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Editorial on the Research Topic

Climate impact on plant holobiont: Mitigation strategies and sustainability

Currently, the food security goal is responsible for an advanced agricultural transformation,

wherein climate activity and its impact on plant and soil microbiomes are the main points of

focus. Studies on plant-soil-microbe interaction provide an opportunity to study climate change

mitigation strategies in new ways. Researchers around the globe are collectively thinking of

how to implement holistic mitigation strategies and, henceforth, the development of sustainable

agroecosystems under the impacts of climate change. One basic question that researchers should

seriously consider is how the existing impacts of climate change affect the plant holobiont at

the agroecosystem level. Researchers must take an interest in skill-based approaches in order to

promote and enhance the plant holobiont relationship for agricultural benefits. A diverse range

of microbes within the plant holobiont and their engagement under habitat-imposed stresses

are beneficial to the agricultural sustainability. Furthermore, the coordination of agro-policies,

procedures, and activities that encourage the microbiome application in the plant system under

climate change is necessary.

With the above information in mind, the present editorial is designed to discuss the effective,

cognitive, and scientific progression of the impact of climate change on the plant holobiont.

Through the deployment of activity- and skill-based approaches to structural and functional

microbial attributes, we may be able to develop strategies for ensuring the sustainability of

agroecosystems. To facilitate our understanding of the impact of climate change on the plant

holobiont, we hereby present a collection of basic, applied research, which we hope will ignite

a scientific discussion. Here, we argue that knowledge of habitat-imposed stresses and their

mitigation strategies is indispensable to the sustainability of agriculture and that there is a need

for scientific input in the form of basic and applied research in order to better understand the

situation surrounding food security under the impacts of climate change.

We invited manuscripts based on this theme to uncover the structural and functional

attributes of soil and plant microbiomes and their reactions when subjected to climate change.

It is our belief that this kind of compendium is required in order to achieve sustainable

development goals (e.g., 1, 2, 11, 13, and 15), which foster the transfer of knowledge between

scientific communities, industries, and young researchers and students working in this field.
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The research and review papers included in the present Research

Topic were compiled with the following objectives in mind:

• Discuss the impact of habitat-imposed stresses on relationships

within the plant holobiont.

• Discuss the sustainability of agroecosystem under

climate change.

• Explore the richness of soil microbiomes and its impact on soil

and plant productivity.

• Elaborate on the ecophysiology of the soil microbiome under

various climatic changes, i.e., habitat- imposed stress.

• Determine the below-ground impact due to climate changes in

aboveground.

The following introductions to the articles selected for this

Research Topic provide an insight into the topics discussed therein:

Abbas et al. contributed to this Research Topic with a paper titled

“Root rot as a silent alfalfa killer in China: Distribution, fungal, and

oomycete pathogens, impact of climatic factors and its management,”

wherein the authors emphasize the impact of biotic stress and its

mitigation. In this study, the authors describe the various impacts of

climate change on alfalfa lines/cultivars with regard to resistance to

a diverse range of pathogens. In addition, they highlight the alfalfa

quantitative trait loci (QTL) against resistance and susceptibility to

root rot pathogens.

Saud et al. compiled their research in a paper titled

“Comprehensive Impacts of climate change on rice production

and adaptive strategies in China,” which focuses on abiotic stress and

its impact on rice cultivation in China. In this study, the authors

describe a technique known as climate-smart rice construction

which is used for forecasting, rice plantation, and enhancing

comprehensive ability.

Sudha et al. discuss “Unraveling the tripartite interaction

of volatile compounds of Streptomyces rochei with grain mold

pathogens infecting Sorghum,” wherein they show how Streptomyces

rochei exhibits hyperparasitism, competition, and antibiosis via

microbial-volatile organic compounds (mVOCs), together with their

antimicrobial functions, could also enhance plant growth.

Malviya et al. attempt to understand the mechanism(s) involved

in unraveling the mechanism of sulfur nutrition in pigeon pea

inoculated with sulfur-oxidizing bacteria, describing the role of S.

maltophilia and S. pavanii in the alteration of the root architecture

of pigeon pea to verify the efficiency of sulfur uptake.

Zhang et al. define “Nematicidal activity of Burkholderia arboris

J211 against Meloidogyne incognita on Tobacco” by studying a

microbial-produced plant hormone and its bionematicidal activity.

The authors also describe PGP activities associated with B. arborius.

Srivastava et al. stringently discuss “Transcriptome analysis to

understand salt stress regulation mechanism of Chromohalobacter

salexigens ANJ207,” wherein they explore the genes incurred against

salt stress. Their findings reveal an increase in the transcript of genes

involved in the biosynthesis of GBC and those responsible for the

uptake of OpuAC, OpuAA, and OpuAB. The increased expression

of compatible solute genes in high salt concentration might be

responsible for the salinity adaptation in C. salexigens ANJ207.

Khumairah et al. describe how “Halotolerant plant growth-

promoting rhizobacteria isolated from saline soil improve nitrogen

fixation and alleviate salt stress in rice plants,” with an emphasis

on the isolation of halotolerant PGPRs, e.g., P. stutzeri and K.

pneumonia, which produce a wide range of PGP metabolites and

antioxidant enzymes to ameliorate rice crop under climate changes.

Singh et al. elaborately explain “Mechanistic Insights and

Potential Use of Siderophores Producing Microbes in Rhizosphere

for Mitigation of Stress in Plants Grown in Degraded Land,”

highlighting bacterial iron chelator (i.e., BS) and emphasizing the

biochemical and genetic regulation of BS with PS in terms of cross-

talk under Fe-deficient degraded land.

Abbas et al. in their contribution highlights “Trichoderma spp.

Genes Involved in the Biocontrol Activity AgainstRhizoctonia solani,”

wherein emphasis is placed on fungal-mediated induced systemic

resistance in plants through the deployment of genes in signal

transduction through G protein-coupled/cAMP receptors. They also

discuss the involvement of genes in the production of extracellular

enzymes as biocontrol action along with their involvement in the

synthesis of polyketides and non-ribosomal peptides.

Ali et al. focus on the “Induction of Systemic Resistance in Maize

and Antibiofilm Activity of Surfactin from Bacillus velezensis MS20,”

wherein the vital role of biosurfactant (surfactin) in biocontrol action

for the sustainable production of maize was highlighted.

Malviya et al., in their contribution, elaborately describe “A

Comparative Analysis of Microbe-Based Technologies Developed at

ICAR-NBAIM Against Erysiphe necator Causing Powdery Mildew

Disease in Grapes (Vitis vinifera L.),” wherein emphasis is placed on

alleviating biotic stress. In this study, the authors deployed microbe-

based technologies, namely Eco-pesticide
R©
, Bio-Pulse

R©
, and Bio-

Care 24
R©
to alleviate powdery mildew at every stage of the grapevine.

Salvi et al. discuss the role of “Advancement in the molecular

perspective of plant-endophytic interaction tomitigate drought stress

in plants,” wherein they focus on the deployment of endophytes to

alleviate abiotic stress.

Solanki et al. define the functional role of biotic stress in the

tomato plant rhizosphere by highlighting the “Functional Interplay

between Antagonistic Bacteria and Rhizoctonia solani in the tomato

plant rhizosphere.” As part of this study, a field experiment was

conducted with two antagonistic bacteria (Pseudomonas and Bacillus)

inoculated in healthy and Rhizoctonia-solani-treated soil in tomato

rhizosphere in order to understand the metabolic pattern and

microbial function of plant disease suppression.

Bhupenchandra et al. attempt to uncover the impact of

boron (B) on soil resiliency with their paper titled “Elucidating

the impact of boron fertilization on soil physico-chemical and

biological entities undercauliflower-cowpea-okra cropping system in

an Eastern Himalayan acidic Inceptisol”. The authors performed

a field experiment to assess the direct and residual implications

of graded levels of applied-B on soil biological entities and their

concomitant effects on crop productivity.

Shree et al. compiled their research in a paper titled

“Impact of key parameters involved with plant-microbe

interaction in context to global climate change,” wherein

an emphasis is placed on a systemic approach to climate

adaptation, which acknowledges the multidimensional nature

of plant-microbe-environment interactions under stress in

the development of resistant crops/plants, both now and in

the future.

Through this ambitious compilation, researchers are equipped

to facilitate the governance and management of climate change
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in line with SDGs in agriculture. This compendium is focused

on plant and soil microbiomes and their role in mitigating

the effects of climate change on plants. The findings of these

research papers support stakeholders to enhance cooperation

among institutions. Furthermore, these findings may help

strengthen the management of climate change policies for

sustainability. Due to the emerging effects of climate change

on agricultural productivity, plants and microbiomes are

valuable resources for use in sustainable agriculture, but

there are also significant challenges that require new and

innovative solutions.

Finally, we would like to express our profound thanks

to all contributors and reviewers for their valuable time and

expertise, which make this topic presentable and interesting

for readers.
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Surfactin lipopeptide is an eco-friendly microbially synthesized bioproduct that holds
considerable potential in therapeutics (antibiofilm) as well as in agriculture (antifungal).
In the present study, production of surfactin by a marine strain Bacillus velezensis
MS20 was carried out, followed by physico-chemical characterization, anti-biofilm
activity, plant growth promotion, and quantitative Reverse Transcriptase—Polymerase
Chain Reaction (q RT-PCR) studies. From the results, it was inferred that MS20 was
found to produce biosurfactant (3,300 mg L−1) under optimized conditions. From the
physicochemical characterization [Thin layer chromatography (TLC), Fourier Transform
Infrared (FTIR) Spectroscopy, Liquid Chromatography/Mass Spectroscopy (LC/MS),
and Polymerase Chain Reaction (PCR) amplification] it was revealed to be surfactin.
From bio-assay and scanning electron microscope (SEM) images, it was observed
that surfactin (MIC 50 µg Ml−1) has appreciable bacterial aggregation against clinical
pathogens Pseudomonas aeruginosa MTCC424, Escherichia coli MTCC43, Klebsiella
pneumoniae MTCC9751, and Methicillin resistant Staphylococcus aureus (MRSA) and
mycelial condensation property against a fungal phytopathogen Rhizoctonia solani.
In addition, the q-RTPCR studies revealed 8-fold upregulation (9.34 ± 0.11-fold) of
srfA-A gene compared to controls. Further, treatment of maize crop (infected with
R. solani) with surfactin and MS20 led to the production of defense enzymes. In
conclusion, concentration and synergy of a carbon source with inorganic/mineral salts
can ameliorate surfactin yield and, application wise, it has antibiofilm and antifungal
activities. In addition, it induced systemic resistance in maize crop, which makes it a
good candidate to be employed in sustainable agricultural practices.

Keywords: Bacillus velezensis MS20, biocontrol, biosurfactants, characterization, induced systemic resistance,
optimization-OVAT, sustainable agriculture, antibiofilm
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INTRODUCTION

Lipopeptides biosurfactant are non-ribosomal peptides that are
produced extracellularly during the stationary phase in the
presence of various carbon and nitrogen sources (Armas et al.,
2019). Numerous superlative activities of lipopeptides have
sparked researchers’ considerable interest to explore effective
ways for increased yield. Several studies on the impact of
environmental factors on lipopeptide biosynthesis have shown
that composition and yield of lipopeptide mixture may be
influenced by media, nutrition sources, and growth conditions
(temperature, pH, and oxygen) (Hmidet et al., 2017). Parallelly,
papers on biosurfactant production in the presence of various
nutritional sources and limiting environmental conditions are
available. For example, Agarwal and Sharma (Agarwal and
Sharma, 2009) demonstrated the effects of various Carbon
sources on biosurfactant synthesis, including glycerol, molasses,
rice water, cheese whey, potato peels, and glucose.

Biosurfactants are widely used as antagonistic molecules
against pests/pathogens or plant diseases and have been used
to improve soil quality by decomposing toxic and hazardous
pollutants or making trace nutrients available in the soil for
sustainable agricultural methods. The antibacterial properties of
surfactants generated by microbial strains significantly suppress
pathogen growth. It defends the plant from pathogen infection
in certain circumstances by boosting the immune system of
the plant, stimulates rhizosphere microflora, and maintains the
physiological parameters of plant (Vatsa et al., 2010). When
compared to conventional antimicrobial agents or pesticides,
they can infiltrate and damage fungal cell membranes and
lower the probability of resistance (Choub et al., 2021). Cyclic
lipopeptides (from B. velezensis) are demonstrated to inhibit
fungal growth (Akladious et al., 2019). They are potential
biocontrol agents against a variety of fungal plant diseases.
Among these, surfactin lipopeptide biosurfactant is useful as
a biopesticide component because of its temperature and pH
stability, as well as its biodegradability and low toxicity. It is
reported for its ISR (induced systemic resistance) properties
and use in sustainable agriculture (Théatre et al., 2021). The
mechanism of the surfactin is explained as it enters cell
bilayers as an antibacterial agent, chelates cations, and solubilizes
membranes and lyses pathogens by pore creation (Li et al., 2021).

Repeated studies have shown that biosurfactants have the
capacity to prevent and disrupt biofilms, such as rhamnolipids’
ability to decrease viable bacteria (3–4 log reduction) (Staudt
et al., 2004). For example, around 90% biofilm inhibition and 65%
disruption in Streptococcus sanguinis has been reported; similar
studies on disruption and antimicrobial property of sophorolipid
(5%) against Bacillus subtilis BBK006 and Cupriavidus necator
ATCC 17699 are also demonstrated (Díaz De Rienzo et al., 2015).
Surfactin from Bacillus circulans is an example of a propitious
lipopeptide with antimicrobial property (Das et al., 2008).
A recently published research article demonstrated antibiofilm
property of two biosurfactants (rhamnolipids and surfactin)
(Yamasaki et al., 2020).

Maize is a major cereal crop that is cultivated for food, feed,
and fuel all over the world. Biological and abiotic stressors

commonly impact its production, causes reduced yield and
quality, and interferes with the maximum yield potential. Banded
leaf and sheath blight (BLSB), caused by Rhizoctonia solani,
is a new and severe infection that restricts crop output in
climatic situations, especially with monsoons in India. R. solani
colonizes aerial plant parts and produces phytotoxins, which are
responsible for the formation of necrotic spots on stem, leaf, and
sheath (Singh et al., 2020).

Surfactin can help with biocontrol even if pathogens are
not lysed because of its role in Bacillus biofilm formation.
This biofilm development can disrupt cohabitant pathogen
biofilm and also cause systemic resistance in plants. In addition,
surfactin is reported to stimulate production of defense enzymes
(phenylalanine ammonia lyase) in tobacco plant cells and have no
phytotoxicity (Jourdan et al., 2009).

In the present study, optimization of surfactin production
was carried out by one variable at a time (OVAT) approach,
followed by characterization of compound by TLC, FTIR, and
LC/MS, assayed for biofilm inhibition against clinical pathogens
(P. aeruginosa MTCC424, E. coli MTCC43, K. pneumoniae
MTCC9751, and MRSA) and anti-fungal activity against
Rhizoctonia solani. Quantitative real-time polymerase chain
reaction (q RT-PCR) was done in order to study % up-regulation
or down-regulation of srfA-A genes in the presence and absence
of MgSO4 and glucose. Furthermore, biocontrol efficacy of MS20
and surfactin was also assessed.

MATERIALS AND METHODS

Production, Extraction, Characterization,
and Purification of Biosurfactant
For the production of biosurfactant, 2% of actively grown
overnight culture of B. velezensis MS20 GenBank accession
number LR535811 (Ramavath et al., 2019) was inoculated in
100 mL nutrient broth amended with 0.5 % (w/v) different
inorganic/mineral salts like MgSO4, KNO3, Fecl3, and Mncl2
and 2 % (w/v) different carbon sources i.e., Glucose, Maltose,
Fructose, Sucrose (in different combinations) in 250 mL
centrifugation at 15,000 rpm for 15 min at 4◦C. Cell free
supernatant was subjected to acid precipitation with 6N HCl and
dried by rota evaporation as described previously (Long et al.,
2017; Liu et al., 2020).

The above concentrated biosurfactant was dried, weighed,
reconstituted in methanol, filtered through 0.22 µ pore size
syringe filters, and used for TLC analysis as described by
Parameshwar et al. (2019) and Li et al. (2021) with slight
modification. Silica gel 60 F254 (Merck Co., Darmstadt,
Germany)-coated aluminum plates were used with the help of
capillary tube, wherein a drop of crude extract was placed on
silica gel plates, dried, and kept in chromatography chamber
with mobile phase i.e., methanol: chloroform: water (65:25:4) v/v.
The presence of biosurfactant was detected by 0.1% ninhydrin in
acetone. Retardation factor (Rf) value was calculated by formula –

Rf =
Distance travelled by solute
Distance travelled by solvent
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Solute: stationary phase: lipopeptide sample
Solvent: mobile phase
FTIR analysis of the above crude extract was done by FTIR

spectrophotometer (Shimadzu Co., Japan) with rota evaporated
and dried 1 mg of crude extract in pellets of potassium bromide.
IR spectra was obtained in a range of 1,000–3,500 cm−1 with a
spectral resolution of 4 cm−1 (Parameshwar et al., 2019).

Around 10 mg of crude extract (from above) was reconstituted
in methanol and filtered by 0.22 µ pore size syringe filters.
Of this filtered biosurfactant, 20 µl was injected in RP-HPLC
(SPD-20A, Shimadzu Co., Japan) and collected several times by
reinjection of filtered biosurfactant. Purified biosurfactant was
further used for characterization by ESI / MS and bioassays.
The protocol followed for RP-HPLC was as described by
Parameshwar et al. (2019). In brief, 20 µl filtered sample
was injected into RP- HPLC (shimadzu SPD-20A Japan) with
column:C18 (4.6 mm× 250 mm, 5 µm, Agilent, Santa Clara, CA,
United States), for mobile phase solvent A- 0.1% (triflouroacetic
acid) of 90% methanol at a flow rate of 1 mL min−1 at an
elution time 0–30 min; UV absorbance at 210 nm was maintained
for this study. 20 µl of purified biosurfactant was further
subjected for MS analysis by mass spectrometry connected
with an ESI source. Spectra were recorded at positive and
negative polarities.

For the detection of srfAB gene by PCR amplification,
genomic DNA from B. velezensis MS20 was isolated by
conventional phenol-chloroform method (Koons et al., 1994).
srfAB gene specific primers with sequence Forward primer:
5-TTTACTCATACTA CGTCAAC-3′, Reverse Primer: 5-
GTGTATTAAGAAATTCG AGC-3′ (Swapna et al., 2016) were
used in this study. PCR amplification was carried out in a 20
µl reaction mixture comprising DNA template (2 µl), 10 µl of
PCR master mix, and 4 µl nuclease free water. Amplification
was done in Eppendorf AG, Mastercycler Nexus Series. The
PCR amplification protocol for this work is as follows: initial
denaturation at 94◦C for 2 min, 30 cycles of 95◦C for 3 min
denaturation, annealing 46◦C for 2 min, extension 72◦C for
2 min, elongation 72◦C for 5 min. PCR amplified product was
subjected to gel electrophoresis with 1% agarose gel and results
were observed on Gel DOC system (Bio-RAD, Gel DOC, EZ
IMAGER, United States).

Antibiofilm Assays
Aggregation assay was performed as described by Xiu et al.
(2018) with some modification. In brief, 100 µl of 1:100 dilution
of overnight grown clinical pathogens [(P. aeruginosa, E. coli,
K. pneumoniae) and MRSA (obtained from a local hospital)]
in Luria Burtani (LB) broth with 100 µl surfactin (1:1) at
concentration 50 and 100 µg mL−1 was added in 96 wells
polystyrene titer plate aseptically, as well as 200 µl of active
culture which was considered as control. After incubation for
24 h, wells were washed twice with sterile distilled water, air dried,
and fixed with 100 µl methanol for 15–20 min. Again, wells were
rinsed with sterile distilled water and crystal violet assay was
performed. To this, 200 µl of 0.1% crystal violet (CV) was added,
kept static for 20 min, then washed with distilled water, air dried
for 30 min at 28◦C, and photographed.

Anti-adhesion assay was performed as described by Rodrigues
and Campos-Takaki (2011) with some modification. In brief, 96
wells polystyrene titer sterile plates were inoculated with 200 µl
of purified extract (50 and 100 µg mL−1 concentration) and
incubated for 22–24 h at 4◦C. Then, wells were washed twice with
phosphate buffer (PB) (pH 7), air dried at room temperature,
200 µl of diluted (as mentioned above) pathogenic bacterial
cultures were added, and 200 µl of active culture was considered
as control and incubated for 4 h at 37◦C. Again, plates were
washed with PB. Then bacterial cells were fixed with 200 µl of
methanol for 15 min, and wells were emptied and dried followed
by quantification by CV assay. Wells were stained with 200 µl
of 2% CV for 5 min, then washed in tap water, air dried, and
resolubilized with 200 µl of 33% glacial acetic acid.

Samples for SEM analysis were prepared as described by Xiu
et al. (2018) with some modification. In brief, an overnight grown
MRSA culture was diluted 1:100 times in Luria Bertani broth and
incubated for a further 3–4 h at 37◦C and 150 rpm until it attained
a cell density of 0.2–0.3 OD600. Four samples were prepared from
cell suspension by addition of sterile distilled water, methanol,
and surfactin (50 and 100 µg mL−1 concentration, respectively)
and incubated for 3–4 h. Simultaneously, grease-free cover slips
were overlaid with 1% gelatin, and cell suspension (treated with
surfactin) was added as a drop over coverslips, and allowed to dry.
Cells were then fixed with 5% glutaraldehyde for 1 h. Then cover
slips were dehydrated with an ethanol gradient of 50, 60, 70, and
80% with 10 min of incubation for each gradient and analyzed by
SEM, from which images were generated.

Antagonistic Studies
A loopful of overnight grown culture of B. velezensis MS20 on
Luria Bertani broth (LB) was streaked on a potato dextrose agar
(PDA) plate pre-inoculated at the center of the plate with 6 mm
diameter Rhizoctonia solani fungal plug and incubated at 25◦C
for 48 h. Fungal mycelium faced toward the bacterial colony was
picked with sterile forceps and teased on a microscopic glass slide
with a drop of lactophenol cotton blue. A clean cover slip was kept
on this and observed under light microscope at 40× objective.
Pictures were taken with a Nikon P310 digital camera. Fungal
mycelium from the same plate were used for SEM analysis.
Antifungal activity of MS20 was also assessed in PD broth (PDB).
A 250 mL Erlenmeyer flask with 100 mL PDB was inoculated
with 6 mm diameter R. solani fungal plug and incubated for
24 h at 25◦C. Then 2% MS20 culture was added and incubated
for a further 48 h. PDB with only fungal culture was considered
as control. After 72 h of incubation, broth was filtered through
Whatmann filter paper 1, fungal biomass was collected, dried in
incubator overnight, and the weight was recorded.

Antifungal activity of purified extract was also determined by
agar well assay on 24 h pre-inoculated PDA plate with R. solani.
Plates were incubated at 25◦C temperature for 48 h. Growth was
calculated as average of triplicates. Mycelial growth inhibition
(MGI) was calculated by formula (Teixeira et al., 2021).

MGI =
C− T

C
x 100
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TABLE 1 | SrfA-A gene primers and 16S rRNA primer sequence.

Primers Sequence References

Srf A-A-F 5′-GCCTATGTGCCGATTGAT-3′ Ding et al. (2018)

SrfA-A-R 5′-ATGCTGGATTGTGAGAGTC-3′ Ding et al. (2018)

16S r RNA-F 5′-CCACACAGGGACTGAGACAC-3′ Ding et al. (2018)

16S r RNA-R 5′-ACTTAAGAAACCGCCTGCGA-3′ Ding et al. (2018)

Where MGI = Mycelial growth inhibition,
C = control, T = Test.

Analysis of srfA-A Gene Expression by
q-RTPCR
B. velezensis MS20 was grown in nutrient broth (NB) at 37◦C for
48 h supplemented with (1) NB medium with only 0.5% MgSO4,
(2) NB medium with only 2% Glucose, or (3) NB medium
with 2% glucose and 0.5% MgSO4. NB medium inoculated cells
without MgSO4 and glucose were used as controls. Total RNA
from B. velezensis MS20 was extracted by NucleoSpin RNA
kit (Macherey-Nagel, Duren, Germany) in compliance with the
manufacturer’s directions. Quantity and quality of RNA samples
were assessed by NanoDrop (Thermo Fisher Scientific) and 1.5%
(w/v) agarose gel. Further, 5 µg of total RNA was used for
complimentary DNA (cDNA) synthesis by PrimeScript 1st strand

CDNA synthesis kit (cat. 6110A Takara). Expression levels of
genes involved in surfactin lipopeptide synthesis in B. velezensis
MS20 were characterized by Quantitative-PCR (qRT-PCR) by a
Mastercycler (Step one Plus Real Time PCR Applied Biosystem
Invitrogen Bioservices India Pvt. Ltd, CA, United States). Table 1
displays primers which were used for amplification of specific
genes in surfactin lipopeptide synthesis and 16S rDNA gene was
used as an internal control. SYBR, Premix Ex TaqTM II (Cat.
RR820A Takara) were used for PCR cycle. RT-PCR mixture
(20 µl) taken was as follows: 10 µl of 50X SYBR Premix Ex
Taq (Takara), 2 µl of cDNA template, 1.6 µl of mixed PCR
forward and reverse primers (10 µm), and 6.4 µl of DEPC
treated water. For both control group and evaluation group,
three separate samples were measured. Amplification of target
DNA was attained with initial cDNA denaturation at 95◦C for
00:30 min, 40 cycles that comprised denaturation for 00:05 s at
95◦C, 00:40 s at 51◦C for primer annealing, and 1:00 min at
60◦C for primer extension. 2−11CT (minus of delta) delta curve
threshold approach was used for analysis of relative changes
from real-time PCR experiments in surfactin lipopeptide gene
expression (Ding et al., 2018).

Plant Biocontrol Experiment
Maize seeds (local variety) were purchased from open market
Madannapet Mandi Hyderabad Telangana India. Seeds were
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FIGURE 1 | Optimization of different (0.5% w/v) inorganic salts and (2% w/v) Carbon sources for lipopeptide (surfactin) production (A) Lipopeptide production in g/L
in presence of 2% w/v C sources and 0.5% w/v inorganic salts (Individually). (B) Lipopeptide production in g/L in presence of 2% w/v C sources and 0.5% w/v
inorganic salts (In synergy).
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surface sterilized with 1% sodium hypochlorite (NaOCl) for
1 min followed by washing several times with sterile distilled
water. Surface sterilized maize seeds were coated with the
following treatments T1: Bacillus velezensis MS20 in 1% carboxy
methyl cellulose (CMC); T2: Surfactin; T3: Fungicide; T4:
Bacillus subtilis MTCC 2424; T5: Uninoculated NB; and T6:
Treated with only fungi. 10 pre-treated seeds were then sown in
pots with 5 kg soil.

The experimental design comprised six different treatments
in triplicates and the pots were maintained in green house
conditions for a period of 30 days at a temperature of 26◦C
and humidity of 80–90%. As soon as seed germination started,
pathogen inoculation was done, i.e., R. solani inoculum prepared
in rice husk was added in close contact with roots.

After 15 days, pathogen inoculation (DAPI) maize leaves
and roots from each treatment were sampled to assess total
chlorophyll, total carotenoids content, total sugar, protein,
proline, and H2O2 at 0, 6th, and 12th DAPI as per the
methodology of Sadasivam and Manickam (1996) and
Thimmaiah (2012). Followed by quantitative estimation for
phenylalanine ammonia lyase (PAL), ascorbate peroxidase
(APx), peroxidase (POx), and catalase (CAT) was performed
(Singh et al., 2020) at 0, 6th, and 12th DAPI. For estimation
of the activity of phenylalanine ammonia lyase (PAL), tissue
sample (1 g) was grounded in 4 mL 0.2 M borate buffer (pH
8.7) with 1.4 mM β-mercaptoethanol; this enzyme extract
(200 µl) was used for assay wherein L-phenylalanine and
cinnamic acid were used as substrates, and PAL was determined
spectrophotometrically at 290 nm. Likewise, for peroxidase
activity, 200 µl enzyme extract was used with guaiacol (20 mM)
and H2O2 (12.3 mM), and absorbance was measured at 436 nm
every 30 s for 3 min. Estimation of ascorbate peroxidase was
performed with enzyme extract and ascorbic acid (10 mM)
added as substrate; absorbance was measure at 265 nm every 30 s
for 5 min. Catalase activity was determined with H2O2 (2.5 mM)
and enzyme extract. Activity was assessed by spectrophotometer
at 240 nm for 1 min through degradation of H2O2. Chitinase
and superoxide dismutase (SOD) activity were analyzed in plant
leaves and roots as described by Thimmaiah (2012).

Statistical Analysis
All experiments were performed in triplicate and mean was
calculated. Normality was checked by Shapiro Wilks Test.
Student’s t-test was performed to check the probability and
one way ANOVA after log transformation and 95% confidence
intervals was used for statistical analysis with significance level of
P < 0.05 in comparison with controls.

RESULTS

Production, Extraction, Characterization,
and Purification of Biosurfactant
The optimization of media was carried out in a series of
experiments changing one variable at a time, keeping the other
factors fixed at a specific set of conditions. The results of
media optimization for biosurfactant production revealed the

highest production of biosurfactant i.e., 3,300 mg L−1, when NB
was inoculated with 2% of MS20, amended with 0.5% MgSO4
and 2% Glucose after 48 h of incubation period (Figure 1).
Primary characterization of extracted biosurfactant from MS20
was analyzed by TLC silica gel plate. Upon exposure to 1%
ninhydrin, the appearance of a pink spot was noticed with
Rfvalue 0.7 (Figure 2) and PCR amplification of srfAB gene
resulted in 675 bp fragment (Supplementary Information 1)
which confirmed the presence of surfactin. Furthermore, the
presence of functional groups in the biosurfactant produced
by MS20 was determined by FTIR that revealed C and N-H
stretches at 3,365 cm−1. Also revealed was an aliphatic chain and
C-CH3 bond at 2,836–2,979 cm−1. Absorbance at 1,782 cm−1

showed the presence of carbonyl group or lactone ring. A peak
at 1,655–1,782 cm−1 depicted the presence of peptide and

FIGURE 2 | TLC plate showing band at Rf value 0.7 (Swapna et al., 2016;
Parameshwar et al., 2019; Ramavath et al., 2019).
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FIGURE 3 | FTIR spectra of Surfactin Lipopeptide of B. velezensis MS20 (Parameshwar et al., 2019).

TABLE 2 | Detection of surfactin lipopeptide by LC/ESI/MS.

Product Ion
Negative

Product Ion
Positive

Negative m/z Positive m/z Molecular
weight/Exact mass

Compound References

[M-H]− [M+H]+ 982.3 960.4 93 C12 Sarwar et al., 2018;
Parameshwar et al.,

2019Janek et al., 2021

839.9 1007.1 1007 C13

1012.8 927.9 1021 C14

1014.1 1033.7 1035 C15

1059.3 1079.7 1049 C16

– – 1063 C17

deformed N-H and C-N stretches at 1,450 cm−1 (Figure 3).
Purified extract was analyzed by ESI-MS at positive and negative
polarity which showed four characteristic peaks corresponding
to isoforms that are in accordance with literature reported for
surfactin (Table 2).

Antibiofilm Assays
From bioassays, aggregation of clinical pathogens P. aeruginosa
MTCC424, E. coli MTCC43, K. pneumoniae MTCC9751, and
MRSA in 96 well microtiter plates at MIC 50 µg mL−1 was
observed (Figure 4) which suggests that surfactin can act as
an anti-biofilm agent by restricting the motility of pathogens
and preventing the formation of biofilm. In continuation, SEM
images of MRSA revealed visible aggregation in comparison to
its respective control i.e., no change in MRSA cells treated with
sterile distilled water and methanol, and clear cell wall disruption
and aggregation at 50 and 100 µg mL−1 concentration,
respectively (Figure 5).

Therefore, our results demonstrate visual evidence of
condensation of R. solani mycelium and aggregation of MRSA

in the presence of MS20 and surfactin, at 50 and 100 µg
mL−1 concentration.

Antagonistic Activity
MS20 on PDA plate after incubation in comparison with control
exhibited an inhibition zone of ∼40%, whereas in PD broth
no fungal mycelium was detected. Simultaneously, surfactin
exhibited antifungal activity on PDA plate with an inhibition zone
∼40% at 50 µg mL−1 concentration (Figure 6). Hence, from the
results it is inferred that MS20 as well as surfactin has an anti-
fungal property. Light microscopic and SEM images of R. solani
showed clear mycelial condensation by surfactin compared to
untreated controls.

Quantitative Reverse
Transcriptase—Polymerase Chain
Reaction srfA-A Gene Expression
Analysis
Quantitative and qualitative analysis of RNA extracted was
analyzed by Nanodrop (Table 3) and gel electrophoresis
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(Supplementary Information 2). Inoculation of MS20 in NB
amended with 0.5% MgSO4 and 2% glucose resulted in
upregulation of srfA-A gene to 9.34 ± 0.1-fold in q RT-PCR,
whereas in untreated/control the expression levels were found to
be 1.01 ± 0.1-fold, and 1.06 ± 0.1 in media amended with only
0.5% MgSO4 and 1.03 media amended with only 2% Glucose
(Figure 7). Hence, our results demonstrate the surfactin gene
upregulation under optimized conditions.

Plant Biocontrol Experiment
Maize seeds coated with MS20 and surfactin (50 µg mL−1)
after pathogen inoculation revealed that they have significant
effect on total chlorophyl content: 10.6 mg g−1 fresh weight,
carotenoid content 0.46 mg g−1 fresh weight, accumulation of
protein, proline and sugars (total sugar 22.6, 27.6 mg g−1 dry
weight, proteins 20.2, 15.3 mg g−1 dry weight, and proline 3.6,
5.16 mg g−1 dry weight, contents root, and shoot, respectively).
Defense enzymes which were detected at an interval of 0, 6th, and
12th days after pathogen inoculation were found to be highest for
surfactin i.e., PAL (12.1 µmol trans-cinnamic acid min g−1 fresh
weight, 22.1 µmol trans-cinnamic acid min g−1 fresh weight),
APx (550.2 unit g−1 fresh weight, 1050.16 unit g−1 fresh weight),
POx (900.2, 1800.2), H2O2 2.9 mmol mg−1 protein, 7.1 mmol
mg−1 protein), SOD (419.9 unit g−1 fresh weight., 619.8 unit
g−1 fresh weight.), CAT (819.9 unit g−1 fresh weight., 1219.8
unit g−1 fresh weight.), Chitinase (10.2 nKat g−1, 21.4 nKat g−1),
root and shoot, respectively) followed by B. velezensis MS20 in
comparison to controls (Figures 8–10). From the results it is
inferred that MS20 has good plant growth promotion property
and its surfactin lipopeptide (50 µg mL−1) can be used as a
biocontrol agent in maize crop against R. solani.

DISCUSSION

In the present work, a marine bacterium B. velezensis
MS20 (Ramavath et al., 2019) was used for production of
biosurfactant. Marine Bacillus are recorded for production
of novel bioactive compounds for example lipopeptides,
macrolactones, polypeptides, fatty acids, polyketides, and
isocoumarins (Mondol et al., 2013). In the present work, a
marine bacterium B. velezensis MS20 (Ramavath et al., 2019)
was used for production of biosurfactant. Among sugars tested,
glucose at concentrations lower than 50–60 gL−1 is reported
to give higher surfactin yield in 48 h (Shaligram and Singhal,
2010; Hmidet et al., 2017). Other than carbon and nitrogen
sources, several inorganic nutrients also play a significant role
in surfactin lipopeptide production by serving as co-factors for
enzymes involved in lipopeptide production (Abdul et al., 2018).
In our study, we have deduced that nutrient broth amended
with inorganic salt MgSO4 and glucose at concentrations of
0.5 and 2% (w/v), respectively, showed the highest surfactin
yield of 3,300 mg L−1 which is more than the reports on
B. velezensis KPL2016 which yielded 2,506 mg L−1 of surfactin in
the presence of 1% w/v glucose (Khem et al., 2018). Our results
are in agreement with reports from Hmidet et al. (2017) who
reported higher surfactin production at 2% glucose, however,

FIGURE 4 | Aggregation of clinical pathogens in the presence of Surfactin (at
50 and 100 µg ml−1 concentration) and in its absence. (1) P. aeruginosa
MTCC424, (2) E. coliMTCC43, (3) K. pneumoniaeMTCC9751, and (4) MRSA.

the combination of glucose with MgSO4 greatly enhanced
yield; a similar type of study was reported for production of
surfactin under the influence of MgSO4 2.4 mM concentration
by B. amyloliquefaciens (Wei et al., 2007; Wibisana et al., 2015).
Our results can be supported by a review by Kumar et al. (2021)
who discusses the use of molasses and glycerol as “C” source and
NH4Cl2, NH4NO3, and NaNO3 as an “N” source responsible for
high biosurfactant yield.

Upon characterization by TLC, Rf value 0.7 was obtained
which is in agreement with recent reports by Parameshwar
et al. (2019) in comparison to surfactin standards srfAB which
is among the four biosynthetic core non-Ribosomal peptide
synthetase gene encodes for surfactin lipopeptide (Théatre et al.,
2021). In the present study, the PCR amplification of surfactin
gene gave strong band at 675 bp which is similar to reports
by Swapna et al. (2016). FTIR spectra revealed the presence
of functional groups which are characteristic of peptides and
aliphatic chains found in surfactin lipopeptide, and LC/ESI-MS
peaks showed isoforms normally observed for surfactin, i.e., C12-
C16 vibrations in positive and negative polarities which are in
accordance with the reports of Table 2 (Sarwar et al., 2018; Janek
et al., 2021).

Cyclic lipopeptides from Bacillus are reported for their vast
therapeutic properties and potential in pharma. Lipopeptide
biosurfactants from B. amyloliquefaciens and B. cereus are
known to cause disruption and inhibition of exopolysaccharide
gene Ps1C expression in P. aeruginosa PAO1 cells and
other bacteria (Katarzyna et al., 2019). In the present study,
surfactin lipopeptide extracted from MS20 was explored
for its anti-biofilm activity and it was found to cause
aggregation of bacterial pathogens. Bacterial aggregation is
usually observed when cell wall disruption occurs due to cleavage
of peptidoglycan and prevents colonization. For example, Payne
et al. (2013) demonstrated decolonization of S. aureus in the
presence of tannic acid. Likewise, Rodrigues and Campos-
Takaki (2011) and Xiu et al. (2018) have demonstrated the use
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FIGURE 5 | SEM Images of MRSA cell at 2 and 1 µm. (A) Only sterile distilled water 2 µm. (B) Cell suspension with 50 µl of methanol (2 µm). (C) Cell suspension
treated with 50 µl of 50 µg ml−1 Surfactin (2 µm). (D) Cell suspension treated with 50 µl of 100 µg ml−1 Surfactin (2 µm). (E) Cell suspension treated with 50 µl of
50 µg ml−1 Surfactin at (1 µm).

of lipopeptide in aggregation assay or anti-motility assay for
clinical pathogen Vibrio alginolyticus178 and Streptococcus spp.,
respectively, in prevention of biofilm formation. In our study,
bacterial aggregation assay results inferred visible aggregation
for all pathogens by surfactin lipopeptide at MIC 50 µg
mL−1 concentration.

SEM analysis of MRSA treated with surfactin lipopeptide
revealed disruption (50 µg mL−1) and aggregation (100 µg
mL−1). Anti-bacterial and anti-biofilm activity of surfactin

against different bacteria has also been documented in a
number of studies. For example, at a surfactin concentration
of 0.625% w/v, growth inhibition of Staphylococcus epidermidis
was recorded (Abdelli et al., 2019). Recently, surfactin has been
reported to inhibit growth of specific oral pathogens, particularly
S. sanguinis ATCC105566 at concentrations of > 1.26 × 10−3

w/v% (Yamasaki et al., 2020), and removal of biofilms of
Legionella pneumophila (6.6 × 10−3 w/v% of surfactin) (Loiseau
et al., 2015). In addition, surfactin is also reported to remove
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FIGURE 6 | (A) Antifungal activity of Bacillus velezensis MS20 against R. Solani on PDA plates and in broth. (B) Antifungal activity of surfactin on R. solani. (C) Light
Microscopic and SEM Images of R. solani: Untreated Control. (D) Treated with BV on PDA Plate. (E) Treated with BV on PDA Plate. (F) Treated with surfactin.
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TABLE 3 | Quantification of RNA by Nanodrop reading of RNA samples.

Sample Name Concentration (ng/µ l) 260/280 260/230

Untreated 360.9 2.04 1.82

+MgSO4 500.7 2.10 2.26

+Glucose 325.6 2.16 2.02

+MgSO4+Glucose 503.2 2.14 1.99
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FIGURE 7 | B. velezensis MS20 surfactin lipopeptide gene expression,
showing 9.34 ± 0.11 upregulation in cells treated with MgSO4 and Glucose.
By statistical analysis (P < 0.05), it was found to be highly significant.
*P < 0.05, **P < 0.01.

stainless steel and polypropylene surface biofilm of Listeria
monocytogenes, Enterobacter sakazakii, and Salmonella enteritidis
(Yamasaki et al., 2020).

Bacillus species with a diverse range of bioactive compounds
have been identified as sensitizers to control a variety of
phytopathogens. The present strain MS20 and its surfactin

lipopeptide were found to be effective in limiting the mycelium
growth of plant pathogen R. solani. Inoculation of actively grown
overnight culture of MS20 to PD broth pre-inoculated with
R. solani resulted in complete inhibition of fungal mycelium in
comparison to control. Our results are very much in agreement
with recent reports by Teixeira et al. (2021), who demonstrated
that B. velezensis strain CMRP 4,490 might be used to protect
plants as a bio control agent. In vitro, B. velezensis strain
CMRP 4,490 demonstrated strong antagonistic activity against
Sclerotinia sclerotiorum, Macrophomina phaseolina, Botrytis
cinerea, and R. solani. In agriculture, these soil-borne fungus are
widespread and difficult to control. As a result, it is essential to
develop strategies or solutions to deal with these critical soil-
borne fungal infections that cause extensive harm and reduce
production of many economically significant crops. Results of
this study mirrors those of earlier studies on B. velezensis and
phytopathogenic fungi (Ge et al., 2016; Xu et al., 2016; Lim et al.,
2017). Similarly, Choub et al. (2021) demonstrated that a culture
filtrate of B. velezensis CE100 displayed appreciable antifungal
activity against a phytopathogen (Colletotrichum gloeosporioides)
which causes anthracnose plant disease.

Generally, the presence of glucose in the fermentation
medium is reported to enhance gene expression and can
encourage the growth and division of bacteria (Zhou et al., 2015).
Likewise, earlier studies have also shown that in the presence
of fibers, fever, and high salt in fermentation medium results
in selective up-regulation of certain genes to resist exposure to
elements in an exigent environment by secretion of some proteins
for protection of cells as a defense mechanism (Zhou et al.,
2015). A recent q-RTPCR study by Zhou et al. (2018) and Choub
et al. (2021) reported lowest fold gene expression (surfactin sfp
gene) in 1% glucose and highest expression in the presence of
a combination of 0.67% glucose and 0.33% cellulose. In the
present study we have shown enhanced srfA-A gene expression
by q-RTPCR in the presence of 2% glucose and 0.5% MgSO4
which upregulated to 9.34± 11 -fold in comparison with controls
where gene expression was found to be 8-fold less when treated
with glucose (1.03 ± 0.1) and MgSO4 (1.06 ± 0.1) individually
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FIGURE 8 | Effects of different treatments on Maize crop (a) total Chlorophyll content (b) total carotenoid content, at 15 Days After Pathogen inoculation DAPI and (g)
H2O2 content in maize roots and shoot at 0, 6th, 12th DAPI under net house condition. Treatments: T1—BV: B. velezensis MS20 + R. solani;
T2—Surfactin + R. solani; T3—Fungicide + R. solani; T4—B. subtilis MTCC2424 + R. solani; T5—Only R. solani; T6—Control (untreated). Data are
mean ± Standard Error (n = 3) and 95% confidence intervals (P < 0.05).
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FIGURE 9 | Effects of different treatments on Maize crop (A) plant weight, (B) shoot length, (C) root length, (D) total sugar content, (E) total protein content, (F) total
proline, at 7 Days After Pathogen Inoculation (DAPI) and (G,H) H2O2 content in maize roots and shoot at 0, 6th, 12th DAPI under net house condition. Treatments:
T1—BV: B. velezensis MS20 + R. solani; T2—Surfactin + R. solani; T3—Fungicide + R. solani; T4—B. subtilis MTCC2424 + R. solani; T5—Only R. solani;
T6—Control (untreated). Data are mean ± Standard Error (n = 3) and 95% confidence intervals (P < 0.05).
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FIGURE 10 | Effects of seed treatments on antioxidant enzyme activity (A) phenylalanine ammonia lyase (PAL), (B) ascorbate peroxidase (APx), (C) peroxidase
(POx), (D) Chitinase, (E) superoxide dismutase (SOD), and (F) catalase (CAT) activity in maize root and shoot at 7 DAPI under net house condition. Treatments:
T1—BV: B. velezensis MS20 + R. solani; T2—Surfactin + R. solani; T3—Fungicide + R. solani; T4—B. subtilis MTCC2424 + R. solani; T5—Only R. solani;
T6—Control (untreated). Data are mean ± Standard Error (n = 3) and 95% confidence intervals (P < 0.05).

and in untreated controls (1.01 ± 0.1) carbon source; this study
can be considered as an early report. Since there are no previously
published reports for q-RTPCR surfactin gene expression in the
presence of glucose and MgSO4, our study should be considered
as a preliminary work. However, previously published literature
on the effect of glucose on surfactin production states that glucose
concentration beyond 50–60 g L−1 has a negative effect on
surfactin lipopeptide production. Our work will provide a base
for future studies in enhanced surfactin yield in the presence and
synergism of carbon sources and inorganic mineral salts which
cannot be achieved with either of them alone.

Globally, the prevalence of R. solani-caused banded leaf and
sheath blight disease is on the rise (Li et al., 2019), and it
is currently regarded as one of the most destructive diseases
of Kharif maize grown in warm and humid regions. At an
average temperature of 27–30◦C, pathogen R. solani becomes
more active as relative humidity rises (Hooda et al., 2017;
Singh et al., 2020). Seed biopriming triggers ISR effect, enhances
germination, helps in uniform establishment of the crop, and
fights phytopathogens (Stoll et al., 2021). Given the significance,

the goal of this work was to examine if seeds coated with
a microbial inoculant activate local and systemic defensive
responses in maize againstR. solani, which causes banded leaf and
sheath blight. In the present study, MS20 and its surfactin have
showed plant growth promotion as well as biocontrol potential.
Plant biocontrol experiment results revealed that maize crop
treated with surfactin scored highest in terms of total chlorophyll
10.6 mg g−1 fresh weight and carotenoid content 0.46 mg g−1

fresh weight in leaves 15 days after pathogen inoculation with
P < 0.05. Accumulation of biomolecules in root and shoot of
maize crop after aforementioned treatments under greenhouse
conditions resulted in the highest result for surfactin (total sugar
22.6, 27.6 mg g−1 dry weight., proteins 20.2, 15.3 mg g−1 dry
weight. and proline 3.6, 5.16 mg g−1 dry weight contents root
and shoot, respectively) as compared to other treatments and
control. Likewise, antioxidant enzymes which plants produce
as a defense mechanism upon pathogen inoculation to detoxify
harmful effect of H2O2 and reactive oxygen species (ROS), which
causes cell death, revealed, increased enzyme production as time
progressed in comparison with controls (0 day, 6th day, 12th day)
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in roots and shoots. Also in root and shoot after treatments, as
mentioned in section “Statistical Analysis”, antioxidant enzymes
such as PAL (12.1 µmol trans-cinnamic acid min g−1 fresh
weight, 22.1 µmol trans-cinnamic acid min g−1 fresh weight),
APx (550.2 unit g−1 fresh weight, 1050.16 unit g−1 fresh weight),
POx (900.2, 1800.2), H2O2 (2.9 mmol mg−1 protein, 7.1 mmol
mg−1 protein) SOD (419.9 unit g−1 fresh weight., 619.8 unit
g−1 fresh weight.), CAT (819.9 unit g−1 fresh weight., 1219.8
unit g−1 fresh weight.), and Chitinase (10.2 nKat g−1, 21.4
nKat g−1) were found to be highly significant i.e., P < 0.05
for surfactin as compared to other treatment. Our results on
biocontrol activity of B. velezensis and surfactin (Kourmentza
et al., 2021) against phytopathogen and toward maize crop are
comparable and mirrors the reports by Singh et al. (2020) wherein
biocontrol efficacy of P. aeruginosa MF30, culture supernatant,
and culture extract (unidentified) is demonstrated. In the present
work, maize seeds treated with surfactin lipopeptide exhibited
a significant increase in antioxidant content as well as plant
growth in comparison to MS20. Likewise, our results are also
in accordance with Liu et al. (2020) wherein B. velezensis
HC6 and three lipopeptides (iturin, Surfactin, and fengycin) are
demonstrated for their potential biocontrol activity in maize crop
against phytopathogens Aspergillus and Fusarium spp. and one
pathogenic bacterium, Listeria monocytogenes.

CONCLUSION

From this work it is concluded that surfactin yield can be
enhanced through a combination of a carbon source with a
mineral salt MgSO4, and its potential as a biocontrol agent in
maize crop for sustainable agriculture is demonstrated. It was also
noted to have antibiofilm activity, based on which its application
in therapeutics is suggestive.
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Globally, Erysiphe necator causing powdery mildew disease in grapevines (Vitis vinifera

L.) is the second most important endemic disease, causing huge economic losses every

year. At present, the management of powdery mildew in grapes is largely dependent

upon the use of chemical fungicides. Grapes are being considered as one of the high

pesticide-demanding crops. Looking at the residual impact of toxic chemical pesticides

on the environment, animal, and human health, microbe-based strategies for control of

powdery mildew is an emerging technique. It offers an environment-friendly, residue-free,

and effective yet safer approach to control powdery mildew disease in grapes. The mode

of action is relatively diverse as well as specific to different pathosystems. Hence, the

aim of this study was to evaluate the microbe-based technologies, i.e., Eco-pesticide®,

Bio-Pulse®, and Bio-Care 24® developed at the Plant-Microbe Interaction and

Rhizosphere Biology Lab, ICAR-NBAIM, Kushmaur, against grape powdery mildew and

to integrate these technologies with a safer fungicide (sulfur) to achieve better disease

control under organic systems of viticulture. The experiments were conducted at four

different locations, namely, the vineyards of ICAR-NRCG, Rajya Draksha Bagayatdar

Sangh (MRDBS), and two farmers’ fields at Narayangaon and Junnar in the Pune

district of Maharashtra. A significantly lower percent disease index (PDI) was recorded

on the leaves of grape plants treated with Eco-Pesticide®/sulfur (22.37) followed by

Bio-Pulse®/sulfur (22.62) and Bio-Care 24®/sulfur (24.62) at NRCG. A similar trend was

observed with the lowest PDI on bunches of Eco-pesticide®/sulfur-treated plants (24.71)

followed by Bio-Pulse®/sulfur (24.94) and Bio-Care®/sulfur (26.77). The application of

microbial inoculants singly or in combination with sulfur has a significant positive impact

on the qualitative parameters such as pH, total soluble solids (TSS), acidity, berry

diameter, and berry length of the grapes at different locations. Among all the treatments,

the Bio-Pulse®/sulfur treatment showed the highest yield per vine (15.02 kg), which was

on par with the treatment Eco-Pesticide®/sulfur (14.94). When compared with the yield

23

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.871901
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.871901&domain=pdf&date_stamp=2022-05-17
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:udaiars.nbaim@gmail.com
mailto:sujoyta@gmail.com
https://doi.org/10.3389/fmicb.2022.871901
https://www.frontiersin.org/articles/10.3389/fmicb.2022.871901/full


Malviya et al. A Comparative Analysis of Microbe-Based Technologies

obtained from the untreated control, 2.5 to 3 times more yield was recorded in the plants

treated with either of the biopesticides used in combination with sulfur. Even in the case

of individual inoculation, the yield per vine was approximately two times higher than the

untreated control and water-treated plants across the test locations. Results suggested

that microbial technologies not only protect grapevines from powdery mildew but also

enhance the quality parameters with increased yield across the test locations.

Keywords: microbe-based technology, Eco-Pesticide, Bio-Pulse, Bio-Care, Erysiphe necator, Vitis vinifera,

powdery mildew of grapes

INTRODUCTION

Grapevine (Vitis vinifera L.) is one of the important crops grown
worldwide for wine, dried resins, and fresh table purposes. It
was originally a temperate crop but is widely cultivated in
temperate, subtropical, and tropical regions of the world. Several
reports indicate that ∼72 million tons of grapes are produced
worldwide every year, most of which are used to produce wine.
Apart from wine production, grapes are widely used to prepare
jelly, jam, juices, raisins, currants, and sultanas (Sawant and
Sawant, 2006; Sawant et al., 2017). It has great economic potential
due to higher yields translating into higher monetary returns,
which are duly supported by its fair export potential (Calonnec
et al., 2004). Being an export crop, it plays a crucial role in the
nation’s economy. In India, it is widely cultivated in the states
of Maharashtra, Karnataka, Tamil Nadu, Mizoram, and Andhra
Pradesh. The area under grapes in India is ∼1.25 lakh hectares
with an average productivity of 22.95 t/ha. Among these states,
Maharashtra contributes about 75.85% to the area and 81.22% to
the national grape production with a productivity of 24.58 t/ha
(Sawant and Sawant, 2006; Sawant et al., 2017; Kanitkar et al.,
2020).

Several biotic (viruses, bacteria, fungi, and insects) and
abiotic (i.e., drought and winter cold) stresses affect grape
production worldwide. Among biotic stresses, fungal diseases,
namely, downy mildew (Plasmopara viticola [Berk and Curtis]
Berlese and De toni), powdery mildew (Erysiphe necator
previously known as Uncinula necator [Schw.] Burn), and
Anthracnose (Gloeosporium ampelophagum [Pass] Sacc. [Perfect
stage: Elsinoe ampelina {DeB} Shear]) are the major constraints
in grapevine cultivation (Calonnec et al., 2004; Gadoury et al.,
2007, 2012; Vinothini et al., 2014). Among fungal diseases,
powdery mildew is the second most important endemic disease
of commercial grapevine varieties after downy mildew, and it
becomes more serious than downy mildew in the changing
climatic scenario with relatively cool and dry weather (Calonnec
et al., 2004, 2018; Bendek et al., 2007). Erysiphe necator is
an obligate biotrophic and the most notorious pathogen of
the grapevine causing considerable losses in grape production
(Konstantinidou-Doltsinis et al., 2007; Saleh et al., 2007).
The disease can be devastating to susceptible varieties under
conducive environmental conditions covering the entire above-
ground parts of the plants. The release of ascospores is always
associated with high humidity, and therefore, frequent rain is a
key factor for the release of ascospores, which are, in fact, the

primary inocula (Jones et al., 2014; Sawant et al., 2017; Kavadia
et al., 2020). Grapevine diseases can have drastic ill effects not
only on the host plants and berries but also on the wine qualities
and their sensorial and organoleptic properties (Stummer et al.,
2003a,b; Pinar et al., 2017a,b), resulting in economic losses for
the grape growers and wine producers (van Helden, 2008). As a
consequence of smaller diseased berries, E. necator can cause a
drastic reduction in grape yield of up to 45% (Calonnec et al.,
2004) and severally affect the export quality (Stummer et al.,
2005; Rusjan et al., 2012; Pinar et al., 2016, 2017a,b). Although
the grapevine is susceptible to powdery mildew at all its growth
stages, berries are not infected after the berry softening stage
(Calonnec et al., 2004, 2018; Gadoury et al., 2007, 2012).

Management of powdery mildew in grapes is largely
dependent upon the use of chemical fungicides, and interestingly,
grapes are considered to be one of the high pesticide-demanding
crops (Sholberg et al., 2006; Pertot et al., 2017; Arestova
and Ryabchun, 2021). Worldwide, an average of 35% of all
pesticides produced are used in viticulture (Essling et al., 2021).
In India, a total of 1,814M.T. of pesticides were used in
fruit crop production during 2020–2021 (www.ppqs.Gov.in).
Earlier, sulfur and sulfur-containing fungicides were used for
controlling the powdery mildew of grapes globally (Biondi
et al., 2012; Warneke et al., 2022). However, in the recent past,
several other fungicides, namely, difenoconazole, metrafenone,
nissodium fenarimol, bupirimate, penconozole, dimethomorph,
triademefon, pyrazophos, hexaconazole, chlorothalonil, and
flusilazole were introduced in India and used to control powdery
mildew in grapes (Sawant and Sawant, 2006; Sawant et al.,
2017; Kanitkar et al., 2020). Consequences of intensive pesticide
use include their persistence in soils, contamination of the
environment, negative impact on human health, and deterrents
to the ecosystems as well as the development of resistant
pathogenic strains. Heavy doses and multiple applications of
fungicides on grapes lead to excess fungicidal residues in the
harvest, which affect the export quality and cause huge losses in
foreign exchange (Carisse et al., 2009; Alem et al., 2019; Rantsiou
et al., 2020). Resistance development in the pathogens and
residual toxicity of chemical fungicides on the environment and
human health have compelled researchers and commercial grape
growers to look for alternative strategies (Yildirim and Dardeniz,
2010; Miles et al., 2012; Fernández-González et al., 2013;
Çetinkaya and Fadime, 2016). With the possible withdrawal of
chemical fungicides, including sulfur powder, from the schedule
of the acceptable input chart and the demand for residue-free
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grapes, there is an urgent need to find suitable alternatives
for disease management in the organic systems of viticulture
(Carisse et al., 2009; Yildirim and Dardeniz, 2010; Lu H. et al.,
2020). Among them, the development of resistant cultivars with
a high degree of resistance/tolerance to respective pathogens
to produce high-quality grapes and wines commensurate with
the parameters for higher standards of food safety is of great
importance (Pap et al., 2016; Riaz et al., 2020). However, the
detection of the source of resistance to Erysiphe necator and the
transfer of desired traits into a suitable commercial cultivar using
a resistance breading program is a great challenge to the grape
breeders (Ficke et al., 2002; Riaz et al., 2013, 2020; Pap et al.,
2016). Furthermore, availability of resistant lines and breeding
of resistant cultivars is cost-effective, but in grapes, it is not an
easy task (Miles et al., 2012; Fernández-González et al., 2013;
Çetinkaya and Fadime, 2016).

Under these circumstances, the use of microbe-based
strategies for control of powdery mildew is an emerging
technique/approach. It has been reported to be an environment-
friendly, residue-free, and safer approach for combating the
powdery mildew pathogen effectively (Hayes, 2015; Kumar et al.,
2021; Pathma et al., 2021; Sellitto et al., 2021). In the recent past,
several biological control agents of microbial origin have been
evaluated and used to control the powdery mildew pathogen
in grapes. Among them, Ampelomyces quisqualis, Trichoderma
harzianum, T. asperellum, T. virens, Pythium oligandrum,
Pseudozyma flocculosa, Bacillus subtilis, B. licheniformis, B. brevis,
B. cereus, Pseudomonas fluorescens, and Streptomyces cacaoi were
noteworthy (Rao et al., 2015; Damalas and Koutroubas, 2018;
Thakur et al., 2020; Salimi and Hamedi, 2021). However, very few
microbe-based products/technologies are available in the market
for wider applicability in the Indian subcontinent and abroad
to control grape powdery mildew in the organic viticulture
(Compant et al., 2013; Moyer et al., 2016; Cangi et al., 2018;
Malićanin et al., 2020). Due to a lack of information in the
scientific literature on the availability and effectivity of microbial
inoculants, agronomists and vine growers are often not aware of
these new products and the impact they can have indirectly on
the quality of grapes (Lu W. et al., 2020; Agbowuro et al., 2021;
Steiner et al., 2021).

Recently, a few biopesticides of microbial origin have been
developed at the Plant-Microbe Interaction and Rhizosphere
Biology Lab, ICAR-National Bureau of Agriculturally Important
Microorganisms (ICAR-NBAIM), Kushmaur, Maunath Bhanjan,
Uttar Pradesh, India. Among them, Eco-pesticide R© (a liquid
bioformulation of Pseudomonas fluorescens PF-08), Bio-Pulse R©

(a talc-based bioformulation of Trichoderma asperellum
UBSTH-501 and Bacillus amyloliquefaciens B-16), and Bio-Care
24 R© (a liquid bioformulation of Bacillus subtilis RP-24) are
widely studied technologies in different crops for enhanced
resistance to biotic and abiotic stresses through direct and
indirect mechanisms (Singh et al., 2016a,b, 2019a,b). The
direct mechanism includes mycoparasitism, synthesis of many
secondary metabolites, hormones, cell wall-degrading enzymes,
and antioxidants that assist the plant in its defense against
pathogenic attack (Singh et al., 2016a,b, 2019a,b). They were also
found to increase plant growth, uptake, and translocation of the

key plant nutrients from the soil, and thus increase yield directly
and/or indirectly in many crops (Singh et al., 2016a,b, 2021).
Keeping this in mind and analyzing the importance of grapes
as an economical crop, trials were devised in collaboration with
ICAR-NRC for Grapes, Pune, to evaluate and compare the (1)
efficacy of microbe-based technologies, Eco-pesticide R©, Bio-
Pulse R©, and Bio-Care 24 R© developed at ICAR-NBAIM against
grape powdery mildew and (2) integration of microbe-based
technologies with the safer fungicide (sulfur) to achieve the
better disease control with reduced fungicide application for
wider applicability under organic viticulture.

MATERIALS AND METHODS

Source of Microbe-Based Technologies
Eco-pesticide R©, Bio-Pulse R©, and Bio-Care 24 R© were developed
and supplied by the Plant-Microbe Interaction and Rhizosphere
Biology Lab, ICAR-NBAIM, Kushmaur,Maunath Bhanjan, India.
The colony-forming units (CFU) of Eco-pesticide R© (2.75 ×

108 ml−1), Bio-Pulse R© (T. asperellum: 2.25 × 107 g−1, and
B. amyloliquefaciens: 2.50 × 108 g−1), and Bio-Care 24 R©

(3.50 × 108 ml−1) were standardized before final packaging of
the product.

Experimental Setup
The experimental trials were conducted at four different
locations, namely, vineyards of ICAR-National Research Center
for Grapes (ICAR-NRCG), Pune (location 18.32◦N, 73.51◦E, soil
black [Vertisol], with a pH of 7.75), Maharashtra, Rajya Draksha
Bagayatdar Sangh (MRDBS), Pune (location 18.32◦N, 73.51◦E,
soil slightly alkaline with a pH of 8.05 with climate hot semiarid
climate bordering with tropical wet and dry and having average
temperatures ranging from 66◦F to 91◦F), and two farmers’
plots at Narayangaon and Junnar (19.2◦N 73.88◦E, temperature
typically varies from 53◦F to 96◦F and is rarely below 47◦F or
above 100◦F, soil black, Vertisol with a pH of 6.75; the wet season
is warm, oppressive, windy, and overcast, and the dry season
is hot and mostly clear) in the Pune district of Maharashtra.
The cultivar Fantasy Seedless was taken for experimentation
at ICAR-NRCG, Pune. However, a vineyard with the cultivar
Nanasaheb Purple was taken into study in the other three
locations, namely, MRDBS, a farmers’ plot at Narayangaon and
Junnar. The vines selected for the experiment were subjected
to natural infection of powdery mildew. The first spray was
carried when the disease infection was observed in the untreated
control plot. The experiments were laid out in randomized block
design (RBD) with four replications having eight grapevines
per treatment. Grapevines sprayed with sulfur (80% WDG)
were used as the standard check. The bio-formulations, which
were taken for experimentation, were also applied with the
alternation of sulfur (80% WDG). The main reasons behind
alternate application of sulfur along with microbial technologies
are that “only bioinoculants may not be sufficient to control the
menace of obligate pathogens like powdery mildew and a need-
based application of sulfur fungicide is needed.” The schedule of
applications is given in Table 1. These microbial bio-pesticides
were applied at weekly intervals. The volume of water used for
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TABLE 1 | Details of treatments for powdery mildew field trial.

Treatments Treatment details Dose (ml or g/liter)

T1 Eco-Pesticide 10 ml/l

T2 Bio-Pulse 10 g/l

T3 Bio-Care 24 10 ml/l

T4 Three sprays of

Eco-Pesticide/one spray of sulfur

10 ml/l

T5 Three sprays of Bio-Pulse/one

spray of sulfur

10 g/l

T6 Three sprays of Bio-Care 24/one

spray of sulfur

10 ml/l

T7 Sulfur 80%WDG 2 gm/l

T8 Water control -

T9 Untreated control -

FIGURE 1 | Pictorial depiction of 0–4 rating scale for powdery mildew

disease severity.

spray was calculated (1,000 L/ha at full canopy). A knapsack
sprayer with a hollow cone nozzle was used for spraying.

Sampling and Analyses
Foliar Disease Intensity
The severity of powdery mildew was recorded at two different
growth stages, first on leaves and second on bunches. The severity
of powdery mildew on plant leaves was recorded by adopting the
0–4 scale, where 0 means no disease present and 4 means more
than 75% of the leaf area is infected. A rating scale on leaves
is shown in Figure 1. PDI was calculated using the following
formula:

PDI =
Sum of numerical ratings× 100

Number of leaves observed×Maximum rating scale

The ratings on 10 leaves were recorded on randomly
selected canes. Such 10 canes per vine were observed, so
100 diseased leaf observations were recorded per replicate.
Four replications for each treatment were considered. Only
actively growing powdery mildew lesions were considered for
recording ratings.

Bunch Infection
During the fruiting season, powdery mildew ratings were
recorded separately on bunches. Powdery mildew appearance
on bunches was recorded by adopting a 0–4 scale, where
0 means no disease present and 4 means more than 75%
of the bunch area is infected. PDI was calculated using the
following formula:

PDI =
Sum of numerical ratings× 100

Number of bunches observed×Maximum rating scale

The ratings on 20 randomly selected bunches per replicate
were recorded. During observations, only active powdery mildew
growth was considered for recording ratings.

Estimation of TSS, Titrable Acidity, pH, and

Physiological Loss in Weight
Fruits from different treatments were harvested and used for
the analysis of various fruit quality, qualitative, and quantitative
parameters, namely, total soluble solids (TSS), titratable acidity
(TA), pH, physiological weight loss (PWL), and marketable
yield. The total soluble solids (TSS) and titratable acidity
(TA) were estimated by extracting juice from crushed berries
and centrifuging at 5,000 rpm for 5min. TSS was estimated
using the digital handheld refractometer with a temperature
compensated to 20◦C (Thosar et al., 2020). Determination of
titratable acidity was conducted by titration with 0.1N of NaOH
using phenolphthalein as the indicator and titratable acidity was
expressed as tartaric acid equivalent (Satisha and Somkuwar,
2019).

Percentage acid= Titer× acid factor× 10/10 (ml juice)
where “factor” for grapefruit is 0.075 (Satisha and Somkuwar,

2019).
The pH of the juice was recorded using a pH meter (Model

420, Thermo Orion) as per the methods described by Satisha
and Somkuwar (2019). The physiological weight loss of berries
was also assessed. The weight of bunches was recorded at 24-
h intervals for the first 5–7 days at room temperature. The
percentage of weight loss over the initial weight was calculated
mathematically (Thosar et al., 2020).

Marketable Yield
To calculate the total marketable yield, fruits were harvested
from each treatment in four replications, including the untreated
control plants, and the yield was calculated in kg/ha.

Statistical Analysis
The PDI data were transformed using an arcsine transformation
for leaves and bunches and statistically analyzed using a
randomized block design (RBD) using the Statistical Analysis
System (SAS software, version 9.3). The yield data were analyzed
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TABLE 2 | Bio-efficacy of biocontrol agent formulations against powdery mildew of grapes at different locations.

Treatments PDI of powdery mildew on leaves

At ICAR-NRCG, Pune 24/12/2020 08/01/2021 14/01/2021 22/01/2021 29/1/2021

T1-Eco-Pesticide 0.00 (0.00) 12.75 (20.90) 14.81 (22.62) 17.06 (24.38) 19.12 (25.91)

T2-Bio-Pulse 0.00 (0.00) 13.00 (21.12) 15.13 (22.87) 17.25 (24.48) 19.37 (26.09)

T3-Bio-Care 24 0.00 (0.00) 15.81 (23.41) 17.94 (25.04) 20.06 (26.59) 22.13 (28.04)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 8.13 (16.50) 10.25 (18.66) 12.38 (20.58) 14.50 (22.37)

T5-Bio-Pulse/sulfur 0.00 (0.00) 8.38 (16.81) 10.50 (18.89) 12.63 (20.80) 14.81 (22.62)

T6-Bio-Care 24/sulfur 0.00 (0.00) 10.94 (19.30) 13.13 (21.23) 15.25 (22.97) 17.37 (24.62)

T7-Sulfur 80%WDG 0.00 (0.00) 6.56 (14.83) 8.69 (17.13) 10.81 (19.18) 12.93 (21.07)

T8-Water control 0.00 (0.00) 18.06 (25.12) 20.12 (26.64) 22.25 (29.87) 24.38 (29.57)

T9-Untreated control 3.56 (10.85) 24.81 (29.90) 29.06 (32.60) 33.14 (35.13) 37.56 (37.78)

CD (P = 0.05) 0.39 0.75 0.65 1.87 0.73

At MRDBS, Pune 20/12/2020 08/01/2021 14/01/2021 22/01/2021 29/1/2021

T1-Eco-Pesticide 0.00 (0.00) 14.75 (22.56) 17.25 (24.47) 19.81 (26.41) 23.75 (29.15)

T2-Bio-Pulse 0.00 (0.00) 15.06 (22.81) 17.75 (24.80) 20.13 (26.63) 24.06 (29.36)

T3-Bio-Care 24 0.00 (0.00) 19.25 (25.99) 19.75 (27.20) 22.88 (28.55) 26.75 (31.13)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 8.75 (17.12) 13.25 (21.23) 13.88 (21.85) 17.75 (24.90)

T5-Bio-Pulse/sulfur 0.00 (0.00) 8.25 (16.67) 12.25 (21.33) 13.38 (21.41) 17.25 (24.51)

T6-Bio-Care 24/sulfur 0.00 (0.00) 11.31 (19.58) 14.25 (23.32) 17.25 (24.52) 20.31 (26.76)

T7-Sulfur 80%WDG 0.00 (0.00) 3.06 (10.01) 6.25 (15.65) 9.69 (18.10) 13.56 (21.58)

T8-Water control 0.00 (0.00) 28.88 (32.48) 30.00 (34.39) 33.94 (35.61) 37.88 (37.96)

T9-Untreated control 4.94 (12.82) 36.75 (37.30) 40.75 (39.42) 43.38 (41.17) 47.25 (43.40)

CD (P = 0.05) 0.27 1.93 1.28 0.88 1.27

At Narayangaon, Pune 21/12/2020 09/01/2021 15/01/2021 23/01/2021 30/01/2021

T1-Eco-Pesticide 0.00 (0.00) 13.25 (21.32) 16.31 (23.79) 18.81 (25.69) 22.75 (28.47)

T2-Bio-Pulse 0.00 (0.00) 13.56 (21.58) 16.63 (24.03) 19.13 (25.91) 23.06 (26.77)

T3-Bio-Care 24 0.00 (0.00) 16.25 (23.71) 19.31 (26.04) 22.50 (28.30) 25.75 (30.48)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 7.25 (15.51) 10.31 (18.64) 12.88 (21.00) 16.75 (24.14)

T5-Bio-Pulse/sulfur 0.00 (0.00) 6.75 (15.04) 9.81 (18.16) 12.38 (20.56) 16.25 (23.75)

T6-Bio-Care 24/sulfur 0.00 (0.00) 10.00 (18.41) 12.06 (20.31) 15.06 (22.82) 19.13 (25.91)

T7-Sulfur 80%WDG 0.00 (0.00) 3.06 (10.01) 6.13 (14.30) 8.69 (17.11) 12.56 (20.74)

T8-Water control 0.00 (0.00) 22.50 (28.30) 30.43 (33.46) 32.94 (34.93) 36.88 (37.37)

T9-Untreated control 4.44 (12.14) 27.88 (31.36) 39.81 (39.09) 42.38 (41.38) 46.25 (42.83)

CD (P = 0.05) 0.28 1.87 2.20 1.38 1.25

At Junnar, Pune 21/12/2020 09/01/2021 15/01/2021 23/01/2021 30/01/2021

T1-Eco-Pesticide 0.00 (0.00) 13.25 (21.32) 15.81 (23.40) 18.31 (25.32) 24.88 (29.90)

T2-Bio-Pulse 0.00 (0.00) 13.56 (21.58) 16.13 (23.64) 18.63 (25.54) 25.25 (30.15)

T3-Bio-Care 24 0.00 (0.00) 16.25 (23.71) 18.81 (25.68) 21.38 (27.52) 28.00 (31.93)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 7.25 (15.51) 11.88 (20.12) 12.38 (20.57) 18.81 (25.68)

T5-Bio-Pulse/sulfur 0.00 (0.00) 6.75 (15.03) 11.50 (19.80) 11.88 (20.05) 18.00 (25.07)

T6-Bio-Care 24/sulfur 0.00 (0.00) 9.81 (18.16) 13.88 (21.85) 15.75 (23.36) 19.00 (25.78)

T7-Sulfur 80%WDG 0.00 (0.00) 3.06 (10.01) 5.63 (13.69) 8.19 (16.59) 12.06 (20.31)

T8-Water control 0.00 (0.00) 27.38 (31.53) 29.93 (33.14) 32.44 (34.70) 36.38 (37.07)

T9-Untreated control 3.44 (10.66) 36.75 (37.30) 39.31 (38.80) 41.88 (40.30) 45.75 (42.54)

CD (P = 0.05) 0.32 2.15 1.71 1.41 1.63

Figures in parenthesis indicate arcsine transformed averages.
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TABLE 3 | Bio-efficacy of biocontrol agent formulations against powdery mildew of grapes at different locations.

Treatments PDI of powdery mildew on bunches

At ICAR-NRCG, Pune 24/12/2020 08/01/2021 14/01/2021 22/01/2021 29/1/2021

T1-Eco-Pesticide 0.00 (0.00) 15.63 (23.27) 17.81 (22.90) 19.68 (26.32) 22.19 (28.08)

T2-Bio-Pulse 0.00 (0.00) 15.94 (23.51) 18.12 (25.17) 20.00 (26.54) 22.50 (28.30)

T3-Bio-Care 24 0.00 (0.00) 18.75 (25.64) 21.25 (27.43) 23.12 (28.72) 25.00 (29.98)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 10.94 (19.28) 13.12 (21.20) 15.31 (23.00) 17.50 (24.71)

T5-Bio-Pulse/sulfur 0.00 (0.00) 11.25 (19.57) 13.43 (21.48) 15.62 (23.25) 17.81 (24.94)

T6-Bio-Care 24/sulfur 0.00 (0.00) 13.75 (21.69) 15.93 (23.50) 18.12 (25.18) 20.31 (26.77)

T7-Sulfur 80%WDG 0.00 (0.00) 9.37 (17.77) 11.56 (19.85) 13.75 (21.72) 15.63 (23.70)

T8-Water control 0.00 (0.00) 20.93 (27.21) 24.06 (29.35) 26.25 (30.76) 27.5 (31.60)

T9-Untreated control 4.18 (11.77) 27.81 (31.80) 31.87 (34.35) 36.62 (37.20) 41.25 (39.94)

CD (P = 0.05) 0.46 1.66 2.04 1.45 0.48

At MRDBS, Pune 30/12/2020 08/01/2021 14/01/2021 22/01/2021 29/1/2021

T1-Eco-Pesticide 0.00 (0.00) 16.25 (23.74) 10.31 (19.09) 26.25 (30.80) 29.06 (32.60)

T2-Bio-Pulse 0.00 (0.00) 16.88 (24.21) 9.69 (18.10) 24.69 (29.77) 28.13 (32.21)

T3-Bio-Care 24 0.00 (0.00) 22.81 (28.50) 24.06 (29.34) 30.31 (33.38) 33.75 (35.50)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 7.81 (16.18) 19.69 (26.32) 18.75 (25.64) 18.13 (25.17)

T5-Bio-Pulse/sulfur 0.00 (0.00) 5.63 (15.01) 19.38 (26.10) 15.63 (24.22) 19.38 (26.07)

T6-Bio-Care 24/sulfur 0.00 (0.00) 13.13 (21.18) 14.69 (22.51) 22.50 (28.30) 23.44 (28.91)

T7-Sulfur 80%WDG 0.00 (0.00) 4.06 (11.60) 7.81 (16.21) 11.56 (19.74) 12.50 (20.68)

T8-Water control 0.00 (0.00) 27.81 (31.81) 31.56 (34.16) 39.06 (38.66) 41.88 (40.30)

T9-Untreated control 7.81 (16.16) 36.88 (37.36) 39.69 (39.02) 48.44 (44.26) 47.81 (43.72)

CD (P = 0.05) 0.80 1.77 1.47 1.64 1.82

At Narayangaon, Pune 21/12/2020 09/01/2021 15/01/2021 23/01/2021 30/01/2021

T1-Eco-Pesticide 0.00 (0.00) 8.13 (16.49) 13.12 (20.39) 15.94 (23.50) 22.19 (28.08)

T2-Bio-Pulse 0.00 (0.00) 8.44 (16.87) 12.81 (20.96) 14.38 (22.22) 21.56 (27.65)

T3-Bio-Care 24 0.00 (0.00) 14.06 (21.78) 18.12 (25.17) 23.13 (28.72) 26.88 (31.19)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 5.63 (13.65) 8.75 (17.17) 10.31 (18.71) 15.63 (23.23)

T5-Bio-Pulse/sulfur 0.00 (0.00) 5.00 (12.86) 8.12 (16.54) 9.38 (17.79) 15.31 (22.98)

T6-Bio-Care 24/sulfur 0.00 (0.00) 10.63 (18.92) 15.31 (22.98) 16.87 (24.24) 18.13 (25.17)

T7-Sulfur 80%WDG 0.00 (0.00) 3.12 (10.04) 5.31 (13.30) 6.25 (14.43) 11.25 (19.39)

T8-Water control 0.00 (0.00) 28.43 (32.21) 31.87 (34.35) 34.06 (35.68) 38.44 (38.29)

T9-Untreated control 2.81 (2.81) 37.50 (37.74) 40.63 (39.57) 41.25 (39.94) 45.94 (42.65)

CD (P = 0.05) 0.50 2.52 1.68 1.66 2.39

At Junnar, Pune 21/12/2020 09/01/2021 15/01/2021 23/01/2021 30/01/2021

T1-Eco-Pesticide 0.00 (0.00) 16.25 (23.74) 8.75 (17.48) 24.06 (29.35) 27.50 (31.61)

T2-Bio-Pulse 0.00 (0.00) 16.88 (24.24) 8.13 (16.51) 24.69 (29.77) 28.13 (32.01)

T3-Bio-Care 24 0.00 (0.00) 21.25 (27.42) 22.50 (28.27) 28.43 (32.19) 32.19 (34.55)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 6.25 (14.43) 18.13 (25.17) 16.87 (24.24) 16.25 (23.76)

T5-Bio-Pulse/sulfur 0.00 (0.00) 5.63 (13.87) 18.75 (25.64) 15.6 (23.27) 17.73 (24.89)

T6-Bio-Care 24/sulfur 0.00 (0.00) 11.56 (19.82) 13.13 (21.17) 20.62 (26.97) 21.69 (27.74)

T7-Sulfur 80%WDG 0.00 (0.00) 4.06 (11.60) 6.25 (14.43) 10.00 (18.18) 13.25 (21.33)

T8-Water control 0.00 (0.00) 27.81 (31.81) 29.69 (33.01) 37.5 (37.74) 40.31 (39.39)

T9-Untreated control 5.00 (12.86) 36.88 (37.36) 38.13 (38.11) 40.63 (39.57) 46.56 (43.01)

CD (P = 0.05) 0.66 1.53 1.96 2.31 1.26

Figures in parenthesis indicate arcsine transformed averages.
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TABLE 4 | Effect of biocontrol agent formulations on the shelf life of bunches at different locations.

Treatments Physiological loss in weight (%) No. of rotten berries No. of fallen berries

Day 1 Day 2 Day 3 Day 4

At ICAR-NRCG, Pune

T1-Eco-Pesticide 1.91 (7.91) 3.57 (10.87) 4.74 (12.57) 5.44 (13.49) 1.50 4.75

T2-Bio-Pulse 1.81 (7.70) 3.10 (10.13) 4.70 (12.50) 5.33 (13.34) 1.75 5.25

T3-Bio-Care 24 1.86 (7.84) 3.93 (11.42) 4.78 (12.60) 5.45 (13.49) 1.25 4.25

T4-Eco-Pesticide/sulfur 1.51 (7.02) 3.36 (10.55) 3.59 (10.91) 5.10 (13.05) 1.25 3.50

T5-Bio-Pulse/sulfur 1.61 (7.29) 2.18 (8.48) 3.49 (10.76) 5.08 (13.01) 1.50 3.50

T6-Bio-Care 24/sulfur 1.78 (7.65) 3.57 (10.88) 3.87 (11.32) 5.30 (13.30) 0.75 3.00

T7-Sulfur 80%WDG 1.61 (7.29) 2.32 (8.73) 3.35 (10.53) 5.06 (12.97) 0.25 5.75

T8-Water control 1.84 (7.76) 3.29 (10.44) 5.51 (13.57) 6.88 (15.20) 3.25 6.00

T9-Untreated control 2.20 (8.52) 3.29 (10.44) 5.80 (13.92) 7.23 (15.58) 4.00 6.25

CD (P = 0.05) 0.81 0.70 0.87 0.83 1.72 NA

At MRDBS, Pune

T1-Eco-Pesticide 1.87 (7.85) 3.64 (11.00) 4.81 (12.67) 5.44 (13.49) 3.00 3.25

T2-Bio-Pulse 1.52 (7.07) 3.19 (10.28) 4.74 (12.57) 5.34 (13.36) 2.25 3.25

T3-Bio-Care 24 2.20 (8.51) 3.99 (11.51) 3.99 (11.79) 5.52 (13.59) 1.50 3.50

T4-Eco-Pesticide/sulfur 1.53 (7.10) 3.42 (10.66) 3.57 (10.89) 5.33 (13.35) 1.50 3.25

T5-Bio-Pulse/sulfur 1.90 (7.92) 2.33 (8.78) 3.62 (11.41) 5.15 (13.11) 1.50 2.75

T6-Bio-Care 24/sulfur 1.91 (7.95) 3.65 (11.01) 3.91 (11.74) 5.18 (13.15) 0.75 2.75

T7-Sulfur 80%WDG 1.82 (7.74) 2.38 (8.87) 3.40 (11.26) 5.55 (13.62) 0.25 3.25

T8-Water control 1.65 (7.36) 3.39 (10.60) 5.62 (13.70) 6.92 (15.25) 5.50 4.25

T9-Untreated control 2.16 (8.44) 3.97 (11.49) 5.88 (14.03) 7.45 (15.83) 5.75 4.50

CD (P = 0.05) 0.47 0.34 0.74 0.20 2.12 NA

At Narayangaon, Pune

T1-Eco-Pesticide 1.87 (7.85) 3.64 (10.98) 4.81 (12.66) 5.44 (13.48) 2.75 3.25

T2-Bio-Pulse 1.50 (7.03) 3.17 (10.24) 4.76 (12.59) 5.39 (13.41) 3.00 2.25

T3-Bio-Care 24 2.19 (8.50) 3.87 (11.34) 4.85 (12.72) 5.55 (13.62) 3.50 2.25

T4-Eco-Pesticide/sulfur 1.52 (7.08) 3.41 (10.63) 3.59 (10.91) 5.43 (13.47) 2.00 2.25

T5-Bio-Pulse/sulfur 1.89 (7.89) 2.34 (8.79) 3.81 (11.25) 5.21 (13.19) 2.00 1.75

T6-Bio-Care 24/sulfur 1.92 (7.96) 3.67 (11.04) 3.94 (11.44) 5.24 (13.23) 1.25 1.75

T7-Sulfur 80%WDG 1.54 (7.11) 2.35 (8.82) 3.42 (10.66) 5.62 (13.70) 0.75 3.50

T8-Water control 1.68 (7.44) 3.38 (10.59) 5.77 (13.90) 6.94 (15.27) 3.75 2.25

T9-Untreated control 2.17 (8.45) 4.10 (11.68) 6.01 (14.18) 7.63 (16.03) 4.50 3.50

CD (P = 0.05) 0.40 0.37 0.38 0.53 2.00 NA

At Junnar, Pune

T1-Eco-Pesticide 1.90 (7.91) 3.60 (10.93) 4.79 (12.64) 5.46 (13.51) 2.25 2.50

T2-Bio-Pulse 1.54 (7.10) 3.15 (10.22) 4.73 (12.53) 5.37 (13.39) 2.50 3.00

T3-Bio-Care 24 2.24 (8.55) 3.95 (11.45) 4.80 (12.62) 5.49 (13.54) 2.25 3.00

T4-Eco-Pesticide/sulfur 1.85 (7.78) 3.40 (10.61) 3.55 (10.85) 5.15 (13.11) 1.75 3.00

T5-Bio-Pulse/sulfur 1.93 (7.96) 2.30 (8.71) 3.53 (10.81) 5.30 (13.30) 1.50 3.00

T6-Bio-Care 24/sulfur 1.93 (7.99) 3.64 (11.00) 3.89 (11.35) 5.06 (13.00) 0.75 2.50

T7-Sulfur 80%WDG 1.80 (7.70) 2.35 (8.81) 3.38 (10.57) 5.40 (13.43) 0.50 4.00

T8-Water control 1.63 (7.33) 3.35 (10.54) 5.56 (13.63) 6.85 (15.16) 2.50 4.25

T9-Untreated control 2.15 (8.41) 3.95 (11.46) 5.85 (13.99) 7.27 (15.63) 3.50 4.25

CD (P = 0.05) NA 0.63 0.84 0.51 2.05 NA

Figures in parenthesis indicate arcsine transformed averages.
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TABLE 5 | Effect of bio-formulations on qualitative parameters of grapes at different locations.

