ackerman steering relation and the average yaw rate of the four
wheels:

R = L
2
( 1
tan δfr
+ 1
tan δfl
), (1)

[[[

[

ωfl
ωfr
ωrr
ωrl

]]]

]

=

[[[[[[[[[[[[[[[[[

[

vfldt

sign(R+ W
2
)
√(R+ W2 )

2
+ L2

vfrdt

sign(R− W
2
)
√(R− W2 )

2
+ L2

vrrdt

sign(R− W
2
)

vrldt

sign(R+ W
2
)

]]]]]]]]]]]]]]]]]

]

, (2)

FIGURE 1 | Diagram of the vehicle coordinates.
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ω = 1
4
(ωfl +ωfr +ωrr +ωrl) , (3)

where L and W denote the wheel base and the wheel track,
respectively; δ denotes the steering angle of the wheel, R and v
are the turning radius and the wheel speed, respectively; ω with
and without subscripts are the yaw rate of the specified wheel and
the vehicle body, respectively; dt is the sampling time; and the
subscripts of the notations such as fl, fr,rl,andrr throughout the
article denote the front-left, front-right, rear-left, and rear-right
wheels, respectively.

Based on the CG position at the last moment, the initial
position of the four wheels was calculated:

[xN (i− 1)yN (i− 1)
] = [xCG (i− 1)yCG (i− 1)

] + [ cos ψ (i− 1) sin ψ (i− 1)
−sin ψ (i− 1) cos ψ (i− 1)][

k1W
2
k2L
], (4)

where (x,y) denote the coordinate positions and ψ is the yaw
angle, the subscript N = 1,2,3,and 4 represents the front-left,
front-right, rear-right, and rear-left wheel, respectively; and

{{{
{{{
{

k1 = −1, k2 = 1, if N = 1
k1 = 1, k2 = 1, if N = 2
k1 = 1, k2 = −1, if N = 3
k1 = −1, k2 = −1, if N = 4.

(5)

Furthermore, the four-wheel positions at the current time can
be calculated on the basis of no slip assumption, that is,

[x1 (i)y1 (i)
] = [x1 (i− 1)y1 (i− 1)

] + [sin (ψ (i− 1) + δfl)cos (ψ (i− 1) + δfl)
]vfldt, (6a)

[x2 (i)y2 (i)
] = [x2 (i− 1)y2 (i− 1)

] + [sin (ψ (i− 1) + δfr)cos (ψ (i− 1) + δfr)
]vfrdt, (6b)

[x3 (i)y3 (i)
] = [x3 (i− 1)y3 (i− 1)

] + [sin ψ (i− 1)cos ψ (i− 1)]vrrdt, (6c)

[x4 (i)y4 (i)
] = [x4 (i− 1)y4 (i− 1)

] + [sin ψ (i− 1)cos ψ (i− 1)]vrldt, (6d)

ψ (i) = ψ (i− 1) +ωdt. (6e)

The four virtual vehicle CG positions (xCG,N,yCG,N) are
calculated according to the four-wheel positions with the
geometric relationship and the body direction:

[xCG,N (i)yCG,N (i)
] = [xN (i)yN (i)

] + [ cos ψ (i) sin ψ (i)
−sin ψ (i) cos ψ (i)][

k1W
2
k2L
], (7)

where k1 and k2 are defined in Equation 5. Finally, the CG
position can be obtained by the following relations:

[

[

xCG (i)
yCG (i)
ψCG (i)
]

]
=
[[[

[

1
4 ∑

4
N=1 xCG,N (i)

1
4 ∑

4
N=1 yCG,N (i)
ψ (i)

]]]

]

. (8)

FIGURE 2 | General structure of the ELM.

At the same time, the redundant design is considered to avoid
large slips of the individual wheel or large positioning deviations
caused by the low tire pressure and the signal disturbance. The
evaluation index dC,N is defined as follows:

dC,N = √(xN − xCG)
2 + (yN − yCG)

2, N = 1,2,3,4, (9)

and take the front-left wheel (i.e., N = 1), for example (same with
other wheels), if dC,1 > (dC,2 + dC,3 + dC,4)/3, then this value will be
regarded as poor confidence and it will be removed.The final CG
positionwith redundant designwill use the following calculation:

{
{
{

xCG =
1
3 (x2 + x3 + x4)

yCG =
1
3 (y2 + y3 + y4) .

(10)

2.2 Compensation Scheme Design-Based
on ELM
For long-distance dead reckoning, the estimation of the heading
angle determines the overall positioning accuracy. In some actual
testing scenarios, it is found that due to the mechanical structure
of the steering system gap, left and right asymmetry, positioning
angle changes, and other factors, the left and right front wheel
angle mapping from the steering wheel angle has errors, which
leads to inaccurate heading angular rate and indirectly leads to
the large cumulative errors in position estimation. Considering
the internal parameters of the system affecting the accuracy of
heading angular rate cannot be obtained and the compensation
model is difficult to be established, an extreme learning machine
(ELM) based estimation algorithm is introduced in this study to
improve the estimation accuracy of the heading angular rate.The
general structure of the ELM can be found in Figure 2.

ELM is also referred to as generalized single-hidden layer feed-
forward neural networks (FNN) where the hidden layer need not
be neuron alike (Huang et al., 2015). Compared to conventional
FNN learningmethods, ELM adoptsMoore–Penrose generalized
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inverse to set its weights instead of the gradient-based
backpropagation strategy. Essentially, the learning process can
be implemented without iteratively tuning hidden nodes, and it
achieves better generalization performance by minimizing both
the training error and the norm of output weights. Therefore,
ELM has higher efficiency and generalization ability than other
learning methods. Typically, the output function of the ELM is
defined as follows:

y = fnh (x) =
nh

∑
j=1

wjhj (x) = h (x)w, (11)

where w = [w1,…,wnh]
T denotes the output weight vector

between the hidden layer of nh nodes and the m output nodes,
h(x) = [h1(x),…,hnh(x)] is the feature mapping function. In this
study, the training dataset is selected with x = [vrl vrr θ ̇θ]T ,
where input states include rear-left and rear-right wheel speed,
steering wheel angle, and their difference, respectively; the output
y is the error between the calculated yaw rate and the measured
yaw rate based on the high-precision inertial navigation. The
optimal weightsw* between the hidden layer and the output layer
are calculated by solving the following cost:

min
w∈Rnh×m

1
2
∥ w ∥2 +C

2
∥Hw−T ∥2, (12)

whereH denotes the hidden layer output matrix, T is the training
goal matrix, and C is regularization coefficient; the solution is as
follows:

w∗ = (HTH + I
C
)
−1
HTT , (13)

where I is an identity matrix of nh dimension. Thus, the final
ELM-based output for the heading angular rate is

ŷ = fnh (x) = h (x)w
∗. (14)

The final vehicle yaw rate estimation is the combination of the
calculated yaw rate and the heading angular rate calculation error
output by ELM.

2.3 Real Vehicle Validation for Dead
Reckoning
In order to verify the effectiveness of the ELM-based
compensation strategy, vehicle experiments have been carried
out under different conditions including straight line, S-shaped,
and right-angle bending. The on-board measurement based
on a high-precision global position system (GPS) is used for
the baseline benchmark, and the positioning effects with and
without ELM compensation have been evaluated, as shown in
Figures 3–5.

It is obvious from Figures 3–5 that the error accumulation of
the dead reckoning is small and the compensation effect is not
obvious in the initial short distance.However, as the distance goes
far, the dead reckoning without compensation deviates from the
GPS measured value, the cumulative error gradually increases,
and the positioning accuracy decreases. Even the error becomes
more obvious when encountering a large corner. Moreover,

FIGURE 3 | Comparison result of the dead reckoning test under straight line
conditions.

FIGURE 4 | Comparison result of the dead reckoning test under S-shaped
condition.

FIGURE 5 | Comparison result of the dead reckoning test under right-angle
bending condition.
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the dead reckoning with ELM compensation can always be
stable near the measured value with a small error. Although
the error increases after a large corner, it can quickly return
to the true value after the corner, which improves stability and
reliability.

3 REVERSING ASSISTANT CONTROLLER
DESIGN

RA can record the vehicle’s forward track point when the
recording condition is satisfied. If the RA function is activated,
the system controls the vehicle to follow the recorded track
automatically and completes the reverse drive.

3.1 Preview Point Determination
The existence of time delay and external disturbance in the
steering systemwill lead to lag effects in vehicle reversing tracking
control, especially when requiring a large turning angle, and
therefore leads to the large following error.The preview strategy is
used in this study to solve this problem and, based on the vehicle’s
current position and state, to calculate its position after a certain
previewing time.

As shown in Figure 6, the current position of the
vehicle is PntV (x,y,φ), its position at the preview point is
PntVp (xp,yp,φp), and if |ω| < 0.001rad, then the vehicle is
identified to be driving in a straight line:

xp = x − vtp sin ψ, (15a)

yp = y − vtp cos ψ, (15b)

FIGURE 6 | Position calculation diagram at preview point.

ψp = ψ. (15c)

On the contrary, if |ω| ≥ 0.001rad, vehicle position at the
preview point is

xp = x + v (sin(ψ +ωtp) − sin ψ)/ω, (16a)

yp = y − v (cos(ψ +ωtp) − cos ψ)/ω, (16b)

ψp = ψ +ωtp, (16c)

where tp is preview time.

3.2 Target Track Point Selection
The closest tracking point to the vehicle preview point, denoted
by PntN, is determined via the recorded forward tracking point
sequence and vehicle preview position. According to the relative
position relationship between the vehicle preview point and the
closest point, the front point PntF and the rear point PntR can
be determined, and then the target tracking point PntM is finally
obtained. The decision procedure of the target tracking point is
illustrated in Figure 7.

3.3 Calculation of Lateral and Heading
Deviation
Once the target tracking point is determined, the lateral error Δy
and heading angle error Δψ of the target tracking point and the
vehicle preview point can be calculated. As shown in Figure 8,
denote the coordinate of the target point PntM as (xr ,yr ,φr) and
the vehicle preview point PntVp as (xv,yv,φv), there exists the
following relations:

{Δy = (yr − yv)cosψr − (xr − xv) sinψv
Δψ = ψr −ψv,

(17)

where the heading angle error is normalized to [−π,π].

3.4 RA Controller Design
The implementation of the RA function mainly depends on
the accuracy of the tracking control by adjusting the steering
angle.The recorded steering anglewhendriving forward, denoted
as swe, is used as a reference steering wheel angle at the
corresponding position, which provides the feed-forward control
input. In addition, considering the external interference and
other factors, a parameter adaptive PID feedback control scheme
is designed for correction and compensation. The feed-forward
and the feedback control variables are given as follows:

{
{
{

uff = swe

ufb = (
kpdΔy
cosΔψ +

kpψΔψ
cosΔψ)+ ki ∫Δydt + kdΔy

(18)

where the continuous smooth self-tuning of the proportion
parameter is determined by the heading angle error, namely,
when the heading angle error is small, the following effect is
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FIGURE 7 | Calculation process of the target tracking point.

FIGURE 8 | Calculation of lateral and heading deviation.

great, and the proportion coefficient becomes smaller to reduce
overshoot and oscillation; on the contrary, when the following
effect is poor and the heading angle error becomes larger,
the proportion parameter becomes larger accordingly, which
improves the response speed and rapidly follows the desired
trajectory.

4 VEHICLE TEST AND VALIDATION

The effectiveness of dead reckoning and the RA control method
is verified in this section. The real vehicle tests were carried out
in some typical conditions including straight line, S-shaped, and
right-angle bending, based on an SUV model. The experimental
results are shown in Figures 9–13.

The straight line RA test result is illustrated in Figure 9. In
this straight line test, when the vehicle moves about 38 m and
around 36 s, the RA state changes from1 to 2 and the RA function
is activated, and the vehicle starts reversing at a fixed speed of
3 km/h. In the whole process, the wheel angle control quantity is
smooth, the forward and reverse tracks coincide, with the lateral
error being less than 0.2 cm and the heading angle error being less
than 0.2°. Although a few sample periods have a jump, it is due
to the temporary jump of each value including the target track
point and vehicle preview point, and because of the mechanical
filtering effect on the high-frequency signal, there is no sudden
change in the intuitive perception.

As shown in Figure 10, in the S-shaped RA scenario,
the forward S-shaped trajectory and the reverse trajectory
coincide, and the control quantity is smooth without jitter.
Although the deviation becomes larger when reversing due
to the failure of the optimal preview time, the lateral error
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FIGURE 9 | RA in straight line condition.

FIGURE 10 | RA in S-shaped condition.

is always less than 3 cm, and the heading angle error is less
than 1°.

As shown in Figure 11, in the right-angle bending RA
scenario, although the error increases at the turning point, the
forward trajectory coincides with the reverse trajectory, and the

control quantity is smoothwithout jitter, the lateral error is always
less than 2 cm, and the heading angle error is less than 0.5°.

As shown in Figure 12, there is a high degree of convergence
between the forward trajectory and the reverse trajectory. In the
tracking process, due to the external impact when crossing the

Frontiers in Energy Research | www.frontiersin.org 7 May 2022 | Volume 10 | Article 9140264039

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Di et al. RA Design Based on ELM

FIGURE 11 | RA in right-angle bending condition.

FIGURE 12 | RA in a speed bump.

speed belt, the steering wheel angle oscillates temporarily after
the impact on the steering system due to the driver’s hands off,
which leads to the jitter of the point given by the dead reckoning,
but it converges quickly. In the process of being hit by the speed
bump, the lateral error and heading angle error are kept to a small
level.

As shown in Figure 13, after a right-angle bending, the vehicle
enters about 8% slope consisting of both longitudinal and lateral
slopes. In the whole process, the forward trajectory and reverse

trajectory have a high degree of overlap. On the ramp, the lateral
error is less than 2 cm, and the heading angle error is less than 1°.
The left and right wheel bearing are different due to the existence
of the lateral slope, which leads to a small vibration in the steering
wheel and a certain degree of the dead reckoning jitter; error has
also been accumulated, directly leading to larger error when it
enters the flat road and turns right-angle bending, but the lateral
error and the heading angle error are always controlled in a small
level.
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FIGURE 13 | RA in a slope.

5 CONCLUSION

In this study, the dead reckoning method with redundant design
is proposed, which makes full use of the information of four
wheels and eliminates the influence of slip of the wheels on
positioning. At the same time, in view of themodeling complexity
for position estimation, an ELM is introduced to estimate the
heading angular rate and compensate for the dead reckoning.
As for tracking control, a feed-forward and feedback PID
controller with preview is designed. The proposed positioning
and tracking control methods are proved effective, and the design
satisfies the requirements of performance indexes via a variety
of scenario tests. In addition, considering the mechanical wear
and aging with the long-term use of the vehicle system, the ELM-
based compensation method may face performance degradation
problems; therefore, the future work will focus on the online
update of the compensation model to improve the reliability of
the RA function.
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Insulator Fouling Monitoring Based on
Acoustic Signal and One-Dimensional
Convolutional Neural Network
Li Hao1, Li Zhenhua1,2*, Cheng Ziyi 1, Chen Xingxin1 and Yanchun Xu1

1Electrical Engineering and New Energy, China Three Gorges University, Yichang, China, 2Hubei Provincial Key Laboratory for
Operation and Control of Cascaded Hydropower Station, China Three Gorges University, Yichang, China

Aiming at the problem of pollution insulator discharge mode monitoring in high voltage line,
a new one-dimensional convolutional neural network structure (1D-CNN) was designed,
and a pollution insulator discharge mode monitoring method based on acoustic emission
signal and 1D-CNN was proposed. Firstly, the data was collected in laboratory of acoustic
emission signal under different discharge after sliding access way to expand the sample
quantity. Thereafter, the sample time and frequency domain was used along with a third
octave data as input, using convolution neural network to discharge signal samples
adaptive feature extraction and feature dimension reduction. Then, appropriate stride
convolution alternative pooling layer was used in order to reduce the training model
parameters and the amount of calculation. Finally, Softmax function was used to classify
the predicted results. The identified results show that the model can achieve a recognition
rate of more than 99.84%, which effectively solves the process of manual data
preprocessing in the traditional insulator pollution degree monitoring method.
Moreover, at the same time it can be effectively applied to the pollution insulator
discharge mode monitoring task.

Keywords: discharge of polluted insulator, convolutional neural network, acoustic emission signal, fault diagnosis,
deep learning

INTRODUCTION

Among the power system accidents that have occurred in my country in recent years, the insulator
pollution flashover accident is one of the main disasters. In the atmospheric environment, the
pollution in the air will adhere to the surface of the insulator and become damp, resulting in a
pollution flashover accident (Ahmadi-Joneidi et al., 2013; Wang et al., 2014), which seriously affects
the safe and smooth operation of the power grid and causes a lot of economic loss. The
contamination discharge of insulators is accompanied by the generation of acoustic signals, and
the intensity of the acoustic signals changes with the degree of discharge, which can better
characterize the external insulation state of the insulator under the current operating state
(Gencoglu and Cebeci, 2009; Su et al., 2009; Moula et al., 2013; Li et al., 2021b). Therefore, in
practical engineering, the state evaluation of the external insulation state of the insulator can be
realized by analyzing and processing the acoustic signals of the insulator discharge under different
pollution states.

Scholars at home and abroad have carried out a lot of explorations in the acquisition, denoising,
feature selection and extraction of the discharge acoustic signals of polluted insulators under
operating conditions, and the establishment of on-line diagnosis and prediction models for insulator
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pollution. Literature (Tian et al., 2016) believes that the insulator
pollution discharge consists of three stages, namely corona
discharge, partial discharge and arc discharge, and the
characteristics of the acoustic emission signal generated by the
discharge are obviously different. Reference Tian et al. (2015)
proposes to perform empirical mode decomposition on complex
acoustic emission signals, and adaptively decompose the original
acoustic signal into several components in different frequency
bands, that is, eigenmode components. The energy distribution is
compared and identified. In the literature (Wang and Nie, 2016),
by studying the time-frequency characteristics of acoustic signals
at different fouling degrees, it was found that the acoustic signal
contains four characteristic quantities in both the mean value in
the time domain and the spectral characteristics in the frequency
domain, and the four characteristic quantities, the mean value,
the maximum value, the standard deviation and the amplitude of
the real part of the FFT of the acoustic signal in the time domain,
were used for correlation analysis of the development process of
insulator fouling discharge. In the literature (Wang et al., 2021),
after manually simulating the effects of different soluble fouling
adhesion densities and gray densities on the acoustic emission
signals of glass insulators, a generalized regression neural
network-based insulator hazard prediction model was
established with the mean value of signal amplitude and the
area of the maximum IFT semi-perimeter envelope as the main
input feature quantities, and more accurate prediction results
were obtained. In order to improve the prediction accuracy, the
traditional machine learning classification method needs to
preprocess the data to extract the data features and select an
appropriate classification method.

For these series of problems, this paper considers Deep
learning techniques to solve them. In recent years, many
scholars have applied deep learning to the field of fault
diagnosis and achieved very good results (Dong et al., 2014;
Banik et al., 2016; Li et al., 2020; Yang et al., 2022a). Among
them, recurrent neural networks (RNN) and convolutional
neural networks (CNN) are widely used, and convolutional
neural networks have been used by many scholars to build fault
diagnosis models based on the feature processing of fault
signal-time spectrograms due to their powerful processing
ability of two-dimensional images (Li et al., 2019; Li et al.,
2021a; Li et al., 2021b). Li et al. (2021c), proposed the bilinear
transformation, effective data decomposition techniques,
long-short-term-memory recurrent neural networks (LSTM-
RNNs), and error decomposition correction methods. In the
proposed approach, the angular wind direction data is firstly
transformed into time-series to accommodate the full range of
yaw motion. Then, the continuous transformed series are
decomposed into a group of subseries using a novel
decomposition technique. Moreover, Li et al. (2021d)
utilized a data-driven approach for condition monitoring of
generator bearings using temporal temperature data. During
the analysis, four algorithms, the support vector regression
machine, neural network, extreme learning machine, and the
deep belief network are applied to model the bearing behavior.
Comparative analysis of the models has demonstrated that the
deep belief network is most accurate. It has been observed that

the bearing failure is preceded by a change in the prediction
error of bearing temperature. Convolutional neural networks
tend to achieve recognition rates of more than 99% in the
direction of fault diagnosis, but the current research in the
direction of insulator fouling monitoring usually only uses
traditional machine learning classification. Therefore, this
paper proposes a one-dimensional CNN-based fouled
insulator discharge pattern recognition algorithm, which
does not require complex and time-consuming manual
feature extraction, but simply takes the un-preprocessed
time-frequency discharge signal as input, and the model
uses the powerful feature learning capability of CNN to
directly train the input signal as learning samples, and
completes adaptive feature learning by combining with fully
connected layers to realize the model for insulator fouling
degree. The model uses the powerful feature learning
capability of CNN to directly use the input signal as the
learning sample for training, and completes the adaptive
feature learning in combination with the fully connected
layer to realize the model’s demand for insulator fouling
degree monitoring, and gets good results after experimental
verification.

CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Network Operations
CNNs usually include an input layer, a convolutional layer, a
pooling layer, a fully connected layer and an output layer
(Bashivan et al., 2015; Ye et al., 2021; Zhang L. et al., 2021). The
convolutional layer and adjacent layers use local links and
weight sharing to perform operations, while the pooling layer
can also largely reduce the dimensionality of the input to
prevent overfitting of the model during training and
improve the generalization of the model. The pooling layer
can also largely reduce the input dimension, prevent
overfitting of the model during training, and improve the
generalization capability of the model. The model uses
alternating convolutional and pooling layers to extract
features from the input data, and the learning ability of the
CNN reliably increases with the number of layers of the
network. The convolution operation procedure (Sajjad et al.,
2019; Zhang et al., 2022) is illustrated as below.

y(l+1)
i (j) � Kl

i p Xl(j) + bli (1)
In the formula: Kl

i and bli is the weight and bias of the i
convolution kernel in the l layer; Xl(j) is the local region in the l
layer; yl+1

i (j) is the input of the first neuron in the result of the j
convolution kernel operation in the l + 1 layer.

The activation function is set after the convolutional layer, and
when the data is extracted by features, the activation function can
increase its nonlinear factor. In this paper, the LeakyReLU
function (Zhang W. et al., 2021) is used. The LeakyReLU
function solves the neuron death problem by giving all
negative values of the inputs a slope greater than 0. The
schematic diagram of LeakyReLU is as follows
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al+1i (j) � max(0, yl+1
i (j)) + leak p min(0, yl+1

i (j)) (2)
Among them, yl+1

i (j) indicates the output value of the
convolution operation, and al+1i (j) denotes the activation value
of yl+1

i (j).
The pooling layer usually acts after the convolution layer to

reduce the feature dimensionality and prevent overfitting. The
pooling layer consists of two types of pooling, maximum pooling
and average pooling, where the maximum pooling equation is as
follows.

pl+1
i (j) � max(j − 1)W + 1≤ t≤ jWl

i
{qli(t)} (3)

In the formula: ql+1i (t) denotes the value of the t neuron in the i
feature out of the l layer, t ∈ [(j − 1)W + 1, jW],W indicates the
width of the pooling area, p(l+1)

i (j) denotes the value of the j
neuron in the i feature of the l + 1 layer.

