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Editorial on the Research Topic

From batch-size 1 to serial production: adaptive robots for scalable and
flexible production systems

The first manuscript with the title “Halim et al.” proposes a no-code approach to
programming industrial robots. The proposed method relies on a finite state machine
with three layers of natural interactions based on hand gestures, finger gestures, and voice
recognition. The results obtained from the experiments indicate the capability of this novel
approach for real-world deployment in an industrial context. In a similar vein, however,
on the controller level, the third manuscript “Wiese et al.” presents a skill-based approach
as an abstract template class methodically for modularization of the assets in the control
and parameterizable skills. An orchestration system is used to call the skills with the
corresponding parameter set and combine them into automated process sequences. This
approach provides a more flexible control, as operators can independently adapt and expand
the automated process sequence without modifying the controller code.

In the second manuscript, “Bdiwi et al.” the authors propose a dynamic safety-related
finite-state machine for safe transitions between various collaborative operation modes
dynamically and adequately. In addition to that, the collaborative operation modes are
grouped in different clusters and categorized at various levels systematically. The proposed
approach is integrated into a new dynamic risk assessment tool as a promising solution
toward a new safety horizon in line with Industry 4.0.

To enable the production of large components using industrial robots, the fourth
manuscript “Schnellhardt et al.” presents a novel approach to segmented manufacturing.
The proposed segmentation strategy divides the part into segments whose structural design
is adapted to the capabilities of the field components available on the shop floor. The
process planning step of each segment is automated by utilizing the similarity of the
segments and the self-description of the corresponding field component. The result is a
transformation of a batch size one production into an automated quasi-serial production
of the segments. Moreover, the fifth manuscript with the title “Wabner et al.” proposes
technological cooperation of industrial robots and machine tools to improve flexibility
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and efficiency in parts production. The approach results in a
novel type of collaborative manufacturing equipment for matrix
production that will improve the versatility, efficiency, and
profitability of production. By enhancing machine tools with
additional manufacturing technologies, a robot can beneficially
support workpiece machining.

Regarding shop floor management, modern manufacturing
objectives such as automation, mass customization, self-
organization, and smart factories require intelligent control
approaches. The sixth manuscript “Bahrpeyma and Reichelt”
presents a review (MARL) as an effective approach to handling
uncertainties due to the dynamic nature of the environment. It has
been demonstrated how different aspects of smart factories match
the objectives and capabilities of MARL and suggested a mapping
from smart factory features to the equivalent concepts in MARL,
indicating how MARL provides an appropriate solution to provide
almost all the required features in the smart factory at once. In
terms of robot path planning, most motion planners generate low-
level control inputs, leading to geometric and temporal deviations
between the executed and planned motions of the robot. To solve
this challenge, the work in the seventh manuscript “Hou et al.”
proposed a new approach using neural networks. This approach
uses realistic collision-free trajectories to simultaneously learn
high-level motion commands and robot dynamics, generating
trajectories that can be executed directly by the robot control system.
The proposed approach has significantly reduced geometric and
temporal deviation between the executed and planned motions and
generates new collision-free trajectories up to ten times faster than
benchmark motion planners.

The last two manuscripts discuss innovative approaches to
improve industrial human-robot collaboration using intelligent
sensor systems with a focus on safety and efficiency. The eighth
manuscript with the title “Krusche et al.” proposes a novel approach
for automatic annotation of human actions in 3D point clouds
using various DNN classifiers, an intuitive GUI, and a methodology
for automatic sequence matching. The proposed framework was

evaluated in an industrial use case and was shown to accelerate
the annotation process by 5.2 times through automation. This
approach can save time and resources while improving human-
robot collaboration by recognizing, analyzing, andmodeling human
actions. The last manuscript with the title “Rashid et al.” presents
flexible and efficient local and global sensing using cameras
and LiDAR. The proposed methodology incorporates a local 3D
sensor on the robot body and formulates occlusion due to the
robot body, which ensures minimum occlusion in the robot
workspace. The resulting system enables high robot velocities while
providing flexibility and safety with heavy-duty industrial robots.
The proposed approach aims to have a minimum scalable sensor
concept and adjust it according to the process requirements.
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Flexible skill-based control for
robot cells in manufacturing

Torben Wiese*†, Johannes Abicht†, Christian Friedrich,
Arvid Hellmich and Steffen Ihlenfeldt

IIoT Controls and Technical Cybernetics, Fraunhofer Institute for Machine Tools and Forming
Technology, Dresden, Germany

Decreasing batch sizes lead to an increasing demand for flexible automation

systems in manufacturing industries. Robot cells are one solution for

automating manufacturing tasks more flexibly. Besides the ongoing

unifications in the hardware components, the controllers are still

programmed application specifically and non-uniform. Only specialized

experts can reconfigure and reprogram the controllers when process

changes occur. To provide a more flexible control, this paper presents a

new method for programming flexible skill-based controls for robot cells. In

comparison to the common programming in logic controllers, operators

independently adapt and expand the automated process sequence without

modifying the controller code. For a high flexibility, the paper summarizes the

software requirements in terms of an extensibility, flexible usability,

configurability, and reusability of the control. Therefore, the skill-based

control introduces a modularization of the assets in the control and

parameterizable skills as abstract template class methodically. An

orchestration system is used to call the skills with the corresponding

parameter set and combine them into automated process sequences. A

mobile flexible robot cell is used for the validation of the skill-based control

architecture. Finally, the main benefits and limitations of the concept are

discussed and future challenges of flexible skill-based controls for robot

cells are provided.

KEYWORDS

skill-based control, flexible control systems, robot cells, modular automation, robot
skills

1 Introduction: Current challenges of controls for
robot cells

In the manufacturing industry, robots offer a productive and flexible solution to

automate manufacturing processes. Due to their serial design and uniform mechanical

interfaces, robots are used as manipulators for variable, repetitive and high-precision tasks

(Arents and Greitans, 2022). Typical applications include basic handling applications

(e.g., for parts, pallets) as well as more complex processes, such as welding or the assembly

of parts (Siciliano and Khatib, 2016). To add the necessary skills to the robot, assets, like
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grippers, sensors, and actuators, are applied to form task-specific

static or mobile robot cells (Lienenluke et al., 2018 - 2018;

Wojtynek et al., 2019; Sanneman et al., 2020).

In mass production, e.g., the automotive industry, such

robotic cells are common. However, the increasing number of

product variants requires more flexible robot cells in hardware

and software to adapt them to the current processes (Dorofeev

andWenger, 2019 - 2019; Saukkoriipi et al., 2020). Therefore, the

retooling and reconfiguration of robot cells are key challenges for

the current research (Jörgen Frohm et al., 2006; T. Dietz, 2012).

In hardware, there exist standardized mechanical, electrical, and

data interfaces for modular assets to enable flexibility (Radanovic

et al., 2021 - 2021). This is known as Plug and Produce concept

(Pfrommer et al., 2015; Wojtynek et al., 2019; Falkowski et al.,

2020). In software, configuring and teaching robot controllers

(RC) and programmable logic controllers (PLC) is still a non-

uniform, time-consuming and skill-demanding bottleneck

(Sanneman et al., 2020; Zhou et al., 2020). An expert with

control programming knowledge is necessary to reconfigure

the robot cell PLC. Operators with basic process knowledge

are not able to adjust the control software effortless.

Therefore, programming experts must define all possible

process changes in software that limits the flexibility to serval

static case clauses (Deutschmann et al., 2020). In addition, the

monolithic programming of controllers, non-uniform interfaces

and static graphical user interfaces further decrease the software

flexibility in robot cell controls. Hence, the standardization of

communication interfaces and more abstract, task-oriented

programming becomes very important to increase the

software flexibility of robot cells (Saukkoriipi et al., 2020;

Heimann and Guhl, 2020 - 2020; Sanneman et al., 2020). As a

result, the following requirements for flexible controls of robot

cells are defined:

• Extensibility: To be able to adapt a robot cell to changing

processes, it must be possible to extend it with adapted or

new assets to be able to use their manufacturing functions

for the process sequences. Besides the hardware

connectors, the extensibility must be ensured in terms

of software. The control architecture, therefore, must

deal with real-time capabilities, computing power, and

communication interfaces of the control systems of the

assets.

• Flexible usability: The individual manufacturing functions

of the assets must be flexibly usable for the operator. To

ensure flexibility, each asset should provide its functions

independently of other assets to combine them

independently into sequences. By defining automated

sequences, the operator assembles the functions into

more complex process steps.

• Configurability: The control of flexible robot cells must

enable a configurability of the automated sequences to the

operator based on his detailed manufacturing process

knowledge. The individual functions of the assets must

be configurable via changeable parameters to be able to

adapt them to specific process steps. This allows the

operator to configurate sequences with differently

parameterized function calls of the assets without having

control programming expertise.

• Reusability: Already defined functions and sequences

should be reusable to reduce reprogramming and

increase commissioning time. In this way, the operator

can access already working process steps and generate new

process sequences without having to adapt individual

functions. Process steps can also be exchanged and

reused between different robot cells with the same

functionalities.

One promising approach to fulfilling the requirements of a

flexible robot cell control is the skill-based control architecture

(SBC) (Dorofeev and Wenger, 2019 - 2019). The SBC uses an

abstraction concept by composing single manufacturing tasks

through parameterizable, component-specific skills. An

orchestration layer manages the task-specific arrangement and

call of the skills. Each component offers its skills via uniform

software interfaces for data communication (Pfrommer et al.,

2014 - 2014). Beside other self-describing component modelling

approaches according to the Industry-4.0 concept, OPC-UA is

commonly used as a universal communication interface

(Zimmermann et al., 2019 - 2019). Not only for combining

skills but also for unified and flexible multi-system orchestration,

SBC together with OPC-UA enables immense benefits in

software implementation and reconfiguration (Profanter et al.,

2019). In SkillPro (Brandenbourger and Durand, 2018 - 2018),

RAZER (Steinmetz et al., 2018), and other projects (Saukkoriipi

et al., 2020), the successful implementation has been validated.

The VDI/VDE has published the first standardizations of skills in

a guideline in field of process industry. This guideline focuses on

modularization, the service interfaces, parametrization, state

machines, and behavior models (Deutsches Institut fur

Normung, 2020). Today, main deficits are:

• Despite the increasing efforts in standardization and tests,

SBCs are not widely used in the manufacturing industry,

compared to established monolithically programmed

control systems.

• Unified models for components and skills for

manufacturing processes are missing (Malakuti et al.,

2018 - 2018).

• Control systems are only programmed by experts. New

concepts need to simplify control programming for non-

experts (Pedersen et al., 2016).

This paper presents an approach of a skill-based control for

flexible robot cells for manufacturing. Therefore, the approach

proposes a control architecture that fulfils the requirements of
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extensibility, flexible usability, configurability, and reusability.

The verification of requirements is analysed on a flexible robot

cell for machine tool automation.

2 Method: Development of a skill-
based control for flexible robot cells

The development of the SBC divides into three methodical

subgoals of the control software. The order of the subgoals

represents the workflow during implementation on the robot

cell controller. First, all assets are modularized, followed by

assigning the functions of the assets to the modules as

parameterizable skills. Finally, the SBC is extended by an

orchestration system of the skills to automate the skills into

process sequences. In the following section, the subgoals are

presented.

Modularization starts by dividing the assets of a robot cell

into functionally separable subsystems that work and are

controlled independently. Therefore, object-oriented

programming ensures uniform states and interfaces. In the

SBC, a superclass as a template for a unified asset module is

defined. New asset modules are thus created by inheritance of the

template module. This approach enables consistent handling,

monitoring, state control, and error management of all the

different modules in a robot cell.

Figure 1 illustrates the linking of assets and their

corresponding software modules in different control systems

of the robot cell. Depending on the controller architecture,

module controllers can also run in different controllers or

applications as long as the communication and linking with

the module handling is realized. Beneficially, the specific

requirements for asset controls in terms of necessary real-time

capability, hardware connectivity, and computing performance

can be considered and implemented individually. This allows the

decentralized allocation of control tasks to performance-specific,

separated controllers which reduces hardware costs. Modules can

also be arranged hierarchically at different levels and consist of

different sub-modules to consider the physical linking of assets in

the controller. The communication between the modules of

different controllers is realized via various manufacturer- and

programming language-independent interfaces, such as OPC-

UA. The modularization of controls for all assets enables the

extensibility of the robot cell at the software level. New assets and

their control modules can be integrated via uniform interfaces

through template inheritance.

To provide the asset functions, such as “move” of a robot or

“close” of a gripper, parameterizable skills for modules are

defined, as shown in Figure 1. In programming, the bottom-

up approach can be used to implement the available functions for

each asset as skills in the module control. The control

programmer should implement not only the asset functions

that are necessary for the overall automation solution, but also

the functions that the asset can perform independently of other

assets. This guarantees the flexible usability of all functionalities

of the assets. Another important aspect is the possibility to

parameterize the skills to adapt the individual asset functions

to different process tasks. For example, the target position can be

specified as a parameter for a robot movement to enable

configurability by the operator.

FIGURE 1
Concept of a robot cell automation by a skill-based control architecture.
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Modules and their skills represent the basic functions of the

various assets in a robot cell. To combine them into an automated

process sequence, e.g., a machine tool tending process, an

orchestration system in the master controller is required. The

orchestration system defines, parameterizes, and controls the

process sequence. Due to the modularization, the orchestration

system can communicate with all available module skills using

different communication interfaces like both vendor-specific and

vendor-independent ones. Complex process sequences can be

configured by parameterizing and combining skills into reusable

steps, whereby the operator can flexibly change individual

parameters of skills or entire steps at any time. When creating

automated process sequences, the top-down approach is ideal to

generate detailed sub-steps in various abstraction levels. The

operator can use his detailed knowledge of the manufacturing

process and first create abstract process steps, which are then

specified in further sub-steps and finally call up the individual

skills with configured parameters. The orchestration level in

Figure 1 shows an exemplary process flow with abstract steps,

which in turn contain more concrete sub-steps. Reusability is

ensured by storing the sequences and steps in data lists that

contain the information about the skill connection and associated

parameters. With a suitable humanmachine interface (HMI), the

operator can configure and parameterize the process sequences

without programming, which means that no knowledge of

programming in the controls is required.

For the communication between skills and the orchestration

system or operator, each skill provides the necessary meta

information about itself, such as its name, description, and the

associated asset as well as the information about its adjustable

parameters. The left side of Figure 2 presents an exemplary class

diagram of the abstract skill class with the necessary parameters

and methods for implementation in control systems. Every skill

deriving from the abstract class can be connected in the same

way, by accessing properties and using methods providing the

information and control options. To be able to parameterize the

skills uniformly, self-describing parameters using a generalized

definition structure are introduced. The orchestration system can

use the methods to retrieve the default parameters, set new

parameter values as well as to execute the skill that triggers

the associated function of the asset with the specified parameters.

After the configuration and parameterization of a process

sequence, the steps can be processed via the unified interfaces

to the skill and thus an automated flow can be accomplished. The

right side of Figure 2 shows a sequence diagram for the

exemplary execution of a process sequence by an

orchestration system.

3 Results: Verification of the flexibility
of the skill-based control on a mobile
robot cell

To evaluate the proposed SBC in terms of the flexibility

requirements, a test platform has been selected. Therefore, the

SBC was implemented on the Robo Operator© (RO) using a

FIGURE 2
Class diagram for the implementation of parameterizable skills in modules (left) and sequence diagram for their orchestration (right).
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TwinCAT PLC. The RO is a mobile robot cell, as shown in

Figure 3 (A-C), that was developed in a research project between

Fraunhofer IWU and Industrie-Partner GmbH (Abicht et al.,

2021). As flexible automation solution, it automates tasks of

operators on machine tools. Therefore, an industrial robot

(Yaskawa GP12) with a 2-jaw gripper and a smart camera

(Intel Realsense D435i) enable the RO to move parts, to open

and close doors, and to start the machine tool by control panel

interaction. The smart camera provides the position information

of all relevant objects. Applicable asset-modules, e.g., deburring

or blow-off modules, extend the workflow with new skills for the

manufacturing process, see Figure 3C.

With the given structure, the RO represents a flexible robot

cell in manufacturing. The flexibility of hardware is reached by

standardized Han® connectors and the capsuled design of the

asset modules. In the following section, the paper analyses how

the methods of the proposed SBC architecture realize the

flexibility in the control. Therefore, the paper discusses the

implementation based on the four aspects from chapter 1.

The human machine interface (HMI) of the RO visualizes the

FIGURE 3
(A–C): The Robo Operator © automates operator tasks on machine tools by skills.

FIGURE 4
Composition of the module skills to sequences and skill parameterization through the configuration HMI.
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achieved results, see Figure 4. At the HMI, operators configure

the process through the composition of skills into sequences.

While implementing the SBC into the RO, all assets get an own

functionally separated software module. As shown in Figure 4, e.g.,

the assetmodules (M) “Robot” for the YaskawaGP12 and “Gripper”

for the 2-jaw gripper are programmed. Other modules, such as the

camera, blow-off and, deburring module, could be created by

inheritance of the template module easily to verify the

extensibility of the software. Based on the template, other

modules can be integrated into the process in this way. Due to

the TwinCAT EtherCAT Hot-Connect functionality, the modules

are initialized automatically when the corresponding assets are

plugged by Han® connectors. A state machine was implemented

to manage the module states, such as Idle, Error, or Resetting, while

automating the process. The communication between the modules

is based on TwinCAT ADS (Automation Device Specification) as

universal software interface.

The definition of skills for all asset modules guarantees the

flexible usability of the software inside the master control system,

see the asset skills (S) in Figure 4. To achieve a specific goal or

sub-task of a manufacturing process, the skills are combined into

a sequence of skills (Q). For example, the sequence “Place raw

part on buffer plate” (in Figure 4: “Rohteil ablegen auf ZWA1”)

places a gripped raw part on a buffer plate to determine the

position of the part more accurately. Physically, the RO inserts

the gripped part from a home position of the robot to the buffer

plate position, opens the gripper and returns to the home

position safely. In the HMI, the operator combines the skills

Home, Insert, and TakeOut from the robot module with a

GripRelease skill from the gripper module from the SkillList,

as shown in Figure 4.

To use the module skills for different processes in a flexible

way, they must fulfil the configurability requirement. In the skill

editor in Figure 4, the operator adjusts the skills to the current

requirements of the process by specific skill parameters (P). For

example, operators must configure if the gripper should be

opened or closed at a grip or release position. By inheriting

the skill template class from Figure 2, the GripRelease-Skill is

defined with the skill-specific parameters Grip or Release and

additional parameters that configure the skill in the RO control to

the current task without changing PLC code. The orchestration

module executes every skill with the configured skill parameters

while automating the complete process sequence.

Predefined sequences can also be used as steps in a higher-

level sequence to reduce the configuration effort. This allows an

operator without detailed knowledge of single sequence steps to

configurate a sequence for the RO. For example, a simple process

sequence automating the move of one part from a machine tool

to a buffer plate, as shown by sequence #1 in Figure 5, can be

extended with an intermediate step to clean the part with a blow-

off module. For this, the operator only has to insert the necessary

process step in the orchestration system, which contains the

parameterized skills calls (see Sequence #2 in Figure 5).

Furthermore, the operator can change the already existing

step for placing the part by a new destination, such as a

container. The operator can do this by adjusting the

FIGURE 5
Example for modifying an automated process sequence of a robot cell with skill-based control.
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parameterization of the skill that makes the robot move to a

specific position, in this case by changing the target position from

“buffer” to “container” (see Sequence #3 in Figure 4).

The combination of parameterized skills and pre-defined

sub-sequences to new sequences enables a high reusability. In

Figure 4 the “Place raw part on buffer plate” sequence uses more

than one Home-Skill (R). To save the configuration in the HMI,

the SBC of the RO has an additional data base module to save and

reload all the information about the skills and parameters as well

as the sequences itself.

4 Conclusion

The present paper proposes a method for implementing a

flexible control architecture in robot cells called skill-based

control. In chapter 1, four requirements were defined for

developing the method for implementing the skill-based

control. Main reasons for developing this method are missing

guidelines or unifications for flexible control architectures for

manufacturing purposes and the wide range of programmer

expertise levels that must be conducted.

Methodically, the skill-based controls consist of a software

modularization of all assets, definition of capsuled asset functions

in skills and an orchestration system for skill management and

calling. Based on object-oriented programming, template classes

have been implemented for the asset modules and skills. For an

extension of an automation, the templates can be used to easily

create specific modules. Thus, the communication structure of the

modules is unified. As communication protocols, OPC-UA or

similar universal manufacturer-independent standardizations are

proposed. To adapt the skills to the current situation, each skill

call be individualized by parameters defined by the skill developer.

The results of the paper show that the skill-based control

fulfils all requirements of a flexible control for robot cells. For

verification of the methods, the skill-based control was

successfully implemented on a mobile robot cell. The

implementation shows the fast programming through the

reusability of the software components in the human machine

interface. Furthermore, the programming of the software is

reduced to the combination of skills and process steps to

sequences on a non-programming-level that is potentially less

time-consuming than static programming.

As the method was used to implement the skill-based control

for the RO, it quickly becomes clear that the flexibility available to

the operator depends primarily on the type and amount of

provided skills and their parameters. For high flexibility, many

skills and adjustable parameters are needed, requiring a longer

development time. To reduce the resulting complexity, the

operator must be offered predefined process steps that

combine frequently used skill combinations and their

parameters. Furthermore, dependencies between skills that

may not be known to the operator must be represented in the

orchestration system. Knowledge about the dependencies of the

skills and process steps is crucial for the configuration of fault-

free process sequences. Therefore, a critical development goal is

to further reduce the expertise required in the use of skill-based

controls mainly by expanding the orchestration system.

For further studies, the interoperability of the software

modules on different master controllers and their

corresponding programming languages must be conducted.

Because the flexible usability, configurability and reusability of

skills and sequences depends mainly on the usability of the HMI,

so more research in HMI design and layout is necessary.

Therefore, the intuitiveness, modularity, uniformity, security,

and robustness must be considered. Finally, it must be

researched how suitable the proposed skill-based control fits

to larger production lines or matrix production systems.
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human-robot-interaction based
on safety-related dynamic
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In the era of Industry 4.0 and agile manufacturing, the conventional

methodologies for risk assessment, risk reduction, and safety procedures

may not fulfill the End-User requirements, especially the SMEs with their

product diversity and changeable production lines and processes. This work

proposes a novel approach for planning and implementing safe and flexible

Human-Robot-Interaction (HRI) workspaces using multilayer HRI operation

modes. The collaborative operationmodes are grouped in different clusters and

categorized at various levels systematically. In addition to that, this work

proposes a safety-related finite-state machine for describing the transitions

between these modes dynamically and properly. The proposed approach is

integrated into a new dynamic risk assessment tool as a promising solution

toward a new safety horizon in line with industry 4.0.

KEYWORDS

dynamic risk analysis, human-robot collaboration, human safety, industry 4.0, finite
state machine

1 Introduction

The CE conformity declaration (CE-marking according to the Machinery Directive

2006/42/EC) is the final mandatory step in Europe, which indicates that the machinery

(e.g. the robot cell) meets European Union standards for health, safety, and environmental

protection. Figure 1 shows the safety-related standards for the implementation of robotic

systems according to 2006/42/EC. In general, the standards are divided into three

categories: 1) Type A standards: describe the general principles of machinery design

principles, 2) Type B standards: describe the generic safety standards covering safety

aspects and safeguard across a wide range of machinery and 3) Type C standards: describe

the safety standards for a specific machine group. ISO 12100:2010 (ISO 12100:2010, 2016)
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as basic safety standards (type A) define the basic terminologies

and principles for achieving safety in the design of machinery.

Furthermore, it specifies a methodology for risk assessment and

risk reduction. The Type B standards are also generic safety

standards. However, they cover specific safety aspects or one type

of safeguard which can be used within a wide range of machinery.

E.g. ISO 13849-1:2015 (ISO 13849-1:2015, 2015) provides the

safety requirements and guidelines for designing and integrating

safety-related parts of control systems. The ISO 13849-2:2012

(ISO 13849-2:2012, 2012) defines the procedures and conditions

for validating the designed safety functions according to the ISO

13849-1. In the standards “Type C”, the safety requirements for a

particular machine or group of machines are addressed in detail,

e.g. ISO 10218-1:2021 (ISO 10218-1:2021, 2021) specifies

requirements and guidelines for the inherent safe design,

protective measures, and information for the use of industrial

robots, while the ISO 10218-2:2021 (ISO 10218-2:2021, 2021)

specifies safety requirements for the integration of industrial

robots and industrial robot systems. ISO/TS 15066:2016 (ISO/TS

15066:2016, 2016) as technical specification defines safety

requirements for collaborative industrial robot systems and

the work environment. Revisions to the robotics-related

standard are under process by the technical committee “ISO/

TC 299”.

According to the ISO/TS 15066:2016, “Safety-Rated

Monitored Stop” (SRMS), “Speed and Separation Monitoring”

(SSM), “Hand Guiding” (HG), and “Power and Force Limiting”

(PFL) are the main four collaborative methods for collaborative

operation (HRC). Figure 2 illustrates these operation modes and

techniques for collaborative operation for industrial robot

systems. In “SRMS”, the safety sensors directly stop the

robot’s operation when a human enters the work cell

respectively collaborative workspace. “SSM” mode allows the

worker to be in the collaborative workspace while the robot

moves by maintaining the protective distance between worker

and robot. This method for collaborative operation ensures to

stop the robot before any collision with the worker may occur.

The safeguarded space should be monitored with external safety

sensors (ISO 13855:2010, 2010) provides the basis for positioning

the safeguards taking into account the speed of parts of the

human body. Various approaches for “SSM” considering

dynamic speed regulation of robots are presented in (Byner

et al., 2019), (Kolbeinsson et al., 2018), and (Michalos et al.,

2015). In another work (Rashid et al., 2020), the minimum

protective distance between worker and robot has been

addressed in details. Furthermore, the system performance in

scenario with heavy-duty robot has been systematically

investigated.

As is shown in Figure 2, during “HG” collaborative mode: the

worker can use a hand-operated device “Control@Flange” or

even gesture “GestureControl” to control the motion of the robot.

HG requires additional PFL or SRMS safety functions. Most of

the cobots possess integrated hand-guiding functionalities.

However, the industrial robot systems require an external safe

force/torque sensor or hand-guided system to measure the

worker’s applied forces and torques. In “PFL”, the robot

system may come into direct contact either intentionally or

accidentally with the worker. However, the contact power and

force should be limited to a safe level to reduce risk and avoid

harming humans. Most of the implemented applications with

PFL operation mode are currently realized based on lightweight

“cobots”, being industrial robots constructed for it and equipped

with PFL safety functions. PFL in high payload HRC applications

is still difficult to implement due to the high inertial mass of the

robotic itself and potentially dangerous collisions. In general, the

safety requirements for these methods are still under

development for the upcoming revision of ISO 10218 (to be

published in 2022).

Some industrial robot systems offer two manual operation

modes for teaching or commissioning processes. The teaching

process in the first operation mode can be performed without any

barriers but with reduced speed (max. 250 mm/s). While in the

second operation mode, the worker should stay outside the cell to

let the robot moves at full speed (e.g. 2 m/s). During the teaching

phase, the cobots usually work with the reduced manual

operation mode. The operation modes “4” and “5” are

typically used in the fully-automated tasks. In the fifth mode,

an external control system, “e.g. Programmable-Logic-Controller

(PLC)”, is used as a master control unit.

The operation mode is usually the primary key element for

further steps during risk analysis, risk reduction, and defining the

required safety sensors/functions. The Safety-related sensors/

functions significantly impact the design of HRC applications

in terms of efficiency and flexibility. Any change in the process,

workflow, product, layout, etc., requires a new identification of

possible hazards. Furthermore, the whole procedure for getting

the CE marking could be repeated from scratch. Such kinds of

FIGURE 1
ISO types.
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policies are very cumbersome for both systems integrator and

operator. They are almost no longer possible in the era of

Industry 4.0, where agile manufacturing systems, flexible

layout, dynamic processes, and customized product features

are the main characteristics. In addition, myriad applications

could require multiple sequential operation modes on the same

cell to efficiently fulfill the required task, which is currently not

feasible due to the restricted safety producers and lack of

acceptable safety-related solutions. This work proposes a new

approach for multilayer HRI operation modes merged with

various process-related human-robot-interaction levels

systematically. The proposed system is implemented using a

dynamic finite state machine architecture. The following

section will present an overview of the state of the art. Section

3 will illustrate the proposed approach in detail, while Section 4

explains one use case as an example for presenting the advantages

of the proposed approach in reality. Section 5 will focus on

integrating the proposed methodology in a newly developed risk

assessment tool as a final result of this work. Finally, the proposed

work will be concluded in the last section.

2 State of the art

As mentioned, the collaborative operation modes describe

the interaction between humans and robots from a safety point of

view. This focus makes executing the collaborative operation

modes in the applications very tricky. In other words, there is a

large gap between process-related and safety-related

functionalities during the design phase of the collaborative

tasks. Furthermore, the complexity of safety design forces the

safety planner to consider the operation modes individually for

fixed tasks. Any changes in the operation modes or even the

process could require new certification procedures. In addition,

when various interactions between humans and robots are

desirable, implementing multiple operation modes is

laborious. This research problem has initiated researchers

worldwide to exploit the approaches to ensure HRI at the

implementation level (from the process point of view). A

general insight of the current framework and state of the art

in the implementation level for safety in industrial robotic

environments has been reviewed by S. Robla-Gomez et al.

(Robla-Gomez et al., 2017). Even though this review shows

many possibilities to implement safeguarding with sensors, it

does not mention any standards or metrics at the

implementation level that could bridge the safety operation

modes with the functional safety of the machinery. Some

quantitative metrics have been introduced in several works

(Galin et al., 2020), (Kolbeinsson et al., 2018), (Marvel et al.,

2020). Kolbeinsson et al. have suggested a metric by visualizing

interaction level in HRI based on human and robot efforts

(Kolbeinsson et al., 2018). Marvel et al. and Aaltonen et al.,

propose other metrics as quantiative measurmements in the

design of the HRI process (Marvel et al., 2020) and (Aaltonen

et al., 2018). Galin and Mescheryakov proposed the quantified

process parameters for HRI regarding efficiency (Galin et al.,

2020). Although these approaches have covered the

quantification and validation process to benchmark the HRI

design and process, the metrics are still far from implementation.

An approach to validate safety in HRI has been introduced by

Valori et al. by introducing safety skills and their validation

protocols (Valori et al., 2021). Although the safety skills have

been tested under strict validation protocols to reduce specific

risks, the safety skills are limited to simple tasks. The protocols

FIGURE 2
Possible Operation modes related to cobots and industrial robots.
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are more into validation measurements for testing purposes than

implementation purposes. Michalos et al. have introduced and

suggested an approach to ensure safety in HRI by considering

and combining highlighted functional safety, safety operation

modes, and machinery directive based on the shared tasks and

workspace at the implementation level (Michalos et al., 2015).

Unfortunately, there is no general overview of which

complementary functional safety, safety operation mode, and

machinery directive are required for different tasks or

interactions between humans and robots. This open point can

also be found in Askarpour et al.’s method, which uses a complex

non-deterministic formal model resulting from human errors

(Askarpour et al., 2017). In the latest work of Gualtieri et al.

(2022), guidelines to develop and validate safety aspects in the

HRI workspace have been suggested. This method covers a

quantification methodology for the possible mechanical

hazards in the design of the HRI workspace and suggests risk

assessment strategies based on the standards. Although the

methodology has a good scope to cover the development of

safety measures in HRI for non-expert users, the method only

focuses on the assembly process.

The approach’s overview and classification methodology of

this work has been exploited in a previous paper (Bdiwi et al.,

2017) by introducing a new classification methodology for HRI

applications using four interaction levels. Via the proposed four

levels of interaction, most of the possible HRI applications in the

industry could be classified. Furthermore, the safety procedures

and safe zones could be derived based on single or even clustered

safety operation modes for each interaction level. Even though

work has focused on improving the safety procedures for HRI; a

general system architecture was missing for quantifying the

complex safety functionalities in the level of interactions. The

finite state machine (FSM) is one effective method to implement

a technical system with a minor development curve. FSM offers a

very effective method in the implementation of complex robot

behaviors in comparison to monolithic programming. The

system’s sequential, deterministic, and causal behaviours ease

the implemented robotic system for debugging, modification,

and enhancement. Balogh and Obdrzalek have introduced these

benefits (Balogh et al., 2018). Although FSM would offer many

simplifications in developing and implementing the robotics

system, design errors, cognitively complex human decision-

making errors, and other failures are challenging to observe.

Another possible approach to identify these new causal factors is

using a top-down analysis called system theoretic process

analysis (STPA), a method used in a technical system to show

its behavior and address component interactionfailures.

Integrating between STPA and FSM could assist the safety

analysis in identifying the dysfunctional behavior of a system

(Abdulkhaleq et al., 2013). However, the proposed approach

aims to couple the process-related classification (Interaction-

levels) with the safety-related classification (operation modes) to

reduce the effort and complexity during risk analysis and

mitigation. A general comparison between STPA and FSM is

shown in Figure 3. Figure 3 left shows the intermodule

communication in a SRMS collaborative operation. In this

figure, all of the data flows can be seen in the STPA diagram.

When failures occur, the failure analysis can be performed by

checking the causality in the control structure. Figure 3 right

depicts the FSM diagram for the same use-case. In contrast to

STPA, FSM method is focused on the causality of the system

state. Each state (action) will be triggered by a deterministic

signal. Hence, it can be concluded that STPA has a general focus

on analyzing failure in the hardware and communication level. In

contrast to STPA, FSM focuses the debugging level in the

functionality of the system. Hence, this work focuses on the

FSM more than STPA for hardware integration. This approach

allows the user also to plan and implement complex and agile

collaborative tasks flexibly and intuitively.

3 The proposed approach

Figure 4 illustrates the main structure of the proposed

approach. The first layer “Level-Planner”, facilitates the

classification of the proposed application according to the

interaction level (Bdiwi et al., 2017). The second layer

presents a combination of possible clustered operation modes

to fulfill the described task in the level-planner. Every cluster

consists of various operation modes shown in the third layer and

modeled using a finite state machine. The fourth layer contains

all the required safety functions for every operation mode. All

layers are systematically coupled to ensure the system’s legibility

and the user’s comprehend-ability. They will be described in

detail in the following sections.

3.1 Level-planer

As (Bdiwi et al., 2017) explained, the main difference between

interaction level 1 and interaction level 2 is that the human

presence is not intended during the normal process of level 1. In

other words, there is no shared task in level 1, and the human

enters the robot cell only, e.g. in emergencies. In level 2, the robot

and humans work on a shared task. However, the cooperation is

still low. At this level, the robot can move toward a predefined

position during the human presence, taking into account the

safety distance and type of collaborative operation modes. Level

3 requires active robot control during the shared task, where the

robot can change its position and react to human movements.

The possible shared tasks in this level are, e.g. Handing-over,

Gesture-based control, or even automatic path planning. In path

planning, the robot can automatically change the working height

based on human anthropometry or regenerate a new path during

the shared task to avoid any collision with the human. In Level 4,

physical HRI is necessary to fulfill the task. For instance, the
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robot can bring heavy components to the human or a predefined

position near the assembly line; then, the human can guide the

robot to a final position by using human forces (Handguiding-

System). In this work, the proposed interaction levels are focused

on the implementation of HRC with serial manipulators. It is also

possible to implement the proposed method for mobile

manipulation by extending the safety functions with safety

related standards and control system e.g. (Elhaki and Shojaei,

2020) and (Elhaki and Shojaei, 2022) for mobile robotic.

Figure 5 illustrates the possible collaborative operation

modes at each interaction level. Level 1 can contain, e.g. two

clusters. Cluster 1: SRMS-Standalone: the whole workspace and

work process will be performed in SRMS mode. Cluster 2: SRMS

+ SSM: this cluster allows the robot to change its speed according

to the human position in some process or even defined zones of

the workspaces. As is already mentioned, the human enters the

robot cell only, e.g. in emergencies. Hence, when the human

enters any dangerous area monitored by the safety sensors, the

robot will have to stop in stop-category 1. Therefore, user

confirmation is required for activating the robot again. Cluster

2 allows the user to plan different collaborative operation modes

in different zones (e.g. SSM for the entrance areas besides the

footpaths to avoid any unnecessary robot stops, while the SRMS

can cover more critical areas). Each cluster has its safety

functions which will be described more in the next section.

Level 2 could also consist of the same clusters. However, the

safety functions are different, as is shown in Supplementary

Appendix S2. At this level, the human is intended to

participate in the process during the shared task. The robot

should be able to restart automatically without an additional

confirmation by the worker. Hence, the robot will have to stop in

stop-category 2 when the human enters the danger areas.

Thestop-category 2 will increase the efficiency and availability

of the facility. Figure 5 also presents three possible clusters of

collaborative operation modes in level 3. Cluster 1 “GestureCtrl”

gives the users the possibility to control the robot based on their

gestures. The user can perform these procedures within the

Handguiding “HG” (GestureControl in Figure 2 and as a

shortcut GestureCtrl in Figure 4) operation mode. Usually,

gesture control is performed during a specific task during the

whole process or even in a defined and restricted area. The cluster

that is mixing SSM, and SRMS with HG-GestureCtrl could be

very useful for increasing the facility’s efficiency and flexibility on

the one hand. On the other hand, it ensures the safety of the

human during all processes with the required safety functions, no

more, no less. The second cluster “Handing-Over” could be used

in any process which contains handing-over tasks between

humans and robots. This cluster can combine, e.g. SSM with

PFL, to ensure that the maximum possible impact forces/torques

during the collision will not increase the maximum described

values in ISO/TS 15066. The third cluster, “PathPlanning”,

requires additional safety functions for monitoring the paths

during the shared task. In level 4, four possible clusters are

presented. In the cobots applications, the HG-FlangCntrl can be

combined with PFL (e.g. cluster2) or with modes, SSM, and PFL

FIGURE 3
Comparison between an STPA diagram (left) and FSM diagram (right) for a fictional SRMS use case.

FIGURE 4
Structure of the proposed approach.
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(e.g. cluster4). The HG-FlangCntrl can be combined with SRMS

(e.g. cluster 1) or with SRMS and SSR (e.g. cluster3) in the

heavy-duty application. PFL in high payload HRC applications is

still difficult to implement due to the high inertial mass of the

robotic system and potentially dangerous collisions. The clusters

mentioned previously are built based on interaction levels (Bdiwi

et al., 2017). These clusters were chosen as examples of common

scenarios. However, unusual scenarios or special requirements

may be realized based on the level of interaction with the new

cluster. The new cluster defines the state graph and which safety

functions could be involved.

3.2 Multilayer collaborative operation
modes

In the proposed approach, every collaborative operation

mode will represent one machine state to build a safety-

related finite state machine properly. These collaborative states

are; S3-SRMS, S4-SSM, S5-HG: GC, S6-PFL, S7-PFL: HO, S8-PP,

and S9-HG: FC. S3 (SRMS) and S4 (SSM) are already well

explained in the first section. S5 (HG: GC) represents the

state of Handguiding using gesture control in level 3, while

the S9 (HG: FC) represents the hand guiding use, e.g. hand

guiding device mounted on the robot flanch. S7 (PFL: HO) is a

special collaborative state for handing-over tasks based on PFL

operation modes in the third interaction level. S8 (PP) is also a

particular collaborative state during the third interaction level

when the robot can modify its paths. All the possible proposed

machine states are shown in Figure 6. In addition to that, two

states represent the stop categories “S1 (Stop1) and S2 (Stop 2)”,

and one state represents the automatic mode “S10 (AutoMode)”.