Treatments pH TSS (Brix) Acidity (%) Berry diameter (mm) Berry length (mm)

At ICAR-NRCG, Pune

T1-Eco-Pesticide 3.16 18.80 0.51 (4.09) 14.85 22.28

T2-Bio-Pulse 3.34 19.95 0.47 (3.91) 12.72 22.18

T3-Bio-Care 24 3.18 18.95 0.55 (4.23) 12.62 22.10

T4-Eco-Pesticide/sulfur 3.15 20.55 0.48 (3.97) 15.70 24.58

T5-Bio-Pulse/sulfur 3.45 21.88 0.42 (3.70) 17.49 25.47

T6-Bio-Care 24/sulfur 3.36 19.73 0.51 (4.08) 15.11 22.87

T7-Sulfur 80%WDG 3.41 18.55 0.52 (4.11) 12.50 23.19

T8-Water control 3.45 16.65 0.71 (4.83) 10.31 21.63

T9-Untreated control 3.61 16.13 0.72 (4.87) 9.25 21.60

CD (P = 0.05) NA 0.84 0.18 1.29 1.67

At MRDBS, Pune

T1-Eco-Pesticide 3.16 19.25 0.83 (1.06) 17.15 22.33

T2-Bio-Pulse 3.34 19.28 0.91 (0.83) 17.48 23.25

T3-Bio-Care 24 3.19 19.73 0.80 (1.02) 17.45 22.28

T4-Eco-Pesticide/sulfur 3.16 20.55 0.75 (1.00) 18.35 23.78

T5-Bio-Pulse/sulfur 3.46 21.88 0.71 (0.80) 18.75 24.28

T6-Bio-Care 24/sulfur 3.37 19.95 0.76 (0.76) 18.33 23.20

T7-Sulfur 80%WDG 3.43 18.55 0.99 (0.71) 16.95 21.63

T8-Water control 3.45 18.40 1.02 (0.91) 16.75 21.58

T9-Untreated control 3.59 18.38 1.06 (0.75) 15.60 21.03

CD (P = 0.05) NA 0.83 0.08 1.38 1.60

At Narayangaon, Pune

T1-Eco-Pesticide 3.54 18.05 0.83 (5.22) 17.45 22.28

T2-Bio-Pulse 3.50 18.93 0.80 (5.13) 17.48 23.25

T3-Bio-Care 24 3.47 18.00 0.83 (5.21) 17.15 22.33

T4-Eco-Pesticide/sulfur 3.61 19.92 0.75 (4.96) 18.33 23.78

T5-Bio-Pulse/sulfur 3.50 20.67 0.71 (4.84) 18.40 24.28

T6-Bio-Care 24/sulfur 3.52 19.12 0.76 (5.00) 18.35 23.28

T7-Sulfur 80%WDG 3.50 17.36 0.99 (5.72) 16.95 21.63

T8-Water control 3.65 16.85 1.02 (5.80) 16.23 21.58

T9-Untreated control 3.62 16.18 1.06 (5.91) 16.00 19.88

CD (P = 0.05) NA 1.60 0.23 0.89 1.29

At Junnar, Pune

T1-Eco-Pesticide 3.34 17.18 0.91 (5.47) 17.48 22.28

T2-Bio-Pulse 3.41 18.10 0.80 (5.13) 17.15 23.25

T3-Bio-Care 24 3.36 17.33 0.83 (5.22) 17.45 22.33

T4-Eco-Pesticide/sulfur 3.45 18.75 0.75 (4.96) 18.35 23.78

T5-Bio-Pulse/sulfur 3.61 20.25 0.71 (4.84) 18.40 24.28

T6-Bio-Care 24/sulfur 3.45 18.33 0.76 (5.00) 18.33 23.28

T7-Sulfur 80%WDG 3.18 16.93 0.99 (5.72) 16.95 21.63

T8-Water control 3.16 16.78 1.02 (5.80) 16.75 21.58

T9-Untreated control 3.15 16.00 1.06 (5.91) 15.85 20.88

CD (P = 0.05) NA 0.81 0.23 1.23 1.27

Figures in parenthesis indicate arcsine transformed averages.
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TABLE 6 | Effect of biocontrol agent formulations on marketable yield of grapes at different locations.

Treatments NRCG, Pune MRDBS, Pune Narayangaon Junnar

Kg/vine Q/ha. Kg/vine Q/ha. Kg/vine Q/ha. Kg/vine Q/ha.

T1-Eco-Pesticide 10.27 185.59 10.98 198.46 10.98 198.46 10.98 198.46

T2-Bio-Pulse 10.08 182.20 9.55 172.57 10.02 181.16 10.46 189.07

T3-Bio-Care 24 8.59 155.28 8.83 159.62 8.59 155.35 8.83 159.62

T4-Eco-Pesticide/sulfur 14.94 270.09 14.20 256.65 13.79 249.23 14.15 255.74

T5-Bio-Pulse/sulfur 15.02 271.54 15.47 279.70 15.14 273.73 15.97 288.74

T6-Bio-Care 24/sulfur 12.73 230.18 12.91 233.32 12.91 233.32 12.91 233.32

T7-Sulfur 80%WDG 16.63 300.67 17.93 324.17 18.18 328.69 17.68 319.65

T8-Water control 6.44 116.50 5.94 107.44 6.83 123.51 7.18 129.79

T9-Untreated control 5.35 96.75 4.26 76.93 5.53 99.89 5.64 101.97

CD (P = 0.05) 1.19 2.18 2.31 2.17

without transformation. Means were compared using the least
significant difference (LSD) test.

RESULTS

Effect of Microbial Bioformulations on the
Severity of Powdery Mildew on Leaves
The first disease symptom was recorded in the experimental plot
on 24 December 2020 in the untreated control (Table 2). Results
indicated that significantly less disease (PDI) was recorded in
the plant leaves treated with either of the microbial inoculants
individually or in combination with sulfur (80% WDG) as
compared to the untreated control plants (37.78) and water-
treated plants (29.57) grown at ICAR-NRCG, Pune. However, the
least disease (PDI) was recorded on the leaves of plants treated
with fungicide (sulfur 80% WDG) on 29 January 2021 (PDI:
21.07). Among different microbial inoculations, a significantly
lower disease index (PDI) was recorded on the leaves of grape
plants treated with Eco-Pesticide R©/sulfur (22.37) followed by
Bio-Pulse R©/sulfur (22.62) and Bio-Care 24 R©/sulfur (24.62).
Moreover, the last four observations recorded between 8 January
2021 and 29 January 2021 indicated that powdery mildew was
significantly higher in the untreated control than in all the
other treatments with microbial inoculation. Bio-Pulse R©/sulfur
and Eco-Pesticide R©/sulfur (at 10ml L−1) were statistically on
par with each other. The trend was similar during the first,
second, third, and fourth observations also (Table 2). Looking
at the individual treatments, the least PDI was observed in
the plants treated with Eco-Pesticide R© (25.91) followed by Bio-
Pulse R© (26.09) and Bio-Care 24 R© (28.04) as compared to the
untreated control plants (37.78) and water-treated plants (29.57)
at ICAR-NRCG (Table 2). The data in Table 2 clearly indicate
that maximum PDI was recorded in the untreated control
plants followed by water-treated plants, while the least PDI
was observed in the plants treated with sulfur (80% WDG)
across the locations. Results indicated that comparatively less
disease was recorded on the leaves of plants treated with Bio-
Pulse R©/sulfur followed by Eco-Pesticide R©/sulfur and Bio-Care
24 R©/sulfur at MRDBS and farmers’ plots at Narayangaon and

Junnar in the Pune district of Maharashtra (Table 2). However,
relatively higher PDI was observed on the leaves of untreated
control plants grown at MRDBS, followed by farmers’ plots at
Narayangaon and Junnar, Pune, as compared to ICAR-NRCG
(Table 2).

These data demonstrated that microbial inoculants
not only impede initial infection of the powdery mildew
pathogen, E. necator, on the plant leaves but also inhibit their
invasion, colonization, and development, indicating that these
biopesticides are strong inhibitors of E. necator along with
being strong inducers of plant defense against powdery mildew
pathogen in grapes.

Effect of Microbial Bioformulations on
Severity of Powdery Mildew on Bunches
Data in Table 3 show a significant difference between powdery
mildew developed on bunches of the untreated control plants
as compared to biopesticides-treated plants. In line with this
observation, disease development in bunches was significantly
reduced in biopesticides-treated plants as compared to the
untreated control and water-treated plants across the locations.
Furthermore, a delay and slow disease development were seen in
biopesticide-treated plants, and the majority of cleistothecia were
produced on bunches of the control plants, while significantly
lesser cleistothecia were seen on bunches of the microbe-
inoculated plants (data not shown). In the case of disease
development on bunches, a similar trend was observed and the
lowest PDI was recorded on bunches of Eco-pesticide R©/sulfur-
treated plants (24.71) followed by Bio-Pulse R©/sulfur (24.94)
and Bio-Care R©/sulfur (26.77) as compared to the untreated
control (39.94) and water-treated plants (31.60) at ICAR-NRCG.
However, PDI of sulfur (80%WDG) was the lowest as compared
to all the other treatments (23.70). A more or less similar trend
was recorded at MRDBS and farmers’ plot at Junnar in the Pune
district of Maharashtra (Table 3).

In contrast, PDI of Bio-Pulse R©/sulfur-treated bunches (22.98)
was the lowest followed by Eco-pesticide R©/sulfur-treated plants
(23.23) and Bio-Care R©/sulfur (25.17) (both statistically on par
with each other) as compared to the untreated control (42.65)
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at farmers’ plot, Narayangaon, Pune. The trend was also similar
during the first, second, third, and fourth observations (Table 3).

Effect of Microbial Bioformulations on the
Shelf Life of Grape Bunches
The shelf life of grape bunches is one of the most important
attributes for grape export quality. The longer shelf life
of the grape bunches facilitates the grapes’ longer distance
transportation by keeping their market value and good
appearance unabated. Therefore, the effect of bioformulation
application on the shelf life of bunches was recorded. The
shelf life of bunches was estimated by keeping the harvested
bunches at room temperature and recording the loss in bunch
weight at 24 h of intervals. With increasing the storage duration,
the physiological loss in weight (PLW) was also increased. In
general, among all the treatments, microbial biopesticides in
combination with sulfur manifested lesser PLW as compared to
the untreated control and water-treated bunches. To determine
whether microbial inoculants, individually or in combination
with sulfur, were involved in the PLW, berry rotting, and berry
dropping directly and/or indirectly, observations on shelf life
were recorded at different time intervals at different locations.
The bunch weight was recorded on the first, second, third,
and fourth days, and it was noticed that a significantly higher
PLW was recorded in bunches taken from the untreated control
plants as compared to the other treatments. On the third day
of storage, PLW in control reached up to 5.80%, whereas PLW
in Bio-Pulse R©/sulfur was significantly lower (3.49%). On the
fourth day, PLW of untreated control had the highest value of
7.23%. However, the PLW value in Bio-Pulse R©/sulfur treatment
was only 5.08, which was on par with Eco-Pesticide R©/sulfur
treatment (5.10%) at ICAR-NRCG. A more or less similar trend
was recorded at the other three locations, namely, MRDBS and
farmers’ plots at Narayangaon and Junnar in the Pune district of
Maharashtra (Table 4).

In the case of rotten berries, significant differences were
observed among all the treatments. All the treatments with
microbial inoculants showed a significantly less number of rotten
berries as compared to the untreated control (4.00) and those
under water treatment (3.25). The check fungicide sulfur showed
minimum rotten berries (0.25) followed by Bio-Care R©/sulfur
(0.75), Eco-Pesticide R©/sulfur (1.25), and Bio-Care R© alone (1.25)
at ICAR-NRCG (Table 4). These values were slightly higher
at MRDBS, Pune, where the average number of rotten berries
in the untreated control was 5.75, followed by those under
water treatment (5.50), while sulfur showed the minimum rotten
berries (0.25). Amore or less similar trend with a slight difference
in the number of rotten berries was recorded at the other two
locations, namely, farmers’ plots at Narayangaon and Junnar in
the Pune district of Maharashtra (Table 4).

When comparing the average number of fallen berries among
the treatments, the differences were nonsignificant. Among all
the treatments, treatment with Bio-Care R©/sulfur (3.00) showed
the minimum fallen berries followed by Bio-Pulse R©/sulfur (3.50)
and Eco-Pesticide R©/sulfur (3.50) as compared to the water-
treated (6.00) and untreated control plants (6.25). Moreover,

the average number of fallen berries was also lower in the
treatments with individually inoculated plants (Eco-Pesticide:
4.75, Bio-Pulse: 5.25, and Bio-Care: 4.25) as compared to the
untreated control (6.25) and even sulfur-treated plants (fungicide
check) (5.75) at ICAR-NRCG (Table 4). A similar trend with
different values was recorded at MRDBS and farmers’ plots at
Narayangaon and Junnar in the Pune district of Maharashtra
(Table 4). Results indicated that microbial inoculation played
an important role in controlling berry rotting as well as berry
dropping across the locations.

Effect of Microbial Bioformulations on
Qualitative Parameters of Grapes
Grape quality parameters are the primary determinants of the
wine quality. Therefore, the quality of grapes is of utmost
importance to the wine industry. The berry quality as affected
by bioformulation application was assessed, and the data on
observations related to berry quality were recorded. This study
suggests that all the bioformulations tested enhanced the shelf
life and berry quality significantly. The effects of microbial
inoculation, singly or in combination with sulfur, on qualitative
parameters like pH, TSS, acidity, berry diameter, and berry length
were significantly varied, except for the pH of the grapes at
different locations. In the case of pH, no significant difference was
observed among different treatments and the untreated control
(Table 5). The results of this study authenticate a positive role
of the microbial inoculation on the accumulation of TSS and
treatment with Bio-Pulse R©/sulfur exhibited significantly highest
TSS (21.88 Brix) followed by Eco-Pesticide R©/sulfur (20.55 Brix)
and Bio-Care R©/sulfur (19.73 Brix) as compared to the individual
inoculation of Bio-Pulse R© (19.95 Brix) Bio-Care R© (18.95 Brix),
Eco-Pesticide R© (18.80 Brix), and untreated control plants (16.13
Brix) at ICAR-NRCG (Table 5). In general, plants treated
with the newly developed bioformulation showed significantly
higher TSS than the check fungicide, sulfur (18.55 Brix). A
slight difference in the TSS was recorded at the other three
centers/locations. However, the trends were more or less similar.

The percent acidity differed significantly among the
treatments. The treatment with Bio-Pulse R©/sulfur showed
significantly lower acidity (3.70%) than the untreated control
(4.87%) and water-treated ones (4.83), which were followed by
Eco-Pesticide R©/sulfur (3.97) and Bio-Care R©/sulfur (4.08) at
ICAR-NRCG. A similar trend was recorded at the other three
locations (Table 5). Similar to the TSS and percent acidity, the
berry diameter and berry length also significantly varied in
microbial-inoculated plants and the untreated control plants.
Interestingly, maximum berry diameter and berry length were
recorded in the plants treated with Bio-Pulse R©/sulfur across
the locations, which was significantly higher than the sulfur
alone-treated and untreated control plants (Table 5). The results
obtained from ICAR-NRCG, Bio-Pulse R©/sulfur showed the
highest berry diameter (17.49mm) as compared to the untreated
control (9.25mm). Eco-Pesticide R©/sulfur and Bio-Care R©/sulfur
were on par with each other and were the second best among all
the treatments with berry diameters of 15.70mm and 15.11mm,
respectively. In the case of berry length, Bio-Pulse R©/sulfur

Frontiers in Microbiology | www.frontiersin.org 10 May 2022 | Volume 13 | Article 87190132

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Malviya et al. A Comparative Analysis of Microbe-Based Technologies

showed the highest berry length (25.47mm) as compared to the
untreated control (21.60mm), which was on par with treatment
Eco-Pesticide R©/sulfur having a berry length of 24.58mm
(Table 5). Furthermore, individual inoculation of either of the
microbial formulation showed significantly increased berry
diameter and berry length across the locations.

Effect of Microbial Bioformulations on
Marketable Yield of Grapes
Fruit yield per plant was recorded, and it was converted to the
fruit yield per unit area (q/ha). In general, results showed that all
the treatments with newly developed bioformulation increased
the yield (kg/vine) significantly as compared to the untreated
control. Furthermore, the yield was significantly increased
after the application of sulfur in combination with microbial
inoculant as compared to the solo bioformulations. Among all
the treatments except check fungicide sulfur, Bio-Pulse R©/sulfur
treatment showed the highest yield per vine, which was on
par with the treatment Eco-Pesticide R©/sulfur. On the contrary,
the untreated control gave the lowest values on this parameter,
while treatments Bio-Care R©/sulfur recorded the second highest
values of yield per vine (Table 6). When compared with the yield
obtained from the untreated control, 2.5–3 times more yield was
recorded in the plants treated with either of the biopesticides
along with sulfur. Even in the case of individual inoculation,
the yield per vine was approximately two times higher than the
untreated control and water-treated plants across the locations
(Table 6).

DISCUSSION

The aim of this study was to evaluate the microbe-based
technologies, such as Bio-Pulse R©, Eco-Pesticide R©, and Bio-
Care R©, developed at ICAR-NBAIM against Erysiphe necator
causing powdery mildew disease in grapes (Vitis vinifera L.). The
basic concept behind evaluating these biopesticides in grapes is
to reduce the application of chemical fungicides and improve
the qualitative parameters in grapes without compromising the
yield. As mostly grapes are used for table purposes, which
demands them to be free from pesticide residue, the use of
chemicals to control the grape diseases becomes an unwarranted
practice (Cordero-Bueso et al., 2014; Warneke et al., 2022).
To keep this with the consumer expectations, most of the
vine industries follow a “zero pesticides” policy promoting
viticulture in a more or less fully organic manner (Alori and
Babalola, 2018). To determine whether these bio-formulations
can be used as an effective technology to control E. necator
causing powdery mildew in grapes, the effects of microbial
inoculants/technologies on E. necator were first examined.
Furthermore, we examined whether there was a difference in
disease severity (PDI) in microbial inoculants-treated vs. sulfur-
treated/water-treated/untreated control plants. A comparative
analysis was carried out, and the effects of treatments on PDI
of powdery mildew on leaves and bunches, physiological weight
loss, the average number of rotten berries, the average number
of fallen berries, yield, and qualitative parameters in treated

berry were recorded. Comparative analyses indicated that on
an average, the microbial inoculants significantly controlled
spread of the disease, physiological weight loss, the average
number of fallen berries, and increased qualitative parameters
such as pH, TSS, berry diameter, berry length, and fruit yield in
the plants as compared to water-treated and untreated control
across the experimental sites. In general, bioinoculants/microbial
bioformulations performed better when used in alternation with
sulfur as compared to the individual applications. Apart from
the check fungicide sulfur, Bio-Pulse/sulfur treatment showed the
highest values in terms of disease control which was on par with
the treatment Eco-Pesticide/sulfur. In contrast, untreated control
showed the highest PDI, while treatment with Bio-Care/sulfur
was found second-best treatment across the locations.

Results indicated that these bioformulations/products were
found to limit the PDI on leaves and bunches of grapevines
effectively with a simultaneous increase in the yield and enhanced
quality parameters in grapes. The reduction of PDI of powdery
mildew on leaves and bunches was supposed to be either due
to the reduction of primary inoculum or controlling the further
infection/invasion of the pathogen (Lombardi et al., 2020). The
application of bioagents could possibly employ the mechanisms
like mycoparasitism, nutrient competition, hyperparasitism,
antibiosis, competition for space, and production of cell-wall
degrading enzymes (Harman et al., 2004; Robinson-Boyer et al.,
2009; Malviya et al., 2020), which could have reduced the
invasion of E. necator. Since the bioagents performed well upon
foliar spray on the leaf surface, it represents a high degree
of rhizosphere/phyllosphere competence, which is the first and
foremost requirement for developing a successful biocontrol
system (Sawant et al., 2012; Pylak et al., 2019; Santos et al.,
2021). The bioagents used in this study were earlier reported to
induce systemic resistance (ISR) in different crops against plant
pathogens (Singh et al., 2016a,b, 2019a,b). In this study, ISR could
also be a mechanism for biocontrol of E. necator. This induction
of ISR by phyllosphere application of biocontrol agents are in
line with the findings of Sawant et al. (2020), which indicated
that the field application of Trichoderma strains induced systemic
resistance in grapevines against powdery mildew pathogens. It
also acts as an inducer for resistance in treated plants against
the target pathogens (Harman et al., 2004; Shoresh et al.,
2010; Malviya et al., 2020). It is also clear that they can grow
within a wide range of temperature and other environmental
conditions (data not shown). The present investigation clearly
indicated that the application of microbial bioformulations not
only reduces the disease severity on leaves and bunches, but
it also reduces the physiological weight loss, berry rotting, and
berry dropping in grapes. These are commercially very crucial
traits and could significantly affect the yield quality as well
as quantity. Furthermore, microbial inoculation also improves
the qualitative traits such as TSS, berry diameter, and berry
length across the locations as compared to fungicide-treated and
untreated control plants. Trichoderma has a positive effect on
titratable acidity, pH, and TSS of tomato crop; foliar application
of Trichoderma decreased the acidity and increased the TSS
content (Palacios-Torres et al., 2019). It not only increases
nutrient absorption capacity (López-Bucio et al., 2015), but may
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also increase the accumulation of sugars in the fruits (Molla et al.,
2012). This is because the application of Trichoderma improved
the carbohydrate metabolism and increased the accumulation of
starches in the plant (Shoresh and Harman, 2008). Lombardi
et al. (2020) stated that microbial inoculants highly affected
the representation of proteins associated with responses to
stress/external stimuli, nutrient uptake, protein metabolism,
carbon/energy metabolism, and secondary metabolism, also
providing a possible explanation for the presence of specific
metabolites in fruits. Several research reports strongly supported
that microbial inoculation improves the nutritional quality not
only in grapes but also in other crops (Singh et al., 2010, 2016a,b,
2018; Yadav et al., 2022).

Sulfur is an important element with fungicidal properties and
is widely used in the management of plant diseases in grapes and
powdery mildew in particular. Moreover, sulfur (600 g/100 L) is
one of the key fungicides used for the effective management of
powdery mildew and is known to improve the grape yield under
commercial cultivation (Savocchia et al., 2011; Ahmed, 2018;
Essling et al., 2021). In this study, ¾ amount of sulfur is being
reduced without compromising the product quality and quantity,
which is a significant reduction. Apart from saving the dose of
sulfur, it has been shown to have protective rather than curative
action as much as chemical management of powdery mildews is
concerned. It kills the spores of Erysiphe necator and thus protects
the vines from new infections (Rantsiou et al., 2020; Sellitto et al.,
2021). It does not kill the fungus itself, and the best use of sulfur,
therefore, is to prevent vines from becoming infected rather than
to suppress the infections once they have developed. Existing
mature fungal colonies begin producing more spores a week
after a sulfur spray is applied (Konstantinidou-Doltsinis et al.,
2007; Cordero-Bueso et al., 2014; Warneke et al., 2022). Thus,
combining sulfur application with the biocontrol agents that
could reduce the chances of post-application inoculumn buildup
would be a better strategy. The study conducted is in line with
that, and it is clearly evidenced from the results obtained. In this
study, PDI on leaves and bunches was significantly reduced when
bioagents were applied with sulfur (Tables 2, 3). Reduction in
rotten and fallen berries by biocontrol agents+ sulfur application
(Table 4) indicated that the BCA could reduce the persistent
fungal mycelia from the infected vines, which sulfur alone could
not be performed at the same doses. This also has a direct impact
on the shelf life of the berries, which could have been clearly
made out from the results (Table 4). The results are in line with
the findings of Sawant and Sawant (2010) and Ahmed (2018).
Apart from supplementing the sporicidal properties of sulfur,
the application of bioagents also has effects on plant growth
induction. Suppression of disease and consequent improvement
in growth could be one of the reasons for improved berry quality
and yield.

The improvement in the yield and yield performance are in
line with the field study conducted by Tesfagiorgis et al. (2014),
where through the application of biocontrol agents and silicon,
10–70% of disease reduction was obtained. Reduction in the
disease and improvement in yield parameters as obtained in
the present investigation is also significant from the fact that
fungicidal resistance is building-up in powdery mildew fungi
(Vielba-Fernández et al., 2020), thus bioagents with good field

bio-efficacy should be widely tested and adopted for sustainable
grape farming. Shelf life of bunches was significantly improved
upon inoculation of biocontrol agents, and the effects were
more prominent with biocontrol agents + sulfur application.
These results are in line with the reports by Sawant et al.
(2017), where improvement in berry shelf life from Trichoderma
application was reported from the field trials. Since improved
shelf life has a direct correlation with the market value of
berries, the application of Eco-Pesticide+ sulfur and Bio-Pulse+
sulfur could increase the benefit–cost ratio for grape cultivation.
Furthermore, microbial inoculation significantly increased the
grape yield (kg/vine) by 2- to 3-fold as compared to the untreated
control under pathogenic stress of E. necator across the locations.
These results are in agreement with the other researchers
who reported that microbial inoculants have a positive impact
on the yield of grapes grown under the pathogenic stress
of E. necator (El-Mogy, 2017; Johnston-Monje et al., 2021;
Laurent et al., 2021). Dario et al. (2008) stated that commercial
formulations of Bacillus subtilis, namely, Serenade and Milastin
K, showed effective and consistent suppression of E. necator
under greenhouse and field conditions. Milastin K when used
in alternation with fungicides performed best in disease control
and increasing yield of grapevine (Dario et al., 2008; Sawant
et al., 2011). Furthermore, Ampelomyces quisqualis, a typical
biocontrol agent for control of powdery mildew also functions
better with sulfur (unpublished data but paper accepted). Hence,
combined application gives better results, and it is also preferred
in integrated disease management under an organic production
system (Sawant et al., 2011, 2017). In the eventuality of not
obtaining the required level of disease control by the application
of microbial formulations alone, a need-based application of
fungicide is needed (Tesfagiorgis et al., 2014).

CONCLUSION

It has been observed that application of microbe-based
technologies/bioformulations individually or in combination
with sulfur significantly decreased powdery mildew disease on
leaves and bunches and increased the quality parameters in
grapes under this pathogenic stress. Microbe-based technologies,
such as Eco-pesticide R©, Bio-Pulse R©, and Bio-Care 24 R©, emerge
as promising biopesticides for managing powdery mildew at
every stage of grapevine, which can be further maintained
by combining sulfur in a cooperative manner under severe
infections. It was also found that application of either of the
biopesticides alone or in combination with sulfur significantly
suppresses disease development and reduces PDI in a cooperative
manner and saves the plants from fungal infection. It was also
noticed that plants treated with Eco-pesticide R©, Bio-Pulse R©, and
Bio-Care 24 R© exhibit significant enhancement in the nutritional
quality of grapes. These microbial technologies also increased
marketable yield per plant enhancing the crop economy in the
favor of the grower/farmer. With the help of the findings of
this investigation, we conclude that microbe-based technologies
could be a potential alternative of toxic chemical fungicides and
can be applied at a larger scale to control powdery mildew disease
in grapes.
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Rhizoctonia solani is a pathogen that causes considerable harm to plants worldwide. In 
the absence of hosts, R. solani survives in the soil by forming sclerotia, and management 
methods, such as cultivar breeding, crop rotations, and fungicide sprays, are insufficient 
and/or inefficient in controlling R. solani. One of the most challenging problems facing 
agriculture in the twenty-first century besides with the impact of global warming. 
Environmentally friendly techniques of crop production and improved agricultural practices 
are essential for long-term food security. Trichoderma spp. could serve as an excellent 
example of a model fungus to enhance crop productivity in a sustainable way. Among 
biocontrol mechanisms, mycoparasitism, competition, and antibiosis are the fundamental 
mechanisms by which Trichoderma spp. defend against R. solani, thereby preventing or 
obstructing its proliferation. Additionally, Trichoderma spp. induce a mixed induced 
systemic resistance (ISR) or systemic acquired resistance (SAR) in plants against R. solani, 
known as Trichoderma-ISR. Stimulation of every biocontrol mechanism involves 
Trichoderma spp. genes responsible for encoding secondary metabolites, siderophores, 
signaling molecules, enzymes for cell wall degradation, and plant growth regulators. 
Rhizoctonia solani biological control through genes of Trichoderma spp. is summarized 
in this paper. It also gives information on the Trichoderma-ISR in plants against R. solani. 
Nonetheless, fast-paced current research on Trichoderma spp. is required to properly 
utilize their true potential against diseases caused by R. solani.

Keywords: Trichoderma spp., genes, R. solani, antibiosis, competition, mycoparasitism, induced systemic 
resistance
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INTRODUCTION

Trichoderma spp. (teleomorph: Hypocrea) is a saprotrophic 
fungus. They may survive in a variety of settings, including 
soil, wood, bark, other fungus, and many more, demonstrating 
their adaptability and opportunistic potential (Jaklitsch, 2009; 
Brotman et  al., 2010; Druzhinina et  al., 2011; Oszust et  al., 
2020; Vinale and Sivasithamparam, 2020; Yu et  al., 2022). 
Rhizoctonia solani J.G. Kühn [teleomorph: Thanatephorus 
cucumeris (A.B. Frank) Donk], is a soil-borne pathogen with 
a necrotrophic lifestyle that lives in soil by developing a resistant 
survival structure known as sclerotia (Mayo et  al., 2015). This 
fungus is a species complex that causes significant harm to 
numerous economically important agricultural, horticultural, 
pasture crops, turf grasses, and forest and fruit trees worldwide 
(Ajayi-Oyetunde and Bradley, 2018). It caused sheath blight 
in corn (Li et  al., 1998) and rice (Abbas et  al., 2021), seed, 
stem, collar, root, and hypocotyl rot and damping off in soybean, 
tomatoes, eggplant, pepper, lettuce, and zinnia (Ohkura et  al., 
2009) and stem canker and black scurf in potatoes (Das et  al., 
2014). In addition, the fungus caused root, stem, root, crown, 
and hypocotyl rot and blights of legumes and cotton (Nerey 
et  al., 2010), grey leaf spot, and brown patch of turf grasses 
(Dong et  al., 2008). Geographical distribution of R. solani has 
been shown in Figure  1. Chemical fungicides are widely used 
to control this disease, as no resistance resources have yet 
been discovered in available rice germplasm. Moreover, the 
species complex of R. solani is composed of various 14 
anastomosis groups (AGs; AG1-13 and AG-B1), having wide 
genetic diversity, broad host compatibility, and ability to survive 
from one crop season to the next by forming dormant sclerotia 
made disease control even more difficult (Patil and Solanki, 
2016; Abbas et  al., 2021). Furthermore, agriculture confronts 
enormous challenges in providing enough food in a sustainable 

manner for an ever-increasing worldwide population while 
simultaneously dealing with unpredictable global environmental 
changes. As a result, there is an increased demand for ecologically 
friendly solutions that may assist plants in performing well 
in a range of conditions. In this regard, Trichoderma spp. 
might serve as a model fungus for sustaining agricultural output 
(Abdel-lateif, 2017; Singh et  al., 2021). Many studies have 
indicated that biological management with the genus Trichoderma 
effectively controls R. solani (Solanki et  al., 2011; Kashyap 
et  al., 2020). For instance, in several countries, T. harzianum 
and T. asperellum were employed to prevent damping off, root, 
and crown rots (Herrera et al., 2020; Khadka and Miller, 2021). 
Similarly, there is a widespread use of T. harzianum to suppress 
black scurf, sheath blight, and stem canker in potatoes throughout 
the world (Wilson et  al., 2008; de França et  al., 2015; Naeimi 
et  al., 2020). Trichoderma spp. can parasitize and compete 
with R. solani for nutrients, rhizosphere, and root colonization 
(Guzmán-Guzmán et  al., 2017; Vinale and Sivasithamparam, 
2020; Segreto et  al., 2021; Yu et  al., 2022). They can also 
compete for seed exudates, which stimulate the development 
of R. solani propagules in the soil (Nawrocka et  al., 2018). 
Furthermore, Trichoderma spp. are prolific makers of secondary 
metabolites, such as peptaibols, pyrones, non-ribosomal peptides 
(NRPs), polyketides and terpenoids, and siderophores, when 
grown with R. solani (Manganiello et  al., 2018; Halifu et  al., 
2020). Furthermore, they block or degrade pectinases and other 
enzymes required for R. solani development (Kullnig et  al., 
2000; Halifu et  al., 2020). Furthermore, by colonizing the 
rhizospheres of plants, they drive plant development and defense 
responses against R. solani (Nawrocka et  al., 2018; Zhang and 
Zhuang, 2020). Furthermore, Trichoderma spp. can activate 
plant se mechanisms, resulting in ISR, SAR, and, according 
to a new research, Trichoderma-induced systemic resistance 
(TISR; Leonetti et  al., 2017). Application of Trichoderma spp. 

FIGURE 1 | Geographical distribution of Rhizoctonia solani.
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led to activation of defense signaling involving SA and/or JA/
ET pathways against R. solani, hence increasing plant resistance. 
Recent research has produced a wealth of knowledge on the 
discovery and cloning of several genes involved in 
mycoparasitism, resistance, antibiosis, and competition induction 
in plants against R. solani (Druzhinina et  al., 2011; Rahimi 
Tamandegani et al., 2020; Zhang and Zhuang, 2020). Numerous 
reviews explain the role of Trichoderma spp. genes against 
many plant pathogens (Harman et  al., 2004; Zeilinger and 
Omann, 2007; Druzhinina et al., 2011; Nawrocka and Małolepsza, 
2013; Daguerre et  al., 2014; Sarma et  al., 2014; Contreras-
Cornejo et al., 2016; Guzmán-Guzmán et al., 2019). This article 
examines Trichoderma spp. genes that encode proteins linked 
with antibacterial action against R. solani and resistance induction 
in plants. The function of Trichoderma spp. genes in competition 

for root colonization, mycoparasitism, antibiosis, rhizosphere 
and nutrients, and stimulation of plant defensive mechanisms 
against R. solani is depicted in Figure  2. The following parts 
have been included in the review: (1) Trichoderma spp. biology, 
(2) genes involved in mycoparasitism, (3) genes involved in 
competition, (4) induced resistance in various plants against 
R. solani, and (5) resistance to R. solani in plants is mediated 
by biochemical changes associated to Trichoderma-induced 
defensive responses.

BIOLOGY OF Trichoderma spp.

Trichoderma spp. exist in two separate morphological and 
physiological stages. Hypocrea is the sexual (teleomorphic) 

FIGURE 2 | Trichoderma spp. biocontrol mechanisms against R. solani. (A) Trichoderma spp. genes in antibiosis, (B) mycoparasitism, (C–E) competition for root 
colonization, rhizosphere and nutrients, and (F) induced systemic resistance.
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stage, while Trichoderma is the asexual (anamorphic or 
mitosporic) stage (Rahimi Tamandegani et  al., 2020; Zhang 
and Zhuang, 2020). Trichoderma spp. that can no longer 
reproduce sexually are known as “agamospecies,” but sexual 
forms make up the majority of the genus’ genetic diversity. 
There is an average of 101–103 culturable Trichoderma spp. 
per gram of temperate and tropical soils (Harman et al., 2004; 
Zeilinger and Omann, 2007; Druzhinina et al., 2011; Nawrocka 
and Małolepsza, 2013; Daguerre et  al., 2014; Sarma et  al., 
2014; Morán-Diez et  al., 2021). These fungi also colonize 
plant materials, such as wood and herbaceous plants, where 
the sexual genus Hypocrea is most commonly seen. The majority 
of biocontrol strains lack a documented sexual stage (Druzhinina 
et  al., 2011; Daguerre et  al., 2014). Asexual fungi are clonal, 
frequently heterokaryotic individuals and communities that 
most likely evolved separately during the asexual stage 
(Contreras-Cornejo et  al., 2016). They have a lot of genetic 
diversity and can make various commercial and ecologically 
valuable goods. They are prolific extracellular protein makers, 
well known for producing enzymes that digest cellulose and 
chitin (Harman et al., 2004; Druzhinina et al., 2011; Daguerre 
et  al., 2014). Distinct strains, for example, produce over 100 
different compounds with recognized antibiotic properties. 
Trichoderma spp. has long been known for suppressing plant 
disease and promoting plant growth and development. In 
horticulture, they are getting increasingly popular because of 
their “rhizosphere competence” and can colonize and develop 
near plant roots. Much of the known biology of these fungi 
and many of their uses have only lately been documented. 
These fungi’s biology is being considerably revised because 
many new species are being recognized. Most of the distinctive 
species in the genus Trichoderma were difficult to distinguish 
morphologically. As a result, a polyphasic approach is utilized 
to discover the characteristics of a novel species by combining 
the results of numerous techniques, such as molecular, 
morphological, genomic, and physiological study (Badaluddin 
et  al., 2018). For example, one of the most common genetic 
methods for identifying Trichoderma spp. is multi-gene 
phylogeny. Currently, the combination of multi-gene phylogeny 
and morphological features is employed to identify the species 
level description of Trichoderma. Both morphological and 
molecular analysis employing genes including rpb2, cal, act, 
tef1, and ITS were used to identify Trichoderma spp. strains. 
The many functional groups within Trichoderma spp. that are 
important for secondary metabolite production were also 
identified utilizing a combination of novel genomic approaches 
and physiological activities (Zeilinger et  al., 2016; Ali et  al., 
2021). These integrated methodologies contributed to the need 
to identify Trichoderma strains as biological control agents 
(Mahr, 2021). Furthermore, genomic investigations of 
Trichoderma spp. have highlighted the fungal kingdom’s genetic 
variety as well as distinctions in shape, physiology, and ecology 
(Inglis et al., 2018). Because of advancements in high-throughput 
sequencing technology, the number of available fungal genome 
data is quickly increasing. Recently, the genomes of the most 
common Trichoderma spp. were compared in an attempt to 
better understand Trichoderma biology (Chung et  al., 2021).

Trichoderma spp. GENES INVOLVED IN 
MYCOPARASITISM

The combination of Trichoderma spp. with other fungi is referred 
to as necrotrophic hyperparasitism or mycoparasitism. Many 
studies showed that Trichoderma spp. exhibited mycoparasitic 
capacity against R. solani (Geremia et  al., 1993; De La Cruz 
et  al., 1995; Lorito et  al., 1998; Kubicek et  al., 2011; Dubey 
et  al., 2021). Trichoderma spp. on the other hand, feeds on 
fungal biomass; hence, classified as mycotrophic to encompass 
both saprotrophic and biotrophic feeding methods. Antibiosis, 
mycoparasitism, nutrient competition, rhizosphere and root 
colonization, and activation of plant defense mechanisms are 
all used by Trichoderma spp. to battle pathogenic fungus (Rai 
et al., 2019; Morán-Diez et al., 2021; Sánchez-Cruz et al., 2021; 
Segreto et al., 2021; Yu et al., 2022). Trichoderma spp. specifically 
detect and establish an antagonistic relationship with R. solani. 
Finally, they kill or control R. solani by genetic reprogramming 
of their gene expression. These two processes are crucial because 
they impact the type and degree of the Trichoderma spp. hostile 
behavior against R. solani (Yu et  al., 2022).

Chemotropism and Recognition of Prey
The initial phase in mycoparasitism is Trichoderma spp. detecting 
or identifying R. solani as prey. Trichoderma spp. recognize the 
oligopeptide and oligosaccharide compounds produced by R. solani 
in reaction to hydrolytic enzymes, such as proteases and chitinases 
(Druzhinina et  al., 2011; Sood et  al., 2020). A signaling cascade 
is activated when these molecules attach to receptors on 
Trichoderma spp. hyphae. This causes transcription factors to 
be  activated, which govern production of secondary metabolite 
(SM) production and lysis of cell wall (Harman et  al., 2004; 
Druzhinina et al., 2011; Table 1). Many Trichoderma spp. express 
genes encoding proteases and oligopeptide transporters before 
and during interaction with R. solani, according to a recent 
study. The bulk of proteases are subtilisin-like serine proteases, 
and genes for these enzymes may be  found in abundance in 
expressed sequence tags (ESTs). For example, a review of the 
ESTs collected at the start of the T. atroviridis-R. solani interaction 
revealed many genes that produce subtilisin-like serine proteases. 
The prb1 gene encodes these proteases, and overexpression of 
these proteases boosted mycoparasitic activity. The action of 
these proteases on R. solani may result in the release of oligopeptide 
molecules that bind to receptors on Trichoderma spp. Using 
T. atroviride EST libraries, a preliminary transcriptome research 
revealed considerable alterations in T. atroviride gene expression, 
including changes that resembled a response to nitrogen restriction, 
lipid metabolism adjustments, and signaling changes (Seidl et al., 
2009; Kaur et  al., 2021).

G Protein-Coupled Receptors
G protein-coupled receptors (GPCRs) of biocontrol agents act 
as a sensor for the oligopeptides secreted by plant pathogens 
(Daguerre et  al., 2014). They are the most frequent cell surface 
receptors for detecting environmental signals at the plasma 
membrane. These receptors sense ligands, such as nutrients, 
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oligopeptides, sex pheromones, oxylipins. They frequently use 
heterotrimeric G proteins to connect with downstream signaling 
pathways including the mitogen-activated protein kinase (MAPK) 
and cAMP-protein kinase A (PKA) cascades (Table 1; Figure 3). 
In response to R. solani, several GPCR-encoding genes were 
expressed in Trichoderma spp. showing that GPCRs play a role 
in detecting and triggering the mycoparasitic response. The three 
primary components of heterotrimeric G protein signaling are 
a GPCR, a heterotrimeric G protein (made up of G and G 
subunits), and an effector. G protein activation (exchange of 
GDP for GTP on the G subunit) and dissociation of the 
GTP-bound subunit from the associated dimer occur as a result 
of the ligand contact, allowing both units to govern downstream 
effectors. In fungus, the cAMP-PKA pathway and MAPK cascades 
are typical effectors of heterotrimeric G protein. Both routes 
are substantially conserved and linked. Transmembrane G protein-
coupled receptor signals are channeled by heterotrimeric G 
proteins to various intracellular destinations via activating effectors, 
such as adenylate cyclase or the MAPK cascades (Kaziro et  al., 
1991; Daguerre et  al., 2014; Segreto et  al., 2021). Trichoderma 
spp. require G proteins, GPCRs, and adenylate cyclase receptors 
to synthesize external cell wall lytic enzymes, release antifungal 
chemicals, and produce infection structures (Figure  3). 
Trichoderma hyphae were prevented from connecting to R. solani 
cell surfaces by inhibiting the gene encoding the T. atroviride 
seven-transmembrane receptor Gpr1, as well as upregulation of 
two chitinase genes (nag1 and ech42) and the protease gene 
prb1. Due to the importance of these genes in mycoparasitism, 
their downregulation in T. atroviride results in pathogen survival 
(Omann et  al., 2012). Two G protein subunits identified in 
T. atroviride are Tga1 and Tga3. During direct fight with R. solani, 
the tga1 mutant completely lost its mycoparasitic activity (Reithner 

et  al., 2011). Infection structure development remained steady, 
while production of 6-pentyl-pyrone and sesquiterpene-derived 
antifungal metabolites reduced (Rocha-Ramírez et  al., 2002; 
Reithner et  al., 2011). Similarly, when addressed directly, the 
tga3 mutant was unable to build infection structures or 
mycoparasitize R. solani (Zeilinger et  al., 1999). In fungus, the 
MAPK pathways are well-known signal transduction systems 
(Schmoll et  al., 2016). Trichoderma’s genome contains genes for 
three pathogenicity MAPKs: (1) TmKA (also known as Tvk1 
and Tmk1), (2) cell integrity kinase (TmkB), and (3) osmoregulatory 
MAPK (Hog1; Schmoll et  al., 2016). TmkA gene mutation in 
T. virens strain “P” had no effect on biocontrol efficacy against 
R. solani (Zeilinger et  al., 1999; Viterbo et  al., 2004; Mukherjee 
et  al., 2011, 2012). However, deletion of the same gene TmkA 
in the T. virens strain “Q” drastically lowered the Trichoderma’s 
biocontrol efficacy against R. solani (Mendoza-Mendoza et  al., 
2003). Trichoderma virens tvk1 mutants secreted more lytic 
enzymes and were far more efficient in disease control than 
the wild-type strain (Mukherjee et al., 2003). Trichoderma atroviride 
tmk1 mutants displayed decreased mycoparasitism activity against 
R. solani in direct mycoparasite–host interactions, as well as 
against R. solani specific control of ech42 gene transcription 
(Reithner et al., 2011). Furthermore, deletion of a Tmk1 homologue 
in T. atroviridis resulted in decreased mycoparasitic activity 
against R. solani, as well as increased synthesis of chitinase and 
other antifungal chemicals (Reithner et  al., 2011).

Cyclic Adenosine Monophosphate 
Receptors
In addition to, GPCRs, another importance receptors for signaling 
transduction are Cyclic adenosine monophosphate (cAMP) 

TABLE 1 | Role of Trichoderma spp. genes involved in recognition of R. solani and signal transduction.

Protein/molecule Receptors Gene Trichoderma spp. References

Receptor proteins Seven-transmembrane 
receptor Gpr1

gpr1 T. atroviride Atanasova et al., 2018

Seven-transmembrane 
receptor Gpr1

gpr1 T. atroviride Omann et al., 2012

G Proteins G Protein one N.A. T. asperellum Liu et al., 2010
G Protein ypt3 N.A. T. asperellum Liu et al., 2010
G Protein rab2 N.A. T. asperellum Liu et al., 2010
α-Subunit of G protein 1 tga1 T. atroviride Rocha-Ramírez et al., 2002; Reithner et al., 2005
G Protein-coupled receptors T. virens Halifu et al., 2020
α-Subunit of G protein 3 tga3 T. atroviride Zeilinger et al., 2005

Mitogen-activated protein 
kinases

MAPK A tmkA T. virens Mukherjee et al., 2003
MAPK 1 tmk1 T. atrovide Reithner et al., 2007

tvk1 T. virens Mendoza-Mendoza et al., 2003
Others proteins Adenylate cyclase Tac1 tac1 T. virens Mukherjee et al., 2007
Transcription factors pH Regulator PacC pacC T. virens Trushina et al., 2013

pH Regulator Pac1 pac1 T. harzianum Moreno-Mateos et al., 2007
Transcription factor ThCtf1 ctf1 T. harzianum Rubio et al., 2009
Velvet protein Vel1 vel1 T. virens Mukherjee and Kenerley, 2010
Xylanase transcriptional 
regulator Xyr1

xyr1 T. atrovide Reithner et al., 2014

Sur7 family protein Sfp2 T. atroviride Atanasova et al., 2018
Target of rapamycin TOR kinase tsc1 Trichoderma atroviride Segreto et al., 2021

N.A., not available.
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receptors. They are involved in the growth, condition, 
development, and biocontrol efficiency in Trichoderma spp. 
(Brunner et  al., 2008; Table  1; Figure  3). Adenylate cyclase 
converts ATP to cAMP and is present on the inner side of 
the plasma membrane and at several sites throughout the fungal 
cell. Adenylate cyclase is triggered by a multitude of signaling 
molecules that activate G (Gs) protein-coupled receptors that 
stimulate adenylate cyclase. cAMP activates a cAMP-dependent 
protein kinase (PKA) that phosphorylates proteins like 
transcription factors to regulate gene expression (Dickman and 

Yarden, 1999). Tac1, an adenylate cyclase gene in T. virens, 
was deleted, which not only removed biocontrol efficacy against 
R. solani but also lowered secondary metabolite synthesis 
(Mukherjee et  al., 2007).

Target of Rapamycin Proteins
In addition to cAMP and MAPK, the target of rapamycin 
(TOR) pathway is a critical regulator of Trichoderma spp. cell 
proliferation in response to nutrient availability (Table  1; 
Figure  3). In response to a lack of carbon and nitrogen, this 

FIGURE 3 | Mycoparasitism; Trichoderma spp. (Green color) parasitize R. solani (purple) in soil. (A–C) Trichoderma spp. recognized R. solani by tiny molecules 
(oligopeptides and small other molecules); some of these molecules are peptides released by the action of proteases of Trichoderma spp. prior to contact. Also R. 
solani secrete ROS and secondary metabolites in response to Trichoderma spp. (D) These molecules bind to G protein-coupled receptors (GPCRs; such as Gpr1) or 
nitrogen-sensing receptors (Target of rapamycin; TOR pathway), or adenylate cyclase receptors on the surface of Trichoderma spp. hyphae. (E) After binding to the 
receptors, the molecules induce a signaling cascade involving G proteins and mitogen-activated protein kinases (MAPKs) or protein kinases (PKA), which then 
modulate the activities of transcription factors (TFs) and gene regulations. (F,G) These substances then boost the expression of genes that code for enzymes 
involved in secondary metabolite production and lysis of the cell wall of R. solani. Reconstructed from Druzhinina et al. (2011).
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pathway is triggered, resulting in anabolic activities and 
development (Schmoll et al., 2016). The TOR kinase is inhibited 
by rapamycin, and nutritional deficiency enhances the expression 
of genes involved in alternate nitrogen absorption. A growing 
body of evidence suggests that TOR has a role in nitrogen 
signaling and pathogenicity-related activities in fungal plant 
diseases. The Trichoderma genomes also encode single TOR 
kinase-like the fungal plant pathogens. In a recent study, the 
activity of TOR1, that is, T. atroviride’s solitary and crucial 
TOR kinase, was suppressed by chemical TOR inhibitors or 
genetic alteration. TSC2 and TSC1, which are negative regulators 
of TOR complex 1 (TORC1) in human cells, resulting in altered 
nitrogen source-dependent growth of T. atroviride, decreased 
generation of numerous secondary metabolites, and decreased 
mycoparasitic overgrowth on R. solani (Segreto et  al., 2021). 
Transcription factors (TFs), which regulate gene transcription 
at the cellular level during antagonism, are currently understudied 
(Table  1). Specific motifs in the promoters of Trichoderma 
spp. biocontrol genes may bind transcription factors involved 
in nitrogen repression, stress responses, and the regulation of 
plant cell wall-degrading enzymes. There is no indication, 
however, that they have a role in antifungal activity. For example, 
T. atroviride’s xylanase transcriptional regular Xyr1 has a role 
in mycoparasitism and is essential to trigger the plant defense 
response (Reithner et  al., 2014). When xyr1 was eliminated, 
R. solani competed more effectively. Plant defense responses 
were similarly delayed during the T. atroviride/Arabidopsis 
thaliana interaction.

Attachment and Coiling
Trichoderma spp. coil and generate helix-shaped hyphae around 
R. solani shortly after recognition, and this phenomenon is 
dependent on lectin recognition from R. solani’s cell wall. 
Conversely, plant lectins also cause coiling, demonstrating that 
lectins do not determine specificity in Trichoderma spp. 
Additionally, coiling is not always associated with mycoparasitism, 
as some Trichoderma spp. do exhibit this characteristic. Besides, 
hyphae of Trichoderma spp. become spiral or helical in shape 
and are considered diagnostic features in some Trichoderma 
spp. Trichoderma spp. often precede mycoparasitic attack by 
growing alongside the host hyphae and forming papilla-like 
structures. At the places where papilla-like structures form, 
the cell wall is degraded, and the lumen is penetrated. These 
papilla-like structures are identical to the appressorium of plant 
pathogenic fungi and those generated. Recent study suggests 
the presence of essential components of the cAMP and MAP 
kinase signaling pathways, such as G protein subunits (G), 
which govern extracellular enzyme synthesis, antibiotic 
production, and coil formation surrounding R. solani and 
T. atroviride expressed the G-gene (tga1) under the control 
of its promoter or the promoter of the proteinase gene (prb1; 
Reithner et  al., 2005). All mutants showed an increase in 
coiling. Furthermore, T. viride overexpressing tga1 exhibited 
a greater capacity to outgrow R. solani. Induction of genes 
encoding ABC efflux transporters, pleiotropic and multidrug 
resistance transporters, and detoxification mechanisms (such 
as those encoding ABC efflux transporters and pleiotropic and 

multidrug resistance transporters) and detoxification mechanisms 
(such as those encoding ABC efflux transporters and pleiotropic 
and multidrug resistance transporters) in the presence of 
R. solani is a distinctive feature of Trichoderma spp. When 
R. solani develops sclerotia, it signals with radical oxygen species 
and excretes antifungal chemicals into the environment. Both 
radical oxygen species and antifungal drugs have been 
demonstrated to promote Trichoderma spp. stress’s response. 
The deletion of one of the genes in T. atroviridis that produces 
an ABC transporter (Abc2) resulted in poor biocontrol of 
R. solani, demonstrating that detoxification plays a role 
in mycoparasitism.

Death of the Fungus
Secondary antifungal metabolites, such as NRPs (peptaibols, 
gliotoxin, gliovirin, etc.), polyketides, isoprenoid-derived 
metabolites, pyrones, and cell wall-hydrolytic enzymes or 
degrading enzymes (CWDEs) eventually kill the prey (Table 2; 
Figure  3). Trichoderma spp. genomes contain many genes for 
the synthesis of antifungal metabolites and CWDEs. Trichoderma 
virens, for example, possess the most non-ribosomal peptide 
synthesis of any plant pathogenic fungus. The cell wall of any 
fungus is composed of 30% dry weight chitin, -1,3-glucans, 
-1,3-glucans, and -1,4-glucans. Cellulases, polygalacturonases 
(PG), chitinases, glucanases, and proteinase are only a few of 
the CWDEs found in Trichoderma spp.

Chitinases
Several chitinases enzymes are found in Trichoderma spp., and 
the list of these enzymes is updated continuously as new enzymes 
and their associated genes are discovered. Trichoderma spp. 
produce both endo and exochitinases that belong to the glycosyl 
hydrolase (GH) family. GH is divided into three groups based 
on amino acid sequence similarity: GH 18, GH 19, and GH 
20 (Kim et  al., 2002). Endochitinases break chitin into 
chitotetraose, chitotriose, and diacetylchitobiose at internal 
locations. Chitobiosidases and N-acetyl-glucosaminidases were 
classified further into exochitinases. Chitobiosidases are enzymes 
that catalyze the stepwise release of diacetylchitobiose. 
Diacetylchitobiose is broken into N-acetylglucosamine monomers 
by N-acetylglucosaminidases (Baek et al., 1999). These chitinases 
degrade chitin polymers by breaking β-1,4 glycosidic linkages 
in the hyphae of R. solani. Many chitinase-encoding genes have 
recently been found and reported, and their antagonistic action 
against R. solani has been tested (Table 2). Trichoderma harzianum 
and T. atroviride have the most widely explored chitinolytic 
system among the Trichoderma spp. The biocontrol activity of 
T. virens transformants overexpressing Cht42 against R. solani 
in cotton seedling tests was greatly increased as compared to 
the wild type, as demonstrated by the results of previous 
investigations (Baek et  al., 1999). When the same gene was 
expressed in other Trichoderma spp. it resulted in higher biocontrol 
activity against R. solani than when the wild type was used 
(Howell, 2003). However, in greenhouse biocontrol testing, the 
activity of chit42 mutants was identical to that of the wild type 
(Harman et al., 2004). Limón et al. (2004) identified and reported 
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transformants of the biocontrol agent T. harzianum strain CECT 
2413 that overexpressed a 33 kDa chitinase (chit33). Under the 
guidance of the T. reesei pki constitutive promoter, strain CECT 
2413 was co-transformed with the amdS gene and its chit33 
gene. The transformants were more effective in inhibiting R. solani 
growth than the wild type (Limón et  al., 2004).

Glucanases
In synergistic cooperation with chitinases and secondary 
metabolites, glucanases have been demonstrated to reduce spore 
germination or pathogen growth. Glucans are glucose 
polysaccharides that act as crosslinks between chitin or chitosan 
polymers. There are two types of glucans, which are distinguished 

by the chemical link that exists between the glucose subunits. 
The stiffness of the cell wall is provided by β-glucans, which 
are made up of -(1,3)- or -(1,6)-linkages. In contrast, α-glucans 
are made up of -(1,3)- and/or -(1,4)-linkages and serve as a 
matrix component. Many glucanases with antagonistic activity 
against R. solani have been isolated from Trichoderma spp. as 
shown in Table  2. These enzymes degrade glucan polymers 
in R. solani hyphae by cleaving β-1,3 glycosidic linkage. When 
the gene bgn13.1 was overexpressed in T. harzianum, it resulted 
in the greatest suppression of R. solani infection. A higher 
level of antagonistic activity was seen in the case of the oomycete, 
P. citrophthora, which has cellulose and glucans as its primary 
cell wall components, compared to the R. solani, which has 

TABLE 2 | Role of Trichoderma spp. genes in the mycoparasitism of R. solani.

Protein/molecule MW kDa Gene Trichoderma spp. References

Endochitinases (GH 18) Chitinase 1 N.A. T. asperellum Liu et al., 2010
33-KDa Endochitinases chit33 T. harzianum De las Mercedes Dana et al., 2001

ech33 Sharma and Bhat, 2011
Tv-cht1 T. virens Kim et al., 2002
Tv-cht2 T. virens Kim et al., 2002

36-KDa Endochitinases chit36Y, T. asperellum Viterbo et al., 2001
42-KDa Endochitinases chit42 T. atroviride Kullnig et al., 2000

echi42 T. asperellum Carsolio et al., 1999
chit42 T. harzianum Kullnig et al., 2000
ech42 T. harzianum Liu et al., 2010
chit42 T. harzianum Zeilinger et al., 1999
Tv-ech1 T. virens Baek et al., 1999
Tv-ech2 T. virens Kim et al., 2002

46-KDa Endochitinase chit46 T. asperellum Lima et al., 1997
Endochitinases (GH 18) crchi1 T. harzianum Limón et al., 1995

Glucosaminidases (GH 20) N-Acetyl-β-glucosaminidases exc1Y T. asperellum Viterbo et al., 2002
nag1 T. atroviride Brunner et al., 2003
eng18B T. atroviride Dubey et al., 2012
Tvnag1 T. virens Kim et al., 2002
Tvnag2 T. virens Kim et al., 2002

Glucanases β-1,3-Glucanases tag83 T. asperellum Marcello et al., 2010
lam1.3 T. harzianum Marcello et al., 2010
gluc31 Suriani Ribeiro et al., 2019

29-KDa b-1,3-Glucanase N.A. T. harzianum Noronha et al., 2000
36-KDa b-1,3-Glucanase N.A. T. harzianum Noronha et al., 2000
78-KDa b-1,3-Glucanase bgn13.1 T. harzianum De La Cruz et al., 1995
β-1,6-Glucanase bgn16.2 T. harzianum De La Cruz et al., 1995

Tvbgn3 T. virens Djonović et al., 2007
β-1,3-Glucanase N.A. T. koningii Kim et al., 2002

Tvbgn1 T. virens Kim et al., 2002
Tvbgn2 T. virens Kim et al., 2002

Endo-1,3(4)-β-glucanase N.A. T. asperellum Liu et al., 2010
Proteases Aspartic proteases TaAsp T. asperellum Yang et al., 2013

TaPAPA T. asperellum Viterbo et al., 2004
Sa76 T. harzianum Liu and Yang, 2007
P6281 T. harzianum Suárez et al., 2005
PAPA T. harzianum Delgado-Jarana et al., 2002

Serine proteases Spm1 T. asperellum Liu et al., 2010
tvsp1 T. virens Pozo et al., 2004
prb1 T. harzianum Geremia et al., 1993
pra1 T. harzianum Reithner et al., 2011
papA T. atroviride Reithner et al., 2011
papB T. asperellum Viterbo et al., 2004

Miscellaneous CoA reductase hmgR Trichoderma spp. Gajera et al., 2016
Mitogen-activated protein kinase task1 T. asperellum Yang, 2017
Pore-forming proteins agl1 T. atroviride Dubey et al., 2021

N.A., not available.
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chitin and glucan as its primary cell wall components. Many 
1,6-glucanases have also been isolated from Trichoderma spp. 
and have demonstrated antagonistic activity, either alone or in 
conjunction with chitinases (da Silva Aires et  al., 2012). It has 
recently been shown that T. harzianum strain ALL42 contains 
a gene that encodes an endo-1,3-glucanase that is related to 
the GH16 family, and that this gene is involved in the metabolism 
of glucans. The lack of the gluc31 gene had no effect on the 
in vivo mycoparasitism capacity of mutant T. harzianum ALL42 
against R. solani; however, the removal of the gluc31 gene 
appeared to have an impact on the structure of the cell wall 
of T. harzianum ALL42 (Suriani Ribeiro et  al., 2019).

Proteases
There are several varieties of fungal proteases (also known as 
fungal peptidases or proteolytic enzymes) that help in the lysis 
of cell walls (Mata-Essayag et al., 2001; Haggag et al., 2006). They 
accelerate the peptide bond breakage in other proteins. Fungal 
proteases are peptide hydrolases or peptidases that belong to a 
large number of enzymes that may be divided into endopeptidases 
and exopeptidases. Several investigations have shown that 
Trichoderma spp. exopeptidases contribute in the biocontrol of 
R. solani (Table  2). In addition to breaking down the host cell 
wall, fungal proteases may function as proteolytic inactivators of 
pathogen enzymes involved in plant infection (Suárez et al., 2005). 
Table  2 shows the mycoparasitic protease genes of Trichoderma 
spp. that have been cloned so far. They also encode aspartic and 
serine proteases that function in the same way as subtilisin, 
chymotrypsin/elastase, and trypsin (Pozo et al., 2004; Yang, 2017). 
Prb1 from T. harzianum IMI 206040 has been shown to play 
an essential role in biological control, and prb1 transformants 
increased the biocontrol effectiveness of Trichoderma strains against 
R. solani by up to fivefold (Flores et  al., 1997; Herrera-Estrella, 
1997; Cortes et al., 1998; Goldman and Goldman, 1998). Trichoderma 
harzianum’s protease pra1 has a preference for fungal cell walls. 
T. virens extracellular serine protease gene (tvsp1) was cloned, 
and its overexpression dramatically enhanced cotton seedling 
protection against R. solani (Pozo et  al., 2004). Another study 
found that cold-tolerant T. harzianum strains produced chitinases, 
glucosidases, trypsin-like, and chymotrypsin-like proteases that 
were active at low temperatures (Antal et al., 2000; Szekeres et al., 
2004). Furthermore, it was shown that mutants obtained by UV 
irradiation produced substantially more proteases. Some of these 
mutants have been found to be  effective R. solani antagonists. 
According to a recent RNA sequencing study, 20 genes associated 
with mycoparasitism, including extracellular proteases, oligopeptide 
transporters, GPCRs, chitinases, glucanases, and proteases, were 
found to be  upregulated during the antagonistic process between 
T. virens ZT05 and R. solani (Halifu et  al., 2020).

Trichoderma spp. GENES INVOLVED IN 
THE ANTIBIOSIS

Antibiosis is the antagonism of R. solani caused by the toxicity 
of secondary metabolites generated by Trichoderma spp. In 

Trichoderma spp. several genes involved in secondary metabolite 
synthesis have been discovered (Cardoza et  al., 2007; Ruocco 
et  al., 2009; Vinale and Sivasithamparam, 2020). As indicated in 
Table  3, these genes encode secondary metabolites, such as 
pyrones, polyketides, peptaibols, gliotoxin, gliovirin, terpenoids, 
and other chemicals. Depending on the chemical and the target 
location, varying amounts of these compounds are poisonous to 
R. solani (Malmierca et al., 2013; Rahimi Tamandegani et al., 2020).

Pyrones
Pyrones are a good example of secondary metabolites produced 
by Trichoderma spp. that have strong biocontrol activity against 
R. solani. They have numerous antagonistic activities against 
R. solani were isolated from several Trichoderma spp. For example, 
a characteristic aromatic odor resembling coconut was observed 
in a T. harzianum and T. viride due to 6-pentyl-α-pyrone (6-PP). 
Pyrones with significant antifungal action against R. solani were 
observed as one of the paramount secondary metabolites produced 
by Trichoderma spp. (Kotasthane et  al., 2015).

Polyketides and Non-ribosomal Peptides
Polyketides
Polyketides (PKs) are a large collection of carbon-skeletoned 
compounds that include polyphenols, macrolides, polyenes, 
enediynes, and polyethers. Their synthesis is based on the 
regulated assembly of acetate and propionate, notwithstanding 
their structural and functional diversity. T. reesei, T. atroviride, 
and T. virens have all been shown to have PKs genes with 
antimicrobial action against R. solani. Two T. atroviride PKS 
genes were expressed during the encounter with R. solani, 
indicating a possible role in mycoparasitism (Mukherjee et  al., 
2012). Furthermore, deletion of the PKs4 gene in T. reesei 
altered the regulation of other PKs-encoding genes and lowered 
antagonistic activity against R. solani (Atanasova et  al., 2013a). 
According to recent comparative genomics research, T. virens 
and T. atroviride have a considerable number of non-ribosomal 
peptide (NRP) and polyketides synthases genes, with T. virens 
having more NRPs than any other filamentous fungus investigated 
thus far (Niu et  al., 2020).

Non-ribosomal Peptides
Non-ribosomal peptides are produced by Trichoderma spp. 
without the involvement of ribosomes or messenger RNAs by 
multidomain mega-enzymes called non-ribosomal peptide 
synthetases (NRPSs). NRPs perform a variety of biological 
functions, including iron uptake, antibacterial, and antifungal 
activity. Peptaibols synthesis against R. solani is attributed to 
NRPSs, which construct a variety of compounds from a variety 
of precursors, including non-proteinogenic amino acids and 
hydroxy or carboxyl acids (Mukherjee et  al., 2011, 2012). 
However, NRPSs genes from additional biological control agents 
have yet to be  characterized.

Peptaibols
Peptaibols are antibacterial, antifungal, and antiviral short-
chain linear polypeptides (Mukherjee et al., 2011). Trichoderma 
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spp. secrete peptaibols in a combination of isoforms with 
over 300 sequences discovered so far (Szekeres et  al., 2004). 
Peptaibols biological activity stems from their membrane-
modifying abilities, ability to make holes in lipid membranes, 
and proclivity to establish systemic resistance in plants against 
plant diseases, such as R. solani (Vey et  al., 2001). So far, 
one NRPS generated by the tex1 gene has been identified 
as playing a role in peptaibols synthesis in Trichoderma spp. 
in response to R. solani (Table  3; Rahimi Tamandegani 
et  al., 2020).

Gliotoxins
Gliotoxins are mycotoxins that contain sulfur have antimicrobial, 
antiviral, and immunomodulatory activities (Vey et  al., 2001). 
The cell wall-degrading enzymes of Trichoderma spp. augment 
their antifungal activity synergistically (Lorito et  al., 1998). 
Several genes of T. virens that encode gliotoxins, such as gliI, 
gliC, gliF, and gliG, appear to be important in antifungal action 
against R. solani (Atanasova et  al., 2013a,b). However, these 
genes transcription is regulated by a number of factors, including 
pH, temperature, culture medium composition, and aeration 
(McDonagh et  al., 2008; Table  3).

Terpenes
Terpenes are natural compounds having the formula (C5H8). 
There are various classes of terpenes and classification is based 
on the number of carbon (C) atoms as; C15; sesquiterpenes, 
C5; hemiterpenes, C20; diterpenes, C10; monoterpenes, C30; 
triterpenes, C40; tetraterpenes, C25; sesquiterpenes, or 

polyterpenes (Daguerre et  al., 2014). In Trichoderma spp. a 
gene hmgR that codes for hydroxy-methylglutaryl-coenzyme has 
been identified. An enzyme reductase (HMGR) converts hydroxy-
methylglutaryl-coenzyme into mevalonate. Mevalonate is than 
required for the formation of terpene compounds, such as 
terpene cyclases, trichodermin, triterpene viridin, and 
trichothecenes (Figures  2, 3). Some of these compounds, such 
as trichothecenes and trichodermin produced by Trichoderma 
spp., have antifungal activity against R. solani. Other terpenes 
compounds, such as triterpene ergosterol, are required for cell 
membrane fluidity. Trichoderma harzianum antifungal activity 
was diminished when hmgR was largely silenced, demonstrating 
that terpenoid chemicals are important in antagonism (Cardoza 
et al., 2007; Table 3). Harzianum A is an example of trichothecene, 
which inhibits fungal plant infections, such as R. solani, and 
induces genes involved in plant defense. Harzianum A synthesis 
is regulated by the tri gene cluster, which was recently identified 
in T. arundinaceum (Cardoza et  al., 2007; Malmierca et  al., 
2013). When the genes tri5 and tri4 were disrupted, the generation 
of Harzianum A ceased, and the biocontrol activity of the 
transformants against R. solani was diminished.

Oxidases
Oxidases are crucial to Trichoderma spp.’ antagonistic activities 
against R. solani. During oxidation of glucose by oxidases, 
hydrogen peroxide (H2O2) is produced. Hydrogen peroxide 
inhibits sclerotia and subsequent hyphal growth of fungi when 
glucose is present. T. harzianum ETS 323 extracellular proteins 
recently yielded a new L-amino oxidase (Th-LAAO; Yang et al., 

TABLE 3 | Role of Trichoderma spp. genes involved in the antagonism and synthesis of secondary metabolites deleterious to R. solani.

Pathways Protein/molecule Gene Trichoderma spp. References

Pyrone biosynthesis 
pathway

Lipoxygenase lox1 T. atroviride Kubicek et al., 2011; Speckbacher et al., 2020
6-Pentyl-α-pyrone (6-PP) N.A. Trichoderma spp. Kotasthane et al., 2015

Polyketide biosynthesis 
pathway

Polyketide synthases (PKS) pks4 T. reesei Atanasova et al., 2013b
pks4 T. virens Atanasova et al., 2013b
pks4 T. atroviride Atanasova et al., 2013b

Peptaibol biosynthesis 
pathway

Non-ribosomal peptide synthetases (NRPS) tex1 T. asperellum Rahimi Tamandegani et al., 2020

Gliotoxin and gliovirin 
biosynthesis pathway

Aminotransferase gliI T. virens Atanasova et al., 2013a
GliC Cytochrome P450 gliC T. virens Atanasova et al., 2013a
GliC Cytochrome P450 gliF T. virens Atanasova et al., 2013a
ɣ-Glutamyl cyclotransferase-like protein gliK T. virens Atanasova et al., 2013a
Glutathione S-transferase gliG T. virens Atanasova et al., 2013a
Methyltransferase gliN T. virens Atanasova et al., 2013a
NRPS modules gliP T. virens Atanasova et al., 2013a
O-Methyltransferase gliM T. virens Atanasova et al., 2013a

Terpenoid/steroid 
synthesis pathway

Cytochrome P450 monooxygenases tri4 T. arundinaceum Malmierca et al., 2012
Hydroxy-methylglutaryl-CoA reductase hmgR T. harzianum Cardoza et al., 2007
Major facilitator superfamily transporter Thmfs1 T. harzianum Liu et al., 2012
Trichodiene synthase tri5 T. arundinaceum Malmierca et al., 2013

Oxidases L-Amino acid oxidase Th-LAAO T. harzianum Yang et al., 2011
Other’s proteins 4-Phosphopantetheinyl transferase ppt1 T. virens Cheng et al., 2011
Transporters ABC transporters Taabc2 T. atroviride Ruocco et al., 2009
Miscellaneous CoA reductase hmgR T. koningii Gajera et al., 2016

Mitogen-activated protein kinase task1 T. asperellum Yang, 2017
Harzianic acid (HA) T. harzianum Manganiello et al., 2018
Helicase-related proteins ipa-1 Trichoderma virens Estrada-Rivera et al., 2020
p450 Monooxygenases TvCyt2 Trichoderma virens Ramírez-Valdespino et al., 2018
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2011). In the presence of Th-LAAO, hyphal lysis of R. solani 
was seen in vitro. The efficiency of fungal antagonism against 
soil-borne pathogens is based not only on the production and 
release of antimicrobial components but also on antagonistic 
fungi’s capacity to protect themselves against toxins. To defend 
themselves from toxins generated by infections or themselves, 
biocontrol agents have many genes that encode ABC transporters 
and detoxifying enzymes. T. atroviride Taabc2 deletion mutants, 
for example, were less resistant to fungal inhibitory compounds, 
including their own, and performed less well in defending 
tomato plants against R. solani assaults (Ruocco et  al., 2009).

Trichoderma spp. GENES INVOLVED IN 
COMPETITION

Competition for Nutrients
Microorganisms require nutrients to survive, so competition 
for nutrient constraints and the colonization of plant tissues 
results in pathogens control (Sarma et al., 2014). When resources 
are few, microorganisms with the same ecological niche and 
physiological requirements struggle for nourishment (de Boer 
et  al., 2003). Trichoderma spp., compete with R. solani for 
nutrients, mainly carbon (Sivan and Harman, 1991; Sarrocco 
et  al., 2009). Comparatively to other fungi, they are better at 
mobilizing and absorbing soil nutrients (Sood et  al., 2020). 
Moreover, in comparison to other fungi, they have a remarkable 
ability for ATP through the sugars metabolism including cellulose, 
hemicelluloses, glucans, and chitin (Oszust et al., 2020). Biomass 
components, mainly cellulose and hemicelluloses, are thought 
to be significant determinants of biocontrol fungi’s antagonistic 
activity. They are intended to be part of the saprophytic lifestyle 
and plant pathogen competition. Trichoderma spp., undoubtedly 
the most investigated fungal biocontrol agent, contain bulk of 
the genes encoding biomass-degrading hydrolytic enzymes found 
so far. Proteases, cellulases, hemicelluloses and amylases, are 
biological substrates degrading hydrolytic enzymes. As a result, 
Trichoderma spp. aid in carbon recycling. Trichoderma spp. 
and R. solani’s competitive capacity for cellulose utilization on 
wheat straw was assessed in a prior research (Sarrocco et  al., 
2009). Because wheat straw is the primarily source of cellulose 
and hemicelluloses, cellulolytic activity levels measured as 
mechanism in the straw possession competition. Fungus 
competition may also be  influenced by the prompt uptake of 
nitrogen and carbon molecules that are either naturally present 

or released in the soil. Overexpression has been linked to the 
absorption of nutrients produced through the destruction of 
pathogenic fungi’s fungal cell walls, as well as direct nutrients 
competition in the soil, according to many transcriptome 
investigations. So far, only Gtt1, a high-affinity glucose transporter 
discovered in T. harzianum, has been examined, and its mRNA 
level rose in response to R. solani (Delgado-Jarana et  al., 2003; 
Table  4). Competition for micronutrients can also arise in the 
soil. The most well-known example is competition for iron, 
which is essential for fungal pathogen development and 
pathogenicity. Trichoderma spp. secrete a number of siderophores 
that chelate iron and alter its availability to other bacteria. 
T. harzianum produced the most siderophores and had potent 
antifungal properties. A paucity of iron in the environment 
causes siderophore development and iron competition. 
Trichoderma spp. biocontrol ability against R. solani is influenced 
by iron competition (Table  4). As compared to R. solani and 
Trichoderma spp. can more effectively access the limited amounts 
of iron available. A peptide synthetase gene, Psy1, has been 
discovered. Psy1 disruptants generated normal levels of gliotoxin 
but struggled to grow in low-iron environments, indicating 
that Psy1 is involved in siderophore synthesis (Wilhite et  al., 
2001). Harzianic acid is a siderophore released by T. harzianum 
that promotes plant development while also acting as an 
antifungal against R. solani (Vinale et  al., 2013).

Competition for Rhizosphere
Ahmad and Baker (1987) coined the term rhizosphere competence 
for Trichoderma spp. which they described as the capacity of 
these fungi to grow and operate in the growing rhizosphere. 
The rhizosphere is a common ecological habitat for Trichoderma 
spp. and it provides saprotrophy and biotrophy possibilities on 
plant root exudates. Mucigel is a slimy gel-like capsule that 
covers plant root terminals (Oszust et  al., 2020; Vinale and 
Sivasithamparam, 2020; Yu et  al., 2022). The outermost cells of 
the root cap expel highly hydrated polysaccharides, such as 
pectins and hemicelluloses (arabinoxylans and 
rhamnogalacturonans). Trichoderma spp. produce hemicellulases 
(hemicellulolytic) and cellulases (cellulolytic) to utilize 
polysaccharides more effectively than R. solani secreted by plant 
root tips (Guzmán-Guzmán et  al., 2017). For example, an 
endopolygalacturonase expressing gene, is required for the effective 
establishment of T. harzianum in the tomato rhizosphere, and 
this gene is also useful in root colonization and the induction 
of plant defenses. Plants also excrete saccharides, such as 

TABLE 4 | Role of Trichoderma spp. genes involved in competition for nutrients and root colonization against R. solani.

Competition Protein/molecule Gene Trichoderma spp. References

Root colonization Class II hydrophobin family members, tvhydii1 T. virens Guzmán-Guzmán et al., 2017
Endopolygalacturonase Thpg1 Thpg1 T. harzianum Morán-Diez et al., 2009

Nutrients High-affinity glucose transporter Gtt1 Gtt1 T. harzianum Delgado-Jarana et al., 2003
Siderophores Harzianic acid N.A. T. harzianum Vinale et al., 2013

Peptide synthetase N.A. Trichoderma spp. Wilhite et al., 2001

N.A., not available.
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monosaccharides, disaccharides, and sucrose, which offer essential 
carbon substrate for Trichoderma spp. rhizosphere establishment 
(Oszust et  al., 2020). Trichoderma spp. have also genes that 
encode intracellular invertases; for example, sucrose permease 
takes up sucrose before being hydrolyzed. Trichoderma spp. also 
have particular sucrose transporter and have biochemical properties 
similar to plant sucrose transporters (Sood et  al., 2020). Sucrose 
is actively transmitted from plant to fungus, according to these 
shards of evidence. Furthermore, several Trichoderma spp. express 
a large number of important solute transporters, the functions 
of which to acquire additional root exudates are unclear (Zhang 
and Zhuang, 2020). In conclusion, the presence of pathogens 
and root-derived nutrients may have been significant attractants 
for Trichoderma spp. to establish themselves in the rhizosphere 
and create relationships with plant roots.

Competition for Colonization of 
Intercellular Root Spaces
The ability to recognize and cling to roots, penetrate the plant, 
and endure toxic compounds released by the plant in reaction 
to invasion is necessary for root colonization. Trichoderma 
spp. colonize the intercellular spaces of the first or second 
layer of root cells (Brotman et  al., 2008). The hyphal and 
conidial cell walls contain several proteins that aid Trichoderma 
spp. in attaching to the roots via appressorium-like structures 
(Steindorff et  al., 2012; Table  4). Enzymes, such as cellulase, 
hemicellulase, and protease, are subsequently secreted and 
employed to enter the roots (Viterbo et al., 2004). Trichoderma 
spp. proliferation is further aided by the highly hydrated 
polysaccharides of the root-secreted mucigel layer, as well as 
the mono- and disaccharides discharged into the rhizosphere 
by plant roots. According to research, root colonization, defense 
mechanism coordination, and leaf photosynthetic rate 
enhancement are all facilitated by plant-derived sucrose. To 
obtain root exudates, Trichoderma spp. have a variety of 
transporters/carriers, such as permease/intracellular invertase 
system and a di/tripeptide transporter. Hydrophobins are tiny 
proteins secreted by Trichoderma spp. that have recently been 
discovered. These proteins aid Trichoderma spp. in the attachment 
of fungal roots. These proteins feature a unique domain with 
eight cysteine residues in conserved positions. Based on their 
hydropathy patterns and solubility, hydrophobins were initially 
classified as class I and II. Furthermore, phytopathogenic fungi 
also rely on them to attach to the surface of the host plant 
(Talbot et  al., 1996). Recently, a gene tvhydii1 that belong to 
class II hydrophobin, was isolated and characterized from 
T. virens (Guzmán-Guzmán et  al., 2017). Overexpression of 
the gene tvhydii1 increases T. virens’ antagonistic activity against 
R. solani as well as the colonization of plant roots. Furthermore, 
deletion of tvhydii1 reduces antagonistic activity against R. solani 
and plant root colonization. Trichoderma spp. also encode 
expansin-like proteins, such as Swollenin TasSwo, which loosen, 
expand, or disrupt plant cell wall elements including cellulose 
and hemicellulose. Although their exact mechanism of action 
is unclear, it is thought that expansin-like proteins break into 
the crevices generated by interlacing microfibers in the cell 

wall, causing a conformational shift that causes the cell wall 
to expand, assisting root colonization. Plant CWDEs are also 
engaged in active root colonization, in addition to expansin 
and hydrophobin proteins. Many plants showed the strengthening 
of epidermal and cortical cell walls, as well as the deposition 
of considerable quantities of callose and cellulose, 72 h following 
root colonization. Callose-enriched cell walls limit Trichoderma 
spp. to the epidermis and cortical intercellular gaps, preventing 
Trichoderma spp. from entering the vascular stele. Antimicrobial 
chemicals are also synthesized and accumulated by plants in 
response to Trichoderma spp. invasion. To a large extent, the 
ability to colonize plant roots is determined by the strain’s 
ability to withstand environmental stresses. Several ATP-binding 
cassette (ABC) transporter genes have been discovered and 
described in Trichoderma spp., and they have been linked to 
the transfer of a variety of substrates, including phytotoxins, 
mating factors, antibiotics, pesticides, and heavy metals. The 
rapid degradation of phenolic compounds exuded by plants 
and the suppression of phytoalexin production, as detected in 
Trichoderma spp. is due to ABC transport systems (Cheng 
et  al., 2011). ABC transport systems are key factors in the 
multiple interactions established by Trichoderma spp. with other 
microbes in a potentially toxic or antagonistic environment. 
Trichoderma spp. has been shown to contribute to biocontrol 
through small cysteine-rich proteins. These small proteins bind 
to chitin of plants and fungi and prevent Trichoderma spp. 
from chitinases (Stergiopoulos and de Wit, 2009).

Trichoderma spp. INDUCED 
RESISTANCE IN DIFFERENT PLANTS 
AGAINST Rhizoctonia solani

Trichoderma-Induced Systemic Resistance
Depending on the pathosystem, plant defense responses are 
usually triggered by activation of a complex signal transduction 
network that includes salicylic acid (SA), jasmonic acid (JA), 
either with or without ethylene (ET), and abscisic acid (ABA) 
as important plant immunity regulators. Checker et  al. (2018), 
SA-mediated signaling pathways in plants result in systemic 
acquired resistance (SAR) against biotrophic and hemibiotrophic 
diseases. JA/ET-mediated signaling pathways, on the other hand, 
result in induced systemic resistance (ISR) in plants against 
necrotrophic diseases (Pieterse et  al., 2014). According to a 
recent research, Trichoderma spp. induce a hybrid ISR/SAR 
type of resistance in plants against fungal pathogens including 
R. solani known as Trichoderma-induced systemic resistance 
(TISR; Leonetti et  al., 2017; Figure  4). Hence, resistance in 
plants is increased by Trichoderma spp. against R. solani, which 
can be  activated through signaling pathways that involve both 
SA and JA/ET-mediated signal transduction. Even still, scientists 
disagree on the method by which Trichoderma spp. activate 
defensive responses and the sort of resistance they induce in 
plants. Furthermore, there are significant gaps and differences 
when it comes to explaining the crosstalk of signaling molecules 
involved in Trichoderma-induced defense responses in plants. 
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Other chemicals that may reduce or increase the synthesis 
and activity of signaling molecules must also be  considered 
in order to better comprehend the crucial interactions between 
JA, SA, ET, and their derivatives in the intricate signaling 
network (Figure  4).