The Softmax classifier is most widely used in the output
classification operation of the output layer (Zhao et al., 2017;
Yang, 2021). The process is to output the logits values obtained
from the convolution layer as a probability distribution and then
perform pattern recognition, and the Softmax function operates
as follows.

f(zj) � ezj∑n
ke

zk
(4)

In the above stated formula: j is some classification in k; zj is
the value of the category.

Principle of One-Dimensional Convolutional
Neural Network
The one-dimensional convolutional neural network can
perform feature recognition on the part of the data
sequence, use the convolution kernel to perform input
transformation on the input sequence segment, and make
the sequence features of a part of the sequence which can
be saved in other locations of the sequence, making the one-
dimensional convolutional neural network. The processing
principle for different positions of the sequence is invariant
(for time shift) (Toyoda and Wu, 2019; Madhiarasan, 2020; Le
et al., 2021; Yang et al., 2021; Laghridat et al., 2022). One-
dimensional convolution can extract partial sequence
segments from time series and through the interaction of
convolution and pooling, adaptive line feature extraction
and dimensionality reduction are performed on the data.

ONE-DIMENSIONAL CONVOLUTIONAL
NEURAL NETWORK INSULATOR
MONITORING MODEL
1D-CNN Model Overview
The transition coupling of different discharge stages of dirty
insulators makes the discharge acoustic signals of dirty
insulators uncertain, complex and big data. Because the

core of the discharge pattern recognition of dirty insulators
is to distinguish the pattern expression in the specific discharge
signal under different discharge patterns so as to realize the
recognition of the discharge pattern. The advantage of the
recognition method based on CNN algorithm lies in the
feature extraction and classification of massive data.

Therefore, this paper proposes a discharge mode
monitoring algorithm for dirty insulators based on one-
dimensional convolutional neural network. It consists of a
convolution layer and an output layer. The convolution layer
implements the adaptive feature extraction operation on the
discharge signal data, and the nonlinear robust feature with the
gradually decreasing matrix width is obtained through the
convolution operation. Unlike 2D-CNN processing image
data, the pooling layer does not compress the convolutional
data ideally. Therefore, this paper does not use the pooling
layer, but uses stridden convolution with a suitable number of
steps in the convolutional layer instead of the pooling layer to
perform the compression operation. The output layer is
composed of a fully connected layer, and every two
connected layers are connected by a finite number of
neurons, and the number of nodes is the same as the
number of discharge types.

The cross-entropy loss function is used in the training process
of the model, and the Adam optimizer (Nie et al., 2016; Wu et al.,
2020; Anjaiah et al., 2022; Yang et al., 2022b) with fast
convergence speed and stable convergence process is used to
optimize the model based on gradient descent. At the same time,
the model uses the Softmax function to output the cross-entropy
between the probability distribution of the acoustic emission
signal type and the probability distribution of the discharge
type of the dirty insulator as the cost function. The formula
for calculating cross entropy is stated below.

H(p, q) � −∑
x
p(x)lnq(x) (5)

In the formula: p(x) is the probability distribution of different
discharge patterns; q(x) is the probability distribution of the
model output prediction results.

Data Pre-Processing
The data pre-processing mainly includes: data enhancement of
the raw acoustic signal data using data window sliding fetch,
generation of training and test sample sets, labeling of discharge
types, and introduction of the 1/3 octave concept to amplify the
differential features of different discharge mode signals in the
high or low frequency bands.

The process of network training in Deep learning requires
sufficient data samples, and the experimental data used in this
paper are limited, in order to expand the number of samples
while preserving the correlation between adjacent timing
signals of the same discharge signal. In this paper, a sliding
window fetching method is proposed to divide the data into
small samples to achieve the enhancement of the number of
data samples.

Different from other models that only use signal time-
frequency features as model input, this paper introduces the
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concept of octave. There are two main ways of expressing
frequency. One is equal-width frequency range, which means
that the coordinate difference between adjacent frequencies on
the X-axis is constant. The other is octave, which means that the
ratio of adjacent frequency coordinates on the X-axis is a fixed
constant. Generally speaking, when we analyze the spectral
characteristics of the signal, we do not study all the
frequencies in the signal one by one, but the octave is to
divide the signal into frequency bands to display the sound
pressure levels of different frequency bands of the signal data.
Since the gap between the discharge signals of different pollution
levels often exists in the high frequency or low frequency band,
this paper uses the 1/3 octave amplitude feature as a feature input
of the model and the 1/3 octave frequency of the three discharge
modes is used.

One-Dimensional Convolutional Neural
Network Intelligent Monitoring Process
The proposed one-dimensional convolutional neural network
fouling insulator discharge pattern monitoring process is
shown in Figure 1. The original data signal collected from
the experiment is augmented by the sliding window method
for the number of samples and divided into training set and
test set; the one-dimensional convolutional neural network
model is established on Pytorch version 1.11.0, and the model

is trained by gradient descent using mini batch after inputting
sample data from the training set, where the hyperparameter of
batch size is 64. The accuracy and loss function curves of the
training set and test set are recorded and the predicted
discharge pattern is output after the model is completed
training. The accuracy and loss function curves of the
training set and test set are recorded and the predicted
signal discharge patterns are output, and finally the model
performance is evaluated visually using the t-distribution
Stochastic Neight-bor Embedding (t-SNE) and the test set
confusion matrix.

FOULED INSULATOR DISCHARGE
PATTERN MONITORING EXPERIMENT

Experimental Design and Data Description
In order to verify the effect of the monitoring model proposed in
this paper, a large number of discharge tests of fouled insulators
were conducted in the high-voltage test chamber, mainly
collecting sound data of corona discharge, surface discharge
and breakdown arc discharge of insulators when fouled
insulators were subjected to processing frequency or shock
voltage, and recording the corresponding discharge
phenomena. The test equipment includes: frequency voltage
generator, shock voltage generator, oscilloscope, sound
acquisition device and various types of fouling production
tools (brush, sodium chloride, diatomaceous earth, test, spray
pot and pure water).

In this experiment, the sound signals of 2 wet porcelain
insulators with different degrees of fouling discharging at 10
different locations were collected and the equivalent attached
salt densities was used to measure the degree of fouling of
insulators. Each insulator specimen was coated with sodium
chloride and diatomaceous earth, after calculated weighing,
plus an appropriate amount of distilled water, and mixed
thoroughly in a porcelain bowl. In order to increase the
degree of adhesion an appropriate amount of dextrin could
be added, and finally evenly applied to the surface of the
insulator with a brush. The fouled insulator specimens
made in this way can be tested without sampling, and this
easy-to-operate pollution method is mostly used in China.
Since sodium chloride is water-absorbent, it can be fully dried
before weighing, and then weighed with a balance to ensure the
experimental accuracy.

The ratio of gray density to salt density of the actual
operating insulators varies greatly, and the actual local
accumulation of dirt, the gray to salt ratio is taken as 5:1.

FIGURE 1 | Fouled insulator discharge mode monitoring process.

TABLE 1 | 1D-CNN algorithm and other algorithms accuracy comparison table.

No. Algorithm Accuracy

1 Artificial features +XGBoost 87.5%
2 FFT+1/3 Octave +BPNN 94.5%
3 FFT+1D-CNN 96.82%
4 FFT+1/3 Octave +1D-CNN 99.84%

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 9061074

Hao et al. Pollution Monitoring of Insulators

4746

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Under this gray to salt ratio, the mass of salt and ash to be
painted on the whole insulator surface with different attached
salt density is shown in Table 1 below. The above-mentioned
stain coated in porcelain insulator 2 pieces as a group, apply
the industrial frequency voltage, the amplitude is the rated
voltage of insulator string, record the industrial frequency
voltage experiment results, then use the voltage reduction
method, time 2 min each time, determine the flashover
voltage, record the discharge sound.

The acoustic emission signals of three discharge states,
namely corona, surface discharge and arc, were collected at
a sampling frequency of 131072 HZ. 655360 data points were
included for the corona and surface discharge states, and
1,048,000 data points were included for the arc discharge
state. After a simple frequency domain analysis, it was
found that the sampling frequency was too high and the
actual main frequency was very low. So sparse sampling was
performed, i.e., every 100 data points were sampled once. Each
data is sampled by sliding window sampling method with 1024
data points as a sample and 50 data points as a step to achieve
sample set expansion, and for each insulator fouling discharge
mode 80% of the data set is randomly selected for training and
20% of the data set is used for testing. Therefore, the sparsely
sampled and expanded data set consists of 4930 training

samples and 1266 test samples, and the category labels are
set to 0, 1, and 2. The input to the convolution layer of each
model is the time-domain signal of one sample plus the
Fourier-transformed frequency-domain signal splicing
matrix (2 × 1024), and the 1/3-octave amplitude features of
the sample are spliced with the convolution output feature
matrix and input to the full connected layer for training. The
size and number of convolutional kernels in the four
convolutional layers of the network model are set to 16 × 1,
16 × 1, 8 × 1, 8 × 1 and 16, 16, 8 and 8, respectively, and the
convolutional kernel step size is set to 2. Data normalization is
performed using Batch Normalization and supplemented with
padding as input mapping.

Analysis of Experimental Results
The output size of each network layer of the 1D-CNN model
proposed in this paper is shown in Figure 2. The variation of
the accuracy of the 1D-CNN algorithm with the number of
iterations analyzed are the recognition rate and loss function
value of the fouled insulator discharge state of the test set
samples, respectively. As the number of iterations increases,
the accuracy of the test set output of the model also gradually
increases and the value of the loss function gradually decreases.
After iteration, the accuracy of the test set reaches 99.84% and
is similar to that of the training set, and there is no overfitting
phenomenon.

In this paper, the performance of the 1D-CNN algorithm
for data processing was also visualized and analyzed. In this
paper, the t-distribution domain embedding algorithm was
used to visualize and analyze the features of the fouled
insulator discharge signal after convolution with different
convolution layers in a 2-D distribution, as shown in
Figure 3.

In order to better evaluate the recognition effect of the model,
this paper also used the validation set to input into the trained
convolutional neural network model for simulation validation,
where the accuracy of the surface discharge state in the data
samples of fouled insulators reached 100%, and the accuracy of
the corona discharge and arc discharge states also reached 99.13%
and 99.6%, respectively.

To compare the classification effectiveness of the
algorithms studied in this paper with manually extracted
features plus machine learning classification algorithms and
other Deep learning algorithms, XGBoost, Back Propagation
Neural Network (BPNN) and 1D-CNN algorithms were
selected for comparison through experiments. XGBoost and
BP are common algorithms in machine learning and Deep
learning, respectively. Among them, XGBoost algorithm is to
classify the statistical features of the time-frequency domain
of the discharge signal, and BPNN is to input the time-
frequency and 1/3 octave data into the BP network for
classification, both of which are commonly used
classification algorithms. The final accuracy obtained by
experimentally comparing the three discharge pattern
recognition algorithms is shown in Table 1.

FIGURE 2 | 1D-CNN output size of each network layer.
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CONCLUSION

In this paper, we proposed an algorithm of fouling insulator
discharge pattern recognition based on acoustic signal and 1D-
CNN for fouling insulator discharge pattern monitoring model.
And the experiments were designed to collect the acoustic
emission signal data of fouled insulator discharge under
different modes, and the practicality and accuracy of this
model were verified by using this as a sample simulation. It
solves the complexity of the previous manual production of
features, and becomes a new direction to solve the problem of
insulator fouling degree monitoring.

The main contributions of this study are.

(1) A novel one-dimensional convolutional neural network
structure (1D-CNN) was designed, and an insulator
fouling detection model based on acoustic signals and 1D-
CNN was proposed, which enabled the model to adaptively
extract and classify features from time-frequency signal data
and obtained a high recognition accuracy.

(2) In the case of limited data, the sliding window method was
used to divide the data for fetching, and the concept of 1/3

octave range was introduced to optimize the training process
of the model.

(3) The performance of the convolutional layer in the 1D-CNN
algorithm was visualized using the t-SNE visualization
algorithm, and the intrinsic mechanism of the 1D-CNN
algorithm was explored.

(4) Through comparison tests with the traditional XGBoost and
BPNN algorithms, the superiority of the proposed model in
terms of accuracy was verified, and it could be effectively used
for the early warning of fouling insulator flicker.
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Hybrid Short-Term Wind Power
Prediction Based on Markov Chain
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1School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China, 2Department of
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This article proposes a combined prediction method based on the Markov chain to realize
precise short-term wind power predictions. First, three chaotic models are proposed for
the prediction of chaotic time series, which can master physical principles in wind power
processes and guide long-term prediction. Then, considering a mechanism switching
between different physical models via a Markov chain, a combined model is constructed.
Finally, the industrial data from a Chinese wind farm were taken as a study case, and the
results validated the feasibility and superiority of the proposed prediction method.

Keywords: wind power prediction, combined model, Markov chain, chaotic time series, data-driven

1 INTRODUCTION

To solve the global energy crisis and environmental pollution around the world, wind energy has
become one of the most potential sources due to its clean and renewable properties (Brouwer et al.,
2016; Yang et al., 2021a). In China, America, and many European countries, more and more wind
power generation has been highly concentrated to the power system in the past decades (Huber et al.,
2014; Yang et al., 2021b; Yang et al., 2022a), while in this case, the intermittency and variability of
wind bring great challenges to the safety of power systems (Tang et al., 2020; Yang et al., 2022b).
Therefore, an accurate wind power prediction system is required by system operators to mitigate the
undesirable effects. Especially as the installed capacity of wind farms increases, this situation is more
urgent than ever.

Currently, the major wind power prediction system related to power system schedule is based on
short-term predictions. The existing short-term wind power prediction methods are mainly data-
driven models, also known as statistical models. These methods usually utilize the statistical features
of historical data and machine learning algorithms to train and build models, for example, auto-
regressive and moving average models (ARMA), KNN, neural networks (NNs), support vector
machines (SVMs), extreme learning machines (ELMs), and so on (Valipour et al., 2013; Doucoure
et al., 2016; Tang et al., 2021). For instance, in Kanna and Singh (2012), several data-driven models
were introduced for short-term wind power prediction. In Liu et al. (2012), an ELM-based wind
power predictionmodel was also applied to the real wind farm data. All of these models could achieve
high accuracy in short-term prediction, but their shortage is also obvious since residuals are
cumulated as prediction is going on.

To improve the performance of wind power predictions, there are several ways for model
improvement. This first type is to consider the combination of physical and statistical factors of data
together. In this way, the multiple step prediction could be improved with the assistance of physical
trends. For example, one useful model considering wind power data’s physical factors is based on
chaotic time series prediction, since the process of wind was validated to obey the variance of the
chaotic system (Lange and Focken 2006). In Lei et al. (2007), wind power data were verified as a
chaotic time series and reconstructed for wind power prediction. The second type is to consider
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different patterns in time series data and to build a hybrid
prediction model. For example, some short-term prediction
models utilize signal decomposition to generate different
patterns, for example, wavelet decomposition and empirical
mode decomposition (EMD) (An et al., 2011; Li et al., 2021a),
and then combine predictions of different patterns for the final
prediction. In this way, the prediction can be improved with more
robustness. The more direct way is to use different models to
reflect different patterns in prediction. For example, in
Tascikaraoglu and Uzunoglu (2014), a linear combined model
was proposed to average the prediction results of different
methods. In Ouyang et al. (2016), a Markov chain was
regarded as a switching regime to select different parameters
in a prediction model.

Considering the aforementioned descriptions, this article
proposed a hybrid model which considers the aforementioned
two factors to realize precise short-term wind power prediction.
The advantages of the proposed model can be summarized as
follows: First, considering the physical characteristics of wind
power time series, different chaotic time series models are used to
form the model library. Since chaotic time series models are
physics-based models, they are more reliable than data-driven
models, especially in long-term trend prediction. Second,
considering the mechanism of hybrid modeling, this study
considers using the Markov chain to estimate wind patterns
and to guide the selection of suitable physical models in
prediction. Finally, combining these contributions to realize a
high-precision wind power prediction, industrial wind power
data are studied to validate the effectiveness of the proposed
method.

2 PREDICTION MODEL FOR CHAOTIC
TIME SERIES

Generally, if time series data are from a chaotic system, it is
possible to reproduce the dynamics information of its related
system. To realize this idea, time series data are usually embedded
into a new diffeomorphism space where data have the same
dynamic behaviors as the original space and better representation
ability (Rand and Young 1988; Chen et al., 2019). Therefore, data
in the reconstructed phase space would be better for modeling
and data mining. Here, referring to Packard et al. (1980), wind
power time series could be reconstructed as chaotic time series
according to Takens’ theory (Rand and Young 1988), expressed in
the following form:

xn � (xn, xn+τ ,/xn+(m−1)τ) ∈ Rm, n � 1, 2/, N0 � N − (m − 1)τ,
(1)

where {xn} represents the series of wind power data; xn is the
reconstructed data, which is a vector xn R

m; and τ andm are delay
time and embedding dimension parameters, which can be
calculated by using the mutual information (MI) method
(Fraser and Swinney 1986) and false nearest neighbors (FNN)
method (Xiong et al., 2017), respectively. Then, based on the
reconstructed chaotic time series in eq. 1, several prediction

models could be built, for example, local prediction models,
global prediction methods, prediction methods based on the
Lyapunov exponent and Volterra prediction models (Zhang
and Liang 2012; Jinquan et al., 2016). Considering the
prediction precision, the global prediction method is rarely
used in wind power prediction, so three selected models are
introduced as follows.

2.1 Local Linear Model With First Order
Local prediction models have different orders, but the first-order
linear model is used the most. Assuming a given point x(t) in the
phase space, q nearest points xi(t), i = 1,2. . ., q, are taken as
reference in prediction. Then the prediction model is described in
eq. 2:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(t + k)
x2(t + k)
..
.

xq(t + k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � A + Bp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(t)
x2(t)
..
.

xq(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i � 1, 2,/, q; k � 1, 2,/;

, (2)

where A and B are the coefficient matrixes of the prediction
model, which can be trained by the least square method, and k is
the prediction time interval, but its value cannot be too large since
the evolution over a long period is not linear for chaotic systems.

Then the prediction is calculated as x(t + k) = A + Bpx(t).

2.2 Prediction Method Based on the
Lyapunov Exponent
In the chaotic system, it is known that two nearby tracks are linear
in the short term and have an exponent trend in the longer term.
This feature is utilized in the prediction method based on the
Lyapunov exponent. Then the prediction model is expressed in
eq. 3:

Lt+k � Lt · eλk , (3)
where k is the prediction time interval, Lt is the distance between
x(t) and its nearest neighbor x(t’), Lt+k is the distance between x(t
+ k) and x(t’+k), λk is the Lyapunov exponent related to the
interval k, and it is calculated when T = k.

2.3 Volterra Prediction Model
The Volterra algorithm is a non-linear filter and can be expressed
in eq. 4:

x(n + 1) � h0 +∑+∞
t�0

h1(t)x(n − t) + ∑+∞
t1�0

∑+∞
t2�0

h2(t1, t2)x(n − t1)x(n − t2)

+ ∑+∞
t1�0

∑+∞
t2�0

/ ∑+∞
tp�0

hp(t1, t2/tp)∏p
j�1

x(n − tj) +/,
(4)

where x(n+1) is the predicted value, x(n-t) are historical values, p
is the order of a Volterra filter, and h is the coefficient
corresponding to different elements. It is seen that a Volterra
filter with a high order is complex, so a second-order model is
usually used for predicting wind power time series, as described in
eq. 5:
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x(t + k) � h0 + ∑m−1

u�0
h1(u)x(t − uτ)

+ ∑m−1

v�0
∑m−1

w�0
h2(v, w)x(t − vτ)x(t − wτ),

(5)

where m is the embedded dimension, τ is the delay time, k is the
prediction time interval, and u, v, andw represent the index of the
selected data.

3 HYBRID MODELING WITH THE
MECHANISM OF MARKOV CHAIN

The previously mentioned three models were proposed to apply
in chaotic time series prediction in many references. The three
methods perform differently in different scenarios and even have
different accuracy in the same period in same scenario. Therefore,

a suitable solution to achieve relatively better performance is to
construct a combined model as described as follows:

ŷ � ∑wi · ŷi, (6)
where ŷi represents the output of an individual prediction model,
ŷ is the final output of the combined model, and wi is the weight
coefficient for the combination of different models.

In Ouyang et al. (2016), theMarkov chain was used as a regime
switching different models to improve the accuracy of short-term
wind power prediction. The process is decided by the transition
probability matrix of a Markov chain. In this article, a new
combined model based on the transition probability and
prediction models of chaotic time series is proposed to predict
wind power.

By assuming these three chaotic time series models as three
different patterns, as {S1, S2, S3}, the idea of the Markov process is
to suppose that the states st+1 are related to the states st, described
in eq. 7:

Pij(t, t + 1) � P(st+1 � Sj
∣∣∣∣st � Si), (7)

where Pij (t,t+1) is the transition probability on the condition of
satisfying the current pattern Si and the next pattern Sj. Assuming
the wind power time series as Ωt and the tth value is yt, then the
forward probability is defined in eq. 8:

FIGURE 1 | Wind power prediction based on three given chaotic time series models.

TABLE 1 | Four error metrics of three individual chaotic prediction models.

MAE RMSE SDofAE CC

S1 18.578 28.477 19.694 0.9470
S2 18.460 26.230 19.128 0.9354
S3 17.907 21.556 18.431 0.9838
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p(j)t|t � P(st � j|Ωt) � P(yt, st � j|Ωt−1)
P(yt|Ωt−1) , (8)

where p(j)
t|t is the probability of st = jwith a given seriesΩt, and the

numerator and denominator are calculated by eq. 9:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P(yt, st � j|Ωt−1) � p(j)t|t−1 · P(yt

∣∣∣∣st � j,Ωt−1),
p(j)t|t−1 � P(st � j|Ωt−1),
P(yt|Ωt−1) � ∑N

j�1
P(yt, st � j|Ωt−1),

(9)

where N = 3, since there are only three available prediction
models. Conversely, assuming that the whole wind power time
series is given as ΩT ( where T is the length of the given time
series), the backward probability is calculated in eq. 10:

p(j)t|T � P(st � j|ΩT). (10)
Combining the forward probability and backward probability,

the probability of states at each time is calculated by using the

maximum likelihood estimation (MLE) method. Then the
weights of the combined model in eq. 6 are decided by the
calculated probability, and the final prediction model is expressed
as eqn 11:

ŷt � p1 · ŷ1 + p2 · ŷ2 + p3 · ŷ3, (11)
where pi is the probability of the ith model.

4 EXPERIMENTS AND DISCUSSION

4.1 Prediction Based on Individual Models
In this study, a real-world wind power dataset from Chinese wind
farms is taken for the case study. This dataset collected samples
for 2 years with a sampling period of 15 min. There are a total of
70,176 samples. By taking 70% of the data (viz., historical data
from the last 17 months) as the training set, the data from the rest
of the months are used for validation and testing. First, the phase
space of the data is reconstructed based on eq. 1 by applying the
reconstruction parameters with τ = 7 andm = 9 based on MI and

FIGURE 2 | Probability of three states (three models) at each time.
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FNN. Then the reconstructed chaotic time series are used to train
and predict wind power based on three models introduced in
Section 2.

