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The focus of this eBook is 
to bring new insights into 
central immune tolerance. 
To fulfill that, much has been 
discussed about the master in 
the regulation of tolerance, the 
autoimmune regulator (Aire) 
gene the main thymus cell type 
that expresses this gene, the 
medullary thymic epithelial 
cells (mTECs).

It includes one Editorial 
and 12 other excellent 
contributions in the format 
of mini reviews or original 
research papers covering one 
or more of these aspects: 
promiscuous gene expression 
(PGE), epigenetics, miRNAs, 
association of the Aire gene 
and miRNAs, thymocyte–TEC 
interaction, coxsackievirus 
and type 1 diabetes, exosomes 
in the thymus, thymic 
crosstalk, thymic B cells, T cell 
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A medullary thymic epithelial cell (mTEC) (here depicted in 
green) interacts with developing thymocytes (here depicted 
with blue nucleus and pink cytoplasm), which through MHC-II 
presents the self peripheral tissue antigens (PTAs). In the nucleus 
of mTECs, the autoimmune regulator (Aire) protein plays its 
role as an very important transcriptional regulator of PTAs and 
microRNAs. Once within the cytoplasm, microRNAs act as 
posttranscriptional regulators of Aire and PTA mRNAs.

Image taken from: Passos GA, Mendes-da-Cruz DA and 
Oliveira EH (2015) The thymic orchestration involving Aire, 
miRNAs, and cell–cell interactions during the induction 
of central tolerance. Front. Immunol. 6:352. doi: 10.3389/
fimmu.2015.00352
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development, chemokines and migration of T cells, miRNAs and the thymic atrophy, cell–cell 
interactions, and thymus ontogeny.

Authors raised hypothesis, discuss concepts, and show open questions. The remaining 
important issues to resolve questions within the central tolerance research are briefly discussed 
below.

The first mini review is authored by Olga Ucar and Kristin Rattay. They focused on the 
posttranscriptional control of PGE by miRNAs as well as epigenetic control involving DNA 
methylation, histone modifications, and topology of chromosomes. These processes represent 
additional factors to be explored and that might regulate the expression of Aire-independent 
tissue restricted antigens (TRAs), which are implicated in the central tolerance.

Are the Eph/ephrins important for thymocyte–TEC interaction? This issue was reviewed by 
Javier Garcia-Ceca and cols. The maturation of thymocytes is depending on their interaction 
with TECs within the thymus. Authors argue the importance of Ephs and ephrins on 
the intrathymic maturation of both thymic epithelial microenvironment and thymocyte 
maturation and on the recruitment of lymphoid progenitors into the thymus.

Another stimulating mini review is authored by Hélène Michaux and cols in which they 
discuss the hypothesis that infection by coxsackievirus B4 (CV-B4) could be associated 
with etiopathogenesis of type 1 diabetes mellitus (T1D). Authors consider that besides their 
tropism to the pancreatic beta cells, CV-B4 could also involve the thymus. Once within this 
organ the virus might somehow perturbs central tolerance to the insulin family triggering thus 
autoimmune T1D.

Our group contributed with a mini review focusing on cell–cell interactions within the 
thymus involving TECs and thymocytes and the role of the Aire gene on the induction of 
central tolerance throughout the modulation of TRA expression in mTECs. In addition, we 
discuss the recent evidence that Aire also regulate the expression of miRNAs in these cells. 
On its turn, the Aire-dependent miRNAs might exert control over TRAs. We raise issues that 
besides the transcriptional control exerted by Aire, PGE could also be being controlled through 
posttranscriptional mechanism involving miRNAs.

A very pertinent question raised by Gabriel Skogberg and cols is on the role of exosomes on 
TRA presentation by TECs to thymocytes and its implication in the thymocyte selection. 
Exosomes may be liberated by TECs to the extracellular milieu and transport TRAs as well as 
MHC molecules, establishing intercellular communication to enhance antigen presentation to 
developing thymocytes. Authors discuss how intercellular communication via exosomes within 
the thymus could have consequences on TRA presentation and finally on central tolerance.

The thymic crosstalk, i.e., the reciprocal control by the close contact between TECs and 
thymocytes, which influences the differentiation of both types of cells was elegantly reviewed 
by Noëlla Lopes and cols. Authors discuss the role of dendritic cells (DCs) subsets in the process 
of deletion of autoreactive T cells and the generation of natural Tregs and raise questions how 
hematopoietic cells may control the organization of the thymic medulla.

Thymus is an organ composed of different cell types including TECs, DCs, macrophages among 
other cell types, and of course thymocytes. Recently, researchers have identified an unexpected 
cell type formed by B cells, which may be originated from intrathymic B lymphopoiesis or 
immigration from the periphery. Tomoyoshi Yamano and cols contributed with a mini review 
discussing the role of thymic B cells expressing MHC-II, CD80, and Aire, in the crosstalk with 
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CD4 single positive cells. Authors raise questions how these cells might play a role as antigen 
presenting cells in an unpredicted way within the thymus.

The regulation of T cell development is apparently well resolved; however, several unsolved 
questions remain. This important aspect is represented in this Research Topic through the 
mini review by Iris Caramalho and cols. Authors show new questions on the beginning of Treg 
lineage commitment, their spatial localization within the human thymus and their molecular 
components.

Cell migration within the thymus is crucial for the central tolerance. Developing thymocytes 
migrate throughout the thymus being exposed initially to the cortex and then to the thymic 
medulla were they respectively undergo positive and negative selection. Chemokines represent 
key regulators for thymocyte migration. Zicheng Hu and cols argue the role of chemokines in 
the thymic cell migration and induction of central tolerance.

Thymic atrophy during senescence is widely recognized; however, poorly understood.  
In addition to the atrophy due to senescence, thymus involutes in response to a variety of 
stimuli including microbial infections. The mouse model of Trypanosoma cruzi infection 
corresponds to an adequate mouse model to access this question. Leandra Linhares-Lacerda 
and cols show results on the role of miRNAs on regulation of chemotaxis, which contribute to 
a better understanding, while incites new issues, of thymic involution.

Cellularity of mTECs is pivotal for cell–cell interactions within the thymus, which is required 
for central tolerance. Taishin Akiyama and cols argue the role of cytokines on cellularity of 
mTECs focusing into the molecular basis of cell–cell interactions opening perspective on the 
use of mathematical models for understanding these processes.

Thymus morphogenesis is a central point with many open questions. The mini review authored 
by Arnon Dias Jurberg and cols addresses the role of the large superfamily of TGF-beta/bone 
morphogenetic protein ligands in the thymus morphogenesis and in T cell differentiation.

This eBook provides an international and updated insight into the latest developments and 
open questions on the cellular and molecular bases of central tolerance induction.

Citation: Passos, G. A., Mendes-da-Cruz, D. A., Oliveira, E. H., eds. (2016). The Role of Aire, Micro-RNAs 
and Cell-Cell Interactions on Thymic Architecture and Induction of Tolerance. Lausanne: Frontiers Media. 
doi: 10.3389/978-2-88919-770-5
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The focus of this Research Topic is to bring new insights into central immune tolerance. To fulfill
that, much has been discussed about the master in the regulation of tolerance, the autoimmune
regulator (Aire) gene (1–3), the main thymus cell type that expresses this gene, and the medullary
thymic epithelial cells (mTECs) (4, 5).

It includes 12 excellent contributions in the format of mini reviews or original research papers
covering one or more of these aspects: promiscuous gene expression (PGE), epigenetics, miRNAs,
association of the Aire gene and miRNAs, thymocyte–TEC interaction, coxsackievirus and type 1
diabetes, exosomes in the thymus, thymic crosstalk, thymic B cells, T cell development, chemokines
and migration of T cells, miRNAs and the thymic atrophy, cell–cell interactions, and thymus
ontogeny.

Authors raised hypothesis, discuss concepts, and show open questions. The remaining important
issues to resolve questions within the central tolerance research are briefly discussed below.

The first mini review is authored by Olga Ucar and Kristin Rattay (6). They focused on the post-
transcriptional control of PGE by miRNAs as well as epigenetic control involving DNA methylation,
histone modifications, and topology of chromosomes. These processes represent additional factors
to be explored and that might regulate the expression of Aire-independent tissue restricted antigens
(TRAs), which are implicated in the central tolerance.

Are the Eph/ephrins important for thymocyte–TEC interaction? This issue was reviewed by Javier
Garcia-Ceca and cols (7). Thematuration of thymocytes is depending on their interactionwith TECs
within the thymus. Authors argue the importance of Ephs and ephrins on the intrathymicmaturation
of both thymic epithelial microenvironment and thymocyte maturation and on the recruitment of
lymphoid progenitors into the thymus.

Another stimulating mini review is authored by Hélène Michaux and cols (8) in which they
discuss the hypothesis that infection by coxsackievirus B4 (CV-B4) could be associated with
etiopathogenesis of type 1 diabetes mellitus (T1D). Authors consider that besides their tropism to
the pancreatic beta cells, CV-B4 could also involve the thymus. Once within this organ the virus
might somehow perturbs central tolerance to the insulin family triggering thus autoimmune T1D.

Our group contributedwith amini review (9) focusing on cell–cell interactions within the thymus
involving TECs and thymocytes and the role of the Aire gene on the induction of central tolerance
throughout themodulation of TRA expression inmTECs. In addition, we discuss the recent evidence
that Aire also regulate the expression ofmiRNAs in these cells. On its turn, the Aire-dependentmiR-
NAs might exert control over TRAs. We raise issues that besides the transcriptional control exerted
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by Aire, PGE could also be being controlled through posttran-
scriptional mechanism involving miRNAs.

A very pertinent question raised by Gabriel Skogberg and cols
(10) is on the role of exosomes on TRA presentation by TECs
to thymocytes and its implication in the thymocyte selection.
Exosomesmay be liberated byTECs to the extracellularmilieu and
transport TRAs as well asMHCmolecules, establishing intercellu-
lar communication to enhance antigen presentation to developing
thymocytes. Authors discuss how intercellular communication via
exosomes within the thymus could have consequences on TRA
presentation and finally on central tolerance.

The thymic crosstalk, i.e., the reciprocal control by the close
contact between TECs and thymocytes, which influences the
differentiation of both types of cells was elegantly reviewed by
Noëlla Lopes and cols (11). Authors discuss the role of dendritic
cells (DCs) subsets in the process of deletion of autoreactive T
cells and the generation of natural Tregs and raise questions how
hematopoietic cells may control the organization of the thymic
medulla.

Thymus is an organ composed of different cell types includ-
ing TECs, DCs, macrophages among other cell types, and of
course thymocytes. Recently, researchers have identified an unex-
pected cell type formed by B cells, which may be originated from
intrathymic B lymphopoiesis or immigration from the periph-
ery. Tomoyoshi Yamano and cols (12) contributed with a mini
review discussing the role of thymic B cells expressing MHC-
II, CD80, and Aire, in the crosstalk with CD4 single positive
cells. Authors raise questions how these cells might play a role
as antigen presenting cells in an unpredicted way within the
thymus.

The regulation of T cell development is apparently well
resolved; however, several unsolved questions remain. This
important aspect is represented in this Research Topic through
the mini review by Iris Caramalho and cols (13). Authors show
newquestions on the beginning of Treg lineage commitment, their
spatial localization within the human thymus and their molecular
components.

Cell migration within the thymus is crucial for the cen-
tral tolerance. Developing thymocytes migrate throughout the
thymus being exposed initially to the cortex and then to the

thymic medulla were they respectively undergo positive and neg-
ative selection. Chemokines represent key regulators for thy-
mocyte migration. Zicheng Hu and cols (14) argue the role of
chemokines in the thymic cell migration and induction of central
tolerance.

Thymic atrophy during senescence is widely recognized; how-
ever, poorly understood. In addition to the atrophy due to senes-
cence, thymus involutes in response to a variety of stimuli includ-
ing microbial infections. The mouse model of Trypanosoma cruzi
infection corresponds to an adequate mouse model to access this
question. Leandra Linhares-Lacerda and cols (15) show results on
the role of miRNAs on regulation of chemotaxis, which contribute
to a better understanding, while incites new issues, of thymic
involution.

Cellularity of mTECs is pivotal for cell–cell interactions within
the thymus, which is required for central tolerance. Taishin
Akiyama and cols (16) argue the role of cytokines on cellularity
of mTECs focusing into the molecular basis of cell–cell interac-
tions opening perspective on the use of mathematical models for
understanding these processes.

Thymus morphogenesis is a central point with many open
questions. The mini review authored by Arnon Dias Jurberg and
cols (17) addresses the role of the large superfamily of TGF-
beta/bone morphogenetic protein ligands in the thymus morpho-
genesis and in T cell differentiation.

This Research Topic provides an international and updated
insight into the latest developments and open questions on the
cellular and molecular bases of central tolerance induction.
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The induction of central tolerance in the course ofT cell development crucially depends on
promiscuous gene expression (pGE) in medullary thymic epithelial cells (mTECs). mTECs
express a genome-wide variety of tissue-restricted antigens (TRAs), preventing the escape
of autoreactive T cells to the periphery, and the development of severe autoimmunity.
Most of our knowledge of how pGE is controlled comes from studies on the autoimmune
regulator (Aire). Aire activates the expression of a large subset of TRAs by interacting
with the general transcriptional machinery and promoting transcript elongation. However,
further factors regulating Aire-independent TRAs must be at play. Recent studies demon-
strated that pGE in general and the function of Aire in particular are controlled by epigenetic
and post-transcriptional mechanisms. This mini-review summarizes current knowledge of
the regulation of pGE by miRNA and epigenetic regulatory mechanisms such as DNA
methylation, histone modifications, and chromosomal topology.

Keywords: mTEC, promiscuous gene expression, Aire, epigenetic, miRNA, tolerance, tissue-restricted antigen

INTRODUCTION
The establishment of central tolerance to all organs of the body is to
a large extent mediated by the unique ability of medullary thymic
epithelial cells (mTECs) to express a vast variety of self-antigens.
This so-called promiscuous gene expression (pGE) encompasses
a genome-wide selection of tissue-restricted antigens (TRAs), and
so far no involvement of tissue-specific transcription factors in
their regulation has been observed in the thymus (1, 2). pGE
sets the scope of self tolerance, i.e., clonal deletion and Treg
induction, and faulty thymic expression of even a single TRA
can precipitate organ-specific autoimmunity (3–5); however, we
still lack a coherent model incorporating and explaining all the
intricacies of pGE.

Most of our knowledge of the molecular control of pGE comes
from studies on autoimmune regulator (Aire) (6, 7). Mutations
in the AIRE gene cause a rare monogenic autoimmune dis-
order autoimmune polyendocrinopathy–candidiasis–ectodermal
dystrophy (APECED), affecting multiple organs with a prefer-
ence for endocrine glands (8, 9). The Aire-deficient mouse model
recapitulates the autoimmune phenotype observed in human
patients (10).

Autoimmune regulator controls the expression of a subset of
TRAs by interacting with the general transcriptional machinery
and promoting transcript elongation. Aire does not have a dedi-
cated DNA recognition motif, and it is unclear how it is targeted
to an exclusive set of TRA-encoding genes, which is largely con-
served across species (11). Depending on the cellular context, Aire
can induce the expression of different sets of genes (12), suggesting
that the epigenetic landscape of mTECs plays a role in defining Aire
targets. Moreover, many TRAs are expressed in TECs in an Aire-
independent manner implying that additional factors also regulate
pGE. Noteworthy, a set of cell-lineage-specific TFs has proven
dispensable for promiscuous transcription of the corresponding

target genes in the thymus (13–16). Thus, the likelihood of tissue-
specific TFs responsible for the Aire-independent gene regulation
in mTECs or TFs acting in concert with Aire remains an open
question.

Recent studies documented a role for epigenetic and post-
transcriptional mechanisms in regulating pGE in general and the
function of Aire in particular (14, 17–19). Indeed, both APECED
patients (8) and mouse mutants (20) display variability in the
disease severity and the organs affected depending on different
genetic backgrounds, indicating that other genetic or epigenetic
components define the exact course of the individual disease. Here,
we briefly review our current knowledge of how DNA methyla-
tion, histone modification, and miRNA may influence pGE and
mTEC maintenance.

EPIGENETIC REGULATION OF pGE
Transcription factor-triggered gene expression is cross-regulated
by a number of enzymes, which modify the DNA itself (DNA
methylation) or the histones (histone post-translational modifica-
tions). Recent studies showed that DNA and histone modifications
can alter the promoter structure and accessibility to the extent of
adding new TF binding sites, thus shaping the level and pattern of
gene expression and, consequently, developmental decisions (21).
Accumulating evidence suggests that all these modifications might
also be involved in regulating pGE.

DNA METHYLATION
Methylation of cytosines in CpG dinucleotides is essential for the
regulation of embryonic development, cell lineage progression,
gene expression, and chromatin structure (22) and is implicated
in several human diseases (23). The majority of CpGs in the
human genome are methylated, whereas CpG islands at the tran-
scription start sites of housekeeping genes are hypomethylated
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FIGURE 1 | Epigenetic marks in mTECs vary betweenTRA pools and with
mTEC maturation. (A) In mTECs, the loci of TEC lineage-specific genes and
various TRA pools bear different epigenetic marks. Thus, lineage genes and
AIRE (top) are characterized by low DNA methylation content (permissive),
Aire-dependent genes (middle) favor repressive marks, whereas
Aire-independent genes (bottom) are maintained in a permissive state. Aire
specifically binds H3K4me0, facilitating polII recruitment and transcript

elongation. (B) Aire-independent TRA loci undergo epigenetic changes with
mTEC maturation, indicating that permissive marks are acquired in a stepwise
fashion and maintained before the onset of gene expression. For example, in
immature mTECs, Csn2 genomic locus exists in an epigenetically neutral
state, and the appearance of permissive H3K4me3 modification coincides
with mTEC maturation and the onset of transcription. TRAs, tissue-restricted
antigens; mTEC, medullary thymic epithelial cell.

(24). As a rule, DNA methylation inversely correlates with gene
expression level: a high degree of DNA methylation at pro-
moter regions prevents the binding of transcription factors to
their DNA-binding motives and results in transcriptional silenc-
ing (21, 22). DNA methylation pattern reflects the developmental
status of cells with respect to lineage commitment/progression.
Thus, the gene loci of myeloid-specific TFs and their binding
sites are hypermethylated in the cells of the lymphoid lineage
(25). Consistently, demethylation of promoter regions facilitates
lineage-specific gene expression, e.g., CD8+ T cell markers are
specifically unmethylated and highly expressed in T cells com-
mitted to the CD8 lineage (25). Comparison of the methyla-
tion patterns of stem/progenitor cells and lineage-committed
cells of various tissues demonstrated that the changes in methy-
lation occur at certain lineage-specific gene promoters rather
than in extended chromosomal clusters; moreover, this specific

methylation pattern is maintained in cells and defines their
identity (25–27).

Several recent reports on DNA methylation profiles in mTECs
suggest that this epigenetic modification might also pertain
to the control of mTEC lineage commitment and pGE; how-
ever, the exact specificity and significance of DNA methylation
remains unclear (Figure 1A). A number of TEC-specific genes
are hypomethylated in mTECs in contrast to other thymic cell
types and peripheral tissues (28), suggesting that this pattern
arises during lineage commitment and defines mTEC cellular
identity. In vitro and ex vivo studies demonstrated that the AIRE
gene promoter is hypomethylated in mTECs (29, 30), which
indicates its transcription-permissive state. In contrast, the Fgg
(fibrinogen gamma chain) gene, which encodes a liver-specific
protein promiscuously expressed in an Aire-dependent manner,
is hypermethylated in both Aire-expressing and Aire-deficient
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mTECs (28). Further intriguing results were obtained from the
comparison of the DNA methylation state of the casein locus
and the Gad1 (Gad67) promoter between immature and mature
adult mTECs (14). The DNA methylation pattern of both regions
exists in a permissive state already in immature mTECs, presum-
ably allowing rapid promoter activation after mTEC maturation
(Figure 1B). Interestingly, the Csn2 promoter showed progressive
demethylation in mature mTECs during embryonic development,
which preceded the onset of gene expression (14). Together with
the reported hypermethylation of Fgg locus (28), these observa-
tions suggest that DNA methylation pattern of TRA loci in mTECs
does not reflect the promoter activity in the same way as in other
peripheral tissues. In summary, although mTECs seem to adapt the
“peripheral” DNA methylation pattern for their lineage-specific
genes, they might employ a different strategy for genes expressed
promiscuously.

HISTONE MODIFICATION
Post-translational modifications of histone N-terminal tails are
known to be essential in the regulation of transcription, chromatin
structure, DNA repair and replication, and alternative splicing.
They control gene expression by both recruiting effector proteins,
the so-called readers of histone marks, and through changing the
compaction state of the chromatin (21, 31). Histone modifications
fall into active (promoting transcription) and repressive marks and
are associated with different chromatin compaction states (32).
Active histone marks at promoter and enhancer regions influ-
ence polII assembly and elongation through interaction with the
basic transcriptional machinery: H4 acetylation and H3 trimethy-
lation at K4 are recognized by TFIID and mediate polII assembly
at promoters (33, 34).

In some instances, active and repressive marks can co-exist
within the same region. Thus, embryonic stem cells display over-
lapping repressive and permissive histone modifications at devel-
opmental genes, maintaining their inactivity in steady state, but
allowing for rapid activation when differentiation starts (35).
Other examples of a poised, bivalent histone code at lineage-
specific gene promoters have been observed in CD4+ T cell
lineages (36). The coexistence of active (H3K4me3) and repres-
sive (H27K4me3) marks at promoters of lineage-defining tran-
scription factors GATA3, Tbet, Rorc, and Foxp3 endows different
CD4+ T cell subtypes with the plasticity to rapidly cross-
differentiate into another subtype in response to environmental
stimuli (37).

Studies of histone modifications in mTECs indicate that the
histone code plays a role in the regulation of pGE, although
the exact mechanisms employed might differ for different sets
of TRAs (Figure 1A). Aire-dependent genes in mTECs are char-
acterized by a lack of H3K4 trimethylation and enrichment in
repressive H3K27me3 (17, 38). Aire has been shown to specifi-
cally bind to unmethylated H3K4, targeting genes in a state of low
H3K4me3 or H3 acetylation (17). Aire binding was correlated with
an increase in H3K4me3 and polII recruitment to Aire-dependent
gene promoters, implying that Aire facilitates the establishment of
active histone marks (17). After polII assembly, Aire assists in the
transcriptional elongation through facilitating p-TEFIIb recruit-
ment (39, 40). Since p-TEFIIb recruitment requires active histone

marks at the enhancer regions (41), involvement of Aire in reading
enhancer histone code remains an intriguing possibility.

In contrast to Aire-dependent genes, Aire-independent TRAs
seem to favor permissive histone modifications (38). In a recent
study, Kyewski and colleagues assessed the chromatin state in
mature and immature mTECs at two specific loci encoding Aire-
independent TRAs, namely Csn2 and Gad1 (14). Both gene
promoters were characterized by permissive histone marks; fur-
thermore, in the case of the Csn2 promoter, H4 acetylation and
H3K4me3 marks increased with mTEC maturation (Figure 1B).
Interestingly, repressive H3K27me3 marks were absent from Csn2
promoter in both immature and mature mTECs, suggesting that
at least some TRA promoters maintain a neutral rather than
repressed steady state in immature mTECs (14). Whether a similar
poising of chromatin occurs in Aire-dependent gene loci early in
mTEC lineage progression remains to be determined.

In summary, the histone code of TRA promoters in mTECs
can exist in either permissive (Aire-independent genes) or biva-
lent (Aire-dependent genes) states. One of many functions of Aire
seems to be reading and modifying the histone marks, but it is still
unclear how their initial deposition is regulated. To this end, func-
tional studies of chromatin modifiers in TECs should shed new
light on the mechanisms mTECs employ to achieve and main-
tain a transcriptionally poised state of TRA-coding genes. It is
also pertinent to understand the epigenetic differences between
Aire-dependent and -independent genes, which might lead to the
identification of factors controlling Aire-independent pGE.

EPIGENETIC LANDSCAPE FLEXIBILITY IN mTECs
Recent studies revealed that DNA methylation and histone modi-
fications function in a cooperative manner to re-shape chromatin
(21, 42), and promoter activity can be predicted by the combi-
nation of both (43). The stability of transcriptionally active sites
largely depends on the cellular and developmental context; more
changes in the epigenetic landscape occur during development and
lineage progression than in terminally differentiated cells (41). Is
this also the case for pGE? On the population level, mTECs express
thousands of genes promiscuously, but their global DNA methy-
lation profile is not significantly different from that of peripheral
tissues (28). One should, however, consider that individual TRAs
are expressed by only a minor fraction of mTECs [1–3% on aver-
age; (38, 44)]. This might result in an under-representation of
TRA-specific epigenetic marks in a population analysis. In this
respect, studies of single TRA loci within the mTEC subpopula-
tions expressing that specific TRA will be more informative than
global epigenomic approaches. Given that pGE increases in its
complexity during mTEC maturation and that even in mature
mTECs the expression of individual TRAs seems to be transient
(45), the epigenetic landscape in the thymus might turn out to be
more flexible and dynamic than in other tissues.

Thus, in the case of the casein locus DNA methylation pat-
tern is established before the histone code and both exist in a
permissive state even before Csn2 mRNA can be detected [Ref.
(14); Figure 1B]. Since Csn2 seems to be somewhat special with
regard to its expression frequency in mTECs (44), the sequen-
tial establishment and cooperation of CpG context and histone
marks should be examined in other, less frequent TRA loci at

www.frontiersin.org March 2015 | Volume 6 | Article 93 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Immunological_Tolerance/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ucar and Rattay Epigenetic and post-transcriptional control of pGE

different stages of mTEC development. The interplay between
histone marks and DNA methylation pattern can result in the
organization of actively transcribed loci in transcriptional factories
(46), demonstrating the influence of epigenetic marks on genome
topology. Recently, emerging evidence suggests that higher order
interactions between chromosomal regions in cis and trans might
impose further influence on gene expression (47, 48). Impor-
tantly, stochastic interchromosomal interactions can account for
gene expression heterogeneity in a population: for example, co-
localization of β-globin gene and its enhancer was observed in
5–10% of cells in a population and correlated with a ~100-fold
increase of β-globin expression in these “jackpot” cells (49). The
fact that only a small proportion of mTECs expresses a given TRA
at a given time together with a recent observation of TRA loci
co-localization (45) suggests that such higher order organization
might regulate patterns of gene co-expression in single mTECs in
the context of pGE.

POST-TRANSCRIPTIONAL REGULATION OF pGE
miRNA represents a class of small (≈22 nt) RNA molecules
involved in the post-transcriptional control of gene expression,
acting as switches and fine-tuners of translation (50). Primary
miRNA transcripts are polII-dependent and undergo two steps
of post-transcriptional processing: by Drosha and DGCR8 in the
nucleus and by Dicer and TRBP in the cytoplasm [Ref. (51);
Figure 2A]. The mature miRNA are incorporated into the RNA-
induced silencing complex (RISC), binding of which to the target
mRNA causes a translational block and subsequent mRNA decay
(52, 53). Target recognition depends on a sequence-specific inter-
action between the target mRNA 3′UTR and the seed sequence
of miRNA (54). More than half of all protein-coding genes in
mammals are regulated by miRNA, and many of them have bind-
ing sites for several unrelated miRNA in their 3′UTR. Additional
complexity arises from the fact that a single miRNA can affect
the expression of multiple targets. Studies of miRNA function in
various tissues revealed complex balanced miRNA–mRNA inter-
action networks, regulating tissue homeostasis, cell fate decisions,
and disease progression (55).

Several recent studies suggest that miRNA may be involved
in the regulation of pGE. We showed that a number of miRNA
exhibit subset-specific expression in TECs isolated from murine
or human thymus; a substantial overlap between miRNA signa-
tures of both species suggests that miRNA expression profiles in
TECs are evolutionarily conserved (18). We also demonstrated that
maturation-dependent expression of certain miRNA in mTECs
correlates with Aire expression (18). Furthermore, changes in
miRNA signature have been reported upon Aire knockdown in
cell culture (56) and in Aire null mutant thymi (18). Whether
Aire directly regulates transcription of miRNA-encoding genes in
mTECs and whether such a regulation is a part of stochastic pGE
remains to be determined. Since miRNA-encoding genes can use
alternative promoters and many miRNA are located in introns
(57, 58), Aire might be involved in the direct control of miRNA
transcription as well as in the miRNA biogenesis coupled to host
mRNA processing. Interestingly, Aire has been implicated in Lin-
28-dependent regulation of let-7 miRNA in ES cells (59). As for
Aire being regulated by miRNA, a recent report showed that Aire

expression could be controlled by miRNA-220b in an artificial cell
culture system (60). It is unclear whether this regulation occurs in
human or mouse mTECs in vivo, and no conserved miRNA target
sites in Aire mRNA have been predicted in silico by the currently
available target prediction tools.

miRNA expression in the thymic epithelium is indispensable
for the establishment of central tolerance. Thus, TEC-specific abla-
tion of Dicer or DGCR8 (and therefore all mature miRNA) leads
to premature thymic involution, diminished T cell output and
increased susceptibility to autoimmune disease (18, 61–63). The
lack of Dicer in TECs leads to a dramatic decline in pGE – a possible
underlying cause of the breach in central tolerance. Interestingly,
pGE decline affects both Aire-dependent and -independent TRAs
in mTECs and cTECs (18), and precedes the loss of TEC cel-
lularity (18, 62). The premature involution phenotype of Dicer
and DGCR8 mutants is recapitulated in the mouse model lacking
miR-29a (61). However, these latter mutants do not exhibit the
defects in epithelial organization that result from the loss of all
canonical miRNA (61, 63) and show only mild delayed impair-
ment of Aire-dependent pGE (18), suggesting that miRNA other
than miR-29a play a role in TEC maintenance and function. Fur-
ther investigation of the mTEC-specific miRNA and their targets
will be needed to comprehend the miRNA-dependent regulation
of pGE.

How do post-transcriptional inhibitors facilitate pGE? First,
in rare cases, miRNA were shown to activate rather than repress
gene expression, e.g., through binding to the 5′-UTR [Ref. (64);
Figure 2A]. Gene expression activation can also happen indirectly
after the miRNA-mediated downregulation of proteins involved in
transcriptional repression or RNA decay (53, 65). Finally, miRNA
could affect pGE indirectly by promoting the maturation of
mTECs. Indeed, FoxN1–Cre-mediated loss of Dicer causes alter-
ations in mature mTEC surface antigen profiles (18) and might
impair the early stages of mTEC lineage progression (Figure 2B).
The fact that mTEC lineage progression and terminal differen-
tiation seem to be unaffected in miR-29a mutants (18) suggests
that other miRNA play a role in these processes. Of note, stem-
ness, differentiation, and senescence of keratinocytes seem to be
controlled by a complex network of p63 and several miRNA (66).
Given the close parallels between keratinocyte and mTEC differ-
entiation (67) further studies on miRNA function in the thymus
should reveal whether a similar network determines turnover,
maintenance, and function of mTECs.

Apart from being required for mTEC development and pGE,
TEC-specific miRNA might play a role in other mechanisms of
central tolerance establishment. One of these mechanisms involves
a transfer of TRAs from mTECs to dendritic cells (68). Though
it is unclear by which precise means the antigens are shared, exo-
some transfer is a possible route (69). Intriguingly, a recent study
showed that human thymic exosomes contain TRAs and TEC-
specific miRNA (70). miRNA transfer via exosomes was shown
to be functionally relevant in various settings. Thus, T cells share
their miRNA by this pathway with antigen-presenting cells and
other T cells (71, 72). Whether transfer of miRNA from mTECs
to dendritic cells indeed takes place via exosomes and the func-
tional significance of this exchange will be clarified in future
studies.
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FIGURE 2 | miRNAs regulate pGE and mTEC maturation. (A) The
majority of miRNA primary transcripts (pri-miRNA) are generated by polII
and further processed by Drosha/DGCR8 in the nucleus to the stage of
pre-miRNA. Pre-miRNA are exported into the cytoplasm by Exportin 5,
and further cleaved by the Dicer complex, resulting in mature miRNA.
These can be incorporated into the RNA-induced silencing complex
(RISC), which binds the target mRNA and usually mediates translational
block and/or mRNA degradation. In mTECs, miRNA are indispensable for
the expression of Aire and Aire-dependent and -independent TRAs. The
mechanism of miRNA action in pGE is not known, and it might involve
activation of transcription or translation of TRAs. Aire might be involved in

regulating the expression of miRNA-encoding genes and in the generation
of miRNA precursors from the so-called miRtrons. (B) mTEC maturation
and pGE rely on an intact miRNA pathway, as Dicer deletion in TECs
blocks different stages of mTEC lineage progression. Several miRNA are
specifically upregulated upon mTEC maturation; however, their exact
function and the influence they exert on TRA and Aire expression remains
to be determined. The fact that mTEC-specific miRNA are found in human
thymic exosomes suggest the possibility of mTECs sharing these small
regulators with other antigen-presenting cells in the course of central
tolerance induction. RISC, RNA-induced silencing complex; mTEC,
medullary thymic epithelial cell; pGE, promiscuous gene expression.

www.frontiersin.org March 2015 | Volume 6 | Article 93 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Immunological_Tolerance/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ucar and Rattay Epigenetic and post-transcriptional control of pGE

CONCLUDING REMARKS
Promiscuous expression of peripheral antigens in the thymus
keeps autoimmunity at bay; grasping its exact molecular mech-
anism will lead to a better understanding of how central tolerance
is established and maintained. Transcription factor-mediated gene
expression has been shown to go hand in hand with epigenetic and
post-transcriptional regulation in many peripheral tissues. Recent
studies of these modes of regulation in mTECs suggest that epi-
genetic marks are deposited and interpreted in an unconventional
way in the course of pGE, and that miRNA play an important
role in maintaining TRA expression. The future challenge lies in
finding out how exactly mTECs utilize ubiquitous epigenetic and
post-transcriptional mechanisms to achieve and maintain their
extraordinarily broad expression profiles. Will pGE eventually turn
out to employ a unique scenario of gene regulatory modes for the
sake of preserving tolerance?
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Numerous studies emphasize the relevance of thymocyte–thymic epithelial cell (TECs)
interactions for the functional maturation of intrathymic T lymphocytes. The tyrosine kinase
receptors, Ephs (erythropoietin-producing hepatocyte kinases) and their ligands, ephrins
(Eph receptor interaction proteins), are molecules known to be involved in the regulation
of numerous biological systems in which cell-to-cell interactions are particularly relevant.
In the last years, we and other authors have demonstrated the importance of these
molecules in the thymic functions and the T-cell development. In the present report,
we review data on the effects of Ephs and ephrins in the functional maturation of both
thymic epithelial microenvironment and thymocyte maturation as well as on their role in
the lymphoid progenitor recruitment into the thymus.

Keywords: thymocytes, thymic epithelium, Eph, ephrin, thymic cell seeding

Introduction

The thymus is a lymphoid organ engaged in the production and homeostatic maintenance of
functionally mature T cells, in which developing thymocytes interact sequentially with an epithelial
network whose three-dimensional architecture is essential for the process. Thymocyte–thymic
epithelial cell (TEC) interactions are, therefore, key for thymus functioning (1), and Eph and ephrins,
two groups of molecules involved in these cell-to-cell contacts, have emerged as novel elements
governing numerous thymic processes (2). Eph represent the largest group of receptor tyrosine
kinases; they bind to surface ligands, ephrins and, according to their sequence homology and affinity
for ephrins, are divided into EphA (10members), which preferentially binds ephrins-A (6members),
ligands bound to the membrane through glycosylphosphatidylinositol, and EphB (6 members)
that bind ephrins-B (3 members) that contains a transmembrane domain and a short cytoplasmic
tail (3).

Eph/ephrins constitute an ubiquitous system due to the high number of members and their
promiscuity, such that a single receptor can bind different ligands and vice versa, albeit with distinct
affinities (4). Eph/ephrin-mediated interactions result in bidirectional signaling in the expressing
cells, forward signals transmitted by Eph, and reverse in the ephrin-expressing cell (5), providing
different cell responses depending on the multiple combinations and the direction of signaling (4).
Eph/ephrins activate numerous signaling pathways that regulate cytoskeleton and cell adhesion but
also gene transcription (6).
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Eph and/or Ephrin are Expressed in the
Thymus and Their Absence Results in
Profound Thymic Hypocellularity

Eph and ephrins, particularly those of the B group, are expressed
widely in both thymocytes and TECs, frequently the same cell co-
expressing the two types of molecules. They appear early in the
thymic primordium (7–9) and a lack of these results in decreased
numbers of both thymocytes (9–11) and TECs (12). The thymic
hypocellularity of Eph/ephrin-deficient mice correlates with con-
comitant increased apoptosis affecting distinct thymocyte subsets
(9–11). However, in all these Eph/ephrin-defectivemice, it is diffi-
cult to establish conclusive correlations between thymic cellular-
ity and thymocyte proliferation. Even in thymocyte-conditioned
ephrin-B1/B2 thymuses, despite the evident reduced cellular-
ity, there are increased proportions of proliferating DP thymo-
cytes (11), suggesting some attempt to recover the thymic cell
content (13).

Thymic epithelial cells (TECs) have been proposed to have
a limited expanding capacity and the number of endodermal
progenitors that organize the early thymic primordium could
determine the final size of embryonic and adult thymus (14).
Indeed, there is little information on the control of TEC survival
and proliferation in general, and by the EphB group in partic-
ular. Developing thymuses of EphB2- and/or EphB3-deficient
mice show increased TEC apoptosis largely affecting immature
EpCAM+MTS20+ cells and EpCAM+Ly51+ cTECs, and in vitro
activation of either EphB or ephrin-B signaling decreases the
proportions of apoptotic WT TECs, whereas its disruption in
RTOCs resulted in increased TEC death. Importantly, RTOCs
established only with EphB-defective TECs yielded higher pro-
portions of apoptotic cells than those observed when RTOCs were
established with TECs and total thymocytes, suggesting that TEC
survival is governed to a greater extent by Eph–ephrin-mediated
thymocyte–TEC interactions (12).

On the other hand, decreased seeding of lymphoid progenitors,
which periodically colonize the thymus, could also contribute
to organ size and cellularity. Reduced lymphoid seeding into
the thymus can be achieved by a reduction in the colonizing
progenitor numbers and/or altered mechanisms of migration.
Although, EphB2-deficient mice show decreased proportions of
early BM hematopoietic progenitors compared to WT mice (15)
their contribution to thymic seeding is a matter of discussion
(16). On the contrary, BM cells expressing molecules known to be
involved in thymus seeding (i.e., CCR7, CCR9, CXCR4, PSGL1)
(17, 18) neither exhibit significant changes in EphB-deficientmice
(15) nor in the numbers of fetal liver CD45+PIRA/B+ precur-
sors (unpublished data). Therefore, the lack of EphB affects the
migratory capacity of progenitor cells rather than the proportions
of colonizing cells.

In vivo and in vitro assays have demonstrated that the lack of
EphB in either lymphoid progenitors or thymic stroma reduces
thymic seeding in both fetal (19, 20) and adult mice (15). In vitro
colonization of WT FTOCs by EphB2−/− or EphB3−/−, but not
EphB2-LacZ, Lin− BM cells was significantly reduced compared
to that shown by WT cells (19) and adult WT mice showed lower
seeding into the thymus after in vivo injection of EphB-deficient

Lin− BM cells than WT ones (15). This inability of progeni-
tors to enter both fetal and adult thymus seems to be depen-
dent, at least partially, on a direct role of Ephs in regulating
cell migration, as previously reported for the cell migration of
peripheral lymphocytes (21–23). In vitromigration ofmutant pro-
genitor BM cells was significantly reduced through fibronectin,
laminin, or chemokine gradients, with a more severe reduction
in EphB2-deficient cells than in EphB2-LacZ counterparts. More-
over, EphB2 stimulation by coated ephrin-B1Fc proteins inhibited
laminin- and fibronectin-governingmigration as well as CXCL12,
CCL21, and CCL25-induced chemotaxis, but EphB2-LacZ cells
did not exhibit reduced migration (19). This indicates that the
extracellular domain of EphBpromotesmigration ligand indepen-
dently while forward signaling promotes cell arrest.