Microorganism-Associated Molecular 
Patterns
Like fungi and mammals, plants activate possible defense systems 
in response to the presence of other species. This is best 

appreciated in the context of pathogens that induce a 
two-branched inborn immune response. PAMP-triggered 
immunity (PTI) is the first stage in which plants use pattern 
recognition receptors to recognize and respond to pathogen-
associated molecular patterns (PAMPs) or microorganism-
associated molecular patterns (MAMPs). Plants respond to 
pathogen virulence factors in the second step known as effector-
triggered immunity (ETI). MAMPs are molecular signatures 
that are extremely conserved, such as fungi’s chitin and xylanase 
and oomycetes’ heptaglucan. After PRR activation, changes in 
ion fluxes across the plasma membrane, the oxidative burst 

FIGURE 4 | Trichoderma-induced systemic resistance (TISR) in plants against R. solani. Both SA and JA/ET-mediated signal transduction pathways may trigger 
defensive responses against R. solani, boosting plant resistance. Trichoderma spp. release enzymes to degrade plant polysaccharides, colonize the roots, and take 
sucrose as a carbon source by using sucrose permease and invertase enzymes. Trichoderma spp. produce elicitors, such as MAMPs to induce TISR in the plants; 
plants synthesize hydroperoxide lyase, peroxidase, and phenylalanine ammonia-lyase (which induces lignification) and deposit callose. Trichoderma MAMPs, such 
as xylanase, elicits plant defense responses against R. solani. The 1-aminocyclopropane-1-carboxylic acid (AAC) deaminase inhibits ethylene formation by the plant, 
and this leads to enhanced root growth, and this is due to the formation of hormones. Besides, Trichoderma spp. attach to plants roots by producing hydrophobins 
and swollenin. Reconstructed from Druzhinina et al. (2011).
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TABLE 5 | Role of Trichoderma spp. genes which act as elicitors in resistance induction in different plants against R. solani.

Protein/molecule Enzyme Gene Plant Trichoderma spp. References

Proteins Endochitinase chit42 Tobacco T. harzianum Lorito et al., 1998
Endochitinase ThEn-42 Tobacco T. harzianum Lorito et al., 1998
Expressed sequence tags Epl1 Rice, soybean T. asperellum Liu et al., 2010
Endopolygalacturonase Thpg1 Arabidopsis T. harzianum Morán-Diez et al., 2009
Expressed sequence tags Epl1 N.A. T. atroviride Seidl et al., 2006
Mitogen-activated protein kinase tmkA Cucumber T. virens Viterbo et al., 2005
Xylanase TasXyn29.4 Popular T. asperellum Guo et al., 2021
Xylanase TasXyn24.2 Popular T. asperellum Guo et al., 2021

Chromatin remodeler Helicase-related protein ipa-1 Arabidopsis T. virens Estrada-Rivera et al., 2020
Cerato-platanins Small extracellular cysteine-rich proteins Sm1 and Ep11 Cotton T. virens, T. atroviride Djonović et al., 2006
Transferase 4-Phosphopantetheinyl transferase ppt1 Arabidopsis T. virens Velázquez-Robledo et al., 2011
Cellulase Endoglucanases, exoglucanases, and 

β-glucosidases
N.A. Tobacco, lima 

bean, corn cultures
T. viride Aidemark et al., 2010

Protease Aspartyl protease N.A. Cucumber T. virens Viterbo et al., 2004
Protease Serine protease tvsp1 Cotton T. virens Pozo et al., 2004
Chitinase Endochitinase N.A. Cotton, rice Kumar et al., 2009; Shah et al., 2009
Trichothecene Trichodermin and harzianum A N.A. Tomato T. arundinaceum Malmierca et al., 2012
Class II hydrophobin 
family

Hydrophobin tvhydii1 Arabidopsis T. virens, T. atroviride 
and T. reesei

Guzmán-Guzmán et al., 2017

N.A., not available.

(production of nitric oxide and reactive oxygen species), activation 
of MAPK cascades, and callose deposition are all downstream 
defensive activation events. Many breakthroughs have been 
made in identifying the pathways involved in this resistance; 
in many cases, SA or JA, when combined with ET, ROS, or 
NO, causes a cascade of processes that culminate in the synthesis 
of a range of metabolites and proteins with varied roles (Bellin 
et  al., 2013). ABA, auxins, gibberellins, cytokinins, and 
brassinosteroids have also been demonstrated to play essential 
roles in recent studies (Pieterse et  al., 2009). Although there 
appears to be  crosstalk or competition between the pathways, 
different stresses stimulate distinct routes (Durrant and Dong, 
2004). SAR confers long-term disease resistance by accumulating 
genes that produce pathogenesis-related (PR) proteins against 
pathogens that are either biotrophic or hemibiotrophic (Pieterse 
et  al., 2009). However, rather than directly initiating PR gene 
transcription, ISR enhances plants’ defenses against a future 
onslaught by necrotrophic pathogen like R. solani. Overall, the 
JA/ET and SA pathways are thought to be  mutually special. 
However, other investigations have found a synergistic effect 
between these routes. According to recent advances, Trichoderma 
spp. simultaneously induces plant SAR-related genes as well 
as ISR-related genes during plant root colonization, providing 
protection against R. solani with various lifestyles (Salas-Marina 
et  al., 2011). Recent research has shown that Trichoderma spp. 
may cause biochemical and molecular alterations in SAR, which 
are mostly linked to the production of PR proteins, such as 
PR1, PR5, and PR2 (Zhang and Zhuang, 2020). The activation 
of the mutually antagonistic SA and JA pathways by Trichoderma 
spp. results in a loss of plant ecological fitness, a process 
known as crosstalk (Van Oosten et  al., 2008). Trichoderma–
plant interactions take place predominantly in the rhizosphere, 
where resistance development is driven by the interchange of 
microbial and plant elicitors required for organism-to-organism 
interactions. Depending on the involved elicitors created by 

Trichoderma hyphae, the interaction of these molecules with 
plant receptors may influence Trichoderma adhesion and 
identification, and hence the induction of resistance in plants. 
Secondary metabolites produced by Trichoderma spp., such as 
proteins with enzymatic activity, as well as Trichoderma spp. 
and plant cell wall components, are all implicated in the 
development of plant resistance. Pathogen defenses have been 
activated by plant components, such as pectins, phospholipids, 
and saccharides. Some Trichoderma elicitors, include proteins 
produced by avirulence genes and MAMPs, which are slow-
evolving molecules. Trichoderma spp. secrete low molecular 
weights (6–42 kDa) enzymes or peptides which act as elicitors, 
such as serine xylanases, proteases, chitinases, cellulases, or 
glucanases. Other Trichoderma spp. compounds which act as 
elicitors are indole compounds, fatty acids, lipids and their 
derivatives (glycosphingolipids etc.), saccharides (polysaccharides 
or oligosaccharides) and chitin or chitin-like compounds 
(Djonović et al., 2007; da Silva Aires et al., 2012; Tables 4 and 5).

Cerato-Platanins, Hydrophobins, 
Swollenins, and Expansins
Small proteins like cerato-platanins, hydrophobins, swollenins, 
and expansins are vital between Trichoderma spp. and plants. 
Host presence stimulates secretion of these proteins by 
Trichoderma spp. These proteins are also involved in 
mycoparasitism and induction of plants resistance against 
pathogens. For example, Cerato-platanins (Sm1/Epl1), which 
are tiny secreted proteins with four cysteines linked together 
by two disulfide linkages are necessary for T. atroviride and 
T. virens mediated cotton resistance to R. solani. They trigger 
systemic and local resistance in plants for R. solani (Djonović 
et  al., 2006; Seidl et  al., 2009). Hydrophobins are a group of 
other small proteins which are secreted from the Trichoderma 
spp. cell wall. They help Trichoderma spp. to adhere to the 
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root surface. Local defense in plants is stimulated by Swollenin, 
expansin-like proteins with a cellulose-binding domain (Guzmán-
Guzmán et  al., 2017; Table  5). Swollenin disrupt plant cell 
walls’ crystalline cellulose structure and aid in Trichoderma 
spp. colonization of plants roots (Saloheimo et  al., 2002). Root 
colonization by T. asperellum stimulates the production of 
swollenin to induce local defense in plant (Brotman et  al., 
2008). In the rhizosphere, Trichoderma spp. use swollenin to 
establish themselves by increase root surface area. Plant protein 
for expansion of root and root hair cell wall is expansins 
which has sequence similarity to Swollenin (Guo et  al., 2011).

Xylanases
Glycosyl Hydrolase Family 11 bacteria secrete xylanases, which 
are essential CWDEs (GH11). These CWDEs have the ability 
to degrade xylan, a key component of plant cell walls. Plants 
can detect the loss of cell wall integrity when xylanases begin 
to breakdown the plant cell wall and trigger the defensive 
signaling system. Recently, xylanases (TasXyn29.4 and 
TasXyn24.2) were discovered as Trichoderma spp. MAMPs that 
induce plant defensive responses in Popular. The production 
of these T. asperellum xylanases in plants induced plant defense 
responses against R. solani attacks mediated by ethylene and 
H2O2 (Guo et  al., 2021).

Chitinases
Chit42, a T. harzianum chitinase improved resistance of tobacco 
to R. solani. This show the importance of chitinases in the 
activation of resistance in plants (Lorito et  al., 1998).

Proteases
Trichoderma spp. produce considerable amounts of proteases. 
T. harzianum, T. asperellum, and T. virens have aspartyl and 
serine proteases that are involved in both mycoparasitism and 
symbiotic relationship between Trichoderma spp. and plants, 
besides, enhancing defensive capability against R. solani (Viterbo 
et  al., 2005). Additionally, these enzymes assist Trichoderma 
spp. in colonization of plants roots as well as the production 
of secondary metabolites such PR proteins and phytoalexins 
against R. solani (Viterbo et  al., 2005).

Peptaibols and Trichothecenes
Another notable group of Trichoderma spp. secondary metabolites 
are peptaibols (peptaibiotic). The name peptaibols comes from 
a combination of the terms PEPTide, AIB, and alcohOLs, which 
are the distinguishing characteristics of peptaibols. Peptaibols 
are characterized by large quantities of non-standard amino 
acids (especially a-aminoisobutyric acid), 2-amino alcohol and 
a C-terminal 1. Peptaibols are not produced by ribosomes. 
Instead, multidomain enzymes on huge non-ribosomal peptide 
synthetase (NRPS) complexes produce them (Mukherjee et  al., 
2012). These peptaibols are also important elicitors produced 
mainly by T. atroviride and T. virens and are implicated in 
the development of pathogen resistance in plants (Mukherjee 
et  al., 2012). Trichothecenes are also produced by Trichoderma 
spp., that is, Harzianum A and trichodermin which act as 

elicitors for plant resistance to R. solani. A tri4 gene mutation, 
for example, reduced antifungal action against R. solani as 
well as the ability to regulate the production of tomato plant 
defense-related genes from the SA and JA pathways (Malmierca 
et al., 2012). Furthermore, plant development and plant defense 
mechanisms are also induced by oxygen heterocyclic compounds 
(OHC), such as polyketides, harzianolides, harzianopyridone, 
and pyrones (esters), peptides (gliovirin and gliotoxin), non-polar 
chemicals (terpenoids and steroids), and anthraquinone pigments. 
However, plant resistance through Trichoderma spp. by reduction 
of VOCs, that is, ketones and aldehydes remain questionable.

ROLE OF MAMPs, REACTIVE OXYGEN 
AND NITROGEN SPECIES, 
TRANSCRIPTION FACTORS, 
DEFENSE-RELATED GENES AND 
ENZYMES

Trichoderma spp. Release MAMPs for 
Molecular Recognition by Receptors of 
Plants
PRRs recognize MAMPs released by Trichoderma spp. By 
signaling molecules within the plants, these MAMPs contribute 
to the signal cascade. Trichoderma MAMPs transiently promote 
Ca2+ and H+ influx and K+ and Cl− ejection in response to 
suitable plant receptors. Variations in the plasma membrane 
potential (Vm) occur often because of ion imbalances and 
changes in the channel activity (Liu et  al., 2010). Plant cells 
undergo fast ROS, RNS and pH changes during depolarization. 
In addition to changes in ion absorption, Trichoderma spp. 
releases organic acids (gluconic or citric acid) into the soil, 
which lowers the soil pH. ROS and RNS are released during 
cell wall expansion and lignification. Furthermore, cell wall 
peroxidases and calcium channels become active. Many secondary 
metabolites and signaling molecules, including as H2O2 and 
NO, as well as SA and its derivatives, and JA/ET are generated 
and accumulated in response to Trichoderma spp. (Harman 
et  al., 2004). Trichoderma spp. MAMPS and other effector 
molecules bind to PRRs and intracellular receptors in plants, 
triggering MTI (MAMPS-triggered) and ETI (effector-triggered) 
immunity. This interaction between Trichoderma spp. and plants 
produces ROS and RNS, which act as signaling molecules and 
initiate a defensive response in plants by synthesizing antifungal 
molecules, such as phytoalexins, VOCs (volatile organic 
compounds), PRs proteins, such as CWDEs, and so on. 
Trichoderma spp. has a local and systemic action that involves 
a signaling cascade and activation, as well as the accumulation 
of antimicrobial compounds and enzymes, such as polyphenol 
oxidase, peroxidase, lipoxygenase and PAL. PR proteins, 
terpenoids, phytoalexins (rishitin, phytosterol, lubimin, coumarin, 
resveratrol, solavetivone, and others), and antioxidants 
(glutathione, ascorbic acid, and others) are produced. Plants 
respond to fungal invasion by producing and concentrating 
defensive molecules, such as phytoalexins, aglycones, flavonoids, 
phenolic byproducts, terpenoids, and other antimicrobial 
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substances. Trichoderma spp. on the other hand, are typically 
resistant to plant defense compounds and colonize plant root 
due to presence of ABC transport systems. Recent studies show 
that plants employ ROS and RNS as messengers to control 
the interplay between secondary messengers, MAPKs, and 
hormones, which are crucial in the induction of plant resistance 
SAR (Sami et  al., 2018). An enzyme system known as the 
MAPKs kinase pathway may be  activated by extracellular 
Trichoderma MAMPs, when they connect with plant receptors. 
The first step in triggering MPKKK kinase activity is a ligand–
receptor contact. In the next step, MPK kinase is phosphorylated 
by MPKKKs, which in turn activates MPKK kinases, which 
phosphorylate MPKs (Sami et  al., 2018).

Reactive Oxygen and Nitrogen Species
In oxidative signaling, reactive oxygen (RO) and reactive nitrogen 
(RN) species interact with multiple hormonal signaling pathways. 
When plants were challenged with necrotrophic fungi, such as 
R. solani, among all RO and RN species, H2O2 and nitric oxide 
(NO) were shown to be  quickly produced and were considered 
primary defensive activators. The processes by which NO may 
influence defensive signaling cascades were well investigated. 
S-nitrosylation and tyrosine-rich group nitration have emerged as 
significant NO-dependent protein regulatory mechanisms. Protein 
cysteine-rich thiol groups react with NO to create S-nitrosothiols 
so-called “reversible S-nitrosylation of proteins.” S-nitrosylation 
plays an important role in defensive responses, as shown by its 
effects on the SA signaling protein NPR1 and the ROS-generating 
NADPH oxidase complex AtRBOHD. NO has been shown to 
work with ROS and SA to establish SAR in plants (Sami et  al., 
2018). NO is also linked to other resistance-inducing signaling 
pathways, such as JA and ET. NO via S-nitrosylation has been 
shown in recent research to be  one of the key regulators of 
SA-dependent systemic defensive responses in T. atroviride-treated 
plants. SA play an important part in the systemic defense responses 
elicited by T. atroviride in cucumber plants, protecting them from 
R. solani. SA or increasing the quantity of H2O2 or NO could 
promote the synthesis of active NPR1 proteins, which regulate 
the expression of genes that code for plant defense proteins. NPR1, 
which resides as an oligomer in the cytoplasm and is held together 
by intermolecular disulfide bonds, is susceptible to changes in 
redox status. By modifying the state of cell reduction, accumulated 
SA, H2O2 and NO might diminish disulfide bonds, leading NPR1 
to degrade into monomers, which, when transferred into a nucleus 
to induce TISR by activating pathogenesis-related (PR) genes 
(Nawrocka et  al., 2019). The mitogenic kinase pathways are also 
activated, resulting in the activation of transcription factors against 
R. solani (Nawrocka et  al., 2019).

Transcription Factors, Defense-Related 
Genes, and Enzymes
Transcription Factors and Pathogenesis-Related 
Genes
Transcription factors modulate the expression of certain genes 
required for many key physiological activities and stress responses, 
acting as regulators of gene transcription. The WRKY 

transcription factor family has been connected to abiotic stress, 
growth, and development in addition to plant–microbe 
interactions. As discussed before, SAR often results in increased 
levels of SA and coordinated activation of PR genes, such as 
PR5, PR2, and PR1 involving one or more signaling molecules, 
that transmit an elevated immune response against R. solani. 
For example, when bean plants were exposed to T. velutinum 
in the absence of R. solani, WRKY33 gene expression increased 
considerably whereas PR1 expression decreased. However, when 
beans plants were just exposed to R. solani, WRKY33 gene 
expression was reduced whereas PR1 gene expression remained 
unaffected. Furthermore, when bean plants were exposed to 
T. velutinum and R. solani, the genes WRKY33 and PR1 were 
both downregulated (Mayo et  al., 2016). Furthermore, 
T. asperelloides colonization of A. thaliana roots triggered a 
rapid increase in expression of WRKY transcription factors, 
which suppressed SA signaling and triggered JA pathway 
responses against R. solani. These findings imply that WRKY 
proteins, which are well-known PR gene activators, play a key 
role in chromatin modifications that enhance gene expression 
(Mayo et  al., 2016). PR gene expression, including enzymes, 
such as cellulases, glucanases, and chitinases, is engaged in 
direct control of R. solani and plant biochemical barrier 
reinforcement (Heflish et  al., 2021). In another study, the 
interaction of bean plants with R. solani resulted in the 
downregulation of seven defense-related genes, including 
chitinases (CH5b, CH1), PR1, PR2, PR3, PR4, and PAL, as a 
mechanism to overcome the plant defense response, allowing 
the infection process to progress within the plant. Ergosterol 
is a sterol present in the fungal membrane that, although being 
classified as a MAMP by the plant, causes a sequence of events 
that result in the activation of defense-related genes. Squalene 
(polyunsaturated terpene) is a precursor in the biosynthesis 
of ergosterol. In one study, higher ergosterol and squalene 
synthesis by Trichoderma spp. resulted in the activation of 
defense-related genes in bean plants against R. solani (Mayo 
et  al., 2015).

Defense-Related Genes and Enzymes
Many studies have shown that plants treated with Trichoderma 
spp. boosted the activity of defense-related enzymes, such as 
peroxidase, chitinase, peroxidase, -1, 3-glucanase, 
phenylpropanoids, polyphenol oxidase, superoxide dismutase, 
chitinase, and phenylalanine ammonia-lyase (PAL). When cotton 
seeds were treated with T. virens, for example, peroxidase activity 
was increased in the roots of treated cotton plants (Howell, 
2003). Furthermore, by boosting ROS scavenging enzymes, 
Trichoderma spp. contribute to plant resistance to R. solani. 
Trichoderma harzianum, for example, increases the activities of 
ascorbate peroxidase (APX), guaiacol peroxidase (GPX), superoxide 
dismutase (SOD), and catalase (CAT) in tomato plants against 
R. solani (Youssef et  al., 2016). Trichoderma spp. also produce 
lytic enzymes, such as chitinase and β-1,3-glucanase, which break 
down R. solani chitin and β-1,3-glucan components. During an 
R. solani attack, for example, a bean chitinase promoter is 
substantially activated in transgenic tobacco plants (Roby et  al., 
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1990). The protection against R. solani given by the expression 
of certain chitinase genes from Trichoderma spp. or other plants 
is remarkable. Defense-related gene expression and chitinase 
enzyme activity, for example, confer high resistance to R. solani 
infection in transgenic cotton plants expressing an endochitinase 
gene from T. virens (Kumar et  al., 2009). Cellulases from 
Trichoderma spp. have also been shown to produce ISR in plants 
via the ET or JA pathways. Furthermore, T. viride and T. harzianum 
with biocontrol capacity to protect rice plants against R. solani 
exhibited negative morphological and physiological changes in 
the pathogen hyphae, such as swelling, knotting, crumpling, 
flattening, shriveling, bursting, and cytoplasm leakage. Furthermore, 
the increase of defense-related enzymes has been noted (Singh 
et  al., 2016). Trichoderma virens promoted ISR in tomato plants 
by activating defense enzymes, such as GPX, syringaldazine 
peroxidase (SPX), and PAL against R. solani in another study. 
As a result, the buildup of secondary metabolites, such as phenols 
and H2O2, was increased, but lipid peroxidation was reduced 
in the leaves (Małolepsza et  al., 2017). As a result, Trichoderma 
spp. treatment of plants produced disease resistance against 
R. solani by reprogramming the pathways and cascades involved 
in several defense-related activities (Zeilinger and Atanasova, 
2020). The conclusion is that TISR is a complex occurrence, 
and the current findings do not reflect a thorough grasp of the 
processes and reactions to R. solani.

CONCLUSION AND FUTURE 
PERSPECTIVES

To date, the best biocontrol agents described against R. solani 
are Trichoderma spp. Antagonism of R. solani is linked to a 
variety of Trichoderma spp. genes. As previously mentioned, 
antagonism is dependent on a number of genes for sensing, 
signaling, antibiosis, and mycoparasitism. In addition, many 
Trichoderma spp. genes are involved in competition and systemic 
resistance induction in plants for R. solani. In Figures  2–4, 
we described the Trichoderma spp. genes involved in antagonism 
of R. solani, what happens to R. solani when it is parasitized 
by Trichoderma spp. and how Trichoderma spp. induce resistance 
against R. solani. As many Trichoderma spp. genes are involved 
in the antagonism of R. solani, making the molecular mechanisms 
underlying the antagonistic effects more complicated. Hence, to 
completely comprehend the effect of Trichoderma spp. genes 

against R solani, additional studies are required. In conclusion, 
Trichoderma spp. possess a diverse set of genes that produce 
secondary compounds which can parasitize and antagonize 
R. solani. Systemic resistance against R. solani by Trichoderma 
spp. largely because of variety of metabolites produced against 
it. Trichoderma spp. also have a diverse set of effectors and 
elicitors recognized by plant receptors to activate signaling and 
gene regulation, which serves as the foundation for Trichoderma 
spp. to develop R. solani defense responses, as shown in Table 5. 
More research into the molecular, physiological, and biochemical 
underpinnings of Trichoderma spp. activity as multifunctional 
biocontrol agents is required to fully comprehend the impact 
of Trichoderma spp. on plants and their practical utility in plant 
protection against R. solani. The chemical nature of a number 
of secondary metabolites generated by Trichoderma spp. against 
R. solani is still unknown. Furthermore, there is a need to 
understand the molecular communication between Trichoderma 
spp. and plants in the presence of R. solani. Due to their precision, 
sensitivity, and specificity, efficient and sophisticated Next-
generation sequencing technologies are currently used in studies 
involving Trichoderma spp. and R. solani. They will hopefully 
fill a gap in Trichoderma spp. biocontrol studies against R. solani 
when combined with other methods, such as metabolomics, 
metagenomics, proteomics, and bioinformatics.
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Salinity is one of the most damaging abiotic stresses due to climate change impacts
that affect the growth and yield of crops, especially in lowland rice fields and coastal
areas. This research aimed to isolate potential halotolerant plant growth-promoting
rhizobacteria from different rhizo-microbiome and use them as effective bioinoculants
to improve rice growth under salinity stress conditions. Bioassay using rice seedlings
was performed in a randomized block design consisting of 16 treatments (control
and 15 bacterial isolates) with three replications. Results revealed that isolates S3,
S5, and S6 gave higher shoot height, root length, and plant dry weight compared
with control (without isolates). Based on molecular characteristics, isolates S3 and
S5 were identified as Pseudomonas stutzeri and Klebsiella pneumonia. These isolates
were able to promote rice growth under salinity stress conditions as halotolerant plant
growth-promoting rhizobacteria. These three potent isolates were found to produce
indole-3-acetic acid and nitrogenase.

Keywords: halotolerant, PGPR, salinity, nitrogen fixation, salt stress, climate change

INTRODUCTION

Soil salinity is a major abiotic stress for plants due to climate change impacts, especially in the
agriculture fields around the coastal areas. Global warming causes the sea level to rise due to the
melting of glaciers and ice sheets, which encourages saltwater intrusion into the coastal agricultural
land (Ullah et al., 2019). Changes in weather patterns like prolonged drought and the increase
in average temperature also led to higher evapotranspiration, which positively correlated with
increased soil salinity (Bannari and Al-Ali, 2020).

Saline soil has higher amounts of soluble salt (Xiaoqin et al., 2021). Na+ is one of the
most dominant dissolved salt components because it can form NaCl, Na2CO3, and Na2SO4 in
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the soil (Choudhary and Kharche, 2018). The abundance of
Na ions (mostly from NaCl) in saline soil impacts soil’s
physical, chemical, and biological properties that prevent plants’
nutrient uptake (Hamid et al., 2021). Soil electrical conductivity
value greater than 4 dS/m and the percentage of exchangeable
sodium < 15% can be detrimental to plant health, nutrient
content, and microbial activity (Diacono and Montemurro, 2015;
Numan et al., 2018). On the contrary, essential macronutrients
such as nitrogen (N) become hard to be available in soil due to
the high concentration of salts (Gondek et al., 2020).

In many cases, plants grown in saline soil often experience
diminished root proliferation, failure of seeds germination,
reduced photosynthetic activity, and decreased vegetative growth
(Gong et al., 2018). Plants experience high osmotic pressure,
salt poisoning, and disruption of plant nutrient balance
(Shrivastava and Kumar, 2015; Shi et al., 2021). Soil salinity in
arid and semiarid areas causes more evapotranspiration than
precipitation, creating water stress conditions, and soil minerals
undergo a lot of leaching in the plant root zone (Zörb et al., 2019).
Limitation of gas exchange, stagnation of stomatal opening
and closing, and reduction rate of carbon assimilation due
to reduction in plant cellular water potential worsen the
plant growth and productivity (Lisar et al., 2012). These
disruptions negatively impact global agricultural sustainability
(Sunita et al., 2020). This situation warrants sustainable
management, cost-effective, and eco-friendly strategies to restore
soil fertility in saline ecosystems (Shalaby, 2018; Ansari et al.,
2019; Egamberdieva et al., 2019; Niamat et al., 2019; Bhatt
et al., 2020; Khumairah et al., 2020; Naveed et al., 2020;
Dewi et al., 2021).

These situations demand mitigation strategies and sustenance
to alleviate the salinity stress and assist in supplying the nutrients
needed for plant growth. Plants cannot be standalone and harbor
holobionts inside and outside plant tissues to preserve their
growth and development (Vandenkoornhuyse et al., 2015). Plants
grown in salinity stress conditions need more support toward
these abiotic distresses. Therefore, halotolerant plant growth-
promoting rhizobacteria (H-PGPR) isolates as microbiota in
plant holobionts support plant growth in saline soil (Setiawati
et al., 2020; Sagar et al., 2022a,b). H-PGPR isolates can live,
survive, and engage around the root of plants creating a
rhizosphere microbiome (Larsen, 1986; Fitriatin et al., 2018).
H-PGPR are relatively resistant and tolerant to certain salt levels
(Hindersah et al., 2019), i.e., 1–5% NaCl (low halotolerance),
6–18% NaCl (medium halotolerance), and 19–30% NaCl (high
halotolerance). H-PGPR balance their cellular osmotic pressure
to avoid denaturation caused by salt present in their environment.
Thus, they can survive well and benefit the plants more than non-
halotolerant (Etesami and Glick, 2020). Inoculating H-PGPR
with rice seedlings could significantly increase plant dry weight
under salinity stress conditions (Sen and Chandrasekhar, 2014;
Abbas et al., 2019; Suriani et al., 2020).

Plant-associated microbial communities are crucial in nutrient
availability and plant defense mechanisms to abiotic stress.
This research focused on studying the relationship between
halotolerant PGPR isolates obtained from saline soil as plant
holobionts in the rhizosphere microbiome and evaluating their

plant growth-promoting potential to improve rice growth under
salinity stress conditions due to climate change impacts.

MATERIALS AND METHODS

Soil Sample Collection
Fifteen rhizosphere soil samples were collected from rice plants,
mangroves, and wild grass closest to the shoreline. The soil
samples were collected from Sukajaya Village of West Java,
Indonesia. This area is Indonesia’s most extensive rice production
affected area due to heavy intrusion of seawater. The location
map of soil sampling and descriptions of soil sampling location
are mentioned in Supplementary Figure 1 and Table 1. Soil
samples were separated from plant root residues and dirt.
Approximately 300 g of soil sample was put in the sample bag
and transported to the laboratory on the same day for isolation
and characterization work.

Salinization of Okon Media
Salinized Okon media consisted of maleic acid, K2HPO4,
KH2PO4, MgSO4.7H2O, NaCl, agar-agar, and distilled water; the
pH was adjusted to 7.0± 0.2. Desired EC of salinized Okon media
was set using the following equation (Supplementary Figure 2):

y = 5.6241+ 0.0628x

where y = desired EC, and x is the amount of NaCl added.
In this experiment, 6.0 g of NaCl was added into the Okon

media to achieve salinity at 6 dS/m (moderately saline). Salinized
Okon media was added into the sterilized Erlenmeyer flask and
autoclaved at 1.5 PSI and 121◦C for 15 min.

Salinization of Fahreus Media
For this purpose, Fahreus media containing (g/L) CaCl2,
MgSO4, KH2PO4, Na2HPO4.2H2O, ferric citrate, yeast extract,

TABLE 1 | Altitude, coordinate, and elevation of soil sampling locations.

Sample
Source

Code Coordinate Elevation
(m asl)

Rice plant
rhizosphere

S1 S 6◦0′34.157′′ E 107◦32’02.416′′ 21

S2 S 6◦10′33.349′′ E 107◦32’01.843′′ 18

S3 S 6◦10′36.759′′ E 107◦32’01.083′′ 16

S4 S 6◦10′35.694′′ E 107◦32’01.827′′ 15

S5 S 6◦10′45.948′′ E 107◦31’56.942′′ 13

Mangrove
rhizosphere

S6 S 6◦10′28.056′′ E 107◦31’57.984′′ 0.15

S7 S 6◦10′30.981′′ E 107◦32′02.333′′ 16

S8 S 6◦10′32.575′′ E 107◦32′06.392′′ 16

S9 S 6◦10′33.728′′ E 107◦32′02.684′′ 19

S10 S 6◦10′34.148′′ E 107◦32′02.305′′ 20

Wild grass
rhizosphere

S11 S 6◦10′29.348′′ E 107◦31′55.537′′ 12

S12 S 6◦10′28.231′′ E 107◦31′57.469′′ 0.15

S13 S 6◦10′30.842′′ E 107◦32′02.351′′ 16

S14 S 6◦10′34.485′′ E 107◦32′08.061′′ 14

S15 S 6◦10′34.157′′ E 107◦32’02.176′′ 18
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microelement, and distilled water was used. For salinization of
this media, 6.2 g NaCl was added using a regression equation of
y = 1.2769 + 0.7666x (Supplementary Figure 3.) to maintain
a salinity level of 6 dS/m (moderately saline), followed by
sterilization at 15 PSI and 121◦C for 15 min.

Isolation of Halotolerant PGPR
Halotolerant PGPR from saline soil were isolated using the
plate-dilution frequency technique (Harris and Sommers, 1968).
Serial dilutions were made by pipetting 1 ml of soil sample
solutions into 9 ml aqua dest (10−1) until the dilution series
of 10−5 was obtained; 10 g of soil samples were added in
90 ml aqua dest followed by stirring and vortexing. At the last
dilution, a 0.5 ml suspension was placed into the Petri dish,
followed by pouring the salinized Okon media into the Petri
dish, then incubated 48–72 h at 27–28◦C until the formation
of white, convex, and slimy colony appeared. After 72 h of
incubation at 27◦C, the separated colony was picked up and
then subcultured on salinized Okon Media. This activity was
repeated three times sequentially to obtain pure isolates, and
then, a separated colony from the last streak was preserved
(Axler-DiPerte, 2017).

Screening and Estimation of Plant
Growth-Promoting Traits
Estimation of Indole Acetic Acid
For the IAA production test, 3 ml of 24 h active culture
suspension from each isolate was separately added into each
27 ml liquid Okon media amended with L-tryptophan incubated
at 28◦C and 100 rpm for 6 days. Salkowski reagent was added
in a ratio of 4:1 (supernatant: Salkowski). The mixture was
then incubated for 20 min, and absorbance was measured in a
spectrophotometer at 535 nm. Following the incubation, 5 ml of
liquid culture from each flask was centrifuged at 10,000 rpm for
15 min, and the supernatant was subjected to the estimation of
IAA (Chaiharn and Lumyong, 2011).

Qualitative and Quantitative Estimation of Phosphate
Solubilization
For qualitative estimation of phosphate (P) solubilization, the
active culture of each isolate was separately grown on Pikovskaya’s
(PKV) agar at 30◦C for 48 h and observed for the development
of P solubilization zone around the colonies (Pikovskaya, 1948).
For quantitative estimation of isolates’ P solubilization, each
isolate’s active culture was separately grown in each PKV
broth at 30◦C, 120 rpm for 48 h, followed by centrifugation
at 10,000 rpm for 10 min. The inorganic P in the cell-free
supernatant was estimated according to the method of Fiske and
Subbarow (1925). Uninoculated PKV agar and PKV broth were
used as control.

Screening for Production of Ammonia
For screening of ammonia production, each isolate’s active
culture was grown in peptone water (PW) medium at 30◦C
for 24 h. After the incubation, plates were recorded for
the occurrence of yellow color (Dutta and Thakur, 2017).
Uninoculated PW medium was used as a control.

Screening for Production of Siderophore
For screening of siderophore-producing ability, the active culture
of each isolate was separately grown on Chrome Azurol S (CAS)
agar plates at 30◦C for 48 h followed by the development of
yellow-orange halos around the colonies (Patel et al., 2018).
Uninoculated CAS agar served as a control.

Siderophore production was carried out at shake flask
level, and for this, active culture (5 × 105 cells/ml) of each
isolate was individually grown in succinate medium (Meyer
and Abdallah, 1978) at 30◦C for 48 h. This was followed by
centrifugation at 10,000 rpm for 10 min, and siderophore content
(% siderophore units) from cell-free supernatant was estimated
following the CAS shuttle assay (Payne, 1994). An uninoculated
SM served as control.

Estimation of Nitrogenase Activity
Nitrogenase activity was measured using the acetylene reduction
assay (ARA) method (Hellebust and Craigie, 1978). This
method involved the incubation process of the material being
tested in a gas container containing a partial pressure of
acetylene. The pure cultures of halotolerant PGPR isolates
were used for quantitative testing by gas chromatography.
Before injecting the sample, the gas chromatography device
was conditioned for 3 h. Gas chromatography was operated
with the initial temperature at 100◦C, injector temperature at
150◦C, detector temperature at 200◦C, and final temperature
at 100◦C. The type of gas used was nitrogen (40 psi),
hydrogen (1.5 kg f/cm2), and air (0.5 kg f/cm2). The
ethylene concentration from each sample was measured by
measuring from the area of the ethylene standard. Ethylene
standard curves were made in concentrations of 0 µg/ml to
225 µg/ml. The chromatogram results were plotted into an
ethylene standard curve; 1 ml of ethylene gas (C2H2) was
injected into each culture tube of halotolerant PGPR and then
incubated for 1 h. After incubation, 1 ml of gas from the
headspace of each culture tube was taken and subjected to the
measurement of the concentration of ethylene (C2H4) formed
using gas chromatography.

Screening for Salinity Ameliorating Traits
Production of Aminocyclopropane-1-Carboxylate
Deaminase
For this purpose, active cultures of each isolate were grown in
minimal medium (MM) containing (g/L) KH2PO4, K2HPO4,
MgSO4, glucose, and (NH4)2SO4 at 30◦C for 48 h followed
by observing the growth of the isolate (Safronova et al., 2006).
Aminocyclopropane-1-carboxylate deaminase (ACCD) activity
from inoculated MM was estimated as per the Penrose and Glick
(2003)method. The ACCD activity was defined as the amount of
α-keto-butyrate produced per mg of protein per h.

Screening for Production of Antioxidant Enzymes
For screening of antioxidant enzymes such as superoxide
dismutase (SOD), catalase (CAT), and reduced glutathione
oxidase (GSH), each isolate was individually grown in MM at
30◦C for 24 h at 120 rpm. This was followed by centrifugation
at 1,000 rpm for 10 min to obtain cell homogenate.
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In the SOD activity assay, 100 µl of cell homogenate was
mixed with 100 µl of pyrogallol solution in EDTA buffer
(pH 7.0) followed by measuring the absorbance at 420 nm
(Marklund and Marklund, 1974). One unit of SOD was taken
as the amount (IU/mg) of SOD required to prevent 50% of the
autoxidation of pyrogallol.

In CAT activity, 100 µl of cell homogenate was mixed
with 100 µl of hydrogen peroxide (H2O2) in phosphate buffer
(pH 7.0), followed by measuring the absorbance at 240 nm
(Beers and Sizer, 1952). One unit of CAT was taken as mM of
H2O2 decomposed/min.

For the GSH assay, 100 µl of cell homogenate was mixed with
100 µl of GSH followed by measuring the absorbance at 240 nm
(Nürnberg and Danon, 2016). GSH activity was measured as the
reduction in µM of GSH per min.

Plant Growth Promotion Study in Rice
Seedlings—Greenhouse Study
Bioassay test was conducted at the Greenhouse, Faculty of
Agriculture, Padjadjaran University, Jatinangor, Indonesia, in
March 2020. This experiment aimed at selecting isolates that have
the best effect on the growth of rice seedlings. Bioassay tests
were conducted using a hydroponic system using salinized liquid
Fahreus media. The experiments were conducted in triplicates
as a complete randomized block design (RBD), consisting of
16 treatments (control and 15 halotolerant PGPR isolates) with
three replications. The rice seed variety used was INPARI-33
sensitive to salinity. Rice seeds were sterilized in HgCl2 0.2%
for ± 2 min and in 70% alcohol for ± 2 min, then rinsed
with sterile distilled water three times, and then germinated on
clean straw paper. Two pieces of straw paper were moistened
using salinized distilled water obtained by adding 6 g NaCl to
1 L of distilled water. Seeds were planted, covered with straw
paper, and rolled up using plastic. Seed germination was done
in an incubator at 28◦C for 5 days. After 5 days, rice seedlings’
roots were soaked in salinized liquid Fahreus media and then
were transplanted into a 20 mm × 300 mm sterilized test tube,
and bacterial suspensions (108 CFU/ml) of liquid salinized Okon
media were added. Seedlings’ bodies were supported by sterilized
plastic pipes to prevent drowning. Rice seedlings were then stored
in test tube racks in the greenhouse. Plant height (cm), root length
(cm), and plant dry weight (mg) were recorded at 21 days after
planting (DAP). The selection of the best isolates was made using
the simple scoring and ranking method.

Effect of Inoculants on Rice Growth—Pot
Experiment
The selected isolates were used as active ingredients for the
H-PGPR inoculant in the form of powder using an organic-based
carrier (40% peat, 30% compost, 20% biochar, 10% additive).
Organic-based carrier was chosen for its characteristics. The
nature of organic carriers can have an impact on the effectiveness
of rhizobacteria in biofertilizers in supporting plant productivity
(Arora et al., 2014). About 35% of bacterial suspension containing
109 CFU/ml was incorporated with the carrier to obtain a
bacterial density of about 108 CFU/g.

Simple pot experiment was performed to investigate the effect
of H-PGPR inoculant on the abundance of N-fixing bacteria
(Azotobacter sp. and Azosprillum sp.), N uptake, and agronomical
traits, and rice yield was done in Cilamaya Wetan, Karawang
District (6◦15’44”, 107◦34’24”, located about 0.5 m above sea
level). The soil properties belonged to silty clay texture as an acid
soil (pH = 5.04), 2.44% of Org-C, 0.25% of total N, high content of
exchangeable Na (2.01 cmol/kg), high salinity (ECe = 6.64 dS/m),
and very low base saturation (14.24%).

The experiment was arranged as an RBD consisting of eight
treatments, namely, P0 = control; P1 = 500 g SA; P2 = 1000 g
SA; P3 = 1500 g SA; P4 = 20 g ST/ kg seed; P5 = 20 g ST + 500
g SA; P6 = 20 g ST + 1000 g SA; and P7 = 20 g ST + 1500 g
SA. Saline paddy soil from Rawagempol Village, Cilamaya Wetan
District, Karawang Regency, from a depth of 0 cm to 25 cm was
obtained and then cleaned of plant debris. Then, the soil was
placed into a bucket with a capacity of 10 kg. In seed treatment,
20 g of biofertilizers was mixed with rice seeds, followed by soil
application according to their respective treatment doses, namely,
0, 500, 1,000, and 1,500 g. In the soil application, biofertilizers
were distributed in the soil according to their respective doses
without the seed treatment.

The observed responses were the population of N-fixing
bacteria, N uptake, and rice’s growth and grain yield. N-fixing
bacteria observed were Azotobacter sp. and Azospirillum sp.
Azotobacter isolation used the selective Ashby’s nitrogen-free
media, and Azospirillum isolation used the selective Okon
nitrogen-free media. Isolation was carried out by the dilution
method. A total of 10 g of soil sample was put into 90 ml of
distilled water in a small test tube, then vortexed, made a series
of dilutions by pipetting 1 ml of solution into 9 ml of aqua dest
and so on until a dilution series of 10−1–10−7 was obtained;
then, 0.1 ml of the dilution was placed into the Petri dish that
already contains the Ashby’s and Okon media mentioned earlier
and incubated for 48–72 h at room temperature (27–28◦C).

Nitrogen uptake in rice plants was analyzed using the Kjeldahl
method. An amount of 0.250 g of plant sample was cut into
pieces of <0.5 mm in size and placed in a digestion tube;
1 g of selen mixture and 2.5 ml of H2SO4 p.a. were added
into it. The mixture was leveled and left overnight to be
stirred. A blank was prepared by adding only 1 g of the selen
mixture and 2.5 ml of H2SO4 p.a. without plant sample into
the digestion tube. The next day, it was heated in a digestion
block to 350◦C. Destruction was complete when white steam
comes out and a clear extract was obtained (about 4 h). The
tube was removed and cooled, and then, the extract was diluted
with ionized water to exactly 50 ml and then vortexed until
homogeneous; the tube was left overnight to allow the particles
to settle. The clear extract was used for N measurement by
distillation or colorimetry.

Characterization of Potent Isolates
Phenotypic Characterization
Selected halotolerant PGPR isolates were characterized
based on their morphological traits and biochemical
activity. Morphological characterization consisted of colony
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characteristics and Gram staining (Hucker and Conn, 1923).
At the same time, biochemical characterization involved
the measurement of IAA production and nitrogenase
enzyme activity.

Molecular Characterization
Molecular identification of potent H-PGPR isolates was
carried out based on phylogenetic analysis of 16s rRNA gene
sequencing. The isolates were grown in Luria Bertani Broth
overnight at 30◦C at 120 rpm followed by centrifugation at
10,000 rpm for 2 min to obtain the cell pellets. The 16S rRNA
gene of the isolates was amplified with universal primers
16S-27F (5′AGAGTTTGATCCTGGCTCAG3′) and 16S-1492R
(5′GGTTACCTTGTTACGACTT3′) followed by polymerase
chain reaction (PCR) and gel electrophoresis on a 0.8% agarose
gel. The 16S rRNA gene sequence was analyzed using the 16S
rRNA gene amplicon sequencing on ABI 3730Xl automated
sequencer using a ready reaction kit (Perkin Elmer Applied
Biosystems Division, CA, United States). Phylogenetic trees were
constructed with the help of the neighbor-joining method using
MEGA5 software. H-PGPR isolates were identified based on
their phylogenetic relationship with the standard database of
NCBI (Cole et al., 2009).

Statistical Analysis
All the experiments were performed in triplicates, and a
mean of triplicate was further analyzed statistically using
the Statistical Analysis System (SAS Institute, North
Carolina State University). F-test was performed to show
significant effects on tested variables. Finally, Duncan
multiple range test (DMRT) was performed (p < 0.05)
(Gomez and Gomez, 1984).

RESULTS

Isolated Potent Halotolerant PGPR
Fifteen H-PGPR isolates were obtained from rice, mangroves,
and wild grass rhizosphere from the composite soil samples.
These isolates were then screened for IAA production and
nitrogenase activity.

Plant Growth-Promoting Traits of Potent
H-PGPR
Indole Acetic Acid
All H-PGPR isolates can produce varying amounts of IAA. Isolate
S5 had the highest amount of IAA compared with S3 and S6. It
produced 0.648 µg/ml IAA vis-à-vis 0.592 µg/ml produced by
isolates S3 and S6 (Table 2).

Phosphate Solubilization
Isolate S3 showed a maximum P solubilization zone on the
PKV agar plate compared with the isolates S5 and S6. The
isolate S3 exhibited a maximum P solubilization index (10.1 mm)
compared with 7.1 mm and 6.2 mm P solubilization index by S5
and S6, respectively (Table 2).

TABLE 2 | Screening and the production of various plant growth promoting and
salinity ameliorating of Halotolerant PGPR isolates.

Traits Isolates

S3 S5 S6

P solubilization index 10.1 ± 0.41 7.1 ± 2.21 6.2 ± 3.35

P solubilization (µg/mL) 4102 ± 7.41 3021 ± 2.01 2865 ± 3.51

Ammonia production +++ ++ ++

Siderophore production 81.2 ± 0.02 73.5 ± 0.03 69.8 ± 0.02

ACCD activity (µM/mg/h) 0.952 ± 0.02 0.818 ± 0.01 0.798 ± 0.03

SOD activity (IU/mg protein) 14.79 ± 0.03 13.01 ± 0.01 10.96 ± 0.02

CAT activity (IU/mg protein) 0.095 ± 0.02 0.087 ± 0.01 0.079 ± 0.03

GSH activity (µg/mg protein) 27.21 ± 0.01 23.82 ± 0.02 21.36 ± 0.03

+ = present − = absent, ++ = positive, +++ = strong positive, % SU = %
siderophore units. Values are the average of triplicates and were analyzed by
Duncan Multiple Range Test at 5% real level.

Production of Ammonia and Siderophore
All three isolates produced varying amounts of ammonia and
siderophore. However, the isolate S3 yielded maximum ammonia
(+++) and siderophore units (81.2% SU) compared with S5 and
S6 (Table 2).

Nitrogenase Activity
In each isolate, nitrogenase activity was directly proportional to
nitrogenase concentration. Isolate S3 had the highest nitrogenase
activity (3.207 µM/ml/h), while isolates S5 and S6 showed 2.217
µM/ml/h nitrogenase activity, respectively. Thus, the S3 isolate
had the highest nitrogenase enzyme productivity as it had the
highest nitrogenase concentration. This isolate also showed more
plant growth-promoting effects in rice seedlings compared with
other isolates and control (Table 2).

Salinity Ameliorating Traits
Aminocyclopropane-1-Carboxylate Deaminase
All three potent isolates produced varying amounts of ACCD.
However, isolate S3 exhibited more ACCD activity than isolates
S5 and S6 (Table 2).

Antioxidant Enzymes
All three potent isolates produced varying amounts of
antioxidant enzymes such as SOD, CAT, and GSH. However,
isolate S3 exhibited maximum activities of these enzymes
compared with isolates S5 and S6 (Table 2).

Plant Growth Promotion in Rice
Seedlings Under Salinity Stress
The effects of inoculation of H-PGPR isolates on plant growth
were evident on plant height, root length, and plant dry weight
of rice seedlings at 21 DAP. All H-PGPR isolates could promote
plant height even though not significantly different from control
(without isolates) (Table 3). The inoculation of H-PGPR isolates
in rice seedlings showed a significant (p < 0.05) improvement
in the growth of rice plants under salinized Fahreus media
(6 dS/m, moderately saline). Isolate S3, S5, and S6 resulted in
318% (9.13 cm) improvement in plant height, 56.69% (12.17 cm)
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TABLE 3 | Effect of halotolerant PGPR isolates on growth parameters in rice seedlings at 21 Days After Planting.

Treatments Code IAA (µg/mL) Nitrogenase activity
(µM/mL/h)

Plant height
(cm)

Root length
(cm)

Plant dry
weight (mg)

Control (without isolates) S0 0.000 0.000 2.87 ± 0.67ab 6.90 ± 0.46a 20.00 ± 2.00abc

H-PGPR isolate from rice plant 1 S1 0.387ab 2.018ab 2.73 ± 1.01ab 9.77 ± 2.86abc 15.67 ± 2.08a

H-PGPR isolate from rice plant 2 S2 0.317ab 2.200ab 4.50 ± 4.52ab 10.30 ± 2.26abc 16.67 ± 3.51ab

H-PGPR isolate from rice plant 3 S3 0.592ab 3.207abc 9.13 ± 7.07b 12.07 ± 1.27d 33.34 ± 8.14d

H-PGPR isolate from rice plant 4 S4 0.328ab 2.001ab 4.27 ± 2.25ab 10.47 ± 1.19abc 21.33 ± 3.06abc

H-PGPR isolate from rice plant 5 S5 0.648abc 2.217ab 6.13 ± 2.61ab 12.17 ± 0.70d 27.33 ± 3.06cd

H-PGPR isolate from mangrove 1 S6 0.592abc 2.217ab 6.50 ± 5.20ab 11.17 ± 1.07bc 24.67 ± 8.14bc

H-PGPR isolate from mangrove 2 S7 0.293ab 1.117a 5.63 ± 2.56ab 8.57 ± 1.05abc 20.34 ± 2.31abc

H-PGPR isolate from mangrove 3 S8 0.292ab 1.182ab 5.10 ± 1.47ab 8.73 ± 1.95abc 18.67 ± 2.08ab

H-PGPR isolate from mangrove 4 S9 0.308abc 1.322abc 4.77 ± 2.83ab 10.93 ± 1.85bc 21.66 ± 1.53abc

H-PGPR isolate from mangrove 5 S10 0.273ab 1.121ab 2.33 ± 0.21a 10.00 ± 0.70abc 19.67 ± 3.21abc

H-PGPR isolate from wild grass 1 S11 0.281ab 1.101a 4.13 ± 3.48ab 10.63 ± 1.91bc 22.00 ± 2.00abc

H-PGPR isolate from wild grass 2 S12 0.301ab 1.481ab 5.30 ± 2.85ab 9.17 ± 1.10abc 19.33 ± 1.53abc

H-PGPR isolate from wild grass 3 S13 0.199b 1.332abc 4.60 ± 1.39ab 10.80 ± 2.69bc 22.66 ± 0.58abc

H-PGPR isolate from wild grass 4 S14 0.232a 1.411ab 5.50 ± 3.39ab 9.00 ± 2.46abc 23.34 ± 3.06abc

H-PGPR isolate from wild grass 5 S15 0.187b 1.033ab 5.60 ± 2.86ab 8.13 ± 3.23ab 22.67 ± 2.52abc

Figures are the mane of triplicates. Figures followed by the same notation are not significantly different based on Duncan Multiple Range Test at 5% real level.
Figures followed by the same letter are not significantly different.

increase in root length, and 73.18% (27.33 mg) improvement
in plant dry weight. The inoculation of H-PGPR in rice-to-
rice plants could promote plant growth under saline conditions.
Isolates were also proven to have halotolerant abilities (tolerant to
salinity), where they were able to survive and even increase plant
growth in saline conditions.

The best H-PGPR isolates were selected using simple scoring
and ranking methods based on plant height, root length, and
dry weight (Herdiyantoro et al., 2018). The rules in the simple
scoring and ranking method were as follows: (i) the lowest plant
height was given a score of 1, the higher was given a score of
2 and so forth; (ii) the lowest root length was given a score
of 1, the higher was given a score of 2 and so forth; (iii) the
lowest plant dry weight was given a score of 1, the higher was
given a score of 2 and so forth; (iv) all scores were summed
up, and ranking was done based on the highest of the total
score; (v) the highest of the total score was rank 1, the lower
of the total score ranked 2 and so forth. Isolates S3, S5, and S6
had the highest score, sequentially ranking 1, 2, and 3. These
three isolates were used for morphological traits and biochemical
activity characterization (Figure 1).

Effect of H-PGPR Inoculant on the
Abundance of N Fixer in Rice
Rhizomicrobiome
The abundance of Azotobacter sp. and Azospirillum sp. was
increased significantly by the seed treatment (20 g inoculant/kg)
and increased dosage of inoculant (Table 4). The highest
population of Azotobacter sp. (2.80 × 107 CFU/g soils) and
Azospirillum sp. (2.13 × 107 CFU/g soils) were obtained by the
seed treatment with 20 g inoculant/kg combined with 1,500 g
inoculant/ha of soil application. The increment was 110.5% and
238.1%, respectively, higher than the control. The Azotobacter

sp. or Azospirillum sp. of inoculated pots with 20 g/kg seed and
1,500 g/ha (P5) was still significantly higher than treated pots
with 1,500 g/ha of inoculant (P3). Even though Azospirillum sp.
population was not significantly different with treated pots with
1,500 g/ha of inoculant (P3), the increment compared with the
control was lower (only 174.6%) than P5 (238.1%). These results
indicated that the introduced inoculant could adapt and multiply
in rhizomicrobiome.

Effect of H-PGPR Inoculant on N Uptake,
Growth Characters, and Rice Yield
The N uptake and agronomical traits (plant height and a
number of tillers at 50 DAP (Table 5), and yield component
and harvested rice grain (Table 6), were significantly influenced
by the seed treatment (ST) with 20 g/kg of seed combined

FIGURE 1 | Scoring of H-PGPR isolates based on plant height, root length,
and plant dry weight.
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TABLE 4 | Effect HNF PGPR inoculant as seed treatment (ST = 20 g/kg seed)
combined soil application (SA = g/ha) on the abundance of N fixers and PGPR
(Azotobacter sp and Azospirillum sp) in rice rhizomicrobiome.

Inoculant
Application

Azotobacter
sp

(x 107 CFU)

Increment
(%)

Azospirillum
sp

(x 108 CFU)

Increments
(%)

Po = control 1.33 ab – 0.63 a –

P1 = 500 g SA 1.37 ab 3.0 0.80 ab 27.0

P2 = 1000 g SA 1.55 b 16.5 1.23 bc 95.2

P3 = 1500 g SA 1.73 c 30.5 1.73 dc 174.6

P4 = 20 g ST/kg
seed. mg/plant

1.30 a −2.3 0.70 a 11.1

P5 = 20 g ST +
500 g SA

1.53 b 15.0 1.30 bc 106.3

P6 = 20 ST +
1000 g SA

1.77 c 33.1 1.63 cd 158.7

P7 = 20 ST +
1500 g SA

2.80 d 110.5 2.13 d 238.1

Average value followed by the same letter within same column were not different
significantly DMRT 0.05%.

TABLE 5 | Effect of HNR PGPR inoculant as seed treatment (ST) and soil
application (SA) on growth component (the N-uptake, plant height and number
tiller of rice at 50 DAP) on saline soils.

Inoculant
Application (ST =
20 g/kg seed. SA
= g/ha)

N-Uptake Plant height
(50 DAP)

Tiller
(tiller/clump)

(%) mg plant−1

Po = control 2.24 a 2.77 a 79.40 a 20.00 a

P1 = 500 g SA 2.78 a 3.31 abc 81.91 bc 24.42 bc

P2 = 1000 g SA 2.84 a 4.33 cd 83.74 cd 26.83 cd

P3 = 1500 g SA 2.91 a 5.05 d 86.22 e 34.50 e

P4 = P4 = 20 g
ST/kg seed.
mg/plant

2.50 a 2.98 ab 79.79 ab 23.08 b

P5 = 20 g ST +
500 g SA

2.73 a 3.74 abcd 82.85 cd 27.08 cd

P6 = 20 ST +
1000 g SA

2.78 a 4.23 bcd 84.98 de 29.67 d

P7 = 20 ST +
1500 g SA

2.83 a 4.65 d 86.97e 32.58 e

Average value followed by the same letter within same column were not different
significantly DMRT 0.05%.

with 500–1,500 g/ha of H-PGPR inoculant. The N content and
status of plant tissue were improved significantly by applying
inoculant. Despite N, the status belongs to the optimal condition,
but the measured value tends to be increased as shown by
the visual crop performance (the leaf of the treated plot is
greener than control). The enlarged dosage of H-PGPR inoculant
increased the N uptake, plant height, and the number of
tillers significantly. In contrast, applying H-PGPR inoculant
as seed treatment increased the number of tillers, while the
N uptake and plant height were affected considerably. Briefly,
the combined effects of seed treatment and soil application
on the measured responses were higher than the control, but
not different from the obtained result with soil application of

inoculant. These results indicated that the soil application of
1,000–1,500 g/ha of H-PGPR inoculant significantly increased
the N uptake, plant height, number of tillers, and rice grain
yield. The highest rice grain yield was obtained by applying
1,500 g/ha of H-PGPR inoculant (35.1 g/plant or 6.4 ton/ha)
or in combination with 20 g/kg seed treatment (38.9 g plant
or 7.0 ton/ha). Compared with the control, rice grain yield
was increased by 41.1–161.1% by the soil application of 500–
1,500 g/ha of inoculant. Moreover, applying 20 g/kg seed of
inoculant combined with 500–1,500 g/ha increased the rice grain
yield by 57.4–189.4% but not significantly different with soil
application only.

A comparative result for soil application and seed treatment
was done to determine the best technique application between
treatments (Table 7). The population of N fixers (Azotobacter sp.
and Azospirillum sp.) was slightly higher at the seed treatment
application, but N uptake, plant height, number of tiller,
panicles/clump, number of grain/panicle, weight of 1,000 grain,
and grain yield showed a better performance on soil application.
Results showed that H-PGPR biofertilizer was better to be applied
in soil than as seed treatment.

Characteristics of Selected Potent
H-PGPR Isolates
The morphological traits and biochemical characteristics showed
that all three potent H-PGPR isolates (S3, S5, and S6) are
Gram-negative rods (Table 7) that can survive under moderate
salinity conditions.

Among these three isolates (S3, S5, and S6), two isolates (S3 and
S5) were subjected to molecular identification as these isolates
appeared as potent multifarious PGPR. Isolate S3 showed 98.06%
similarity with Pseudomonas stutzeri (Figure 2A), while isolate
S5 resembled 100% with Klebsiella pneumonia (Figure 2B); 16s
rRNA gene sequences of these isolates were submitted to the
NCBI gene bank under the accession numbers SUB11206984 and
SUB11207011, respectively.

DISCUSSION

Saline soils are known to harbor halophilic rhizobacteria. This
study reports that P. stutzeri and K. pneumoniae isolated from
rice plant rhizosphere were H-PGPR that can improve the
growth of rice seedlings under salinity stress conditions due to
climate change impacts.

Halotolerant rhizobacteria exert many beneficial effects on
plant growth and help in ameliorating soil salinity (Saxena et al.,
2013; Sagar et al., 2020a,b; Kapadia et al., 2021; Kusale et al.,
2021a).

Pseudomonas stutzeri and K. pneumoniae used in this study
were able to produce IAA, nitrogenase enzyme, P solubilization,
ammonia, and siderophore as a force to help plant growth
and mitigate salinity stress in plants. These findings were in
line with the fact that PGPR provide a range of benefits to
the plants (Baba et al., 2021), such as plant growth promotion
through the production of phytohormones (Kalam et al.,
2020), nitrogen fixation (Kusale et al., 2021a), P solubilization
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TABLE 6 | Effect of HNR PGPR inoculant on rice component and grain yield on saline soils.

InoculantApplication panicles/clump nr.grain/panicle Weight of 1000 grain (g) Grain yield

g/clump Growth (%) t/ha

Po = control 13.2 a 79.0 a 24.0 a 13.5 a 2.4

P1 = 500 g SA 14.6 ab 92.6 b 24.7 ab 19.1 b 41.8 3.4

P2 = 1000 g SA 16.2 bc 99.4 bc 25.6 ab 25.5 c 90.0 4.6

P3 = 1500 g SA 18.6 d 109.8 cd 25.9 bc 35.1 d 161.0 6.3

P4 = 20 g ST/kg seed 14.4 ab 77.9 a 24.4 ab 15.4 a 14.3 2.8

P5 = 20 g ST + 500 g SA 15.4 bc 91.9 b 25.5 ab 21.2 b 57.4 3.8

P6 = 20 ST + 1000 g SA 17.0 cd 102.3 bcd 26.0 bc 29.2 c 116.9 5.3

P7 = 20 ST + 1500 g SA 18.6 d 113.7 d 27.6 c 38.9 d 189.4 7.0

Average value followed by the same letter within same column were not different significantly DMRT 0.05%.

TABLE 7 | Biochemical activities of H-PGPR isolates.

Isolate Code Characteristics

Shape Elevation Color Cell Gram staining character Growth in Okon media (6 dS/m)

S3 rounded convex white coccus Gram Negative 0.592 ± 0.027

S5 rounded convex white coccus Gram Negative 0.648 ± 0.107

S6 Rounded convex white coccus Gram Negative 0.592 ± 0.027

Figures are the mane of triplicates. Analyzed for standard deviation (SD).

(Sharma et al., 2013, 2016), ammonia production (Kusale et al.,
2021a), and siderophore production (Patel et al., 2016; Shaikh
et al., 2016; Khan et al., 2019; Sayyed et al., 2019; Jabborova et al.,
2020; Basu et al., 2021). They also produce various metabolites
that protect the plant from oxidative damages exerted by salinity
stress (Sagar et al., 2019, 2020a,b, 2022a,b; Jabborova et al., 2020).

Salt tolerance in P. stutzeri and K. pneumonia is considered
a strategy for organisms’ survival and growth under saline
conditions. In this study, P. stutzeri and K. pneumoniae produced
ACCD and antioxidant enzymes. This was a novel finding that
two potent isolates were identified as agents in mitigating salinity
stress for their salinity ameliorating traits abilities.

Salt-tolerant bacteria limit high amounts of salt into the
cell through cell membranes or walls. The cell membranes or
cell walls of halophilic bacteria have a specific composition
that is accurately resistant to high salt concentrations. Osmotic
adaptation in these bacteria helps them regulate the intracellular
ionic concentration by pumping out the Na+/K+ ions using
antiporter or K+/Na+ ion transporters. After that, bacteria
accumulate the compatible solutes by endogenous biosynthesis
and upregulation of the synthesis of essential amino acids,
proteins, and enzymes (Noori et al., 2018). These bacteria are
well known as N fixer and PGPR, which contribute to nutrients
availability, plant health, plant growth, and salinity stress (Yao
et al., 2010; Simarmata et al., 2018; Shultana et al., 2020).

Several scientists had examined and supported the findings
of this study that the rhizobia are more tolerant to salinity
stress compared with their host plant, but the growth and
survival vary under saline conditions depending on the strains
and their salt tolerance threshold. Kusale et al. (2021a)
isolated multifarious halotolerant Klebsiella variicola SURYA

from the wheat rhizosphere. The isolate could grow in the
presence of a high salt concentration (160 mM). Production
of IAA was later found to be one of the principal salinity
ameliorating components in this isolate. Noori et al. (2018)
isolated Klebsiella sp., Kosakonia cowanii, and Sinorhizobium
meliloti and identified these isolates as salt-tolerant bacteria.
These isolates could tolerate up to 1,200 mM NaCl, fix nitrogen,
solubilize phosphorous, produce IAA, siderophore, HCN, and
ACC deaminase enzyme. Sapre et al. (2018) reported that
Klebsiella sp. enhanced 20% plant biomass under saline stress
conditions with respect to negative control seedlings. Kusale
et al. (2021a) also affirmed that inoculation of halotolerant
K. variicola improved plant growth parameters, i.e., roots, shoots,
and chlorophyll content. P. stutzeri was also proven to increase
tomatoes’ plant fresh and dry weight under salinity stress
(Samosir et al., 2019).

The H-PGPR is classified as diazotrophic bacteria such as
Rhizobium, Azotobacter, and Azospirillum that can produce
IAA with or without tryptophan precursors (Fazeli-Nasab and
Sayyed, 2019). H-PGPR inoculation can provide nutrients for
plants and increase plant growth in the vegetative phase.
This statement indirectly indicates that plant growth was
influenced by the ability of each isolate to fix nitrogen and
make it available for the plant to uptake as plant holobionts.
Several halotolerant rhizobacteria, including Pseudomonas sp.
and Klebsiella sp., produce various plant beneficial metabolites
such as phytohormones (Kapadia et al., 2021) and antioxidant
enzymes (Arora et al., 2020). Halotolerant sp. also increases the
value of ARA and the production of the IAA, which was analyzed
under a salt concentration of 0.3 M NaCl ( ± 30 d S/m)
(Paul et al., 2014).
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FIGURE 2 | Phylogenetic analysis of H-PGPR isolates, (A) Pseudomonas stutzeri and (B) Klebsiella pneumonia, based on 16s rRNA gene sequence homology
drawn using the neighbor-joining method (MEGA 5.0 software) with evolutionary distances computed using Kimura’s two-parameter model.

The H-PGPR can balance osmotic pressure to avoid
denaturation caused by salt in the environment by accumulating
salt and osmolytes (organic molecules) in their system
(Albaladejo et al., 2017). Inoculating PGPR isolates to
crops helps convert the insoluble nutrients into soluble
nutrients, making them available to the plants (Etesami
and Glick, 2020). N-fixing halotolerant rhizobacteria can
maintain their growth-promoting attributes even under saline
conditions (Ding et al., 2005). P. stutzeri and K. pneumonia
have long been known for their N-fixing ability. Rice

seedlings’ growth with the inoculation of P. stutzeri A15
resulted in better performance compared with chemical
nitrogen fertilization (Reetha et al., 2014). K. variicola,
which is identified as a N-fixing species, also acts as
N-fixing rhizobacteria (Chen et al., 2016; Pham et al., 2017;
Kumar et al., 2020).

Rhizobacteria can act as stimulants and produce hormones
such as auxins and gibberellins to help promote plant growth
(Jain et al., 2021). Salinity stress can inhibit enzyme activity and
cause metabolic changes in plant cells due to the accumulation of
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too high salts in the cytoplasm. The concentration of cytokinin
and auxin hormones decreases, while the concentration of
ethylene and abscisic acid increases (Wani et al., 2016). However,
the three isolates in this experiment (S3, S5, and S6) were able to
produce IAA hormone and nitrogenase enzyme, which increased
the vegetative plant growth.

Biochemical attributes of rhizobacteria to produce certain
hormones, organic acid, and/or enzymes are beneficial for plant
growth under salinity stress (Duarte et al., 2020). Production of
IAA is directly proportional to the levels of tryptophan given.
Tryptophan functions as a precursor to IAA, yet bacteria also
can produce IAA (Cavalcante da Silva et al., 2020). Under
salinity stress conditions, plants will increase the ABA content
and decrease the IAA content (Thairu et al., 2014). In addition,
salinity stress can also disrupt bacterial metabolism and is toxic
to plants (Saxena et al., 2013). The nitrogenase activity test
performed using the ARA method has high accuracy because it
can detect up to a concentration of 0.001 µM (Isayenkov and
Maathuis, 2019). Rhizobacteria fix nitrogen to meet their needs
in the formation of nucleic acids, and when nitrogen needs are
met, excess nitrogen is released into the rhizosphere for use by
plant roots (Bhutani et al., 2018).

Salinity impairs nutrient balance and causes nutrient
deficiency due to the competition between Na+ and Cl− with
soil nutrients such as K+, Ca2+, and NO3

− (Hmaeid et al.,
2019; Kapadia et al., 2021). Salt ions such as Na+ and Cl−
also cause chloroplasts of plants to experience lysis due to
high salt concentrations and degradation of leaf tissue cells
(Saxena et al., 2013). Abundance and microbial biodiversity of
rhizomicrobiome due to the application of H-PGPR inoculant
(P. stutzeri or K. pneumonia) and increasing population of
other beneficial PGPR play an important role in increasing
the availability of growth factors and nutrients for supporting
the rice growth and development (Yao et al., 2010; Benaissa
et al., 2019; Lami et al., 2020). The presence and domination of
beneficial microbes in rhizomicrobiome improve the soil and
plant health, enhance rice growth, and enhance rice productivity
on saline soils (Cavite et al., 2021; Daulay and Simarmata,
2021; Simarmata et al., 2021). Plant growth can be affected
by the availability of nutrients, environmental conditions, and
physiological processes that occur in plants (Kusale et al.,
2021a). In addition, the application of PGPR combined with
the application of ameliorant (compost, dolomite) or organic
fertilizers could improve the effectiveness of microbial fertilizers
or biofertilizers (Simarmata et al., 2016; Simarmata et al., 2019;
Shilev, 2020).

The PGPR are known to ameliorate salt stress through the
production of ACCD (Sagar et al., 2020a,b). Halophiles adapted
to salt stress excrete a wide range of PGP metabolites (Hamid
et al., 2021; Khan et al., 2021) and various stress-tolerant
enzymes (Kusale et al., 2021b). Sagar et al. (2020a) reported the
production of various PGP traits and ACCD in E.cloacae PR4.
Jabborova et al. (2020) found that halophilic endophytes produce
various PGPR traits.

Production of ACCD by PGPR is the major mechanism of
salinity stress tolerance (Shrivastava and Kumar, 2013; Sagar
et al., 2020a). The enzyme ACCD lowers the level of ACC in root

exudates; the suboptimal level of ACC reduces the concentration
of ethylene in the plant roots and thus helps in root length, which
improves the absorption of nutrients (Kusale et al., 2021a; Sagar
et al., 2022b). A wide range of ACCD-producing PGPR, including
Klebsiella sp. and Pseudomonas sp., ameliorate various stresses,
including salinity stress in plants (Acuña et al., 2019). Klebsiella
sp. has been reported to produce ACCD (Kusale et al., 2021a).
These isolates grew well at high salt levels, showed optimum
ACCD activity at high salt levels, and helped ameliorate salt
stress in crops.

Salinity conditions create oxidative stress that damages the
cell membranes and cell structures in microbes and plant cells.
PGPR produce various antioxidant enzymes such as SOD, CAT,
and GSH (Acuña et al., 2019). These enzymes protect plants
from oxidation due to osmotic shocks caused by salt stress
(Fazeli-Nasab and Sayyed, 2019). Under salt stress conditions,
the presence of antioxidant enzyme-producing rhizobacteria
activates an antioxidative defensive system in the crops and helps
remove the free radicals produced due to salt (Acuña et al., 2019).
Sapre et al. (2018) reported halophilic Klebsiella sp. that tolerated
high salt concentration and produced antioxidant enzymes under
salt stress conditions.

Plant height and root length depend on nitrogen availability
and are also influenced by the ability of each isolate to
produce plant growth-promoting metabolites to improve plant
growth (Khumairah et al., 2018). The ability of rhizobacteria
to increase plant growth depends on the type of rhizobacteria
and their respective abilities. Rhizobacteria that produce multiple
metabolites and in higher concentrations provide more nutrients
to the plants and thus help grow plants. According to Gupta
et al. (2019), each isolate has different abilities in increasing
plant growth. The ability of rhizobacteria to increase plant
growth and yield depends on the type of rhizobacteria itself
(Egamberdieva et al., 2019; Khairnar et al., 2022). Zhihengliuella
halotolerant strain A1B62 and Brachybacterium sp. strain B0sh64
showed longer fresh root and heavier shoot fresh weight of
Suaeda maritima compared with other strains and control
(Alishahi et al., 2020).

Most of the saline soils along coastal areas have a low
organic matter content and low fertility. Consequently, an
integrated crop and soils management by planting adapted
and saline-tolerant rice variety combined with ameliorant
application and managing the biodiversity of microbe (microbial
fertilizers) as environmentally friend fertilizers are required for
rhizomicrobiome engineering to improve soil health, nutrient
status and availability, fertilizers efficiency, crop growth and
productivity, and alleviate salinity stress.

CONCLUSION

The salinity of agriculture is the major damaging stress that
negatively impacts the growth and yield of crops, including
rice. The physicochemical approaches to combat soil salinity
have fewer successes and more harmful effects. The use of
rhizobacteria that can tolerate high salt concentration while
producing beneficial plant metabolites can serve as effective
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bioinoculants to improve rice growth under salinity stress
conditions and help in salinity amelioration. This study reveals
that halotolerant P. stutzeri and K. pneumonia produce a wide
range of PGP metabolites and antioxidant enzymes that help crop
plants to grow under salinity stress. These isolates can be used as
potent bioinoculants for improving rice growth in saline soil. Due
to climate change impacts, it can be further developed as a new
biogenic agent to alleviate salinity stress in rice cultivation.
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Root-knot nematode (Meloidogyne incognita) is themost widespread nematode affecting

Solanaceae crops. Due to the lack of effective measures to control this nematode, its

management can be achieved, using biocontrol agents. This study investigated in vitro

efficacy of the antagonistic bacterial strain J211 isolated from tobacco rhizosphere soil

against M. incognita, and further assessed its role in controlling nematodes, both in pot

and field trials. Phylogenetic analysis of the 16S rRNA gene sequence of strain J211

assigned to Burkholderia arboris. Culture filtrates B. arboris J211 exhibited anematicidal

activity against the second-stage juveniles (J2s) of M. incognita, with a 96.6% mortality

after 24 h exposure. Inoculation of J211 in tobacco roots significantly reduced the

root galling caused by M. incognita, both in pot and field trials. Meanwhile, plant

growth-promoting (PGP) traits results showed that J211 had outstanding IAA-producing

activity, and the IAA production reached 66.60mg L−1. In the field study, B. arboris J211

also promoted tobacco growth and increase flue-cured tobacco yield by 8.7–24.3%.

Overall, B. arboris J211 as a high-yielding IAA nematicidal strain effectively controlledM.

incognita and improved tobacco yield making it a promising alternative bionematocide.

Keywords: nematode, Meloidogyne incognita, plant growth-promoting rhizosphere (PGPR), biocontrol, tobacco

INTRODUCTION

Plant-parasitic nematodes, such as root-knot nematodes (RKNs), cause over $100 billion in
annual crop losses, worldwide (Elling, 2013). Meloidogyne spp. is considered the most damaging
nematodes in the world (Jones et al., 2013). A remarkable stage in the life cycle of the RKNs is the
second-stage juveniles (J2s) which is the stage that has the capacity to move through soil and infect
plants (Topalovi et al., 2019). RKNs severely reduce crop production by absorbing nutrients from
host plants for self-reproduction (Williamson, 1999). These nematodes are a broad host range of
over 2,000 plant species (Sasser, 1980), including vegetables, beans, grains, grass shrubs, fruit trees,
and industrial crops (Bagheri et al., 2014). In particular,M. incognita, known as southern root-knot
nematode, causes the most devastating root-knot diseases (Akhyani et al., 1984).
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Over the past decades, several traditional strategies, including
rotation, resistance breeding, and application of nematicidal
agents, were used to control nematodes (Oka et al., 2012; Ralmi
et al., 2016; Makunde et al., 2018). Due to monoculture or
rotation with plant species that are also hosts (Nyczepir and
Thomas, 2009), coupled with the difficulty of cultivating disease-
resistant varieties (Sadeghi et al., 2021), RKNs control still
remains extremely difficult. Control of RKNs has been mostly
achieved through the use of nematicides, such as fumigants,
carbamates, and organophosphates (Karavina and Mandumbu,
2012), and despite their effectiveness, nematicides are highly
toxic to the natural environment and human health, that is
why their use being often banned (Sharma and Sharma, 2016).
During the last years, more emphasis has been given to nematode
management on green and environment-friendly alternative
strategies (Zhai et al., 2019).

Currently, biological control has shown an eco-friendly
approach to reducing nematode damage (Cheng et al., 2017).
Microorganisms are living biological agents that produce
bioactive molecules and have the ability to suppress, antagonize
and control nematodes in most cultivated fields (Chelinho
et al., 2017). Various antagonistic bacterial and fungal species
have been isolated for biocontrol of RKNs (Xiang et al.,
2017; Du et al., 2020). For example, previous studies have
demonstrated the biological control capability of bacterial
isolates of the genera Pseudomonas spp. (Ali et al., 2002), Bacillus
thuringiensis (Yu et al., 2015), Pasteurella penetrans (Kariuki
and Dickson, 2007) and Purpureocillium lilacinum (Kiewnick
and Sikora, 2003). Abbasi et al. (2013) used Bacillus spp. to
reduce nematode infestation of eggplants (Solanum melongena).
Pretreatment of tomato seeds with Streptomyces hydrogenans
DH-16 culture supernatant reduced nematode infestation and
promoted tomato seedlings’ growth (Sharma et al., 2020).
Purpureocillium lilacinum AUMC 10149 is used to control
the root-knot nematode M. incognita infestation of tomatoes
(Isaac et al., 2021). Microorganisms, the natural enemies
of nematodes, inhibit nematode disease through multiple
pathways: the production of toxins, antibiotics, crystal proteins,
and nematicidal substances (Zhang and Mo, 2006). A cyclic
dipeptide Cyclo (L-Pro-L-Leu) isolated from the metabolite
of Pseudomonas simiae MB751 has activity against the J2s of
M. incognita (Sun et al., 2021). M. incognita is synergistically
controlled by the crystal proteins Cry6Aa and Cry55Aa produced
by Bacillus thuringiensis (Peng et al., 2011). Cheng et al.
(2017) revealed that 11 volatile organic compounds produced by
Paenibacillus polymyxa KM2501-1 control M. incognita through
multiple strategies.

Although significant progress has been made in the use of
microorganisms to control RKNs in recent years, microbial
root competence was considered to be a key prerequisite for
successful biocontrol (Maurer et al., 2013). For this reason, new
nematicidal strains with long-term survival should be isolated
to control RKNs under field conditions. Plant rhizosphere soil
surrounds a variety of bacteria that promote plant growth
by dissolving phosphates, producing siderophores and plant
growth regulators. This bacterium is called plant growth-
promoting rhizobium (PGPR). PGPR is also considered a

potential alternative option for controlling RKNs (Groover
et al., 2020). Many studies indicated the antagonistic ability
of PGPR toward RKNs, including genera Bacillus, Serratia,
Pseudomonas, and Burkholderia (Gray and Smith, 2005). The
rhizosphere bacterium Pseudoxanthomonas japonensis ZKB-
2 showed strong nematostatic activity against M. incognita
on tomatoes (Lycopersicon esculentum) (Hu et al., 2018).
Pseudomonas aeruginosa and Burkholderia gladioli are used to
control M. incognita on tomatoes, remarkably reducing root
galls and promoting plant growth (Khanna et al., 2019). El-Aal
et al. (2021) reported that mixed application of Serratia spp.
and Pseudomonas spp. controlledM. incognita and promoted the
growth of sponge gourd (Luffa aegyptiaca). Bacillus cereus Bc-
cm103 isolated from cucumber (Cucumis sativus) rhizosphere
completely killed the J2s of M. incognita within 12 h, and
significantly reduced the infection of the nematode to cucumber
root (Yin et al., 2021). Even though many microbial agents
have been used to control root-knot nematodes, the activity and
stability of biological agents are still affected by environmental
factors, such as soil texture, moisture, and temperature.

Considering the harm of chemicals to the environment and
the instability of biological agents in the current application of
nematode control, it is necessary to screen an environment-
friendly and sustainable method of nematode control. The
objective of the present study was to evaluate the antagonistic
bacterial strain J211, isolated from tobacco rhizosphere soil, for
RKNs biocontrol potential on tobacco. Specifically, the purposes
were to assess the nematicidal activity of strain J211 on the
viability of M. incognita in vitro and to evaluate the efficacy of
the strain as a biocontrol agent under pot and field conditions.

MATERIALS AND METHODS

Isolation of Rhizospheric Bacteria
We followed the method described by Huang et al. (2014) with
modifications to isolate the rhizospheric bacteria. Rhizosphere
soil in which healthy tobacco plants grew was collected from
areas infested with tobacco root-knot nematode disease. Tobacco
rhizosphere soils were collected from Anning County, Yunnan

Province, China (102◦21
′
16

′′
E, 24◦56

′
20

′′
N). Soil samples (1 g)

were suspended in 10mL of sterile distilled water and mixed
on a table concentrator for 10min. The soil samples were
serially diluted (up to 10−7-fold), plated on a nutrient agar (NA)
medium, and incubated at 30 ± 2◦C for 2 to 3 days. Bacterial
colonies growing on the plates were isolated for further study
based on color and morphological characteristics.

Meloidogyne incognita Population
The second-stage juveniles (J2s) of M. incognita were obtained
from a pure population isolated in Fumin county, Yunnan
province, China from tobacco (Nicotiana tabacum var. Hongda)
roots. Eggs were extracted from roots according to Hussey
and Barker (1973) and hatched in sterile water at 25–28◦C for
72 h to obtain freshly hatched J2s. The collected J2s suspension
was diluted with sterile water to a concentration of 5,000 per
milliliter. Only freshly hatched J2s of M. incognita were used in
the experiments.
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Toxicity Tests of Bacterial Broth Culture
Filtrates
The isolated bacterial strains were screened using in vitro
nematicidal assay, for which purpose, they were transferred to
a NA medium plate. After activation on the NA plate at 30◦C,
purified single colonies were picked using a sterile inoculating
loop and placed in a 500ml conical flask containing 300ml
nutrient broth (NB). The isolated strains were grown in NB at
30◦C for 3 days with shaking at 180 rpm and filtered through a
0.22µm sterile filter unit to yield the culture filtrate. Three mL of
bacterial broth culture filtrates were added to 35mm Petri dishes,
then adding suspension containing ∼100 J2s in 20 µL sterile
water. The controls were sterile NB with 100 µg mL−1 rifampin
added to the Petri dishes. The number of dead nematodes was
recorded after 12, 24, and 36 h. Viability was established using the
hydroxide technique (Chen and Dickson, 2000), and nematodes
without mobility are considered dead. The mortality using the
Abbott (1925) formula: relative mortality (%) = [(mortality
in treatment—mortality in negative control)/(1—mortality in
negative control)]×100. All treatments were conducted with five
replicates and the experiment was repeated twice.

Identification of the Bacterial Strain
The DNA of J211 was extracted by Bacterial Genomic DNA
Extraction Kit (TaKaRa, Japan). The 16S rRNA gene was
amplified using universal primers 27F and 1492R. The PCR
products were separated on agarose gel (1%) by electrophoresis,
purified with the Agarose Gel DNA Extraction Kit (TaKaRa,
Japan) according to the manufacturer’s instructions, and
sequenced using the ABI3730xl platform (Beijing Tsingke
Biological Technology Co., Ltd, China). The sequence of J211 was
submitted to theNCBIGenBank database and accession numbers
were obtained. The acquired 16S rRNA sequence of J211 was
analyzed by using the EzBioCloud database. Other sequences of
related taxa were selected from the EzBioCloud database. The
Multiple Sequence Alignment was done using MEGA version
7. Phylogenetic tree of 16S rRNA gene sequences using MEGA
version 7 with distance options according to the Kimura two-
parameter model (Kimura, 1980) and the neighbor-joining (NJ)
method, and 1,000 bootstrap replications.

Biochemical Characterization of J211
The strain J211 was further characterized based on its
biochemical characteristics as per Bergey’s Manual of Systematic
Bacteriology (Holt et al., 1994). Routine biochemical tests like
Gram staining, spore staining, catalase activity, starch hydrolysis,
gelatin hydrolysis, indole test, nitrate reduction, Methyl Red (M.
R.) test, Voges-Proskauer (V. P.) test, and H2S production were
performed for J211.

Assessment of Plant Growth-Promoting
(PGP) Traits of J211
IAA Production
Indole-3-Acetic Acid (IAA) production of J211 in the culture
broth was determined by the colorimetric method as described
by Tang and Bonner (1948) with minor modifications. J211
was grown in NB and incubated at 28 ± 2◦C in an orbital

incubator shaker at 180 rpm for 144 h. The cells in samples
were harvested by centrifugation at 10,000 rpm for 10min. Then,
4ml of Salkowaski reagent (50mL 35% perchloric acid mixed
with 1ml of 0.5% FeCl3) were added to 2ml of supernatant
and incubated for 30min at room temperature in dark for the
development of color, and the absorbance was measured at OD
530 nm. The concentration of IAA present in supernatant was
calculated using a standard curve of IAA (Gordon and Weber,
1951).

Phosphate Solubilization
The strain J211 to be tested was inoculated into the Monkina
inorganic phosphorus liquid medium at a dose of 1% and
incubated at 28 ± 2◦C and 180 rpm for 7 days. Then,
2ml of the bacterial suspension were then centrifuged to
obtain the supernatant. Dissolved phosphorus content was
then quantified according to the antimony molybdenum anti-
colorimetric method (Wu et al., 2012).

Siderophore Production
Quantitative analysis of siderophore was performed by CAS
shuttle assay (Schwyn and Neilands, 1987). J211 was inoculated
in a sterile siderophore inducing medium (Alexander and
Zuberer, 1991) and incubated at 28 ± 2◦C in an orbital
incubator shaker at 180 rpm. After 7days, 1mL supernatant of
the culture was mixed with 1mL of CAS reagent and 20 µL of
Shuttle Solution (0.2M 5-sulfosalicyclic acid). After 20min of
incubation at room temperature, absorbance was read at 630 nm.
Siderophore Unit (%) was calculated using the following formula:
Siderophore Unit (%)= (Ar-As)/Ar× 100, where, Ar absorbance
of reference at 630 nm, As absorbance of the sample at OD
630 nm.