Figure 1 depicts the prediction results of three models: S1, S2,
and S3 (representing local linear predictionmodels with first-order,
prediction models based on the Lyapunov exponent, and Volterra
prediction models, respectively). Figures 1A,B present the
predicted wind power and prediction errors, respectively. It is
qualitatively found that these three models have good performance
in predicting wind power in Figure 1A. However, the prediction
errors in Figure 1B illustrate that each model have its best
prediction performance at different local times.

Moreover, to evaluate the time series prediction
performance quantitatively, some useful error metrics could
be applied (He et al., 2017). For example, the commonly used
mean absolute error (MAE), mean squared error (MSE), root-
mean-square error (RMSE), and the standard deviation of
absolute error (SDofAE) are possible options. These metrics
have advantages in evaluating the error on prediction
amplitude and are commonly used in prediction research.
Moreover, a kind of transverse error metric could also be used
for evaluation, such as correlation coefficient (CC), which
aims to evaluate the prediction model’s performance in
time delay. In this study, four selected metrics are given to
evaluate the performance of wind power time series
predictions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MAE � ∑n
i�1

∣∣∣∣yi − ŷi

∣∣∣∣/n,

RMSE �
�������������
∑n
i�1
(yi − ŷi)2/n,

√

SDofAE �
���������������������
∑n
i�1
(∣∣∣∣yi − ŷi

∣∣∣∣ −MAE)2/n

√
,

CC � cov(y, ŷ)���
Dy

√ ���
Dŷ

√ ,

(12)

where yi and ŷi are predicted and observed values of wind power
time series, respectively, and n is the number of testing data
points. According to the definition of error metrics before, we can
see that the former three (MAE, RMSE, and SDofAE) are required
to be small when the model performs well. However, on the other
hand, the value of CC needs to be as close to 1 as possible.

Table 1 shows the values of four error indicators in wind
power prediction. S1, S2, and S3 represent the three prediction

models introduced in Section 2, respectively. It is seen that the
difference between the former three models is not large and that
S1 has the worst prediction performance, while S3 has the best
prediction performance according to the values of the error
indicators.

4.2 Prediction Based on the Proposed
Hybrid Model
According to the description of the proposed method, a
combined model could effectively improve the shortages of
individual models at local prediction. Therefore, a combined
model is proposed in eq. 11, where its weights are selected as
the transition probability of the Markov chain. Taking the three
given prediction models as three states, the transition
probabilities of states at each time are calculated based on
eqs 7–10.

Figure 2 depicts the transition probability of three states in the
same period as Figure 1. It is seen that the wind power is
predicted by one model with a given probability at each time.
Therefore, if the probability of each state is taken as the weight of
the combined model in eq. 11, then wind power for the same
period with Figure 1 can be predicted.

Then, also making use of the given error metrics in
evaluation, the performance of the proposed method is
presented in the following table. For the consideration of
the comparison study, several other prediction methods are
also evaluated, such as two combined models, namely, a linear
combined model of S1, S2, and S3 and a Markov-switching-
autoregression model (MSAR), three generally used data-
driven models based on neural networks (NNs), support
vector machine (SVM) (Li et al., 2021b), and extreme
learning machine (ELM) (Shen et al., 2020). All of their
results are presented in Table 2.

Table 2 shows the error metrics of wind power prediction
based on different models, including individual data-driven
models and combined models. Through the comparison, some
phenomena could be found. First, the combined models
generally outperform all of these individual models, including
the common statistical models and the chaotic time series models
in Table 1, which validates the effectiveness of combined models
in improving wind power prediction performance. Second,
through comparison between individual and combined
chaotic models, it is seen that considering the combination or
switching of different physical models is helpful to improve
prediction accuracy. Moreover, the switching mechanism with
consideration of the Markov chain can outperform the simple
linear combination model. Finally, the proposed method
combining both the chaotic time series model and the
Markov chain could further improve the prediction
performance. In the comparison study, it is reasonable that
for individual chaotic time series, models cannot achieve
obvious superiority than traditional data-driven models which
can achieve high-precision in short-term prediction. However,
chaotic time series models are more reliable than data-driven
models since they consider physical principles of the wind
development process. Therefore, chaotic models would be

TABLE 2 | Wind power prediction using various methods.

MAE RMSE SDofAE CC

Combined method Proposed 16.398 17.887 14.421 0.9650
Linear 16.660 22.541 16.831 0.9854
MSAR 16.547 19.538 15.482 0.9768

Data-driven SVM 18.610 26.789 19.290 0.9276
ELM 18.651 27.885 19.797 0.9359
NN 17.741 24.154 16.402 0.9506
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helpful to capture wind trends, and guarantee good accuracy in
the long-term prediction in the future study.

5 CONCLUSION

To realize precise short-term wind power prediction, this article
proposed a more reliable combined model considering both
chaotic time series modeling and the Markov chain
mechanism. First, by reconstructing the wind power data into
a new space with the consideration of the wind’s chaotic physical
features, three chaotic time series models consist of the primary
model library. Second, by taking different models as the states of
the Markov chain, and a combined model utilizing the transition
probability of the Markov chain as the weight is constructed. The
results of Table 2 verify that the combined model based on the
Markov chain is feasible to predict wind power. Moreover,
through the comparison study, the proposed method is
validated to improve the precision of wind power prediction,

which will be helpful for direct scheduling and planning in the
power system in the future.
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Short-Term Prediction of Building
Sub-Item Energy Consumption Based
on the CEEMDAN-BiLSTM Method
Zhanbin Lin*

School of Management, Guangdong University of Technology, Guangzhou, China

In order to improve the accuracy of the short-term prediction of building energy
consumption, this study proposes a short-term prediction model of building energy
consumption based on the CEEMDAN-BiLSTM method. In this study, the energy
consumption data of an office building in 2019 are selected as a sample, and
CEEMDAN is used to decompose the energy consumption data into multiple
components, and the strong correlation components are selected and sent to the
BiLSTM network. The final energy consumption prediction results are obtained by
superimposing the prediction results of each sub-component, and five models are built
simultaneously to compare the errors with the proposed models. The results showed that
the weather type has a great influence on the accuracy of energy consumption prediction.
When the weather fluctuates greatly, the prediction error of energy consumption by a
single prediction model is large. When the weather suddenly changes, the EMD-LSTM
model has a big error in the prediction of air conditioning energy consumption. After
CEEMDAN decomposition of energy consumption data, more detailed components can
be extracted, which makes the BiLSTM prediction algorithm more accurate. Compared
with the CEEMDAN-LSTM model, the CEEMDAN-BiLSTM model reduces eRMSE, eMAPE,
and eTIC by 4.1%, 9.441, and 1.3%, respectively. The proposed model can effectively
improve the accuracy of short-term prediction of building energy consumption.

Keywords: short-term forecast, sub-item energy consumption of buildings, modal decomposition, weather
classification, energy consumption

INTRODUCTION

In the past few decades, with the acceleration of urbanization, the demand for building energy has
greatly increased. The question as to how to reduce building energy consumption has attracted
researchers’ attention (Ding et al., 2021; Somu et al., 2021). However, there are many factors affecting
energy consumption, and building energy prediction is still a complicated task (Yakut and Zkan,
2020; Han et al., 2021; Oh, 2021). An important means of building energy conservation and emission
reduction is fine management of building energy consumption, and the basis of this work is an
accurate prediction of building energy consumption so as to support the optimal management of
building operation and achieve the goal of energy conservation and emission reduction.

At present, there are two main prediction methods of building energy consumption, including the
physical modeling method and the artificial intelligence method. Physical-based modeling methods
can be divided into simplified engineering algorithms and comprehensive methods. Simplified
engineering algorithms mainly include the full-load operation method and degree-day method.
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Comprehensive methods use thermodynamic equations to
accurately calculate building energy consumption (Khattari
et al., 2020; Runge and Zmeureanu, 2019). However, physical
methods usually require a large number of detailed inputs of
buildings and their environment, such as the heating system,
ventilation system, air conditioning system, insulation thickness,
thermal characteristics, internal occupancy load, and solar energy
information (Pinanggih et al., 2021).

In the field of building energy prediction, an artificial neural
network, as an effective method to predict the relationship between
data input and output, has entered the researchers’ field of vision.
The artificial neural network is a novel computing method based
on the human neural activity, which is suitable for dealing with
complex linear and nonlinear mapping problems. Because of its
powerful nonlinear mapping capability, the neural network has
gained more and more recognition in the engineering field (Shapi
et al., 2020). The literature (Runge and Zmeureanu, 2019)
summarizes the application of artificial neural networks in the
hourly prediction of building energy consumption, and the results
showed that the neural networkmodel has achieved good results in
single-step and multi-step prediction. The literature (Ma et al.,
2018) based on historical meteorological data shows that the
support vector machine model is used to predict the monthly
electricity consumption of buildings, and it is stated that the
accuracy of the support vector machine is better than that of
the neural network. The literature (Li et al., 2009) based on using
the SVM algorithm to predict the hourly load of a single office
building shows that the root mean square error is only 1.17%, and
the prediction effect is good. The literature report by Wang et al.
(2018) optimizes the parameters of the short-term model of
building energy consumption by the cross-validation method.
The literature results (Bagnasco et al., 2015) based on using
multilayer perceptron to predict the electricity consumption of
hospital facilities according to meteorological data and time
changes showed that the artificial neural network performs
better in winter. The literature by Neto and Fiorelli (2008)
compares the neural network with the EnergyPlus energy
simulation tool, and the results showed that the neural network
has higher prediction accuracy.

Many achievements have been made in the aforementioned
research, but each method has some limitations. Physical
prediction methods need to rely on detailed building and
historical meteorological data information, but it is difficult to
obtain detailed operational data in building structures to
determine relevant parameters, and the calculation process is
prone to deviation, which leads to unsatisfactory prediction
results. Although the artificial intelligence method does not
need to know the specific principle of energy consumption
deeply, the traditional neural network algorithm has a slow
convergence speed, serious local over-fitting, and limited scope
of application. In order to better improve the accuracy of building
sub-item energy consumption prediction, this study classifies the
weather types, uses the CEEMDAN method to carry out the
modal decomposition of energy consumption historical data, and
sends the strong correlation components to the BiLSTM neural
network. In order to verify the prediction accuracy of the
CEEMDAN-BiLSTM model, BP, SVR, LSTM, EMD-LSTM,

and CEEMDAN-LSTM models were established
simultaneously and compared with the proposed model. The
results clearly showed the accuracy of the proposed prediction
model. The prediction method of building energy consumption
based on deep learning proposed in this study can provide a
reference for related research and application of building energy
consumption prediction.

PRINCIPLE OF THE CEEMDAN AND
BILSTM ALGORITHM

Principle of the CEEMDAN Algorithm
Empirical mode decomposition (EMD) is to decompose data into
multiple IMF components according to the fluctuation scale of
data series, but modal aliasing is easy to occur when decomposing
nonlinear and non-stationary sequences. The ensemble empirical
mode decomposition (EEMD) adds white noise with different
amplitudes to the original sequence to suppress the aliasing
phenomenon to a certain extent, but the calculation efficiency
of EEMD is low. Therefore, this study adopts the self-adaptive
noise complete empirical mode decomposition method, which
adds white noise with different amplitudes to each component to
obtain the optimal IMF component (Ali et al., 2021). The
CEEMDAN method has lower iteration times than the EEMD
method and also solves the problem of modal aliasing. The steps
of CEEMDAN are as follows.

1) Gaussian white noise with different amplitudes is added to the
original signal x(n),ωi(n)(i � 1, 2/, I), and the ith signal can
be expressed as follows:

xi(n) � x(n) + εiω
i(n), (1)

where xi(n) is the ith signal; x(n) is the original signal, εi is the
parameter to control white noise, and Gaussian white noise with
different amplitudes is added to the signal through the value of εi.

2) EMD decomposition is carried out on the ith signal xi(n) to
obtain the first-order modal component IMF1:

IMF1 � 1
I
∑1
i�1
IMFi1. (2)

3) The first-order residual r1(n) is calculated as follows:

r1(n) � x(n) − IMF1. (3)

4) The first-order modal component IMF2 is calculated as
follows:

IMF2 � 1
I
∑1
i�1
E1{r1(n) + ε1E1[ωi(n)]}. (4)

Here, Ei represents the first-order IMF.

5) The first IMF can be obtained by calculating the k residual,
and the k + 1 residual is k.
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rk(n) � rk − 1(n) − IMFn. (5)
The component k + 1 is as follows:

IMFn � 1
I
∑1
i�1
E1{rk(n) + εkEk[ωi(n)]}. (6)

6) When the surplus is no longer decomposed, the highest order
of IMF is obtained. At this point, the original signal is

x(n) � R(n) +∑k
k�1

IMFk. (7)

BiLSTM Layer Model Structure
Recurrent neural networks (RNNs) can be modeled according to
the inherent characteristics of time series and can store
information before and after collecting data, but the RNN
model has the problem of gradient explosion or gradient
disappearance. LSTM solves the gradient problem of the RNN
by adding a gate controller and memory unit in the hidden layer.

The first step of LSTM is to calculate the forgotten
information. The energy consumption data of the current
module and the output A of the energy consumption data of
the previous module are taken as inputs, and the state of the pre-

FIGURE 1 | CEEMDAN-BiLSTM model framework structure diagram.
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neuron cells is mapped to the ht−1 range from 0 to 1. The
calculation formula is as follows:

ft � σ(Wfp[ht−1, xt] + bf). (8)
The second step of the LSTMmodel is to calculate the memory

information. The input is the current building energy
consumption data ht−1, and the activation function sigmoid
determines it, creates a new candidate value C̃t, adds it to
neurons, and updates the neuron state to get the final memory
state Ct. The formulae are as follows:

it � σ(Wip[ht−1, xt] + bi), (9)
~Ct � tanh(Wcp[ht−1, xt] + bc), (10)

Ct � ftpCt−1 + itp~Ct. (11)
The third step of the LSTM model is to select the output value.
The output neuron state ot is determined by the sigmoid
activation function, and the output part ht is obtained by
processing ot by the tanh function. The formulae are as follows:

ot � σ(Wop[ht−1, xt] + bo), (12)
ht � otptanh(Ct). (13)

The LSTM model enhances the memory of neurons through
three gating units, discards useless information, and solves the
problem of long dependence. However, the LSTM model cannot
make full use of the data information before and after building
sub-item energy consumption, so this study uses the BiLSTM
model to identify the features of modal components. The BiLSTM
neural network can obtain complete data information before and
after energy consumption. The front layer LSTM obtains the
intrinsic characteristics of the building energy consumption data
in front: the back-layer LSTM obtains the intrinsic characteristics
of the building energy consumption data in the back and finally
combines the two to obtain the building energy consumption data
characteristics. The formulae are as follows:

�ht � LSTM






→(xt), (14)

h
←
t � LSTM

← (xt), (15)
ht � 〈 �ht, h

←
t〉. (16)

Among them, �ht obtains semantic feature information of forward
building energy consumption data through forward LSTM, and
h
←
t obtains semantic feature information of backward building

energy consumption data through backward LSTM. LSTM






→(xt)

represents the front-to-back feature, and LSTM
← (xt) represents

the back-to-front feature. Finally, the hidden layer state E is the
characteristic of building energy consumption data.

CEEMDAN-BiLSTM Coupling Model
The data series of energy consumption is affected by many factors
and belongs to nonlinear and non-stationary signals. Therefore,
this study puts forward the CEEMDAN-BiLSTM prediction
model. First, the sub-energy consumption sequence was
decomposed into multiple sub-components by the CEEMDAN
method, and the strong correlation sub-components were

screened out for normalization. Then, the strong correlation
components were sent into the BiLSTM model to obtain the
predicted values of the sub-components. Finally, the predicted
values of the sub-components were reversely normalized to
obtain the final energy consumption prediction results. The
CEEMDAN-BiLSTM model structure is shown in Figure 1.

The specific modeling process is as follows:

1) CEEMDAN decomposition

The original energy consumption sequence x(t) is decomposed
into multiple IMF and residual components Rn by the
CEEMDAN method.

2) IMF component screening

Calculate the Pearson correlation coefficient of the original
sequence x(t) and each sub-component, and the formula is as
follows:

p0 �
∑n
i�1
pi

2p(n + 1), (17)

where pi represents the Pearson correlation coefficient of two
continuous variables, and n is the number of subcomponents. P0
is the threshold of the correlation coefficient, and strong
correlation components can be screened out according to p0.

3) BiLSTM network prediction

In order to avoid the influence of different dimensions of
energy consumption series after CEEMDAN decomposition, the
strong correlation components are normalized. The specific
parameters of the BiLSTM model are set as follows: in order
to prevent over-fitting, dropout is set to 0.5; the absolute error
function is the loss function, tanh is the activation function, adam
is the optimization function, and the training times are set to
1,000 times. The LSTM layer node number is set to 50; the batch
size is set to 72.

BUILDING SUB-ITEM ENERGY
CONSUMPTION PREDICTION MODEL

Modeling Classification Basis
Building energy consumption consists of air conditioning
energy consumption, lighting energy consumption, and
power energy consumption. The energy consumption of air
conditioning is mainly composed of air conditioning terminals,
cold and hot stations, and other pieces of equipment. Lighting
energy consumption mainly consists of landscape lighting,
corridors, emergency, and lighting equipment. Power
consumption is mainly composed of fans, elevators, and
water supply devices. Moreover, the energy consumption of
lighting power has a strong correlation with the work and the
rest of the staff, and the energy consumption of air conditioning
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has a certain trend with the seasons and temperatures. Analysis
of a specific load of energy consumption shows that when the
weather changes, lighting, air conditioning, and ventilator
equipment will also be adjusted accordingly, and when the
weather suddenly changes, the energy consumption of each
sub-item will also fluctuate greatly.

Because the energy consumption of buildings is quite
different between abrupt weather and non-abrupt weather,
the weather is divided into abrupt weather and non-abrupt
weather according to the meteorological classification index.
The itemized short-term prediction process of building energy
consumption based on the CEEMDAN-BiLSTM model is
shown in Figure 2. The following are selected as
characteristic quantities: 24 h of the day, outdoor hourly
average relative humidity, hourly average wind speed,
outdoor hourly average temperature, holidays, and weather
changes. In order to improve the accuracy of the forecast,
abrupt weather and non-abrupt weather are subdivided into
four weather types. The historical data of lighting energy
consumption, air-conditioning energy consumption, and
power energy consumption of different weather types are
decomposed by CEEMDAN so as to become a stable energy
consumption series. Different meteorological factors are added
to the decomposed strong correlation subcomponents as the
prediction conditions of the BiLSTM model. The predicted
values of sub-components are reversely normalized and

superimposed to obtain the final energy consumption
prediction result.

Evaluating Indicator
Synchronous BP, SVM, LSTM, EMD-LSTM, and CEEMDAN-
LSTM models are established, and the calculation accuracy is
compared with the proposed models. The average absolute
percentage error eMAPE, root mean square error eRMSE, and
Hill inequality coefficient eTIC are selected to evaluate the
model accuracy, and the expressions are as follows (18)~(20).

eTIC �

����������
∑Z
i�1
(y′

i − yi)2
√

������
∑Z
i�1
(y′

i)2
√

+
������
∑Z
i�1
(yi)2

√ , (18)

eREMS �

����������
∑Z
i�1
(y′

i − yi)2
Z

√√
, (19)

eMAPE � 1
Z
∑Z
i�1

∣∣∣∣∣∣∣∣y
′
i − yi

yi

∣∣∣∣∣∣∣∣, (20)

where z is the purpose of the test sample, y′ is the predicted value
of building energy consumption, and y is the actual value of
building energy consumption.

FIGURE 2 | CEEMDAN-BiLSTM model prediction process.

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 9085445

Lin Sub-Item Energy Consumption Prediction

6362

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


FIGURE 3 | Prediction results of different models. (A) Sunny weather lighting. (B) Sunny weather air conditioner. (C) Sunny weather power. (D) Turn to rain weather
lighting. (E) Turn to rain weather air conditioner. (F) Turn to rain weather power.
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RESULTS AND DISCUSSION

The effectiveness of the CEEMDAN-BiLSTM model is verified
by the weather conditions and energy consumption data of an
office building in Fuzhou, Fujian Province in 2019. According
to statistics, there were 273 abrupt weather days in Central
Africa in 2019, including 111 sunny days, 47 cloudy days, 53
overcast days, 62 rainy days and 92 abrupt weather days. In
non-abrupt weather, considering sunny weather as an example
for analysis, 25 days were selected as training samples and
8 days as test samples in sunny weather. For a sudden change
in weather, the weather from sunny to rainy is considered as an
example. Among the 16 days of weather from sunny to rainy,
12 days were selected as training samples and 4 days as test
samples.

The forecast results of lighting, air conditioning, and power
consumption in sunny weather are shown in Figures 3A–C. In
sunny weather, the fluctuation of the building energy
consumption curve is small, and the change in energy
consumption has certain regularity. Except for BP and SVM
models, the other four models all showed good prediction effects.
In the prediction curves of air-conditioning energy consumption
and power energy consumption, it can be observed that the LSTM
model based on the CEEMDAN method has the highest fitting
degree to the curve, and the prediction effect of the combined
model is obviously better than that of the single prediction model.
The forecast results of each sub-item energy consumption under
abrupt weather conditions are shown in Figures 3D,F. Under
abrupt weather conditions, affected by various meteorological
factors, the energy consumption curve fluctuates greatly, and the
predicted power of each model deviates from the actual power.
After the sudden change of weather, the predicted value of the
lighting energy consumption of the BP neural network is lower
than the actual energy consumption. Compared with the other
two combined models, the EMD-LSTM model has more chaotic
curves, resulting in larger errors.

In order to compare the prediction effects of each model more
accurately, the errors of the six models are plotted in Table 1. In
sunny weather, most indexes of the combined model based on the
LSTM algorithm are better than those of the single model.
According to the analysis of the prediction results of lighting
energy consumption, it can be seen that the eRMSE, eMAPE, and
eTIC indexes of the four deep learning models have little difference.
Compared with EMD-LSTM and CEEMDAN-LSTM, the eMAPE

value of the CEEMDAN-BiLSTM prediction model is reduced by
2.4 and 1.9%, respectively. CEEMDAN-LSTM model has obvious
performance advantages in predicting air-conditioning energy
consumption. Compared with EMD-LSTM and CEEMDAN-
LSTM combined models, the eRMSE of the CEEMDAN-LSTM
model is reduced by 6.6 and 1.1%, respectively, the eMAPE is
reduced by 36.512 and 12.065, respectively, and the eTIC is
reduced by 4.1 and 1.1%, respectively. The LSTM model is not
sensitive enough to power consumption, while EMD-LSTM,
CEEMDAN-LSTM, and CEEMDAN-BiLSTM models extract
curve details through modal decomposition, which makes the
prediction algorithm more accurate. Under abrupt weather
conditions, both BP and SVM prediction models have large
errors in energy consumption. The combination model has an
excellent prediction effect on lighting energy consumption and
power energy consumption. In this comparison in a smaller
numerical range, the combination model can be used directly.
The CEEMDAN-BiLSTM model has the best performance in the
short-term hourly prediction of air conditioning energy
consumption, and the eMAPE value is reduced by 14.4, 23.3, 9.3,
8.1, and 4.4%, respectively, compared with BP, SVM, LSTM, EMD-
LSTM, and CEEMDAN-LSTM models, that is, CEEMDAN
decomposition improves the prediction performance of the
model to a certain extent. After the power consumption data is
decomposed by CEEMDAN, the details that can be extracted by
the LSTM network and BiLSTM network are further increased, so
CEEMDAN has a positive effect on energy consumption
prediction.