All the previously mentioned collaborative operation modes can

FIGURE 5
Some possible examples for clustered collaborative operation modes in every.

FIGURE 6
Machine states.
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be integrated to create variable clusters concerning the

interaction levels.

Figure 7 illustrates an example of the possible clusters in level

1. Furthermore, it presents the required safety functions of each

cluster. All the safety functions and their acronyms are described

in Supplementary Appendix S1. The transition and state

conditions between the operation modes can be coupled with

the safety functions using the finite state machine structure. More

details will come in the next two sections.

3.3 Enhanced safety functions

As is already in section 3.1 presented, each level has various

clusters of operation modes consisting of a bundle of safety

functions. The basic safety functions are listed in DIN EN IEC

61800-5-2:2017 (DIN EN IEC 61800-5-2:2017-11, 2017).

Figure 8 shows the main categories of the required safety

functions in robotics applications. The functionalities of all

safety functions in these categories are described in

Supplementary Appendix S1. The first category is Safe

Standstill. It contains all the safety functions for controlling

the monitoring the robot during the standstill. These

functions are; 1. Safety Stop1 (SS1), 2. Safe Brake Control

(SBC), 3. Safe Torque off (STO), 4. Safe Stop2 (SS2) and 5. Safe

Operation Stop (SOS). The safety functions in the second

category “Safe Motion” are responsible for controlling and

monitoring the robot’s motion, e.g. 1. Safety Limited Speed

(SLS) 2. Safe Speed Monitoring (SSM), 3. Safety Range Speed

(SRS), 4. Safe Direction (SDI). The third category of safety

function takes care of the robot positions, e.g. 1. Safety Limited

Position (SLP) and 2. Safe Cam (SCA). The safety function in

the fourth category is the Safe Limited Torque (SLT) for

preventing the actuator from exceeding the torque limit.

This work proposed also enhanced safety functions within

the fifth category, “Safe Guarding”, for controlling and

monitoring the interaction between the human and the

robot. e.g. 1. Dangerfield-Entry (DFE), 2. MinDistance

(MiD), 3. Coopfield_Entry (CFE1), 4. ManualRes (MAR) 5.

OperationRes (OPR), 6. GestureCntrlStart (GCS), 7.

GestureCntrlEnd (GCE) etc. The whole list of the enhanced

safety functions is listed in Supplementary Appendix S1. The

structure of the proposed approach is dynamic. Hence, it

allows the user to extend the bundle of the safety functions

if it is required.

3.4 Safety-related finite-state machine for
collaborative applications

After presenting the main safety functions and the possible

states of the collaborative operation modes, this section will show

the main concept of the safety-related finite-state machine for

collaborative applications. A transition Tn
m presents the

transition from the start state Sn to the end state Sm. Every

transition Tn
m consists of a couple of conditions representing the

relation between safety functions and the machine state to switch

from the start state to the end state. The transition, which

contains a set of safety functions with the AND (∧) operator,
is true if all its safety functions are true. While the transition with

Or (∨) operator is true if only one of its safety functions is true.
For better illustration, the finite state machine of both

collaborative clusters in the first level of interaction will be

explained in this section. As is shown in Figure 9, there are

two states, S1 (Stop1) and S3 (SRMS), in cluster 1 of level 1. There

are two transitions, T1
3 and T3

1, between S1 and S3. By supposing

FIGURE 7
Example of the possible collaborative operation mode clusters of level 1 with their safety functions.

Frontiers in Robotics and AI frontiersin.org07

Bdiwi et al. 10.3389/frobt.2022.1002226

20

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1002226


that S3 is the start state, the robot goes in S1, when the human

enters the danger area for an emergency situation. This happens

when the safety function “Dangerfield_Entry DFE” is active.

Hence, the safety functions SS1 for maintaining the position of

the actuator, STO for disabling the torque in the actuator, and

SBC for supplying a safe output signal to drive an external brake

system should also be active to transfer the machine from the S3-

state to the S1-state. These transition conditions are presented in

Eq. 1.

T3
1 → (DFE ∧ SS1 ∧ SBC ∧ STO) (1)

The transition condition from S1-state to S3-State consists of

two functions: 1. DFE this means that the Dangerfield_Entry

DFE is deactivated, and the human has left the danger area.

Besides that, a user confirmation through MAR “Manual restart

button” is necessary for the Stop1 to ensure that the process could

be continued after the inexistence of the human in the danger

area, as shown in Eq. 2.

T1
3 → (DFE∧ MAR) (2)

As is shown in Figure 10, the second cluster of Level 1 has a

more complex state graph which consists of 4 states. In this

cluster, two other states have been added. S10 (AutoMode)

represents the automation mode which can be the start mode.

T10
3 and T10

4 represent two transitions from the automatic mode

to both collaborative mode SSM and SRMS. SSM can start when

the human enters the collaboration areas by activating the safety

functions (Collaborative_Field_Entry CFE). Various speed

limitations can be defined in different collaborative fields (e.g.

from CFE1 until CFEX). The safety functions, which are listed in

Supplementary Appendix S1 in the safe motion, should also be

active, as is shown in Eq. 3.

T10
4 → ((CFE1 ∨ CFE2 . . .CFEX) ∧ SLS ∧ SSM ∧ SSR ∧ SDI) (3)

The transitions T4
1 and T3

1 from S4 and S3 states to the S1-

state happen when the DFE is activated, and all the required

safety functions of Stop1 are also activated, as is shown in Eqs 4,

5. By transition T4
1, if one of the safe motion functions is not

active (e.g. the actuator speed exceeds the maximum speed limit),

the robot goes to S1-state, as is shown in Eq. 5.

T3
1 → (DFE) ∧ SS1 ∧ SBC ∧ STO (4)

T4
1 → (DFE )∨ (SLS∨SSM ∨SSR∨SDI)∧ SS1∧ SBC∧ STO

(5)
The transition T1

10 from the S1-Stop1 to the S10 automatic

mode happens when nobody is inside the danger area. The user

confirms it through the safety function operation restart (OPR),

as shown in Eq. 6.

T1
10 → (DFE∧ OPR) (6)

When the transition to the automatic mode happens

successfully, the user can confirm further through MAR

“Manual restart button” to start the SRMS operation mode, as

shown in Eq. 7.

T10
3 → (DFE∧ MAR) (7)

The manual confirmations at this level are necessary because

the human can enter only in emergencies, and it is not a part

of the process. In the second level of interaction, these

manual confirmations are not required. However, the

FIGURE 8
Overview of main categories of the safety functions.

FIGURE 9
States graph of cluster 1—level 1.

FIGURE 10
State graph of Cluster 2—Level 1.
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same principle of the safety-related finite-state machine can

be generalized to all other clusters at all levels of interaction.

The state graphs and their related transitions of all other

clusters are presented in Supplementary Appendix S3. The

state graphs in this novel approach represent the clustered

collaborative operation modes from the proposed method.

The states are selected by considering the defined

collaborative operations (ISO 15066) and related safety

functions (IEC/ISO 61508). When additional or

customized safety functions are integrated in the cluster,

the states of the state machines must be extended to

represent the additional extension.

4 Case-study

This section will present the application of the collaborative

mode clusters through a practical example. Furthermore, it

illustrates how the proposed approach can increase the

efficiency of the process and ensure the safety of humans

in every process. In this use case, handling and machining of

a car engine (collaborative machine tending) are performed

using a CNC machine EMAG VMC 300 MT integrated with a

heavy-duty robot Kuka KR-180 Prime 2,900. The robot

transfers the engine to different places as it is a heavy task

for a human. Figure 11 illustrates the cell layout with the

locations of the robot and machine. Additionally, a convey

and two tables exist for the quality checking process. A

storage place is needed on the left side of the cell where

the finished items are placed there.

The scenario is as follows:

1- The storage place has unfinished pieces that the robot is

programmed to take from the storage place in a known

sequence.

2- A robot is responsible for moving the item from the storage

place to the CNC machine. The robot places the item

slowly, and the machine can fix the item to process.

3- The machine processes the item for creating screw holes

and, it takes 10 min for each item.

4- After the process, the machine opens the safety door while

robots move toward the machine. The robot grabs the item

from the machine.

5- The quality process is a cooperation between humans and

robots. The robot brings the item to the middle table, and

the human starts checking the quality of the CNC process.

Based on a command from the human, the robot moves

instead to the storage place or towards the convey for

rechecking and maintenance station.

6- The robot moves from the conveyor point to bring a new

item from the storage place, or the robot will be there

already if the quality checking is fine. Finally, the process

repeats itself till the items are finished.

Such a scenario incorporates the human and the robot

together to perform the process effectively. Furthermore, the

human risk in such a cell will be high compared to a normal cell

where human skill is not required. Hence, a proper risk

assessment procedure could reduce the risk to humans in this

collaborative environment.

In this use case, the interaction between humans and robots can

be clustered under Level 3 or Level 4. It depends on the type of hand-

guiding concept during the quality process. Here, the human can

control and rotate the robot through camera-based neutral gestures

(level 3) or through a hand-guiding device on the robot flange (level

4) to check the engine’s quality from different perspectives. As

shown in Figure 12, the robot can work under SRMS operation

mode while picking the item from storage, transporting it to the

CNC, and waiting for the machining process. When the quality

process starts, the robot can switch to the HandGuiding operation

mode. During the final process, the robot canwork under SSMwhile

transporting the item to the maintenance station or under SRMS

when the robot should transport the item to the storage back if the

item’s quality is fine. Choosing the robot type and operationmode in

such applications depends on many factors (Schneider et al., 2020),

e.g. batch size, processing time by the machine, transporting time by

the robot, required time for themanual tasks performed by humans.

Using the proposed approach, can the user design the safety

procedures of such agile and dynamic environments flexibly and

adequately.

5 Dynamic risk assessment

In order to reduce the risks in HRI robot cells, three

management strategies include 1) Inherently safe design, 2)

Guards and protective devices, and 3) administrative information,

as are written in the ISO 12100. The most related paper

(Realyvásquez-Vargas et al., 2019) in risks assessment for HRI

addressed the first both strategies of risk management. These

strategies are only implementable on their predefined use-case.

Otherwise, other works give only a theoretical overview and

metrics for risk assessment (Franklin et al., 2020) and (Hanna

et al., 2020). Compared to these works, the proposed approach is

generic and it can be implemented in any safety control device.

Furthermore, it simplifies for the end-user the derivation of technical

riskmanagement inHRI-context by classifyingHRI based on shared

workspaces and tasks. Each cluster represents a use-case scenario

regarding the requirement of the user. Hence, the functional safety

inside the cluster can be customised depending on the user’s

requirements. The recent study of Hornung und Wurll

(Hornung and Wurll, 2021) addresses that lack of know-how

and skills are the biggest hindrances in implementing

collaborative robot systems. Figure 13 illustrates the integration

of the proposed approach within the risk assessment methodology

derived from ISO 12100 and ISO 13849-1. It extends the typical risk

assessment as presented in grey color. The proposed approach
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begins with the determination of the machine limits, taking

into account all the phases of the machinery life to fit the

requirements of agile and flexible human-robot applications.

The first step describes the machine’s characteristics,

performances, and limits in an integrated process. Using

the proposed level-planner, the user can classify all the

planned processes according to the level of interaction

with that machine. This procedure allows the user to

easily estimate all possible hazards and all access points

during that level of interaction. With the help of the

clustered operation modes (zone-based, time-based), the

user can define the machine movement range, space for

people interacting with machines (operators, maintainers),

the required time for each process, and the relation between

this information and the operation modes properly. To

assess the initial risk for each access point in the form of

a risk score and to calculate the required performance level of

each safety function, one needs to know the number of

persons involved affected by the hazard, the duration, and

frequency of the hazard exposure, the probability of

FIGURE 12
Use-Case Process-Flow concerning the operation mode.

FIGURE 11
Fenceless manufacturing (Human, Machine and Robot).
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occurrence, and the injury severity of the possible human

injury.

After evaluating all initial risks, the risk reduction procedures

start with its typical three steps, as mentioned previously. The

innovative part of this approach focuses on the second step of

risk reduction. In other words, it integrates the developed safety-

related finite state machine with the safety functions of the guards

and protective devices and with the collaborative operations. In

general, the limitation of safety sensors should be considered during

the risk management. Finally, if the risk is tolerable, the user can

automatically generate all the required technical documentation for

the declaration of conformity. The user can anytime reconfigure the

safety design and risk assessment according to changes in the

process, layout, or product.

6 Conclusion

As is already presented, the typical risk assessment

procedures are very complex, and take a lot of time and

effort. Hence, an expert must follow the implementation of

the risk-assessment rules as written in the safety standards and

guidelines. The expert should have a broad knowledge of the

available safety functions and safe workspace methods. The

complex, rigid and static procedures could lead to mistakes even

by experts, and the state-of-the-art methodologies prevent them

from planning and realizing agile production systems. The proposed

approach establishes a dynamic and safe relation between the

interaction levels, operation modes, and risk reduction

procedures (safety functions). A safety-related finite-state

machine has been illustrated for the transitions between these

modes dynamically and adequately. Collaborative machine-

tending has been described as a use case. Finally, the proposed

approach has been integrated into a new dynamic risk assessment

methodology as a promising solution toward a new safety horizon in

line with industry 4.0.
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FIGURE 13
Integration of finite state machine with dynamic risk assessment methodology (Steps of the proposed risk assessment based on ISO 13849-
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Industrial robots and cobots are widely deployed in most industrial sectors.

However, robotic programming still needs a lot of time and effort in small batch

sizes, and it demands specific expertise and special training, especially when

various robotic platforms are required. Actual low-code or no-code robotic

programming solutions are exorbitant and meager. This work proposes a novel

approach for no-code robotic programming for end-users with adequate or no

expertise in industrial robotic. The proposed method ensures intuitive and fast

robotic programming by utilizing a finite state machine with three layers of

natural interactions based on hand gesture, finger gesture, and voice

recognition. The implemented system combines intelligent computer vision

and voice control capabilities. Using a vision system, the human could transfer

spatial information of a 3D point, lines, and trajectories using hand and finger

gestures. The voice recognition system will assist the user in parametrizing

robot parameters and interacting with the robot’s state machine. Furthermore,

the proposed method will be validated and compared with state-of-the-art

“Hand-Guiding” cobot devices within real-world experiments. The results

obtained are auspicious, and indicate the capability of this novel approach

for real-world deployment in an industrial context.

KEYWORDS

intuitive robot programming, multimodal intraction, learning from demonstration,
human robot collaboration, no-code robotic teaching
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1 Introduction

Human-Robot Collaboration (HRC) has been a prevalent

concept in the industry. Compared to the fully automated

solution in serial production, HRC offers flexibility to meet

the market’s demand for high product variability, diversity,

and even batch size 1 as dictated in the current trend of agile

production concept (Chryssolouris et al. (2012)). However,

reconfiguring and reprogramming the production plan with

industrial robots are technical bottlenecks for end-users

without or with adequate expertise in robotic programming.

Variety and specific domains in robotic programming

languages are currently serious impediments to robotic system

(re-)deployment in industrial context. Even if an offline

programming method is used, refinement in the robot

program is required and will cost time until the program is

ready to be deployed. An actual survey from state-of-the-art

indicated that the lack of HRC know-how, experiences and

deployment skills are inhibitors in the deployment of HRC

systems. Even though the participants of this survey are de

facto robotic experts with years experience in the deployment

of HRC systems, the results reveal that (re-)configuration of

robotic with conventional programming methods is tedious,

complex, abstruse and time-consuming (Hornung and Wurll

(2022)). Consequently, it triggers a deficiency on productivity

and cost efficiency.

Traditionally, robotic programming is categorized in online

programming methods, such as traditional lead-trough and

walk-trough and offline robotic programming methods, using

software tools as the replacement of the real robot system

[(Hägele et al. (2016)]. In order to achieve simplification in

robotic programming, low- or no-code robotic programming

systems are developed. Different novel approaches based on

various sensor technologies e.g. 3D tracking system,

Augmented Reality (AR), Virtual Reality (VR), Mixed Reality

(XR) and motion capture systems, have emerged over the years.

Hence, human natural communication modalities substitute

prior knowledge of syntaxes and semantics in robotic

programming. This concept is known as Programming by

Demonstration (PbD) (Billard et al. (2008)) and is also known

as Learning fromDemonstration (Argall et al. (2009); Lee (2017);

Ravichandar et al. (2020)). This approach aims to enable non-

robotic experts to teach their robots by demonstrating the desired

robots’ behavior or movement in the context of the production

process.

Since no expertise to understand a specific robotic

programming language is required from the end-user side,

robot learning algorithms or strategies are developed to enable

the robotic system to understand natural human communication

modalities. Thus, it is essential to consider the technological

aspects and human-centric issues such as usability and

intuitiveness of the interaction between the human and the

system. In order to capture, interpret, and understand human

instructions accurately and robustly in the context of industrial

processes, a novel approach for no-code programming by

combining voice and hand gestures is proposed in this work.

This combination enables a natural way for humans to interact

with the robotic system. As a result, the robotic program can be

deployed fast and agile in different industrial scenarios with

different robotic systems by applying the proposed architecture

in this work. The following section will present an overview of the

state-of-the-art. Section 3 will introduce the proposed approach

in detail, while section 4 will discuss the implementation of the

proposed system. Section 5 will focus on the analysis of the

implemented system. Finally, the last section will focus on the

conclusion and a short outlook on potential future work.

2 Related works

The programming process entails providing a robot with a

new ability to understand the state of the environment and

perform actions that advance the system towards a process

context. Conventionally, the online programming methods use

a teach pendant to move a robot through the desired motion

profile by jogging. The robot movement is stored in the robot

controller and can be retrieved later. Even though the method

seems to be simple and demands less expertise, online

programming is suitable for simple repetitive tasks, e.g.

industrial processes with simple movement profiles and

geometric workpieces. When changes occur, adaptation to the

robotic program is required. Hence, this approach is only suitable

for production with large lot sizes. The frequent reconfiguration

is tedious, unaffordable and time-consuming for small and

medium enterprises with smaller batch sizes (Dietz et al. (2012)).

Offline robotic programming methods are deployed to

replace the online robotic programming methods (Neto and

Mendes (2013)). In offline programming methods, a virtual

environment representing the robot work cell is created to

program the robot’s behaviour and motion. The robot

programmer can generate a robot program off-site via offline

programming methods. Hence production downtime can be

avoided during the programming phase. Extendable functions

for robotic programming, e.g. path planning and control system

for complex production processes, are embedded in most offline

programming tools (Beck et al. (2021); Funes-Lora et al. (2021)).

A virtual robot controller (VRC) simulates the exact robot

behaviour for a specific robot platform in the virtual

environment. In many cases, the virtual environment

mismatches the environment. For high-precision applications,

adjustments in the robotic program must be performed to

eliminate the deviations in transferring the robot program to

the actual robot controller (Angelidis and Vosniakos (2014)).

With the rise of collaborative robots, the perspective of

robotic programming shifted in the last decade. Safety and

ease of use are crucial factors in developing collaborative
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robot systems. In many collaborative robot systems, hand-

guiding control methods are deployed to accelerate robotic

teaching compared to traditional methods (Massa et al.

(2015)). In the PbD context, teaching via hand-guiding

control is used to demonstrate the robot behaviour using a

kinesthetic teaching process. Hand-guiding control is specified

in actual standards of industrial robotic systems (DIN ISO/TS

15066 (2017); DIN EN ISO 10218-1 (2021); DIN EN ISO 10218-

2 (2012)). In recent years, hand-guiding controls have been

implemented in many industrial applications, e.g. robotic

gluing (Iturrate et al. (2021)), assembly (Liu et al. (2021)),

polishing (Kana et al. (2021)), welding (Zhang et al. (2019)),

surface cleaning (Elliott et al. (2017)), Pick-and-Place or

manipulation (Peng et al. (2018)). Despite the ease of hand-

guiding teaching methods, these hand-guiding demands medium

to high physical workload to move the robot joints. To improve

users’ ergonomics, algorithms, e.g. gravity compensation and

variable stiffness, are developed to reduce the workload in

kinesthetic teaching (Infante and Kyrki (2011); Wrede et al.

(2013); Tykal et al. (2016)). The compensation algorithms

mentioned above utilize dynamic parameters of the robotic

system. In the implementation, this information is inaccessible

to the robot manufacturers. The accuracy of the taught robotic

path via kinesthetic teaching depends on the dexterity of the end-

user. Hand tremor and lack of force in programming affect the

quality and the precision of the robot path (Massa et al. (2015)).

In order to compromise the physical workload in the kinesthetic

teaching process, the teleoperation concepts are introduced

where the users can manipulate the robot in real-time by

using their gestures or body movements. In general, the

teleoperation approaches are performed by utilizing different

type of haptic sensors such as mid-air haptic devices (Du and

Zhang (2014)), electroencephalograms (EEGs) (Yang et al.

(2018a)) and joysticks (Sanchez-Diaz et al. (2019)).

Strategies such as teleoperation, observation and imitation

are used to transfer human knowledge into robotic platforms.

Vision-based systems, speech recognition systems, AR, VR and

XR technologies are developed to accelerate low-code or no-code

robotic programming methods (El Zaatari et al. (2019); Villani

et al. (2018)). In low-code programming methods, adequate

know-how in a robot programming language is still required.

As a result, the reconfiguration of the robot program is time

consuming. Compared to low-code programming, no-code

robotic programming eliminates the barriers by allowing the

user to interact with or move the robot using natural interactions,

e.g., voice, gesture or haptic. In recent works from state-of-the-

art, vision-based systems are exploited in many intuitive

programming methods due to the capabilities of vision

systems in environment recognition, object recognition and

gesture recognition. In (Zhang et al. (2020c)), a novel

approach for robot path teaching is developed using a

marker-based vision system with a single RGB-D camera. The

movement of the marker is tracked with the RGB-D camera and

transferred into a motion planner. In the recent works (van

Delden et al. (2012); Akkaladevi et al. (2019, 2020); Ajaykumar

et al. (2021)), several works address intuitive programming

approaches via vision systems for specific processes such as

Pick-and-Place and assembly. In (van Delden et al. (2012)), a

multimodal teaching approach via gesture and voice is developed

for the Pick-and-Place application. This approach allows the user

to select the objects and target position for the manipulation

process by using a deictic finger gesture. Hence, a voice command

is given to the robot to pick or place the object. An intuitive

programming approach by demonstration is developed in

(Akkaladevi et al. (2020)). This approach uses a multi-camera

setup to track the assembly tasks performed by the user. The

human actions and assembly objects will be tracked and used to

build a knowledge representation of the assembly tasks, which

will be sent to the robot system. In (Ajaykumar et al. (2021)), a

marker-based programming strategy is developed by using

objects with markers for the Pick-and-Place scenario. The

robot path is created by manipulating the objects. The object

movement will be tracked and converted as a robot program.

The emergence of AR/XR/VR technologies has influenced

the programming strategies in HRC. In Akkaladevi et al. (2019),

lighthouse sensors are used to demonstrate the user movement in

a complex assembly process with screwing actions. A

programming device is created by combining the lighthouse

sensors for spatial tracking and force and torque sensors to

measure the required torques for the screwing process. A

combination of a vision-based system with augmented reality

technology is introduced in (Lambrecht et al. (2013)). The

augmented reality system allowed the teaching of robot paths

by manipulating spatial objects with hand gestures. Other

approaches with augmented reality technology are developed

in (Soares et al. (2021); Blankemeyer et al. (2018); Bolano et al.

(2020)). In (Soares et al. (2021)), a Microsoft HoloLens 2 1 is to

develop an augmented reality environment. This environment

enables the users to interact with the robot by drawing the robot

path with their fingers. Afterwards the teaching process, the robot

path is transferred into the robot system. In (Blankemeyer et al.

(2018)), an intuitive programming approach for the assembly

process is performed in an augmented reality environment. A

representation of the assembled object is built in the virtual

environment and the assembly process with the virtual object is

demonstrated. Hence, this information will be transferred to the

robot to execute the assembly task. In (Bolano et al. (2020)), an

offline programming method in a virtual reality environment is

developed. The robot trajectory can be generated by

manipulating the virtual robot. Hence, the trajectory will be

sent to a graphic interface to be executed in a real robot. Via the

graphic interface, the movement sequence can be configured.

Besides using one modality to perform intuitive robot

programming, more interactions can be used to increase the

acceptance and comprehensibility of the teaching process. In (Liu

et al. (2020)), a programming approach with the combination of
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sensorless haptic interaction, voice instructions, and hand

gesture commands is used in an assembly scenario. The voice

system helps the user to move the robot TCP. The hand gesture

can perform the fine adjustment of the robot’s position. Hence,

the defined function blocks for the assembly and manipulation

system can be triggered via voice instructions. In (Tirmizi et al.

(2019)), a multimodal programming approach with a voice and

vision system is developed for the Pick-and-Place scenario. The

voice recognition system is utilized to control the system state. A

vision-based object recognition system tracks the objects and

delivers their coordinates that can be used for the manipulation

process. In (Strazdas et al. (2022)), a multimodal system with a

gesture, speech and gaze recognition system is developed for the

Pick-and-Place scenario. The face and gaze recognition system

monitors the interaction context with the system. The voice

recognition system is used to control the robot’s state. Via deictic

gestures, the interaction objects can be chosen. In the recent

multimodal programming approaches, a voice recognition

system is integrated to navigate and control the system state.

A recent study proved that a voice input system could accelerate

robot programming up to two times in comparison to using

traditional input devices (e.g., keyboards, teach pendants)

(Ionescu and Schlund (2021)).

3 Methods

3.1 Proposed architecture

3.1.1 System architecture
The proposed system architecture consists of five modules

which are depicted in Figure 1. The modular system design

allows each functionality to be encapsulated as a subsystem. As a

result, the highest degree of flexibility can be achieved in the

system. The modular system architecture allows a better

comprehensibility of the source codes, the simplification of

the problem solving and the fast integration of new

functionalities (Zirkelbach et al. (2019)).

A combination of hand- and finger-gestures with speech is

proposed in the system architecture to allow a natural interaction

in the teaching process of the robotic system. In comparison to

low-code programming, no-code robotic programming method

via multimodal interaction allows the user to create a robot

program without particular expertise in robotic programming

language. The robot program can be (re-)configured just by using

interaction modalities that human does to communicate with

each other. In this work, the proposed no-code programming is

implemented by recognizing the hand- and finger-gestures via

teaching vision system and recognizing user input via voice in the

speech recognition system.

A camera-based vision system is developed to track and

recognize the user’s hand- and finger gestures in the teaching

phase. The coordinates of the hand- and finger gestures are

tracked and processed with computer vision algorithms to

estimate the spatial pose in defined coordinate system. The

coordinates of the hand or finger will be recorded based on

the given commands and will be used to generate a robot path

after the teaching process. This information will be converted

into a specific robotic programming language before being

transfer into the robotic system. The robotic system is

equipped with a camera system as a perception module for

executing the given robot path. Camera systems are

considered in the proposed approach due to their benefits in

comparison to other motion capture technologies such as (e.g:

IMU- and VR systems). In general camera systems are

markerless, easy to use, easy to set up, and affordable. In

recent years, many reliable algorithms have been developed

and shown potential to improve the camera system’s

performance, even compensating for their drawbacks (El

Zaatari et al. (2019)).

The voice recognition system works as a complement to the

teaching vision system to configure the system states and

FIGURE 1
Proposed system architecture for multimodal no-code robotic programming.
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parameters. In this work, the speech recognition system will

process the user voice into text via Text-To Speech (TTS). Hence,

the articulation of the voice command will trigger a deterministic

action in the finite state machine. When a user says “take point,”

the actual coordinate of the finger will be extracted in the robot

path. Via voice recognition system, efficiency in robotics

programming is achieved by eliminating unnecessary user

interactions via traditional human-machine interfaces (HMIs),

e.g. buttons, keyboards, and mouse clicks. A recent study showed

the potential of a speech recognition system to improve time

efficiency in human-computer interface up to three times (Ruan

et al. (2016)). A graphical HMI is developed to give the user visual

feedback of the system. The HMI can be used as a redundant

input system when the speech recognition system fails due to

transient environmental noises.

3.1.2 System requirement
The system requirements for the proposed approach are

depicted in Tables 5, 6. These system requirements must be

fulfilled to enable fluent, stable and satisfactory interactions in the

proposed robotic teaching process.

3.2 Teaching vision system

A vision-based teaching system is proposed for the main

interaction modality of the novel teaching method. In Figure 2,

the transformation chain for the programming process and

robotic perception system are shown. For the proposed

programming method, the world or target coordinate system

is implemented by using an ArUco marker (Garrido-Jurado et al.

(2014)). In comparison to other fiducial markers, e.g. ARTag,

STag. ArUco marker guarantees high-precision position

detection even in the noisy environments and utilizes low-

computational power (Zakiev et al. (2020); Kalaitzakis et al.

(2020)).

Figure 2A shows the transformation chain of the actual index

finger’s coordinates in the teaching process. The finger

coordinates are captured from the camera system in the pixel

coordinates. Hence, the finger coordinates are transformed in

Cartesian coordinate with respect to the target coordinate system

by using direct linear transformation. As a result, the target

coordinate pTargeti can be expressed with Eq. 1.

pTarget
i � TCamera

Target( )−1pCamera
i (1)

Figure 2B shows the transformation chain for the

homogenous transformation from base to target coordinate

system TTarget
Base for the robot path. This transformation chain

can be mathematically formulated using the equation in (2) and

will be discussed in 3.2.1.3.

TTarget
Base � TEE

BaseT
TCP
EE TCamera

TCP TTarget
Camera (2)

3.2.1 Hand- and finger-gesture recognition
system
3.2.1.1 Hand- and finger-tracking

From the state-of-the-art, machine learning based hand- and

finger-tracking SDKs are MediaPipe (Zhang et al. (2020b)),

OpenPose (Simon et al. (2017)), AWR for hand 3d pose

(Huang et al. (2020)) and MMPose (MMPose-Contributors

(2020)). The mentioned SDKs allow hand- and finger-tracking

by using RGB-image as input. Compared to the traditional

computer vision-based algorithms, machine learning-based

hand- and finger-tracking algorithms deliver better

performance tracking under different lighting conditions,

FIGURE 2
(A) transformation chain for the ith point of the robot path from programming process related to the target coordinate, (B) transformation chain
for robotic perception system from robot base to target coordinate system.
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reflections, skin colours, and transitions over background objects

with colour as human skin. The traditional computer vision

tracking algorithm generally converts the input RGB image into

another colour space. Classification is performed by defining the

tracking colour constraints concerning the tracked object

characteristics. As a result, unexpected objects will not be

recognized. For example, a hand-gesture recognition system

based on HSV colour space was implemented for an

automatic handing-over system between heavy-duty and

human co-workers (Bdiwi et al. (2013b)). This computer

vision-based algorithm showed limits when tracking hand

over reflective objects or objects with colour as human skin.

The main essential aspects for choosing the hand- and finger

tracking SDK are the tracking performance based on the frame

rate (FPS) and robustness under different light conditions.

Besides, the specific hand model and its key points

(landmarks) are considered for this proposed method. In

experiments, MediaPipe constantly delivered 30 FPS with

CPU computing. On the other hand, OpenPose delivered only

5 FPS with CPU computing. Even though the 2× up to 3× frame

rate can be reached using GPU, it was not sufficient to provide

fluent interaction for the proposed method. MediaPipe utilizes a

hand model with 21 key points as shown in Figure 13. The index

finger’s tip (landmark 8) is tracked and used as a reference for the

position in the teaching process. The finger’s orientation is

derived by calculating a Rodrigues vector between two

landmarks in the index finger (landmarks 8 and 7). As a

result, a robot path can be created by drawing splines or

depicting singular points in the teaching process. It should be

taken into account that the inaccuracies of the finger orientation

calculation can occur due to the camera’s limited field of view and

perspective.

3.2.1.2 Pose estimation of the finger landmark

Assuming that the camera is a pinhole model, a direct linear

transformation is used to obtain a projection of a point of interest

in the target coordinate system (3D) into the pixel coordinate

system (2D) or vice versa. Eq. 4 describes the transformation for

rectified image. In this equation, s is the scaling factor, u and v are

the coordinates of a point of interest in pixel coordinate. The

intrinsic parameters of the camera are characterized by fx, fy, cx,

and cy. fx and fy are the x- and y-axis focal length of the camera in

a pixel unit. cx, and cy are the x- and y-axis optical center of the

camera in a pixel unit. Xc, Yc and Zc are the coordinates of the

point of interest in the camera coordinate system. By using a

homogenous transformation matrix between the camera and

target TCamera
Target(4x4), the coordinates of the point of interest in the

camera coordinate system are decomposed into coordinate

points in the target coordinate system (Xw, Yw and Zw). The

transformation matrix between camera and target is

mathematically formulated with Eq. 3.

TCamera
Target 4x4( ) � RCamera

Target 3x3( )‖tCamera
Target 3x3( )[ ] (3)

with RCamera
Target(3x3) the rotation matrix and tCamera

Target(3x1) the

translation vector. The rotation matrix and translation vector

represent the extrensic parameters of the camera.

The target coordinate system in this teaching process is

represented by ArUco marker. All the points taken in the

robot path will be transformed into the target coordinate

system. In general, the 3D-coordinate points of the landmark

(finger) relative to the ArUco marker is calculated by solving (4)

in target coordinate points. Assuming that the finger is moving in

different planes in 3D, the scaling factor s in (4) is varied

according to the current plane parallel to the camera sensor.

Hence, s is equal to the depth information of the finger in the

camera coordinate system zfinger. This information can be derived

directly from the depth image of the camera. The spatial

information of the finger on x- and y-axis of the camera

coordinate are calculated by using the intrinsic parameters fx,

fy, cx and cy as shown in (5). Since diagonal elements of the

transformation matrix between camera and target RCamera−1
Target(3x3) is

always not equal to zero the inverse of this matrix can be

performed normally.

s
u
v
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ �
fx 0 cx
0 fy cy
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
Xc

Yc

Zc

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦

�
fx 0 cx
0 fy cy
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ RCamera
Target 3x3( )‖tCamera

Target 3x1( )[ ]
Xw

Yw

Zw

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

Xw

Yw

Zw

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � RCamera−1
Target 3x3( )

ufinger − cx
fx

zfinger

vfinger − cy
fy

zfinger

zfinger

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− tCamera

Target 3x1( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)

In this work, the camera image is already rectified and the

intrinsic parameters are accessible from the SDK of the camera.

Otherwise intrinsic calibration can be performed by using

function in OpenCV (Qiao et al. (2013)) or another tool like

MATLAB. The rotation matrix and translation vector with

respect to the marker is calculated via extrinsic calibration.

The calculation of the rotation matrix and translation vector

can be performed by using Perspective-n-Point (PnP) pose

computation using approach (Marchand et al. (2016)) or

OpenCV function for estimating pose of the single ArUco

marker.

3.2.1.3 Image processing of spatial information of the

finger landmark

With the advent of the computer vision algorithm, significant

improvements in the accuracy of the teaching system can be

achieved by implementing proposed algorithms, which are

shown in Figure 3. Since the resolution of the RGB and depth

image are not the same, it is necessary to synchronize the depth

Frontiers in Robotics and AI frontiersin.org06

Halim et al. 10.3389/frobt.2022.1001955

32

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1001955


image with the RGB image. Hence, the RGB image is rectified to

correct the distortion in the image. The depth image processing is

executed in parallel to the RGB-image processing. The spatial

edge filter is used to enhance the smoothness of the depth

reconstructed data by performing a series of 1D horizontal

and vertical passes or iterations (Gastal and Oliveira (2011)).

A temporal filter is implemented to add the missing depth

information when the pixel unit is missing or invalid. The data is

processed in a single pass to adjust the depth values based on

previous frames in this procedure. Hence, a hole-filling filter can

fill the missing depth values using iteration based on the nearest

pixel neighbours (Cho et al. (2020)). In the following step, the

hand tracking method described in 3.2.1.1 is performed to obtain

pixel coordinate u, v of the finger landmark. Simultaneously the

transformation of the pixel coordinate into camera coordinateXc,

Yc, and depth information Zc extraction for the respected pixel

unit of the finger landmark are performed. Then the landmark

coordinate based on camera is fused and transformed into target

coordinate Xw, Yw and Zw by using (5). Since the frame rate of the

tracking system is limited to 30 FPS, stable hand trackingmay not

be available due to the fast movement of the hand. Therefore a

Kalman filter is used to estimate the landmark position when

tracking is missing or invalid in a short period. The kalman filter

function from the OpenCV is utilized in this work. Finally, a

moving average filter is implemented to smoothen the landmark

position. The window size should be parameterized so that the

filter does not cause any frame rate loss.

3.3 Voice recognition system

As alreadymentioned in 3.1.1, the voice recognition system is

used to assist the end-user in changing the system state and

parameter. The end user’s speech commands are extracted as text

via Text-To Speech (TTS). After the feature extraction, the text is

matched and proved with Natural Language Understanding

(NLU) algorithm. In comparison to the traditional voice

recognition system, NLU-based voice recognition system can

deliver better performance and eliminate outliers with different

voice characteristics (e.g., accents and voice profiles). In

traditional voice recognition systems, the recognizer is built

based on three models: 1) acoustic models represent the

acoustic signals of the voice, 2) language models represent the

grammars and semantics of the languages, 3) lexicon models

represent the phonemes and phonetics of word (Karpagavalli and

Chandra (2016)). These models must be developed manually and

FIGURE 3
Proposed image processing method for extraction 3D coordinate of landmark for programming process.
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it is impossible to create a general model that can cover

heterogeneous voice profiles of the speakers. NLU-based voice

recognition systems use deep learning models based on trained

data sets. With this approach, a better performance and more

generic solution for voice recognition can be achieved.

3.4 Robot state controller

The robot state controller controls the behavior of the robot

after receiving the generated robot path from the teaching

process. The robot path from the teaching process is

transformed to target coordinate system. The robot controller

takes Cartesian coordinates at the robot base as reference for the

robot movement. Therefore a coordinate transformation

between the robot base and the target is performed With the

assistance of a vision-based perception system.

It is sufficient to use the perception system to detect the target

and apply the transformation with the target as the reference

coordinate system for the robot. In other words, the robot

movement is executed relative to the marker after the coordinate

system transformation is performed. The transformation problem of

the robot trajectory between robot base coordinate system and target

coordinate system is accomplished by solving the equation of the

transformation chain in (6).

TTarget
Base � TEE

BaseT
TCP
EE TCamera

TCP TTarget
Camera (6)

The homogeneous transformation matrix from Base to EE

TEE
Base and transformation matrix from EE to TCP TEE

Base is

determined known by converting the TCP position from the

robot interface into a 4 × 4 matrix. In order to obtain the

transformation between the camera and TCP TCamera
TCP the

hand-eye calibration problem has to be solved by moving the

robot into several positions. The resulting movements of the eye

(camera) are observed as shown in Figure 4.

At this moment, the transformation matrix between the

base and target TTarget
Base should be equal in each relative

movement of the robot as mathematically formulated

in (7).

TTCP
iBaseT

Camera
TCP TTarget

iCamera � TTCP
jBaseT

Camera
TCP TTarget

jCamera (7)

By converting the (7) into (8), the transformation matrix of

the target to the camera TTarget
Camera can be obtained using the pose

estimating method (PnP) as described in 3.2.1.2.