Pot Experiment
Tobacco var. Hongda is extremely susceptible to root-knot
nematodes, and for this reason, it was used in the assay.
The potting mix (pH 6.5–7) consisted of peat and a small
amount of soil amended with 0.3% (w/v) of a water-soluble
fertilizer (Haoyunzhixing R©, Haoshiji Chemical Industry Co.,
Sichuan, China). Three days before transplanting, each pot was
inoculated with 3,000 J2s of M. incognita. Then five-leaf stage
tobacco plants were transplanted into the pots (15cm diam,
13cm depth), one for each pot. J211 was inoculated in NB
at 30◦C for 3 days with shaking at 180 rpm, and then the
fermentation broth was diluted with sterile water to adjust
to 1 × 109 CFU ml−1. The experiment was split into four
treatments, including (i) untreated control with 300mLwater, (ii)
1 g of commercially available Purpureocillium lilacinum powder
(Xinlonghui R©, Xinlong Biotechnology Co., Jiangxi, China) was
diluted 300-fold with water, and 300ml of the suspension was
inoculated on the roots of tobacco plants, (iii) inoculated with
300ml culture of J211 adjusted to 1 × 109 CFU ml−1, and (iv)
1 g of commercially available P. lilacinum powder was diluted
300-fold with adjusted J211 culture (1 × 109 CFU ml−1), and
300ml of the mixed suspension was inoculated on the roots of
tobacco plants. Five replicated pots were used for each treatment.
Each experiment was conducted twice, wherein plants were
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maintained at 25–28◦C and relative humidity between 60 and
70% for 8 weeks.

Plant height was measured from five plants per treatment
after 8 weeks. The root galling index (GI) was determined
using a 0 to 10 rating system (Barker et al., 1986), where 0 =

no galls and 10 = 90–100% of roots galled. Egg masses were
stained in aqueous phloxine B and enumerated under a dissecting
microscope (Dickson and Struble, 1965).

Field Experiment
In April 2019, field trials were conducted in tobacco fields at
Fumin county, Kunming, China (102◦61

′
45

′′
E, 25◦47

′
34

′′
N). The

field has been in conventional tobacco products for many years
and was infested with M. incognita (510 ± 23 nematodes per
100 g soil). The soil type was sandy clay with 38.9 g kg−1 of
organic matter. The available nitrogen (AN), phosphorous (AP),
and potassium (AK) contents were 153.6mg kg−1, 68.7mg kg−1,
and 512mg kg−1 in the field, respectively, and pH was 5.37.
Potassium sulfate (150 kg ha−1) and N-P-K compound fertilizer
(600 kg ha−1) were applied as basal fertilizers.

Tobacco var. Hongda was also used in the field trials of five-
leaf stage plants. Five treatments were applied: (i) a 12,000-
fold dilution of fluopyram (Lufta R©, Bayer Crop Science, Beijing,
China), (ii) a 2,000-fold dilution of fosthiazate (Sunchungtan R©,
Farm Hannong Co., Seoul, Korea), (iii) a 10-fold dilution of
Burkholderia arboris J211 broth culture(J211 was inoculated in
5 L NB at 30 ◦C, 180 rpm for 7 days with a concentration of about
2.6 ×1011CFU ml−1), and (iv) a 300-fold dilution P. lilacinum
(Xinlonghui R©, Xinlong Biotechnology Co., Jiangxi, China), the
application of (v) water was the control. 300mL aliquot of each
treatment was poured into the soil around the tobacco roots
four times every 15 days. The experiment was conducted as a
completely randomized block design with three replicates, each
replicated plot consisted of a single row, 25m long, with 50
tobacco plots under the same management.

To assess tobacco growth after inoculating with J211,
agronomic characters, including height, stem girth, effective
leaves, and leaf area, were investigated on ten random plants per
plot at the topping stage (75 days after inoculation with J211).
Furthermore, flue-cured tobacco yields were recorded according
to the National Standard (GB 2635-1992). The disease index
and control efficacy were recorded after harvest according to the
National Standard (GB/T 23222−2008). Root-knot severity was
rated on a standard scale from 0 to 9: 0, no symptoms; 1, less
than a quarter of the roots had a few root-knots; 3, one quarter to
one-third of the roots have a few root-knots; 5, one third to one-
half of the roots have root-knots; 7, more than one-half of the
roots have root-knots; 9, all roots are covered with root-knots.
The disease index (DI) and control efficacy were calculated using
the following formulas:

DI = Σ[(rating× number of plants rated)/

(total number of plants× the highest

rating)]× 100

Control efficacy (%) = [(DI of the control − DI of the

treatment)/DI of the control]× 100

Data Analysis
Data were analyzed by one-way ANOVA, and the means of
the treatments were separated by Duncan’s multiple-range test
(P < 0.05) using SPSS software (version 23 for Windows; SPSS,
Chicago, IL, USA).

RESULTS

Identification of Bacterial Strain and Its in
vitro Nematicidal Activity
We isolated and purified 17 strains of bacteria from tobacco
rhizosphere soil, and in vitro nematicidal assays showed that the
fermentation supernatants of 4 strains had toxic effects on M.
incognita J2s (data not shown). In particular, the isolatedJ211
showed high killing activity against M. incognita J2s. Testing in
vitro displayed that the J211 culture filtrates exhibited highly
nematocidal activity against J2s of M. incognita, with mortality
close to 96.6% 24 h and 100% after 36 h (Figure 1). The colony
of J211 was round, white, and non-transparent, with a smooth
surface (Figure 2A). The 16S rRNA gene sequence of J211
was deposited at the NCBI GenBank database with accession
MT879598. J211 was identified to the species level by using
the 16S rRNA gene sequence to construct an NJ phylogenetic
tree, the 16S rRNA sequence of J211 from other selected species
(Figure 2B). The tree showed that J211 was located at the same
branch as Burkholderiaarboris R-24201, with a 99% similarity to
B. arboris.

Biochemical Characterization and Plant
Growth-Promoting (PGP) Traits of J211
The biochemical characteristics of J211 were determined
according to Gram staining, spore staining, catalase test, starch
hydrolysis, gelatin hydrolysis, indole test, nitrate reduction,
and methyl red (M. R.), Voges-Proskauer (V. P.) and H2S
production (Table 1). J211 had a strong ability to produce IAA,
with the production amount reaching 66.60mg L−1 (Table 1).
Quantitative analysis showed that J211 could dissolve inorganic
phosphorus, with the dissolved amount reaching 3.41mg L−1

(Table 1). J211 showed a low siderophore production efficiency
of only 0.19% (Table 1).

Effect of J211 for Control of M. incognita in
Pot Trials
To evaluate the efficacy of J211 against M. incognita under
potted conditions, we conducted two rounds of tobacco pot
experiments. Plant height, galling index (GI), and the number of
egg masses were analyzed after 8 weeks (Table 2). All nematicidal
treatments, including P. lilacinum or J211, greatly decreased GI
and egg masses compared to the untreated control. Due to the
severe infestation of root-knot nematodes, the plant height of
control was significantly lower than other treatments. In the
treatment of inoculated with P. lilacinum, J211, and combined
P. lilacinum and J211, insignificant differences were observed
for height and GI, in the pot trials. Combined inoculation of
P. lilacinum and J211 significantly reduced the number of egg
masses compared to their respective inoculations alone.
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FIGURE 1 | The nematocidal activity of the culture filtrates from J211 against the J2s of M. incognita at different times. Values are means ± standard deviation of two

runs with five replicates each (A). Relationships among means were analyzed by one-way ANOVA and Duncan’s multiple-range test (P < 0.05). Means with the same

letter did not differ significantly. Nematodes activity shows control, curved are vigorous (B); the antagonistic stiff died and have no vitality (C) after 24 h. Bar: 500µm.

FIGURE 2 | Colony morphology and phylogenetic tree of strain J211. Colony morphology of J211 on NA medium (A). Phylogenetic tree constructed with J211 and

other type strains of related species in Burkholderia based on16s rRNA gene sequences (B). The bootstrap consensus tree, inferred from 1,000 replicates, was

reconstructed using the neighbor-joining (NJ) method based on the general time-reversible model.

TABLE 1 | Physiochemical characteristics and plant growth-promoting (PGP) properties of J211.

Biochemical tests PGP traits

Gram stain - Indole test + IAA production (mg L−1) 66.60 ± 0.31

Flagellum staining - Nitrare reduction + Phosphate solubilization (mg L−1) 3.41 ± 0.02

Catalase + R. test + Siderophore production (%) 0.19 ± 0.02

Starch hydrolysis - V. P. test -

Gelatin hydrolysis + H2S production +

–, negative result; +, positive result.
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TABLE 2 | Effects of J211 on the growth of plants and the formation of root-knots in tobacco roots caused by M. incognita in the pot trial.

Treatment Height (cm) Galling index (GI) No. of egg masses per plant

Control 50.4 ± 2.8b 6.1 ± 06a 167.1 ± 13.2a

P.lilacinum 59.9 ± 1.5a 1.7 ± 0.5b 45.3 ± 9.8b

J211 61.2 ± 2.6a 1.6 ± 0.5bc 47.2 ± 8.9b

P.lilacinum + J211 61.8 ± 1.6a 1.2 ± 0.4c 35.0 ± 8.4c

Each value represents the mean ± standard deviation of one experiment with five replicates. Relationships among means were analyzed using a one-way ANOVA and Duncan’s

multiple-range test (P < 0.05). Means followed by the same letter within a column are not significantly different.

Control of Tobacco Root-Knot in Field
Experiments
In the field trial, the role of different treatments to nematodes
was evaluated after tobacco harvest. The roots of the untreated
control were severely damaged after nematode infestation, and
the root knots were thick (Figure 3E). However, four other
nematicidal measures significantly reduced disease symptoms
at the root of tobacco (Figures 3A–D). Moreover, the broth
culture of J211 at a 10-fold dilution (DI = 91.1), prominently
decreased the DI of tobacco roots by 57.8 compared to untreated
control (DI = 33.3) (Figure 4). No difference appeared in
the tobacco DI after J211 treatment with the chemical agents
fluopyram and fosthiazate. Nematicidal applications significantly
increased tobacco height compared to untreated control. After
chemical and biological agents treatment, caused byM. incognita
was inhibited. The control effects were 70% (fluopyram),
56.4% (fosthiazate), 64.3% (J211), and 42.4% (P. lilacinum),
respectively. Particularly, the application of J211 displayed a
better effect on the promotion of tobacco height and stem girth,
with an increase of effective leaves and leaf area, in comparison to
chemical nematicides and P.lilacinum(Table 3). At harvest, the
tobacco yield was greater in the J211 treatment than in other
treatments (Table 3).

DISCUSSION

Root-knot nematodes are severe threats to world agriculture. The
application of bacteria especially PGPR, and biological control of
RKNs have drawn increasing attention (Siddiqui and Futai, 2009;
Xiang et al., 2017). In vitro tests from this study indicated J211 a
high mortality ofM. incognita J2s. Phylogenetic analysis assigned
the strain J211 to B. arboris. To our knowledge, this is the first
report of antagonistic activity shown by a strain of B. arboris
againstM. incognita.

Both the pot and field trials demonstrated the potential of
B. arboris J211 as a biological nematicide for the management
of RKNs in tobacco cultivars. The use of biocontrol bacteria
for the management of nematodes is difficult due to inefficient
bacterial colonization (Liu et al., 2020). It is stated that PGPR
has a strong ability to survive in and colonize rhizosphere soil
(Saharan andNehra, 2011). High control efficacy was obtained by
drenching the soil with rhizosphere isolates bacteriaJ211to likely
ensure colonization, and drastically reduced RKNs incidence. In
pot experiments, biocontrol treatments, including inoculation
with J211, P. lilacinum, and mixed inoculation of J211 and P.

lilacinum, significantly reduced nematode-induced root damage
compared to controls. The results of the pot experiment showed
that the three biocontrol treatments had no significant difference
in root galling index (GI) caused by nematodes. To evaluate the
efficacy of J211 in controlling nematodes under field conditions,
we compared the effects of chemical and biocontrol fungi
treatments. The application of J211 reduced the root damage with
a nematode control efficacy similar to fluopyram or even greater
than that of fosthiazate and P. lilacinumin in the field experiment.
P. lilacinum, an egg-parasitic fungus with the ability to infect
and destroy nematode eggs, has become a commercial biological
agent for nematode control (Mendoza et al., 2004; Baidoo et al.,
2017). Indeed, the stability of biologics is affected by a variety of
environmental factors. P. lilacinumwas significantly less effective
than J211 in controlling nematodes under field conditions.
The possible explanation is that J211 isolated from tobacco
rhizosphere soil is more suitable to colonize tobacco rhizosphere
soil to play its role. The present study revealed the biocontrol
potential of J211 in controlling M. incognita. PGPR mediated
plant resistance toward RKNs is provided by the production
of various antagonistic compounds, lytic enzymes, toxins, and
antibiotics that inhibit the nematode proliferation or directly
kill them (Cetintas et al., 2018). In this study, we observed that
the effect of J2s completely killed by J211 fermentation filtrate
within 36 h may be somewhat similar to that reported by Köthe
et al. (2003) that Burkholderia cepacia culture filtrate containing
extracellular toxin killed Caenorhabditis elegans within 24 h.
However, the specific mechanism of action of J211 against M.
incognita is not understood.

Furthermore, we measured the PGP traits of J211 and
found that the ability to dissolve phosphate and produce
siderophore was not outstanding, but noted that J211 was a
high-yielding strain of IAA with a yield of up to 66.6mg
L−1. Tobacco inoculated with J211 gave rise to an 8.7–24.3%
flue-cured tobacco yield increase in this study. On the one
hand, J211 reduced nematode damage to tobacco roots, and
on the other hand, it may be related to J211, which produces
IAA activity, and promoted root growth. J211 had a similar
nematode control effect as the chemical agent fluopyram, but
J211 promoted the growth of lateral roots of tobacco more
obviously (Figure 3C). PGPR has been described as being able to
fortify plant development by regulating plant hormones, such as
auxins, gibberellins, cytokinin, and ethylene (Tahir et al., 2017).
Auxin is a phytohormone that regulates most plant processes.
Though endogenous auxin synthesis occurs in plants, it also
depends on the external supply of auxin which can be fulfilled
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FIGURE 3 | Root symptoms of tobacco with different treatments after harvest. Fluopyram (A), Fosthiazate (B), J211 (C), P. lilacinum (D), Control (E). Bar: 5 cm.

FIGURE 4 | Effect of chemical and biological nematicides against tobacco RKNs in the field. Bars represent the mean ± standard deviation of three replicates (10

tobacco plants per replicate). Bars with the same letters are not significantly different (P > 0.05) based on Duncan’s multiple-range tests.

TABLE 3 | Effects of different treatments on agronomic characteristics, yield, and control efficacy of M. incognita in tobacco field assay.

Treatment Height (cm) Stem girth (cm) Effective leaves Leaf area (m2) Yield (kg ha−1)

Fluopyram 119.0 ± 11.4b 10.5 ± 1.4bc 18.3 ± 1.6b 0.151 ± 0.030b 2641.4 ± 156.8b

Fosthiazate 120.8 ± 20.1b 10.6 ± 1.3bc 18.5 ± 1.7b 0.151 ± 0.043b 2523.4 ± 183.5bc

J211 131.3 ± 10.3a 11.8 ± 1.1a 20.2 ± 1.1a 0.172 ± 0.025a 2872.2 ± 114.9a

P. lilacinum 118.6 ± 18.3b 11.1 ± 1.5b 18.5 ± 1.9b 0.153 ± 0.028b 2354.9 ± 152.1cd

Control 97.6 ± 12.1c 10.0 ± 1.6c 18.2 ± 2.9b 0.115 ± 0.037c 2311.2 ± 118.8d

Each value represents the mean ± standard deviation of three replicates (10 tobacco plants per replicate). Means were separated using Duncan’s multiple-range test (P < 0.05). Means

with the same letter are not significantly different.

by PGPR isolates that occur in the rhizosphere of the plant
(Patten and Glick, 2002). Islam et al. (2015) reported that
cucumber rhizosphere isolates, including Pseudomonas stutzeri,
Bacillus subtilis, Stenotrophomonas maltophilia, and Bacillus
amyloliquefaciens, produced IAA levels as high as 26.78−51.28
mg L−1. Treatment of these PGPR strains significantly promoted
cucumber growth. In addition, the B. arboris CSRS12 isolated by
Singh et al. (2020) promoted mung bean (Vigna radiata) lateral
root growth by solubilizing phosphate and siderophores. This
is different from the underlying mechanism that B. arboris J211
promotes tobacco plant growth through high-yield IAA observed
in this study.

Unlike chemical nematicides, bacterial agents probably create
no harm to humans, animals, and the environment (Rahman
et al., 2018; Vurukonda et al., 2018). J211 can be safely and
continuously used during crop cultivation to control nematodes
and has excellent IAA producing activity, which significantly
promoted the growth of tobacco plants and improved the yield
of flue-cured tobacco. PGPR produces bioactive substances in the
rhizosphere to resist pathogens and promote plant growth. PGPR
have a distinct advantage over the obligate nematode parasite
Pasteuria penetrans as potential biocontrol agents because they
can establish in the rhizosphere independently of the nematode
population. In conclusion, the utilization of PGPR is treated
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as an environmentally sound and promising method for the
management of RKNs and increases crop yields through both
direct and indirect mechanisms (Lugtenberg and Kamilova, 2009;
Vejan et al., 2016).

CONCLUSION

In this study, the strain of Burkholderia arborisJ211 was
isolated from the rhizosphere soil of tobacco plants. The
nematicidal assay test demonstrated the high nematicidal activity
of J211 fermentation metabolites within 24 h. Inoculation with
J211 significantly reduced infestation of tobacco roots by M.
incognita in pot and field experiments. Moreover, J211 is a
high-yielding strain of IAA, and the yield of tobacco plants
treated with J211 was significantly increased. It is, however,
necessary to find how J211 acts against RKNs, and the active
substance involved, to develop a potential bionematicide from
this isolate.
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Soil salinity is one of the major global issues affecting soil quality and agricultural
productivity. The plant growth-promoting halophilic bacteria that can thrive in regions
of high salt (NaCl) concentration have the ability to promote the growth of plants in
salty environments. In this study, attempts have been made to understand the salinity
adaptation of plant growth-promoting moderately halophilic bacteria Chromohalobacter
salexigens ANJ207 at the genetic level through transcriptome analysis. In order to
identify the stress-responsive genes, the transcriptome sequencing of C. salexigens
ANJ207 under different salt concentrations was carried out. Among the 8,936
transcripts obtained, 93 were upregulated while 1,149 were downregulated when the
NaCl concentration was increased from 5 to 10%. At 10% NaCl concentration, genes
coding for lactate dehydrogenase, catalase, and OsmC-like protein were upregulated.
On the other hand, when salinity was increased from 10 to 25%, 1,954 genes were
upregulated, while 1,287 were downregulated. At 25% NaCl, genes coding for PNPase,
potassium transporter, aconitase, excinuclease subunit ABC, and transposase were
found to be upregulated. The quantitative real-time PCR analysis showed an increase
in the transcript of genes related to the biosynthesis of glycine betaine coline genes
(gbcA, gbcB, and L-pro) and in the transcript of genes related to the uptake of
glycine betaine (OpuAC, OpuAA, and OpuAB). The transcription of the genes involved
in the biosynthesis of L-hydroxyproline (proD and proS) and one stress response
proteolysis gene for periplasmic membrane stress sensing (serP) were also found to
be increased. The presence of genes for various compatible solutes and their increase
in expression at the high salt concentration indicated that a coordinated contribution by
various compatible solutes might be responsible for salinity adaptation in ANJ207. The
investigation provides new insights into the functional roles of various genes involved in
salt stress tolerance and oxidative stress tolerance produced by high salt concentration
in ANJ207 and further support the notion regarding the utilization of bacterium and their
gene(s) in ameliorating salinity problem in agriculture.
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INTRODUCTION

Salinity is one of the major threats to crop production all
over the globe (Sharma et al., 2015; Kushwaha et al., 2020;
Kojonna et al., 2022). It has been reported that about 20%
of total cultivated and 33% of irrigated agricultural lands in
the world are affected by salinity and sodicity problems, which
resulted in the reduction of the average yield of major food
grain crops by >50% (Shrivastava and Kumar, 2015; Kashyap
et al., 2017; Sharma et al., 2019; Daba and Qureshi, 2021).
At present, salinity is reported as a major problem in over
100 countries, and no continent is untouched by this malady
(Parihar et al., 2015; Shahid et al., 2018). The countries where
salt-affected soils exist at a large scale include, but are not
restricted to, Australia, Bangladesh, China, Egypt, India, Iran,
Iraq, Mexico, Pakistan, Syria, Turkey, the former USSR, and
the United States (Chhabra, 2022). In India, most states like
Gujarat, Uttar Pradesh, Maharashtra, West Bengal, and Rajasthan
are struggling with the same issue (Sharma and Singh, 2017;
Srivastava et al., 2019a,b). This affects most of the stages of
crop development and production such as germination, plant
growth, flowering, fruiting, seed setting, and yield (Kashyap et al.,
2020). In this connection, several attempts have been made to
increase the salt tolerance of crops with techniques ranging from
selection within species, hybridization with wild relatives, the
use of cell culture, and the use of genes to develop transgenic
plants which can overcome salt stress (Sanghera et al., 2011;
Kotula et al., 2020). Unfortunately, these approaches are time-
consuming and economically unviable. Application of halophilic
and halotolerant bacteria that promote plant growth can be used
as one of the cheap, environmentally friendly, and promising
alternatives to alleviate the toxic effects of salinity (Alexander
et al., 2020; Orhan, 2021).

Halophilic bacteria are endowed with a unique inherent
character of salt tolerance and adopt diverse types of
osmoadaptation mechanisms, which confers them considerable
importance these days due to their utilization in the agriculture,
food, and fermentation industries (O’Byrne and Booth, 2002;
Vaidya et al., 2018). The intracellular accumulation of the
small organic osmolytes is a more common strategy to cope
with the osmotic stress produced by the presence of high
salt concentrations in the extracellular environment. These
osmolytes have been reported to protect the plant cells from the
high salt concentrations and also function as osmoprotectants
(Slama et al., 2015). These are also termed compatible solutes,
as they provide osmotic balance without interfering with the
cell function and proper folding of the protein. It is worth
mentioning that microorganisms have evolved with a variety
of transporters and efflux systems to maintain osmolarity
(Kashyap et al., 2016; Hoffmann and Bremer, 2017). There are
several compounds, for example, sugar molecules (sucrose and
trehalose), polyols (glycerol, glucosylglycerol, arabitols, etc.),
amino acids (proline, hydroxyproline, alanine, glycine, glutamate
derivatives, etc.), quaternary amines (betain, choline, etc.), and
ectoine and its derivatives, that act as osmoprotectants (Patel
et al., 2018; Salvador et al., 2018; Khatibi et al., 2019; Wiesenthal
et al., 2019). These organic molecules can be either synthesized in

the cell or can be transported from the extracellular environment.
Most of the molecules are accumulated in the cell because of
their de novo synthesis by specific biosynthetic pathways, but the
uptake of the osmoprotectant from the external environment is
energetically preferred over de novo synthesis (Roberts, 2005;
Vargas et al., 2008).

Chromohalobacter salexigens is a halophilic γ-
proteobacterium that grows optimally in high salt concentrations
(Arahal et al., 2001; Srivastava et al., 2019a). Being a highly
salt-tolerant microorganism, several groups have used this as
a model organism to study osmoadaptation in prokaryotes
(Vargas et al., 2008). C. salexigens mainly adopt two strategies
for survival under osmotic stress: first is either de novo synthesis
of the osmoprotectants or uptake from the environment and
second is the enhancement in membrane adaptation via the
synthesis of the membrane cardiolipin and cyclopropane
fatty acids (Vargas et al., 2008). C. salexigens has also been
reported to synthesize ectoine and β-hydroxyectoine as the
main osmoprotectants in the absence of the main compatible
solutes betain in the external environment (García-Estepa et al.,
2006; Salvador et al., 2018). The osmoprotectants accumulated
in response to increasing salinity act as protecting agents
for cells and their organelles. C. salexigens ANJ207 exhibits
PGP traits, that is, siderophore production and Zn, P, and K
solubilization, at higher salt concentrations and has shown
promising results in wheat and rice (unpublished results).
Although the beneficial plant growth-promoting effects of
C. salexigens under salt stress have been observed by other
workers (Anbumalar and Ashokumar, 2016; Elsakhawy et al.,
2019), the underlying molecular mechanisms and the genes
responsible for salt tolerance, along with their gene expression
levels, need to be identified to optimize the field applications
of C. salexigens in agricultural and allied sectors. At present,
limited information is available for understanding the dynamics
of complex salt interactions and the genes responsible for salt
tolerance in C. salexigens. Therefore, in the present study,
attempts have been made to fill this research gap by exploring
the salinity adaptation of C. salexigens ANJ207 at the genetic
level through transcriptome analysis using next-generation
sequencing and qRT-PCR to obtain new insights into the
understanding of the adaptation of C. salexigens ANJ207 to
salt stress. We reported that the number of upregulated genes
was positively correlated with salt concentration. Moreover,
higher salt concentration not only induces the genes related
to osmolarity regulation but also induces the genes related
to protein folding and oxidative stress. We also confirmed
the expression of the genes for glycine betain and proline
biosynthesis, as well as the transporters using the qRT-PCR.
The qRT-PCR results confirm the validity of the transcriptome
analysis. These findings will further help to unravel the complex
biological mechanisms regarding osmotic stress adaptation and
various mechanisms involved in the production of secondary
metabolites under saline conditions. Harnessing the potential
of C. salexigens ANJ207 and its secondary metabolites for
the development of novel bioinoculant can be one of the
prospective solutions to overcome the soil salinity problem in
the near future.
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MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
Chromohalobacter salexigens is one among the nine known
species in the genus Chromohalobacter belonging to the family
Halomonadaceae. Chromohalobacter salexigens ANJ207 was
isolated from the salt crystals deposited in the pipelines of
the Indian Council of Agricultural Research-National Bureau
of Agriculturally Important Microorganisms (25.8982◦ N and
83.4891◦ E) and grew profusely in the presence of 30% NaCl
(Srivastava et al., 2019a).

RNA Extraction, Library Construction,
and RNA Sequencing
To investigate the transcriptional response of C. salexigens
ANJ207 to osmotic stress, three RNA-Seq libraries were generated
from three different conditions: low salinity (5% NaCl), optimal
salinity (10% NaCl), and high salinity (25% NaCl). Cell samples
were collected during the exponential phase when cultures
reached enough biomass to assure isolation of 100–500 ng
of mRNA for RNA-Seq library construction. Total RNA was
isolated from Chromohalobacter salexigens ANJ207 grown at
different concentrations of salt [NaCl 5% (C1), 10% (C2), and
25% (C3)] using the manufacturer’s protocol of GeneJET RNA
purification kit with slight modification as described elsewhere
(Srivastava et al., 2021). Two biological replicates were used for
transcriptome analysis. The de novo transcriptome sequencing
was performed using the Illumina HiSeq 2500 platform in the
paired-end module (Liu et al., 2014). The raw fastq files were
processed before performing assembly. Prior to the assembly,
base trimming, removal of adapter sequences, and filtering
out reads with an average quality score of less than 30 were
performed in every paired-end read. Further, the rRNAs were
removed based on the reference data from the SILVA database
(Quast et al., 2012). The cleaned reads were aligned to the
assembled transcriptome (length ≥ 200 bp) using the Bowtie2
program (Langmead and Salzberg, 2012). The cleaned RNA-
Seq reads from the libraries were normalized and subjected to
de novo transcriptome assembly using Trinity (Huang et al.,
2016). Normalization was performed using the variance analysis
package of the EdgeR program (Robinson et al., 2010). The
assembled transcripts were annotated using BLASTX against
the non-redundant nucleotide databases. Bioconductor EdgeR
Package was used for the differential gene expression analysis.
The abundance of all genes was calculated using particularly
mapped reads by the fragments per kilobase of transcript per
million fragments mapped (FPKM) through RPKM functions
of EdgeR. To determine the threshold p-value in multiple tests,
Benjamin and Hochberg’s method of false discovery rate (FDR)
(Benjamini and Hochberg, 1995) was used. The p-value cutoff was
kept at < 0.05.

Quantitative PCR Analysis for Validation
of RNA-Seq Data
A single colony of Chromohalobacter salexigens ANJ207 was
inoculated into 100 ml of nutrient broth medium containing

5% NaCl and grown overnight at 32◦C and 150 rpm. The
secondary inoculation was done in triplicate using 1%
overnight grown primary culture in 100-ml conical flasks
containing 50 ml of sterile nutrient broth and incubated at
different concentrations of NaCl (5, 10, and 25%) at 150 rpm
for 12 h. Total RNA was isolated from Chromohalobacter
salexigens ANJ207 grown at different concentrations of
NaCl (5, 10, and 25%) using the manufacturer’s protocol
of GeneJET RNA purification kit with slight modifications
(Srivastava et al., 2021). RNA intensity and purity were
checked by qualitative (1.2% formaldehyde agarose gel
electrophoresis) and quantitative analysis (using Nanodrop).
The cDNA was synthesized using 2 µg of RNA from each
sample of Chromohalobacter salexigens ANJ207 by using
an iScript cDNA synthesis kit with oligo (dT) and random
hexamer primers.

The quality of the cDNA was checked by simple amplification
of the 16S rRNA gene. Each cDNA sample was diluted in
nuclease-free miliQ to obtain the concentration of 100 ng/µl for
the qRT-PCR experiment, and 16S rRNA RT primers were used
as endogenous control. SSO Fast EvaGreen Supermix (Biorad)
was used. For real-time PCR, initial heat activation at 95◦C
for 5 min, followed by 40 cycles of amplification by a three-
step cycling protocol (denaturation at 95◦C for 30 s, annealing
at 55◦C for 30 s, and extension at 65◦C for 45 s) was done.
Melting curve analysis was performed by heating the plate at
95◦C for 30 s, incubating at 65◦C for 30 s, and then heating to
95◦C for 30 s. The sample was performed in triplicates. G8830A
AriaMx Real-Time PCR system from Agilent was used for the
experimentation, and the results were analyzed by the Agilent
AriaMx software version 1.5.

RESULTS AND DISCUSSION

Chromohalobacter salexigens ANJ207
Growth Stimulation by a Broad Range of
Salt Concentration
The strain was isolated from the salt crystals deposited in
the pipelines of the Indian Council of Agricultural Research
National Bureau of Agriculturally Important Microorganism
(ICAR-NBAIM), Kushmaur, Mau (Srivastava et al., 2019a). The
salt crystals were added to the nutrient broth with 20% NaCl
(wt/vol) and incubated at 28◦C for 72 h. The broth was then
serially diluted till 10−5 dilution, and 100 µl aliquots from
the dilutions 10−2 to 10−4 were spread on nutrient agar (NA)
supplemented with 2.5–35% NaCl.

Chromohalobacter salexigens ANJ207 was grown at different
regimes of salt (NaCl) ranging from 2.5% to 25%, and the
samples were collected at different time intervals and a growth
curve was prepared (Figure 1). Based on the growth curve
analysis at different salt concentrations, we concluded that the
strain was not able to grow below 2.5% salt concentration.
This result indicated that ANJ207 requires at least 2.5%
NaCl for growth, which was in line with earlier published
reports, where a minimal salt requirement is reported as an
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FIGURE 1 | Growth kinetics at different concentrations of the NaCl. Chromohalobacter salexigens ANJ207 was grown in the flask with the initial equal cell
concentration at different concentrations of salt. The growth was monitored and OD600 was calculated at different time intervals. OD600 was plotted against different
time intervals.

TABLE 1 | Growth statistics of Chromohalobacter salexigens ANJ207.

NaCl conc (%) Growth rate constant (h−1) Mean generation time (h)

2.5 0.002 500

5 0.048 20.833

10 0.232 4.310

15 0.296 3.378

20 0.195 5.128

25 0.098 10.204

essential component for the growth initiation of a moderate
halophile Chromohalobacter salexigens (O’Connor and Csonka,
2003). Initially, at 5% NaCl concentration ANJ207 grows
efficiently, but after some time the growth was retarded.
The salt concentration of 10–15% was considered to be an
optimal concentration where it grows efficiently with a half-
generation time of 3–4 h, respectively. After that, at 20 and
25% salt concentration, the growth was very slow with a mean
generation time of 5–10 h−1, respectively (Table 1). These
results are consistent with earlier studies, where halophilic
bacteria (Halobacillus halophilus, Halobacillus litoralis, Bacillus
halophilus, Marinococcus halophilus, and Saliiococcus hispanicus)
were documented to grow optimally at NaCl concentrations
ranging from 10 to 15% (Sarwar et al., 2015). In addition,
plant growth-promoting halophilic bacteria, that is, Halomonas
pacifca, H. stenophila, Bacillus haynesii, B. licheniformis, and
Oceanobacillus aidingensis, were also reported to grow optimally
in the media containing 10–15% NaCl concentration, although
they were able to tolerate up to 25% NaCl concentration with
restricted growth (Reang et al., 2022).

TABLE 2 | List of the number of transcripts upregulated or downregulated in
different differential expression combinations obtained from the EdgeR program.

Deseq
Combination

Upregulated
transcripts

Downregulated
transcripts

Transcripts with
no significance

C1 vs. C2 93 1149 7694

C1 vs. C3 1418 1705 5813

C2 vs. C3 1954 1287 5695

RNA-Seq Analysis Reveals Salt
Stress-Driven Expression of
Chromohalobacter salexigens ANJ207
Transcripts
RNA-Seq analysis at different salt concentrations (5, 10, and
25% termed as C1, C2, and C3, respectively) was performed
to investigate the transcriptome changes in salt stress. An
average of 38,857,852, 35,751,018, and 44,695,124 million raw
paired-end reads were obtained from C1, C2, and C3 samples,
respectively and low-quality mapped reads were evaluated and
eliminated (Supplementary Table 1). After pre-processing the
data, an average of 37,440,398, 34,429,792, and 42,932,742
million cleaned paired-end reads were obtained for C1, C2, and
C3, respectively (Supplementary Table 2). The RNA-Seq reads
from three libraries were combined together using the Trinity
software, and the final de novo transcriptome was assembled
having 8,936 transcripts. The average calculated length of the
transcript was found to be ∼1,366.71 bp with the N50 of
4,109 (Supplementary Table 3). Subsequently, the annotation
of the assembled transcripts was done using the BLASTX.
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Non-redundant (NR) nucleotide databases were used for the blast
search. Out of the 8,936 transcripts, 8,649 transcripts had at least
one significant hit, which was identified by a BLASTX search.
The cleaned reads were aligned to the assembled transcriptome
(length ≥ 200 bp) using the Bowtie2 program (Langmead
and Salzberg, 2012). The alignment summary is provided in
Supplementary Table 4. The expression level of the sequencing
data was evaluated using FPKM values obtained through RPKM
functions in EdgeR (Abbas-Aghababazadeh et al., 2018; Chen
et al., 2020). The distribution statistics of the FPKM values are
listed in Supplementary Figure 1. The figure showed that most
of the genes were between 1 and 10 expression level categories.

Because of the differences in the length of the genes and
the variation in the library size in each sample, the deviation
can be seen in the RNA-Seq analysis. So it is very important to
normalize the data for the removal of the differences in statistical
deviation that can distort the sequencing analysis (Risso et al.,
2011; Hansen et al., 2012). The data were normalized using
the variance analysis package EdgeR program, followed by the
calculation of the p-value (Anders and Huber, 2010). The p-value
determines the statistical significance of the number of reads
per gene in the biological samples (Tan et al., 2003). Using the
EdgeR software, the number of the reads for each transcript
can be mapped for the differential gene expression analysis.
The abundance of a particular transcript in different samples
of the RNA-Seq was revealed by the counts per million (CPM)
value. The CPM represents the expression value of the transcript.
A FDR cutoff for p-value was applied (<0.05) to select 1,242,
3,123, and 3,241 differentially expressed genes (DEGs) (Table 2).

To graphically differentiate the DEGs, an MA plot was
drawn between log fold change in expression and average log
CPM (Figures 2A–C). Each gene is represented by a black
dot. The blue lines represent the log FC ± 1.0 threshold, and
the yellow line indicates a log ratio of zero. The dots in the
plus direction represent the upregulation and in the minus
direction represent the downregulated genes. Figure 2A clearly
indicates that at a low concentration of the salt (C1), the
majority of the genes displayed downregulation. On the other
hand, upregulation in the level of gene expression was noticed
in the cases of C2 and C3 with a rise in salt concentration
(Figures 2B,C). The genes upregulated and downregulated at
each salt concentration C1 (5%), C2 (10%), and C3 (25%) were
also compared. The result shows that from C1 to C2 only 93 genes
were upregulated. Further, it has been noticed that 1,149 genes
were downregulated and in 7,694 genes no significant change was
observed. Similarly, if we compare C2 vs. C3, 1,954 genes were
upregulated, 1,287 genes were downregulated, and 5,695 genes
showed no significant change (Table 2). These results clearly
indicate that at lower concentrations of NaCl, most of the genes
were in downregulation mode. If we compare C2 vs. C3 at a
higher concentration, the number of genes upregulated was high
when compared to the lower concentration, while the number
of genes downregulated was approximately the same (1,287
transcripts) when compared to the lower concentration (1,149
transcripts). We calculated the percentage of genes upregulated
or downregulated at different fold changes (Figures 2D–F). The
comparison between the C1 and C2 samples reveals that 76%

of the upregulated transcripts and 45% of the downregulated
transcripts fall within the range of 2–4-fold change (Figure 2D).
Similarly, the comparison between the C1 and C3 samples
showed only 25% of the upregulated transcripts and 5% of the
downregulated transcripts within the range of 2–4-fold change
(Figure 2E). Around 24% of the upregulated transcripts come
within the range of 6–9-fold change, while more than 50% of the
downregulated transcript fall within more than 80-fold change
in expression (Figure 2E). The comparison between the C2 and
C3 samples represents the irregularity in the differential gene
expression. We found around 68% of the upregulated transcript
within the range of 10–80-fold change in expression and 64% of
the downregulated transcripts within the range of more than 10–
80-fold change (Figure 2F). The comparative figures of the top 25
upregulated and downregulated genes in C1, C2, and C3 samples
were represented in the form of a heatmap (Figure 3).

Gene Ontology and Annotation Analysis
Reflect Shift in the Expression of the
Genes Related to the Osmolarity Balance
The assembled transcripts were annotated using an in-house
pipeline. First, a comparison with the UniProt database using the
BLASTX program and then the ontology annotation followed by
organism annotation were done. The assembled transcripts were
compared with the UniProt database using the BLASTX program
with an E-value cutoff of 10−3. The best BLASTX hit based
on query coverage, identity, similarity score, and description of
each transcript was filtered out using our in-house pipeline. The
BLASTX summary is provided in Supplementary Table 5. The
E-value and similarity score distribution of BLASTX hits are
provided in Supplementary Figure 2. The gene ontology (GO)
terms molecular function (MF), cellular component (CC), and
biological process (BP) for transcripts were also mapped against
the latest GO database.

More than 37% of the significant hits came from the
Staphylococcus sp. [S epidermidis (2.4%), S. warneri (1.8%),
S. epidermidis (11.8%), S. pneumoniae (3.23), and S. cohnii
(18.65%)]. Oceanobacillus oncorhynchi contributes to 32.48%
of the transcripts, while C. salexigens contributes only 1.65%
of the transcript (Figure 4A). To classify the function of the
assembled transcripts, a GO assignment was carried out. In the
“Biological Process” category, the top 10 GO terms represented
in the figure include transcription DNA-templated [GO:
0006351], transmembrane transport [GO: 0055085], regulation
of transcription, DNA-templated [GO: 0006355], metabolic
process [GO: 0008152], transport [GO: 0006810], carbohydrate
metabolic process [GO: 0005975], phosphoenolpyruvate-
dependent sugar phosphotransferase system [GO: 0009401],
DNA replication [GO: 0006260], DNA repair [GO: 0006281],
and cell division [GO: 0051301] (Figure 4B). In the “Cellular
Component” category, the top 10 GO terms were integral
component of membrane [GO: 0016021], cytoplasm [GO:
0005737], plasma membrane [GO: 0005886], intracellular
[GO: 0005622], extracellular region [GO: 0005576], membrane
[GO: 0016020], cell [GO: 0005623], ribosome [GO: 0005840],
ATP-binding cassette (ABC) transporter complex [GO: 0043190]
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FIGURE 2 | MA plot for differential expression analysis generated by EdgeR. (A–C) Represent the MA plot of the differentially expressed genes (DEGs) when the
RNA sequencing data of samples C1 (5% NaCl), C2 (10% NaCl), and C3 (25% NaCl) were compared with each other. Plot A represents the DEGs of C1 vs. C2,
while (B,C) plots represent the DEGs of C1 vs. C3 and C2 vs. C3, respectively. Each gene is represented by a black dot. The blue lines represent the log FC ± 1.0
threshold, and the yellow line indicates a log ratio of zero. The dots in the plus direction represent the upregulation and in the minus direction represent the
downregulated genes. (D–F) Represent the comparisons of the DEGs of C1 vs. C2, C1 vs. C3, and C2 vs. C3 samples. They represent the percentage of the
upregulated and downregulated transcripts in different fold change categories.
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FIGURE 3 | Differential expression of gene (DEG) analysis of ANJ207. (A) Heatmap of the C1 vs. C2 upregulated and downregulated genes, (B) heatmap of the C1
vs. C3 upregulated and downregulated genes, and (C) heatmap of the C2 vs. C3 upregulated and downregulated genes. Red color indicates no expression while
green indicates the highest expression.

and integral component of plasma membrane [GO: 0005887]
(Figure 4C). In the “Molecular Function” category, the top 10
GO terms were ATP binding [GO: 0005524], DNA binding [GO:
0003677], metal ion binding [GO: 0046872], hydrolase activity
[GO: 0016787], DNA binding transcription factor activity
[GO: 0003700], oxidoreductase activity [GO: 0016491], ATPase
activity [GO: 0016887], magnesium ion binding [GO: 0000287],
transporter activity [GO: 0005215], and zinc ion binding [GO:
0008270] (Figure 4D). The results of the GO analysis represent a

shift in the expression of the genes mostly involved in oxidative
stress, stress damage response, and transporters related to the
osmolarity balance.

Differentially Expressed Genes Involved
in Adaption to Salt Stress
Salinity is responsible for different types of stresses, like osmotic
stress, ionic stress, oxidative stress, and hormonal imbalance,
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FIGURE 4 | Annotation and the gene ontology of DEGs. The assembled transcripts were compared with the UniProt database using the BLASTX program with an
E-value cutoff of 10-3. The best BLASTX hit based on query coverage, identity, similarity score, and description of each transcript was filtered out using an in-house
pipeline. Based on the BLASTX summary and E-value and similarity score distribution of BLASTX hits, the annotation was done. (A) Shows the distribution of the top
10 organisms corresponding to the best BLASTX hits. (B–D) Represent the top 10 categories of each gene ontology (GO) in terms of molecular function, cellular
component, and biological process, respectively. The transcripts were also mapped against the latest GO database.

in microorganisms (Etesami and Glick, 2020; Mahmood et al.,
2022). Besides the osmotic stress, it also induces heat shock
stress, leading to the misfolding of proteins (Roncarati and
Scarlato, 2017). In C. salexigens ANJ 207, we observed that
only few transcripts were upregulated when C1 and C2 groups
were compared, but we observed more genes when the salt
concentration was increased. We have listed some of the genes
in Supplementary Table 6. We also calculated the fold change in
the expression of these genes when the cells were shifted from
C1 to C2 condition and from C2 to C3 condition (Figure 5A
and Supplementary Table 6). Catalase is one of the proteins that
is expressed during oxidative stress and was also found to be
increased by more than 2–16-fold in transcriptome sequencing
analysis. We also observed more than one copy of the catalase
enzyme, which showed variation in their expression level at

different salt concentrations. Besides the osmotic stress, we also
observed an increase in the expression of the heat shock protein
(HSP), which was reported to show more than a five fold increase
in the expression in our transcriptome sequencing data. We also
observed more than a 10-fold increase in a stress-responsive
gene homologous to NhaX reported in the Bacillus subtilis
(Gene ID: 939286).

Microorganisms employ diverse types of adaptation
mechanisms to deal with osmotic stress (Chen et al., 2017;
Gunde-Cimerman et al., 2018). It mainly depends on either the
de novo synthesis or the uptake from the environment (Roberts,
2005). The tripartite ATP-dependent and ATP-independent
transporter involved in the specific uptake of salinity-compatible
solutes was initially described in H. elongate (Schweikhard
et al., 2010). Additionally, we also observed the presence
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FIGURE 5 | Differentially expressed genes (DEGs) involved in adaption to osmotic and oxidative stress. (A) Represents the comparison of the fold change in some of
the transcripts involved in salt stress between the C1 vs. C3 and C2 vs. C3, and (B) represents the fold change of the DEGs involved in osmotic and oxidative stress
conditions.

of diaminobutyrate-2-oxoglutarate transaminase (EctB) in
the ectoine biosynthesis in coordination with the EctA and
EctC genes. The presence of the recycling pathway finely
adjusts the internal concentration of ectoines in response to
the osmolarity changes (Schwibbert et al., 2011). Overall, we
did not observe a very significant increase in the ectoine or
hydroxyectoine synthesis, as had been already observed in other
Chromohalobacter in osmotic stress conditions (Vargas et al.,
2008; Czech et al., 2018).

RNA-Seq analysis performed in the present study revealed
the induction of genes encoding ATP-binding-cassette (ABC)
transport systems for betaine and choline as well as the tripartite
ATP-independent transport system with a rise in salinity levels
(Supplementary Table 7), which is in conformity with the earlier
published literature (Gregory and Boyd, 2021). At high salinity,
overexpression of orthologous genes for ProP, OpuD, and ABC
transporters and genes for proline dehydrogenase and glycine
dehydrogenase was already been observed in Chromohalobacter
(Chen et al., 2010; Malek et al., 2011). Here, we identified
more than 10-fold upregulation in the transcripts of proline
dehydrogenase and glycine dehydrogenase (Figure 5B), but did
not observe the overexpression of ectoine. The explanation of
this observation may be that the synthesis of the ectoines was
suppressed by the extracellular betaine or its precursor choline
(Calderón et al., 2004; Vargas et al., 2006). Along with the
glycine betaine transporter, we also observed overexpression of
the choline transporters. These findings suggest that the uptake
of the osmoprotectants from the environment is preferred over de
novo synthesis under osmotic stress, as it is energetically cheaper
to the cell (Vargas et al., 2008).

Besides the osmotic stress, the high salt condition also
induced oxidative stress due to the generation of reactive
oxygen species. At low salinity, genes encoding thioredoxin
reductase (csal2959), oxidoreductase (YhhX, YdhF, and YlbE),
quinine oxidoreductase (YhfP), and methionine sulfoxide
reductases (msrR SAMEA3109313_00544) were induced

(Figure 5B and Supplementary Table 7), which are among the
essential components of protein repair system (Ezraty et al.,
2017). High salinity induced the expression of detoxifying
enzymatic mechanisms, for instance, a catalase orthologous
to KatG (csal_0159) was induced more than 10 times. In
addition, iron superoxide dismutase, the peroxidase OsmC, a
putative peroxiredoxin, and an alkyl-hydroperoxide reductase
were induced (Figure 5B and Supplementary Table 6). In
addition, a different set of genes related to the maintenance
of redox balance were also affected, which led to more than
15 times upregulation of the gene related to glutathione
metabolism (i.e., 4-hydroxyphenylpyruvate dioxygenase,
Csal_0292). The genes related to oxidative damage repair
were overexpressed, such as glutaredoxin, ferredoxin, KatE,
catalase, alkyl hydroperoxide reductase, superoxide dismutase,
peroxidases, peroxiredoxin, etc. (Supplementary Table 7).
The genes related to the detoxification of the reactive oxygen
species produced by nitrogen-containing molecules, such as
NorD and NorM, were also induced (Supplementary Table 7).
Similar observations regarding the induction of the expression of
genes encoding direct reactive oxygen species (RO), detoxifying
enzymatic mechanisms involving a catalase orthologous to
KatG (csal0159), an iron superoxide dismutase (csal1861),
the peroxidase OsmC (csal0037), a 1-Cys peroxiredoxin
(csal0179), and an alkyl-hydroperoxide reductase (csal0321)
in C. salexigens under saline stress has been made by Salvador
et al. (2018). The above-mentioned results led us to investigate
a possible salt-induced cross-protection mechanism against
oxidative stress.

Glycine Betain Plays an Osmolarity
Regulation Role in ANJ207
Most of the osmoprotectants, particularly glycine betain (GB),
are widely available in the environment and can be easily
accumulated in microorganisms and plants in response to salt
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stress. Most of the microorganisms accumulate the GB either
from the environment through various transport systems like
the betaine/choline/carnitine transporter (BCCT) family and the
ABC transporters located on cellular membranes, or through the
de novo synthesis via the choline oxidation pathway, with betaine
aldehyde as the intermediate (Chen et al., 2010). The gbcA and
gbcB genes have been proven to be essential for the GB catabolism
via the gene disruption strategy in P. aeruginosa (Wargo et al.,
2008), and their overexpression was shown to be sufficient to
reduce the intracellular GB pool (Fitzsimmons et al., 2012).
These two genes have been proven to encode the dioxygenase
enzyme that can remove the methyl group from the GB and
produce dimethylglycine and formaldehyde which may further
help in osmolarity regulation (Wargo et al., 2008). We checked
the expression of gbcA and gbcB by RT-PCR and observed ∼10-
fold increase at 10% NaCl concentration when compared to the
5% salt concentration, while there was a further reduction in the
expression at 25% salt concentration (Figure 6A). The GB plays
an important role in B. subtilis in osmoregulation, as it can be
both synthesized and imported through high-affinity transport
systems (Hoffmann et al., 2013).

The de novo synthesis of the GB mainly depends on the uptake
of the precursor molecule choline through OpuA, OpuB, and
OpuC transporters (Shao et al., 2017), which then undergoes

a two-step oxidation reaction catalyzed by the orthologous
genes of gcbA and gcbB enzymes to produce glycine betaine
(Daughtry et al., 2012). The ABC transporters OpuA, OpuC,
and OpuD mediate the import of glycine betaine (Shao et al.,
2017). OpuA is a high-affinity GB-binding protein tethered to
the membrane via a lipid anchor and consists of an ATPase
OpuAA, the integral membrane protein OpuAB, and the solute
receptor OpuAC (Calderón et al., 2004; Lee et al., 2005). The
OpuA gene cluster (opuAA, opuAB, and opuAC) in B. subtilis is
inducible in response to salt stress (Calderón et al., 2004). The
Lactococcus lactis has also been reported with the osmotically
controlled transport activity of OpuA (Rosche et al., 1995). We
also checked the osmotic control of opuA expression in response
to osmotic stress conditions in Chromohalobacter salexigens
ANJ207 at three different concentrations of salt (5, 10, and 25%
NaCl) and found ∼10-fold increase in the expression of OpuA
transport system at 10% salt concentration when compared to
5% salt concentration. Further increase in the salt concentration
led to a decrease in the expression, but still, the expression
was ∼5-fold high when compared to that observed in 5% salt
solution (Figure 6C).

We also checked the expression of the genes involved in the
biosynthetic pathway of proline biosynthesis. The expression
of the two enzymes delta-1-pyrroline-4-hydroxy-2 carboxylate

FIGURE 6 | RT-PCR reveals the upregulation of the pathways related to osmotic stress. (A) Represents the qRT-PCR of the genes responsible for the glycine,
betain, and proline biosynthesis (gbcA, gbcB, and L-pro). Similarly, (B) represents the qRT-PCR genes involved in the biosynthesis of L-hydroxyproline (proD and
proS), (C) represents the qRT-PCR of genes related to glycine betain transporter subunits (OpuAC, OpuAA, and OpuAB), and (D) represents qRT-PCR of the genes
involved in the stress response proteolysis gene for periplasmic membrane stress sensing (serP).
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deaminase (proD) and gamma-glutamyl phosphate reductase
(proS) was checked. These two enzymes catalyze the initial stages
of the L-hydroxyproline synthesis. We observed the increased
expression of these two genes at higher salt concentrations up
to 10% NaCl, but further increase in the concentration led to
a reduction in the expression (Figure 6B). We also checked
the expression of one stress response proteolysis gene serP
(serine protease) (Figure 6D). The presence of genes for various
compatible solutes indicated that a coordinated contribution by
various compatible solutes might be responsible for the salinity
adaptation of ANJ207. We checked the expression of this gene
and found an eight fold increase in the expression at 10% salt
concentration. The molecular profiling of osmoregulatory genes
showed the presence of genes responsible for the biosynthesis
of glycine, betaine, and proline (gbcA, gbcB cluster, proD, and
proD) and transporters for the glycine, betaine, choline, and
proline (ProP, OpuAC, OpuAA, and OpuAB) uptake along with
the stress response proteolysis gene for periplasmic membrane
stress sensing (serP, serine protease).

CONCLUSION

The present study explores the transcriptome of plant growth-
promoting bacterium, C. salexigens ANJ207, under different
salt concentrations and identified several genes associated
with osmotic stress adaptation and mechanisms involved
in the production of secondary metabolites under saline
conditions. The research findings have shown that at lower
salt concentrations, only 92 genes were upregulated, while at
higher concentrations of the salt, more than 1,500 genes were
upregulated. Furthermore, it has been noticed that a rise in salt
concentration not only induces the genes related to osmolarity
regulation but also induces the genes related to protein folding
and oxidative stress. The glycine betaine was found to be
important in the osmolarity regulation in ANJ207. The gene
related to GB biosynthesis and the genes for the transport
of the GB were also upregulated. These findings will further
help to unravel the complex biological mechanisms involved
in osmotic stress adaptation and pathways involved in the
production of secondary metabolites under saline conditions.
Harnessing the potential of C. salexigens ANJ207 and its

secondary metabolites for the development of novel bioinoculant
can be one of the prospective solutions to overcome soil salinity
problems in near future.
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The rice production system is one of the most climate change sensitive agro-
ecosystems. This paper reviews the effects of current and future climate change
on rice production in China. In recent decades, thermal resources have increased
during the rice growing season, while solar radiation resources have decreased, and
precipitation heterogeneity has increased. The increasing frequency of high-temperature
stress, heavy rainfall, drought, and flood disasters may reduce the utilization efficiency of
hydrothermal resources. Climate change, thus far, has resulted in a significant northward
shift in the potential planting boundaries of single- and double-cropping rice production
systems, which negatively affects the growth duration of single-, early-, and late-
cropping rice. Studies based on statistical and process-based crop models show that
climate change has affected rice production in China. The effects of climate change on
the yield of single rice (SR), early rice (ER), and late rice (LR) were significant; however,
the results of different methods and different rice growing areas were different to some
extent. The trend of a longer growth period and higher yield of rice reflects the ability
of China’s rice production system to adapt to climate change by adjusting planting
regionalization and improving varieties and cultivation techniques. The results of the
impact assessment under different climate scenarios indicated that the rice growth
period would shorten and yield would decrease in the future. This means that climate
change will seriously affect China’s rice production and food security. Further research
requires a deeper understanding of abiotic stress physiology and its integration into
ecophysiological models to reduce the uncertainty of impact assessment and expand
the systematicness of impact assessment.
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INTRODUCTION

According to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC_AR5), the
global average surface temperature increased by approximately
0.85◦C from 1880 to 2012, and the global surface temperature
has risen continuously in the past 10-year historical period.
Changes in the climate system have had a general impact
on global food production, and the risk of climate change
severely affecting crop yields in the future may also increase
(Pachauri and Meyer, 2014).

Rice is the main ration crop in China, and more than 65%
of the population in China eat rice as their main food source
(Maclean et al., 2002; Chen et al., 2017d). According to statistics,
from 2012 to 2016, the average annual sowing area of rice in
China was 3.023 × 107 hm2, which accounts for 26.9% of the
average sown area of rice globally (11.245 × 107 hm2). The
average annual rice yield was 2.059 × 108 t, which is 33.9%
of the annual global rice yield (6.072 × 108 t) (Alexandratos
and Bruinsma, 2012). Rice yield has doubled in all counties and
cities in China in the last 30 years (IPCC, 2013), which may
be related to climate changes such as temperature and solar
radiation (Bongaarts, 2019). Therefore, it is more important than
ever to scientifically assess the impact of climate change on rice
production and formulate effective coping strategies to provide
theoretical support for overcoming rice yield shortages.

China is the largest producer, consumer and importer of rice
in the world, and more than 80% of the Chinese population relies
on rice as a staple food. A high yield of rice is the cornerstone of
food security in China and even the world (Chen et al., 2017d).
According to the China Climate Change Blue Book released in
2018 by the China Weather Administration. China is sensitive to,
and severely affected by global climate change, and the annual
average surface temperature in China increased by 1.6◦C from
1951 to 2017. China’s warming rate is not only higher than the
global average over the same period but it has also been subject
to more frequent extreme weather phenomena, such as high
and low temperature damage; therefore, the impact of global
warming on China’s rice production could be more prominent
than in other countries (Peng et al., 2004; Lobell et al., 2011;
Tao and Zhang, 2013; Zhao et al., 2017a). In addition, China’s
rice growing area is vast, from the Yunnan-Guizhou Plateau
to the eastern coastal delta, and from Heilongjiang Mohe to
Hainan, there are significant differences in the temperature of
the rice growing season in different regions, and the impact
of climate warming on China’s rice production will also have
significant temporal and spatial differences (Tao et al., 2013; Chen
et al., 2017c). Furthermore, China has a variety of rice-growing
patterns and systems, including southern dual cropping rice,
(SD) Yangtze River basin (YRB), medium-cultivation rice,(MR)
and northern single cropping rice, (N) covering almost all rice
cropping patterns in the world. The responses of rice growing
seasons and rice yield to climate warming in different rice-
growing patterns will also have their own characteristics (Chen
et al., 2017c; Guo et al., 2020; Zhang et al., 2020).

A comprehensive analysis of the global warming effects is of
seminal importance for the theory and technological innovation

of adaptive crop cultivation under climate change. To date,
there have been a large number of studies on the impact of
climate warming on crop production, basically clarifying the
response characteristics of global food production (Lobell et al.,
2011; Zhang, 2014; Liu et al., 2016). However, most of the
existing research is based on model analysis and historical
data mining, and there are insufficient data to summarize
field experimental research and long-term observations. There
is still significant uncertainty about the impact of climate
change on specific countries (planting regions) and specific
seasonal crops (Zhao et al., 2017b; Liu et al., 2018). In recent
years, experimental research on the response and adaptation
of crop growth to climate warming has received increasing
attention, and long-term field observation data have increased
year by year. These experiments and observations have not
only improved the understanding of climate warming and
crop response by academia and the public but also provided
a wealth of empirical data for comprehensive analysis. Based
on the regional characteristics of Chinese perennial rice, the
response characteristics and adaptation trends of rice fertility,
yield and quality to temperature rise in a typical Chinese rice
planting system are comprehensively analyzed. According to
the researcher’s multiple planting experiments and long-term
observations. This study aims to provide a theoretical basis
and technical suggestions for the effect of climate warming on
increasing green rice production.

CLIMATE WARMING IN CHINA’S MAIN
GRAIN-PRODUCING AREAS

According to historical meteorological monitoring, global
warming presents significant regional, seasonal and diurnal
variations (IPCC, 2013). The primary trend is that the
temperature rise in high latitude areas is significantly higher than
that in low latitude areas, and the northern boundary of crop
cultivation will expand northward and the area will increase. The
warming span in summer and autumn was significantly lower
than that in winter and spring. The temperature rise during
the daytime was significantly lower than that at night, and the
temperature difference narrowed, which may be unfavorable to
the formation of crop yield and quality. Due to the differences
in background temperature of crop growing seasons in different
regions and seasons, as well as the difference in temperature
increases in corresponding regions and seasons, there are obvious
spatiotemporal characteristics of the impact of climate warming
on crop production (Lobell et al., 2011). Therefore, mastering the
spatiotemporal characteristics and trends of temperature changes
in specific countries (planting regions) will be helpful to fully
understand the comprehensive response of crop production to
climate warming.

A large number of existing meteorological monitoring data
and model prediction analysis results show that the trend of
climate warming in China over the past few decades has been
significantly higher than that observed from global monitoring
data, according to the China Meteorological Station from 1970
to 2017 (Chen et al., 2020). The spatiotemporal differences in
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temperature rise in the three major grain-producing regions
of Northeast China and the Yangtze River Delta (YRD)
are significant. Compared to the 1970s, the daily minimum
temperature in the 2010 harvest season increased by 1.39 and
0.70◦C in Northeast China, by 1.35 and 0.86◦C in North China
and by 1.28 and 1◦C in the YRD region. During the same period,
the average temperature in winter, spring, summer and autumn
in Northeast China increased by 1.18 and 0.89◦C. The average
temperature in North China increased by 1.31 and 0.67◦C, and
that in the YRD it increased by 1.28 and 0.99◦C, which is similar
to the overall trend of global warming.

At the same time, the warming trend and precipitation
days in the growing season of major grain-producing areas
in China have obvious regional changes; that is, precipitation
in the western part of China has an increasing trend, while
precipitation in the eastern part of China has a decreasing
trend. In addition, the frequency of high-intensity precipitation
has increased, particularly in Southeast China, where the total
precipitation showed a slight downward trend; however, the
frequency of heavy rain and storms showed a significant upward
trend (Jiang Y. et al., 2017). Overall, there was no significant
change in total precipitation in the crop growing season, but
the number of days of precipitation significantly decreased, the
intensity of daily precipitation increased significantly, and the
problem of water-heat mismatch in the crop growing season
became more prominent.

Under the influence of temperature and precipitation changes,
the frequency of seasonal drought and extreme temperature
changes also showed an increasing trend. The occurrence of
summer high-temperature and drought disasters is increasing in
most regions of China. Vicente-Serrano et al. (2010) proposed
the standardized precipitation-evapotranspiration index (SPEI),
which represents the degree of deviation of dry and wet
conditions in an area when compared to a regular year by
determining the difference between the SPEI, which can be used
to analyze the trend of drought evolution. Taking the SPEI during
the crop cultivation period from 1970 to 2017 in China’s main
grain-producing areas as an example, the SPEI value increased
by 0.36 in the spring cultivation season in Northeast China,
decreased by 0.59 in the summer cultivation season in the North
region of China, and increased by 0.86 in the autumn cultivation
season in the YRD. There were obvious regional differences
between Northeast China and the YRD. There are obvious new
trends in warm–dry, wet–heat, and dry–heat. At the same time,
climate warming has led to the frequency of extreme disasters,
and its spatial distribution has also shown significant differences.
Compared with Northeast, Northwest and North China, the
climate change range in southern China is relatively small, but
there is more subtropical high pressure in summer, which has led
to an increase in extreme high temperature events in the south.
In addition, despite the warming trend in the northwest region,
extreme low temperature events have increased significantly since
the 1980s (Wang et al., 2012). Overall, there are more extreme
climate events in the Northwest region and the middle and lower
reaches of the YR, while there are fewer extreme climate events
in the Northeast region and the middle and upper reaches of the
YRB (Ju et al., 2013b; Xie et al., 2018; Chandio et al., 2020).

THE INFLUENCE OF CLIMATE CHANGE
ON RICE PRODUCTION IN CHINA

Rice production is a complex natural-social system in which long-
term changes in rice yield are mixed with climate change and
anthropogenic signals. In general, the measured yield per unit
area of single cropping rice and early and late rice increased
by 0.69 (0.37–1.07) t hm−2 per decade from 1980ά to 2010
(Table 1). Due to the influence of climatic factors, climate change
has had a negative impact on rice yields in China in recent
decades. The evaluation based on the rice growth model (Table 1)
showed that the change in the mean climate between 1980ά

and 2010 reduced the rice yield per unit area by 0.25 (0.01–
0.56) t hm−2 10 yr−1. From 1961ά to 2010, the rice yield per
unit area decreased by 12.0% (11.5–12.4%) (Liu et al., 2012,
2013). The interannual fluctuation of rice yield can be reduced
by planting varieties with strong stress resistance or improving
cultivation and management measures (Osborne and Wheeler,
2013). The positive effects of variety improvement and rational
fertilization on rice yield even exceeded the negative effects of
climate change (Yu et al., 2012; Li et al., 2014; Xiong et al., 2014).
In conclusion, although climate change has seriously restricted
the growth of rice yield, China’s rice production system has
actively dealt with these adverse effects in an appropriate manner,
and the rice yield has steadily increased. However, climate change
will continue to severely limit the contribution of technological
advances to food production in the future (Wang et al., 2009;
Zhang, 2014; Xie et al., 2018) and increase the difficulty of
agricultural technological innovation.

The influence of climate change factors on rice production in
China is related to the region and the type of rice cultivation.
The results based on statistical and growth models (Table 1)
showed that under the influence of long-term climate change,
rice production in northern, eastern and central China (single-
season rice in the middle and lower reaches of the YR) and in
southwestern China (single-season rice in the Sichuan Basin)
and DR in southern China declined significantly, while SR
yields increased in the middle and lower reaches of the YR,
northeastern China and the Yunnan-Guizhou Plateau (YGP).
Extreme weather is another important reason for rice production
reduction, and its impact on rice yield may be greater than
long-term changes in climate factors and interannual fluctuations
(Espe et al., 2017; Wang et al., 2018). In the past 30 years,
extreme temperature stress in China has led to a yield loss of
approximately 6.1% of irrigated rice in China, and the yield losses
of single cropping rice in the Sichuan Basin, single cropping
rice in the middle and lower reaches of the YR, and of early
rice have increased significantly in southern China (Alexandratos
and Bruinsma, 2012; Wang et al., 2016). In addition, reasonable
allocation of climate resources helps improve rice yield and
utilization efficiency of light and temperature resources (Deng
et al., 2015), while inappropriate allocation of resources can lead
to serious yield losses (Tao et al., 2016). Other studies have
shown that aerosol concentration affects the ratio of incident
solar radiation and scattered radiation, and severe air pollution
can have adverse effects on rice yield (Tie et al., 2016; Zhang
et al., 2017). Contrary to the adverse atmospheric environment,
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TABLE 1 | Impact of climate change on rice grain yield in China.

Change trend

Rice system Region Period Statistical modela

(t hm−2 10 yr−1)
Crop modelb

(t hm−2 10 yr−1)
Method References

SR 4 stations of China 1981–2009 0.87 –0.45 Rice grow Liu et al., 2012
SR NE China 1980–2010 1.08 –0.01 ORYZA rice Zhang et al., 2014
SR N China 1980–2010 0.59 –0.32 ORYZA rice Zhang et al., 2014
ER 3 stations of DR

experiment
1981–2009 0.38 –0.09 Rice grow Liu et al., 2013

LR 3 stations of DR
experiment

1981–2009 0.52 –0.11 Rice grow Liu et al., 2013

SR and DR Eastern China 1980–2010 0.62 –0.57 ORYZA rice Zhang et al., 2014
SR and DR Central China 1980–2010 0.64 –0.28 ORYZA rice Zhang et al., 2014
SR and DR Southwest China 1980–2010 0.87 –0.27 ORYZA rice Zhang et al., 2014
DR Southern China 1980–2010 0.76 –0.18 ORYZA rice Zhang et al., 2014
ά Average 1980–2010 0.68 –0.26 ά ά

Rice China 1961–2010 ά –11.6% CERES-rice Yang et al., 2014
Rice China 1961–2010 ά –12.5%

(–4.3%)
CERES-rice Xiong et al., 2012

ά Average 1961–2010 ά –12.1% ά ά

Rice China 1961–2010 ά (2.0%) EPIC, DSSAT Jones and Jones,
2003; Xiong et al.,
2014

Rice China 1981–2009 ά (4.5%) GAEZ Yu et al., 2012
SR China 1981–2009 ά (3.5%) GAEZ Yu et al., 2012
ER DR region 1981–2009 ά (4.9%) GAEZ Yu et al., 2012
LR DR region 1981–2009 ά (7.9%) GAEZ Yu et al., 2012
SR NE China 1981–2009 1.02–3.28% ά Panel model Tao et al., 2013
SR Middle and lower

reaches of YR
1981–2009 –9.69 to –7.15% ά Panel model Tao et al., 2013

ER Middle and lower
reaches of YR

1981–2009 –0.59 to 2.40% ά Panel model Tao et al., 2013

LR Middle and lower
reaches of YR

1981–2009 8.38–9.56% ά Panel model Tao et al., 2013

Rice Southern China Elevated
temperature 1δ

–3.48 to –2.52% ά Economy-Climate
model

Li et al., 2020

DR Southern China 1980–2008 –0.17% yr−1 ά Statistical model Wang et al., 2014
SR NE China 1980–2008 0.59% yr−1 ά Statistical model Wang et al., 2014
SR Yunnan-Guizhou

Plateau
1980–2008 0.34% yr−1 ά Statistical model Wang et al., 2014

SR Sichuan Basin 1980–2008 –0.29% yr−1 ά Statistical model Wang et al., 2014

A Statistical model column is based on the analysis results of historical measured rice yield data by statistical model. The Statistical Model valves from 0.87 to 0.68 are
the change trend of measured rice yield over time, and the other values are the response of measured rice yield to climate change.
aThe crop model column is based on the rice growth model, and the variety and management parameters are set as the change trend or change percentage of the
simulated yield with fixed value (ά) indicate measured yield per unit area of SR, LR, DR. The values in italic are the simulation results considering the increase of CO2
concentration, and the other values are the simulation results with constant CO2 concentration.
SR, Single rice; DR, Double rice; ER, Early rice; LR, late rice; NE, Northeast China; N, North; YR, Yangtze River.
Represent for the simulations with elevated CO2 concentration.

the increase in atmospheric CO2 concentration is beneficial for
increasing rice yield (Xiong et al., 2012), and the response of late
rice yield to the increase in atmospheric CO2 concentration is
greater than the yield loss of early rice in response to climate
change (Yu et al., 2012; Xiong et al., 2014). The effect of increased
CO2 concentration largely increased the yield, or even almost
compensated, for the yield decrease caused by climate change.

Background Temperature and Warming
Trend for Typical Chinese Rice Cropping
Systems
Typical rice cropping systems in China include a single
cropping system in the northern region represented by
northeast China, a medium cropping system in the middle

and lower reaches of the YR, and a double cropping system
in south China. The climatic background of the three rice
cropping systems is significantly different. Based on annual
temperature changes from 1980 to 2015 (Chen et al., 2020),
the maximum and minimum daily temperatures were 18.8,
24.4, and 13.6◦C, respectively, and the warming ranges were
0.31, 0.29, and 0.36◦C·10−1a, respectively. The daily mean,
maximum and minimum temperatures were 23.0, 28.0, and
19.3◦C, respectively, and the amplitudes of temperature were
0.34, 0.39, and 0.32◦C·10−1a. The corresponding early rice
(ER) background temperatures were 23.3, 27.7, and 20.0◦C,
with slopes of 0.28, 0.29, and 0.29◦C·10−1a, respectively. The
corresponding background temperatures of late rice (LR) were
26.0, 30.7, and 22.6◦C, respectively, and the amplitudes of the
air temperature rise were 0.25, 0.26, and 0.25◦C 10−1a. In
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FIGURE 1 | Daily minimum temperature (A), maximum temperature (B), and average temperature (C) of the rice growing season in the main rice-growing regions of
China during 1980–2020 (modified from Deng et al., 2019).

terms of the overall trend (Figure 1), the temperature of the
rice growing season increased significantly under the three rice
cropping systems. The background temperature of middle rice
(MR) and ER was similar in South China. The postanthesis
background temperature of first-season rice in Northeast China
was similar to that of DR and LR and was significantly lower
than that of MR and ER. Due to the significant differences
in background temperature and warming amplitude among
different rice cropping systems, the effects of climate warming on
different rice cropping systems also have significant differences.

Response Characteristics of the
Growing Season of Rice and Elevation of
Yield at Temperature
Currently, researchers have conducted a large number of field
warming experiments in major rice-growing areas in China.
For example, from 2016 to 2020, a warming experiment was
conducted in Harbin, Heilongjiang Province, a single-cropping
rice region in northern China. A nighttime warming experiment
was conducted in Nanjing, Jiangsu Province, on medium-
cropping rice in 2008 within flooding and drought conditions.
From 2007 to 2011, nighttime warming experiments were
carried out in Nanchang, Jiangxi, on dual-cropping rice in
southern China which clarified the response and adaptation
of different rice growing periods and productivity in different
rice cropping systems (Dong et al., 2011; Chen et al., 2017a;
Rehmani et al., 2021). The results showed that the growth period
from sowing to heading and flowering of rice was significantly
shortened when the temperature increased by 1.5◦C, and the

grain filling period of Heilongjiang and Nanchang double-season
rice was even prolonged. In general, although the temperature
rise significantly shortened the whole growth period of rice,
it should be noted that the temperature increase can shorten
the reproductive period of rice before flowering; however, the
reproductive period after flowering, in general, does not change
nor is extended. Similar changes in crop phenology have also been
confirmed in long-term field observations (Tao et al., 2013).

Years of field warming experiments also found significant
differences in the response characteristics of rice productivity
under different rice cropping systems (Deng et al., 2017). When
the temperature increased by 1.5◦C, the biological and grain
yields of single cropping rice in Harbin increased significantly,
the biological and grain yields of Nanjing MR decreased, while
ER decreased and LR increased in Nanchang DCR. Based on
the current rice planting layout and the response differences of
the three rice cropping systems. Further analysis of the results
of the regional combined multiyear point sowing experiment
showed that rice yield was mainly affected by background
temperature after flowering. Increasing the temperature can
significantly increase the leaf area of rice, which is beneficial
for the accumulation of dry matter and yield formation of rice
(Yang et al., 2019). Therefore, in the regions with a high post
anthracite background temperature, such as MR in Nanjing and
ER in Nanchang DCR, when the temperature increased by 1.5◦C,
panicle differentiation and flowering fertilization of rice were
more susceptible to heat damage and the seed setting rate, and
the decrease in grain number per panicle led to yield reduction.
However, if the background temperature is low, such as for the
LR of single cropping rice in Harbin and DR in Nanchang,
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a temperature increase of 1.5◦C can promote an increase in
the effective panicle and grain number per panicle, which is
conducive to increasing yield (Chen et al., 2017b).

A similar warming effect was observed based on long-term
site-based testing of three rice cropping systems and analysis of
provincial statistical data (Figure 2). Long-term site test results
showed that with an increase in the average temperature of the
rice-growing season by 1.0◦C rice yield per unit area under single
cropping increased by 15.3% in northeast China, while rice yield
per unit area decreased by 10.9% in moderately flooded and arid
cropping areas, and earlier rice yield per unit area increased by
6.7 and 12.1% on average in southern China under single and late
cropping seasons, respectively. The provincial statistics showed
similar results when the average temperature of the rice growing
season increased by 1.0◦C, the average yield of the SR season in
Northeast China increased by 3.8%, and that of the DR in flood
and drought conditions increased by 0.6%. In southern China,
the rate was 3.7% for ER and 8.9% for LR. In general, the rice
yields of the three rice cropping systems in China showed both
an increasing and decreasing trend due to climate warming but
generally remained stable (Jiang et al., 2021).

Variation in Rice Planting Regions and
Contribution to the Portion of Total Rice
Yield
With the increase in temperature and socioeconomic
development, the area under rice cultivation in China has
changed significantly, and the contribution of rice yield to the
total rice production in China under different regional rice
cropping systems has also changed significantly (NBSC, 2019).
The area under rice cultivation, especially for DCR (double
cropping rice), decreased significantly in the south, while the
area under rice cultivation in the north increased rapidly, from
5% in 1980 to 20% in 2018 (Figure 3). Compared with 1950, the
rice planting area in Guangdong Province decreased by more
than 60% to 1.8 × 106 hm2 in 2015 in Heilongjiang Province,
and the rice planting area increased by more than 30 times,
reaching 4.0× 106 hm2. This is related not only to the difference
in economic development between the north and south but
also to the significant rise in temperature in the northeast,

FIGURE 2 | Effects of climate warming on rice yield per unit area in different
rice cropping systems. (A) Observational data from long-term field trials; (B)
analysis based on provincial statistical data. Error bars indicate standard
errors (modified from Lv et al., 2018).

FIGURE 3 | Changes in rice planting area in China over the past 40 years.
(A) Changes in rice planting area in different rice cropping types; (B)
differences in the percentage of rice planting area in the total rice area of
China in different rice growing regions (modified from Lv et al., 2018).

which results in a cumulative effect of climate warming and
economic development.

The yield contribution rate of different rice cropping systems
also changed significantly. In southern China, the area planted
with double cropping rice decreased significantly, while the area
planted with medium rice increased rapidly. The contribution of
medium rice to the total rice yield in China will gradually increase
(Figure 3). In 1980, the area and yield of DCR in southern
China accounted for 65.8 and 61.4% of the total rice production
in China, respectively. In 2020, the proportion of double
cropping rice decreased to 33.3 and 28.3%, respectively, with
significant changes (Chen et al., 2017c). With the advancement
of the national economy, the area of paddy fields in South
China has decreased, and the regional advantages of different
rice-producing areas have changed significantly. Due to rice
regionalization and changes in rice planting systems due to
climate warming, such as the moderate expansion of rice in the
future, which is the most sensitive to temperature change, it will
further aggravate the negative impact of rising temperature on
China’s rice production and endanger national food security.

Characteristics of Rice Quality Response
to Climate Change
With the advancement of human requirements for improved
quality of life, the demand for high-quality rice is also increasing.
Temperature changes have a significant impact on rice quality,
with amylose and protein contents being the most sensitive
parameters after temperature increases (Lin et al., 2010; Morita
et al., 2016; Zhao et al., 2017a; Dou et al., 2018; Siddik et al.,
2019). An increase in temperature significantly reduces the
amylose content, increases the average grain size of starch and
significantly increases the protein content (Liu J. C. et al.,
2017). Such changes in starch and protein content can make
rice fragile during processing and milling, and impact the
appearance quality, significantly reduce the brown rice milled
rate, and increase the chalkiness of rice (Lin et al., 2010; Siddik
et al., 2019). The nutritional quality of rice is also sensitive to
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temperature increases, causing significant changes in nutritional
components such as starch, storage protein and fatty acids in
rice grains. Temperature increases can also increase the peak
viscosity, hot slurry viscosity, final viscosity, disintegration value
and gelatinization temperature of rice starch and reduce the
flavor quality (Dou et al., 2018).

In previous studies, it was found that rising temperature
in the growth period can affect rice grain formation, and that
climate warming changes the growth process of rice, leading to
the occurrence of extreme temperature in the growth period,
and its occurrence stage and duration also change (Dong et al.,
2011; Tao and Zhang, 2013; Zhang et al., 2014; Deng et al.,
2017; Zhou et al., 2021). Through an artificial climate chamber
experiment (Siddik et al., 2019), it was found that the second week
after heading was a critical period in which temperature affected
the formation of rice quality. The gelatinization temperature
and protein content increased significantly, while the amylose
content decreased. Rehmani et al. (2014) and Chen et al. (2016)
showed in a field experiment with open heating that although
postflowering heating led to a deterioration in the appearance
quality of early and late rice, it improved the processing quality
of LR and improved the nutritional quality of ER and LR to
a certain extent, such as the improvement of protein content.
In general, the effect of extreme temperature on rice quality
is mainly caused by irreversible changes in grain filling and
material accumulation in the critical period of grain formation.
When the average daily temperature exceeds the critical threshold
(>33◦C) during rice filling, the yield and quality of rice will be
adversely affected (Siddik et al., 2019). Extreme low temperatures
at the rice filling stage also reduce rice quality (Song et al.,
2011). In general, the effects of climate warming on rice quality
are more harmful than beneficial, so emphasis should focus on
developing and popularizing rice cultivation measures to cope
with climate change.

EFFECTS OF FUTURE CLIMATE
CHANGE ON RICE PRODUCTION

Positive Impact on Rice Production
In the 1930s, 1950s, and 1970s, the daily average temperature of
the rice growing season in China was 0.8–2.7◦C, 1.7–3.4◦C, and
2.3–4.1◦C, respectively, higher than that in the first decade of
the twenty-first century (Lv et al., 2018). The potential boundary
between double and triple harvests in China will continue to
move northward (Ju et al., 2013a; Tian et al., 2014), and the
potential share of the triple-growing system in the total area
of the planting system will increase by the end of the twenty-
first century, reaching a maximum of 75.0% (Yang et al., 2015).
The potential planting boundary of single- and double-cropping
rice will continue to move northward in the future. Compared
with 1961–1990, the expandable planting area of single- and
double-cropping rice in China in the 2080s will be approximately
5.0 × 105 hm2 and 6.2 × 106 hm2, respectively (Xiong et al.,
2009). The increase in heat resources extends the potential
growing season of crops and significantly increases the growing
season elasticity of rice (Ohta and Kimura, 2007; Tian et al.,

2014), which is conducive to the flexible formulation of climate
protection strategies for rice production.

Adverse Impact on Rice Production
According to the IPCC Fifth Assessment Report, adverse effects
of climate change and extreme climate events on crop yields
are common (Pachauri and Meyer, 2014). If the temperature
increases by 1–3◦C in the future, the probability of shortening the
rice growth period in China is 100% (Tao et al., 2008). When the
temperature increases 1.5 and 2.0◦C, the growth period of DCR
in China will be shortened by 4–8% and 6–10%, respectively, and
the growth period of SCR will be shortened by approximately
2% (Chen et al., 2018). A study combining grid crop models,
single point crop models, statistical models and observational
experiments showed that a temperature increase of 1% could
lead to an average 3.2% decrease in global rice yield (Zhao
et al., 2017b). By the end of the twenty-first century, sustained
temperature increases are expected to reduce global rice yields by
3.4–10.9% (Table 2). The range of rice yield in China due to future
climate change is –40.2 to 6.2%, with an average yield reduction
of 10.6%, and the spatial difference is obvious (Table 2). If the
impact of increased CO2 concentration on yield is considered, it
has a certain compensation effect on the production reduction
caused by climate change (Table 2). However, such compensation
cannot offset the adverse effects of high temperature increases in
some scenarios and regions or reduce interannual variability in
rice yield (Tao et al., 2008; Xiong et al., 2009). In addition, the
increase in precipitation and temperature variability may lead to
an increase in frequency and reduction in low-yield years (Yao
et al., 2007; Xiong et al., 2009).

The areas with the most obvious decrease in rice yield and
increase in rice instability are the Sichuan Basin (SB), YRB,
and Huang-Huai-Hai Plain (HHHP), which may become highly
sensitive areas for rice due to future climate change (Xiong et al.,
2009). Studies have also shown that the adverse effects of climate
change on rice yield can be effectively mitigated if appropriate
coping strategies are adopted (Table 2). In the future, there will
be a need to conduct research on the measures to cope with
climate change in rice production from the aspects of cultivating
varieties with strong stress resistance and high utilization of
CO2 concentration, optimization of cultivation management and
anti-stress cultivation techniques, and adaptation to strengthen
sowing date and planting area. In particular, a growing number of
impact assessments have focused on changes in extreme weather
events and their potential impact on rice production (Zhang et al.,
2017, Zhang et al., 2018; Chen et al., 2018; Huang et al., 2018).
From the 2000s to the 2050s, the area affected by extreme high-
temperature stress in the global reproductive growing season of
rice will increase from 8 to 27% (Alexandratos and Bruinsma,
2012; Gourdji et al., 2013). The probability, intensity and area
of rice production subjected to high temperature stress in China
will also increase, which may offset the positive effect of increased
heat resources and reduced damage caused by low temperature
(Tao et al., 2013; Wang et al., 2014; Zhang et al., 2016). When
temperature rises by 1.5 and 2.0◦C, rice yield in China may
decrease by 2 and 5% under heat stress, respectively (Chen
et al., 2018). The Sichuan Basin and the middle and lower
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TABLE 2 | Impact of future climate change on rice grain yield.