TABLE 1 | Prediction errors of different models.

Type XP-70 eMAPE eRMSE eTIC Type XP-70 eMAPE eRMSE eTIC

Sunny weather lighting BP 0.214 13.171 0.047 Turn to rain weather lighting BP 0.297 18.363 0.119
SVM 0.251 16.228 0.056 SVM 0.229 14.957 0.084
LSTM 0.184 9.928 0.043 LSTM 0.216 12.788 0.091
E-L 0.170 9.885 0.032 E-L 0.194 10.984 0.069
C-L 0.165 7.874 0.026 C-L 0.176 9.549 0.057
C-B 0.146 7.260 0.025 C-B 0.148 9.308 0.048

Sunny weather air conditioner BP 0.37 221.837 0.214 Turn to rain weather air conditioner BP 0.362 228.188 0.194
SVM 0.418 257.109 0.202 SVM 0.451 272.092 0.224
LSTM 0.334 169.663 0.139 LSTM 0.311 180.398 0.171
E-L 0.266 154.198 0.142 E-L 0.299 169.867 0.143
C-L 0.211 129.751 0.112 C-L 0.262 130.153 0.111
C-B 0.200 117.686 0.101 C-B 0.218 123.652 0.111

Sunny weather power BP 0.2485 3.312 0.128 Turn to rain weather power BP 0.296 3.814 0.176
SVM 0.2825 3.934 0.182 SVM 0.286 3.502 0.172
LSTM 0.2395 3.172 0.126 LSTM 0.248 2.758 0.149
E-L 0.183 2.303 0.082 E-L 0.198 2.166 0.102
C-L 0.1615 1.856 0.086 C-L 0.188 2.108 0.094
C-B 0.16 1.672 0.067 C-B 0.16 1.932 0.087
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In this study, the predicted values and effective values of all test
samples of building energy consumption are counted. Compared
with the CEEMDAN-BiLSTM model, the CEEMDAN-LSTM
model reduces eMAPE, eRMSE, and eTIC by 4.1, 9.441, and 1.3%,
respectively. In other words, after CEEMDAN modal
decomposition of building energy consumption, the BiLSTM
network is more accurate than the LSTM network prediction
algorithm.

CONCLUSION

In this study, a short-term prediction model of building energy
consumption based on the CEEMDAN-BiLSTM method is
proposed. The energy consumption data of lighting, air
conditioning, and power are decomposed by CEEMDAN and
then sent to the BiLSTM network for energy consumption
prediction. At the same time, five models are established and
compared with the proposed model. The CEEMDAN-BiLSTM
model solves the problem of low accuracy of traditional
forecasting methods when energy consumption fluctuates. The
main conclusions are as follows:

1) BP and SVM models are simple in structure, showing large
errors in all kinds of weather, so they are not suitable for the

prediction of energy consumption series. The accuracy of the
LSTM model is difficult to guarantee when the energy
consumption fluctuates greatly. When the weather suddenly
changes, the EMD-LSTM model shows a big error in the
prediction of air conditioning energy consumption.

2) More detailed components can be extracted by CEEMDAN
decomposition of energy consumption curve data, which
makes the prediction of the BiLSTM network more accurate.

3) The difference between the predicted energy consumption of
the CEEMDAN-LSTM model and the actual energy
consumption is small, and the prediction accuracy meets
the requirements of short-term prediction.
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Analysis of Digital Operation of Rural
Sewage Treatment System in Big Data
Environment by Discrete Dynamic
Modeling Technology
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Sewage treatment is a process with high energy consumption and pollution. In the current
situation of energy shortage and fierce competition in the paper industry market, how to
reduce the energy cost is related to the survival and development of every sewage
treatment plant. With the rise of big data environment in the internet, discrete dynamic
modeling technology has developed very rapidly. Discrete dynamic modeling technology is
a dynamic model system that can connect the information of different things, so as to form
a dynamic model system that can control all devices or data. The object attributes
processed by the model system also determine the nature of the dynamic model
system. As we all know, the big data environment is a large database with complex
data types, so the dynamic model system in the big data environment is nonlinear. This
paper mainly studies the historical development trend of big data environment and discrete
dynamic modeling technology, as well as the stability method of five level H-bridge when
discrete dynamicmodeling technology controls rural sewage treatment system. Finally, the
control of chaotic bifurcation in discrete dynamicmodel system under digital background is
studied. It includes the rectifier modeling of the current data required by large devices in the
sewage treatment system and the result analysis of the generated values.

Keywords: energy consumption, discrete dynamic model, sinusoidal pulse width modulation SPWM, five level
H-bridge, rectifier

INTRODUCTION

With increasing strictness in emission limits of pollutants, the cost of water pollution control is
increasing with every year. The energy consumption of the sewage treatment plant accounts for
about 40% of the operating cost. High energy consumption seriously hinders the construction and
operation of sewage treatment plants, so many sewage treatment plants are unable to sustain
development, so it is the trend of the industry to reduce energy consumption and achieve sustainable
development of sewage treatment.

Discrete dynamic modeling technology has been fully integrated into human beings. This
technology has very high practical value in society. Because, the essence of this technology
belongs to the modeling knowledge in mathematics, it is difficult to fully master the discrete
dynamic modeling technology (matekenya Dunstan et al., 2021) (Dunstan et al., 2021). With the
historical development of discrete dynamic modeling technology, researchers around the world have
invested a lot of human and material resources in the exploration and innovation of this technology,
breakthrough in application fields and system R and D. Discrete dynamic modeling technology is
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also evolving with the development trend of computer science,
and is gradually applied in various fields (Alain djazet et al., 2020)
(Djazet et al., 2020). Although the development of discrete
dynamic modeling technology has not reached the final form,
data errors often occur in the application process. However, the
future development prospect of this technology is very broad, and
its development has also become a hot spot of social concern
(Zhongxin Ni et al., 2020) (Ni et al., 2021). With the innovation of
material industry, the material of manufacturing discrete
dynamic model system has achieved the goal of reducing
manufacturing cost. Due to the characteristics of low
manufacturing cost, discrete dynamic modeling technology is
gradually applied to various industries.

Discrete dynamic modeling technology began to be developed
abroad earlier, and relevant foreign researchers are more mature
in terms of cognition and reference methods of this technology.
Discrete dynamic modeling technology originated from
mathematical model, and then applied to data statistics,
discrimination, and calculation and so on. Discrete dynamic
modeling technology mainly depends on the data information
generated by things. By classifying, calculating and assimilating
the data, the overall data trend is finally obtained, which also
provides convenience for users applying discrete dynamic
modeling technology (A. I. sukhinov et al., 2020) (Sukhinov
et al., 2020). In the process of realizing discrete dynamic
modeling technology, the principle of data transportation
should be followed. The data information of things is
processed and analyzed through a special data transmission
device. Discrete dynamic model system can be regarded as an
integrator of data. It not only includes big data environment, but
also includes data processing system and anti loss system (D. a.
Komarov et al., 2020) (Komarov et al., 2020). We can regard the
discrete dynamic model system as an internal memory of the
computer. It is a model environment for interacting with data.
People can clearly understand all kinds of information between
data through the computer.

This paper is mainly composed of three parts.

1) Firstly: introduces the application of discrete dynamic
modeling technology in rural sewage treatment system, and
the development status of discrete dynamic modeling
technology.

2) Secondly: Research the stability of rural sewage treatment
system under discrete dynamic modeling technology and the
control of rural sewage treatment system under discrete
dynamic modeling technology.

3) Thirdly: result analysis of rural sewage treatment system
under discrete dynamic modeling technology, and the
control result analysis of rural sewage treatment system
under discrete dynamic modeling technology.

RELATED WORK

The related concepts of discrete dynamic modeling technology
have been put forward a long time ago, and its emergence
indirectly reflects the positive development of big data in the

Internet. It also promotes the innovation and application of
discrete dynamic modeling technology (Nauman Raza et al.,
2020) (Raza et al., 2020). The embryonic stage of discrete
dynamic modeling technology first appeared in the 1950s.
Subsequently, it appeared in the paper jointly issued by French
mathematician David Ruelle and Dutch mathematician Floris
Takens, and proposed the formation mechanism of using chaotic
data to describe the results for the first time in the field of
mathematics. Later, mathematicians from various countries
put forward more kinds of related concepts and began to
carry out experimental application in the 1970s (Antonio gon
ç Alves et al., 2020) (Gonçalves et al., 2020). However, due to the
immature development of computers at that time, the progress of
experimental application was very slow. Many error messages
also appeared in the application process, so that the technology
was affected by conditions and did not get very big response at
that time (lorella Fatone et al., 2020) (Fatone and Mariani, 2020).
Then, due to the development of computers in the 1990s, discrete
dynamic modeling technology gradually broke through the
difficulties. Relevant researchers have applied discrete dynamic
modeling technology to the processing of stock data and achieved
great success. This is also the first time that discrete dynamic
modeling technology has been applied to human life (Wen Ling
Tian et al., 2020) (Tian et al., 2020).

The development speed of discrete dynamic modeling
technology in the United States is faster than that in other
countries. The first successful application of discrete dynamic
systems to practice was in the United States (Mengjie Zhang et al.,
2019) (Zhang et al., 2019). Discrete dynamic modeling
technology is combined with stock information to
systematically analyze the rise and fall data of various stocks.
The stock information data processed with discrete dynamic
modeling technology can better reflect the fluctuation trend of
stock data over a period of time compared with all kinds of
disorderly data (babita K. Verma et al., 2019) (Verma et al., 2019).
With the application of discrete dynamic modeling technology to
integrate stock data, it is gradually applied to other directions in
the financial field. The introduction of this technology has also
taken a big step forward for the American economy.

Japan’s discrete dynamic modeling technology has made a
breakthrough in medicine (Wei Chao Li et al., 2019) (Li et al.,
2019). They use discrete dynamic modeling technology to
integrate the patient’s vital signs data, and then transmit the
processed vital signs data to the screen, so as to observe the
patient’s vital signs in real time. Japanese researchers have used
the discrete dynamic model system to create a data collection
database for data, which can not only collect the vital signs data of
patients, but also classify and calculate the data (Truong thi
Nguyen et al., 2019) (Nguyen et al., 2019). However, at that
time, the technology was not widely used in major hospitals.
Later, with the development of society, people gradually realized
the importance of medical treatment and began to apply it on a
large scale. Today, medical institutions all over the country have
fully covered the technology.

France applies discrete dynamic modeling technology to
military field. They mainly apply discrete dynamic modeling
technology to detect vehicle faults. In order to improve the
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work quality of inspectors, discrete dynamicmodeling technology
needs to be combined with the original data information of
normal vehicle components. Then compare the real-time
information transmitted by the tested vehicle with the data.
Once the data deviation is large, the tester can accurately find
the fault and repair the vehicle in time (Joseph F. hair et al., 2019)
(Hair et al., 2019). The introduction of this technology can greatly
save the capital cost of the army. In the actual combat drill, the
quality of vehicles is also directly related to the training effect,
which also provides a guarantee for the safety of soldiers.

China has moved discrete dynamic modeling technology to
the transportation industry. As we all know, Chinese people
generally like to shop online, and the transportation volume of
goods is also very huge. Because discrete dynamic modeling
technology can classify and process the data of things, it can
accurately store and output the package information. Classify the
package data information to the greatest extent, so as to improve
the delivery speed of products (Daniel Ioan et al., 2019) (Ioan
et al., 2019). The combination of discrete dynamic modeling
technology and transportation industry has directly affected the
domestic economy and made China the largest transportation
country in the world (Li et al., 2021a; Li et al., 2021b; Le et al.,
2021; Toyoda and Wu, 2021; Wu et al., 2021; Zhang et al., 2022).

What is mentioned above is the historical development trend
and status of discrete dynamics modeling technology in each
country, both of which reflect the remarkable characteristics of
discrete dynamics modeling technology for social development.

METHODOLOGY

Study on Stability of Rural Sewage
Treatment System Based on Discrete
Dynamic Modeling Technology
The rural sewage treatment system contains five level H bridge.
Usually, in order to observe the stability of the bridge in the
sewage treatment equipment, the discrete dynamic modeling

technology is combined to observe the data. At present, the
phenomenon of bifurcation and chaos in the bridge is of
practical significance to the correlation design of data
parameter information and stability analysis. When analyzing
and processing the stability of data parameters, it is mainly to
build a discrete dynamic model based on the state of bridge
inverter, and then analyze the data information. The discrete
dynamic model constructed cannot be an ordinary discrete
model, but must be a discrete dynamic model for accurate
analysis of data. Because the composition of the bridge is a
very complex form of current pulse, the number of levels
obtained during data sampling in the sewage treatment system
are different. In order to solve this problem, this paper introduces
the virtual ergodic modeling method into the refined discrete
dynamic model. With the addition of this method, the influence
of data complexity on system stability is easily solved.

As shown in Figure 1A, the power consumption per ton of
sewage in traditional sewage treatment is between 0.305 and
0.5 kW h, and the fluctuation is large, with a fluctuation range of
up to 57%. The energy consumption after using discrete dynamic
modeling technology is between 0.167 and 0.221, and the
fluctuation range is reduced to about 32%. The most
important thing is that the overall power consumption shows
a downward trend, up to 64.7%, that is, the same ton of
wastewater is treated. the power consumption is reduced
by 64.7%

The virtual traversal method mainly samples the data at
different times, and obtains the model mapped within the
system from the obtained data and the state variables in a
period of time. For the five level H-bridge, the virtual ergodic
method combined with carrier modulation is used to determine
the dynamic model of the system. The modulation schematic
diagram of five level SPWM is shown in Figure 1B.

It can be seen from Figure 1B that the level generated in
different time periods is different, so it is difficult to establish the
discrete dynamic system within the sampling time. Combined
with the modulation principle of the above five-level SPWM, this
paper extends the level state in the sewage treatment system, and

FIGURE 1 | Five level data modulation diagram.
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then constructs the discrete dynamic model. The level expansion
phase equation in the system is as follows:

di
dt

� −R
L
i + δE

L
, δ ∈ {2, 1} ∪ {1, 0} ∪ {0,−1} ∪ {−1,−2} (1)

Among them, the generated level coefficient can be taken
within a period of time, and the value can be eight values. In the
ordinary sampling time period, only two values can be taken, so
the method studied in this paper is called virtual traversal
method. In order to solve the above formula, a standard
differential equation is given as follows:

dy
dt

� ay + b, y � −a
b
+ Cat

e (2)

After the numerical solution is brought in, the solution of the
equation is obtained, and then the current state is transmitted.
After the final current goes through the eighth state, the relevant
formula about the value is as follows:

in+1 � δ8E

R
+ (in − δ1E

R
)e−R

LT
2 +

⎧⎪⎪⎪⎨⎪⎪⎪⎩∑7
k�1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣(δk − δk+1)E
R

e

R
L∑k

j�1
djTs⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×
⎫⎪⎪⎪⎬⎪⎪⎪⎭e−

R
LTS (3)

The above contents are also the final discrete dynamic model
of sewage treatment system and discrete dynamic modeling
technology. In the above formula, it is mainly obtained by
comparing the device modulation wave with the carrier wave.
In this experiment, the duty cycle inside the model needs to be
determined. Since the current has eight states, it can be seen that
there are eight duty cycles. Since the duty cycle can be expressed
by matrix function, the symbolic function is used to unify the
duty cycle. The relevant formula is as follows:

sgn(x) � { 1, x≥ 0
−1, x< 0} (4)

dsgn(x)
dx

� 2δ(x) (5)

It should be noted that in the function formula, the function is
meaningful only when it is zero. Finally, the duty cycle is finally
expressed with the above symbols, and the form formula is as
follows:

[d1 . . . d7]T � T(Vp) � Ts.[sgn(x) + sgn(x′)
2

(Vp)] (6)

According to the above formula, the key content of the virtual
traversal method is to obtain all the data information of the
internal state of the system. The combination of discrete dynamic
modeling technology and rural sewage treatment system focuses
on the composition between data duty cycle and modulation.
Only when the data between them are expressed in a functional
way can the stability of the whole system be analyzed later. In this

paper, the method of transforming data relationship into
symbolic function is also very suitable for solving the
modeling problem of device data in the system.

After the discrete dynamic model system is established, the
stability of the inverter bridge can be analyzed. The process of
determining whether the system is stable is shown in Figure 2.

As can be seen from Figure 2, the flow chart is mainly divided
into three layers. The innermost layer is mainly used to calculate
the current data, and the other two layers are mainly used to
convert the data. In the process of calculation, the relevant
formulas for the definition of variables and the characteristic
equation of the matrix are as follows:

X � γRn−2, yn � γRn−1, zn � in−1, qn � in (7)
p(z) � a0z

4 + a1z
3 + a2z

2 + a3z + a4 (8)
According to the above formula, in the rural sewage treatment

system in this paper, the data generated by four devices are mainly
studied, so four new variable sets are defined. Then calculate and
convert the data of the four variables, and finally transmit them to
the visual end.

Because the system combines the virtual traversal method, the
data calculation error caused by environmental factors can be
avoided in the process of converting the current data generated by
the internal devices of the sewage treatment system. Then the
converted data parameters are transmitted to the computer to
form a three-dimensional stable area of the sewage treatment
system. The angle and area inside the three-dimensional stability
region can analyze and judge the stability of the whole system, so
as to improve the work efficiency and accuracy of the system.

Research on Control of Rural Sewage
Treatment System Based on Discrete
Dynamic Modeling Technology
In the process of control in the rural sewage treatment system
using discrete dynamic modeling technology, in order to avoid
the bifurcation chaos such as noise, irregular data oscillation and
system instability during the operation of SPWM. In this paper, a
nonlinear method is used to stroboscopic map the data to the
whole system. This mapping method is also the main means to
deal with chaos and bifurcation. The single-phase SPWM rectifier
in the system mainly presents two states during operation. When

FIGURE 2 | Flow chart for judging system stability.
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performing stroboscopic mapping, it needs to be solved twice
continuously, which is also very difficult. In this paper, the
stroboscopic mapping in the single-phase SPWM rectifier in
the system is modeled by simplifying the calculation process.
Then the chaos and bifurcation phenomena are analyzed by using
discrete dynamic modeling technology. Finally, the control
parameters that can control the whole system are obtained,
and the control module in the whole rural sewage treatment
system can be seen more intuitively. The specific design flow of
the whole control system is shown in Figure 3.

As can be seen from Figure 3, firstly, the working principle of
single-phase SPWM rectifier is modeled. Then the bifurcation
phenomenon of the constructed model is analyzed, and finally the
stability region is solved and the numerical value is analyzed. The
control circuit in single-phase SPWM rectifier is mainly
composed of two closed loops, and the corresponding formula
is as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L
di

dt
� −Ri + E sin(ωt) − Udc

C
dUdc

dt
� − 1

RL
Udc ± i

(9)

After calculating the working time of the data, the stroboscopic
mapping of single-phase SPWM rectifier can be obtained.
However, when dealing with more complex data information,
the solution process becomes difficult. In this paper, Adomian
polynomials are added to the original system model. With the
addition of Adomian, the solution of nonlinear differential
equations becomes easy. Adomian can automatically transform
the solution into form, and the more data, the more accurate it is.
Adomian’s relevant formula is as follows:

Lu + Ru +Nu � g (10)

An(u0, u1, . . . , un) � 1
n!
⎡⎢⎢⎣ dn

dλn
N⎛⎝∑∞

i�0
λiui

⎞⎠⎤⎥⎥⎦
λ�0

(11)

The core content of Adomian polynomial is to solve the high-
order derivative, and the polynomial is mainly composed of
variables, so it is more suitable for the discrete dynamic
system studied in this paper.

When analyzing the bifurcation phenomenon in the whole
system, we must first understand the information of the relevant
data generated by the bifurcation chaos phenomenon. The source

of data is mainly generated by the peak current, and the peak
current can be collected directly. The current peak segmentation
number generated by the internal components of the sewage
treatment system studied in this paper is 70, that is, when it is
greater than 70, the data appear chaotic bifurcation phenomenon.
By analyzing the bifurcation chaotic data of nonlinear attributes,
it is convenient to judge the chaotic bifurcation characteristics of
the whole system in a fixed time. As long as the trend of the image
presented on the computer side is symmetrical, we can know that
the whole system is running stably.

After taking some chaotic bifurcation data, the stroboscopic
mapping method is added to the model system. In the process of
adding, the transfer function formula of the controller is:

F(s) � Kp + Kr.s
s2 + ω2

1

(12)

Before the controller transmits data, because there is still
sinusoidal quantity in the rectifier, the sinusoidal quantity
needs to be replaced by variables before data transmission.
The formula related to variable substitution is as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dz

dt
� ωE cos(ωt)

d2z

dt2
� −ω2E sin(ωt) � −ω2z

(13)

After replacing the data form, the controller maps the data
transmitted to the computer to the SPWM rectifier in the discrete
dynamic system. The related formulas of discrete mapping are as
follows:

Xn+1 � F(X) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1(xn, yn, mn, zn)
f2(xn, yn, mn, zn)
f3(xn, yn, mn, zn)
f4(xn, yn, mn, zn)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (14)

Through the above content, the whole discrete dynamic
system is updated. Next, we need to solve the stable region in
the system. In this paper, the Jacobian matrix method is mainly
used for solving, and the relevant formulas are as follows:

Jm �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d

dxn
fm ·/ · d

dsn
fm

·/·
d

dxn
fm ·/ · d

dsn
fm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15)

Through the introduction of data, the eigenvalues of
Jacobian matrix are obtained. By comparing and calculating
with all data node values in the internal parameter area of the
system, all characteristic values that meet the internal area of
the system can be obtained. The higher the switching
frequency of sewage treatment system components, the
larger the stability range of the system. We can also operate
the system by controlling the internal eigenvalues. Although
the addition of control methods can systematically collect and
track data, it also reduces the stability of the whole system to a
certain extent.

FIGURE 3 | Control flow chart of the system.
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Finally, the numerical value generated by the system in
processing data is analyzed. Because the stroboscopic mapping
can continuously iterate the data within the system, the waveform
variables generated by the data in different states can be obtained.
After collecting the internal current waveform, the system stores
the filtered wave peak separately, and obtains the chaotic
bifurcation of the data in the system. If sampling is selected at
only one point, all output data results are limited to a single state;
If data sampling is selected at two points, all output data results
have only two states; If the data is sampled at many nodes, the
data obtained is polymorphic and contains bifurcation chaos.
According to the above content, only continuous sampling of
multiple nodes can be helpful to the research content of this paper
and improve the accuracy of the results.