In both experimental approaches, all tested BM progenitors,
included WT ones, showed decreased migration into the EphB-
deficient thymus, particularly the EphB2−/− one, which indicates
the relevance of the thymic microenvironment in the process (15,
19). In fact, in both adult and fetal thymuses, decreased migration
correlated with reduced production of ECM components, such as
fibronectin and laminin, and chemokines (i.e., CXCL12, CCL21,
CCL25) (15, 19). Furthermore, P-selectin involved in progenitor
cell migration into the adult thymus (17), showed reduced expres-
sion on endothelial cells of both EphB2- and EphB3-deficient
thymuses, but not of those of EphB2-LacZ cells, and decreased
migration in EphB2−/− thymuses also correlated with reduced
endothelial expression of ephrin-B1 and ephrin-B2, whereas
in EphB3−/− thymuses, the reduction only affected ephrin-B1,
reinforcing the idea that forward signals mediated by the pair
EphB2/ephrin-B1 are particularly important for intrathymic lym-
phoid recruitment (15).

All these results, therefore, support a role for reduced thymic
seeding in the thymic hypocellularity found in Eph/ephrin
mutants. However, increased apoptosis of both thymocytes and
TECs seems to be more relevant because, whereas thymuses
deficient in both CCR7 and CCR9 with profoundly altered lym-
phoid colonization later recover normal thymocyte numbers (24),
EphB2- and EphB3-deficient thymuses do not show that compen-
satory property; on the contrary, they increase their hypocellular-
ity by increasing the death of DN and DP cells (9).

Thymic Alterations Observed in
Eph/Ephrin-deficient Mice Reflect the
Relevance of Thymocyte–TEC Interactions

Eph/ephrin deletion results in specific phenotypic alterations in
both thymocytes and TECs. The lack of EphA4 results in a
blockade of T cell maturation that results in a drop in DP cell
proportions (10) and blockade of Eph/ephrin-A interactions in
FTOCs treated with fusion proteins affects the maturation of
immature CD4−CD8+ thymocytes (2). In correlation, these thy-
muses show a profound collapse of the cortical epithelial network
that significantly reduces the number of cell layers and their orga-
nization whereas immature K5+K8+ TECs and areas devoid of
epithelial cell marker expression increase. Apparently, the epithe-
lial defects determine the lymphoid phenotype because mutant
FTOCs grafted under the WT kidney capsule produce decreased
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proportions of DP thymocytes (10) while mutant thymocytes in a
WT stroma do not reproduce these changes. On the contrary, in
Eph/ephrin-B-deficientmice, alterations are very important in the
epithelial component but less severe in the developing thymocytes
(9, 11, 25). EphB2- andEphB3-deficient thymuses exhibitminimal
changes in the T-cell subset proportions, with an increased per-
centage of total DN cells and reduction of DN3 (CD44−CD25+)
cells (9). However, in this case, EphB acts cell-autonomously on
T-cell differentiation as grafted EphB-deficient alymphoid fetal
thymus lobes colonized by WT lymphoid progenitors exhibit nor-
mal T-cell differentiation (26), while chimeric thymuses generated
with EphB2−/− and EphB2/B3−/− Lin− BM cell progenitors
injected into SCID mice showed a blockade of T-cell maturation
at DN stage and chimeras established with EphB3−/− progenitor
cells showed a partial blockade at this same point that resulted in
low numbers of DP cells (27). Therefore, both EphB2 and EphB3
autonomously control thymocyte development at DN to DP tran-
sition. Both molecules are also necessary for the maturation of DP
cells to SP thymocytes as demonstrated in reaggregates (RTOCs)
formed with EphB2- or EphB3-deficient DP thymocytes and WT
TECs (28). Eph expression on thymocytes is also important for
thymocyte survival as in all these chimeric SCID mice there were
increased proportions of apoptotic thymocytes, principally DP
and SP CD4+ cells. Both thymocyte differentiation and survival
seem to be dependent on Eph/ephrin-mediated thymocyte–TECs
interaction and regulated by both forward and reverse signals, as
SCID mice receiving EphB2-LacZ cells showed DP cells but did
not produce SP thymocytes and did not show increased apopto-
sis. Therefore, although Eph forward signaling on thymocytes is
necessary for thymocyte development, reverse signaling on inter-
acting cells, presumably thymic epithelium, partially rescues DN
cell progression to the DP cell compartment, and is important for
cell survival (27). Accordingly, conditional deletion of ephrin-B1
and/or ephrin-B2 in TECs also affects the T-cell development and
the lack of ephrin-B2 is presumably the most important, although
ephrin-B1 also contributes, as double mutants show amore severe
affectation (11). In addition, specific deletion of these ephrins in
thymocytes results in a partial blockade of T-cell maturation at the
DN3 stage (11, 29, 30) and increased thymocyte apoptosis (11).
The phenotype is similar in single and double mutants suggesting
that both molecules have a cooperative rather than redundant
role in thymocyte maturation (11). A similar phenotype, however,
has not been found when EphB2- or EphB3-deficient thymocytes
are developed in a WT stroma in a bone marrow transplantation
experiment into SCID mice (26).

Eph and ephrin signaling also affect thymic epithelium devel-
opment and organization as in both EphB- and ephrin-B-
mutant mice there is a profound transformation of thymic
epithelium that exhibits altered TEC phenotypes (i.e., immature
K5+K8+MTS10+ medullary epithelial cells (mTECs), cortical
K5−K8−MTS20+ cells and K5+K8+ cells) and altered 3D orga-
nization. This change provokes a 2D structure that results in
increased epithelial cysts, collapsed epithelium, and large areas
devoid of epithelial cell markers (11, 25, 31). These latter areas,
of unknown significance, also exist in WT thymuses and in other
mice with defects inmolecules, such as Foxn1, Kremen 1, or Stat3,
involved in TEC maturation (32–34), but are specially developed

in EphB-deficient thymuses. They contain thymocytes and blood
vessels, frequently surrounded by enlarged sheaths of connective
tissue, and are different in cortex and medulla: the former ones
contain thymocytes and some sheathed blood vessels, whereas
in the medulla mTECs delimit areas with enlarged blood vessels,
increased numbers of ER-TR7+ fibroblasts, components of the
ECM (collagen IV, fibronectin, and laminin) (35), dendritic cells
(36), and thymocytes in some areas (37–39).

Cortical areas devoid of epithelium have been described by
others (37–39), receiving the name of epithelial-free areas (EFAs).
EFAs are MHC class-II negative, little vascularized areas that
contain abundant thymocytes frequently in division (39) reported
as accumulations of DP thymocytes that do not undergo positive
selection and will die subsequently by apoptosis (40). On the
contrary, medullary epithelium-free areas that express several
connective tissue markers could have a mesenchymal condition
(35) and represent areas in which Eph-deficient TECs have under-
gone an epithelial–mesenchymal transition, losing their epithelial
cell markers and acquiring a mesenchymal nature. In Eph mutant
mice, EFAs could arise as a consequence of impeded intermingling
and mutual exclusion of thymocytes and TECs caused by the lack
of Eph–ephrin signaling as known in other systems (41).

Presumably, TEC maturation is autonomously governed by
EphB2 and EphB3 expressed on TECs, as some of the pheno-
typical alterations found in EphB2- or EphB3-deficient mice can
be reproduced in grafted mutant lobes colonized by WT host
thymocytes. However, EphB expressed on thymocytes can also
play a non-autonomous role since the epithelial phenotype of
these grafted mutant lobes was not exactly the same as that found
in EphB-deficient thymuses (26), and chimeric SCID thymuses
receiving EphB-deficient thymocytes showed altered histological
organization (27).

Selective deletion of ephrin-B1 and/or ephrin-B2 genes in
thymocytes or TECs permits to determine the relevance of
Eph/ephrin signaling in distinct thymic components (11). In all
ephrin-B-deficient mice, but particularly in the double mutants
with ephrin-B1 and ephrin-B2 deleted in TECs, the thymuses are
small, with scarcely developed cortex and medulla, high num-
bers of K5+K8+ cells, and numerous epithelial cysts. Ephrin-B2
deletion in TECs causes altered distribution of Ly51+ cortical
(c) TEC subsets defined as Ly51hi cells that express DLL4, and
would constitute the cortical niche of DN thymocytes and Ly51lo

cTECs that would represent that of DP cells. Thus, ephrin-B1
deletion in TECs but, also, the lack of ephrin-B1 and B2 in thymo-
cytes induce a cortex in which rounded groups of cTECs express
Ly51 homogeneously, suggesting that ephrin-B1 and B2 expressed
in both thymocytes and TECs cooperate in regulating the dif-
ferentiation and distribution of cortical niches (11). Further-
more, ephrin-B deletion from both thymocytes and TECs affects
medulla organization. Themedulla of thymuses bearing a deletion
of ephrin-B1 or B2 in thymocytes, or those without ephrin-B1 or
ephrin-B1/B2 in TECs, shows increased numbers of large mono-
layered epithelial cysts formed largely by immature K5+K8+,
sometimes MTS20+, TECs, but rarely containing mature UEA1+
or MTS10+ cells that would represent an arrest of medulla
development at an immature stage. They also contain numerous
UEA1hi cells that form small cysts surrounded by a thin rim of
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UEA1lo/−MTS10+ cells that would represent a certain blockade
of medulla organization at a late stage of development, in which
medullary TEC subsets UEA1hiMTS10− and UEA1loMTS10+
develop but MTS20+ cell expansion and 3D organization are
affected (31).

Interestingly, these studies support that ephrin-B1 and ephrin-
B2 deletion in TECs result in different TEC phenotypes sim-
ilar to those generated by ephrin-B1 or ephrin-B2 deletion
in thymocytes. This, once again, indicates that Eph/ephrin-
mediated thymocyte–TEC interactions are also important for
TEC development and arrangement. Although, these molecules
also mediate homotypic interactions (thymocyte–thymocyte;
TEC–TEC), presumably their involvement in thymocyte–TEC
interactions is more important to explain their role in the thy-
mus. However, there are no complementary phenotypes when
the effects of ephrin deletion in TECs are compared with
those observed in thymuses with EphB-deficient epithelium,
or when Eph mutant or ephrin mutant phenotypes are com-
pared. This indicates that in the thymus, as in other systems
(4), the final balance of forward and reverse signals in thy-
mocytes and/or TECs would be more relevant than the mere
presence/absence of certain Eph or ephrins. Besides, other fac-
tors must contribute to the complexity of the system as pheno-
types in different mutant models are more severe in mice with
C57/Bl6–CD1 mixed background than in the non-inbreed strain
C57/Bl6 (10, 11).

In vitro experiments also clearly support the relevance of
Eph/ephrin-mediated thymocyte–TEC interactions in thymus
biology: ephrin-B1Fc proteins added to RTOCs, formed by fetal
TECs and DP thymocytes, disorganize the 3D thymic epithelial
network, prevent thymocyte–TEC association, and alter TCRαβ
signaling (28). Numbers and timing of the establishment of cell
conjugates also change when they are established with EphB-
deficient DP thymocytes (27).

On the other hand, proper T-cell maturation occurs thanks
to the movement of developing thymocytes throughout the
thymic parenchyma, facilitating their interactions with dis-
tinct niches favoring the necessary thymocyte–TEC crosstalk
(42). Analysis by confocal microscopy of the positioning of

EphB2-deficient or WT Lin− BM progenitors in reconsti-
tuted FTOCs demonstrated that higher numbers of WT cells
reached the central area of WT lobes than of EphB2-deficient
cells (19). Furthermore, EphB2−/− total thymocytes migrate
less efficiently through laminin or fibronectin or in response
to CXCL12, CCL21, or CCL25, than WT cells. More impor-
tantly, when forward EphB2 signals were activated by ephrin-
B1Fc protein treatment, there was a significant reduction in
the migration of all EphB2−/−, but not EphB2-LacZ, thymo-
cyte subsets. Therefore, together with chemokines and ECM
molecules, the migration of developing thymocytes throughout
the thymic stroma could be promoted by inactivated EphB2
receptors, and negatively modulated by EphB2/ephrin-B interac-
tions (19).

Remarkably, these profound phenotypic alterations observed
in mice deficient in distinct Eph or ephrins do not corre-
late with immune deficiencies and/or pathological processes.
EphA4−/− thymuses (10) and those with deleted ephrin-B1
and/or ephrin-B2 in TECs (11) show decreased proportions of
bothDPTCRαβhi cells andCD69+ cells that could reflect an inef-
ficient TCRαβ selection. However, peripheral lymphoid organs
of both EphA4−/− mice (10) and EphB-deficient mice (9) show
decreased numbers of total T cells, but not significant changes in
the proportions of distinct T-cell subsets. In addition, there are no
changes in the central and peripheral TCRαβ repertoire expressed
onCD4+ T cells of EphB2- and/or EphB3-mutantmice, except for
an increased proportion of Vβ3+CD4+ cells in both thymus and
lymph nodes of the three mutants (43).

In summary, Eph and ephrins are molecules that through
mediating thymocyte–TEC interactions are involved in numerous
processes occurring into the thymus, including cell migration into
and through thymus, T-cell differentiation, and TEC maturation.
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Through synthesis and presentation of neuroendocrine self-antigens by major histocom-
patibility complex proteins, thymic epithelial cells (TECs) play a crucial role in programing
central immune self-tolerance to neuroendocrine functions. Insulin-like growth factor-
2 (IGF-2) is the dominant gene/polypeptide of the insulin family that is expressed
in TECs from different animal species and humans. Igf2 transcription is defective in
the thymus of diabetes-prone bio-breeding rats, and tolerance to insulin is severely
decreased in Igf2−/− mice. For more than 15 years now, our group is investigating the
hypothesis that, besides a pancreotropic action, infection by coxsackievirus B4 (CV-
B4) could implicate the thymus as well, and interfere with the intrathymic programing
of central tolerance to the insulin family and secondarily to insulin-secreting islet β
cells. In this perspective, we have demonstrated that a productive infection of the
thymus occurs after oral CV-B4 inoculation of mice. Moreover, our most recent data
have demonstrated that CV-B4 infection of a murine medullary (m) TEC line induces
a significant decrease in Igf2 expression and IGF-2 production. In these conditions,
Igf1 expression was much less affected by CV-B4 infection, while Ins2 transcription
was not detected in this cell line. Through the inhibition of Igf2 expression in TECs,
CV-B4 infection could lead to a breakdown of central immune tolerance to the insulin
family and promote an autoimmune response against insulin-secreting islet β cells.
Our major research objective now is to understand the molecular mechanisms by
which CV-B4 infection of TECs leads to a major decrease in Igf2 expression in these
cells.

Keywords: enterovirus, coxsackievirus, thymus, self-tolerance, type 1 diabetes, insulin family, insulin-like growth
factor 2

Introduction

The major genetic determinants of type 1 diabetes (T1D) are the class II major histocompatibility
complex (MHC) on chromosome 6 –which accounts for almost 50% of the genetic susceptibility – as
well as a number of non-MHCgenes, including the variable number of tandem repeat (VNTR) alleles
upstream of the INS/IGF2 (IDDM2) locus, PTPN22,CCR5, IL2RA, IL10, andCTLA4. However, only
10% of the individuals bearing a genetic predisposition will develop T1D, and more than 50% of
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monozygotic twins are discordant for the disease, which illustrates
the implication of environmental influences in T1D pathogenesis
(1) as for all autoimmune diseases.

Type 1 diabetes occurrence has been related to a number of
viruses but epidemiological studies have provided the strongest
evidence that enteroviral infections, in particular, by coxsack-
ievirus B (CV-B), are frequent events preceding T1D onset
(2–7). Human enteroviruses include human pathogens, such
as poliovirus, CV-B, rhinovirus, and echovirus. Using RT-PCR
detection, CV-B genome was detected in 5 out of 12 (42%) newly
diagnosed T1D patients and in 1 of 12 (8%) patients during the
course of T1D. None of T2D patients and none of 15 healthy
controls had enterovirus sequences in their blood (8). CV-B4 E2
can persistently infect human β cells (9) and a CV-B4 variant
infects β cells leading to a disturbance of proinsulin synthesis
and insulin secretion (10). The mechanism most accredited to
explain the link between CV-B infection and T1D is a specific
tropism of the virus for insulin-secreting islet β cells (11) – that
is, mediated by their expression of the specific virus receptor –
and a bystander activation of autoreactive T cells by antigens
released by β cells after their damage caused by CV-B infection
(12). Another crucial study has shown that CV-B4 is able to
infect β cells in patients with T1D and that such infection is
associated with both inflammation and severe β-cell functional
disturbance (13). The persistent aspect of enterovirus infection
is also an important factor to take into account [for a complete
review, see Ref. (14)]. Very recently, this scenario received a
strong support through the Diabetes Virus Detection (DiViD)
study that detected a low-grade enteroviral infection in the islets
of Langerhans collected from living patients newly diagnosedwith
T1D (15). This study does not prove a causal relationship between
enterovirus infection and T1D, but is the first to detect enterovirus
in pancreatic islets from patients close to the time of their diag-
nosis of T1D. The association between T1D and viral infections
has also been previously reinforced by a genetic linkage between
T1D susceptibility andhost determinants of the antiviral response,
such as the antiviral oligoadenylate synthase (OAS1) and the
interferon-induced helicase (IFIH1), which intervene in innate
immunity by recognition of RNA genome of picornaviruses, such
as enteroviruses (16, 17). Besides this pancreotropism of CV-B,
we have been exploring for a long time another mechanism that
could play an essential and complimentary role in the develop-
ment of the diabetogenic autoimmune response, namely, thymus
infection.

Thymus-Dependent Central Self-Tolerance
to Islet β Cells

As previously demonstrated that the thymus epithelium plays
a unique role in programing central self-tolerance to neuroen-
docrine functions [complete reviews in Ref. (18–20)], as well
as to many tissue-related antigens (21). Following gene tran-
scription in the thymus, neuroendocrine precursors are pro-
cessed not according to the classical model of neurosecretion
but for presentation by, or in association with, the thymic
MHC machinery. In the thymus, MHC presentation of neu-
roendocrine self-peptides promotes two intimately associated but

paradoxical events: (1) negative selection and deletion of self-
reactive T cell clones and (2) Generation of self-specific regu-
latory T (tTreg) cells that are able to inhibit in the periphery
those “forbidden” self-reactive T cells that escaped thymic clonal
deletion. The AutoImmune REgulator (AIRE) protein controls
intrathymic transcription of neuroendocrine genes, including
all the members of the insulin gene family (22) that are tran-
scribed in the murine thymus according to the following hier-
archy: Igf2> Igf1> Ins2> Ins1. Thymic self-antigen expression
and AIRE function are also regulated by epigenetic and post-
translational mechanisms (23).

There is now mounting evidence that a defect in intrathymic
negative selection is implicated in the development of autoim-
mune endocrine diseases, such as T1D (24–27), although this
is still discussed for the non-obese diabetic (NOD) thymus (28,
29). Contrary to Igf1 and Ins2, Igf2 transcription is defective
in the thymus of diabetes-prone of bio-breeding (BB) rats (30),
one of the two animal models of T1D with the NOD mouse.
In humans, INS transcripts are measured at a lower level in the
thymus from fetuses with short class I VNTR alleles, the second
genetic trait (IDDM2) of T1D susceptibility (31, 32). Both VNTR
alleles and AIRE determine the concentration of INS transcripts
in the human thymus (33). In the mouse, Ins2 is predominantly
transcribed in the thymus, while Ins1 expression is dominant in
islet β cells, which leads to a higher immunological tolerance to
Ins2. This explains why the breeding of Ins2−/− mice onto the
NOD background accelerates insulitis and diabetes onset (34),
whereas insulitis and diabetes are markedly inhibited in Ins1−/−

congenic NOD mice (35). There is now firm evidence that Ins1
codes for the primary insulin-derived autoantigenic epitopes tack-
led by the autoimmune diabetogenic process (36, 37). In addition,
there is a very rapid onset of autoimmune diabetes after a thymus-
specific Ins1 and Ins2 deletion resulting from the crossing of
Ins1−/− mice with mice presenting a specific Ins2 deletion in
Aire-expressingmedullary thymic epithelial cells (TECs) (38). The
insulin transactivator Mafa also regulates Ins2 transcription in
the thymus and targeted Mafa disruption induces appearance of
anti-islet antibodies (39).

Tolerogenic Properties of IGF-2: Multiple
Facets

Given the direct relationship between the expression level of
a protein/peptide in the thymus and the immunological toler-
ance to this protein/peptide (40), the hierarchical profile of the
intrathymic expression of insulin-related peptides (IGF-2> IGF-
1> insulin) suggests that tolerance to insulin-like growth factor-2
(IGF-2) is high and that tolerance to insulin is low. This is indi-
rectly supported by the fact that insulin is the primary autoantigen
of T1D (36, 37) while no autoimmune response against IGF-2 has
ever been reported. Conversely, the highly immunogenic proper-
ties of insulin might actually be related to its very low expression
in rare medullary (m) TEC subsets. Recently, the alternate variant
INS–IGF-2 has been identified as a novel autoantigen in T1D
(41), but there is still no data about the expression of this hybrid
protein in thymic epithelium. Spontaneous autoimmune diabetes
does not develop in Igf2−/− mice although these mice display
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a marked lower tolerance to insulin, which evidences that Igf2
expression mediates cross-tolerance to insulin and is required for
the programing of a complete immunological tolerance to this
protein (42). The homologous sequences Ins B9-23 and IGF-2
B11-25 compete for binding to the MHC-II DQ8 allele, and their
presentation to PBMCs isolated from DQ8+ T1D adolescents
induce distinct cytokine profiles with a regulatory profile for IGF-
2B11-25 that is not observed for Ins B9-23 (43). Two recent studies
have further evidenced the tolerogenic properties of IGF-2 by
enhancement of Treg cell functions in an experimental model of
food allergy (44), as well as promotion of antigen-specific Breg cell
properties (45).

Our studies have also shown that the blockage of IGF-mediated
signaling in the thymus severely interferes with T-cell growth and
differentiation blocks T-cell differentiation (46), which was fur-
ther confirmed by the demonstration that an antibody to CD222
(the IGF-2 receptor, an endosomal transporter that regulates pro-
tein trafficking) plays a central function in the initiation of T-cell
signal transduction (47).

Therefore, the predominant expression of IGF-2 in the thymus
is not only associated with a higher immunological tolerance
to this protein but also seems to confer significant tolerogenic
properties to IGF-2- and IGF-2-derived antigen sequences. On
these experimental bases, we have proposed the novel concept
of “negative self-vaccination” that is under current development
through DNA vaccine methodology (48).

Thymus Infection by Enteroviruses

Given the programing of self-tolerance to islet β cells in the
thymus and its defect in the development of the autoimmune
diabetogenic response, we investigated the question of a putative
role played by an enteroviral infection in an acquired dysfunction
of the threemajor properties of this primary lymphoid organ: thy-
mopoiesis, establishment of central self-tolerance, and generation
of self-antigen-specific tTreg cells. A persistent replication of CV-
B4 E2 (a “diabetogenic” CV-B strain) and JBV (a prototype CV-B
strain) in primary cultures of human TECs was demonstrated by
detection of positive- and negative-strand viral RNA in extracts
from cell cultures, by immunofluorescence staining of the VP1
capsid protein, and by release of infectious particles up to 30 days
after culture inoculationwithout any apparent cytolytic effect. The
persistence of CV-B4 infection was associated with an increased
rate of TEC proliferation and with an increase in the secretion
of the cytokines IL-6, LIF, and GM-CSF in the supernatants. CV-
B4 replication was not restricted to the CV-B4 E2 strain and did
not depend on the genetic background of the host. However,
cytokine secretion in human TEC cultures infected with CV-
B4 E2 was higher than in cultures infected with CV-B4 JBV
(49). Therefore, although they are considered as cytolytic viruses,
enteroviruses can infect persistently some tissues, such as thymus
and pancreas.

Coxsackievirus B4 E2 is also able to infect human fetal thymic
organ cultures (FTOC). Viral RNA was detected by quantita-
tive RT-PCR in CV-B4 E2-infected human FTOC, which sup-
ported high yields of virus production, as well as in flow-sorted
thymic T cell populations for 7 days after infection. In FTOC,

double positive CD4+CD8+ thymocytes were the principal target
cells of infection and were progressively and severely depleted
with no sign of apoptosis. Of note, massive thymic depletion of
developing T cells and the subsequent CD4+CD25+ tTreg cells
was shown previously to result in systemic autoimmunity (50).
CV-B4 E2 replication caused a major up-regulation of MHC class
I expression on thymic T cells and TECs. This MHC class I
up-regulation was correlated with markers of CV-B4 infection
(viral RNA quantification, release of infectious particles), and
this was the result of a direct infection rather than caused by
production of soluble factors, such as interferon-α (51). Interest-
ingly, Krogvold et al. also reported an overexpression of MHC
class I in the islets of all the patients included in their recent
study (15). CV-B4 E2 was similarly shown to disturb T-cell dif-
ferentiation in infected murine FTOC (52). In concordance with
previous observations (53), CV-B4 oral inoculation of outbred
mice results in a systemic spreading of viral RNA and a detection
of viral RNA in thymus, spleen and blood up to 70 days after
inoculation (54). Finally, CV-B4 infection of a murine mTEC
line induces a dramatic decrease in Igf2 transcription and IGF-
2 production in long-term cultures of this cell line, while Igf1
transcripts were much less affected and Ins2 transcripts were not
detected in these experimental conditions (55). Inoculation of the
mTEC line with CV-B3, CV-B4 JVB, or echovirus 1 also induced
a decrease in IGF-2 production, while herpes simplex virus 1
stimulated IGF-2 production. As already cited, a defect of Igf2
expression in the thymus was suggested to play a role in the
development of autoimmune diabetes in the diabetes-prone BB
rat (30). Although these effects need to be reproduced in vivo,
they strongly support our hypothesis that CV-B4 infection of the
thymus could disrupt central self-tolerance to the insulin family,
and could also enhance CV-B4 virulence through induction of
central immunological tolerance to this virus. We are currently
investigating the molecular mechanisms responsible for the CV-
B-induced decrease of thymic IGF-2 expression in this mTEC
line and in vivo after oral inoculation of CD1 mice. Since the
CV-B-mediated effects in mTEC line are more pronounced on
IGF-2 protein than on Igf2 transcription, we concluded that post-
transcriptional and/or post-translational mechanisms could be
both involved.

As previously discussed by Zinkernagel (56), fetal exposure to
maternal enterovirus infections should also be taken into account.
One study has shown that enterovirus infection during the first
trimester of pregnancy is not associated with a higher risk for
T1D in the childhood (57), but another one has evidenced that
such maternal enterovirus infection was a risk factor in offspring
diagnosed with T1D between 15 and 30 years of age (58). More
recently, a study has investigated that the effects of CV-B4 E2 oral
inoculation of CD1 mice at days 4, 10, or 17 of gestation. Severe
inflammation of the pancreas and higher glucose blood levels were
observed only when dams were previously infected and, in partic-
ular, at day 17, thus, in the late phase of pregnancy (59). CV-B4 E2
oral inoculation of pregnant mice is also associated with fetal thy-
mus infection and disturbance of T-cell differentiation (Jaïdane,
personal communication). Obviously, the question of materno-
fetal transmission of enterovirus infection highly deserves to be
further investigated.
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FIGURE 1 | Coxsackievirus B4 persistent infection of thymus and
pancreatic islets are closely associated and implicated in T1D
pathogenesis.

Conclusion: A Model Associating
CV-B-Induced Dysfunction of Central
Tolerance and Peripheral Bystander
Activation

In addition to the necessity of standardization for the serological
andRT-PCRdetection ofCV-B infection as recommendedbyGale
and Atkinson (60), there is also an urgent need for a thorough
investigation of the relationships between CV-B and the host
immune system (Figure 1). What is our current knowledge about
this point? CV-B4 is able to persistently infect α and β cells
in human pancreatic islets, and to cause functional impairment
and β-cell death characterized by nuclear pyknosis. The CV-B4-
induced damage to the islet cells causes release and presenta-
tion of sequestered islet antigens. Through bystander activation,
autoreactive T cells initiate the diabetogenic autoimmune process.
Now, with regard to the origin of these autoreactive T cells,

more and more experimental evidence points to the generation
in the thymus of “forbidden” T cell clones due to a failure of the
central tolerogenic mechanisms. This thymus defect results in a
progressive enrichment of the peripheral T cell repertoire with
self-reactive T cells and a decreased generation of self-antigen
tTreg cells. From our collaborative work, it appears that CV-
B4 is also able to persistently infect the epithelial and lymphoid
compartments of the thymus. CV-B4 infection of the thymus leads
to increased secretion of diverse cytokines synthesized in TECs,
to a severe depletion of double positive CD4+CD8+ thymocytes,
and to marked up-regulation of MHC class I molecules expressed
by TECs and double positive thymic T cells. Moreover, CV-B4
infection of a murine mTEC line induces a marked decrease
in Igf2 transcription and IGF-2 production. Therefore, a CV-B4
persistent infection of the thymus may lead to significant thymus
and immune dysregulation that associates:

• A significant impairment of thymus-dependent self-
tolerance issued from the decrease in the presentation of
insulin family related self-antigens, and putatively a direct
viral interference with self-antigen presentation (61).

• An induction of central tolerance to CV-B4 and a secondary
decrease of anti-CV-B4 CD8+ T-cell mediated response, so
that further exposure to the virus could promotemore severe
damage to the peripheral target tissues.

If further research confirmed such rational assumption based
on our new knowledge of thymus functions, then an anti-CV-B4
vaccination could be considered as a strategy for T1D preven-
tion in regions with a high incidence of this disease such as in
Scandinavian countries (62).
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Developing thymocytes interact sequentially with two distinct structures within the thy-
mus: the cortex and medulla. Surviving single-positive and double-positive thymocytes
from the cortex migrate into the medulla, where they interact with medullary thymic
epithelial cells (mTECs). These cells ectopically express a vast set of peripheral tissue
antigens (PTAs), a property termed promiscuous gene expression that is associated with
the presentation of PTAs by mTECs to thymocytes. Thymocyte clones that have a high
affinity for PTAs are eliminated by apoptosis in a process termed negative selection,
which is essential for tolerance induction. The Aire gene is an important factor that
controls the expression of a large set of PTAs. In addition to PTAs, Aire also controls the
expression of miRNAs in mTECs. These miRNAs are important in the organization of the
thymic architecture and act as posttranscriptional controllers of PTAs. Herein, we discuss
recent discoveries and highlight open questions regarding the migration and interaction
of developing thymocytes with thymic stroma, the ectopic expression of PTAs by mTECs,
the association between Aire and miRNAs and its effects on central tolerance.

Keywords: AIRE, miRNA, MTEC, thymus gland, thymocytes, cell adhesion, promiscuous gene expression, central
tolerance

Introduction

The induction of central immune tolerance is an increasingly complex and intricate process that
occurs within the thymus (1, 2). Inside this organ, immature thymocytes interact sequentially and
in a three-dimensional architecture with two distinct structures: the cortex and the medulla. In
the cortex, the double-negative (DN) and double-positive (DP) thymocytes interact with cortical
thymic epithelial cells (cTECs), allowing MHC-mediated self-peptide presentation to DP thymo-
cytes expressing the α/β T cell receptor (α/β TCR), featuring intermediate affinity/avidity. Positive
selection is a result of this interaction, which causes DP thymocytes to differentiate into mature
single-positive (SP) thymocytes (3, 4).

The DP thymocytes that do not undergo positive selection are eliminated through death by
neglect. Thereafter, the surviving SP and DP thymocytes migrate to the thymic medulla, where they
interact with medullary thymic epithelial cells (mTECs). These cells are very peculiar because they
ectopically express a large set of peripheral tissue antigens (PTAs) (5–8). Therefore, it is possible to
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find insulin, a PTA that represents pancreatic beta cells, and a
myriad of other autoantigens in the thymus.

The immunological significance of this property, which was
termed promiscuous gene expression (PGE) (9–12), is associated
with the presentation of PTAs by mTECs to SP and DP thy-
mocytes. Thymocyte clones that express α/β TCR with a high
affinity for PTAs are eliminated by apoptosis in a process termed
negative selection or clonal deletion, which is essential for central
tolerance induction (13–16). This process prevents the passage of
autoreactive T cell clones to the periphery, which could provoke
aggressive autoimmunity.

Therefore, the migration of thymocytes within the thymus
enables the physical association of these cells with different thymic
microenvironments (15, 17). Immunologists are interested in elu-
cidatingwhich chemotactic factors and/or adhesionmolecules are
involved in this process (18, 19).

Another very important factor in central tolerance is the
autoimmune regulator (Aire) gene that controls the expression of
a large set (but not all) of PTAs in mTECs (20, 21). Mutations
in these gene that lead to a loss of Aire function can result
in autoimmune polyendocrinopathycandidiasis-ectodermal dys-
trophy (APECED), an autoimmune disease characterized by
hypoparathyroidism, candidiasis (yeast infection), and adrenal
insufficiency (22–24). The mechanism of the Aire gene as a tran-
scriptional regulator of Aire-dependent PTAs and the effect of
point mutations found in the Aire gene sequence on clinical phe-
notypes (APECED or other autoimmune diseases) have received
attention in recent years (25–27).

In addition, researchers have observed that in addition to PTAs,
Aire controls the expression of microRNAs (miRNAs) in mTECs
(28). In turn, miRNAs are important for the organization of
thymic architecture and act as posttranscriptional controllers of
PTAs (29, 30).

In this mini-review, we briefly discuss (1) the main aspects of
three-dimensional thymus architecture, focusing on themigration
and interaction of developing thymocytes with the thymic stroma
and positive and negative selection; (2) the ectopic expression
of PTAs by mTECs and role of the Aire gene; and (3) the cur-
rent evidence for the link between Aire and miRNAs in thymic
architecture and the induction of central tolerance.

Thymus Architecture, Migration of
Thymocytes and the Induction of Central
Tolerance

Developing thymocytes interact with the thymic microenviron-
ment while they migrate and differentiate within the organ. This
microenvironment is subdivided into two main regions, and each
region is composed of different cell types that produce soluble and
non-soluble molecules that can modulate thymocyte migration
and maturation (31, 32). Thymic lobules are divided into cortical
and medullary regions that are connected by a cortico-medullary
junction. The cortex microenvironment is filled with cTECs,
thymic nurse cells (TECs-thymocyte-forming lymphoepithelial
complexes), macrophages, migratory dendritic cells (DCs), and
fibroblasts. The medullary region contains mTECs, macrophages,

resident and migratory conventional DCs, plasmacytoid DCs,
fibroblasts, and B cells (16) (Figure 1A). Both regions are
filled with a network of extracellular matrix (ECM) molecules,
such as type I and IV collagens, fibronectin, and laminin. Sol-
uble molecules, such as hormones, cytokines, growth factors,
chemokines, and sphingolipids, are also found in the thymus and
are produced by the lymphoid and non-lymphoid compartments.
These soluble moieties can be present in the ECM and mediate
cell–ECM and cell–cell interactions (33–35).

Thymocyte differentiation and migration occur simultane-
ously in the thymic microenvironment. T cell progenitors enter
the cortico-medullary region via post-capillary venules (36) and
rapidly migrate through the cortex toward the subcapsular zone,
where DN thymocytes are primarily located. Subsequently, thy-
mocytes migrate to the middle cortex and begin expressing both
CD4 and CD8 co-receptors, becoming DP cells. During this stage,
cells are selected based on the rearrangement of TCR genes,
which leads to the membrane expression of productive TCRs.
Cells that do not express productive TCRs undergo apoptosis,
whereas cells expressing productive TCRs continue the differ-
entiation process. Then, cells with TCRs that interact with high
avidity with MHC-presented self-antigens expressed by mTECs
andDCs undergo apoptosis in a process termed negative selection
(37). The presentation of self-antigens by mTECs is controlled
by Aire and guarantees the deletion of autoreactive T-cell clones,
supporting central tolerance (38). In this context, cells with TCRs
that interact with low/median avidity with MHC-presented self-
antigens survive and continue the maturation process. Survival
signals mediated by TCRs and CD4/CD8 co-receptors lead to the
down-regulation of a co-receptor, and thymocytes becomemature
CD4+CD8− or CD8+CD4− SP cells (Figure 1A).

Thymocyte localization and guidance are controlled by
ECM molecules and chemokines, among others molecules, and
their respective receptors. For example, the entrance of T-cell
progenitors in the thymus is controlled by CCL21/CCR7 and
CCL25/CCR9 (chemokine/chemokine receptor) interactions
(39). Migration of immature cells within the thymus is controlled
by CXCL12/CXCR4 and CCL20/CCR6 interactions (40, 41), and
CCR7 signaling is essential for the migration of DP thymocytes
to the medulla (42). Moreover, CCR7 is involved in thymocyte
egress, which is also controlled by sphingosine-1-phosphate
receptor 1 signaling (43). The absence of such molecules in the
thymus not only abrogates thymocyte development but also
induces changes in the histological organization of the organ (44).

Thymic architecture and organization are essential for proper
T-cell development and depend on both the lymphoid and non-
lymphoid compartments. Alterations in one compartment can
affect the other and consequently modify T-cell development and
the repertoire of exported mature T cells to peripheral lymphoid
organs. For example, Rag mutations substantially impair thymo-
cyte development and consequently affect the distribution and
maturation of TECs, diminishing the proportion of mTECs and
inducing a lack of AIRE protein expression (45, 46). Lack of
AIRE expression can in turn directly affect negative selection and
break central tolerance. Interestingly, Aire deficiency can modu-
late the intrathymic expression of chemokines as a control mech-
anism of thymocyte development (47). In this context, one can
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FIGURE 1 | (A) Thymocyte development and interactions with
microenvironmental cells. T cell development occurs while cells migrate and
interact with thymic microenvironmental components, including thymic
epithelial cells, dendritic cells, and macrophages. These interactions are
responsible for the selective processes, which lead to the formation of a
self-restricted T-cell repertoire. In this context, medullary thymic epithelial
cells (mTECs) play an essential role by expressing AIRE, which control the
expression of a set of peripheral tissue antigens (PTAs) that are presented to
developing thymocytes. High avidity of MHC-PTAs presented by mTECs
with TCRs lead to thymocyte death by apoptosis and consequently avoid

self-reactive T cell maturation. DN, double-negative CD4−CD8−

thymocytes; DP, doublepositive CD4+CD8+; CD4, single-positive
CD4+CD8−; CD8, single-positive CD8+CD4− thymocytes; cTEC, cortical
thymic epithelial cell; mTEC, medullary thymic epithelial cell. CMJ,
cortico-medullary junction. (B) The transcriptional and posttranscriptional
control pathway of promiscuous gene expression. The peripheral tissue
antigens (PTAs) expressed in medullary thymic epithelial cells (mTECs) are
transcriptionally controlled by Aire within the nuclear compartment, which
also controls the expression of miRNAs. Within the cytoplasm, the miRNAs
control Aire and PTAs.

argue that chemokines and othermolecules controlling thymocyte
migration (such as ECM molecules) could also modulate Aire
expression.

The Role of Aire in the Ectopic Expression
of PTAs in the Thymus

During the induction of central tolerance in the thymus, self-
reactive regulatory T cells (Treg) are negatively selected, even if
these cells play a role in the periphery. In fact, all sets of antigen-
presenting cells, including cTECs, mTECs, and thymic DCs, act
as self-antigen peptide presenting cells (6–9, 48–53). Thymic DCs
present only the PTA peptides that were expressed and processed
by mTECs (38).

The expression of PTAs by mTECs is a key process of
(auto)immune representation. Due to the wide-ranging diversity
of PTAs expressed by these cells, this phenomenon has been
termed PGE (5, 9, 12, 48, 54–62).

The primary implication of this type of gene expression, which
is heterogeneous and ectopic, is associated with the maintenance
of immune homeostasis and controlling the reactivity and self-
aggressive autoimmune diseases.

Notably, cTECs and mTECs are essential but not sufficient for
these selection events (55). The cTEC-derived signals may regu-
late the positive selection of thymocytes that recognize the MHC-
peptide complexes themselves; however, mTECs that express
AIRE help ensure tolerance to self-antigens (63).

A subset of mTECs express the Aire gene (chromosome 10C1
in mice and 21q22.3 in humans) (64) and the claudin proteins

(Cld3 or Cld4) on their surface. In these cells, AIRE and the
claudin proteins act as adhesion molecules and represent the
major proteins that contribute to the molecular architecture of
cell junctions. All Cld3+, Cld4+, and Aire+ adult TEC cells
strongly express MHC class II and CD80 molecules on their
surface (51).