TTCP
jBase( )−1TTCP

jBaseT
Camera
TCP � TCamera

TCP TTarget
jCamera TTarget

iCamera( )−1 (8)

In this work, numerical approach provided in OpenCV function

is used to solve the hand-eye calibration problem. OpenCV provides

five different calibration methods that differ in the order in which

orientation and translation are estimated. In the following they will

named after their authors and in line with the OpenCV

documentation : Tsai (Tsai and Lenz (1989)), Park (Park and

Martin (1994)), Horaud (Horaud and Dornaika (1995)), Andreff

(Andreff et al. (1999)) and Daniilidis (Daniilidis (1999)). The results

of our hand-eye calibration by applying the five mentioned

algorithms above were converged. It means that the algorithms

delivered the same results with minor offsets from each other.

3.5 Finite state machine

The finite state machine works as the main controller of the

system. The speech commands are used as transition signals for

the state machine. As a result, a deterministic action will be

executed depending on the defined states in the state machine.

FIGURE 4
Hand-eye calibration problem: solving TTCP

Camera using relative TCP and camera movements.
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Explicitly, the implementation of the finite state machine will be

discussed more in detail in 4.3.

3.6 Human machine interface

To provide the user with feedback, a graphical user interface

(GUI) was implemented. Information such as videos from the

teaching and robot perception vision system, given speech

commands, system parameters and statuses is represented in

the GUI. The user interface serves not only as feedback, but also

as a redundant input system. This is intended, for example, when

the speech recognition system is not usable due to too intense

ambient noise. Actual research showed that the relevance of user

interfaces in hybrid human-robot systems can improve user

acceptance and reduce mental workload (Bdiwi et al. (2021)).

4 Implementations

4.1 Setup

Figure 5 shows the experimental setup for the proposed

multimodal programming approach in this work.

The hardware used in this setup has been fulfilled the system

requirements suggested in Appendix I - system requirements. An

Universal Robot UR10 CB-Series is used as the robotic platform

(Robots (2015)). UR RTDE 2 is used as communication interface

between an industrial PC and the UR10. Three Intel RealSense

D400 Series cameras are used for the interaction process (Intel

(2015)). One Intel RealSense D415 camera is placed parallel to the

surface of the working table is used to capture the spatial information

of the gesture during the teaching process, asmentioned in 3.2.1. The

camera is located 64 cm above the table surface, delivering a 48 cm ×

32 cm field of view. Since the field of view has linear correlations with

camera height, putting the camera at a higher height would increase

the field of view. All of the camera positioning is flexible and can be

adapted depending on the required field of view. The second Intel

RealSense D415 camera is mounted and calibrated with hand-eye

calibration. This camera is used for robotic perception, as mentioned

in 3.2.1.3. Finally, an Intel Realsense D435 camera is mounted facing

the user frontally and used for teleoperation of the robot TCP via

hand movements (gesture control). An ArUco marker is used as a

reference for the finger-based teaching approach mentioned in 3.2.1.

A NLU-based speech recognition module from voice INTER

connect GmbH is used (voice INTER connect GmbH (2022)).

This speech recognition module supports voice recognition with

different languages, voice profiles (e.g: masculine or feminine),

accents. It should be taken into account that all of the mentioned

hardware devices are only tentative. The setup is flexible and may be

changed depending on certain use case requirements. Different

robotic platforms, cameras, and speech recognition systems

should be compatible with the proposed approach, as the system

is modular and uses standard interfaces.

4.2 Operation modes

Three operation modes have been implemented based on the

proposed architecture mentioned in 3.1. These operation

modes are:

1. Teaching mode

2. Teleoperation mode

3. Playback mode

In the teaching mode, the robotic program can be created by

using index finger’s gesture and voice recognition system.

Teleoperation mode supports remote control of the robot by

utilizing hand gesture and voice recognition system. The

playback mode is used to replay the programmed robot path

in the teaching mode. A graphical user interface is utilized to give

FIGURE 5
(A) setup of the proposed system. From 1 to 8: working table, workpiece, ArUco marker, Microphone array, Intel RealSense D415 - parallel to
working table, Intel RealSense D435 - frontal to the user, Intel RealSense D415 - robot vision, Universal Robot UR10 CB3-Series, (B) setup in the real
world.
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feedback and instructions to the user, manually check system

status and set system parameters.

4.2.1 Teaching mode
In teaching mode, index finger’s gesture is utilized to create a

robot path. By using the proposed algorithm in 3.2.1.3, the pose of

the pointing finger in the teaching process can be estimated and

recorded after the command is given. The voice recognition system

is linked to the finite statemachine andwill trigger a defined action,

if the commandmatches with the database in the context manager.

As an example, command “take” triggers the state machine to

extract the current pose of the finger as single robot path point. In

Figure 6A, the teaching pipeline for the teaching mode and the

implemented user interface are illustrated. After the teaching

process is finished, the captured points are ready to be

converted into robot paths in playback mode.

The implemented user interface provides real-time camera

view for the teaching process and information regarding the

created robot path. Additionally, information such as number of

taken points, actual state of state machine, tracking status,

calibration status and actual position of pointing finger are also

provided via graphical user interface. Before the user interface of

the selected operation mode is initialized, a tutorial video is played

to explain to the user how the system works. If the user requires

further assistance to use the system, a command list is accessible by

giving a voice command “help.” The implemented actions and

voice commands for the teaching mode are:

• Calibrate: triggers the calibration process of the individual

finger profile. It should be taken into account that finger

profile of each user is varied. To compensate the ground

truth effect, a calibration is performed in a defined time

interval. Hence, the finger profile is registered as the offset

in the pose estimation mentioned in 3.2.1.2.

• Get: triggers the extraction of the actual position of the

index finger as a single point into the currently recorded

robot path.

• Begin: initializes the extraction of a spline. The spline is

created by demonstrating the path via the index finger’s

movement. Finger coordinates in each cycle time are

extracted into the robot path until the stop command

(End) is given. The recording process will be

interrupted when the finger tracking is lost, and the

taken points will not be registered in the robot path.

• End: ends the recording process of the spline.

• Delete: triggers the system to delete the latest taken object

from the robot path. In this context, the object can be a

single point or a spline.

• Help: triggers the system to show a command list for all

available commands and their definitions.

• Home: stops the teaching mode and initialize the main

menu (idle).

4.2.2 Teleoperation mode
In the teleoperation mode, the user can teleoperate the robot

using hand gestures. A voice command is used to start the

interaction. After initialization the initial position of the hand

is registered and a bounding box is displayed on the feedback

interface, representing the initial position of the user’s hand. The

relative position of the hand to the initial position (bounding

box) is calculated and used to manipulate the robot TCP in 3D.

Additionally, manipulation of the robot arm’s single or multiple

axes is possible. Figure 7 shows the interaction workflow, and

graphical user interface for teleoperation mode.

The registered commands for teleoperation mode are:

• Lock: triggers the system to register the initial position of

the user’s hand for the TCP manipulation.

FIGURE 6
(A) illustration of the teaching process in teaching mode, (B) user interface of teaching mode.
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FIGURE 7
(A) illustration of the interaction process in teleoperation mode, (B) user interface of teaching mode.

FIGURE 8
Implemented system diagram.
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• Help: trigger the system to change the manipulation mode

of the system from translation into rotation or vice versa.

• Help: triggers the system to show a command list for all

available commands and their definitions.

• Home: stops the teaching mode and initialize the main

menu (idle).

4.2.3 Playback mode
In the playback mode, the robot path created via teaching

mode can be converted into robot specific language and

further parameterized. After the “play” command, the

robot path is automatically converted into a specific

robotic programming language and deployed to the robot

controller. Parameters such as robot speed, interpolation

parameters and blending parameters are configurable via

voice command.

4.3 System diagram and finite state
machine (FSM)

The implemented system diagram is shown in Figure 8. To

achieve system modularity, the operation modes and other

functionalities are encapsulated as system modules. For

intercommunication between each module Message Queuing

Telemetry Transport (MQTT) protocol was used to guarantee

robust information exchange (Standard (2014)).

A finite state machine allows complexity reduction in the

deployment of the robotic system (Balogh and Obdržálek

(2018)). Therefore, a finite state machine is used to integrate

and control all modules. Figure 9 shows the finite state machine

of the whole system and its sub-finite state machines. Each

operation mode mentioned in 4.2 is encapsulated as system

module containing a subordinate finite state machine. Each

FIGURE 9
Finite state machine of the proposed system and its sub-finite state machines for each operation mode.
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module contains sub-modules that support the functionality of

the system module for each operation mode, e.g. for the vision

system and robot control. The teaching state server, teleoperation

state server and playback state server receive a bypass

information from the finite state machine when the respected

operation mode is triggered. The bypass information is used as

transition signal for each sub-finite state machine in each

operation mode. In teleoperation mode and playback mode, a

control system signal is sent to the robot immediately after it is

triggered by interactions. The finite state machine shown in

Figure 9 represents the implementation of the proposed

system in this work. In the implementation, three operation

modes are implemented by utilizing hand gestures, finger

gestures and speeches as interaction modalities. Since the

system is modular, each extension or customization in the

system architecture will affect the finite state machine. In case

of extension with additional systems and functionalities, the

states and signals must be extended.

FIGURE 10
(A) defined coordinates (T1, . . ., T9), (B) pointing experiment at defined target points.

FIGURE 11
(A) Scaled position deviation at defined coordinates (T1, ..., T9), (B) 2D-View of scaled position deviation at defined coordinates.
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5 Results

5.1 Accuracy and precision assessment

In order to assess the accuracy of the proposed hand- and

finger tracking algorithm in 3.2.1.3, a pointing task was defined as

in Figure 10. In this task, nine target coodinates (T1, . . ., T9) were

predefined and should be pointed as accurately as possible

10 times at each point. Afterwards, the average position

deviation in cm Pi was calculated by using euclidean norm

for position deviations for each axis (Δx, Δy, Δz) as shown in

Eq. 9.

Pi �
��������������
Δx2 + Δy2 + Δz2

√
(9)

The measurement was performed with camera height at 65 cm.

The light intensity measured in the environment was 580 Lux at

1,5 m above the floor and the temperature was at 21°C. In

Figure 11, the measured coordinates are compared with the

defined coordinates in 3D and 2D. As a result, the spatial

information of the pointed coordinates at the z-axis is more

inaccurate in comparison to the information at the x- and y-axis.

The inaccuracy is caused due to the noise from the depth

information obtained from the camera. From the technical

specification of Intel RealSense D415, the depth accuracy from

the camera is 2% < 2m (Intel (2015)).

A recent study for the performance of Intel RealSense

D415 showed that for the short distance 500–1000mm, the

camera delivers up to 30mm deviation in depth estimation (Servi

et al. (2021)). From the obtained results, it can be concluded that the

accuracy of the proposed method achieves 3.71 ± 2.07mm. The

statistical analysis of each target point is shown in Table 1.

The resulting deviations in the system can be caused by

several factors. A human can not point a target point accurately

with its finger, caused by the anatomy of the human finger. This

uncertainty can be varied in the range of mm and cm depending

on the human hand-eye coordination skill or the dexterity of the

user. A further observation was performed to assess the

systematical deviations (precision) from the proposed

algorithm in 3.2.1.3. A new assessment task was formulated.

In this task, nine target coordinates T1. . .T9 were used. A finger

was pointing to these points, and the finger was maintained to be

static while the finger’s position was being recorded. In Figure 14,

standard deviations of the measured points at the x- and y-axis

are shown with 95% confidence ellipsoid to give an overview of

the system precision (See 95% confidence ellipsoid in 6 for

reference). Standard deviation in the z-axis is also shown in

Figure 15. Standard deviation in x-,y- and z-axis (σx, σy, σz) and

standard deviation of Euclidean distance in 2D (σr) are

represented in Table 2.The result showed that the tracking

deviation at the x- and y-axis are smaller than the deviation

at the z-axis. In each target point, the planar deviation is less than

1mm. The deviation of the depth information is less than 2mm.

The deviations existed due to the inaccuracy in the intrinsic and

extrinsic calibration of the camera system. The higher deviation

in depth information indicated that the camera delivers

inconsistent depth information. Despite the higher deviation

in depth information, the result showed that the proposed

TABLE 1 Measurement uncertainty for accuracy measurement at each
target point.

Point Euclidean
deviation Pi [mm]

Standard
deviation σPi [mm]

T1 6.43 0.96

T2 1.99 2.25

T3 3.63 1.77

T4 2.52 1.45

T5 2.44 1.72

T6 1.89 0.61

T7 3.49 1.57

T8 4.44 1.41

T9 3.88 2.15

Σ 3.71 2.07

TABLE 2 Standard deviation of the tracking system precision.

Point Number of
Points

σx [mm] σy [mm] σr [mm] σz [mm]

T1 99 0.48 0.44 0.65 1.09

T2 99 0.28 0.39 0.49 1.27

T3 99 0.41 0.45 0.61 1.71

T4 99 0.54 0.30 0.62 1.01

T5 99 0.54 0.31 0.62 1.17

T6 99 0.46 0.59 0.75 0.89

T7 98 0.36 0.42 0.55 1.25

T8 98 0.45 0.44 0.63 1.83

T9 99 0.42 0.20 0.46 1.68
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image processing algorithms mentioned in 3.2.1.3 can reduce the

depth inaccuracy of the camera system. In conclusion, the

assessment method shows promising results of the proposed

method to be deployed for robotic programming applications

with relative accuracy up to 6mm and the tracking system can

deliver up to 2 mm precision with the defined setup in 4.1.

5.2 Benchmarking with state-of-the-art

In order to show the practicability of the proposed method, a

benchmarking is done by comparing the proposed system with

the implemented methods from the state-of-the-art such as

hand-guiding and programming by teach pendant in

Universal Robots UR10 which are specified in the actual

standards for industrial robot system [DIN EN ISO 10218-1

(2021); DIN EN ISO 10218-2 (2012); DIN ISO/TS 15066 (2017)].

This assessment is performed in a real-world teaching scenario

for painting or gluing application in the real production. A

workpiece as shown in Figure 12 was manufactured with

specific features that would be used for the tasks in this

assessment.

The features are 15 points (P1,. . .,P15), four lines with their

directions (L1,. . .,L4) and a curve with its direction (C1). The

tasks in this assessment consist of movement sequence based on

these features. In total, four movement sequences with different

complexity were executed by using the multimodal

programming approach in this work. Each task will be

repeated by using hand-guiding and online programming

approach via teach pendant from Universal Robots

FIGURE 12
3D printed part for benchmarking assessment.

TABLE 3 Overview for effort reduction from the proposed method (rel. Reduction (PM)) in the benchmarking assessment, TP, teach pendant; HG,
hand-guiding; PM, proposed method.

Parameter Task 1 Task 2 Task 3 Task 4

Method TP HG PM TP HG PM TP HG PM TP HG PM

Mean time [s] 92.73 71.08 28.69 118.35 101.63 50.28 71.19 70.38 24.34 65.47 56.28 17.71

Time ratio 3.23x 2,47x — 2.35x 2.02x — 2.92x 2.89x — 3.69x 3.18x —

Mean NoP 6 6 6 11 11 11 6 6 88 7 7 70.33

NoP ratio 1x 1x — 1x 1x — 0.06x 0.06x — 0.09x 0.09x —

Rel. Reduction (PM) 3.23x 2.47x — 2.35x 2.02x — 48.67x 48.17x — 41.00x 35.33x —

FIGURE 13
Hand model and key points of MediaPipe.
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FIGURE 14
(Top left to bottom right): 95% gaussian ellipsoid for measurement of standard deviation of static points from T1. . .T9.

Frontiers in Robotics and AI frontiersin.org16

Halim et al. 10.3389/frobt.2022.1001955

42

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1001955


UR10 controller. The number of points and execution time for

each task are measured for the assessment. The tasks are

described in following:

• Task 1: PTP linear movement (P6 → P5 → P4 → P3 →
P2 → P1)

• Task 2: PTP zigzag movement (P6→ P15→ P5→ P13→
P4 → P11 → P3 → P9 → P2 → P7 → P1)

• Task 3: Movement along defined features (L1 → L2 →
L3 → L4)

• Task 4: Movement along defined contour (C1)

The overview of the assessment result is depicted in Table 3

(detailed result in Table 7). For the assessment, the time ratio

and number of point (NoP) ratio between teach pendant and

hand-guiding teaching to the proposed method were

calculated. The time ratio is calculated as the quotient of the

mean time of the hand-guiding or teach pendant and the

proposed method. For the number of point, the same

normalization is performed by building quotient of number

of recorded points for the programming methods from the

state-of-the art and the proposed method. In the programming

methods with teach pendant or hand-guiding, the user must

determine how many points must be taken to extract the

features of the work piece. In the proposed method, this

issue does not exist because the finger’s movement along the

features is extracted in the teaching process. As a result, the

selected features can be extracted as coordinate points in the

proposed method. Therefore, the number of points as

assessment criterion is necessary to give an objective

benchmark in this assessment.

These ratios were used to calculate the relative reduction for

the benchmarking using following equation:

Relative reduction � Time Ratio

NoP Ratio
(10)

For simple PTP motions in tasks 1 and 2, the proposed method

showed effort reduction with 2–3× factor. In the experiments,

speech commands had to be repeated several times in some cases,

due to environmental noise (> 60dB). This led to longer teaching

times. A backup solution to improve performance issues caused

by environmental noise is considered by utilizing alternative

FIGURE 15
(A) depth information of the static point measurement at each target point, (B) standard deviation each static point in box plots.
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input interfaces such as a keyboard or other peripheries. The

results from tasks 3 and 4 showed drastic improvements in the

generation of complex movement profiles, such as movement

along specific features. By performing the task using the

programming methods from state-of-the-art, the first

hindrance was to consider how many points should be

extracted to build a detailed movement profile along the

desired feature. The programming effort was significantly

improved when more points should be extracted. In contrast,

even though less programming time can be achieved by reducing

the number of points, the desired movement profile will be

compensated due to adequate detailed information from the

taken points. This drawback effect was shown in tasks 3 and

4 using hand-guiding and teach pendant. Hereby, less than ten

points were taken to generate the movement profile. Eventually,

the desired movement profile could not be fulfilled due to

sufficient information on the desired feature. In comparison

to the methods from state-of-the-art, the proposed method

showed incisive results with 40–50× effort reduction for

complex tasks such as tasks 3 and 4. In the proposed method,

the desired feature can be extracted as a robot movement profile

by tracking the finger movement on the corresponding feature

directly. The proposed multimodal no-code programming

approach showed the potential to drastically reduce the

teaching time and effort for robotic programs compared to

the state-of-the-art.

TABLE 4 Potential industrial applications for the proposed method with the estimated process tolerances and possible control strategies for
development of skill based technology modules.

Applications Tolerance Skill based control strategy

Handing-over ⊘, ⊗ Bdiwi et al. (2013a,c)

Manipulation ⊙, ⊘, ⊗ Jokesch et al. (2014)

Painting ⊘, ⊗ Zhang et al. (2020a); Tadic et al. (2021)

Peg-in-hole ⊘ Bdiwi et al. (2015); Haugaard et al. (2020)

Polishing ⊘, ⊗ Tian et al. (2016); Kakinuma et al. (2022); Zhou et al. (2021)

Welding ⊙, ⊘ Yang et al. (2018b); Lei et al. (2021)

⊙ - fine (x < 10 μm), ⊘ - medium (10 μm ≤ x ≤ 10 mm), ⊗ - coarse (x > 10 mm).

TABLE 5 System requirement for the vision system.

Requirement of vision system

Parameter Min. value Description

Camera RGB Resolution 1280 × 720 (HD) Since the hand-tracking system algorithm works with RGB images as input the higher
resolution offers better performance in tracking

Camera depth resolution 640 × 480 The higher depth resolution delivers higher details of in-depth information, otherwise, it costs a
longer computation time to obtain this information

Camera RGB field of view 60° × 40° The field of view (FoV) describes the possible detection area that the camera image could
deliver. The higher FoV offers a wider detection area for the system

Camera depth field of view 50° × 30° Since RGB and depth FoV are not exactly the same, a synchronization function to map both
information should be performed to get more detail mapping of both information

Camera RGB/deph frame rate 30 FPS A higher frame rate would cause less latency. In other words, a higher frame rate would
improve the system response in image processing

Camera min depth information x > 0.2 m The actual stereo camera system has minimum depth information that can be obtained. The
nearer the minimum available depth information the more accurate the calculation for the
spatial information of the hand and finger tracking

Hand tracking model All phalanx on handshould be
available

The hand tracking system should deliver as many landmarks (phalanxes). Since the proposed
approach with the deictic gesture of a pointing finger, the landmarks in the pointing finger
should be able to be identified

Hand tracking stability Stabile in all light conditions The hand tracking system should work with RGB images in different lighting conditions

Hand tracking distance 0–1.5 m The tracking system should work at a farther distance to compensate for the deficiency due to
the minimum distance from the depth information of the stereo camera

Hand tracking frame rate 30 FPS The higher the frame rate the hand tracking system could deliver, the more fluent the
interaction between end-user and system could occur
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TABLE 6 System requirement for the voice recognition system.

Requirement of the voice recognition system

Parameter Value Description

Recognition type Offline Since the recognition sytem is used in an industrial context, an offline voice recognition system is demandable to
maintain data security

Dialogue design Conformed based on ISO/IEC
30122

The dialogue should be designed as easily as possible as mentioned in ISO/IEC 30122

Dialogue
extraction

Text-to-speech for every uttered
words

The system should be able to extract single word in a sentece uttered by the end-user

TABLE 7 Benchmarking result with comparison at programming time and number of taken points (NoP), TP, Teach Pendant; HG, hand-guiding; PM,
Proposed Method.

Task Method Time 1 [s] Time 2 [s] Time 3 [s] Mean time [s] NoP 1 NoP 2 NoP 3 Mean NoP

Task 1 TP 90.05 97.06 89.12 92.73 6 6 6 6

HG 75.46 70.30 77.49 71.08 6 6 6 6

PM 28.28 28.68 29.12 28.69 6 6 6 6

Task 2 TP 122.61 110.18 102.25 101.63 11 11 11 11

HG 101.32 101.33 102.25 118.35 11 11 11 11

PM 48.56 55.82 46.46 50.28 11 11 11 11

Task 3 TP 78.73 77.58 75.25 77.19 6 6 6 6

HG 69.56 74.84 66.74 70.38 6 6 6 6

PM 24,95 26,34 21.73 24.34 85 97 82 88

Task 4 TP 67.85 58.30 70.25 65.47 7 7 7 7

HG 58.49 55.81 54.53 56.28 7 7 7 7

PM 21.19 15.93 16.02 17.71 87 59 65 70.33
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6 Discussions and conclusions

In many cases, the intuitive teaching methods from state-of-

the-art are not ready to be implemented directly in an industrial

environment. The proposed programming approaches from the

state-of-the-art are mostly task-oriented and can be performed

only to create a robot routine for a specific process. The system

setups are fixed with strictly defined sensors, and there is no room

for customization. Even though the proposed systems prioritize

ease of use and consider intuitive interactions in the teaching

process, many works are not implementable in industrial

environments due to non-practicable methodologies and

complex system configurations. These hurdles are antitheses to

the concepts of HRC, which enables robotic systems to be agile,

reconfigurable and adaptable when changes in production occur.

This work proposes a novel approach to intuitive programming by

utilizing multimodal interactions such as speech and gestures. The

proposed programming approach introduces a generic teaching

solution for HRC applications in agile production by utilizing low-

cost sensors. The novel approach allows the user to (re-)configure

the robot program in the scenario where major or minor changes

occur in production.

Compared to state-of-the-art robotic programs, such as teach

pendant and hand-guiding, the novel method proposes in this

work showed that the programming effort for complex tasks can

be reduced by 40–50 times. It also enables non-robotic experts to

reconfigure and create robotic programs in a short time using

multimodal interaction. With the approach robot paths can be

taught by demonstration of finger gestures with 6mm accuracy.

The proposed computer vision algorithm for hand- and finger-

gesture estimation has thus shown its capability to achieve a

precision up to 2mm in the observed environment. In

comparison to alternative no-code robotic programming

approaches in the state of the art, the results with the low-

cost hardware in the current setup (see 4.1) show great potential

for no-code robotic programming. The analysis of the extracted

orientation in the hand- and finger-gesture estimation will be

addressed in the future work by comparing a single camera setup

and multi-camera setup. This comparison will give a clear

overview for the singularity issues in the extraction of finger

orientation. The proposed system provides a modular and

expandable system setup, utilizing low-cost hardware, in

contrast to many state-of-the-art reference papers. Hence, the

algorithms can be applied, extended and modified to fit different

applications and scenarios by using different sensor technologies,

robot systems and tools for example: the speech recognition

system can be substituted by other low-cost input modalities (e.g:

keyboard, button), the current low-cost cameras can be upgraded

with high-end industrial cameras, the current robot system can

be replaced by different cobots or traditional industrial robots,

and linear axes can be integrated in the system.

In a robotic-applied industrial process, process parameters

and requirements should be controlled to guarantee the quality of

the end product. The robotic experts should not only be

proficient in creating robotic programs, but they should also

integrate the process parameter in the manufacturing process to

meet the aimed quality of the end product. Even though robotic

programming methods from state-of-the-art have simplified

robotic programming for experts, The harmonization of the

process parameter is still a big topic to research in the robotic

research community. Most of the introduced approaches from

the state-of-the-art are focusing only in developing a task

oriented solutions for a specific application (e.g., Pick-and-

Place and assembly). In contrast to them, the proposed

method in this work offers a new perspective for a generic

solution in intuitive robot programming by addressing

modularity, agility and flexibility in the system setup. As a

result, integration or replacement with different systems (e.g.,

sensors, robots) are possible. The modularity allows the

programming approach to be combined with another

algorithm (skill sets) to resolve an issue for robot program

with specific applications. In Table 4, robotics-based industrial

applications from different works in recent years are shown with

their tolerance ranges. By comparing the result from the accuracy

assessment of the novel approach with the given tolerances, it can

be concluded that the proposed method has enormous potential

to be implemented in various applications where medium

tolerances in 10 μm ≤ x ≤ 10mm and coarse tolerances in x >
10mm are required. On the other side, the 6mm accuracy of the

proposedmethod would not satisfy the requirement for processes

with fine tolerance in x < 10 μm. Even though the current work

was focused on the proposed method of teaching the robotic path

based on hand-finger-gesture and voice. The vision and speech

modality used in this work allows further development of

intuitive robotic skill sets for the applied industrial processes

in future works. These skill sets will allow the user to

parameterize their process parameters and execute the process

by applying process-specific control strategies as shown in

Table 4. An example of a welding application will be

explained in the following to depict the potential

improvement of the system’s inaccuracy by developing a

welding skill set. The user would draw a welding path on the

welding joint using his/her finger. The user triggers the skill set by

saying “welding mode on.” The finite state machine may trigger

the activation of the vision-based control system to follow the

weld, e.g. by using the methods mentioned in Table 4. This weld

tracking algorithm will be used as a reference to control and

compensate for the inaccuracy from the teaching phase. Another

example represents an intuitive skill set for polishing that would

allow automatic generation of process paths for basic geometries

based on single user-defined points or features on the work piece

via finger tracking. Trajectories with higher complexity may be

taught to the robotic system by combining finger gestures and

online impedance control of the robot manipulator. Specific

parameters, e.g. amount of applied force for impedance

control, may be figured by the user via voice commands. The
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combination of the multimodal programming method in this

paper with intuitive skill sets will accelerate the deployment and

reconfiguration of robotic systems in industrial context. In the

future work, the implementation of intuitive skill sets for the

proposed method will be addressed and assessed in an industrial

use-case.

The camera-based vision system showed great potential for

implementing the LfD strategy for robotic applications compared

to other technology such as VR-, AR- or XR-based motion

capture, used in state-of-the-art. However, the camera system

still has its characteristic limitations in certain aspects. Various

vision-based algorithms have pushed the vision system’s limits

and can compensate for many drawbacks of camera systems. In

future works, an improvement in the methodology of the vision

system can be addressed by applying recent algorithms from the

state-of-the-art, such as:

• Positional and rotational accuracy improvement of the

system → implementation of multi-camera system

(Lippiello et al. (2005); Hoang (2020)), usage of camera

with different technology (Langmann et al. (2012);

Lourenço and Araujo (2021))

• Translation and rotation of the component after teaching

→ implementation of 6D object pose algorithm (Xiang

et al. (2017); Sun et al. (2022))

• Component is bigger than field of view of the camera→ usage

of additional axes on a workpiece fixture or camera (translating

the object with respect to the camera or vice versa) and

implementation of image stitching or photogrammetry

algorithm (Li et al. (2017); Ding et al. (2019))

In conclusion, this work contributes a novel approach to

multimodal robotic programming by utilizing hand-finger-

gesture recognition and speech recognition which can be

implemented in different industrial applications and

robotic systems. The proposed method is suitable for use

without or with adequate experts in robotic programming.

The bona fide evaluation results showed the system’s potential

to replace actual state-of-the-art methods. The opportunities

for future developments of the system depict that the system

can be a game changer in industrial robotic programming.

This proposed programming method will accelerate the

deployment of robotic systems in industrial use-case and

affect how robotic systems are programmed in the industry

for serial production or even batch size 1.
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Technological robot—Machine
tool collaboration for agile
production

Markus Wabner*, Hendrik Rentzsch, Steffen Ihlenfeldt and
Andreas Otto

Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

The flexibility and efficiency in parts production can be significantly increased

through the technological cooperation of industrial robots and machine tools.

The paper presents an approach in which a robot, in addition to the classic

handling tasks, enhance machine tools by additional manufacturing

technologies and thus beneficially supports workpiece machining. This can

take place in various configurations, starting with pre- and final machining by

the robot outside the machine, through sequential cooperative machining of

theworkpiece clamped in themachine, to parallel, synchronizedmachining of a

workpiece in the machine. The approach results in a novel type of collaborative

manufacturing equipment formatrix production that will improve the versatility,

efficiency and profitability in production.

KEYWORDS

robot machining, collaboration, agile manufacturing, machining, matrix production

1 Introduction

The increasing customization of customer requirements, ever shorter product

development and product life cycles, but also global crises confront manufacturing

companies with the challenge of making their production more agile and more

resilient to disruptive changes. Above all, agility and resilience in production means a

high degree of flexibility and adaptability at all levels. The vision of agile manufacturing is

not entirely new: “Agile manufacturing systems can be conceptually thought of as being

an integrated whole of complex interacting sub-systems, organized in such a way as to

endeavor towards a common set of goals” (Merchant, 1984). Even today it is a concept of

economic success in production (Gunasekaran et al., 2019). Forced and enabled by the

rapid progress in ICT and artificial intelligence, numerous novel solutions become

possible to further enhance agility in manufacturing and production. Even if agile

production is primarily a planning and control task, the functionality of the available

manufacturing equipment is of crucial importance, since it must provide the necessary

technological capabilities (skill level) in a highly flexible manner. Industrial robots are

significantly contribute to automation in production and the enormous number of

industrial robots result in low prices. This was a reason to increasingly use industrial

robots for machining. Of course the functionality of standard industrial robots is limited

in comparison to machine tools, especially regarding positioning and path accuracy, static
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and dynamic stiffness und thus process stability and dynamic

path accuracy. With various ICT support and the use of NC

control systems, industrial robots become more and more

suitable for machining and increasingly substituting selected

machining tasks.

Manufacturing cells with robot automation in particular

offer extensive but still largely unused potential for

improving agility and resilience in production up to novel

equipment strategies for matrix production. This unused

potential is seen in the flexible enhancement of machine

tools by additional manufacturing technologies that are

provided by combined handling and machining robots.

While industrial robots are used today to automate

machine tools (parts handling: loading and unloading) and

remain in a waiting position during machining operations, in

future the robots will also take on technological tasks instead

of waiting. The aim is not only to use the unproductive phases

of the robots in the future and thus increase the productivity

of the entire system. It is much more promising and therefore

more important to flexibly expand machine tools and

machining cells with additional manufacturing

technologies and thus significantly increase the overall

flexibility and adaptability in matrix production.

2 Robot machining and collaboration

Industrial robots for robot machining are available from

various companies. The series of HSM robots (HSM = High

Speed Machining) of Stäubli is suited for precise high-speed

metal machining such as deburring, polishing, drilling, thread

cutting, prototyping or the reworking of weld seams of various

materials (aluminum, stainless steel, composite, etc.). Accuracy is

reached by absolute calibration, model-based error

compensation, a self-developed NC control CS9 and special

design of core components. Mabi Robotic is using direct

encoders in the joints, which increases controllability and

accuracy significantly and thus allows rough machining and

finishing in milling, turning and other cutting technologies.

The Mabi robots are using CNC SINUMERIK 840D sl from

Siemens, and Siemens CNC control is applied increasingly to

other robots for machining, e.g., Kuka, Comau or even Stäubli.

The last mentioned systems are configured and delivered by

various companies (e.g., Robot Machining, ibs automation,

ARRTSM, Boll Automation, FerRobotics or Fill) to e.g., OEMs

or die making industry. Special CAM solutions for robot

machining are available (e.g., Tebis, robotized, moduleworks).

Various research activities are dealing with the error

compensation of industrial robots, e.g., with additional piezo

actuators (Schneider, 2013) or model-based via control system

(Sörnmo et al., 2012; Fu et al., 2020). A high precise industrial

robot was developed in the Flexmatic project (Flexmatic, 2016),

combining a number of approaches (very stiff design, sensor

integration, various error compensations). A good overview

about robot machining is also given by Ji (Ji et al., 2019).

Robot-machine cooperation is well-known from automation

(handling robots). Technological collaboration, where industrial

robots and machines simultaneously machine one part, are

actually not known. Mitsubishi Electrics presented a NC

control system which allows such a kind of robot-machine-

collaboration, but also here a practical application is not

known. Wieland Anlagentechnik GmbH (Wieland, 2017) has

presented a simplified robot-machine-collaboration solution,

where the fixture of a handling robot couples a part physically

to guiding systems of a machine tool to increase accuracy and

stiffness. Collaborative systems are known from robot-robot or

machine-machine collaboration. For machining of weak rigid

large thin-walled aerospace parts, so-called mirror milling

systems are replacing traditional processing methods. A dual-

robot mirror milling system consisting of a machining hybrid

robot and a supporting hybrid robot is presented in (Xiao et al.,

2019). The cutter and the flexible supporting head are installed at

the end of the machining robot and the supporting robot. The

wall thickness error is measured by ultrasonic and compensated

by the machining robot for accurately controlling the machining

thickness. A similar system for machine tools is described in

(Zhang et al., 2019). Dual robot setup that is widely used in

assembly and handling applications, is used by (Owen et al.,

2004) for machining. Owen proposed a dual robot setup, with

one robot handling the material and the second one bearing the

tool. Due to the redundant degree-of-freedom, the authors

designed an off-line programming system with an integrated

algorithm to optimize the trajectories of the tool, using the

pseudo-inverse method. The approach monitors torque in the

robot axes while also finds the optimum configuration/poses to

improve the accuracy of the final part by decreasing tool

deflection and optimum absorption of machining forces. In

(Lin et al., 2009) such a system is described for surface polishing.

In (Huang and Lin, 2003) a dual independent robot

machining cell is described, where the programming

development was carried out by using CAM software to

generate cutter location data for 5-axis milling together with a

post processor to translate the CL data to linear and rotational

motions for the robot cell controller. The implementation of the

dual robot setup was achieved by dividing the original CL data in

two parts taking into account collision detection between the two

robots and minimization of force generated inaccuracy of the

final geometry. The author also developed an offline

programming module, enabling off-line programming and

simulation of the dual robot machining cell.

Optimal division and allocation of the work and performing

path planning in a coordinated manner while considering the

requirements and constraints of collaborative industrial robots

system is addressed in (Hassan et al., 2019) for fiber placement

tasks. A two-stage approach is proposed in this paper. The first

stage considers multiple objectives to optimally allocate each
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industrial robots with surface areas, while the second stage aims

to generate coordinated paths for the industrial robots.

3 Principle of the technological
robot—machine tool collaboration

Actually, the technological collaboration of machines and

robots has been implemented only rudimentarily in industrial

environments. But the technological enhancement of the limited

functionality of machine tools offers a high potential for

increasing productivity and a new equipment basis for matrix

production making production more flexible with limited

resources. In addition, under certain circumstances the range

of functions of a machine tools and thus the investment can be

reduced. As a side effect, the utilization of the robots also

increases. In this way, machines can be expanded with

missing or similar NC robot axes, for example to add missing

rotary axes to a 3-axis machine or to machine a workpiece with

two tools at the same time. Another example is the enhancement

of machines with non-existent technologies (e.g., enhancement

of milling machines with force-controlled grinding). The

principle of the technological robot-machine tool

collaboration is shown in Figure 1, using the example of the

test equipment used by the authors.

The technological enhancement of machine tools can take

place in three different scenarios:

- Sequential pre-processing or finishing of the workpiece

outside the machine tool (e.g. robot-based removal of

casting flash on the raw part; robot-based additive

FIGURE 1
Principle of technological robot-machine-collaboration and authors test equipment.

FIGURE 2
Optimization loops to find the best manufacturing scenarios.

Frontiers in Robotics and AI frontiersin.org03

Wabner et al. 10.3389/frobt.2022.1027173

52

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027173


manufacturing; robot-based deburring or polishing on the

finished part)

- Sequential machining of a workpiece within the machine

tool (e.g. robot-based insertion of angled bores or execution

of milling operations on a turned part clamped in a simple

lathe)

- Parallel, synchronized machining of a workpiece by robot

and machine tool (e.g. precision turning with machine,

simultaneous robot-based deburring)

In addition to the technological scenarios mentioned as

examples, the robots can of course continue to be used for

conventional automation tasks such as handling or quality

inspection. For this purpose, the robot must of course be

equipped with the necessary technical systems (e.g. by

changing systems).

4 Challenges and actual works

The realization of the robot-machine tool collaboration

requires various research and development activities. It needs

also novel strategies and fast CAM solutions to optimally break

down a process chain to the involved systems. Such a CAM

solution and the corresponding simulation tools are not available

today. Furthermore, the strategy needs fast solutions for optimal

(re-)configuration or (re-)allocation of the involved systems on

the plant level as well as solutions for fast NC control coupling.

To solve this, there is the need to describe the systems skills and

to define skill levels of the systems. Together with technological

and plant planning parameters, this will result in a very huge

amount of thinkable combinations of machining and

manufacturing scenarios. To handle the complexity and to

find an optimal solution in an efficient way, AI-based

optimization becomes a key technology. The main questions

to be answered by optimization are.

- Which machining operation combination (or tool

combination) would be the best?

- Which operation sequence would be the best?

- Which robot-machine combination should be selected?

And this under the consideration, that machine and robot are

partly working together in parallel or in serial and that all

machines and robots should preferable work at its maximum

capacity. Thus, together with CAM simulation and PLANT

simulation optimization circles (Figure 2) will be built to find

the optimal parameter setup.

The inner optimization loop optimizes technological

parameters, based on CAM simulation. The main

optimization criterion is the machining time, which is also

given to PLANT simulation. Here the various robot-machine

combinations and its effects on the overall production of a plant

will be simulated and optimised in the outer optimization

loop. The used optimization algorithms are using artificial

intelligence and are based on neural networks and genetic

algorithms. The self-learning functionalities allow a significant

reduction of needed optimization loops to find the optimum and

its performance will increase by every new optimization task.

For the manufacturing optimization described, however, a

number of other requirements must be fulfilled. One of them is

the control system. It seems to make sense that each system

retains its own NC control. However, the controller must be

coupled together. This control coupling approach increases

flexibility in production, both acutely and in the future by.