Change trendc

Rice system Region Period Baseline Climate
scenarioa

Climate
modelb

Crop model Climate
change
(%)

CO2 effect (%) Adaptation (%) CO2 effect +
Adaptation

References

SR Eastern
China

2020s,
2050s,
2080s

1961–1990 A1F1,B1 5 GCMs MCWLA-Rice –15.9
(–29.5 to
–3.8)

8.5 (0.7–13.3) – – Tao et al., 2013

SR and DR Middle and
lower
reaches of
Yangtze
River

2021–2050 1961–1990 A2, B2 PRECIS
RCM

ORYZA2000 –15.2 –5.6 – – Ding et al., 2019

ER and DR Southern
China

2071–2090 1961–1990 B2 PRECIS
RCM

CERES-RICE –3.9 (–7.0
to –0.21

8.7 (5.0–20.1) – – Yao et al., 2007

SR and DR Six station
of China

2001–2100 1961–1990 ETI◦C, 2◦C,
3◦C

5 GCMs CERES-RICE –20.5
(–40.3 to
–6.2)

–4.9 (–19.4 to 0.19) – – Tao et al., 2008

SR and DR China 2020s,
2050s,
2080s

1961–1990 A2, B2 PRECIS
RCM

CERES-RICE –10.9
(–26.3 to
6.4)

3.6 (–5.7 to 15.9) – – Xiong et al., 2009

ER and LR Double
Rice
Region

– 1961–1990 A (ET1.7◦C) DKRZ
OPYC(LSG)

MCWLA-Rice –15.3
(–19.0 to
–11.3)

– 8.8 (–7.1 to 23.2) – Li et al., 2020

Rice China 2020s,
2030s,
2040,
2050s

2009 A2, B2 PRECIS
RCM

CERES-RICE – 10.6 (6.1–18.1) – 15.9
(11.01–21.01)

Ye et al., 2013

E and DR China 2011–2050 2000–2009 A2, B2 PRECIS
RCM

Agro __C –3.4 20.09 3.4 28.7 Yu et al., 2014

E and DR China 2030s,
2050s,
2070s

2000s RCP4.5 17 GCMs CERES–RICE – –0.09 (–11.0 to
12.0)

4.9 (1.1–11.0) – Lv et al., 2018

ER and DR China 2106–2115 200–2015 ET1.5◦C,
2.0◦C

4 GCMs MCWLA-Rice –0.9 (–0.8,
2.5)

6.9 (42.1, 9.5) – – Chen et al., 2018

– – – – – – –10.8 5.4 5.7 22.4

Rice World 2070–2100 1981–2010 RCP2.6,
4.5, 6.0,
8.5

11–22
ESMs

7 global
grid –based
models

–3.4, –5.6,
–6.9, –10.9

– – – Zhao et al., 2017a

SR, Single rice; DR, Double rice; ER, Early rice; LR, late rice.
(a) ET stands for elevated temperature; (b) 5 GCMs are HadCM3, PCM, CGCM2, CSI R02 and ECHAM4; 4 GCMs are CAM4, ECHAM6, MI ROCS and NorESM1; (c) Values in the climate change column only in
connection with climate change, values in the CO2 effect column also take into account the increased CO2 concentration, values in the adaptation column also take into account the adaptation measures and values in
the CO2 effect + adaptation column also take into account both the effects of a increased CO2 concentration and adaptation measures.
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reaches of the YR may become areas of high temperature heat
damage, while Northeast China, the Yunnan-Guizhou Plateau
YGP and East China are more at risk of severe low temperature
damage than other regions (Wang et al., 2014; Zhang et al.,
2017). In the future, increased precipitation variability may lead
to an increased frequency of seasonal drought and heavy rain
(Cai et al., 2018). In the eastern province of Jiangsu and other
regions, extreme precipitation events may have a more significant
impact on rice yield than extreme temperature events (Huang
et al., 2018). In addition, rising temperatures will lead to an
overall increase in evapotranspiration from reference crops, and
southwestern China will experience an aridification process with
a significant decrease in the wetness index (Tian et al., 2014).

PROBLEMS AND PROSPECTS

In recent years, a large number of studies have been carried
out on the comprehensive impact of climate warming on
crop production and its countermeasures. The trend of climate
warming and the response characteristics of the crop growth
period and productivity have been clarified, and some adaptive
planting technologies and coping strategies have been developed.
However, there are still great uncertainties in understanding the
response and adaptation of specific regions and crops to future
climate warming in their growing seasons, and there is still a
lack of holistic coping techniques in adaptive production and
coping strategies. Therefore, systematic theoretical research and
innovation of key technologies and models of regional adaptation
are urgently needed.

Strengthen Research on Climate Change
Impact Mechanisms and Their
Application in Impact Assessment
First, in theoretical research on crop response and adaptation
to climate warming, the integration of field empirical research
and regional model analysis should be further improved upon
in the future. Existing studies mostly focus on model analysis
and historical data mining, and few empirical studies in the
field mainly focus on the single factor of temperature change.
However, climate warming is not a single mean temperature
change but also includes extreme weather and precipitation
changes, as well as the accompanying changes in atmospheric
composition, especially in atmospheric CO2 and near-surface O3.
Therefore, the impact of climate warming on crop production
is a combination of multiple factors, and comprehensive field
demonstration and multifactor model mining are needed to
clarify the comprehensive impact of climate warming and even
climate change on crop production and reduce the uncertainty of
future understanding.

Reducing Uncertainty in Climate Change
Impact Assessments
Second, there is an urgent need for innovation in research
content, methods and means. Existing studies mostly focus on
crop growth period and productivity, but research on crop

product quality and safety, which is increasingly a concern of
society, is still very unclear, and the research content and objective
cannot meet the new requirements of improving the quality
and efficiency and green development of China’s agriculture. In
terms of research objectives, existing studies mostly focus on
major food crops and mostly on a few varieties. However, the
impact of warming on non-food crops is also significant, and
there are significant differences between varieties of the same
crop type. Studies on limited crop types and single varieties
can hardly meet the innovative needs of adaptive technologies
and coping strategies. With regard to research methods and
means, especially field empirical research, most of the studies
consider a single factor, and some involve two factors. It is
urgent to establish multifactor comprehensive field facilities
and corresponding comprehensive models to improve research
methods that simulate the real climate system.

Improving Methods and Techniques for
Climate Change Impact Assessment
Finally, in terms of rice production technologies and models
to cope with climate warming, we still focus on strategies
with insufficient system integration of key technologies and
inadequate adaptability and practicability of coping technologies.
To reduce the impact of climate warming on rice supply
and food security, rice production should consider multiple
aspects, including how to improve the adaptive capacity of
rice production systems. At the same time, it should also
include how to promote coordination between soil organic
carbon sequestration and greenhouse gas (GHG) emissions
reduction in paddy fields, especially CH4 emission reduction, to
contribute to mitigating climate warming and creating climate-
smart agriculture (FAO, 2019).

Focus on the Systematic Assessment of
the Impact of Climate Change on Rice
Production
Based on existing research, the author of climate smart rice
technology system construction put forward the following
suggestions: first, to strengthen the construction of the early
warning and forecasting ability of climate change, high standard
ecological field development, enrich varietal breeding and the
rice planting technology supporting varietal creation, enhance
paddy ecosystem comprehensive ability to adapt to climate
warming, achieve high and stable yield of rice of high quality
for security; The current change in climate is not a uniform
process of warming, frequent extreme weather disaster events
have increased the risk to agricultural production, resulting
in the need to set up an extreme weather early warning and
forecasting system, such as for heavy rain, seasonal drought,
extreme temperature, and other natural disasters, which will
reduce the risk of disaster. At the same time the government
should take the lead in building modern farmland, paddy
production facilities, breeding of high-yield and stress-resistant
rice varieties, supporting modern rice farming techniques, and
popularizing eco-friendly rice production methods (Long, 2016).
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Second, we should strengthen the optimization and distribution
of rice production systems and paddy field ecosystems, promote
the extension of the industrial chain, improve the quality
and efficiency of agricultural products, achieve agricultural
efficiency, and increase farmers’ income. For example, with
the increase in heat resources and the demand for high-
quality rice, rice production can be moderately expanded in
northeast China, and high-quality rice varieties with long
growth cycles can be promoted to produce high-quality rice.
Meanwhile, rice industry clusters can be built to build brands
and increase economic benefits (Antle John, 1995; Kassam
et al., 2015; Chen et al., 2017a). Third, attention should
be given to land use planning in rice-growing areas, the
improvement of soil organic matter in paddy fields and the
increase or reduction of agricultural chemicals to improve
the storage capacity of organic carbon in agricultural systems,
especially farmland soil, and reduction of GHG emissions
from agricultural sources as much as possible. According to
the actual circumstances of the rice planting areas, to carry
out appropriate supporting cultivation measures, such as green
manure cropping winter cover and protective lime amendment
measures can be implemented. Additionally, measures such as
the promotion of returned straw and intermittent irrigation, and
the promotion of soil testing formulas and precise fertilization
and the development of carbon reduction emissions of rice
planting patterns can be expanded (Jiang R. et al., 2017; Jiang
et al., 2018, 2019; Song et al., 2019; Qian et al., 2022). The author
thinks intelligent rice technology should include three modules,
namely, the rice productivity technology (adaptive cultivation
technology), soil organic carbon sequestration technology

and paddy GHG emissions reduction technology. Through
technology integration, innovation and, mode of implementation
food security will be safeguarded, rice farmers livelihoods
will be improved and, climate warming will slow resulting
in a mutually beneficial outcome by promoting sustainable
development of rice industry.
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Plant growth performance under a stressful environment, notably in the agriculture

field, is directly correlated with the rapid growth of the human population, which

triggers the pressure on crop productivity. Plants perceived many stresses owing to

degraded land, which induces low plant productivity and, therefore, becomes a foremost

concern for the future to face a situation of food scarcity. Land degradation is a very

notable environmental issue at the local, regional, and global levels for agriculture.

Land degradation generates global problems such as drought desertification, heavy

metal contamination, and soil salinity, which pose challenges to achieving many UN

Sustainable Development goals. The plant itself has a varied algorithm for the mitigation

of stresses arising due to degraded land; the rhizospheric system of the plant has diverse

modes and efficient mechanisms to cope with stress by numerous root-associated

microbes. The suitable root-associated microbes and components of root exudate

interplay against stress and build adaptation against stress-mediated mechanisms. The

problem of iron-deficient soil is rising owing to increasing degraded land across the

globe, which hampers plant growth productivity. Therefore, in the context to tackle these

issues, the present review aims to identify plant-stress status owing to iron-deficient soil

and its probable eco-friendly solution. Siderophores are well-recognized iron-chelating

agents produced by numerous microbes and are associated with the rhizosphere. These

siderophore-producing microbes are eco-friendly and sustainable agents, which may

be managing plant stresses in the degraded land. The review also focuses on the

molecular mechanisms of siderophores and their chemistry, cross-talk between plant

root and siderophores-producing microbes to combat plant stress, and the utilization of

siderophores in plant growth on degraded land.

Keywords: plant stress, siderophores, molecular mechanism, rhizospheric microbes, degraded land

109

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.898979
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.898979&domain=pdf&date_stamp=2022-07-11
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mzxyjiang@163.com
mailto:sku.env.lko@gmail.com
https://doi.org/10.3389/fmicb.2022.898979
https://www.frontiersin.org/articles/10.3389/fmicb.2022.898979/full


Singh et al. Microbial Siderophore in Plant-Stress Alleviation

INTRODUCTION

The adequacy of the agricultural soil deteriorates owing to
exposures to adverse environmental conditions such as salinity,
drought, heavy metal stress, etc., which induces plant stress
and reduces plant growth productivity which will trigger food
scarcity in the future. The nutrient discrepancy in the plant
is a common occurrence found in degraded land, and among
different plant nutrients, iron is the essential ingredient for
plant growth (Connorton et al., 2017). Rapid industrialization,
urbanization, unsuitable land use (IPBES, 2018), fast agricultural
practices (Keesstra et al., 2018), soil salinization (Edrisi et al.,
2021), soil erosion (Paul et al., 2020a,b), invasion of alien species
(Rai, 2021), poor governance management strategy (Gerber et al.,
2014), overexploitation of natural resources, excessive mining
(Upadhyay and Edrisi, 2021; Shakeel et al., 2022), etc., degrade
more than 33% of global land resources through direct and
indirect approaches (IPBES, 2018; Srinivasarao et al., 2021).

Iron deficiency is a communally observed phenomenon
in CaCO3 (calcium carbonate)-rich desert soil at high pH
(Alhendawi et al., 1997). The availability of iron in soil mostly
depends on the range of pH, and the character trait of saline (pH
7.2–8.5) and alkaline (pH > 8.5) soil (Upadhyay and Chauhan,
2022) showed iron deficiency due to less solubility of iron at high
pH (Mann et al., 2017). Flood and raised concentration of nitrates
and phosphates (exogenous use of synthetic fertilizers) in soil
reduces iron solubility, alters iron translocation, and induces iron
deficiency in the plant (Becker and Asch, 2005).

The plant growth reduction mediated stress due to nutrient
imbalance in degraded soil is a common phenomenon; the
increase of degraded soil due to salinity, drought, heavy metal,
etc. are reported by several workers (Ma et al., 2020; Upadhyay
et al., 2021). Out of numerous detrimental factors, the lack of
available iron for the plant is one of the major factors (Liliane
and Charles, 2020). Several pieces of research demonstrated
that plant growth-promoting rhizobacteria (PGPR) may be a
promising tool for mitigating the adverse effect of degraded
lands; for instance in saline soil (Upadhyay et al., 2009, 2011;
Upadhyay and Singh, 2015) drought conditions (Igiehon et al.,
2019), and heavy metal conditions (Bhojiya et al., 2022). Positive
association between rhizosphere and microbes play a crucial role
under iron-stressed degraded land owing to the secretion of iron-
chelating compounds i.e., siderophore (Dertz et al., 2006). Plant
root secretes siderophore to maintain the iron level for their
metabolic and physiological activities in iron-stressed degraded
soil, but is not attained at the perfect level (Herlihy et al., 2020).
On other hand, siderophore-producing microbes (SPM) produce
numerous iron-chelating compounds, which can cut short plant
stress under iron-stressed soil. Siderophore-producing microbes
produce siderophore and have activities of biofertilizers and
bio-control for the plant; thus SPM acts as a signature for
sustainable agriculture and is eco-friendly for crop production
in degraded land Table 1 (Alam, 2014). Siderophore-producing
microbes reduce Fe deficiency and enhance all physiological and
biochemical processes of the plant under saline soil (Sultana
et al., 2021), drought conditions (Kumar et al., 2016), and
heavy metal-stressed soil (Hofmann et al., 2021). Siderophore

also changes the oxidation states of heavy metals such as Cd,
Cu, Ni, Pb, Zn, Th, U, and Pu and makes them less toxic
(Schalk et al., 2011). Siderophore has a strong affinity for iron-
chelating compounds, induces a bioremediation process, and
enhances nutrient uptake and plant growth (Rajkumar et al.,
2010). A bacterial strain like Pseudomonas fluorescence produces
pyoverdines siderophore that increases mobility and reduces the
toxicity of heavy metals under uranium mines (Edberg et al.,
2010). Sharma and Johri (2003) isolated Pseudomonas from
rhizospheric soil of Zea mays L., which produces a siderophore
that showed a high affinity to chelate of Fe3+ ions. Ahmed
and Holmstrom (2014) and Huo et al. (2021) reported that the
use of SPM is a suitable approach for reducing plant stress
on degraded soil. Bioavailability of iron reduces the saline soil
condition which leads to iron deficiency in a plant, and thus
the plant faces both salinity stress and iron deficiency (Sultana
et al., 2021). To combat iron deficiency under saline conditions,
Sultana et al. (2021) isolated four salt-tolerant plant-growth
promoting bacteria from rice rhizosphere, Bacillus aryabhattai
MS3, which showed maximum siderophore producing ability at
200mM NaCl concentration than the control. The siderophore-
producing ability of B. aryabhattai MS3 increased due to the
activation of entD gene by salinity, and entD gene has to be
responsible for siderophore biosynthesis (Sultana et al., 2021).
Streptomyces tendae F4 reduces cadmium translocation from
rhizosphere to plant in heavy metal polluted soil (Dimkpa et al.,
2009). Similarly, Sadeghi et al. (2012) observed that the isolate C
(Streptomyces) increased siderophore production in the presence
of a high concentration of NaCl (300mM), and also produced
auxin, solubilized tricalcium phosphate. Inoculation of isolate C
(Streptomyces) increased iron content in the shoot of wheat plants
in saline soil (Sadeghi et al., 2012). Therefore, in this context,
the present article aims to provide recent updates on plant
mechanisms under iron-stressed degraded soil, nexus between
plants siderophores and siderophore producing bacteria, and
developing sustainable use of siderophore-producing bacteria for
plant growth under degraded soil.

PLANT STRESS UNDER IRON DEFICIENT
DEGRADED LAND

Soil degradation is a natural and anthropogenic phenomenon
that reduces soil nutrients (Abiala et al., 2018; Upadhyay and
Chauhan, 2019; Bhojiya et al., 2022; Shakeel et al., 2022),
mediated by soil salinization (Qadir et al., 2014; Machado
and Serralheiro, 2017; Abiala et al., 2018; Upadhyay and
Chauhan, 2022), drought (Bartels and Sunkar, 2005), and heavy
metals contamination (Paul et al., 2020b,c). The occurrence
of an available form of Fe lacks in almost all types of soil
(neutral, acidic, and alkaline) due to several factors such as
soil pH, deposition of CaCO3, saline and desert conditions,
etc. (Alhendawi et al., 1997). Degraded soil adversely impacts
the growth and output of plants through an imbalance of
many nutrients and metabolic pathways (Figure 1) and induces
the unfavorable fitness of soil for plant growth. Despite
several detrimental factors of degraded soil, the present review
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TABLE 1 | Recent studies (2016–2021) showing the main effects on plants exerted by siderophore-producing rhizobacteria alone or in combination in degraded soil

conditions.

SPRB Types of

siderophore

Condition Plants Performances References

Fluorescent

pseudomonads

Pyoverdines Iron-Limited

conditions

Arabidopsis thaliana Potential for plant growth and increased

immunity

Trapet et al. (2016)

Bacillus spp. Catecholate and

salicylate

Field experiments Potato and banana Bacillus niabensis (PT-32-1), Bacillus

subtilis (SWI16b), Bacillus subtilis (HPC21)

from Phototo rhizosphere induces plant

growth and Bacillus mojavensis (JCEN3)

inhibits the pathogens of wilting disease in

banana

Kesaulya et al.

(2018)

Pantoeadispersa MPJ9

and Pseudomonas

putida MPJ2

Catecholate Iron limiting condition Vigno radiata Both MPJ9 and MPJ2 increased 89.9 and

85.3% siderophore production,

respectively, and enhances iron 100.3

ppm, 0.52 (g/g) protein, and 0.67 (g/g)

carbohydrates content in Vigna radiata

plant under pot experiment

Patel et al. (2018)

Bacillus MG214652

and Aspergillus niger

MH844535

Catecholate and

hydroxymate

Iron deficient condition Phaseolus vulgaris,

Pisum sativum, Vivia

faba and Alfa alfa

Bacillus (MG214652) and Aspergillus niger

(MH844535) are potential catecholate and

hydroxymate types of siderophore

producers, respectively that enhance plant

nutrients and soil health and promote plant

growth

Osman et al. (2018)

Bacillus subtilis Endophytic

siderophore

Drought condition Triticum aestivum Enhances the survivability and potential

growth of wheat plant drought condition

Lastochkina et al.

(2020)

Streptomyces sp. S29 Desferrioxamines and

hydroxamate

Drought condition Lupinus oreophilus Desferrioxamines siderophore prevent

from fungal disease while Hydroxamate

types of siderophore enhance iron content

Jarmusch et al.

(2020)

Bacillus megaterium

and Pantoeaallii

Hydroxymate Alkaline conditions – Highest iron-chelating ability was reported

in Bacillus megaterium followed by

Bacillus subtilis and Azotobacter vinelandi,

respectively, at pH = 9, which indicates

that these bacterial isolates can reduce

iron deficiency in plant and mitigate

chlorosis under saline soil

Ferreira et al. (2019)

Bacillus subtilis and

Rhizobium radiobacter

Catecholate Alkaline conditions

Azotobacter vinelandii Both satecholate and

Hydroxymate

Alkaline conditions

Penicillum

chrysogenum,

Aspergillus sydowii and

Aspergillus terreus

Hydroxymate Pot experiments Cymbidium

aloifolium

Enhances the nutrient uptake and

resistance against plant pathogens in

crops

Chowdappa et al.

(2020)

Dermacoccusbarathri

MT2.1T, D.profundi

MT2.2T, and D.

nishinomiyaensis

DSM20448T

Catecholate and

hydroxymate

Saline condition Lycopersicon

esculentum

Increased tomato seedling and plant

growth

Rangseekaew et al.

(2021)

Bacillus subtilis LSBS2 Bacillinbactin Iron limiting condition Sesamum indicum Increased HCN, IAA, ammonia, and

siderophore production that enhanced the

nutrients including iron in sesame plant

Nithyapriya et al.

(2021)

Bacillus subtilis

MF497446 and

Pseudomonas korensis

MG209738

Hydroxamate Green house and field

condition

Zea mays Significantly increases catalase (CAT),

peroxidase (POX), and polyphenol oxidase

(PPO) activities, plant chlorophyll and

carotenoids that increase crop yields

compared to control

Ghazy and

El-Nahrawy (2021)

Streptomyces

ciscaucasicus strain

GS2

Ferrioxamines In vitro condition Malus domestica Prevents the apple replant disease and

enhances plant growth and yields

Armin et al. (2021)

Pseudomonas

fluorescens SBW25

Hydroxymate Iron-Limited

conditions

Brachypodium

distachyon

Phytosiderophore provides defense under

stress conditions of plant growth

Boiteau et al. (2021)

(Continued)
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TABLE 1 | Continued

SPRB Types of

siderophore

Condition Plants Performances References

Bacillus subtilis Catecholate Pot experiments Coriandrum sativum Significantly acts as a biofertilizer that

enhances seed germination and plant

growth

Kumari et al. (2021)

Pseudomonads Pyoverdine Field experiment Pisum sativum Enhances root and shoot length Lurthy et al. (2020)

Fluorescent

Pseudomonas

Hydroxymate In vitro condition Zea mays Inhibits fungal pathogen Fusarium

oxysporum and enhances the iron uptake

in plants

Deori et al. (2018)

Bacillus licheniformis

DS3

Hydroxymate Field experiment Vigna mungo (L.) Biological agents that control several

fungal pathogens like Aspergillus niger,

Alternaria solani, Fusarium solani, and

Fusarium oxysporium

Silpa et al. (2018)

Pseudomonas species Hydroxymate Field experiment – Siderophore acts as a biofertilizer Joshi et al. (2018)

Proteobacteria,

Actinobacteria,

Bacteroidetes, and

Firmicutes

Hydroxymate and

catecholate

Spider cave and

Lechuguilla cave

– Acts as bioremediation agents Duncan et al. (2021)

Bacillus subtilis

(LSBS2)

Bacillibactin Field experiment Arachis hypogaea Enhances the immunity of peanut plant Latitha and

Nithyapriya (2020)

Pseudomonas sp. Hydroxymate and

catecholate

Field experiment Cicer arietinum,

Capsicum

frutescens, Punica

granatum, and

Allium cepa

Potential to increase plant growth Parveen and Latha

(2019)

Pseudomonas

furukawaii,

Pseudomonas

plecoglossicida,

Pseudomonas

alcaligenes,

Pseudomonas

oleovarans, Leclercia

adecarboxylata,

Citrobacter youngae,

Enterobacter cloacae

Hydroxymate and

catecholate

Field experiment Phaseolus vulgaris,

Helianthus, Triticum

aestivum, Oryza

sativa

Antagonistic activities against different

phytopathogens like Rhizoctonia solani,

Phythium sp., Fusarium oxysporum

Khaing et al. (2021)

Enterobacter species,

Azotobacter species,

and Pseudomonas

species

Hydroxymate and

Catecholate

In vitro condition Gossypium hirsutum Potentially act as biocontrol agents against

harmful plant pathogens

Patel and

Minocheherhomji

(2018)

Pseudomonas

citronellolis strain SLP6

Hydroxamate Salinity stress

condition

Helianthus annuus Significantly enhances chlorophyll content,

antioxidant enzymes production, and plant

growth

Silambarasan et al.

(2020)

Rhizobium sp. strain R1 Catecholate Drought Glycine max L Significantly enhances the soybean seed

germination

Igiehon et al. (2019)

discusses iron homeostasis and its possible ability to meet
plant sustainability. Iron deficiency hinders several metabolic
and physiological aspects in plants and human beings. The
crucial role of iron has been well-acknowledged for several
redox reactions of different physiological mechanisms of plants
like respiration- and photosynthesis-mediated electron transport
systems. Iron also participates in several enzymatic activities
such as peroxidase, catalase, cytochrome, oxidase, etc. (Tripathi
et al., 2018). Also, Fe plays the role of a co-factor in the
synthesis of many plant hormones like ethylene and ACC
deaminase (Siedow, 1991). Iron plays a crucial role in chlorophyll
biosynthesis by maintaining electron flow in CO2 fixation

through (PS)-II-b6f/Rieske (PS)-I complex (Ermakova et al.,
2019). Iron plays a remarkable co-factor in the electron transport
chain of plant photo-system. In photosystem (PS)-I , iron is
required to form three 4Fe-4S in clusters, Cytochrome-b6f
(Cyt-b6f) requires iron for Rieske subunits as a cluster of
2Fe-2S (Fukuyama et al., 1980; Hurt and Hauska, 1981), and
photosystem (PS)-II requires iron as a cofactor for cytochrome
(Ben-Shem et al., 2003). Iron is essential for leghemoglobin and
nitrogen-fixing machinery in the leguminous plant (Brear et al.,
2013). The deficiency of Fe leads to several disorders in the
plant by altering the redox and enzymatic reactions and shows
primarily a symptom of wilting and chlorosis (Bashir et al.,
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FIGURE 1 | Plant stress responses such as (1) wilting and chlorosis, (2) altered stomatal activities, (3) inhibition of enzymatic activities (4) nutrient imbalance (5)

increased ROS, (6) altered electron transport system, and (7) DNA damage under iron-deficient/degraded soil.

2016), which leads to a lowering of plant growth and productivity
(Figure 1). Several researchers reported that root growth of the
plant is hindered under Fe deficient soil (Satbhai et al., 2017),
altering the function of the gene responsible for iron uptake
(Colangelo and Guerinot, 2004). Iron stress also triggers a plant’s
reactive oxygen species-mediated Fenton reaction (Tewari et al.,
2013; Dumanovic et al., 2021). The Fenton reaction elaborates
the interplay of Fe2+ and H2O2 (hydrogen peroxide) to generate
hydroxyl radical (OH∗), which is one of the reactive oxygen
species (Kar and Chattopadhyaya, 2017).

Iron stress also leads to necrosis in tissue, blackening of
roots, and an overall decrease in plant growth (Rai et al.,
2021). Degraded soil due to salinity increases ionic and osmotic
stress and reduces plant growth and productivity (Upadhyay
et al., 2012; Orozco-Mosqueda et al., 2020). Ionic stress induces
the influx of Na+ ions, resulting in the efflux of K+ ions
in soil (Yang et al., 2009; Orozco-Mosqueda et al., 2020),
while osmotic stress accumulates the NaCl concentration in the
rhizospheric soil (Egamberdieva et al., 2019). Soil salinity induces
nutrient imbalance (Upadhyay and Chauhan, 2022) and iron
deficiency (Rabhi et al., 2007; Sultana et al., 2021). Both iron
and NaCl stresses induce reactive oxygen species (ROS), which
directly causes injury to the plant tissue (Rabhi et al., 2007;
Jha and Subramanian, 2020; Kamran et al., 2020), and salinity
damages the base and cross-correlation of double-stranded DNA
(Santoyo and Strathern, 2008; Orozco-Mosqueda et al., 2020).
More salinity and iron deficiency affect the morphological
traits such as a decrease in root length, plant size, variety of
leaves, flowering of plants (Rabhi et al., 2007; Kapoor and
Srivastava, 2010; Mallahi et al., 2018), decrease in the plant’s
pigment chlorophyll content, resulting in reduced photosynthesis

(Ashraf et al., 2017); hence poor plant growth reduces the crop
productivity (Palaniyandi et al., 2014; Machado and Serralheiro,
2017).

Rapid changes in climatic conditions alter the cycle of
atmospheric rain, precipitation, and biogeochemical cycle,
leading to an increase in Fe deficient soil and degraded land,
developing water-deficit soil environment, etc. (Morrissey and
Guerinot, 2009; Lal, 2012; Fuentes et al., 2018; Sileshi et al., 2020).
Therefore, drought stress is noticed at a global level (Takahashi
et al., 2020), and a substantial decrease in plant growth and
productivity has been observed under drought stress-mediated
iron-deficient soil (Tripathi et al., 2018). Heavy metals are found
in degraded land, which poses hazardous environmental stress
that arises both naturally and anthropogenically (Wasi et al.,
2012; Bernard et al., 2018). An increase in the concentration
of heavy metals in the soil creates various problems for flora
and fauna (Alengebawy et al., 2021). Leskova et al. (2017)
reported that Fe deficiency is a common phenomenon in soil
contaminated with heavy metals. In the purview to tackle
these issues, it is, therefore, necessary to develop a sustainable
approach that improves plant growth and productivity under
iron-stressed/degraded soil. The following section of this review
discusses the possible application of siderophores-producing
bacteria for plant growth under iron-deficient soil.

SIDEROPHORE-PRODUCING BACTERIA

Siderophore-producing rhizobacteria that promote plant
growth were demonstrated by several researchers, for example,
Bacillus subtilis, B. licheniformis, B. coagulanse, B. circulance,
Pseudomonas koreensis, P. fluroscence (Ghazy and El-Nahrawy,
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2021), P. aeruginosa (Subramanium and Sundaram, 2020; Singh
et al., 2021a), Pseudoalteromonas tetraodonis, Bacillus cereus,
Psychrobacter pocilloporae, Micrococcus, aloeverae, Pseudomonas
weihenstephanensis (Sinha et al., 2019), Pseudomonas sp. (Singh
et al., 2022), Enterobacter genera, Bacillus, and Rhodococcus
(Sah and Singh, 2015), Bacillus megaterium (Singh et al., 2020a),
Pantoae cypripedii (Singh et al., 2021b), Kosakonia radicincitans
(Singh et al., 2020b), and Pantoae dispersa (Singh et al., 2021c).

The environmental conditions such as pH, temperature,
nutrient sources, aerobic/anaerobic, etc. influence the production
of bacterial siderephores. Sinha et al. (2019) isolated Enterococcus
casseliflavus and Psychrobacter piscatorii from Kerguelen Islands,
and P. astetraodonis, B. cereus, P. pocilloporae, Micrococcus
aloeverae, and P. weihenstephanesis were isolated from Prydz
Bay. Isolates from Prydz Bay-produced either hydroxamate
or catecholate types of siderophores at 15–25◦C and 8.5
pH. Pseudomonas fluorescens synthesizes pyoverdine type of
siderophores that enrich the ferric iron as nutrients in Solanum
lycopersicum plants enhancing photosynthetic pigments and
biomass of the plant (Nagata et al., 2013); B. subtilis produces
hexadentate triscatecholamide bacillibactin which has an affinity
to chelates the iron (Dertz et al., 2006); P. aeruginosa and P.
fluorescens are capable of producing siderophore that increases
the rate of phytoextraction and phytoremediation of heavy
metals (Braud et al., 2009a). Essen et al. (2007) reported that
Pseudomonas strtzeri 36,651 produces ferrioxamine type of
siderophore under both aerobic and anaerobic conditions, and
non-sulfur bacterium Rhodopseudomonas palustris str. CGA009
produces two types of siderophore rhodopertobactin under both
aerobic and anaerobic conditions (Baars et al., 2018).

SIDEROPHORES: CHEMISTRY AND
MECHANISM

Siderophores facilitate several functions of plants such as
respiration (Aznar and Dellagi, 2015), photosynthesis (Nagata
et al., 2013), bioremediation (Saha et al., 2016), plant growth
promotion (Yadav et al., 2011; Ghazy and El-Nahrawy, 2021),
and phytoremediation of heavy metals (Kong and Glick, 2017;
Leguizamo et al., 2017; Ustiatik et al., 2021). Siderophores are
also produced by non-ribosomal peptides bonds (Hu and Xu,
2011) andmultidentate iron-chelating compounds that solubilize
and chelate organic and inorganic forms of compounds in soil
(Singh et al., 2017). The term is derived from the Greek words
sidero meaning “iron” and phore meaning “carriers” or iron-
bearing compounds that uptake insoluble iron from different
environmental sources (Nagoba and Vedpathak, 2011). Primarily
siderophore-producing bacteria release iron-binding proteins,
such as permeases and ATPases, that chelate the ferric iron (Fe3+)
and transport Fe3+ ions in the cell membrane in gram-positive
bacteria (Ahmed and Holmstrom, 2014). Gram-negative bacteria
have a complex mechanism for the transportation of ferric
iron (Fe3+) mediated by many enzymes, periplasmic binding
proteins, outer membrane receptors, and cytoplasmic membrane
proteins which make Fe3+ available for plant cells (Ahmed and
Holmstrom, 2014; Schutze et al., 2015).

Siderophores are classified based on many criteria such
as the source of siderophore, cyclic and linear structure of
siderophore, and the chemical nature of functional groups
of the siderophore, as shown in Figure 2. On the basis of
functional groups, siderophores are classified as hydroxamate-
type siderophore, catecholate-type siderophore, carboxyalate-
type siderophore, and mixed ligand siderophore (Ito and
Butler, 2005; Zawadzka et al., 2006; Butler and Theisen, 2010).
Hydroxamate siderophores are a group of C(=O) N-(OH)R,
where R is either amino acid or a derivative of amino acids, which
contains two oxygen molecules to form bidentate ligand with
iron ions; therefore, each siderophore is able to form hexadentate
ligands, octahedral complex compounds with Fe3+ ions at a
different range between 1,022 and 1,032 M−1 (Winkelmann,
2007). During the combination of hydroxamate with Fe3+

ions, hydroxamate functional group loses a proton from the
hydroxylamine (-NOH) group to form a bidentate ligand
(Fiestner et al., 1993).

Some bacterial species have the potential to hydroxamate
siderophore production, including P. aeruginosa, which is
able to produce pyoverdin hydroxamate type of siderophore
under limited iron conditions (Meneely and Lamb, 2007).
Catecholate, commonly known as phenolate (2, 3–dihydroxy
benzoate) siderophore is an orthoisomer of three molecules of
isomeric benzenediols (Sah and Singh, 2015). The functional
group of catecholate siderophore loses two protons and
forms a five-member ring structure with Fe (Kraemer,
2004). Bacterial species are the most dominant species for
catecholate types of siderophore production (Dave et al.,
2006). The common bacterial species are Escherichia coli,
Salmonella typhimurium, and Klebsiella pnemoniae which
dominantly produce enterochelin subtypes of catecholate types
of siderophore production (Dertz et al., 2006). The bacterial
species Azotobacter vinelandii is the source of various types of
catecholate siderophores such as monocatecholate aminochelin,
dicatecholate azotochelin, and tricatecholate protochelin under
iron-limiting conditions (Wittmann et al., 2001).

Carboxyalate-type siderophore is a unique class of
siderophore, which bears hydroxyl and carboxyl compounds
(Dave and Dube, 2000); carboxyalate-type siderophore is
neither related to hydroxamate nor phenolate ligands. Bacterial
species such as Staphylococci, Rhizobium meliloti, and Mucorals
are the sources of Staphyloferrin A and B, rhizobactin, and
rhizoferrin carboxylate siderophores, respectively. Many
siderophoral species such as lysine derivative, ornithine
derivative, and histidine derivative contain mixed ligands with
Fe3+ ions. Mycobactins are lysine derivative siderophores that
bear 2-hydroxy phenyl oxazoline compounds which recover
iron. Mycobactin siderophore is produced by Mycobacteria
bacterial species, therefore, called mycobactin, which consists
of two hydroxamate, one phenolate, and another oxazoline
nitrogen. Pyoverdine is a dihydroxyquinoline compound, and
structurally every pyoverdine siderophore differs from each
other, while chromophore (1S)-5-amino-2,3-hydro-8,9-dihydro-
8,9-dihydroxy-1H-pyrimido[1,2-a] quinoline-1 carboxylic acid
shows similarities with azobactin that secretes by A. vinelandii.
Pyoverdines and pseudobactins are isolated by pseudomonas
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FIGURE 2 | Chemical nature of commonly identified siderophores and their iron (Fe3+) chelating binding sites.

bacterial species and are applicable in agriculture sectors and
as human pathogens (Kloepper et al., 1980). The anguibactin
siderophore is a histamine derivative mixed ligands siderophore;
structurally anguibactin siderophore is a ω-N-hydroxy-ω-[[2′-
(2",3"-dihydroxyphenyl) thiazolin-4′-yl]-carboxy] histamine.
The anguibactin siderophore is applicable in living cells as an
inducer for iron uptake.

ACTION AND STRATEGIES OF
SIDEROPHORES

Several microbes such as bacteria, fungi, algae, and
dicotyledonous plants (Das et al., 2007) are involved in
siderophoral activities that solubilize Fe3+ ions in the simple
form and which are transported through specific receptos
proteins in cells (Diaz de Villegas, 2007). This mechanism
involves the reduction of a complex form of iron (Fe3+) to a
simple form of iron (Fe2+) (Butler and Martin, 2005; Hopkinson
and Morel, 2009). The transport systems of Fe-siderophore in
Gram-negative and Gram-positive bacteria are different, the
outer membrane transporters are broadly absent in Gram-
positive bacteria, while they are found in Gram-negative bacteria
and play an impressive role in the transport of Fe-siderophore.
In Gram-negative bacteria, the Fe-siderophore passes on to the
periplasmic binding protein-mediated TonB-ExbBD complex

(Ferguson and Deisenhofer, 2002; Koebnik, 2005), and the
bound Fe-siderophore with surface-binding-proteins are then
imported into the cytoplasm via the possible siderophore-
permease-ATPase system. The role of the surface periplasmic
binding protein, ATPase, and permeases in Gram-positive
bacteria is similar as in Gram-negative bacteria mediated by
periplasmic surface binding protein permease with the ATP
system (Fukushima et al., 2013). The movement of siderophore
across the bacterial cell membrane owing to chemiosmotic
potential is mediated by a complex of three membrane-spanning
proteins (TonB, ExbD, and ExbB; Ferguson and Deisenhofer,
2002). TonB-dependent outer membrane receptors are involved
in the adhesion of Fe3+ siderophore complexes on the bacterial
cell surface (Schalk et al., 2012). Then Fe3+ siderophore complex
is transported from outside of the outer membrane to the cell
through the outer membrane of a bacterial cell by energy-
dependent system and reaches the periplasm (Schalk et al.,
2012). Afterward, Fe3+ siderophore complex ions bind with
periplasmic binding protein (PBP) (Noinaj et al., 2010; Ribeiro
and Simoe, 2019; Figure 3). Iron (Fe3+) siderophore complex
is transported from the periplasm to the cytoplasm across the
inner membrane by ATP binding cassette system and reaches the
cytoplasm due to the reduction in Fe3+ ions to form Fe2+ ions.
With this process being repeated in the bacterial cell, Fe+2 ions
are directly absorbed by the rhizosphere of plants that promote
the growth of plants (Ahmed and Holmstrom, 2014). In the case
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FIGURE 3 | Mechanism of siderophore in plant growth-promoting gram-positive and gram-negative bacteria mediating iron uptake in plants under

iron-deficient/degraded soil. Bacterial siderophore (BS), periplasmic binding protein (PBP), reduction strategy (RS-I), chelation strategy (CS-II), and plant siderophore

(PS). Iron regulated transporter 1 (IRT), Yellow Stripe-Like Transporter of Oryza sativa (OsYSL15), ATP-binding cassette transporter (ABC) G37, translocase of outer

membrane 1 (TOM) (Modified as sources of Fukushima et al., 2013; Seyoum et al., 2021).

of gram-positive bacteria, due to the lack of an outer membrane
all the processes occur in the periplasm and cytoplasm, Fe3+

siderophore complex ions adhere to the surface of periplasm,
and the establishment of Fe2+ ions occurs in the cytoplasm
(Faraldo-Gomez and Sansom, 2003; Fukushima et al., 2013;
Schalk and Guillon, 2013; Ribeiro and Simoe, 2019; Figure 3).

Two strategies have been reported in the rhizospheric
region to maintain iron uptake mediated by siderophore
under iron-deficient soil. The first is a reduction strategy
(RS-I), and second, a chelation strategy (CS-II) (Rai et al.,
2021; Figure 3). Among both strategies, chelation strategies are
common under stress conditions and tolerate a change in pH
as compared to reduction strategy (Ahmed and Holmstrom,
2014), while in rice plants, both the strategies are reported
(Krohling et al., 2016). RS-I is common in non-grass plants
under low iron conditions in the rhizosphere where H+-
ATPase AHA2 releases H+ and reduces the pH of the soil
and induces the solubility of Fe3+. Iron once in apoplast
gets chelated by phenolic compounds of the coumarin family
and is transported by transporter ABCG37 (Mladenka et al.,
2010). Ferric chelate reductase (Ferric Reduction Oxidase-
2) reduces Fe3+-Fe2+ in the plasma membrane (Ahmed
and Holmstrom, 2014). IRT1 (Iron Regulator Transporter-1)
transports Fe2+ in the epidermal cell of plant root (Barberon
et al., 2014).

Microorganisms such as bacteria/fungi and grasses follow the
mechanism of CS-II. This strategy is commonly found in alkaline
soil where acidification of rhizosphere is too difficult, thus
bacteria are remarkable agents for their application in alkaline
soil as well as stressed soil. This strategy (CS-II) is based on
biosynthesis, secretion of siderophore such as phytosiderophore
(PS)/bacterial siderophore (BS) that chelates Fe3+ and form
Fe3+-BS/Fe3+-PS complex and transported through YS/YSL
(Yellow Stripe/Yellow Stripe-Like) and TOM1 transporter family
to the root (Dai et al., 2018).

GENETIC MECHANISMS AND
REGULATION OF SIDEROPHORES

The key enzyme “non-ribosomal cytoplasmic synthase” produces
siderophore by utilizing the precursors such as citrate, amino
acids, dihydroxybenzoate, and N5-acyl-N5-hydroxyornithine,
and their genes have been identified in several microorganisms
(Paul et al., 2014; Paul and Dubey, 2015). In microbes such as
bacteria, Aspergillus fumigates, yeast siderophore operon consists
of several genes namely sidA, sidD, sidG, sidF, sidC and sidL
which are located on different chromosomes (Blatzer et al., 2011;
Khan et al., 2018; El-Maraghy et al., 2020).
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The sidC gene, highly conserved among fungi, is characterized
as non-ribosomal peptide synthetase (NRPS) and required for
the biosynthesis of both ferricrocin (FC) and hydroxyferricrocin
(HFC) (Schrettl et al., 2007). The sidF and sidG genes are
characterized as acetyl transferase having the role of TAFC
biosynthesis. The sidA gene encodes an L-ornithine N5-
monooxygenase which initiates siderophore production (Seifert
et al., 2008) whereas sidL gene which is located in cytoplasm and
is a constitutively active N5-hydroxyornithine-acetylase required
for FC biosynthesis (Blatzer et al., 2011). The siderophores uptake
is facilitated by siderophore uptake genes i.e., sit1,mirB andmirC
(Silva-Bailao et al., 2014). In contrast to fungi, the biosynthesis
of different siderophores in bacteria has been governed by
different genes such as entB gene (enterobactin biosynthesis),
iroB gene (salmochelin biosynthesis), entS gene (enterobactin
synthesis) (Watts et al., 2011; Paul and Dubey, 2015). In E.
coli, the enterobactin synthesis operon consists of entCDEBAH
genes whereas, for enterobactin uptake and utilization, fepA,
fepB, fepC, fepD, fepE, fepG, fes, and entS genes are responsible
(Peralta et al., 2016). In the gram-negative Yersinia pestis
bacterium, the siderophore type yersiniabactin is synthesized
by irp1 and irp2 genes (Guilvout et al., 1993). Etchegaray
et al. (2004) reported that siderophores in Xanthomonas species
are synthesized by non-ribosomal peptide synthetase from a
precursor such as polyamine derivatives. Najimi et al. (2008)
identified asbG, asbF, asbD, asbC, asbB, and asbI genes encoding
proteins similar to components of the siderophore biosynthetic
machinery in Aeromonas salmonicida bacteria. In P. aeruginosa,
the siderophore pyochelin is synthesized by the genes pchDCBA
and pchEF, and pyochelin precursors such as salicylate and
dihydroaeruginoate (Dha), are clustered with the pyochelin
regulatory genes pchR on its genome (Reimmann et al., 2001).
Searle et al. (2015) developed multiple primers to screen
environment samples for the presence of different microbial
siderophores such as Enterobactin (entA, entB, entC, entE,
fepA genes), Salmochelin (iroB, iroC, iroD, iroE, iron genes),
Yersiniabactin (irp1, irp2, irp3, irp4, & 5, fyuA genes) and
Aerobactin (iucA, iucB, iucC, iucD, iutA genes). Hofmann
et al. (2020) reported that the gene grdesA from Gordoniarub
ripertincta CWB2 and psdes A from Pimelobacter simplex
VkMAC-2033D encodes lysine decarboxylases presumed to be
involved in the synthesis of desferrioxamine siderophores. Wang
et al. (2021) identified a novel Non-ribosomal Peptide Synthetase
(NRPS) cluster in the bacteria Burkholderia seminalis strain R456
which is responsible for the production of a novel undescribed
siderophore, along with previously reported ornibactin and
pyochelin type siderophores, and also it is a crucial component
in regulator protein Fur which regulates siderophore production.

SUSTAINABLE APPLICATION OF SPM FOR
PLANT GROWTH IN IRON DEFICIENT
DEGRADED LAND

Siderophore-producing microbes reduce the Fe deficiency
and enhance all physiological and biochemical processes
of crops in saline soil (Table 1). Siderophore-producing

microbes B. aryabhattai MS3 are the most applicable in
rice plants that enhance 60 and 43% of crop production
under non-saline and saline (200mM NaCl) conditions,
respectively (Sultana et al., 2021). Siderophore-producing
microbe B. subtilis DR2 act as a biofertilizer and promotes
seed germination and plant growth in Coriandrum sativum
(Kumari et al., 2021). Rangseekaew et al. (2021) reported
that a specific bacterial strain of deep-sea Dermacoccus
barathri MT2.1T and D. profundi MT2.2T strain have the
ability to promote seedling in tomato plants under 150mM
concentration of NaCl as compared to the terrestrial strain
D. nishinomiyaensis DSM20448T, due to the production of
many plant-growth promoting attributes such as siderophore
production, indole-3-acetic acid, and phosphate solubilization.
Nadeem et al. (2012) reported that rhizospheric bacterial
species Variovorax paradoxus (JN858091), P. fluorescens
(JN858088), and B. megeterium (JN858098) have potential
PGP attributes such as siderophore production, phosphate
solubilization, exopolysaccharides production, indole acetic
acid production, and ACC deaminase activity under both saline
and normal conditions that alleviate the negative impacts of
salinity and enhance the nutrients uptake for plant growth in
cucumber plants.

Siderophore-producing microbes can produce plant growth-
promoting attributes such as plant hormones, phosphate
solubilization, secondary metabolites, etc., and provide suitable
environments in stressed soil that enhances plant growth such
as drought (Vivas et al., 2003; Breitkreuz et al., 2021). B.
subtilis produce iron-chelating compounds that enhance the
nutrient level in soil resulting in the growth of wheat plants
under drought conditions (Lastochkina et al., 2020). Two
siderophore-producing rhizobacterial species such as P. putida
and B. amyloliquefaciens have the tolerance ability under drought
stress due to the secretion of PGP attributes like siderophore
production, hormone production, mineral solubilization, biofilm
formation, and ACC deaminase activity, ameliorating the
negative effects of drought and ensuring potential growth ofCicer
arietinum L. under drought stress (Kumar et al., 2016). Several
plant growth microbes survive under drought stress enhancing
plant growth and yields; the inoculation of Bacillus sp. in lettuce
increases the nitrogen, phosphorous, and potassium nutrients
under drought stress conditions (Vivas et al., 2003). Siderophore-
producing microbe Pseudomonas strains enhance the soil
nutrients and other activities, including phosphate solubilization,
potassium solubilization, and siderophore production under
drought conditions (Breitkreuz et al., 2021).

Siderophore changes the oxidation states of heavy metals
including Cd, Cu, Ni, Pb, Zn and Th4+, U4+, and Pu4+ to make
them less toxic in nature (Schalk et al., 2011). Siderophores also
bind different toxic metals such as Cr3+, Cu3+, Pb2+, Cu2+, V4+,
and Al3+, while the binding capability of siderophores to Fe is
more as compared to toxic heavy metals (Baysse et al., 2000;
Braud et al., 2009b). Siderophores bind to toxic heavy metals, and
thus toxic heavy metals do not hinder the efficiency of plant cells
(Braud et al., 2009b). Therefore, the toxic heavymetal detoxifying
and binding capability of siderophore plays a remarkable role in
plant growth under heavy metal polluted land.
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Siderophore has a strong affinity for the formation of iron-
chelating compounds that help in the bioremediation process
enhancing nutrient uptake and plant growth (Rajkumar et al.,
2010). Bacterial strain P. fluorescence produces pyoverdine-
type of siderophore that enhances mobility and reduces the
toxicity of heavy metals in uranium mines (Edberg et al.,
2010). Sharma and Johri (2003) reported that plant growth-
promoting rhizobacterial genus Pseudomonas isolated from Zea
mays L. secretes siderophores that have the potential to mobilize
iron and have a high affinity to chelate Fe3+ ions resulting
in heavy metals uptake. Pseudomonas strain GRP3 producing
siderophore enhances the chlorophyll level in siderophore-
treated mung bean plants (Sharma and Johri, 2003), and
phytosiderophore enhances the iron efficiency of barley and
wheat. Vishnupradeep et al. (2022) reported that two bacterial
species Providencia sp. (TCR05) and Proteus mirabilis (TCR20)
reduce the Cr toxicity from Cr(VI) to Cr(III) and enhanced plant
pigments, protein, phenolics, and relative water content, while
proline, lipid peroxidation, and superoxide dismutase decreased
in Zea mays under heavy metal contaminated and drought
conditions. Siderophore-producing microbes have the potential
for phytoremediation of heavy metals and can overcome
iron deficiency (Rajkumar et al., 2010). Dimkpa et al. (2009)
reported that PGP rhizobacterial species Streptomyces tendae
F4 phytoremediated cadmium (Cd) and enhanced the uptake
of metals in heavy metals polluted lands. Enterobacter cloacae
rhizospheric bacteria isolated from Spilanthes acmella Murr
(toothache plant) of Shivalik hills region secretes PGP attributes
including, exopolysaccharides (EPS) and 1-aminocyclopropane-
a-carboxylic acid (ACC), acts as a biocontrol and biofertilizer
under drought stress conditions (Thakur et al., 2021). Symbiotic
association among plant and SPM is potentially involved in
heavy metal uptake, SPM Rhizobium strains promoted Cu uptake
while Pseudomonas strain promoted Cu and Fe uptake by
Phaseolus vulgaris plants (Carrillo-Castaneda et al., 2007), and
S. acidiscabies SPM secretes hydroxamate types of siderophores
responsible for the solubilization and uptake of nickel and iron by
Vigna unguiculata plants under nickel stress condition (Dimkpa
et al., 2008). Symbiotic association of SPM Kluyvera ascorbata
and plants decreased the toxicity of heavy metals (Burd et al.,
2000) and suppressed the phytopathogens (Glick, 2012).

Siderophores maintain iron starvation in plants (Sayyed
et al., 2019) and suppress the phytopathogens (Shaikh et al.,
2014; Saha et al., 2016; Sayyed et al., 2019) like Phytophthora
parasitica (Seuk et al., 1988), Phythium Ultimum (Hamdan
et al., 1991). Ghazy and El-Nahrawy (2021) reported that
bacterial strains such as B. subtilis MF497446 and P. koreensis

MG209738 produce siderophores and induce disease resistance

against Cephalosporium maydis in maize crops. Brevibacillus
brevis GZDF3 (PGPR strain) isolated from the rhizosphere of
Pinellia ternate plants play an important role in antagonistic
activity against Candida albicans fungal disease by siderophore
production (Mohammed et al., 2020; Sheng et al., 2020);
P. flurescens and P. aeruginosa bacterial strain act as a
biocontrol agent against Ralstonia solanacerum of tomato
wilt. Siderophore-producing microbes, namely gram-negative
bacteria Escherichia coli, secretes secondary metabolites such

as siderophores that enhance iron uptake and plant growth
performances under iron stress conditions (Neilands, 1995), and
gram-negative bacterial genus Streptomyces acts as a biofertilizer
that enhances the plant nutrients (Fe, P, and N), significantly
increasing the germination rate, shoot length, and dry weight of
wheat plant under saline stress condition (Sadeghi et al., 2012;
Upadhyay et al., 2019).

CONCLUSION AND WAY FORWARDS

A proportional relation exists between growth performance and
yield of plants; however, a big challenge arises in this proportional
relationship due to the rapid rise in degraded land across the
globe. The utilization of degraded land for agricultural practices
becomes an issue for researchers to meet global food production
for the future with eco-friendly and sustainable technology.
Degraded land poses several detrimental impacts on plant growth
and induces plant stress by less cycling of available nutrients and
disruption in the metabolic function of the plant. The review
discussed the influence of iron-deficient soil on plant and their
management through eco-friendly products i.e., siderophores.
The diverse chemical nature of siderophores can chelate Fe3+,
which is produced by siderophore-producing rhizobacteria, and
plant roots commonly known as bacterial siderophore (BS) and
plant siderophore (PS).

In the rhizospheric microenvironment, both BS and PS
synergistically facilitate iron uptake in the plant from iron-
deficient soil mediated by reduction and chelation strategies.
The utilization of siderophore-producing rhizobacteria can
effectively maintain the iron level in plants and induce plant
growth performances under degraded soil effectively when their
selections meet compatibly with plant roots specifically. Future
research requires the selection of the perfect candidate for
siderophore-producing rhizobacteria, for a specific plant in
degraded soil that would be useful for plant stress management
and plant productivity at the field level.
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Museum of Natural History, University of Helsinki, Helsinki, Finland, 5Department of Physiology,
College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia,
6Department of Botany, Hindu College, (Mahatma Jyotiba Phule Rohilkhand University, Bareilly),
Moradabad, India, 7Department of Microbiology, PSGVP Mandal’s S. I. Patil Arts, G. B. Patel Science,
and STKV Sangh Commerce College, Shahada, India

Sorghum is a major grain crop used in traditional meals and health drinks, and

as an efficient fuel. However, its productivity, value, germination, and usability

are affected by grain mold, which is a severe problem in sorghum production

systems, which reduces the yield of harvested grains for consumer use. The

organic approach to the management of the disease is essential and will

increase consumer demand. Bioactive molecules like mVOC (volatile organic

compound) identification are used to unravel the molecules responsible for

antifungal activity. The Streptomyces rochei strain (ASH) has been reported to

be a potential antagonist to many pathogens, with high levels of VOCs. The

present study aimed to study the inhibitory effect of S. rochei on sorghum

grain mold pathogens using a dual culture technique and via the production of

microbial volatile organic compounds (mVOCs). mVOCs inhibited the mycelial

growth of Fusarium moniliforme by 63.75 and Curvularia lunata by 68.52%.

mVOCs suppressed mycelial growth and inhibited the production of spores by

altering the structure of mycelia in tripartite plate assay. About 45 mVOCs were

profiled when Streptomyces rochei interacted with these two pathogens. In

the present study, several compounds were upregulated or downregulated

by S. rochei, including 2-methyl-1-butanol, methanoazulene, and cedrene.

S. rochei emitted novel terpenoid compounds with peak areas, such as

myrcene (1.14%), cymene (6.41%), and ç-terpinene (7.32%) upon interaction

with F. moniliforme and C. lunata. The peak area of some of the compounds,

including furan 2-methyl (0.70%), benzene (1.84%), 1-butanol, 2-methyl-

(8.25%), and myrcene (1.12)%, was increased during tripartite interaction with

F. moniliforme and C. lunata, which resulted in furan 2-methyl (6.60%),

benzene (4.43%), butanol, 2-methyl (18.67%), and myrcene (1.14%). These
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metabolites were implicated in the sesquiterpenoid and alkane biosynthetic

pathways and the oxalic acid degradation pathway. The present study shows

how S. rochei exhibits hyperparasitism, competition, and antibiosis via mVOCs.

In addition to their antimicrobial functions, these metabolites could also

enhance plant growth.

KEYWORDS

antifungal, grain mold, interaction, mVOCs, sorghum, S. rochei

Introduction

Sorghum is a staple food for people in the semi-arid tropics.
Sorghum is mainly cultivated during India’s Kharif and Rabi
seasons (Manzar et al., 2021). Several diseases were reported in
sorghum crops in various parts of Tamil Nadu, with the majority
of them being seed-borne. Grain mold, the most widespread and
significant sorghum disease globally, is a significant constraint
on sorghum productivity. Grain mold progress is especially
vigorous in short-term hybrid cultivars and varieties grown
in temperate and sultry conditions during the rainy season.
Several grain mold fungi, such as Curvularia lunata, Fusarium
moniliforme, Alternaria alternata, Macrophomina phaseolina,
Rhizopus stolonifer, Phoma sorghina, Drechslera rostrata, and
Aspergillus spp., can infect sorghum (Sajjan et al., 2014).
Fusarium moniliforme and Curvularia lunata are counteracted
due to carbohydrate absorption, the budding of the kernel, and
the triggering of seeds, which decreases their size and weight
without visible fungal development (Prom et al., 2016; Das
et al., 2020). The grain mold fungi cause grain deterioration,
reduced seed weight, poor germination, loss of viability, and
death of seedlings (Cuevas et al., 2019; Das et al., 2020).
Hence, an economic and safe method of mold control would
greatly help the use of sorghum grains both for food and feed.
Several biological agents, including Trichoderma hamatum,
T. koningii, Bacillus subtilis, Pseudomonas fluorescens, and
Streptomyces spp., have demonstrated promising results in the
laboratory and in the field (Kashyap et al., 2021; Manzar
et al., 2021). Protecting crops against grain mold through
pesticides is possible, but unsystematic application creates
a stronger reaction that threatens the environment through
residual effects.

Plant growth-promoting rhizobacteria increase the use of
phosphate solubilization (Sharma et al., 2016), improve nutrient

Abbreviations: mVOCs, microbial volatile organic compounds;
NIST, National Institute of Standards and Technology; PCA, principal
component analysis; PC, principal component; PC1, principal
component 1; PC2, principal component 2; PDA, potato dextrose
agar; PGPR, plant growth-promoting rhizobacteria; VOCs, volatile
organic compounds.

availability in plants (Hamid et al., 2021; Sarkar et al., 2021),
and biosynthesize metal chelators (Nithyapriya et al., 2021).
Most PGPR have been used to control phytopathogens (Khan
et al., 2021; Sukmawati et al., 2021) and ease abiotic stress
in plants (Kashyap et al., 2017, 2021; Olanrewaju et al.,
2017; Zhao et al., 2019; Sagar et al., 2020, 2022a,b; Kusale
et al., 2021a,b). Actinobacteria, such as Streptomyces spp.,
have been used to manage phytopathogens through biological
control (Katarzyna et al., 2018; Kalam et al., 2020). The
mode of action of Streptomyces sp. is the production of
cellulolytic enzymes, such as cellulases, chitinases, amylases, and
glucanases, by pathogenic fungi during the interaction. Light
and scanning electron micrographs have been used to determine
the effects of Streptomyces sp.-parasitizing phytopathogenic
fungus (Miyada et al., 2017; Kong et al., 2019). The interface
between the biocontrol agent and pathogens may upregulate
or downregulate certain semiochemicals. Although there are
numerous studies on microbe-specific mVOCs, the full range
of their interactions with infections and Actinobacteria is yet
to be explored (Sharma et al., 2020). Furthermore, Streptomyces
spp. is well-known for the secretion of specific organic
compounds with pharmaceutical applications and producing
natural bioactive secondary metabolites (70–80%) in large
quantities (Salwan and Sharma, 2020).

Hence, our study shows that S. rochei confers biocontrol
potential by releasing an array of compounds. Identifying
the mVOCs involved in antagonists might lead to more
efficient strategies for grain mold management. The present
study demonstrates that organic compounds from S. rochei
are the major key compounds in managing sorghum
grain mold pathogens. Using GC-MS-TD techniques, S.
rochei is shown to excrete many volatile chemicals in
the present study. Laboratory studies were carried out to
determine the antagonistic effects of volatile amalgamates
in S. rochei against Fusarium moniliforme and Curvularia
lunata. We analyzed the main components using the
PCA to understand their mutual relationships among the
treatments. The PCAs with eigenvalues more than 1 were
considered method; the observations vary, and subgroups
were calculated.
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Materials and methods

Microorganisms: Isolation and
identification

The biocontrol strain Streptomyces rochei (NCBI Accession
No: MT122809) was obtained from Culture Collection Centre,
Department of Plant Pathology, and was isolated from the
rhizosphere of sun hemp in the TNAU Campus, Coimbatore,
India. The starch casein agar medium was used for culturing
Streptomyces rochei; 25 µg/ml of nystatin was added to the
medium to reduce fungal contamination. After a week, the
colony of S. rochei was selected based on their morphological
characteristics, sporulation was induced from a solid medium
using International Streptomyces Project Medium ISP-4, and
ISP-2 was used for fermenting the culture. This isolate was
identified by the 16S rRNA genes and the genetic relatedness
of S. rochei was inferred using phylogenetic relatedness.
CLUSTAL_W was used to align the sequences. Phylogenetic
trees were built to assure the reliability and stability of
phylogenetic connections using the strains available in NCBI
GenBank database strains.

Sorghum grain mold causative organisms, namely,
Fusarium moniliforme and Curvularia lunata, were isolated
from the infected sorghum grains. The infected sorghum
grain tissue portions were cut into small pieces of 1.0 cm2

and surface-sterilized with sodium hypochlorite 0.1% for 30 s.
Then, they were rinsed with sterilized water three times and
dried using tissue paper. The sterilized infected plant tissue
sections were then placed on culture plates with 20 ml of PDA
medium and conditioned at 25◦C for further development.
A single hyphal tip technique was used to purify and maintain
the cultures. The grain mold infections were initially identified
based on phenotypic characteristics and then validated using
specific primers. Kusai et al. (2016) described the primers P1
and P2 with their nucleotide sequence of Clg2p Ras protein
gene for C. lunata identification at 870 bp and the translational
elongation factor (TEF-1) gene of F. moniliforme at 420 bp.
The results were determined after amplification using a
Gel Doc XR system.

Screening of antifungal activity of
S. rochei against F. moniliforme and
C. lunata

The S. rochei strain (ASH) was evaluated for antifungal
activity against the pathogens by a dual plate-assay technique on
PDA in Petri dishes (Djellel and Larous, 2018). For each fungal
strain, 5-day-old actively growing mycelium of 9 mm diameter
was placed on the opposite side, and S. rochei was streaked on
the other edge of the Petri plate. These plates were incubated at

28 ± 2◦C for 6 days or until the test pathogen covered 9 mm in
control. The suppression of test pathogen fungal mycelium was
measured. The inhibition zone was measured by the mycelial
growth compared to control.

Growth inhibition =
1− dr

dc
× 100

where dr is the diameter of mycelia in the dual plate and dc is
the diameter of mycelia in the untreated plate.

The interactive area of about 1 cm2 (zone of inhibition)
between the pathogen and S. rochei was cut down and examined
under the dissection microscope at 400×magnification.

Tripartite plate assay for inhibition
induced by volatile compounds

The growth inhibition of pathogens mediated via volatile
compounds was studied using tripartite plate assay or divided
plate assay. A plate containing potato dextrose agar was radially
divided into three parts. An 8-mm agar plug of F. moniliforme
was placed on one part of the tripartite plate. C. lunata was
streaked on the second part and sealed using parafilm. The third
part was left empty. The setup was incubated at 28 ± 2◦C.
The control plate consisted of only the pathogen and not
the antagonist. The radial growth of pathogen mycelia was
measured at 24-h intervals until the control plate was fully
covered with growth. In another set of plates along with the
pathogens, antagonist was filled in the third part of the tripartite
plate to absorb the volatile compounds released by S. rochei.
The growth of hyphae was measured at regular intervals,
and the percentage of mycelia inhibition of the pathogen was
determined by comparing it to the control plate.

Percentage of inhibition = [1− (Ge − Ga)] × 100

where Ge is the mycelial development of the pathogen in the
presence of S. rochei and Ga is mycelial development of the
pathogen in the absence of S. rochei.

Extraction of the antifungal metabolite

Streptomyces rochei was inoculated in a 250-ml conical flask
containing ISP-1 medium (casein enzymic hydrolyzate: 5 g;
yeast extract: 3 g; distilled water: 1 liter) with a 2-cm2 cell plug
from a new slant. Then it was kept in a rotary shaker at 150 rpm
for 7 days at 28 ± 2◦C. The broth was centrifuged for 20 min at
4◦C at 10,000 rpm. The resultant solution was filtered and stored
after adjusting the pH to 2.0 using 1N HCl. Ethyl acetate was
added at equal volume as a solvent, and the mixture was kept
for overnight incubation in a shaker at 150 rpm; then, it was
extracted twice with ethyl acetate. Antifungal compounds in a
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solvent were pooled and concentrated through evaporation in a
vacuum flash evaporator at 80 rpm at 55◦C until condensed. The
concentrated liquid was filtered through a 0.22-µm (disposable
sterile–Whatman No.) aseptic microporous filter membrane.
The filtered metabolite was diluted with methanol (HPLC grade)
at various concentrations for further experiments.

Screening of antifungal metabolite
against fungal pathogens

The diluted metabolite from the antagonist was further
tested for its antagonistic property against the two fungal
pathogens isolated from sorghum. The antagonistic activity of
the isolates was tested using an agar well diffusion assay. Then
100 µl of crude metabolite was poured into PDA wells. In each
plate, the test pathogen mycelia were inoculated with a 9-mm-
diameter agar plug in the center of the Petri dish. The inhibition
percentage was calculated after 7 days.

Microbial volatile organic compound
collection with tenax columns and
GC-MS-TD analysis

The purge and trap method was used for analyzing volatile
compounds. The headspace mVOCs were absorbed by Tenax-
coated columns (PerkinElmer cat #HO244966) made of stainless
steel. Totally, four sets, including S. rochei (1 ml of 72-h-old
spore suspension) with grain mold pathogens (8 mm 5-day-
old mycelia disk), were inoculated in potato broth (PD broth):
S. rochei alone, F. moniliforme or C. lunata alone, and both
upon tripartite interaction (S. rochei vs. F. moniliforme and
C. lunata). Uninoculated PD broth was used as a pessimistic
control for the headspace samples. To avoid the dispersal of
volatile compounds from the columns, they were sealed with
parafilm after the sterilized rubber cork was inserted. The
experiment was repeated three times; then, the mycelium was
allowed to grow at 28± 2◦C for 7 days.

The biochemicals produced in the samples were identified
using GC-MS, thermal desorber (TD). The resultant mVOCs
were compared with NIST 14 standards (Mass Spectral Library).
Volatile compounds with a mass spectral resemblance of more
than 90% to those in the National Institute of Standards
and Technology (NIST) library were categorized as putative
active compounds.

Principal component analysis and heat
map

The NIST database extracted the metabolite signals
using the MALDIquant wrap up in the RStudio interface.

Data normalization was performed using principal
component analysis (PCA).

Seed bacterization and plant growth
promotion

Sorghum seeds (cv. CO30) were surface-sterilized for 30 s
with 2% sodium hypochlorite, and 72-h-old S. rochei was
inoculated in a conical flask containing appropriate broth. The
cell suspension, comprising 50 g of seeds, was treated with
3× 106 colony-forming units/ml for 2 h and dried under shade.
The seedling vigor index was used to test the plant growth-
boosting capabilities of the isolates. Overall, 15 seeds were placed
on presoaked germination paper. The same germination paper
sheet was lightly folded over the seeds to keep them in place.
The polyester layer was then folded up with the seeds and
placed inside the humidified incubator for 14 days. Then, three
replications were maintained for each treatment. Germination
percentage and shoot and root measurements were recorded for
each seedling at 7 days after incubation. The vigor index was
calculated using the formula of Ali et al. (2021) and expressed as
the percentage of germination multiplied by the seedling length.

Microbial volatile organic compound
plate bioassay and plant growth
stability

About 10 seeds were placed on the MS agar in a Petri plate,
and the potential antagonist S. rochei was cultured on 90-mm
SCA plates. Both sets were placed and subjected to 24-h light
and dark cycles, followed by 12 h under 55 W light in a plant
growth chamber at 26± 1◦C and 60–70% relative humidity. The
sorghum seeds CO30 were disinfected for 10 min with sodium
hypochlorite 0.1 or 70% ethanol and rinsed three times with
deionized water. These sorghum seedlings were periodically
monitored for 14 days after seeding to examine the effect of
mVOC on growth rates. The length, weight, and quantity of
shoot and root were measured.

Evaluation for S. rochei against grain
mold pathogens under glasshouse
conditions

The pot culture experiments were conducted with a
susceptible sorghum cultivar (CO30) at a PL480 glass house,
TNAU, Coimbatore district, Tamil Nadu, India. Surface-
sterilized seeds were soaked in S. rochei spore suspension (at
107 cfu/ml; grown in SCB) and in sterilized water for control for
1 h. The treated seeds were sown immediately in the portrays
at 3 cm depth. After germination, the plants were dipped in
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S. rochei spore suspension (at 107 cfu/ml) for a period of
30 min and planted in pots (3/pot). Booster doses of S. rochei
(5 ml per seedling, 107 cfu/ml) were applied as foliar spray
at 50% flowering and 100% flowering stage. The grain mold
pathogen (spore suspension of F. moniliforme and C. lunata)
was inoculated as foliar spray during the flowering stage, which
served as positive control and healthy control were maintained
as negative control. After spray, the panicles were immediately
covered with selfing bags and removed after 2–3 days of
incubation period. After 24 h and 20 days of foliar spray,
around 100 grains (20 grains/panicle) of sorghum from each
treatment were harvested from five randomly selected panicles.
Furthermore, percentage grain mold severity rating in the field
(PGMSR) and percentage mold threshed rating (PMTGR) in the
laboratory were evaluated on the harvest at the physiological
maturity stage of the crop using a 1–9 rating scale, where
91/4 76–100% molded grains (extremely susceptible), 81/4 51–
75% molded grains (highly susceptible), 71/4 41–50% molded
grains (susceptible), 61/4 31–40% molded grains (susceptible),
51/4 21–30% molded grains (moderately resistant), 41/4 11–
20% molded grains (moderately resistant), 31/4 6–10% molded
grains (resistant), 21/4 1–5% molded grains (resistant), and 11/4
no mold (highly resistant) (Thakur et al., 2007). The percent
disease index was calculated using the following formula.

Percent disease index

=
Sum of individual ratings

No of observation × Maximum grade

Statistical analysis

All the experiments were performed in triplicate, and the
mean value was statistically analyzed using STAR 2.0.1. The
F-value (P = 0.05) was used to determine the significant amount
of treatment. The mean and standard deviation of plant growth
metrics were obtained, and additional comparisons were made
using DMRT at P0.05 (XLSTAT).

Results

Molecular confirmation of sorghum
grain mold pathogens

The potential biocontrol strain S. rochei ASH that showed
the highest inhibitory activity and plant growth promoting
abilities was used in this study. The P1 and P2 primers were
used for amplification and yielded an amplicon of 870 bp for
C. lunata (Supplementary Figure 1). No amplification was
observed when a fungal isolate from a different species was
utilized as a negative control (Fusarium moniliforme). These
findings show that Curvularia sp. discovered was C. lunata.

For Fusarium sp., TEF-1 gene synthesis using Fu3f and Fu3r
primers revealed a band of 420 bp (Supplementary Figure 1).
The TEF-1 gene fragment was sequenced. BLAST search in
NCBI revealed that it originated from Fusarium sp. because
F. moniliforme had 99% similarity with related sequences
in the GenBank database (Supplementary Figure 1). The
phylogenetic relatedness using 16S rRNA sequences was used
for the identification of S. rochei. The results revealed that the
S. rochei strain ASH showed 95% similarity with Streptomyces
sp. strain of Indonesia (Supplementary Figure 2).

Screening of antifungal activity of
S. rochei against F. moniliforme and
C. lunata

The Actinobacteria, S. rochei, suppressed the mycelia of both
the pathogens (F. moniliforme and C. lunata) (Figure 1). The
direct interaction of the antagonist with the pathogen resulted
in changes in the mycelia pattern. The antagonist inhibited
the mycelia of F. moniliforme by 63.75, and C. lunata by
68.52%. The highest inhibition ranged from 65.33 to 68.88%,
recorded after 4 days of incubation (Figure 1A). The antagonist,
S. rochei, caused extensive hyphal thinning and a less dense
hyphal network than the control. Light microscopy of the fungal
mycelia revealed distortions, damage, and shrinkage of the
C. lunata conidia in the treated plates. In F. moniliforme, the
hyphae were parasitized by antagonist spores (Figure 1B). In the
control plate, no such changes were detected.

Tripartite plate assay for inhibition
induced by volatile compounds

The volatile compounds emitted by the isolate S. rochei
were tested against the two pathogens using a tripartite plate
assay. This demonstrated that volatile compounds adversely
affected the mycelium growth at 9.85 for F. moniliforme
and 9.02% for C. lunata after 3 days. Mycelial growth was
reduced by 88 and 89% (82.36 and 88.25%) compared to
control (82.36 and 88.25%). The inhibition percentage for both
pathogens increased above 90% on day 4 compared to the
control (90%) (Figure 2). The effectiveness of the volatile and
non-volatile compounds on the mycelial growth of the test
pathogens proved the suppressing ability of the antagonist under
in vitro conditions.

Validation of antifungal metabolites
against the pathogens

The antimicrobial metabolite extracts (dilution of 100 µl)
were poured in three replications along with the control. In
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FIGURE 1

Antagonistic effect of S. rochei against grain mold pathogens of
Sorghum. (A) Dual culture technique. (B) Interaction of
pathogen with S. rochei. Red arrows indicate effect of S. rochei
on mycelia of pathogen.

FIGURE 2

Volatiles of S. rochei against sorghum grain mold pathogens
(tripartite plate assay).

the agar well diffusion method, the metabolite of S. rochei
showed good antifungal activity against the test pathogens.
The crude extract inhibited F. moniliforme mycelia by 59.65
and C. lunata mycelia by 61.54%. In control, the diameter of
the radial mycelial growth was 88.54 and 88.61% for these
pathogens, respectively. Using 100 µl of the extract showed
complete inhibition on the 5th day in the S. rochei metabolite
compared to the control (Figure 3).

Volatilome profile associated with
S. rochei, F. moniliforme, C. lunata, and
their interaction

Streptomyces rochei emitted 14 volatile compounds
individually with high peak area abundance. The compounds
with peak area abundance were furan 2-methyl (0.70),
5-aminovaleric acid (1.19), methyl-D-glucamine (1.18),
cyclopentanetriol (9.43), 1-butanol, 2-methyl (8.25),

FIGURE 3

Efficacy of crude metabolites of S. rochei against sorghum grain
mold pathogens (agar well diffusion assay).

furan 3-methyl (7.92), hydroxyl pyridine (0.60), benzene
(1.80), methyl isovalerate (6.00), butanoic acid, 3-methyl-
ethyl ester (6.27), ethyl tiglate (2.70), butanoic acid
butyl ester (3.79), alpha-phellandrene (2.20), and methyl
undecanol (1.64).

During tri-tropic interaction with pathogens (Fusarium and
Curvularia), only three compounds were upregulated: furan
2-methyl (6.60), 1-butanol, 2-methyl (18.67), and benzene
(4.43), while cyclopentanetriol and alpha phellandrene were
downregulated, and the respective peak area percentage was
2.11 and 0.95. All other compounds were nullified during
the interaction. Hence, the furan 2-methyl, 1-butanol, 2-
methyl, and benzene were reported as novel antagonistic
compounds for the degradation of pathogenic hyphae and
distortion of spores.

Fusarium moniliforme exerts volatile organic compounds
with peak area such as neopentyl alcohol (19.78),
tributylamine (8.88), acetic acid (7.91), succinaldehyde
(0.48), aminocyanoacetic acid (7.01), oxalic acid (3.17),
allantoic acid (2.62), pyruvaldehyde (6.14), formic acid
butyl ester (1.15), and homocysteine (3.55). The highest
peak area abundance compounds were detected only during
F. moniliforme alone. During tripartite interaction, all these
virulent compounds were nullified.

The results showed that S. rochei explored several
compounds with peak areas, such as myrcene (1.14%),
cymene (6.41), 1,2,4-cyclopentanetriol (6.42), 1-butanol,
2-methyl- (6.47), furan, 3-methyl- (6.71), and ç-terpinene
(7.32). F. moniliforme alone released compounds such as
propanoic acid, (5.37), allantoic acid (5.71), and pyruvaldehyde
(6.0). The compounds released by the fungus C. lunata were
3-cyclopentene-1,2-diol (4.68), 5-aminovaleric acid (5.19),
benzene (5.40), 1-butanol, 2-methyl- (6.29), disulfide, dimethyl
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(6.70), ethyl ester (7.24), cyclotrisiloxane (7.31), dimethyl
trisulfide (9.46), and α-phellandrene (9.88). Upon interaction
with F. moniliforme and C. lunata, for some compounds,
including furan 2-methyl (0.70), benzene (1.84), 1-butanol,
2-methyl- (8.25), and myrcene (1.12), the peak area percentage
increased during the interaction (6.60, 4.43, 18.67, and 1.14).
However, the peak area percentage of 9.43, corresponding to
1,2,4-cyclopentanetriol, decreased during the interaction of
F. moniliforme and C. lunata with S. rochei (Figure 4A).

Totally, 45 volatile compounds were produced by S. rochei
interaction with sorghum grain mold pathogens (Table 1).
Our primary objective was to determine how competitive
relationships between F. moniliforme, C. lunata, and S. rochei
affected the volatile profiles. PCA was used on the volatile
biomarkers of axenic and co-cultivated samples, taking into
consideration four groupings of samples made up of (1)
F. moniliforme, (2) C. lunata, (3) S. rochei, and (4) interaction
of F. moniliforme + C. lunata with S. rochei. Alkanes, alkenes,
alcohols, esters, ketones, sulfur, and terpenoid compounds were
among the emitted VOCs. 1-Butanol, furan 2, and furan 3-
methyl, 1,2,4-cyclopentanetriol, benzene, methyl isovalerate,
cyclopentanone, butanoic acid 3 methyl ester, and methyl
undecanol were among the compounds most frequently
produced by Streptomyces. PCA would explain up to 95% of the
variation in the dependent variable in terms of volatile profiles,
depending on the instances (equal to the total of the scatter plot
values for both axis/principal components PC1 and PC2).

Principal component scores in the scatter plot and the
loading graphs are given in Figure 4A. Principal component
1 (PC1) and principal component 2 (PC2) accounted for
95% of the variance and were statistically significant in
representing all variables (Figure 4B). PC1 was related to volatile
chemicals such as 2-methyl-1-butanol and methanoazulene;
cedrene accounted for 39.8% of the variance. PC2 was also
substantially linked with volatile chemicals, accounting for
26.7% of the overall variance, 1 butanol 2-methyl, and 1,2,4
cyclopentanetriol. The treatment with the interaction of
S. rochei with F. moniliforme and C. lunata aggregated into
the same cluster. The association between the values and
volatile loadings was on the optimistic side for PC1. Small
amounts of N-benzylaniline, cyclohexasiloxane, dodecamethyl,
cyclotetrasiloxane, octamethyl, and α-phellandrene were
constantly released during the interaction. Figure 5 reports
the heat map obtained, analyzing 43 volatile compounds
that differentially accumulated among S. rochei alone and in
tripartite interaction with sorghum grain mold pathogens.
Overall, we found that tripartite interaction produced a higher
number of VOCs at lower concentrations (purple), while
lower numbers of chemical compounds (cyclopentanetriol,
undecanol, butanoic acid, butyl ester, ethyl tiglate, 3- methyl-,
ethyl ester, hydroxypyridine, N-methyl, and D-glucamine)
at higher concentrations (brown) were observed in S. rochei,
F. moniliforme, and C. lunata alone.

Seed germination by volatile
compounds

In the roll towel method, S. rochei-treated seeds stimulated
root and shoot length a day before germination. The mean root
length (7.63 cm) and shoot lengths (3.07 cm) were significantly
increased in S. rochei-treated seeds. Untreated seeds recorded
a root length of 1.99 cm, whereas shoot length was 1.67 cm
(Figure 6a). The vigor index was 878 in the S. rochei-treated
seeds and control; this was reduced to 602. The same pattern
was seen in the fresh mass of the seedlings (15 No.), which
was recorded at 3.72 g in treated and 0.89 g in control after
14 days. This observation supported a 47% increase in the dry
plant biomass of sorghum seedlings germinated from treated
antagonist seeds (Figure 6b).

The volatiles released from the antagonist activates the
sorghum seedling growth. An in vitro bioassay (sorghum CO30)
was carried out, in which 10 seeds in each plate were exposed
and 10 non-exposed to VOCs. After 14-day incubation, the
shoot length was higher in mVOC-exposed plates after 5 days
and gradually increased to 49.6% over control. But the root
length was reduced in VOC-exposed plants by 50% compared
to control. However, an increase in lateral roots of 50% has
been recorded in VOC-exposed plants. Furthermore, biomass
increased by 52% in VOC-exposed seedlings (Figure 7a)
compared to controls (Figure 7b).

Evaluation for S. rochei against grain
mold pathogens under glasshouse
conditions

The seed treatment with S. rochei, followed by seedling
dip and foliar spraying, recorded least disease severity (17.00)
compared to the control (97.00). The combined application of
seed treatment, seedling dip, and soil application also increased
the seed weight (3.43) and panicle weight (67.82 g), whereas
untreated plants recorded less seed weight (1.90) (Table 2).

Discussion

Actinobacteria like S. rochei have long been a well-known
biocontrol agent to inhibit the development of plant disease-
causing microbes and boost crop immunity. Antibiosis, enzyme
synthesis, enzyme suppressors, and other mechanisms of action
have now been utilized by BCAs to manage plant fungal
infections and signaling proteins (Sudha et al., 2017, 2019;
Sayyed et al., 2019; Kiss et al., 2020). Antagonistic plant–microbe
interactions might improve yield by 20% and decrease reliance
on chemical pesticides and fertilizers by 20%. Only a few studies
have addressed the microbial molecule structural diversity and
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FIGURE 4

(A) Classes of volatile compounds obtained from axenic and co-cultivation. (B) Scree plot for volatile compounds obtained in GC-MS-TD in
axenic and co-culture.
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TABLE 1 Compounds obtained during axenic and co-culture by GC-MS analysis.

Compounds F. moniliforme C. lunata S. rochei Interaction (F. moniliforme
+ C. lunata + S. rochei)

Furan, 2-methyl 0 0 0.7 6.6

5-aminovaleric acid 5.2 8.29 1.19 0

N-methyl-D-glucamine 0 0 1.18 0

2,4-cyclopentanetriol 0 0 9.43 2.11

1-butanol, 2-methyl- 0 0 8.25 18.67

Furan, 3-methyl 0 0 7.92 0

3-hydroxypyridine 0 0 0.6 0

Benzene 0 2.19 1.84 4.43

Methyl isovalerate 0 0 6 0

Butanoic acid, 3- methyl-, ethyl ester 0 0 6.27 0

Ethyl tiglate 0 0 2.7 0

Butanoic acid, butyl ester 0 0 3.79 0

α-phellandrene 2.83 1.21 2.2 0.95

2-methyl-1-undecanol 0 0 1.64 0

Cyclopropaneethanol 0 9.02 0 2.11

Benzene 0 2.19 0 4.43

Disulfide, dimethyl 0 13.79 0 7.44

Cyclotrisiloxane, hexamethyl- 5.57 1.9 0 1.87

N-benzylaniline 0 0 0 1.21

Cyclotetrasiloxane, octamethyl 0.79 0 0 0.58

a-myrcene 0 1.12 0 1.14

o-cymene 0 0 0 6.41

c-terpinene 0 0 0 7.32

Cyclohexasiloxane, dodecamethyl 0 0 0 2.23

1,4-Pentadiene 0.56 1.7 0 0

Cyclobutane, 1,2,3,4-tetramethyl- 0 5.95 0 0

Pyridine, 1,2,3,6-tetrahydro-1,2-dimethyl- 0 0.58 0 0

Toluene 0 2.41 0 0

α-Pinene 0 0.47 0 0

Glafenine 0 1.77 0 0

Dimethyl disulfide 0 3.44 0 0

a-myrcene 0 1.12 0 0

Bicyclohexane, 4-methylene-1-(1-methylethyl)- 0 12.29 0 0

1,3,6-octatriene, 3,7- dimethyl-, (Z)- 0 3.86 0 0

Succindialdehyde 0.48 0 0 0

Aminocyanoacetic acid 7.01 0 0 0

Allantoic acid 2.62 0 0 0

Oxalic acid, butyl cyclobutyl ester 3.17 0 0 0

Ifosfamide 6.99 0 0 0

Tributylamine 8.88 0 0 0

Pyruvaldehyde 6.14 0 0 0

Formic acid, butyl ester 1.5 0 0 0

Neopentyl glycol 19.78 0 0 0

DL-Homocysteine 3.55 0 0 0

Acetic acid, butyl ester 7.91 0 0 0

functionality. However, there has been limited research on the
compounds’ natural functions, which must be extended (Kalam
et al., 2020; Moumbock et al., 2021). Hence, this study focuses

on grain mold pathogens of sorghum and their management by
studying the mechanism of inhibitory by volatiles secreted by
S. rochei, which will eventually improve crop growth.
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FIGURE 5

Heat map obtained for upregulated and downregulated volatile compounds in axenic and co-culture.