“Immature” CD80−/MHC-II− mTECs express a limited set
of PTAs, whereas “mature” CD80+/MHC-II+ mTECs exhibit
greater PTA diversity, including PTAs whose expression is Aire
dependent (11). These findings have led some researchers to pro-
pose “the terminal differentiation model”; i.e., mTECs undergo a
continuous process of differentiation similar to the skin or intesti-
nal epithelium, and the full complement of PGE is contingent
upon this process (55). mTEC cells are very peculiar due to their
unique gene expression pattern. They are capable of expressing
more than 19,000 protein-coding genes, including “ectopic” genes
that correspond to PTAs. Currently, no other known cell type
expresses such a large set of genes (65).

We next sought to determine whether these cells also have
unique machinery for gene expression control.

Although the transcriptional control of PGE is partially
exerted by Aire, mutations in this gene cause severe autoim-
munity that involves various organs and tissues in both mice
and humans. In humans, this disease is a syndrome termed
APECED, and patients have mutations along the Aire sequence,
suggesting thatmutations inAire trigger aggressive autoimmunity
(22, 66).

However, the existence of APECED patients who lack Aire
mutations (67–69) suggests that other factor(s) may be involved
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in controlling aggressive autoimmunity. These observations led
us to wonder if temporal changes and a slight deregulation of
wild-type Aire expression during development could contribute
to autoimmunity.

Variation of Aire expression might disturb Aire-dependent
PTAs in the thymus and consequently trigger aggressive autoim-
munity, a hypothesis that was previously tested by our group (58).
This hypothesis is a promising subject for further research and is
currently being studied in humans with thymic cells isolated from
Down syndrome patients, which feature trisomy of chromosome
21, providing a unique opportunity to evaluate the effect of natural
Aire gene dosage in humans (70–72).

The functional role ofAire has beendemonstrated using knock-
out (KO) mice. Aire in mice and humans encodes a protein with
affinity for DNA that functions as a positive transcription factor
regulating the expression of PTAs mTECs, but AIRE can also act
as a negative regulator of other genes (8, 10, 73–76).

The link between Aire expression and the induction of thymo-
cyte apoptosis, a biological process crucial for negative selection,
has been demonstrated (37, 77). However, according to our best
knowledge, no investigation has assessed this link considering
the possible effect of variations in Aire expression in mTECs
on adhesion with thymocytes and the induction of apoptosis.
Alternatively, Aire-deficient mTEC cells may lose their adhesion
ability. This question is still open for further research.

Interestingly, the AIRE targets low-transcribed genes. It inter-
acts with hypomethylated promoter regions in the chromatin
through its PHD1 domain (62, 78–82).

However, recent evidence has demonstrated that the AIRE acts
indirectly in regulating PTA transcription. According to Giraud
et al. (83), AIRE can be considered an unusual transcription
factor because it does not appear to function as a typical trans-
activator. These authors demonstrated that AIRE activates PTA
transcription by releasing stalled RNA Pol II from blockage at the
promoter region of its target genes. Thismodel suggests that AIRE
acts during the elongation stage of transcription rather than at
transcription initiation (83). The “promiscuity” of Aire on a large
set of downstream PTA genes might be due the unspecific mode
of action of RNA Pol II on different promoter regions, but this
remains to be determined.

A new exciting possibility for the Aire mechanism is its influ-
ence in controlling alternative splicing of PTA genes in mTECs.
Aire has been shown to increase the amount of measurable exons
per gene and enables the production of PTAs from these exons
(84); these properties might significantly increase the diversity of
PTA isoforms in mTECs and consequently increase the range of
self-representation.

It is possible that aggressive autoimmunity is associated with an
imbalance of PTAs isoforms in mTECs.

The Link Between Aire and miRNAs

In our view, not only Aire but also miRNAs may play a role
in central tolerance. This hypothesis is plausible considering the
vast range of action of miRNAs, which affect more than half of
all mRNAs originating from protein-coding genes in human or
murine cells (85).

This range of action is expected to reach mRNAs encoding
proteins involved in the central tolerance mechanism, including
PTA mRNAs and Aire mRNA itself.

First, researchers evaluated the role of the endoribonuclease
Dicer, a key enzyme implicated in miRNA maturation, on thymic
function. They found that Dicer-KO mice exhibit progressive
degeneration in thymic architecture and function, provoking
alterations in T cell differentiation and peripheral tolerance, pin-
pointing miRNA-29a as a specific miRNA participating in this
process (29).

Then, mice lacking Dicer expression in the thymic epithelia
were found to exhibit a set of abnormalities, including alter-
ations in the expression profiling of cTEC and mTEC mRNAs.
T cells obtained from a Dicer-deficient thymus were pathogenic
and produced aggressive autoimmunity (86). These finding were
instrumental for further research on the role of miRNAs in central
tolerance induction.

Moreover, thymic epithelial cells isolated from murine or
human thymuses feature overlapping of miRNA signatures, sug-
gesting evolutionary conservation of miRNA expression profiles
(87). These authors also demonstrated that Aire expression is
associated with maturation-dependent expression of miRNAs.

However, a direct demonstration that Dicer and consequently
miRNAs play a role in TEC-thymocyte adhesion, which is crucial
for positive and negative selection, is still lacking. This question is
open for further investigation.

As discussed above, the AIRE acts in close association with
RNA Pol II (83). Because this polymerase transcribes miRNAs in
addition to mRNAs (88–92), Aire may affect miRNA expression.

Our group was the first to directly demonstrate this possibil-
ity (28). We showed that in murine mTECs, Aire controls the
transcription of miRNAs located within a genomic region that
encompasses an open-reading frame (ORF of Gm2922 mRNA).

This finding enabled further evaluation of the role played by
Aire-dependent miRNAs in the posttranscriptional control of
PTAs. Thus, we reconstructed miRNA–mRNA interaction net-
works from mTECs isolated from BALB/c (non-autoimmune)
or non-obese diabetic (NOD) (autoimmune) mice. As expected,
dozens of PTA mRNAs interacted with miRNAs. Interestingly,
none of the classical Aire-dependent PTAs (e.g., Ins2) interacted
with miRNAs, strongly suggesting that they are somewhat resis-
tant to posttranscriptional control (30).

What would be the consequences of a lack of miRNA action
on these PTAs? Could this lack of action aid autoantigen syn-
thesis by mTECs, consequently inducing tolerance? What causes
these Aire-dependent PTAs to be “resistant” to miRNA action?
Could changes in their 3′UTRs (length or mutations) or imbal-
ance in miRNAs expression levels (or both) cause this resistance?
We have suggested that there may be changes in length of the
3′UTR sequence of Aire-dependent PTAs expressed in mTECs
(30). Researchers including our group and the group of Mathieu
Giraud in Paris are now challenged to evaluate the structure of
mRNAs in general and/or the 3′UTRofmRNAsof PTAs expressed
in mTECs compared with other cell types.

Based on these recent results, is possible to drawn a pathway
for the transcriptional and posttranscriptional control of PGE in
mTECs (Figure 1B). Within the nuclear compartment, the AIRE
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controls PTA and miRNA transcription (Aire-dependent PTAs
and miRNAs). Once in the cytoplasm, miRNAs play a role in
the posttranscriptional control of Aire and PTA mRNAs. Would
PTA mRNAs with altered 3′UTRs be refractory to the action of
miRNAs?

Although these aspects have only recently begun to be explored,
they represent new, exciting questions for present and future
research on the molecular genetic basis of immune tolerance.

Concluding Remarks

The molecular genetic control of central tolerance remains an
open question in immunology. The identification and cloning of
the Aire gene was instrumental in studying themolecular genetics
of this process. As the primary controller of PTA expression in
mTECs, Aire is the master pillar of central tolerance. Aire expres-
sion is common in the thymus; and this observation led to the idea
of PGE.However, Aire did not fit well as a classic transcription fac-
tor. The AIRE operates in conjunction with various other partner
proteins in the release of RNA Pol II shortly after the initiation of

PTA gene transcription. This property enabled better understand-
ing of the vast range of AIRE activity. Recently, miRNAs have been
found to be the modulators of post-transcriptional controllers in
the thymus. Researchers are now challenged with deciphering the
transcriptional and post-transcriptional control pathway of PGE
involving Aire and miRNAs.
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Thymocytes go through several steps of maturation and selection in the thymus in
order to form a functional pool of effector T-cells and regulatory T-cells in the periphery.
Close interactions between thymocytes, thymic epithelial cells, and dendritic cells are of
vital importance for the maturation, selection, and lineage decision of the thymocytes.
One important question that is still unanswered is how a relatively small epithelial cell
population can present a vast array of self-antigens to the manifold larger population
of developing thymocytes in this selection process. Here, we review and discuss the
literature concerning antigen transfer from epithelial cells with a focus on exosomes.
Exosomes are nano-sized vesicles released from a cell into the extracellular space. These
vesicles can carry proteins, microRNAs, and mRNAs between cells and are thus able to
participate in intercellular communication. Exosomes have been shown to be produced by
thymic epithelial cells and to carry tissue-restricted antigens and MHC molecules, which
may enable them to participate in the thymocyte selection process.

Keywords: exosome, thymic epithelial cell, tolerance, tissue-restricted antigen, miRNA

Introduction

Exosomes are small (30–100 nm) vesicles released by cells into the extracellular space. They are
a subgroup of extracellular vesicles (EVs) formed by inward budding of membranes in the late
endosomes, thus creating a multi-vesicular body (MVB), which may dock to the outer membrane
of the cell and release its content of exosomes (1, 2). In hindsight, the recycling of the transferrin
receptor back to the cell membrane from an endocytic route in developing erythrocytes was the
original description of exosomes in 1983 (3). One particularly striking finding, which in recent years
has heavily influenced exosome research, was the identification of microRNA (miRNA) and mRNA
in exosomes (4). Exosomal transfer of functional miRNA and mRNA has been demonstrated to
result in regulation of gene expression through miRNA as well as translation of proteins through
mRNA in recipient cells (5, 6). Exosomes are abundant in, and fairly easy to purify from, bodily
fluids such as saliva (7), peripheral blood (8), bronco alveolar lavage fluid (9), and urine (10, 11), and
one area of extensive research is the use of exosomes as diagnostic biomarkers for various pathologic
conditions (12).

Exosomes have also shown therapeutic promise, e.g., in a study by Zitvogel and co-workers it was
demonstrated that tumor peptide-pulsed dendritic cells (DCs) released exosomes that carried MHC
I and II as well as co-stimulatory molecules and that these exosomes primed cytotoxic T-cells and
suppressed the growth of established tumors (13). Native antigens on tumor-derived exosomes can
be taken up by DCs and cross-presented to tumor-specific cytotoxic T-cells (14).

Other studies have revealed that exosomes are capable of presenting antigens to T-cells. In 1996,
Raposo et al. (15) reported that both human and murine B-cell derived exosomes could induce an
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antigen-specific MHC II-restricted T-cell response. Exosome-like
structures, named tolerosomes, are released from epithelial cells
of the small intestine and have been shown to induce specific
tolerance to fed antigens (16). As with the B-cell derived exo-
somes, tolerosomes seem to deliver antigens in a MHC dependent
manner (17).

The thymus is the organ responsible for the establishment of
an immune competent but yet self-tolerant T-cell population.
While the extreme diversity of the mature effector T-cell speci-
ficities is a prerequisite for an effective defense against invading
pathogens/infectious agents, the negative selection of self-reactive
effector T-cells and the positive selection of T regulatory cells
ensure tolerance to self-structures in order to avoid autoimmu-
nity. To ensure a self-tolerant peripheral population, thymocytes
are selected against a comprehensive set of self-antigens (18) of
which many are produced and presented by medullary thymic
epithelial cells (mTECs) (19) under control of the autoimmune
regulator (AIRE) (20). The importance of a functional thymic
antigen expression has been validated in models where even a
defect expression of a single antigen may lead to development
of peripheral organ-specific autoimmunity (21). Of equal impor-
tance is the selection of regulatory T-cells (Tregs) within the
thymus, foremost from clones with a somewhat elevated TCR
avidity for self-antigens (22). Proper thymic Treg development
is also dependent on AIRE, and in particular for the func-
tionally important Tregs that are induced during the perinatal
period (23).

Since thymocytes outnumber TECs by several orders of mag-
nitude, and the fact that each individual TEC only expresses a
small subgroup of self-antigens (18, 24), a possible dissemination
of antigen fromTECs has been discussed in order to aid individual
TECs to cover an extended volume of the thymic microenvi-
ronment (25). This would increase the number of possible anti-
gen–thymocyte interactions and allow additional impact of the
thymic DC populations. Antigen transfer could potentially occur
by different means such as apoptotic bodies, nanotubes, and/or
exosomes. Here, we review the current literature and argue that
thymic exosomes have a potential role in T-cell maturation and
selection.

Antigen Transfer and Indirect Antigen
Presentation in the Thymus

Clearly, direct cell–cell contacts in the thymus are pivotal for the
development of a functional T-cell population (26). The addition
of antigen transfer between thymic cell populations could, how-
ever, optimize thymic cell communication by making antigens
more available to the pool of developing thymocytes. Through
the last two decades, a number of studies performed under dif-
ferent experimental conditions have demonstrated the transfer
of antigens from TECs to DCs. Already in 1994, Kyewski and
co-workers observed intercellular transfer of Eα52–68 (a-chain of
the MHC class II allele I-Ed, amino acids 52–68) from TECs to
thymic DCs in a unidirectional fashion (27). They proposed that
this mechanism “may enhance the efficacy of tolerance induction
by spreading self-antigens” (27). Subsequent experiments with

OVA-specific TCR-transgenic mice (RIP-mOVA model) revealed
that transfer of antigen to and presentation by hematopoietic cells
also applies to MHC class I-restricted epitopes, since it resulted in
deletion of both MHC class I- and MHC class II-restricted OVA-
specific thymocytes when OVA was expressed only by mTECs
(28). The identity of the hematopoietic cells in the RIP-mOVA
studywas unclear but further studies have revealed that deletion of
CD11c+ cells using CD11c-Cre mice crossed with mice express-
ing diphtheria toxin under the control Rosa Locus containing
a loxP-flanked STOP cassette results in increased frequencies
of CD4+ thymocytes and increased CD4 T-cell infiltration into
peripheral tissues (29). Likewise, Aschenbrenner and colleagues
have observed that DCs capture mTEC-derived antigens and take
part in deletional tolerance (30). This observation was strength-
ened by a study by Koble and Kyewski who demonstrated a
presentation of TEC antigens by DCs. In their study, thymic but
not peripheral DCs presented TEC-derived OVA to OVA-specific
T-cells and were constitutively provided with mTEC-derived pro-
teins (31). Further, unidirectional antigen transfer from mTEC
to DCs was shown to also apply for native endogenous self-
antigens in vivo (31). Non-redundant contribution of DCs and
mTECs is further suggested based on simultaneous hematopoietic
MHC class II deficiency and reduced MHC II expression on
mTECs; this combination has an additive worsening effect on
negative selection compared to either of the single deficiencies
alone (32).

Also, the Treg formation seem to be dependent of DC-TEC
cross-talk, which was elegantly demonstrated in a study on bone
marrow chimeras in which CD28/B7 signaling was disrupted
on either hematopoietic-derived antigen-presenting cells (APCs)
or on TECs. The results showed that when B7 was restored
in the hematopoietic-derived APCs this was enough to restore
Treg numbers, hence hematopoietic-derived APCs and TECs can
independently contribute to Treg development (33). The transfer
of material in this study was unidirectional toward DCs, and
the discussed mechanisms were primarily exosomes and apop-
totic bodies. Transfer of material from TECs to DCs has also
been demonstrated in the work by Hubert and co-workers in
which OT-II restricted thymocytes were deleted by a soluble
form of OVA that required presentation by bone marrow-derived
cells (34). Using tetramer staining and transfer of bone marrow
with ablated expression of MHC II, Taniguchi and co-workers
found an abolished negative selection of T-cells specific for the
AIRE-controlled self-antigen retinoid-binding protein (35). They
concluded that intercellular transfer of the interphotoreceptor
retinoid-binding protein peptide epitope of amino acids 277–290
from AIRE-expressing mTECs to bone marrow-derived APCs is
important for negative selection of the investigated peptide. In re-
aggregated thymic organ cultures, both the thymic epithelium and
conventional DCs (as opposed to plasmacytoid DCs) have been
shown capable of eliminating autoreactive CD4 thymocytes and
to support natural Treg (nTreg) development on their own (36).
In addition, Perry and co-workers recently reported that CD8 α+

DCs preferentially acquire and present AIRE-dependent antigens
to developing Treg cells (37). They also showed that bonemarrow-
derived APCs and mTECs play non-overlapping roles in shaping
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of the T-cell receptor repertoire in terms of deletion and Treg
selection (37).

T-Cell Stimulation by Exosomes, With
or Without DCs

The capacity of exosomes to directly stimulate target cells has been
debated. Some studies have suggested that there is an absolute
need for DC presence for efficient exosomal stimulation of T-
cells (38–40), while others have shown that exosomes are able
to directly stimulate T-cells without any aid from DCs (15, 41–
44). Models in which the efficiency of exosomal T-cell stim-
ulation increases by DC presence have also been put forward
(45). Interestingly, thymic exosomes carry ICAM-1 (46), which
is both required for efficient T-cell responses (40) and involved
in exosome binding to DCs (47). In addition to ICAM-1, thymus
exosomes carry the opsonin MFGE8, which indicates that thymic
exosomes would readily be engulfed by APCs such as DCs (46).
TEC exosomes are also strongly positive for HLA-DR, which
suggest a possibility that they contribute with antigens not only
indirectly via, e.g., DCs but also directly to developing thymo-
cytes (48). The presence of co-stimulatorymolecules on exosomes
may be important for their potential to affect the maturation
of nTreg precursors (49). However, whether TEC exosomes that
carry antigen presentation molecules and antigens need APCs or
not to participate in thymocyte selection in vivo is not known.
Possibly, thymic exosomes could take part in negative selection
both directly by interacting with the thymocytes or indirectly by
delivering antigens to APCs such as thymic DCs (Figures 1A,B).

Characteristics of Thymic Exosomes

The first observation of exosome-like structures in thymic tissue
was made by Wang and co-workers (50). These mouse thymic
exosomes were characterized by high content of TGF-beta, CD9,
and MHC II. In human beings, thymic exosomes were originally
characterized with the use of explant cultures (46). The thymic
exosomes shared features with exosomes from other sources, such
as a size distribution of 30–100 nm for a majority of the vesicles,
density peaking at 1.18–1.19 g/ml, which is less than the typical
density of histone dense apoptotic bodies (51), and presence of
typical exosomal proteins such as TSG101, CD9, CD81, andHLA-
DR. Since these thymic exosomeswere isolated fromwhole thymic
tissue, the cellular source could not be determined, and the vesicles
weremost probably amix of exosomes fromdifferent sources, e.g.,
thymocytes, TECs, and DCs. Even so, tissue-restricted antigens
(TRAs), defined by protein-expression allowed in a maximum of
five tissues in the human protein atlas (HPA) (52) were identi-
fied in the exosomes (2′,3′-cyclic-nucleotide 3′phosphodiesterase,
reticulon 3, tropomyosin 3, and the GNAS protein), which suggest
that a portion of the exosomes originates from the thymic epithe-
lium (46). These four identified TRAs are possible candidates
to participate in the selection/maturation processes within the
human thymus. With the exception of one study that address
thymic expression of 2′,3′-cyclic-nucleotide 3′phosphodiesterase
(53), the four TRAs are hitherto unaddressed in thymic research.
Interestingly, 2′, 3′-cyclic-nucleotide 3′phosphodiesterase is rec-
ognized by IgG autoantibodies in multiple sclerosis patients (54).

In addition, tropomyosin 3 was suggested to be a candidate
antigen in endometriosis (55).

Other traits seem to be specific for thymic exosomes compared
to exosomes from other sources. One is the massive yield of
~1mg of thymic exosomes per gram of thymic tissue grown in
an explant culture (46). Other characteristics typical for thymic
exosomes are the low expression of CD63 and the high expression
of TSG101 on their surface (46). However, low levels of CD63
could have functional implications for thymic exosomes since
it has been reported that siRNA mediated knockdown of the
tetraspanin CD63 in a B-lymphoblastoid cell line (LCL) resulted
in an increased CD4+ T-cell recognition as evaluated by IFN-γ
production. The increase inT-cell response could not be explained
by changes in antigen processing or MHC II-expression (56).
Instead, equal amounts of exosomes from CD63low LCL cells and
control LCL cells stimulated the T-cells to comparable degrees, but
the CD63low LCL cells producedmore exosomes, which in the end
enhanced the total T-cell-stimulatory capacity of the CD63low LCL
cells.

Formal proof that TECs are able to produce exosomes was
provided with the use of an approach in which primary cultures of
TECs were established under selective conditions to eliminate the
presence of thymocytes, DCs, fibroblasts, and peripherally pro-
duced exosomes (48, 57). The results showed that TECs produce
exosomes and that these exosomes contained TRAs and a number
of known autoantigens (48). Among the identified autoantigens
in TEC exosomes were myelin basic protein (58), collagen type II
(59), TITIN (60), heat shock protein 60 [connected with various
autoimmune diseases (61)], transglutaminase 2 (62), desmoglein
1, and desmoglein 3 (63). In addition to autoantigens, previ-
ously reported mTEC-enriched TRAs were present in TEC exo-
somes, e.g., glutathione S-transferaseM3 (GSTM3), LDL receptor,
monocarboxylate transporter 4 (SLC16A3), mucins (MUC5B and
MUC18), and myosin 1B (MYO1B) (48).

The observation that TEC exosomes have a higher fraction
of proteins classified as TRAs (24%) compared to the fraction
of TRAs in the cultured TECs (21%) could argue for a directed
loading of TRAs into the exosomes (48).

Exosomes isolated directly from thymic tissue and exosomes
isolated from TEC-cultures share a set of TRAs, such as 2′,3′-
cyclic-nucleotide 3′ phosphodiesterase, which strengthens that
thymic explant exosomes are partly of epithelial origin and that
their TRA-content can be analyzed with whole thymic tissue as
starting material. See Figure 1C for a schematic summary of the
TEC-exosomal proteome. In addition, the presence of antigen-
presenting molecules together with TRAs indicates that exosomes
could transfer intact functional peptide-MHC complexes.

RNA Transfer by Exosomes

Exosomes have been increasingly recognized for their ability to
transfer functional miRNAs and mRNAs between cells (4), and
recently, it was shown that Tregs utilize exosomes for transfer of
miRNA in order to functionally silence effector T-cells (64). The
importance of miRNAs in the thymus has rendered an increased
interest, andmiRNAshave been shown to affect promiscuous gene
expression under the influence of AIRE (65, 66), to be involved in
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FIGURE 1 |Models for transfer of exosomal material from TECs to other
thymic cell populations. Transcription and translation of AIRE-dependent
TRAs followed by TRA loading of exosomes, MVB fusion with the mTEC plasma
membrane leading to exosome release from mTECs. The exosomes could then

take an intercellular route from mTECs directly (A) to CD4+, CD8+, and
developing nTregs and/or indirectly (B) via thymic DC or other APCs. (C) The
proteome of thymic exosomes typically include exosomal markers, e.g.,
tetraspanins, TEC associated proteins, TRAs, and autoantigens (46, 48).
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FIGURE 2 | (A) Thymic exosomes contain miRNAs that could be taken up by
adjacent cells. (B) Suggested model describing two principally different routes
for TRA loading onto exosomes. TRAs could be engulfed by phagophores,

which are processed to autophagosomes that fuse with MVBs where TRA
carrying exosomes are formed. Alternatively, TRAs are directly directed into
MVBs.

thymic involution (67) and the maintenance of thymic epithelia
(68). Thymic exosomes contain a number of miRNAs, and among
them is the highly TEC enriched miRNA hsa-miR-149 (66). The
role of thymic miRNAs has been thoroughly reviewed recently
(69). Possible roles for miRNA sharing within the thymus by
exosomes include control of TEC development and regulation of
TRA expression. See Figure 2A for a schematic view of miRNA
incorporation into TEC exosomes.

Exosomal Biogenesis – Crossroads with
Autophagy?

Autophagy may serve as a way to generate self-peptides from
endogenously produced proteins that allows loading ontoMHCII,
and the constitutive autophagy process present in the thymus
has been suggested to be involved in the negative selection and
Treg formation (70). Thymic exosomes carry proteins involved
in autophagy, such as autophagy related protein 7 (46). Two
interesting observations are that a subgroup of TECs is rich
in MVBs (71), and that at the same time, TECs have a con-
stitutive autophagic activity (72). The simultaneous appearance
of autophagic ultrastructure elements and multi-vesicular bod-
ies in TECs support this notion (71). The intersection between
autophagy and exosome formation is illustrated by the regulation
of both autophagy and exosome biogenesis by GAIP interacting

protein C terminus in pancreatic cancer cell lines (73). Exosomal
release is also impaired in mouse embryonic fibroblasts lacking
ATG12-ATG3, and immature autophagosomes are shown to fuse
with MVBs in these cells (74). Whether this also occurs in TECs
is so far unaddressed, but this route could potentially make anti-
gens that are processed in the autophagic machinery available for
export on exosomes and at the same time enhance the loading of
endogenous antigens onto MHC class II molecules (Figure 2B).

Concluding Remarks

Tissue-restricted antigen presentation within the thymic
micromileus is pivotal to establish central tolerance. Antigen
transfer between thymic cell populations, e.g., from mTECs to
thymocytes and DCs is an established phenomenon that is poorly
investigated from a mechanistic point of view. To get a more
comprehensive understanding of central tolerance, the role of
antigen transfer and the responsible vectors, e.g., exosomes, need
to be studied and understood in more depth.

The abundant presence of TRA-containing exosomes in thymic
tissue and the many observations of antigen transfer from mTECs
to DCs lead us to speculate that this antigen transfer is, at least
partly, mediated by exosomes. However, such a mechanism has
not yet been formally proven. Although this review has been
focused on possible antigen transfer by mTEC-derived exosomes
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to DCs and thymocytes, it is not excluded that also cTECs pro-
duce exosomes and that exosomes are shuttling antigens between
different TEC populations. Other questions also remain regarding
thymic exosomes that are equally important to answer in future
studies; do exosomes exist in vivo in enough quantities to be
biologically functional in the context of tolerance induction? If so,
which is the primary route, direct interaction with thymocytes or
indirect via APCs? What is the importance of exosomes for nTreg
induction? Also, does miRNA content of the exosomes affect the
development and maturation of thymic cells? Examples of exper-
imental approaches that could be used to address these questions

are TEC specific inhibition of the ESCRT machinery using the
FOXN1-cre system ormicroinjection of thymic exosomes isolated
from wild type mice into AIRE−/− thymii. The outcome of this
kind of experiments may give hints to whether a therapeutic use
of tailor made exosomes to induce antigen-specific tolerance may
be possible in the future.
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The thymus ensures the generation of a functional and highly diverse T-cell repertoire. The
thymic medulla, which is mainly composed of medullary thymic epithelial cells (mTECs)
and dendritic cells (DCs), provides a specialized microenvironment dedicated to the
establishment of T-cell tolerance. mTECs play a privileged role in this pivotal process by
their unique capacity to express a broad range of peripheral self-antigens that are pre-
sented to developing T cells. Reciprocally, developing T cells control mTEC differentiation
and organization. These bidirectional interactions are commonly referred to as thymic
crosstalk. This review focuses on the relative contributions of mTEC and DC subsets to
the deletion of autoreactive T cells and the generation of natural regulatory T cells. We
also summarize current knowledge regarding how hematopoietic cells conversely control
the composition and complex three-dimensional organization of the thymic medulla.

Keywords: autoimmune regulator, dendritic cells, medulla, medullary thymic epithelial cells, natural regulatory
T cells, negative selection, T-cell tolerance, thymic crosstalk

Introduction

Healthy individuals mount effective T-cell immune responses directed against pathogens while
avoiding autoimmune attacks directed toward self-antigens. The random generation of the T-cell
receptor (TCR) repertoire results in the production of autoreactive TCRs, which necessitates their
selection in the thymus (1). Anatomically, the thymus is compartmentalized into an outer region
called the cortex and an inner region called the medulla. The cortex supports early stages of T-cell
differentiation, including the positive selection of CD4+ and CD8+ thymocytes. Nonetheless, the
cortex also supports a substantial loss of DP thymocytes that are specific for ubiquitous self-antigens
(2, 3). The medulla sustains the induction of T-cell tolerance, which is established by two distinct
main mechanisms: negative selection (also known as clonal deletion) of potentially hazardous
autoreactive T cells, and the production of natural regulatory T (nTreg) cells. Negative selection con-
sists of the deletion of immature T cells bearing TCRs, which are highly reactive against self-antigens
(4, 5). Although this process is remarkably efficient, it cannot completely purge the TCR repertoire
of self-reactive specificities and thus allows potentially hazardous T cells to reach the periphery. To
control potential deleterious effects of autoreactive T cells that have escaped the negative selection
process, the thymus produces a specific subset of T cells called nTregs. This cell type belongs mainly
to the CD4+ T-cell lineage and specifically expresses the transcription factor forkhead box P3
(FOXP3), which is essential for their development and function (6). The induction of T-cell tolerance
is established within themedullarymicroenvironment, which is composed of a dense 3D network of
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antigen-presenting cells (APCs), namely thymic dendritic cells
(DCs) andmedullary thymic epithelial cells (mTECs) (Figure 1A).
In this review, we discuss our current knowledge regarding the
phenotypic features of the different subsets of thymic DCs and
mTECs as well as their relative contribution to the induction of
T-cell tolerance.We also summarize recent progress in our under-
standing of the thymic crosstalk that sustains the composition and
complex three-dimensional (3D) organization of the medulla.

Thymic Medullary APCs Involved in T-Cell
Tolerance Induction

Features of Thymic DCs
In the thymus, DCs represent only approximately 0.5% of the
total thymic cells, which is less than that in other lymphoid

organs. Although peripheral DCs have been long described as
heterogeneous, only recently thymic DCs have also been shown
to constitute a heterogeneous cell population. It is now accepted
that thymicDCs comprise three distinct subsets: two conventional
DC (cDC) subsets and plasmacytoid DCs (pDCs) (Figure 1B)
(7). The two subsets of cDCs, which express high levels of
CD11c, have different origins and can be distinguished based
on specific cell surface markers. The CD11b−CD8αhiSirpα−

(signal regulatory protein α) cDCs develop intrathymically and
are commonly termed intrathymic or resident cDCs. In contrast,
the CD11b+CD8αloSirpα+ cDCs have a myeloid origin and
continuously migrate from the periphery via the blood circu-
lation into the thymus (8). They are referred to as extrathymic
or migratory cDCs. Under steady-state conditions, resident and
migratory cDCs represent two-thirds and one-third of the thymic

FIGURE 1 | The thymic medulla is composed of a dense network of
distinct subsets of DCs and mTECs. (A) Confocal micrograph of a mouse
thymic section stained with antibodies against the DC-specific marker CD11c
(blue) and the mTEC-specific marker K14 (red). (B) Three distinct subsets of
DCs are located mainly in the medulla: resident cDCs (CD11chiCD11b−

CD8αhiSirpα−), migratory cDCs (CD11chiCD11b+CD8αloSirpα+), and pDCs

(CD11cintB220+PDCA-1+). (C) Schematic representation of mTEC
differentiation. mTECs arise from a pool of self-renewing mTEC progenitors.
Distinct stages of mTEC maturation can be identified based on the differential
expression of MHCII, CD80, and Aire. The end stages of maturation can lead to
the emergence of post-Aire mTECs, apoptosis, or to the development of
Hassall’s corpuscle.
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cDCs, respectively (7). Resident cDCs arise from a commonT/DC
precursor and reside exclusively in the thymus throughout their
long life (7, 9, 10). They express CD8α mRNAanddisplayCD8αα
homodimers at their surface. In contrast, migratory cDCs do not
synthesize CD8α mRNA, and the low expression level of CD8α
observed at the surface of this cell type is a consequence of the
uptake of cell surface CD8αβ heterodimers from thymocytes (11).
Strikingly, following their migration in the thymus, migratory
cDCs upregulate CD80 andCD86 costimulatorymolecules as well
as CD11c and MHCII molecules (8). In addition, in contrast to
resident cDCs, migratory cDCs proliferate extensively andmature
in interdigitating cDCs. Consequently, migratory cDCs overall
exhibit a more activated phenotype compared with their resident
counterparts (12).

The third subset of thymic DCs corresponds to pDCs, which
continuously migrate to the thymus via the bloodstream. They
are defined as CD11cintB220+PDCA-1+ and represent approx-
imately 30% of the total thymic DCs (Figure 1B). Like their
immature counterparts in the periphery, thymic pDCs present a
plasmacytoid morphology rather than a dendritic morphology.
Upon migration in the thymus, pDCs enlarge and adopt a semi-
mature phenotype via the upregulation of CD11c and MHCII
molecules (8). Moreover, they express high levels of Toll-like
receptors (TLR) 7 and 9 and low levels of TLR 2, 3, and 4 (13).
Overall, migratoryDCs, i.e., pDCs and cDCs, represent 50%of the
total thymic DCs. Parabiosis experiments have shown that migra-
toryDCs are localized in themedulla and at the cortico-medullary
junction (CMJ) (8). Antigen-loaded peripheral pDCs were found
to be localized preferentially at the CMJ upon their migration in
the thymus (14). Intriguingly, both pDCs and migratory cDCs
change their phenotype shortly after entering the thymus, sug-
gesting that the medullary microenvironment provides specific
factors that contribute to the functional specification of these DC
subsets. The identity of these factors that drive the maturation
as well as the extensive proliferation of migratory DCs remains
elusive.

Features of mTECs
Similarly to DCs, mTECs also constitute a heterogeneous cell
population that represent less than 1% of the total thymic
cells (15). Histologically, mTECs are commonly identified
by the expression of cytokeratin-5, 14, MTS10, and ERTR5
markers as well as by reactivity with the lectin Ulex Europaeus
Agglutinin 1 (UEA-1) (16–19). However, it is not completely
clear whether these markers stain the bulk of mTECs or whether
they preferentially detect some specific subsets. However, the
whole mTEC compartment can be identified by flow cytometry
and is generally defined as CD45−EpCAM+ (epithelial cell
adhesion molecule) Ly51−/lo. mTEC subsets can be further
defined with respect to other markers, including the levels
of cell surface MHCII and CD80 expression as well as of the
transcription factor Aire (Figure 1C). Recent advances have
established the relationship between these different cell subsets
by demonstrating that mTEC differentiation proceeds along
distinct maturational stages. RTOC experiments have shown
that MHCII−/loCD80−/loAire− immature mTECs give rise to
MHCIIhiCD80hiAire+ mature mTECs (20–22). Consistently

during embryogenesis, MHCII−/loCD80−/loAire− immature
mTECs appear prior to the emergence of MHCIIhiCD80hiAire+
maturemTECs (20, 22).MaturemTECs are thus believed to derive
from immature mTECs via an intermediate stage that is Aire−
but has acquired high levels of MHCII and CD80 expression
(Figure 1C). Aire+ mature mTECs were initially described to be
post-mitotic and short-lived and were thus thought to represent
the last stage of mTEC differentiation (20, 21). Apoptosis of
this cell type has been proposed to be induced by Aire itself
and to be favorable for the diffusion of self-antigens within the
medullary microenvironment (21). Recent studies of cell fate
mapping, allowing the permanent labeling of Aire-expressing
cells even after the termination of transcription, have challenged
this concept by demonstrating the existence of a post-Aire stage
(23, 24). Approximately half of Aire+ mature mTECs seems to
further progress to this post-Aire stage, which does not express
Aire and expresses MHCII and CD80 molecules at reduced levels,
thereby generating MHCIIloCD80loAire− mTECs (Figure 1C)
(24, 25). This end-stage maturation of mTECs closely resembles
that of keratinocytes (25). Finally, mTECs lose their nuclei to
form Hassall’s corpuscles that can be detected by the expression
of markers such as involucrin, cytokeratins 6/10, desmogleins
1/3, and lympho-epithelial kazal type related inhibitor (LEKTI)
(25, 26).

Interestingly, all mTEC subsets are simultaneously present in
the post-natal thymus (Figure 1C). In addition, the turnover
period for mature mTECs is estimated to be between 2 and
3weeks (20, 21). These observations suggest that the mature
mTEC population is continuously replenished by differentiation
from an mTEC progenitor. Consistent with this notion of per-
petual renewal, recent studies have demonstrated the presence
in adults of thymic epithelial progenitors and/or stem cells that
are capable of generating both mature cortical and medullary
lineages in a stepwise fashion (27, 28). Furthermore, a novel
transitional progenitor stage characterized by the expression of
cTEC markers such as CD205, β5t, and high levels of IL-7 has
been identified in the embryonic thymus and shown to have
the potential to generate mTECs (29–31). Moreover, an mTEC-
specific stem cell capable of ensuring lifelong mTEC subsets was
recently found within the claudin-3,4hiSSEA-1+ (stage-specific
embryonic antigen 1) population (Figure 1C) (32). Of note, adult
mTEC stem cells have a lower regenerative capacity than their
embryonic counterparts. At the current stage of knowledge, the
relationships among the common thymic epithelial stem cells
(27, 28), the transitional progenitor that harbors cTEC-properties
(29–31) and claudin-3,4hi SSEA-1+ mTEC stem cells (32) remain
unknown. Thus, further investigations are needed to clarify the
relationship among these cells as well as their relative contribu-
tions tomedulla formation and homeostasis within the embryonic
and adult thymus. The identification of specific markers that
allow distinct discrimination between these cell types would be
helpful to evaluate their respective regenerative capacity. Such
studies could aid in identifying clinical applications, notably for
improving thymic function in the context of elderly or cytoablative
treatments. Taken together, these findings have revealed that the
medullary epithelium is not static but, in contrast, is much more
dynamic than previously considered.
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Tight Collaboration Between Medullary
APCs for the Establishment of T-Cell
Tolerance

Medullary thymic epithelial cells play a privileged role in the
induction of central T-cell tolerance through their ability to
express a broad range of tissue-restricted self-antigens (TRAs)
(33). A recent study has shown, by using deep transcriptome
sequencing, thatmaturemTECs express 19,293 genes, i.e., approx-
imately 85% of the mouse genome (34). Thus, mTECs constitute
the only cell type described that expresses such a large number of
genes. The transcription factor Aire is the only regulator known to
date that drives the expression of many TRAs (35). Aire alone reg-
ulates 3,980 genes (34). The importance of Aire in the induction of
T-cell tolerance is illustrated by the fact thatmutations in this gene
are responsible for the development of the human autoimmune
syndrome autoimmune polyendocrinopathy syndrome-1 (APS-
1), which is also known as autoimmune polyendocrinopathy can-
didiasis ectodermal dystrophy (APECED) (36, 37). Similarly to
humans, Aire-deficient mice show signs of autoimmunity char-
acterized by inflammatory infiltrates and serum autoantibodies
(38). The mechanisms by which Aire controls the transcription of
TRAs have been extensively reviewed elsewhere (39–41). In con-
trast, although Aire-independent TRAs represent approximately
80% of the genes expressed in mTECs, the mechanisms that
regulate them are largely unknown. The participation of other
regulatory factors as well as epigenetic regulation thus remains to
be identified.