- Easy upgrade of existing machine tools and machining

centres to a flexible production cell as basic equipment for

matrix production

- Robots can be flexibly coupled to different machines, which

increases the potential for versatility on the shop floor level

- The different systems can each be equipped with their

optimal control

The control-related robot-machine coupling is implemented

by coupling the two NC controllers using a Profinet (PN)

connection (PN/PN coupling). The synchronization takes

place both at the PLC level and at the NC level. Coupling at

NC level is necessary to enable synchronized machining on a

single workpiece. For this purpose, synchronization takes place at

compile cycle level for synchronization in the position controller

cycle.

An integrated CAM programming is the basis for the optimal

splitting of the manufacturing tasks to the systems involved, for

collision considerations and finally the generation of the G-codes.

For this purpose, a CAM plugin for autodesk® products is being
developed in order to take into account two independent but

simultaneously working tool systems. The assignment of

necessary machining operations is feature-based. The feature

approach is necessary as an orientation for the optimizer, which

should nevertheless be open to external (digitized) planning

suggestions in order to also incorporate the experience of

operators and planners. The optimizer’s suggestion regarding

the sequence, combination and parameterization of the

machining tasks is then simulated in the CAM system. The

result of the simulation is the digital output of key performance

parameters (KPIs) for further optimization. The focus of the KPIs

is on the processing time, which must be minimized. However,

other criteria are also conceivable, such as energy requirements,

tool wear or quality.

An essential prerequisite for the optimal distribution of tasks

to the systems is a meaningful description of the technological

capabilities (skill level) of the robot and machine tool systems.

Ultimately, the question must be answered as to which

processing task can be successfully carried out by which

system? On the one hand, this requires the acquisition of
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system’s basic parameters such as workspace, spindle parameters,

general performance parameters (forces, moments, feed speeds)

or accuracies, which are usually specified by the system provider.

On the other hand, special technological parameters such as

accuracies that can actually be achieved, knowledge from

experience or dependencies (e.g. accuracy-material removal

rate) must be quantified. This may require experimental

analysis or special processing tests. The recording takes place

via standardized skill level protocols (e.g. “Administration shell”

VDE/DKE), which must be digitally processable. This is a basic

protocol that can be manually expanded and can ultimately

represent part of a digital twin of a digital process chain.

5 Summary and outlook

In the article, a new strategy for the technological

cooperation of machine tools and robots was presented in

order to increase flexibility and agility as well as productivity

in matrix production. However, the realization of such

systems represents a major challenge and requires a large

number of new solutions and planning methods, which the

authors are currently working on. This includes AI-based

algorithms for the optimal distribution of tasks between the

systems both at workpiece and shop floor level, the system’s

ability description (skill level), CAM-based tools for

evaluating production scenarios and control solutions. The

aim of the work is to implement a new type of flexible

manufacturing cell that can be used both in classic parts

manufacturing and as equipment for matrix production. If

there are even several industrial robots and machine tools

available, further optimization potential can be leveraged on

the shop floor by the need-based and temporary combination

of robots with corresponding machines.
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A review of the applications of
multi-agent reinforcement
learning in smart factories

Fouad Bahrpeyma* and Dirk Reichelt

Smart Production Systems, HTW Dresden, Dresden, Germany

The smart factory is at the heart of Industry 4.0 and is the new paradigm for

establishing advanced manufacturing systems and realizing modern

manufacturing objectives such as mass customization, automation,

efficiency, and self-organization all at once. Such manufacturing systems,

however, are characterized by dynamic and complex environments where a

large number of decisions should be made for smart components such as

production machines and the material handling system in a real-time and

optimal manner. AI offers key intelligent control approaches in order to

realize efficiency, agility, and automation all at once. One of the most

challenging problems faced in this regard is uncertainty, meaning that due

to the dynamic nature of the smart manufacturing environments, sudden seen

or unseen events occur that should be handled in real-time. Due to the

complexity and high-dimensionality of smart factories, it is not possible to

predict all the possible events or prepare appropriate scenarios to respond.

Reinforcement learning is an AI technique that provides the intelligent control

processes needed to deal with such uncertainties. Due to the distributed nature

of smart factories and the presence of multiple decision-making components,

multi-agent reinforcement learning (MARL) should be incorporated instead of

single-agent reinforcement learning (SARL), which, due to the complexities

involved in the development process, has attracted less attention. In this

research, we will review the literature on the applications of MARL to tasks

within a smart factory and then demonstrate a mapping connecting smart

factory attributes to the equivalent MARL features, based on which we suggest

MARL to be one of the most effective approaches for implementing the control

mechanism for smart factories.

KEYWORDS

Industry 4.0, multi-agent reinforcement learning, smart factory, smart manufacturing,
smart production systems, reinforcement learning, Artificial Intelligence

1 Introduction

As the market becomes more dynamic and complex and the global demand for small-

batch, short-life products increases, manufacturing systems are facing more dynamic and

complex environments. A smart factory, as the heart of Industry 4.0, is envisioned as a

fully automated flexible manufacturing system consisting of highly connected smart
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components to provide mass customization and short product

life cycles in a cost-effective, agile, and self-organizing manner.

To move toward the realization of the concept of “smart factory”,

manufacturing systems have been incrementally equipped with

advanced enabling technologies such as (Industrial) Internet of

things (I-IoT), cyber-physical systems, artificial intelligence (AI),

cloud manufacturing systems, and big data technologies (Mittal

et al., 2019). Taking these technologies into account as the

backbones and building blocks of a smart factory, the key

role, however, is played by the control mechanism that is

responsible for making fine-grained and coarse-grained

decisions to guarantee the performance of the manufacturing

system. Simple examples of control mechanisms include the

formation of robots, the design of paths between stations, the

scheduling of operations, the management of inventories, the

response to demands, and every decision that needs to be made to

achieve specific goals (Jung et al., 2017). The control mechanism

for smart factories, however, when compared with that of

traditional manufacturing systems, is subject to various

challenges. For the most part, high-level flexibility (required

for smart factories) necessitates fine-grained decisions, thereby

increasing the complexity of the control mechanism as more

variables are introduced. This implies that the development of an

optimal control mechanism will require the consideration of a

larger number of contributing factors in the control equations,

resulting in a longer engineering cycle and more complex

equations. Traditional optimization approaches are often

highly time-consuming and thus cannot be effectively

incorporated to deal with the rapid and dynamic

manufacturing environment in real-time. Furthermore, as

manufacturing systems become larger in scale, the number of

possible situations that need rapid and optimal responses will

increase as well. As difficult as it is to predict all of the possible

scenarios, what is even more challenging is determining the most

effective reaction (real-time and efficient) to each case.

Considering the complexity of this system and the limited

accuracy and abilities of a human engineer, a detailed

investigation of the potential situations and corresponding

solutions is an extremely burdensome and expensive process.

A smart factory offers a self-organizing solution to these

situations through the incorporation of advanced intelligent

control mechanisms, in which smart components make

optimal decisions pseudo-independently in order to provide

rapidity and can communicate with one another in order to

act jointly toward global performance metrics such as efficiency,

tardiness, and production rate.

According to the majority of the studies in the community

such as Shi et al. (2020), Büchi et al. (2020), and Sjödin et al.

(2018), in practice, realizing the concept of the smart factory in its

full form is not possible without the use of advanced AI

techniques. “Smart” in smart factories refers primarily to the

application of artificial intelligence. AI provides powerful tools

(for analytics and decision-making) for analyzing the vast

amounts of data generated by smart components and for

making optimal decisions. A variety of AI techniques have

been used in the field to enhance automation, rapidity, and

efficiency, such as neural networks (NNs) and their

derivatives such as long short-term memory (LSTM)

(Ozdemir and Koc, 2019; Nwakanma et al., 2021). These

techniques were most commonly used to provide proactive

decisions to pre-allocate optimal resources before the requests

arrived. However, such approaches are limited when dealing with

uncertainties such as machine breakdowns or the insertion of

new jobs. A centralized control mechanism over multi-agent

systems can also result in delays, and there is always a trade-off

between global optimality and rapid response.

In this paper, via conducting a review study on the

applications of MARL to decision-making problems within a

smart factory, we suggest that one of the most effective solutions

to realize self-organization in smart factories in an efficient and

real-time manner can be found via multi-agent reinforcement

learning (MARL), which offers a decentralized solution to

dealing with uncertainty. MARL is an AI technique that

incorporates reinforcement learning (RL) into multi-agent

systems (MASs), where RL automatically finds optimal

solutions to uncertainty through interactions between

intelligent agents and the problem environment. More details

onMARL are provided in Section 3. In order to demonstrate this,

we will review the literature about MARL’s application to smart

factory tasks and then discuss a mapping from smart factory

requirements to MARL capabilities.

Several literature reviews of MARL approaches have been

conducted in recent years, including those by OroojlooyJadid and

Hajinezhad (2019), Nguyen et al. (2020), and Zhang et al. (2021),

which were also used as the basis for this study. However, to the

extent of our knowledge, this is the first study reviewing the

applications of MARL into the smart factory tasks.

The remainder of this paper is organized as follows. In

Section 1, we will describe the methodology, objectives, and

boundaries of this research. Section 2 presents an overview of

the RL andMARL systems. In Section 3, the literature is surveyed

for the application of MARL approaches to tasks within a smart

factory. Section 4 presents our conceptual analysis on the match

between MARL and smart factory attributes. Section 5 provides a

discussion on the concerns, limitations, and potentials of the

applications of MARL to smart factory tasks. Finally, Section 6

concludes this paper and states the gaps and potentials for future

research.

1.1 Research objectives, boundaries, and
methodology

This research seeks to showcase the capabilities that MARL

brings to realizing smart factories. To this end, this paper is

mainly devoted to conducting a review study on the applications
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of MARL to the tasks within a smart factory. We will then draw a

mapping from the required characteristics of smart factories to

the corresponding capabilities in MARL. This paper provides

practitioners and researchers in the field with an overall idea of

how to address control problems in smart factories via the use of

MARL. The size limitations of this paper, however, prevent

attention to every detail since the ways of formulating tasks

within the smart factory into MARL problems are extremely

diverse and thus are beyond the scope of this study. In view of the

fact that MARL is relatively new in the field of smart factories,

this paper also discusses situations where RL is applied in

conjunction with multi-agent systems in the relevant field,

while focusing primarily on MARL. We mainly focus on

cooperative approaches. Consequently, for each work, we

briefly summarize the factors that indicate how MARL is

integrated with the corresponding application.

2 Overview of multi-agent
reinforcement learning approaches

This section provides a brief background on MARL. In this

paper, when we refer to MARL, without the loss of generality, we

address the case where RL is applied to or implemented via a

multi-agent system. Therefore, we will consider a broader area

than only the scope of MARL systems in theory. In essence, RL

can be viewed as the most general form of the learning problems.

Contrary to supervised machine learning, the target for an RL

algorithm is a feedback which is partial and almost a delayed

reward (or penalty). Moreover, RL differs from unsupervised

learning, since its primary objective is to maximize reward signals

rather than discover hidden structures within unlabeled data.

Based on Sutton and Barto (1998), the ultimate objective of an RL

system is the maximization of the expected value of the

cumulative sum of a reward (immediate reward) signal. RL is

generally aimed at achieving a long-term goal; therefore, the

reward is back-propagated and discounted by a discount factor,

and the goal is to maximize the discounted cumulative future

rewards at a discounted rate.

RL problems are usually formalized using Markov decision

processes (MDPs). MDPs are the mathematical representations

of RL problems that originate in dynamic systems. The Markov

property implies that all of the relevant information for a decision

is encoded in the state vector st. AnMDP problem is described by

the four-tuple M = [S; A; p; r], where S denotes the environment’s

state space and A denotes the agent’s action space at ∈ A. In st, the
agent performs at in order to move to st+1 and is immediately

rewarded with rt. Additionally, pss represents the probability that

a particular action performed at state st leads to the state st+1
being reached. The uncertainty, however, is represented by a

probability distribution function that indicates whether taking

the action at the state st results in st+1 for the agent. It emphasizes

that the agent’s state transitions are partially influenced by the

agent’s actions. Figure 1 illustrates the agent in an RL problem.

A more realistic version of MDP is the partially observable

MDP (POMDP), wherein, as opposed to MDP, the agent only

obtains a partial observation from the environment, leading to a

higher level of uncertainty. For more details, please see Zhang

et al. (2021).

The most popular RL techniques are Q-learning (QL),

SARSA, and actor–critic (AC), each having variants as a

means to enhance their performances in specific ways. Due to

the limitations of this paper, here, we only briefly describe QL as

the most popular RL technique and refer the reader to

Arulkumaran et al., (2017) for other RL methods. In QL, the

objective is to learn an action selection policy πt (a|s) toward

maximizing the reward. The policy πt (a|s) represents the

probability distribution that at = a if st = s. The Q-function Q:

S × A → R yields the discounted cumulative reward with the

discount factor γ.

Q s, a( ) � r + γmax
a′

Q s′, a′( ). (1)

The QL algorithm is implemented to obtain the best action

value function Q*(s, a), as shown in Eq. 2:

Q* s, a( ) � max
π

E ∑
t

rtγ
t|st � s, at � a, π⎡⎣ ⎤⎦. (2)

Q-values are updated using Eq. 3, every time an action is

taken.

Qt+1 s, a( ) � Qt st, at( ) + α rt+1 + γmax
a

Qt st+1, a( ) − Qt st, at( )( ).
(3)

With the emergence of deep neural networks (DNNs), the area

of RL was able to address a wider range of applications due to

generalization over past experiences for unseen situations, as

opposed to traditional tabular RL, which was also vulnerable to

the explosion of the state space due to the tabular formulation.

DNNs are able to store values and approximate RL values for

unseen situations. The well-known deep Q-network (DQN) and

various types of ACmethods rely uponDNNs. DNNs are one of the

enabling technologies for MARL, since the extremely large state

space of MARL problems cannot be contained in the tabular form.

FIGURE 1
Agent in loop (Sutton and Barto (1998)).

Frontiers in Robotics and AI frontiersin.org03

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

57

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340


In MARL, the actions taken by each agent change the

environment and consequently change the perception of the

other agents from the environment (the previous state before

action a was taken is no longer valid, and the state has changed).

This problem is known as non-stationarity.

MARL (Figure 2) incorporates multiple agents that interact

with one another and with the environment. In accordance with

the objectives of the application, this interaction may be

cooperative, competitive, or mixed. This research focuses

primarily on cooperative MARL, where the agents cooperate

to maximize a common global reward while trying to maximize

their own local rewards.

In the multi-agent setting, the generalization of MDP is the

stochastic game. Based on Buşoniu et al. (2010), a stochastic

game is described via a tuple (X,U1, . . .,Un, f, ρ1, . . ., ρn), where n

denotes the number of agents; X is the environment state space;

and Ui, i = 1, . . ., n represents the agents’ action space, leading to

a joint action set U = U1 ×···× Un. The state transition probability

function is defined as f: X ×U × X → [0, 1], and the rewards for

the agents are ρi: X ×U × X → R, i = 1, . . ., n.

The state transitions in the multi-agent case result from the

joint actions of the agents at step k, uk �
[uT1,k, . . . , uTn,k]T, uk ∈ U , ui,k ∈ Ui.

The transpose of a vector is indicated by T. The joint policy

hi: X × Ui → [0, 1] represents all the policies. The joint action

leads to the reward ri,k+1, and thus, the returns also depend on the

joint policy.

Rh
i x( ) � E ∑

∞

k�0
γkri,k+1|x0 � x, h

⎧⎨
⎩

⎫⎬
⎭. (4)

MARL is mainly formalized via multi-agent (PO)MDP or

decentralized (PO)MDP, which are referred to as M(PO)MDP

and Dec-(PO)MDP, respectively. Depending on the application,

the problem formulation may vary significantly, and thus, we

refer the reader to Buşoniu et al. (2010) and Zhang et al. (2021)

for more details and for the formal definition of MARL.

A variety of cooperative MARL approaches have been

presented in the literature. The most famous methods are

independent action learners (IALs), joint action learners

(JALs), team-Q, distributed Q, distributed AC,

communication-based, and network-based methods such as

QMIX. Please see Zhang et al. (2021) for more details. We

briefly describe some of the most popular MARL methods here.

IAL: Such as independent Q-learning (IQL), wherein agents

take actions independently and only interact with each other

through the environment. IAL methods incorporate RL

individually and assume the other agents are part of the

environment. These approaches, if not containing the impact

of agents on each other, are subject to the problem of non-

stationarity.

JAL (Figure 3): Agents take (and learn the value of) joint

actions to avoid non-stationarity. The most concerning challenge

is, however, the credit assignment problem (identifying the

agents’ individual share of the reward). In many cases,

however, some agents become lazy in the team play because

FIGURE 2
Agents in a multi-agent reinforcement learning (MARL)
environment

FIGURE 3
JAL (Nowé et al. (2012)).

FIGURE 4
QMIX (Rashid et al. (2018)).
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they do not identify their contribution to the global reward. In

addition, the exploration strategy is difficult to design for JAL

approaches since the joint action space for JAL is much larger

than that of IAL.

QMIX (Figure 4): QMIX serves as a representative value

decomposition technique and works based on the principles of

centralized training decentralized execution (CTDE). QMIX is

primarily dependent on the mixing network to deal with the

credit assignment problem. The mixing network receives the

outputs of the individual agents’Q-networksQa (Ta, ua) to assign

the individuals the credits and approximate the global Q-value

Qtot (T, u, s; θ). QMIX guarantees the individual-global

maximum (IGM) principle, meaning that optimal local

decisions jointly lead to the optimal joint decision for Qtot.

argmax
u

Qtot τ, u, s( ) �
argmax

u1
Q1 τ1, u1( )
.
.

argmax
un

Qn τn, un( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (5)

This enables the agents to take optimal local actions based on

their local policies, while the joint action is also optimal for the

entire system.

MADDPG (Figure 5): Multi-agent DDPG suggests the

association of each agent with a separate pair of actors and

critics, training the critics centrally, and only using the actors

during execution. Actors are trained by local state–action data,

while critics receive training through the global state–action

context.

3 Applications

There are various tasks within a smart factory that can be

formulated as MARL problems, among which scheduling and

transportation are of the highest popularity, while the literature

has also paid attention to maintenance, energy management, and

human–robot collaboration. In this paper, the emphasis is

primarily placed on scheduling and transportation due to the

large number of existing publications; other applications, due to

limited attention in the literature, are discussed selectively to

complete the study.

3.1 Scheduling

In the relevant literature, the job-shop scheduling problem

(JSSP) and its variants have been extensively incorporated as

abstractions of the manufacturing environment and smart

manufacturing systems. Due to the JSSP’s NP-hard nature,

only local optimal solutions can be obtained, which makes it

difficult to address under multi-agent settings. Due to the

complexity associated with developing such scheduling

systems in dynamic environments such as smart factories, the

use of self-adaptive and self-learning approaches in this regard

has recently gained a great deal of attention from practitioners.

MARL approaches offer varieties of advantages for developing

such systems due to their effectiveness in dealing with

uncertainties such as breakdowns and new job insertions.

We can categorize the related works concerning scheduling

into centralized and decentralized classes.

3.1.1 Centralized approaches
Centralized approaches consider a central controller that

manages collaborations between agents, and as a result, this

might lead to delayed decisions and an increase in

computational complexity.

Gabel and Riedmiller (2008) proposed a tabular multi-agent

QL approach for addressing dynamic scheduling problems in

which unexpected events may occur, such as the arrival of new

tasks or the breakdown of equipment, which would require

frequent re-planning. Machine agents perform scheduling

decisions based on local observations. A simple joint action

selection method is used with tabular QL to provide reactive

scheduling policies for dynamic scheduling environments.

Wang and Yan (2016) proposed a tabular multi-agent QL

approach with joint action learners for adaptive assembly

scheduling in an aero-engine manufacturing system. The

authors use clustering to reduce the size of state space and

assign fuzzy memberships to observations to link them to the

states.

Sultana et al. (2020) proposed amulti-agent A2C approach to

supply and chain management for multi-inventory systems in

smart factories. The main goal of this work is to minimize under-

stocking and over-stocking, where both impose negative impacts

on the whole system. The warehouse is responsible for supplying

multiple stores, which face requests for different types of

products. This case is also linked to the smart factory concept,

where, due to the mass customization feature of smart factories,

FIGURE 5
MA-DDPG (Lowe et al. (2017)).
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demands can be submitted to any sub-factories, and thus, the

product parts are collected from the corresponding store (that is

placed inside or near the intended sub-factory). This work

considers two types of agents: the warehouse and store agents.

They both contribute to the accumulative reward and are trained

via an A2C algorithm. The state vectors for both the warehouse

and store agents consist of the demand forecast to further

enhance the performance. The process of training is initiated

by training the store agents independently with the full

availability of stocks in the warehouse and then by training

the warehouse agent based on the model obtained for the

store agents. At the final step, the data are used to further

train all the agents together for performance improvement.

However, this work is more on the side of hierarchical

reinforcement learning (HRL), and concerns such as non-

stationarity have not been discussed and studied.

Luo et al. (2021a) presented a hierarchical RL (HRL)

approach with two hierarchies for production scheduling in

order to minimize the total tardiness and the average machine

utilization rate. The paper uses a high-level DDQN agent to

determine the global optimization goal, and a low-level DDQN is

responsible for selecting appropriate dispatching rules. However,

the use of a high-level controller agent in HRL approaches

increases the depth of the RL problem and thus reduces the

chance of convergence of the learning process.

Luo et al. (2021b) developed a hierarchical multi-agent

proximal policy optimization (HMAPPO) approach as a

means of dealing with the dynamic multi-objective flexible

job-shop scheduling problem, where some operations are

subject to the no-wait constraint. The method incorporates

three types of agents, including the objective agent (as the

controller), the job agent, and the machine agent (as the local

actuators). The object agent periodically specifies temporary

optimization objectives, the job agent chooses the job selection

rule, and the machine agent chooses the machine assignment

rules for the corresponding temporary objectives. With HRL, this

method conducts learning at different levels of abstraction,

whereby the high-level controller (the objective agent) learns

policies over high-level objectives at a slow pace, while the lower-

level actuators (job and machine agents) learn policies over low-

level actions that meet the real-time constraints and goals. This

means that some jobs should be continuously processed without

interruption. However, with HRL, the architecture is not fully

decentralized, as there should be a high-level controller at the

top. It is also important to note that HRL approaches cannot

guarantee the optimality of the overall aggregate policy of

multiple agents.

3.1.2 Decentralized approaches
As opposed to centralized approaches, decentralized

methods are not characterized by a central control mechanism

to manage agents toward their tasks. Decentralized approaches

allow for agile decisions and a reduction in the overall

computational complexities resulting from the elimination of

the need for a central controller.

Qu et al. (2016) developed a two-agent Markov game

approach based on QL to realize real-time cooperation

between machines (scheduling) and the workforce (human

resource management agents). This work aims to obtain an

appropriate performance both for the scheduling agent and

the human resource management agent for handling multi-

process operations associated with different products in the

dynamically changing environment of manufacturing systems.

Bouazza et al. (2017) presented a distributed QL approach for

production scheduling that considers products as intelligent

agents (which perform independently without a centralized

control) and that intends to highlight the significant impact of

considering the contribution of setup time (which is mainly

neglected) in decision-making on the overall performance.

Intelligent product agents can decompose decision-making

into the choice of the machine selection rule and the selection

of the dispatching rule. However, although agents each has

impacts on the environment, this work fails to indicate the

common impact of the decisions made by the agents toward

the environment and toward each other.

Wang et al. (2017) developed a tabular multi-agent QL

approach for dynamic flow-shop scheduling in manufacturing

systems. Machine agents learn to make independent dispatching

decisions simultaneously, regarding the expectations from other

agents to deal with the changing environment. The proposed

method showed superiority over first-in-first-out (FIFO), earliest

due date (EDD), and shortest processing time (SPT) with respect

to the mean flow time, mean lateness, and percentage of late jobs.

In Hong and Lee (2018), the authors used an asynchronous

advantage actor–critic (A3C) to schedule some robotic arms for

cluster cleaning in the semiconductor factory. The learning

occurs in a two-stage process. In the first stage, the learning is

carried out for the robot agent’s action selection policy πarm (aR|

st = s; θarm), and in the second stage, the policy πi,j (ai,j|st = s,

aarm = aR; θi,j) is learned for deciding the start time of the cleaning

operation in the jth chamber at the ith processing step. In order to

perform MARL without dealing with non-stationarity, they used

A3C, which enables learning in multiple parallel environments in

an asynchronous manner.

In Waschneck et al. (2018a) (and also the extended

experiments in Waschneck et al. (2018b)), the authors

presented a multi-agent DQN approach for production

scheduling in the semiconductor industry in an attempt to

address re-entrant production flows and sequence-dependent

setups. This work assigns agents to production stages and assigns

jobs to a single machine in each stage. In an attempt to enhance

stability, while all agents are trained independently, they use the

DQNs of the other agents for the remainder of the work centers.

While the environment is controlled under the influence of all the

DQN agents associated with the agents, in order to deal with

non-stationarity, only one agent trains its DQN actively at a time.
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The active agent considers the actions of the other agents during

its training process. Due to the fact that all the agents strive

toward maximizing a single global reward, the entire process can

be described as cooperative reinforcement learning. The training

process, in this work, comprises two phases. During the first

phase, only one DQN agent is trained (separately repeated for

each agent), while the rest are controlled using heuristics. The

second phase consists of all work centers being controlled by

DQN agents, while agents are trained in turn for a limited

amount of time. The experiments indicate that the proposed

method outperforms some dispatching heuristics. This work,

however, appears to be incapable of handling changes in

production requirements and the number of machines since

the network must be retrained each time such changes are made.

Wang et al. (2018) proposed the concept of shared cognition

via the use of a tabular multiple-agent QL to deal with

disturbances in manufacturing cells. When disturbances occur,

the corresponding agent distributes the information, and the

agents share their cognition to raise the occurrence of a

disturbance (a solution for that). Agents each incorporate a

tabular QL model to learn the appropriate dynamic

scheduling strategy without causing conflicts. The use of

shared cognition provides the manufacturing cells with the

ability to communicate and to distribute disturbed jobs to the

appropriate cells in order to avoid conflicting with the quality of

the service.

Motivated by the approach presented by Waschneck et al.

(2018a), another multi-agent DQN-based approach was

presented in Park et al. (2019) for production scheduling in

semiconductor manufacturing systems. Regarding Waschneck

et al. (2018a), the main objective in this work was to resolve issues

with training the DQN agents in dealing with the scheduling

problem under variable production requirements, such as a

variable number of machines and a variable initial setup

status. This work incorporates a shared DQN (presented in

Foerster et al. (2016)) to improve the scheduling performance

when dealing with variable production settings, especially the

number of machines and the initial setup status. This approach,

similar to Waschneck et al. (2018a), has two main phases. In the

training phase, the production scheduling problem is practiced in

an episodic manner via simulation. A double QL setting is

incorporated, where a target DQN is used and updated

periodically to resolve the stability issues encountered in the

traditional DQN approach. Additionally, experience replay is

considered to improve sample efficiency. In the second phase, the

trained DQNs make appropriate scheduling decisions, even in

unseen cases where some production parameters such as the

number of machines and the initial setup times were not faced in

the training phase.

Qu et al. (2019) developed a multi-agent AC approach for

production scheduling that incorporates experts to guide the

exploration of agents in order to improve the convergence of the

distributed dynamic scheduling process in manufacturing

systems. By following expert advice rather than randomly

exploring the environment, the agents will be able to make

more informed decisions at the start, leading to an increase in

the speed of convergence. Agents select experts who perform

better in the scheduling environment, observe their actions, and

learn a scheduling policy from their demonstrations.

In Kim et al. (2020), the authors presented a multi-agent

DQN-based approach that can learn from the dynamic

environment and make better decisions regarding the

allocation of jobs and the prioritization of tasks for mass

customization. The DQN-based agents corresponding to

different manufacturing components evaluate job priorities

and schedule them via negotiation while continuously

learning to improve their decision-making performance.

The framework consists of three layers (enterprise, cloud,

and machine layers). There is one enterprise agent (EA)

associated with the enterprise layer and two agents associated

with the cloud layer, namely, the database agent (DA) and the

simulation agent (SA). The machine layer accommodates six

types of intelligent agents, including job agents (JAs), negotiation

agents (NAs), job weight learning agents (WLAs), job dropout

learning agents (DRLAs), job dismiss learning agents (DMLAs),

and execution agents (EXAs). These agents interact and

cooperate to realize the following five types of functionalities:

information sharing (via EA, DA, and SA), job index calculation

(via JA), negotiation (via NA), learning (via WLA, SRLA, and

DMLA), and execution (via EXA). This work is primarily

centered on the use of RL for negotiation learning to realize

communications between the agents in order to save the setup

process. In this process, if the sum of the setup and performance

times of incorporating more machines causes a longer job

completion time than those of doing the job using fewer

machines, negotiations will lead the scheduling process to use

fewer machines. Figure 6 illustrates the architecture of the smart

factory.

Liu et al. (2020) presented a parallel training mechanism

under multi-agent settings by using a deep deterministic policy

gradient (DDPG) approach and asynchronous updates in an

effort to address the potential sources of uncertainty, such as

machine breakdowns and unexpected incoming orders. In this

work, machines are agents, and the state space includes a

processing time matrix, a binary matrix of the jobs assigned

to agents, and a binary matrix of completed jobs. These matrices

are then used as inputs to a convolutional neural network (CNN),

which is similar to the use of CNNs for RGB image processing

tasks. The action space is limited to a choice among a set of

dispatching rules, such as SPT and FIFO. Additionally, the

reward is defined as a function of the process time of the

selected job, the remaining process time of the job, and the

comparison of the smallest makespan. Figure 7 represents the

MARL approach presented in this work.

This work incorporates a global network that updates

parameters based on the aggregate gradient of the exploring
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agents, and the exploring agents copy weights asynchronously

from the global network. To deal with non-stationarity, agents are

deployed in separate and parallel environments, each exploring a

different part of the problem space, so that they cannot affect each

other. Therefore, cooperation between agents under the MARL

settings is established through the global network.

FIGURE 6
Smart factory presented in Kim et al. (2020).

FIGURE 7
MARL method presented in Liu et al. (2020).
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Wang (2020) developed a multi-agent weighted QL approach

for adaptive job-shop scheduling. The work incorporates several

agents, including machine, job, state, and buffer agents. These

agents interact with each other to optimize earliness and

tardiness in a dynamic manufacturing environment. This

work uses the tabular QL form and works based on clustered

system states and the degree of difference between the actual state

and the cluster’s representative in order to avoid explosion of the

state space. Actions are taken based on a search algorithm to

obtain the maximum Q at the corresponding state (the cluster’s

representative state). However, a negotiation protocol is used

between the agents upon the receipt of a new job. A number of

shortcomings of this approach can be identified, such as the need

for a long initial exploration phase and the need to select

appropriate parameters (for example, the number of clusters).

Baer et al. (2020) presented a multi-agent DQN that uses

independent action learners through parameter sharing and an

experience replay memory. Agents learn in turn, while the rest

are fixed. Agents each incorporate a DQN with an input size

equal to the state vector. Each agent consists of one DQN (in the

parameter sharing approach) with an input layer for the length of

the state vector. All scenarios have a fixed job specification and

share an equal local optimization objective.

Dittrich and Fohlmeister (2020) proposed a DQN-based

approach for order scheduling in manufacturing systems for

minimizing the mean cycle time that implements MARL via the

use of both local and global rewards (for achieving cooperation

between agents). The machine agents only collect data, while the

order agents use DQNs to make scheduling decisions. The agents

communicate to exchange information and report statuses. This

work incorporates the principles of CTDE. Local immediate

rewards are given to order agents during the processing of

orders, and global rewards redefine Q-values for a global

DQN when the orders are complete and new orders are to be

initiated. In other words, local DQNs are replaced by the global

DQN when a new order is initiated.

In Denkena et al. (2021), the authors improved the work

presented in Dittrich and Fohlmeister (2020) by incorporating

the agent’s field of view and formulating the problem as a Dec-

POMDP.

Zhou et al. (2021) proposed a smart factory comprising

varieties of components and developed a multi-agent

actor–critic approach for decentralized job scheduling. The

machines each correspond with an actor–critic agent

(enhanced also with target policy and target critic networks),

which can all observe all the states of the other agents (via

communication) in order to deal with the dynamic environment

and also deal with non-stationarity. The architecture of the

MARL approach for this work is illustrated in Figure 8. The

schedulers or the actors in this paper are called the scheduling

policy network, and they each schedule their next operation

based on the states of the other machine. Thus, they make fully

informed decisions.

Pol et al. (2021) addressed the challenge of achieving

collaboration between multiple agents in MARL for

scheduling purposes in manufacturing systems when dealing

with objectives such as makespan minimization. The authors

developed a handcrafted empirical logic to quickly estimate a

reference makespan that works based on the sum of all operation

times per job. They proposed a dense local reward augmented by

global reward factors and a sparse global reward to realize

cooperation between agents. Their work is based on DQN and

simply includes other agents’ information in the state space of

each agent to let them make more informed decisions when

dealing with the dynamically changing environment of multiple

agents. Communication is realized implicitly due to the fixed

topology of the manufacturing system, and the DQN is shared

among the agents to simplify the training process. To deal with

the credit assignment problem, training is performed in two

phases, that is, first with local rewards and then retaining with the

local rewards augmented by a global reward factor. In addition,

they proposed the use of sparse rewards given to each agent at the

end of episodes, in place of the global reward, in an effort to

simplify the process of learning to cooperate (by combining

eligibility traces in place of replay memories).

Gankin et al. (2021) presented a multi-agent DQN approach

for minimizing production costs in modular manufacturing

systems. The environment comprises a grid of 5 ×

5 production modules, and AGV units are used to carry

products between the modules. AGV units are modeled as

agents that use a shared DQN (with an experience buffer for

training) to decide where to route jobs, considering the source

module. Agents identify themselves based on their location, which

is used in the state vector. Action filtering is considered via setting

too low Q-values to invalidate actions. This work considers

scheduling and routing simultaneously.

Wang et al. (2022b) incorporated the QMIX algorithm to

develop a MARL approach for scheduling in resource

preemption environments. QMIX works on CTDE, which

provides agents with local and global objectives. QMIX has a

mechanism that encourages the agents to achieve higher global

rewards rather than only focusing on local rewards.

Johnson et al. (2022) proposed a multi-agent DQN approach

for scheduling the assembly jobs that arrive dynamically in a

robotic assembly cell. Their work is based on CTDE, with local

independent agents and limited communications between agents

to reduce communication costs. Agents each correspond to a robot

that distributes jobs over a conveyor belt with a limited window

size to workbenches. This work uses a shared DQN enriched by a

target network to avoid the overestimation problem encountered

with the standard multi-agent DQN architecture. The shared

DQN is fed by properly encoded observation vectors to

distinguish between the agents and equipped with a filter layer

to filter out invalid actions in order to reduce the convergence time.

Gerpott et al. (2022) presented a distributed advantage

actor–critic (A2C) method for production scheduling in two-
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stage hybrid flow-shop (THFS) manufacturing systems as an

attempt to minimize the total tardiness and the makespan. This

work uses completely identical scheduling agents that explore

different parts of the problem space and share their gradients

with the critic. This study uses global parameters that are shared

by several agents who explore the environment concurrently. As

a synchronous and deterministic method, A2C waits for each

agent to complete the corresponding portion of experiments and

then performs a global update by taking the average of all

gradients received from the actors. A coordinator is used that

manages the collection of local gradients and passes them to the

global network.Table 1 summarizes the salient attributes of the

reviewed applications of MARL to scheduling tasks within smart

factories. In the table, the terms “Comm”, “Env”, “Col”, and

“Dec” are the shortened forms for “communication quality”,

“environment”, “collaboration method”, and “decentralized

versus centralized management”, respectively. Collaboration

quality represents the way in which collaboration is

established between the agent, which can be through

environment (Env), communication (Comm), parameter

sharing (Param), state sharing (SS), a high-level controller

(HLC), and asynchronous updates (ASUs).

3.2 Transportation and monitoring
(moving agents)

Among the characteristics of smart factories is the large

amount of work performed by autonomous moving devices

serving a variety of functions, including material handling,

monitoring, providing support, and delivering products.

Moving robots such as drones, autonomous guided vehicles

(AGVs), and overhead hoist transporters (OHTs) are able to

move or transport material from one location to another, while

the multi-agent setting imposes issues such as uncertainty.

MARL has also been incorporated to address moving robots

for various functions in smart factories.

3.2.1 Multi-agent pathfinding
Pham et al. (2018) presented a multi-agent QL approach to

UAV coordination for the optimal sensing coverage problem. In

this work, UAVs are used as mobile sensors to provide visual

coverage over a field. Thus, the aim is to coordinate UAVs in such

a way that coverage is maximized and overlaps are minimized. The

UAVs must then cooperate in order to accomplish the stated

objective. A game-theoretical correlated equilibrium mechanism

FIGURE 8
Smart factory presented in Zhou et al. (2021).
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and a function approximation are used to address the challenges of

joint-action selection and the high dimensions of the problem. The

problem is simulated in a 3D environment of identical cubic cells

and formulated as a general locational optimization problem. The

joint-action selection problem requires that the agents reach a

consensus, and thus the correlated equilibrium (which can be

solved using linear programming) was used to evaluate the

agreement regarding the selection of the joint-action set. This

paper uses fixed sparse representation (FSR) and the radial basis

function (RBF) as an attempt to map the original Q to a parameter

vector θ by using state- and action-dependent basis functions ϕ.

In order to address the multi-agent path finding (MAPF)

problem, Sartoretti et al. (2019) incorporated A3C to introduce a

MARL approach called PRIMAL (pathfinding via reinforcement

and imitation multi-agent learning). PRIMAL integrates RL with

imitation learning (IL) to enable agents to learn the

homogeneous path planning policy needed for online

coordination in a POMDP environment. IL serves as a

centralized planner and learns the impact of actions on the

agents and the team as a whole in order to train the agents

for coordination (behavioral cloning) in order to eliminate the

need for explicit communication. PRIMALwas implemented in a

partially observable discrete grid world with a limited field of

view (FOV), meaning that the agents have local observations.

Agents are modeled via a CNN of seven convolutional layers,

followed by an LSTM, to approximate the individual agent’s

TABLE 1 Comparison between the MARL approaches incorporated for scheduling in smart factories.