The results of the present study showed the antagonistic
effect of S. rochei on the grain mold pathogens of sorghum, such
as F. moniliforme and C. lunata, under laboratory conditions
using the dual plate method. The mycelia of both the pathogens

were malformed and distorted by the presence of S. rochei,
so the results also demonstrated that it might have antifungal
activity. Such results are in line with those of Liu et al. (2019)
and Basu et al. (2021). They confirmed that Streptomyces
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FIGURE 6

Efficacy of S. rochei on plant growth promotion by the roll-towel method. (A) Treated with culture filtrate of S. rochei; (B) Treated with sterile
water (control) on the 7th day of germination.

FIGURE 7

Growth attributes of sorghum seedlings exposed to VOC of S. rochei. (A) Seeds exposed to volatiles of S. rochei; (B) Seeds unexposed to
volatiles of S. rochei (control).

spp. inhibited the mycelial growth of Rhizoctonia solani and
Sclerotinia sclerotiorum, which are the causal agents of stem
rot in the sunflower plant. S. rochei is broadly reported for
the secretion of antimicrobial compounds used therapeutically.
About 22% of the actinobacterial colonies isolated from
the global environment exhibited inhibitory activity against
pathogens, particularly against fungal strains (Das et al., 2018).
Likewise, S. rochei isolated from the marine environment from
mining sediment was a rich source of antimicrobial compounds
(Tenebro et al., 2021). The results also coincide with the findings
of Abdelmoteleb and González-Mendoza (2020). Streptomyces
netropsis isolated from rhizospheric soil from Larrea tridentata
exerted antifungal action more than Macrophomina phaseolina,
F. oxysporum, F. solani, F. equiseti, Botrytis cinerea, Alternaria
alternata, and C. gloeosporioides, with percent inhibition values
ranging from 55.02 to 77.27%.

Streptomyces rochei ACTA1551, isolated from the
rhizosphere of Pinus brutia, was also found to be capable of
producing antifungal compounds (metabolites) and protecting
tomato plants from Fusarium oxysporum. In this study, the
pathogen hyphal filament was reduced in size with distortion
and lysis of hyphae, as revealed in compound microscopic
studies. This could be because of the emission of volatile and

non-volatile compounds from S. rochei strains. Kim and Song
(2016), Lyu et al. (2017), and Kim et al. (2019) reported that
suitable results were obtained from this actinomycete fungus
(Streptomyces spp.) against phytopathogens in the laboratory.
Another supporting evidence was that the antagonist S. rochei
was able to produce secondary metabolites that could penetrate
and destroy the hyphae and cause lysis of S. sclerotiorum and
Pythium sp. (Arora et al., 2021; Gebily et al., 2021).

Volatile organic compound on
tripartite bioassay

If the compounds secreted by the antagonist were diffused
into the medium, it would reduce the growth of the pathogens.
Our study also proved that the antagonist S. rochei could
strongly inhibit the pathogens. The tripartite plate assays
resulted in the highest inhibition percentages. Hence, the
antimicrobial nature of the antagonist S. rochei might be
accredited to organic molecules that are unstably secreted
by S. rochei. Similarly, Wu et al. (2016, 2018) reported that
mVOCs secreted by Streptomyces spp. resulted in abnormal
growth characteristics in S. sclerotiorum. Spore germination by
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F. moniliforme was controlled by butane and dimethyl disulfide
production through Streptomyces sp. Gotor-Vila et al. (2017)
found that variation in susceptibility or resistance to VOCs
will differ for pathogen levels. Furthermore, antibiosis is an
important mechanism used by Streptomyces spp. to manage S.
sclerotiorum sclerotia and Aspergillus contamination (Smolinska
and Kowalska, 2018; Lyu et al., 2020).

Volatile organic compounds represent a number of
untapped classes of metabolites, and further novel work is
essential to thoroughly understand the ecological roles of these
compounds and their role in disease management (Olanrewaju
and Babalola, 2019). mVOCs from S. rochei were profiled
with antifungal activities and proved through screening results.
The extracted metabolites from S. rochei showed complete
inhibition of pathogens at 50 and 75 µl dilutions the findings
of Human et al. (2016) reported the antifungal activity of
Streptomyces spp. This could be evidenced by the production
of fungichromin, a polyene antifungal compound detected in
extracts of infrutescene of Protea. Dewi et al. (2017) also
proved the antifungal activity of metabolites of Streptomyces
spp. against Fusarium oxysporum f. sp. Cubense. A number
of strains in Streptomyces spp. have antifungal potential for
Magnaporthe oryzae (Pyricularia oryzae), a fungus causing rice
blast (Law et al., 2017). VOCs are emitted in different ways
by various species. Other strains of Streptomyces sp. are being
profiled in self-regulating isolates, and the interface suggests
the discharge of certain new microbe-specific molecules.
Various mVOCs exert antimicrobial activity against different

pathogens to varying degrees. F. moniliforme emits unique
volatile compounds responsible for virulence and pathogenesis.
Other compound classes include an organic acid (acetic
acid), two aromatic compounds (benzaldehyde and styrene),
a monoterpene (beta-phellandrene), and a ketone (acetone).
Compounds like oxalic acid co-butyl ester, succinaldehyde,
aminocyanoacetic acid, allantoic acid, ifosfamide, tributylamine,
and pyruvaldehyde were detected. However, during the
interaction of S. rochei with F. moniliforme, we profiled
acetic acid as the only compound. 5-Hydroxymethyl-2-
furancarboxaldehyde compounds produced by Streptomyces
JBS5-6 species inhibit the mycelial growth of Panama wilt
pathogen (Zhou et al., 2017; Jing et al., 2020). Hence,
our results revealed that disulfide dimethyl identified from
S. rochei might be the compound responsible for the mycelial
inhibition of F. moniliforme. These results indicate that
although dimethyl disulfide and dimethyl trisulfide play a
crucial function in inhibiting fungal growth, the mixture of
volatiles affects the overall effect. The growth of mycelium,
sporulation, or germination of conidia of P. italicum has
been found to be affected by dimethyl disulfide released
from Streptomyces sp. These findings suggest that VOCs from
S. rochei have the ability to manage grain mold pathogens
of Sorghum through fumigant action. In this study, terpenes
were produced, which could have a synergistic effect and hence
a stronger inhibitory effect than in previous studies. These
results support the idea that a combination of sulfides with
terpenes inhibits the growth of F. culmorum and induces a

TABLE 2 Evaluation for S. rochei against grain mold pathogens under glasshouse conditions.

Treatments Grain mold rating (1–9 scale) Disease severity Yield parameters

Field grade Thresh grade Field Thresh 100 seed weight (g) Weight of the
individual panicle (g)

Seed treatment 4.89 4.72 54.33e 52.44f 2.69 50.24

Seedling dipping 4.01 3.89 44.55d 43.22e 2.70 57.41

Foliar spraying 3.78 3.45 42.00d 38.33d 2.78 60.24

Seed
treatment+ seedling
dipping

3.44 3.21 38.22c 35.66cd 2.94 61.54

Seedling
dipping+ Foliar
spraying

3.24 3.00 36.11c 33.33bc 3.24 63.65

Seed treatment+ Foliar
spraying

2.89 2.87 32.11b 31.88b 3.40 65.87

Seed
treatment+ seedling
dipping+ Foliar
spraying

1.53 1.28 17.00a 14.22a 3.43 67.82

Healthy (Untreated
control)

8.80 7.21 97.00f 97.77g 1.90 26.54

SEd 0.95 1.05 0.01 0.39

CD 2.03 2.25 0.03 0.84

Means in columns followed by same letters are not significantly different (p < 0.05) according to DMRT.
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change in pigment production by S. griseus (Garcia et al.,
2019). Non-dissociated acetic acid promotes lipid solubility,
allowing increased fatty acid accretion in cellular membranes
or other cell wall portions. However, being a weak acid,
acetic acid can impede glucose absorption, resulting in cell
death of pathogens (National Cancer Institute) (Chaves et al.,
2021). Moreover, signaling during the disease development
plays an important role in studying these tripartite interactions.
Beccari et al. (2011) found that the mode of infection and
interaction with the plant of root rot and Fusarium rots
followed different pathways. These tripartite interaction also
increased the growth attributes in plants by mycorrhizal
and nitrogen-fixing symbiosis and raised their ability to
induce plant growth (Schrey et al., 2012). Likewise, in
this study, the pathways like sesquiterpenoid and alkane
biosynthetic pathways would play a significant role in growth
promotion and inhibition.

Zhang et al. (2017) discovered that α-phellandrene prevents
the fungal development of Penicillium cyclopium by reducing
the reliability of the cell membrane, resulting in the expulsion
of biological molecules and potassium ions, a high lipid
content, and changes in extracellular pH and membrane
permeability. Similarly, in our study, α-phellandrene might
be one of the compounds emitted by S. rochei during the
interaction. It may act as a biofungicide to suppress grain mold
pathogens in sorghum.

Seed bacterization plant growth
promotion

Biopriming with PGPR enhanced the seed growth
other than through biological control (Almaghrabi et al.,
2014). This result coincides with our investigations; the
colonization of S. rochei on the root and shoot was higher
than control. Similarly, Kunova et al. (2016) found that
S. anulatus increased the radical growth of cultivated rocket by
approximately 46.83 mm compared to the control (15.52 mm).
These strains frequently produce IAA, stimulating cell
elongation and root growth. Studies on growth promotion
in rice by the strain Streptomyces VSMGT1014 showed seed
germination improved root growth, shoot length, and fresh
and dry weight of the vegetative parts compared to control
(Khan et al., 2021).

The present study revealed that mVOCs from
Actinobacteria promote plant growth. Olanrewaju and Babalola
(2019) found that a few species of Streptomyces, including
S. anulatus S37, S. matansis, S. pulcher, S. vinaceus, and a few
others, also have plant growth promoting properties. Other
compounds from the relationship are comprehensively
addressed in the sections beneath. Streptomyces sp.
have shown several PGPR characteristics such as IAA
production, P solubilization, siderophores, and chitinase

(Tamreihao et al., 2016), and these PGPR characteristics
could be the reason for the growth promotion in roots of
sorghum seedlings.

The research findings suggested that VOCs produced
by S. rochei differ in their chemical nature and exhibit
antimicrobial action and growth promotion properties. Also,
these biomolecules are formed in situ in nature in the
appropriate proportions and could be used as effective
plant growth supporters and biological control mediators for
sustainable crop production. As a result, VOC profiling can
explore new compounds and metabolic pathways essential in
antifungal action against grain mold pathogens of sorghum
and plant growth promotion activity in sorghum seedlings.
We identified a few VOCs with antifungal action against
grain mold pathogens.
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Alfalfa plays a significant role in the pasture ecosystems of China’s north, 

northeast, and northwest regions. It is an excellent forage for livestock, 

improves soil structure, prevents soil erosion, and has ecological benefits. 

Presently root rot is a significant threat to the alfalfa productivity because of 

the survival of the pathogens as soil-borne and because of lack of microbial 

competition in the impoverished nutrient-deficient soils and resistant cultivars. 

Furthermore, these regions’ extreme ecological and environmental conditions 

predispose alfalfa to root rot. Moisture and temperature, in particular, have a 

considerable impact on the severity of root rot. Pathogens such as Fusarium 

spp. and Rhizoctonia solani are predominant, frequently isolated, and of major 

concern. These pathogens work together as disease complexes, so finding a 

host genotype resistant to disease complexes is challenging. Approaches to 

root rot control in these regions include mostly fungicides treatments and 

cultural practices and very few reports on the usage of biological control 

agents. As seed treatment, fungicides such as carbendazim are frequently used 

to combat root rot; however, resistance to fungicides has arisen. However, 

breeding and transgenic approaches could be more efficient and sustainable 

long-term control strategies, especially if resistance to disease complexes may 

be identified. Yet, research in China is mainly limited to field investigation of 

root rot and disease resistance evaluation. In this review, we describe climatic 

conditions of pastoral regions and the role of alfalfa therein and challenges 

of root rot, the distribution of root rot in the world and China, and the impact 

TYPE Review
PUBLISHED 11 August 2022
DOI 10.3389/fmicb.2022.961794

OPEN ACCESS

EDITED BY

Shekhar Jain,  
Mandsaur University, India

REVIEWED BY

Aradhana Mishra,  
National Botanical Research Institute 
(CSIR), India
Shah Fahad,  
The University of Haripur, Pakistan
Niu Yanbing,  
Shanxi Agricultural University,  
China

*CORRESPONDENCE

Xiangling Fang 
xlf@lzu.edu.cn  
Lei Zhou  
zhoul@zaas.ac.cn

SPECIALTY SECTION

This article was submitted to  
Microbe and Virus Interactions With Plants,  
a section of the journal  
Frontiers in Microbiology

RECEIVED 05 June 2022
ACCEPTED 18 July 2022
PUBLISHED 11 August 2022

CITATION

Abbas A, Mubeen M, Sohail MA, Solanki MK, 
Hussain B, Nosheen S, Kashyap BK, 
Zhou L and Fang X (2022) Root rot a silent 
alfalfa killer in China: Distribution, fungal, 
and oomycete pathogens, impact of 
climatic factors and its management.
Front. Microbiol. 13:961794.
doi: 10.3389/fmicb.2022.961794

COPYRIGHT

© 2022 Abbas, Mubeen, Sohail, Solanki, 
Hussain, Nosheen, Kashyap, Zhou and 
Fang. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

140

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.961794&domain=pdf&date_stamp=2022-08-11
https://www.frontiersin.org/articles/10.3389/fmicb.2022.961794/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.961794/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.961794/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.961794/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.961794/full
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.961794
mailto:xlf@lzu.edu.cn
mailto:zhoul@zaas.ac.cn
https://doi.org/10.3389/fmicb.2022.961794
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Abbas et al. 10.3389/fmicb.2022.961794

Frontiers in Microbiology frontiersin.org

of root rot pathogens on alfalfa in particular R. solani and Fusarium spp., 

effects of environmental factors on root rot and summarize to date disease 

management approach.

KEYWORDS

alfalfa, root rot, China, distribution, climatic factors, management

Introduction

Alfalfa (Medicago sativa L.,) is a perennial legume and has 
long been utilized as a forage crop due to its high yield, nutritional 
value and adaptability to wide range of soils and under various 
climatic conditions (Khoury et al., 2014; Luo et al., 2014; Jiang 
et al., 2021). In China, alfalfa is mainly grown for feeding grazing 
livestock (Jiang et al., 2021). Root rot is the major limiting factor 
to alfalfa production worldwide. It is estimated that the annual 
yield loss worldwide caused by root rot is 20 to 40% (Wang et al., 
2020a). Root rot is a destructive disease complex caused by 
several plant pathogenic fungi and oomycetes. Among these 
pathogens, Fusarium spp., and Rhizoctonia solani are the most 
damaging and frequently occurring root rot pathogens 
(Anjanappa et al., 2016; Cao et al., 2020; Cai et al., 2021; Jiang 
et al., 2021; Xu et al., 2021; Zhao et al., 2021). In China, root rot 
is endemic in major alfalfa producing regions such as northwest 
China (Gansu, Xinjiang, Qinghai, Shaanxi, and Ningxia Huizu), 
north China (Hebei, Shanxi, and Inner Mongolia), and northeast 
China (Heilongjiang, Liaoning, and Jilin), with death rates of 
more than 60% on severe plots (Fang et al., 2019, 2021). The root-
specific symptoms go unreported or are not visible, and plants 
that show symptoms aboveground do not recover. Root lesions of 
various sizes and colors (reddish, brownish, and blackish) and 
browning and weakening of root tips, yellowing and wilting of 
leaves, slowed plant growth, lower yield, and crop loss are some 
of the symptoms associated with root rot (Fang et  al., 2019). 
Environmental factors in particular soil temperature and soil 
moisture have profound effects on the expression and severity of 
root rot and the consequent productivity of alfalfa (Yinghua et al., 
2019; Sharath et al., 2021). In response to root rot, researchers in 
China have carried out a series of research, focusing mainly on 
the investigation of the occurrence and severity of the disease, the 
identification and isolation of the pathogen, the determination of 
pathogenicity and biological characteristics, evaluation of alfalfa 
species resistance and cultural, chemical, and biological control 
(Fang et al., 2021; Zhang et al., 2021). These attempts, however, 
have only been somewhat successful (Pan et al., 2015; Zhang 
et al., 2021). Furthermore, it is hard to develop a resistant cultivar 
resistant to diverse pathogens. Subsequently, farmers rely only on 
chemical control; nonetheless, fungicide resistance has been 
recorded. Due to a lack of understanding about the disease and 
the dire threat root rot poses to the alfalfa in China, there is a 
pressing need to research the biology, ecology, epidemiology, and 

management of root rot. This review: (i) describes the climatic 
conditions of pastoral regions of China and role alfalfa therein 
and challenges from root rot; (ii) discusses the distribution of 
root rot in the world and China; (iii) addresses the status of root 
rot in the world and China mainly focusing Fusarium spp. and 
R. solani, describes the disease cycle and biological characteristics 
including the symptoms they caused; and the challenges posed to 
alfalfa from these pathogens; (iv) addresses the environmental 
factors affecting the severity of the root rot; (v) addresses the 
approaches on the disease management made to date using 
cultural, breeding and transgenic, biological, chemical, gene 
silencing and editing.

Climatic condition of pastoral 
regions of China, role of alfalfa 
there in and the challenges from 
root rot

The climate of the northwest, north, and northeast region of 
China, where alfalfa is grown can best be described as “an arid, 
semi-arid and subhumid climate characterized by plenty of water 
but low solar radiation in the northeast, with a temperate climate, 
low precipitation and scarce water in north China and vast areas 
of low-quality land, abundant solar radiation and thermal 
resources, scarce water, desertification and salinization in the 
northwest (Morrison, 2004; Liang et al., 2006). In some locations 
of the northwest, water is plentiful but unevenly distributed (Su 
et  al., 2004). The soil of these regions has originated from 
nutrient-poor, ancient parent materials that have been intensively 
weathered and leached (Delang, 2018). Besides, the soil is not 
very fertile and generally lacking in phosphorus, resulting in 
significantly reduced nutrient levels in particular northwest and 
north region (Wang et  al., 2021). Alfalfa is the most famous 
perennial leguminous forage in the world. The United States is 
the world’s largest alfalfa producer with a planting area of 9 
million hectares, followed by Argentina with a planting area of 
6.9 million hectares. China ranks fifth globally with a planting 
area of 4.7 million hectares (Bao et al., 2016; Gao et al., 2018a; 
Guo et al., 2019). In China, alfalfa is the most crucial pasture 
legume in the northwest, northeast, and north regions. In the 
northwest, alfalfa is sown over an estimated area of 3151.9 
thousand hm2, accounting for 66.43% of the country’s total area. 
North China is the second-largest alfalfa producing area in 
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China, and alfalfa is sown over an estimated area of 1063.4 
thousand hm2, accounting for 22.41% of China’s total area. 
Northeast alfalfa acreage accounted for a small proportion in 
China, with a planting area of only 234.5 thousand hm2, 
accounting for 4.94% of China (Feng and Kai, 2014; Shi et al., 
2017). In recent years, the Chinese government has gradually 
allowed more land for forage crops such as alfalfa. Hence, alfalfa 
has become the most widely used forage legume in China’s 
integrated farming systems, grazing, and ecological conservation. 
Besides, the concept of “pasture-based livestock industries” alfalfa 
has gained attention in recent years, its planting area ranks first 
among all other forage crops reaching over almost 11 million 
acres by the end of 2017 (Shi et al., 2017). Compared to other 
forages and grain legumes like soybeans, alfalfa is the “queen of 
forage,” providing dairy with digestible protein, fiber, minerals, 
and vitamins at meager costs. While dairy is a relatively young 
agricultural business in China, with much lower average yields 
than in many other countries, boosting alfalfa consumption has 
been identified as a critical approach for improving milk supply 
and quality, particularly for big dairy farms. Large dairy farms in 
China have increased significantly (Qingbin and Yang, 2020). The 
advantages of alfalfa as a perennial pasture include its outstanding 
ability to prevent soil and wind erosion. In addition, extensive 
and deep root system of alfalfa is highly effective for building up 
organic matter, improving soil structure and soil fertility (Liu 
et  al., 2013; Jun et  al., 2014). Additionally, alfalfa is relatively 
tolerant to water deficit and water loggings. Besides, alfalfa is 
widely used for livestock and poultry, water and soil conservation, 
green manure, and disease breaks. However, continuous cropping 
of alfalfa over time in these regions has caused severe soil water 
deficit, soil desiccation, and depletion of shallow groundwater 
(Wang et  al., 2021). Besides frequent droughts, soil moisture 
deficit, erratic precipitation, severe wind, and water erosions, and 
intensive grazing have made alfalfa vulnerable to root rot. 
Furthermore, the poor and nutrient-deficient soils, in particular 
phosphorus, these regions predispose alfalfa plants to root rot 
because microbial competition with the root rot pathogen in such 
conditions is generally lacking and, consequently, losses from 
root rot are exacerbated (Wang et al., 2016; Feng et al., 2020). 
Besides, cool soil temperature and soil compaction in these 
regions slows down alfalfa growth and predispose roots to root 
rot. Alfalfa can survive for ten years or more years; however, once 
infected by root rot, yield reduction starts even in the third or 
second year (Fang et al., 2019). Besides, toxins such as mycotoxins 
and phytotoxins produced by root rot pathogens may also pose a 
substantial danger to feed quality due to their effects on animal 
productivity and potentially on human food quality. In addition, 
increased costs and harmful effects of fungicides are the indirect 
losses due to root rot (Barbetti et al., 2007). Furthermore, root rot 
pathogens form pathogen complexes, thereby posing a synergistic 
influence on the severity of root rot (Gossen et al., 2016; Fang 
et al., 2019). These pathogen complexes respond differently to 
fungicides and other management practices, and the root rot they 
cause requires special treatment measures.

Distribution of root rot in the 
world and China

Root rot has seriously affected alfalfa production in the 
United States, Italy, China, Canada, Australia, Russia, Japan, and 
Argentina (Akamatsu et al., 2008; Yinghua et al., 2019). In Alberta 
and British Columbia, root rot of alfalfa was first recognized by 
McKenzie and Davidson (1975). About 60% production area was 
affected by root rot (McKenzie and Davidson, 1975). The primary 
pathogens responsible were R. solani, Phoma sclerotioides, F. roseum, 
and Phytophthora megasperma. In 1983, the incidence of crown and 
root rot of alfalfa was recorded in 24 alfalfa-growing areas in 
southern Alberta, Canada, and the average incidence was 61%, and 
the highest was 80%. Most of the alfalfa plants were either dead or 
withered, resulting in reduction of the yield and quality. The main 
pathogens were F. solani, F. tricinctum, F. avenaceum, F. oxysporum 
and Pythium irregular. In 1984–1987 a survey of alfalfa fields in the 
northeast and northwest Alberta, Canada, revealed that F. roseum 
and F. avenaceum were common pathogens associated with root rot 
(Hwang and Flores, 1987; Hwang et al., 1989). In contrast, research 
in Quebec, Canada, in the late 1980s revealed alfalfa fields were 
severely affected by Phytophthora spp., particularly in low-lying 
places, since the humid climatic condition was more conducive to 
proliferation and multiplication of Phytophthora spp. (Richard and 
Martin, 1991). In 1991, root rot affected alfalfa production in 
Nevada, United States, and the primary pathogens were Fusarium 
spp. (Snyder et al., 1991). Later in Wyoming and then in Idaho, 
United States, Phoma sclerotioides were first identified as the cause of 
widespread winterkill of alfalfa (Gray et  al., 1997; Al-Sadi and 
Deadman, 2010; Al-Sadi, 2021). Subsequently, the root rot was 
successively found in all alfalfa-producing areas of the United States 
(Hollingsworth et al., 2003; Larsen et al., 2007). In 2006, Fusarium 
semitectum was identified as a major pathogen responsible for 
causing root rot in Italy (Garrett, 1970; Zaccardelli et al., 2006). 
Besides many reports on root rot from the United States, Canada, 
and Italy, root rot has also been reported in New Zealand, Japan, 
Russia, Australia, India, Brazil, Egypt, Nigeria, Finland, and many 
other countries (Snyder et al., 1991; Sharath et al., 2021). Hence, 
numerous root rot pathogens have been shown to have varying 
degrees of direct involvement in causing root rot disease of alfalfa in 
the world. Likewise, the distribution of root rot pathogens associated 
with root rots is influenced by environmental factors such as 
moisture and temperature. For example, F. pseudograminearum was 
more widespread during the low-rainfall years in the Pennsylvania 
of the USA and the low rainfall regions of Australia. Whereas 
F. culmorum was predominant in the high rainfall areas of eastern 
Australia and in the cooler and higher altitude areas of Idaho, USA 
(Smiley and Yan, 2009).

In China, root rot was first recognized by Yao (1989) in 
Xingjiang and Gansu provinces. Large areas of alfalfa were found to 
be affected by root rot. Presently, alfalfa root rot has been reported in 
11 provinces, with more in the northwest (Xinjiang, Gansu), 
northeast (Heilongjiang, Jilin), and north region (Inner Mongolia; 
Figure 1). China’s pastoral areas are concentrated in these regions, 
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particularly the northwest and north regions, where extensive 
livestock-raising is the leading agricultural enterprise. A range of 
forages, including alfalfa, is grown in these regions. Root rot is likely 
to occur in alfalfa in Qinghai, Liaoning, and Tibet, as reported on 
other legumes (Zhimin, 1996). Still, we could not find any published 
report on alfalfa root rot in these provinces (Figure 1). Furthermore, 
there are no published reports of root rot in China’s southern and 
south regions. These regions are agricultural areas where limited 
forages are sown. Many pathogens have been shown to have varying 
degrees of direct involvement in causing root disease. Fusarium spp. 
and R. solani are predominant and widely distributed root rot 
pathogens and have been most frequently isolated and described 
(Yao, 1989; Gang et al., 1996; Li, 2003; Li et al., 2009; Liu et al., 2016; 
Wang et al., 2016; Cong et al., 2016a; Jiang et al., 2021). Also, these 
pathogens are serious root rot pathogens in various economically 
important crops, including grain and forage legumes worldwide 
(Barbetti and MacNish, 1984; Barbetti et al., 2007; Ajayi-Oyetunde 

and Bradley, 2016, 2018). The distribution of Fusarium spp. 
associated with alfalfa root rot in the northeast, north, and northwest 
region of China is relatively well understood compared to other 
pathogens, as shown in Table 1. Studies showed that environmental 
factors, mainly moisture, and temperature, affect root rot (Barbetti 
et  al., 2007). Rainfall in these regions is erratic, resulting in the 
production of chlamydospores and sclerotia that enable Fusarium 
spp. and R. solani to survive in prolonged dry periods in these 
regions. The same distribution trend of these fungi was also noted in 
the semi-arid, arid, and subhumid regions of the world (Barbetti, 
1983; Smiley and Yan, 2009). For example, in Australia, Fusarium 
spp. is highly distributed in the dry regions where rainfall is erratic. 
Accordingly, the fungus produces chlamydospores, enabling them 
to survive more in the dry period than other pathogens (Summerell 
et al., 2011). In recent years, oomycetes such as Pythium spp. and 
Phytophthora spp. are causing severe root rot in the irrigated areas of 
Gansu and Sichuan provinces (Yinghua et al., 2019; Zhang et al., 

FIGURE 1

Geographical distribution and affected region in China. Color depth indicates affected provinces, and dots indicate root rot pathogens based on 
China Academic Journals full-text database (CNKI), Web of sciences (WoS), and other websites.
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TABLE 1 Distribution of Fusarium spp. in the alfalfa-growing areas of China.

Region Province Location* Fox Fso Fac Feq Fse Fav Fpr Ftr Fsp Fch Fcu Fin

Northwest Gansu Dingxi + + +

Huanxian + + + + +

Jiuquan + +

Qingyang + + + + +

Wuwei +

Zhangye + +

Jinchang

Xinjiang Hutubi + + + + + +

Altay

Urumqi

Yining

Shaanxi Yulin +

Dingbian +

North China Inner Mongolia Ar Horqin + +

Ordos + +

Chifeng + +

Hohhot + + +

Linhe + +

Tongliao

Hebei Cangzhou + + + +

Langfang + +

Huanghua + + + + + +

Zhangjiakou + + + +

Unknown +

Xuanhua + + + +

Shanxi Gaoyang + +

Northeast Heilongjiang Daqing + + + + +

Xiangfang + + + + +

Shuangcheng + + + + +

Acheng + + + + +

Lanxi + + + + +

Qiqihar + +

Zhaodong + + + + +

Harbin

Unknown

Jilin Unknown + +

Fox: F. oxysporum; Fso: F. solani; Fac: F. acuminatum; Feq: F. equisti; Fse: F. semitectum; Fav: F. avenaceum; Fpr: F. proliferatum; Ftr: F. tricinctum; Fsp: F. sporotrichioides; Fch: F. chlamydosporum: Fcu: F. culmorum; Fin: F. incarnatum. + = Isolation from that 
location. *Location: city/country, References: Wang et al. (1996), Liu and Yu (2006), Cong et al. (2017), and Yinghua et al. (2019).144
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2020). In addition, Macrophomina phaseolina, Phoma spp., 
Paraphoma spp. and Microdochium tabacinum have also been 
recovered from root rot in Gansu province and Inner Mongolia 
(Kaur et al., 2012; Wang et al., 2015a; Lakhran et al., 2018; Cao et al., 
2020; Marquez et al., 2021; Zhao et  al., 2021). These fungi in 
combination with Fusarium spp., R. solani and oomycetes resulting 
in severe root rot (Min-Quan et al., 2003; Huang et al., 2013; Wen 
et al., 2015b; Cong et al., 2016b; Zhang et al., 2020; Wang et al., 
2020b; Fang et al., 2021). In contrast to northwest and north, the 
northeast region (Heilongjiang, Jilin) is relatively fertile well-
developed agriculture and has plenty of water. From the northeast 
region, Bipolaris sorokiniana and Alternaria alternata in addition to 
above mentioned pathogens have also been reported (Li et al., 2019; 
Jiang et al., 2021).

Fungal and oomycetes pathogens

Most root rot pathogens are soil-borne and can survive for 
many years by producing resilient structures such as sclerotia and 
chlamydospores. Figure 2 depicts the inoculum sources, including 
the resilient structures and symptoms in addition to root rot 
caused by these pathogens on alfalfa. Recent reports suggest that 
these pathogens can also be  seed-borne (Kong et  al., 2018b). 
However, there is no report on the relationship between the 
disease incidence of root rot and pathogen-associated with alfalfa 
seeds. Hence seed transmission seems unimportant in the etiology 
of root rot of alfalfa in China. Barbetti (1983) removed fungi from 
the clover seeds and found no influence on the severity of root rot 
diseases after sowing (Barbetti, 1983). Among these pathogens, 
Fusarium spp. and R. solani are accountable for incalculable losses 
to alfalfa compared to other fungi. The status of these pathogens 
involved in root rot in China and abroad, biological characteristics 
and disease cycles are addressed further in the below sections. 
Other fungi such as Bipolaris sorokiniana, Paraphoma spp. and 
Phoma spp. that contribute to root rot in alfalfa but are not causing 
significant losses are shown in Table 2 (de Gruyter et al., 2009, 
2010; Moslemi et al., 2018; Jiang et al., 2021).

Fusarium spp.

Fusarium is a cosmopolitan genus that includes filamentous 
ascomycetes fungi (Sordariomycetes: Hypocreales: Nectriaceae). 
Link (1809) was the first to describe and identify the genus (Link, 
1809). The genus is exceptionally complicated, and its taxonomy 
has always been contentious due to polyphyletic grouping. 
Currently, between 100 and 500 species are reported globally 
(Summerell et al., 2010). The genus includes pathogens that cause 
severe disease of plants, endophytes, saprophytes and produce 
several mycotoxins and/or phytotoxins. These mycotoxins and/or 
phytotoxins can render alfalfa unfit for animal feeding, and some 
of them may act as virulence factors in enhancing root rot disease 
(Nedelnik and Repkova, 1997). According to a recent investigation, 

toxins, including trichothecenes, zearalenone, and fumonisins are 
not only involved in disease pathogenesis but can also cause 
human and animal poisoning in China. Besides, these toxins 
severely affect the germination of alfalfa seeds (Kong et al., 2018a). 
Fusarium diseases collectively include wilts, rots, blights, and 
cankers of many horticultural, field, ornamental, forage, and forest 
crops in natural and agricultural ecosystems (Coleman, 2016). 
Fusarium root rot caused by Fusarium spp. is harmful in all 
growing stages of alfalfa, consequently reducing nitrogen fixation 
ability and longevity, and productivity (Kong et al., 2018a).

Status of Fusarium root rot in China and 
abroad

Fusarium spp. root rot is the most common root disease of 
many crops, including alfalfa globally (Table 3). This disease has 
considerably affected alfalfa in the United  States, Canada, 
New Zealand, Australia, Italy, and India. Countries like Egypt and 
Japan also reported more than 50% prevalence rates in some areas 
(Samac et al., 2013). In China, Fusarium root rot is endemic in the 
north (Inner Mongolia), northeast (Heilongjiang, Jilin), and 
northwest (Xinjiang, Gansu, Qinghai) regions. The most affected 
provinces in these regions are Xinjiang, Gansu, Inner Mongolia 
and Heilongjiang (Fang et al., 2019, 2021). The disease hinders the 
establishment of the alfalfa stand, reduces yield and forage quality, 
and shortens the plant’s lifespan (Gang et al., 1996; Wang et al., 
2005). In the northwest provinces, i.e., Xingjiang and Gansu, a 
60% death rate of alfalfa was recorded. In the northeast region of 
China, i.e., in Jilin and Heilongjiang provinces, the disease 
becomes severe in August, with an incidence rate of 20 to 40% and 
a peak rate of around 92%. Similarly, in north China, i.e., in Inner 
Mongolia and Hebei, the disease becomes severe from August to 
October, with an incidence rate of 15 to 30% (Shouyan et al., 2011; 
Chen et al., 2015b; Cong et al., 2018; Wang et al., 2020a; Jiang 
et al., 2021). Besides, Fusarium spp. and R. solani co-infection or 
mixed infections increased root rot disease severity and decreased 
alfalfa growth and biomass allocation (Li et al., 2009; Wei et al., 
2016; Fang et al., 2021). Among the Fusarium spp. F. oxysporum is 
the most damaging to alfalfa production in China (Fang et al., 
2021; Table  1). F. oxysporum is also one of the top ten most 
economically important fungal pathogens, with over 100 formae 
speciales (f. spp.) based on host specificity (Edel-Hermann and 
Lecomte, 2019). Furthermore, F. oxysporum is the host-specific 
pathogen of alfalfa and other Medicago spp. (Batnini et al., 2020).

Biological characteristics, disease cycle, and 
damages to alfalfa

Fusarium spp. overwinter on plant debris/residues, seeds, and 
soils in the form of spores (microconidia and macroconidia), 
mycelial fragments, and chlamydospores (Cong et al., 2016a,b). 
The chlamydospores are more durable dormant structures and are 
regarded as the principal form in which Fusarium spp. survives in 
the soil for decades. These are enlarged thick-walled vegetative cells 
and are considered adaptations for survival during unfavorable 
environmental conditions such as prolonged dry periods (Fang 
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et  al., 2019). Chlamydospores usually formed on and in roots 
showing root symptoms and sometimes present when rot 
symptoms were not evident (Leath and Kendall, 1978). Once the 
conditions become favorable, the chlamydospores germinate in 
response to alfalfa’s root exudates, which contain a wide array of 
organic compounds, including sugars and amino acids (Fang et al., 
2019). A schematic representation of the presumed disease cycle of 
Fusarium root rot is shown in Figure 3. Infection hyphae from 
chlamydospores and/or mycelium penetrate the epidermis of 

rootlets, taproots, and stem base directly or through wounds or 
injuries and reach to root cortex. Consequently, brown to black 
necrotic patches are formed around the roots. Then the hypha 
reaches vascular vessels (xylem) and blocks the water. Finally, the 
stele of the roots decay, and the collar and the center of the root 
become hollow and lateral roots rot in large quantities. On the 
surface of roots, necrotic spots are formed, the tangential face of 
roots becomes brown or black, and reddish-brown or dark brown 
stripes/lesions are formed. The roots’ internal and external portions 

FIGURE 2

Schematic representation of alfalfa root rot and other symptoms and inoculum sources. Inoculum sources include zoospores, oospores, 
sporangia, conidia, chlamydospores, sclerotia, mycelia, and basidiospores (not reported). Besides root rot, other symptoms include damping-off, 
seed and hypocotyl rots, discoloration on roots, crown rot, stunting, chlorosis, wilting, and wire stem.

146

https://doi.org/10.3389/fmicb.2022.961794
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


A
b

b
as et al. 

10
.3

3
8

9
/fm

icb
.2

0
2

2
.9

6
179

4

Fro
n

tie
rs in

 M
icro

b
io

lo
g

y
fro

n
tie

rsin
.o

rg

TABLE 2 Records of pathogens other than Fusarium spp. in the alfalfa-growing regions of China.

Region Province Location* Bs Ph.c P.c Pr Pm Rs Aa Cg Mp Mt Pa Ps Hs

Northwest Gansu Dingxi +

Huanxian + +

Jiuquan + +

Qingyang +

Wuwei +

Zhangye + + + + + +

Jinchang + +

Xinjiang Hutubi +

Altay +

Urumqi +

Yining +

Shaanxi Yulin

Dingbian

North China Inner Mongolia Ar Horqin

Ordos

Chifeng +

Hohhot

Linhe

Tongliao +

Hebei Cangzhou

Langfang

Huanghua

Zhangjiakou

Henan Yuzhong

Shanxi Gaoyang

Northeast Heilongjiang Daqing + + +

Qiqihar

Zhaodong + + +

Harbin +

Unknown + + + +

Jilin Unknown +

Bs: Bipolaris sorokiniana, Ph.c: Phytophthora cactorum, P.c: Pythium coloratum, P.r: Paraphoma radicina; Pm: Phoma medicaginis; Rs: R. solani; Aa: A. alternata; Cg: Chaetomium globosum: Mp: Macrophomina phaseolina; Mt: Microdochium tabacinum; Pa: Phoma 
alfalfa; Ps: Phoma solani; Hs: Helminthosporium solani. + = Isolation from that location. *Location: city/country, References: Yuan et al. (2003), Wang et al. (2015a, 2020b), Wen et al. (2015b), Fan and Li (2017), Fan et al. (2018), Cao et al. (2020), Zhang et al. 
(2021), and Zhao et al. (2021).
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show red-brown discolorations (Berg et  al., 2017; Wang et  al., 
2020a; Li et al., 2021a). In the later stage of the disease, the plants 
become weak and can be easily removed from the earth. Severely 
infected plants showed stress-type foliar symptoms such as 
chlorosis, brown and reddish-brown foliage color, withering of 
individual twigs, or the whole plant wilting. These symptoms are 
frequently exacerbated by infrequent rainfall and cool soil 
temperatures. Besides, Fusarium spp. break cold resistance of 
alfalfa (Richard et al., 1982) predispose alfalfa to other pathogens. 
In addition, the taproot is the first root that penetrates the upper 
soil layer; if it is rotted, then the greatest reduction in plant size can 
be expected. However, the rotting of lateral roots had little effect on 
plant size because most plants regenerate new lateral roots to 
compensate for the loss of the lateral root (Pegg and Parry, 1983; 
Barbetti and MacNish, 1984). Furthermore, the infected plants 
dispersed among apparently healthy plants or the affected areas 
may occur in distinct patches. As a result, alfalfa plantations are 
sparse in a few years. Once alfalfa root rot occurs in a large area, it 
will seriously reduce alfalfa production and even need to 
be replanted (Kong et al., 2018a). The foliar symptoms of root rot 
in alfalfa vary in the northwest, northeast and north of China, most 
probably because of particular environmental conditions. Micro 
and macroconidia are secondary sources of infection to alfalfa and 
can survive on the surface of contaminated plants and spread to 
adjacent plants. Hence, chlamydospores play a vital role in the 
occurrence and circulation of root rot disease. The number and 
survival of the chlamydospores directly affect the occurrence of the 

disease and its degree of harm. Furthermore, Fusarium spp. cause 
severe damage to those alfalfa plants which are already weakened 
or injured by other abiotic factors, i.e., stress factors. For example 
low soil temperature and soil compaction predispose alfalfa to 
Fusarium root rot (Li et al., 2021a). Further, Fusarium spp. can 
infect any developmental stage of alfalfa; therefore, alfalfa cannot 
find a chance to escape from the Fusarium spp. Consequently, the 
alfalfa’s life, the nitrogen-retaining capacity, and the crop’s quality 
reduce, resulting in the loss of alfalfa’s processing value. Besides, the 
soluble sugar content of the infected alfalfa plants reduces, resulting 
in reduced regenerative capacity, slow growth, and reduction of 
yield. The gradual appearance of sparse plots and plants seriously 
affects alfalfa production. Further, they can survive in the soil for a 
long time and accumulate year after year, resulting in a decrease in 
alfalfa’s resistance to disease, resulting in a longer planting age 
(Fang et al., 2019). A previous report showed that chlamydospores 
could survive in the soil for up to 30 years, meaning that infected 
land cannot be used to replant alfalfa (Fones et al., 2017). Recent 
reports suggest that Fusarium spp. also infect the alfalfa seeds. For 
example, 150 Fusarium strains from rotting alfalfa and induced 
pathogenicity on the alfalfa seeds (Kong et  al., 2018a). All the 
isolated Fusarium strains induced pathogenicity on the germinated 
alfalfa seeds with varying pathogenic intensities. However, there is 
still a lack of any relationship between disease incidence of root rot 
and pathogen-associated with seed. A study showed that removing 
pathogens from the seeds had no influence on root rot severity 
after sowing (Barbetti, 1983).

TABLE 3 Reports of plants affected by Fusarium root rot.

Pathogens Plants Major disease Distribution References

F. roseum Alfalfa Root and crown rot Canada McKenzie and Davidson, 

1975

F. avenaceum, F. solani, F. oxysporum, F. 

acuminatum, F. sambucinum, and F. 

avenaceum

Alfalfa Root and crown rot USA Snyder et al., 1991; Salter 

et al., 1994

F. solani, F. oxysporum, F. roseum, F. 

tricinctum

Alfalfa Root and crown rot Canada Richard et al., 1980; Bugbee 

and Campbell, 1990

F. solani, F. tricinctum, F. avenaceum, F. 

oxysporum, F. roseum

Alfalfa Root and crown rot Canada Hwang and Flores, 1987; 

Hwang et al., 1989

F. avenaceum, F. solani, F. oxysporum Alfalfa Root rot Worldwide Miller-Garvin and Viands, 

1994

F. avenaceum Clover, Pea Root rot Worldwide You et al., 2005; Eranthodi 

et al., 2020

F. culmorum Wheat Root rot and head blight Worldwide Erginbas-Orakci et al.,  

2018

F. graminearum Maize Earmold and root rot Worldwide Löffler et al., 2010

F. graminearum Soybean Pod blight and root rot Worldwide Zhang et al., 2010

F. pseudograminearum Barley, wheat Crown rot Wheat and barley growing regions Liu et al., 2012

F. solani f sp. batatas Sweet Potato Storage rot China da Silva and Clark, 2013

F. solani f. sp. phaseoli Bean Root rot Bean growing region except Australia Hagerty et al., 2015

F. solani f. sp. pisi Pea Root rot Worldwide Porter et al., 2014

F. verticillioides Maize Root and ear rot Worldwide Miedaner et al., 2010

F. semitectum Alfalfa Root rot Italy Zaccardelli et al., 2006
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Rhizoctonia solani

Rhizoctonia genus was first introduced in 1815 by de Candolle 
for an unknown fungus severely infecting alfalfa and saffron (De 
Candole, 1815). According to de Candolle, the basic characteristics 
of the genus are the presence of sclerotia, mycelia emanating from 

sclerotia and the association of mycelia with the roots of plants. 
Moore et al. divided Rhizoctonia like fungi into four genera based 
on teleomorph, as shown in Figure  4 (Moore, 1987). Later 
classification of Rhizoctonia has been revised into three main 
teleomorphic genera (Stalpers and Andersen, 1996; Sneh et al., 
2013). One is multinucleated Thanatephorus cucumeris (Frank) 

C

E

F

D

B

A

FIGURE 3

Schematic representation of the presumed disease cycle of Fusarium root rot in China. (A) Alfalfa plant secrete root exudates and in response to 
exudates Fusarium spp. spores (chlamydospores) germinate and produce infection hypha to penetrate the root epidermis at the root tip. (B) The 
hypha proliferates in the root cortex and enters into the vascular vessels, i.e., xylem vessels. (C) In the vessels, it grows excessively and causes a 
blockage; as a result, brown discoloration occurs. (D) First symptoms appear at the base of the stem, and then the symptoms progress upward; as 
a result, the young leaves withered. (E) Partial chlorosis or complete chlorosis is observed mainly on the mature leaves. (F) Finally, the whole alfalfa 
plants wilt because of severe root rot followed by death. Fungal spores such as microconidia, macroconidia, and chlamydospores form dead 
alfalfa plant tissues and remain dispersed in the soil.
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Donk (anamorph: R. solani). The other one is a bi-nucleate fungal 
genus known as Ceratobasidium (anamorph: Ceratorhiza) and the 
third one is also a multinucleated genus known as Waitea 
(anamorph: Rhizoctonia zeae; Vilgalys and Cubeta, 1994; 
Andersen, 1996). All these genera lack clamp connections; 
however, differences have been found in the moniloid hyphae, 
sclerotia and dolipore septa (Stalpers and Andersen, 1996). 
Rhizoctonia solani (synonym: Thanatephorus cucumeris), the most 
studied and important necrotrophic fungus causing roots rots and 
other plant diseases, is of most significant interest to plant 
pathologists (Ajayi-Oyetunde and Bradley, 2016). It was first 
observed on diseased potato tubers by Kuhn in 1858 (Kühn, 1858). 
It damages 200 hosts, including cereals, vegetables, agricultural 
trees, horticultural trees, forest trees, weeds, ornamentals, and 
forage crops. The important features of R. solani comprise septate 
hyphae, multinucleate cells in young hyphae, the brown coloration 
of mature hyphae, right-angled hyphal branching, constriction at 
the point of branching, dolipore septa that allows unrestricted 

cell-to-cell movement of cytoplasm, mitochondria and nuclei, 
production of monilioid cells, and sclerotia of uniform texture. 
Clamp connections, rhizomorphs, conidia and sexual states other 
than T. cucumeris and hyphal pigmentations other than brownish 
mature hyphae have never been observed. This fungus cause root 
rots, hypocotyl rot, crown rot, stem rot, limb rot, pod rot, stem 
canker, black scurf, seedling blight, and pre-and post-emergence 
damping-off in different plants (Stalpers and Andersen, 1996).

Status of Rhizoctonia solani root rot in China 
and abroad

Root rot caused by R. solani was first reported by Fatemi 
(1972), who isolated fungus from the rotting roots of alfalfa in Fars 
province, Iran (Fatemi, 1972). The disease can now be found in 
many countries of the world including China. The amount of 
damage it produces in alfalfa varies, but the losses can 
be  significant, even dramatic. Besides, there is considerable 
diversity in the cultural and colony morphology, host range, 

FIGURE 4

Classification of Rhizoctonia like fungi based on Moore (1987).
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molecular and biochemical markers, pathogenicity, virulence, 
nutritional requirements among isolates of R. solani. Therefore 
R. solani is considered a species complex consisting of 
reproductively isolated and non-interbreeding populations. The 
isolates readily undergo hyphal and cytoplasmic fusion, and 
exchanging nuclei are grouped in the same anastomosis groups 
(AGs). In contrast, isolates that fail to achieve hyphal and 
cytoplasmic fusion and nuclear exchange is considered members 
of different AGs. R. solani isolates have been divided into 14 AGs 
(AG-1 to AG-13) and an AG-bridging isolate AG-B1 based on 
hyphal anastomosis reactions, cultural morphology, pathogenicity/
virulence, and DNA homology (Ogoshi, 1987). These AGs are 
further divided into subgroups based on anastomosis frequency, 
physiological and morphological characteristics, biomolecular, 
biochemical, genetic and DNA homology features (Blanco et al., 
2018). AGs such as AG-1, AG-2, and AG-4 are mainly associated 
with stem and root rot diseases in dicots, while AG-8 is associated 
with root rots in monocots. In general, AG-1, AG-2, AG-3, and 
AG-4 cause severe diseases in plants globally, whereas the 
remaining AGs are less harmful and have limited geographic 
distribution (Eken and Demirci, 2003; Li et al., 2009; Zhang et al., 
2021). AGs responsible for severe root rot of alfalfa across the 
world are; AG-1 and AG-4 in the United States (Vincelli and Herr, 
1992), AG-1, -2, -3, -4, -5, and 10 in Turkey (Eken and Demirci, 
2003), AG-4 in Iran (Balali and Kowsari, 2004), AG-1 to -10 in 
Saudi  Arabia (Alkherb et  al., 1997) and AG-11, -8, and -6  in 
Australia (Anderson et  al., 2013; Oladzad et  al., 2019). The 
anastomosis group of R. solani causing rot diseases of economically 
important crops, including alfalfa, are highlighted in Table 4. In 
China, root rot of alfalfa is caused by AG-1, AG-2, AG-4, and 
AG-5; however, so far, no binucleate Rhizoctonia spp. have been 
reported to cause root rot of alfalfa in China (Tables 2, 4). In 
addition, the occurrence frequency of AG-2 and AG-5 was higher 
than AG-1 and AG-4. Additionally, the pathogenicity of each 
anastomosis group was also significantly different and AG-2 had 
the highest pathogenicity on alfalfa (Li et al., 2009). In 2015, the 
pathogenicity of six isolates of R. solani was checked on 14 alfalfa 
varieties. All the isolates resulted in lower germination rates. 
Besides, many seedlings died before emergence and a large 
percentage of seedlings died after emergence due to root rot (Guo 
et  al., 2019). Recently, a study was conducted to determine 
whether any host resistance to R. solani exists among the alfalfa 
varieties. A considerable variation in disease responses among the 
alfalfa varieties was observed, with the range of disease indices of 
shoots from 23 to 94%, roots from 31 to 98%, and reductions in 
dry weight of shoots from 35 to 96% and roots from 2 to 99% 
(Zhang et al., 2021).

Biological characteristics, disease cycle, and 
damage to alfalfa

Rhizoctonia solani doesn’t produce vegetative or asexual 
spores, e.g., conidia. The role of sexual spores, e.g., basidiospores, 
as an inoculum source for the alfalfa root rot disease is unknown. 
In addition, the R. solani is a facultative parasite and can easily 

compete with other soil born saprophytes. In order to survive in 
the soil, it develops sclerotia, a long-lasting structures or 
propagules (Williamson-Benavides and Dhingra, 2021). These 
nutrient-independent propagules are formed from the 
undifferentiated hyphae or monilioid cells. When the conditions 
become favorable, sclerotia germinate and mycelia are formed. 
These mycelia are attracted to alfalfa roots in response to the root 
exudates. A schematic representation of the presumed disease 
cycle of Rhizoctonia root rot is shown in Figure 5. Upon reaching 
to roots, hypha grows along with the epidermal cells and forms 
appressoria to penetrate the alfalfa tissues by infection pegs. 
Hence, sclerotia are considered as the primary inoculum of root 
rot. The pathogen is also considered necrotrophic and produces 
extracellular hydrolytic enzymes to kill its host in advance of 
colonization (Ajayi-Oyetunde and Bradley, 2018). Unfortunately, 
there is little information regarding the pathogenicity of R. solani 
on alfalfa, whether the discoloration and necrotic of the alfalfa 
roots are the results of certain toxic or enzymes secreted by 
R. solani. If the environmental conditions are favorable, the 
sclerotia germinate and form hyphae, enter the root cortex, and 
continuously grow inside and on the surface of alfalfa roots. 
Thereby, longitudinal blackish lesions appear on the roots and at 
advanced stages, the roots become decay and rot. Also, the crown 
area becomes dark brown or black (Zhang et al., 2021). Foliar 
symptoms include yellow or reddish color or wilt leaves. R. solani 
also infect seeds and usually, infected seeds don’t germinate and 
if they germinate, the seedlings are killed before or after 
emergence. Sclerotia forms, again, thereby completing the disease 
cycle and can remain viable for several years under harsh 
environmental conditions such as temperature, starvation, 
desiccation, chemicals, and severe radiation. According to 
previous research, the sclerotia of R. solani can remain viable in 
soil without a host for 8 to 10 years and as the primary inoculum. 
In addition, the pathogen also can survive in the form of 
mycelium in the plant debris. The mycelia and sclerotia are spread 
by irrigation water, rain and floods to other alfalfa fields 
(Garibaldi et al., 2021).

Oomycetes

Oomycetes (syn. Peronosporomycete), often known as “water 
molds,” are a group of hundreds of organisms (between 600 and 
1,500 species; Dick et al., 1999). They were assumed to be closely 
related to the kingdom Fungi for a long time because of their 
similar ecological and morphological traits (Harper et al., 2005). 
However, they are now thought to be phylogenetically distinct 
from fungi, with diatoms, chromophyte algae, and other 
heterokont protists being their closest relatives. Therefore, they 
have been placed in a separate kingdom, Stramenopiles, consisting 
of the most devastating plant pathogen. They cause seedling 
blights, damping-off, foliar blights, downy mildew, and root rot. 
In contrast to fungi, their cells walls contain cellulose and have 
tubular mitochondrial cristae and are vegetative diploid (Van West 
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et al., 2003). They have the potential to survive both in aquatic and 
terrestrial environments. Oomycetes such as Aphanomyces spp., 
Pythium spp., and Phytophthora spp. are causing severe root rot 
of alfalfa growing regions in the world (Table 5). They survive in 
the soil in the form of rigid, resistant structures called oospores. 
Oospores germinate directly by producing germ tubes in response 
to chemical signals from the alfalfa host or proliferate as sporangia 
(Harper et  al., 2005). Zoospores with heterokont flagella (one 
tinsel and one whiplash) inside the sporangia are formed. 
Zoospores are released from sporangia and swim through water-
filled soil pores with the help of flagella. Previous reports suggest 
that soil moisture significantly affect the incidence and severity of 
root rot caused by oomycetes (Erwin, 1954; Faris and Sabo, 1981; 
Gray et al., 1983). Also, the disease becomes more severe when the 

soil remains wet for ten days or longer (Kuan and Erwin, 1980). 
Water saturation predisposes alfalfa to oomycetes by increasing 
root damage and exudation of nutrients like amino acids and 
sugars that boost the chemotactic attraction of zoospores to roots 
(Gray et al., 1983). Once a zoospore reaches the root surface of 
alfalfa, it loses both flagella, encysts and germinate by forming a 
germ tube. Hyphae derived from the germ tube directly penetrate 
the root epidermis and colonize roots. The hyphae then 
differentiate into antheridia and oogonia within the roots, forming 
oospores. Oospores survive in the soil for many years in the 
absence of alfalfa. Both Pythium spp. and Phytophthora spp. are a 
severe problem only in the irrigated and/or flood irrigated alfalfa-
growing areas. Aphanomyces spp. have been recognized as a severe 
root rot pathogen of legumes in several American states and other 

TABLE 4 Economically important plants including alfalfa affected by anastomosis groups (AGs) of Rhizoctonia solani root rots.

Anastomosis groups (AGs) Plants Major disease Distribution References

AGs 1, 2, 4 &5 Alfalfa Root rot China Li et al., 2009

AGs 5 & 8 Barley Root rot Worldwide Rush et al., 1994; Carlucci et al., 2012

AGs 2, 4 & 5 Bean Root rot Worldwide Oladzad et al., 2019

AGs 1, 2 & 4 Carrot Crown and brace root root Worldwide Punja, 2005

AGs 2, 4 & 5 Faba bean Root rot Worldwide Assunção et al., 2011

AGs 1 Lettuce Bottom rot Germany Dijst and Schneider, 1996

AGs 2 and 4 Oilseed rape Root rot and damping-off Worldwide Verma, 1996

AGs 4 Pea Root rot Worldwide Hwang et al., 2007

AGs 1,2 and 4 Soybean Root rot Worldwide Rahman et al., 2018

AGs 2 Sugar beet Root rot Worldwide Nagendran et al., 2009

AGs 3 and 4 Tomato Foot and root rot Worldwide Nikraftar et al., 2013

AGs 8 Cereals Root rot, Bare patch Worldwide Neate, 1989; Okubara et al., 2016

AGs 1 & 4 Alfalfa Root rot USA Vincelli and Herr, 1992

AGs 1, 2, 3, 4, 5 & 10 Alfalfa Root rot Turkey Eken and Demirci, 2003

AG-4 Alfalfa Root rot Iran Balali and Kowsari, 2004

AGs 1–9 Alfalfa Root and crown rot, stem canker Saudi Arabia Alkherb et al., 1997

AGs 11, 8 and 6 Alfalfa Root and hypocotyl rot, root canker Australia Anderson et al., 2013

AG-4 Alfalfa Seed rot USA Gónzalez et al., 2016

AG-3 Tomato Leaf blight and root rot Japan Misawa et al., 2020

AG-1 Clovers Summer blight and root rot China Bai et al., 2014

*Unk Cow pea and beans Root rot Oman Al-Jaradi et al., 2018

AGs 1–13 Potatoes Stem rot USA Woodhall et al., 2012

AG-4 Chickpea Root rot Turkey Basbagci et al., 2019; Basbagci and 

Dolar, 2020

AGs 1–3 Various legumes Wet root rot and webblight India Dubey et al., 2014

AGs 2 & 4 Lupin Stem and root rot Canada Zhou et al., 2009

AGs 1, 2 & 4 Common bean Web blight and root rot Central and South America, 

Turkey

Godoy-Lutz et al., 2008; Kilicoglu and 

Ozkoc, 2010; Spedaletti et al., 2016

AG-4 Pea Root rot USA Mathew et al., 2011

AGs 2, 4 & 5 Canola and wheat Root rot Canada Broders et al., 2014

AGs 1, 2, 3, 4, 7 & 11 Soybean Seedling and root diseases USA, Canada, Brazil Fenille et al., 2003; Ajayi-Oyetunde and 

Bradley, 2016

AG-2 Onions Root rot USA Coleman et al., 1997; Brown et al., 2020

AGs 2 & 3 Tobacco Root rot and leaf spot Worldwide Gonzalez et al., 2011

AGs 4, 5 & 6 Strawberry Root rot USA and South Africa Botha et al., 2003; Sharon et al., 2007

*Unk, unknown.
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FIGURE 5

Schematic representation of the presumed disease cycle of Rhophitulus solani root rot in China. (A), The fungus overwinters in the plant debris 
and seeds in the form of mycelium and in the soil as sclerotia and mycelium. (B,C) The young hyphae germinate and develop under favorable 
conditions, sexual fruiting structures basidia and basidiospores are rare. (D) The mycelium penetrates roots near the soil line and colonized in inter 
and intracellular spaces. (E) The mycelium proliferates further in the cortex ultimately results in necrosis and sclerotia are formed in and on 
infected tissues and disintegration and acute rotting of roots. (F) Above ground symptoms, include chlorosis, blights, stunting and finally death, the 
fungus also infects seeds and seedlings and also causing damping-off.

legumes-growing regions of the world, notably in Europe (Gaulin 
et al., 2007). We could not find a published report of root rot of 
alfalfa caused by Aphanomyces spp. in China. However, there are 
reports on root rot of other legumes caused by Aphanomyces spp. 
(Zhimin, 1996). In many studies, oomycetes were found to form 
pathogens complexes with R. solani and Fusarium spp., and 
inflicting severe damage to alfalfa roots causing root rot and 

damping-off, resulting in reduced yields, decreased winter 
survival, and shortened stand life (Hancock, 1983; Berg 
et al., 2017).

Phytophthora spp.
The genus Phytophthora consists of more than 100 species, 

and the majority of them are aggressive plant pathogens that 
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cause extensive losses in agricultural, horticultural and forage 
crops (Cai et al., 2021). Phytophthora means “plant destroyer,” a 
term coined in the 19th century when they destroyed potato 
fields of Ireland, causing the Great Irish Famine (Yang et al., 
2017). Erwin first described Phytophthora root rot of alfalfa in 
California, United States. He observed the disease as causing 
severe root rot in less than three years old alfalfa plants in high 
rainfall, heavily irrigated, poorly drained soils (Erwin, 1954). 
Initially, he named the pathogen P. cryptogea; however, later, the 
pathogen was classified as P. megasperma. Phytophthora root rot 
is prevalent in almost all alfalfa-growing regions of the 
United States, Canada, and Australia (Kuan and Erwin, 1980; 
Faris and Sabo, 1981; Rogers, 1981; Gray et  al., 1983, 2004). 
Among the Phytophthora spp. i.e., P. infestans, P. megasperma, 
P. citrophthora, P. cactorum, P. cinnamomic, P. fragariae, 
P. sojae, P. capsici, P. nicotianae, and P. medicaginis are causing 
severe root rot including forages worldwide (Steinmetz et al., 
2020). In China, P. cactorum has been reported to cause severe 
root rot. In 2018, 2 years old alfalfa plants in Jinchang, Gansu 
province, were severely infected by P. cactorum. There were red 
to dark-brown discolorations in the taproots. Affected plants 
have wilting shoots with decaying and rotting taproots and 
lateral roots. Besides sporangia, chlamydospores, and oospores 
were also recovered (Cai et al., 2021). The symptoms of alfalfa 
root rot were similar to symptoms on alfalfa crops caused by 
Phytophthora in other countries (Erwin, 1954; Marks and 
Mitchell, 1970; Rogers, 1981). The disease cycle begins with 
zoospores which move freely in water and contact with the tips 
of rootlets. The lesions on the roots become yellowish and then 

brownish and later turn to dark brown or black, often with halo 
margins. The size and type of root lesions depend on the 
duration of wet soil conditions, alfalfa genotypes, or both. In 
severe conditions, lateral and tap roots are rotted, and foliar 
symptoms such as yellowing, stunting and wilting appear (Marks 
and Mitchell, 1970).

Pythium spp.
The genus Pythium contains more than 200 described 

species, and at least 10–15 species are causing damping-off and 
root rots in various agricultural, horticultural and forage crops 
(Beckerman, 2010; Berg et  al., 2017; Wang et  al., 2020a). 
Symptoms on alfalfa caused by Pythium are like Phytophthora 
that cause root rots; however, root tips become necrotic in the 
early infection. Furthermore, the entire primary roots become 
black and rotting moves upward to the stem (Zhang et  al., 
2020). Four important Pythium spp. such as P. ultimum, 
P. irregulare, P. aphanidermatum, and P. myriotylum have been 
reported from alfalfa fields and are the most common root rot 
causing pathogens in the world (Williamson-Benavides and 
Dhingra, 2021). During 2017 and 2019, 30 to 80% of alfalfa 
plants in Gansu province stunted, wilted, and dried. Likewise, 
irregular brown necrotic lesions were observed on the taproots. 
In addition, the lateral roots showed brown discoloration and 
were poorly developed, necrotic, and rotted. Morphological 
characters of sporangia, oogonia and antheridia, were identified. 
Morphological characters and molecular identification 
suggested that the pathogen was P. coloratum (Zhang 
et al., 2020).

TABLE 5 Reports of plants affected by oomycetes root rots.

Pathogens Plants Major disease Distribution References

Aphanomyces cochlioides Sugar beet Root rot and damping-off Across all sugar beet plantations Taguchi et al., 2010

Aphanomyces euteiches Alfalfa, bean, pea Root rot and damping-off Asia, Europe, Oceania, North America Hagerty et al., 2015

Phytophthora citrophthora Citrus Root rot and fruit rot Worldwide Park et al., 2008

Phytophthora nicotianae Citrus Crown, root, and fruit rot Worldwide Sakupwanya et al., 2018

Phytophthora cactorum Apple, strawberry Root, crown rot and damping-off Worldwide Carisse and Khanizadeh, 2006; 

Eikemo et al., 2010

Phytophthora cinnamomi Avocado Root and heart rot Worldwide Douhan et al., 2011

Phytophthora fragariae Raspberry, strawberry Red stele or red core root rot. Asia, Australia, New zealand, Europe, 

North America

Park et al., 2008

Phytophthora sojae Soybean Root and stem rot Canada, Australia, USA, Chila, China, 

Korea, New Zealand

Park et al., 2008

Phytophthora capsici Pepper Fruit, stem, and root rot Worldwide Kim et al., 2008

Phytophthora medicaginis Alfalfa, chickpea, soybean Root rot Greenhouse and field settings Dale and Irwin, 1991; Park 

et al., 2008; Vandemark and 

Barker, 2010

Pythium ultimum Mostly vegetables Root and seed rot Worldwide Bruno and Griffiths, 2004; 

Bates et al., 2008

Pythium irregulare Clover, Soybean Root rot and damping-off Greenhouse and field settings Mao et al., 1998; You et al., 

2005; Ellis et al., 2013

Pythium aphanidermatum Mostly vegetables Root and stem rot, damping-off Greenhouse and field settings Fattahi et al., 2011; Aliyu and 

Balogun, 2012

154

https://doi.org/10.3389/fmicb.2022.961794
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Abbas et al. 10.3389/fmicb.2022.961794

Frontiers in Microbiology frontiersin.org

Effects of environmental factors 
on root rot

The occurrence, severity, and prevalence of root rot are 
affected by primary infection sources, management practices, 
environmental factors, and alfalfa cultivars’ ability to resist disease 
(Williamson-Benavides and Dhingra, 2021; Fahad et al., 2021a,b). 
Among environmental factors, such as soil moisture and soil 
temperature, play a significant role in the occurrence, severity and 
prevalence of root rot (Jat and Ahir, 2013). Root rot of alfalfa 
caused by oomycetes is not generally severe in alfalfa growing 
regions of China. Oomycetes root rot is higher in locations with 
excessive rainfall, heavily irrigated or poorly drained soil or flood 
irrigated (Liang et al., 2006; Cai et al., 2021). For example, in the 
southwest region (Sichuan province), which has comparative 
more rainfall than northwest (Xingjiang and Gansu) and north 
(Inner Mongolia) of China, oomycetes are causing severe rot of 
legume crops. Besides, the soil of this region is wetter and less dry 
than the northwest, northeast and north region of China. 
Oomycetes produce oospores which germinate into hyphae under 
high soil moisture conditions (generally in compacted soil). 
Furthermore, oomycetes such as Phytophthora spp. and Pythium 
spp. are causing the most severe root rotting over the range of 
temperatures 17–23°C. Moreover, oomycetes root rot develops in 
alfalfa when the soil remains excessively moist for about ten days 
or longer (Karppinen et al., 2020). Many researchers postulated 
that excessive soil moisture cause lack of oxygen that predispose 
alfalfa to oomycetes root rot (Fahad et al., 2021c,d). Hence the 
incidence of root rot caused by oomycetes increased with the 
increase in soil water content, and the lower soil moisture could 
reduce the development of root rot disease (Fahad et al., 2020; Cai 
et al., 2021). However, oomycetes become most aggressive against 
alfalfa when a cool, wet spring is followed by an early, warm, dry 
summer (Yinghua et al., 2019). Wong et al. (1984) checked how 
soil moisture interacted with the pathogenicity of Pythium spp., 
Phytophthora spp. Fusarium spp. and Rhizoctonia spp. both alone 
or in combination. These fungi and their combination caused root 
disease over the range of soil moisture conditions. The most severe 
root rotting occurred at 65% water holding capacity and less at 
45% (Wong et al., 1984). It indicates that high soil moisture favor 
the growth of oomycete pathogens. Soil moisture and soil 
temperature also influences the Phoma and Paraphomra root rot 
of alfalfa. For example, Paraphoma and Phoma root rots of alfalfa 
are favored by moderate soil temperatures (15–21°C) and soil 
moistures (60–70%; Cao et al., 2020; Deb et al., 2020). In 2014, 
seven cultivars of alfalfa were grown in seven different fields in the 
Chifeng county in Inner Mongolia. The variability of disease 
incidence of Paraphoma root rot was extremely high and the 
potential reason was that soil moisture content at these fields 
varied due to the uneven terrains (Cao et al., 2020). Furthermore, 
the peak period of root rot also varies according to changes in 
humidity and temperature in the alfalfa-growing regions of China. 
For example, in the north region of China, the peak period for 
root rot disease is the first week of August, whereas the peak 

period for the disease in the southwest region is in mid-September 
(Cao et al., 2008). Fusarium spp. and R. solani are causing more 
severe root rot in the drier soils and lower rainfall regions such as 
northeast, northwest and north of China. However, both fungi can 
cause severe root rot at high soil temperature (24–32°C) and soil 
moisture (70–80%; Ajayi-Oyetunde and Bradley, 2018). In 
addition, the number of infections’ propagules of these fungi 
varies seasonally. After January, it began to rise, peaking in May 
and June, and then began to drop from July through December 
(Wong et al., 1984). Similarly, each anastomosis groups (AGs) of 
R. solani require certain temperature to cause root rot (Kousik 
et al., 1995). Furthermore, Fusarium spp. and R. solani also infect 
alfalfa at cold temperatures (15–18°C), which slows down alfalfa 
seedlings’ growth (Coleman, 2016; Wang et al., 2020a). Winter 
survival of alfalfa depends on the accumulations of food reserves 
in the roots and crown. However, both Fusarium spp. and R. solani 
reduce the cold resistance of alfalfa and predispose alfalfa to 
winterkill by affecting the accumulation of food reserves (Hwang 
et al., 1989). Research reports on other legumes showed that even 
changes in the soil pH affected the alfalfa survival and root rot 
disease severity caused by Fusarium spp. Phythium spp. and 
R. solani. These pathogens responded to pH differently, and alfalfa 
resistance to individual pathogens also varied depending on the 
amount of lime added (Barbetti, 1990). Furthermore, these fungi 
infect alfalfa mostly in spring and temperature ranging from 15 to 
25°C was found to be optimum for infection of alfalfa (Yuan et al., 
2003). Alfalfa root rot caused by Bipolaris spp. is favored in dry 
and warm soil and a temperature range from 15 to 25°C. Also, 
when alfalfa plants are grown under stress conditions such as 
warm and less moist soil, the root rot caused by Bipolaris spp. 
become severe (Acharya et  al., 2011). Moreover, the erratic 
weather conditions herald a rise in mean temperatures as well as 
other natural disasters like droughts, floods, and storms. These 
circumstances are anticipated to put alfalfa under constant stress, 
which is anticipated to encourage the pathogens that cause root 
rot to become more active (Fahad et al., 2021e,f). Furthermore, 
soil of alfalfa growing regions of China is nutrient-poor, compact, 
and not very fertile and generally lacks phosphorus, resulting in 
significantly reduced nutrient levels (Wang et al., 2021). Previous 
studies showed that nutrient-poor and leached soils impose 
nutrition stress on crops; as a result, natural resistance to root rot 
disease reduced (Graham, 1983). By adding appropriate nutrients 
to alfalfa-growing regions, the root rot disease severity can 
be reduced because plant nutrients promote growth and enhance 
disease tolerance to root rot. Especially phosphate should 
be added to alfalfa fields, which can enhance host resistance by 
stimulating the production of phytoalexins against the virulence 
factors of root rot pathogen (Barbetti et al., 2007). Besides the 
activities of antagonists that restrict root rot, pathogens and other 
soil microflora can also be affected by soil nutrients. Hence, soil 
nutrients influence disease severity by changing root physiology 
and host resistance and by influencing the interaction between the 
host and the pathogen and/or antagonist, each of which can 
be influenced independently by the availability of nutrients. In 
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China, the interaction of soil nutrients with root rot pathogens of 
alfalfa is currently unknown, however, with greater knowledge, 
root rot can be managed by altering soil nutrients. In addition, 
temperature and moisture also affect mycelia growth, sporulation, 
germ tube growth, and spore germinations. For example, the 
appropriate temperature range for Fusarium spp. to produce 
spores is from 25 to 32°C and the appropriate temperature range 
for R. solani to produce vegetative structures such as mycelia is 
20–30°C and to produce overwintering structure such as sclerotia 
is 25°C. Similarly, sporangia of P. megasperma germinated 
indirectly by releasing zoospores in the flooded soil at 8–24°C 
(Pfender et al., 1976). Furthermore, each pathogen in the root rot 
complex has its specific optimal developmental conditions. For 
example, the optimum temperatures for the mycelia growth of 
F. equiseti and F. proliferatum were 20 and 28°C, respectively, 
(Kong et al., 2018b). Even the developmental conditions vary for 
each strain of same species. For example, the optimum 
temperatures for the mycelial growth of different F. oxysporum 
strains, D19-2 and B1-63 were 26 and 28°C, respectively (Kong 
et al., 2018b) Besides, soil pH also influences the developmental 
phases of root rot pathogens. For example, the optimum pH for 
the mycelial growth of F. equiseti and F. proliferatum was 6 and 10, 
while the pH for sporulation and spore germination was 8.0 and 
7.0, respectively (Kong et al., 2018b). Similarly, alternating light 
and dark are important for mycelia growth, and light is important 
for sporulation. Spores do not germinate when the relative 
humidity is lower than 75% (Pan et al., 2015). As previously stated, 
among the environmental factors, soil moisture, and soil 
temperature significantly impact the root rot disease of alfalfa. 
More research is required to understand how soil moisture, soil 
temperature, and other environmental factors such as pH affect 
root rot of alfalfa in natural pastures.

Management strategies

Many strategies have been evaluated to manage the root rot in 
recent years. They are explained below.

Cultural approach

The cultural approach makes conditions unfavorable to the 
root rot pathogens to reduce root rot disease severity (Sumner, 
1994). The conditions for the root rot pathogens can be made 
unfavorable for root rot pathogen in many ways, such as soil pH 
and soil nutrients adjustment, fallowing, composting, timely 
grazing, biofumigation, sanitation, mixed cropping, intercropping 
and crop rotation. Fallowing is to keep the area fallow for several 
years before cultivation of alfalfa, however, most of the root rot 
pathogens are soil borne, the inoculum remains even after 
fallowing (Barbetti and MacNish, 1984). Bio-fumigation and 
sanitation in combination can also effectively reduce the survival 
structure of root rot pathogen such as microsclerotia and sclerotia 

in the soil (Wang et al., 2014). However, production losses from 
fallowing and bio-fumigation cannot be  bearable for farmers. 
Inoculating seeds with rhizobia or BCAs can also reduce the root 
rot severity of other legume crops. For example, Rhizobium trifolii 
significantly reduced root rot of clover caused by F. avenaceum in 
glasshouse studies (Wong et al., 1984). However, if the soil is acidic 
or contains a high concentration of available aluminum, in that 
case it negatively affects the rhizobia growth and survival and 
interferes with the legume-rhizobia symbiosis by affecting rhizobia 
attachment to roots (Tabares-da Rosa et al., 2019). As outlined 
above, the soil of pastoral areas is poor nutrients deficient in 
phosphates. Therefore, the effect of soil nutrition and soil pH is 
probably so significant to manage root rot. The productivity of 
alfalfa can be  improved through the application of phosphate. 
However, this may enhance soil acidity in many areas making 
conditions less favorable for the growth of alfalfa. Besides, the 
addition of lime to manipulate soil pH should also be  further 
investigated as lime influences alfalfa and root rot pathogens. In a 
previous study, pathogen complexes associated with root rot such 
as Fusarium spp., Pythium spp., and R. solani responded differently 
to the addition of lime (Barbetti, 1990). It indicates that these 
pathogen complexes can be broken by altering soil pH resulting 
reduction of root rot severity. Furthermore, dense planting should 
be avoided to reduce the disease spread. Also, avoid planting too 
deep because it takes more time to emerge from the soil, increasing 
the chances of getting infected by soil pathogens (Hwang et al., 
2002). In addition, leftovers, stubbles, infected plants, debris and 
weeds should be  burned to reduce the disease inoculum. In 
addition, the application of green organic manures, farmyard 
manure and organic fertilizers, including composts, green 
manures and animal manures, reduce the root rots and promote 
the growth of beneficial soil microbes significantly (Wiggins and 
Kinkel, 2005). Moreover, the amount and time of application of 
inorganic fertilizers are also crucial for disease development 
(Summers, 1998). The application of nitrogenous fertilizers should 
be  discouraged because they make the plants succulent, and 
pathogens get more chances to infect the plants (Stone et  al., 
2003). Alfalfa seedlings are more susceptible to Pythium spp. and 
R. solani following seed germination; hence high-quality seeds 
which can rapidly germinate should be sown. Excessive irrigation, 
compaction and poor drainage of alfalfa fields should be avoided 
because these conditions favor oomycetes. Besides, judicious 
application of fungicides in combination with appropriate cultural 
practices can significantly reduce the disease severity. Soil 
compaction in the alfalfa fields is also a major problem. 
Continuous cropping of alfalfa, application of inorganic fertilizers 
and reduction in the use of green or animal manures cause soil 
compaction (Stone et al., 2003). Increased soil compaction affects 
aeration, porosity, and water retention capacity while increasing 
bulk density. Plant growth, biomass, and yield are reduced as a 
result, the incidence and severity of root rot diseases rise 
(Williamson-Benavides and Dhingra, 2021). Multiyear continuous 
cropping of alfalfa allows root rot pathogens to continue their 
uninterrupted disease cycle, resulting in their perpetuation and 
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multiplication. However, rotating with unrelated crops or related 
crops of differential disease susceptibility such as clovers, cereals 
and soybeans, many root rot pathogens having a narrow host 
range can be controlled successfully (Curl, 1963). However, crop 
rotations are not effective against soil-borne pathogens, especially 
against Fusarium spp. and R. solani. These fungi produce survival 
structures such as chlamydospores and sclerotia and survive for 
several years. Besides, most of the pathogens on alfalfa are 
common to other rotational legumes and/or crop species. For 
example, R. solani is a common pathogen of alfalfa and rice. 
Similarly, Pythium spp. and Fusarium spp. can cross infect 
between pasture legumes such as alfalfa and clovers and/or crop 
species such as barley, wheat and oat (Sivasithamparam, 1993). 
However, host-mediated selection occurs in the pathogen isolates 
and if that is, then root rot diseases can be limited to a certain 
extent. Besides, grazing and harvesting could be timely to reduce 
the impact of root rot, especially at the seedling stage when plants 
are more vulnerable to root rot (Barbetti, 1990). For example, in 
Inner Mongolia (North China), alfalfa is harvested in autumn in 
some areas. Studies showed that autumn harvest reduces organic 
residues in the roots; as a result, plants become weak to face winter 
and predispose to Fusarium root rot (Couture et al., 2002). In 
conclusion, cultural practices are ineffective against root rot in 
susceptible alfalfa cultivars. Root rot can only be  managed 
effectively when resistant cultivars are grown besides appropriate 
cultivation and cultural practices and judicious use of fungicides.

Breeding, transgenic, gene silencing, and 
editing approach

Breeding approach
Currently, 77 alfalfa cultivars have been registered in China. 

Among these, 36 cultivars were bred through breeding programs, 
17 were introduced from other countries, five domesticated from 
wild ecotypes, and 19 were collected from the regional/breeding 
programs (Zhang et al., 2021). These commercial alfalfa cultivars 
acquired by farmers in China are created and sold by seed 
corporations and marketed as pests resistant. However, so far, the 
breeders could not develop a resistant cultivar against alfalfa root 
rot. There are seven main reasons which limit the selection of 
alfalfa-resistant cultivars: (i) Alfalfa is a perennial plant that is 
primarily cross-pollinated, and several factors influence its self-
fertility; (ii) Alfalfa is autotetraploid; the breeding and selection 
factors are different from diploid plant species; (iii) Genetic 
complexity of root rot pathogens. There are varieties with 
resistance to a single pathogen; however, developing varieties with 
resistance to multiple pathogens which cause alfalfa root rot is 
challenging; (iv) Pathogens vary in different environmental 
conditions in the saturated soil; for example, oomycetes become 
dominant and in the dried soil Fusarium spp. and R. solani 
becomes dominant; (v) Alfalfa cultivars cannot adapt to different 
environmental conditions; (vi) Pathogen evolution is speedy 
compared to breeding, which takes 20–30 years to discover 

resistant markers and new cultivars; and (vii) Lack of 
understanding of resistance mechanisms in alfalfa roots to root rot 
pathogens. Therefore, there is a delay in utilizing breeding 
approaches to develop root rot-resistant cultivars compared to 
other crops. In China, selective breeding, cross-breeding, male-
sterile line breeding, space breeding, biotechnology-assisted 
breeding, transgenic technology, and molecular marker 
technology are all employed to improve resistance in cultivars 
against many diseases, but not against root rot. For example, 
researchers have tried to develop disease-resistant varieties using 
molecular marker technology, i.e., Random Amplified 
Polymorphism (RAPD) technique and Bulked Segregation 
Analysis (BSA) were used to study molecular markers linked to 
resistance genes against a brown spot disease in five Medicago 
species (Gui and Yuan, 2002). Furthermore, R-gene mediated 
resistance is race-specific, and resistance to root rot is 
quantitatively inherited. However, alfalfa resistance can 
be improved by stacking or pyramiding major R genes/QTLs for 
multiple pathogens associated with root rot (Fuchs, 2017). 
We could not find a published report on the pyramiding R genes/
QTLs (quantitative trait loci) against root rot in China. It indicates 
that studies regarding QTLs mapping of alfalfa to uncover genetic 
architectures related to root rot are in preliminary stages. In other 
countries, pyramiding R genes/QTLs have achieved resistance to 
root rot. For example, QTLs were mapped in various plants that 
contributed to high-level resistance against root rot caused by 
Phytophthora and Pythium spp. Though QTL mapping has been a 
powerful technique in identifying genomic regions associated 
with root rot resistance traits in bi-parental populations 
(Ramalingam et al., 2020). However, QTL mapping has limitations 
because QTL cannot detect natural variations in diverse genetic 
backgrounds due to low allelic diversity and recombination rates 
in bi-parental populations. To overcome these limitations, 
genome-wide association study (GWAS) is widely used to evaluate 
broader genetic diversity and inquire greater quantities of 
recombination due to the evolutionary history of natural 
populations. For example, a candidate gene encoding F-box 
protein was identified in alfalfa, using GWAS, as a negative 
regulator of resistance to root rot caused by Aphanomyces spp. 
(Bonhomme et al., 2014). There is also a high-resolution NGS SNP 
data developed in the Medicago truncatula HapMap Project1 
which involved sequencing of 288 Medicago accessions by 
Illumina technology (Stanton-Geddes et al., 2013). Recently, to 
mitigate GWAS and QTL mapping limitations, these two QTL 
analysis approaches are being combined, providing 
complementary, robust, and vigorous assays to uncover the 
genetic basis underlying complex traits. For example, the genetic 
architecture of Aphanomyces root rot resistance in lentils has been 
dissected by linking QTL Mapping and GWAS (Ma et al., 2020). 
Recently scientists are trying to examine the genetic architecture 
of root rot disease resistance in other legume crops by QTL 

1 www.medicagohapmap.org/
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Mapping and GWAS. These studies will highlight the accumulation 
of favorable haplotypes in the most resistant accessions against 
root rot disease (Ma et al., 2020). Most research in China has 
concentrated on screening germplasm accessions and commercial 
cultivars in greenhouses and fields only against strains of Fusarium 
spp. and R. solani, which could serve as possible sources of 
resistance. For example, in a field screening assay, 20 alfalfa 
cultivars were inoculated with several F. oxysporum isolates, four 
F. acuminatum isolates, and five F. semitectum isolates. Only seven 
cultivars showed resistance to Fusarium spp., including Verla, 
Derful, Ameristand 201, Caoyuan 2, Sitel Algongum, Tumu 2, and 
Gannong 2. The rest of the cultivars were susceptible to Fusarium 
spp. (Quan, 2003). Thirty alfalfa cultivars were tested in another 
screening assay against three Fusarium species: F. solani, 
F. semitectum, and F. camptoceras. Only three varieties, “Delilande,” 
“Xinjiangdaye” and “Muxuwang” were resistant to F. semitectum 
with disease index 18.11, 19.93 and 19.96, respectively. With a 
disease index of 25.30 to 39.95, seven varieties were found to 
be disease tolerant. The disease index ranged from 40.55 to 59.56 
for eighteen varieties. The remaining varieties were susceptible, 
with disease index ranging from 61.7 to 68.6. These findings 
indicate that no alfalfa variety is immune or resistant to alfalfa root 
rot (Ding et al., 2011). In a recent study, about 68 alfalfa varieties 
were screened for resistance against R. solani (Zhang et al., 2021). 
Among these, three varieties (Gannong 9, Trifecta and Common), 
originating from three different countries, exhibited a high level 
of resistance, with disease indices of shoots and roots and 
reductions in dry weight of shoots and roots being all ≤ 40%. In 
addition, five varieties (7%) showed resistance, 15 (22%) were 
moderately resistant, and the remaining ones exhibited 
susceptibility. In addition to screening alfalfa varieties against root 
rot pathogens, intensive efforts have also been dedicated to 
elucidating the defensive response to the pathogen invasion. For 
example, in a study, alfalfa plants were inoculated with Fusarium 
spp. In the resistant varieties of alfalfa, enzyme phenylalanine 
aminase (PAL) was more active than in the sensitive varieties 
whereas other defensive enzymes such as superoxide dismutase 
(SOD), peroxidase (POD), polyphenol oxidase (PPO) were more 
active in the susceptible varieties than the resistant varieties (Fang 
et  al., 2003; Quan et  al., 2003). These studies offer valuable 
resistance sources for breeding programs to develop alfalfa 
varieties with improved resistance to root rot pathogens and for 
facilitating the identification of molecular mechanisms underlying 
the resistant varieties to this pathogen. Unfortunately, most the 
studies regarding alfalfa disease resistance use a single strain or 
multiple strains of a fungal pathogen; it’s impossible to tell whether 
the cultivars chosen are disease-resistant in general to the diversity 
of pathogens in the field conditions.