Cross-Presentation of mTEC-Derived TRAs by
Resident cDCs
Tissue-restricted self-antigens expressed by mTECs, indepen-
dently of their subcellular origin, were described to be cross-
presented by resident cDCs, which reside in close proximity to
mTECs (42–45) (Figure 2). This unidirectional transfer of self-
antigens is thought to be favored by a high mTEC turnover,
which might allow the subsequent uptake of materials by cDCs.
Although several potential mechanisms of intercellular material
transfer have been proposed, such as the uptake of apoptotic
bodies, gap junctions, exosome transfer, and membrane exchange
(“nibbling”), experimental evidence is still lacking, and the pre-
cise underlying mechanisms remain unclear (46, 47). However, a
recent study found that humanTECs produce exosomes that carry
antigen-presentation molecules and TRAs, suggesting that TEC-
derived exosome could be involved in TRA cross-presentation
(48). Given that a particular TRA is expressed only by a minor
fraction of mTECs (1–3%), this phenomenon of intercellular anti-
gen transfer likely ensures efficient scanning of TRAs by devel-
oping SP thymocytes (49). Furthermore, two-photon imaging
experiments have shown that SP thymocytes are extremelymobile
and make frequent and transient contacts with DCs, which might
greatly contribute to the efficient selection of T cells during their
4- to 5-day residency in the medulla (50, 51). Proper localization
of resident cDCs in the medulla is controlled by the expression
of the chemokine receptor XCR1 and its Aire-dependent asso-
ciated chemokine XCL1 (52). XCL1-deficient mice show fewer
medullary DCs and defective generation of nTreg cells, suggesting

that medullary cDCs contribute to nTreg cell development
(Figure 2). Consistent with this observation, resident cDCs have
been found to play an important role in the generation of nTregs
via their ability to acquire and present Aire-dependent TRAs (53).

mTECs Act as Bona Fide APCs
Medullary thymic epithelial cells have thus been initially recog-
nized to play a privileged role in T-cell tolerance because they
constitute an “antigen reservoir” that mirrors the peripheral self
(33). However, the use of transgenic mouse models that mimic
TRA expression in the thymus have shown that mTECs can effi-
ciently induce the clonal deletion of CD8+ T cells (42, 54). Recent
studies have demonstrated that they also act as bona fide APCs to
CD4+ T cells. mTECs have the ability to autonomously present
endogenously expressed TRAs via MHCII molecules by using
an unconventional endogenous pathway called macroautophagy,
which allows the shuttling of cytoplasmic constituents into lyso-
somes (55, 56). Aire+ mTECs can induce both the negative selec-
tion of autoreactive T cells as well as the generation of nTreg cells
(Figure 2) (53, 57–60). The induction of nTreg cells was found
to be mTEC-dependent because mTECs have the ability to foster
the development of Foxp3−CD25+ nTreg precursors (61). In
accordance with these findings, mice showing an enhancedmTEC
compartment display increased production of nTreg cells (62, 63).
Conversely, mice showing a reduced mTEC compartment exhibit
a reduction of nTreg cells (64, 65). Interestingly, a recent study
has shown that a large proportion of thymic Tregs corresponds to
peripheral recirculating Tregs (66). The participation of mTECs
to this phenomenon of recirculation to the thymus remains to be
examined. Interestingly, post-AiremTECswere found tomaintain
intermediate TRA expression (24). Thus, it is plausible that this
newly identified mTEC subset plays a role in the establishment
of T-cell tolerance. Further studies, based for instance on cell-
specific ablation, are needed to address this issue. Moreover,
although MHCII−/loCD80−/loAire− and MHCIIhiCD80hiAire−
mTECs express fewer genes compared with Aire+ mTECs (34),
only a few thousands genes are differentially expressed, which
suggests that these immature subsets could have a non-redundant
function in the induction of T-cell tolerance. In addition, these
distinct mTEC subsets express different levels of MHCII and
costimulatory molecules, which may significantly impact T-cell
selection. Consistent with these observations, in vivo knock-down
of MHCII molecules specifically in Aire+ mTECs leads to an
increased proportion of CD4+ SP and an enhanced selection of
nTregs (59). These findings suggest that there is an underlying
division of labor within mTEC subsets, with immature mTECs
likely providing more potent induction of nTregs and mature
mTECs preferentially prone to negative selection. Of note, the
in vivo dynamics of the interactions of CD8+ and CD4+ T cells
with mTECs remain unknown to date. It would be very informa-
tive to compare the interactions of medullary CD8+ and CD4+ T
cells with Aire− and Aire+ mTECs to determine to what extent
the frequency and duration of these interactions influence T-
cell outcomes. Two-photon imaging experiments assessing fresh
thymic slices are expected to achieve this goal in the near future
and may reveal a complex choreography between SP thymocytes
and mTECs.

Frontiers in Immunology | www.frontiersin.org July 2015 | Volume 6 | Article 36545

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Lopes et al. Function and development of the thymic medulla

FIGURE 2 |mTECs and DCs tightly collaborate to delete autoreactive
T cells and to induce the generation of nTreg cells. Relevant in vivo studies
are indicated in this figure. Tissue-restricted self-antigens (TRAs) expressed and
presented by mTECs can lead to the deletion of autoreactive T cells and the
induction of nTregs. These self-antigens can also be transferred to and
presented by resident cDCs, resulting in T-cell deletion and the induction of

nTregs. Furthermore, migratory cDCs and pDCs also reinforce the establishment
of central T-cell tolerance via the presentation of antigens captured in the
periphery. Migratory cDCs are also involved in T-cell deletion and the induction
of nTregs, whereas pDCs only contribute to the deletion of autoreactive T cells in
mice. Thymic B cells have also been shown to participate in the deletion of
autoreactive T cells and the generation of nTregs.

Migratory DCs Reinforce the Presentation of
Self-Antigens
Although mTECs express a diverse repertoire of TRAs that largely
contribute to the induction of T-cell tolerance, they cannot
encompass the spectrum of all peripheral self-antigens. Migra-
tory DCs have been shown to reinforce the deletion of autoreac-
tive thymocytes by sampling peripheral self-antigens that would
otherwise be undetectable to developing thymocytes. Studies
based on Rag2−/− OTII TCR-transgenic mice have shown that
migratory cDCs induce the negative selection of autoreactive
CD4+ thymocytes (12, 67). Interestingly, in co-culture assays,

Sirpα+ cDCs efficiently convert CD4+CD25− thymocytes into
CD4+CD25+Foxp3+ nTregs (12, 68). Migratory cDCs were also
found to efficiently induce nTreg cells in vivo (12). Thus, in the
steady state, migratory cDCs have the ability to transport antigens
captured in the periphery and contribute to the establishment of
tolerance by deleting autoreactiveCD4+ thymocytes and inducing
nTreg cells (Figure 2). These studies have mainly focused on
MHCII-restricted TCR-transgenic models, and consequently, the
role of migratory cDCs in CD8+ T-cell deletion remains unclear.
Migratory cDCs home to the thymus in a CCR2-dependent man-
ner (69). CCR2-deficient mice display a decreased number of
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migratory cDCs in their thymus and exhibit defective negative
selection against blood-borne antigens (69). However, the defi-
ciency in CCR2 does not completely alter the migration of these
cells, suggesting the potential involvement of other chemokine
receptors. Of note, activated cDCs exhibit a reduced ability to
home to the thymus, thus preventing the inappropriate deletion
of cells capable of recognizing pathogen-derived antigens (67).

A third subset of DCs, namely pDCs, has recently been
described to participate in the induction of T-cell tolerance. Until
recently, the function of pDCs in the thymus has remained largely
enigmatic, although it was suggested that they could protect the
thymus against viral infections via their ability to produce type
I interferon (7). In the periphery, in addition to secreting large
amounts of type I interferon in response to viral infections, it
became evident that pDCs can also function as bona fide APCs
that are capable of modulating T-cell responses (70). Recent
advances have demonstrated that pDCs possess tolerogenic prop-
erties in specific contexts, primarily through the induction or the
proliferation of nTreg cells (71–74). Consistent with these tolero-
genic functions observed in the periphery, pDCs were shown
to colocalize with Foxp3+ Tregs and to promote the generation
of nTreg cells from immature thymocytes via CD40–CD40L and
interleukin-3 in the human thymus (75). Similarly, thymic stro-
mal lymphopoietin (TSLP)-activated human pDCs induce the
generation of nTregs (76). However, in mice, thymic pDCs do
not efficiently induce the generation of nTregs from immature
thymocytes in vitro (12, 68). In vivo, no role of thymic pDCs
was observed in the conversion of thymocytes into the nTreg cell
lineage (14). These studies suggest that in contrast to their human
counterparts, murine thymic pDCs are intrinsically inefficient
at inducing nTreg cells. Murine thymic pDCs, however, were
shown to transport peripheral antigens to the thymus, inducing
the deletion of autoreactive CD4+ thymocytes (14) (Figure 2).
Their role in the deletion of CD8+ thymocytes remains unclear.
The migration of pDCs in the thymus was found to be dependent
on CCR9, a chemokine receptor that is also involved in T-cell pro-
genitor homing (14, 77, 78). Importantly, pDCs that are activated
by TLR ligands lose their ability to home to the thymus by down-
regulating CCR9, thus preventing the unwanted induction of T-
cell tolerance toward pathogens (14). Under normal conditions,
CCR9 deficiency does not completely block the recruitment of
pDCs in the thymus, suggesting that other chemokine receptors
could be involved in this process. Interestingly, transgenic mice
overexpressing CCL2 in the thymus under the myelin basic pro-
tein (MBP) promoter exhibit a massive thymic recruitment of
pDCs, which express CCR2 (79, 80). The thymic migration of
pDCs could be mediated via both CCR9 and CCR2. The gener-
ation of double knockout mice for CCR9 and CCR2 should reveal
whether these two chemokine receptors are sufficient for directing
the thymic recruitment of pDCs.

A New Player: Thymic B Cells
In the medulla, in addition to mTECs and DCs, a third type of
APC, namely the B cell, has also been implicated in the induction
of T-cell tolerance (Figure 2). The vast majority of thymic B
cells develop within the thymus from Rag-expressing progenitors,
whereas recirculating B cells represent a minority (81). Thymic

B cells display unique phenotypic hallmarks in comparison to
peripheral B cells. They express high levels of MHCII and cos-
timulatory molecules, supporting their robust antigen-presenting
capacity (81). Of note, a recent report has shown that thymic B
cells express Aire and display tolerogenic properties upon migra-
tion into the thymus (82). An original study using transgenic
mice on an I-E-deficient background, in which B cells specifically
express I-E MHCII molecules, established the capacity of thymic
B cells to mediate the negative selection of CD4+ but not CD8+ T
cells (83). Similarly, transgenic B cells, which exclusively present
an antigen derived from the myelin oligodendrocyte glycoprotein
(MOG), efficiently induce the deletion of MOG-specific CD4+ T
cells (84). A recent study has also suggested that thymic B cells
capture self-antigens through their B-cell receptors and delete
autoreactive T cells by presenting peptides derived from these self-
antigens (81). Furthermore, thymic B cells also contribute to the
generation of nTreg cells (85).

Therefore, mTECs, DCs and B cells participate in the induction
of T-cell tolerance through the negative selection of autoreactive
T cells and the generation of nTreg cells (Figure 2). Interestingly,
a recent study using deep sequencing in a fixed TCRβ chain
model comparing different genetically modified mice has shown
that bone marrow-derived APCs and mTECs play non-redundant
roles in shaping the TCR repertoire (53). Roughly half of the Aire-
dependent deletion or nTreg induction processes require antigen
presentation by bone marrow cells (53). Moreover, the origin of
the tissue antigens captured in the periphery and transported
in the thymus by migratory cDCs and pDCs remains unclear.
Additional studies are needed to determine the degree of the spec-
trum of overlap among antigens presented in the thymus by these
two cell types. In addition to peripheral tissue antigens, although
migratory DCs are suspected to participate in T-cell tolerance
toward inoffensive foreign antigens derived from food or the com-
mensal gut flora, experimental evidence is still lacking (86). Thus,
it is possible that specific thymic DC subsets capture distinct sets
of self-antigens and, consequently, could differentially impact the
TCR repertoire. Additional studies performed at the polyclonal
TCR level are required to elucidate this important issue.

Involvement of Thymic Crosstalk in the
Composition and Patterning of the Medulla

The thymic medulla plays a pivotal role in the selection of SP thy-
mocytes. In turn, the expansion and organization of the medulla
is governed by developing SP thymocytes. These reciprocal inter-
actions between these two cell types is referred to as “thymic
crosstalk” (87).Mice exhibiting a block in thymocyte development
at the DP stage, such as TCRα−/− and ZAP70−/− mice, show
prominent defects in medulla formation (88, 89). The transplan-
tation of wild-type bone marrow cells in SCID mice lacking TCR-
positive cells restores medulla formation and mTEC maturation,
indicating that hematopoietic cells control the development of the
medullary epithelium (90). Subsequent studies have established
that TCR-bearing mature T cells control medulla formation (88,
91, 92). Thus, these pioneer studies indicated that SP thymocytes
provide instructive signals that are critical for controlling the
expansion and organization of the medulla. Recent advances have
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facilitated our understanding of the underlying molecular and
cellular participants that are responsible for these crucial processes
in the establishment of T-cell tolerance.

AIRE+ mTEC Differentiation in the Embryonic
Thymus
In the embryonic thymus, lymphoid tissue inducer (LTi) cells
identified asCD3−CD4+IL-7Rα+ were found to regulate the first
cohort of Aire+ mTECs, which emerge around embryonic day 16
of gestation (Figure 3A) (20, 22, 93). LTi cells are present during
embryogenesis at a time that correlates with the appearance of
Aire+ mTECs, before the development of SP thymocytes (22).
The emergence of Aire+ mTECs is controlled by a member of
the tumor necrosis factor (TNF) superfamily: receptor activa-
tor of nuclear factor kappa-B (RANK), which is expressed by
mTECs, and its corresponding ligand, RANKL (also known as

TRANCE), which is expressed by LTi cells (Figure 3A). Strik-
ingly, mice that are deficient for RANK or RANKL show an
absence of Aire+ mTECs in the embryonic thymus, indicating
that this TNF member regulates the emergence of Aire+ mTECs
(22, 94). In accordance with these findings, the exposure of 2-
deoxyguanosine-treated fetal thymus organ cultures (FTOCs) to
recombinant RANKL or an agonistic antibody to RANK induces
the appearance of mature mTECs (22, 95, 96). Conversely, the
addition of osteoprotegerin, a soluble decoy receptor for RANKL,
or the recombinant RANK-Fc protein, impairs Aire+ mTEC dif-
ferentiation (94, 97). Importantly, LTi-deficient Rorc−/− mice do
not show a complete absence of Aire+ mTECs, suggesting that
other embryonic cell types play a role in the development of the
medullary epithelium (98). An additional cellular contributor,
the invariant Vγ5+TCR+ dendritic epidermal T-cell progenitor,
which also expresses RANKL, has likewise been recently impli-
cated in the emergence of Aire+ mTECs in the embryonic thymus

FIGURE 3 | Key cell types, receptors, and ligands that contribute to
Aire+ mTEC differentiation and medulla patterning. (A) RANKL, which is
expressed by Vγ5+ T cells and LTi cells in the embryonic thymus and (B) by
CD4+ thymocytes and iNKT cells in the post-natal thymus, induces Aire+

mTEC differentiation. In the post-natal thymus, crosstalk between mTECs and
CD4+ thymocytes via CCL19/21–CCR7, LTβR/LTα1β2, and CD80/86–CD28
controls medulla patterning, whereas MHCII/self-antigen–TCR complexes and

CD40–CD40L contribute to both the differentiation of Aire+ mTECs and
patterning of the medulla. Receptors and ligands involved in Aire+ mTEC
differentiation are represented in green, in medulla patterning in red, and in
both processes in yellow. (C) Schematic representation of 3D medullary
organization in the post-natal thymus. Aire+ mTECs (denoted by a green
nucleus) and venules are preferentially localized at the cortico-medullary
junction (CMJ).
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(Figure 3A) (97). The addition of purified Vγ5+ thymocytes or
LTi cells in reaggregate thymus organ culture (RTOC) experi-
ments induces similar proportions ofAire+ mTECdifferentiation.
Interestingly, Vγ5+ thymocytes and LTi cells are both present in
individual Aire-expressing medullary environments, suggesting
that they act collectively to influence mTEC maturation. Mice
that are deficient in both LTi and γδ T cells (Rorc−/− ×Tcrd−/−

mice) show a further decreased number of fetal Aire+ mTECs
compared with mice that are deficient in either LTi or γδ T cells
alone. However, Rorc−/− ×Tcrd−/− double-deficient mice do
not show a complete absence of Aire+ mTECs, which suggests
that other cell type(s) that remain(s) to be identified could also be
involved in this differentiation process. Therefore, the two innate
immune cells, Vγ5+ thymocytes and LTi cells, both of which
express RANKL, drive the emergence of Aire+ mTECs in the
embryonic thymus.

AIRE+ mTEC Differentiation in the Post-natal
Thymus
In the post-natal thymus, the RANK–RANKL axis also plays a
crucial role in the differentiation of mature mTECs (Figure 3B).
The absence of RANK or RANKL expression leads to a drastic
reduction of Aire+ mTECs and TRA expression (22, 94, 99). Con-
versely, mice that are deficient for osteoprotegerin, a soluble decoy
receptor for RANKL, display a large medulla with many Aire-
expressing mTECs (99). In contrast to the embryonic thymus,
Aire+ mTECs are partially reduced in the post-natal thymus from
RANK−/− or RANKL−/− mice, which suggests that after birth,
additional signal(s) are involved in the differentiation and main-
tenance of mature mTECs. These observations led to the iden-
tification of a second member of the TNF superfamily, namely
CD40, which is involved in this process (Figure 3B). CD40−/−

and CD40L−/− mice show more subtle defects in mTEC sub-
sets compared with those observed in RANK−/− or RANKL−/−

mice (94, 100). However, these defects were markedly increased
in RANK−/− ×CD40−/− double-deficient mice compared with
RANK−/− mice, demonstrating that RANK and CD40 cooperate
to promote mTEC differentiation in the post-natal thymus (94).
Moreover, Aire and TRA expression are dramatically affected in
these double-deficient mice, which consequently develop severe
autoimmune manifestations. Taken together, these findings pro-
vide strong support for a model in which the emergence of
Aire+ mTECs during embryogenesis involves RANK signaling,
whereas the subsequent mTEC differentiation in the post-natal
thymus involves cooperation between the RANK and CD40 sig-
nals (Figures 3A,B).

Several groups have investigated the cellular sources of RANKL
and CD40L in the post-natal thymus. Although SP thymocytes
were initially found to promote the organization and matura-
tion of the medulla, it remained to be determined whether the
instructive signals were provided in a different manner by CD4+
and/or CD8+ thymocytes. RANKL was found to be expressed by
both CD4+ and CD8+ thymocytes, with a preferential expression
by CD4+ thymocytes (101). In contrast, CD40L was found to
be exclusively expressed by CD4+ thymocytes (99, 100). The
simultaneous analysis of RANKL and CD40L proteins revealed
a sequential acquisition of first RANKL on CD69+ semi-mature

CD4+ thymocytes and then of CD40L on CD69− mature CD4+
thymocytes, suggesting that RANKL and CD40L are delivered
by distinct CD4+ subsets (101). The respective role of CD4+
and CD8+ thymocytes in mTEC differentiation was explicitly
addressed through the use of knockout mice lacking either CD4+
or CD8+ thymocytes (100). The numbers of CD80hiAire+ mature
mTECs are essentially unaffected in mice lacking CD8+ thymo-
cytes (β2m−/− mice), which suggests that they are dispensable
for this process. In contrast, the numbers of CD80hiAire+ mature
mTECs are strongly reduced in mice that lack the positive selec-
tion of CD4+ thymocytes, such as H2-Aa−/− and CIItaIV−/IV−

mice (100). Thus, CD4+ thymocytes play a dominant role in
promoting the development of the mature mTEC compartment
(102). Nevertheless, in mice lacking CD4+ thymocytes, a minor
population of CD80hiAire+ mature mTECs is still detectable,
suggesting that another cell type is also involved in the acquisition
of amature phenotype. Even if a rare number of LTi cells is present
in the post-natal thymus, it is unlikely that these cells contribute
significantly to mTEC differentiation after birth because Id2−/−

mice, which lack LTi cells, exhibit normalmaturemTEC cellularity
(99). Similarly, TCRγδ-deficient mice do not exhibit any obvious
defect in mature mTECs (99). Thus, LTi and TCRγδ cells seem
to be dispensable for mTEC differentiation during post-natal
life. A recent study has suggested that invariant NKT cells that
also express RANKL participate in Aire+ mTEC differentiation
in adult mice (103). Thus, it is likely that CD4+ thymocytes
and invariant NKT cells cooperate to drive mTEC differentiation
(Figure 3B). Although CD4+ thymocytes play a dominant role
in mTEC differentiation, it remained to be determined whether
they influence this differentiation process via the release of sol-
uble mediators or by directly engaging in physical interactions
with mTECs. The generation of transgenic mice lacking MHCII
molecules specifically in mTECs has shown that TCR–MHCII-
mediated contacts between the two cell types are required for
normal mature mTEC cellularity (100). Furthermore, mTEC dif-
ferentiation occurs only when CD4+ thymocytes recognize their
cognate antigen on mTECs (96, 100). Taken together, these find-
ings revealed distinct molecular and cellular mechanisms that
sustain the generation of mTECs that display a mature phenotype
in the embryonic and post-natal thymus.

Three-Dimensional Organization of the
Thymic Medulla
The 3D reconstruction of wild-type thymic lobes has revealed
that the medulla is highly complex, consisting of a major central
compartment surrounded by ~100 islets (Figure 3C) (104–106).
Interestingly, individual medullary islets initially derive from a
single progenitor (107). Thus, during thymic development, some
growingmTEC islets likely fuse together, leading to the emergence
of larger islets and ultimately to a major central compartment.
Additional studies of the 3D organization of the thymic lobes
during thymus development from fetal to adult stage would be
extremely informative to further understand the formation of the
medullary architecture. Similar studies performed during aging
should also reveal fundamental mechanisms of thymic involution.
The recent development ofmulticolor fatemapping systems based
on Cre-lox technology are expected to unravel the dynamics of
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the development and remodeling of the medulla during a lifetime
(108). Importantly, such transgenic systems should aid in deter-
mining whether individual medullary islets are indeed derived
from a single progenitor or, alternatively, whether they are derived
from several clones. The discovery of the co-existence of a major
medullary compartment and a hundred distinct smaller islets
with a broad volume distribution raises questions regarding the
functional relevance of individual islets compared to the central
medulla. We estimate that individual islets may contain from only
a few to as many as several thousand cells, with an average of a few
tens or a few hundreds of cells (unpublished observations). Thus,
for the smallest islets, it remains to be determinedwhether this low
number of cells expresses a TRA array large enough to induce T-
cell tolerance or, in contrast, whether these few cells do not express
sufficient TRAandmaypermit the escape of potentially hazardous
autoreactive T cells. It would be interesting to determine whether
the large medulla and small individual islets display similar sets of
TRAs. In addition, to be functional, small medullary islets must
be vascularized, which remains to be further investigated using
3D reconstruction (106). Thus, further investigation is required to
improve our understanding of the functional implications of the
medullary topology. Of note, the medulla is not smooth at all, but
on the contrary exhibits a highly folded/convoluted shape, with
a complex contour at any scale, ranging from the total structure
to the cellular level. Such multi-scale complexity is described best
by fractal geometry, which affords a high area of interface for a
given volume (105). Such characteristics are also typically found
in the lungs or intestinalmicrovilli, which have a large surface area
to maximize the exchange of oxygen or nutrients, respectively.
In the case of the thymic medulla, this fractal shape ensures a
large interface area between the cortex and the medulla, which
is referred to as the CMJ. This fractal geometry also ensures that
the average distance from any location within the cortex to the
nearest medulla remains reasonably low (105). By comparison,
the distances from any location within the cortex to the nearest
medullary location are significantly reduced compared with the
distances that would be obtained for the simplest shape, i.e., a
spherical medulla. The CMJ likely plays a critical role in the
function of the thymus because it constitutes the site where T
cells go through at three critical steps of their journey through
the thymus: (i) T-cell progenitors enter the thymus from venules
preferentially located at the CMJ, travel outward in the cortex
and subsequently migrate inward from the cortex to the medulla,
undergoing positive selection; (ii) they cross the CMJ and migrate
through themedulla, undergoing negative selection; (iii) they ulti-
mately leave the thymus and enter the periphery, again via venules
located at the CMJ (109–111). Indeed, the CMJ exhibits a high
density of large venules, representing a privileged site for thymo-
cyte homing/export, by extra/intravasation through venule walls,
respectively (Figure 3C). Remarkably, the CMJ is also particularly
dense in Aire+ mTECs, which is expected to favor the encounter
with SP thymocytes that are migrating from the cortex to the
medulla (93, 105). This distribution is strikingly pronounced in
neonates compared to adults. This observation is consistent with
the finding that Aire is important during the perinatal period to
prevent the emergence of autoimmune disorders (112). Therefore,
the CMJ represents not only a privileged site of T-cell progenitor
homing and export of mature T cells but also a privileged region

that favors the encounter of SP thymocytes with Aire+ mTECs. A
first wave of negative selection is thus expected to occur in this
region, which could play a more important role in the induction
of T-cell tolerance than previously thought.

Cellular and Molecular Crosstalk in Medulla
Organization
Alterations in the cortico-medullary migration of SP thymocytes
result inmarked defects in themedullary organization. This is well
illustrated in mice that lack CCR7 expressed by SP thymocytes or
its two ligands CCL19 and CCL21 expressed by mTECs, which
are responsible for the migration of SP thymocytes from the
cortex to the medulla (113). CCR7- and CCR7 ligand-deficient
mice show an arrest of thymocyte migration in the cortex and
abnormal medulla formation characterized by small medullary
regions that are sparsely distributed throughout their thymi (113,
114). The complex 3Dorganization of themedulla is preferentially
controlled by positively selected CD4+ thymocytes (105, 115).
H2-Aa−/− mice lacking CD4+ thymocytes are devoid of any large
medullary compartment, leading to a reduced medullary volume.
In these mice, the numbers of mTECs are severely reduced, affect-
ing CD80hiAire− and CD80hiAire+ subsets (96). However, the
formation of the medulla is less severely affected in mice lacking
CD4+ thymocytes than in mice lacking SP thymocytes such as
TCRα−/− and ZAP70−/− mice. These observations suggest that
other cell type(s) participate in the expansion of the medulla.
Although invariant NKT cells have been implicated in Aire+
mTECdifferentiation, their role in the organization of themedulla
remains to be defined. CD8+ thymocytes seem to play a minor
role compared with CD4+ thymocytes because β2m−/− mice,
which lack CD8+ thymocytes, do not exhibit defects either in
the 3D organization of the medulla or in the composition of the
mTEC subset (96, 105). These observations suggest that CD4+
thymocytes are prominently required for the development and
3D organization of the medulla by controlling mTEC cellularity.
Furthermore, the organization of the medulla is also dependent
on antigen-specific TCR–MHCII-mediated interactions between
autoreactive CD4+ thymocytes and mTECs displaying autoanti-
gen–MHCII complexes (96). Several MHCII-restricted TCR-
transgenic mice lacking expression of the cognate antigen, such as
OTII-Rag2−/−, B3K508-Rag1−/−, and female Marilyn-Rag2−/−

mice, show severe impairment in medulla formation. In contrast,
this defect is restored when the cognate antigen is expressed
by mTECs, as for example in OTII-Rag2−/− mice crossed with
Rip-mOVA mice (in which the Rip-mOVA transgene drives the
synthesis of membrane-bound OVA specifically in mTECs), or
provided exogenously, as for example in OTII-Rag2−/− mice
injected with OVA323–339 peptide. Moreover, RTOC experiments
in which OTII-Rag2−/− thymocytes are reaggregated in the pres-
ence or absence of OVA323–339 peptide have demonstrated that the
addition of the cognate antigen restores the numbers of mTECs
similarly to those induced byWT thymocytes (96). These antigen-
specific interactions between mTECs and CD4+ thymocytes also
require the engagement of theCD28–CD80/86 andCD40–CD40L
costimulatory axes (Figure 3B). Defects in the CD28–CD80/86
or CD40–CD40L costimulatory pathway alone have a slight effect
on the architecture of the medulla (105, 116). In contrast, the
combined absence of CD28–CD80/86 and CD40–CD40L results
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in a drastic impairment in medulla formation (116). These dif-
ferent experimental results thus favor a model in which autore-
active CD4+ thymocytes control the formation and organization
of the medulla in an antigen-dependent manner that involves
the CD28–CD80/86 and CD40–CD40L costimulatory pathways.
Interestingly, two-photon microscopy experiments have revealed
that autoreactive thymocytes do not directly undergo cell death
after encountering a negative selecting ligand but instead remain
viable and motile for some time in the medullary microenvi-
ronment (51). They adopt a confined migration pattern dur-
ing which they likely provide to mTECs instructive signals
that would be necessary for both mTEC differentiation and
organization.

A third member of the TNF superfamily, namely the lympho-
toxin β receptor (LTβR) expressed by mTECs, and its ligand, the
heterotrimer LTα1β2 expressed by SP thymocytes, was found to
orchestrate the organization of the medulla (105, 117, 118). A
deficiency in LTβR leads to a disorganizedmedullary architecture
and alterations in mTEC subsets, notably in UEA-1+ mTECs and
terminally differentiated involucrin+ mTECs (117–119). LTβR
signaling also regulates the expression of Aire-independent TRAs
and CCL19 in mTECs (120, 121). These defects are associated
with the appearance of signs of autoimmunity, which suggests that
LTβR signaling is required for the establishment of central toler-
ance (117, 120). Of note, mice that are deficient for LTβR ligands,
such as LTα−/−, LTβ−/−, or LIGHT−/− mice, exhibit an inter-
mediate phenotype compared with that observed in LTβR−/−

mice. Consequently, the contribution of lymphotoxin signaling
to mTEC development is only partially understood (117, 118).
The 3D reconstruction of LTα−/− thymic lobes has revealed
that LTα−/− mice are devoid of any large medullary compart-
ment, leading to a substantial reduction of the medulla volume.
Of note, the absence of LTα results in a less drastic phenotype
compared with that observed in mice lacking CD4+ thymocytes,
which suggests that other(s) mediator(s) contribute to the effect
mediated by CD4+ T cells (105). Interestingly, the absence of
Aire results in morphological changes in mTECs (26). However,
it remains unclear whether Aire affects the 3D organization of the
medulla in terms of the numbers and volumes of the medullary
islets. Further investigations including the identification of other
molecular participants in the topology of the medulla as well as
the determination of the 3D distribution of specific mTEC subsets
are required. Indeed, recent findings have revealed a differential
distribution of mTEC subsets throughout the medulla. Aire+
mTECs were found to be preferentially positioned at the CMJ,
whereas post-Aire mTECs were described to be localized toward
the center of the medulla (24, 93, 105). A 3D map of distinct
mTEC subsets, including mTEC stem cells, may thus reveal a
subtle compartmentalization of these specific cell types within the
thymic medulla.

Importantly, this cellular crosstalk between mTECs and autore-
active CD4+ thymocytes regulates a cascade of events that control
the expression of TNF superfamily members that are essential for
both the differentiation and organization of mTECs. In this con-
text, autoantigen-specific interactions betweenmTECs andCD4+
thymocytes, involving the CD40–CD40L and CD28–CD80/86
axes, lead to the upregulation of lymphotoxin ligands in autore-
active CD4+ thymocytes (96, 116). Then, LTβR signaling induces
RANK expression in mTECs (95, 96), and subsequently, RANK
signaling induces the upregulation of CD40 in mTECs (101). This
cellular crosstalk with autoreactive CD4+ thymocytes is likely to
fine-tune the homeostasis of the medulla, allowing the thymus to
adapt optimally for the establishment of T-cell tolerance.

Concluding Remarks

Thymic crosstalk is the indispensable interplay between
medullary APCs and developing T cells that coordinates the
induction of T-cell tolerance. DCs, B cells, and mTECs have
all been shown to control the selection of SP thymocytes. DCs
reinforce the induction of T-cell tolerance by cross-presenting
mTEC-derived TRAs and by displaying peripheral self-antigens
captured in the periphery. Furthermore, thymic B cells can also
express Aire and act as APCs. Nevertheless, mTECs are the lead
player in T-cell tolerance induction due to their constitutive
expression of TRAs. At the molecular and cellular levels, studies
conducted over the last decade have furthered our understanding
of the thymic crosstalk that sustains mTEC differentiation as
well as the organization of the medulla. However, the precise
consequences of thymic crosstalk on mTEC differentiation,
proliferation, and survival remain to be defined. Additional
studies are needed to identify the downstream target genes
induced in mTECs by crosstalk signals in both the embryonic
and the post-natal thymus. Future work can be expected to
elucidate how thymic crosstalk shapes the T cell repertoire. Such
studies would be extremely informative for further delineating
the mechanisms that govern the establishment of T-cell tolerance.
This knowledge is expected to pave the way toward novel
therapeutic strategies aimed at preventing the development of
autoimmunity and controlling age-associated thymic involution.
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Thymic B cells and central T cell
tolerance
Tomoyoshi Yamano, Madlen Steinert and Ludger Klein*

Institute for Immunology, Ludwig-Maximilians-University Munich, Munich, Germany

Central T cell tolerance is believed to be mainly induced by thymic dendritic cells and
medullary thymic epithelial cells. The thymus also harbors substantial numbers of B
cells. These may arise though intrathymic B lymphopoiesis or immigration from the
bloodstream. Importantly, and in contrast to resting “mainstream” B cells in the periphery,
thymic B cells display elevated levels of MHC class II and constitutively express CD80.
Arguably, their most unexpected feature is the expression of autoimmune regulator.
These unique features of thymic B cells result from a licensing process that involves
cross-talk with CD4 single-positive T cells and CD40 signaling. Together, these recent
findings suggest that B cells play a more prominent role as thymic APCs than previously
appreciated.

Keywords: central tolerance, B cells, antigen presentation, germinal center, CD40, class-switching, Aire

Introduction

B cells represent approximately 0.3% of the thymic cellularity. Although their absolute number may,
in fact, exceed that of thymic dendritic cells, their role a APCs for central tolerance induction is not
well understood, and thymic B cells have often been regarded as “innocent bystanders.” Recent data
suggest that this viewmay need to be revised. Here, wewill provide a short overview of novel insights
into distinct features of thymic B cells and how these may predispose thymic B cells to support T cell
tolerance.

The Origin of Thymic B Cells

Intrathymic B Cell Development
The early thymic progenitor (ETP), i.e., the cell type that gives rise to the T cell lineage, retains some
B cell potential (1). Notch signaling is essential for T lineage specification in ETPs, so that precursors
lacking Notch-1 fail to generate T lineage cells in the thymus. There are increased numbers of B cells
in the thymus of conditional Notch-1 knockout mice (2), and this was interpreted to indicate that
in the absence of Notch signaling, ETPs undergo B cell differentiation as a “default cell fate” (3, 4).
However, subsequent experiments argued that most of the accumulation of thymic B cells under
these conditions is not a cell intrinsic effect of Notch-deficiency, but may stem from immigration
of peripheral B cells as a result of excessive niche availability (5). This notion is supported by the
observation that perturbations in T cell differentiation downstream of the loss of B lineage potential
result in effects on thymic B cell numbers that are reciprocal to their effects on T cell numbers.
Specifically, TCRβ−/− mice, in which T cell development is blocked prior to pre-TCR expression,
harbor a drastically diminished overall T cell compartment (arrested at the DN3 stage), yet have a
10-fold increase in thymic B cell numbers, whereas TCRα−/− mice, in which T cell differentiation
is arrested at the DP stage, display slightly decreased numbers of B cells in the thymus (6, 7).
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Does intrathymic B cell differentiation occur under non-
perturbed steady state conditions? There were early reports on the
existence of cells within the thymus whose phenotype – surface
(s)IgM−B220+CD43+ – resembled that of B cell progenitors
in the bone marrow (BM). When these cells were purified and
injected intrathymically (i.t.), they gave rise to mature B cells
within the thymus (8). Akashi et al. estimated that concomitant to
the release of about 1× 106 T cells, the thymus also exports around
3× 104 B cells each day (6). In sum, there is good evidence that
part of the thymic B cell population arises through differentiation
within the thymus.

Immigration of Peripheral B Cells
Using more conclusive surface marker combinations, we recently
revisited the issue whether the thymus harbors significant
numbers of B cell precursors (9). Among CD19+IgM−IgD−

BM cells, pre- and pro-B cells are commonly identified as
CD2+c-Kit− and CD2−c-Kit+ cells, respectively. We found
that around one-third of thymic CD19+ cells were surface
IgM−IgD−, and thereby resembled B cell precursors in the
BM.However, pro-B cells (CD19+IgM−IgD−CD2−c-Kit+) were
essentially undetectable in the thymus. Moreover, most thymic
CD19+IgM−IgD−CD2+c-Kit− cells expressed surface sIgG.
Thus, the majority of CD19+IgM−IgD− cells in the thymus
(unlike their phenotypic counterparts in the BM) are class-
switched mature B cells and not B cell precursors. Based upon
the paucity of B cell precursors in the thymus, we wondered
whether peripheral B cells enter the thymus in the steady state.
In order to address this, we intravenously injected bulk splenic
B cells into syngeneic hosts. Seven days later, donor B cells were
detectable in both spleen and thymus, whereby the relative abun-
dance among host B cells in the thymus was about 5- to 10-
fold lower as compared to the spleen. Although at first glance,
this suggests that thymic immigration is a fairly efficient pro-
cess, any comparison of its efficacy in relation to homing to the
spleen is blurred by the fact that upon entering the thymus, B
cells undergo several cell divisions. The capacity to enter the
thymus does not seem to be restricted to any particular activa-
tion state, since purified naïve B cells (IgM+IgD+) also entered
the thymus.

Taken together, it is reasonable to assume that both
intrathymic B lymphopoesis and immigration of BM-derived
B cells contribute to the thymic B cell pool. However, we
lack a precise understanding of the relative contribution
of either pathway. On the one hand, the virtual absence of
pro- and pre-B cells may render intrathymic differentiation
an unlikely source of the majority of thymic B cells. On
the other hand, thymic B cells in parabiosed mice do not
equilibrate to the same extent as is observed for splenic B cells,
insinuating a substantial contribution of intrathymic B cell
differentiation (10). Unraveling the lineage relation between
peripheral “mainstream” B cells and thymic B cells remains
experimentally challenging. Ultimately, this issue is linked to
the questions whether thymic B cells display distinct features,
and whether these features are manifestations of a hard-wired
“thymic B lineage differentiation program” or result from
extrinsic cues.

Intrathymic B Cell Licensing

The Unusual Phenotype of Thymic B Cells
Some phenotypic features (e.g., CD5 expression) had suggested
that thymic B cells may be related to the fetal liver-derived B1
lineage (8). However, whereas bona fide B1 cells in the peritoneal
cavity are restored only by reconstitution with fetal liver cells,
but not BM cells, the thymic B cell pool is efficiently gener-
ated from both precursors (10). Thus, thymic B cells clearly are
genealogically related to the B2 “mainstream” B cell lineage.

Unlike resting B cells in spleen and lymph node, thymic B
cells express high levels of MHC class II and the co-stimulatory
molecules CD80 and CD86 (9–11). Moreover, a substantial frac-
tion of thymic B cells have class-switched, whereby the distri-
bution of isotype classes is remarkably stereotypic from mouse
to mouse. Perhaps the most unusual feature of thymic B cells is
their expression of the autoimmune regulator (Aire) gene. Aire
is known to be crucial for “promiscuous gene expression” (pGE)
of peripheral self-antigens in medullary thymic epithelial cells
(mTECs) (12). The only cell-type other than mTECs that had
so far been reported to express Aire is rare cells in the lymph
node which have been termed as extrathymic Aire expressing
cells (eTACs) (13). eTACs are of hematopoietic origin, yet their
exact lineage identity remains elusive (14). Using Aire-reporter
mice, we noted a reporter-positive population of non-mTEC
cells in the thymus and subsequently identified these cells as
thymic B cells (9). Faithful expression of the Aire-reporter was
confirmed by RT-PCR and intracellular protein staining. Aire
protein was detectable in nuclear dots in around 2–3% of thymic
B cells, whereby protein levels were substantially lower than in
mTECs. A comparison of gene expression profiles in WT versus
Aire−/− thymic B cells revealed that several hundred genes are
differentially expressed. Very few of these had previously been
reported to be Aire dependent in mTECs or eTACs, indicating
that Aire’s function as a transcriptional regulator is cell context
dependent. Of note, whereas in mTECs the expression of several
thousand genes is modulated by Aire, only a few hundred genes
are controlled by Aire in thymic B cells or eTACs. Furthermore, it
remains to be established whether Aire-dependent expression of
any tissue-restricted antigen in thymic B cells is essential for T cell
tolerance.