Reference RL
method

Comm Agent Env Metrics Col Dec/
Cen

Gabel and Riedmiller
(2008)

QL None Scheduling agents MMDP Makespan Env Cen

Wang and Yan (2016) QL Explicit Manufacturing cells MDP Run-through time and costs Env Cen

Sultana et al. (2020) A2C None Warehouse and store MDP Replenishment cost HLC Cen

Luo et al. (2021a) THDQN None Work-centers MDP Tardiness and utilization HLC Cen

Luo et al. (2021b) HRL Implicit Objective, job, and machine agents MDP Tardiness, utilization rate, and
workload variance

HLC Cen

Qu et al. (2016) QL None Machines MDP Total production costs Env Dec

Bouazza et al. (2017) IQL Limited Products MDP Waiting time Enc Dec

Wang et al. (2017) Tabular
MAQL

None Machines MDP (Mean) lateness, flow time, and late
job rate

Env Dec

Hong and Lee (2018) A3C None Chamber and robots MDP Productivity AsU Dec

Waschneck et al.
(2018a)

DQN None Work-centers MDP Run-through time and cycle times Param Dec

Waschneck et al.
(2018b)

DQN None Work-centers MDP Capacity utilization Env Dec

Wang et al. (2018) SMGWQL Explicit Manufacturing cell MDP Cost Comm Dec

Park et al. (2019) DQN Explicit EA, DA, SA, NA, JA, WLA, DRLA,
DMLA, and EXA

MDP Makespan Comm Dec

Qu et al. (2019) DQN None Scheduling agents Semi-MDP Work in progress and revenue Param Dec

Kim et al. (2020) DQN Explicit Machines MDP Productivity and delay Comm Dec

Liu et al. (2020) DDPG None Scheduling agents MMDP Makespan AsU Dec

Wang (2020) WQ Explicit Job, state, machines, and buffers MDP Tardiness and run-time Comm Dec

Baer et al. (2020) DQN None Independent schedulers MDP Makespan Env Dec

Dittrich and
Fohlmeister (2020)

DQN Explicit Orders and machines MDP Mean cycle times Param Dec

Denkena et al. (2021) DQN Limited Orders and machines Dec-
POMDP

Mean tardiness Param Dec

Zhou et al. (2021) MAAC Explicit Machines MDP Makespan Comm Dec

Pol et al. (2021) DQN Implicit Products DEC-
POMDP

Makespan SS Dec

Gankin et al. (2021) MA-DQN None Workstations MDP Production rate Param Dec

Wang X. et al. (2022) QMix None Jobs DEC-
POMDP

Makespan QMix Dec

Johnson et al. (2022) DQN Limited Assembly cells MDP Makespan Param Dec

Gerpott et al. (2022) A2C Parallel scheduling agents MDP Tardiness and makespan Param Dec
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policy. Collision results in a penalty, and a large positive reward is

obtained upon the achievement of the goal. A3C trains the agents

via local states, which might result in selfishness (locally

optimized decisions), and thus, randomized environments

were used to avoid selfishness. PRIMAL does not allow agents

to follow the others. Thus, this leads to a reduced collision

chance. More details on A3C can be found in Mnih et al. (2016).

Qie et al. (2019) proposed a multi-agent DDPG (MADDPG)

approach for the multi-UAV task assignment and path planning

problem. While the two tasks are optimization problems that are

commonly addressed separately in dynamic environments, a

large number of recalculations are required to be performed

in real-time. In spite of the fact that all of the UAVs are identical,

the formation of the UAVs over the distributed locations of the

targets should be optimized to reach the total flight distance,

taking into consideration the presence of risky areas in the field

and the likelihood of collisions. During the training phase, all

agents have access to the observations and actions of other agents

through a distributed actor–critic architecture (DDPG uses

actor–critic at its core). Actors see local observations, whereas

critics have access to the entire observation space (each agent has

an actor and a critic). During the execution phase, only actors are

active in the field, which means that the execution process is

decentralized.

Zhiyao and Sartoretti (2020) proposed PRIMALc, which

extended the PRIMAL’s search space from two dimensions to

three dimensions. PRIMALc suggested the use of the capacity of

agent modeling to enhance the performance of path planning via

the prediction of the actions of other agents in a decoupled

manner. However, learning others’ behaviors introduces the

problem of prediction inaccuracies and would appear to be

ineffective in practice.

Zhang et al. (2020b) proposed a decentralized multi-agent

actor–critic-based framework that leverages the multi-step-

ahead tree search (MATS) strategy to address the AGV

pathfinding problem. To address scalability for a large

number of agents while maintaining the response time within

a predetermined range, experiments were conducted in a real-

world warehouse. Different from PRIMAL (which avoids letting

agents follow the others), this work allowed agents to follow the

others to improve the job completion rate while avoiding

collisions via the incorporation of MATS and post processing

the actions. MATS assists in finding the possible actions from

other agents so that possible collisions could be predicted and

avoided by reducing the probability of taking actions that result

in collisions. This work was able to outperform PRIMAL when

applied to a real-world warehouse case.

Malus et al. (2020) incorporated the twin-delayed deep

deterministic (TD3) policy gradient algorithm for autonomous

mobile robots (AMRs) scheduling to address the complexities

encountered due to rapid changes in the production environment

and the tight relationships between dispatching and routing

(planning and execution) problems. AMRs are distinguished

from AGVs by their navigational capabilities. AMRs are

equipped with sensory devices that detect the surrounding

static and dynamic objects, allowing them to navigate and

localize autonomously. Controlling a group of mobile robots

is called a fleet management system (FMS), which performs tasks

such as transportation, order dispatching, routing, and the

scheduling of job executions. The problem with AMRs is that

they are often tightly coupled, resulting in a system of immense

computational complexity. Consequently, centralized

approaches to managing fleets of AMRs often fail to provide

real-time routing and dispatching at the same time. TD3 is an

extension of the DDPG algorithm (both work on the basis of the

actor–critic algorithm) used for continuous action-space

problems wherein neural networks are incorporated to

concurrently approximate two Q-networks and a policy

network. In this work, with TD3, agents see local and partial

observations, and each has a dedicated policy for mapping local

states to actions. An agent’s action involves a bidding value

between 0 and 1, where the highest value between the two

currently assigned orders is taken (one for execution and one

for the next processing step for real-time constraints). The

reward design considers the cooperative nature of the agents,

and all the agents receive the same reward/penalty. The order,

once received by the agent, is added to the agent’s queue of

orders, and the corresponding AMR vehicle performs it

autonomously in a first-in-first-out manner. In the event that

an order is completed within the time constraint, all agents

receive a positive constant reward. Otherwise, they will be

subjected to a penalty that increases quadratically with respect

to tardiness.

Damani et al. (2021) later proposed PRIMAL2 to address

lifelong multi-agent pathfinding (LMAPF) for applications such

as smart warehousing in smart factories. LMAPF is a variant of

MAPF, in which agents are assigned a new goal as soon as their

current objective is reached in a dense and structured

environment such as industrial warehouses.

PRIMAL2 suggests the use of convention learning to enable

the agents to learn a generalizable policy. Identifying certain

conventions and forcing agents to learn them can enhance

performance. They also incorporate environment

randomization (sampling from a variety of environments

during training) to enable the agents to learn to deal with

different environments. Nevertheless, they assume that the

tasks are sparsely distributed across random locations, thereby

eliminating local congestion. PRIMAL2, like previous versions of

PRIMAL, has a long training time.

Shen et al. (2021) combined the multi-agent asynchronous

advantage actor–critic (MA-A3C) with an additional attention

mechanism for the multi-AGV pick and place problem in smart

warehousing systems. This attention mechanism allows attention

to be focused on the beneficial information that arises from the

interaction between AGV units in order to increase learning

efficiency andminimize the corresponding complexity. They also
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used CTDE to address the dynamic Markov environment and

non-stationarity. By incorporating the attention mechanism, this

work is able to select AGV units dynamically during the training

and thus improve the collaboration between AGV agents. The

experiments were conducted on the Amazon Kiva system,

consisting of a picking table, shelf, and AGV. Five possible

choices are available in this system: up, down, right, left, and

stay. The experiments reported that this method outperformed

MAAC, MADDPG, MADDPG + SAC, and COMA + SAC.

Choi et al. (2022) incorporated QMIX for the cooperative

control of AGVs in smart factories’ warehouses. An agent can

choose an action in a grid-like environment (move forward,

backward, to the left, to the right, and to stop) and receive an

individual reward for its action. The reward is positive if the

Manhattan distance to the target is reduced as a result of the

action taken. CTDE was incorporated to address both the

scalability issue of centralized learning and the non-

stationarity of a fully decentralized learning process at the

same time. The method is able to evaluate individual agents’

contributions due to the receipt of both the individual reward Qa

and the global reward Qtot from the environment in QMIX. This

method was able to outperform IQL.

Yun et al. (2022) incorporated an actor–critic method called

CommNet for the deployment of CCTV-equipped multi-UAVs

with a focus on autonomous network recovery to ensure reliable

industry surveillance. As mobile CCTV UAVs can continuously

move over a wide area, they provide a robust solution for

surveillance in dynamic manufacturing environments. In

order to enhance the surveillance performance, the study aims

to improve the energy consumption of surveillance drones. In

this case, surveillance drones are deployed in heavily populated

areas. This work involves a single UAV serving as the

communication leader, some UAVs serving as agents, and

some targets serving as surveillance targets. Communication

between UAV agents is handled by the leader UAV agent.

The agents observe the local surroundings, take joint actions,

and are rewarded individually and jointly for their cooperative

efforts.

3.2.2 Pathfinding + scheduling
Mukhutdinov et al. (2019) developed a multi-agent IQL

approach for material handling in smart factories, inspired by

the packet routing problem in computer networks. In this work,

routing hubs are considered intelligent agents, which are

equivalent to routers in computer networks. The formulation

of this routing system is considered a graph, where nodes are

router agents and edges are the paths between the agents. Each

agent only observes its neighbor agents, and actions are defined

as choosing between the outgoing edges. Each router agent has a

DQN component for the approximating function Qv (Sv, u),

which is the estimation of the minimal cost of the path from the

routing agent v to the destination of the current node d via a

neighbor u. A reward for action is the negated cost of the edge

over which the packet has been sent: r = −Cost (e, Se). By

modeling each router using a DQN, each router is able to

account for heterogeneous data about its environment, which

allows for the optimization of more complicated cost functions,

such as the simultaneous optimization of bag delivery time and

energy consumption in a baggage handling system.

Zhang et al. (2020a) proposed a centralizedmulti-agent DQN

approach for the open-pit mining operational planning

(OPMOP) problem (an NP-hard problem that seeks to

balance the tradeoffs between mine productivity and

operational costs), which works based on learning the

memories from heterogeneous agents. Open-pit mine dispatch

decisions coordinate the route planning of trucks to shovels and

dumps for the loading and delivery of ore. The queuing of trucks

as a result of a high truck arrival rate and the starvation of shovels

as a result of a low truck arrival rate can both negatively impact

productivity. Instead of being restricted to fixed routes, trucks

can be dispatched to any shovel/dump in a dynamic allocation

system. An appropriate dispatch policy should minimize both

shovel starvation and truck queuing. This work presents an

experience sharing DQN in order to provide a shared learning

process for heterogeneous agents and also to deal with unplanned

truck failures and the introduction of new trucks (without

retraining). A post-processing step and a memory tailoring

process were used to enable the DQNs to be trained by the

samples obtained from trucks of diverse properties

(heterogeneity).

Li et al. (2021) proposed MADDPG-IPF (information

potential field) as a means of enhancing the adaptability of

AGV coordination to different scenarios in smart factories for

material handling. Typically, raw materials used in

manufacturing workshops are stored at various locations

throughout a warehouse. Thus, AGVs have to visit a number

of locations in order to coordinate transportation tasks. To reach

different targets, all AGVsmust avoid collisions and self-organize

as quickly as possible. The authors address the problem of reward

sparsity via the incorporation of the information potential field

(IPF) in the reward-shaping strategy, which brings stepwise

rewards and implicitly leads AGVs toward material handling

targets.

3.2.3 Mobile operator
Karapantelakis and Fersman (2021) developed a multi-agent

deep IQL-based approach to provide connectivity coverage

services via distributed mobile network operators. To

respond to the dynamic demands on mobile networks,

mobile operators collaborate as individual agents. Agents

have full observability of their environment and train their

deep recurrent Q-network (DRQN) independently with respect

to a common joint reward function. In order to mitigate the

non-stationarity imposed by IQL, a cyclic replay memory

(replacing old memories with recent ones) and a global

target network are used.
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3.2.4 Overhead hoist transporters
Ahn and Park (2019) incorporated a graph neural network

(GNN)-based factorized policy gradient (GNN-FPG) method

based on the factorized actor-factorized critic (fAfC) method for

the cooperative rebalancing of overhead hoist transporters

(OHTs) as an attempt to enhance the productivity (reduce the

lead, delivery, and retrieving times) of the material handling

process in the semiconductor fabrication (Fab) system. OHTs are

used to transport semiconductor wafers between machines and

are considered to be an essential component of an automated

material handling system (AMHS). Generally speaking, OHT

refers to an automated transport system that travels on an

overhead track via a belt-driven hoisting mechanism that

facilitates direct access to the load port of the stocker. This

work proposes a MARL algorithm for dispatching, routing,

and rebalancing these OHTs. The problem of OHT

rebalancing is quite similar to the problem of empty vehicle

redistribution (EVR) in a traffic system. In this work, the Fab is

discretized into a number of zones, and decentralized rebalancing

strategies are developed for the idle OHTs of each zone (idle

OHTs are assigned to new zones) in order to minimize the lead

(retrieval) time and congestion. This work uses a collective

decentralized partially observable Markov decision process

(CDec-POMDP) for which the objective is to obtain a

decentralized policy with respect to local observations in order

to achieve the system-level goal. The proposed cooperative

rebalancing strategy accepts the distributions of idle OHTs,

working OHTs, and the loads (delivering tasks) over

discretized zones in the Fab as an input and outputs

decentralized rebalancing strategies for each zone.

Ahn and Park (2021) proposed a factorized actor–critic

(FAC) method for establishing cooperative zone-based

rebalancing (CZR) for OHTs in the semiconductor industry.

The objective of this work is to reduce the average retrieval time

and the OHT utilization ratio by incorporating graph neural

networks. Using joint state and joint action information, a central

model learns the interactions between the agents and the

corresponding future accumulated shared return. Using only

local observations and communication information, the

learned policy is executed independently by the agent. The

rebalancing problem is formulated as a partially observable

Markov game (POMG), in which the Nash equilibrium policy

of the game is to be determined. The agents in a stochastic game

strive to obtain the policy that maximizes the expected

accumulated reward. Decentralized optimal control was

reformulated as a general stochastic game by the authors.

3.2.5 Pick and place
Zong et al. (2022) proposed a multi-agent A2C approach for

the cooperative pickup and delivery problem (as a variant of the

vehicle routing problem) for warehousing in smart factories. The

work also provides paired delivery, which implies that a vehicle

might take more than one product part to deliver to more than

one destination. In order to deal with the structural dependencies

imposed between deliveries, this work incorporates a paired

context embedding architecture based on the transformer

model (Vaswani et al., 2017). A2C (with a joint critic and

individual actors) and communication were used to build a

centralized architecture. While different agents generate their

individual policies (actors), they share the paired context

embedding and context encoding within the centralized

architecture of A2C.

Lau and Sengupta (2022) developed a shared experience

actor–critic (SEAC) approach for the lifelong MAPF problem.

The work was formulated as a partially observable Markov

decision process, with the MARL’s aim being to determine the

optimal joint policy of the agents. By sharing experiences, agents

can learn from one another’s experiences without receiving the

same rewards. In SEAC, the trajectories collected from other

agents are incorporated for off-policy training, while importance

sampling with a behavioral policy was used to correct the off-

policy data.

Table 2 compares the literature in relation to the applications

of MARL to transportation within smart factories in terms of its

salient characteristics. In the table, the terms “Comm”, “Env”,

“Col”, and “Dec” are the shortened forms for “communication

quality”, “environment”, “collaboration method”, and

“decentralized versus centralized management”, respectively.

Collaboration quality represents the way in which

collaboration is established between the agent, which can be

through environment (Env), communication (Comm),

parameter sharing (Param), state sharing (SS), a high-level

controller (HLC), and asynchronous updates (ASUs).

3.3 Maintenance

Considering various reasons such as machine breakdowns

and deadlocks, smart factories also need automated and efficient

maintenance strategies. MARL has been applied to maintenance

problems in the relevant literature to provide a more automated

solution to the uncertainty faced in the maintenance process.

Wang et al. (2016) presented a tabular multi-agent QL approach

for making maintenance decisions in a two-machine system. The

presented method aims tomake the agents learn the control-limit

maintenance policy for each machine associated with the

observed state represented by the yield level and buffer level.

Due to the non-synchronicity of the state transitions between

both machines, an asynchronous updating rule is also

incorporated in the learning process. Zinn et al. (2021)

presented a MARL system based on DQN and actor–critic to

learn the distributed fault-tolerant control policies for automated

production systems during fault recovery to increase availability.

Liu et al. (2022) proposed a multi-agent DQN approach to make

maintenance scheduling decisions for personnel and also

production control during maintenance. This work

Frontiers in Robotics and AI frontiersin.org14

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

68

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340


incorporates a CNN-LSTM-based architecture for the DQN,

while the impacts of agents are neglected. Su et al. (2022)

presented a MARL approach using value decomposition

actor–critic (VDAC) to enable physical machines (in a serial

production line that requires multiple levels of machine

decisions) to learn local maintenance policies in a distributed

and cooperative manner. The proposed solution is formulated as

a DEC-POMDP problem, and CTDE was used to provide the

solution. Action masking is also incorporated to filter invalid

actions. In VDAC, distributed actors make decisions for

designated machines, while a central critic estimates the global

state value.

3.4 Energy

The dependence of smart components in smart factories on

electrical energy, together with the need for cost-effective,

reliable, and efficient energy supplies, has led to the use of

smart grids that are adaptive and can distribute energy in an

on-demand manner. MARL has also been applied to smart grids.

Smart grids and smart manufacturing systems share common

properties/objectives, such as communication, integration, and

automation, which define the commonalities of their

applications. Samadi et al. (2020) presented a tabular MA-IQL

approach for decentralized energy management in smart grids

and proposed a system including high-level energy management

agents, low-level heterogeneous resource agents, and consumer

agents. The agents adapt themselves to maximize their profits

without communication in the grid environment. Wang et al.

(2022c) presented an MA-DDQN approach, named

P-MADDQN, for resilience-driven routing and the scheduling

of mobile energy storage systems (MESSs). This work formulates

the problem of POMG and MESS agents interacting with the

environment and making independent decisions for

simultaneous routing and scheduling based on local

information. Charbonnier et al. (2022) presented a tabular

MA-QL approach for energy coordination management.

TABLE 2 Comparison between the applications of MARL to transportation tasks in smart factories.

Reference RL method Comm Agent Env Metrics Col Dec/
Cen

Multi-agent pathfinding

Pham et al. (2018) MAQL Implicit-
limited

UAVs Markov
game

Coverage Param Cen

Sartoretti et al. (2019) A3C Implicit Moving robots POMDP Travel distance and success rate AsU Dec

Qie et al. (2019) MADDPG None MDP Travel costs and collision Param Dec

Zhiyao and Sartoretti (2020) A2C Explicit Moving robots POMDP Travel distance and success rate AsU Dec

Zhang Y. et al. (2020) AC None AGV units MDP Collision rate and job completion rate Param Dec

Malus et al. (2020) TD3 None AMR agents POMDP Completion time Param Dec

Damani et al. (2021) A3C Implicit Moving robots POMDP Travel distance and success rate Param Dec

Shen et al. (2021) MAA3C None AGV units MDP Collision rate and travel distance Comm AsU

Choi et al. (2022) QMix Explicit AGV units Dec-
POMDP

Path length and success rate QMix Dec

Yun et al. (2022) AC Explicit UAVs MMDP Coverage Comm Dec

Multi-agent pathfinding +scheduling

Mukhutdinov et al. (2019) IQL None Routing units POMDP Delivery time and energy Env Dec

Zhang C. et al. (2020) EM-DQN None Trucks POMDP Production rate, cycle period, and
matching factor

Param Dec

Li et al. (2021) MADDPG-IPF Explicit AGV units POMDP Task response time Param Dec

Mobile operator

Karapantelakis and Fersman
(2021)

IQL and DRQN Explicit Operator
agents

Dec-
POMPD

Service fulfillment Env Dec

OHTs

Ahn and Park (2019) fAfC None OHT zones CDec-
POMDP

Lead time and congestion Param Dec

Ahn and Park (2021) Factorized AC Explicit Zone agents POMG Retrieval time and utilization ratio Param Dec

Pick and place

Zong et al. (2022) A2C (central
critic)

Share info AGV units MDP Travel distance Param Dec

Lau and Sengupta (2022) SEAC None Vehicles POMDP Flow time, makespan, and delivery rate Param Dec
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Agents are proactive consumers, and local observations are

modeled in a Dec-POMDP environment; they make

individual decisions to find a trade-off between local, grid,

and social objectives. Bollinger and Evins (2016) presented a

MADQN and anotherMARL approach known as the continuous

actor–critic learning automaton (CACLA) for optimizing

technology deployment in distributed multi-energy systems.

The work is based on technology agents, building agents, a

grid agent, and a market agent. Alqahtani et al. (2022)

presented a multi-agent AC approach for the energy

scheduling and routing of a large fleet of electric vehicles

(EVs) in a smart grid to address the power delivery problem.

It is possible to use a fleet of EV batteries as a source of

sustainable energy since they are capable of storing solar

energy and discharging it to the power grids later on, which

can result in lower energy costs. It is important to note that the

use of a fleet of electric vehicles for power generation is only

effective if they are dispersed appropriately across the area of

need. The MARL approach is incorporated to address the joint

problem of vehicle routing (VR) and energy dispatching (ED),

with a special focus on enhancing the scalability and addressing

the complexities involved. The problem is formulated as a DEC-

MDP problem, while the vehicle’s position, the vehicle’s state of

charge, solar irradiance, and power load are used as state

variables. In addition, the action set includes mobility actions

(up, down, left, right, or stay still) in the grid and energy dispatch

decisions (charging, discharging, and idle). This paper uses

actor–critic, where the actors are local and the critic is shared

among the agents.

3.5 Human–robot collaboration

Humans play an important role in manufacturing systems,

and their impact on the manufacturing environment is

significant when designing smart factories. As a result, due to

the unpredictable and dynamic behavior of human workers, their

role should not be considered as a stationary part of the

environment, while this fact has mainly been neglected in the

relevant literature. HRC is a broad field, and the application of RL

to HRC should be formulated in multi-agent settings. In this

study, due to the limitations, we only bring some representative

examples and leave the comprehensive study for future work.

Yu et al. (2021) presented a MA-DQN approach for

scheduling human and robot collaborative tasks to optimize

the completion time in an assembly chess board simulation of

the manufacturing environment. The agent learns the optimal

scheduling policy without the need for human intervention or

expert knowledge, using a Markov game model. Wang et al.

(2022a) incorporated a multi-agent extension of generative

adversarial imitation learning (GAIL) to generate a diverse

array of human behaviors from an example set. The behavior

is then used in a MARL approach to account for the human

during the human–robot handover and for the multi-step

collaborative manipulation tasks. An approach presented by

Zhang et al. (2022) generates the appropriate action sequence

for humans and robots in collaborative assembly tasks using a

MADDPG approach. A real-time display of the agent–human’s

behavior is shown to the operator. In this scenario, the operator

would be able to carry out the assembly task in accordance with

the planned assembly behavior under the globally optimal

strategy for the expected performance.

3.6 Other applications

Chen et al. (2021) presented a multi-agent DDPG approach

for the coordinated welding of multiple robots with a continuous

action space and local observations. Lan et al. (2021) studied the

application of MARL to multi-robot pick and place problems in

Dec-POMDP environments and suggested the use of the variants

of MADQN and DRQN in combination with CTDE. Ji and Jin

(2022) proposed a MARL system based on independent DQN

agents in an attempt to capture self-organizing knowledge for

developing multi-robot self-assembly systems. They obtained

superior results for decentralized teamwork rather than a

centralized approach.

3.7 Discussion and potentials

In this section, we review the applications that used MARL

to address control problems in smart factories, with a main

focus on scheduling and transportation and a brief review of

maintenance, energy, and human–robot collaboration. Upon

close examination, we can observe patterns for how MARL,

which was a significantly difficult approach to implement, was

able to be used for different tasks in smart factories. In this

section, we identify a number of concerns and analyze them

based on a review of the works provided earlier. The main

concerns are the choice of the MARL method, scalability,

problem formulation, scalability, convergence, a cooperation

strategy, and information exchange. For the most part, MARL

problems are significantly prone to non-stationarity, and

different approaches showed certain ways to deal with this

problem. Joint actions are one of the main approaches used to

deal with non-stationarity, but this has drawbacks such as the

difficulty of designing the exploration strategy due to the large

joint action space. The other approach used was a profound

support of agents, with all the necessary information about the

states and actions of the other agents. However, the

corresponding information sharing costs reduce the

scalability and efficiency of this approach. A close look at

the most comprehensive approaches that incorporate a larger

number of agents, such as Kim et al. (2020) and Zhou et al.

(2021), demonstrates the fact that scalable approaches tend to
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use more sparse communication strategies where agents are

selectively chosen to exchange information to save time and

cost. A more advanced approach, however, is the use of

negotiation-based strategies incorporated in Wang (2020)

and Kim et al. (2020), which can even be enhanced by

taking advantage of negotiation learning. Furthermore, even

those applications that used independent learners incorporated

some techniques to deal with non-stationarity, such as

asynchronous updates, CTDE, exploring separate parts of the

environments in parallel with the aggregate gradient, and

behavior forecasting. However, as the dynamicity of the

environment grows, adequate information should be

exchanged between agents for making informed decisions;

otherwise, impacts from other agents on the environment

cannot always be avoided or predicted. Therefore, we

conclude that establishing spare communications is the

recommended solution for both efficiency and rapidity.

Collaboration is another important concern in MARL

applications, which is mainly realized via the definition of a

global reward. However, the credit assignment problem is

challenging in this regard, since decomposing the reward to

determine the share of each agent is not always possible.

Without consideration of the credit assignment problem, it

is possible that some of the agents become lazy and have a

negative impact on the global performance of the system.

Nonetheless, approaches such as QMIX suggest a dedicated

approach to considering both global and local rewards in the

process of learning. However, in real-time environments,

QMIX might not show a good performance since an agent’s

action might become dependent on the actions taken by other

agents. The choice of the MARL method is also another

concern, as it has an impact on the convergence and also on

other performance factors. DQN, as the most popular

approach, has certain limitations, such as the dimensionality

and continuity of the state–action space. Altogether, AC-based

methods such as MADDPG have other limitations such as slow

convergence due to a larger number of parameters included in

the learning process. As the last point to discuss in this section,

the choice of state variables and the corresponding concept

behind the definition of an agent have a significant impact on

the performance of MARL systems. Considering the fact that

the most successful applications of MARL incorporate

supervised learning techniques such as NNs (and DNNs) for

function approximation, the complexity of the problem grows

significantly in the event of the choice of ineffective state

variables. A correlation between these variables, randomness,

anomalies, duplicates, low content, the irrelevance of a variable,

and the number and usage of the variables, all influence the

performance of the MARL system. As an example, the one hot

encoding technique is one of the main approaches that should

FIGURE 9
Matching between smart factory features and MARL features.

Frontiers in Robotics and AI frontiersin.org17

Bahrpeyma and Reichelt 10.3389/frobt.2022.1027340

71

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1027340


be incorporated when dealing with categorical state variables to

be used as an input to a DNN.

4 Mapping from smart factory
features to multi-agent
reinforcement learning features

In the previous section, we reviewed the literature on the

applications of MARL to tasks within a smart factory and noticed

that there are various ways to convert these tasks into a MARL

problem. As an early conclusion, considering the presence of

uncertainty from various sources in the dynamic environment of

smart factories, MARL has natural potential for dealing with

uncertainty in smart factories in an automated manner. Many of

the works reviewed in the previous section offer their solutions

through POMDP problem environments that explicitly consider

partial observability in their problem formulation, meaning that

uncertainty is naturally considered with such applications.

Furthermore, it is promising that MARL has a natural

counterpart for almost all of the features required for

establishing optimal management in smart factories, with all

being provided at the same time and focusing on self-

organization. Mittal et al. (2019) identified 22 main

characteristics for smart factories, including digital presence,

modularity, heterogeneity, scalability, context awareness,

autonomy, adaptability, robustness, flexibility, fully automated,

asset self-awareness, interoperability, networkability,

information, appropriateness, integrability, sustainability,

compositionality, composability, proactivity, reliability, agility,

responsiveness, accuracy, reusability, decentralized, and

distributed resilience. Regarding these features, focusing on

FIGURE 10
Mapping from smart factory features and MARL features.
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the features that are explicitly important in the control

mechanism for smart factories, we provide a match between

the features required for a smart factory and the equivalent

enabling features offered by MARL approaches, as shown in

Figure 9.

Above all these characteristics, borrowed from Mittal et al.

(2019), there are three leading factors in smart factories that are

directly provided through the control mechanism, including

automation, agility, and efficiency. Based on the review that

we provided earlier in Section 3, we propose a mapping from

the requirements of a smart factory initiated by these leading

factors to the equivalent MARL features, shown in Figure 10.

As shown in Figure 10, the smart factory is mainly used to

provide automation, efficiency, and agility. Agility is realized via

decentralized decision-making by individual units, since the

centralized form imposes delay as a result of the need for

multi-objective optimization on a large number of factors and

massive communications (regardless of the possibility of

information loss) between the components. A decentralized

architecture and individual decision-making units will both

reduce the complexity of a manufacturing system. The

equivalent concept with regard to these features of a smart

factory is the multi-agent setting and the intelligent agents in

a MARL framework. Automation at the highest level is provided

via self-organization, where intelligence, self-centered

assessment, optimization, learning, and adaptation are

incorporated to deal with the dynamicity encountered in the

manufacturing environment. These features, when established,

can provide the manufacturing environment with the abilities of

self-configuration, self-recovery, and robustness. The equivalent

concepts in MARL for establishing these features are the global

policy that controls the harmony of the entire system by defining

the high-level long-term and short-term control directions for

the low-level agents and the exploration–exploitation strategy

that determines how and how often the system tries to explore

novel behavior. Efficiency, as the main factor around which the

entire solution is built, is highly dependent on the objectives

defined by the application. Efficiency in practice is a multi-

objective optimization concept, meaning that multiple factors

contribute to the efficiency of the solution. The important

characteristics that have a direct relationship with efficiency in

smart factories are scalability, generalizability, flexibility,

accuracy, and rapidity, while reliability and reusability can be

considered as constraints when developing a control mechanism

for a high-level or low-level task within a smart factory.

Additionally, the equivalent concepts in a MARL framework,

with regard to the mentioned objectives, are the return, which is

the discounted cumulative future reward, and the loss function

that appears in the training of deep neural networks used for

complex MARL problems.

As shown in Figure 10, we have also identified the features

that should be considered when each two of the three main

factors are concerned. In order to not step beyond the scope of

the study and also due to space limitations, we postpone the

detailed analysis of these features to a future study.

5 Conclusion

In this study, we reviewed a wide range of applications that

incorporatedMARL into the tasks within a smart factory from a

technical and analytical perspective. Specifically, MARL

applications were studied for tasks including scheduling,

transportation, maintenance, energy management, and

human–robot collaboration, while the main focus was

devoted to the first two categories. For the scheduling and

transportation applications, we provided a comparative

analysis representing how different MARL characteristics are

chosen to implement the corresponding MARL solution. We

also demonstrated how different aspects of smart factories

match the objectives and capabilities of MARL and

suggested a mapping from smart factory features to the

equivalent concepts in MARL, indicating how MARL

provides an appropriate solution to provide almost all the

required features in the smart factory at once. Our

investigations in this paper suggest that MARL is one of the

most appropriate AI techniques for implementing tasks in

smart factories, for the most part due to its natural ability to

deal with uncertainty in multi-agent and decentralized systems,

in a self-organized manner.
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Scalable production of large
components by industrial robots
and machine tools through
segmentation
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The production of large components currently requires cost-intensive special

machine tools with large workspaces. The corresponding process chains are

usually sequential and hard to scale. Furthermore, large components are usually

manufactured in small batches; consequently, the planning effort has a

significant share in the manufacturing costs. This paper presents a novel

approach for manufacturing large components by industrial robots and

machine tools through segmented manufacturing. This leads to a

decoupling of component size and necessary workspace and enables a new

type of flexible and scalable manufacturing system. The presented solution is

based on the automatic segmentation of the CADmodel of the component into

segments, which are provided with predefined connection elements. The

proposed segmentation strategy divides the part into segments whose

structural design is adapted to the capabilities (workspace, axis

configuration, etc.) of the field components available on the shopfloor. The

capabilities are provided by specific information models containing a self-

description. The process planning step of each segment is automated by

utilizing the similarity of the segments and the self-description of the

corresponding field component. The result is a transformation of a batch

size one production into an automated quasi-serial production of the

segments. To generate the final component geometry, the individual

segments are mounted and joined by robot-guided Direct Energy

Deposition. The final surface finish is achieved by post-processing using a

mobile machine tool coupled to the component. The entire approach is

demonstrated along the process chain for manufacturing a forming tool.

KEYWORDS

segmented manufacturing, large component, CNC machining, process planning,
mobile machine tool, laser metal deposition
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1 Introduction

The demand for large and accurately machined parts is

rising. Currently, those parts are usually machined on large

machine tools. However, large machine tools suffer from some

significant shortcomings (Uriarte et al., 2013), i.e. high level of

investment, low sustainability due to high energy and material

consumption, low productivity due to long machining cycle

times and several technical limitations that arise from the

large dimension/workspace size (e.g. thermal issues, reduced

stiffness). To address these shortcomings various approaches

exist in the research field of machine tools. E.g. optimized

machine structures to improve the eco-efficiency (Zulaika and

Campa, 2009), size-scalable machine tool frames based on

polyhedral building blocks that enable reconfigurability

(Uhlmann and Peukert, 2019) or mobile machine tool

solutions (Neugebauer et al., 2012) that improve the

utilization of resources. However, most approaches have not

yet found their way into industry or target only a subset of the

aforementioned issues. When compared to conventional

machine tools, industrial robots have a large workspace that

can be expanded further. DeVlieg (2011) and Saund and DeVlieg

(2013), for instance, extend a robot with an additional linear axis

for the machining of large-scale aluminum aircraft components.

Möller et al. (2017) and Susemihl et al. (2017), on the other hand,

developed a mobile robot system on an autonomous mobile

platform, capable of machining composite (CFRP) aircraft

components. An advantage of such mobile robotics solutions

is the possibility of scaling and parallelization, which can

significantly reduce process times.

Although robots are currently used in the machining of large

components, they are significantly less rigid compared to

conventional machine tools (static Cartesian stiffness is up to

50 times lower), which reduces machining accuracy, hence they

cannot be utilized for all applications (Verl et al., 2019).

To overcome this problem, numerous approaches can be

found in the literature, including the design optimization of

milling robots (Denkena et al., 2017), various concepts for

structural optimization (Tao et al., 2019) or placement

optimization (Xue et al., 2022). However, robotic milling in

large-scale component manufacturing is currently limited to

softer materials such as aluminum, plastic, and composite

(Kim et al., 2019). This excludes components with high

hardness and accuracy requirements such as forming tools.

To address this problem, we propose a novel and sustainable

approach to large component manufacturing that enables robots

and regular sized machine tools to manufacture large

components (with high hardness and accuracy requirements)

within a highly scalable manufacturing system. Thus reducing

the need for expensive and resource intensive large machine

tools. The approach is based on segmented manufacturing and

subsequent joining of the large component. Key to the approach

is the segmentation of the component into segments that are

tailored to the capabilities of the available shop floor entities,

i.e., machine tools and robots equipped with different end

effectors and tools.

So far, approaches towards segmented manufacturing are

sparse in the literature. Ley et al. (2018) present an approach for

hybrid-optimized manufacturing of large components by

segmenting the component into subcomponents. However,

their focus is primarily on the combination of additive and

conventional manufacturing and less on automation and

productivity. Further examples of segmented manufacturing

can be found in the area of toolmaking. These include mold

inserts in forming tools (Cao et al., 2019) or multi-part injection

molds (Stoyan and Chen, 2010). However, their focus is

primarily on the functionalization of the component rather

than the actual manufacturing process.

The main goal of this paper is to present the basic principles

of the proposed approach. For this purpose, a general overview of

the underlying process chain is given in Section 2.1. Section

2.2 presents the conceptual architecture as an essential enabler

for the modularity and scalability of the approach. Section

2.3 describes the segmentation procedure. Joining and

finishing of the segments are discussed in Section 2.4 and

Section 2.5. Finally, the basic manufacturing approach is

demonstrated and validated on a downscaled forming tool.

2 Methods

2.1 General

This section provides an overview of the proposed approach.

Figure 1 depicts the basic process steps of the approach in terms

of the involved modules. Modules (see Section 2.2) have a specific

task in the manufacturing system and represent the necessary

software and hardware entities (assets). Modules are modeled by

lightweight information models, which they expose via uniform

communication interfaces. These information models describe

the capabilities, states, and services of the assets. The considered

manufacturing system consists of a set of loosely coupled

machine tools and robots, equipped with different end

effectors and tools.

Starting point of the manufacturing process is the CAD

model and a Finite Element Analysis (FEA) of the large

component. The SegmentationModule applies a predefined,

application specific segmentation strategy and splits the CAD

model into a combination of smaller, less complex segments. The

segments are split in a way, that optimizes a given target quantity,

e.g., time, cost or utilization rate. Therefore, the

SegmentationModule provides an interface to an

OptimizationModule, which determines a combination of

segments that suits the capabilities of the existing assets and

maps them accordingly. The CAD models of the individual

segments are extended with connection elements (e.g. screw

Frontiers in Robotics and AI frontiersin.org02

Schnellhardt et al. 10.3389/frobt.2022.1021755

77

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1021755


connections) for assembly. The connection elements are part of

the segmentation strategy. Afterwards, NC programs are created

for the individual segments using a feature-based approach with

predefined machining operations. The NC programs are passed

to the corresponding MillingModules and are manufactured.

MillingModules represent assets such as conventional CNC

machines or milling robot cells.

The manufactured segments are assembled and thermally

joined by the JoiningModule to bridge the segment gaps induced

by segmentation. Thus, a robot-guided Direct Energy Deposition

(DPD) process is used at this point. The aim is to minimize

component distortion in order to reduce the amount of post-

processing required during the final stage of the process. After the

joining, the component is measured in situ by the robot to

determine the finishing effort. The measurement data is finally

used for the finishing process, which is performed by mobile

machine tools (FinishingModules) that are temporarily coupled

to the component.

2.2 Architecture

Executing the previously described process is primarily a

technological task with high requirements to process quality.

However, the targets motivating this novel approach (scalability,

productivity) can only be met with comprehensive automated

planning and execution. A particular challenge arises from the

inherent heterogeneity of production assets involved. They differ

with regard to their scope (i.e., segmentation, production,

joining), with regard to their origin (vendors, PLCs) and with

regard to their age. All these factors influence the interfaces

available to upper-level process coordination in the

OptimizationModule. An architecture suitable for the task

must handle this complexity, thus automate the material and

information flow between production assets.

To meet these requirements, we followed the integration

guide of the SWAP-IT architecture (Lünsch et al., 2022). The

SWAP-IT architecture is composed of autonomous Modules,

each of which specifies its characteristic Services to peers. A

Service signifies the Module’s potential to trigger an executable

process, similar to a Skill in literature (Köcher et al., 2020). The

Module Services are implemented by its member Agents. Each

Agent encapsulates an asset (logical or physical) and adapts the

proprietary communication interface to a harmonized

representation in the network. All Agents register with a

central entity that provides transparency on available Agents

and their Services in the network. This highly decentralized

architecture enables flexible routing and reallocation of

resources according to the requirements of the production

order and current availability. The communication backbone

for interaction between and within modules is OPC UA as it

supports the reuse of common semantic information models that

are tightly coupled to communication mechanisms for machines

and computers alike. These information models are used to

represent the Module’s specific Capabilities and States.

As all steps mentioned in Section 2.1 must be represented on

theModule-level,Modules for segmentation, milling, joining and

finishing were designed and implemented on Agents. The

FIGURE 1
Overview of the approach and the underlying process chain.
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following chapters provide an in-depth description of their

functionality.