Transgenic approaches
Transgenic approaches are widely employed to manage root 

rot disease of other crops. In a study, an alfalfa seed antibacterial 
peptide-encoding gene (alfAFP), was fused to the C-terminal of 
the rice chitinase-encoding gene and transferred into tobacco. 

In transgenic tobacco plants, the recombinant protein improved 
resistance to F. solani. Even 30 days after being inoculated with 
F. solani, transgenic lines did not show root rot (Azam et al., 2018). 
Pathogenesis-related proteins (PRs) are widely distributed in 
plants, including alfalfa, and are essential in defense responses. 
Their expression is regulated by specific hormone signaling 
pathways (Li et  al., 2021b). These PRs proteins have different 
functions, i.e., production of hydrolytic enzymes such as 
glucanases and chitinases, which lysis cell wall components 
(Sunpapao and Pornsuriya, 2016), thaumatin-like and osmotin-
like proteins which weaken cell walls and permeabilized plasma 
membranes (Rather et al., 2015), antimicrobial peptides (Nawrot 
et  al., 2014) and RNAse activities to degrade pathogens RNA 
(Tang et al., 2019). Hence, applying reverse genetics technology 
involving gene overexpression and gene silencing (e.g., RNAi) has 
enabled the rapid functional characterization of PR genes. For 
example, when the PR5 gene was overexpressed in the 
M. truncatula, the resistance responses such as Abscisic acid 
(ABA) production and signaling and reactive oxygen species 
(ROS) were high after inoculation with A. euteiches. Besides, 
disease resistance against A. euteiches was linked to the 
lignification and production of a small GTPase 
(20-O-methylisoliquiritigenin) which regulated ROS (Badis et al., 
2015). A recent study showed Recombinant PnPR10-3 functions 
as an RNase in vitro exhibited strong antifungal effects on 
Fusarium species (F. oxysporum, F. solani, and F. verticillioides; 
Tang et al., 2019). On the other hand, reverse genetics has been 
found to overcome the limits of traditional breeding approaches. 
However, producing transgenic cultivars resistant to numerous 
pathogens that cause root rot remains difficult. Fortunately, the 
recent advent of transcriptomics and next-generation sequencing 
technologies offers the potential to identify genes involved in root 
rot resistance on a broader scale (Song et al., 2016).

Genes silencing and editing approach
Currently, host-induced gene silencing (HIGS) is being used, 

whereby the host produces double-stranded RNA molecules 
(dsRNA) that target pathogen genes and are processed into short 
interfering RNA molecules (siRNAs; Perez et al., 2021). Pathogens 
procure these siRNAs upon infection; consequently, their target 
genes are silenced. HIGS has been successfully applied against 
viral, pests, parasitic plants, and fungi. The main advantage of this 
method is to silence the pathogen genes without introducing new 
proteins into food and food products. To date, HIGS has been 
successfully used against mildews, rusts, and wilting diseases of 
agriculturally important crops. Recent discoveries of gene-editing 
technology have made it possible to target pathogenesis-related 
genes. CRISPR/Cas9 editing has been recently used to inhibit the 
infection caused by pathogens (Gupta et al., 2021). For example, 
the pathogen R. solani activates the OsSWEET11 sugar transporter 
in the infected rice tissues to acquire sugar molecules for its 
nutrition. However, when the sugar transporter, OsSWEET11 was 
knock-out using CRISPR-Cas9, it was found that rice crops 
became less susceptible to rice sheath blight disease as compared 
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to OsSWEET11 overexpressing and wild-type plants (Gao et al., 
2018b). These modern approaches may help to deploy resistance 
against root rot rapidly. However, no transgenic anti-root rot 
alfalfa cultivars have been developed in China and even globally. 
Besides, these approaches face public and political distrust (Fones 
et al., 2020).

Biological approach

Concerns regarding the chemicals have recently grown 
among the general public. Chemicals are wreaking havoc on the 
ecosystem. Researchers are increasingly focused on biocontrol 
agents (BCAs), and there have been several success stories about 
the use of biological agents thus far. Competition for nutrients 
or space, antibiosis, induce host resistance and lytic enzyme 
production are the recognized mechanisms by which BCAs 
control root rot (Fravel, 2005). BCAs are becoming more 
popular, and however, in the case of forage crops, their use is still 
limited in China. The reason might be  survival, growth, 
adaptation, and establishment of biological agents in the fragile 
pastures ecosystems of China is challenging. To date, only a few 
fungal and bacterial BCAs have been used to manage root rot. 
So far, among the fungal BCAs, saprophytic fungi Trichoderma 
spp. and arbuscular mycorrhizal fungi Glomus spp. have been 
used against root rot. T. harzianum, T. koningii and Glomus 
mosseae were tested against Fusarium spp. i.e., F. solani, 
F. oxysporum, F. semidaricum, and F. solani and Microdochium 
tabacinum. Besides significantly reducing root rot, they also 
enhanced alfalfa growth and nutrient uptake (Li et al., 2018; 
Zeng et al., 2019). In another experiment, Glomus mosseae and 
Rhizobium (Sinorhizobium medicae) combined effects on the 
root rot caused by Microdochium tabacinum have significantly 
reduced root rot besides helping alfalfa to uptake water and 
nutrients, specifically phosphorus (Gao et al., 2018a). Bacterial 
BCAs, Bacillus spp., Pseudomonas spp., and Actinomycetes are 
also widely used to manage alfalfa root rot (Xiao et al., 2002; 
Knezevic et al., 2021). In 2009, about 91 actinomycetes were 
isolated from 10 soil samples in Chifeng Inner Mongolia through 
the gradient dilution separation method. Most of them have 
significantly reduced root rot caused by Fusarium solani, 
F. oxysoporum and F. avenaceum (Wang et al., 2010). In another 
study, Bacillus subtilis subsp. spizizenii (MB29) was evaluated 
against F. semitectum. The strain effectively reduced the mycelia 
growth of F. semitectum. Furthermore, in vivo test, MB29 
significantly reduced root rot, producing a disease control 
efficiency of 43.41% (Wen et  al., 2015a). In another study, 
cultural filtrates of Ochrobactrum intermedium strain (I-5) 
significantly reduced the spore production, germination, and 
mycelia growth of F. tricinctum. In addition, a 10% filtrate of the 
strain reduced root rot by >73% in repeated experiments. 
Besides, the strain enhanced invertase, urease, cellulose, and 
neutral phosphatase activity in the rhizosphere soil and reduced 
root rot-related soil quality damage. Also promoted the growth 

of alfalfa without causing apparent damage to plants (Li et al., 
2021a,c). Currently, antagonists which are endophytes have also 
been used to manage root rot. Endophytes are more protected 
than free-living (rhizospheric) (Lugtenberg et al., 2016) BCAs 
because they inhabit the internal tissues of plants without 
causing disease, forming a close symbiotic relationship. For 
example, seeds are the reservoir of endophytes that protect 
plants from root rot. They can infiltrate the host systems without 
exposing them to pathogens. Plant health and vigor, as well as 
root persistence through rotation, can be improved with the use 
of endophytes (White et al., 2019). Chen et al. (2015a) isolated 
363 strains of endophytes from alfalfa fields in Hebei, Inner 
Mongolia, and Ningxia provinces of China. These strains include 
fungi, bacteria, and actinomycetes. Among these strains, three 
endophytic bacterial strains, e.g., NA NX51R-5, NA NX90R-8, 
and NA NM1S-1, showed strong biocontrol capability with 
> 50% effectiveness against F. oxysporum under in vitro and pot 
experiments. The strains NA NM1S-1 and NA NX51R-5 were 
identified as Bacillus spp. while the strain NA NX90R-8 was 
Pseudomonas spp.. There are also some drawbacks to employing 
BCAs against root rot pathogens. In most cases, a single BCAs is 
employed to fight against a single pathogen (Raupach and 
Kloepper, 1998). This may sometimes account for inconsistent 
field performances even though their efficacy was quite good 
under controlled conditions (Nicot, 2011). This variability of 
efficacy is generally due to environmental variations (changing 
soil temperatures and moisture) in the field, a lack of ecological 
competence (such as the ability to survive and colonize), 
intrinsic characteristics of the antagonistic microbe (such as 
variability in the production of required metabolites or 
enzymes), and/or an unstable quality of the formula (Bardin 
et al., 2015). In addition, efficacy may be reduced due to diversity 
in sensitivity of pathogens to biocontrol agents with the presence 
of less sensitive isolates in the natural populations of plant 
pathogens (Fravel, 2005). Hence single BCA is not active in all 
environmental conditions especially against the pathogen 
complexes of root rot. More attention should be  paid to the 
application of a mixture of BCAs that can better cope with 
environmental changes during the growing season and defend 
against pathogen complexes associated with root rot. Increased 
genetic diversity of BCAs may allow them to stay longer in the 
rhizosphere and utilize a wide array of antagonistic activities 
against root rot pathogens.

Chemicals, phytochemicals, and elicitor 
approach

Though many management approaches have been attempted 
to combat root rot, chemical control still remains the primary 
method for managing root rot. Fungicides are used as seed 
treatment and soil application to protect the alfalfa from root rot 
(Min et  al., 2002). For example, Fludioxonil, hexaconazole, 
tebuconazole, propiconazole, difenoconazole, vitavax, 
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carbendazim, captan, metalaxyl, thiophanate methyl, 
shenqinmycin mefenoxam and mancozeb alone or in 
combinations were applied as seed treatment and/or as a soil 
application to control root rot of various crops including alfalfa 
in China. Carbendazim was the most widely used fungicide in 
China to control alfalfa root rot (Liu et al., 2016). A study of 
20 years ago showed that carbendazim reduced the Fusarium 
spp. (Min et al., 2002). However, in a recent study, Fusarium spp. 
were found to be  resistant or intermediately sensitive to 
carbendazim, suggesting that carbendazim has failed to protect 
against root rot and resistance against carbendazim has emerged 
(Jiang et al., 2021). Recently in China mixture of fungicides, each 
having different modes of action, are being used to control root 
rot of many crops, including alfalfa. For example, seed treatment 
with the mixture of fludioxonil (phenylpyroles group) and 
difenoconazole (trizol group) in the 1:4 ratio demonstrated the 
best control efficiency at seedling and adult stages against root 
rot caused by B. sorokiniana (Wei et  al., 2020). Fludioxonil 
inhibits glucose phosphorylation, while difenoconazole inhibits 
the C14-demethylase enzyme that participates in the ergosterol 
production of root rot pathogens (Wei et  al., 2020). In the 
United States, metalaxyl and mefenoxam were widely used as a 
seed treatment or soil application to combat alfalfa root rot. 
These fungicides specifically target the ribosomal RNA 
polymerases of pathogens. However, resistance in oomycetes to 
these fungicides had emerged (Hwang et al., 1993). Quinone 
outside inhibitor (QoI) fungicides such as azoxystrobin and 
pyraclostrobin have also been widely used to manage alfalfa 
disease caused by root rot pathogens worldwide. These 
fungicides block the electron transport at the mitochondrial 
cytochrome oxidase bc1 complex, affecting respiration 
(Venancio et al., 2003). However, resistance to these fungicides 
has emerged in some pathogens due to a mutation at a target 
binding site (Bartlett et al., 2002). However, combined with other 
fungicides, these are still effective against root rot. For example, 
fungicides azoxystrobin and tebuconazole reduced 50 to 90% 
root rot caused by R. solani over three years when applied as a 
soil drench at 76 to 304 g a.i./ha and 250 g a.i./ha, respectively. In 
other countries, fungicides are combined with BCAs to control 
root rot. For example, a combination of azoxystrobin applied at 
76 g a.i./ha and the Bacillus isolate MSU-127 reduced the crown 
and root rot disease and increase the yield remarkably (Kiewnick 
et al., 2001).

Besides, numerous phytochemicals, for example, steroids, 
tannins, flavonoids and alkaloids, have demonstrated 
antimicrobial activities against root rot (Lee et  al., 2001). A 
product Biotos from Gaultheria spp. not only controlled root rot 
disease but also increase the yield. In another study, different 
concentrations of aqueous Chenopodium album extracts have 
been used to control root rot disease caused by F. solani. About 
6% C. album extract reduced Fusarium root rot incidence from 
47.49 to 28.25% (Abu-Tahon et al., 2021). The medicinal plants, 
i.e., Prosopis africana, Anacardium occidentale and Nigella sativa 
leaf and/whole plant parts extracts, have been assayed against 

root rot disease caused by M phaseolina, observing inhibition of 
its growth. Various alkaloids, saponins, tannins, flavonoids, 
anthraquinones, octadecadienoic acid, pentadecanoic acid, 
1,2,3,4, butaneteterol, octadecanoic acid and linoleic acid were 
found in these extracts. In addition, Lippia gracilis oil extracts 
were found to suppress root rot disease.

Elicitors are natural or synthetic compounds, which induce 
systemic acquired resistance (SAR) and protect alfalfa from 
bacterial, fungal, and viral pathogens. The elicitors such as 
benzothiadiazole (BTH), chitosan (CHT), phenylalanine 
(PHE), and salicylic acid (SA), have been applied to control root 
rot in other plants (Pawlowski et al., 2016). The use of elicitors 
to stimulate the defensive system of alfalfa against root rot is 
currently unknown in China. In conclusion, since carbendazim 
and many fungicides are not species-specific, therefore it is 
likely that treated seeds though may protect the seeds from root 
rot pathogens but also may eliminate the keystone fungal 
species (Zotti et  al., 2020). Fungicides applications as seed 
treatments can also affect endophytes which promote plant 
growth and protect plants from root rot pathogens. Besides, 
seed treatment could lead to loss of seed germination and 
reduction in early seedling development. If applied in high 
concentration can affect the plant metabolism. Usually, seeds 
are coated with fungicides and stored for long periods that 
results phytotoxicity (Lamichhane et al., 2020). The other main 
issue is that in many studies showed that fungicides significantly 
reduced the nodule formation in legume crops and affect their 
symbiotic association with mycorrhizal fungi (Mårtensson, 
1992). In contrast to seed treatment, soil application is not 
detrimental to endophytes or root pathogens however it can 
disrupt the carbon and nitrogen cycling in soil, soil respiration 
and affect not target organisms. Furthermore, soil or seed 
application with one fungicide may be effective against single 
pathogen involve in root rot complex but not against diversity 
of pathogens. Combination of two or more fungicides having 
different mode of action could reduce the root rot effectively 
though it would be  unbearable to farmers to bear costs of 
fungicides. The best strategy would be  the combination of 
fungicide with BCAs because not only the amount of fungicide 
will be lowered, but pollution can also be reduced. Besides, both 
BCAs and fungicides both reduce the risk of the occurrence of 
fungicide resistance and improve the reliability of disease 
control compared with that provided using a biocontrol agent/
fungicide alone.

Conclusion, issues, and future 
perspectives

In conclusion, due to the involvement of diverse pathogens, 
the management of alfalfa root rot is exceptionally challenging. 
Fusarium spp. and R. solani are playing a dominant role 
involving other pathogens in causing root rot in different regions 
of China. However, large-scale isolation, systematic 
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identification, and pathogenicity evaluation of the pathogens 
causing alfalfa root rot are still lacking in all major alfalfa-
growing regions of China. Several alfalfa breeding lines or 
cultivars that show partial resistance to root rot have been 
screened. On the other hand, resistant responses are quantitative 
and governed by several genes. It is challenging to develop a 
cultivar that could resist diverse pathogens. Furthermore, alfalfa 
is a cross-pollinated autotetraploid with different breeding and 
selection requirements than diploid plants and pathogens with 
genetic complexities. Also, the disease severity resulting from 
root rot pathogens varies with location and years due to 
alterations in climatic (moisture and temperature), soil factors 
(compaction), host and pathogens factors. Besides, it is tough to 
assess the yield losses because roots are rarely examined unless 
foliar symptoms appear. In addition, most of the studies on the 
root rot pathogens are conducted in controlled environmental 
conditions. The capacity of a pathogen to cause root rot in alfalfa 
under such controlled conditions is not directly related to what 
happens to alfalfa in the pastures. Hence information of the 
controlled conditions environments experiments cannot 
be reliably correlated to pastures. Besides fungal and oomycetes 
pathogens, there is also a need to assess other soil-borne 
pathogens such as nematodes. All these data obtained will 
be used to control the root rot rationally. Moreover, investigations 
on alfalfa resistance QTLs are limited, and the genes that cause 
alfalfa resistance are unknown. There is a need to focus on 
research into alfalfa’s disease resistance mechanism against 
various pathogenic strains of the pathogens and look for the 
broad-spectrum and specificity of alfalfa against these 
pathogenic strains. In addition, identification of resistance genes 
to breed alfalfa resistant varieties to root rot and promote the 
sustainable production of alfalfa is also required. Furthermore, 
because most studies regarding alfalfa disease resistance use a 
single strain, it’s impossible to tell whether the cultivars chosen 
are disease-resistant in general. To comprehensively investigate 
disease resistance and screen a broad spectrum of varieties, there 
is a need to standardize disease resistance evaluation criteria for 
different pathogenic species and understand alfalfa resistance 
mechanisms to the strains within and between pathogens 
species. Furthermore, alfalfa’s pathogenic mechanisms, 
particularly its molecular basis, is still unknown. Future research 
should include genome sequencing and comparative analysis of 
different strains within and within species of the pathogen that 
causes alfalfa root rot and transcriptomics investigations of the 
genes expressed by different strains during the infection of 
alfalfa. Currently, farmers rely solely on fungicides as seed 
treatments and/or soil sprays, but pathogen populations have 
developed resistance to fungicides. Biological control agents, 
such as arbuscular fungi, Bacillus and Trichoderma spp. have 
recently been utilized to prevent alfalfa root rot. On the other 
hand, these biological control agents present challenges in terms 
of field survival, proliferation, growth, and adaptability. 
Furthermore, each pathogen that causes root rot produces 
distinct spores, all of which contribute to the disease’s occurrence 

and spread. The number of spores and their ability to survive 
directly impact the disease’s prevalence and severity. The ideal 
climatic conditions for the formation and germination of many 
types of spores, on the other hand, are unknown. Simultaneously, 
studying spore production and germination mechanisms and 
their major regulatory factors is required to offer a theoretical 
foundation for developing innovative alfalfa root rot prevention 
and control approaches. In the future, high-throughput 
phenotyping and genotyping technologies, genomic methods, 
genome-wide investigations, transcriptomics, and next-
generation sequencing techniques will make it possible to find 
root rot resistant cultivars and better understand root rot 
pathogen pathogenesis. These techniques will also aid in the 
discovery of genes linked to alfalfa resistance or susceptibility to 
root rot pathogens.
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Change in global climate has started to show its effect in the form of extremes

of temperatures and water scarcity which is bound to impact adversely

the global food security in near future. In the current review we discuss

the impact of drought on plants and highlight the ability of endophytes,

microbes that inhabit the plants asymptomatically, to confer stress

tolerance to their host. For this we first describe the symbiotic association

between plant and the endophytes and then focus on the molecular and

physiological strategies/mechanisms adopted by these endophytes to confer

stress tolerance. These include root alteration, osmotic adjustment, ROS

scavenging, detoxification, production of phytohormones, and promoting

plant growth under adverse conditions. The review further elaborates on

how omics-based techniques have advanced our understanding of molecular

basis of endophyte mediated drought tolerance of host plant. Detailed

analysis of whole genome sequences of endophytes followed by comparative

genomics facilitates in identification of genes involved in endophyte-host

interaction while functional genomics further unveils the microbial targets

that can be exploited for enhancing the stress tolerance of the host. Thus,

an amalgamation of endophytes with other sustainable agricultural practices

seems to be an appeasing approach to produce climate-resilient crops.

KEYWORDS

endophyte, drought stress, crop improvement, abiotic stress, omics, plant-microbe
interaction
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Introduction

In the light of current scenario of climate change, the
net damage cost to the ecosystem is incessantly increasing.
The exponential rise in global population, and the subsequent
anthropogenic activities further augment the magnitude of
these catastrophic situations. These situations severely affect
the ecological system, including plants, animals, and microbes
(Ahmed, 2020; Morris et al., 2020; Lal, 2021). However, due
to their mobile nature, animals are capable of avoiding the
exposure to these inimical situations. On the contrary, the
sedentary nature of plants inevitably encounters them with
calamitous impact of the climate change such as reduced
precipitation, extreme temperature, and light (Kaur et al., 2021;
Manna et al., 2021). Such encounter affects the plant life cycle
at their different developmental stages and eventually results in
loss of crop productivity. As the global livelihood/economy is
copiously dependent on the agricultural output, an urgent action
is required to tackle the situation.

Consequently, to deal with this conundrum plants have
evolved different strategies that alter their physiological,
biochemical and molecular facet during stress exposure to
sustain their growth (Bechtold and Field, 2018). Molecular
responses are majorly driven by growth regulators that
dramatically alter the transcriptional regulation and cell
signaling. The action of phytohormonal and transcriptional
syndicate is orchestrated by the dynamic signaling cascade
which in turn exhibit a feedback regulation (Banerjee and
Roychoudhury, 2018; Xie et al., 2019; Li et al., 2020; Salvi et al.,
2021; Gandass et al., 2022). An adequate signaling event is
a prerequisite for the appropriate regulatory response against
the stressor to adapt to the adversities. In plants, the osmotic
adjustment and reactive oxygen species (ROS) homeostasis are
the key cellular responses to minimize cellular damage (Suzuki
and Katano, 2018; Nadarajah, 2020; Takahashi et al., 2020).
These responses are largely reliant on different factors such as
plant age and developmental stage; stress type, severity, and
duration (Kazemi-Shahandashti and Maali-Amiri, 2018; Berens
et al., 2019; Kumar et al., 2019). Several efforts to improve stress
response in crop plants have been carried out using genetic
engineering and molecular breeding approaches. However, to
attain a sustainable crop improvement, the intervention of
endophytic microbes to mediate improved stress response has
emerged as an appeasing approach.

Endophytes are non-pathogenic microbes residing inside
the plant tissue asymptomatically. Endophytic microbiome
elicits different local and systemic responses in plants that
often facilitate host growth by modulating metabolic events for
mutual benefits. The modulation of the metabolic events may
result in the accumulation of osmolyte, ROS scavenging,
phytohormone production, phosphate solubilization,
enhanced nutrient availability, pathogen suppression, and
many more (Brader et al., 2014; Arora and Ramawat, 2017;

Trivedi et al., 2020; Mattoo and Nonzom, 2021; Orozco-
Mosqueda et al., 2021). Moreover, they also facilitate the
production/accumulation of several bioactive compounds that
contribute toward the (a) biotic stress tolerance response in
the host plant (Lata et al., 2018; Mengistu, 2020; Morelli et al.,
2020; Suryanarayanan and Shaanker, 2021). The endophyte-
associated stress mitigation is largely dependent on the
host environmental niche, for instance, the microbiota of
plants from hot springs and coastal areas appear to endow
heat and salinity tolerance, respectively (Rodriguez et al.,
2008; Nanjundappa et al., 2021). This could be due to their
ability to produce osmo-protective molecules like proline,
melatonin, and carotenoid during abiotic stress exposure
(Pacifico et al., 2019). Interestingly, such stress response is
quite specific, as the bacteria from one locale appears to be
incapable of imparting tolerance to other. Besides, owing
to their metabolic drive to produce defense molecules such
as proteases, siderophore, and chitinase, several endophytes
exhibit antagonistic activity against the phytopathogen growth.
In light of recent research, the use of endophytes as a biocontrol
agent against phytopathogen and herbivores or to confront the
environmental stressor such as oxidative, drought, and salinity
stress has emerged as a promising strategy. Conventionally,
the plant-microbe interaction is ubiquitous, and it may have
a beneficial or hostile impact on the host plant. However,
studies have been conducted to understand and deal with the
negative impact of microbes, that has been already reviewed and
documented earlier (Rai and Agarkar, 2014; Brader et al., 2017).

Apart from endophytic bacteria and fungi, asymptomatic
viruses also have important role in alleviating the abiotic stress
in plants. Tomato yellow leaf curl virus (TYLCV), belonging
to Begomovirus family, has been found to impart tolerance
to tomato plant against severe drought stress (Gorovits et al.,
2019; Shteinberg et al., 2021). Upon infection, the major
TYLCV proteins interact with the heat shock transcription
factor HSFA2 and suppress the heat shock response. This is
facilitated by inhibition of HSFA2 translocation to nuclei, which
further prevents downregulation of heat responsive genes.
TYLCV inhibits the HSP90 (HSFA1 and HSFB1) and SGT1 (co-
chaperone) functions in tomato plants, thus suppressing host
cell death. Additionally, the TYLCV also aids by redirecting
some principal amino acids and carbohydrates from above
ground parts to roots, thus mitigating effects of drought.

Although in response to (a) biotic stresses, plant cell
exhibits a dynamic yet highly regulated response to mitigate
the stressful conditions, sometimes the inhabitant symbiont
endophytes in the host appears to have either direct or
indirect influence on the stress signaling. Such endophyte-
mediated signaling cascade apparently affects the expression
of stress-responsive genes by implicating the phytohormonal
syndicate or transcriptional module. However, it is important
to comprehend the molecular basis of plant-endophyte relation
and the mechanism underlying the stress response mediated
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by endophytes. The main aim of this review was to provide
a comprehensive overview of the impact of drought on plant
physiology and how endophytes (bacteria and fungi) can play
a pivotal role in mitigating this stress in their hosts. For
this the reader is first given an idea of the endophytism
and then the mechanisms employed by endophytes to
confer stress tolerance to host are discussed. Further, we
highlight the recent studies where omics-based approaches have
broadened our understanding of endophyte-mediated drought
tolerance in host.

Endophytism: An overview

The term “endophyte” was first introduced by De Bary
in 1866 which implies “inside the plant.” Endophytes can
potentially be prokaryotic or eukaryotic microbes such as
archaea, bacteria, fungi or viruses which dwell inside the
host asymptomatically (Bacon et al., 2000). They reside in
different parts of the host plants throughout their entire
life cycle or during some part of it. They can either
transfer from generation to generation through vertical or
horizontal transmission or arise from the rhizosphere or
phyllosphere. Plants release molecules such as flavonoids, lipo-
chitooligosaccharides, strigolactone (Rozpadek et al., 2018),
arabinogalactan (Nguema-Ona et al., 2013), and many more
which act as a signal for endophytic colonization. To penetrate
inside the host plant, endophytes cross the first line of defense
of the plant immune system by recognizing the conserved
molecules termed as microbe-associated molecular patterns
(MAMPs). Some of the elicitors which work as MAMPs are
peptidoglycans, lipopolysaccharides, flagellin, chitin, bacterial
SOD, beta-glycan bacterial cold shock proteins, and β-glucan
from oomycetes (Newman et al., 2013). Specific receptors
termed as pathogen recognition receptors (PRRs), present
on the surface of plant cells, recognize MAMPs. Some
endophytes synthesize and release hydrolytic enzymes such
as pectinase, xylanase, cellulase, and proteinase and penetrate
inside the host plant.

Being in mutualistic interaction with the host plant,
endophytes aids in their nutrient uptake, tolerance to abiotic
and biotic stresses, regulation of hormone pathways, etc.
In turn, the endophyte also receives favors from the host
plant. The host allows endophytes to colonize the suitable
niches to multiply bypassing host’s autoimmune system, besides
providing carbon for energy and other nutrients. However, the
colonization, distribution and endophyte diversity are regulated
by host genotype and ecology. In number of studies undertaken
to elucidate plant-endophyte interaction, it was concluded
that diverse morphology, physiology, habitat and metabolites
of host plants govern their potential to employee various
endophytes (Wu et al., 2021). In other words, endophytes
smartly monitor their structure and diversity in lieu of

various host genotype, plant parts, growth stages, etc., to
maneuver regular nutrient acquisition for their own growth
and propagation.

Upon colonization of host plant tissues, endophytes get
exposed to the micro-environment inside the host. Since plants
are constantly exposed to differences in external environment,
the endophytes inhabiting them should also be highly adaptive.
Consequently, endophytic communities exhibit high variability
and are dynamic during plant development (Borruso et al.,
2018). The ability of the endophytic species to adapt and
their interaction with other microbial community plays a
decisive role in successful establishment of endophytes within
the host plants. Molecular or cellular changes in endophytic
microorganisms is a reflection of its response to external stimuli
in the plant. For example, a change in redox state of plants as
a response to osmotic stress results in a corresponding change
in endophyte gene expression patterns (Sheibani-Tezerji et al.,
2015) community. Similarly, hydrogen peroxide breakdown by
seed colonizing bacteria is probably an adaptation strategy of the
bacteria to the changing redox conditions during germination
(Gerna et al., 2020). Therefore, for successful colonization by
endophytes they need to possess several adaptive strategies and
should be able to ace the changing micro-environment inside
the plant tissue to be able to live in a mutualistic symbiotic
association with their host plant.

Studies show that the genome of endophytes consist of
information that codes for traits favorable to their host plants
(Orozco-Mosqueda del Carmen et al., 2021). The mutualistic
association of plant and endophytes result in the production
of several bioactive compounds (Gouda et al., 2016; Keshri
et al., 2021; Verma et al., 2022) such as artemisin (Li et al.,
2012), camptothecin (Zhang et al., 2012), helvolic acid (Prasad
et al., 2014), taxol (Heinig et al., 2013), huperzine (Nair and
Padmavathy, 2014), and azadirachtin (Kusari et al., 2012)
which are beneficial for medicine, agriculture, biodegradation,
and bioremediation sectors. In response to biotic stress,
endophytes produce several anti-bacterial, anti-fungal proteins
to protect plants from phytopathogens. Endophytes play an
important role in the growth of their host plants by increasing
the availability of several nutrients such as phosphorus,
potassium, and zinc, by fixing atmospheric nitrogen, and
by synthesizing phytohormones, siderophores, hydrogen
cyanide, ammonia, proline, carotenoids, melatonin, etc.,
Many transcriptomic and metabolomic studies have indicated
that several plant growth-promoting pathways in plants are
associated with endophytic gene products. Endophytes mitigate
metal phytotoxicity through biotransformation, extracellular
precipitation, intracellular accumulation, and transformation of
toxic metal ions into non-toxic or less toxic forms (Ojuederie
and Babalola, 2017). To conclude, endophytes are involved in
phytoremediation, defense against phytopathogens, production
of bioactive compounds, and promote plant growth. These
activities of endophytes make them better biocontrol agent and

Frontiers in Microbiology frontiersin.org

170

https://doi.org/10.3389/fmicb.2022.981355
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-981355 August 26, 2022 Time: 16:46 # 4

Salvi et al. 10.3389/fmicb.2022.981355

bio-inoculant that can be best used as an alternative to chemicals
(pesticides/fertilizers) to attain sustainable agriculture practice.

Implication of endophytic
microbes in mediating the
dehydration stress response in
host plants

In order to comprehend the role and regulatory aspect
of stress response facilitated by endophytic microbes, it is a
prerequisite to have a molecular understanding of cell signaling
occurring in plants during stress progression. Plants encounter
several stressors during their lifecycle, and due to the sedentary
nature, their escape is unavoidable. Consequently, during
evolution, plants attain molecular and biochemical plasticity
at different levels to develop adaptive strategies and cope with
the stressful milieu. Despite tremendous differences in the
physiology and morphology of plants belonging to different
families, basic cell signaling during stress is largely conserved
(Hotamisligil and Davis, 2016). Stress perception disturbs the
cellular homeostasis that is driven by the cell signaling cascade,
and eventually activates a reciprocate/adequate response.

Physiological and molecular impact of
drought stress

In the actual physio-biochemical sense, drought imparts a
state of dehydration, which might not be the solitary effect
of water scarcity rather it may also occur due to extreme
temperature regimes, i.e., cold and heat stress. Although, a
physical drought condition is the actual unavailability of water
that is attributed to lower precipitation or irrigation, but the
physiological drought does not comprise of water unavailability
rather it is the inability of water uptake. Such incapability of
plant cells to harness the freely available water is a result of one
or the other physiological state of plants, exemplified by extreme
cold, ionic level, excess fertilizer application or altered pH status,
etc. (Vinocur and Altman, 2005; Passioura, 2007).

In response to drought stress exposure, plants either acquire
a “resistance” or “escape” approach against it, depending on
the eco-physiological aspect. The former strategy is further
divided into the tolerance or avoidance mechanism to deal
with the stressful event. To escape the drought, the plant
accelerates its growth, reproduces, and develops seeds for the
next propagation before the elevation of stress severity (Kooyers,
2015). Contrary to this, for drought avoidance, the plant reduces
the transpiration rate to improve the water use efficiency
(WUE). Such an increase in WUE for a particular duration of
drought through the stomatal regulation is also accompanied
by an increase in root to shoot ratio. While for the tolerant

stratagem, plants accumulate diverse anti-stress proteins and
osmolytes, modulate sugar metabolism as well as transport to
stabilize the cellular integrity during water-deficit conditions
(Salvi et al., 2018, 2022; Volaire, 2018; Ghosh et al., 2020).

The dehydration stress disturbs the homeostasis of
carbon assimilation and energy transfer by electron
excitation/utilization, which results in the accumulation of
ROS. Under non-stressed conditions, the ROS are generated
at the basal level, which is efficiently tackled/scavenged by the
antioxidative machinery of the plants (Miller et al., 2010; Negi
et al., 2017). Besides, ROS have also been ascribed a role to
regulate adequate cell signaling during stress and programmed
cell death (Petrov et al., 2015). As ROS are produced by
the process of energy and electron transfer, it is likely to
influence the redox status of cell and signaling cascades during
different metabolic processes. The disturbed redox state of
the cell leads to a rise in the ROS level beyond the threshold
level that jeopardizes cellular functionality by oxidizing the
macromolecules, such as lipids, DNA, RNA, and proteins
thereby instigating extensive damage to these biomolecules
(Dietz et al., 2016; Noctor and Foyer, 2016). To overcome the
aforesaid damage, plants possess an efficient detoxifying system
encompassing enzymatic and non-enzymatic antioxidative
mechanisms. Additionally, plants also manifest leaf curling,
epicuticular wax deposition, osmolyte accumulation to
minimize the damage.

All these physio-biochemical alterations comprehend a
dynamic yet highly regulated molecular response at a cellular
level depending on the severity extent as well as the genotype
being exposed to the stressor (Dinakar and Bartels, 2012). These
molecular regulations are essentially governed by accumulation
of different phytohormones and the interplay of their signaling
cascades. The phytohormones like abscisic acid (ABA), jasmonic
acid (JA), brassinosteroids (BR), cytokinin (CK) mostly play
an unprecedented role in the modulation of the biological
processes. Among diverse interacting layers of phytohormone
response, ABA is extensively studied with an emphasis on
drought stress response (Brossa et al., 2011). However, the
recent research pertaining to phytohormonal regulation has
unfolded the crucial role of other phytohormones and their
molecular cross-talk in mediating drought stress tolerance
response. Besides, drought stress also instigates different
signaling components including MAPK and Ca+2 signaling,
ROS, NO, SnRK2, etc. These molecular players trigger signal
transduction and activate the expression of drought stress-
responsive genes.

Drought stress tolerance response
mediated by endophytes

Among abiotic stresses, drought stress deeply accounts
for reduced plant growth and ultimately yield. To provide
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enough food to an ever increasing world population, it is
extremely important to counteract the effect of drought stress
on plants. The strategies which are presently being employed
to reduce the effect of drought stress in plants are non-
renewable and eco-destructive thus, to protect plants from
drought stress, strategies engaging eco-friendly alternatives are
the need of the hour. Studies reveal that endophytic microbes
can be best used as an alternative to destructive fertilizers
and pesticides to improve plant growth and yield. Myriad of
endophytes live in a mutualistic relationship with plants and
provide several benefits to plants. Some of them account for
alleviating the effect of drought stress on plants. Different
endophytes may employ different mechanisms to counteract
the drought stress effect in plants (Figure 1) which are
discussed below.

Since physiologically drought is the inability of the plant to
uptake water, alterations in root physiology and morphology
such as an increase in the number of roots, deeper root
system and, small diameters of roots are some of the changes
occurring in roots to increase the water uptake from the
soil. Studies have found that endophytic bacteria (Table 1)
produce several plant hormones such as indole acetic acid
(IAA), ABA, and gibberellins, synthesize ammonia, increase
the bioavailability of nutrients and shield the plants from
pathogens to boost the increase in root length and density
(Ullah et al., 2019). The reduced ability for water uptake
may lead to a change in the osmotic potential of the cell.
Once the disturbance in osmotic potential is sensed by the
cell, it carries out osmotic adjustment by the accumulation of
compatible solutes such as sugars (e.g., sucrose), glycine betaine,
organic acids (e.g., malate), inorganic ions (e.g., calcium) and
proline. Osmotic adjustment thus helps the plant to withstand
damage induced by drought stress and to protect proteins,
enzymes, cellular organelles, and genetic material from oxidative
damage (Ullah et al., 2019). Many endophytic bacteria have
been discovered (Table 1) that increase the level of compatible
solutes inside the cell to protect the plant from drought stress.
One such example is Bacillus amyloliquefaciens, an endophytic
bacterium that has been found to increase the concentration
of compatible solutes such as amino acids (phenylalanine,
aspartic acid, glutamic acid, cysteine, and proline) to protect
the rice host under stress conditions (Shahzad et al., 2017).
Another parameter to check whether a plant can withstand
drought stress-induced damage or not, is the relative water
content (RWC) of plants. It is the estimation of actual water
content in comparison to maximum water holding capacity
and therefore, the larger the RWC values a plant exhibits
greater is the ability of that plant to adjust under drought
stress conditions. Several endophytes have been explored that
increase the RWC in plants and help in mitigating the adverse
effects of drought stress. Further, drought stress induces an
increase in levels of ROS such as hydroxyl radical, hydrogen
peroxide, superoxide anion radical, and singlet oxygen. These

ROS are produced due to partial reduction of atmospheric
oxygen and trigger oxidative damage to lipids, proteins, and
macromolecules (Mittler, 2002). Several studies have revealed
that endophytic bacteria and fungi (Tables 1, 2) can assist
the host plant to decrease the levels of ROS by producing
enzymes such as superoxide dismutase, peroxidase, and catalase
which are involved in maintaining the basal levels of ROS.
Moreover, the plant needs to maintain optimum growth to
withstand the adverse effects of drought stress. Endophytic
bacteria have a great role in producing plant growth-promoting
hormones (Table 1) such as auxins, ABA, and ethylene which
help the plants to tolerate drought stress. Auxins are an
important group of phytohormones that are naturally produced
by plants in the form of IAA and indole butyric acid. They are
responsible for regulating different physiological processes in
plants such as seed germination, cell division, cell elongation,
cell differentiation, root development, photosynthesis, and
shielding plants against stressful conditions. Studies reveal that
auxins elevate tolerance in plants against drought stress (Ullah
et al., 2019). Many endophytic bacteria have the potential
to produce IAA and also intervene in the transportation of
auxin inside the plant. With an increase in auxin concentration
inside the plant, lateral root formation takes place which
leads to a rise in the surface area of roots and thereupon
more absorption of water and minerals from the soil. ABA
is another important phytohormone that is responsible for
regulating several morphological, physiological, biochemical,
and molecular processes as well as growth and germination
(Ullah et al., 2019). According to reports, ABA is also engaged
in different signaling pathways that regulate stress-responsive
genes (Egamberdieva et al., 2017; Salvi et al., 2020). Though
ABA induces the development of roots, enhancement of
their length and density to increase the contact of roots
with more moisture deep inside the soil, there are only a
few reports about endophytic microbes producing ABA and
hence mediating drought tolerance through ABA production.
Ethylene is a plant hormone that is involved in fruit ripening,
senescence, and abscission. Drought stress leads to an increase
in ethylene production inside the plant which ultimately
impede the growth of plants. Many endophytic microbes have
been identified that produce 1-aminocyclopropane-1-carboxylic
(ACC) deaminase enzyme (Glick, 2014). ACC deaminase
catalyzes the inactivation of ACC, the precursor of ethylene,
and produces ammonia and α-ketobutyrate. Inactivation of
ACC results in the decreased levels of ethylene inside the
plants and ultimately increased plant growth. Editing in
Arabidopsis-Pseudomonas holobiont targeting the alteration in
ethylene synthesis via ACC synthase gene in gene and ACC
deaminase in bacteria has revealed a promising model for
plant nutrient enhancement to tackle increasing food demand
(Ravanbakhsh et al., 2021). The activity of endophytic ACC
deaminase may mediate increased plant growth under drought-
stress conditions.
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FIGURE 1

Endophytic mediated cell-signaling during drought stress response in plants.

Omics based approaches for
exploration of endophyte
mediated drought tolerance

Owing to numerous beneficial aspects of endophytes, it
is crucial to understand the plant-endophytic interactions,
especially the role and regulation of genes or proteins involved
in the metabolic process and their evolutionary perspective.
Such studies necessitate the information on the genome
sequence of the host and endophyte as well, which will pave
the way to engineer/manipulate the mutualistic relationship
between the two. Numerous omics-based approaches including
genomics, metagenomics, and functional genomics (Kaul et al.,
2016) have dramatically revolutionized microbial studies and
enabled the rapid and detailed assessment of the diversity,
evolution, and molecular or biochemical composition of the
microbial communities within a host plant (Figure 2). In
the following sections, we discuss advancements in molecular
perspectives of plant-endophyte relationships owing to the
utilization of various omics-based approaches.

Genomics

Whole Genome Sequences (WGS) of numerous endophytes
are available in the public domain (FungiDB, NCBI) owing

to the advancement in Next Generation Sequencing (NGS)
methods. Whole-genome analysis (WGA) coupled with
comparative genomics offers genome-scale identification of
genes involved in host colonization, growth promotion, and
protection against (a) biotic stresses among others (Table 3).
WGA has facilitated the identification of several such genes
in prevalent endophytes species belonging to Bacillus genus
(Contreras-Pérez et al., 2019; Flores et al., 2020). Many
whole genome sequence-based studies have identified genes
implicated as monumental in drought stress tolerance (Table 3).
Notably, many genes involved in successful interaction between
endophyte and host plant may also be transposon-encoded.
Transposon mutagenesis sequencing (TnSeq) is another
technique employed for the identification of such genes (van
Opijnen et al., 2009). TnSeq has revealed important information
in several microbes including endophytes such as Pseudomonas
simiae (Cole et al., 2017), Azoarcus olearius, and Herbaspirillum
seropedicae (Do Amaral et al., 2020). In addition, quorum
sensing molecules are essential during endophyte-plant or
microbe-microbe interaction inhabiting the same host (Kusari
et al., 2014). WGS of endophytes belonging to different genera
has identified genes involved in the synthesis of such molecules
(Parthasarathy et al., 2018). The utilization of quorum sensing
molecules for enriching the microbiota of crop plants can be
a useful approach toward sustainable agriculture. Further, the
study of whole genome can be used to investigate the taxonomic
classification and evolutionary aspects of plant-endophyte
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TABLE 1 Utilization of bacterial endophytes to improve stress tolerance response of host plants.

Sr. no. Bacterial endophytes Crops/plant Mode of action/mechanism Genes References

1. Bacillus subtilis Arabidopsis thaliana Increased production of proline proBA Chen et al., 2007

2. Arthrobacter sp. EZB4 and
Bacillus sp. EZB8

Pepper (Capsicuum
annuum L.)

downregulation of the stress-inducible
genes

CaACCO and CaLTPI Sziderics et al., 2007

3. Bacillus licheniformis K11 Pepper (Capsicum
annuum)

Production of auxin and ACC deaminase
by regulation of stress related genes

Cadhn, VA, sHSP and
CaPR-10.

Lim and Kim, 2013

4. Azospirillum brasilense N040 and
Bacillus amyloliquefaciens 5113

Wheat (Triticum
aestivum)

Reduced levels of ascorbate peroxidase
(APX1), S-adenosyl-methionine
synthetase (SAMS1), and the heat shock
protein (HSP17.8)

APX1, SAMS1, HSP17.8 Kasim et al., 2013

5. Pseudomonas aeruginosa strain
GGRJ21

Mung Bean (Vigna
radiata)

Up regulation of drought stress responsive
genes

DREB2A, CAT1, and
DHN

Sarma and Saikia, 2014

6. Gluconacetobacter diazotrophicus Saccharum officinarum
cv. SP70-1143

IAA and proline production ERD15 DREB1A/CBF3
and DREB1B/CBF

Vargas et al., 2014

7. Burkholderia phytofirmans PsJN Solanum tuberosum L. Upregulation of cellular homeostasis, and
the detoxification of reactive oxygen
species

Extracytoplasmatic
function (ECF) group IV
sigma factors

Sheibani-Tezerji et al.,
2015

8. Pseudomonas fluorescence RG11
Micrococcus

Upregulation of melatonin and its
intermediates (tryptamine,
5-hydroxytryptophan, serotonin, and
N-acetylserotonin)

VvTDC1, VvTDC2,
VvTDC3, VvSNAT

Jiao et al., 2016

9. Pseudomonas fluorescens,
Enterobacter hormaechei, and
Pseudomonas migulae

Foxtail millet (Setaria
italica L.)

up-regulation of
1-aminocyclopropane-1-carbox- ylate
(ACC) deaminase gene (acdS) which
cleaves the precursor of ethylene (ACC)

acdS Niu et al., 2018

10. Bacillus Subtilis and Paenibacillus
illinoinensis

Pepper (Capsicuum
annuum L.)

Increases the vacuolar osmotic pressure H+-PPase (V-PPase) Vigani et al., 2019

11. Streptomyces chartreusis WZS021 Sugarcane Modulation of root parameters, osmotic
adjustment, phytohormone production

proDH, Xanthine
dehydrogenase

Wang et al., 2019

12. Cellulosimicrobium sp. JZ28 Desert plant (Panicum
turgidum)

Osmotic adjustment nhaA, cspA, groEL, groES,
dnaK, lexA, proABC

Eida et al., 2020b

interactions. Pan-genome analysis also allows us to study a
core genome (that is present in all strains across a species)
along with an accessory genome (genes unique to the strain
under consideration). This helps to identify the important
cluster of genes which are accounted for the differences in
growth, establishment, adaptation, and evolution of endophytic
connotation. The absence of any evolutionary relationship of an
unknown gene with known genes limits the genomics study as
it does not contribute to the functional annotation.

This limitation can however, be resolved by metagenomics.
Metagenomics is one of the important approaches to analyse
the genomic constituent of the microbial community and
the strategies adopted by them to encounter the surrounding
factors. It assists in analysing the genome of organisms
directly from the environment and reveals the possible function
of genes or their participation in a particular biological
pathway. NGS-based metagenomics studies coupled with
in silico analysis provide direct information about exceptional
enzymes and the function of unknown organisms. For example,
metagenome sequencing has revealed important functions
required for survival of bacterial endophytes inside plants

(Sessitsch et al., 2012). Additionally, the colonization pattern
of different tissues of the host can be traced through
metagenomics. To obtain a more comprehensive view of the
functions, mechanisms, and regulation of the microbiome
under the stressful conditions we need to study the meta-
transcriptomes, meta-proteomes or meta-metabolomes.

Comparative genomics

Plant microbiome is usually composed of endophytic
or non-endophytic strains. An omics-based comparison of
endophytic and its non-endophytic counterpart will allow us
to identify the crucial characteristics that are involved in
the endophytic colonization (Lòpez-Fernàndez et al., 2015).
Genomic features differentiating organisms with different
lifestyles can be elucidated using comparative genomics (Mitter
et al., 2013). For example, it aids in identifying regulatory genes
involved in host penetration, colonization and establishment
of symbiotic relationship. Such genes may be absent from
genomes of non-endophytes. Lateral transfer of such genes
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TABLE 2 Utilization of fungal endophytes to improve stress tolerance response of host plants.

Sr. no. Fungal endophytes Crops/plant/plant
parts

Mode of action/mechanism OR
physiological changes in plant

Genes References

1. Glomus intraradices Soybean (Glycine max L.
cv. Williams), lettuce
(Lactuca sativa L. cv.
Romana), maize (Zea
mays L. cv. Prisma), and
tobacco (Nicotiana
tabacum L. cv. Samsun)

regulate both signaling pathways and also
effector proteins involved in the final plant
responses

Gi14-3-3 Porcel et al., 2006

2. Piriformospora indica Arabidopsis thaliana (RD)29A, (ERD)1, PLD,
(DREB)2A, (SDIR)1,
(CBL)1, (CIPK)3

Sherameti et al., 2008

3. Piriformospora indica Chinese cabbage Increase in CAS protein and upregulation
of POX, CAT and SOD enzymes

DREB2A, CBL1,
ANAC072, RD29A

Sun et al., 2010

4. Glomus intraradices Carrot roots Upregulation of aquaporin genes GintAQPF1 and
GintAQPF2

Li et al., 2013

5. Trichoderma harzianum TH-56 Oryza sativa Upregulation of aquaporin, dehydrin and
malondialdehyde genes

DHN/AQU Pandey et al., 2016

6. Piriformospora indica Zea mays L. proline content increased, accumulation
of malondialdehyde decreased, enhanced
antioxidant enzyme activity

DREB2A, CBL1,
ANAC072, and RD29A
were upregulated

Xu et al., 2013

7. Piriformospora indica Zea mays L. Plant hormone signal transduction TGA1, TGA9, AUX/IAA,
MYB2, MYC2,
DREB10NAC,
AREB(bZIP)

Zhang et al., 2018

8. Penicillium chrysogenum (62%),
Penicillium brevicompactum
(27%), Alternaria sp. (6%),
Phaeosphaeria sp. (3%), and
Eupenicillium osmophilum (2%)

Colobanthus quitensis Modulated the expression of genes related
to ABA synthesis pathway

CqNCED1, CqABCG25,
CqRD22

Hereme et al., 2020

from endophytic to non-endophytic may eventually take place
in the form of mobile genetic elements such as plasmids,
genomic islands or transposons (Taghavi et al., 2010; Tisserant
et al., 2013). Moreover, comparative genomics may also help
in discriminating between pathogenic and non-pathogenic
strain. Since both these organisms possess the capability of
invading the plant host, comparative genomics identifies genes
responsible for pathogenicity or the lack of it (Yang et al., 2019).
Hence, several differences have been highlighted between the
pathogenic and non-pathogenic lifestyles of endophytes with the
help of studies utilizing comparative genomics. For example,
non-pathogenic strains have genes enriched in biosynthetic
processes while pathogens have predominance of genes involved
in degradation (Karpinets et al., 2014). Comparative genomics
may also shed light on the molecular basis of host range for a
given endophyte. Bacteria with large genomes usually colonize
a wide range of host often unrelated to each other (Mitter
et al., 2013). Moreover, comparison of genomes of endophytes
isolated from hosts belonging to different ecological niches
may reveal important features providing adaptive advantages
to these endophytic organisms (Yi et al., 2017). Altogether,
comparative genomics has revealed genes related to colonization
of host plants (such as those involved in motility, chemotaxis),

establishment of symbiotic relationship (signal transduction
and transcription regulation) and conferring stress tolerance to
host (enzymes, hormones) or those involved in pathogenesis
(secretion systems). Such information can be methodologically
applied for designing microbes endowed with colonization
abilities that can promote plant growth and provide drought
stress tolerance to the host (Figure 2A).

Functional genomics

To examine interactions between an endophyte and the
plant, it is important to understand how two genomes interact
with each other. For that, it is important to investigate the
expression of genes from two genomes simultaneously which
is possible using the dual RNA-seq technique. Moreover,
the interaction among the endophytes present within the
same host can also be explored by comparative transcriptome
analysis. Expression studies, under different stress conditions,
can unveil putative candidate genes responsible for stress
tolerance/sensitivity whose function can be targeted for
improved tolerance in the future (Figure 2). Gene expression
profiling can be achieved through transcriptomic analysis

Frontiers in Microbiology frontiersin.org

175

https://doi.org/10.3389/fmicb.2022.981355
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-981355 August 26, 2022 Time: 16:46 # 9

Salvi et al. 10.3389/fmicb.2022.981355

FIGURE 2

(A) Application of endophytes for mitigating drought stress in crop plants. Endophytes naturally inhabiting plants in water deficit regions may be
isolated and genes involved in host colonization, growth promotion and stress tolerance can be identified. Through the genetic
engineering/genome editing of the candidate gene(s), the information can be utilized to engineer microbes that have ability to colonize
non-host crop plants, promote their growth and confer stress tolerance. Additionally, the naturally isolated endophytes can also be used to
produce stress tolerant crop plants. (B) Application of omics-based approaches to understand molecular basis of endophyte-mediated drought
tolerance.

using RNA-seq, microarray, SSH, or SOLiD-SAGE techniques
however, each has its own set of advantages (Wang et al., 2019).

Mass spectrometry-based proteomics and/or metabolomics
studies also provide an efficient platform for post-genomic

analyses. Plant-endophyte interactions result in the production
of different proteins and metabolites as compared to the
non-infected plant. Proteomic and metabolic profiling can
help in investigating the new pathways involved in the
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TABLE 3 Omics-based studies on plant-endophyte relationship to study the endophyte mediated drought stress tolerance conferred to host plant.

S. No. Host Endophyte Omics approach utilized References

1. Poplar Stenotrophomonas Genomics/WGS Ulrich et al., 2021

2. Desert plant (Panicum turgidum) Cellulosimicrobium Genomics/WGS Eida et al., 2020b

3. Pioneer desert halophytic plant
(Zygophyllum simplex)

Paenibacillus Genomics/WGS Eida et al., 2020a

4. Colobanthus quitensis Endophyte consortia Transcript profiling Hereme et al., 2020

5. Sugarcane Streptomyces chartreusis Genomics/WGS Wang et al., 2019

6. Poplar Endophyte consortia Genomics/WGS/metabolomics Khan et al., 2016

7. Barley Piriformospora indica Metabolomics/proteomics Ghaffari et al., 2019

8. Wheat A. sclerotigenum, S. implicatum Comparative metabolomics Llorens et al., 2019

9. Tall fescue Epichloë species Transcriptomics Dinkins et al., 2019

10. Soybean Sphingomonas Genomics/WGS Asaf et al., 2018

11. Maize Piriformospora indica Transcriptomics Zhang et al., 2018

12. Rice Trichoderma harzianum Transcript profiling Pandey et al., 2016

13. Potato Burkholderia phytofirmans Transcriptomics Sheibani-Tezerji et al., 2015

14. Sugarcane Gluconacetobacter diazotrophicus Transcriptomics Vargas et al., 2014

15. Barley Piriformospora indica Proteomics Ghabooli et al., 2013

16. Arabidopsis thaliana Pseudomonas chlororaphis Transcriptomics Cho et al., 2013

production of these proteins and metabolites in infected
plants with endophytes. These novel or bioactive metabolites
could help the plant in mitigating stress (Yan et al., 2019).
Moreover, the changes in metabolomes often regulate the
switch in the lifestyle of the microbes for example switch from
epiphytic to endophytic or vice versa. Interestingly, based on
functional genomics revelations (Table 3), endophytic fungi
have been found to be different from endophytic bacteria
in their mode of functioning under drought stress. The
fungi such as P. indica enhance the levels of phytohormones
(auxins, ABA, SA and cytokinins) and regulate the expression
of stress responsive genes in maize (Zhang et al., 2018)
while endophytic bacteria (Gluconacetobacter diazotrophicus)
suppress the accumulation of these hormones in sugarcane roots
and activated ABA-dependent stress signaling in shoots (Vargas
et al., 2014). Similarly, Pseudomonas chlororaphis, colonized
Arabidopsis thaliana plants also showed downregulation of
ABA and ethylene signaling (Cho et al., 2013). However,
T. harzianum in rice and Burkholderia phytofirmans in potato
plants increased the expression of genes involved in redox
homeostasis (Sheibani-Tezerji et al., 2015; Pandey et al., 2016).

Conclusion and future outlook

Drought is one of the major stressors, which affect global
crop productivity. The impact of water scarcity has severely
implicated diverse aspects of crop yield. Hence there is an
urgent need to deal with the issue of food insecurity/safety
by improving crop productivity and producing high-quality
food under stressful conditions. Besides, climate change and

anthropogenic activity further raise several concerns for
adequate crop production. This necessitates the climate-resilient
crops which possess a higher potential to withstand extremes
of conditions. The improved productivity needs to be balanced
within the diminishing agricultural land and water resources. In
nature, it is often observed that some plants exhibit a broad suite
of stress resistance compared to others. Although numerous
approaches have been adopted by researchers to understand the
underlying mechanism of differential behavior of susceptibility
and tolerance, but the role played by the plant microbiome has
attained very less attention in this regard.

Plant microbiomes may contain different sorts of organisms
including bacteria and fungi that display an intimate association
with plants and might play a significant role in host stress
tolerance. Therefore, it is important to understand the crucial
role of endophytes in stress response and utilize them as an
efficient tool to enhance the tolerance potential of the host plant.
For this, it is important to identify the signature gene/protein
that could have beneficial implications for the stress response.
There is a critical debate about how plants mediate the
plant-endophyte interaction in parallel to confronting the
pathogenesis by restricting the pathogen attack. What are
the specificities of different receptors, that account for the
differential recognition of microbes? During evolution, plant
microbes have developed an intricate association of mutualistic
or antagonist nature depending on their survival benefits. It is
important to broaden our knowledge about the evolutionary
aspects of both plants and endophytes which aids in their
beneficial interaction.

The continuous advancement in the tools and techniques of
functional and genomics studies has uncovered several aspects
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of plant-microbe interactions. Furthermore, techniques such as
fluxomics which connects the genomic and metabolic activities
and integrates the cellular functional output with the plant
phenotype (Salon et al., 2017) have not been efficiently applied
to plant-endophyte interactions. A combined fluxomics and
transcriptomics study revealed increased expression of genes
involved in general stress response in Gluconobacter oxydans
during different growth phases (Hanke et al., 2013). Notably,
Gluconobacter is one of the most common endophytic genera,
therefore, similar studies on endophytes and their hosts under
stress can reveal the flux through different metabolic pathways
highlighting the real picture of endophyte mediated stress
tolerance at cellular/metabolic level. The sequence information
of genes further helps to understand possible functions
and to disclose its implication toward a particular trait of
endophyte for the host plant. Additionally, the availability
of several open-source bioinformatics tools and software has
further embarked the big data analysis. Overall, there are
enormous unexplored aspects of endophytism that would be
instrumental in developing an intrinsic stress tolerance response
and developing climate-resilient crop plants in the future. In
addition, endophytism could also aid in curtailing the usage
of harmful chemical fertilizers thus encouraging eco-friendly
farming and sustainable agriculture.
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An investigation was carried out to understand the mechanism(s) involved in

the uptake of sulfur (S) as sulfate in pigeonpea following single inoculation

of two sulfur-oxidizing bacteria (SOB), Stenotrophomonas maltophilia and

Stenotrophomonas pavanii in the treatments amended with either elemental

sulfur (S0) or sulfate (S6). Colonization potential and biofilm formation were

analyzed through confocal laser scanning microscope (CLSM) and scanning

electron microscope (SEM). Furthermore, the effect of seed inoculation on

root architecture, expression of genes involved in sulfur oxidation (sox) in

bacterial inoculants, and genes involved in sulfate transport in pigeonpea

(PpSULTR) were analyzed to correlate with the higher uptake of S in roots

and shoots of pigeonpea. Both the SOB exhibited a good colonization

potential and biofilm formation on the roots of pigeonpea. Among the 11

sox genes targeted in rhizosphere of pigeonpea, expression was achieved

for seven genes, which showed 2-fold increase in treatments inoculated

with S. maltophilia and amended with either S6 or S0. The inoculation of

S. maltophilia and amendment of S0 led to increased expression of PpSULTR

genes by several folds in roots. The inoculation of SOB had a significant

influence on non-enzymatic (osmolytes like proline) and enzymatic (PAL,

peroxidase, superoxide dismutase, and catalase) levels. The results revealed

a significant increase in sulfur uptake in roots and shoots in treatment

inoculated with S. maltophilia and amended with S6. The investigation

showed that the SOB-mediated over-expression of PpSULTR genes in roots

of pigeonpea and sox genes in the rhizosphere were acting synergistically

in facilitating higher uptake and translocation of S in roots and shoots of

pigeonpea plants.

KEYWORDS

sulfur-oxidizing bacteria, pigeon pea (Cajanus cajan), sulfate transporter, PpSULTR,
root colonization, root architecture, ROS
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Introduction

Sulfur is an important nutrient for the plant growth and
development. Plants take-up sulfur (S) in the form of sulfate
(S6), which is +6 oxidation state of sulfur (Takahashi et al.,
2011a,b; Giovannetti et al., 2014). In soils, sulfur is chiefly
present in bound form as organic compounds (Takahashi et al.,
2011a,b; Giovannetti et al., 2014). The plants utilize the oxidized
form of S for the biosynthesis of S-rich amino acids such
as cysteine, cystine, and methionine, glutathione, secondary
metabolites, sulfoflavonoids, S-containing co-enzymes, and
prosthetic groups (Giovannetti et al., 2014). In the last two
decades, there are the reports of S-deficiency in different soil
types across the globe. There are many factors contributing
to this decline in S content in the soil. Intensive cropping
patterns, low organic matter particularly in tropical soils, and
extensive use of chemical fertilizers that are low in sulfur are
some of the factors that influence plant growth due to poor
availability of sulfur (McGrath et al., 2002; Lewandowska
and Sirko, 2008). The conventional solution to this problem
is the use of S-based chemical fertilizers. In general, it is
recommended to apply elemental sulfur (S0) as compared
to sulfate (S+6) for the proper growth and development
of plants (Bouranis et al., 2018; Fuentes-Lara et al., 2019).
However, there are microorganisms that have the ability to
convert S0 to S+6 and are collectively termed sulfur-oxidizing
bacteria (SOB) (Frigaard and Dahl, 2009; Zhi-Hui et al.,
2010; Wang et al., 2019). Both autotrophic and heterotrophic
sulfur-oxidizing bacteria have been isolated from different
ecological niches (Rawlings, 2005; Majumder and Palit, 2017;
Berben et al., 2019; Wang et al., 2019; Zhang et al., 2019). They
are metabolically and nutritionally diverse, which includes
autotrophs, heterotrophs and mixotrophs. The autotrophs
include Acidithiobacillus ferrooxidans, Acidithiobacillus
thiooxidans, Ancylobacter aquaticus, Halothiobacillus
kellyi, Mesorhizobium thiogangeticum, Methylobacterium
thiocyanatum, Thiobacillus denitrificans, Thiobacillus thioparus,
Thiomonas cuprina, Thiomonas intermedia, Thiomonas
perometabolis, and Thiomonas thermosulfata (Wood et al.,
1998; Bacelar-Nicolau and Johnson, 1999; Sievert et al., 2000;
Chen et al., 2004; Kumar et al., 2018, 2022). The heterotrophs
include species of Achromobacter, Arthrobacter, Brevibacterium,
Dyella thiooxydans, Flavobacterium, Klebsiella, Micrococcus,
Mycobacterium, Pandoraea thiooxydans, Paracoccus,
Streptomyces, Thiosphaera, and Xanthobacter (Anandham
et al., 2009, 2010, 2011; Ghosh and Dam, 2009; Ryan et al.,
2009; Sajjad et al., 2016; Chaudhary et al., 2017, 2021; Hou et al.,
2018). However, mixotrophs include species of Aeromonas,
Alcaligenes, Bacillus, Bordetella, Burkholderia kururiensis
subsp. Thiooxydans, Citrobacter, Diaphorobacter, Micrococcus,
Pseudomonas, Paenibacillus, Pseudoclavibacter, Rhizobium,
and Stenotrophomonas, and they are the key bacterial species
playing a key role in nutrient mineralization and promoting

plant growth (Anandham et al., 2009; Sultan and Faisal, 2016;
Malviya et al., 2022; Sanwani et al., 2022). There are many
reports available on the positive influence of inoculation of
these SOB on plant growth and yield (Anandham et al., 2007;
Berben et al., 2019). In oil seed crops, these bacteria also help
in improving the oil recovery and oil quality (Anandham et al.,
2007). In legumes, the deficiency of sulfur has been reported
to inhibit the process of nodulation and nitrogen fixation
(Anandham et al., 2007; Cheng et al., 2017). Rhizosphere
engineering of crop plants using SOB as inoculants appears to
be a safe alternative to S-containing chemical fertilizers.

There are few reports available on the mechanisms by which
SOB exerts its influence on uptake of S in plants. The sulfate
taken-up by the plant roots is transported from roots to shoots
and to seeds through various sulfate transporters. The sulfate
transporters and the genes involved therein have been identified
in the model plant Arabidopsis and a few other crop plants
(Yoshimoto et al., 2007; Maruyama-Nakashita et al., 2015).
In Arabidopsis, about 12 sulfate transporters (SULTR) were
identified that vary in their affinity and location (Vidmar et al.,
2000; Yoshimoto et al., 2002, 2003, 2007; Maruyama-Nakashita
et al., 2015). A number of four groups of sulfur transporters
(SULTR1, SULTR2, SULTR3, and SULTR4) have been identified
that are involved in translocation of sulfate from soil to roots and
in vascular translocation to other parts of the plant (Takahashi
et al., 2000; Shibagaki et al., 2002; Yoshimoto et al., 2002).
They are also involved in release of vacuolar sulfate to maintain
sustained release and utilization of S-pools in the plant system
(Kataoka et al., 2004; Maruyama-Nakashita et al., 2015).

Pigeonpea is the second most important legume grown in
India and ranks sixth among the legumes globally (Varshney
et al., 2012). In general, pulses are reported to have deficiency
of sulfur containing amino acids (Bressani et al., 1986; Singh
and Diwakar, 1993; Saxena et al., 2010) and the fulfillment of
S requirement in pigeonpea is largely dependent upon the use of
chemical fertilizers (Jat and Ahlawat, 2010; Kumar et al., 2012).
Consequences of chemical fertilizers use include deterioration
soils quality, contamination of the environment, and negative
impact on human and animal health. The negative impacts
of chemicals have compelled researchers and policymakers to
look for alternative strategies. Among them, plant-breeding
approach is one of the alternative strategies where plant
breeders are targeting this issue through breeding approaches
using suitable donor parents. However, the availability of
the suitable donor parents and the transfer of desired traits
into a suitable commercial cultivar using a backcross/marker-
assisted breading program is a great challenge to the pulse
breeders. Under these circumstances, the use of microbe-based
strategies for S nutrition is an emerging technique/approach,
which is environment-friendly and residue-free. The utilization
of SOB could be an alternative approach to improve sulfur
content in pigeonpea. In our earlier study, we reported
strains of Stenotrophomonas maltophilia and S. pavanii isolated
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from different samples collected from Open Cast Projects of
Jharkhand (India), to be efficient for sulfur oxidation and
plant growth promotion (Malviya et al., 2022). These strains
exhibited multiple plant growth-promoting traits and their
inoculation enhanced the activity of reactive oxygen scavenging
(ROS) enzymes and uptake of nitrogen, phosphorus, and sulfur
in pigeonpea (Malviya et al., 2022). In-depth investigation is
required to understand the key mechanisms playing role in
the S oxidation in the rhizosphere along with S uptake and
translocation in the pigeonpea. In this study, we performed
a comprehensive investigation of the pigeonpea SULTR genes
family using comparative genomics and phylogenetic analyses.
Furthermore, we characterized the biofilm forming S-oxidizing
microbial inoculants and attempted to explain the microbe-
mediated mechanisms of S-transport in pigeonpea plants
using physio-biochemical and molecular approaches. This work
presents the analyses of the SULTR genes family, and the results
will provide a basis for further investigation on the microbe-
mediated modulation of SULTR genes for efficient uptake and
translocation of sulfur in other plants.

Materials and methods

Bacterial strains and growth conditions

In total, two sulfur-oxidizing bacterial strains,
Stenotrophomonas maltophilia DRC-18-7A (MZ436650) and
Stenotrophomonas pavanii DRC-18-7B (MZ436648) previously
isolated from coal mines (23◦41′42.20′′N 85◦17′42.99′′E), were
obtained from Plant–Microbe Interaction and Rhizosphere
Biology Lab, ICAR-National Bureau of Agriculturally Important
Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh,
India (Malviya et al., 2022). These strains were sub-cultured
and maintained on thiosulfate medium (sodium thiosulfate:
5 g, sodium carbonate: 200 mg, ammonium chloride: 100 mg,
di-potassium hydrogen phosphate: 100 mg, agar: 20 g, water:
1,000 ml, bromophenol blue: 100 mg, pH 8) (Veerender et al.,
2014) at 28◦C for 21 days and stored at 4◦C.

In-planta assay

Experimental setup
Pigeonpea seeds (cv. Malviya 13) were obtained from

Department of Genetics and Plant Breeding, Banaras Hindu
University, Varanasi, India. Seeds were surface sterilized with
mercuric chloride (0.1%) for 3 min followed by second
sterilization with ethyl alcohol (70%) for 30 s. Thereafter, seeds
were washed three times with sterile water and germinated
on water agar plates. The germinated seedlings were placed in
the Leonard jars filled with 500 g of sterilized river sand. The
Leonard jars were inoculated with 1 ml of broth suspension

(2 × 108 cells ml−1). In total, two plants were maintained in
each Leonard jar. Uninoculated jars were maintained as control.
The average mean temperature and relative humidity during the
experimentation were 26◦C and 80%, respectively.

The Leonard jar experiment was laid out in a completely
randomized block design under glasshouse conditions. The
experimental set-up consisted of nine different treatments: T1-
Stenotrophomonas maltophilia DRC-18-7A+ sulfate compound
(S6), T2- S. maltophilia DRC-18-7A + elemental S (S0), T3-
S. pavanii DRC-18-7B + S6, T4- S. pavanii DRC-18-7B + S0,
T5- S. maltophilia DRC-18-7A, T6- S. pavanii DRC-18-7B, T7-
S6, T8- S0 and T9- absolute control (No inoculation, -S). Each
treatment was replicated 10 times. The amount of sulfur added
as S6 or S0 was 54 mg in each Leonard jar. The sulfate was added
through nutrient solution, whereas elemental S was mixed with
the sterile sand used to fill Leonard jars. The composition of
nutrient solution with and without sulfate ions is given in
Supplementary Table 1.

Preparation of broth and inoculation
The selected strains were inoculated in the thiosulfate

broth (Veerender et al., 2014), incubated for 7 days in the
incubator shaker at 150 RPM at 28◦C. Broth culture of each
bacterium (1 ml, 2 × 108 cfu ml−1) was inoculated over seeds
in each Leonard jar.

Root colonization
After 15 days of sowing, the plants from three replicates for

each treatment were up-rooted gently and washed in running
tap water. Confocal laser scanning microscopy was done
according to the protocols described by Singh S. et al. (2020).
Briefly, clean roots were treated with Syto9 and propidium
iodide stains and imaging was performed using 488 and 543 nm
channels under confocal scanning laser microscope (Nikon
Eclipse Confocal A1, Japan). For scanning electron microscopy,
root samples were washed in running tap water, fixed in
mixture of formaldehyde (37%) (HiMedia, Mumbai, India) and
glutaraldehyde (2.5%) (HiMedia, Mumbai, India) in 1:1 ratio
for 24 h at 4◦C. Thereafter, the fixed samples were kept into
osmium tetroxide solution (HiMedia, Mumbai, India) for 12 h
at ambient room temperature (∼27◦C). The fixed root samples
were dehydrated using gradient of ethyl alcohol, i.e., 30, 50, 70,
90, and 100% (30 min each) and dried under vacuum. After
proper drying, the samples were coated with gold (20 nm)
and visualized under scanning electron microscope (Hitachi
S-3400N, United States) as described by Singh et al. (2021).

Effect of inoculation on plant growth attributes
After 30 days of sowing, the plants from seven replications

of each treatment were uprooted. Roots were washed gently
in running tap water and brought to the laboratory. The plant
growth parameters such as shoot and root length and fresh and
dry biomass of root and shoot were recorded.
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Root architecture
To see the effect of seed inoculation on root architecture,

roots were washed gently in running tap water and the clean
roots were scanned using root scanner (Regent Instrument,
Canada). The scanned images were analyzed using image
analysis software “WinRhizo Pro 2017” (Client# IN1803202)
and different parameters related to root architecture, secondary
and tertiary rooting were recorded in the plants inoculated
with selected strains and amended with S6 and S0 at
30 days of sowing.

Expression of genes responsible for
S-oxidation in the plant rhizosphere

To evaluate the S-oxidizing activity of selected strains in the
pigeonpea rhizosphere, expression analyses of genes associated
with the S-oxidation were performed. For this, rhizospheric
sand samples were collected from seven replicates of each
treatment and brought to the laboratory in cool packs. The
samples were vortexed to loosen the bacteria from sand particles.
Total RNAs were isolated with the MoBio PowerSoil total
RNA isolation kit (MO BIO Laboratories, Inc.) following the
manufacturer’s protocols. Approximately 1 µg of RNA was used
to synthesize cDNA with oligo-dT using cDNA Synthesis Kit
(BioRAD, India) following the manufacturer’s instructions and
quality as well as concentration of cDNA was determined using
Nanodrop 2000c (Thermo Fisher Scientific, United States). For
gene expression analysis, a semi-quantitative PCR method was
used. The expression of genes related to S-oxidation, that is,
soxB, tetH, sdoA, sdoB, tsdA, TQO, and sorAB was analyzed
using gene-specific primers (Supplementary Table 2). Gene
rpoD was taken as internal control. The final gene product
obtained with RT-PCR was separated by electrophoresis in
1.5% agarose gel in TAE buffer (Mini gel electrophoresis unit,
Bangalore GeNei, India), and visualization was done with the
help of gel documentation system (Bio-Rad, India).

Microbe-mediated mechanisms of
sulfate uptake and translocation

Identification and phylogenetic analyses of
sulfate transporters (SULTRs) in pigeonpea

Nucleotide and protein sequences of sulfate transporters
(SULTRs) of Arabidopsis (Arabidopsis thaliana), soybean
(Glycin max), field pea (Pisum sativum), rice (Oryza sativa),
and wheat (Triticum durum) were retrieved from National
Center for Biotechnology Information (NCBI) database
(Supplementary Table 3). These sequences were used to
search the homologous sequences in pigeonpea genome
using nucleotide BLAST (Basic Local Alignment Search
Tool), BLASTx (translated nucleotide → protein), tBLASTn
(protein → translated nucleotide) program of NCBI. These
sequences were analyzed to confirm the presence of the

SULTR domain in retrieved pigeonpea homologs SULTRs
gene sequences using the SMART program. Furthermore,
ExPasy website1 was used to analyze and confirm the primary
structure of SULTR proteins and several other parameters such
as molecular weight, length, total number of atoms extinction
coefficients, isoelectric point, aliphatic index, instability index,
grand average of hydropathicity, etc. The phylogenetic tree
was constructed based on the alignment of SULTR domains
of pigeonpea, Arabidopsis, soybean, field pea, rice, and wheat
to elucidate the phylogenetic relationships and classified them
into different groups. For this, MEGA X version was used to
prepare the phylogenetic tree, and neighbor-joining method
was adopted with 1,000 bootstrap replications. Furthermore,
primers were designed for qPCR analyses using Primer3 (v.
0.4.0) online software2 (Supplementary Table 4) and validated
in silico using primer-BLAST online tools of NCBI3 against
pigeonpea transcript sequences (Cajanus cajan taxid:3821).

Expression analysis of PpSULTR genes
The quantitative RT-PCR analysis was performed to

investigate the expression of genes involved in sulfur uptake and
transport in pigeonpea plant under different treatments. After
30 days of sowing, plants from four replications were harvested
and divided into roots and shoots. The root and shoot samples
were quick-frozen in liquid nitrogen, ground and total RNAs
was extracted using RNA isolation kit (Agilent, India) using
the manufacturer’s protocols. The cDNA was made as discussed
in the previous sections “Expression of genes responsible
for S-oxidation in the plant rhizosphere.” The quality and
quantification of cDNA was carried out using nanodrop. The
housekeeping gene actin was used as an endogenous standard
to normalize the quantitative expression data. The expression
of PpSULTR genes was analyzed using gene-specific primers
designed for the present investigation (Supplementary Table 4).
The qRT-PCR was performed using the SYBR Green Master
Mix (Thermo Fisher Scientific) on the BioRAD Real Time
PCR System (MJ MiniOpticon, BioRAD). The specificity of
the amplification was verified by melting-curve analysis. The
relative transcript levels were calculated using the 2−11CT

method (Livak and Schmittgen, 2001).

Effect of inoculation on physio-biochemical
parameters and antioxidant enzymes

A quantitative estimation was done to evaluate the impact
of inoculation of SOB on physio-biochemical properties and
antioxidant enzymes in the pigeonpea leaves at 30 days
of sowing. The total chlorophyll, carotenoids, total soluble
sugar, and total protein in the plant leaves were measured

1 http://au.expasy.org/tools/pi_tool.html

2 https://bioinfo.ut.ee/primer3-0.4.0/

3 https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_
LOC=BlastHome
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(Sadasivam and Manickam, 1996). The accumulation of proline,
phenolics, flavonoids, and superoxide dismutase (SOD) in
the plant leaves was analyzed according to the procedure
described by Thimmaiah (2012). The activities of PAL,
peroxidase and catalase were estimated in the plant leaves
according to Sadasivam and Manickam (1996).

Histological studies were also carried out to visualize
the deposition of superoxide radicals (O2

−) in the leaves
and program cell death. Plant leaves were sampled randomly
from each treatment and used for microscopic localization of
superoxide radicals (O2

−) using nitroblue tetrazolium (NBT;
HiMedia, India) as per the methods described by Rao and
Davis (1999), and it was visualized as blue color spots on the
leaves. Program cell death (PCD) was examined using Evans
Blue staining as described by Baker and Mock (1994).

Effects of bacterial inoculation on
phenylpropanoid pathway

Sequences of key genes regulating the phenylpropanoid
cascade in pigeonpea were retrieved from NCBI. Primers
were designed for qPCR analyses and validated in silico
(Supplementary Table 5). The nine key genes analyzed
were as follows: phenylalanine ammonia-lyase [EC:4.3.1.24],
phenylalanine/tyrosine ammonia-lyase [EC:4.3.1.25], 4-
coumarate-CoA ligase [EC:6.2.1.12], cinnamoyl-CoA reductase
[EC:1.2.1.44], cinnamyl-alcohol dehydrogenase [EC:1.1.1.195],
peroxiredoxin 6 [EC:1.11.1.7], Ferulate-5-hydroxylase
[EC:1.14.-.-], caffeoyl-CoA O-methyltransferase [EC:2.1.1.104],
and coniferyl-aldehyde dehydrogenase [EC:1.2.1.68]. qRT-
PCR analyses were performed to estimate the transcript and
expression analyses (as mentioned in the previous section:
Expression analysis of PpSULTR genes). Actin was taken as
internal control.

Effects of inoculation on individual phenolics
and flavonoids

Phenolics and flavonoids such as gallic acid, ferulic acid,
sinapic acid, syringic acid, rutin, and quercetin in the plant
leaves were analyzed through HPLC (binary pump model
515, 2414 refractive index (RI), and 2998 photodiode array
(PDA) detector; Supelco C-18 column; Waters Pvt. Ltd.). Leaf
samples (1 g) were collected from each treatment and cleaned
before processing using running tap water. Active principles
were extracted using methanol and acetonitrile and individual
phenolics and flavonoids were measured as per the methods
described by Tiwari et al. (2011).

Estimation of sulfate uptake
The total sulfur in plant samples was estimated using barium

sulfate turbidimetry method (Garrido, 1964). In principle,
during wet digestion of plant samples, sulfur present in the
plants tissue is converted into sulfate ions and precipitated as
barium sulfate after treatment with barium chloride. Briefly, 1 g

of plant sample was taken in a 100-ml Erlenmeyer flask and
pre-digested for 8 h using 10 ml of concentrated HNO3. The
samples were further digested by addition of 10 and 3 ml of
HCIO4 (3 ml) in flasks. The flasks were placed on a hot plate,
heated at 100◦C for 1 h, and subsequently, the temperature was
raised to 200◦C. The heating was continued until the contents
became colorless and reduced to 3 ml. The flasks were cooled at
room temperature. Approximately 1 ml HCl (6N) and 1 ml Gum
acacia (0.5%) were added and mixed properly by swirling, and
finally, 0.5 g BaCl2.2H2O crystals were added to the flasks. The
samples were mixed until BaCl2.2H2O crystals were dissolved
completely. The reading was taken at 420 nm using UV-Vis
spectrophotometer. The S-content in the plant samples was
calculated using the reading of standards.

Statistical analysis

The data were subjected to the analysis of variance and least
significant difference (LSD) at p ≤ 0.05 using SPSS 16.0. Data
were compared with Duncan’s multiple range test at p ≤ 0.05.
Graphs were prepared using statistical software Origin (Version
9) and Microsoft Office Excel (2010).

Results

In this study, the microbe-mediated mechanisms of
S-oxidation and enhanced uptake and translocation of sulfate
ions in the pigeonpea at the early stage of crop growth
were elucidated.

Root colonization

Confocal laser scanning microscopic and scanning
electron microscopic photographs clearly showed that
both the strains have the potential to colonize and develop
biofilm on pigeonpea roots even under limited S-availability
at 15 days of sowing. The colonization pattern/efficiency
was different for the two strains on root surface. Confocal
microphotograph clearly indicated that strain S. maltophilia
DRC-18-7A produced primarily micro-aggregates and later
on converted into macro-aggregates on the root surface after
15 days of inoculation (Figure 1A). Microphotograph of
S. pavanii DRC-18-7B-treated roots revealed primarily single
cells embedded in the root epidermis and rarely formed
micro-aggregates (Figure 1B). However, no such evidence
of bacterial colonization was observed in untreated control
plants (Figure 1C).

Stenotrophomonas maltophilia DRC-18-7A colonized
pigeonpea roots at a very high population density which is
clearly visible in scanning electron microphotographs where
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FIGURE 1

Confocal microphotograph showing root colonization by
S. maltophilia DRC-18-7A (A), S. pavanii DRC-18-7B (B) and
uninoculated control (C).

cells were anchored to the root surfaces and to themselves
by a network of fibrillar material, exo-polysaccharide
produced by them on the root surface (Figure 2A). It is
clearly visible in the scanning electron microphotograph that
strain S. maltophilia DRC-18-7A produced ample amount
of exo-polysaccharide and formed microbiotic crust on the
root surface and bacterial cells were embedded/trampled
in the crust on the root surface. In general, S. maltophilia
DRC-18-7A cover entire root and produced thick biofilm by
forming micro-aggregates and macro-aggregates (Figure 2A).
From scanning electron microphotograph of S. pavanii
DRC-18-7B, it is clear that strain S. pavanii DRC-18-
7B is a better root colonizer (Figure 2B). S. pavanii
DRC-18-7B population was spread on the entire root by
forming micro-aggregates, and sometime, single-single
cells are visible. In contrast, it is not producing too much
of exo-polysaccharides as compared to S. maltophilia

FIGURE 2

Scanning electron microphotographs showing root colonization
by S. maltophilia DRC-18-7A (A), S. pavanii DRC-18-7B (B), and
uninoculated control (C).

DRC-18-7A (Figure 2B). However, no such evidence of
bacterial colonization was observed in untreated control
plants (Figure 2C).
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Effects of inoculation on plant growth
attributes at early stage

Inoculation with S. maltophilia DRC-18-7A and S. pavanii
DRC-18-7B significantly enhanced the plant growth attributes
in pigeonpea both in the presence of S6 and S0. In general, all
the growth parameters recorded (root and shoot length, root and
shoot fresh weight, root and shoot dry weight) were significantly
higher in treatment inoculated with S. maltophilia and amended
with SO4

2− compound (Table 1).