Are these distinctive features of thymic B cells an inherent
feature of B cells that arise through intrathymic B lympopoiesis?
To address this question, we followed the fate of i.v. injected
IgM+IgD+ B cells, which are MHCIIintermediate, CD80− and
Aire−. Seven days after injection, donor cells in the spleen had
retained their initial phenotype. In contrast, cells that had immi-
grated into the thymus recapitulated all features of steady state
thymic B cells, indicating that the unique phenotype of thymic B
cells is imprinted by extrinsic cues in the thymic microenviron-
ment, and we referred to this microenvironmental programing as
“thymic B cell licensing” (9).

Thymic B Cell Licensing Requires CD40
The transition from a MHCIIintCD80−Aire− stage to a
MHCIIhiCD80+Aire+ phenotype during thymic B cell licensing
is strikingly reminiscent of mTEC “maturation.” However,
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whereas mTEC maturation is orchestrated by RANK signals
(15–17), thymic B cell licensing crucially requires another
TNF family member, CD40. Treatment of splenic B cells
with agonist anti-CD40 antibody emulated B cell licensing,
including induction of Aire (9). Thymic B cells in Cd40−/−

and Cd40lg−/− mice are substantially diminished, consistent
with a role of CD40 signals in thymic B cell homeostasis (7).
Strikingly, the phenotype of thymic B cells in the absence
of CD40 signaling is that of resting peripheral B cells. Thus,
distinct signaling axes control the expression of Aire and the
acquisition of a MHCIIhighCD80+ phenotype in mTECs or
thymic B cells.

Cross-Talk with Autoreactive CD4 T Cells
Regulates Thymic B Cell Numbers and Licensing
Fujihara et al. showed that thymic B cell numbers are regu-
lated by CD4 single-positive (SP) thymocytes (7). Similarly, we
found that thymic B cells from TCRα−/− mice, which lack SP
thymocytes, express low levels of MHCII, are negative for co-
stimulatory molecules, do not undergo class-switching and fail
to up-regulate Aire (9). Strikingly, although CD4 SP thymocytes
in “monoclonal” OT2 TCR transgenic mice on TCRα−/− back-
ground express normal levels of CD40L, B cells in these mice

are not licensed, indicating that a polyclonal repertoire of CD4
SP cells is necessary. The requirement for diverse TCRs seems to
reflect a critical role of autoreactivity within the nascent CD4 SP
compartment. Along these lines, B cell licensing can be mimicked
in vitro when splenic B cells are pulsed with cognate antigen
and co-cultured with specific CD4 SP cells. Moreover, MHCII-
deficient B cells do not undergo licensing upon immigration into
the thymus. Together, these observations suggest that cognate
interactions through direct antigen presentation by B cells pro-
vide a platform for CD40 signaling and thereby initiate licensing
(Figure 1). This tolerogenic feed-forward loop represents a strik-
ing parallel to the very similar cross-talk between mTECs and
CD4 SP cells that is thought to bolster the tolerogenic features of
mTECs (18).

Thymic B Cells and Central T Cell
Tolerance

Evidence for a Non-Redundant Contribution of
Thymic B Cells to Central Tolerance
Several studies have shown that thymic B cells can contribute
to negative selection under particular experimental conditions.
Forced expression of the I-E MHCII molecule exclusively on B

?

Thymus

1

Immigration
2

3
Licensing:

i) Proliferation

ii) MHCII up-regulation

iii) Induction of CD80

iv) Induction of Aire

v) Ig class-switching

B

T

CD80

‘Licensing–dependent‘ 

peptide/MHCII Type A

(activated B cell-specific)

B

4

Periphery

B

T

Licensed B cell

(MHCIIhi CD80hi)

‘Licensing–dependent‘

peptide/MHCII Type B

(Aire-dependent)

CD40 - C
D40L

FIGURE 1 | Sequential phases of thymic B cell licensing. (1)
Recirculating peripheral B cells can enter the thymus. Their peptide
(p)MHCII ligandome is expected to mostly contain endogenously expressed
“resting B cell autoantigens.” Whereas the peripheral T cell repertoire is
likely to be robustly tolerant toward these self-antigens, the nascent CD4
SP compartment is not (yet) fully purged of the respective specificities. (2)
An unknown fraction of “B cell-reactive” CD4 SP cells within the diverse
CD4 SP repertoire recognize “resting B cell autoantigens” and provide
CD40 signals. CD40L is constitutively expressed by CD4 SP cells

regardless of autoreactivity, presumably as a consequence of preceeding
positively selecting interactions with cTECs. (3) Cross-talk with CD4
single-positive thymocytes induces proliferation, up-regulation of MHC
class II, induction of CD80, induction of Aire, and Ig class-switching. (4)
Licensed B cells delete autoreactive CD4 T cells, including TCR specificities
that recognize “licensing-dependent” self-antigens; these are expected to
include, but are not restricted to, self-antigens that are also up-regulated in
activated B cells in the periphery (Type A) and Aire-dependent self-antigens
(TRAs) (Type B).
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cells led to deletion of superantigen reactive T cells (19). Myelin
oligodendrocyte glycoprotein (MOG)-specific CD4+ thymocytes
were negatively selected when an epitope of MOG was exclusively
presented by B cells (20). Perera et al. used autoreactive B cell
receptor (BCR) transgenic mice to show that cognate T cells of
the “same specificity” were negatively selected in the thymus (10).
We showed that a “licensing-dependent” neo-antigen selectively
up-regulated in immigrating B cells mediated negative selection
through direct presentation (9).

What is known about the overall contribution of thymic B cells
to central T cell tolerance? In mice lacking B cells, the size of the
CD4SP cell compartment is significantly increased (9, 21). This
resembles previous observations in mice that either lacked DCs
or had a diminution of MHCII on mTECs, suggesting a non-
redundant contribution of thymic B cells to negative selection of
CD4 T cells (22, 23). Other recent reports showed that thymic
Treg cells are decreased in B cell-deficient mice, and increased
Treg numbers were observed in the thymus of Baff-transgenic
mice harboring elevated B cell numbers (21, 24). Although these
findings support a role of thymic B cell for central tolerance
induction under physiological conditions, the exact spectrum of
self-antigens that may require such a contribution remains to be
characterized.

Do Thymic B Cells Pre-Empt the Self-Antigen
Signature of Germinal Center B Cells?
The role of CD40 and the cognate interactions between B cells
and CD4 T cells during thymic B cell licensing are reminiscent
of the germinal center (GC) reaction (25). Indeed, a substan-
tial fraction of thymic B cells display a Fas+GL7+ phenotype
that is otherwise characteristic for GC B cells (9). It is therefore
tempting to speculate that the tolerogenic potential of licensed
thymic B cells might in particular comprise “activated-B-cell”
autoantigens. Consistent with that idea, CD4 SP thymoctes from
B cell-deficient mice are hyper-responsive to CD40-activated B
cells (9). A central assumption of the GC paradigm is that CD4
T cell help needs to be tightly focused on epitopes of the for-
eign antigen that has been internalized via the BCR (26). In
order to control BCR–hypermutation-related neo-autoreactivity
among GC B cells, self-reactive B cells need to be deprived
from cognate help. This not only requires robust CD4 T cell
tolerance toward exogenously derived self-determinants that have
been captured via the hypermutated BCR but also that the CD4
T cell repertoire is efficiently purged of reactivity toward any
endogenously derived B cell autoantigen that is concurrently pre-
sented. Because thymic B cells may emulate the peptide/MHC
composition of GC B cells in a tolerogenic setting, thymic B cell
licensing may pre-empt T cell recognition of “activated B cell
autoantigens” in an inflammatory context in secondary lymphoid
tissues.

A Role for the BCR?
B cells efficiently present antigens that have been captured via
the BCR (27). So, do BCR-specificity and/or -autoreactivity play
a role in thymic B cell licensing and B cell-mediated central
tolerance? Using BCR knock-in and T cell receptor transgenic

mice specific for the same antigen, Perera et al. elegantly demon-
strated that autoreactive B cells are particularly efficient APCs
to induce negative selection of T cells with identical specificity
(10). However, we found no evidence that BCR autoreactivity
may favor B cell entry into the thymus or is a prerequisite to
subsequently undergo licensing (9). Specifically, we employed
SWHEL mice to address these issues. In these mice, around two-
thirds of peripheral B cells express a transgenic “anti-foreign BCR”
specific for hen egg lysozyme (HEL), whereas the remainder of B
cells carry endogenously rearranged BCRs, some of which may
harbor autoreactivity. The relative abundance of HEL+ B cells
in the thymus exactly reflected their peripheral frequency, and
both HEL+ and HEL− B cells underwent intrathymic licensing.
Future work is needed to more conclusively address the compo-
sition of the thymic B cell repertoire, for instance, through BCR
sequencing.

Open Questions

Is BCR Class-Switching in the Thymus
Physiologically Relevant?
As a consequence of licensing, thymic B cells class-switch to IgG
or IgA. It is therefore conceivable that thymic B cells present B
lineage-specific “neo-epitopes” generated through isotype-class-
switching or possibly also somatic hypermutation. In all likeli-
hood, and in distinction from the GC reaction, class-switching
in the thymus may occur “spontaneously,” i.e., independent of
cognate help downstream of BCR-mediated antigen capture.
This has obvious implications for the emergence of “natural”
Igs. Some thymic B cells display a memory B cell pheno-
type (CD38+Faslo), and it is possible that IgG- or IgA-positive
thymic B cells re-enter the blood stream. In fact, we observed
a minute population of class-switched donor cell in the periph-
ery after intrathymic injection of naive B cells (Tomoyoshi
Yamano and Ludger Klein unpublished). More work is needed
to clarify the role of the thymus as a potential source of natu-
ral Igs.

Do Thymic B Cells Shape the Thymic
Microenvironment?
It was shown that thymic B cells express Ltα and Ltβ, and
thereby regulatemTEC cellularity (28). Thymic B cells also express
a variety of cytokines and chemokines, e.g., IL-10, IL-12, IL-
16, and CCL22 (Tomoyoshi Yamano and Ludger Klein unpub-
lished). These data suggest additional layers of cross-talk in
the thymus. However, more work is needed to better under-
stand whether and how thymic B cells may organize the thymic
microenvironment.

Do Thymic B Cells Play a Role in Human Disease?
The presence of B cells with an “activated” phenotype in the
healthy human thymus has long been recognized (29), but their
origin and specificity has remained elusive. Ectopic GC-like
structures are present in thymi of early-onset myasthenia gravis
(MG) patients, and it was hypothesized that they are the site of
auto-sensitization against the acetylcholine receptor (AChR) (30).
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However, a recent characterization of antibody repertoires in MG
thymi revealed expansion of a polyclonal repertoire unrelated to
AChR specificities (31). Thus, it remains to be shown whether the
accumulation of B cells in MG thymi is a cause or a consequence
of disease.
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The thymus generates a lineage-committed subset of regulatory T-cells (Tregs), best 
identified by the expression of the transcription factor FOXP3. The development of thy-
mus-derived Tregs is known to require high-avidity interaction with MHC-self peptides 
leading to the generation of self-reactive Tregs fundamental for the maintenance of 
self-tolerance. Notwithstanding their crucial role in the control of immune responses, 
human thymic Treg differentiation remains poorly understood. In this mini-review, we will 
focus on the developmental stages at which Treg lineage commitment occurs, and their 
spatial localization in the human thymus, reviewing the molecular requirements, including 
T-cell receptor and cytokine signaling, as well as the cellular interactions involved. An 
overview of the impact of described thymic defects on the Treg compartment will be 
provided, illustrating the importance of these in vivo models to investigate human Treg 
development.

Keywords: human thymus, regulatory T-cells, FOXP3, regulatory T-cell development, human thymic defects, 
primary immunodeficiency

introduction

Regulatory T-cells (Tregs) play a major role in immune homeostasis by preventing or limiting 
T-cell activation, particularly in the context of auto-antigens. Expression of the transcription fac-
tor forkhead box P3 (FOXP3), considered a master regulator of Treg development and function, is 
essential for their role in the maintenance of dominant tolerance [reviewed in Ref. (1)]. Conditions 
where FOXP3 is defective or absent, such as the recessive disorder immune dysregulation, polyen-
docrinopathy, enteropathy, X-linked (IPEX) syndrome, are characterized by aggressive autoimmune 
manifestations that are usually fatal within the first 2 years of life, unless corrected via hematopoietic 
stem-cell transplantation (2–4).

Regulatory T-cells develop primarily in the thymus (thymus-derived Tregs, tTregs), although they 
can also be differentiated in the periphery (peripherally-induced Tregs). The delineation of these 
two populations in the peripheral Treg compartment is difficult due to the lack of specific markers. 
Nevertheless, tTregs are thought to be enriched in self-reactive T-cell receptors (TCRs) and to be 
critical for the maintenance of self-tolerance [reviewed in Ref. (1)]. Despite extensive research on 
tTreg development using murine models in the past 20 years, many questions remain unanswered 
regarding the mechanisms involved in the establishment and maintenance of the tTreg lineage 
[reviewed in Ref. (5, 6)]. Additionally, human tTreg studies are constrained by the limited number 
of tools available. Data have been mainly generated by in vitro manipulation of human thymic tissue 
or in vivo models using mouse/human chimeras [reviewed in Ref. (7)].

In this regard, the information provided by genetic human diseases characterized by thymus-
related disturbances, such as the DiGeorge, the Omenn, and the autoimmune polyendocrinopathy 
candidiasis ectodermal dystrophy (APECED) syndromes, have been instrumental [reviewed in 
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Ref. (8, 9)]. DiGeorge syndrome features athymia in <1% of the 
patients, but in the majority of them the prevailing thymic hypo-
plasia is associated with mild to moderate T-cell lymphopenia, 
and increased incidence of infection and autoimmune diseases 
[reviewed in Ref. (10)]. Alterations in the circulating Treg com-
partment have been consistently reported in DiGeorge syndrome 
(11–13). Notably, a decreased proportion and number of FOXP3+ 
cells in pediatric patients older than 2 years was observed when 
compared to age-matched healthy controls, in direct correlation 
with thymic output, as estimated by the numbers of CD4+ recent 
thymic emigrants (RTEs, defined by the expression of CD31 and 
CD45RA) (12). Omenn syndrome results from hypormorphic 
mutations in severe combined immunodeficiency (SCID)-
causing genes and is associated with the generation of a limited 
pool of T lymphocytes with a restricted repertoire and activated 
phenotype [reviewed in Ref. (8)]. Loss of corticomedullary 
junction and Hassall’s bodies with depletion of autoimmune 
regulator gene (AIRE)-expressing medullary thymic epithelial 
cells (mTECs) and thymic dendritic cells (DCs) were described in 
two Omenn patients, in parallel with a dramatic decrease of Tregs 
in the thymus (14), supporting a role of AIRE-expressing mTEC 
and/or thymic DCs in their differentiation. In agreement, loss-of-
function mutations in the AIRE gene (APECED syndrome) have 
been linked to a defective circulating Treg compartment (15–17). 
Not only is the frequency of naïve/resting Tregs (defined as CD4
+FOXP3+CD45ROnegCD31+) decreased in APECED patients but 
also their levels of FOXP3 expression, function, and repertoire are 
altered, further supporting an abnormal tTreg development in the 
absence of AIRE (16).

A recent study that involved a paired analysis of thymic and 
blood samples in young children (newborns to 1-year-old) 
showed a direct correlation between the size of the two Treg 
compartments, further supporting the importance of the thymus 
for the establishment of the peripheral Treg pool early in life 
(18). Of note, both human and murine RTEs are endowed with 
enhanced potential to convert into peripherally-induced Tregs, 
when compared to their more mature counterparts, implying an 
additional role of the thymus for the setting of the peripheral Treg 
compartment (19). Furthermore, patients with athymia due to 
complete DiGeorge or FOXN1 deficiency have been shown to 
recover the peripheral Treg compartment upon allogeneic thymus 
transplantation, irrespective of the degree of HLA mismatching 
(20–22).

It is vitally important to understand human tTreg development 
in order to devise strategies to manipulate their generation as well 
as their repertoire (23). This mini-review will provide an overview 
of the current knowledge regarding human tTreg development, as 
well as the fundamental questions that remain to be addressed.

Commitment to the Treg Lineage: when?

The human thymic primordium is colonized by T-cell progeni-
tors during the 8th week of gestation, but mature T-cells are only 
observed in the thymus at the 12th to 13th gestational weeks 
(24–26). At this stage, human tTregs can already be found in the 
thymus (27–29). The frequency of fetal human tTregs, identified 
by their elevated expression of the high-affinity IL-2 receptor 

alpha chain (IL-2Rα/CD25), was found to be stable throughout 
gestation (representing 6–7% of total thymocytes) and similar to 
the proportion observed in infant thymuses (28).

Fetal human tTregs already express FOXP3, as assessed at the 
gene expression level, as well as other markers related to their sup-
pressive phenotype, such as cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4) and glucocorticoid-induced TNFR-related 
protein (GITR) (27, 28). Moreover, these fetal human tTregs have 
the ability to suppress T-cell proliferation (27, 28).

One question that has been extensively addressed in mice, but 
due to technical limitations only in a few human studies, is when 
and how a thymocyte becomes committed to the Treg lineage. 
The discrete populations that express Treg markers, such as CD25 
and FOXP3, in the human post-natal thymus mainly comprise 
mature CD4 single-positive (CD4SP, CD4+CD8neg) thymocytes, 
but also include CD8 single-positive (CD8SP, CD4negCD8+) and 
double-positive (DP, CD4+CD8+) thymocytes, as well as cells 
in early pre-DP stages (27, 28, 30–36). In agreement, FOXP3+/
CD25+ thymocytes can be found mostly in the medullary region 
of the human thymus, where mature thymocytes localize, with 
rare cells scattered in the cortex (30, 31, 35, 37, 38). The mecha-
nisms that allow for human tTreg commitment to occur are still 
ill-defined.

We and others have reported pre-DP expression of FOXP3, 
namely, at the triple-negative and CD4 immature single-positive 
stages (33, 35) (Table 1). However, the contribution of this popu-
lation to the human tTreg pool remains to be addressed.

Double-positive thymocytes expressing FOXP3 and/or 
CD25 are clearly identified in the human thymus. They addi-
tionally express other Treg function-associated markers, such as 
CTLA-4, CD39, and GITR (27, 28, 36), and exhibit suppressive 
function (32, 36) (Table 1). DP tTregs feature some degree of 
immaturity, as evidenced by the expression of recombination-
activating gene 2 mRNA (34). Moreover, upon stripping of 
surface molecules using pronase, DP tTregs re-acquire both 
CD4 and CD8 at the surface, confirming their bona-fide DP 
status (36). Nevertheless, the majority of human DP tTregs 
express high levels of CD3 and CD27, which are associated with 
positive selection and maturity (27, 36) (Table 1). Importantly, 
DP tTregs are thought to significantly contribute to the CD4SP 
tTreg pool in humans, as predicted by linear regression models 
(36), and formally demonstrated by co-cultures of DP thymo-
cytes with either TEC (36) or mature plasmacytoid (p)DCs 
(38). This observation contrasts with what has been described 
in murine models, where Foxp3 induction, although possible at 
the DP stage (45–47), mostly occurs at the CD4SP stage (48). Of 
note, human CD4SP CD25neg thymocytes are also permissive to 
FOXP3 acquisition (37, 39, 49).

CD4SP tTreg represent the major population of FOXP3+ 
human thymocytes. They phenotypically mirror peripheral 
Tregs and exhibit efficient regulatory function (27, 28, 30, 36, 
41, 43) (Table 1). The contribution of recirculating peripheral 
Tregs to this tTreg compartment is still debatable. It has long 
been proposed that activated T-cells may recirculate back to the 
thymus (50, 51), although this issue is particularly difficult to 
assess in humans. Recently, it was reported that a considerable 
proportion of human CD4SP tTregs may consist of recirculating 
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cells (44). This was based on the observation that approximately 
one-fourth of these cells had lost CD31 and acquired ICOS 
and Tbet expression. Although it is not possible to exclude 
that a fraction of human tTregs may actually represent mature 
recirculating cells, there are some caveats to this interpretation. 
For instance, ICOS is already expressed by tTreg at the DP stage 
(39). Also, the high FOXP3 expression levels found within 
CD4SP ICOS+CD31neg tTregs (44) may reflect their interaction 
with ICOSL expressed on mTECs, as previously described (52). 
Moreover, TREC levels are reportedly comparable between the 
CD4SP CD25+ and CD25neg thymocyte populations, and several 
logs higher that those found in circulating Tregs, supporting that 
the majority of CD4SP tTregs are at the final stage of T-cell devel-
opment (53). Of note, Vbeta usage and spectratyping analyses 
supported that CD4SP tTregs and CD4SP FOXP3neg/CD25neg 
thymocytes have a similarly diverse repertoire (36, 53). To our 
knowledge, the direct comparison of the thymic CD4SP FOXP3+ 
and FOXP3neg repertoires has not been reported. Its assessment 
will be important to clarify this issue since in peripheral cells 
the Treg repertoire has only 24% overlap with conventional CD4 
T-cells (54). Additional studies will be instrumental in deter-
mining the magnitude and role of mature Treg recirculation in 
the human thymus.

Thus, tTreg lineage commitment may occur at various stages 
of human T-cell development.

Commitment to the Treg Lineage: How?

Studies in mice have clearly established the requirement for 
TCR stimulation in Treg lineage commitment [reviewed in 
Ref. (5, 6)]. In humans, technical limitations preclude a direct 
assessment of the role of TCR signaling in tTreg development. 
We and others have shown that human tTreg differentiation 
is associated with markers of positive selection, such as CD69 
and CD27 (27, 28, 34, 36, 42) (Table 1). Moreover, binding sites 
for the TCR downstream targets NFAT and AP1 are present 
within the human FOXP3 promoter that are directly activated 
by TCR stimulation (55). Notably, both DP and CD4SP tTreg 
express CTLA-4 (30, 36), a molecule that in mice was shown to 
be downstream of Nur77, an immediate early gene upregulated 

TABLe 1 | Characterization of human post-natal thymic Tregs.

Markers Pre-DP DP CD4SP CD8SP Reference

FOXP3 + +++ +++ ++ (31, 33, 35, 36, 39, 40)
CD25 − +++ +++ ++ (30, 31, 33, 35, 36, 39, 41)
CTLA-4 + +++ +++ ++ (30, 31, 33, 36, 39, 41, 42)
CD127 −/+ + − − (33–36)
HLA-DR ND ++ + + (36)
CD39 ND ++ ++ + (36)
CD73 ND − − + (36)
CD103 ND + − ++ (36)
ICOS ND ++ ++ + (39, 43, 44)
CD69 ND ++ ++ + (34, 36, 42)
CD27 ND ++ ++ ++ (36, 42)
Ki67 + + −/+ −/+ (36)
Suppressive 
capacity

ND Yes Yes Yes (30–32, 36, 39, 41)

ND, not determined.

by TCR stimulation (56). Indirect evidence that enhanced TCR 
signaling strength may dictate thymocyte commitment into the 
Treg lineage can be further inferred by the increase in CD4SP 
CD25+FOXP3+ thymocyte number in humanized mice treated 
with a superagonist anti-CD28 mAb (57). Moreover, human 
ZAP70-deficient patients present a dramatic decrease in the 
frequency and number of tTregs (58). Interestingly, CD4SP 
CD25+ tTregs were shown to frequently express two functional 
TCRs, in association with enhanced FOXP3 expression, suggest-
ing that dual TCR expression may favor tTreg lineage commit-
ment in humans (40). Overall, available evidence support that 
TCR signaling strength guides thymocyte commitment into 
the Treg lineage in humans, with a predicted impact on their 
self-reactivity.

Several additional signaling pathways and molecular fac-
tors have been implicated in human tTreg differentiation and/
or proliferation, namely JAK3/STAT-5, Notch, CD80/CD86, 
ICOS/ICOSL, CD40/CD40L, thymic stromal lymphopoietin 
(TSLP), as well as the common-gamma chain (γC) cytokines 
interleukin (IL)-2 and -15 (37–39, 49, 52, 59). Watanabe et al. 
demonstrated that TSLP from Hassall’s bodies activate myeloid 
(m)DCs, enabling them to induce tTreg differentiation from 
CD4SP CD25neg thymocytes (37). pDCs are also capable of 
driving CD4SP non-regulatory thymocytes into the human 
Treg lineage, upon response to TSLP (49). Cognate interactions 
between mDCs or pDCs and CD4SP non-regulatory thymo-
cytes are required, as differentiation was impaired by HLA-DR 
blockade (37, 49). Activation of pDCs with anti-CD40L and 
IL-3 also confers on them the capacity to differentiate post-
selection DP CD69hiTCRhi thymocytes into human tTregs (38). 
Additionally, mTECs were shown to promote the survival 
and proliferation of human tTregs in an ICOSL-dependent 
mechanism that required the presence of conventional CD4SP 
cells as source of IL-2 (52). We have recently investigated the 
requirement of γC cytokines in human tTreg development and 
established a critical role for both IL-2 and IL-15 in their line-
age commitment, as well as in tTreg proliferation and survival 
post-selection (39). This study also allowed the identification 
of macrophages and B lymphocytes as main IL-15 producers 
that likely represent two additional thymic antigen-presenting 
cell populations involved in human tTreg differentiation 
(39). In agreement, we found FOXP3+ cells in close vicinity 
of both macrophages and B cells in the human thymus (39). 
Accordingly, B lymphocytes were recently shown to be capable 
of selecting tTreg in mice (60, 61), and the majority of human 
CD4SP tTregs were shown to express CCR8 endowing them 
with the capacity to migrate in response to chemokines pro-
duced by macrophages (30).

As illustrated in Figure  1, the most immature thymocyte 
population that clearly expresses FOXP3, in addition to other 
Treg function-associated markers, such as CD25, CTLA-4, 
and CD39, and displays regulatory function is the cortical 
positively selected DP population (27, 28, 36). The thymic cel-
lular populations and signals mediating their positive selection 
and concomitant recruitment to the Treg lineage may include 
cortical TECs and macrophages, as well as IL-2/IL-15, shown 
by immunohistochemistry to be expressed in the human thymic 
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cortex (39). The DP FOXP3+ thymocyte compartment directly 
correlates with the CD4SP FOXP3+ subset, denoting a precur-
sor–product relationship (36). Upon interaction with activated 
pDCs, post-selection DP FOXP3neg cells may also differentiate 
into Tregs, in a costimulation-dependent manner (38). Medullary 
CD4SP FOXP3neg thymocytes can also acquire FOXP3 expression 
upon cognate interaction with activated pDCs or mDCs, in a 
costimulation- and IL-2-dependent fashion (37, 49). In addition, 
CD4SP FOXP3neg thymocytes may receive appropriate TCR and 
costimulation signals leading to CD25 acquisition and differen-
tiation into tTreg precursors (CD4SP CD25+FOXP3neg cells) (39). 
These precursors can differentiate into tTregs upon exposure to 
IL-2, produced mostly by cycling mature CD4SP thymocytes, or 
IL-15 secreted by macrophages, B lymphocytes, or mTECs (39). 
Whether concomitant TCR, costimulation, and γC cytokine 
signaling also commits medullary CD4SP FOXP3neg thymocytes 
into tTregs, is a possibility remaining to be addressed. Finally, 
CD4SP CD25negFOXP3neg thymocytes TCR-stimulated in the 
presence of costimulation, TGF-β and IL-2/IL-15 signaling can 
also acquire FOXP3 expression and differentiate into CD4SP 
tTreg (19, 39).

FiGURe 1 | Schematic representation of human Treg development 
in the human thymus. DP, double-positive (CD4+CD8+); CD4SP, 
CD4 single-positive (CD4+CD8neg); CD8SP, CD8 single-positive 

(CD8+CD4neg); cTEC, cortical thymic epithelial cell; mTEC, medullary TEC; 
Mac, macrophage; FOXP3, Forkhead box P3; TSLP, thymic stromal 
lymphopoietin.

The Unique Properties of Human  
CD8SP tTregs

In addition to the CD4SP human tTregs, a CD8SP population 
with phenotypic and functional Treg characteristics is present in 
the human thymus. CD8SP human tTregs express several Treg-
associated markers, such as FOXP3, CD25, CTLA-4, and GITR, 
although at lower levels than CD4SP tTregs (31, 36) (Table 1). 
Similarly to CD4SP tTregs, they express very low levels of the 
IL-7 Rα/CD127 molecule (36), and are able to suppress CD4SP 
CD25neg cells in a contact-dependent manner (31) (Table 1). A 
microRNA “signature” of CD8 Tregs has been recently defined in 
cord blood CD8 Treg (62).

Importantly, CD8SP human tTregs were found to express the 
αE chain (CD103) of the αEβ7 integrin (36), a marker associated 
with CD4 Tregs in the periphery (63). CD103 was also expressed 
at the DP stage but was very low within CD4SP thymocytes, sup-
porting a precursor–product relationship between CD103+ DP 
and CD8SP human tTregs (36) (Table 1; Figure 1).

The role of CD103 expression on CD8SP FOXP3+ thymocytes 
remains to be addressed. High expression of E-cadherin, the 
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main ligand of CD103, on mTEC (64) may promote retention of 
CD8 tTregs in the thymic medulla. Furthermore, in an in vitro 
cell adhesion assay, TEC-induced proliferation of CD8SP human 
thymocytes was inhibited by antibodies against E-cadherin or 
CD103, supporting a role for CD103 in CD8SP proliferation 
(64). Although the proliferation of CD8SP CD25+ thymocytes 
was not addressed in this setting, the higher levels of the active 
cell-cycle marker Ki67 found within CD8SP FOXP3+ as com-
pared to CD8SP FOXP3neg thymocytes (36) also support this 
hypothesis.

Despite the low frequency of CD8+ Treg in the steady state, they 
may be of special relevance in pathologic conditions [reviewed in 
Ref. (65, 66)]. CD103 has been associated with T-cell migration 
to mucosal sites (67, 68). In agreement, in the setting of colorectal 
cancer, CD8+FOXP3+CD25+ T-cells were significantly increased 
in peripheral blood and in colorectal cancer tissue, indicating that 
these cells may contribute to tumor immune escape and disease 
progression (69). In addition, studies in macaques have described 
a rapid expansion of CD8+FOXP3+CD25+ Tregs in the blood and 
colorectal mucosa following pathogenic SIV infection (70). An 
increase in the frequency of CD8+ Tregs has also been reported 
in HIV-1-infected patients (70).

In conclusion, a population of CD8+ Tregs is generated in the 
human thymus. A subset of post-selection DP FOXP3+ thymo-
cytes expresses the tissue homing-associated molecule CD103, 
likely giving rise to the CD8SP FOXP3+CD103+ cells found in 
the medulla (Figure 1) (36). This finding supports the possibility 
that CD8+ Tregs egress the thymus expressing markers associ-
ated with mucosal homing, which may explain their very low 
frequency in the blood.

Concluding Remarks

Cumulative evidence supports the existence of different pathways 
of Treg commitment in the human thymus that may occur at 
different stages of thymocyte differentiation. Their physiological 
contribution and the possible implications for the tTreg repertoire 
diversity remain unclear.

Thymus-derived Treg development does not seem to require a 
dedicated antigen-presenting cell population, as studies indicate 
that TECs, mDC, and pDC, as well as macrophages and B cells 
may be involved in tTreg selection. Finally, despite the proposed 
role of TCR signaling strength in human tTreg commitment, it 
has become increasingly clear that γC cytokines, particularly IL-2 
and IL-15, are important mediators of lineage stabilization.

The thymus and specifically tTregs represent important thera-
peutic targets to manipulate tolerance in many clinical settings, 
namely autoimmune diseases, tumor immunity, and transplan-
tation. Furthermore, their targeting is also critical to achieve 
full immunological reconstitution in primary and secondary 
immunodeficiencies and to decrease the morbidity associated 
with hematopoietic stem-cell transplantation. It is therefore of 
utmost importance to further investigate human tTreg develop-
ment, in order to take full-advantage of the current development 
of immune-based therapies.
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As T cells develop, they migrate throughout the thymus where they undergo essential
bi-directional signaling with stromal cells in distinct thymic microenvironments. Immature
thymocyte progenitors are located in the thymic cortex. Following T cell receptor expres-
sion and positive selection, thymocytes undergo a dramatic transition: they become
rapidly motile and relocate to the thymic medulla. Antigen-presenting cells (APCs) within
the cortex and medulla display peptides derived from a wide array of self-proteins,
which promote thymocyte self-tolerance. If a thymocyte is auto-reactive against such
antigens, it undergoes either negative selection, via apoptosis, or differentiation into the
regulatory T cell lineage. This induction of central tolerance is critical for prevention of
autoimmunity. Chemokines and adhesion molecules play an essential role in tolerance
induction, as they promote migration of developing thymocytes through the different
thymic microenvironments and enhance interactions with APCs displaying self-antigens.
Herein, we review the contribution of chemokines and other regulators of thymocyte
localization and motility to T cell development, with a focus on their contribution to the
induction of central tolerance.

Keywords: thymus, negative selection, central tolerance, chemokine receptors, thymocyte migration

Introduction: Coordination of T Cell Development with
Intrathymic Localization

Thymocytesmigrate through distinct thymicmicroenvironments at discrete stages of differentiation
in order to receive essential signals from surrounding stromal cells that govern further differentiation
and selection (1, 2) (Figure 1). Early thymocyte progenitors (ETP) localize to the cortical side of the
cortico-medullary junction (CMJ). As they commit to the T-lineage, thymocytes migrate into the
mid-cortex, where they rearrange T cell receptor (TCR) β chain genes (3). Cells that successfully
express TCRβ pass the β-selection checkpoint, and undergo proliferation and differentiation near
the sub-capsule. Subsequent double positive (DP) thymocytes are localized throughout the cortex,
where they rearrange TCRα chain genes. DP cells that receive weak TCR signals in the cortex
undergo positive selection, promoting survival and differentiation of self-MHC-restricted single
positive (SP) cells. SP thymocytesmigrate into themedulla, where auto-reactive cells receiving strong
TCR signals are culled from the repertoire or diverted into the regulatory T cell (Treg) lineage.
We will review migratory and adhesion cues governing localization and cellular interactions of
differentiating thymocytes and stromal cell subsets, with an emphasis on signals that promote central
tolerance. Recent advances and open questions will be highlighted.
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FIGURE 1 | Thymocyte migration through distinct thymic
microenvironments occurs in an ordered fashion, enabling
appropriate interactions with stromal cells. Thymocyte progenitors enter
the thymus through vessels at the cortico-medullary junction (CMJ). ETPs
(CD3−CD4−CD8−c-Kit+CD44+CD25−) integrate cTEC-derived signals in
the cortex near the CMJ, which promote survival and T-lineage-commitment.
DN2 (CD3−CD4−CD8−c-Kit+CD44+CD25+) thymocytes migrate into the
mid-cortex, as they rearrange TCRβ chain genes. Subsequent DN3
(CD3−CD4−CD8−c-Kit−CD44−CD25+) thymocytes that pass the
β-selection checkpoint proliferate at the sub-capsule, and differentiate
through a DN4 (CD3−CD4−CD8−c-Kit−CD44−CD25−) stage to become
DP (CD4+CD8+) thymocytes. DP cells, which rearrange TCRα chain genes,
are localized throughout the cortex, with a bias toward the medulla.
Interactions with cTECs induce positive selection of DP cells expressing TCRs
with low avidity for self-peptide:MHCs. Auto-reactive DP thymocytes can be
negatively selected in the cortex. Positively selected DP cells begin to migrate
rapidly and enter the thymic medulla, guided by chemokine gradients, as they
differentiate into SP thymocytes. SP cells rapidly scan mTECs and DCs
during their 4–5-day residence time in the medulla to encounter a wide array
of self-peptides, which induce auto-reactive cells to undergo apoptosis or
diversion into the Treg lineage. Mature SP thymocytes egress from the thymus
through blood vessels in the CMJ.

Migration and Stromal Interactions During
Early Stages of Thymocyte Differentiation

Common lymphoid progenitors or their immediate progeny enter
the thymus through vasculature at the CMJ (4), and subse-
quently give rise to developing T cells (5–7). Transmigration
through the endothelium is initiated by selectin-mediated rolling
(P-selectin), followed by firm adhesion via integrins (α4β1 and
αLβ2) in concert with chemokine receptor signaling (CCR9,
CCR7) (8–12). Within the thymus, cortical thymic epithelial cells
(cTECs) provide IL7, SCF, and DLL4, which are indispensable
for survival, differentiation, and T-lineage-commitment of thy-
mocyte progenitors (13–15). ETP and double negative 2 (DN2)
cells express CXCR4, which promotes chemotaxis toward cTEC-
derived CXCL12 (16–20). Cortical thymocytes also express inte-
grin α4β1, which binds VCAM-1 on cTECs. CXCR4 deficiency
or impaired VCAM-1 adhesion inhibits thymocyte differentia-
tion and migration from the CMJ to the mid-cortex (20–23).
It remains to be determined how CCR7 promotes both thymic
entry of progenitors into the cortex, and medullary accumulation
of SP thymocytes (see below). As ETP do not express CCR7,

rapid downregulation of CCR7 following thymic entrymay enable
cortical progenitor localization.

Migration and Stromal Interactions of
Thymocytes Undergoing βββ-Selection

DN3 cells completing TCRβ rearrangements localize to the
outer capsule (4). In addition to pre-TCR signals, activation of
CXCR4 (24), NOTCH-1 (13, 25), and IL7R via cTEC ligands
(1, 26) are required for differentiation and expansion at the β-
selection checkpoint. The consequences of or signals governing
sub-capsular localization of proliferating post-β selection cells
remain to be elucidated (3). CCR9 is first expressed at the DN3
stage, and DN3 through DP thymocytes migrate toward CCL25,
expressed by cTECs (17, 18, 27). Deficiency or overexpression
of CCR9 prevents DN3 accumulation at the sub-capsule (12, 28,
29). However, a role for CCR9 in sub-capsular localization is
hard to reconcile with the distribution of CCL25 throughout the
cortex (30) or the CCR9-responsiveness of DP cells, which are
also present throughout the cortex (17, 18). Moreover, we have
shown that pre-positive selectionDP thymocytes, which areCCR9
responsive, accumulate near themedulla, not the sub-capsule (31).
Thus, signals governing DN3 accumulation at the sub-capsule
remain to be identified.

Migratory Cues Governing Localization and
Stromal Interactions of DP Thymocytes

We speculate that plexinD1 may promote rapid motility and peri-
medullary accumulation of pre-positive selection DP cells (31).
Sema3e, a soluble plexinD1 ligand produced in the medulla,
inhibits CCR9-mediated chemotaxis, releases integrin α4β1 catch
bonds, and is required for medullary localization of post-
positive selection thymocytes (32–34). However, pre-positive
selection DP cells also express plexinD1; thus, DP cells that reach
the peri-medullary cortex, perhaps through random migration
(35), would encounter Sema3e, potentially diminishing CCR9-
mediated migration back into the cortex, and relaxing adhesion
to VCAM-1 on cTECs, thus increasing motility. Recent stud-
ies demonstrate that GIT2, which modulates actin reorganiza-
tion during cellular migration, also promotes rapid migration of
cortical thymocytes (36). GIT2 and plexinD1 may coordinately
enhance the ability of DP cells to efficiently scan cTECs for
positively selecting ligands, which is consistent with the impaired
positive selection inGit2−/− mice (36). Future studiesmay resolve
the roles of plexinD1 and GIT2 in localization, migration, and
positive selection of pre-positive selection DP thymocytes.

Migratory Cues and APCs Governing
Cortical Negative Selection

Although the medulla is a critical environment for negative
selection, there is mounting evidence that the cortex promotes
deletion of a significant number of auto-reactive thymocytes.
Thymocytes undergoing negative selection were recently
quantified using Bim−/−; Nur77GFP mice (37), in which
apoptotic cells survive due to deficiency in the Bcl2 family
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member Bim, and GFP levels reflect TCR signal strength,
enabling quantification of cells that should have been deleted due
to strong TCR signaling. In the absence of Bim, GFP+ DP and
GFP+ SP cellularity was increased, demonstrating that negative
selection occurs in both compartments. Interestingly, the increase
in GFP+ DP cells was up to threefold higher than GFP+ SPs (37),
suggesting that over 90% of positively selected DP thymocytes
are fated for cortical deletion (38). Another study analyzed Helios
levels in Bim−/− mice to estimate that 55% of TCR-signaled
thymocytes are deleted at the DP stage (39). Together, these
studies indicate that the majority of negative selection occurs in
DP cells, raising the question of which cortical antigen-presenting
cells (APCs) promote central tolerance.