RESULT ANALYSIS AND DISCUSSION

Stability Analysis of Rural Sewage
Treatment System Based on Discrete
Dynamic Modeling Technology
By combining the discrete modeling technology with the rural
sewage treatment system, the data information of the current
required in the components is obtained. In the initial stage of data
processing, it is only data acquisition and transmission, in which
the virtual traversal method of control data and system stability is
added. After real-time collection, analysis and processing of the
attributes and status of machine component data, the whole
discrete dynamic system can be clearly monitored by the
computer. The real-time waveform data generated in the
process of system operation can indirectly analyze the stability
of the whole discrete dynamic system. In order to further verify
the overall stability of the combination of discrete modeling
technology and rural sewage treatment system. In this paper,
the internal current data of machine components are sampled,
and a period of time during the operation of the system is
intercepted. Finally, the stability of the whole system is verified

by the sample data wave frequency generated by the system when
processing data. The operating wave frequency of the obtained
discrete dynamic system is shown in Figure 4.

It can be seen from Figure 4 that the combined discrete
dynamic model system processes the sample data generated by
the machine over a period of time. From the electromagnetic
wave frequency generated by the data in the figure, the operation
process of the system processing data is very stable. Although the
data frequency values in different periods still fluctuate
significantly, they are all within the standard value. When the
system is in a relatively stable operation state, it can play its
original role with maximum efficiency. Therefore, according to
the wave frequency generated by the above discrete dynamic
systemwhen processing data, it can be concluded that the discrete
dynamic model system studied in this paper has good stability
and good performance.

Analysis of Control Results of Rural Sewage
Treatment System Based on Discrete
Dynamic Modeling Technology
It is far from enough to design and study the stability of a system.
Based on the enhanced discrete dynamic modeling technology,
combined with the rural sewage treatment system, the control
function is also added. The traditional discrete dynamic model
can not directly control the model in the modeling process, and
the algorithm can only control the data and systemmanually. For
example, repeatedly adding data and switching the system. The
discrete dynamic model studied in this paper combines the
method of stroboscopic mapping. After being added into the
system modeling, this method directly replaces the original status
of artificial data and system control. In order to further verify the
control performance of rural sewage treatment system under
discrete dynamicmodeling technology, five groups of sample data
with different quantity and category are selected for processing.
Finally, through the optimized discrete dynamic system, the data
processing rate and the authenticity of the results are analyzed in

FIGURE 4 |Wave frequency diagram of discrete dynamic system when
processing data.

FIGURE 5 | Data processing efficiency diagram of optimized discrete
dynamic system.
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detail. The data processing efficiency trend of the optimized
discrete dynamic system in the experiment is shown in Figure 5.

It can be seen from Figure 5 that the optimized discrete
dynamic system has very high data processing efficiency. The
smaller the amount of data processed, the higher the processing
rate of the corresponding system. Although the rate is reduced
when processing huge data, the rate is still as high as 60%. It can
be seen that the control performance of the whole system is very
good. In the previous research data, the data processing rate of
ordinary discrete model is no more than 40%, and system failures
often occur. In contrast, the discrete dynamic model system
studied in this paper can maintain the stability of the system
and data, and can automatically control it. It also indirectly
proves that the technology has strong social application value.

CONCLUSION

In the big data environment, discrete dynamic technology can be
combined with many fields. This paper combines this technology
with rural sewage treatment system. Firstly, the virtual traversal
method is added to the system to construct the model, which
strengthens the stability of the whole data and the system. Inside
the virtual traversal method, all possible conditions are
considered. In this way, the final model is established to

improve the overall accuracy to the greatest extent. After
ensuring the stability of the system, the model of SPWM
rectifier in the system is transformed. By controlling the
data type, the overall performance of the system is
improved. It mainly uses the occupied space value to
achieve the mapping between data, and also provides a new
idea for stroboscopic mapping modeling. The final system has
stable and controllable excellent properties, and can also
analyze and process the data in the rural sewage treatment
system. The sewage treatment method in this paper can not
only reduce the expenditure of energy costs but also bring
more economic benefits. Hence, the water consumption and
drug consumption of the whole process will be optimized
simultaneously.
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A Possibilistic Risk Assessment
Framework for Unmanned Electric
Vehicles With Predict of Uncertainty
Traffic
wen hu1*, longyun kang1 and zongguang yu2

1School of Electric Power, South China University of Technology, Guangzhou, China, 2Internet of Things Engineering College,
Jiangnan University, Wuxi, China

At present, electric vehicles (EV) have entered a stage of rapid development. Meanwhile,
with artificial intelligence (AI) technology fast improving and implementing many inventions
in electric vehicles (EV), almost all EV sold in China are equipped with automatic driving
technology to achieve safer and more energy-saving driving. In order to solve the problem
of anti-collision in self-driving Smart EV under complex traffic, especially at intersections,
most of the existing methods make sequential predictions for the driving level of vehicles,
and it becomes difficult to deal with sudden changes in intentions of other vehicles.
Therefore, a collision risk assessment framework based on other vehicles’ trajectory
prediction is proposed. The framework integrates the solutions of other vehicles’ expected
path planning, uncertainty description of driving process, trajectory change caused by
obstacle intrusion, etc., as well as adopts the Gaussian mixture model to evaluate the risk
according to the probability of collision. It realizes the real-time evaluation of the probability
of collision and makes safe decisions and trajectory planning of the vehicles. After
simulation and verification, it effectively solves the decision-making planning problem of
autonomous vehicles under complicated traffic flow and demonstrates that the method is
better than the current sequential prediction method (SORT\Karlman filter, etc.).

Keywords: electric vehicle, artificial intelligence, uncertainty prediction, decision-making, risk assessment

1 INTRODUCTION

Crossroads are one of the traffic scenes with the most complicated driving conditions. For
autonomous vehicles, it is of great significance to further improve and ensure vehicle safety if
they can sense the intention of other vehicles in advance and predict possible collision risks between
themselves and the other vehicles.

At present, in the problem of collision avoidance in autonomous driving scenes, the trajectory
planning and behavior decision of autonomous driving vehicles mainly need to consider other
dynamic obstacles in traffic scenes. At the same time, including but not limited to the driving
trajectories of the other motor vehicles, to determine the behavior decision and trajectory planning
of the autonomous driving vehicles. The two main methods in the industry for this are planning-
based method and optimization-based control method. Trajectory planning is a typical control
method which includes advance planning based on prior environmental information in addition to
real-time planning based on online space exploration (Wang et al., 2019; Wang and Huang, 2021),
aiming at finding an optimal free path of colliding vehicles. Trajectory planning and collision
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avoidance based on the potential field have also been widely
studied (Gianibelli et al., 2018; Chen and Yu, 2019). This
method avoids collision behavior based on the potential field
and uses the potential field to push vehicles away from certain
obstacles. Planning-based methods are faced with the challenge
of designing suitable collision avoidance paths, and it is difficult
to find suitable optimal paths for a complex dynamic road
condition. On the other hand, optimization-based control
method (MPC) (Rothmund and Johansen, 2019) is also
widely used for collision avoidance of unmanned vehicles.
Collision avoidance is regarded as a coupling constraint, and
the best collision avoidance algorithm is found for vehicles.
There are also some researchers who speculate the upper limit of
collision probability of the minimum collision time TTC
(Shalev-Shwartz et al., 2017) based on the linear space and
time of trajectory crossing to constrain the behavior decisions of
unmanned vehicles such as deceleration and braking. However,
this does not take into account the uncertainty and conservatism
of obstacles, nor does it take into account the risk in the sense of
probability. In recent years, many researchers have used AI
methods to study path planning and collision avoidance of
unmanned vehicles in a complex dynamic scenario, including
the reinforcement learning methods of RL (Q-Learning) (Zhao
et al., 2017) and POMDP (Hsu et al., 2008; Ponzoni Carvalho
Chanel et al., 2012; Ragi and Chong, 2013). According to
environmental rewards, calculate possible actions and get the
next step. Some work has been put forward for a POMDP
solution to model the uncertainty of target trajectory. But this
solution needs to consider a large number of possible action
sequences and the state of other vehicles, which must be
completed in an ideal time and consume a lot of system
resources and computing power. RL methods may suffer
from problems caused by overfitting due to the complexity of
environment and various characteristics of tasks. At the
same time, less environmental knowledge may slow down the
learning speed and cause unmanned vehicles to fall into local
optimum.

The main contribution of this article is to develop a
framework based on the collision risk assessment for obstacle
avoidance in an unknown environment. This method predicts
the environment along with preplanned tracks of other vehicles
and analyzes the uncertainties. It includes other vehicles’
expected path planning, uncertainty description of driving
process, and trajectory change caused by obstacle intrusion.
Through the analysis, modeling, and calculation of uncertainty,
the prediction of other vehicles’ trajectory based on probability
is realized. The risk probability of collision is evaluated based on
the other vehicles’ trajectory. This result can be input to the
decision control module for correcting or changing the motion
planning of the own vehicle and can also trigger other safety
algorithms of the own vehicle such as collision avoidance when
necessary, moreover, ensuring vehicle safety to the greatest
extent along with better driving efficiency.

2 Driving Uncertainty Analysis
Among the four factors that affect vehicle trajectory, the legal driving
direction of the lane and geometric characteristics of the road are

almost constant. This relevant information can be obtained through
maps, high-precision maps, networks, or vehicle perception. The
remaining three factors are uncertain with time and environment,
which is the key and difficult point of other vehicles’ trajectory
prediction. It is also the key and difficult point of collision risk
assessment. In this article, these three factors are summarized as
three kinds of uncertainties that affect the trajectory of other vehicles
and are analyzed, modeled, and calculated.

2.1 Uncertainty of Driving Intention
At present, the intelligent vehicle cannot accurately sense the
driving intention of its driver, so the driving intention of its own
vehicle is uncertain. As shown in Figure 1A, when turning
around, turning left, going straight, and turning right are
allowed in the lane in which other cars travel, the driving
intention of the other cars is strongly uncertain when
compared with that of the own car. Generally speaking, this
uncertainty will decrease as the vehicle travels. For example, when
a vehicle is at an intersection, there are possibilities of turning left,
going straight, and turning around. When the vehicle travels
halfway along the left-turn route, it can be judged that the vehicle
is more likely to turn left. When the vehicle turns left and enters
the other direction lane, the driving uncertainty disappears
completely. Generally, an ego-vehicle’s driving intention will
not change in a driving process, but in a few special cases, the
driving intention may also change. As shown in Figure 1B,
because the ego-vehicle is unfamiliar with the road
environment or misreads the road signs, it may suddenly
switch to the left turn after driving on the straight line for a
period of time.

2.2 Driving Process Uncertainty
Because people’s perception, attention, operation ability, and
other abilities cannot be as accurate as computers, and the
vehicle’s power system and control system cannot control the
vehicle absolutely accurately, there is always some uncertainty in
the vehicle trajectory during the driving process. This kind of
uncertainty is interfered by the external environment to a
certain extent, for example, talking with the ego-vehicle will
distract the driver’s attention, and fatigue driving will reduce the
ego-vehicle’s driving ability. Another characteristic of this kind
of uncertainty is that it only appears when the vehicle is moving
and disappears naturally when the vehicle is stationary. This
kind of uncertainty is called the uncertainty of driving process in
this article. There are two types of uncertainties in driving
process, each with different characteristics: the first type is
mainly caused by the lack of ability of the drivers or vehicles,
which is objective and inevitable. However, this kind of
uncertainty is often small and occurs randomly near the true
value of the driving intention; the second type is mainly caused
by the ego-vehicle’s inattention. This kind of uncertainty may
accumulate and enlarge and even eventually force drivers to
change their driving intentions. For example, the vehicle
originally wanted to go straight but because of the ego-
vehicle’s mistake, the vehicle continued to turn left and
finally entered the left-turn lane. At this time, the ego-vehicle
had to temporarily change its driving intention to turn left.
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2.3 Track Invasion Uncertainty
Due to the widespread existence of obstacles, vehicles often
cannot drive according to the scheduled route, causing them
to change the driving route constantly. However, obstacles may
appear in any motion at any time and place, so the uncertainty
caused by them is the most complicated and difficult to deal with.
This kind of uncertainty is caused by external objects. In this
article, it is called the uncertainty of other vehicles’ track invasion.
Compared with the uncertainty of driving intention, obstacles
appear to more frequently lead to a higher frequency of vehicle
route change. Compared with the uncertainty of driving process,
the change of driving trajectory caused by obstacle intrusion is
bigger and more significant.

2.4 Trajectory Planning Analysis of Other
Collision Avoidance Effects
In addition to the above factors and uncertainties, there are many
factors that affect the driving of vehicles in reality. The most
common of which are the right-of-way rules. The right-of-way
rules stipulate the priority right-of-way of different vehicles on
the same road in a specific scene. The right-of-way division affects
the running of vehicles and thus the assessment of collision risk.
Based on the actual driving situation, this article focuses on the
influence of vehicle arrival time, vehicle type, and vehicle driving
intention on the right of way. In this article, it is determined that
when a vehicle arrives at a certain position at different times, the
vehicle that arrives first enjoys the right of way, and the vehicle
that arrives later should give way; when the vehicle arrives at a
certain position at the same time, consider the driving intention
of the vehicle, such as turning left and right should be straight;
and if two cars have exactly the same right of way, they are in a
constant competitive state, and the vehicles stop at random for a
period of time and then compete for the right of way again.

Besides the right of way, when vehicles avoid each other, it also
affects each of their driving. In order to make the calculation easy
to realize, when predicting the driving track of other vehicles Vi,
only the influence of the remaining vehicles on Vi is considered
while the influence of Vi on the other vehicles is not considered.
For example, if the driving track of Vi is invaded by Vj, Vi may
change the driving route to avoid Vj. At this time, the influence of
the Vi route change on Vj is no longer considered. If Vj is affected
by Vi and the driving route is adjusted, the influence of Vj on Vi

after changing the route should be reconsidered. So repeated
recursion will fall into an infinite loop.

3 Implementation of Risk Assessment
Framework
The calculation process of the risk assessment framework
proposed in this article can be divided into three steps as a
whole, as shown in Figure 2. The framework needs the injection
of the sensing module and the driving track of the vehicle
generated by the decision control algorithm in the future. The
calculation results of the risk assessment can be returned to the
decision control module for correcting or reestablishing the new
driving track. Other safety algorithms can also be triggered when
necessary such as directly starting the collision avoidance system
when the collision probability is high. The whole calculation
process needs to be iterated in real time while driving according to
the changed environments.

3.1 Grid Modeling of Road Environment
The first step of calculation is to realize the perception of the
surrounding environment. In order to facilitate the calculation,
this article uses a two-dimensional coordinate system to realize
the gridding description of the whole environment space. As
shown in Figure 3, Figure 3A is a realistic intersection simulation
diagram, while Figure 3B is a gridded coordinate space. The
origin of the coordinate system can be chosen arbitrarily when
gridding. It only affects the calculation process and does not affect
the calculation result. In Figure 3, the lower left corner is taken as
the origin of coordinates.

3.2 Uncertainty Modeling of Other Vehicles’
Trajectory
The second step is the focus of the whole calculation. It needs
to deal with the three kinds of uncertainties mentioned above.
Let the current time be t and the interval of iterative calculation
be Δt. Then, the evaluation of the risk of collision between the
own vehicle and other vehicles in the next n cycles has to be
done. Let us assume that there are n other cars at the current
intersection and take any other car V as an example to explain
the prediction and calculation process of its driving track in the
intersection.

FIGURE 1 | Example of driving intention uncertainty. (A) Lane has multiple legal driving directions. (B) Driver temporarily changes driving intention.
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The essence of distribution probability lies in quantifying the
uncertainty of driving intentions of various vehicles. This method
holds that the probability distribution of the expected route is
mainly affected by two factors: first, the statistical results of
historical driving records, and second, the vehicle’s trajectory in
the past period of time. As shown in Figure 4, let the vehicle drive
from s to S0 and enter the intersection at S0. When the vehicle is
located at S0, because the driving track from S to S0 is not helpful in
distinguishing and identifying the driving intention of the vehicles,
the probability of the vehicles traveling on various paths can be

quantified more accurately by using historical statistical data.
When the vehicle is located in S1, it can be considered that the
possibility of turning around decreases while the probability of
turning left along P2 and going straight along P3 increases. When
the vehicle is located at S2, it can be considered that the probability
of turning around and going straight continues to decrease and the
probability of turning left along P2 increases. When the vehicle is
located at S3, it can almost be considered that the vehicle will
definitely turn left. When the vehicle finally arrives at S4, it turns
left. After the turn is completed, the driving intention of the vehicle
is determined to turn left, and the uncertainty is completely
eliminated.

K possible driving paths are planned when the vehicle V enters
the intersection. Assuming that a total of N vehicles have passed
from the S0 position in the past period of time, and the number of
vehicles traveling along route I is Ni, the driving probability Pi �
Ni/N can be assigned to route Pi, and when the vehicle travels
along the expected path, the uncertainty of driving intention can
be estimated and quantified by using the driving trajectory in the
past period of time. As shown in Figure 5, the vehicle enters the
intersection from S0, and arrives at S1 after driving for a period of
time, with a driving distance of L. As P2 and F3 completely overlap
in the L part, the process from S0 to S1 can be considered as
follows: the vehicle has traveled a distance of L length along P2,
traveled a distance of L along P3, and a distance of 0 along P1.
Theoretically, the probability of different expected paths of
vehicles can be calculated by using the following formula:

FIGURE 2 | Overall calculation process of risk assessment framework.

FIGURE 3 | Road space gridding at crossroads. (A) Intersection simulation Ddiagram. (B) Intersection grid modeling results.

FIGURE 4 | Example of vehicle driving.
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N � ∑K

i�1Ni, 1 � ∑K

i�1Pi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Paround � 0
L + L + 0

Pleft � L

L + L + 0

Pstraight � L

L + L + 0

(1)

However, the above formula is prone to the extreme case of
zero probability, which is inconsistent with the reality. Because
even if the vehicle is located in S1, there is still a certain
probability of turning around, but this probability is smaller
than turning left and going straight. Therefore, the above
formula is adjusted based on Laplace’s smoothing idea to
avoid the situation that the probability is 0 or 1. The
adjusted formula is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Paround � 0 + 1
L + 1 + L + 1 + 0 + 1

Pleft � L + 1
L + 1 + L + 1 + 0 + 1

Pstraight � L + 1
L + 1 + L + 1 + 0 + 1

(2)

The formula can be extended to the general situation, if the
vehicle has k possible driving intentions at a certain position at
the intersection, and the driving distance under the guidance of
the i-th driving intention in the past period is Li, the driving
probability of the corresponding path under each intention in the
future period is

Pi � Li + 1∑K
i�1L +K

, 1 � ∑K

i�1Pi (3)

The above method can deal with the general case of path
probability allocation, but there are two special cases to be
explained: 1) when a vehicle enters an unplanned location for
some reason, the distance from the previous location to the
current location should be specially treated when calculating;
2) some planned routes may disappear and some new planned
routes may come into being during the driving process of the
vehicles.

As shown in Figure 6, when the vehicle is located at S1, it
should arrive at S2 at the next moment according to the planned
expected route. However, due to some reasons, such as the ego-
vehicle’s inattention or obstacles at S2, the vehicle actually enters
S3 at the next moment. However, the distance from S1 to S3 does
not belong to any path among P1, P2, and P3, so there will be
ambiguity when using the above formula to calculate the
probability. In order to ensure the smoothness of calculation,
this article stipulates that d should be added to all Li in this case,
and the expected path of the vehicle should be replanned at the
next moment.

In the second case shown in Figure 7, when the vehicle is in S0,
three expected paths are planned, namely P1, P2 and P3.When the
vehicle travels to S1, because the direction of the front of the
vehicle changes, the target area corresponding to P1 is no longer
visible (not within the 180-degree visual field), so P1 disappears
from the expected path and P4 becomes the new expected path. At
S0, because the traffic rules stipulate that the inner lane is not
allowed to turn right, there is therefore no driving intention to
plan a right turn; at S1, with the gradual exposure of the ego-
vehicle’s driving intention, it is more and more possible for the
vehicle to turn right, so a right-turn path is added. Since there is

FIGURE 5 | Calculate the expected path probability by using the traveled trajectory. (A) Vehicle initial position SO. (B) Vehicle driving to S1.

FIGURE 6 | Vehicle driving into unplanned location.
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no P4 path in the process from S0 to S1, the right turn probability
cannot be calculated by the above formula. It is stipulated in this
article that the probability of the disappearing path is no longer
calculated, the initial probability of a new route is calculated.

When calculating the expected path probability, it is not
necessary to calculate the entire driving distance of the vehicle
at the intersection. A time window can be set, and only the driving
conditions within the time window can be considered, for
example, only the driving conditions of the vehicle in the past
3 s can be considered.

Driving intention describes the uncertainty of vehicle
trajectory from a macro perspective, while driving process
describes the uncertainty of vehicle trajectory from a micro
perspective. For the gridded intersection, the driving process
of vehicles is equivalent to entering from one grid to another.
Since the vehicle can travel to any feasible position in theory, it is
also possible to enter a cell from any direction. As shown in
Figure 8A, the vehicle may enter s from any direction of d1–d8.
Similarly, as shown in Figure 8B, the vehicle may leave a cell from
any angle. The essence of driving process uncertainty modeling is
to measure the probability of leaving S from S along D1–D8. The

traveling direction of the vehicle is controlled by the steering
angle of the front wheel, and the direction of entering S affects the
steering angle when the vehicle leaves. Therefore, the uncertainty
modeling of driving process should consider both the direction
when the vehicle enters and the direction when the vehicle leaves.

FIGURE 7 | Add and delete expected paths. (A) Vehicle initial position. (B) Replanning path with change of head direction.

FIGURE 8 | Entry and exit of vehicles relative to a certain cell. (A) Enters a
cell in any direction. (B) Leaves a cell in any direction. Definition: L4 = d, with
Pright = L4+1∑K′

i�1Li+K′
.

FIGURE 9 | Possible driving results around the intention of going
straight.

FIGURE 10 | Example of Gaussian distribution of the steering angle
when going straight.
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Uncertainty can be considered as random error based on
driving intention. As shown in Figure 9, the actual trajectory
of straight vehicles is often not an absolute straight line but an
up-and-down disturbance. In this article, Gaussian
distribution is used to describe the uncertainty of driving
process. The sample of distribution is the steering angle of
the vehicle, that is, the deflection angle of the front wheel
during steering. In this article, negative values are used to
indicate left turn, while a positive value indicates a right turn.
For example, −3 means 3° to the left, +3 means 3° to the right,
and 0° means straight without deflection. For Figure 9, the
corresponding steering angle distribution during driving is
shown in Figure 10.

There are two main reasons for describing the uncertainty of
driving process with Gaussian distribution: 1) Gaussian
distribution is a continuous distribution, and the steering
angle which determines driving intention is taken as the
distribution mean value, which can not only show the
characteristics that the steering angle mainly changes around
the mean value during driving but also allow the vehicle to deflect
to any other direction, and the greater the deviation from the
mean value, the smaller the probability. 2) Gaussian distribution
is symmetrical about the mean, and its sampling probability on
both sides of the mean is equal. This shows the randomness of
driving deviation. As shown in Figure 9, the vehicle may shift
above or below the centerline.