2.3 Segmentation

The proposed approach increases the number of parts to be

manufactured compared to conventional large component

production. Accordingly, the design and planning effort also

increases, which in turn has a negative impact on production

costs and duration and thus eventually also has a negative effect on

overall productivity. Moreover, manual segmentation is prone to

errors, as the complexity and dependencies within the assembly

scale with the number of segments. Therefore, it is crucial for the

applicability of the approach to automate the segmentation.

In our case, the SegmentationModule handles this task,

i.e., the automatic execution of the CAD-CAM chain along

the segmentation from the CAD model of the large

component, through the design of the individual segments, to

the process planning and the NC programs. Thereby, the

characteristic properties of the segmentation (similarity of the

segments, lower complexity compared to the overall component)

are utilized. In addition, the module provides an interface to the

OptimizationModule, which determines suitable segment

combinations. Figure 2 summarizes the process steps involved

in the segmentation procedure, which are described in detail in

the following.

2.3.1 Preprocess – analyze CAD
In the beginning, an initial part analysis is performed to

derive the geometric constraints for the segmentation. For this

purpose, an automatic design feature analysis of the CAD model

is carried out. The goal of this analysis is to identify those areas of

the part that must not be segmented, e.g., connection holes. In the

case of a native CAD format, the vendor specific design features

can usually be utilized for this task, e.g. we use the design features

that SolidWorks provides via their API. Alternatively, a surface

analysis of the B-Rep model must be conducted using one of the

various feature recognition methods (e.g. (Han et al., 2000),

(Zhang et al., 2017), (Zhang et al., 2018)). In addition, the

part is searched for areas that require 5-axis machining. For

this purpose, the surfaces of the CAD model are grouped into

standard 2.5D feature surfaces and freeform surfaces according

to their B-Rep model.

2.3.2 Generate segmentation potential map
For the optimization phase, the constraints of the

segmentation are merged and brought into a uniform format

in form of a segmentation potential map. Therefore, a mapping is

used which assigns numerical values to the regions of the large

component, which describe the segmentation potential of the

respective region. To generate these values, the absolute values of

the FEA stress data are utilized. The FEA denotes the expected

stress during the usage of the final product. To integrate the

geometric constraints (from the preprocess stage), the positional

FIGURE 2
Workflow of the segmentation procedure.
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data of the geometric constraints are amplified with high values

and overlaid with the absolute stress values. This results in a

mapping where low absolute values describe a high segmentation

potential and high values describe a poor segmentation potential.

2.3.3 Optimization
Input of the OptimizationModule is the potential map

generated in the previous step. Furthermore, the Module uses

the Capabilities and States (workspace, machine costs, axis

configuration, availability, etc.) of the MillingModules. The

goal of the optimizer is to segment the part and map the

segments to the available assets in such a way that an optimal

production time, cost or utilization rate is achieved. At the same

time, the constraints, encoded within the potential map, have to

be satisfied. I.e. the boundaries of the segments should only

intersect low valued regions of the potential map. The result of

the OptimizationModule is a segmentation recommendation in

form of an assignment of segment boundaries (Axis-Aligned

Bounding Boxes) and MillingModules.

2.3.4 Split component
In this step, the actual CAD model is finally split into the

individual raw segment pieces according to the segmentation

recommendation of the OptimizationModule. Furthermore, the

classification of the segments into specific types is performed in

this step, if required by the applied segmentation strategy.

2.3.5 Determine topology
Next, segment topology is determined, i.e., the spatial

relationship of the individual segment parts and their

geometric entities (faces and edges) to each other. This is

necessary for the extension of the segments with the

connection elements for the assembly. Furthermore, the

topology information is used to apply the tolerances to the

segments. Based on the assumption that the intersections

between the segments are planar surfaces, a collision check

using Oriented Bounding Boxes in 3D/2D (body to body and

face to face) is applied for the topology determination.

2.3.6 Design segments
According to the selected segmentation strategy and the face/

body relationships (topology), the connection features and

tolerances are constructed automatically onto the segments.

To simplify CAM planning, only subtractive design features

are used during this stage.

2.3.7 Plan process
Based on the data collected during the previous process steps

(feature recognition, topology, tolerances) feature-based process

planning is performed. Therefore, a matching between

predefined machining operations, tools and machining

features (based on ISO 14649-10, 2004) is carried out. The

basis for this is the similarity of the segments and their

reduced complexity compared to the overall component.

Segments consist of the planar cut surfaces caused by

segmentation, a fraction of the surface of the original

component and a number of predefined connection elements.

This simplifies the accessibility and clamping of the segments

significantly and thus eases the automation potential of the

processes. For the generation of the machine-specific NC

code, the MillingModule’s information models and the

corresponding postprocessor are utilized. Finally, the

execution of the MillingModule’s Services are triggered on the

field device using the generated NC-Programs.

2.4 Joining

After the individual segments have been manufactured, they

are joined by using industrial robots. Here, a DED process is used

that applies a powdery filler material to the component’s surfaces

with the help of a laser and thus fuses the segments

metallurgically. For this purpose, a double robot system is

used with two processing heads on which OTS-2 laser optics

are mounted. Two COAX Powerline powder nozzles are utilized

to inject the powder material into the process zone, each of which

are integrated into a COAXshield system (Kolsch et al., 2020) for

better shielding of the process. This makes it possible to carry out

the welding process within a local shielding gas without having to

flood the entire installation space of the cell, which is crucial

when processing large components.

The robot cell used in this research offers a usable workspace

of 3 m length, 3 m width and 1 m height. Both robot systems are

mounted onto linear axes and are able to operate synchronously.

In addition, the cell offers a rotary table. The robot’s traversing

strategy for the welding process must be automated for the most

part to ensure productivity. As the positions of the weld seams are

already known from the preceding segment design process of the

SegmentationModule, the necessary welding trajectories of the

robot can be derived directly.

For the alignment of the segments onto the machine table, it

is necessary to induce a workflow that avoids clamping errors,

since they have a major influence on the final geometry and

accuracy of the component. Therefore, two approaches were

established. On the one hand, when subdividing the large

component, it is important to ensure that the segments

produced can be mounted and clamped easily and form-

fittingly. On the other hand, it is important to pre-measure

the entire geometry of the clamped large component in order

to enable precise alignment of the coordinate system. For both

measures, it is advisable to provide mounting holes whose

arrangement corresponds to the standardized clamping

grooves on machine tables. With the aid of these holes, the

segments can be positioned quickly and precisely, and a

subsequent 3D scan or measurement with a probing device,

allows the workpiece coordinate system to be set up precisely.
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After the joining process, a 3D measurement of the large

component is conducted, in order to measure both the distortion

and the geometries of the applied weld seams. The measurement

is carried out automatically by the manufacturing robot. For this

purpose, a MICRO-EPSILON scanControl 2900–100/BL line

scanner is mounted onto the robot. The robot automatically

scans the entire component surface with the help of a measuring

routine and prepares the data as a STL file. Since the applied line

scanner only has a relatively narrow measuring range of approx.

8 cm, the component is scanned several times with overlapping

strips. The individual scans are automatically combined by using

feature recognition, in order to map the entire surface of the

component. For the actual measurement process, it is important

to move as few robot axes as possible in order to avoid error entry

due to tolerances. Therefore, only the linear axis on which the

robot arm is mounted on or the rotary table that holds the

component is moved for the measurement.

After a nominal-actual comparison with the existing CAD

data of the component, it is possible to detect any distortion and

the weld seam geometry for the entire component. Therefore, it is

possible to reduce the subsequent finish machining to areas that

deviate from the nominal geometry and thus increase the

efficiency of the entire production process.

2.5 Finishing

The finish machining of the areas deviating from the nominal

geometry is carried out with a small mobile machine tool with

parallel kinematic design (Georgi et al., 2018) which is

temporarily coupled to the workpiece. The main advantage of

this mobile machine tool is the possibility of flexible and highly

dynamic local machining of large components. Due to the direct

positioning of the small machine on the workpiece, the

dependency of machine size to workpiece dimension is

resolved and downsizing of the production equipment is

possible, which in turn increases the transportability and

manageability of the production systems as well as the

efficiency of the overall system. Due to the necessity that all

movement axes have to be on the tool side, the parallel kinematic

machine concept proves to be advantageous due to the low

moving masses and enables movement with five degrees of

freedom.

Solutions for temporarily coupling the mobile machine to the

large component are subject to certain design constraints. For

example, magnetic clamping systems reach their limits due to

their principle when processing aluminium or CFRP

components. Thus, a pneumatic coupling solution (Figure 3)

consisting of twelve bellows suction cups with upstream rubber

joints was developed to compensate for unevenness and

displacement due to concave or convex workpiece contours.

The workflow for finishing the areas deviating from the

nominal geometry is based on the data from the scan at the

end of the joining process. The miniaturized machine tool is

positioned over the areas in question. The coordinate systems of

the machine and the workpiece are precisely aligned with each

other, and the deviation areas (e.g. weld seams, segment

deviations) are post-processed and finished.

3 Results

The validation of the proposed approach has been

implemented and applied on the manufacturing process of a

downscaled forming tool. Thereby, the die punch of a rectangular

deep drawing tool (347.36 mm × 197.36 mm × 76 mm) served as

the test object. The goal of the validation was to investigate the

basic applicability of the approach for highly loaded (large)

components. Figure 4 shows the individual steps of the

validation.

To determine the process-related stresses, a forming

simulation was performed using LS-Dyna (Figure 4A). In

order to calculate the stress distribution of the die punch, the

simulation was carried out with an elastically modeled die.

Therefore the elastic tool method of (Haufe et al., 2008) was

applied.

The selected segmentation strategy involves the division of

the component into shell and core segments (Figure 4B). Core

segments are screwed together to form a framework that

provides the basic component stability. Shell segments

contain the functional surfaces of the component. These

segments are attached to the framework of core segments

using screw connections. To control the tolerance chain, the

shell segments are provided with a clearance fit. The minimal

gap between the segments is later closed through the joining

FIGURE 3
Mobile machine tool with parallel kinematic design equipped
with a pneumatic coupling solution.
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process. The segmentation strategy was implemented in the

CAD/CAM part of the SegmentationModule by using the

SolidWorks API.

Toolox 33 prehardened steel was selected as the workpiece

material for the punch, in order to avoid a subsequent

hardening process in the assembled and joined condition. In

a preliminary material characterization study, 1.4404/316L

(CrNiMo) and 1.4057/431 (CrNiFe) were analyzed to find a

suitable filler material for the DPD process. Due to lower

hardening around the heat input zone and the weld seam,

1.4404/316L (CrNiMo) was chosen as filler material for joining

the punch. The chosen weld depth was 5.5 mm. The welding

was carried out with the robot cell described in Section 3.3. The

result is depicted in Figure 4C.

To determine the component distortion, the component was

measured optically by a laser line scanner (see Section 2.3) before

and after the welding process. This resulted in a distortion of

+0.3 mm at the outer edges of the component and a distortion of

-0.3 mm in the center of the component (Figure 4D). In addition,

a hardness test was carried out in the areas of the heat input zone

and the seam. This resulted in a hardening of approximately

200 HV as shown in Figure 4G.

Based on the measurement data, post-processing was carried

out to generate the final contour and surface quality (Figure 4E).

Therefore, the mobile machine tool was manually aligned on the

workpiece in five different clamping setups in order to machine

the entire surface. To investigate the functional capability and

performance of the segmented die, it was tested in a deep-

FIGURE 4
Segmented manufacturing of a deep drawing stamp: (A) FEA of the deep drawing process, (B) segmented part that consist out of (inner) core-
and (outer) shell-segments assembled via screw connections, (C) assembled andwelded stamp, (D) distortion of the stamp after thewelding process,
(E) finished stamp, (F) marks from the weld seams on the sheet after deep drawing, (G) hardness measurement of the seam and the heat affected
zone.
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drawing test series. The sheet material used was DC01 with a

thickness of 1 mm. The segmented die withstood the process load

and delivered comparable production results to a monoblock die

of the same type. As can be seen in Figure 4F, however, the

forming process applied light marks to those areas that were in

contact with the post-processed weld seams. We attributed these

marks to the hardening of the seams that results from the welding

process.

4 Discussion

A new approach to manufacturing large components by

regular-sized robots and machine tools was presented. The

approach is based on dividing the large component into

segments tailored to the capabilities of the available assets.

The segments are joined and post-processed with a mobile

machine tool to obtain the final contour. The approach

implements a scalable architecture that enables massive

parallelization in large-scale component manufacturing.

The associated process chain was validated on a minimal

example (forming tool) yielding comparable results to a

conventional part. We conclude that the approach is in

principle suitable and can increase sustainability and

productivity in large component manufacturing due to its

scalability. In addition, the approach opens up the possibility

for distributed manufacturing at different locations.

Furthermore, it mitigates availability problems and reduces

the need for cost-intensive special purpose large machine tools

in exchange for flexible industrial robots.

A downside is the increased number of necessary

manufacturing processes in comparison to conventional process

chains. This induces additional complexity. Another shortcoming

is the need for an application-specific segmentation strategy, which

must be investigated and developed. A general transferability is

usually not given andmust be examined in each individual case. In

the forming tool domain, the approach is currently only suitable

for components with limited surface finish requirements, due to

the emerging marks on the sheet.

Future work will focus on the implementation of the entire

method for a more complex use case where the advantages of the

method regarding productivity and scalability can be utilized. In

doing so, the potential of the method in its entirety will be

investigated. Furthermore, technological fine-tuning is necessary,

mainly in the area of the joining and finishing process. Tasks here

are the homogenization of the hardening process, the reduction

of distortion to reduce the necessary finishing effort and the

(semi-)automation of the positioning and alignment of the

mobile machine tool.
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A data-driven approach for motion
planning of industrial robots
controlled by high-level motion
commands

Shuxiao Hou*, Mohamad Bdiwi, Aquib Rashid, Sebastian Krusche
and Steffen Ihlenfeldt

Fraunhofer Institute for Machine Tools and Forming Technology (Fraunhofer IWU), Chemnitz, Germany

Most motion planners generate trajectories as low-level control inputs, such as joint
torque or interpolation of joint angles, which cannot be deployed directly in most
industrial robot control systems. Some industrial robot systems provide interfaces to
execute planned trajectories by an additional control loop with low-level control
inputs. However, there is a geometric and temporal deviation between the executed
and the planned motions due to the inaccurate estimation of the inaccessible robot
dynamic behavior and controller parameters in the planning phase. This deviation
can lead to collisions or dangerous situations, especially in heavy-duty industrial
robot applications where high-speed and long-distance motions are widely used.
When deploying the planned robot motion, the actual robot motion needs to be
iteratively checked and adjusted to avoid collisions caused by the deviation between
the planned and the executed motions. This process takes a lot of time and
engineering effort. Therefore, the state-of-the-art methods no longer meet the
needs of today’s agile manufacturing for robotic systems that should rapidly plan and
deploy new robot motions for different tasks. We present a data-driven motion
planning approach using a neural network structure to simultaneously learn high-
level motion commands and robot dynamics from acquired realistic collision-free
trajectories. The trained neural network can generate trajectory in the form of high-
level commands, such as Point-to-Point and Linear motion commands, which can
be executed directly by the robot control system. The result carried out in various
experimental scenarios has shown that the geometric and temporal deviation
between the executed and the planned motions by the proposed approach has
been significantly reduced, even if without access to the “black box” parameters of
the robot. Furthermore, the proposed approach can generate new collision-free
trajectories up to 10 times faster than benchmark motion planners.

KEYWORDS

robot motion planning, data driven robot learning, neural network, industrial robot, robot
simulation

1 Introduction

Motion Planning is one of the fundamental problems in robotics fields. For decades
numerous methods have been proposed for this task by leveraging two common techniques:
Optimization-based and heuristic search-based techniques. The trajectories generated by both
motion planning paradigms usually include a large number of via points (Figure 1A) and
require post-processing to deploy to industrial robots.
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The trajectories of the industrial robot are typically programmed
in the native language of the robot manufacturer. These programming
languages pre-define a set of high-level motion commands. The
typically high-level motion commands are Point-to-Point, Linear
and Cycle motion. The robot control system provided by the robot
manufacturer has its own interpolation algorithm and control loop to
execute the programmed motion. These control parameters are finely
tuned by the robot manufacturer according to the dynamic behavior of
each robot and they are usually inaccessible for the user.

There are two ways to plan and deploy robot motion on most
control systems of industrial robots.

1.1 Planning and deploying robot motion with
high-level motion commands

For some robot systems, the user can only use the pre-defined
high-level motion commands and adapt their parameters to program
the desired robot motions, such as programming the start and goal
configuration of Point-to-Point motion. In this case, most methods
use random shortcuts to reduce the amounts of via points. For
example (Hauser and Ng-Thow-Hing, 2010), uses various
interpolation algorithms, such as parabola and linear interpolation,
to directly connect two via points on the trajectory. If the direct
connection is collision-free, the redundant via points can be
eliminated (Figure 1C). Since some parameters of the robot are
inaccessible, such as dynamic behavior and control parameters,
these interpolation algorithms usually use estimated values to
interpolate the robot’s motion. Then the post-processed trajectory
should be converted to pre-defined high-level motion commands and
imported into robot control systems (Figure 2B) in the offline phase.
In the online phase, the robot control system provided by the robot
manufacturer executes the motion commands. The robot control
system uses the interpolation algorithm and control parameters
implemented and fine-tuned by the robot manufacturer, which
differ from the estimated value used in the offline phase. It may
result in a geometric and temporal deviation between the executed and
the planned motions. The geometric deviation may cause a collision
between the robot and static environments. For example, Figure 1
shows the trajectory planned by the interpolation algorithm used by
the shortcut method during offline post-processing, and Figure 2
shows the actual robot motion executed by a real robot control system
with the interpolation algorithm implemented by robot
manufacturers.

1.2 Planning and deploying robot motion with
low-level motion commands

Some robot control systems with an additional communication
interface allow an additional control loop to command the robots with
low-level control inputs in real time, such as position, the velocity of
robot joints (yellow arrows in Figure 2A). Most state-of-the-art
planners interpolate the motion between the via points to low-level
control inputs in the offline phase (Figure 1B) and use an additional
controller to execute the interpolated trajectories (Figure 2A). (Elhaki
and Shojaei, 2022; Rahali et al., 2022; Tan et al., 2023) use various
control algorithms in the online phase to minimize the deviation
between the executed and the planned motion. However, in heavy-

duty industrial robot applications that widely use high-speed and
long-distance motions, the deviation becomes significant. For
example, in the motion planning framework MoveIt (Chitta et al.,
2012), the user should define the maximum jerk and acceleration of
joints to interpolate the planned motion in the offline phase. In the
online phase, the additional controller tracks the planned motion in
real time. If the actual maximum acceleration of the joint during the
execution can not reach the values defined by the user, the executed
robot motion is slower than planned. This temporal deviation may
lead to a collision between the robot and dynamic obstacles such as
other robots. For example, in some multi-robot system, the planner
schedule multiple robots to pass through a shared area at different
timesteps. A robot may collide with others when it enters the shared
area earlier or later than planned.

1.3 Contributions

The robot motions planned in the described two ways above
should be verified in deploying phase to check whether the geometric
and temporal deviation between planning and executing of robot
motion results in a collision. When the deviation leads to a collision,
the actual robot motion must be adjusted and verified again. This
process usually iterates manually many times, thus increasing the
effort of deploying robot motion.

Most state-of-the-art collision-free motion planning methods
focus on improving the performance of motion planning
algorithms in the offline phase, such as computation time and
success rate of collision avoidance. Today’s agile manufacturing
systems require not only automatic robot motion planning but also
rapid deployment of robot motions. Therefore, more research is still
needed to bridge the gap between offline planning and the rapid
deployment of robot motions for reliable online execution. Therefore,
we proposed a data-driven motion planning approach that considers
deploying and deploying the planned motion already in the offline
planning phase. The proposed approach overcomes the problems
mentioned above:

(1) The proposed approach uses a neural network structure to
simultaneously learn high-level commands and robot dynamics
from acquired realistic collision-free trajectories. In the offline
planning phase, the trained neural network structure can generate
collision-free trajectory as high-level motion commands, such as
long-distance, high-speed Point-to-Point and Linear motion.
These motion commands can be converted as manufacture-
specifical robot language and directly imported into any robot
control system (Figure 2C). Because the robot control system can
execute these motion commands, the proposed approach does not
need an additional control loop to control robot motions in real
time and constructs a simpler control architecture. Furthermore,
the robot manufacturers tuned the control algorithm of their
robot control systems by fully accessing the robot parameters.
Therefore, the proposed approach achieves a more stable control
structure than the methods described in Figure 2A.

(2) The neural network learns realistic robot dynamics and motion
interpolation from actual robot motion execution and uses them
to accurately calculate the actual robot motions executed by the
robot control system. For example, at each search step in the
offline planning phase, the proposed approach use learned robot
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dynamic behavior to interpolate the robot motion and check
whether the robot collides with other obstacles. In the proposed
approach, the planned robot motion deviates from the realistic
robot motion slightly. Therefore, it can be guaranteed that as long
as the robot motion planned offline is collision-free, the robot will
also not collide with obstacles as executed by the robot control
system. This feature addresses the problem described in Section

1.2. The robot motion planned by the proposed approach does not
need to be verified iteratively physically during the deployment
phase, thus reducing the manual effort and the time-consuming of
the engineering process.

The proposed approach is evaluated on two different industrial
applications. The results indicate that the proposed approach can

FIGURE 1
(A) Generated trajectory with a large number of via points (violet dots). (B) An interpolated trajectory interpolated as low-level control inputs (blue dots).
(C) post-processed trajectory using shortcuts (green dots are reduced via points after shortcuts).

FIGURE 2
(A) Deploying trajectories using post-processing and external control loop. (B) Deploying trajectories using post-processing and robot’s own control
system. (C) Direct Deploying trajectories based on High-Level Motion Commands without post-processing and using robot’s own control system.
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generate high-level motion commands directly deployed to real robot
systems with a reduced temporal and spatial deviation between executed
and planned motions.

2 Related works

2.1 Motion planning methods

2.1.1 Optimization-based motion planning methods
Optimization-based motion planning originated in the field of

optimal control and has been used for decades in robotics. The
trajectories are usually discretized into via points, equally spaced in
time. The control inputs at every via point are considered as
optimization variables, such as angle, velocity and acceleration of robot
joints. The collision and the kinematics limits of robot joints are modeled
as constraint items. The length, smoothness and execution time of
trajectory are described as cost functions that should be minimized.
Ratliff et al. (2009), Schulman et al. (2013), Zucker et al. (2013), and
Schulman et al. (2014) use different approaches to optimize the modeled
motion planning problems with various constraints and objectives. The
trajectories are usually finely discretized into a large number of via points
to find valid solutions in complex and high-dimensional solution spaces.

2.1.2 Sampling-based heuristic search methods
In the past several decades, the sampling-based heuristic search

method has been widely adopted in the field of motion planning in
high-dimensional configuration space with great success. Rapidly-
exploring Random Trees (RRT) (LaValle, 1998), optimal Rapidly-
exploring Random Trees (RRT*) (Karaman and Frazzoli, 2011), Fast
Marching Tree (FMT) (Janson et al., 2015) and their extensions
(Kuffner and LaValle, 2000; Karaman and Frazzoli, 2011; Bdiwi
et al., 2018; Otto et al., 2021) explore the configuration space
incrementally by connecting feasible samples to a search tree. As
the complexity of environments and the DOFs (degrees of freedom) of
robot increase, samples are often infeasible. Therefore, the number of
samples needs to be raised to achieve probabilistic completeness.

Multiple informed methods explore regions with a higher
probability of generating feasible paths to improve the searching
efficiency in the configuration space of robots. Data-driven
techniques such as supervised learning, imitation learning and deep
reinforcement learning techniques are quickly becoming useful tools
to improve the efficiency of informed searching in high-dimensional
configuration space.

2.1.2.1 Learning sampling strategy
Cheng et al. (2020) learns to predict the optimal sampling distribution

over low-cost, valid samples. Based on the learned optimal sampling
distribution, the classical searching algorithms are used in the planning
phase to guide the search progress towards the region with more optimal,
feasible paths. Similarly (Gaebert and Thomas, 2022), uses a CVAE
Network to learn a sampling strategy that draws samples based on the
environment perception to improve sampling efficiency. In the planning
phase, the learned adaptive sampling strategy is used with an adaptive
probability λ and a uniform sampling with 1 − λ. The combination of
these two strategies guarantees asymptotic optimality. Instead of implicit
learning of sampling distribution (Molina et al., 2020; Shah and
Srivastava, 2022), learn to predict critical regions that have a high
density of feasible motion plans in the given environments.

2.2.2.2 End-to-end learning low-level control policy
In addition to the learning of sampling strategy (Bhardwaj et al.,

2017; Huh and Lee, 2018; Jurgenson and Tamar, 2019; Qureshi et al.,
2019; Qureshi et al., 2020; Jinwook et al., 2022), learn to directly
generate end-to-end low-level control policy to guide the search
progress efficiently towards goal regions. These methods learn
search strategies from previous planning problems and apply them
to new ones. Qureshi et al. (2019) and Qureshi et al. (2020) designs two
neural networks. The first one is embedding the points cloud of the
environment into a hidden vector. The second network takes the
environment embedding, current state, start and goal state as inputs to
generate a sample for the next search step. In (Huh and Lee, 2018), a
reinforcement learning approach is proposed. The control actions and
corresponding state-action values in a given state can be learned in the
learning phase. The trajectory expands towards the goal in the
planning phase based on the state-action value of possible control
action at each search step. Bhardwaj et al. (2017) defines the search
process as a Markov decision process and uses dynamic programming
to estimate the cost-to-go value of each possible sample. In (Jurgenson
and Tamar, 2019), a modified Deep Deterministic Policy Gradient
(DDPG) algorithm is proposed to learn control policy through a trial-
and-error fashion, which generates data with a more reasonable
distribution, including collision-free expert data and data that
escapes the obstacle. Jinwook et al. (2022), new trains a Higher
Order Function network to represent the cost-to-go function over
the configuration space. In the planning phase, the trained network
generates a smooth and continuous cost-to-go function directly from
workspace information. The gradient of the cost-to-go function yields
continuous collision-free trajectories.

The aforementioned learning-based methods generate low-level
control inputs, such as position, the velocity of robot joints. These low-
level control inputs should be post-processed to be deployed to real
robot systems.

2.2 Deploying generated trajectories to robot
system

The works mentioned above focus on improving and verifying the
performance of collision-free motion planning algorithms in
simulation environments rather than on how to deploy the
planned robot motion in real robot systems. Bhardwaj et al. (2017);
Jurgenson and Tamar (2019), Molina et al. (2020), and Shah and
Srivastava (2022) only verify their algorithms in simulation
environments. Huh and Lee (2018), Qureshi et al. (2019), Cheng
et al. (2020), Qureshi et al. (2020), Gaebert and Thomas (2022), and
Jinwook et al. (2022) deploy planned trajectories in real robot systems
by using additional controllers to control the robot motion in real
time, such as Robot Operation System (Quigley et al., 2009). In these
methods, the robots usually run at low speeds to ensure that the robot
can precisely track the planned collision-free motion.

Rahali et al. (2022) and Tan et al. (2023) use different
algorithms to reduce the motion tracking errors of robots.
However, these methods require the robot’s dynamics to be
identified and modeled. The algorithms in (Elhaki et al., 2022;
Elhaki and Shojaei, 2022) are designed to control multibody
systems, such as tractors and underwater vehicles, without
requiring detailed system models. Different from these systems,
industrial robots have own control systems. Any additional control
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algorithms must run on an additional controller and control the
robot’s motors through an interface provided by the robot own
control system (Figure 2A). The stability of this control architecture
cannot be guaranteed because some parameters of the internal
control loop in the robot control system are not accessible.
Furthermore, the communication time between the additional
controller and the robot control system also affects the stability
and performance of the entire control architecture. For example,
the control systems of KUKA heavy-duty robots provide an
Ethernet-based communication interface (Robot Sensor
Interface- RSI) to control the robot motion using an additional
control loop. The cycle time of this communication interface is
4 ms. Therefore, it limits the control algorithms to reduce tracking
errors in higher control frequency. In some industrial applications,
the high-speed and long-distance robot motions in 4msmay lead to
significant tracking errors.

Again, the methods mentioned above use additional control loops
to control the robot in real time to track the motion planned and
interpolated in the offline phase. In contrast, the proposed approach
does not require an additional control loop to track the planned
motion since the proposed approach generates collision-free motions
as high-level commands, which can be executed directly by robot
control systems with a small deviation from the planned motion of less
than .5% on average.

3 Problem definition

This section describes the notations used in this work and formally
defines the problem we consider.

Let χ ⊆ Rd be the configuration space of a robot system with
degrees of freedom d ∈ N, d> 2. Let U ⊆ Rd be the control input space
of a robotics system. Let the discrete-time dynamics of the robot be
defined by fχ :

xk+1 � fχ xk, uk( ) (1)
where xk ∈ χ and uk ∈ U denote the state and control input of the
system at k-th search step.

In contrast to the approaches described in (Bhardwaj et al., 2017;
Huh and Lee, 2018; Jurgenson and Tamar, 2019; Qureshi et al., 2019;
Cheng et al., 2020; Molina et al., 2020; Qureshi et al., 2020; Gaebert and
Thomas, 2022; Jinwook et al., 2022; Shah and Srivastava, 2022), this
work considers the high-level motion commands commonly used in
robot handling applications as control inputs uk. These commands
typically consist of motion types (such as Point-to-Point, Linear and
Circle motion) and motion parameters such as motion velocity and
the desired state to be reached.

This work considers static obstacles and dynamic obstacles whose
motions are known. For example, for the multi-robot system, motions
of all robots are usually planned one by one. When planning the
motion of a given robot, the motions of the other robots are known.
Let χfeasible,t ⊆ χ define the feasible state space of the robotics system,
in which the robot did not collide with static and dynamic obstacles at
timestep t, xinit ∈ χfeasible,0 the initial state, and xgoal ∈ χfeasible,t the
goal state.

In this work, a trajectory π is defined as a series of states and high-
level control commands:

π � x0, u0, xt0, x1, u1, xt1, . . . , xk, uk, xtk( ) (2)
where tk is the timestep of k-th via point in the trajectory.

FIGURE 3
Architecture and planning pipeline of the proposed approach.
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3.1 Main problem

For complex environments and robot systems with high DOFs
(degrees of freedom), the solution space of the motion planning
problem is highly dimensional. Even if the solution space is
represented implicitly using the sampling-based technique, it
cannot be searched efficiently. In this work, the proposed approach
focuses on learning the feasible solution space of motion planning
problems from previous experience to improve search efficiency. In
other words, the proposed approach first learns to perceive the
environment surrounding the robot. Then the robot dynamics are
learned to preciously simulate realistic robot motion. At last, the
proposed approach learns which optimal high-level commands can
move the robot toward to goal region with realistic dynamics in the
perceived environment model at each search step.

3.2 Subproblem 1: Learning local feasible
solution space of motion planning problem

Since learning the complete solution space is very difficult and
does not scale well to other problems, our approach begins with
learning the local feasible solution space Llocal:

Llocal xk,ϕk

∣∣∣∣xgoal → uk( ) (3)

The locally feasible solution space consists of all feasible control
policies that only consider the local system state (e.g., the state of the
environment ϕk, the current state of the robot xk and the target state
χgoal) and guide the robot from the current state toward the target area
with control command uk at k-th search step.

3.3 Subproblem 2: Suitable representation of
dynamic environment

Since this work considers environments with static and dynamic
obstacles, the geometric and temporal information of the environment
should be represented as environment state ϕk at k-th search step and
used in subproblem 1.

3.4 Subproblem 3: Learning robot dynamics
fχ controlled by high-level motion commands

The execution time and interpolation of robot motion
between two states should be calculated to check the collision
between the robot and the obstacles during the transition from
one state to the next state at each search step. As mentioned
before, the robot dynamics controlled by high-level motion
commands are seen as a “black box.” Therefore, the proposed
approach learns the realistic robot dynamics controlled by high-
level motion commands and uses it to calculate the realistic robot
motion.

4 Methods

The core of the proposed approach is three neural networks
(Figure 3) which solve the main problem described in Section 3.
Sections 4.1–4.3 describe the functionality of each neural network and
how they solve the corresponding subproblems. Then we give an
overview of the entire pipeline of the proposed approach in
Section 4.4.

4.1 Dynamic Environment Representation
Network for subproblem 2

Since the motions of the dynamic obstacles are known, the
environment can be discretized into a series of frames. The 3D
model, such as the voxel model of the environment at each frame,
can represent spatial and geometric information.

However, directly using this high-dimensional representation to
learn control policy for subproblem 2 leads to a large-scale network
that may be difficult to train. Therefore, a separate network struct is
used to extract spatial and temporal features of the environment as
low-dimensional representation.

Firstly, an encoder embeds the voxel model of the dynamic
environment at each discrete timestep into a hidden vector st. Let
denote this embedding as h(ϕt), which compresses the spatial state of
the dynamic environment ϕt at the timestep t:

st � h ϕt( ) (4)
Then an RNN-based encoder embeds the temporally ordered

hidden vectors st, st+1. . ., st+n into a hidden vector zt, which
represents the temporal information of the environment after
current timestep t.

zt � r st, st+1, . . . , st+n( ) (5)

FIGURE 4
(A) Voxel model with low resolution (edge length of each voxel is
8 cm). (B) Voxel model with high resolution (edge length of each voxel
is 1 cm).
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4.2 High-level control policy network for
subproblem 1

The high-Level Control Policy Network is the core component of
the proposed approach. Let denote the high-level control policy
network qθ with its parameter as

uk � qθ xk, ztk, xgoal( ) (6)

When the robot arrives a state xk after k-th search step at timestep
tk, the network takes the current state xk, the embedding of the
dynamic environment ztk at timestep tk and the target region χgoal as
inputs to generate a high-level motion command uk. The high-level
motion command uk consists of command type ck and corresponding
motion parameters, such as the motion speed vk and the desired state
xk+1 to be reached.

4.3 High-Level Controlled Robot Dynamics
Network for subproblem 3

We designed a neural network to predict the dynamics of robots
controlled by high-level commands. This network predicates the
execution time and interpolation of high-level motion commands.

T̂k � fexecution time xk, uk( ) (7)
xk,n � finterpolation xk, uk, tk + nt( ) (8)

where fexecution time denotes the function to predicate the execution
time T̂k, xk the current state and uk the motion command,
respectively. finterpolation denotes the function to predicate an
interpolation state of the robot motion x̂k,n at n-th timestep
tk + n∇t, where ∇t denotes the interpolation resolution.

4.4 Robot motion planning with learned
feasible solution space

The entire pipeline of the proposed approach consists of the
following procedures.

4.4.1 Data collection
Firstly, the expert data for training the above-described neural

networks should be collected. The proposed approach requires plenty
of realistic data, which are expensive in terms of time and resources.
Therefore, the near-realistic simulation environment Visual
Components (Visual Components, 2021) are used to generate

realistic datasets and verify the planning results. Visual
Components contains an offline programming system that can
connect with VRC module (Virtual Robot Controller) (Bernhardt
et al., 1994). The VRCmodule integrates the original robot controllers
and provides a simulation accuracy of .00005 radians and 1% cycle
time. In this work, following data are collected in the simulation
environment.

4.4.4.1 Environment data
In offline robot programming, the geometry of the production cell

is represented through 3D polygon mesh models in simulation
software. The polygon mesh models of the obstacles in the
environment are exported and collected as raw data for training
Dynamic Environment Representation Network. Then the 3D
polygon mesh of obstacles is rasterized into 3D voxel models
because 3D voxel grids have a highly regular data format, which is
suitable for representation learning. In contrast to representing the
environment in point clouds, the resolution of the voxel model can be
easily adapted to suit the diverse requirements for environment
representation for different robot applications.

For example, in some high-speed handling tasks, the robot should
keep a safe distance from the obstacles in the environment. In this case,
the edge length of the voxel grids occupied by the obstacles should be
increased to leave enough space between the robot and the obstacles
(Figure 4A). However, for tasks that require the robot to perform
delicate operations, such as spot welding tasks where the welding gun
enters some narrow areas, we need to increase the resolution of the
voxel models to represent more details of the narrow areas (Figure 4B).

4.4.4.2 Robot programs
Robot programs for scenarios of different applications are

collected to learn high-level motion commands. The robot
programs consist of high-level motion commands, which are
programmed manually or automatically through other motion
planners. These robot programs should be executed and verified on
real robot systems or near-realistic simulation environments to ensure
that the programmed robot motions are collision-free.

4.4.4.3 Realistic robot motions
Training the High-Level Controlled Robot Dynamics Network

requires realistic robot motions executed by the robot control system.
On the one hand, the collision-free robot motions generated in Section
4.4.1.2 are be reused. On the other hand, more high-level commands
are randomly generated. These commands should also be executed on
real robot systems or near-realistic simulation environments to collect
realistic robot motions.

TABLE 1 Four categories of environments of the SCARA robot handling application used in experiment.

Categories of environments Static obstacles Dynamic obstacles

Simple Staitc Environments 1x Cylinder or Cubic 0

1x Robot

Complex Static Environments 3x Cylinders or Cubics 0

1x Robot

Simple Dynamic Environments 1x Cylinder or Cubic 1x Roboter

Complex Dynamics Environment 3x Cylinders or Cubics 1x Roboter
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4.4.2 Model training
In the second procedure, the three neural networks described in

Section 4.3 are trained on the data gathered in Section 4.4.1. All three
neural networks are trained in an offline supervised fashion. The
experiment settings for model training are detailed in Section 5.2.

4.4.3 Offline robot motion planning
In the offline planning procedure, the trained neural network

models are used to search a collision-free robot motion from the initial
state xinit to the goal state xgoal. The search process starts from the
initial state xk. At each search step k (at the timestep tk), Dynamic
Environment Representation Network embeds the dynamic
environment into a low-dimensional hidden vector ztk (see the blue
block in Figure 3). ztk is then fed into the High-Level Control Policy
Network along with the current state xk and the target state xtarget to
generate a high-level motion command uk consisting of motion
command type and motion parameters (see the orange block in
Figure 3). The High-Level Controlled Robot Dynamics Network
then takes uk as input to predict all interpolation states xk,n and
execution time T̂k of the motion to the next search step. For each
interpolation state, the collision between the robot and obstacles is
checked using conventional forward kinematics and the collision
check algorithm proposed in (Pan et al., 2012). If the robot motion
is collision-free, uk will be added to the search tree and the search
process will transit to the next state xk+1 at the timestep tk + T̂k (see the
green block in Figure 3). The planning pipeline repeats until the goal
state is reached.

4.4.4 Deploying robot motion to robot system
The robot motions planned by the proposed approach are in a

general format of high-level motion commands. Because the robot
programming must follow robot manufacture-specific programming
rules, the general format of high-level motion commands should be
converted to robot manufacturer-specific programming language
using a post-processor. Then the robot programs can be directly
uploaded to the robot control system. It should be noted that the

post-processing here is the syntactical conversation, which is different
from the post-processing mentioned in Section 1.1.

5 Experiment design and
implementation

This section reports the experiment settings and the
implementation details of the proposed approach.

5.1 Experiment setup

We evaluate the proposed approach on two industrial
applications: A handling application with two SCARA robots and a
machine tending application with one 6-axis heavy-duty robot.

5.1.1 SCARA robot handling application
In this application, two SCARA robots perform pick-and-place

tasks in different environments containing static and dynamic
obstacles. It is important to note that although this application
contains two SCARA robots, only the motions of one robot need
to be planned, and the other robot is seen as a static or dynamic
obstacle. Table 1 details the static and dynamic obstacles in four
different categories of environments. In this application, we focus on
evaluating the offline planning phase. Thus, the planned motions are
only verified in the simulation environment (Figure 5A).