Cortical thymic epithelial cells are uniquely responsible for
inducing positive selection (40); however, their role in nega-
tive selection remains ambiguous. Early studies established that
thymic grafts transplanted into allogeneic athymic hosts were
tolerated by host-derived T cells (41–45). Developing T cells
are likely tolerized to graft-derived peptide:MHCs expressed
by medullary TECs (mTECs) or DCs, which does not clarify
whether cTECs induce negative selection. To address this, trans-
genic mice were developed in which MHC-I (46) or MHC-
II (47) was expressed exclusively on cTECs. cTECs in these
mice induced positive selection of CD8SP or CD4SP thymo-
cytes, respectively, but could not tolerize polyclonal thymocytes.
In light of the essential contribution of mTECs to negative
selection against diverse self-antigens (see below), these find-
ings do not resolve whether cTECs induce deletion of some
auto-reactive clones. Expression of model antigens uniquely in
cTECs resulted in deletion of TCR transgenic thymocytes, indi-
cating that cTECs can mediate negative selection (48). How-
ever, when a TCR transgene was more faithfully expressed at
the later DP stage in the HYCD4 model, cTECs expressing the
cognate antigen induced TCR activation, but not apoptosis of
auto-reactive DP cells (49). Thus, cTECs can clearly activate
auto-reactive TCRs, but their ability to mediate deletion remains
uncertain.

DCs have emerged as likely mediators of cortical negative
selection. DCs express high levels of costimulatory and MHC
molecules, enabling strong TCR activation (50). Strikingly, in
a model of cortical negative selection, thymocytes undergoing
apoptosis were localized adjacent to cortical DCs, and negative
selection was impaired whenDCs were conditionally ablated (49).
Themigratory cues that promote thymocyte:DC interactions dur-
ing cortical negative selection have yet to be elucidated. Cortical
DCs accumulate near vasculature, where CCR7 ligands are pre-
sented (30, 51, 52). ThymicDCs undergoCCR7-mediated chemo-
taxis (53), suggesting CCR7 may position DCs near cortical blood
vessels. CCR7 was also postulated to induce cortical thymocytes
to associate with DCs under positively selecting conditions (52).
However, CCR7 is not up-regulated until the SP stage (54), when
thymocytes home to the medulla, and CCR7 was dispensable for
cortical deletion in the HYcd4 model (49). Thus, CCR7 signal-
ing may position cortical DCs near vasculature, but is unlikely
to promote thymocyte:DC interactions during cortical negative
selection. CCR2 also contributes to cortical DC positioning, as
it recruits migratory DCs to perivascular spaces in the cortex

to induce deletion against blood-borne antigens (55, 56). CCX-
CKR1 (CCRL1) regulates bioavailability of CCL19, CCL21, and
CCL25, but its expression by cTECs and impact on tolerance are
currently controversial (57, 58). Further investigation is needed to
elucidate the contributions of APCs andmigratory cues governing
cortical negative selection.

Migration of Post-Positive Selection
Thymocytes into the Medulla

The migration of post-positive selection thymocytes into the
medulla is critical for the induction of central tolerance. If the
medulla does not develop, or thymocytes cannot accumulate
therein, negative selection is impaired, and autoimmunity arises
(59–64). Only positively selected thymocytes gain access to the
medulla (31); recent evidence suggests CXCR4 is responsible for
cortical retention of DP cells (65). Following positive selection,
thymocytes migrate much more rapidly (12–16 μm/min post-
selection versus 6–8 μm/min pre-selection) and undergo chemo-
taxis toward the medulla (31, 66, 67). It is commonly assumed
that thymocytes enter the medulla at the SP stage. However,
plexinD1 deficiency results in relocalization of CD69+ cells from
the medulla into the cortex, suggesting post-positive selection
CD69+ DP cells may enter the medulla (32, 33). Furthermore, the
kinetics of medullary entry after positive selection, compared to
the timing of differentiation from the DP to SP stage indicates that
CD69+ DP cells enter the medulla (68). Thus, positive selection
likely induces rapid thymocyte medullary entry; further studies
are required to determine if and how CD69+ DP cells overcome
cortical retention to enter the medulla.

The chemokine receptor CCR7 is critical for thymocyte local-
ization in the medulla (31, 51). CCR7 is expressed by SP thy-
mocytes (51, 54, 69, 70), while the ligands CCL19 and CCL21
are expressed by mTECs (71). In mice deficient for CCR7 or
its ligands, medullary accumulation of SP cells is diminished,
negative selection is impaired, and autoimmunity ensues (59,
60). Although CCR7 is required for SP chemotaxis toward the
medulla and accumulation therein, Ccr7−/− SP cells enter and
migrate within the medulla (31). In contrast, SP medullary entry
is abrogated by pertussis toxin (31, 69), which blocks signaling
through Gαi-associated G protein coupled receptors (GPCRs),
including chemokine receptors. Thus, other GPCRs must con-
tribute to thymocyte medullary localization. We speculate that
CCR4 may contribute to medullary entry. CD69+DP and
CD69+CD4SP thymocytes express CCR4 (54, 69) and undergo
chemotaxis toward the ligands CCL17 and CCL22 (17), which
are expressed in the medulla (18, 72). CCR4 is up-regulated
early after positive selection, while CCR7 is expressed on more
mature SP cells (54), suggesting differential roles in guiding thy-
mocytes into the medulla. CCR4 may be responsible for ini-
tial medullary entry of post-positive selection cells, while CCR7
may promote retention of maturing SPs (Figure 2). Future stud-
ies are required to address the relative contributions of CCR4
and other GPCRs to medullary entry and central tolerance,
though a recent study did not identify a role for CCR4 in these
processes (54).
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FIGURE 2 | Signals that impact motility and localization of positively
selected thymocytes. After positive selection, thymocytes up-regulate
CD69 and the chemokine receptor CCR4. CCR4 ligands are expressed by
medullary DCs, thus creating a chemotactic gradient that may promote
medullary entry of post-positive selection thymocytes. PlexinD1 is expressed
on DP and immature SP thymocytes, and may also promote medullary entry
by inhibiting responses to cortical chemokines and releasing thymocytes from
tight interactions with cTECs. As SP cells mature, they up-regulate CCR7,
promoting chemotaxis toward the gradient of CCR7 ligands produced by
mTEClo (CD80loMHC-IIlo) and mTEChi (CD80+MHC-IIhi) cells. CCR7 signaling
is critical for maintaining SP thymocytes within the medulla. In the absence of
CCR7, SP cells do not undergo efficient negative selection against TRAs.
Expression of CCR7 and CCR4 on SP thymocytes may also promote
chemokinesis, or rapid motility of SP thymocytes, as well as efficient
interactions with the two main subsets of medullary APCs, mTEChi cells and
DCs, respectively. Thus, chemokine-guided migration likely impacts multiple
aspects of SP motility and cellular interactions that are required to ensure SP
thymocytes efficiently scan numerous medullary APCs to encounter the full
array of self-antigens that induce central tolerance.

APCs Governing Medullary Negative
Selection and Treg Generation

Once SP thymocytes migrate into the medulla, they encounter
heterogeneous APCs that enforce self-tolerance (Figure 2).
Medullary APCs display peptides derived from a wide array of
tissue-restricted antigens (TRAs), proteins otherwise expressed
by peripheral tissues. mTEChi cells express high levels of CD80
and MHC-II, as well as the transcriptional regulator AIRE, which
inducesmTECdifferentiation and expression of diverse TRAs that
were previously epigenetically silenced (73–81). AIRE-dependent
expression of such TRAs is essential for the induction of central
tolerance in mice and humans (82–87). Medullary DCs also con-
tribute to negative selection; they can be divided into intrathymi-
cally derived Sirpα− conventional DC (cDC), migratory Sirpα+

cDC, and plasmacytoid DCs (pDC) (88, 89). Other APCs, such as

B cells, may also contribute to negative selection (90–92), but are
not discussed here.

Several experimental models indicate that mTECs can directly
present peptide:MHCs to mediate negative selection and Treg
induction. Negative selection against model self-antigens was
intact following ablation of DCs or MHC-II expression on
hematopoietic cells, demonstrating that mTECs can be sufficient
to mediate negative selection (93, 94). Furthermore, miRNA-
mediated reduction of MHC-II expression in mTECs resulted in
diminished negative selection of TCR transgenic thymocytes to
a model TRA, demonstrating that direct antigen presentation by
mTECs is required for deletion in some cases (95). Direct pre-
sentation of TRAs by mTECs can also induce Treg differentiation
(96). While endogenous proteins in mTECs will naturally access
the MHC-I processing and presentation pathway, presentation on
MHC-II is facilitated by macroautophagy, which is required for
central tolerance (97). Thus, mTECs have an intrinsic capacity
to present diverse self-antigens to mediate central tolerance of
CD4SP and CD8SP cells.

DCs are also critical for thymic central tolerance. DC ablation
in a CD11c-DTA model resulted in impaired negative selection
and fatal autoimmunity (98). MHC-II ablation on hematopoietic
cells impaired both Treg induction and negative selection against
serum-borne and soluble TRAs (99–101). Sirpα+ cDC and pDC
can acquire peripheral antigens and traffic them to the thymus
to induce negative selection (102, 103). Also, in some models of
mTEC-expressed TRAs, DCs isolated from the thymus stimulate
TRA-specific T cells specific more efficiently than mTECs them-
selves, indicating that antigens are transferred efficiently from
mTECs to DCs tomediate deletion (104). Transfer of model TRAs
from mTECs to DCs can be AIRE-dependent and required for
negative selection (99, 104). The mechanisms of antigen transfer
between mTECs and DCs remain to be elucidated. mTECs may
secrete or release antigen in vesicles; DCs may acquire antigen
by endocytosis of apoptotic mTECs (105); or peptide:MHC com-
plexes may be acquired by DCs from mTEC cell membranes
(104, 106). Thus, the heterogeneous thymic DC compartment
promotes central tolerance against peripheral, blood-borne, and
mTEC-derived self-antigens.

While both mTECs and DCs induce tolerance to some anti-
gens, their relative contributions to central tolerance of poly-
clonal thymocytes have been difficult to ascertain. Using TCR
repertoire analysis of Treg and naïve T cells, Perry et al. recently
compared the impact of restricting antigen presentation to DCs
versusmTECs (107).mTECs andDCsmediated negative selection
of non-overlapping TCRs, and DCs deleted about threefold more
TCRs. These findings are in keeping with studies showing that
both subsets are important for negative selection. Furthermore,
bothmTECs andDCs inducedTreg differentiation. AIREwas crit-
ical for negative selection and Treg induction of lower frequency
TCRs, and the Sirpα− subset of cDC was required for AIRE-
dependent Treg generation (107). Importantly, this study com-
pared the effects of diminished MHC-II expression on mTECs
with ablated MHC-II expression on DCs, and may thus under-
estimate the relative contribution of mTECs to central tolerance.
Nonetheless, it is clear that complete central tolerance will require
efficient thymocyte interactions with both mTECs and DCs.
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Migratory Cues Promoting Medullary
Central Tolerance

Given that DCs acquire TRAs from mTECs, it is likely DCs
must localize near mTECs to mediate efficient central tolerance.
Consistent with this, XCR1, which is expressed on Sirpα−cDC,
was required for localization of cDC to the center of the
medulla (53). In Xcl1−/− mice, Treg cellularity was dimin-
ished, the TCR repertoire was altered, and autoimmune man-
ifestations occurred, indicating that medullary localization of
Sirpα−cDC is required for central tolerance (53). This sug-
gests a model in which XCR1 promotes direct apposition of
Sirpα−DCs with mTECs for TRA acquisition. Sirpα+ cDC and
pDC, which carry peripheral antigens into the medulla, migrate
into the thymus through vasculature in a P-selectin, VLA4, and
GPCR-dependent manner (103). CCR9 is required for thymic
entry of pDC, but the corresponding GPCR for Sirpα+ cDC
has not been identified (102). Although thymic DCs express
CCR7 and migrate toward CCR7 ligands, Ccr7−/− DCs local-
ize properly within the medulla (53). Thus, signals required for
medullary localization of Sirpα+ DCs and pDCs remain to be
identified.

SP thymocytes were recently estimated to have a medullary
residence time of ~4–5 days (108), shorter than the previous
estimate of ~12 days (109), and each AIRE-dependent TRA
is expressed on only 1–3% of AIRE+mTEChi cells (74, 110).
Thus, thymocytes must rapidly scan multiple mTECs and DCs
to encounter the full spectrum of medullary self-antigens that
promote central tolerance. Chemokines can promote lympho-
cyte chemokinesis (111), and CCR7 has been shown to pro-
mote rapid motility of SP thymocytes (31). Fast SP migra-
tion is also dependent on MST1, which promotes integrin-
mediated binding of SP thymocytes to ICAM1 in the con-
text of CCL21 (112). It remains to be determined whether
other chemokine signals are required for rapid motility of SP
thymocytes.

It remains to be established whether interactions between thy-
mocytes and medullary APCs are driven by chemotaxis toward
APCs or random encounters due to fast SP motility. Several
studies suggest chemokines may facilitate T cell:APC interac-
tions in secondary lymphoid organs. Using microspheres releas-
ing CCL19 and CCL21, a recent study demonstrated that when
sources of CCR7 ligands were interspersed, T cells hopped
between microspheres, potentially facilitating antigen sampling
(113). Both CCR4 and CCR7 have been implicated in promot-
ing T cell:APC interactions that drive naïve T cell activation

(114, 115). Thus, CCR4 and CCR7 may also promote cellular
interactions between SP cells and DCs and mTECs, respectively.
Indeed, Mst1 was required for efficient interactions between SP
cells undergoing negative selection and Aire+mTECs expressing
a model TRA (112), suggesting that CCR7 may enhance adhe-
sion between SP cells and mTECs via intergrin:ICAM1 inter-
actions. Furthermore, CCR7 deficiency was recently shown to
result in increased Treg cellularity (54), which may also reflect
the contribution of CCR7 to avid APC interactions. Although the
basis for the decision to undergo apoptosis versus Treg specifi-
cation is not resolved, current models favor an avidity model in
which the highest avidity TCR signals promote negative selec-
tion, while a range of slightly lower avidity signals promote
Treg induction as well as negative selection (116, 117). Thus, if
CCR7 promotes T cell:APC interactions, CCR7 deficiency might
result in lower avidity interactions that favor Treg induction. The
fact that CCR7 ligands are expressed by mTECs, while CCR4
ligands are expressed by DCs also raises the possibility that
CCR7 and CCR4 promote interactions with mTECs and DCs,
respectively (Figure 2). Further investigation will be required
to elucidate the contribution of chemokines or other adhesion
molecules to interactions with medullary APCs driving central
tolerance.

Areas for Future Investigation

Chemokine receptors and integrins promote migration and adhe-
sion required for thymocyte:stromal interactions that drive T cell
differentiation and selection. However, multiple localization and
migration cues remain to be elucidated. We have not identified
signals driving localization of DN3 thymocytes to the sub-capsule,
accumulation of pre-selection DP cells near the medulla, or thy-
mocyte:APC interactions during cortical negative selection. The
identities of GPCRs other than CCR7 that promote medullary
entry and APC interactions remain to be determined. We are just
beginning to appreciate that localization of stromal cells is critical
for thymocyte differentiation, and future studies will likely iden-
tify factors driving proper stromal organization. Thus, many open
questions remain regarding the localization and adhesion cues
that promote differentiation of a fully functional and self-tolerant
T cell compartment.
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A common feature seen in acute infections is a severe atrophy of the thymus. This occurs
in the murine model of acute Chagas disease. Moreover, in thymuses from Trypanosoma
cruzi acutely infectedmice, thymocytes exhibit an increase in the density of fibronectin and
laminin integrin-type receptors, with an increase in migratory response ex vivo. Thymic
epithelial cells (TEC) play a major role in the intrathymic T cell differentiation. To date,
the consequences of molecular changes promoted by parasite infection upon thymus
have not been elucidated. Considering the importance of microRNA for gene expression
regulation, 85 microRNAs (mRNAs) were analyzed in TEC from T. cruzi acutely infected
mice. The infection significantly modulated 29 miRNAs and modulation of 9 was also
dependent whether TEC sorted out from the thymus exhibited cortical or medullary
phenotype. In silico analysis revealed that these miRNAs may control target mRNAs
known to be responsible for chemotaxis, cell adhesion, and cell death. Considering that
we sorted TEC in the initial phase of thymocyte loss, it is conceivable that changes in TEC
miRNA expression profile are functionally related to thymic atrophy, providing new clues
to better understanding the mechanisms of the thymic involution seen in experimental
Chagas disease.

Keywords: Chagas disease, thymus atrophy, thymic epithelial cell, microRNA, thymocyte migration

Introduction

The thymus is a common target organ in infectious diseases (1). This primary lymphoid organ
is responsible for bone marrow-derived T cell precursors differentiation from the most imma-
ture CD4−CD8− phenotype to CD4+CD8+ and finally in CD4+CD8− or CD4−CD8+ T cells
that will colonize secondary lymphoid organs (2). These maturation steps occur while these
cells migrate through the thymic lobules and interact with microenvironmental cells, particularly

Abbreviations: AIRE, autoimmune regulator; ECM, extracellular matrix; pGE, promiscuous gene expression; TEC, thymic
epithelial cells.
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thymic epithelial cells (TEC) (3). TEC guide the T cell maturation
by production of cytokines, chemokines, hormones, adhesion
molecules, extracellularmatrix (ECM)proteins, and by expression
of different ligands, like Notch, as well as self-peptides in the con-
text ofmajor histocompatibility complex (MHC). The self-peptide
presentation determines T cell fate through positive and negative
selection events, where immature lymphocytes expressing ran-
domly rearranged T-cell receptor will be selected based on their
differential ability to recognize the complex peptide/MHC (4–7).
All intrathymic T cell maturation steps generate lineage commit-
ted and self-tolerant T cells capable to perform immunological
functions in the periphery. However, the intrathymic homeosta-
sis is disrupted in numerous acute infectious diseases leading
to thymus atrophy (1). The transient thymic involution can be
caused not only by infection but also due to other forms of stress
and also occurs progressively with aging in a permanent way,
as reviewed elsewhere (8). The biological advantages of thymic
involution are currently uncertain, although there is evidence
that thymic alterations triggered by Trypanosoma cruzi infec-
tion explain part of the clinical outcomes observed in chagasic
patients (8, 9).

Chagas disease acute phase is characterized by apparent cir-
culating parasites and tissue parasitism with intense production
of reactive nitrogen intermediates, such as nitric oxide (NO) and
cytokine release: interleukin (IL)-12, interferon (IFN) γ, tumor
necrosis factor (TNF) α by macrophages, natural killer (NK)
and T cells, with an activation pattern characterized by a polar-
ized type-I response (10). However, there is also the production
of anti-inflammatory cytokines, such as IL-4, IL-10, and trans-
forming growth factor (TGF) β, that together with glucocorti-
coids (GC) control the immune response (11). Such response
plays a role in containing parasite replication in acute phase
and influences disease severity during the chronic phase of the
infection (12).

Trypanosoma cruzi acute infection in mice causes a severe
thymic atrophy, which becomes noticeable during early infec-
tion and increases progressively in parallel with parasitemia
and pro-inflammatory cytokine levels (10). Additionally, even
though T. cruzi infected cells can be found in the thymus (13,
14), current evidence demonstrates that the organ is mostly
affected by systemic effects of the infection (15, 16). Actually,
the parasite-associated response goes beyond the immune sys-
tem with the activation of hypothalamus–pituitary–adrenal axis,
resulting in hormonal imbalance that affects intrathymic home-
ostasis (9, 17). The neuroendocrineimmnune imbalance promotes
a massive depletion of immature CD4+CD8+ T cells, which
together with the export of these thymocytes to periphery, trigger
thymic atrophy (16). Those intrathymic migratory abnormalities
somehow benefit the immature thymocytes to bypass negative
selection events, which reinforces the role of TEC in thymic
atrophy, since in acutely T. cruzi infection, TEC enhanced the
deposition of ECM, such as laminin and fibronectin, as well as
chemokines, favoring developing T-cell migration (18–21). Nev-
ertheless, the mechanism by which TEC mediate thymic invo-
lution remains poorly understood. microRNAs (miRNAs) can
be envisioned as one group of candidates. miRNAs are small
non-coding RNA molecules that suppress gene expression at

the post-transcriptional level, and are fine-tuning regulators of
diverse biological processes (22, 23).

In these respect, it has been shown that induction of thymic
involution through poli(I:C) treatment is under tight control of
miRNA-29a, which regulates interferon-α receptor (IFNαR1) in
TEC, resulting in a very sensitive mechanism of thymic atrophy
(24). In fact, TEC are programed to reduce functionality and
suspend thymopoiesis in response to IFN-α (8). Recent studies
suggest that miRNAs are important factors in the maintenance
of tissue-restricted antigens expression in medullary TEC (7).
Taken together, a molecular regulation of infection-associated
thymic involution prompted us to analyze the expression of
miRNAs in cortical and medullary TEC from T. cruzi acutely
infected mice.

Materials and Methods

Experimental Acute Trypanosoma cruzi Infection
Male C57BL/6 mice were provided by the Oswaldo Cruz Foun-
dation animal facilities (Rio de Janeiro, Brazil). Five weeks
old mice were infected by intraperitoneal injection of 1× 103

T. cruzi (Y strain) trypomastigotes. The parasites were main-
tained by serial passages in male mice from the same strain,
harvested after 7 days post-infection (dpi) through cardiac punc-
ture. The collected blood was harvested in vials containing 200 μl
of sodium citrate, centrifuged (1,200 rpm) for 10min, later the
plasma was collected after incubating for 30min in 37°C and
centrifuged (3,000 rpm) during 10min. The pellet containing
parasites was resuspended and the trypomastigote concentration
was estimated using Neubauer chamber in order to prepare a
solution with 5,000 parasites/ml was prepared. Each mouse was
infected with 200 μl of this solution. The uninfected (control)
mice were kept under the same conditions through the infection
progress.

Parasitemia was estimated for all infected animals by direct
microscopic observation of 5ml blood obtained from the tip
of the tail. Initially, 10 mice were infected and the parasitemia
was done on the following 6–18 days, once the parasitemia pick
was determined, the estimation of circulating trypomastigoteswas
done solely 8 dpi to confirm that the infection was well succeeded.

All experiments and animal handling were conducted accord-
ing to the rules prescribed by the official ethics committee for
animal research of the Oswaldo Cruz Foundation.

Analysis of Thymocyte Subpopulations
Sixteen mice were infected as described above and their thymuses
were harvested between 9 and 12 dpi, 4 thymuses plus 1 from
control mouse per day (total of 16 acutely Chagas infected mice
and 4 controls). The organs were individually squeezed in PBS
containing fetal calf serum10% (Gibco). For analysis of thymocyte
subsets, cells were resuspended in mouse serum during 15min
and incubated with specific monoclonal antibodies for 30min
at 4°C in the dark (anti-CD4/APC, anti-CD8/FITC, from BD
Pharmingen), followed bywashing and analysis on flow cytometer
FACS Canto II (BD Biosciences) and using the FACS Diva v6.1.3
software. In order to determine specific fluorescence intensity, the
background staining values obtained with fluorochrome-matched
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IgG isotype controls were subtracted. Thymocytes from 12 to
14 dpi also underwent these procedures, four infected and two
control mice each time, in order to confirm that the infection led
to thymic atrophy.

The variation of CD4+CD8+ cells due to infection progression
was tested by one-way ANOVA, followed by the Tukey’s honestly
significant difference (HSD) post hoc test.

Thymic Epithelial Cell Sorting
Five thymuses from 12 days post-infection mice or control mice
were used for TEC isolation procedure, which was performed as
described (25) with some modifications. Briefly, thymuses were
minced and transferred to round-bottom tubes and agitated in
50ml of RPMI-1640 for 30min for initial thymocytes release,
after which the remaining tissue was digested with two sequential
changes of collagenase/DNAse I solution [50mg/ml collagenase
D (Roche), 1mg/ml DNAse I (Roche) in RPMI medium] at
37°C for 15min each, followed by one collagenase/dispase/DNAse
I [50mg/ml collagenase/dispase (Roche), 1mg/ml DNAse I in
RPMI medium] at 37°C for 30min under continuous stirring.
Cells were then centrifuged, pooled, and resuspended in cold
EDTA/FACS buffer (5mM EDTA in PBS with 2% FCS and 0.02%
NaN3), filtered through 100 μm mesh and counted in Neubauer
chamber. Then, anti-CD4 and anti-CD8 Dynabeads (Invitrogen)
were added at 500 μl/108 cells according to the manufacturer’s
protocols. Remaining cells were then pooled and recovered by
centrifugation, washed in EDTA/FACS buffer and 5× 106 cells
dispensed into the wells of a 96-well round-bottomed plate for
staining. We incubated the biotinylated anti-mouse I-A[b] pri-
mary antibody (BD Pharmingen) for 30min at 4°C, followed
by a wash in 100 μl of EDTA/FACS buffer, after we added the
secondary APC-Cy7-conjugated streptavidin and the conjugates:
FITC-conjugated UEA-1 lectin (Vector), PerCP conjugated anti-
CD45 antibody (clone 30-F11), PE-conjugated anti-Ly51 anti-
body (clone 6C3), APC-conjugated CD326 antibody (EpCAM,
clone D8.8), all from BD Pharmingen. Cells isolated and stained
as outlined above were resuspended in EDTA/FACS buffer at
1× 106 cells/ml. Sorting was performed in a FACS Aria II cell
sorter (BD Biosciences). Samples were collected in 50% (v/v) fetal
calf serum in RPMI, recovered by centrifugation, counted and
analyzed for purity.

RNA Extraction
The sorted population was submitted to RNA extraction using
miRNEasy (Qiagen), which allows the isolation of small RNA
(withmiRNAs) andmessenger RNA (mRNA) separately. To allow
normalization of sample-to-sample variation in miRNA isola-
tion, cDNA synthesis and real-time PCR, synthetic Caenorhab-
ditis elegans miRNA cel-miR-39 (Qiagen) was added as 5 μl
of 25 pmol solution to each denatured sample (i.e., after com-
bining the sample with Qiazol) and quantified in all samples
with an average recovery ranging from 26 to 36 in crossing
point (CP) (Figure S1 in Supplementary Material). After this,
we proceeded with other extraction steps following the manu-
facturer’s instructions. The quantity and quality of RNA were
assessed on NanoDrop ND-1000 Spectrophotometer (Thermo
Scientific) and 2100 Bioanalyzer (Agilent Technologies) using

the small RNA LabChip kit and RNA 6000 nano kit (Agilent
Technologies).

AIRE Gene Expression by Quantitative
Polymerase Chain Reaction
Gene expression for AIRE (Autoimmune regulator gene) and
reference genes were carried out using 30 ng of total RNA with
SuperScript III kit (Invitrogen) for reverse transcription reaction
and FAST SYBR Green Master Mix (Applied Biosystems) and the
following primers: AIRE (F-GGCAGGTGGGGATGGAATGC
andR-TTCAGACGGAGCGTCTCCTGG),HPRT (F-TCCCAGC
GTCGTGATTAGCGATG and R-GGCCACAATGTGATGGCC
TCCC) and RPL13 (F-CCAAGCAGGTACTTCTGGGCCGGAA
and R-CAGTGCGCCAGAAAATGCGGC) for quantitative poly-
merase chain reaction (qPCR) on Step ONE Plus Fast Real Time
PCR System (Applied Biosystems).

miRNA Expression Profiling
microRNA (30 ng) was submitted to reverse transcription by
poly-A-tailing using RT2 miRNA First Strand Kit (Qiagen) as
described in the manufacturer’s protocol. We then performed
miRNA expression profiling using a custom PCR array plate
with 85 miRNA (Qiagen) and RT2 SYBR Green qPCR Mastermix
(Qiagen) on Step ONE Plus Fast Real Time PCR System (Applied
Biosystems). For normalization, we used all five references
cel-miR-39, snoRNA142, snoRNA251, Rnu6, and snoRNA20
(Figure S1 in Supplementary Material) after gene expression sta-
bility analysis (26).

Quantitative PCR Analysis
The fluorescence accumulation data of real-time RT-PCR reac-
tions of each sample were used to fit four parameters sigmoid
curves to represent each amplification curve using the library
qPCR (27) for theR statistical package version 3.1.2 (28). The cycle
of quantification was determined for each amplification, by the
maximum of the second derivative of the fitted sigmoid curve.
The efficiency of each amplification reaction was calculated as
the ratio between the fluorescence of the cycle of quantification
and the fluorescence of the cycle immediately preceding that.
The estimated efficiency of each miRNA or gene was obtained
by the mean of the efficiencies calculated for each amplification
reaction of that precise miRNA or gene. microRNA normaliza-
tion among the different amplified samples was achieved by the
calculation of normalization factors given by the geometric mean
of the expression value of all expressed miRNAs in a given sample
(26). AIRE normalization was done by the geometric mean of
the expression value of HPRT and RPL13 reference genes. The
comparisons of means of normalized miRNA or AIRE expression
values between groups were performed by a non-parametric one-
way ANOVA with 1,000 unrestricted permutations, followed by
post hoc pair-wise comparisons with Bonferroni adjustment by a
non-parametric t-test also with 1,000 permutations (29). Addi-
tionally, false-positive ratios (FDR) were estimated to adjust for
multiple comparisons (30). Results were represented in graphs
displaying the expression levels mean± SE. Two-tailed levels of
significance ≤0.01, 0.05, and 0.1 were considered as “highly sig-
nificant,” “significant,” and “suggestive,” respectively.
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Bioinformatics-Based Enrichment Analysis of
miRNA Targets
To predict miRNA targets, we identified putative target genes
based on predictions from five online softwares: miRanda1,
Microcosm Target2, miRNAMap3, miRTarBase4, and Target Scan5.
Any gene was considered a putative target if it was predicted in at
least three out of the five predicting software. We then performed
a gene set enrichment analysis (GSEA) with putative target genes.
A gene set was defined as all putative target genes that share the
same ontology based on the gene ontology (GO) database (31).
The over representation was assessed with a statistical score based
on a hypergeometric test with p-values ≤0.001. The Rgraphviz
package6 was used to illustrate the relationship between putative
targets, miRNAs and biological processes, and in calculations
of the k-core structures of the input networks using the degree
as centrality measure. Graphs follow virtual physical models
with low energy configuration, and only vectors containing
the maximum core membership for each vertex, equal to 11 or
greater, were displayed.

Results

Thymic Atrophy in Trypanosoma cruzi Acute
Infection
Since the interaction between thymocytes and TEC play a major
role in T-cell development, variations in TEC gene expressionmay
alter the thymic environment with consequences on thymocyte
fate (4). Accordingly, we analyzedmiRNAprofiles variation due to
infection in the initial point of thymic atrophy to avoid secondary
effects caused by thymocyte loss or consequent microenviron-
mental modifications. We used the decay of CD4+CD8+ thymo-
cytes number to define when the thymus should be harvested.
Intraperitoneal acute infection led to a parasite load picking at
8 dpi, and characterized by the high number of metacyclic trypo-
mastigotes found circulating in the peripheral blood (Figure 1A).
During the following days a decrease of CD4+CD8+ thymocytes
was observed (Figure 1B) and later, a severe thymic atrophy with
an average loss of 80% of CD4+CD8+ thymocytes was seen on
the 14th dpi (Figure 1C). On the 12th dpi, this cell subpopulation
was significantly reduced when compared with cell counting from
control and 9–10 dpi mice (Figure 1B), preceding the thymic
atrophy, thuswe perform the following experiments using samples
at this time point of infection.

Cortical and Medullary TEC Sorting
In order to prepare pure populations of primary (freshly har-
vested) cortical and medullary TEC (respectively cTEC and
mTEC), thymuses from control and infected mice were har-
vested at 12 dpi and disaggregated by enzymatic digestion, where
most thymocytes were eliminated and TEC were enriched,
allowing cell sorting. Sorted population was then stained

1http://www.mirbase.org/ftp.shtml
2http://www.microrna.org/microrna/getDownloads.do
3ftp://mirnamap.mbc.nctu.edu.tw/miRNAMap2/miRNA_Targets/Mus_
musculus/
4http://mirtarbase.mbc.nctu.edu.tw/php/download.php
5http://www.targetscan.org/cgi-bin/targetscan/data_download.cgi?db=mmu_61
6http://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html

FIGURE 1 | Trypanosoma cruzi acute infection induces progressive
thymic atrophy and CD4+CD8+ thymocyte loss. Nine C57BL/6 mice
were infected with 1,000 metacyclic trypomastigotes and in the following
6–18days the parasitemia was accessed to verify the infection progression.
(A) The box plot shows the median amount of parasites per blood milliliter,
upper and lower quartiles, maximum and minimum values (whiskers)
excluding outliers (circles). Once the infection peak was identified (8 dpi), the
thymocyte subpopulation variation in the following days was studied in order
to identify when the CD4+CD8+ thymocyte loss starts. (B) The
cytofluorometric profiles of thymocytes were obtained staining with anti-CD4
and anti-CD8. Thymocytes from three or four mice were submitted to FACS
analysis on days 9–12 post-infection (dpi). The plots represent the mean
number of cells ±SD in each day. The described decrease on CD4+CD8+

thymocyte subpopulation due to infection progression was confirmed (ANOVA
p-value=0.0002) and the Tukey’s honestly significant difference (HSD)
post-test revealed significant differences in each dpi. (adjusted p-value
≤*0.05, **0.01, and ***0.001) (C) Thymocyte subpopulation percentages
data derived from the cytofluorometric profiles show that by 14 dpi the thymic
atrophy is reached. Each bar represents thymocytes from a single mouse.
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with Ulex europaeus Lectin 1 (UEA1) and antibodies against
CD45, MHC-II, EpCAM, and Ly51 and sorted (Figures 2A–D).
Post-sort analysis revealed more than 98% purity for corti-
cal TEC (CD45−MHCII+EpCAM+Ly51+UEA1−) and 95% for
medullary TEC (CD45−MHCII+EpCAM+Ly51−UEA1+) pop-
ulations (Figures 2E–F, respectively).

To further validate the purity of sorted cell populations, we
analyzed AIRE gene expression (Figure 2G), typical of medullary
TEC. As expected, the AIRE expression was higher in medullary
TEC populations, with the subpopulation classified as cTEC
exhibiting average expression close to zero. In fact, the data from
three independent sorting pointed out that, on average, AIRE
relative expression on mTEC is 29.45 times higher than in cTEC.
There was no significant difference between samples from control
and infected condition (p= 0.31), indicating that the infection by
itself does not affect AIRE levels, although we have detected a
significant interaction effect. This result suggests that the differ-
ence on AIRE expression due to TEC phenotype varies if there
is infection (p= 0.04). Actually, the detected levels in TEC from
infected animals where 13.45 times lower than samples from
control mice.

Changes in TEC-Derived microRNA Profiling in
Response to Experimental Chagas Disease
We analyzed herein 85 miRNAs in order to approach putative
molecular alterations in TEC following response to T. cruzi acute
infection, and that might be related to the previously reported
thymic atrophy and abnormal scape of immature thymocyte
(20, 21, 32, 33). We found that 29 out of the 85 miRNAs were
significantly differently expressed between TEC from infected
and normal mice (adjusted p≤ 0.05), all were up-regulated
(Figure 3) whereas differences in further 13 miRNAs were sug-
gestive (Figure S3 in Supplementary Material).

We also detected significant interaction effect for 9 miRNAs
(adjusted p-value ≤0.05 FDR corrected), where the response to
the infection differed according to the TEC phenotype (Figure 3;
Figure S2 in SupplementaryMaterial), indicating that the increase
rate of miRNA expression is higher in cortical TEC.

Additionally, seven miRNAs exhibited a consistent pattern of
no amplification in TEC from infected animals (miR-144, miR-
208b, miR-291b-3p, miR-295, miR-302a, miR-488, and miR-654-
3p, Figure S4 in Supplementary Material). These miRNA can
target genes involved with TGF-β signaling pathway (Palu et al.,
unpublished data).

Trypanosoma cruzi Acute Infection Increases
Expression of miRNA known to Modulate
Important Biological Processes
More than 60% of mammalian mRNAs are regulated by miRNA,
whereas many can be targeted by more than one miRNA. Con-
versely, a single miRNA can have more than one target (34).
Here, we identified miRNAs modulated in TEC due to T. cruzi
infection, based on differential expression between infected and
control mice.

To approach the putative roles of these miRNAs, we identified
potential targets using available algorithms. Yet, these algorithms
usually predict hundreds of potential target genes for a single

miRNA and often generate false-positive candidates. In order to
reduce such a high number of theoretical targets, and to make
a more reliable prediction, we applied five different algorithms,
and considered as potential targets only those genes predicted by
at least three of these algorithms. The results from miRNAs pre-
dicted targets analysis were then combined with GO-term enrich-
ment analysis to identified biological processes over represented
among the list of target genes, so that to identifymiRNAassociated
biological functions. Significant enrichment of predicted targets
revealed cell adhesion, cell migration, and cell death among others
biological processes (Figure 4).

Potential Network among miRNAs and
Corresponding Predicted Targets
Given the lack of data regarding TEC molecular pathways during
infection, we evaluated in silico potential interaction network
between 29 differentially expressed miRNAs and the predicted
targets related to cell death, cell migration, and cell adhesion
(Table S1 in Supplementary Material). The complexity of the
relationships is shown in Figure 5, where the elements shown
were selected based on having the minimum of 11 relations.
All 17 miRNAs have at least one putative target related to the
negative regulation of extrinsic apoptotic signaling (GO:2001237),
a process that was also related to 12 out of the 58 illustrated genes.
Nevertheless, among the genes involved in cell death, only Bcl2l11
was exclusively related to positive regulation of cell death. These
miRNAs could be targeting Serpine1, Tgfbr1, Vegfa, Igf1, Hgf,
Snai2, Rffl, Map2k5, Itgav, and Sgms1 mRNAs, which are related
to inhibition of apoptotic externals signals.

Many putative targets (32 out of 56) were related to cell migra-
tion, whereas 18 were associated to chemotaxis. More interest-
ing, the presence of 21 targets associated with positive regula-
tion of cell migration suggests that miRNAs could be inhibiting
molecules that promote migration. Among the 17 targets associ-
ated to adhesion, 8 are known to be involved in positive regulation
(GO:0045785) and cell-cell adhesion (GO:0016337). The increase
in miRNA targeting genes that favor adhesion may explain some
of the described alterations in T. cruzi acutely infected mice.

Discussion

The mechanisms by which TEC regulate thymic atrophy appear
to be under the tight control of miRNAs (24). Here, we analyzed
the miRNA expression in cortical and medullary TEC from T.
cruzi acutely infectedmice. Our results provide novel insights into
the molecular regulation of TEC-associated thymic involution
secondary to infection, using the experimental model of acute
Chagas disease.

It has been previously shown that thymic involution, reduc-
tion on T cell output, increased susceptibility to autoimmune
disease and loss of TEC numbers are associated with ablation
of mature miRNAs (7). Although those are events similar to the
ones observed in infected mice, it is noteworthy that the infection
induced an upregulation of differentially expressed miRNAs in
both cTEC and mTEC subsets, whereas in some cases the increase
in expression was significantly higher only in cTEC, suggesting
that the T. cruzi infection triggers different responses according
to TEC phenotype.
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FIGURE 2 | Ex vivo thymic epithelial cell sorting. Five replicates of
thymic cell pools from control and infected mice were sorted using flow
cytometry in order to isolate TEC. (A) Initially, CD45− cells were selected
based on size, (B) from this population, MHC-II positive cells were isolated
after EpCAM confirmation (C). (D) Then, according to UEA-1 and Ly51
surface markers, these cells were distinguished between cortical TEC (cTEC,
Ly51+, and UEA−, orange) and medullary TEC (mTEC, Ly51−, and UEA+,
blue) phenotypes. Post-sorting analysis revealed 98% purity in cTEC
(E) while 95% purity in mTEC (F). (G) After miRNA isolation, the remaining

mRNA from three experimental pools allowed us to analyze AIRE gene
expression, confirming if the sorted cells matched the correct expected TEC
profile. The bar plot represents the average expression in each condition. “a”
indicates the magnitude of the expression ratio (log−2) due to TEC
phenotype, whereas a positive value shows a higher expression in mTEC.
“ab” indicates the expression ratio magnitude (in log−2) as consequence of
the combination between infection and cell type, whereas a negative value
shows that the AIRE expression in infected mTEC is lower than in control
mTEC.
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FIGURE 3 |miRNA relative expression in thymic epithelial cells from
control and infected mice. The miRNA expression of 85 miRNAs was
analyzed for each sorted TEC population, in five replicates, with samples from
control (dark blue) and infected (light blue) mice being paired. We present the

29 miRNAs that were significant (adjusted p-value ≤0.05) differentially
expressed due to infection and the samples clustered according to expression
profile similarity. Three groups of samples were identified based on their
expression profile, as illustrated by the dendrogram.