When the vehicle has only one expected path direction at the
next moment, the steering angle distribution during driving from
the current position to the next position can be described by
Gaussian distribution, but there is often more than one expected
path direction. This article uses Gaussian mixture distribution to
deal with this situation. As shown in Figure 11A, when the vehicle
is at S1, there are three possible potential paths. Therefore, it is
feasible to enter the next position from S1 in three directions: D2,
D1, and D8. Let the probabilities in all directions be P2, P1, and P8,
and their specific values can be calculated by the method in the
path probability allocation, in the previous section. Firstly, the
steering angle distributions in the D2, D1, and D8 directions are

FIGURE 11 | The vehicle has multiple expected driving directions. (A) Vehicle with multiple expected driving paths. (B) Vehicle with multiple expected driving
directions.

FIGURE 12 | Probability distribution of Gaussian mixture model
corresponding to the steering angle.

FIGURE 13 | Single expected driving direction.
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modeled, and the corresponding deflection angles are, respectively,
μ2, μ1, and μ8. The variance of the corresponding Gaussian
distribution is σ2, σ1, and σ8, so the steering angle Gaussian
mixture model in the next period from S1 is shown as follows,
with its corresponding distribution graph shown in Figure 12:

{P(X) � P2G(μ2, σ2) + P1G(μ1, σ1) + P8G(μ8, σ8)
1 � P2 + P1 + P8

(4)

Although the probability is assigned to each expected path (the
sum of the probabilities of each path is 1), this result cannot be
directly used to measure the probability of vehicles traveling in all
directions. Because under this result, the probability of the vehicle
traveling beyond the expected direction is 0. As shown in the
following figure, theoretically, there is only one expected S2
direction in Figure 13, but in practice, the vehicle may still
drive up to the light blue position. Combined with the
uncertainty of driving process, this article uses the steering
angular distribution function to calculate the driving
probability of vehicles in all directions.

As shown in Figure 14A, when the vehicle is located at S1,
there are three possible paths, namely D2, DI, and D8. However,
due to the uncertainty of the driving process, there is a certain
probability that the vehicle will drive in the D3 and D7 directions.
As shown in Figure 14B, taking the 180-degree visual field in the
front direction as all possible driving directions, the
corresponding angles of D1, D2, D8, D7, and D3 are α, β, and
γ. If the side length of the cell square is 2, then sin α � 1/

��
10

√
, α �

arcsin(1/ ��
10

√ ) The (radian) angle is about 18.4° (−90° to −72°,
72°–90°). According to the cosine formula of a triangle,
β � arccos(a2 + b2 − c2/2ab), then β ≈ 0.93; it is about 53.1°

(−72° to −19°, 19°–72°).
According to α, β, there is γ ≈ 0.66, which is about 38° (−19°,

19°). After calculating the values of α, β, and γ, combined with the
probability density function of Gaussian mixture distribution, the
corresponding probability areas at different angles can be
obtained, which can be used as the probability of the vehicle
traveling in this direction.

According to the above calculation results, the value of β is
larger than α and γ, which is because the direction angles of D2

and D8 are larger than those of D1, D3, and D7 in this scheme. The
values of α, β, and γ can be adjusted according to the actual
situation, or the variance value can be adjusted in the
corresponding Gaussian distribution, to correct the probability
of vehicles traveling in all directions. Generally speaking, the
values of α, β, and γ and the variance of Gaussian components
corresponding to each direction can be set as required or can be
obtained by simulation and statistics according to the real
situation. Let the probabilities of the preset directions D2, D1,
and D8 in Figure 14A be 0.2, 0.5, and 0.3, respectively, in which
the variance of Gaussian distribution in D1, D3, and D7 is 1.5, and
the variance of Gaussian distribution in D2 andD8 is 2. The values
of the corresponding steering distribution and the corresponding
distribution of α, β, and γ are shown in Figure 15. In this

FIGURE 14 | Multiple expected driving directions and distribution angles. (A) Multiple expected driving directions. (B) Corresponding angle of expected driving
direction.

FIGURE 15 | Steering unmixing Gaussian distribution function image.
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example, the probability areas in the D3 and D7 directions
corresponding to angle A are very small, so they are almost
invisible in the figure.

Since the vehicle may enter a certain cell (position) from any
direction, the probability of the vehicle arriving at a certain cell
at time t is the sum of the probabilities of entering the cell in all
directions, which can be used for the evaluation of the later
collision risk. When the vehicle arrives at the t+Δt time
position from the t time position, its probability calculation
includes two steps: 1) based on the direction of the vehicle
entering the current cell at time t, the probability of entering
the next cell from this direction is calculated. In this
calculation, firstly, we were required to establish the steering
distribution based on the driving direction, and then use the
steering distribution to calculate the probability of going to the
next cell and multiplying it with the probability of entering the
cell at t time. 2) Iterative calculation, always entering the
current cell in all directions and driving into the next cell at
t+Δt, and accumulating all the probabilities of reaching a
certain cell at t+Δt to obtain the final probability of entering
the cell at t+Δt.

As shown in Figure 16, if the vehicle could enter s from d4,
d5, and d6 directions at time t and their respective probabilities
be Pd4, Pd5, and Pd6, the final probability of the vehicle reaching
s at the moment of anti-engraving is Ps = Pd4 + Pd5 + Pd6,
which in calculating the position and probability of time t+Δt
is according to the calculation steps introduced above:

1) Firstly, based on the situation that the vehicle enters s based
on d5 direction, the expected driving direction of the vehicle at
t+Δt time is only D1 and the expected deflection angle of the
vehicle when entering s from d5 and leaving along D1 is 0°.
Therefore, the steering distribution of the vehicle in this case is a
single Gaussian distribution with a mean value of 0. Let the
standard deviation of the Gaussian distribution be assumed to be
16 (which can be set according to actual statistical results or
simulation results in specific application), then the steering
distribution of t time entering s along d5 and t+Δt time

leaving s along D1 is shown in Figure 17. Under this
distribution, the probability distribution of vehicles leaving S
along D1, D2, D8, D3, and D7 is the probability area of the steering
distribution at the corresponding angles (the angles
corresponding to each direction have been calculated and
explained in the previous section), which is calculated as Pd1 ≈
0.765, PD2 = PD8 ≈ 0.118, and PD3 = PD7 ≈ 0. Here, the sum of PD1,
PD2, and PD8 is greater than 1 due to rounding, not calculation
error. The value of PD3, PD7 is 0 because of the limited calculation
accuracy. Theoretically, their values are all greater than 0. Based
on the above results, it can be obtained that the probability of the
vehicle entering S from d5 at t time and entering S1 at t+Δt time is
PS1 = Pd5 × Pd1; the calculation of S2, S8, S3, and S7 is entered and
then analogized to Psi = Pdi × PDi.

2) Because it is possible for a vehicle to enter S from d4, d5, and
d6, the probabilities of entering S1 at t+Δt are calculated in these
cases, the probability of the vehicle at S1 at t+Δt is the cumulative
sum of the probabilities in all cases, Pt+Δt

S1
� ∑Pt

(S,di)P
di
Dj, where

Pt+Δt
S1

means the probability of reaching S1 at time t+Δt, Pt
(S,di)

indicates the probability of reaching S along di direction at time t,
which corresponds to Pd5, Pd4, and Pd6 in Figure 16. In the above
example, Pdi

Dj indicates the probability of entering S along the di
direction.

Combining the above two calculation steps, based on the
uncertainty of path planning and driving process, the
probability formula of the vehicle arriving at S at t time is as
follows Pt

S � ∑8
i�1Pt

di. The result can be used to evaluate the risk of
collision at time t and position S. At t+Δt, the probability of the
vehicle arriving at Sj is as formula, PdiDj is the path probability
according to the planned path, the steering distribution of driving
vehicles leaving S at time t is obtained, and then the probability
area of the corresponding direction is obtained by using the
distribution function.

FIGURE 16 | Entering and leaving a cell in multiple directions.

FIGURE 17 | Gaussian distribution of vehicles when D5 enters D1 and
leaves. and leaving along D1 direction, which corresponds to PD1 in the
previous example.
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In theory, vehicles can travel to any position in any direction,
which not only makes trajectory prediction difficult but also
increases the amount of calculation greatly. However, through
analysis, it can be found that most of the calculations are at a very
low level of probability. Therefore, this part of the calculations is
almost meaningless to the final risk assessment and can be
optimized by probability pruning and truncation (to reduce
the calculation amount and improve calculation efficiency). As
shown in Figure 18, dark green is the expected driving direction
of the vehicle, that is, the planned path direction, while the other
directions are unexpected driving paths caused by the uncertainty
of driving process. If the probability of driving from the current
cell to the next cell on the expected path decreases by 0.6 times,
the probability of reaching a specific cell from t1 to t4 becomes 0.6,
0.36, 0.216 and 0.130, respectively. These probability values
correspond to the most likely driving path of the vehicle,

which is very valuable for risk assessment. However, under the
other two paths, the probability value decreases exponentially and
quickly drops to a very low level, such as 0.0001 > 0.00001, etc.,
and the probability value will only be lower after further
calculation. In theory, the probability value of reaching any
position at any time will be very low but not zero, but the
probability value below a certain level is almost meaningless
for practical application. If a collision probability of
0.00000000001 is evaluated, it can be almost considered that
the collision will not occur. In this article, the threshold Rlow is set
as the minimum value of probability pruning truncation. When
Rlow is less than or equal to, the calculation will be cut off to
reduce the amount of calculation. As shown in Figure 18, it can
be set that when the probability of the vehicle arriving at s =
0.0001, the probability of leaving from S and arriving at the new
cell at t5 will no longer be calculated.

FIGURE 18 | Very low probability value of unexpected direction.

FIGURE 19 | Vehicle running in loop.

FIGURE 20 | Pruning and truncation of vehicle running probability. (A) t
time entry diagram. (B) All feasible directions at t1. (C) Feasible direction after
pruning at t1 time. (D) Possible position at t1. (E) All feasible directions at t2. (F)
Feasible directions after pruning at t2.
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Probability truncation can not only reduce the amount of
calculation but also avoid many meaningless calculations. As
shown in Figure 19, the expected path of the vehicle is marked by
dark green, but it is possible for the vehicle to enter the upper
right cell at t2 under the driving process uncertainty. Then, under
the influence of driving process uncertainty, the vehicle may form
a circle along the diamond; as shown in the figure, the gray arrow
indicates the direction. This situation can continue indefinitely
with the expansion of the time window, but under normal
circumstances, almost no driver will drive the vehicle around
the intersection.

A direct manifestation of probability truncation is that the
sum of probabilities of vehicles arriving at all positions at time t is
less than 1 (without considering the loss of calculation accuracy
and rounding), and the value of probability sum will gradually
decrease with time. As shown in Figures 20A–C, the vehicle
enters S at time t along the straight direction, theoretically departs
from S, and reaches Si, S2, S3, S8, and S7 at t1. Let the probability be
P1–P8. If only SL, S2, and S8 are left to reach after probabilistic
pruning, then the sum of probabilities of vehicles arriving at each
feasible position at t1 is the sum of P1, P2, and P8, which is
obviously less than the sum of P1–P8 and less than 1, which is the
probability loss caused by pruning and truncation. Furthermore,
the theoretically accessible positions at t2 and S1, S2, and S8 are
shown in Figure 20E. After pruning, only the cells as shown in
Figure 20F are left. The probability values of all accessible
positions of the vehicle at t2 are also determined by P1′–P8′.
The sum becomes P1′, P2′, and P9′. In addition, there is a
probability loss. The loss of probability can be understood as
the cost of precision due to reducing the amount of calculation.

The uncertainty of driving intention and driving process
mainly aims at the uncertainty of vehicle interior and driver,
while the uncertainty of trajectory invasion focuses on the impact
of real-time change of the external environment on vehicle
trajectory. When obstacles (possibly, motor vehicles, bicycles,
motorcycles, pedestrians, suddenly dropped goods, etc.) intrude

into the expected driving position of the vehicle, the vehicle will
be forced to respond, such as make detours and stops, all of which
will change the vehicle’s trajectory and thus change the time,
location, and probability of collision with the vehicle.

In this article, we define trajectory intrusion from two aspects
of time and space. In time, it includes the current time or future
time in the time window. In space, it refers to the position where
the current or future time of the obstacle overlaps with the
possible entry position of other vehicles. As shown in Figure
21, if the other vehicle is located at s at the current moment, it
may drive along D1, D2, D3, D4, and D5 directions. The barrier is
located at S4, and it could be heading for S3 at the next moment.
When other vehicles drive into S4 from S along the direction of D4

because the position of obstacles at the current moment overlaps
with the possible driving position of other vehicles at the next
moment, the track of the other vehicles at S4 is invaded at the next
moment. When other vehicles enter S3 from S along the direction
of D3, it is possible to drive into S3 at the next moment due to
obstacles. Therefore, the track of its car in S3 is also invaded at the
next moment. In short, if the obstacle is located at A at the
moment, and if other vehicles drive to A at the next moment, then
A is considered as a trajectory intrusion; if the obstacle and other
vehicles are likely to drive to point B at the next moment, then
point B is also a trajectory intrusion. In some special cases, such as
different rights of way classes between vehicles, it can be
considered that the tracks of vehicles with a higher right of
way will not be invaded because they enjoy the right of way.
At this time, only the tracks of vehicles with a lower right of way
are invaded.

When encountering the track invasion, the actions taken by
the vehicle is to stop and wait, that is, the vehicle stays still at the
current position until the obstacles leave and then resumes
driving, or detour, that is, the vehicle does not stop but travels
in a nonintrusive direction to bypass the obstacle. Trajectory
intrusion changes the route of vehicles, and the route and its
probability are determined by path planning and steering
distribution. Therefore, the trajectory intrusion will change the
original steering distribution of the vehicle and the probability of
driving along each direction. When a vehicle enters the next cell
with a probability greater than the cutoff probability, it may be
necessary to delete or add new paths and reallocate the
probability of each path. So, trajectory intrusion uncertainty
modeling should be combined with path planning and steering
distribution to quantify different situations.

Here, the probability of obstacles reaching the intrusion
position is taken as the rejection rate, and the steering
distribution is regenerated by the rejection sample. As shown
in Figure 22A, at time t, other vehicles are located at S, obstacles
are located at S4, and obstacles may be located at S3 at the next
time. S4 and S3 are both the positions where the tracks of other
vehicles are invaded at the next moment. Let it have three
expected driving directions, say D2, D3, and D4 and the
distribution probabilities of the three expected paths are PD4 =
0.3, PD3 = 0.5, and PD2 = 0.5, respectively, and their steering
distribution is shown in Figure 22B. It can be seen that the
probability areas in the D3 and D4 directions are large and the
driving process in the D4 direction is uncertain, so the Gaussian

FIGURE 21 | Example of trajectory intrusion.
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distribution variance in the steering D4 area is large, and it is
“stout” on the graph. D5 and D1 are not preset directions,
therefore, the corresponding probability area is small, and the
eye flesh is almost invisible.

Let the probabilities of obstacles reaching S4 and S3 at time t be
P01 = 0.7 and P02 = 0.6, respectively, and P01 and P02 are D4,
sampling steering with rejection rate in the D3 direction, and
relearning steering distribution with sampled samples as shown
in Figure 23. In the figure, the red dotted line indicates the
steering distribution before rejecting sampling, and the blue solid
line indicates the new steering distribution learned after rejecting

sampling. It can be seen from the figure that the probability areas
in the D4 and D3 directions decrease to a certain extent, while the
probability areas in the D2 direction increase greatly. The
probability areas in D1 and D5 directions increase slightly.

Although the new steering distribution can be obtained by taking
the probability of obstacles reaching a certain position as the
rejection rate, the simulation test shows that the discrimination
between many new distributions and the old distributions is not
obvious enough. As shown in Figure 24, let the arrival probabilities
of obstacles in Figure 24A be P01 = 0.3 and P02 = 0.2, and the
distribution probabilities of vehicles along the planned paths D4, D3,
and D2 before sampling rejection be PD4 = 0.3, PD3 = 0.5, and PD2 =
0.2. With P01 and P02 as rejection rates, the obtained steering
distribution after sampling is shown in Figure 24B, and the
curve difference between before-sampling and after-sampling is
not obvious. Especially, along the D3 direction, the probability of
the vehicles entering is hardly affected by obstacles, but in fact, P01 =
0.3 and P02 = 0.2 are already relatively high probability values. This
shows that it is not enough to show the influence of obstacles on the
driving track by directly using the probability of arrival of obstacles
as the rejection rate. In this article, it is considered that squeeze
operation can be performed according to a certain mapping rule Poi,
to realize the influence of obstacles on the vehicle trajectory.

The squeeze mode can be flexibly selected according to the
situation. For example, the analytic equation of a circle can be the
squeezed function, and the value curve of Poi can be extruded into
the circular arc shape. As shown in Figure 25A, the red straight
line is the original Poi, according to the equation of circle, (x − 1)2

+ y2 = 1 y = √(1 − (x − 1)2). The rejection rate after Squeeze is
shown as the blue curve. Figure 25B shows the steering
distribution generated by the rejection rate sampling after
squeeze, which shows that the distribution difference is more
obvious. Except for the equation of the circle, other functions that
map Poi to the range of 0–1 can be used as squeeze functions, such

FIGURE 22 |Obstacle intrusion and original steering distribution of vehicles. (A) Expected driving direction of vehicles and position of obstacle intrusion. (B)Original
steering distribution of vehicles.

FIGURE 23 | Newly generated steering distribution after rejecting
sampling.
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as deformed log function, logistic function, sigmoid function, etc.,
and the rejection rate is amplified in different ways by different
functions. To influence the new steering distribution.

It is also a common in driving to choose to stop when facing
obstacles, so it is necessary to allocate probabilities between stopping
and detouring. Let Δt be the time of iterative calculation of risk
assessment, Pwait, Pbypass, then there is 1 = Pwait + Pbypass, indicating
that it is possible for other vehicles to stop moving in the next time.
In reality, the probability of stopping is related to the distribution of
obstacles. If the possibility of obstacles invading the track is high or
more positions in the track are invaded by obstacles, the possibility
of stopping and so on will increase accordingly. As shown in
Supplementary Figure S1, there are five possible driving
directions within the visual field of other vehicles 180, and the

probability of each direction can be obtained from the steering
distribution before it refuses to sample, which is set as PD1–PD5. In
extreme cases, these five directions may be invaded by obstacles. Let
the invasion probability be P01–P05. If the values of P01–P05 are all 1,
it is determined that the vehicle will be surrounded by obstacles at
the next moment, then the probability of the vehicle stopping at this
time is 1 to ensure driving safety. If the values of P01–P05 are all 0, it is
determined that no obstacle will invade the trajectory of the other
vehicles at the next moment. Then, the probability of the vehicle
stopping should be 0, which accords with the driving habits of
people. Because PD1–PD5 are calculated from the same steering
distribution, there are 1 � ∑5

i�1PDi. However, P01–P05 may be
invaded by five different obstacles, so there are 5 � max∑5

i�1Poi

because there must be 0 ≤ Pwait ≤ 1, where Pwait can be calculated

FIGURE 24 | There is no obvious difference in the distribution of new and old steering. (A) Expected driving direction of vehicles and position of obstacle intrusion.
(B) New and old steering distribution.

FIGURE 25 | Squeeze the arrival rate of obstacles to get the rejection rate. (A) Squeeze the equation of a circle (B) Squeeze the steering distribution.
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from the weighted sum of P01–P05, and the calculation formula is
Pwait � ∑5

i�1PDiPoi, corresponding to Pbypass = 1 − Pwait.
The overall flow chart of calculation framework is shown as

Supplementary Figure S2.

4 CALCULATION AND SIMULATION
RESULTS

In this section, the calculation and simulation process are
illustrated in the form of images. The simulation and
verification are done using MATLAB and evaluated and verified
using PreScan + CarSim. The calculation results show that the
uncertain trajectory of interactive vehicles at intersections can be
better predicted and analyzed, and the collision avoidance decision
of unmanned vehicles can be better realized.

As shown in Supplementary Figure S2A, let us assume that
there are three vehicles under the intersection at time t, namely,
ego-vehicle and other vehicles v1 and v2; let us assume that there
are general social vehicles with the same right-of-way level.
Supplementary Figure S3B combines the sensing information
of the sensing module. The driving intention uncertainty modeling
method is used to plan the possible driving routes of other vehicles.
Assume that the planning result is that the auto-driving vehicle vL
has three possible paths, which correspond to turning around,
turning left, and going straight, as shown in the green cell of
Supplementary Figure S3B; V2 has a possible path (to simplify the
explanation process, assume only one path), and the corresponding
straight path is shown in the purple cell of Supplementary Figure
S3B. Combined with the vehicle regulation and control module,
the driving track of the vehicle in the future is obtained as shown in
the blue cell in Supplementary Figure S3B.

Enlarge the red circle in Supplementary Figure S3B as shown.
Before vl reaches S, the three paths coincide, so the vehicle has only
one expected heading direction. From time t to time t1, the possible
driving direction of vl is shown in Supplementary Figure S4A, in
which orange indicates the expected driving direction and blue
indicates the unexpected but feasible direction. At this time, the
steering distribution of vl is a single Gaussian distribution. Let the
variance of the Gaussian distribution be 12 when vl goes straight,
and its steering distribution is shown in Supplementary Figure
S4B. According to the previous introduction, if the steering angle is
greater than 0, it means turning right, less than 0 means turning
left, and equal to 0 means going straight, including α3~(90°, −72°),
α2~(72°, −19°), α1~(19°, 19°), and P1 = 0.887, P2 = 0.057, P8 = 0.057
by using the distribution probability area. the probability of taking
values of P3 and P7 is extremely small. Below 10–9, pruning and
truncation according to probability can be ignored. Therefore, the
possible position and probability of tl time vl are shown in
Supplementary Figure S4C, and the dark shaded area is the
unreachable area after probability pruning.

Since V1 may enter the unexpected paths as S2 and S8, it is
necessary to replan the trajectory of V1 synchronously. At the end of
t1, the three possible positons of V1 should be calculated at t2.
Supplementary Figures S6A–C show the possible driving directions
of vl at t2 when it is located in three positions. Pay attention to the red
S position, which may enter from three different directions by vl.

They are from S2 to the right, S8 to the left, and S1 straight. At this
time, the probability of vl finally entering S at t2 should be calculated
according to the probability accumulation introduced above. The
steering distribution at S2, S8, and S1 is as shown in Supplementary
Figure S6B, which shows that the probability of entering s from S2 is
p = 0.057 × 0.057˜0.0032. The first 0.057 is the probability of arriving
at S2 at t1, and the second 0.057 is the probability of arriving at s from
S2 at t2. Similarly, the probability of entering S from S8 is 0.0032. The
probability of entering S from S1 is p = 0.887 × 0.887˜0.787. Here, if
the truncation probability is 0.01, then 0.0032 is discarded directly
because the value is too small, so the probability of reaching s is
about 0.787.

From amacro point of view, after considering the uncertainty of
driving process based on driving intention uncertainty, some new
vl possible positions are added, as shown in bright green in
Supplementary Figure S7. The turning direction and right
turning direction plan out a new driving path, and in the
straight direction is finally unified to the original path. This
describes that there are random left and right offsets in the
straight line, but under the intention of going straight, the ego-
vehicle quickly corrects the offset and returns to go the straight line.