5.1.2 Machine tending application
This application evaluates the proposed approach for the problem

domain of high-dimensional motion planning. A 6-axis heavy-duty
robot loads and unloads a machine tool. Unlike the SCARA robot
handling application, the planned robot motion in this application will
be deployed and verified on a real robot-based machine tending
system to evaluate the complete pipeline from planning until
deploying robot motions (Figure 5B).

FIGURE 5
(A) SCARA robot handling application (only in simulation environment). (B) Machine tending application with a 6-axis heavy-duty industrial robot.
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5.2 Implementation

This section describes the structure of neural network models and
the datasets.

5.2.1 Dynamic Environment RepresentationNetwork
The Dynamic Environment Representation Network uses the

basis struct of Variational Autoencoders (VAE) (Kingma and
Welling, 2014) with five 3D-CNN layers (Ji et al., 2013) to
compress the static obstacles in the environment into a 20-
dimensional embedding. For the dynamic environment, for
example, in SCARA robot handling application, a 3-layer RNN
encoder with ten units to embed the changes of the dynamic
environment over time. Each of the ten units accepts a 20-
dimensional embedding of one frame of the dynamic environment
and the RNN encoder finally produces an embedding vector of the
dynamic environment. (See the blue block in Figure 3).

For the SCARA robot handling application, we randomly generate
1000 environments. Each environment contains a varying number of
static cylindrical or cubic obstacles and a SCARA robot seen as a

dynamic obstacle. Then we recorded a frame of the dynamic
environment every 50 milliseconds. The environment in each
frame is voxelized and fed into VAE to produce an environment
embedding. We take ten frames of environment embedding following
the current timestep as a data tuple for training the RNN encoder.

For the machine tending application, 500 static environments are
generated. In each environment, we select one of five different
machine tools and place it randomly within the reachable
workspace of the robot.

5.2.2 High-level control policy network
A high-level motion command consists of the motion type and

motion parameters. In this work we consider Point-to-Point (PTP)
and Linear motion of the SCARA robot and the 6-axis robot. The
motion parameters of bothmotion commands are themotion speed vk
and the state xk+1 to be reached.

The High-level Control Policy Network contains two branches:
one generates motion type (Motion Type Prediction Branch) and the
other generates motion parameters (Motion Parameter Prediction
Branch). These two branches take the same inputs: the goal state xGoal,

FIGURE 6
Procedure of collecting dataset for High-Level Control Policy Network.

FIGURE 7
(A) Planned trajectory without collision. (B) Executed trajectory with collision.
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the current state xk and the environment embedding ztk at search
step k.

The Motion Type Prediction Branches for the SCARA robot
handling and the machine tending applications consist of 10 and

12 fully connected hidden layers followed by a Softmax layer with a
two-dimensional output, respectively. The Motion Parameter
Prediction Branch is a 12-layer forward neural network for the
SCARA robot handling application and a 15-layer forward neural

TABLE 2 Average prediction error of High-Level Controlled Robot Dynamics Network. The error in predicting execution time is defined as T̂k−Tk
Tk

, where T̂k and Tk are
predicted execution time and actual execution time, respectively. The error in predicting motion interpolation is defined as∑

i

0
|(x̂k,i−xk,i )|

lk
, where x̂k,i and xk,i are prediction

and ground truth of robot state at interpolation step of robot motion, respectively. lk is the euclidean distance along the robot motion executed. Because the 6-axis
robot in the machine tending application does not need to avoid other dynamic obstacles in the machine tending application, the robot moves with 100% velocity
override to achieve the shortest cycle time.

Motion speed override Average prediction error of execution
time

Average prediction error of interpolation

PTP motion (%) Linear motion PTP motion (%) Linear motion

SCARA robot handling application 0 - 25% 2.7 4.6% .23 .57 %

25% - 50% 2.9 5.8% .47 .79 %

50% - 75% 4.3 6.6% .48 .86 %

75% - 100% 6.0 7.2% .65 .91 %

Machine Tending Application 100% 1.4 — .31 —

FIGURE 8
Joint motion planned by the improved RRT* approach (blue line) and joint motion executed by robot control system (orange line).
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network for the machine tending application, respectively. Unlike the
network structure that generates samples at every search step in (Bdiwi
et al., 2018), we do not use dropout layers to achieve stochasticity in
the Motion Parameter Prediction Branch because the dropout layer
affects the convergence of the neural network. Inspired by the struct of
VAE, we applied two hidden layers before the output layer to generate
two vectors simultaneously: means and standard deviations vector of
motion parameters. The output layer samples a final prediction of
motion parameters from the means and standard deviations. (See the
green block in Figure 3).

In the environments generated in Section 5.2, we collect data for
training High-level Control Policy Network. Each environment of the
SCARA robot handling application and the machine tending
application contains 50 start-goal pairs. In order to make the data
set closer to the real machine tending applications, the start position or
the goal position of each start-goal pair must be located over the
working table inside the machine tool.

An improved RRT* approach (Otto et al., 2021) is used to plan a
trajectory as expert data. Unlike the basic RRT, the improved RRT*
approach post-processes the planned robot motions using PTP and
Linear interpolation and generates containing high-level motion
commands. The robot motions post-processed by the improved
RRT* algorithm may collide with static and dynamic obstacles
during the execution due to the inaccurate estimation of robot
dynamics and control parameters in the planning phase. Therefore,
we execute all generated trajectories in the simulation environment
Visual Components with the VRC module and only add the collision-
free trajectories and corresponding environment models to the
training set (Figure 6).

Both branches of the proposed network are trained in a supervised
fashion. The loss of the first branch LT(θ) is defined as:

LT θ( ) � −∑2

i�1ci log pi( ) (9)

where i indicates the category of motion command type c and pi

represents the predicted probability of the command type ci.
The loss of the second branch LP(θ) is defined as:

LP θ( ) � v̂k − vk| || | + x̂k+1 − xk+1| || | (10)
where v̂k and x̂k+1 are predicated motion parameters. vk and xk+1 are
the corresponding ground truth.We use adam optimizer (Kingma and
Adam, 2015) with initial learning rate .001, momentum .9. The
learning rate is decreased by half every 50 epochs.

5.2.3 High-Level Controlled Robot Dynamics
Network

High-Level Controlled Robot Dynamics Network has two
branches, the Interpolation State Prediction Branch and Execution
Time Prediction Branch, to predict the interpolation states and
execution time of realistic robot motion.

The Interpolation State Prediction Branches consist of 12 and
14 fully connected hidden layers for the SCARA robot handling and
the machine tending applications, respectively. The Execution Time
Prediction Branch consists of 10 and 11 fully connected hidden layers
for the SCARA robot handling and machine tending applications,
respectively. The Interpolation State Prediction Branch takes the
current state xk and motion command ck with motion parameter
(vk and xk+1 for Point-to-Point and Linear motion) as input to
predicate the execution time T̂i. A given interpolation step tk + n∇t
along with the same input as Interpolation State Prediction Branch is
fed into the Execution Time Prediction Branch to predict the
interpolation state of the robot x̂k,n at the given interpolation step
tk + n∇t (See the orange block in Figure 3).

FIGURE 9
Control inputs of external control loop (blue line) and actual joint motion (orange line).
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The VRC Modul in Visual Components executes ten thousand
motion commands of the SCARA robot and fifteen thousand motion
commands of the 6-axis heavy duty robot. The execution time and the
interpolation states of executed motion commands are recorded as the
dataset.

The first and second branches are trained by using standard
L2 loss function LInterpolation(θ) and LExecutionTime(θ), respectively:

LInterpolation θ( ) � x̂k,n − xk,n

∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣ (11)
LExecutionTime θ( ) � T̂k − Tk

∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣ (12)

where xk,n and x̂k,n denote the ground truth and prediction of robot
state at the interpolation step n, respectively. Tk and T̂k denote the
ground truth and prediction of execution time, respectively. During
training, we use stochastic gradient descent (SGD) [35] with initial
learning rate .0005 and momentum .8.

6 Result and discussion

For each application, this section evaluates the proposed approach
in 100 new environments, which are not used in the training phase. In

each environment, 20 pairs of start and goal were randomly generated.
The performance of the RRT, the improved RRT* and the proposed
approach was analyzed in terms of validity, the execution time of
trajectory and computation time.

6.1 Validity of trajectory

6.1.1 SCARA handling application
For the SCARA handling application, the robot motions planned

offline by different planners are only verified in Visual Components.
Figure 7 shows an example of an invalid trajectory generated by RRT.
Figure 7A shows that when the SCARA robot follows the planned
trajectory exactly, the robot on the right side passes the shared area
before the robot on the left side. The executed motion of the robot is
slower than computed in the planning phase and enters the shared
area later than planned, resulting in a collision with a cubic obstacle
(Figure 7B).

In all scenarios of SCARA handling application, only 5.2% of
the trajectories generated by our approach are invalid because the
trained High-Level Controlled Robot Dynamics Network can
predicate the robot motion more accurately in the planning

FIGURE 10
Joint motion planned by the proposed approach (blue line) and joint motion executed by robot control system (orange line).
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TABLE 3 Average execution time of trajectories generated by proposed approach and the benchmark approaches.

Environment Distance between start and goal Average execution time in second

Proposed approach RRT Improved
RRT*

Simple static environment of SCARA robot handling application Near .223 .210 .212

Middle .420 .544 .513

Far .661 .837 .702

Complex static environment of SCARA robot handling application Near .296 .370 .306

Middle .605 .801 .664

Far .736 .909 .759

Simple dynamic environment of SCARA robot handling application Near .246 .276 .266

Middle .495 .593 .563

Far .733 .948 .829

Complex dynamic environment of SCARA robot handling application Near .420 .464 .467

Middle .766 .978 .827

Far 1.070 1.292 1.116

Machine tending application Near 1.523 1.892 1.328

Middle 2.034 2.367 2.249

Far 3. 551 3.719 3. 406

FIGURE 11
(A) Example trajectory generated by the proposed approach. (B) Example trajectory generated by RRT. The green points represent the via points of
trajectory in Cartesian space.

Frontiers in Robotics and AI frontiersin.org13

Hou et al. 10.3389/frobt.2022.1030668

97

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1030668


phase. Table 2 shows the relative error of the trained model in
predicting motion interpolation and execution time. In all
experiment scenarios, the average error between the actual and
predicted execution time of the high-level motion commands is 5%.
Furthermore, Table 2 shows that the error in predicting Point-to-
Point motion is smaller than that in predicting linear motion. The
reason is that predicting the dynamics of linear motion requires
estimating the inverse kinematic model, which increases the
prediction error.

6.1.2 Machine tending application
For the machine tending application, we deployed the robot

motions planned offline on the real robot in different ways. The
proposed approach generates high-level motion commands that can

be directly uploaded to the robot control system (see Figure 2C).
Because the improved RRT* uses an interpolation algorithm to
convert the planned robot motion to high-level motion commands,
the generated motion commands can also be uploaded into the robot
control system (see Figure 2B). The RRT generates low-level control
inputs, which should be executed in an additional control loop (see
Figure 2A).

In Figure 8, we can see that the robot motion planned by the
improved RRT* deviates significantly from the robot motion executed
by the control system. It is because the control algorithm of the
improved RRT* used in the planning phase differs from the control
algorithm used in the robot control system-in the offline planning
phase, the improved RRT* assumes that the joints can reach the
maximum acceleration. However, in reality, the robot control system

TABLE 4 Average computation time of trajectories generated by the proposed approach and benchmark approaches.

Environment Distance between start and goal Average computation time in second

Proposed approach RRT Improved
RRT*

Simple static environment of SCARA robot handling application Near .18 .37 1.82

Middle .26 .61 2.27

Far .31 .84 2.38

Complex static environment of SCARA robot handling application Near .62 1.50 2.47

Middle .74 2.81 4.77

Far .88 4.16 5.49

Simple dynamic environment of SCARA robot handling application Near .42 1.83 5.05

Middle .57 3.59 6.92

Far .59 4.24 7.22

Complex dynamic environment of SCARA robot handling application Near .67 3.12 5.34

Middle .89 5.94 8.03

Far .94 7.12 9.11

Machine tending application Near .90 .85 1.15

Middle 1.08 .88 1.27

Far 1.17 .92 1.63

FIGURE 12
(A) Valid (green) and invalid (red) samplers generated by RRT, (B) RRT* and (C) by the proposed approach.
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only applies 60% and 45% of the maximum acceleration to the first
and second joints, respectively.

The control inputs and actual values are recorded during the
execution of robot motion controlled by the additional control loop
(Figure 9). The additional controller tries to drive the first and second
joints with maximum acceleration, but the internal motor controller
limits the joints to reach the maximum value. Then the fluctuation of
joint acceleration triggers the safety mechanism of the robot control
system, which disconnects the communication interface (Robot
Sensor Interface) between the additional controller and the robot
control system.

Figure 10 shows that the robot motion planned by the proposed
approach is close to the motion executed by the robot control system.
We can see that the trained neural network has learned the control
behavior (acceleration and deceleration) of the robot control system to
predicate the interpolation of robot motion.

6.2 Execution time of trajectory

We compared the execution times of the trajectories generated by
the proposed approach, RRT and improved RRT* (Table 3).

It is necessary to note that the trajectory’s execution time varies
significantly due to different distances between the start and goal
states. To compare the performance of different approaches more
reasonably, we classify the planning tasks into three categories
according to the distance between the start and goal states: 1. near
distance (smaller than 30% of the robot’s range), 2. middle distance
(bigger as 30% but smaller as 60% of the robot’s range) and 3. far
distance (bigger as 60% of the robot’s range). It can be seen that the
average execution time of the trajectories generated by the proposed
approach is twenty percent faster than RRT in the SCARA robot
handling application. Since improved RRT* optimizes the number of
via points while expanding the search tree, the execution time of the
trajectories generated by it is essentially the same as the proposed
approach. However, the optimization increases computation time, as
seen in section 6.3. Since all scenarios of the machine tending
application are simple, the execution time of the motion planned
by each approach varies slightly.

Figure 11 shows the valid trajectories generated by the proposed
approach and RRT in an example scenario. The proposed approach
generates a trajectory containing only three high-level motion
commands (Figure 11A). The first and second linear motion
commands guide the robot through a narrow area. After the robot
leaves the narrow area, the proposed High-level Control Policy
Network maps the empty surrounding area to a Point-to-Point
motion command because the Point-to-Point motion is faster than
the linear motion. RRT generates more via points (Figure 11B) in the
narrow area, resulting in acceleration and deceleration of robot joints.

6.3 Computation time

We compared the computation time of the proposed approach
with the benchmark approach in scenarios with different complexities.

As the environment becomes more complex, the advantage of our
approach in terms of computation time becomes obvious (Table 4). In
particular, the proposed approach is up to 10 times faster than the
improved RRT* approach in complex dynamic environments of
SCARA robot handling application because the proposed approach
reduces the computation time by efficiently exploring in learned
feasible solution space. In Figure 12, we visualize all the samples
generated by the different approaches for the same task. It has been
found that the benchmark approaches spent much time to generate a
large number of samples randomly. The proposed approach generates
fewer samples in critical areas based on environment information.

7 Conclusion

We have proposed a novel deep neural network that generates
collision-free trajectories as high-level motion commands. The
generated trajectory can be directly deployed in the robot control
system without post-processing. Furthermore, the experiment results
show that the proposed approach outperforms the benchmark
approaches in terms of validity, execution time of planned motion
and computation time. One future direction is to extend our data
collection procedure and generalize our network to handle more high-
level commands for robots with higher degrees of freedom.
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A novel approach for automatic
annotation of human actions in 3D
point clouds for flexible
collaborative tasks with industrial
robots

Sebastian Krusche*, Ibrahim Al Naser, Mohamad Bdiwi and
Steffen Ihlenfeldt

Department of Production System and Factory Automation, Fraunhofer Institute for Machine Tools and
Forming Technology, Chemnitz, Germany

Manual annotation for human action recognition with content semantics using 3D
Point Cloud (3D-PC) in industrial environments consumes a lot of time and
resources. This work aims to recognize, analyze, and model human actions to
develop a framework for automatically extracting content semantics. Main
Contributions of this work: 1. design a multi-layer structure of various DNN
classifiers to detect and extract humans and dynamic objects using 3D-PC
preciously, 2. empirical experiments with over 10 subjects for collecting
datasets of human actions and activities in one industrial setting, 3.
development of an intuitive GUI to verify human actions and its interaction
activities with the environment, 4. design and implement a methodology for
automatic sequence matching of human actions in 3D-PC. All these procedures
are merged in the proposed framework and evaluated in one industrial Use-Case
with flexible patch sizes. Comparing the new approachwith standardmethods has
shown that the annotation process can be accelerated by 5.2 times through
automation.

KEYWORDS

data labeling, human activity recognition, deep learning, robotics, point cloud annotation

1 Introduction

Recognition and prediction of human actions are increasingly crucial in industrial
production. Flexible and agile machine systems should be able to recognize their
environment, detect persons in the workspace and predict human intentions. Based on
the future human action information, the machine systems adapt the production sequence in
real-time and optimize the production process situationally. Such an activity prediction
would allow the human to work very closely with the robot in specific product steps in
collaboration without the danger of a collision. On the other hand, there is no loss of machine
utilization because the system can increase the speed again when a permissible safety
distance is reached (Rashid et al., 2020). By ensuring the safety, interactions such as teaching
a heavy-duty robot by gestures very close to the robot can be enabled without requiring
complex approvals by the operator The No-Code approach allows the human to teach the
robot directly by guiding, showing, or demonstrating without the need for knowledge of
complex programming languages (Bdiwi et al., 2016; Halim et al., 2022). Working directly
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with the robot on the production component enables the human to
use his sensitive skills in very complex activities and thus drive the
level of automation forward, even in non-industrial areas such as
surgery (Su et al., 2021; Su et al., 2022). To make these possible,
efficient algorithms are needed, that can robustly recognize and
predict human behavior in all its variations. Many approaches have
been implemented to deal with different video data (Baradel et al.,
2016; Feichtenhofer et al., 2016; Gkioxari et al., 2017; Liang et al.,
2019; Morais et al., 2020). Most convert the input video data into
spatio-temporal representations and infer labels from these
representations. Different types of information are used in these
works, such as human posture, interaction with objects, and
appearance features.

A large number of published data sets with daily and sports
activities are available for the method development (Shahroudy
et al., 2016; Kay et al., 2017; Carreira et al., 2018; Carreira et al.,
2019; Jang et al., 2020; Liu et al., 2020; Lucas et al., 2020; Shao et al.,
2020). Annotating these datasets is very time-consuming and labor-
intensive. Human annotators must define and describe spatial
regions associated with an image frame from a video or delineate
temporal segments in conjunction with the video. Standard shapes
such as rectangles, circles, points, or polygons frequently
characterize the spatial regions. In contrast, marking the
temporal segments requires only the start and end
timestamp. These spatial regions and temporal segments are
described by textual metadata.

Activities in an industrial context are usually very complex and
consist of a combination of simple actions. In most cases, items are
used to perform the activity. Up to that, it comes to interactions with
other persons to accomplish extended, more complex action
sequences. The activity duration is usually longer than 1 s, but
the duration of action is mostly only up to 0.5 s (Das Dawn and
Shaikh, 2016; Trong et al., 2017; Dang et al., 2021). In very rare cases
there are crowds of people or crowded scene, but more often there is
occlusion by industrial plant parts and machinery in the scene.
Furthermore, many items, such as ladders or chairs, are often
classified as humans by 3D sensor systems, depending on their
shape. In addition to these static objects, there are dynamic objects
such as robots or AGVs, whose position changes continuously, and
these temporarily provide occlusions in the workspace.

In order to face these challenges, it is necessary to apply a 3D
multi-sensor system that observes the industrial workspace from
multiple perspectives and avoids the risk of occlusion. Each 3D
sensor provides a 3D point cloud and an RGB image with a frame
rate of 10 fps ~ 30 fps, which leads to a vast amount of data for an
action sequence with a duration of about 1s, if at least 4 sensors are
used. Manual annotation of action and activity sequences is
impossible because of this amount of data and the complexity of
such a multi-sensor system. Furthermore, manual annotation of
objects in 3D space requires different modeling tools than those
required for annotation 2D images.

The automatic annotation approach presented in the paper can
fulfill all these requirements. The manual effort of the annotation
process would be reduced to a significant amount, and training data
from different perspectives can be generated due to the multi-sensor
technology. By using deep learning models for skeleton-based
recognition of human activities (Pavlakos et al., 2016; Barsoum
et al., 2017; Ruiz et al., 2018; Li et al., 2020; Mao et al., 2020; Yuan

and Kitani, 2020; Dang et al., 2021; Mao et al., 2021; Martínez-
González et al., 2021), the action sequences can be classified and
tracked very easily. The annotator no longer needs to focus on the
elaborate annotation of the human pose and can take care of
tracking multiple people.

In our work, we designed a multi-layered structure of different
DNN classifiers to recognize humans and dynamic objects in the 3D
point clouds of a multi-sensor system. To do this, we combined
several available AI classifiers to distinguish humans from robots or
other objects accurately. We developed and implemented a
methodology for automatically matching human actions in 3D
point clouds for human activity sequence detection. To operate
these methods and verify the results, we designed an intuitive user
interface that allows the user to correct the automatic annotation or
improve the process by optimizing the classifiers. To finally evaluate
the approach, we created extensive datasets based on empirical
experiments with ten subjects performing various simple and
complex activities in an industrial environment. As part of the
experiments, we addressed human-robot cooperation scenarios
where humans and robots coexist in a workspace very close.

2 Related work

Annotation of human activities in video data is very time and
labor-intensive work. It requires a massive amount of human and
hardware resources. There are two general approaches for
generating data sets with human actions.

1) Data sets like NUCLA, SYSU, NTU-RGB + D, PKU-MMD
(Bdiwi et al., 2016; Rashid et al., 2020; Su et al., 2021; Halim
et al., 2022; Su et al., 2022) (Wang et al., 2014; Shahroudy et al.,
2016; Hu et al., 2017; Liu et al., 2017; Liu et al., 2020) were
generated under laboratory-like conditions, the activities were
controlled, and the sensors had optimal perspectives on the
scene. Based on this boundary condition, the human activity
in the video sequences can be very well recognized, annotated,
and quickly separated. In this case, annotation by hand is very
easy and requires less effort. However, human activities’ variance
is minimal, meaning that the data sets do not represent reality.
Performing such predefined laboratory experiments is labor
intensive and time-consuming.

2) In contrast, data sets such as Fine-Gym, UAV-Human,
HOMAGE (Shao et al., 2020; Li et al., 2021; Rai et al., 2021)
generated in real-world environments (such as road traffic and
crowds in public places) with uncontrolled action are more
challenging to annotate because the environment is too
cluttered, people may be obscured, camera perspectives are
not optimal, or the variance of human action is too different.

Datasets like as ActivityNet, AVA, Babel (Heilbron et al., 2015;
Gu et al., 2018; Punnakkal et al., 2021) have been labeled via
commercial crowdsourcing platforms such as Amazon
Mechanical Turk (AMT) (Amazon, 2021) for a charge to the
dataset creators. In some cases, the annotators from
crowdsourcing platforms influence the annotation quality
negatively due to a lack of expertise. The crowdsourcing method
may compromise confidentiality.
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There are different open-source tools for annotating objects
and features in image videos (da Silva et al., 2020; Dutta and
Zisserman, 2019; Biresaw et al., 2016; Riegler, 2014; Yuen et al.,
2009). Most of them require a manual annotation by an
annotator in every frame. Only some of them provide the
ability to track humans or objects across multiple image
frames using tracking functions (David, 2000; Vondrick et al.,
2012; Bianco et al., 2015; Intel, 2021). This feature makes it easier
for annotators to save time by automatically tracking the
annotations instead of labeling them frame by frame. Usually,
the marking is done by an Annotator manually or by an object
recognition algorithm before the tracking function tracks the
object or human over several frames. In ViPER, ground truths
are stored as sets of descriptors (David, 2000). Each descriptor
annotates an associated range of frames by instantiating a set of
attributes for that range. However, these attributes are not simple
and flexible enough to annotate time-varying (appearing and
disappearing) behaviors. VATIC is a simple, reusable, open-
source platform for labeling research videos (Vondrick et al.,
2012). To annotate human behavior, third parties have extended
VATIC with additional features. iVAT (Bianco et al., 2015)
presents a tool that allows the user to extract target states and
categorize the targets. To significantly minimize human effort,
iVAT uses automatic tracking and other computer vision
methods combined with interpolation to support manual
annotation. However, human interventions and verifications
are necessary to validate the quality of the annotation results.
JABBA (Kabra et al., 2013) is a semi-automatic machine
learning-based behavioral annotator that takes the already
annotated states (trajectories) as input to perform the task.
The purpose of these tools is to reduce human effort and time
and to preserve the annotation quality. Manual labeling effort is
reduced by automatically estimating states between selected
keyframes using linear interpolation and homography-
preserving techniques (Yuen et al., 2009; Vondrick et al.,
2012). The annotation quality of these tools depends on the
individual annotators or object detectors. It is very challenging to
mark objects correctly in crowded scenes, and annotators may
easily miss important details. Furthermore, no other
information, such as the human body pose or current activity,
is provided. In addition, it is necessary to perform a pose
estimation to get the skeleton data (Cao et al., 2016;
Andriluka et al., 2017; Güler et al., 2018; Kocabas et al., 2018;
Xiao et al., 2018; Cai et al., 2019; Cheng et al., 2019; Sun et al.,
2019; Jin et al., 2020; Contributors, 2021; Kreiss et al., 2021). The
HAVPTAT tool allows the annotation of body poses (“Walking”,
“Standing”, “Sitting”) and simple activities (“WalkingWhileCalling”,
“StandingWhileWatchingPhone”, “SittingWhileEating”) of several
people over a sequence of 2D images (Quan and Bonarini, 2022). A
separate algorithm OpenPifPaf (Kreiss et al., 2021), whose results are
reloaded and played in parallel with the video, does the estimation of
body poses. The annotator has to do the body pose assignment
manually.

Besides the above drawbacks, it is challenging to perform the
detection and tracking of multiple people in a video when dealing
with crowded and cluttered scenes. None of the approaches uses a
multi-sensor concept to fuse, and plausible the body pose estimation

and tracking, which guarantees that the results can be classified and
annotated much more clearly.

3 Annotation framework

The realization of the annotation approach required the
development of an extensive framework, its architecture
consisting of a powerful AI server and an intuitive GUI, as seen
in Figure 1. The basic workflow is structured into three steps.

1) The user selects the desired action dataset via the GUI and passes
it to the automatic annotation step, where the data is
automatically segmented, tracked, and classified.

2) The raw results are then analyzed, filtered, and optimized in the
following automatic post-annotation step. The goal is to
determine and correct correlations based on a complete view
of the entire sequence of actions.

3) In the final manual post-annotation step, the user checks
whether the results are correct or whether a further manual
correction is necessary, based on the visualization that displays
the annotation results in the context of the 3D point clouds and
RGB images.

The development and implementation of this structure were
realized using the OpenCV library (Bradski, 2000) for the
backend framework, VTK library (Schroeder et al., 2006) for
3D visualization and the Qt library (Nasdaq Helsinki: QTCOM,
2021) for the GUI. The integration of the open-source AI
algorithms was done using Python since most approaches are
based on AI frameworks PyTorch (Paszke et al., 2019) or
Tensorsflow (Abadi et al., 2021), which are implemented in
the Python programming language. Each AI classifier is
encapsulated in a Docker container to avoid possible
inferences between the specific software dependencies. The
Docker containers are run on a separate Linux-based AI
server with two parallel GPU cards to enhance performance
and ensure parallel usage. A ZMQ interface based on UDP is
implemented between the Annotation Viewer and Docker
Container on the AI Server for data exchange (Hintjens, 2011).

3.1 Data structures

Because of the high raw data volume of the multi-sensor system
and the output of the multi-person tracking, it is necessary to
structure the data so that the system can clearly distinguish
between input data and the intermediate and end results. For this
purpose, a data structure with specific data types was developed,
which lists all data and information types and allows the user to
select the available visualization option. The data structure differs in
two basic categories, which are specified as follows:

Streams: The Streams category contains all image and 3D point
cloud data sets of the multi-sensor system for the entire acquisition
time of an action sequence, forming the basis for the automated
annotation process. One stream includes the acquired sensor data of
the scene from the perspective view of the single sensor. The intrinsic
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and extrinsic calibration parameters of every single sensor are
required to establish the relation between the 2D RGB camera
images, the 3D point clouds, and the sensor world coordinate

system. In addition to the reference to the sensor world coordinate
system, the reference to the world coordinate system should also be
given for a holistic view of the scene from different perspectives.

FIGURE 1
Schematic chart of the annotation framework.

FIGURE 2
Graphical user interface for displaying sensor data sets and annotation results.
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Object List: This category allows the summary of all objects
detected, tracked, and classified throughout the action sequence.
Besides the result representation of the automatic annotation
process, this structure is also used for the following steps of
automatic post- and manual annotation. The list contains a
separate data set (object data) for each object, which enables a
view of the temporal and spatial movement concerning the
whole sequence for the single object. The dataset contains
spatial information in the form of 2D and 3D bounding
boxes and the results of person/non-person classification and
human posture estimation for each frame, respectively.
Furthermore, global information about the object is also
stored, such as walking paths or the execution location of the
action.

Annotation Data: For training and verification of AI algorithms
for action recognition and action prediction, datasets are required
that represent human actions in a temporal context. The annotation
sets include point clouds and image patches with corresponding
labels related to human action, generated automatically based on
object data and specifications by the user.

In the user interface, the loaded and generating data structures
are visualized in the form of a tree model, shown in Figure 2 on the
right side of the user interface. The user can quickly distinguish
between raw data (streams), object data (object list), and annotation
data based on the structure and select the corresponding
visualization forms via the checkboxes.

3.2 Annotation viewer

An intuitive user interface has been designed and
implemented to merge annotations and raw data sets, allowing
the user to review, verify and adjust the action sequences. In the
interface, the 2D image data, 3D point clouds, and tracking and
classification results of an action sequence can be visualized in
correspondence to each other frame by frame. Various display
forms are implemented as separate visualizations for data
representation, defined as follows, as shown in Figure 2.

Workspace Viewer: For displaying the 3D object information of
the detected human to the 3D point cloud, a 3D visualization
environment is implemented, representing the multi-sensor
system surveillance space. The user can load and visualize 3D
CAD models of the plant with the machines, robots, and
protective fences to reference the sensor information to the
environment, as shown in Figure 3 (left). The precondition for
correct mapping of the 3D object information, 3D point clouds, and
CAD models is a precise extrinsic calibration and temporal
synchronization to each other. With the 3D workspace
visualization, the user can quickly check and verify the results of
the segmentation, tracking, and classification algorithms. In
complex scenes with many dynamic objects, the information
representation in 3D can be better than in 2D.

Image Viewer: Parallel to the 3D workspace visualization, the
user can review and analyze the action scene from every single
sensor perspective of the multi-sensor system. For this purpose, the
RGB images are visualized in combination in a separate tab, as
shown in Figure 3 (center). In addition to the perspective view of the
scene, the results of the tracking and classification are plotted in the
individual images. The detected persons are marked by a 2D
bounding box and a label so that the persons can be identified
over several frames. Furthermore, additional information about the
course of action can be displayed, such as the entire walking path or
the location where the action was performed. It is important to note
that the detected person may be covered due to the sensor
perspective, resulting in an incorrect display.

Chart Viewer: To summarize the whole sequence of actions, the
temporal series of the objects are displayed in the form of bars on a
time axis. The diagrams are available in a third tab, as seen in
Figure 3 (right). In the Raw Object chart, all detected objects in the
action sequence are displayed, allowing the quality of the
segmentation, and tracking to be evaluated. The algorithm could
not accurately segment and track the objects over the entire
sequence if there are many objects with short time segments. The
second chart details the objects by person and non-person. The user
can see here which objects can be assigned to the acting persons or
interaction objects and which objects are misdetections.

FIGURE 3
Workspace viewer (left), image viewer (center), chart viewer (right).
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Project Tree: In general, to give the user an overview of the
data being loaded or generated, the data structure is visualized as
a dynamic tree model, as shown in Figure 2 on the right side of
the user interface. In addition to the listing of the individual
sensor data sets and the detected objects of the action sequence,
the data types described in Section 3.1 are also displayed. By using
a dynamic tree model, additional data, information, and
control elements can be added or adapted very quickly,
making the user interface flexible depending on the size and
type of the data set.

Data Logger: A text browser was placed in an additional tab to
display status messages or system information on the annotation
process. The user can check which current step the process is or
which files have been loaded.

The user can replay the action sequence in its full context
through the intuitive user interface or analyze the scene in more
detail frame by frame. There are also functions for importing raw
data, exporting annotation results, and printing analysis results as
diagrams.

3.3 Annotation approach

A workflow approach was developed to ensure that the
automatic annotation tool generates action- and context-based
annotation data consistent with temporal and spatial
relationships. Figure 4 shows the schematic context of the

annotation approach. The single steps are explained in detail in
the following subsections.

The minimum requirement for the automatic action annotation
is that each dataset contains a complete action or a complex activity
with a series of actions of at least one person. This action or activity
should be represented as a sequence of corresponding RGB images
and 3D point clouds in the dataset. A further advantage is if multiple
sensors from different spatial perspectives capture the scene with the
action sequence time-synchronously. The condition for processing
these multi-recordings is that the setup between the sensors is
known. The extrinsic parameters must be precisely determined to
merge the 3D point clouds of the individual sensors and to ensure
the assignment of the detected persons and items. The action
sequences must be loaded into the annotation tool as a complete,
time-synchronous data set to guarantee successful processing and
annotation.

Data pre-analysis: The tool treats each annotation of an action
dataset as a session, whose results are stored and evaluated
separately. After the action sequence is loaded into the
annotation tool, a pre-data analysis is performed to check if there
is an equal number of RGB images and 3D point cloud or if there is a
large number of frame drops. In case of incompleteness or low
quality, the data set must be discarded or cropped so that a
successive action annotation is possible. In addition, data pre-
processing can also be optionally performed, such as the
rectification of RGB images or the conversion of depth images
from 3D point clouds.

FIGURE 4
Schematic workflow of the annotation approach.
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Annotation Setup: At the beginning of the annotation session,
the user has to provide additional information regarding the action,
the environment, and the interaction objects besides the raw data set.
The environment model contains all spatial information regarding
the action, like where the action takes place, what are possible
accesses or walkways in the monitoring area or where are the
interaction objects placed, etc. For this purpose, the
corresponding objects or regions will be defined using standard
shapes such as rectangles, circles, points, or polygons in a predefined
XML format. The action inference is based on body posture
estimation and object interaction recognition. It is necessary to
define the common postures and objects and to submit them as lists
to the tool. The final action labeling is done by specifying the action
sequence or the action type, which is to be predefined by the user as
an action/activity list. In this main list, links are used to refer to the
information in the sub-lists. It results in a tree structure with
different levels, describing the expected action in detail and
forms the basis for the automated annotation algorithm. The
user must configure all this information utilizing a parameter
catalog and provide it using parameter files.

Automatic Annotation: After all boundary conditions
regarding the annotation task have been set, and the pre-
analysis of the datasets is positive, the datasets can be passed
to the automatic annotation step. In the beginning, static objects
and environment structures must be removed from the 3D Point
Cloud. For this purpose, the background segmentation method
is used, which removes all 3D points from the point cloud that
are not included in the static background model. This
background model should be learned for each scene so that
all static objects and environmental structures are precisely
removed from the 3D point cloud. A prerequisite is that no
dynamic object is in the field of view of the sensors during the
teach-in or that there is no further change in the working space
of the system. After the segmentation of the static background in
the 3D point cloud of the current frame follows the
segmentation of all dynamic objects in the sensor’s field of
view. All 3D points with a certain Euclidean distance are
combined into a cluster, separated from the remaining part of
the point cloud by a 3D bounding box, and declared as an object.
These segmented objects are then tracked over single frames

using Kalman filters until they leave the field of view or the data
set with the action sequence is finished. The result of the 3D
object segmentation can be seen in Figure 5 (left). Due to
background segmentation and point cloud fusion, dynamic
objects can be segmented very well from the point cloud.

In order to enable the classification of the segmented objects
in the RGB images, it is necessary to project the 3D bounding box
from 3D space into the 2D camera plane of the single sensors. For
this purpose, the 3D object must be transformed from the world
coordinate system into the sensor coordinate system using
extrinsic parameters and then projected into the sensor plane
using intrinsic sensor parameters. The 3D to 2D projection result
can be seen in Figure 5 (right). The object can be segmented from
the rest of the RGB image using the 2D bounding boxes. Based on
the segmentation, human and object classification in 3D/2D is
feasible. The extracted 3D and 2D patches are transferred to the
AI server via the ZMQ interface. Various AI classifiers such as
OpenPose (Cao et al., 2018), Alpha Pose (Li et al., 2018), or
DarkNet (Redmon and Farhadi, 2018) can distinguish non-
persons from persons or identify specific items. Once a person
has been confidently classified, human body pose estimation is
performed based on the skeleton model of the OpenPose and
AlphaPose classifiers. With the help of the estimator, human
postures such as walking, standing, sitting, bending, and kneeling
can be detected and additionally used later to generate action-
related annotation data.

Automatic Post-Annotation: The objective of the automatic
post-annotation is to view the results of the automatic annotation
step over the entire sequence of actions and the overall
workspace. Input is the classified objects whose distribution
over all sequence frames can be seen in the form of a bar
chart in Figure 6 (left). Mainly there are two large objects
with a history spanning several frames, from which the plot
can be derived. All other objects are short-lived and have been
classified as undefined. The appearance can be reduced to
artifacts in the point cloud, which are caused by an
asynchrony of the sensor data.

The second step of Automatic Post-Annotation includes
filtering objects according to different criteria. Besides
undefined objects and objects with a small lifetime, all objects

FIGURE 5
Results of the automatic annotation step visualized in the 3D workspace (left) and RGB image (right) of Sensor 1. People are marked with (red) and
objects with (blue).
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with small sizes are removed. The threshold value here is set to a
length of 0.3 m per bounding box edge. The object is filtered out if
all three edges are below this threshold. The result of the filtering
is Figure 6 (center). All undefined objects with a too short lifetime
were removed.

After the list of objects has been roughly filtered, the single
objects are analyzed in detail. It is examined whether the
classification results of the objects are constant over the entire
sequence or whether there is a relationship between them.
Besides the classification results, the motion sequence in 3D
space and the object’s volume is another input for detailed
investigation. In the present case, the second object results
from the first object, only that the class assignment is
incorrect. To correct this, both objects are decompensated in
the third stage, rearranged, and reassembled. The result is shown
Figure 6 (right). The reordering shows that both object courses
are consistent, and a clear distinction between non-person and
person can be made.

Manual Post-Annotation: Finally, after the object data has
been generated and optimized, the final step is verifying and
selecting the annotation data to be exported. The user reviews the
results over the entire sequence of actions using the 3D
Workspace Viewer, 2D Image Viewer, and Chart Viewer by
replaying the data or examining it frame by frame. Objects
can be manually removed if it becomes apparent that the data
has been incorrectly segmented, classified, and mapped.
Furthermore, in case of inaccurate results, it is desirable to
adjust the segmentation, tracking, or classification parameters
and repeat the automatic annotation process.