Among miRNAs significantly modulated due infection, miR-
27a and miR-27b, also exhibited dependence whether TEC sorted
out from the thymus exhibited cortical or medullary phenotype.
Mature miR-27a and miR-27b differ from each other by just one
nucleotide and are transcribed from paralog clusters, the inter-
genic miR-23a~27a~24 cluster (localized in chromosome 9q22)
and the intronic miR-23b~27b~24 cluster (localized in chromo-
some 19p13) (35, 36). Yet, there is limited information regarding
the functions of this cluster in infectious diseases. Herein, we
found an upregulation of the miR-23b~27b~24 cluster, thus at
variance with the findings observed in primary macrophages,
which exhibit rapid decrease miR-27a and miR-27b expression
upon murine cytomegalovirus infection (37). Nevertheless, the
Cryptosporidium parvum infection, a protozoan parasite that
infects the gastrointestinal epithelium, causes miR-27b upregu-
lation that suppresses KH-type splicing regulatory protein and

contributed to epithelial production of NO, helping the epithelial
antimicrobial defense (38). In T. cruzi infection, the serum levels
of NO increase both in mice and humans (9, 39), and high intrac-
ardiac contents of NO synthase and NO metabolites have been
detected (40). Interestingly, T. cruzi can infect TEC and, although
only small fractions of TEC are invaded (13, 14), the presence of
the parasite may trigger NO production.

Regarding the 23b~27b~24 cluster upregulation, miR-24 can
be highlighted. It is known that mRNA-target for a particular
miRNA depends of cell context and this is the case of miR-24,
which has been described in apoptosis and cell survival (41–
44). In cardiomyocytes, miR-24 directly targets the proapoptotic
protein Bim and inhibits apoptosis. Moreover, in vivo delivery
after myocardial infarction suppressed cardiac cell death and res-
cued cardiac dysfunction (42). Yet, miR-24 function is complex
since it enhanced survival in myeloid and B cell lines, as well
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FIGURE 4 | Putative enriched biological processes modulated by TEC
miRNA following Trypanosoma cruzi infection. The putative mRNA targets
for the 29 miRNAs that were differentially expressed due to infection are
consistently involved in a long list of biological processes. Here, we show the
most relevant processes in the context of cell death (blue), adhesion (green),

and migration (red). The full length of the bars represent the total putative target
mRNAs known to be involved in this process, in opposition to the colored bar
inside, that represents the expected mRNA number. On the right side of each
bar, there is the adjusted p-value indicating that the enrichment of those events
is not by chance.

as primary hematopoietic cells (44). Importantly, it has been
shown that miR-24 expression differed in age-related thymic
involution. When comparing young versus aged TEC (a mix of
cTEC and mTEC) a decrease in miR-148b, miR-19b, miR-24,
and miR-322 expression was seen in aging (45). Herein, using
T. cruzi-induced thymic atrophy, we showed an upregulation of
these miRNAs in TEC. Both infection and aging-induced thymic
involution are due to multifactorial events; in the aging case,
we can highlight the sex hormone dependence and the increase
in adipose tissue, whereas in infection, the immune inflamma-
tory response and stress-related hormones are undoubtedly rel-
evant (16, 46, 47). Nevertheless, it has yet to be established the
tuned regulation of this miRNA in the various thymic atrophy
induced situations.

It is important to take into account that changes in miRNA
profile seen here are in consequence of the thymic stress brought
out by the infection with activation of the immune system and
the hypothalamus–pituitary–adrenal axis. This stress results in
hormonal imbalance (high levels of GC) that affects intrathymic
homeostasis promoting thymic atrophy by a massive depletion of
immature CD4+CD8+ T cells and the export of immature thy-
mocytes to periphery (9, 16, 17). Under stress conditions, miRNA
can act as restorer to homeostasis or as an enforcer of new gene
expression program so that to adapt to the new condition (34). An

example is the regulatory action exerted by miR-10a and miR-182
upon Th1- or Th2-associated T regulatory cells, respectively,
where CD4+Foxp3+ cells orchestrate distinct miRNA pathways
in response to local environmental factors (48). Furthermore,
miR-10a expression is stimulated by TGF-β, making it a good
example of how environmental factors coordinate distinctmiRNA
pathways and regulates cell fate. In fact, TGF-β seems to be a
molecular node of the infection since the gene encoding its recep-
tor appears in the middle of our microRNA network (Figure 5),
where the gene for TGF-β2 is also present. TGF-β is able to reg-
ulate CD4−CD8− development through direct interaction with
thymocytes but also by binding to TEC surface (49). Although, it is
unclear if the increasedmiR-10a in TEC from infectedmice is part
of a host response due TGF-β enhancement or ifmiR-10a is a fine-
tuning factor in TEC, our results suggest that TGF-β signaling is
a key pathway in the thymic involution process. More studies will
be necessary to define TGF-β role in TEC, but it has been already
shown that the inhibition of this pathway decelerates the process
of age-related thymic involution (50), therefore suggesting a
common pathway between thymic involution due to senescence
and infection.

Interestingly, GC also regulated miRNAs (51, 52). The sys-
temic stress induced by dexamethasone intraperitoneal injection,
a synthetic GC causes a significant loss of the CD4+CD8+
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FIGURE 5 | Theoretical relationship among the most recurrent
miRNA, mRNA, and biological processes. The network of the 29
differentially expressed miRNAs and their targets is very complex. To
illustrate this network, only molecules or processes related with at least
11 elements are shown. There are 17 miR differentially expressed due to

infection (cyan) and their 58 putative targets (yellow), plus 18 biological
processes related to it. Biological processes are identified by gene
ontology (GO) tags, where blue represents cell death, red are cell
adhesion, and green cell migration. The relationships are illustrated by the
arrows.

thymocytes within 24 h and a reduction in miR-17-92 cluster
(miR-17, miR-20a, miR-20b, and miR-106a) in whole thymus
samples (52). Although we were also studying miRNA expression
in a condition where there is CD4+CD8+ cell loss, in TEC we
observed an upregulation of miR-20b and a suggestive increase
in miR-20a expression, suggesting that intrathymic regulation of
miR-20b is cell type specific.

Glucocorticoids can also reduced the protein expression of
Drosha’s co-factor DGCR8/Pasha and Dicer, two indispens-
able enzymes for miRNA bioprocessing pathway in thymo-
cytes (51). Moreover, Dicer- and DGCR8-deficient mice are
incapable to sustain proper thymic architecture and promote
thymocyte development, with a severe loss of TEC, demon-
strating the miRNA role in TEC maintenance and function
(32, 33). In fact, in mice where TEC do not produce miRNA
due conditionally inactivate Dgcr8 gene, there is a specific
loss of mature mTEChi and AIRE+ subsets that induce a
breakdown in thymic central tolerance with the presence of
autoantibodies or development of spontaneous autoimmunity
(33). On the other hand, AIRE knockdown results in mod-
ulation of different miRNAs (53, 54), with upregulation of

miR-20b, miR-191, and miR-411 (54), which is consistent with
our observation. In our study, there was donwregulation of
AIRE expression due infection, concomitant with upregulation of
those miRNAs.

Abnormally release of potential autoreactive T cells from
the thymus occurs in patients with severe clinical form of
Chronic Chagas disease and also in mouse experimental model
(19). Intriguingly, despite the thymic escape of T cells bear-
ing “forbidden” T cell receptor that should be deleted by
negative selection (21), some evidence points to normal promis-
cuous gene expression in infected thymuses suggesting that
negative selection can induce tolerance. Indeed, the escape
of CD4+CD8+ T cells to the periphery seems to be more
related with a higher fibronectin-driven migration than defects
in negative selection (18, 20, 21). Considering that TEC play
a role in thymocyte migration and that we defined enhanced
intrathymic fibronectin and laminin deposition in T. cruzi
acutely infected mice (1), we performed biological processes
GO-term enrichment analysis and evaluated in silico poten-
tial interaction network among the 29 differentially expressed
miRNAs and their predicted targets. This network analysis
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predicted cell adhesion, regulation of cell–matrix adhesion, cell
migration, chemotaxis, regulation of programed cell death, and
apoptotic processes to be altered as a consequence ofT. cruzi acute
infection. Taking together, these data point out miRNA as can-
didates to orchestrate thymic atrophy from the TEC perspective,
since the alteration herein studied precedes the involution.

The intrathymic T cell migration is a multivectorial process
where each individual vector represents a given molecular inter-
action, as, for example, those interactions mediated by ECM.
Accordingly, changes in the ECM contents should result in mod-
ulation of thymocyte migration (4, 20). Although there are studies
in cancer (55), there is a lack of information concerning the role
miRNAs in regulating ECM molecules in the thymus, and more
particularly in TEC. We found correlations indicating putative
intrathymic functions for some miRNAs, such as miR-183 that
direct regulates integrin β1 expression (56), miR-143, suppress-
ing fibronectin directly (57), miR-218 controlling focal adhe-
sion kinase (58), and miR-203 increasing metalloproteinase-1
expression (59).

Overall, in this study, we show differentially expressed miR-
NAs in TEC from T. cruzi acutely infected mice, highlighting
miRNAs as possible mediators of thymic atrophy. To our knowl-
edge, this is the first study to show miRNA expression in TEC
from infected mice. Further studies are needed to define the
targets and dissect the role of TEC miRNAs in the context of
infection.
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Figure S1 | Selection of multiple internal control reference for normaliza-
tion. (A) Calculation of average expression stability values of five different internal
control reference, including one spike-in (cel-miR-39), using geNorm (23). The
geometric mean of five small RNAs (Rnu6, cel-miR-39, snoRNA251, snoRNA
142, and snoRNA 202) was used for normalization. Crossing point mean of the
samples shows the level of expression for (B) cel-miR-39 (C), snoRNA 142, and
(D) snoRNA202.

Figure S2 | Significant differentially expressed miRNA in thymic epithelial
cells from control and infected mice separated by TEC phenotype. The
miRNA expression of 85miRNAswere analyzed for each sorted TEC subpopulation,
in five replicates, where samples from control, cortical TEC (orange) and medullary
TEC (dark blue) and infected, cortical infected TEC (yellow) and medullary infected
TEC (light blue). We present the 29 miRNAs that were significantly differentially
expressed (adjusted p-value ≤0.05) due to infection.

Figure S3 | Suggestive differentially expressed miRNA in thymic epithelial
cells from control and infected mice separated by TEC phenotype. The
expression of 85 miRNAs was analyzed for each sorted TEC subpopulation, in
five replicates, where samples from control, cortical TEC (orange) and medullary
TEC (dark blue) and infected, cortical (yellow) and medullary TEC (light blue) are
showed. We present the 13 miRNAs that were suggestive significance (adjusted
p-value ≤0.1) differentially expressed due to infection.

Figure S4 | miRNAs with a consistent pattern of no amplification in TEC
from infected animals. The miRNA expression of 85 miRNAs was analyzed for
each sorted TEC subpopulation, in five replicates, where samples from control,
cortical TEC (orange) and medullary TEC (dark blue) and infected, cortical (yellow)
and medullary TEC (light blue) are showed. We present the seven miRNAs that
exhibited a consistent pattern of no amplification in TEC from infected animals, being
clearly detected in control samples.

Table S1 | List of microRNAs and the respective putative mRNA targets.
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Self-tolerant T cells and regulatory T cells develop in the thymus. A wide variety of cell–cell
interactions in the thymus is required for the differentiation, proliferation, and repertoire
selection of T cells. Various secreted and cell surface molecules expressed in thymic
epithelial cells (TECs) mediate these processes. Moreover, cytokines expressed by cells
of hematopoietic origin regulate the cellularity of TECs. Tumor necrosis factor (TNF) family
RANK ligand, lymphotoxin, and CD40 ligand, expressed in T cells and innate lymphoid
cells (ILCs), promote the differentiation and proliferation of medullary TECs (mTECs) that
play critical roles in the induction of immune tolerance. A recent study suggests that
interleukin-22 (IL-22) produced by ILCs promotes regeneration of TECs after irradiation.
Intriguingly, tumor growth factor-β and osteoprotegerin limit cellularity of mTECs, thereby
attenuating regulatory T cell generation. We will review recent insights into the molecular
basis for cell–cell interactions regulating differentiation and proliferation of mTECs and
also discuss about a perspective on use of mathematical models for understanding this
complicated system.

Keywords: medullary thymic epithelial cells, autoimmune disease, negative feedback, mathematical modeling,
T cells, thymus

Introduction

Thymic epithelial cells (TECs) are essential for T cell development and self-tolerance induction in the
thymus (1). TECs are classified intomedullary TECs (mTECs) and cortical TECs (cTECs) according
to their localizations in the thymus.While cTECsmainly support the early differentiation and prolif-
eration of T cells and positive selection of self-MHC-restricted T cells, several lines of evidence indi-
cate critical roles of mTECs in preventing the onset of autoimmune diseases in human and mice (2).
mTECs uniquely expressmany kinds of tissue-specific self-antigens (TSAs) (2–4).mTECs expressing
high levels ofMHCclass II and co-stimulatorymolecules, such as CD80, would be capable of directly
presenting these TSAs to medullary T cells (5). Alternatively, TSAs in mTECs are transferred to
thymic dendritic cells (DCs) and indirectly presented to T cells (6, 7). When T cells recognize these
presented TSAs through high avidity interactions, they undergo apoptosis or are converted into reg-
ulatory T cells (Tregs) (2). Expression of TSAs is, in part, regulated by nuclear protein autoimmune
regulator (AIRE), and dysfunctional mutations in AIRE provoke autoimmune diseases in humans
(3, 8, 9). In addition to such roles in preventing autoimmunity, recent studies suggest that immune
tolerance to some tumors might be under the control of mTECs (10–12). Therefore, understanding
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cellular and molecular mechanisms to regulate mTEC differentia-
tion, proliferation, and apoptosis is an important issue.

Recent studies have revealed new aspects of mTEC differen-
tiation and proliferation (13–15). One recent study indicated a
newmechanism that promotes recovery of TECs following thymic
injury induced by γ-irradiation (13). In addition,molecularmech-
anisms of negative regulation in mTEC differentiation have been
reported (14, 15). In this review, we will summarize these new
findings. Moreover, these new findings together with previous
studies imply the existence of considerably more complicated
cellular and molecular mechanisms regulating mTEC cellularity
than was previously recognized. Such a sophisticated system can
ensure precise regulation of TEC functions in T cell differentia-
tion, selection, and tolerance induction. Therefore, we also present
our perspectives on howmathematicalmodelingmight contribute
to understanding regulation of TEC cellularity and functions.

Positive Regulatory Mechanisms for mTEC
Differentiation and Regeneration

Tumor Necrosis Factor Receptor Family Signaling
and NF-κκκB Pathways in mTEC Differentiation
Medullary TECs constitute a heterogeneous cell population under
constant differentiation (1). The roles of tumor necrosis factor
(TNF) receptor family signaling on mTEC differentiation were
previously summarized (16). Therefore, we briefly mention this
topic. Receptor activator of NF-κB (RANK), CD40, and lympho-
toxin β-receptor (LtβR), and all members of the TNF receptor
family, have been reported to promote mTEC differentiation.
RANK signaling appears to play a dominant role in the differenti-
ation ofmTECs expressing Aire (16–19). The role of CD40may be
similar to that of RANK in the postnatal period because deletion of
both RANK and CD40 signaling resulted in almost complete loss
of Aire-expressing mTECs, as compared to a partial reduction of
mature mTECs by the absence of either RANK or CD40 signaling
(16). In the embryonic thymus, only RANK signaling is active (18)
because thymic expression of CD40 ligand starts in the perinatal
period (20). LtβR might control several distinct steps in mTEC
differentiation (16, 21–23). An early study suggests that LtβR
signaling induces Aire expression (24). However, later studies did
not support the direct connection between LtβR signaling and
Aire expression (25, 26). This apparent discrepancy remains to be
solved. Moreover, some studies revealed that the absence of LtβR
signaling causes a disturbance in three-dimensional organization
of mTECs (27, 28), suggesting a distinct role of LtβR signaling
from other TNF receptor signaling.

Ligands of these TNF receptor family members are expressed
mainly in cells of hematopoietic origin. Previous studies revealed
that RANK ligand (RANKL) is expressed in innate lymphoid cells
(ILCs) and positively selected CD4+CD8− T cells (CD4SP) (16,
19). Moreover, RANKL expression was detected in fractions of
CD4−CD8− thymocytes (double negative, DN) and γδT cells (29,
30). Conditional deletion of RANKL from each cell type would
be needed to identify what types of cells are major sources of the
RANKL for mTEC differentiation unambiguously. CD40 ligand is
most highly expressed in CD4SP (19, 31). The ligand of LtβR is a
heterotrimer consisting of secreted lymphotoxin α andmembrane

bound lymphotoxin β. Expression of lymphotoxin β appears to
be high in CD4SP, CD8SP, and ILCs (19, 25, 32). Consequently,
interactions with these cells might be required for differentiation
of mTECs.

Signaling byRANK,CD40, andLtβRactivates the transcription
factor NF-κB. The NF-κB family consisting of five members (i.e.,
RelA, RelB, c-Rel, p105/p50, and p100/p52) that form hetero- and
homodimers and are sequestered in the cytosol typically by bind-
ing to their inhibitor protein IκBs in unstimulated cells. Signal-
dependent degradation of IκBs by the ubiquitin–proteasome
pathway results in the translocation of NF-κB into the nucleus,
which in turn promotes the expression of genes controlling vari-
ous cellular responses (33). RANK, CD40, and LtβR signaling are
capable of activating two distinct NF-κB pathways: the canoni-
cal NF-κB pathway and the non-canonical NF-κB pathway (16,
33). Briefly, activation of the canonical NF-κB pathway leads to
nuclear translocation of RelA or c-Rel bound to p50. On the
other hand, the non-canonical NF-κB pathway results in nuclear
translocation of RelB bound to p52.

RelB deficiency and a dysfunctional mutation of NF-κB induc-
ing kinase (NIK), a signal transducing molecule of the non-
canonical NF-κB pathway, cause a severe reduction in the number
of mature mTECs (34–37), suggesting an essential role for the
non-canonical NF-κB pathway in mTEC differentiation. TNF
receptor-associated factor 6 is a signal transducer of the canonical
NF-κB pathway and is also essential for the mTEC differen-
tiation (38). These data imply that roles of the canonical and
non-canonical NF-κB pathways are not redundant, but that both
are essential for mTEC differentiation. Elucidation of the func-
tional differences between these two NF-κB pathways in mTEC
differentiation remains to be determined.

Role of IL-22 Signaling in the Regeneration
of TECs
Many stressors, such as psychological stress, virus infection,
chemotherapy, and irradiation in bone marrow transplantation
therapy, provoke acute thymic involution in which TECs and
thymocytes rapidly decrease (39, 40). Although recovery from
these acute thymic injuries usually occurs, incomplete recovery
of thymic cells can increase the risk of immunodeficiency and
autoimmunity (39, 40). Therefore, understanding the molecular
and cellular mechanisms of acute thymic involution and its
recovery is necessary. A recent study revealed a critical role for
IL-22 in the repair of TECs after thymic involution induced by
radiation (13).

IL-22 is reportedly produced by T helper 1 (Th1) cells, Th17
cells, and Th22 cells (41, 42). In addition, group 3 ILCs secret high
amounts of IL-22 (41, 42). The IL-22 signal is transmitted through
the IL-22 receptor (IL-22R), consisting of IL-22R1 and IL-10R2
subunits, and activates various downstream signaling (41). The IL-
22 signal promotes the regeneration of epithelial cells in the liver,
airway, and intestine after injury (42).

Dudakov et al. (13) reported that expression of IL-22 is upreg-
ulated in the thymus after total body irradiation in mice, which
may mimic thymic injury by radiation therapy for malignant
leukemia. IL-22 expression showed an inverse correlation with
changes in thymic cell numbers after the irradiation. They further
demonstrated a delay of TEC recovery in IL-22-deficient mice
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(Il22−/−) after the irradiation. Because thymic cell numbers were
not reduced in the thymus of untreated Il22−/− mice, IL-22
appears to function in the regeneration of TECs specifically. They
also determined that lymphoid tissue inducer (Lti), which belongs
to group 3 ILCs, was the producer of IL-22 in this context. IL-22
expression in the Lti was induced by signaling of IL-23 secreted
from thymic DCs. The reduction of CD4+CD8+ thymocytes
(double positive, DP) by irradiation triggered the secretion of
IL-23 from DCs, although the molecular mechanism remains
unclear. IL-22 appears to enhance proliferation of mTECs as
well as cTECs. Because Aire-positive mTECs are reportedly post-
mitotic (43), it should be determined in the future whether IL-22
signaling alone is capable of inducing the proliferation of Aire-
positive mTECs in this situation or whether other signals are
necessary for the recovery of Aire-positive mTECs.

Negative Regulatory Mechanisms for
Fine-Tuning the Cellularity of mTECs

Negative Regulation of mTEC Cellularity by
TGF-βββ Signaling
Tumor growth factor (TGF)-β has diverse functions during the
development and homeostasis of various tissues (44). Binding
of TGF-β to its cell surface receptor complex, consisting of
type II receptors (TGF-β RII) and the type I receptors (TGF-β
RI), induces activity in its cytoplasmic serine/threonine kinases,
thereby activating Smad protein complex. The activated Smad
complex is subsequently translocated into the nucleus and pro-
motes gene expression. As a result, TGF-β signaling induces anti-
proliferative and pro-apoptotic effects in many types of cells.

In the thymus, TGF-β is expressed by cTECs and immature thy-
mocytes (45, 46). On the other hand, the TGF-β receptor complex
is expressed in both cTECs and mTECs (47). Hauri-Hohl et al.
have recently reported a role for TGF-β signaling in regulation
of mTEC number (14). They prepared mice lacking TGF-β RII
expression specifically in TECs. Interestingly, the cellularity of
only mTECs was increased by the lack of TGF-β signaling in
TECs. Consistently, administration of a TGF-β RI inhibitor also
increased themTEC number. Thus, TGF-β signaling limits mTEC
cellularity selectively, although both mTEC and cTECs should
receive the signals.

The limitation of mTEC number by TGF-β signaling is less
likely due to its anti-proliferative and pro-apoptotic effects.
Instead, in vitro data have suggested that TGF-β signaling
interferes with the activation of non-canonical NF-κB signaling;
the mechanism, however, remains unclear. Given that RANK,
CD40, and LtβR signaling all activate non-canonical NF-κB
signaling, it is possible that TGF-β inhibits non-canonical NF-κB
signaling triggered by these receptors, thereby limiting the mTEC
cellularity. This idea might explain the mTEC-selective inhibition
by TGF-β.

Regulation of Gene Expression and
Differentiation of mTECs by the ETS Family
Member Spi-B
The Ets family transcription factor Spi-B has been recently
identified as a regulator of mTEC differentiation (15). RANKL

signaling rapidly upregulates Spi-B expression in in vitro thymic
stromal culture via the NIK-dependent NF-κB pathway. Lack of
Spi-B caused an increase in the number of mTECs expressing
high levels of MHC II. On the other hand, expression of co-
stimulatory molecule CD80, CD86, and some of TSAs in mTECs
were strikingly reduced in Spi-B-deficient (Spib−/−) mTECs.
Thus, Spi-B apparently has dual functions in mTEC differenti-
ation: Spi-B limits the number of mature mTECs and promotes
some mTEC-functional genes. In addition, expression of osteo-
protegerin (OPG), a decoy receptor of RANKL (48), was signifi-
cantly reduced in Spib−/− mTECs. OPG was previously reported
to be a negative regulator of mTEC differentiation by inhibiting
RANKL signaling (19). Moreover, the Spi-B-mediated limitation
ofmTEC cellularity was not detected in the absence ofOPG. These
facts suggest that Spi-B induced by RANK signaling upregulates
OPG expression in mTECs, thereby competitively inhibiting the
RANKL signal-inducing mTEC differentiation (Figure 1). Thus,
this negative feedback regulation finely tunes the cellularity of
mTECs. Noticeably, negative regulation of mTEC differentiation
by the Spi-B–OPG axis starts in the peri- to neonatal period,
during which Aire mediates long-lived tolerance (49, 50).

Biological and Physiological Significance of
Negative Regulation of mTEC Cellularity
The effect of TGF-β signaling in mTECs on thymic T cell dif-
ferentiation was investigated (14). The number of SP thymocytes
and the frequency of CD4SP were mildly increased by the absence
of TGF-β signaling. Moreover, export of thymic T cells to the
periphery was delayed in the postnatal period of thesemice. These
data suggest that the increase in mTEC number prolongs the
dwelling time ofmatureT cells in the thymicmedulla. The absence
of TGF-β signaling inTECs resulted in an increase in thymicTregs
and their precursors and a reduction in the frequency of thymic
and peripheral Th17 cells.

FIGURE 1 | Negative regulation of mTEC differentiation by the
RANK–Spi-B–OPG–RANKL feedback loop. mTECs are derived from a
common progenitor that can give rise to both mTECs and cTECs. RANK
signaling promotes differentiation of relatively immature mTECs into mTECs
expressing high levels of MHC class II (MHC II), CD80, and Aire. A recent
study suggested that RANK signaling upregulates expression of Spi-B. Spi-B
promotes expression of some TSAs, CD80, and osteoprotegerin (OPG), a
secreted decoy receptor for RANK, in mTECs. OPG, in turn, competitively
inhibits RANKL–RANK interactions, thereby inhibiting the RANKL-dependent
process of mTEC differentiation.
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Osteoprotegerin-deficient (Opg−/−) mice were used to inves-
tigate the role of the negative feedback circuit consisting of
RANKL–Spi-B–OPG in thymic T cell selection (15). The OPG
deletion in the thymic stroma led to an increase in the num-
ber and frequency of Tregs and Treg precursors in the thymus.
Together with the findings on TGF-β-mediated TEC regulation,
this suggested that negative regulation of mTECs attenuates the
generation of thymic Tregs. Importantly, the increase in Treg
generation by the deletion of OPG initiates in the perinatal period.
A recent study revealed that Tregs generated during this period
are functionally distinct from those produced in the adult thymus
and that these Tregs play a critical role in long-lived tolerance
induction (49, 50). Therefore, fine-tuning in the generation of
Tregs during this period by this negative feedback loop could have
an impact on T cell tolerance in adults.

What is the physiological impact of these negative regulations?
Suppose that mTECs simply played a role in preventing the onset
of autoimmune disease by negative selection and conversion of
Tregs. In this case, the inhibitory regulations of mTEC differentia-
tion might be harmful to the body. Indeed, the absence of TGF-β
signaling in TECs attenuates autoimmunity caused by a chronic
ablation of Tregs (14), suggesting a reduction of self-tissue reactive
T cells by abolishing TGF-β-mediated negative regulation. Thus,
this finding supports the idea that negative regulation of mTECs
would increase the risk of autoimmunity. Besides the critical
role of mTECs in inducing tolerance toward various self-tissues,
recent studies have shown that mTECs promote T cell tolerance
to tumors (10–12). The roles of RANKL–Spi-B–OPG negative
feedback regulation in tumor immunity were tested. When this
negative feedback loop was abolished by OPG depletion in the
thymic stroma, tumor growth, and incidence of carcinogenesis
were increased (14). These findings suggest that this negative feed-
back regulationmight promote tumor immunity and optimize the
trade-off between prevention of autoimmunity and induction of
tumor immunity. Thus, negative regulation ofmTECnumbermay
contribute to immune responses toward self-antigens in tumors
that are originally derived from self-tissues.

Perspective on Mathematical Modeling for
TEC Cellularity

As described above, many cell types andmolecules are involved in
the regulation of mTEC cellularity. Consequently, T cell selection
and tolerance induction supported by mTECs could be finely
tuned by a combination of various mechanisms under steady state
and pathological condition. Mathematical modeling would help
us to understand this complicated situation. However, mathemat-
ical modeling on dynamics of TECs, including mTECs, has not
been reported yet. On the other hand, there are several stud-
ies on mathematical modeling of thymocyte development. The
similar mathematical approach as that used for investigations into
thymocyte development can be employed for TEC development.
Moreover, because interactions with thymocytes are critical for
differentiation, proliferation, and survival of TECs, dynamics of
thymocytes should be included in the mathematical modeling
of TECs. In this section, we briefly discuss about a perspec-
tive on use of mathematical models to understand dynamics of

TEC population by referring to previous mathematical modeling
studies on thymocytes.

Generally, tracking cell fates over time at the single-cell level
is experimentally demanding and almost impossible in vivo.
Therefore, mathematical models are indispensable to extract
biologically relevant information on cellular dynamics and
differentiation from population-level measurements. As more
detailed information is obtained by new experimental methods,
the mathematical models have also evolved from simple ordinary
differential equations (ODEs) to cellular automata, compartment
models, and stochastic models in order to account for different
subtypes of lymphocytes, their cellular heterogeneity, and spatial
niches that they reside.

Although dynamics of thymocyte populations were modeled
by their types, i.e., DN, DP, and SPs, the interactions of thymo-
cytes with TECs were not explicitly incorporated in many models
(51–55). In order to investigate the contributions of cortical and
medullary selection, the influence of the TECs and the thymic
environment were incorporated more explicitly into models in
other studies. Fano et al. modeled the interaction of the thymo-
cytes with the cortical and medullary APCs to estimate the frac-
tions of the positively and negatively selected thymocytes in the
cortex and themedulla in relation to the diversity of presenting lig-
ands (56). In other studies (57, 58), the anatomical structure of the
thymus, together with cell types, was incorporated explicitly into
an investigation of the interrelation between thymocytemigration
and selection. In these studies, however, the TECswere considered
to be in a static thymic environment. In reality, the TECs also
differentiate and proliferate homeostatically in the thymus.

Influence of the thymocyte dynamics should be incorporated
into the mathematical modeling of TEC development because not
only intra- but also inter-regulation of thymocytes and TECs is
quite important when we consider the differentiation process of
TECs and recovery of TECs from damage and its involution by
aging, in which both thymocytes and TECs change their pop-
ulation dynamically (59, 60). Thus, we think that mathematical
models will be crucial for understanding the joint dynamics of
thymocytes and TECs by disentangling their complicated cell–cell
interactions.

Concluding Remarks

Several types of cells and various positive and negative signaling
pathways appear to control the cellularity ofmTECs under physio-
logical and pathological condition. Because cellular development
and recovery from injuries are time-dependent processes, these
mechanisms should be regulated in a precise and timely manner.
Employment of mathematical modeling is a promising approach
to understand these temporally regulated processes in the
future.
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Multiple signaling pathways control every aspect of cell behavior, organ formation, and 
tissue homeostasis throughout the lifespan of any individual. This review takes an onto-
genetic view focused on the large superfamily of TGF-β/bone morphogenetic protein 
ligands to address thymus morphogenesis and function in T cell differentiation. Recent 
findings on a role of GDF11 for reversing aging-related phenotypes are also discussed.

Keywords: TGF-β, BMP, thymus, thymopoiesis, T cell development

introduction

The adaptive immune system evolved as a complex set of defense mechanisms amplified by the speci-
ficity properties of antigen receptor-bearing B and T lymphocytes (1). Following blood trafficking 
into the thymus, bone marrow-derived lymphoid progenitors become committed to T cell lineage 
development. Within this organ, cell specialization occurs gradually in a manner that T cell develop-
ment results in the generation of conventional CD4 and CD8 αβ T cells along with natural killer T 
cell (NKT; an innate-like T cell subpopulation), regulatory T cell (Treg), and γδ T cell subsets (2). 
Classically, commitment to T cell lineage was found to rely on the Delta-class Notch ligand Delta-like 
4 (DLL4) and the interleukin-7 (IL-7) along with kit and flt3 ligands at stages usually prior to TCRβ 
chain assembling (3–6). Branching into distinct paths can be observed throughout the mainstream 
developmental pathway, from the double-negative (DN; CD4−CD8−) T cell precursors to the highly 
expanded double-positive (DP; CD4+CD8+) cells, and the resulting mature single-positive (SP; 
CD4+CD8− or CD4−CD8+) stages. Thus, at specific niches, the thymus provides to developing T cells 
signals that trigger a series of ordered events leading to cell proliferation, TCR gene rearrangements, 
and selective checkpoints along with massive cell death (7). Altogether, these events culminate in 
a proper repertoire of distinct and specialized mature thymocyte subpopulations able to emigrate 
to the periphery. In this review paper, we highlight the role of members of the large transforming 
growth factor-β (TGF-β) superfamily (Box 1) during thymic ontogeny, thymic epithelial cell (TEC) 
differentiation and function, as well as T cell maturation. Lastly, we discuss recent information on a 
possible regenerative potential of TGF-β ligands to rescue aging-related thymus atrophy.

TGF-β Signaling and Thymus Formation

Organogenesis relies on well-organized interactions between distinct germ layers and differentiating 
cell types controlled by intricate molecular hierarchies. Thymus development occurs from common 
parathyroid bilateral rudiments in the epithelial endodermal lining of the third pharyngeal pouch 
around embryonic days (E) 9.0–9.5 in mice and early week 5 in humans (Figure 2A) (41–44). As 
growth continues through E10.5 in mice and early week 6 in humans, the contact between the third 
pharyngeal pouch and the third pharyngeal cleft ectoderm determines paired organ primordia with 
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stratified epithelium and a central lumen lined by precursors of 
medullary thymic epithelial cells (mTECs). These cells are char-
acterized by the expression of both claudin-3/4 and cytokeratin-5 
(K5) (46, 47). Further development of thymic medulla also 

depends on the successful establishment of the cortical region, as 
observed in mice with arrested T cell development (48). Within 
each primordium, a dorso-rostralmost domain expressing Gcm2 
gives rise to a parathyroid gland from E9.5 in mice or as early 
as the onset of week 6 in humans, whereas a ventro-caudalmost 
domain identified by Foxn1 expression produces a thymic lobe 
from E11.25 in mice or mid-week 6 in humans (Figure 2B) (44, 
49–52). Epithelial cell proliferation fills the pharyngeal pouch 
lumen by forming cord-like structures with smaller lumina, 
similar to branching morphogenetic events in other organs 
(Figure  2C) (47). In this context, activation of Foxn1 blocks 
the respiratory development (53) and, along with subsequent 
colonization by lymphocyte precursors, seems to be responsible 
to produce a concentric medulla less densely cellular than the sur-
rounding cortex (47). Fetal liver-derived lymphocyte progenitors 
colonize the embryonic thymus from E11.5 in mice and week 8 
in humans (54, 55), whereas short-term apoptotic events around 
E12.0 disconnect the developing anlagen from the embryonic 
pharynx (41). The rudiments migrate downwards at different 
paces, gradually resolving the Gcm2- and Foxn1-restricted 
domains into two morphologically distinct structures enclosed 
by neural crest-derived mesenchyme (Figures  2C–F) (51, 56). 
Parathyroid primordia usually lag behind and move toward the 
tracheal region dorsally to the thyroid gland, whereas thymic 
rudiments move ventrally and more caudally into the thoracic 
cavity (Figures 2D,E). The thymic primordia ultimately fuse at 
the midline to produce a bi-lobed organ above the developing 
heart (Figure 2F). Unlike mice, humans exhibit superior parathy-
roid glands derived from the fourth pharyngeal pouch (Figure 2) 
(43), whereas organogenesis of the human thymus is essentially 
similar to mice both morphologically and molecularly (44). Each 
of these morphogenetic events during thymus organogenesis is 
controlled by a multitude of signals, including members of the 
TGF-β superfamily.

Thymus Specification and Thymic epithelial 
Cell Differentiation
Early production of Bmp4 by the endoderm, the surrounding 
neural crest-derived mesenchyme, and the overlying ectoderm of 
the third pharyngeal arch and cleft raised the possibility that bone 
morphogenetic protein (BMP) signals may trigger thymus and 
parathyroid formation (57). However, conditional inactivation 
of Bmp4 in both pharyngeal endoderm and mesenchyme using 
a Foxg1–Cre line had no effect in organ induction, but resulted 
in abnormal morphogenesis (see below) (58). This could be the 
result of a short-time window of 24 h necessary to establish the 
prospective thymic and parathyroid domains as observed in 
chicken embryos (59). Indeed, Patel et  al. have observed using 
a Bmp4lacZ-reporter line that the onset of Bmp4 production 
occurred at E9.5 in the ventral pharynx close to the third pouch 
entrance, but not in the pouch endoderm or mesenchyme proper 
(57). Expression in these tissues was later achieved and expanded 
to the overlying ectoderm (57). The realization that endoderm 
patterning occurs before primitive gut and pharyngeal pouch 
formation still hampers the identification of signals responsible 
for thymus specification in vivo and other members of the TGF-β 
superfamily may also be at play (60). Particularly, activin A is 

BOX 1 | Multiple roads for signaling by TGF-β superfamily members.
The TGF-β superfamily comprises TGF-β1–3, bone morphogenetic proteins 
(BMPs), growth and differentiation factors (GDFs), Nodal, activins/inhibins, 
Müllerian inhibiting substance (MIS)/anti-Müllerian hormone (AMH), and Lefty. 
These ligands were initially grouped accordingly to the functional roles obser-
ved following their original identification (8–11). As it became clear that most 
ligands play multiple functions depending on cell type, developmental stage, 
or tissue conditions, they are now classified by sequence similarity and the 
downstream pathway they activate (12). Each family member has an overall 
basic structure, in which inactive forms are produced with an N-terminal 
secretion peptide and a large propeptide domain known as latency-associated 
peptide (LAP). Cleavage of the propeptide domain by proprotein convertases 
releases a mature domain at the C-terminus, which eventually dimerizes (13). 
The propeptide domain has major regulatory roles. It influences protein stability 
and functions as chaperone during secretion, also mediating diffusion through 
interactions with the extracellular matrix and inhibiting the active peptide form 
even after cleavage (14–16).

Signaling by TGF-β superfamily members occurs through a similar 
mechanism, but operates with distinct components. Ligands bind single-pass 
transmembrane receptor serine/threonine kinases, which relay the signal for 
intracellular effectors capable of translocating into the nucleus to modulate 
gene transcription (Figure 1). More specifically, these receptors are classified 
into two structurally similar types. Ligand binding occurs only through type II 
receptors, which then recruit and phosphorylate type I receptors [e.g., Ref. (17, 
18)]. Type II receptors, such as ActRII (Acvr2a) or ActRIIB (Acvr2b), may take 
part in many distinct pathways or may be specific for a given group of ligands, 
such as AMHR2 (Amhr2) for MIS/AMH, BMPRII (Bmpr2) for most BMPs and 
Gdf9, and TβRII (Tgfbr2) for TGF-βs (19, 20). Type I receptors are also known 
as activin receptor-like kinases (ALKs) due to their sequence similarity to acti-
vin receptors (21). These receptors are usually specific to a more restricted set 
of ligands. For instance, Nodal, Gdf1, Gdf11, activins, and inhibins bind ActRII 
to recruit Alk4 (Acvr1b) and Alk7 (Acvr1c) or they bind ActRIIB to recruit either 
Alk4, Alk7, or Alk5 (Tgfbr1) (19). Together, type II and type I receptors form a 
heterotetrameric complex, in which the type I receptor further phosphorylates 
intracellular effectors of the Smad family (22). Depending on the ligand/recep-
tor complex they are responding to, receptor-activated Smads (R-Smads) can 
be subdivided into two groups: a BMP-related set gathers Smad1, Smad5, 
and Smad9 (formerly Smad8), whereas Smad2 and Smad3 are responsive 
to TGF-β-related signals (Figure  1). An N-terminal MH1 domain negatively 
regulates the MH2 domain, being indispensable for Smad translocation into 
the nucleus and DNA binding (23–25). However, these functional properties 
do not hold true for all R-Smads. In particular, Smad2 seems to interact to 
DNA only indirectly (24).