Suppose VL is located at s at a certain time, and there are no
obstacles in all directions of travel at the next moment. The steering
distribution at s is shown in Supplementary Figure S8. There are
three expected driving directions, namely, the probability in D2

direction is P2, the probability along D1 direction is P2, and the
probability of driving along D8 direction is P8. And we know the
expectation of the Gaussian component in the straight direction
is μ1 = 0°, α2, α8 direction is μ2 = −45°, μ8 = −45°. There are P2 =
0.3, P1 = 0.5, and P8 = 0.2. At this time, the steering distribution
Gaussian mixture model corresponding to VL is shown in
Supplementary Figure S8B, and it is assumed that the
random offset of the vehicle going straight is small, and the
variance of the D1 direction component is σ1 = 6. The random
deviation of D2 driving in the turning direction is slightly larger,
σ2 = 8. The shift of d8 in the right turn direction is larger than
that in D8, σ3 = 10. In this case, PD2 = 0.300, PD1 = 0.500, PD8 =
0.198, and the probability of the other directions is lower than
the truncation probability and ignored.

Finally, the driving situation of VL when encountering
obstacles is considered. As shown in Supplementary Figure
S9, the vehicle is located at s at time t, and it is possible for
the vehicle to go to S2 at time t1, and it is possible for vehicles with
obstacles to go to S2 at time t1. At this time, the possible trajectory
evolution of VL is shown in Supplementary Figure S10.

5 CONCLUSION

Crossroads are one of the most complex and difficult driving
scenarios for autonomous driving. This article proposes a
collision risk assessment framework for unmanned vehicles based
on the prediction of other vehicles’ driving trajectories with driving
uncertainty. The framework is used to calculate the collision risk,
collision position, and time between the vehicle and other vehicles in
real time under the complex traffic environment of intersections,
and the results can give more safe decision to optimize the driving
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trajectory of the vehicle. The results can also trigger other safety
algorithms of the vehicle in case of emergency such as collision
avoidance.

Through analysis, this method highlights that vehicle collision
risk assessment lies in the prediction of other vehicles’ driving track,
which is mainly affected by road geometry, driver’s driving
intention, driver’s operation, and vehicle control system’s ability
and traffic environments. Among them, there are large uncertainties,
except the geometric features of roads, which are the difficulty of
unmanned vehicles. In this article, the characteristics of three kinds
of uncertainties and their relationship with other vehicles’ driving
tracks are analyzed in depth. Different modeling methods are
proposed for each kind of uncertainty which is quantitatively
described by probability. Finally, the calculation process of the
three kinds of uncertainties is unified so as to obtain the time-
related collision risk assessment framework of unmanned vehicles.
The risk assessment framework can provide safer trajectory planning
and collision avoidance input constraints for unmanned vehicles.
Thereby, this will be improving the overall safety of unmanned
vehicles greatly.
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E-Commerce Logistics System Based
on Discrete Dynamic Modeling
Analysis
Gaofei Meng*

Hebei Chemical and Pharmaceutical College, Shijiazhuang, China

The development of green logistics in a low-carbon environment is an important way for
logistics companies to reduce operating costs, and it is also a strategic measure to
strengthen the construction of ecological civilization. This study improves the bat algorithm
for single-delivery express delivery and multi-delivery, determines the optimal target and
seeks the optimal solution, establishes the optimal logistics distribution scheme combined
with corporate profits, and finally, compares it with other algorithms to verify the feasibility
of the model. In the same experimental environment, it is proven that the performance of
the built model is about 20% higher than that of other methods, and the planned path is the
most reasonable. In the future application of e-commerce logistics system, it is a more
efficient, reasonable, and perfect discrete logistics model.

Keywords: low-carbon environment, energy conservation and emission reduction, e-commerce, logistics system,
discrete dynamic modeling, bat algorithm

INTRODUCTION

Under the influence of “Internet thinking,”many industries have begun to establish connections with
the Internet (Yong et al., 2019), of which the retail industry has the highest proportion of online sales.
According to the statistics of the China Internet Network Information Center (CNNIC), by June
2019, the total number of online shopping users in China was 639 million, accounting for 74.82% in
China, an increase of 2,870 compared with 2018 (Hafiz et al., 2020). Among them, the total number
of mobile online shopping users was 622 million, accounting for 78.93% of China’s mobile Internet
users, an increase of 29.88 million from the end of 2018 (Wang et al., 2020). A large number of online
purchases have generated a large number of express orders. According to the development data of
China’s express delivery industry during the “13th Five-Year Plan,” the total order volume of China’s
express delivery industry will reach 70 billion person-times in 2020, and the per capita express
delivery volume will rapidly increase from 0.01 person-time in 2,000 to about 50 person-time in 2020
(Asokan et al., 2020). In recent years, the profits of China’s traditional manufacturing and offline
retail industries have been greatly compressed by market competition. The first profit source theory
expands profits by reducing labor costs and raw material costs that have achieved maximum profit
growth, and the second profit source theory gradually narrows the gap between firms by increasing
workers’ labor productivity (Suganthi and Malathi, 2017).

Literature (Dantzig and Ramser, 2021) shows that online e-commerce reduces a large number of
offline site, labor, maintenance and other costs, and is more competitive than offline site. Therefore,
many enterprises choose to develop online business in order to reduce costs and obtain more profits.
Among them, effective logistics services can ensure user experience while reducing costs. Therefore,
driven by online business, logistics has gradually become closely related to people’s lives. People can
shop online through logistics and exchange goods through logistics. To a certain extent, the
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development of the logistics industry can reflect a country’s
modern technological level and economic globalization. The
work of Chen et al. (2019) analyzes that the development
speed of China’s e-commerce logistics system has accelerated
sharply in recent years. With the advent of the 5G era, major
upstream companies have proposed the concept of “metaverse,”
which has stimulated the development of online e-commerce, and
put forward views on the huge potential of China’s logistics and
express delivery industry in the future (Stodola, 2018). The work
of Atefi et al. (2018) proposes that the logistics operation cost will
not only affect the profits of e-commerce enterprises but also
directly affect the user’s purchasing experience, and then
fundamentally affect the development of affiliated enterprises.
Zhang and Chai (2010) pointed out that the market has gradually
higher requirements for express delivery, and the transformation
of the logistics system to fast, accurate, and low-cost distribution
is an important issue that express delivery practitioners continue
to solve.

Since most of the aforementioned studies are theoretical
studies and no practical solutions have been proposed, this
study, based on the development status of e-commerce
logistics systems and combined with previous research results,
aims at the unreasonable distribution routes and backward
logistics and transportation system equipment in my country’s
e-commerce logistics systems. The lack of physical infrastructure
construction and other issues, usingmathematical models and big
data computing methods conducted in-depth research. By
establishing a fast logistics transportation scheduling model
based on the discrete dynamic algorithm and optimizing it,
the logistics system scheduling problem is optimized, and
through simulation verification, the performance of the
constructed e-commerce logistics system based on discrete
dynamic modeling analysis is better than other methods, the
planned path is the most reasonable, and the distribution route
uses less resources.

RELATED RESEARCH

According to the relevant survey data in the past two years, the
damage or loss of express packages has the greatest impact on
users’ logistics experience. Almost all respondents said that these
are intolerable express problems. In addition, for some users who
value the timeliness of distribution (accounting for about 90% of
e-commerce logistics express users), the problem of untimely
distribution is also one of the important problems affecting the
experience (Cai et al., 2014). Therefore, the direction of enterprise
express transformation is to ensure that the express can reach
users safely under the condition of timeliness and control the
corresponding cost to maximize profits. Through the unremitting
efforts of relevant scientific researchers, at present, it is mainly
through rational planning of express logistics and transportation
scheduling scheme as an important way of transformation in this
direction (Fachini and Armentano, 2020).

Express logistics transportation scheduling is mainly
composed of path planning and vehicle scheduling. Therefore,
researchers generally attribute the express logistics transportation

scheduling problem to vehicle-routing problem (VRP) or vehicle-
scheduling problem (VSP). In 1959, Dantzig and others proposed
the vehicle-routing problem for the first time. Among them, the
travel agency problem has attracted extensive attention of
scholars, which is known as the most classic vehicle-routing
problem. Subsequently, Christophe et al. proposed a tabu
search algorithm to solve the vehicle path planning problem
with Backhaul and time window. Petr et al. improved the ant
colony algorithm for multi-site vehicle-routing problem and got a
good application. Inspired by the genetic algorithm, atefi et al.
applied an iterative local search algorithm to the tabu search
algorithm, and proposed an improved genetic algorithm to solve
vehicle-routing problem with a time window (Zheng et al., 2020).
Li Yang and others put forward a two-stage mixed variable
neighborhood search algorithm, which mainly solved the
random demand vehicle routing problem based on the idea of
optimizing and scheduling first, and proved the validity of the
algorithm (Zhang et al., 2019) in the experimental simulation. On
the whole, through the strategy of reducing the cost of labor and
vehicles, scholars at home and abroad have paid high attention to
the field of vehicle routing and planning (Bayzid and Warnow,
2018).

MATERIALS AND METHODS

Research on Discrete Bat Algorithm for
Single Distribution Express Logistics
Transportation Scheduling Problem
The single-delivery express logistics transportation scheduling
problem is the most simplified case in the express logistics
transportation scheduling problem. Under the premise that the
number of warehouses is unique, the courier completes the
distribution task of the corresponding user through the
shortest distance, and finally returns to the path planning
problem of Knight cargo hold (Wang, 2016). On the whole,
the single-delivery express logistics transportation scheduling
problem is basically similar to the classical traveling salesman
problem. As for the traveling salesman problem, in the express
logistics transportation scheduling problem, it has been studied
for a long time and in great depth. The overall solution algorithms
roughly fall into the following two categories: one is to design an
optimized local heuristic search algorithm based on the
characteristics of the traveling salesman problem. The other is
the heuristic intelligent algorithm designed according to the
penalty of the problem-type. The advantage of the local
heuristic algorithm is that it can quickly solve the traveling
salesman problem with a large number of cities. However,
because its starting point is the characteristics of traveling
salesman problem, its algorithm design accounts for a large
proportion in solving the problem (Fan, 2019). Therefore, it
has few applicable problem types, and it is easy to fall into
local optimization in the calculation process, so it is unable to
find the optimal value of the overall problem, Representative
algorithms include 2-OPT and 3-OPT. Heuristic intelligent
algorithms are more combined with big data technology and
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corresponding computing thinking of other disciplines, such as
fireworks algorithm, genetic algorithm, immune algorithm,
particle swarm optimization algorithm, and ant colony
algorithm (Pan, 2018). These algorithms play an important
role in heuristic intelligent algorithms and solving traveling
salesman problems. For example, others solved the classical
traveling salesman problem by improving the clustering and
group algorithm, which effectively solved the hierarchical and
progressive system scheduling of the product line assembly
process based on division of labor and cooperation (Jin, 2017).
The operation flow of complex mutation operator number
evolution was effectively optimized by solving the classical
suitcase problem combined with the multi-chromosome
genetic algorithm (Guo and Lv, 2015). It has been found that
the fireworks algorithm has better convergence and stability
(Chen, 2019). Therefore, according to the characteristics of the
fireworks algorithm, the chaotic strategy in the classical traveling
salesman problem is optimized to solve the classical traveling
salesman problem. However, to sum up, there is still little
research and application of the bat algorithm in solving
classical traveling salesman problem. Therefore, based on the
bat algorithm, this article puts forward the optimization method
of single distribution express logistics transportation scheduling
problem, and carries out discrete dynamic modeling and analysis
combined with e-commerce logistics system in the era of big data
(Li et al., 2021a; Li et al., 2021b; Le et al., 2021; Toyoda and Wu,
2021; Wu et al., 2021; Zhang et al., 2022).

The bat algorithm (He et al., 2020; Li et al., 2021c; Eligüzel
et al., 2022) is mainly abstractly expressed according to bat
echolocation. Its specific principle is to map bat individuals
into points in space, the process of finding the optimal solution
by the algorithm, and simulate the process of bat searching
prey. The optimal solution simulated by the final function is
the optimal solution of the bat position. At the same time, the
survival of the fittest of the bat population represents the
situation of different solution replacement effects. It is our
default that the bats that are more suitable for the environment
will win, and the casual clothes that are not suitable for
mitigation will be eliminated. This process is the feasible
solution behavior with poor replacement effect of the
central solution of the bionic principle. Based on the
aforementioned principles, we make three basic
assumptions for the idealized bat algorithm: first, it is
assumed that all bats recognize the direction and position
using echolocation, and the distance from obstacles or food to
themselves. The feedback signals of obstacles and food through
echolocation are different, and bats can perceive this
difference. Second, in the process of flying at a fixed speed,
bats can emit wavelengths of fixed frequency and certain
loudness for the search and pursuit of prey, and their pulse
emission frequency is always maintained between zero and
one. Third, the maximum and minimum loudness of sound
waves emitted by bats is fixed. According to the earlier
mentioned assumptions, when a bat searches for a target
normally, its position and speed are calculated as follows:

Fi � Fmin + (Fmax − Fmin)β, (1)

Vi+1
i � Vt

i + (Xt
i −Xp)Fi, (2)

Xi+1
i � Xt

i + Vi+1
i . (3)

Here, Fi is the sound frequency emitted by the ith bat, Fmax is
the maximum value of the sound wave, and Fmin is the minimum
value of the sound wave. β is a uniform random number, ranging
from zero to one. Vt

i and Vi+1
i represent the velocity of the ith bat

at t time and T + 1 time, respectively.Xt
i represents the position of

the ith bat at time t, and Xi+1
i represents the specific position of

the ith bat at time t + 1.
Finding a target is the first step to the success of bat hunting.

Therefore, when bats find a target in biology, it means that it is
close to the global optimal solution in mathematical formula. So
usually we have found that the target is the node. At this time, we
adopt the local search strategy to solve the optimal value on the
optimal bat individual. At this time, the location update formula
of local search is

Xnew � Xold + εAt. (4)
At this time, the formula of loudness and frequency of sound

waves emitted by bats is updated as follows:

At+1
t � αAt

i , (5)
rti � r0i [1 − exp(−γt)]. (6)

The single distribution logistics transportation scheduling
model is essentially similar to the bat algorithm, which can be
described as the bat finding the target location and evaluating
the optimal solution in the local area algorithm. The former
problem can be described as knowing the location of N
recipients and targets, requiring couriers and bats to start
from any point, continuously reach or pass through (n-1)
pickup points, and finally return to the starting point, with the
shortest total route distance. This problem is brought into the
bat model to obtain the mathematical model of single
distribution express logistics transportation, scheduling
problem as follows:

MinD � ∑N−1

i�1
(d(Si, Si+1)) + d(SN, S1), (7)

where d(Si, Sj) represents the distance between the ith
receiving point and the jth receiving point, and the values
of i and j range from zero to n. The coordinate position of
receiving point I can be expressed as (Xi, Yi) and the
coordinate position of receiving point J can be expressed as
(Xj, Yj). When the coordinate positions of receiving points Si
and Sj are known, the distance formula between receiving
point I and receiving point J is

d(Si, Sj) �
																				(Xi −Xj)2 + (Yi − Yj)2

√
. (8)

According to the common sense, the distance from receiving
point I to receiving point J is equal to the distance from receiving
point J to receiving point I, so there are:

d(Si, Sj) � d(Sj, Si). (9)
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Discrete Bat Algorithm for the Rapid
Logistics Transportation Scheduling
Problem
The previously mentioned discusses the distribution scheduling
of a distribution station with only one distributor and one
distribution vehicle. However, in fact, multiple distributors in
the same distribution center can mobilize multiple distribution
vehicles to carry out the distribution tasks of multiple stations at
the same time. Considering this situation, the single distribution
logistics transportation scheduling problem model cannot solve.

Tion-scheduling problem is established based on the sub
scenario. The ultimate purpose of this situation is to meet the
needs of the receiving point and relevant requirements, and all
distribution vehicles have the shortest driving path. At this time,
all distribution points are called set V � {0, 1, 2,/, N}, where
zero represents the distribution center and the other points
represent the distribution points. Call the collection of all
delivery vehicles K � {0, 1, 2,/,M}, and record the delivery
package at the receiving point di(i � 1, 2, 3,/, N). The
maximum load of each distribution vehicle is Q. The distance
from receiving point I to receiving point J is recorded as cij. In
order to ensure the accuracy of the results, this experiment
verifies the solution ability of the optimized algorithm through
three computational forces. Among them, C1 case is a single car
express logistics transportation scheduling problem with 15
pickup points. C2 case is a single car express logistics
transportation scheduling problem with 30 pickup points. C3
case is a single-vehicle logistics transportation scheduling
problem with 50 pickup points. Then, there are

yis � { 1,Vehicle s
0, other

, (10)

xijs � { 1,Travel from s to j
0, other

. (11)

Thus, the mathematical model of single-vehicle express
logistics transportation scheduling problem can be obtained as
follows:

Zmin � ∑N
i�1
∑N
j�1
∑M
s�1
cijxijs, (12)

∑N
i�0
diyis ≤Q, (13)

∑M
s�0
yis � { 1, i � 1, 2,/N

M, i � 0
, (14)

∑N
i�0
xijs�yis, j � 1, 2,/N; s � 1, 2,/,M, (15)

∑N
j�0
xijs�yis, i � 1, 2,/N; s � 1, 2,/,M, (16)

where Zmin represents the minimum length of single-vehicle
express logistics transportation general scheduling route, and
Eq. 12 represents the minimization of single-vehicle express
logistics transportation general scheduling route. Eq. 13

indicates that the weight of the package at all distribution
points in charge of each distribution vehicle does not exceed
the maximum load value Q of the distribution vehicle. Eqs. 14–16
represents that all tasks of the distribution center are jointly
completed by m-quantity distribution vehicles, and it is necessary
to ensure that the package distribution at each receiving point is
completed by only one distribution vehicle. The aforementioned
formula simulates the most common scenario of the logistics
distribution center, and perfectly fits the process of formulating
the scheduling scheme of the logistics distribution center through
the common sense constraints (Eq. 13) and the theoretical
constraints (Eqs. 14–16) considering the basic principle of
maximizing enterprise profits. Therefore, the optimal solution
in line with the aforementioned formula should also be the best
scheduling scheme in practical problems.

DISCRETE DYNAMICMODEL SIMULATION
VERIFICATION

Simulation Preparation
In the past two years, the price war between express enterprises
has become more and more intense, which also means that the
development of the traditional profit theory by reducing labor
cost and raw material cost is gradually narrow. More and more
enterprises transfer the cost compression path to logistics
transportation. According to the data of China Federation of
Logistics and Purchasing, in 2018, the total consumption cost of
Chinese citizens in the logistics industry reached 13.3 trillion
yuan, accounting for 14.7% of the gross national product of that
year, an increase of 9.8% compared with the total social logistics
cost of 1.21 trillion yuan in 2018. In addition, the proportion of
China’s total logistics expenses in the gross national product in
2018 has decreased by three percentage points compared with six
years ago, and its trend has shown a downward trend. However,
the decline is slow, and the proportion is still three times higher
than that in the United States. Figure 6 shows the volume of
express business in China from 2010 to 2019. It can be seen that in
2019, the volume of express business in China has reached
63,520,000,000, representing an increase of twenty-five point
three percent compared with 50,710,000,000 in 2018. The total
amount of express business was 749.7 billion yuan, a year-on-year
increase of 24.4%.

Previously, chaotic sequences were used to adjust heuristic
optimization algorithms, such as genetic algorithm parameters,
particle swarm optimization algorithms, harmony search, ant and
bee swarm optimization, imperialist competitive algorithms, Firefly
algorithm, simulated annealing. Such a combination of chaos and
hyperheuristics has been shown. Some promise the correct use of a
set of chaotic maps. It is not clear why an algorithm chaos replaces
something. The use of parameters may change performance;
however, empirical studies do show that chaos also has a high
level of mixing. Therefore, it is to be expected that when a fixed
parameter of the chaotic map is replaced, the resulting solution is
possible. There will be high mobility and diversity. For this reason, it
may have to be studied more by introduction chaos to other useful,
especially new, heuristic algorithms.
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Algorithm Performance Comparison
According to the aforementioned information, the optimized
discrete dynamic algorithm is compared with the previous
algorithm, and the results are shown in Figure 1.

As can be seen from Figure 2, the results of the discrete bat
algorithm (DBA) in solving the logistics system scheduling
problem with small data scale are due to genetic algorithm
(GA) and particle swarm optimization (PSO) algorithm.
However, with the gradual increase of solving data scale, its
convergence decreases, and it is often unable to receive the
same better value, which is more of the local optimal solution.
The algorithm that adds the discrete dynamic algorithm to the
previous algorithm and then carries out modeling analysis
performs best in the process of solving the optimal solution,

and it has a high improvement in the solution of the optimal value
and the average value. It shows that adding the discrete dynamic
algorithm to the original bat algorithm can effectively improve its
convergence and global search ability. The specific path diagram
is shown in Figure 3, it can be seen that as the number of abscissas
increases, the solution process of the multi-model is more stable.

In order to ensure the accuracy of the solution ability of the
optimized algorithm Vnqba, we use the optimized QBA
algorithm and the optimized Vnqba algorithm for
experimental comparison. The default initial bat population G
is equal to 20; loudness attenuation coefficient of sound waves
emitted by bats α is equal to 0.9, acoustic emission frequency
enhancement coefficient γ equal to 0.9; the maximum number of
iterations of bat population is 300. In order to control a single
variable, the calculation CPU used in this experiment is Intel Core
i5-3230 2.6GHz, the operating system is windows 10, the fixed
running memory is 4GB, and the calculation software is
MALTLAB 2014a. The results show that the optimized
algorithm has the optimal solution of average timeout time in
both BS and as situations, and FV is the fitness value of the

FIGURE 1 | Statistics of China’s express business volume from 2010 to
2019.

FIGURE 2 | Algorithm performance comparison experiments.

FIGURE 3 | CDBA solution for Oliver30.

FIGURE 4 | Optimal route of C1~C3
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optimal solution in both situations. In order to ensure the validity
of the data, we take the measured values of 20 times in each group
to calculate the average value. It can be concluded that both the
Vnqba algorithm and QBA algorithm can obtain the optimal
feasible solution under the load capacity of distribution vehicles
not exceeding C1, C2, and C3. The optimized Vnqba algorithm
based on the discrete dynamic analysis algorithm has obvious
advantages in solving the large-scale single-vehicle express
logistics transportation scheduling problem. The optimal
solution obtained by the local search algorithm is obviously
less than the QBA algorithm, which means that the path is the
smallest when the Vnqba algorithm is used for logistics system
transportation scheduling, and the quantum bat algorithm
(QBA) will lead to distribution timeout when the data scale
increases greatly. It can be concluded that the addition of
discrete dynamic modeling analysis significantly improves the
solvency of the bat algorithm. The optimal routes of C1, C2, and
C3 are shown in Figure 4.