The automatic annotation approach aims to generate specific
action and contextual object data whose spatial and temporal
changes are coherent. It ensures that the segmented, tracked, and
classified objects are based on the 3D/2D sensor data corresponding
to the natural dynamic objects represented by an object or a person.
The user can automatically create training and verification datasets
based on consistent object data for AI algorithm development. For
that purpose, the tool automatically extracts the point cloud or
image patches of the selected object or person with the
corresponding label using the 3D and 2D bounding boxes.

4 Experiments

4.1 Experiment setup

The performance of the annotation tool was examined and
verified in 6 specific test scenarios according to different criteria.
In these scenarios, a test person performs different complex
activities ranging from actions such as walking with an
object to interactions between two people. The test scenarios
cover expected human behaviors in industrial activities in
the automotive industry. One of the first actions in the event
of malfunctions in industrial robot systems is usually for the
worker to enter the robot cells to clear a fault. Therefore,
almost every test scenario includes walking with or without an
object.

Table 1 summarizes the 6 scenarios with the main actions and
the number of persons. The test scenarios range from very
simple to complex. Depending on the sequence, one or more
persons are in the robot cell, interacting with objects such as
ladders, suitcases, or transport carts. The test scenarios
cover expected human behaviors in industrial activities in the
automotive industry. One of the first actions in the event
of malfunctions in industrial robot systems is usually for the
worker to enter the robot cells to clear a fault. Therefore,
almost every test scenario includes walking with or without an
object.

The sensor data is collected in the HRC cell at Fraunhofer
IWU, whose design corresponds to a robot cell without a
protective fence in the industrial production
environment. The interior of the cell is large and barrier-free
and allows human activities and interactions in the robot
environment. The open area of the cell allows for the optimal
alignment of sensor technology to the scenery and a promising
field of view without being obscured by additional machine or
plant parts. Based on the described infrastructure, the access
area and the front working area of the cell were selected for data
acquisition of the multi-sensor system. The front view of the
HRC cell can be seen in Figure 7 (Left). In order to completely
cover the workspace and to avoid obscuring the person acting,

FIGURE 6
(left) Input: distribution of raw objects over the entire sequence, (center) Filtering: removal of all small undefined objects, (right) Optimization: object
decompensation and reordering by Non-Person/Person.
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four sensors were installed in the room, which records the scene
from various perspectives. The sensor layout can be seen in
Figure 7 (right).

In the execution of the experiment, data sets with 10 different
test subjects with five scenarios each were created based on the
test description. Because three scenarios were performed in

TABLE 1 Test scenarios to investigate the performance of the annotation tool.

Scenario-Nr.: Scenario title Action types Active subjects

1 Person walks into robot cell Standing (static), walking 1

2 Person walks with item Standing (static), walking, setting up ladder 1

3 Person pushes a transport cart Standing (static), walking, pushing transport cart 1

4 2 persons walk into robot cell Standing (static), walking 2

5 2 persons hand over an item Standing (static), walking, handing over item 2

6 2 persons with a transport cart Standing (static), walking, Pushing transport cart 2

FIGURE 7
(Left) Front view of HRC test cell at Fraunhofer IWU, (Right) Sensor layout with 4 sensors.

FIGURE 8
Architecture for comparing Results of Annotation Tool and Reference System.
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cooperation with another subject, it is possible that in some data
sets, the same subject interacted several times or that the test
series of some subjects were combined. The data sets were divided
into single- and multi-subject groups for further processing and
analysis. Because of the experimental scenarios with two subjects,
the number of data sets in both groups is not the same. The
recordings resulted in 31 data sets for single-person and 27 for
multi-person scenarios.

4.2 Statistical assessment

Based on the data collection, an extensive static study was
conducted to demonstrate the performance of the automatic
annotation tool. The purpose of this evaluation was to determine
how accurately the Multilayer Structure of the various DNN
classifiers can classify and track human subjects in 2D and 3D.
For comparison, result data from a Multi-Sensor Reference System
was used, which provides similar results in 3D space. The
Architecture used for the evaluation is shown in Figure 8. The
reference system works with the same sensor data as the automatic
labeling tool but is limited in its function, the evaluation point cloud
data. The recognition of additional objects is not provided, which is
necessary for the further development and annotation of more
complex scenarios. Therefore, only the recognition of persons is
used to compare the systems.

The execution of the tests was automated so that the data sets
were replayed. Based on the image data and point clouds, the
algorithms classified and tracked people and objects in parallel.
Each frame counted the number of objects for each processing step,
and the intermediate results were stored.

Supplementary Appendix S1 shows the complete evaluation for
scenario 1 with all four sensors. For traceability, the entire process
was broken down into individual processing steps, and the number
of input and output data was listed for each step. Each row of the
table represents the summarized evaluation of a data set. The
individual cells represent the cumulative number of input and
output data of a processing step. The unit of the cell values is the
number of objects processed during the data set’s application. At the

table’s end, each column’s mean and median is calculated for
comparison against the other scenarios.

Supplementary Appendix S2 summarizes the results of the
separate evaluation of all six scenarios and is directly compared
with the reference system. In the beginning, average values of the
individual processing steps for each sensor are listed, which are then
merged in the multi-sensor fusion part. Based on this compact
representation, anomalies and high error rates of the individual
processing steps can be detected depending on the complexity of the
scenario.

The results of the automatic annotation tool and the multi-
sensor reference system for each scenario were summarized in
Table 2 for the final evaluation of the statistical assessment. The
values in the cells are the average number of processed objects. The
crucial columns (marked in green) for comparing the systems reflect
the number of detected persons. The average values show no
significant large differences between the systems. In the case of
the more complex scenarios, the number of detected persons is
higher for the entire scenario, which is not necessarily due to
incorrect classification. Instead, these differences can be
attributed to tracking errors or random persons at the edge of
the test environment, such as the recording supervisor. For a further
analysis of the error causes, the data sets must be looked through
randomly. For this purpose, various functions for replaying the data
sets are provided in the GUI of the annotation tool. The qualitative
assessment section will provide a detailed description of the
classification and tracking errors.

4.3 Qualitative assessment

The recorded data sets were then processed with the developed
annotation framework. Based on the results, an initial qualitative
assessment of performance can be made. Basically, it can generally
be concluded that the distinction between non-person and person is
accurate in 90% of the scenarios. However, in the case of more
complex actions, this leads to inaccurate tracking and classification
results. Table 3 summarizes the most significant assessment for the
corresponding scenario.

TABLE 2 Final summary of the statistical evaluation.

Dataset
information

3D person tracking
(average number of
processed objects)

Reference
(average number of
processed objects)

Scenario Number Number of Datasets Scenario Mode Number Subjects Frames Total Valid (Person) Invalid Raw Filtered Person Non
Person

Scenario 1 11 single 1 167 4,0 1.5 2.5 1.5 1.1 1.1 0.0

Scenario 2 10 single 1 182 3.9 1.4 2.5 4.8 1.8 1.4 0.4

Scenario 3 10 single 1 236 8.4 1.9 6.5 5.3 2.0 0.7 1.3

Scenario 4 9 multi 2 179 8.6 2.9 5.7 2.8 2.2 2.2 0.0

Scenario 5 8 multi 2 182 10.4 3.5 6.9 4.8 2.5 2.3 0.3

Scenario 6 8 multi 2 259 13.8 3.8 10.0 7.9 3.3 1.8 1.6
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4.4 Manual annotation vs. automatic
annotation

For a direct comparison of the automatic annotation versus
manual annotation, the elapsed times of the individual
processing steps during the automatic run were recorded and
accumulated for all data sets. Table 4 summarizes the results
according to the scenarios. The values from the columns for 2D
Pose Estimation refer to the processing of the entire image by the
pose classifier because the time is independent of the number of
objects. The remaining values in the table always refer to the
elapsed time per automatically annotated object. Table 4 shows
that the classification of the human pose takes the most time. The
times per image are about 84 ms for OpenPose and about 94 ms
for AlphaPose. In contrast, matching the 2D poses takes only a
short time of about 2 ms per object. The projection of the 2D
results into the 3D space requires an average time of 17–35 ms.
The reason for this is the additional object segmentation in the
3D point cloud, which lead to different times depending on the

TABLE 3 Summary of the qualitative assessment.

Scenario-
Nr.:

Scenario title Segmentation and tracking Classification

1 Person walks into robot
cell

Segmentation and Tracking is correct Classification is correct

2 Person walks with item Object ID of human changes to ladder and human is recognized
as new object (Figure 9)

Ladder is recognized as a person if the bounding box includes
the person (Figure 10)

3 Person pushes a
transport cart

Person is not detected in the point cloud (Figure 11) Person is classified as non-person because only the transport
cart is segmented (Figure 11)

4 2 persons walk into
robot cell

Segmentation and Tracking is correct Classification is correct

5 2 persons hand over an
item

Segmentation and Tracking is correct Classification is correct

6 2 persons with a
transport cart

Change of object IDs when turning and handing over the
transport cart

Transport cart is recognized as a person if the bounding box
includes the person

FIGURE 9
Object ID of human changes to ladder and human is recognized as new object: (Left) human and ladder interact before ID change, (Right) human
and ladder separate after ID change.

FIGURE 10
Ladder is recognized as a person if the bounding box includes the
person.
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object’s size. Similar to matching the 2D poses, the 3D object
tracking requires a short time of about 3 ms. In total, the average
elapsed time per object is 207 ms.

We use previously confirmed results from standard methods for
labeling images with object bounding boxes (Russakovsky et al.,
2014; Kuznetsova et al., 2020) or outlines (Lin et al., 2014) to
evaluate manual annotation, which is typically done in two steps.
In the first stage, annotators are asked to mark the presence or
absence of object classes in each image. In the second stage, the
annotators draw 2D bounding boxes corresponding to the class

labels in the image to segment the object. Another approach to fast
annotation uses speech and mouse interaction. By combining them,
the annotator can simultaneously draw a bounding box around the
object and specify its class by speech (Gygli and Ferrari, 2020). A
qualitative comparison is shown in Table 5 to estimate how efficient
the automatic annotation approach is. The values for both standard
approaches were taken from the existing publication (Gygli and
Ferrari, 2020) and were not quantified in an experiment. For the
estimation of the manual verification, as provided in the approach, a
time of 2.2 s was chosen, which was taken from the publication

FIGURE 11
(Left) undetected Person in point cloud, (Right) unclassified Person in RGB Image.

TABLE 4 Summary of the average time measured for each processing step per scenario.

Dataset information Elapsed time in ms

2D pose
estimation

2D person
matching

3D
projection

3D object
fusion and
tracking

Total
time

Scenario
number

Number
of

datasets

Scenario
mode

Number
subjects

Frames Open
pose

Alpha
pose

Scenario 1 11 single 1 167 84.0 92.9 0.9 25.6 2.3 205.6

Scenario 2 10 single 1 182 83.9 92.7 1.3 37.2 3.1 218.2

Scenario 3 10 single 1 236 84.0 93.2 1.4 30.9 3.0 212.5

Scenario 4 9 multi 2 179 83.7 95.4 1.4 18.7 5.4 204.7

Scenario 5 8 multi 2 182 83.8 95.6 1.1 17.5 3.1 201.1

Scenario 6 8 multi 2 259 83.9 95.6 1.2 19.4 3.1 203.2

Mean 207,6

Bold values are the average time over all scenarios.

TABLE 5 Qualitative comparison of the presented automatic annotation approach with standard methods.

Two-stage approach (Gygli
and Ferrari, 2020)

Box & speak (Gygli and
Ferrari, 2020)

Ours (DNN classifiers + human verification
(Papadopoulos et al., 2016))

Time/box 12.5 s 6.5 s 2.4 s (0.207 s + 2.2 s)

Acceleration of our approach
compared to standard methods

x5,2 x2,7 -
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(Papadopoulos et al., 2016). The proposed automatic annotation
approach can be estimated to be x5.2 faster in providing the class
and bounding box, including human verification, than the two-stage
approach.

5 Conclusion

We introduced the automatic annotation framework, an
approach capable of cost-effectively generating high-quality
annotations for 3D multi-sensor datasets with complex action
sequences.

1) Our work focused on designing a multi-layer structure with various
DNN classifiers to detect humans and dynamic objects using 3D
point clouds. The action sequences can be classified and tracked very
easily by using deep learning models for skeleton-based human
activity recognition. The annotator no longer needs to focus on the
complex annotation of the human pose and can take care of tracking
multiple people.

2) The empirical experiments with more than 10 subjects to capture
datasets of human actions and activities in an industrial
environment allowed us to have a reasonable basis for
developing and verifying the whole annotation framework.
The various complex scenarios allowed us to specify the
requirements for the annotation tool very well.

3) By developing an intuitive graphical user interface (GUI), the
user gets a tool to verify and correct the results of the automated
annotation process. The annotated action sequences can be
referenced over the entire sequence or frame by frame using
various 3D and 2D visualizations.

4) The design and implementation of a methodology for automatic
matching of human actions in 3D point clouds enable the automatic
correction of tracking and classification errors resulting from the
multi-layer structure. The decompensation and rearrangement by
non-person/person ensure that 3D objects are consistent.

A limitation of the approach is the presence of dynamic, non-
human objects such as robots or AGVs, which may need to be
clarified parts of the scene or lead to incorrect recognition.
Implementing additional AI classifiers or creating a complex
kinematic model for contextualization is necessary, especially
when annotating human-robot cooperation scenarios where
humans and robots work very closely together. This weakness
needs to be compensated in the future by using robotic AI
classifiers that extract accurately from the scene. To make the
approach robust against the described errors in Section 4.3.
Qualitative Assessment, several optimizations and tunings are
required, which are prioritized as follows.

1) 3D point cloud segmentation: This requires accurately
examining the sensor data for errors such as missing 3D
points or adjusting segmentation parameters to ensure the
segmentation of finer objects.

2) Tracking behavior: In addition to segmentation results,
classification results such as human body pose should also be
included in tracking to ensure that objects from the previous
frame are correctly assigned to the current frame.

3) Multi-layer structure: by using additional DNN classifiers,
additional object features should be detected, such as whether
the person is carrying or holding an item.

4) Methodology for automatic sequence matching: In addition to the
classification results, the interaction with the environment should
also be considered, e.g., whether the action is performed at a specific
location.

By using the tool, records from multi-sensor systems can be
processed synchronously to detect and track the activity of acting
individuals seamlessly. Observation from multiple perspectives
creates the advantage of having sufficient samples of the human
from various views in the sets of annotation data, ensuring that
the AI being trained covers a high variance of human behavior.
By using multi-modal data such as RGB images and point clouds
from multiple sensors, a larger workspace can be covered, and
tracking of multiple people can be guaranteed throughout the
activity. Especially in human-robot cooperation, where safety has
to be ensured during direct interaction in very confined spaces,
annotating multimodal sensor data observing a scene from
multiple perspectives can lead to a significant optimization of
the database for training AI classifiers. Furthermore, through
fusion and synchronization, annotation of the multi-modal data
in 2D and 2D is possible. The annotation framework was
developed to speed up the process of annotating action
records and reduce the manual task of the annotator. The
proposed approach can accelerate the process by up to
x5.2 through automation. The tool is intended to shift the
focus from viewing single images to viewing the whole
scenario and include the interaction with the environment
during the action. This paper is intended to stimulate the
creation of more large action datasets and lead to innovations
in data-driven computer vision in the coming years.
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Flexible sensor concept and an
efficient integrated sensing
controlling for an efficient human-
robot collaboration using 3D local
global sensing systems

Aquib Rashid*, Ibrahim Alnaser, Mohamad Bdiwi and
Steffen Ihlenfeldt

Department of Cognitive Human Machine Systems, Fraunhofer Institute for Machine Tools and Forming
Technology, Chemnitz, Germany

Human-robot collaboration with traditional industrial robots is a cardinal step
towards agile manufacturing and re-manufacturing processes. These processes
require constant human presence, which results in lower operational efficiency
based on current industrial collision avoidance systems. The work proposes a novel
local and global sensing framework, which discusses a flexible sensor concept
comprising a single 2D or 3D LiDAR while formulating occlusion due to the robot
body. Moreover, this work extends the previous local global sensing methodology to
incorporate local (co-moving) 3D sensors on the robot body. The local 3D camera
faces toward the robot occlusion area, resulted from the robot body in front of a
single global 3D LiDAR. Apart from the sensor concept, this work also proposes an
efficient method to estimate sensitivity and reactivity of sensing and control sub-
systems The proposed methodologies are tested with a heavy-duty industrial robot
along with a 3D LiDAR and camera. The integrated local global sensing methods
allow high robot speeds resulting in process efficiency while ensuring human safety
and sensor flexibility.

KEYWORDS

collision avoidance, human–robot collaboration, intrusion distance, sensor concept,
distance sensors

1 Introduction

Traditional industrial robots better complement human workers with their large range and
high payload capabilities. These capabilities are required in multiple manufacturing processes.
Furthermore, Gerbers et al. (2018), Huang et al. (2019), Liu et al. (2019), and Zorn et al. (2022)
also proposed a human–robot collaborative disassembly as a means of sustainable production.
More than 95% of the total robots installed in the world between 2017 and 2019 are traditional
industrial robots (Bauer et al., 2016). Moreover, there is a gradual increase in the single
human–single robot collaborative processes (IFR, 2020).

Touchless and distance-based collision avoidance systems are required to enable traditional
industrial robots to collaborate efficiently with humans. Increased efforts toward e-mobility and
sustainability have opened new challenges in the waste disposal sectors. For example, the
shredding of batteries and cars decreases engineering production value. Disassembly, however,
can help further save engineering and energy costs while reducing carbon emissions. Full
automation of the disassembly would require a large amount of data for AI engines, which can
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be collected with an intermediate solution of a constant human–robot
collaboration. Ensuring operational efficiency and varied
requirements for disassembly processes requires new collision
sensing methodologies.

Current safety standards aim to completely stop the robot before
the human comes in contact. These standards enabled fenceless robot
cells, where safety sensors like the laser scanner/2D LiDAR sensor are
installed to ensure a protective separation distance (PSD) between the
human and robot as follows:

PSD t0( )≥C + Sh + Sr + Ss + ZR + ZS, (1)
where C is the linear intrusion distance inside the sensor field of view,
after which a detection is triggered. Sh& Sr are the distances covered by
the human and robot before the actuating system reacts to the signal
from the sensing system. Ss is the distance covered by the robot before
stopping while being controlled by the actuating system. ZR and ZS

are the inaccuracies in position estimation from the robot and sensor,
respectively. This strategy is termed speed and separation monitoring
(SSM) and is applicable for presence detection-based sensors with
occasional operator presence.

Eq. 1 can be used inversely (Byner et al., 2019) when the actual
separation distance (ASD) between the robot and human is known to
determine the maximum safety robot velocity of the robot (vsafer ) as
follows:

vsafer ≤
������������������������
v2h + Tras( )2 − 2as C − ASD( )

√
− Tras − vh , (2)

where Tr is the reaction time of the actuation system, as is the
maximum negative deceleration of the robot, and vh is the
expected human velocity. This approach is termed dynamic speed
and separation monitoring (DSSM).

The main focus of this work is to develop a novel sensing
methodology, which can be used in the context of traditional
industrial robots with constant human presence. The state of the
art is evaluated toward this goal with three main parameters, as shown
in Figure 1. Agile production requires a flexible sensor concept, which
can be adjusted to the need of the process. Furthermore, as each
process may require different levels of complexity and human
intervention, the sensing methodology should be flexible and
scalable while ensuring occlusion handling with minimum sensors.
Two main conditions are considered for efficiency. Previously set-up

robotic cells may have limited production space as resources.
Moreover, the operational efficiency of the process should be
achieved by high robot velocities. Finally, collision avoidance would
be ensured for the complete human body, which requires 3D sensing.

The main contribution of this work is the methodologies proposed
in the design and implementation of the sensor concept for a
human–robot collaboration with traditional industrial robots. These
contributions are highlighted as follows:

1) Co-existence cell design, which discusses the LiDAR-based sensor
concept with limited resources, variable need for shared space, and
utilization of the entrance area for prior detection.

2) An efficient method to estimate the intrusion distance and reaction
time parameters of a collision avoidance system for speed and
separation monitoring.

2 State of the art

2D LiDAR-based sensing approaches have been discussed. This
approach approximates the human position based on a cylindrical
model (Som, 2005). The safety approach implemented here is based
on Tri-mode SSM (Marvel, 2013), which includes not only PSD
(the stop area) but also slow and normal speed areas. Nevertheless,
the approach results in low operational efficiency due to the
constant presence of humans in the slow area. Byner et al.
(2019) ensured higher efficiency by proposing dynamic speed
and separation monitoring. Nevertheless, the 2D LiDAR
approach limits the applicability in the constant operator
presence scenario, where the upper limbs are not detected.
Human upper limbs can move at twice the speed of the
estimated human velocity (Weitschat et al., 2018). The 3D
LiDAR approach with a higher vertical field of view and
accuracy than the 2D LiDAR approach and fixed field of view
(FOV) 3D depth cameras. Moreover, fixed FOV-based 3D depth
cameras require additional production space to capture the
complete robot workspace area, as discussed by Morato et al.
(2014).

Flacco et al. (2012) proposed efficient and high robot velocities
for a limited workspace area. The depth camera is installed outside
of the robot body, looking toward the human workspace area. The
approach, however, suffers from occlusion from a large traditional
robot. Moreover, no method is proposed to ensure compliance with
the safety standards as no intrusion distance measurements are
provided.

The single sensor-based approach by Kuhn and Henrich.,(2007)
projected an expanding convex mesh from a virtual robot model on
images. The minimum distance was estimated by performing a binary
search until an unknown object intersects the projected hull. Similar to
Flacco, the approach is not applicable for large traditional industrial
robots as the sensor concept would require additional space to ensure
covering the large robot body.

Two important research problems have been identified:

1) A generic sensor concept needs to be proposed, which discusses the
2D or 3D LiDAR sensor concept from the aspects of flexibility and
occlusion handling.

2) Furthermore, means to measure the intrusion distance for 3D
cameras on the robot body need to be discussed.

FIGURE 1
Research target.
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Sensor concept and design aspects have been proposed by Flacco
and De Luca (2010), addressing presence and detection-based sensors.
Nevertheless, they are not applicable for 2D LiDAR with a large
traditional robot causing the main occlusion. Moreover, the intrusion
distance measurement for sensors on the robot body is extended from
our previous work (Rashid et al., 2022).

3 Flexible and efficient sensor concepts
for LiDAR and 3D camera

The work proposes a novel local global sensing framework, which
comprises 1) a flexible global (LiDAR-based) sensor concept and 2) an
efficient local (3D cameras) intrusion distance measurement method.
The integrated approach provides an efficient and flexible collaboration
with traditional industrial robots using the novel local global sensing
methodology. The local-global sensing in the previous work used a
stationary LiDAR and camera sensor (Rashid et al., 2021). This work
further introduces co-moving cameras as local sensors to ensure safety
from grippers and objects gripped, as illustrated in Figure 2.

3.1 Flexible global sensor concept

This section discusses an occlusion-aware sensor concept
applicable to 2D and 3D LiDAR. The sensor concept is discussed
by proposing a standardized co-existence cell model in 2D based on
three parameters. These parameters are maximum robot reach r, space
available toward the entry area e, and the number of entry sides n.

Occlusion with a single LiDAR sensor can be caused due to static
objects in the field of view or a dynamic robot body. For the LiDAR
sensor placed without any orientation, the robot base link results in the
most evident occlusion in the cell. The green circle represents the
LiDAR sensor, and the robot base link is represented with a rectangle
withmaximum length and width (l xw). The base rectangle is placed at
the center of the robot workspace, which is enclosed by three sides (n =
1) with safety fences. The entrance area e is assumed to be free from
any static occlusions. A ray from LiDAR, represented by a dotted red
line, which when intercepted, results in entry occlusion, is termed a
boundary ray, as shown in Figure 3.

For the sensor position in scenario A, illustrated in Figure 3,
occlusion is constrained by the safety fence, thus having a lower risk of
possible human collision. Moreover, for scenario B, the occlusion is
unconstrained toward the entrance area and is at higher risk of a
possible collision. Unconstrained occlusions are avoided by allowing
LiDAR placement only on the adjacent entrance walls. Furthermore,
the boundary ray polar coordinates are used to set constraints on robot
motion. These measures allow safety by design. The constrained
occlusion caused by the robot base requires to be mathematically
formulated.

In the 6D pose for the 360° HFOV LiDAR, no orientations are
assumed to exist for the robot reference frame. Any yaw or pitch
orientations would result in non-uniform coverage of the production
area. Moreover, 3D LiDAR comprises multiple 2D laser channels,
which rotate at a certain orientation, as illustrated in Figure 4. The
height parameter has a direct relationship with the area of the circle
with the radius r1. The circle represents the blind spot in the 2D floor
space of the co-existence cell and can be expressed as follows:

r1 � h* tan α( ), (3)
thus lowering the height of LiDAR results in a decreased blind spot

area. On the other hand, increasing the height of the LiDAR, to a
specific extent, results in increasing the number of rays falling inside
the robot cell. The higher number of rays corresponds to a higher
accuracy of human localization estimations. An optimal height would
be related to average worker heights and sensor vertical resolution.
The risks from the blind spot area can be reduced by ensuring that the
human is localized minimum by the 0° measuring plane. This leaves
the XY plane, on which the Y-axis is constrained to avoid
unconstrained occlusion. Thus, only 1D degree of freedom is
available for the LiDAR sensor concept. Nevertheless, this 1D is
enough to cover a variety of process requirements, while incurring
no additional production space.

Let the LiDAR sensor be placed at A, representing the middle of
the safety fence. Maximum occlusion is caused when the robot base is
perpendicular to the global sensor. This occlusion area is represented
by an area of polygon IHFEDC, as illustrated in Figure 5. The occluded
area, in this configuration, can be computed in robot parameters, by
drawing perpendicular OP on AC and joining OC, as shown in
Figure 5. The occluded area CPEFHI is computed by first
computing its half area, constituting the area of Δ AOC and sector
BOC. Then, removing half of the base rectangle and Δ AGD gives a
symmetric one-sided constrained occlusion area.

The sector BOC inscribes the same arc BC as that of BAC. This
results in the angle (α) at the sector BOC, being twice the angle (θ) at
the sector BAC. Using this, the area of the sector BOC can be defined
as follows:

AreaBOC � 2θ
360

*πr2 , (4)

where r represents the maximum reach of the robot used.
Furthermore, the area of ΔAOC can be computed as follows:

ΔAOC � 1
2

OP*AC( ). (5)

Using the property of isosceles triangle ΔAOC,

AC � 2AP . (6)
Sides AP and OP can be expressed as follows:

FIGURE 2
Different types of occlusions.
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AP � PC � r* cos θ, (7)
OP � r* sin θ. (8)

Substituting Eqs 6, 7, and 8 in Eq. 5, we obtain the following
equation:

ΔAOC � 1
2

r* sin θ( )*2 r* cos θ( )( ). (9)

Using Eqs 4 and 9, the area of BAC can be defined as follows:

Area ofBAC � 2 θ( )
360

*πr2 + 1
2

r* sin θ( )*2 r* cos θ( )( ). (10)

The symmetric half occlusion area can be computed using Eq. 10,
by removing the area of the robot body and ΔAGD as follows:

Area ofBJEDC � AreaBAC − 1
2

Area ofRectangle EFHD( ) − AreaΔAGD.

(11)

Using Eqs 9–11, we get

Area ofBJEDC � 2 θ( )
360

*πr2 + 1
2

r* sin θ( )* 2r* cos θ( )( )
−1
2

l*w( ) − 1
2

l

2
* r − w

2
( )( ). (12)

Eq. 12 can be used to compute the overall occlusion area IHFEDC
as follows:

Area of IHFEDC � 2 Area ofBJEDC( )
� 2(2 θ( )

360
*πr2 + 1

2
r* sin θ( )* 2r* cos θ( )( )

− 1
2

l*w( ) − 1
2

l
2
* r − w

2
( )( )).

(13)

Eq. 1 gives a generalized equation to compute the occlusion area,
with the distance between the sensor and robot r, robot base link
dimensions, and occlusion angle (2θ) with the robot body.

FIGURE 3
Proposed flexible and efficient sensor system.

FIGURE 4
LiDAR sensor concept.
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For a specific sensor position on the safety fence in a co-existence
cell model, the overall occlusion area can also be defined by
representing the value of angle ∠GAD (θ) as follows:

θ � tan−1 GD

AG
( ) � tan−1

l
2

r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (14)

Substituting Eq. 13 into Eq. 14, the overall generalized calculation
of the occlusion area, with the sensor at the middle point of the co-
existence cell fence, as shown in Figure 5, is given by the following:

Area of IHFEDC � 2*

2 tan−1
l

2

r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

360
*πr2+

1
2

r* sin tan−1
l

2

r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠*

2r* cos tan−1
l

2

r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

1
2

l*w( ) − 1
2

l

2
* r − w

2
( )( )
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

Similarly, for the sensor placed at the entrance corner start
position, as illustrated in Figure 6, the radius r2 can be computed
as half of the length of the diagonal of the square as follows:

r2 � �
2

√
r . (16)

The aforementioned Eq. 16 is substituted in 13, resulting in the overall
occluded area (Area of IHFEDC) at the start position as follows:

� 2 *

2 tan−1
l

2�
2

√
r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

360
*πr2

+1
2
⎛⎝ r* sin tan−1

l

2�
2

√
r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠* 2r* cos tan−1
l

2�
2

√
r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎠

−1
2

l*w( ) − 1
2

l

2
*

�
2

√
r − w

2
( )( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where w and l represent the width and length of the base link. It is evident
that the constrained occlusion for the scenariowith LiDAR at the entrance is
minimum. Nevertheless, the optimal position of the LiDAR (global) sensor
could be adjusted based on process requirements and available resources.

The 1Dvariation of LiDARbetween the start andmidpoint of the fence
fulfills varied perception requirements for varied processes. The final
placement of LiDAR would divide the overall workspace into 1)
constrained occlusion and 2) shared workspace. The occupancy of these
workspaces is checked in the real-time collision avoidance system, using
polar coordinate limits. Extrinsic calibration between the robot and LiDAR
is assumed to be known (Rashid et al., 2020). Finally, the constrained
occlusion area can further be covered using a local 3D camera on the robot
body, facing toward the shadow area. The local collision avoidance setup is
already discussed in our previous work (Rashid et al., 2021).

3.2 Intrusion distance and reaction time
estimation for co-moving local sensors

The proposed method provides the intrusion distance estimation
for co-moving local sensors on the robot body. This method comprises

FIGURE 5
Constrained occlusion with the sensor at the middle of the fence.

FIGURE 6
Constrained occlusion with the sensor at the entrance.
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three main steps. The first step involves setting up an external
intruding object, which can be detected from the presence
detection algorithm for local sensing. This is followed by multiple
controlled robot experiments at a defined angular velocity. The data
coming from the robot joints and sensing detections are recorded in an
external processing system. The final step involves offline processing
of the recorded data, with some a priori data as input to provide safety
parameters as output. These sub-steps are discussed in detail in
Section 3.2.2.

3.2.1 Controlled experiments’ overview from
illustrations

A simplistic concept for the estimation of the parameter for
local sensing can be understood in Figure 7. The intruding object of
height I is placed in the robot work cell at a distance of a vector. A
3D camera is mounted on the robot body with reference frame S
and a field of view Θ, as illustrated in Section 1 of Figure 7. A robot
trajectory with the tool center point velocity of vj is performed,
ensuring that the intruding object is piercing almost
perpendicularly into the sensor field of view, as illustrated in
section II of Figure 7. The known system and intruding object
features ensure the pre-estimation of the expected detection (d_x),
where the sensor field of view first touches the intruding object.
However, the sensor data being processed in an external system
results in a delay. Thus, the actual detected (d_a) is flagged at the
future position, giving an estimate for intrusion distance (C), as
illustrated in part III of Figure 7. The flagged detection issues a stop
signal from the external processing system to the robot controller.
The stopping trigger (tr) is perceived by the start of unplanned
deceleration in the external system capturing the robot velocities,
as illustrated in part IV of Figure 7. The delay in communication to
an external processing system is assumed to be negligible.
Moreover, most robot manufacturers provide communication
interfaces running at 250–1000 Hz. Finally, the motion of the
sensor is assumed to result in linear displacement of the
intruding object into the field of view.

3.2.2 Setting up of the intruding object
A simple cardboard box placed on a stand is used as an intruding

object. The setup of this intruding object requires positioning the
intruding object at a known position with respect to the robot

reference frame. The second step of the robot experiment is
illustrated in Figure 7. The detection of the intruding object, which
is not part of the environment with respect to a moving sensor on the
robot body, requires unknown object detection based on local sensing
(Rashid et al., 2021).

3.2.3 Offline data processing method for intrusion
distance and reaction time measurements

This step involving the offline post-processing of the recorded
data is detailed in the following algorithm. The developed software
tool parses through multiple iterations at a specific robot velocity.
The expected detection (d_x) for a specific set of positions is taken
and processed sequentially. In a single iteration for a known
intruding object position, the robot position is searched in
angular joint coordinates, where the detection flag is active. The
corresponding joint angular position JointAngle_(d_a)̂i is
compared to the actual detection (∝_(d_x)) to estimate the
intrusion distance. The time stamp at the position of the
flagged detection is recorded (t_(d_x)). The joint angular
velocities are searched for a deceleration trigger for which the
corresponding time stamp is captured (t_tr). The difference
between the two time stamps provides an estimate of controller
reaction time.

Input: Time-stamped Joint Angles, Joint Angular velocity,

and Detection Flag over multiple iterations (i) and over a

complete set represented by j,k,l,orevent

{timei
t,JointAngle

i
j,Joint%age

i
k, , ∝ d x}

Output: Reaction time (B) of robot in ms;

Intrusion distance ∝ in in mm

Algorithm:

A

←{(timei
t,JointAngle

i
j,Joint%age

i
k,ΘeventExpected)}

B ← ∅

While A ≠ ∅ do//Search for the event expected position

if JointAnglei
j ≥ ∝ d x

td x ← timei
te//Save time stamp

if eventDetect � 1//Actual event detected

∝ in � JointAnglei
d a − ∝ d x

While Joint%agei
n ≠ ∅//Search for deceleration trigger

if Joint%agei
k−9 >

Joint%agei
k−8 >. . . Joint%agei

k

ttr ← timei
ta

B ← ttr – td x

return B; ∝ in

Algorithm. Reaction time and Intrusion distance

4 Experimental setup for efficient
intrusion distance estimation

The experimental setup comprises a stereo camera connected to a
processing system over a USB3 connection. The processing system is
connected over Ethernet to a robot controller. In this work, ZED1 from
Stereo Labs is used as a 3D camera. A heavy-duty industrial robot Kuka
KR180 with a range of 2.9 m is used, as illustrated in Figure 8. The
KRC4 robot controller is used, which allows 250 HzUDP communication
with an external computer. Joint angular displacement along with a tool

FIGURE 7
Data capturing experiment for safety parameter estimation.
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center point (TCP) in the base coordinate is provided at the external
processing system. In order to compare the intrusion distance of local
sensing (Schrimpf, 2013) with that of global sensing (Morato et al., 2014),
an identical processing system is used with Intel i7-6700K CPU, Nvidia
TITAN Xp GPU, and 12 GB GDDR5 memory.

At 4 ms, as for Kuka communication speed, the robot joint values
are used to estimate the position of the local sensor on the robot. A
cardboard box is placed in a robot cell of 4 x 4 m. The position of the
intruding object is estimated by moving the TCP to the top of the
object. More accurate estimations can be performed by using ArUco
markers (Garrido-Jurado et al., 2014) on the intruding object. The
intruding position for the known sensor is estimated with a ±10 mm
precision.

4.1 Experimental results

The real-time experiment with more than five iterations for a
single robot velocity is captured for statistical variations. The robot
velocities need not be running at a constant velocity before an

event, compared to the state of the art (Rashid et al., 2022). This can
be challenging for achieving a high robot velocity with a large
sensor field of view. This work rather uses a constant accelerating
profile, with specific top velocities. An important aspect here is to
capture linear robot velocities, which are comparable to or higher
than the nominal human speed (1.6 m2). A constant acceleration
profile can be seen in Figure 9. The figure gives a dual vertical graph
for joint angular velocity and a detection flag for A2 joint-based
motion. The approx. linear velocity for the sensor mounted on A3
amounts to be

vl � r*φ/t, (17)
where r is the approximate length of the A2 link, which is 1.35 m for Kuka
KR180. φ is angular displacement in radians, and t is the total time
duration in seconds, Thus, the linear velocity was found to be 1.12 m/s2.

Figure 9 gives a zoomed-in view into the recorded velocity profile
for the experiment data from Figure 10, with a target speed of 87% of
A2 joint speed. The sensing flag and deceleration trigger are observed
at 81,228 and 81,276 timestamps, respectively. The intrusion distance
and reaction time is measured in spatial and temporal dimensions.

FIGURE 8
Simplified co-existence cell.

FIGURE 9
Complete trajectory for collision sensing and stop trigger for a single iteration.

Frontiers in Robotics and AI frontiersin.org07

Rashid et al. 10.3389/frobt.2023.1028411

122

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2023.1028411


The implementation of local sensing is discussed in Mandischer
et al. (2022). The multiple iterations on three robot velocities are
processed to estimate the worst-case intrusion distance and reaction
time, as illustrated in Figure 11. The worst-case reaction time is
calculated as 60 ms, which is comparable to the state-of-the-art
calculation of 56 ms and 40 ms (Schrimpf, 2013) for different robot
controllers. The worst-case intrusion distance captured at multiple
iterations and velocities equals to be 502 mm.

4.2 Discussion on the efficient and flexible
constant human–robot collaboration with
traditional industrial robots

The method proposed allows safety distance measurement for co-
moving or dynamic local sensors on the robot body. The method can
be used by system integrators or safety sensor developers, aiming to
use distance-based sensors for an efficient collaborative system.

FIGURE 10
Zoomed in trajectory for intrusion distance and reaction time estimation.

FIGURE 11
Box plot on multiple iterations at multiple robot velocities.
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Plotting the worst-case intrusion distance of local sensing with global
sensing in Eq. 2, we obtain two different relations between the
separation distance and maximum allowed robot velocity, as
illustrated in Figure 12. The co-moving local sensor or dynamic
local sensing is more efficient, allowing higher robot speed within
the proximity human operator. However, the co-moving local sensor
is only relevant for the safety of the tool or object in the robot’s hand.
The LiDAR sensor on the wall, acting as a global sensor, ensures safety
from the complete robot body without the constrained occlusion area.
This occlusion area can be constantly monitored based on the LiDAR
sensor concept. Furthermore, safety from design can be implemented
using the LiDAR sensor concept by allotting human workspace away
from the constrained occlusion. Future steps would include
determining an optimal combination of different local (co-moving/
dynamic (Mandischer et al., 2022) or static (Rashid et al., 2021)) and
global sensing (Rashid et al., 2021) systems for a given agile or
disassembly process in a safety digital twin.

5 Conclusion

The work proposes a method for not only utilizing distance-
based sensors for an efficient and flexible collision avoidance system
for a human–robot collaboration. The global sensor concept with

LiDAR addresses a minimalistic and reduced complexity approach
while addressing the occlusion from the robot body. Furthermore, an
efficient method is proposed that simultaneously determines the
intrusion distance and reaction time for 3D cameras on the robot
body and robot controller, respectively. The work proposed can be used
to compute safety parameters for a wide variety of distance-based
sensors on robot bodies. These methodologies can be implemented
for lightweight industrial robots or co-bots. Increased efforts toward
resource efficiency and sustainability will require human–robot
collaboration. The methodologies proposed will enable the
development of close-proximity human–robot collaboration.
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