A common mediator Smad (co-Smad), or Smad4, integrates signals 
from both branches by associating with the R-Smads (Figure 1). They form 
transcriptional complexes able to translocate into the nucleus (26–28). Nuclear 
transportation of Smads depends on accessory proteins, particularly importins, 
exportins, and nucleoporins (29, 30). The presence of DNA molecules harbo-
ring Smad-binding elements favors heterodimerization between R-Smads and 
co-Smad (28). They ultimately associate with cell-type-specific transcription 
factors and co-activators to regulate a plethora of target genes (31).

Regulation of Smad activity occurs through multiple mechanisms (32). Two 
inhibitory Smads (I-Smads) impair signaling by competing with R-Smads for 
receptors or by co-Smad interaction (33). For instance, Smad6 forms stable 
interactions with type I receptors, blocking phosphorylation of Smad2 and 
Smad1, but not Smad3 (34, 35). Similarly, Smad7, the other I-Smad mem-
ber, also binds type I receptors and suppresses further phosphorylation by 
targeting them for proteasome-dependent degradation (35, 36). The available 
literature on the molecular interactions of TGF-β superfamily members is vast, 
but not in the scope of this review. Further information can be found elsewhere 
(33, 37–40).
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required to induce definitive endoderm prior to the differentia-
tion of third pharyngeal pouch endoderm in vitro (61). Since gene 
targeting of some superfamily ligands or their receptors results in 
embryonic lethality (62–64), new conditional mutants should be 
produced taking into consideration that gene deletion may have 
to occur earlier and at different embryonic compartments than 
previously thought.

The possibility that thymus induction depends on synergistic 
effects of TGF-β superfamily ligands with non-superfamily 
signals is a likely case (59). Endoderm-derived undifferentiated 
epithelial cells comprise a homogeneous population pheno-
typically defined as cytokeratin (K)5+K8+EpCAM+MTS24+ in 
the thymic primordium of mouse embryos at E12.0 (65). When 
a single progenitor cell labeled with enhanced yellow fluorescent 
protein (eYFP) was microinjected into an unlabeled syngeneic 
thymus rudiment with the same age, and transplanted under the 
kidney capsule, both cortical and medullary portions showed 
scattered eYFP+ TECs also positive for region-specific markers 
after 4  weeks, revealing that common bipotent progenitors are 
able to produce both epithelial lineages during embryogenesis 
(65). Recently, thymic epithelial progenitor cells (TEPCs) bearing 
stem-cell features were also identified in the thymus of adult mice 
as a MHCIIlowα6 integrinhighSca-1high subset (66). They mature in a 
highly complex stepwise process not fully understood, ultimately 
producing cortical TECs (cTECs) or mTECs (67).

Cortical TECs are sparsely distributed and may be identi-
fied as CD45−EpCAM+Ly51(CD249)+Ulex europaeus lectin 1 
(UEA-1)−K5−K8+ cells with high levels of both MHC II and the 
proteasome subunit β5t (68–71). Considering the TGF-β-related 
pathways, cells from neonatal mice express both the Acvr2a 
(ActRII) and Acvr2b (ActRIIB) genes for the common receptors, 
in addition to Acvr1 (Alk2), Bmpr1a (Alk3), and Bmpr2 (BMPRII) 

FiGURe 1 | Signaling by ligands of the TGF-β superfamily in the thymus. 
Members of the TGF-β superfamily may signal by either the TGF-β (reddish) or 
the BMP branch (bluish). Upon binding to type II serine/threonine receptors 
occurs the recruitment of type I receptors, which further phosphorylate Smad 
proteins. Whereas ActRIIA and ActRIIB may be shared between both 
pathways, TβRII and BMPRII are specific to TGF-β and BMP signaling, 

respectively. In general, Smad2 and Smad3 relay signals from the Alk4, Alk5, 
and Alk7 receptors, while Smad1, Smad5, and Smad8/9 are phosphorylated 
by Alk2, Alk3, and Alk6 receptors. However, Alk2, Alk6, and Alk7 are not 
expressed during thymocyte maturation. Modulation of gene expression occurs 
after Smad complex translocates into the nucleus and depends on the 
interaction with additional protein complexes (not shown).

for the BMP-specific receptors, and the TGF-β-specific type I 
receptors, Alk4 (Acvr1b) and Alk5 (Tgfbr1), and type II receptor 
TβRII (Tgfbr2) (71, 72). This set of receptor genes allows cTEC 
to respond to both signaling branches of the TGF-β superfamily, 
even though the BMP receptor, Bmpr1b (Alk6), and the TGF-β 
receptor, Acvr1c (Alk7), are not present. Yet, expression of subunit 
genes Inha and Inhbb for inhibins and activins, Bmp2 and Bmp4, 
and Tgfb1 and Tgfb3 makes possible the existence of an autocrine 
circuitry for thymic homeostasis, and indicate that these factors 
might influence early thymopoiesis (71, 72).

In the thymic medulla, mTECs are characterized by a 
CD45−EpCAM+Ly51−K5+K8− phenotype with variable levels of 
UEA-1, MHCII, CD80, and Aire (67). These distinct expression 
profiles seem to take part in the differentiation program in which 
MHCIIhighCD80high mature mTECs expressing Aire are respon-
sible for the production of numerous peripheral self-antigens 
in the thymus, a critical event for central tolerance (67, 73–77). 
Hence, SP cells that strongly interact with self peptides through 
MHC molecules (pMHC) arrest migration, exhibit sustained 
TCR activation, persistent high levels of cytosolic Ca2+, and early 
caspase activation, leading to macrophage-dependent phago-
cytosis (78, 79). Surprisingly, thymocyte apoptosis triggers the 
production of all three TGF-β ligands by dendritic cells (DC), 
macrophages, and TECs in the medullary region of neonate or 
adult thymuses, a phenotype that was partially impaired in Bim 
mutants (80). In addition, apoptosis-driven production of TGF-β 
signals resulted in an increased generation of thymic regulatory 
T (tTreg) cells (see below) (80). Interestingly, mTECs are the cell 
type in the thymus that express most ligand genes of the TGF-β 
superfamily and their cognate receptors – Inha and Inhbb, Bmp2, 
Bmp3, Bmp4, Bmp5, Bmp6, and Gdf6/Bmp13, Gdf3, Gdf6/Bmp13, 
Gdf8/myostatin, Gdf10, Gdf11, and Gdf15, Lefty1 and Lefty2, 
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FiGURe 2 | Signaling by TGF-β superfamily members during thymus 
organogenesis. Schematic representation of thymus formation at different 
stages of development. (A–C) Thymus specification viewed dorsally at the 
ventral half of the pharyngeal region. (A) The common parathyroid–thymus 
primordium arises from the third pharyngeal pouch endoderm. (B) Within each 
anlage, mTEC precursors line a central lumen surrounded by a dorso-
rostralmost domain expressing the BMP-antagonist Noggin and the 
parathyroid specific gene Gcm2 (light green), whereas the ventro-caudalmost 
domain expresses Bmp4 and the thymus-specific gene Foxn1 (blue). (C) Each 
primordium grows in size while proliferating cells fill the rudiment lumen, later 

colonized by lymphocyte precursors to produce an inner medulla. (D–F) 
Thymus migration toward the heart. The inferior parathyroid (light green) and 
the thymus (blue) primordia are gradually resolved as they migrate downwards. 
(D) TGF-β cues from the endothelium of pharyngeal blood vessels (e.g., carotid 
arteries) seem to orient thymic and parathyroid migration toward their final 
location. (e) The third pharyngeal pouch-derived thymic and the inferior 
parathyroid rudiments pass by the primordia of the superior parathyroid (dark 
green), which migrate only a short distance downward the tracheal region. (F) 
Fusion of the thymic primordia occurs at the midline just above the developing 
heart (not shown) [modified from Ref. (45)].
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Tgfb1, Tgfb2, and Tgfb3 along with Acvr2a (ActRII), and Acvr2b 
(ActRIIB), Acvr1 (Alk2), Bmpr1a (Alk3), and Bmpr2 (BMPRII) 
for BMP/growth and differentiation factor (GDF) signaling, and 
Acvr1b (Alk4) and Tgfbr1 (Alk5) for the TGF-β/Activin/Nodal 
pathway, in addition to the type III receptor gene Tdgf1 (Cripto) 
(71, 72, 81, 82).

The possibility that members of the TGF-β superfamily 
produced by mTECs may influence T cell differentiation or 
impact thymus physiology cannot be ruled out and remains to 
be thoroughly investigated. For instance, despite the previously 
identified BMP ligands in mTECs  –  Bmp3/osteogenin, Bmp5, 
Bmp6, and Bmp13 – there is no available functional information 
regarding their activities in the thymus to our knowledge. It is 
known, on the other hand, that Bmp6 exerts an antiprolifera-
tive effect in peripheral CD19+ B cells and induces apoptosis in 
CD27+ memory B cells (83). By contrast, Tgfbr2 deficiency in 

differentiating T cells increased apoptosis of TCRβhighCD4+ and 
TCRβhighCD8+ mature SP cells after anti-CD3 treatment or of 
TCRβhighOT-II T cells after antigen-dependent stimulation, thus 
revealing that TGF-β signals might be involved in thymocyte-
negative selection (84). Interestingly, loss of Tgfbr2 in TECs using 
a Foxn1–Cre mouse line resulted in an expansion of the mTEC 
compartment  –  especially MHCIIhigh cells  –  without affecting 
cTEC cellularity and the morphology of the corticomedullary 
junction (85). Indeed, other lymphocyte-derived signals than 
TGF-β ligands are known to influence mTEC maturation, a 
phenomenon that is largely known as “thymic cross-talk” (86).

Signaling by TGF-β superfamily members appears to play a 
secondary role in regulating a master regulator of thymus devel-
opment and function. Inactivation of the transcription factor 
Foxn1 results in an athymic phenotype despite the formation of 
an epithelial anlagen during embryogenesis (49, 87). Expression 
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of Foxn1 in thymic primordia is anticipated by the production 
of Bmp4 and Wnt4 in the epithelium and the adjacent mesen-
chyme of the third pharyngeal pouch from E10.5 in mice and 
from mid-week 6 in human embryos (23, 57, 88). Accordingly, 
in  vitro treatment of fetal thymic organ culture (FTOC) with 
BMP4 or overexpression of Wnt4 in a TEC cell line upregulated 
the expression of Foxn1 (88, 89). However, conditional inactiva-
tion of Bmp4 in the pharyngeal endoderm and mesenchyme 
did not affect Foxn1 expression (58), similarly to transgenic 
embryos expressing the BMP-antagonist Noggin in TECs (90). 
In turn, information on blockage of Wnt4 and its effect over the 
expression of Foxn1 is limited. In particular, Talaber et al. have 
shown that a single administration of dexamethasone caused 
the reduction of both Wnt4 and Foxn1 levels (91). Interestingly, 
conditional deletion of β-catenin in mTECs using a BK5–CreERT 
line resulted in Foxn1 downregulation (92). Altogether, the avail-
able evidence suggests that induction or maintenance of such an 
essential transcription factor in the thymic epithelia relies on an 
intricate molecular hierarchy with a key participation for BMP 
and WNT signals, which may provide some kind of redundancy 
for TEC differentiation and function.

With a great potential for translational medicine, differen-
tiation of TEPCs from mouse or human embryonic stem cells 
(ESCs) can be achieved under culture conditions by the addition 
of selected growth factors, including TGF-β superfamily ligands. 
For instance, Lai and Jin have initially reported that incubation 
with Fgf7, Bmp4, Egf, and Fgf10 produced K5+K8+EpCAM+ 
cells from mouse ESCs (93). These cells were able to further 
differentiate into medullary K5+K8− and cortical K5−K8+ TECs 
when transplanted with CD4−CD8−CD45+ thymocytes under 
the kidney capsule and sustain normal T cell maturation (93). In 
humans, an Activin A-dependent inductive stepwise process first 
differentiate ESCs into definitive endoderm (94), and later into 
SOX2+FOXA2+CDX2− anterior foregut endodermal cells by the 
concurrent inhibition of BMP and Activin/TGF-β signaling using 
Noggin and the type I receptor-specific inhibitor SB-431542, 
respectively (95). Further development into TEPC may be 
achieved by relatively similar approaches, generally modulating 
retinoic acid, canonical Wnt, and BMP level (61, 96).

Thymus Colonization by Lymphoid Precursors
Colonization of the thymic primordia occurs through intermit-
tent cell flow based on chemokine-dependent mechanisms (55, 
97–100). It begins discretely prior to organ vascularization 
with T cell-restricted progenitors that are unable to definitely 
populate the thymus (55, 97). Cell influx is transiently inter-
rupted during thymus migration to the thoracic cavity (42). 
Then, a second wave of cell colonization brings multipotent 
T cell- and NK-cell progenitors before birth (55). The most 
significant chemokines currently identified for attracting early 
T lineage progenitors (ETPs) to the developing avascularized 
thymus are CCL25 and CCL21 (98). Curiously, whereas CCL25 
is produced by both Foxn1-positive TECs and the adjacent 
parathyroid primordium, CCL21 is expressed only by Gcm2-
positive cells (99, 101). These ligands signal, respectively, 
through the CCR9 and CCR7 receptors present in CD45+ ETPs 
(102–105). However, it is still poor defined whether members 

of the TGF-β superfamily directly or indirectly influence or are 
modulated by these chemokines during thymus colonization. 
In particular, Gordon et al. observed delayed ETP homing into 
Bmp4-deficient thymic primordia at E11.5, but no significant 
differences in CCL25 expression in relation to wild-type thymus 
(58). The relationship with CCL21, other chemokines and their 
cognate receptors in the embryonic thymus, if present, remains 
to be determined. Of note, many pathological conditions and 
morphogenetic events show participation of TGF-βs, BMPs/
GDFs, and activins/inhibins in the modulation of chemokine 
production and vice versa (106–113).

Interaction of immigrating lymphocyte progenitors with 
the thymic stroma is critical for adult thymus organization, 
but not for TEC differentiation during embryonic develop-
ment. Using CD3ϵ transgenic mouse embryos, known to 
exhibit arrested T cell maturation at the triple negative (TN) 
CD3−CD4−CD8−CD44+CD25− ETP stage (114, 115), Jenkinson 
et al. have shown that K5+K8+ bipotent TEPCs normally differ-
entiate into functional K5+K8− medullary and K5−K8+ cortical 
TECs, although adult thymus in these transgenic animals exhibit 
persistent flat organization with morphologically abnormal 
cortex (115, 116). In particular, transfer of normal bone marrow 
cells into RAG2−/−; tgϵ26 chimeric mice, in which bone marrow 
cells from mice mutant for the recombination activating gene 2 
(RAG2) were previously transplanted into newborn tgϵ26 mice, 
rescued thymic organization and cellularity in the adult (48).

Thymus Migration
The subsequent migration of the thymus into the thoracic cavity 
also relies on signaling by members of the TGF-β superfamily 
and depends on neural crest cells. Despite a minor contribution 
in thymus cellularity, forced production of the BMP-antagonist 
Noggin in the caudal hindbrain prior to neural crest migration 
using B2-NC:Noggin transgenic mice culminated in thymic 
hypoplasia or aplasia later in development (117). Indeed, Bmp2 
induces Cdc42-dependent actin cytoskeleton reorganization and 
filopodia formation in neural crest cells, consequently affecting 
their subsequent migration (118). Moreover, conditional loss 
of Bmp4 in mice expressing Foxg1–Cre impaired the separation 
between correctly patterned parathyroid and thymus, which also 
exhibited a partially compromised capsule (58). Yet, based on 
observations performed for thyroid migration (119), Gordon 
and Manley have proposed that the downward migration of the 
thymus may be driven by signals from the pharyngeal blood 
vessels, more specifically the carotid arteries (Figures  2D–F) 
(42). Remarkably, mouse embryos with cardiac neural crest cells 
deficient for the type I receptor Alk5 (Tgfbr1) show defective 
cardiac outflow development, with atypical branching of carotid 
arteries and failed migration of still connected parathyroid and 
capsule-encased thymus (120). This raises the possibility that the 
directional cue for thymus migration might be Alk5 ligand (e.g., 
TGF-β1–3 or Gdf11), possibly secreted or released through the 
endothelium (Figures 2D–F). By contrast, conditional inactiva-
tion of Tgfbr2 in TECs by a Foxn1–Cre mouse line does not affect 
thymus final positioning (121). Although producing distinct 
phenotypes, each signaling branch by members of the TGF-β 
superfamily is involved in the downward migration of thymic 
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branches are colored in shades of gray, whereas components of the BMP and 
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present. DN, double-negative; DP, double-positive; SP, single-positive.
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primordia and reveals a critical, but still poorly understood role 
for the neural crest-derived capsule during thymus organogen-
esis. Neural crest cells may also differentiate into endothelial cells, 
pericytes, and smooth muscle cells, and were found to persist in 
adult mice up to the onset of thymus involution (122).

Thymus Organization and Maturation of 
T Cells Under TGF-β Superfamily Signals

The adult thymus exhibits two gross anatomical regions easily 
identified by their histological staining patterns. The peripheral 
cortex harbors more immature and mostly small thymocytes, and 
is darker-stained due to a higher cell density. A corticomedul-
lary junction supplied by numerous septal blood vessels makes 
the transition between the cortex and the central medulla. This 
latter region is paler due to cell size and a lower T cell density 
(123–125). A capsule of connective tissue encases the organ. It 
consists of an outer layer rich in type I collagen and an inner 
layer of reticular fibers containing type III collagen, and projects 
type I collagen-containing septa into the parenchyma, partially 
subdividing the thymus into smaller lobules (126).

Signals from members of the TGF-β superfamily have a major 
influence on T cell differentiation and thymus homeostasis. As 
secreted molecules, they may be locally produced by thymic 

stromal cells and act over developing T cells as paracrine factors 
or be produced by the thymocytes themselves and work auto-
crinely. Alternatively, factors from the developing T cells may 
similarly operate over stromal cells to support thymus homeo-
stasis. However, thymocytes do not express most members of the 
TGF-β superfamily and the ones present vary in expression as 
cells differentiate (Figure 3). Similar changes are also found for 
receptor genes (127). Such differences in gene expression occur 
during T cell maturation, but also when comparing the same 
stage from fetal and adult thymuses (127–131). Nevertheless, pro-
vision of soluble growth factors seems to rely mostly to stromal 
cells, particularly TECs (71, 127). It is still possible that members 
of the TGF-β superfamily also act over large distances, being 
produced by other organs and reaching the thymus through the 
circulatory system (132). The importance of endocrine stimuli for 
intrathymic T cell maturation has been largely investigated (133), 
but whether a given TGF-β ligand exerts long-range effects over 
thymopoiesis remains to be properly addressed.

Changes in phosphorylation levels of Smad2/3 (pSmad2/3) 
and Smad1/5/8 (pSmad1/5/8), respectively, used as read-outs for 
the activities of TGF-β/Activin/Nodal and BMP/GDF signaling, 
follow differences in the expression of respective cognate recep-
tors as thymocytes mature (134, 135). Thymocytes differentiate 
in a stepwise process that involves the somatic rearrangement 
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of T cell receptor (TCR) genes while migrating in close contact 
with stromal cells and the extracellular matrix (ECM) through-
out thymic compartments (136, 137). In this process, a major 
group of αβ TCR-bearing T cells are produced, which ultimately 
function by recognizing peptide antigens presented by class I or 
class II major histocompatibility complexes (MHC I or MHC II, 
respectively) on the surface of host cells (138). Alternatively, a 
distinct lineage of T cells bearing γδ TCR chains develop, which 
recognize a quite unique group of molecules (139). Noteworthy, 
intrathymic lineage restriction and cell fate are determined not 
only by the type of TCR and its avidity for self-antigens but also by 
the acquisition of co-receptors that relay signals to intracellular 
effectors during T cell activation. Hence, generation of distinct 
cell types are tightly controlled as thymocyte progresses through 
thymic niches (7). Herein, we will point out some key aspects 
of the expression and influence of TGF-β superfamily signaling 
molecules on the distinct paths of thymocyte development: from 
CD4−CD8− DN T cell precursors (further subdivided in DN1 to 
DN4 stages based on the surface expression of CD44 and CD25) 
to the highly expanded immature CD4+CD8+ DP cells, and upon 
the mature CD4+CD8− or CD4−CD8+ SP cells.

DN1 to DN2 Cells
Entry of bone marrow-derived Lin−cKithighCD44+CD25− cells, 
or ETPs, into the thymus occurs through the corticomedullary 
junction. In this intermediate region, these immature cells with 
T cell–B cell–myeloid potential come into contact with K5+K8+ 
bipotent TEPCs and mature T cells (67, 124, 140). They subse-
quently move into the thymus cortex toward the subcapsular zone 
as DN cells, as defined by the lack of CD4 and CD8 co-receptors 
(7, 141). In the cortex, developing thymocytes then upregulate 
CD25 – the α chain of the IL-2 receptor – to become CD44+CD25+ 
DN2 cells, which undergo Dβ to Jβ recombination of the β-chain 
locus (142, 143). This DN1 to DN2 transition is accompanied by 
a strong downregulation of Bmpr1a (Alk3) and Bmpr2 (BMPRII) 
expression (127, 129). Most cells at this stage present high levels 
of pSmad2 along with Alk4 (Acvr1b) and ActRII (Acvr2a) on 
their cell surface, although a few cells also exhibit Alk5 (Tgfbr1) 
and TβRII (Tgfbr2) receptors (134). DN cells also express the type 
III co-receptor betaglycan/TβRIII (Tgfbr3), with highest levels 
at DN3 cells (144). Betaglycan seems to increase the binding 
strength of some ligands with their cognate receptors, therefore 
potentializing their effects (145–147). Thymocytes express no 
Bmpr1b (Alk6), Acvr1 (Alk2), and Acvr1c (Alk7) during thymo-
poiesis (127, 129). Yet, high levels of inhibin βA subunit (Inhba) 
and TGF-β1 (Tgfb1) contrast with reduced levels of the inhibin 
α subunit (Inha), Bmp2, Bmp4, and Bmp7 at the DN2 stage (81, 
82, 127, 130). When Inha mutants were used for E14.0 FTOC, a 
partial arrest at the DN2 stage impaired further T cell maturation 
(148). Likewise, antibody-dependent blocking of betaglycan in 
E14.0 FTOC resulted in a reduction of both DN2 and DP cells 
(144). By contrast, addition of TGF-β1 or TGF-β2 in E14.0 FTOC 
strongly inhibited T cell development by mainly impairing the 
differentiation of DN1 cells into DN2 (149). A slightly less strong 
impact after BMP4 treatment of E15.0–E15.5 FTOC or suspen-
sion cultures of fetal thymocytes resulted in cell cycle arrest at 
the DN1 stage without induction of apoptosis (89,  150). The 

use of BMP4-treated chimeric human–mouse FTOC produced 
similar findings (81), revealing a conserved role for Bmp4 during 
evolution. Besides, partial redundancy between BMP ligands 
also seems to occur in the thymus, since treatment of FTOC with 
BMP2, but not with BMP7, similarly affected the production of 
DP cells (150).

DN2 to DN3 Cells
Following T cell differentiation into CD44−/lowCD25+ DN3 cells, 
Vβ to DJβ recombination gives rise to the β chain of the pre-TCR 
(143). At this stage, the levels of Inha, Bmp2, and Bmp4 remain 
relatively low, Bmp7 becomes upregulated up to the CD3−CD8+ 
intermediate single-positive (ISP) stage, and expression of Inhba 
and Tgfb1 declines (82, 127, 130). Levels of Alk4 (Acvr1c), Alk5 
(Tgfbr1), and ActRII (Acvr2a) gradually reduce as thymocytes 
mature, in contrast to TβRII, which is slowly upregulated  –  at 
this stage, Alk4 and Alk5 are co-expressed (134). Expression of 
Bmpr1a (Alk3) and Bmpr2 (BMPRII) presents a small recovery 
at the DN3 and DN4 stages (127, 129). Nevertheless, conditional 
inactivation of Bmp7 in the hematopoietic lineage using a vav-
iCre line had no significant impact on T cell differentiation and 
total cell numbers, likely because endoderm-derived cTECs and 
mTECs may supply enough Bmp7 or other redundant factor for 
the mutant thymocytes (71, 82, 150). In particular, subcapsular 
cTECs, cortical DCs, and mTECs express Bmp2 and Bmp4 (71, 
81, 82). Activation of the Bmp4 pathway in stromal cells indi-
rectly impacts the DN to DP transition, as revealed by reconstitu-
tion experiments with thymocyte-depleted stroma treated with 
BMP4 or untreated stroma with BMP4-treated DN cells (89). Of 
note, although highly expressed up to the transition from DN2 
to DN3, being downregulated up to the DP stage, and sustained 
at low levels at SP subsets (127), the gene referred as Bmp1 is a 
procollagen C-proteinase involved in ventral body wall closure 
during embryogenesis. To our knowledge, there is no available 
functional information regarding its role during thymopoiesis, 
except that it was also found in cTECs and mTECs (71, 151).

DN3 to DN4 Cells
Should rearrangements result in unproductive β chains, DN3 cells 
undergo apoptosis and are phagocytized by cortical macrophages 
or DCs in a process termed β-selection (143, 152). Otherwise, 
successful recombination leads to a reduction in CD25 expres-
sion and the expansion of CD44−CD25− DN4 thymocytes (153, 
154). Both activin A and inhibin A similarly stimulate the DN3 
to DN4 transition, as revealed in FTOC from wild-type fetuses at 
E14.0. However, treatment with activin A led to higher numbers 
of mature CD24lowCD8+TCRβhigh T cells at the expense of CD4+ 
cells, in contrast to inhibin A treatment, which stimulated the 
transition from DN4 to DP cells (148).

DP Cells
Rearrangement of the TCRα chain occurs at the DP stage and 
cells move from the cortical zone toward the thymic medulla 
(143, 155). During this migration, cTECs present self peptides 
through MHC molecules (pMHC) to the TCR of intermingling 
DP thymocytes in a process known as positive selection, in which 
interactions of low-avidity drive clones to survive and continue 
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maturation (156). At the DP stage, Alk4 (Acvr1b), Alk5 (Tgfbr1), 
and ActRII (Acvr2a) reach their lowest levels, but the number 
of cells concomitantly presenting Alk5 and pSmad2 increases 
in relation to Alk4-positive cells (134). By contrast, Bmpr1a 
(Alk3) and Bmpr2 (BMPRII) are highly expressed (127, 129). 
Two members of the GDF subgroup, Gdf7 and Gdf11, seem to be 
induced in DP cells and sustained at SP stages, with CD4+ T cells 
presenting relatively higher levels than CD8+ T cells (127). Gdf7 
signals through BMP-specific receptors as Alk3 and BMPRII, 
whereas Gdf11 binds TGF-β-related receptors, as Alk4 and Alk5 
(157–159). Their roles on T cell function are largely obscure, 
if any. Mouse mutants for Gdf7 exhibit variable hydrocephalus 
and fail to produce a class of commissural neurons (160). Male 
mutants are sterile due to impaired differentiation and branching 
morphogenesis of the seminal vesicle, with no other affected 
reproductive structure (161). In turn, mutants for Gdf11 show 
homeotic transformations due to a delayed trunk to tail transi-
tion (162, 163). They die after birth because of renal defects, 
which may vary from hypoplasia to complete bilateral agenesis 
(164). Curiously, oral infection with Gram-negative bacteria, 
Aggregatibacter actinomycetemcomitans, in rats led to a chronic 
upregulation of Gdf11 expression among other cytokines in both 
peripheral CD45RA+CD4+ T cells and B cells (165). At present, 
however, little is known on the effects of GDFs over thymopoiesis.

SP Cells
Still in the cortex, differentiating thymocytes start to lose the 
expression of either CD4 or CD8 and migrate toward the medulla. 
The choice for either CD4 or CD8 SP lineage seems to occur at 
a transitional step defined as CD4+CD8low and depends on TCR 
interaction with the MHC class II or class I, respectively (166, 
167). Additionally, it also relies on the triggering of a transcrip-
tional machinery that operates distinctly for final differentiation 
(165, 166). Noteworthy, the SP cells sustain Bmpr1a (Alk3) and 
Bmpr2 (BMPRII) expression, and upregulate Alk5 (Tgfbr1) and 
TβRII (Tgfbr2), which lead to increased levels of pSmad2 (84, 127, 
129, 134). At this stage, fine-tuning of TGF-β signaling may occur 
by type III co-receptors  –  CD4+CD8− cells upregulate Tgfbr3 
(betaglycan), whereas CD4−CD8+ cells exhibit higher levels of 
Cripto (Tdgf1) (127, 144). Genetic loss of Tgfbr3 in FTOC resulted 
in decreased numbers of both DP and SP cells, probably related to 
the high rates of apoptosis in DN, DP, and CD4+ SP subsets (144). 
An apoptotic phenotype was also observed in the liver of Tgfbr3 
mutants (168). However, a functional role for Cripto during 
thymopoiesis is currently unresolved, despite its importance for 
TGF-β binding and inhibition (169). Mutants for this gene present 
a strong deleterious phenotype during gastrulation and die shortly 
afterward (170, 171). Modulation of TGF-β family members, their 
receptors, and co-receptors at the DP stage is therefore associated 
with the terminal differentiation of thymocytes.

impact of TGF-β Signals on the 
Differentiation of Thymic 
Regulatory T Cells

Regulatory T (Treg) cells have the ability to suppress autoreactive 
T cells, and they can originate from the thymus or be induced 

in the periphery (172). Thymus-derived Treg (tTreg) arise in 
the thymus from SP CD4+ T cells that escape negative selection 
during maturation by presenting TCR signals of variable affini-
ties (80, 172–174). More specifically, TCRs with high avidity for 
self-antigens trigger a new upregulation of CD25 (IL-2 receptor 
α chain) and therefore exhibit an increased responsiveness to 
IL-2, ultimately inducing the expression of the transcription 
factor forkhead box P3 (Foxp3) through a STAT5-dependent 
mechanism (175–177). Foxp3 is the critical transcription factor 
for Treg cell lineage, as its loss abolishes tTreg cells and lead to 
systemic autoimmunity and death (178, 179). Conversely, forced 
expression of Foxp3 in CD25−CD45RBhighCD4+ SP cells trans-
ferred into severe combined immunodeficiency (SCID) hosts 
suppressed exacerbated inflammation (180). Unlike previously 
thought (181), however, expression of Foxp3 in developing tTreg 
cells induced apoptosis instead of cell survival. Cell death is pre-
vented by limiting concentrations of γc-mediated survival signals 
enough to sustain only fewer than one million Foxp3+ cells (182).

Signals from members of TGF-β superfamily also play impor-
tant roles over the differentiation and survival of tTreg cells. In 
particular, conditional loss of Tgfbr1 (Alk5) in thymocytes seems 
to be involved in tTreg specification, since a Lck–Cre mouse line 
completely blocked differentiation of tTreg cells in neonatal mice, 
whereas later inactivation of Tgfbr1 by a Foxp3–Cre line produced 
no differences in tTreg numbers as compared to wild-type mice 
(80, 183). In addition, the intrathymic injection of an anti-TGF-β 
antibody suppressed Foxp3 expression in a TCR transgenic 
CD4+CD25− SP cells (80). Of note, impaired Alk5 signaling 
induced by the Lck–Cre line caused no significant impact on 
CD4+ and CD8+ SP cell numbers (183). A later increase in Treg 
cells induced in the periphery (pTreg) in these mutant mice 
relied on IL-2 signaling, since ablation of this cytokine produced 
no detectable cells in organs, such as the spleen and liver (183). 
Similarly, thymocyte deficiency of Tgfbr2 from a CD4–Cre mouse 
line resulted in reduced numbers of tTreg cells due to Bim-
dependent apoptosis likely independent of γc-signaling, without 
affecting TCR-βhighCD4+Foxp3− mature T cells in neonatal mice 
(84). Unlike Tfgbr1-mutant thymocytes, conditional deletion of 
Tgfbr2 also resulted in low numbers of pTreg cells (84). Induction 
of pTreg cells relies on the Smad3-dependent upregulation of 
Foxp3 triggered by activation of both TCR and TGF-β signal-
ing and facilitated by retinoic acid, which increased pSmad3 
accessibility to regulatory sequences of the Foxp3 promoter and 
concurrently counteracted the suppressing effects of a c-Jun 
N-terminal Kinase (JNK) inhibitor (184, 185). Genetic analyses 
of the regulatory CNS1 region of Foxp3, which contains binding 
sites for NFAT, Smad3, and RAR/RXR, revealed that tTreg cell 
development occurs independently of its activation, whereas its 
chromosomal deletion largely impaired the production of pTreg 
cells in secondary lymphoid organs (184–186). In accordance 
to the different requirements revealed for tTreg in comparison 
to pTreg populations, TGF-β1 is essential for the peripheral 
differentiation and maintenance of pTreg cells, but seems to be 
dispensable for tTreg maturation (187).

Taking into consideration the upregulation of all three TGF-
β ligands by stromal cells upon thymocyte apoptosis in the 
thymus, along with recent findings regarding mutants for distinct 
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TGF-β-specific receptors (80, 84, 183), it is possible that TGF-β 
ligands may play a redundant yet underestimated role in the 
immune system. Noteworthy, mutants for TGF-β2 and TGF-β3 
also exhibit perinatal mortality, a characteristic that complicates 
the examination of their role in adults (188–190). Although at 
first sight, the phenotypes observed in these mutants were gener-
ally non-overlapping, some particular structures showed similar 
defects between single mutants (e.g., cleft palate in either TGF-β2 
and TGF-β3 mutants) or exclusive abnormalities in compound 
mutants, such as abnormal brain vascular morphogenesis and 
impaired midline fusion along with earlier embryonic lethality in 
Tgfb1RGE;Tgfb3 and Tgfb2;Tgfb3 compound mutants, respectively 
(191, 192). However, development of tTreg was never evaluated 
in these compound mutants. An alternative explanation may con-
sider the participation of a previously unappreciated ligand of the 
TGF-β superfamily in the differentiation of tTreg cells. Whether 
this is indeed the case, this candidate ligand should probably 
signal through Alk5 and TβRII receptors to phosphorylate Smad2 
and Smad3 intracellular effectors. Thereby, likely ligands to be 
thoroughly evaluated due to their expression pattern and receptor 
affinity are Gdf11 and Gdf8/myostatin – curiously two members 
that showed redundancy in patterning the axial skeleton as 
revealed by Gdf11;Mstn double mutants. Unfortunately, examina-
tion of fetal thymus morphology and T cell differentiation using 
FTOC was not performed in these mutants (193).

Noteworthy, TGF-β signals also regulate the thymic develop-
ment of IL-17-producing cells. A subset of γδ T cells acquire 
the capacity to produce IL-17 inside the thymus via a TGF-β1-
dependent machinery, and both Tgfβ1−/− and Smad3−/− mice 
were shown to be completely devoid of IL-17-producing γδ 
T  cells (194). Additionally, NKT17 cells comprise a thymic-
derived IL-17-producing, CD1d-restricted, and glycolipid 
antigen-reactive T cell subset (195, 196). These cells express high 
levels of TβRII and depend on TGF-β signals for differentiation 
and survival within the thymus and in the periphery (197, 198).

A TGF-β Member for Thymus 
Rejuvenation?

Aging is an inherent process of living beings, normally associated 
with gradual loss of function and structure over time – accumula-
tion of reactive species, DNA damage, abnormally folded proteins, 
and telomere shortening are just some of the molecular changes 
that may be followed by increased apoptosis, cell transformation, 
or other cellular event that will ultimately lead to death (199). 
Although this negative scenario was initially thought to be 
irreversible, numerous evidences point out that at least in part 
it is possible to slow down or eventually reverses some specific 
aging phenotypes. Taking the thymus as example, aging is easily 
recognizable by a sharp decrease in cellularity of both lymphoid 
and stromal compartments, whereas the number of thymic adi-
pocytes inversely increases (200, 201). Ultimately, these thymic 
changes lead to a reduction of naïve T cells in the periphery along 
with an increase of memory T cells, which reflects in the organ-
ism ability to respond to both infection and tumorigenesis (202).

Multiple factors may trigger thymic involution, including 
the production of sex steroid hormones from puberty, increased 

calorie intake, or diminished levels of some growth factors and 
cytokines, such as fibroblast growth factor 7 (FGF7)/keratinocyte 
growth factor (KGF), insulin-like growth factor (IGF-1), growth 
hormone (GH), interleukin-7 (IL-7), and IL-22 (203). Modulation 
of each of them is able to rescue the aged thymic phenotype and 
restore the immune function at some level (204–210). However, 
some of these strategies may be inefficient, invasive, non-specific, 
or produce undesirable side effects to be used in humans (211). A 
quest for thymic rejuvenation therapies therefore faces daunting 
challenges in the clinic. Of particular interest, forced expression 
of Foxn1 was shown to effectively reprogram fibroblasts into TECs 
or regenerate fully involuted thymuses at many different experi-
mental setups, both in vitro or in vivo (212–214). In this context, 
signals that control Foxn1 expression might be used to restore the 
integrity of the thymic epithelial niche and subsequently flourish 
thymopoisesis in the elderly. In this scenario, administration of 
soluble factors, such as ligands of the TGF-β superfamily, may be 
used as regenerative drugs.

Recent findings have revealed that levels of some circulating 
factors vary with age and that heterochronic parabiosis, i.e., a sur-
gical procedure that connects the circulatory systems of animals 
with different ages, was able to reverse age-related phenotypes as 
cardiac hypertrophy (132). These authors further identified the 
TGF-β member Gdf11 as responsible for restoring cardiac func-
tion in old mice, a finding that was further expanded to other sys-
tems. In particular, daily treatment of old mice with recombinant 
GDF11 improved skeletal muscle mass and strength, as well as the 
integrity of brain vasculature and cognitive function (215, 216). 
In culture, Gdf11 promoted osteoblastogenesis while inhibiting 
adipogenesis in bone marrow-derived cells (217). Administration 
of GDF11 in endothelial progenitor cells triggered cell sprouting 
and migration, also revealing a role in the formation of blood 
vessels (218).

Whether Gdf11 or other circulating factor can be used as a 
rejuvenating cytokine for the thymus remains to be thoroughly 
assessed. Indeed, Gdf11 is expressed in the thymus of young mice 
(132), whereas the levels of its non-exclusive receptors, Alk4 and 
Alk5, vary in thymocytes and TECs, as previously discussed. Of 
note, however, therapy with Gdf11 produced some side effects 
in mice (219), and a recent study by Egerman et al. has recently 
questioned the aforementioned observations (220). Whereas 
these controversial data on Gdf11 await further investigation, 
it is noteworthy that heterochronic parabiosis did not reverse 
thymic involution, but caused atrophy with mild effects on T cell 
subpopulations of young mice and a reduction in the number of 
CD4+CD25+Foxp3+ regulatory T cells in old partners to the level 
of the young pair (221). Although a putative rejuvenating factor 
for the thymus still awaits to be determined, this controversial 
matter helps to bring the debate on the role of TGF-β superfamily 
members for the thymus function.

Concluding Remarks

Although the differentiation of T cells is mainly driven by the 
rearrangement of TCR genes, many members of the TGF-β 
superfamily exert critical roles in their stepwise progression 
during thymic migration. Historically, special attention had been 
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given to the activity of TGF-β ligands in the induction of Treg 
cells and tolerance to self-antigens, as well as to BMP signaling 
on thymus organogenesis. However, other members are also 
produced by developing thymocytes, thymic stromal cells, or 
may circulate throughout the body by the blood stream and reach 
the thymus. These ligands signal through the same limited sets 
of type I and type II receptors to produce dissimilar outcomes 
either by affecting distinct stages or cell types (e.g., thymocytes 
versus TECs). How such TGF-β superfamily ligands affect T cell 
maturation, thymus proper physiology, or its involution remain 
poorly understood and should be the focus of future research. In 
addition, a scenario in which a TGF-β superfamily member or its 

inhibitor acts to rejuvenate the aged thymus may be a likely case 
for future research.
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