Result Discussion
Based on the aforementioned e-commerce industry needs,
e-commerce logistics enterprises began to seek more efficient,
fast, and low-cost logistics transportation operation methods on
the premise of ensuring user service experience. First, this study
decomposes the operation problem of e-commerce logistics system
into a single distribution express logistics transportation scheduling
problem. Based on the previous research on the bat algorithm, the
bat algorithm is discretized and dynamically modeled and analyzed
according to the full permutation theory and chaotic optimization
strategy. Through the introduction of chaotic optimization and local
segment counterclockwise search strategy, the bat algorithm based
on discrete dynamic modeling analysis effectively improves the
global search ability and the solution ability of local optimal
solution. Finally, this optimized bat algorithm is called the
chaotic discrete bat algorithm (CDBA). Experiments show that
the chaotic discrete bat algorithm is more effective than the
existing common algorithms in the single distribution express
logistics transportation scheduling problem.

Second, this article continues to study the single-vehicle
express logistics transportation scheduling problem.
Compared with the single distribution express logistics
transportation scheduling problem, the single-vehicle
express logistics transportation problem has one more
condition of distribution vehicles, which is more in line
with the actual distribution situation in the logistics
distribution of modern e-commerce enterprises. In this
article, the local search ability is significantly improved by
adding 2-opt strategy to the original bat algorithm. 2-opt
strategy means that the bat algorithm changes the local
search range by changing the neighborhood interval in the
process of local search, so as to find the local optimal solution.
Finally, in order to ensure the accuracy of the data, the
experiment uses three cases with different distribution
locations to simulate the pre optimization algorithm and
the post optimization algorithm. The results show that the

optimized Vnqba algorithm has stronger convergence ability
than the optimized QBA algorithm, and performs better in
local search.

CONCLUSION

Based on the application of the bat algorithm in the logistics
and transportation scheduling of the e-commerce logistics
system, this article optimizes the bat algorithm that has
been less studied in the past, so as to be better applied to
the operation of the e-commerce logistics system. By analyzing
the actual demand of express logistics, a single-delivery express
logistics transportation scheduling model is established. Based
on chaotic optimization strategy and the discrete bat
algorithm, a discrete dynamic chaotic bat algorithm is
proposed. The experimental results show that the model
algorithm can solve the optimal scheduling path more
accurately than the commonly used intelligent algorithms,
which proves that the algorithm is effective. At the same
time, in view of the current situation of multi-vehicle
distribution at the same time, a single-vehicle express
logistics transportation scheduling model is established.
Experimental results show that:

1) The algorithm has the highest accuracy in solving the optimal
path scheduling scheme, which proves the effectiveness and
feasibility of the algorithm

2) In this article, by adding the 2-opt strategy to the original bat
algorithm, with the gradual increase of the scale of the data to
be solved, the built model can effectively improve its
convergence and global search ability

3) The optimized discrete dynamic algorithm is compared with
the previous algorithm, and the performance is improved by
about 20%

To sum up, this article has achieved some research results in
the scheduling scheme of e-commerce logistics system, but the
following improvements can be made in future research. For
example, if the actual traffic conditions do not conform to
straight-line transportation, traffic congestion may occur
during peak hours. These important factors should be used as
parameters affecting the discrete dynamic model, and we hope to
continue to improve them in the future research process.
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Study of Solar Combined Air Energy
Greenhouse Heating System Model
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At present, it is difficult to bring centralized heating to rural areas owing to factors such as
scattered distribution, distance from towns and cities, and difficulty in laying public pipes.
According to research, most rural residents use inefficient household heating facilities,
thereby resulting in serious environmental pollution and a decline in the quality of life of
residents. In order to alleviate environmental pollution, the use of solar energy, air energy,
and other renewable energy for rural heating of such decentralized buildings is of profound
significance. This study analyzed the distribution characteristics of solar energy resources
and solar combined air energy greenhouse heating system, established and solved a
mathematical model of the solar combined air energy greenhouse heating system,
calculated solar heat collection and solar heating energy consumption. From the data
analysis, the relationship among heat gain power, heating power, and the water
temperature of the water storage tank of the heat pump system was obtained. The
mathematical model of the storage tank of the solar combined air energy greenhouse
heating systemwas solved, and the operating conditions and volume of the storage tank of
the solar combined air energy greenhouse heating system were determined. The study
also analyzed the solar heat collection and solar heating energy consumption in Qingdao,
thereby pointing out the advantages of the solar combined air energy greenhouse heating
system, and finally obtained the best heating scheme.

Keywords: greenhouse, solar energy, air energy, COP, heating system

INTRODUCTION

Greenhouses are an important infrastructure of modern agriculture. The development direction of
modern greenhouse is large-scale, high-tech, factory, greenhouse product diversification,
characteristic, low energy consumption and environmental protection (Wei, 1999). In the cold
areas of north China, the energy consumption of the greenhouse heating load during winter is quite
large, thereby accounting for 60–74% of the operating cost of greenhouses (Zhu, 2005). The average
winter temperature in northern China is 5°C, and the negative accumulated temperature is 1–4 times
higher than that in the same latitude around the world (Liao et al., 1998). Due to the high heat
transfer coefficient of greenhouse covering materials and the inability of plants in the greenhouse to
store a lot of heat, greenhouse heating is quite different from that of ordinary buildings. The most
important characteristic of the greenhouse are the poor thermal inertia of the envelope and the huge
temperature difference between day and night (Gao, 2012). These are the temperature regulation
methods that are mainly followed for greenhouses in China (Zhou, 2003): (1) adding cover; (2) hot-
water heating method; (3) wood heating method; (4) heating coal-fired hot blast stove temperature
raising method; (5) electric heating; and (6) solar thermal storage pool, which is mainly used to
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collect and store solar energy. In recent years, solar energy
technology has been widely applied at home and abroad (Ma,
2003). At the same time, as a type of green technology of energy
saving, heat pumps are highly efficient, provide environmental
protection, and have been increasingly applied in the field of
facility agriculture (Mao et al., 2004).

There is a serious lack of energy in rural areas in China, remote
and isolated areas are in urgent need of energy supply, and the use
of solar energy is one of the main ways to solve the heating needs
of greenhouses in these areas (Wang and Cheng, 2007). The use of
solar energy for greenhouse heating, although energy saving and
environmentally friendly, is subject to the weather and meets the
needs of all-weather heating with difficulty (Zhang and Chen,
2008). With the rapid development of modern agriculture in
China, energy saving, high efficiency, and environmental
protection have become the development themes of facility
agriculture, and greenhouse heating equipment and heating
methods have also been developed in that direction (Liu et al.,
2008). In recent years, solar energy technology has been widely
used at home and abroad (Luo et al., 2007). Meanwhile, heat
pumps, as an energy-saving, high-efficiency, and environmentally
friendly green technology, are also being increasingly used in the
field of facility agriculture (Luo et al., 2007; Fang et al., 2008). The
traditional heating equipment relies on conventional energy to
heat up during the day and most nights during winter, which can
meet the heating requirements, but it produces problems, such as
high heating cost, low efficiency, and environmental pollution. To
improve the propane refrigeration system of the natural gas
shallow cooling unit, the factors affecting the energy
consumption of the propane compressor were analyzed, and it
was found that reducing the condensing temperature of the
propane at the outlet of the compressor could ensure that the
grade and quantity of the cold quantity provided by the
refrigeration system would not decrease and effectively reduce
the energy consumption of the propane compressor (Fang and
Zhuang, 2014). The cooling capacity of the cryogenic methane
washing process is provided by a refrigeration cycle using the
product gas CO as the working mass, which has high energy
consumption (Li et al., 2013). The ternary hybrid refrigeration
system provides the cooling capacity for the separation system to
meet the heating demand of some low-temperature-distillation
tower reboilers and effectively recovers the cooling capacity of the
process logistics through precooling and subcooling of the
refrigerant (Di, 2003). Process model of separation
refrigeration system using demethanizer, Process simulation,
parameter sensitivity analysis and process optimization of old
refrigeration system in Yangzi ethylene plant (Xu and Gong,
2010).

PROCESS OF SOLAR AIR GREENHOUSE
COMBINED HEATING SYSTEM

The refrigerant R134a is used in the solar air greenhouse
combined heating system, and the compressor used is the
Bizell piston compressor. The compressor compresses the
refrigerant to high temperature pressure and transfers the

refrigerant to a condensing coil, which then condenses it to
a liquid state. The condensing coil is placed in the hot water
storage bucket, and the water in the bucket is heated using the
condensing coil. Liquid refrigerant passes through a liquid
storage device, liquid mirror, and filter dryer, which is
throttled by the expansion valve, becomes a low-pressure
and low-temperature liquid refrigerant, and enters the solar
plate collector to evaporate and absorb heat. The vaporized
refrigerant is separated from the superheated gas by the
gas–liquid separator into the low-pressure end of the
compressor and compressed into a high-temperature and
high-pressure liquid refrigerant. The hot water in the hot
water storage tank is pumped into the fan coil unit in the
greenhouse. The fan coil emits heat inside the greenhouse to
maintain the temperature inside the greenhouse. The hot water
is returned to the hot bucket to complete the hot water
circulation. The solar plate collector in this system is
processed from an aluminum plate, and its surface is
painted black to absorb sunlight (Li, 2022a; Li, 2022b).

SYSTEM MATHEMATICAL MODEL

Heat Load Model
The greenhouse heating loss is mainly composed of heating loss
of the envelope, cold air infiltration, and cold air invasion. The
calculation formula of heat load (Zhang and Chen, 2011) is as
follows:

Q � Q1 + Q2 + Q3 (1)
Q1 � ∑KnFn(ti − t0) (2)
Q2 � 0.5kfVN(ti − t0) (3)
Q3 � ∑ uiAi(ti − t0) (4)

Here, Q1 is the heat loss of the envelope structure; —Cold air
permeates heat loss; —Ground heat loss; —Heat transfer
coefficient of greenhouse envelope at n floor, W/(m2·K), =
3W/(m2·K); —Surface area of the n greenhouse envelope, m2;
—Wind power factor, = 1; —Greenhouse air volume, m3;
—Number of chamber air changes, h-1, Greenhouse once/
12 h; —Ground heat transfer coefficient in zone i, W/(m2·K);
—Area of block i, m2;—The n greenhouse indoor heating design
temperature, K = 18°C; —The n greenhouse outdoor heating
design temperature, K. = 2°C.

Compressor Model
For small rolling-rotor compressors, the refrigerant flow rate and
compressor power can be calculated using the following equation.

1 Refrigerant mass flow rate

mr � nλVd

60vi
∑ uiAi(ti − t0) (5)

where vi is the compressor suction specific volume expressed
as m3/kg; n is the heat loss of envelope structure, taking the value
of 2880 r/min; C is compressor speed, taking the value of 0.91;

Frontiers in Energy Research | www.frontiersin.org September 2022 | Volume 10 | Article 9270482

Hao et al. Energy Greenhouse Heating System Model

9897

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


and Vd is the compressor theoretical discharge volume, taking the
value of 13.40 cm3/r.

2 Compressor power

The compressor input electrical power is:

Wcm � mr
Pevi
λcm

k

k − 1
⎡⎢⎢⎣(Pc

Pe
) k

k−1
− 1⎤⎥⎥⎦ (6)

where λcm is the total efficiency of the compressor; Pc is the
evaporation pressure and condensation pressure, Pa; and k is the
compression process multivariate index.

Solar Flat Plate Evaporator Model
Experimental study of direct expansion solar heat pump water
heater.

Solar water supply systems require temperatures lower than
60°C and the use of collectors with glass cover. According to the
energy balance can be obtained that as the design conditions
under the pressure drop is small, you can ignore the pressure drop
of the refrigerant in the tube.

1 Refrigerant side flow heat transfer equation (Chai et al., 2008;
Chen et al., 2011; Kuang and Wang, 2005):

Qr � mr(hr2 − hr1) � αiAi(Tp − Trm) (7)
The formula, Qr—Heat absorbed by Refrigerant, W;

mr—Refrigerant mass flow, kg/s; αi—Convective heat transfer
coefficient on refrigerant side surface, W/(m2·K); Ai—Tube
surface area, m2; Tp—Tube wall temperature, K; Trm—Average
inlet and outlet temperature of refrigerant, K.

2 Compressor power

Qd � AdF′[S − ULc(Trm − T0)] (8)
The formula, Qd—Effective heat gain of heat collector plate,

W; Ad—Micro-element length heat collection area on the upper
surface of trace element heat collecting plate, m2; S—The
difference between absorbed and emitted radiation from the
heat collector plate, W/m2; ULC—Total heat loss coefficient of
heat collector plate, m2, W/(m2·K); —Heat collection efficiency
factor of collector plate; T0—Ambient temperature, K.

U1c � (5.7 + VW + 4εσT3
0) (9)

where ambient temperature is K, Boltzmann constant
(blackbody radiation constant) is 5.67 × 10 − 8W/(m2·K4), the
outdoor wind speed and the calculated outdoor wind speed in
winter in the Chengyang area are taken in this paper, and T0 is the
ambient temperature, K, which is the unit of measurement of
standard error in the total number.

Taking into account the installation angle and direct sunlight,
sky radiation, and reflection of solar radiation from the ground,
the total solar radiation is calculated as follows:

S � IT cos θt + (1 + cos β
2

)Idh + (1 − cos β
2

)Itρg (10)

The formula, —Indicates the intensity of radiation projected
on a horizontal surface; —Indicates the intensity of diffuse
reflection projected on a horizontal surface; —Indicates the
angle of projection of direct sunlight on inclined and
horizontal surfaces; —Indicates the tilt angle of the collector
plate installation; —Indicates the reflectivity of the ground to the
total solar radiation, in engineering calculations, we usually take
the average value as 0.2.

For an inclined surface facing due south, formula for
calculating the .

For an inclined surface facing due south formula for
calculating the formula, —Hour Angle; —Angle of incidence;
—Local latitude;—Angle of declination;—inclination of collector
surface (Duffie J.A. et al., 1991).

3 Heat balance equation inside and outside the tube:

Qcl � βQr (11)
Here, the coefficient introduced by considering impurities,

such as oil, in the refrigerant takes a value of 0.9 in the model.

Mathematical Model of Condenser
Condenser (tank) uses immersion condensing spiral coil, and
collectors are similar to the enthalpy difference in the direction
of the length of the equal division of a number of
microelements. When the enthalpy difference is small, the
length of each microelement is also very small, which can
be approximated by straight pipe section to deal with, and
corrected using the spiral tube correction factor. For each
microelement, the following control equation can be
established.

1 Refrigerant side flow heat transfer equation:

Qr � mr(hr1 − hr2) � α1A1(Tw − Trm) (12)

2 Water-side heat transfer equation:

QW � MWCpW
dTW

dTτ
(13)

where hot water heating power is expressed inW; total mass of
water in the tank is expressed in kg; specific heat of water is
expressed in kJ/(kgK); water temperature is expressed in K; and
time is expressed in s.

3 Heat balance equation inside and outside the tube:

QW � Qr (14)

4 Microelement thermal conductivity equation:

Qr � Ucd − Acd(Trm − Twm) (15)
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The formula,—Heat transfer coefficient of overall on external
surface area, W/(m2·K);—Heat transfer area between condensing
coil and water, here is the exterior area of the condensing coil, m2;
—Average temperature of water, K。

The heat transfer coefficient of the condensing coil to water
can be calculated according to the formula:

Ucd � 1
Acd,0

aiAcd,i
+ δmAcd,0

kmAcd,m
+ 1

aw

(16)

where metal tube wall thickness is m; thermal conductivity of
metal pipe wall is expressed by W/(m2·K); surface heat transfer
coefficient of the refrigerant in the condensing coil is expressed by
W/(m2·K); water-side surface heat transfer coefficient is
expressed by W/(m2·K); inside and outside areas of
condensing coils is expressed in m2; and average surface area
of condensing coils is expressed in m2.

Thermal Expansion Valve Model
The thermal expansion valve model includes the following
control equations:

Flow characteristic equation
The refrigerant flow rate through the thermal expansion valve

can be calculated according to the following formula:

mτ � (0.2005 ��
ρ1

√ + 0.634v0)A0

������
2ρ1Δp

√
(17)

The formula,—Expansion valve inlet and outlet enthalpy, J/kg
—Differential pressure before and after the valve hole, Pa—Flow
coefficients, using empirical formulas from the literature
—Minimum flow area of valve orifice, m2—Inlet liquid
refrigerant density, kg/m3—Outlet refrigerant specific volume,
m3/kg.

Air Source Evaporator Model
On rainy days and at night, the evaporator gains heat from the
surrounding air through the spiral finned tubes and collector
plates, and the heat pump works as an air source:

Qe � mr(h1 − h4). (18)
The formula—Refrigerant flow rate,—Refrigerant enthalpy at

evaporator outlet; —The refrigerant enthalpy of the evaporator
inlet.

Fan Coil Model
1 Chilled water heat balance equation

cw � ztw
zτ

− cwu′w
ztw
zx

� αbnFw(tb − tw) (19)

2 Coil heat exchanger coil wall heat balance equation

ztb
zτ

� αbnFw(tw − tb) + abwFa(ta − tb) (20)

3 Air-side humidity equilibrium equation

ρa
zda

zτ
+ ρaua

zda

zx
� KFa(dg − da) (21)

4 Energy equation

Q0 � ρaUaA(ha,i − ha,o) (22)
The formula represents heat transfer coefficient, which is

expressed as W/(m2·K); cross-sectional area of air passing
through the coil heat exchanger is expressed as m2; specific
heat capacity of guest product is expressed as J/(m3·K);
moisture content, based on 1 kg of dry air, is expressed as
g/kg; heat transfer area per unit volume of fluid is expressed
as m2/m3; enthalpy is expressed as J/kg; mass transfer coefficient
between air and the outer surface of the coil is expressed as kg/
(m2·s); coil heat exchange is expressed as W; temperature is
expressed as K; fluid flow rate is expressed as m/s; coefficient of
heat transfer between air and the outer surface of the coil is
expressed as kg/(m2·s); fluid density is expressed as kg/m3; and
duration of a single stay is expressed as s.

Subscript, —Wet air; —Coil wall surface; —Between the
chilled water and the inner surface of the coil; —Between the
air flow and the outer surface of the coil; —Coil heat exchanger
outer surface saturated with air; —Import; —The entire coil;
—Export; —Frozen water.

Air-Side Heat Transfer Equation
Heat exchange of primary heat exchanger at dry working
conditions.

The air on the outside of the evaporator tube in winter is an
exothermic cooling process from the inlet to the outlet, and
according to the state parameters of the air, its cooling process
have three conditions: dry condition and wet condition.

The heat exchange volume in the dry condition is calculated by
the following formula (Sun, 2008):

dQa � αa(ηfdAf + dAP)(ta − tw) (23)
The formula, —Air-side heat transfer coefficient, W/(m2·K);

—Fin efficiency; —Fin area, m2; —Base tube area, m2;
—Temperature, K.

Subscript, —Air; —Frosting; —Ribs; —Pipe Wall; —Base
Management;

The fin efficiency is calculated using the following formula.

ηf � th(m · l)
m · l (24)

The formula represents thermal conductivity of rib material,
which is expressed as W/(m2·K) and the average thickness of ribs
is expressed as m.

l � (1.065R − r0)[1 + 0.8051lg(1.065R/r0)] (25)
The heat exchange coefficient on the air side was used from the

literature (Kong et al., 2010).
The heat exchange volume at wet working conditions is

calculated using the following equation (Hikari, 1983):

Frontiers in Energy Research | www.frontiersin.org September 2022 | Volume 10 | Article 9270484

Hao et al. Energy Greenhouse Heating System Model

10099

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


dQa � ξαa(ηfξdAf + dAp)(ta − tw) (26)
The formula—Moisture dispersion coefficient—Fin efficiency

under wet working conditions;
Moisture dispersion coefficient, the calculation of fin efficiency

under wet working conditions is referred to literature 22.

Characteristic Analysis of Solar Air Energy
Greenhouse Heating System
The project is located in Qingdao, Shandong province, the
southern tip of Shandong Peninsula, at the longitude
119°30′E–121°00′E and latitude 35°35′N–37°09′ N. The terrain
is high in the east and low in the west, uplifted on both sides of the
north and south, and concave in the middle. Located in the warm
temperature difference between day and night on January 28
sunrise at 7:03 and sunset at 17:20. Cloudy, RH 39%, no
continuous wind direction and light breeze.

Figure 1 shows the COP variation with solar radiation
intensity. As it can be seen from Figure 2, COP of the system
increases with the solar radiation intensity. The solar combined
air energy greenhouse heating system’s biggest characteristic in
solar panels is that the refrigerant directly absorbs heat from the
environment and evaporation, the main source of energy is
radiation from the sun, evaporation temperature increases
with an increase in the radiation from the sun, and refrigerant
phase-change heat absorption unit, which is the process of
quality, is also increased. Thus, the system’s COP also
increases. By the same token, COP increases with ambient
temperature. In the numerical simulation results, the
maximum error of heating time is 11.02%, the average error is
5.43%, the maximum error of COP is 13.40%, and the average
error is 4.12%. The error is acceptable in the engineering
application range, and the simulation results are in good
agreement with the test results.

Figure 3 shows the simulation comparison of the transient
COP experiment of the system. As the temperature of condensed

FIGURE 1 | Comparison of predicted and experimental values of COP
and operation time.

FIGURE 2 | Comparison of experimental and theoretical calculation of
instantaneous values.

FIGURE 3 | Experimental simulation comparison of system COP
transient values.

FIGURE 4 | Compressor power consumption curve.
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water increases, the COP of the system decreases due to the
deterioration of condensation conditions. At the same time, solar
radiation intensity changes due to cloud shielding when the
system runs up to 16 min and 46 min, and the COP of the
system also changes, which is consistent with the conclusion
drawn in Figure 3. When the weather conditions change, in order
to maintain a higher COP and a shorter system running time as
much as possible, frequency conversion adjustment can be
carried out on the heat pump system and the evaporation
temperature can still be maintained in a reasonable range
when solar radiation changes significantly. About the
compressor running frequency effect on the COP of the
system, the frequency and refrigerating capacity decrease, but
the power reduction rate is greater than the heat; thus, the system
COP in the reduced frequency is increased. Thus, we specially
selected two days’ climate conditions, which were close to the
experimental data, to compare, and the final measurements for
the two groups’ experiment system’ COP was 4.87 and 5.3.

Figure 4 shows the power consumption of the compressor in
this group of experiments. The power consumption of the
compressor at 70 Hz increases significantly faster than that of
the compressor at 50Hz; thus, the COP of the latter is greater. In
addition, when the solar radiation intensity decreases and the
heating time is prolonged, the system operating at high frequencies
will decline rapidly due to increased power consumption of the
compressor. However, in contrast, it takes 52 min to heat the water
in the water tank from 27 to 50°C at 70 Hz and 78min at 50 Hz.
Therefore, it can be considered appropriately to increase the
frequency of the compressor when the hot water is expected to
be heated quickly. The frequency of the compressor has an
extremely important influence on COP and the speed of hot

water. The frequency of the compressor should be adjusted
according to the climatic conditions and user needs.

CONCLUSION

The centralized parameter model has satisfactory accuracy for the
calculation of the transient process and the overall operation
parameters of the solar air greenhouse combined heating
system, and the calculation results have reference significance
for guiding the experimental direction. It is evident that the
COP increases with increasing ambient temperature. The results
of the numerical simulation showed that the maximum error of
heating time was 11.02% and the average error was 5.43%, whereas
the maximum error of COP was 13.40% and the average error was
4.12%. The error is acceptable in the engineering application range,
and the simulation results agree well with the test results.
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