Root architecture

The inoculation of SOB along with sulfate compound
significantly enhanced the root parameters as analyzed through
root scanner as compared to all other treatments (Table 2).
Among the two strains, inoculation of S. maltophilia DRC-18-
7A significantly influenced root architecture in the presence
of both sulfate and elemental sulfur. Treatments with only
inoculation of SOB or only amendment of SO4

2− or S0 could not
significantly influence the root parameters compared to absolute
control (no inoculation and no S amendment) (Table 2).

Expression of genes responsible for
S-oxidation in the plant rhizosphere

Among the 11 sox genes targeted in rhizosphere of
pigeonpea, expression was achieved for 7 genes (soxB, tetH,
sdoA, sdoB, TQO, sorAB, and tsdA), which showed 2-fold
increase in treatments inoculated with S. maltophilia and
amended with either S6 or S0. Similar tends were not observed
in respective treatments inoculated with S. pavanii (Figure 3).
The results revealed significantly higher transcript accumulation
for genes sdoB, TQO, sorAB, and tsdA in the rhizosphere
of plants inoculated with S. maltophilia (T-1). In general,

expression and transcript accumulation of genes tsdA, soxB,
and tetH were significantly lower across the treatments as
compared to other genes.

Identification of SULTRs gene in the
pigeonpea and in silico validation

For identification of SULTR genes in pigeonpea, 10
AtSULTRs, 4 GmSULTRs, 9 PsSULTRs, 1 OsSULTRs, and 3
TdSULTRs were used as query sequences for BLASTn searches
of the pigeonpea database (Cajanus cajan, taxid:3821) in
NCBI with default parameters and redundant sequences
were discarded manually. As a result, 11 SULTR genes,
i.e., PpSULTR1.1, PpSULTR1.2, PpSULTR1.3, PpSULTR2.1,
PpSULTR2.2, PpSULTR3.1, PpSULTR3.3, PpSULTR3.3-like,
PpSULTR3.4, PpSULTR3.5, PpSULTR4.1, and PpSULTR4.2 were
identified in the pigeonpea genome. These putative SULTR
genes are located on different chromosomes. Their proteins
contain STAS domain and the C-terminal region, which are
critical for sulfate transporter activity and stability. To gain
insights into the biological function of these genes and close
relatives, a phylogenetic tree was constructed based on the
full-length amino acid sequence alignment of SULTRs including
26 putative pigeonpea SULTR sequences, 10 AtSULTRs, 4
GmSULTRs, 9 PsSULTRs, 1 OsSULTRs, and 3 TdSULTRs
(Figure 4). Based on phylogeny, the PpSULTRs are closely
related to soybean SULTRs (GmSULTRs) and classified into four
groups based on phylogenetic analyses. These pigeonpea SULTR
genes were named corresponding to the homologous genes
from other species.

To validate the reliability of the expression profile, in silico
PCR amplification as well as validation was done using genomic
sequences of pigeonpea as query sequence. Based on the
in silico amplification, a set of primers were selected for real-
time gene expression analysis in the pigeonpea grown under
different treatments.

TABLE 1 Effects of inoculation on plant growth attributes in pigeonpea at 30 days of sowing under glasshouse conditions.

Treatments Shoot length
(cm)

Root length
(cm)

Shoot fresh
wt. (g)

Root fresh
wt. (g)

Shoot dry
wt. (g)

Root dry wt.
(g)

T1- S. maltophilia DRC-18-7A+ Sulfate compound 24.95 19.66 5.76 1.84 1.50 0.66

T2- S. maltophilia DRC-18-7A+ Elemental S 21.37 16.50 3.95 1.33 1.25 0.50

T3- S. pavanii DRC-18-7B+ Sulfate compound 21.46 17.35 5.50 1.66 1.35 0.50

T4- S. pavanii DRC-18-7B+ Elemental S 19.33 14.20 3.25 1.26 1.20 0.40

T5- S. maltophilia DRC-18-7A 16.20 10.50 3.50 1.10 1.25 0.26

T6- S. pavanii DRC-18-7B 15.45 9.66 3.25 1.05 1.20 0.28

T7- Sulfate compound 18.75 14.26 3.96 0.98 1.10 0.36

T8- Elemental S 15.30 10.25 2.25 0.86 0.75 0.25

T9- untreated control (-S) 14.05 8.10 1.95 0.76 0.66 0.20

CD at 5% 1.50 1.05 0.25 0.10 0.12 0.08

Frontiers in Microbiology frontiersin.org

188

https://doi.org/10.3389/fmicb.2022.927702
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fm
icb-13-927702

Septem
ber2,2022

Tim
e:17:46

#
8

M
alviya

e
t

al.
10

.3
3

8
9

/fm
icb

.2
0

2
2

.9
2

770
2

TABLE 2 Effects of inoculation on root architect and root development in pigeonpea leaves at 30 days of sowing under glasshouse conditions.

Treatments Surface area
(cm2)

Projected
area (cm2)

Root length
(cm)

Length per
volume
(cm/m3)

Average
diameter
(mm)

Lateral total
length (cm)

Tertiary N
axis

Tertiary
total length

(cm)

Number of
tips

Number of
forks

Number of
crossings

Number of
links

T1- S. maltophilia
DRC-18-
7A+ Sulfate
compound

9.12 2.90 45.39 57.34 0.70 29.25 76.29 29.12 78.29 139.50 18.96 256.10

T2- S. maltophilia
DRC-18-
7A+ Elemental
S

6.97 2.33 34.29 40.19 0.60 21.50 42.50 21.47 59.25 115.29 11.75 186.10

T3- S. pavanii DRC-
18-7B+ Sulfate
compound

8.05 2.56 40.10 57.34 0.61 24.10 66.05 24.25 74.50 120.10 14.35 220.50

T4- S. pavanii DRC-
18-7B+ Elemental
S

6.86 2.30 30.10 36.33 0.56 18.75 42.33 16.25 48.10 104.10 10.25 166.25

T5- S. maltophilia
DRC-18-7A

5.25 1.95 26.75 39.26 0.50 18.25 40.35 20.50 55.25 110.23 8.35 190.33

T6- S. pavanii
DRC-18-7B

5.10 1.75 25.66 38.10 0.49 17.33 38.10 20.66 52.33 100.35 9.03 180.34

T7- Sulfate
compound

5.74 2.10 29.52 40.50 0.52 20.33 58.10 18.05 58.29 116.05 10.50 192.33

T8- Elemental S 4.25 1.65 25.10 27.25 0.49 14.25 30.50 10.50 35.78 76.67 6.67 140.25

T9- untreated
control (-S)

3.84 1.33 24.66 20.10 0.28 10.10 21.15 8.05 29.15 60.50 4.26 121.05

CD at 05% 0.62 0.20 1.75 2.03 0.02 1.05 1.84 1.50 3.67 2.97 1.74 4.65
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FIGURE 3

Effects of different treatments on expression of genes responsible for S-oxidation in the plant rhizosphere, treatments were as follows:
T1-Stenotrophomonas maltophilia DRC-18-7A + Sulfate compound, T2-S. maltophilia DRC-18-7A + Elemental S, T3-S. pavanii
DRC-18-7B + Sulfate compound, T4-S. pavanii DRC-18-7B + Elemental S, T5-S. maltophilia DRC-18-7A, T6-S. pavanii DRC-18-7B.

Effects of inoculation on expression of
SULTR genes in pigeonpea

Transcript profiling of the PpSULTR genes was done in
the pigeonpea plants inoculated with S. maltophilia DRC-
18-7A and S. pavanii DRC-18-7B. It was found that sulfur
sources and microbial inoculation significantly influenced the
expression profile of PpSULTR genes in pigeonpea which was
also evident from sulfur content in pigeonpea root and shoot.
Furthermore, the expression profiles of PpSULTRs also varied in
root and shoot of the same plant. Significantly higher expression
(upregulation) of all the 11 PpSULTR genes was recorded in the
roots and shoots of pigeonpea inoculated with S. maltophilia
DRC-18-7A and amended with elemental sulfur (Figure 5A).
Likewise, the expression of these genes in the roots and shoots of
plants from treatment inoculated with S. pavanii and amended
with S0 was higher and the fold increase closely followed
treatment with S. maltophilia + S0. In general, the expression
levels of PpSULTR genes in the roots were significantly higher
(3–5-folds) as compared to the shoots. Interestingly, it was
found that the expression level (fold change) of PpSULTRs was
slightly higher in the negative control (-S) as compared to
positive control (+S) (Figure 5B).

Effects of inoculation on
physio-biochemical property and
antioxidant enzymes

The inoculation of the selected strains, S. maltophilia DRC-
18-7A and S. pavanii DRC-18-7B, modulated the physio-
biochemical pathways and accumulation of antioxidants in
the pigeonpea plants. The quantitative analysis revealed that
the accumulation of total chlorophyll, carotenoids, soluble
sugars, and protein content was significantly enhanced in the

treatment inoculated with S. maltophilia and supplemented
with sulfate compound (Figure 6). Inoculation of SOB alone
could not influence the accumulation and was significantly
lower than treatment amended with S6 compound. In contrast,
the accumulation of proline, flavanoids, total phenolics, and
activities of antioxidant enzymes (PAL, POx, APx, catalase,
and SOD) were significantly enhanced in the treatment
inoculated with either of the SOB and amended with elemental
sulfur. The presence of S6 in the treatments with or without
inoculation led to significantly lower accumulation of proline
and flavonoids (Figure 7).

Attenuation of superoxide levels was observed as a blue
formazan, which is the outcome of NBT dye and superoxide
interactions (Figure 8A). Stereoscopic visualization clearly
showed dense localization of superoxide radicals in the
petioles near veins and midrib of leaves of the untreated
control plant (negative control) followed by plants grown
with elemental S. Least accumulation of superoxide radical
was observed in the plants inoculated with either of strains
and supplemented with sulfate compounds compared to all
other treatments (Figure 8A). Similarly, program cell death
was observed as greenish polymerization product of Evans
Blue stain. The bacterial inoculation and supplementation of
sulfate compound in the nutrient solution significantly reduced
greenish discoloration compared to other treatments. Similar to
superoxide radicals, maximum program cell death was observed
in the untreated control plants (Figure 8B).

Inoculation modulate expression
profile of key genes of
phenylpropanoid pathways

The up-/downregulation of nine key genes (phenylalanine
ammonia-lyase [EC:4.3.1.24], phenylalanine/tyrosine
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FIGURE 4

Phylogenetic tree showing the relationships of SULTR domains of pigeonpea, with other crop plants, Arabidopsis, soybean, field pea, rice, and
wheat and classified into different groups.
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FIGURE 5

Heatmap showing the effects of microbial inoculation on expression of SULTR genes in pigeonpea (A) root and (B) shoot at 30 days of sowing
T1-Stenotrophomonas maltophilia DRC-18-7A + Sulfate compound, T2-S. maltophilia DRC-18-7A + Elemental S, T3-S. pavanii
DRC-18-7B + Sulfate compound, T4-S. pavanii DRC-18-7B + Elemental S, T5-S. maltophilia DRC-18-7A, T6-S. pavanii DRC-18-7B, T7-Sulfate
compound, T8-Elemental S, and T9-untreated control (-S).

ammonia-lyase [EC:4.3.1.25], 4-coumarate-CoA ligase
[EC:6.2.1.12], cinnamoyl-CoA reductase [EC:1.2.1.44],
cinnamyl-alcohol dehydrogenase [EC:1.1.1.195], peroxiredoxin
6 [EC:1.11.1.7], ferulate-5-hydroxylase [EC:1.14.-.-],
caffeoyl-CoA O-methyltransferase [EC:2.1.1.104], and
coniferyl-aldehyde dehydrogenase [EC:1.2.1.68]) involved
in phenylpropanoid pathway was investigated. The results
revealed that these genes were upregulated in treatment
inoculated with S. maltophilia DRC-18-7A and supplemented
with elemental S in the leaves of pigeonpea. The highest
expression of 4-coumarate-CoA ligase [EC: 6.2.1.12] was
recorded in the leaves of pigeonpea plants across the treatments
taken into consideration followed by phenylalanine ammonia-
lyase [EC:4.3.1.24] and phenylalanine/tyrosine ammonia-lyase
[EC:4.3.1.25]. However, in the inoculated plants, expression

level was significantly higher in comparison with untreated
positive and negative control plants (Figure 8). In contrast,
comparatively less expression was recorded in the plants
harvested from treatments amended with S6 compounds
(Figure 9) as compared to plants grown with elemental S. It
revealed that plants grown in the presence of S0 experienced
stress and tend to over-express antioxidant genes.

Effects of inoculation on individual
phenolics and flavonoids

The accumulation of phenolics (gallic, ferrulic, sinapic,
and syringic acids) and flavonoids (rutin and quercetin)
was differentially influenced by inoculation of SOB and
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FIGURE 6

Effects of seed treatment on accumulation of (A) total chlorophyll, (B) total carotenoids, (C) total soluble sugar, (D) total protein (E) proline, and
(F) flavonoids in the pigeonpea leaves at 30 days of sowing Treatments were as follows: T1-Stenotrophomonas maltophilia DRC-18-7A + Sulfate
compound, T2-S. maltophilia DRC-18-7A + Elemental S, T3-S. pavanii DRC-18-7B + Sulfate compound, T4-S. pavanii DRC-18-7B + Elemental S,
T5-S. maltophilia DRC-18-7A, T6-S. pavanii DRC-18-7B, T7-Sulfate compound, T8-Elemental S and T9-untreated control (-S). Data are mean
(n = 10) and vertical bar represents standard deviation. Data with different letters show significant difference in column data in randomized
block design test at p < 0.05 under Duncan’s multiple range test.

supplementation of two different sources of sulfur (S6− or S0).
In treatments inoculated with either S. maltophilia or S. pavanii
and amended with S0, the levels of all analyzed phenolics and
flavonoids were significantly higher than all other treatments.
Addition of S6 compound to SOB inoculated treatments did
not significantly influence the synthesis of phenolics acids and
flavonoids (Table 3).

Sulfur uptake

The uptake of sulfur in the roots and shoots was significantly
influenced by inoculation of SOB and supplementation of sulfur
in different forms (Table 4). In general, for all the treatments,
the S content was higher in roots as compared to shoots.
Among the treatments, maximum S content was recorded due

Frontiers in Microbiology frontiersin.org

193

https://doi.org/10.3389/fmicb.2022.927702
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-927702 September 2, 2022 Time: 17:46 # 13

Malviya et al. 10.3389/fmicb.2022.927702

FIGURE 7

Effects of seed treatment on activities and accumulation of antioxidant biomolecules and enzymes (A) total phenolic, (B) PAL, (C) peroxidase,
(D) ascorbate peroxidase (E) catalase, and (F) superoxide dismutase in the pigeonpea leaves at 30 days of sowing treatments were:
T1-Stenotrophomonas maltophilia DRC-18-7A + Sulfate compound, T2-S. maltophilia DRC-18-7A + Elemental S, T3-S. pavanii
DRC-18-7B + Sulfate compound, T4-S. pavanii DRC-18-7B + Elemental S, T5-S. maltophilia DRC-18-7A, T6-S. pavanii DRC-18-7B, T7-Sulfate
compound, T8-Elemental S and T9-untreated control (-S). Data are mean (n = 10) and vertical bar represents standard deviation. Data with
different letters show significant difference in column data in randomized block design test at p < 0.05 under Duncan’s multiple range test.

to the inoculation of S. maltophilia and supplementation of S6

compound. The S-content was 48 and 42% higher in roots and
shoots, respectively, as compared to treatment where only S6

compound was supplemented. Similar trend was observed in
treatment inoculated with S. pavanii. The S-content in roots
and shoots of plants from treatments inoculated with SOB
and supplemented with elemental S was significantly lower as
compared to other treatments (Table 4).

Discussion

Besides the importance of three major nutrients, i.e.,
nitrogen, phosphorus, and potassium, the focus of research
work has been shifted to investigate the key role of other macro-
and micro-nutrients in major crop plants including pulses. The
intensive agriculture has led to the deficiency of these nutrients
such as S, Bo, Zn, and Fe. In the last two decades, the losses

Frontiers in Microbiology frontiersin.org

194

https://doi.org/10.3389/fmicb.2022.927702
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-927702 September 2, 2022 Time: 17:46 # 14

Malviya et al. 10.3389/fmicb.2022.927702

FIGURE 8

Microscopic detection of superoxide radical by NBT staining (A) and program cell death (B) in leaves of pigeonpea after treatment with
T1-Stenotrophomonas maltophilia DRC-18-7A + Sulfate compound, T2-S maltophilia DRC-18-7A + Elemental S, T3-S. pavanii
DRC-18-7B + Sulfate compound, T4-S. pavanii DRC-18-7B + Elemental S, T5-S. maltophilia DRC-18-7A, T6-S. pavanii DRC-18-7B, T7-Sulfate
compound, T8-Elemental S and T9-untreated control (-S) at 30 days of sowing.

in crop yield due to the deficiency of these nutrients are now
reported often from different parts of the world. Sulfur nutrition
is important as it influences different metabolic pathways as a
structural component of many secondary metabolites, vitamins,
amino acids, and enzymes. Among the crop plants, legumes are
strikingly affected by deficiency of S in soil (Chandler et al.,
1984; Scherer, 2001). Besides influencing the plant growth, the
process of nitrogen fixation and nodulation is hampered due
to sulfur deficiency in soil (Watkinson, 1989; Scherer, 2001;
Stamford et al., 2002; Cheng et al., 2017). Inoculation of SOB
has been reported to enhance the growth and yield of different
crop plants such as groundnut by 11% (Anandham et al., 2007),
mustard by 6.6% (Chaudhary et al., 2017), onion by 45-50%

(Awad et al., 2011), and mustard by 14.50–30.60% (Abhijit
et al., 2014). We earlier reported the isolation of SOB from
mud, coal, and drainage waters collected from open cost coal
mines in India. Strains of Stenotrophomonas maltophilia and
S. pavanii were identified to be most efficient for promotion of
plant growth and sulfur nutrition in pigeonpea (Malviya et al.,
2022). The detailed study was required to study the mechanisms
by which S is transported from soil to roots and to shoots need
to be deciphered.

Root colonization is an important attribute for any of the
inoculant strains and provides clue for a commensal association
between the two partners mediated through root exudates (Bais
et al., 2006). S. maltophilia and S. pavanii were found to be
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FIGURE 9

Heatmap showing the effects of microbial inoculation on expression profile of key genes of phenylpropanoid pathways in leaves of pigeonpea
at 30 days of sowing T1- Stenotrophomonas maltophilia DRC-18-7A + Sulfate compound, T2- S. maltophilia DRC-18-7A + Elemental S, T3-
S. pavanii DRC-18-7B + Sulfate compound, T4- S. pavanii DRC-18-7B + Elemental S, T5- S. maltophilia DRC-18-7A, T6- S. pavanii DRC-18-7B,
T7- Sulfate compound, T8- Elemental S and T9- untreated control (-S).

TABLE 3 Effects of inoculation on individual phenolic and flavonoids content in pigeonpea leaves at 30 days of sowing under
glasshouse conditions.

Treatments Gallic acid
(µg g−1
fresh wt.)

Ferulic acid
(µg g−1
fresh wt.)

Sinapic acid
(µg g−1
fresh wt.)

Syringic
acid (µg g−1
fresh wt.)

Rutin (µg
g−1 fresh

wt.)

Quercetin
(µg g−1
fresh wt.)

T1- S. maltophilia DRC-18-7A+ Sulfate compound 119.25 12.39 8.92 39.29 36.25 25.90

T2- S. maltophilia DRC-18-7A+ Elemental S 145.29 17.39 13.96 62.96 56.97 22.96

T3- S. pavanii DRC-18-7B+ Sulfate compound 110.33 10.03 8.05 34.10 33.33 20.75

T4- S. pavanii DRC-18-7B+ Elemental S 136.10 16.05 13.05 60.50 50.10 22.50

T5- S. maltophilia DRC-18-7A 126.50 10.60 6.66 32.50 30.50 13.25

T6- S. pavanii DRC-18-7B 122.35 11.05 6.50 31.96 32.50 13.05

T7- Sulfate compound 69.10 4.26 3.50 10.25 6.29 4.26

T8- Elemental S 110.39 8.50 5.10 16.55 17.50 7.10

T9- untreated control (-S) 121.25 10.26 6.25 29.50 28.10 10.25

CD at 05% 2.75 1.67 1.12 2.50 3.45 1.05

good colonizers and formed biofilm on the root system. It has
been reported that during the plant–microbe interaction, the
expression of several genes of both plant and bacterial origin is
modulated (Beauregard et al., 2013; de Souza et al., 2015). The
bacterial genes associated with exo-polysaccharide production
and biofilm formation are triggered by the root exudates during
compatible interaction (Rudrappa et al., 2008; Meneses et al.,
2011; Lopes et al., 2021). The formation of aggregates (micro-
colonies) particularly by S. maltophilia on the roots indicates the
copious production of EPS in the rhizosphere. It is worthwhile
to mention that both S. maltophilia and S. pavanii form dry

colonies on the growth medium. It has also been reported that
the efficiency of bacteria in stimulating growth occurs in a
density-dependent manner (Rudrappa et al., 2008). The stage
at which the threshold level of microbial density is achieved,
the biofilms work as a single unit to coordinate the release of
molecules that helps in the promotion of plant growth through
different mechanisms (McNear, 2013). A good colonization
potential by both the SOB also gives an indication about
rhizosphere competence as reported earlier (de Souza et al.,
2015). This was further confirmed by the enhanced expression
of sox genes in the treatments inoculated with SOB and S6
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TABLE 4 Effects of inoculation on sulfur content in pigeonpea at 30 days of sowing under glasshouse conditions.

Treatments Sulfur content in
shoot (g kg−1 dry wt.)

Sulfur content in root (g
kg−1 dry wt.)

T1- S. maltophilia DRC-18-7A+ Sulfate compound 5.05 6.25

T2- S. maltophilia DRC-18-7A+ Elemental S 3.15 3.94

T3- S. pavanii DRC-18-7B+ Sulfate compound 4.50 5.86

T4- S. pavanii DRC-18-7B+ Elemental S 2.95 3.05

T5- S. maltophilia DRC-18-7A 0.11 0.12

T6- S. pavanii DRC-18-7B 0.10 0.10

T7- Sulfate compound 3.55 4.20

T8- Elemental S 1.19 1.50

T9- untreated control (-S) 0.10 0.15

CD at 05% 0.45 0.59

compound. Under sterile conditions, the enhanced expression
of genes involved in S oxidation is directly related to population
build-up of SOB. When S. maltophilia was inoculated along with
S6 compound, the population build-up and root colonization
were enhanced and the same was manifested in the higher
expression of genes responsible for S-oxidation in the soil.
Similar observations were made by Berben et al. (2019) and
Zhang et al. (2019). The variations in the expression levels
of sox genes in treatments where two different sources of S
were amended (S6 or S0) irrespective of the inoculant strain
indicate that the population build-up of SOB was higher in the
presence of readily available source of sulfur (S6) as compared to
elemental sulfur (S0).

The root system architecture (RSA) was also analyzed in
both inoculated and uninoculated treatments. It is believed
that the RSA is controlled by different biological and edaphic
conditions (McNear, 2013). In this study, RSA was greatly
influenced by inoculation of S. maltophilia and amendment of
S6 compound. However, the same strain in presence of S0 could
not influence the RSA to that extent. There are many reports
regarding the modification of root architecture and anatomy
in response to agriculturally important microorganisms so as
to enhance the uptake of nutrients by the plants from the soil
(Ortiz-Castro et al., 2008; Tian et al., 2014; Singh et al., 2017).
It is well-known that larger root volume, root hair density, and
increased number of lateral roots not only provide a better stand
to the plant but also enhance the uptake and translocation of
different nutrients from the soil to the plant (Singh et al., 2021).

Besides the root system architecture, the effect of inoculation
of SOB and amendment of two different sources of sulfur
(S6 and S0) was also studied at the enzymatic, non-
enzymatic, and gene expression levels. The presence of
unavailable form of sulfur (S0) is perceived by the plant as
nutritional stress. In turn, the plant responds by regulating
the antioxidative reaction and accumulation of polyphenolics
in plant (Singh S. et al., 2020). Stress conditions, in general,
accelerate the production of reactive oxygen species (ROS)

in the plant system (Meng et al., 2016). To overcome the
burst of ROS, the plants have developed both non-enzymatic
(organic osmolyte like glycine betaine, proline, glutathione,
etc.) and enzymatic (catalase, superoxide dismutase, ascorbate
peroxidase, glutathione reductase, etc.) components (Nawaz
and Wang, 2020; Singh D. P. et al., 2020). In this study,
there was a significant increase in the accumulation of proline,
flavonoids, total phenolics, and activities of antioxidant enzymes
in the treatment amended with elemental sulfur and inoculated
with SOB. The inoculation of SOB induced the synthesis of
both enzymatic and non-enzymatic component which in turn
provided protection to the plant from ROS. Similar results have
been reported in different studies related to alleviation of abiotic
stress by microbial inoculation (Singh et al., 2015, 2021). It is
worthwhile to mention that microbial inoculants need to be
developed that provide protection in the presence of elemental
sulfur. Moreover, in different studies, use of S0 is recommended
over that of sulfate, since it not only improves plant growth
and nutrition but also increases systemic tolerance to different
abiotic stresses (Degryse et al., 2016; Fuentes-Lara et al., 2019).

Sulfate transporters (SULTRs) are the key gene family
responsible for the S-uptake and translocation in the higher
plants. These are encoded by a large gene family, comprising
of 12 genes in Arabidopsis thaliana, 10 in wheat (Triticum
spp.), 12 in rice (Oryza sativa), 16 in Populus (Populus
stremula× P. alba), and 28 in soybean (Glycine max). However,
the literature is silent about the pigeonpea SULTRs and their
role in S-nutrition. In-depth research is a pre-requisite to
establish the relative contribution of the pigeonpea sulfate
transporter genes to overall sulfate transport in plants. It is
also necessary to explore whether all SULTRs are involved
in sulfate acquisition, translocation, and remobilization of
sulfur in the plant system. In this study, we performed a
comprehensive investigation of the pigeonpea SULTRs gene
family using comparative genomic and phylogenetic analyses.
For this 10 AtSULTRs, 4 GmSULTRs, 9 PsSULTRs, 1 OsSULTRs,
and 3 TdSULTRs were used as query sequences for BLASTn
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FIGURE 10

A comprehensive overview of plant-microbe interactions contributing to S-uptake in plants The oxidation of sulfur to sulfate by SOB in
rhizosphere, its uptake by roots and its transport to shoots through involvement of S-transporter genes. The interaction results changes in the
activity of radical scavenging enzymes and led to increase in growth and yield of pigeonpea.

searches of the pigeonpea database (Cajanus cajan, taxid:3821)
in NCBI with default parameters, and redundant sequences were
discarded manually. Furthermore, qPCR analysis was done in
the presence and absence of S-oxidizing bacteria in pigeonpea.
This is the first report on the microbe-mediated induction of
PpSULTR genes in pigeonpea and their role in S-uptake and
translocation. A 7.56- to 27.33-fold changes in the expression
of PpSULTRs were recorded at early crop growth stage (30 days
after sowing), which is further confirmed by the enhanced sulfur
content in the roots and shoots of pigeonpea. The expression
of SULTRs in the plants supplemented with elemental S was
significantly higher as compared to plants supplemented with S6

compounds at 30 days after sowing. Interestingly, the expression

of SULTRs in the plants was significantly increased in the
presence of potential SOB in the rhizosphere, suggesting their
versatility in controlling SULTRs transcription.

This study provides the key evidence on molecular
mechanism underlying microbial-induced expression of
SULTRs in pigeonpea roots and shoots in the presence of
the two possible enhancers, S. maltophilia DRC-18-7A and
S. pavanii DRC-18-7B at an early stage of crop growth.
Figure 10 depicts the possible interactions contributing to
S-uptake in the plants. It is suggested that S. maltophilia DRC-
18-7A and S. pavanii DRC-18-7B-dependent transcriptional
induction and post-transcriptional regulation allow fine-tuning
of the SULTRs transcript levels in roots and shoots of pigeonpea.
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Conclusion

The microorganisms and plant take up sulfur in the form
of sulfate (S6). The elemental sulfur (S0) applied/present in
the soil undergoes change in the oxidation state from S0 to
S6 due to the action of specific group of bacteria collectively
termed as sulfur-oxidizing bacteria. Inoculation of two potential
SOB (S. maltophilia and S. pavanii) to pigeonpea led to the
modifications in the root architecture that supports efficient
uptake of nutrients. The enhanced activity of sulfur oxidation
genes in inoculated treatments and PpSULTR genes in plants
contributed to the enhanced uptake of sulfur in roots and shoots
of pigeonpea. The increase in non-enzymatic and enzymatic
components to counter ROS due to inoculation also contributed
to the enhanced growth of pigeonpea. SOB with additional
plant growth-promoting attributes could be recommended as
potential inoculants for pigeonpea for commercial production
after extensive field evaluation.
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Microbial interactions with plant roots play an imperial role in tomato

plant growth and defense against the Rhizoctonia solani. This study

performed a field experiment with two antagonistic bacteria (Pseudomonas

and Bacillus) inoculated in healthy and Rhizoctonia solani treated soil in

tomato rhizosphere to understand the metabolic pattern and microbial

function during plant disease suppression. In the present study, we

assessed soil and microbial enzymes, bacterial and fungal cell forming

unit (CFU), and carbon utilization profiling through Bio-Eco plates of

rhizoplane samples. Antagonist bacteria and pathogen interaction significantly

(p < 0.05) influenced the bacterial count, soil enzymes (chitinase and

glucanase), and bacterial function (siderophore and chitinase production).

These results indicated that these variables had an imperial role in disease

suppression during plant development. Furthermore, the metabolic profiling

showed that carbon source utilization enhanced under fruit development

and ripening stages. These results suggested that carbon sources were

essential in plant/pathogen/antagonist interaction. Substrates like β-methyl-

D-glucoside, D-mannitol, D-galacturonic acid, N-acetyl-D-glucosamine, and

phenylethylamine strongly connect with the suppuration of root rot disease.
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These carbon sources may help to propagate a healthy microbial community

to reduce the pathogen invasion in the plant root system, and these carbon

sources can be stimulators of antagonists against pathogens in the future.

KEYWORDS

pseudomonas, bacillus, BIOLOG, community-level physiological profile, disease
incidence

Introduction

Soil is a reservoir of microbial activities that are driven
through numerous signaling molecules that helps them to
sustain in harsh environments (Haldar and Sengupta, 2015;
Jacoby et al., 2017). Rhizospheric microbes are the significant
players in nutrient cycling that play an essential role in plant
development (Bulgarelli et al., 2013; Francioli et al., 2016;
Müller et al., 2016). The plant rhizosphere contains beneficial
and pathogenic microbes competing for nutrients and space
(Raaijmakers et al., 2009; Adesemoye et al., 2009; Beans, 2017; Li
et al., 2021). Tomato root rot caused by sclerotia forming fungus
Rhizoctonia solani, is a highly destructive disease that severely
affects crop development and yield (Patil and Solanki, 2016b).
To control R. solani, chemical fungicides must be applied,
creating many environmental problems (Le Cointe et al., 2016).
In the pathogen-treated rhizosphere, many physicochemical
and biological processes are mechanized surrounding the plant
root through the microbes (Reva et al., 2004; Raaijmakers
et al., 2009; Mhlongo et al., 2018; Berendsen et al., 2018;
Pascale et al., 2020a; Tahat et al., 2020). Moreover, antagonistic
microbes’ application against soilborne plant pathogens is one
of the most numerous anthropogenic activities that reform
soil health and plant defense (Solanki et al., 2012b, 2014; Yin
et al., 2013; Abbas et al., 2019; Lahlali et al., 2022). The role
of the different carbon substrates in multitrophic interaction
(plant/antagonist/pathogen) needs to be studied in depth to
improve plant disease management techniques.

A wide range of natural bacterial antagonists are utilized as
biocontrol agents against seed and soilborne plant pathogens
(Patil and Solanki, 2016a; Solanki et al., 2019, 2020). Bacillus
and Pseudomonas genera are the most prevalent biological
agents (Solanki et al., 2014, 2015; Cao et al., 2018; Abbas et al.,
2019). Most bacterial antagonists create an obliging interaction
with plant roots that can modulate by the selective pressure
of changing environment (Bais et al., 2006; Falardeau et al.,
2013). For example, it is well known that pathogens influence
the production and diffusion of root exudates (Guo et al.,
2015; Hoysted et al., 2018; Pascale et al., 2020a; Li et al.,
2021). Interestingly, plant-pathogen associations are modulated
through native microbial communities during infestation and
resistance (Chiu et al., 2017; Stevens et al., 2021; Dubey

et al., 2022). Root exudates generally release carbohydrates,
carboxylic acids, amino acids, sugars, phenolics, proteins, and
allelochemicals (Moe, 2013; Guo et al., 2015; Olanrewaju et al.,
2019; Scavo et al., 2019). It indirectly regulates the controls
of the biotic and abiotic processes by shaping the microbial
communities that can metabolize the substrates and nutrients
(Vacheron et al., 2013; Antoniou et al., 2017; Bakker et al.,
2018; Lladó et al., 2018). Different sites of plant roots have been
characterized for releasing specific exudates, such as the sub-
apical zone, root-hair zone, and emerging areas of secondary
ramifications (Bais et al., 2006), and these areas play a vital role
in plant-plant and plant-microbes interaction (Vacheron et al.,
2013; Khashi et al., 2019). Exudates are a suitable source of
carbon (and possibly nitrogen) and energy for root-associated
microbes (Haldar and Sengupta, 2015; Sun et al., 2019; Canarini
et al., 2019). The microbial communities that metabolize these
carbon sources survive easily in the root zone (Compant et al.,
2010; Pascale et al., 2020b).

Subsequently, essential soil functions are crosslinked
with rhizospheric microbial activities such as iron chelation,
phosphate solubilization, nitrogen fixation, antagonism, and
bioremediation (Patil and Solanki, 2016a; Li et al., 2018).
To identify the metabolic potential of antagonistic microbes
through BIOLOG ECO plates that contain 31 various carbon
sources have been used (Di Bonito and Biagiotti, 2021; Németh
et al., 2021; Moreno et al., 2021; Petkova et al., 2022; Koner
et al., 2022). Nine of the 31 substrates of ECO plates are
known as components of exudates of plant roots (Insam, 1997).
The Community level physiological profiles (CLPP) approach
has often been used to assess the functional diversity that is
influenced by microbes or other environmental practices (Iliev
et al., 2021; Koner et al., 2021; Aleksova et al., 2021; Sneha
et al., 2021; Jacobs-Hoffman and Hills, 2021; Kumar et al., 2021;
Dubey et al., 2022).

The plant pathogenic fungi can infect plants at any
developmental stage, but the infection is particularly favored
when plants are weakened due to nutritional disorders in
response to climatic pressure (Divon and Fluhr, 2007; Velásquez
et al., 2018). Therefore, the present study focused on a
few essential questions that need to be answered: What
relationship is undergoing between native microbial responses
and antagonists? What are the significant metabolic linkages in
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pathogen inhibition by antagonists? What is the significance of
different kinds of substrates in disease inhibition? Therefore, we
hypothesize that rhizodeposition influences microbial activity
and diversity indices during plant development. To unlock the
above queries, two biocontrol agents, Pseudomonas fluorescens
MPF47 (Solanki et al., 2014) and Bacillus velezensis MB101
(heterotypic synonym of B. amyloliquefaciens) (Solanki et al.,
2012a, 2019) were used as an antagonist against R. solani
in this study and an filed experiment was performed. Next,
BIOLOG ECO plates have been used to assess community-level
physiological profiles of different treatments with and without
pathogen. Soil microbial dynamics and enzymes and bacterial
activities have been assessed to see the links between substrate
diversity and microbial activities.

Materials and methods

Antagonist inoculum preparation

Active culture (1 mL) of strains (Pseudomonas fluorescens
MPF47 and Bacillus velezensis MB101) was inoculated in a
500 mL flask containing 250 mL of nutrient broth (HiMedia,
India) on a rotary shaker (120 rpm) at 28 ± 2◦C for 24 h.
Bacterial cells were pelleted by centrifugation 6,000 × g for
10 min (Sigma 3K30 centrifuge, Germany) and suspended
(108 cells mL−1) in 100 mL sterile solution (2.0% polyvinyl
pyrrolidine (PVP), 1.5% polyethylene glycol (PEG) and
2.5% glycerol), mixed aseptically and stored in sterile glass
bottles for treatment.

Plant material and experiment setup

Surface sterilized tomato (Lycopersicon esculentum Mill.)
seeds of a native variety were grown in seedling trays that were
treated with three different kinds of treatments: 1) antagonist
MPF47 (1 × 108 cells ml) inoculum 10 ml kg−1, 2) antagonist
MB101 (1 × 108 cells ml) inoculum 10 ml kg−1 and 3)
sterilized liquid suspension without bacteria. All trays were
incubated for four weeks under a glasshouse (RH 80%, 12:12 h
28◦C day, and 22◦C night). After four weeks, seedlings were
again treated with the same bacterial formulations using the
root dipping method. All treated seedlings were air dried
and manually transplanted into the experimental field. The
soil had the following characters: clay 22.4%; bulk density
48.2 g/cm3; sand 57%; silt 24.1%; water holding capacity 67.28%;
pH 6.02; ECe 1.40dS m−1; organic matter 2.94%; organic
C 138.02 kg ha−1; total N 94 kg ha−1; P 10.21 kg ha−1;
Zn 0.510 mg kg−1; Mn 22.11 mg kg−1; Fe 15.21 mg kg−1;
Cu 1.8 mg kg−1; and S 9.1 mg kg−1 and microbial density
bacteria (7.10 log CFU g−1 soil), and fungus (5.50 log CFU
g−1 soil). R. solani culture was grown in pearl millet seeds

under aseptic conditions, according to Solanki et al. (2011).
Pathogen-sick plots were prepared before transplantation by
inoculating the pearl millet culture of R. solani, according to
Solanki et al. (2019). A healthy plot mixed with the autoclaved
pearl millet culture of R. solani served as control. Bacterial
antagonist-treated seedlings were transplanted in field soil by
the following treatments: (T1) Pseudomonas alone, (T2) Bacillus
alone, (T3) healthy control (autoclaved liquid suspension
without bacteria), (T4) antagonist Pseudomonas + R. solani,
(T5) Bacillus + R. solani, and (T6) R. solani alone with
autoclaved liquid suspension without bacteria. Each treatment
was replicated three times, and treatments were arranged in
field plots (4 × 4 m) comprising five rows per plot and five
plants per row in a completely randomized block design. All
the agronomic practices such as hand weeding and fertilizers
((120 kg ha−1 nitrogen (N), 50 kg ha−1 phosphorus (P2O5), and
50 kg ha−1 potash (K2O)) at the same rate for all the treatments
was followed.

Plant parameters

All treated tomato seedlings were removed from the
soil at different growth stages, and roots were washed with
sterile distilled water. The disease index (DI%) was calculated
according to Solanki et al. (2011). Twenty randomly selected
plants from each plot were carefully uprooted after 110 days of
transplanting and used for measurement of root length (cm),
plant height (cm), total plant biomass without fruits (g), and
fruit biomass (g).

Soil microbial activity and enzymes

Rhizosphere soil sampling was performed from each
treatment, and a composite soil sample was collected and
analyzed according to Figure 1. Samplings were conducted
on three occasions in accord to stages of the plant on a
different days after transplantation (DAT) at different growth
stages; Stage 1 = vegetative stage (25 DAT), stage 2 = fruit
development stage (60 DAT), stage 3 = fruit ripening and
harvesting (110 DAT). All soil samples were sieved to 2 mm
particle size and used immediately, as presented in Figure 1.
The total active microbial biomass was enumerated from soils
by the serial dilution method. Different agar media were
employed for the isolation and enumeration of bacterial and
fungal biomass. The population of bacteria was enumerated on
nutrient agar (HiMedia, India), and the total fungal biomass
population was isolated using potato dextrose agar (HiMedia,
India) supplemented with antibacterial antibiotics streptomycin
(500 µg mL−1) and chloramphenicol (25 µg mL−1). Moreover,
three soil enzymes were assessed: dehydrogenase, chitinase, and
β-1, 3 Glucanase. Soil dehydrogenase activity was evaluated
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by the method of Singh and Singh (2005). Soil chitinase
was determined using the modified method of Trotta et al.
(1996). β-1, 3 Glucanase was assayed by a modified protocol
using laminarin as a substrate, according to Lethbridge et al.
(1978). Isolated soil bacteria were purified and used for
the chitinase and siderophore production assays. Bacterial
siderophore production was detected using the chrome azurol
S (CAS) method according to Solanki et al. (2014), and chitinase
enzyme production was determined according to Solanki et al.
(2012b) and. All screening experiments were repeated three
times.

BIOLOG ECO plate assays and analysis

BIOLOG ECO plates (Biolog, Inc., Hayward, CA,
United States) were used to determine substrate utilization
by the microbial community from the rhizosphere soil of
the tomato plant. The soil from each composite sample was
homogenized, and 5 g was used for the analysis. Triplicate
5 g fresh samples were suspended in 45 mL sterile saline
solution (NaCl, 0.85%) with 3 mm glass beads (5 g) on a rotary
shaker at 220 rpm for 30 min at 25◦C. The suspensions were
allowed to settle for 5 min, and then 10-fold diluted samples
were prepared, and 125 µL aliquots of dilutions were added
to each plate well. The absorbance (590 nm) was read using
an automated BIOLOG Microplate TM Reader, and data
were collected using the MicroLog 4.01 software. The plates
were then sealed inside a plastic bag, incubated at 25◦C in
darkness, and read every 24 h for seven days. To analyze the
BIOLOG reader data, the absorption value of the control well
was subtracted from each substrate absorption value, while
substrates with negative values were considered non-oxidized.
The average well color development (AWCD), calculated as
the average optical density across all wells per plate, was used
to indicate general microbial activity (Garland and Mills, 1991;
Garland, 2006; Grzadziel et al., 2019). AWCD value at 120 h
was used to describe the difference in rhizoplane microbial
activities among the different treatments. AWCD = 6(C−R)/n
C-reading of the well OD; R-reading of the control well OD;
n-the number of substrates on an EcoPlateTM (31).

Statistical analysis

Microbial siderophore and chitinase data were represented
through a bar plot. Mean catabolic activity and mean of AWCD
were calculated from data of all three developmental stages.
Shannon, McIntosh, Simpson diversity indices, and evenness
were estimated using BIOLOGTM ECO plates and generated
box plot. Boxplots of the mean, standard deviation (SD) and
boxes include the interquartile range and the line inside the
box represents group median values. The whiskers bars indicate

the minimum and maximum values excluding outliers (circles).
The notch displays the 95% confidence interval around the
median. Principal coordinate analysis (PCoA) was performed
on the BIOLOGTM ECO plate data to characterize the microbial
response in different growth stages. A response heatmap was
generated by the TB tools (Chen et al., 2020). Moreover,
individual values of optical density (OD) were grouped into
six categories, namely, amines and amides, amino acids,
carboxylic and acetic acids, carbohydrates, acid derivatives of
carbohydrates, and polymers. BIOLOG data, along with values
concerning diversity parameters, soil parameters, and plant
parameters, were analyzed through a Two-way PERMANOVA
(Permutation N-9999), with treatments and time (growth
stages) as grouping variables of the healthy (-RS) and
pathogen-treated soil (+ RS). For additional multiple post hoc
comparisons, a Duncan’s Multiple Range Test (DMRT) was
used for ANOVA analysis by using IBM SPSS Statistics, version
25, IBM Corp., Armonk, NY, United States. Moreover, the
correlation analysis between the substrate and all plant and soil
parameters was performed using Past3 software. A correlation
heatmap was generated using TB tools.

Results

Plant growth, biomass, and disease
incidence

Treatment T1 (Pseudomonas) and T2 (Bacillus) enhanced
the root and shoot length up to 1.16-1.29 and 1.25-1.34 times
higher than healthy control (T3), respectively. However, in
pathogen-treated soil, Pseudomonas + RS (T4) and Bacillus + RS
(T5) increased root length by 2.36- 2.55 times and plant
shoot length by 2.05- 2.45 times as compared to pathogen
control (T6) (Supplementary Figure 1A). Bacillus-treated
plants showed higher plant dry biomass and fruit biomass in
healthy and pathogen-treated soil (Supplementary Figure 1B).
The symptoms of Rhizoctonia root rot appeared in stage 2
and stage 3 (Supplementary Figure 1C). The disease indices
estimated at stages 2 and 3 were significantly higher in R. solani
(T6) compared to both antagonists with pathogen (T4 and T5).
A significant disease reduction resulted in both antagonists over
the pathogen control (Supplementary Figure 1D).

Soil microbial activity and different
enzymes

The microbial count of rhizosphere soil represents the soil
biology, and total bacterial counts and bacterial CFU increased
significantly (P ≤ 0.05) in stage 2 in all treatments. Higher CFU
resulted in antagonist treatments (T1, T2, T4, and T5) over
the plant growth. Besides, different growth stages determined
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FIGURE 1

Schematic representation of the present study. CFU-Colony forming unit, CLPP- community-level physiological profiling.

the lower bacterial count resulting in the pathogen-treated
soil samples (Figure 2). Significant effects on bacterial CFU
were observed for antagonists (p = 0.001) and growth stage
(p < 0.001) and their interaction (p = 0.001) in healthy soil.
Similarly, pathogen-treated soil bacterial CFU were observed
for antagonists (p = 0.054) and growth stage (p < 0.001) and
their interaction (p = 0.002) (Table 1). Total fungal count
significantly (p < 0.05) impacted with the antagonist (T4 and
T5) in the pathogen-treated soil, and it was least affected in
the healthy soil treatments (T1, T2, and T3). However, Bacillus
(T2 and T5) treated plants reduced the fungal counts in the
healthy and pathogen-treated soil (Figure 2). Compared to
other treatments, a higher fungal population was recorded with
pathogen-treated (T6) and healthy controls (T3) (Figure 2). In
the case of soil enzymes, healthy soil treatments (T1, T2, and T3)
showed higher dehydrogenase activity than R. solani treated soil
samples (T4, T5, and T6) during plant growth. Both bacterial
antagonist samples have higher biological activity in the absence
of pathogen. Besides, soil chitinase activity was found to be
strong in pathogen-treated soil, and both antagonists treatments
(T4 and T5) samples showed higher chitinase activity in stages 1
and 3. For soil glucanases, higher activity was revealed in healthy
soil treatments compared to pathogen-treated soil (Figure 2).

Significant effects on the two enzymes chitinase and glucanase
were observed for antagonist treatments (p < 0.06) and growth
stage (p < 0.001) and their interaction (p < 0.01) in pathogen-
treated soil (Table 1).

Bacterial frequency in siderophore and
chitinase production

All treatments showed a differential pattern of siderophore-
producing bacteria in the healthy and R. solani treated soil
(Figure 3 and Table 1). A higher frequency of siderophore
bacteria was found in Pseudomonas + RS (T4) and only
Pseudomonas (T1), followed by only Bacillus (T2). The stage 3
soil samples showed a higher frequency among the three growth
stages. Moreover, a treatment-wise comparison revealed that
Pseudomonas + RS treated soil samples have a higher number
of siderophore-producing bacterial communities (Figure 3).
A differential pattern of chitinase activity was also revealed
among the treatments. Bacterial antagonists (T5 and T2) showed
higher chitinase-producing bacteria frequency in all growth
stages, especially in stage 3 (Figure 3). Results from a two-
way PERMANOVA showed significant (p < 0.01) interaction
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FIGURE 2

Impact of pathogen and antagonist treated soil on the microbial count and soil enzymes. Treatments: (T1) Pseudomonas alone, (T2) Bacillus
alone, (T3) healthy control (autoclaved liquid suspension without bacteria), (T4) antagonist Pseudomonas + R. solani, (T5) Bacillus + R. solani,
and (T6) R. solani alone with autoclaved liquid suspension without bacteria. Stage 1 (vegetative stage), Stage 2 (flowering stage), and Stage 3
(fruit ripening stage). Mean values (n = 3) in the same column followed by the same letter(s) are not significantly different at (P < 0.05) according
to the DMRT test.

of pathogen in siderophore and chitinase-producing bacteria
frequency (Table 1).

Community-level physiological profile

The AWCD, as a measure of the total microbial activity,
generally followed the different patterns with treatments. The

microbial activities tended to increase in the vegetative stage and
changed gradually. We recorded maximum AWCD response in
Bacillus (T2) and Pseudomonas + RS (T4) treatments in stage 1
and stage 3 (Supplementary Figure 2). The pathogen-treated
soil has lower AWCD responses as compared to healthy soil.
In case of CMD response, antagonistic bacteria show higher
activity (Supplementary Figure 2). The P-values for the AWCD
parameter presented in Table 1 showed that antagonists and
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TABLE 1 The P-values of PERMANOVA for soil parameters, microbial count, diversity indices, and different classes of AWCD rate in R. solani
infected and healthy soil.

Parameters Healthy soil (-RS) Pathogen-infected soil (+ RS)

T GS T × GS T GS T × GS

CFU Bacterial 0.001** 0.00*** 0.001** 0.054 0.00*** 0.002**

Fungal 0.566 0.321 0.898 0.210 0.051 0.762

Soil enzymes Dehydrogenase 0.118 0.00*** 0.017* 0.00*** 0.00*** 0.846

Chitinase 0.00*** 0.001** 0.113 0.024* 0.00*** 0.00***

Glucanase 0.012* 0.00*** 0.114 0.065 0.00*** 0.003**

Bacterial Siderophore (%) 0.001** 0.00*** 0.122 0.00*** 0.00*** 0.001**

Chitinase (%) 0.00*** 0.00*** 0.021* 0.00*** 0.00*** 0.008**

Metabolic responce AWCD (120 h) 0.003** 0.090 0.520 0.00*** 0.003** 0.012*

CMD 0.031* 0.00*** 0.366 0.00*** 0.024* 0.199

Diversity indices Shannon index 0.146 0.989 0.465 0.00*** 0.001** 0.00***

Simpson index 0.00*** 0.011* 0.069 0.003** 0.398 0.134

McIntosh index 0.003** 0.020* 0.823 0.00*** 0.018* 0.037*

Substrate richness 0.350 0.661 0.189 0.00*** 0.00*** 0.020*

Substrate evenness 0.292 0.946 0.694 0.001** 0.001** 0.00***

Substracte classes Amines/amides 0.018* 0.011* 0.100 0.026* 0.025* 0.089

Amino acids 0.132 0.020* 0.209 0.00*** 0.199 0.730

Carbohydrates 0.322 0.015* 0.036* 0.00*** 0.027* 0.040*

Acids derived from carbohydrate 0.218 0.002** 0.059 0.084 0.166 0.138

Carboxylic & acetic acids 0.057 0.285 0.010** 0.00*** 0.001** 0.415

Polymers 0.108 0.664 0.608 0.001** 0.241 0.072

Average well color development (AWCD), community metabolic diversity (CMD), Rhizoctonia solani (RS), Colony forming unit (CFU); Bacterial treatments (T): Pseudomonas and
Bacillus; Growth stages (GS): different growth stages of tomato; Significance level *p < 0.05, **p < 0.01 and ***p < 0.001.

pathogen treatment significantly (p = 0.003) affect the microbial
metabolic activity. The AWCD values showed that pathogen-
treated soil significantly changed during the plant growth than
the healthy soil. In the case of CMD, no significant interaction
was found between treatments and time (Table 1). Microbial
responses of antagonists showed stability with pathogen-treated
soil alone up to stage 3. PCA soil showed that Psudomonase (T1)
grouped well in stage 2 and stage 3 but detached in stage 1 in
healthy soil (Supplementary Figure 3A). Bacillus (T2) bacteria
showed grouping in stage 1 and stage 3 in healthy soil. However,
control (T3) samples grouped well in stage 2 and stage 3. In the
case of R. solani infected soil, Pseudomonas (T4) and Bacillus
(T5) showed closeness with each other in all three growth stages,
and only Rhizoctonia control (T6) separated from others in stage
1 and 3 (Supplementary Figure 3B).

Additionally, the tendency of different carbon substrates
between PC1 and PC2 was separated in pathogen-treated soil
compared to healthy soil (Supplementary Figure 3C). In the
case of healthy soil, five carbon substrates, such as C10, C16,
C17, C25, and C30, showed separation from other carbon
substrates (Supplementary Figure 3C). In the pathogen-treated
soil case, five carbon substrates, such as C5, C7, C8, C10, C13,
C15, C27, and C31, were separated from other carbon substrates
(Supplementary Figure 3D). The microbial response is also

represented through a circular cluster tree based on the substrate
response of all treatments in different growth stages, revealing
the impact of pathogen infestation on the substrate grouping
and treatment clustering (Figure 4). Pseudomonas and Bacillus
treatment grouped well, while R. solani infested soil samples
separated and showed low substrate utilization response in
different growth stages (Figure 4). Cluster analysis revealed that
pathogen and antagonist bacteria interaction could considerably
affect the community-level physiological profile.

Shannon, subtract evenness, Simpson, and the McIntosh
diversity indices showed different catabolic diversity with both
antagonistic bacteria during the plant growth (Supplementary
Figure 4). Moreover, the highest values for all diversity
parameters were recorded during stage 2 and stage 3 with all
treatments (Supplementary Figure 4). The interactive effect
of the independent variables for most parameters proved
non-significant in healthy soil but significant with pathogen-
treated soil (Table 1). Except for the Shannon diversity index,
all treatments without pathogen had higher diversity indices
than pathogen-treated soil (Table 1). Multiple comparisons
detected a significantly higher Simpson diversity index in
stage 3 with or without pathogen (Supplementary Figure 4).
Likewise, the McIntosh diversity index showed a significant
interaction between treatments and time. Pathogen and
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FIGURE 3

Microbial siderophore and chitinase frequency of bacteria
isolated from different treatments. Mean values (n = 3) in the
same column followed by the same letter(s) are not significantly
different at (P < 0.05) according to the DMRT test. Treatment
details as Figure 2.

antagonist application induced the catabolic diversity through
the substrate richness and evenness (Supplementary Figure 4).
Maximum substrate richness found 31 carbon and minimum 28
substrates in the treatments.

Next, the microbial activity response of all substrates is
categorized into six classes based on the AWCD values of all
31 substrates. Bacillus (T4) utilized the maximum amount of
substrate amines in stage 1 and stage 2 in pathogen-treated
soil, and Pseudomonas (T1) was used in stage 2 in healthy
soil (Figure 5). The maximum rate of substrate Amino acids
used by Pseudomonas (T1) and Bacillus (T2) in stage 2 in
healthy soil. Bacillus (T4) utilized maximum concentration of
substrate carbohydrate and Acids derived from carbohydrates
in stage 2 in pathogen-treated soil. In the case of Carboxylic
& acetic acids, a higher utilization rate resulted in Bacillus
(T2) in the healthy soil. Bacillus (T4) showed a higher rate of
polymer utilization in stage 2 and stage 3, and Bacillus (T2) was
utilized in stage 1 (Figure 5). Significant effects on carbohydrate
utilization were observed for antagonist treatments (p < 0.001)
and growth stage (p < 0.05) and their interaction (p < 0.05)
in pathogen-treated soil (Table 1). Two-way PERMANOVA
results of all 31 substrates showed a significant effect on
the microbial activity in the pathogen-treated soil samples

(Table 2). In the case of carbohydrates, we observed substantial
impacts on D-cellobiose, β-methyl-D-glucoside, D-xylose, and
D-mannitol utilization in antagonist treatments (p < 0.05)
and growth stage (p < 0.06) and their interaction (p < 0.05)
in pathogen-treated soil (Table 2). A significant (p < 0.05)
interactive effect of D-cellobiose (carbohydrate), D-malic acid
(carboxylic & acetic acids), and L-phenylalanine (amino acids)
also resulted in healthy soil samples. Moreover, substrates like
D-galacturonic acid (carboxylic & acetic acids), L-asparagine
(Amino acids), phenylethylamine (amines/amides), and
putrescine (amines/amides) showed a significant interaction
with treatments and plant growth with the pathogens (Table 2).

Correlation between soil and plant
parameters with the substrates

The correlation between plant and soil parameters and
carbon substrates is represented in Figure 6, and the p-value
is indicated in supplementary Table 1. Among the substrates,
Alpha-D-lactose, D-glucosaminic acid, and itaconic acid
negatively (p < 0.05) correlated with the bacterial CFU.
A significant (p < 0.1) negative correlation of fungal CFU
resulted with i-erythritol and L-serine, and D-malic acid
showed a positive correlation (p < 0.01) with fungal CFU. Soil
Dehydrogenase showed a positive correlation (p < 0.05) with
Tween 80 and D-malic acid. D-galacturonic acid was positively
linked with soil chitinase, and L-arginine correlated negatively.
Likewise, soil glucanase negatively correlated with the substrates
like Alpha-D-lactose, Beta-methyl-D-glucoside, and 2-Hydroxy
benzoic acid. However, D-malic acid is positively associated
with soil glucanase. In the case of bacterial siderophore, Tween
40 and D-galacturonic acid are associated positively, and
Alpha-D-lactose was associated negatively. Bacterial chitinase
is associated positively with D-cellobiose and associated
negatively with Beta-methyl-D-glucoside. Interestingly,
Rhizoctonia disease incidence negatively correlated (p < 0.05)
with different substrates such as Gamma-hydroxybutyric
acid, Alpha-D-lactose, Beta-methyl-D-glucoside, D-xylose,
D-mannitol, N-acetyl-D-glucosamine, D-L-alpha-glycerol
phosphate, itaconic acid, D-malic acid, L-asparagine, and
putrescine. However, plant parameters correlated positively
with different substrates like plant biomass, fruit biomass, and
root length with L-phenylalanine. Fruit biomass and root length
also positively correlated with the D-xylose (Figure 6 and
Supplementary Table 1).

Discussion

The rhizoplane is generally considered a hub of microbial
activities that are driven by plant exudates and soil nutrients
(Moe, 2013; Jones et al., 2018; Olanrewaju et al., 2019;
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FIGURE 4

Circular heat map and hierarchical cluster analysis based on the average well color development (AWCD) at 120 h of soil microbial communities
under pathogen and antagonist treated soil. Higher to low AWCD response indicated via red to blue gradient. Treatment details as Figure 2.

Zhao et al., 2021). The major group of plant rhizospheric
bacteria, known as plant growth-promoting rhizobacteria
(PGPR), performed direct or indirect events to support
plant growth through rhizosphere or endosphere colonization
(Mhlongo et al., 2018; Shah et al., 2021; Vandana et al., 2021).
The genus Pseudomonas and Bacillus are considered important
PGPR candidates (Vocciante et al., 2022). They can aggressively
colonize the rhizoplane and participate in many activities
like plant growth promotion, stress tolerance, biocontrol and
mineral mobilization, etc. (Solanki et al., 2012a, 2014; Wang
et al., 2020). The antagonistic bacteria (Pseudomonas and
Bacillus) used in the present study significantly enhanced the
plant growth in healthy and R. solani-treated soil (Solanki
et al., 2012a, 2014). Soil and bacterial enzymatic activities
played an essential role in the biocontrol of R. solani (Solanki
et al., 2012b; Berendsen et al., 2018; Wu et al., 2019). Soil

enzymes such as dehydrogenase, chitinase, and glucanase are
all hydrolytic enzymes involved in the hydrolysis and lysis of
complex molecules and improves the plant systemic defense
(Gurung et al., 2013; Shafi et al., 2017; Wu et al., 2019; Prasad
and Raghuwanshi, 2022).

Soil dehydrogenase enzyme is used as an indicator of soil
biological activity that involves the nutrients transformation
between microbes and plants (Grzadziel et al., 2018; Kaur and
Kaur, 2021). Chitinase and glucanase enzymes are involved
in the degradation of fungal cell walls (Adams, 2004), and
many hydrolytic bacteria play an essential role in disease
management (Zachow et al., 2011). In the present study, the
higher enzyme activity improved by applying antagonists in
the pathogen-treated soil directly correlated with the disease
reduction. The application of both antagonistic microbes
influenced the microbial count as determined through the plate
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count method. Yin et al. (2021) reported that selected soil
shaped the beneficial microbial communities that reduced plant
root diseases and enhanced crop productivity. Specific bacterial
communities played a significant role in the suppuration of
Rhizoctonia bare patch and root rot disease of wheat (Yin
et al., 2013). In the present study, the populations of bacteria
and fungi in the rhizoplane soils dramatically increased after
stage 1 in antagonist treatments compared to control soil
samples. Conversely, fungal populations in healthy and infected
soil were markedly lower in antagonist bacteria-treated soil.
Bacterial densities in Pseudomonas and Bacillus treated soil
were dramatically higher than those of healthy and infected
control. These results demonstrate that antagonistic bacteria
can significantly alter microbial community structure via

propagation around the plant root zone. Zachow et al. (2011)
also reported that higher numbers of bacterial groups inhibit
the growth of R. solani in soil. Of these, only the bacterial CFU
showed significant interaction in the biocontrol of R. solani,
but the differences in fungi populations are more related to the
original soil type. Based on AWCD results, the disease incidence
of tomato root rot showed a negative relationship with the
many substrates. It indicates that microbial substrates play an
essential role in pathogen suppression. A significant negative
link between antagonistic bacteria application and interaction
of pathogen was observed in the study that showed the potential
of antagonistic bacteria to reduce disease incidence. Several
PGPR possesses antagonistic properties toward soilborne fungi,
including R. solani (Yin et al., 2013, 2021; Solanki et al., 2014;

TABLE 2 The P-values of PERMANOVA of carbon substrates under healthy and R. solani infected soil during the plant development.

Carbon sources Substrate classes Healthy soil (-RS) Pathogen-infected soil (+ RS)

T GS T × GS T GS T × GS

Pyruvic acid methyl ester Carbohydrate 0.589 0.156 0.006** 0.110 0.071 0.006**

Tween 40 Polymers 0.00*** 0.003** 0.620 0.031* 0.084 0.689

Tween 80 Polymers 0.199 0.006** 0.701 0.805 0.189 0.396

Alpha-cyclodextrin Polymers 0.037 0.931 0.182 0.134 0.781 0.515

Glycogen Polymers 0.133 0.974 0.217 0.018* 0.027* 0.114

D-cellobiose Carbohydrates 0.015* 0.007** 0.024* 0.040* 0.053 0.007**

α-D-lactose Carbohydrates 0.424 0.117 0.595 0.454 0.252 0.114

β-methyl-D-glucoside Carbohydrates 0.654 0.871 0.034 0.00*** 0.00*** 0.001**

D-xylose Carbohydrates 0.006** 0.440 0.028* 0.00*** 0.012* 0.032*

i-erythritol Carbohydrates 0.691 0.864 0.076 0.041* 0.234 0.873

D-mannitol Carbohydrates 0.833 0.146 0.558 0.00*** 0.021* 0.00***

N-Acetyl-D-glucosamine Carbohydrates 0.039* 0.201 0.002** 0.00*** 0.505 0.040*

D-glucosaminic acid Acids derived from carbohydrate 0.355 0.557 0.394 0.056 0.018* 0.701

Glucose-1-phosphate Carbohydrate 0.172 0.00*** 0.021∗ 0.451 0.223 0.004**

D,L-α-glycerol phosphate Carbohydrate 0.038* 0.535 0.013* 0.028* 0.385 0.625

D-galactonic acid-gamma-lactone Acids derived from carbohydrate 0.183 0.466 0.266 0.002** 0.435 0.413

D-galacturonic acid Carboxylic & acetic acids 0.353 0.185 0.774 0.001** 0.010* 0.00***

2-Hydroxy benzoic acid Carboxylic & acetic acids 0.668 0.001** 0.061 0.190 0.018* 0.084

4-Hydroxy benzoic acid Carboxylic & acetic acids 0.828 0.597 0.080 0.268 0.069 0.212

γ-hydroxybutyric acid Carboxylic & acetic acids 0.005** 0.728 0.008** 0.001** 0.055 0.126

Itaconic acid Carboxylic & acetic acids 0.459 0.723 0.064 0.016* 0.811 0.456

α-ketobutyric acid Carboxylic & acetic acids 0.148 0.306 0.097 0.037* 0.076 0.151

D-malic acid Carboxylic & acetic acids 0.001** 0.00*** 0.019** 0.00*** 0.00*** 0.751

L-arginine Amino acids 0.578 0.024* 0.071* 0.356 0.130 0.124

L-asparagine Amino acids 0.676 0.047* 0.295 0.072 0.015* 0.072

L-phenylalanine Amino acids 0.012* 0.00*** 0.025* 0.537 0.497 0.767

L-serine Amino acids 0.816 0.061 0.008** 0.046* 0.172 0.054

L-threonine Amino acids 0.294 0.611 0.050 0.047* 0.226 0.933

Glycyl-L-glutamic acid Amino acids 0.191 0.337 0.784 0.118 0.623 0.172

Phenylethylamine Amines/amides 0.164 0.326 0.738 0.048* 0.067 0.025*

Putrescine Amines/amides 0.418 0.410 0.294 0.004** 0.033* 0.025*

Bacterial treatments (T): Pseudomonas and Bacillus. Growth stages (GS): different growth stages of tomato.
*p < 0.05, **p < 0.01 and ***p < 0.001.
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FIGURE 5

Community-level physiological profiles (CLPP) of pathogen and antagonist treated soil samples. Substrates were classified as amines/amides,
amino acids, carbohydrates, Acids derived from carbohydrates (ADC), Carboxylic & acetic acids (CAA), and polymers. Mean values (n = 3) in the
same column followed by the same letter(s) are not significantly different at (P < 0.05) according to the DMRT test. Treatment details as Figure 2.

Araujo et al., 2019). These results agree with previous studies
that have shown that applications of biocontrol agents with
plants positively impact soil microbial communities (Araujo
et al., 2019; Huang et al., 2021). These results suggested
that the application of Bacillus strains reduced the R. solani
population in the soil with antifungal activity, and this action
also reduced the other fungal population. Both antagonistic
bacteria properly modulate the soil enzyme activity levels and
effectively enhance the rhizosphere soil environment, enhancing
the enzyme activities by inducing siderophore and chitinase-
producing bacteria that help to improve nutrient absorption
from the soil that support directly to disease resistance of the
plants.

In contrast, the microbial population actively suppresses
R. solani by competition of carbon substrate or space in
the rhizosphere. The CLPP results indicated that during
stage 1, at the first sampling, the microbial community
response did not vary significantly in the rhizospheric soil
samples. The root zone is a dynamic environment that
provides nutrients like root exudates and space to shape
microbial communities (Haichar et al., 2008; Edwards et al.,
2015). Rhizoplane contains large numbers of diverse types
of bacteria and fungi (Van Der Heijden and Schlaeppi,

2015). In the current study, antagonistic treated soil strongly
affected the microbial diversity and function in healthy and
infected soil, especially in the fruit development stage. The
diversity indices of the pathogen-treated soil with antagonistic
bacteria were higher than in healthy soil. Additionally, disease
incidence was negatively related to all the diversity indexes
and different carbon substrates, and plant biomass positively
correlated with D-xylose and L-phenylalanine. These results
indicated that the microbial communities in the pathogen-
treated soil might be more robust and capable of handling
competition in the presence of R. solani. Plants may stabilize
the rhizoplane microbial community by creating a complex
ecological system under the pathogen-treated soil. Compared
to the pathogen-treated soil, the healthy soil exhibited the
lowest level of microbial activity in stage 1 (vegetative), which
then stabilized in stage 2 (flowering) and stage 3 (fruiting
stage). The pathogen inoculations with antagonists treatment
have dissimilarly shown an effect on the microbial activities.
The microbial activity of the rhizoplane in the pathogen-
treated soil was significantly higher than in healthy soil due
to the substrate competition effect. These results allied with
similar studies that concluded the plant stimulates the beneficial
microbiome to reduce pathogen invasion and improve plant
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FIGURE 6

Correlation heatmap between soil and plant parameters and carbon substrates under pathogen and antagonist treated soil. Positive correlation
indicated via red and negative via blue color.

defense (Chiu et al., 2017; McLaren and Callahan, 2020). The
current study indicates that antagonist microbes influenced
substrate utilization strongly in stage 3 (fruit development
stage) in healthy soil. In the case of the pathogen-treated land,
growth stages-based fluctuations have been observed with soil
enzymes and microbial function as well as substrate diversity
indices. Correlation results provide the significance of different
substrates in the biocontrol of pathogens. Plant, soil, and CLPP
parameter provide insight into the role of carbon substrates in
pathogen suppuration during plant growth. The carboxylic acid
that significantly contributed to the control of R. solani was
pyruvic acid methyl ester, an intermediate of the citric acid cycle
(Frolkis et al., 2010).

Carbohydrates that had a significant interaction with the
biocontrol of R. solani were β-methyl-D-glucoside, D-mannitol,
and N-acetyl-D-glucosamine. These carbohydrates played an
essential role in microbial growth in the plant rhizosphere
(Adams et al., 2017; Weng et al., 2022). N-acetyl-D-glucosamine
is a significant component of R. solani call wall (Benyagoub et al.,
1996). D-galacturonic acid (carboxylic & acetic acids) that had a
significant interactive effect in biocontrol is also known as the
backbone of plants’ mechanical strength (Hongo et al., 2012).
L-asparagine (amino acids) and amines/amides (phenylalanine
and putrescine) are the essential nutrients for microbial growth
in the plant rhizosphere (Haichar et al., 2008; Adams et al., 2017;
Weng et al., 2022).
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In conclusion, carbohydrates, carboxylic & acetic acids,
amino acids, and amines/amides are the major key player
in rhizospheric biology in the presence of the pathogen. It
showed a discernible variation in the rhizoplane communities’
function with pathogen-treated and healthy soil. A significant
shift of microbial function protects the plant from the pathogen
in different growth stages, and microbial substrate utilization
pattern is induced in the fruiting and ripening stage with
antagonists. Current study results answered that the substrate-
based mechanism study of pathogenic and healthy soil might
generate meaningful information that can help to shape or
modify the microbial community to improve the plant disease
management system. However, an in-depth analysis is needed
in the future to understand microbial association in root
pathogenesis, especially microbial transformation, recruitment,
and complex functional mechanism in microbes-microbes
interaction. It can be concluded that the BIOLOG based
EcoPlate method resulted am useful tool to study the variability
of the potential antagonist and pathogen, as significant variation
have been obtained. Additionally, the results obtained from the
EcoPlate analysis correlate with the pathogen reduction and
plant growth stimulation that signifies the current study and
this method can be an excellent tools for the study of pathogen
antagonist, plant-microbes and other interactive filed that have
substrate played the important role.
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Anthropogenic activities have a critical influence on climate change that 

directly or indirectly impacts plant and microbial diversity on our planet. Due to 

climate change, there is an increase in the intensity and frequency of extreme 

environmental events such as temperature rise, drought, and precipitation. 

The increase in greenhouse gas emissions such as CO2, CH4, NOx, water 

vapor, increase in global temperature, and change in rainfall patterns have 

impacted soil–plant-microbe interactions, which poses a serious threat to 

food security. Microbes in the soil play an essential role in plants’ resilience 

to abiotic and biotic stressors. The soil microbial communities are sensitive 

and responsive to these stressors. Therefore, a systemic approach to climate 

adaptation will be needed which acknowledges the multidimensional nature 

of plant-microbe-environment interactions. In the last two scores of years, 

there has been an enhancement in the understanding of plant’s response 

to microbes at physiological, biochemical, and molecular levels due to the 

availability of techniques and tools. This review highlights some of the critical 

factors influencing plant-microbe interactions under stress. The association 

and response of microbe and plants as a result of several stresses such as 

temperature, salinity, metal toxicity, and greenhouse gases are also depicted. 

New tools to study the molecular complexity of these interactions, such as 

genomic and sequencing approaches, which provide researchers greater 

accuracy, reproducibility, and flexibility for exploring plant-microbe–

environment interactions under a changing climate, are also discussed in the 

review, which will be helpful in the development of resistant crops/plants in 

present and future.
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Introduction

Burning fossil fuels and widespread deforestation in the 
neoteric era have caused elevated atmospheric greenhouse gas 
(GHG) concentrations, and these changes in GHG have resulted 
in significant global climate shifts (Orlowsky and Seneviratne, 
2012) also commonly known as global climate change. According 
to a recent IPCC report, the world has very little time before global 
climate change becomes troublesome (Gautam et  al., 2021). 
Climate change has already warmed the planet: from the 
preindustrial period (1850–1900) to the present (1998–2018), the 
global average temperature over land has increased by 1.41 
(Shukla et  al., 2019). When GHGs are present in suitable 
concentrations in the earth’s environment, they trap radiation that 
the planet emits and prevent it from escaping back into space, 
keeping the planet warm enough to support life. Water vapor, 
carbon dioxide (CO2), methane (CH4), nitrogen oxides (NOx), 
and ozone (O3) are the primary greenhouse gases that trap energy 
and function as temperature regulators for the earth. Climate 
change over the years has threatened almost every individual on 
the planet, such as humans, plants, microbes, animals, and 
ultimately affecting their association, biogeographical cycles, food 
cycle, food security, etc., (Pecl et al., 2017; Rojas-Downing et al., 
2017; Kumar and Verma, 2018; Caminade et al., 2019; Jansson and 
Hofmockel, 2020; Kasperson et al., 2022). The primary concern to 
food security is a decrease in crop productivity due to the rapid 
rise in global change in climate, as there is a downfall in crop 
production with every increase in degree Celsius (Rogelj et al., 
2016). Given the lack of space to cultivate more land, it is prudent 
to monitor the remaining fertile land to regulate agricultural 
production closely, assure economic development, conserve 
biodiversity, and satisfy the ever-increasing food needs of the 
world’s population.

The significance of microorganisms in enhancing the 
nutritional bioavailability of plants is an essential climate-smart 
agriculture management technique and has been known for ages 
(Hamilton et al., 2016; Verma et al., 2017; Kumar and Verma, 
2018; Jansson and Hofmockel, 2020). Several research studies have 
revealed advantageous interactions among plants, microbes, and 
the environment (Hamilton et al., 2016; Rosier et al., 2016; Liu 
et al., 2020; Romano et al., 2020). Root exudates are responsible 
for the abundance of microorganisms surrounding the root zone 
of crops and plants. They supply nutrients to the microorganisms 
promoting plant development through various growth-promoting 
characteristics. For example, plant growth-promoting 
rhizobacteria (PGPR) and mycorrhizal fungi are renowned for 
their capacity to promote plant development in stressful situations 
(Bach et  al., 2016; Rêgo et  al., 2018; Fattahi et  al., 2021). 
Mycorrhizal fungi create symbiotic relationships with the majority 
of the crops/plants (Chun et al., 2018; Sangwan and Prasanna, 
2022), which assist the agroecosystems in growing by improving 
nitrogen fixation (Hack et  al., 2019; De Novais et  al., 2020), 
synthesize bioactive compounds (Silva and Silva, 2020; Shah et al., 
2022), boost photosynthesis (Jabborova et  al., 2021; Bouskout 

et al., 2022), increase phosphatase activity (Metwally et al., 2021), 
and make osmotic adjustments under stress (Abd El-Samad and 
Abd El-Hakeem, 2019; Amjad et  al., 2021), all of which help 
marginalized soils become more productive, detoxify metals, and 
increase resistance to both biological and abiotic stresses. By 
limiting plant pathogens in stressful environments, microbial 
interactions constitute close contact with the host plants and 
improve plant health (Lata et al., 2018; Trivedi et al., 2020; Sharma, 
2021). Due to unpredictable climate change, the plant faces stress 
such as acidic soil, water deficit, salinity, osmotic stress, high 
temperature, low temperature, flooding, and an increase in biotic 
stress (Nazir et al., 2018) as a result of the change in soil condition 
(Mekala and Polepongu, 2019; Muluneh, 2020), that directly or 
indirectly affect its overall growth and development (Zhou et al., 
2020; Malhi et  al., 2021). Extreme habitats are one-of-a-kind 
ecosystems that support a diverse array of microbes, such as 
acidophilic, alkaliphilic, halophilic, psychrophilic, thermophilic, 
and xerophilic (Verma et al., 2017). However, interactions between 
plants and microbes need a suitable environment for their 
association and exchange of nutrients. This review will highlight 
the importance of microbial community for crops/plants and their 
interactions under stressful conditions arising due to global 
climate change, and how different abiotic stresses such as 
temperature, drought, salinity, elevated greenhouse gases, and 
heavy metal pollutants affect microbial association with plants. 
Understanding how traditional and emerging techniques can 
be used to understand the molecular complexity of plant-microbe 
interaction will enrich our knowledge in mitigating losses due to 
global climate change.

Global climatic change and its 
implications on plant-microbe 
interaction

Climate change has imposed severe stress on plants 
accelerating microbial community disturbance and the spread of 
diseases, thereby increasing the management costs for techniques 
needed to mitigate and confront this global challenge. The 
association and interaction of microbe(s) and plants depend on 
the external environment, and any environmental perturbance 
will not be productive for either plants or microbes (Figure 1). In 
this review, we will focus on how environmental parameters are 
considered to influence molecular interactions between plants and 
microbes (Table 1).

Effect of high temperature on 
plant-microbe interaction

The plant response is a complicated web of signalling that 
includes transcriptional networks and hormonal interactions 
that may be triggered by at least two different types of microbial 
signals; pathogen-associated molecular patterns (PAMPs) 
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triggered immunity (PTI) and effector-triggered immunity 
(ETI). PAMPs include conserved patterns in bacteria and fungi, 
such as flagellin and chitin from bacteria and fungi, respectively 
(Kieser and Kagan, 2017; Taghavi et al., 2017; Zhai et al., 2018). 
PAMPs are recognized by the microbe leading to a basal level of 
defense in plants. However, this type of immunity of plants is 
usually suppressed by a virulent factor, also known as an effector 
(Dodds and Rathjen, 2010). Effectors recognized by plant signals 
are sent through the nucleus by nucleotide-binding leucine-rich 
repeat (NBS-LRR) receptors which ultimately activate effector-
triggered immunity in plants (Saijo and Loo, 2020; Desaint et al., 
2021). Global climate change and increase in temperature (any 
degree beyond optimal growth temperature) stamp out the ETI, 
leaving plants with weak immunity. This is a matter of great 

concern as most crops/plants rely on ETI for their growth, 
protection, and development (Cheng et  al., 2013; Velásquez 
et al., 2018; Desaint et al., 2021). Even a short exposure to high-
temperature changes the expression of genes of the effector-
triggered immunity pathway. For example, the salicylic acid 
pathway was hindered when the temperature was relatively 
higher, leading to more susceptibility and infection by 
Pseudomonas syringae pv. tomato (Pst; Huot et al., 2017). The 
expression of genes and transcription factors of defense-related 
pathways are altered due to elevated temperature (Zhang et al., 
2018; Wang et  al., 2019). The decline in ETI, increased 
photorespiration, and disruption of photosynthesis gave rise to 
oxidative stress due to over production of reactive and 
non-reactive oxygen species. Thereby, plants upregulates various 

FIGURE 1

An overview of diagram illustrating the impact of global climatic change on plant-microbe interaction. Generation of abiotic and biotic stress as a 
result of climate change leads to several growth and development issues (White square box) in plants and microbes. Presence of plant growth 
promoting microbes in soil have positive impact on plant growth.
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TABLE 1 Impact of climate change induced stress on plant-microbe interaction.

Stress Stress content* Plant species PGPM Stress response 
in PGPM

Stress response 
in plant#

Plant growth 
parameter 
improved

References

Salinity+ 

mineral dust

NaCl 

(600 mM) + 1.5 g/ m2 

month1

Seidlitzia 

rosmarinus

Bacillus pumilus

HR Zhihengliuella 

halotolerans

Auxin, siderophore, 

ACC deaminase

Catalase activity, 

anthocyanin and 

decreased 

malondialdehyde, 

Na+ uptake

Chlorophyll a, 

protein, biomass, 

seed quality index, 

Fe, Mg, Mn 

content

Zilaie et al. (2022)

Salinity NaCl (200 mM) Glycine max Bipolaris sp. CSL-1 Indole acetic acid, 

gibberellins, organic 

acids

Lower stress 

response gene 

expression, 

antioxidant

Increased salicylic 

acid

Chlorophyll and 

shoot-root length, 

dry weight,

Lubna et al. 

(2022)

Heavy metal Cr6+ (75 mg/l)

+

Cd2+ (200 mg/l)

Sesbania sesban Bacillus anthracis 

PM21

ACC deaminase, IAA, 

EPS

Improved 

antioxidant enzymes 

activity, decreased 

proline content, 

electrolyte leakage, 

malondialdehyde 

content

Seed germination 

percentage, root 

length, shoot 

length, 

photosynthetic 

pigments

Ali et al. (2021)

Heavy metal Cd (150 μg/ml) Oryza sativa Colletotrichum sp. IAA, gibberlic acid, 

bioaccumulation, 

phosphate 

solubilization, 

siderophore

n.a Root-shoot length, 

seedling biomass, 

chlorophyll, 

carotenoid content

Mukherjee et al. 

(2022)

Greenhouse gase 

+ heavy metal

eCO2 (800 μl/l)

Cd2+ (10 μM)

Sedum alfredii Bacillus 

megaterium

n.a Increased 

antioxidants, Cd2+ 

uptake, root to shoot 

transloaction

Shoot length, plant 

biomass, increased 

photosynthetic 

efficiency, altered 

rood exudate

Drought >10% PEG Ryegrass PGPR strains, 

Bacillus sp. 

WM13-24 and 

Pseudomonas sp. 

M30-35

More ACC deaminase 

activities and 

formation of mucoid 

colonies

Promoted growth 

and root 

development via 

regulating plant 

hormone and 

increased drought 

tolerance

Hormone 

distribution 

regulation, 

chlorophyll 

content, nitrogen 

and phosphorus 

contents

He et al. (2021)

Drought, 

temperature and 

heavy metal

1 mM of Ni, Cd, and 

Al each and 10% 

polyethylene glycol 

(PEG, 8000 MW) and 

45 °C

Glycine max L. Endophytic fungi 

LHL10 and LHL06

Accumulation of Ni, 

Cd, and Al, increased 

production of IAA

Mitigated metal 

accumulation and 

translocation, down-

regulating heavy 

metal ATPase gene, 

drought-related and 

heat shock protein 

90

Antioxidant 

activity, ABA and 

JA increased

Bilal et al. (2020)

Drought water potential (0.0, 

−2.8, −4.8, and −  

8.5 Ψ)

Solanum 

lycopersicum

Trichoderma Nutrient availability Higher shoot weight 

ratio

Increased tolerance 

to drought

Rawal et al. 

(2022)

IAA, Indole-3-acetic acid. EPS, Extracellular polymeric substance. *Stress exposed to plants,
#Stress response post PGPM treatment.
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enzymatic and non-enzymatic antioxidant synthesis to 
counteract temperature induced stress (Awasthi et al., 2015).

Microbes also have a temperature range for optimal growth, 
reproduction, and infection; therefore, they are severely influenced 
by global climatic change. Beyond the optimal range, microbes 
become inactivated or inhibited, suppressing their plant growth 
promoting or infecting characteristics unless they quickly adapt 
to the temperature change (Velásquez et al., 2018). However, some 
microbes are specialized to survive under extreme environmental 
conditions and support other plant communities by faster carbon 
allocation (Heinemeyer et al., 2006). These specialized microbes 
are evolved to grow optimally under higher and lower 
temperatures or tolerate extreme temperature shifts without 
getting inhibited. Specialized enzymes and an elaborate network 
of secondary metabolites (extremolyte/compatible solutes) like 
carbohydrates, polyols, amino acids, etc., and their derivatives 
assist microbes in evading the negative influence of extreme 
temperature (Raddadi et al., 2015). A thermophilic Klebsiella sp. 
with the optimal temperature at 60°C produced siderophore, 
indole acetic acid, and ACC deaminase during normal growth 
(Mukherjee et al., 2020). Thermomyces lanuginosus is one of the 
most abundant fungi found in agricultural waste/compost, having 
an optimal temperature range of 45–50°C consisting of 
thermostable enzymes (Kumar et al., 2017).

It is anticipated that in a particular plant-microbe relationship, 
both plants and microbe will be  subject to the effects of the 
extreme environmental conditions due to climate change. Plant 
disease occurs when both microbe and plant are oriented in a 
phenological manner and the risk of disease occurrence also shifts 
whenever a climate change is perceived by either plant or microbe 
(Figure 1). In this way, one can predict the possible outcomes of 
climate change on plant disease occurrence or whether the 
microbes will shift its niche to a broader environment due to 
resistance causing the disease to other plant groups (Ramsfield 
et al., 2016; Grace et al., 2019; Garrett et al., 2021). Some microbes, 
like arbuscular mycorrhizal fungi and endophytic bacteria, change 
their morphology to counteract the negative impact of elevated 
temperature in plants. A thermotolerant bacterial strain, B. cereus 
SA1 produces components such as indole-3-acetic acid, salicylic 
acid, and gibberellin, leading to increased chlorophyll content and 
the biomass of soybean plants under high temperature stress 
(Khan et al., 2020b). Similarly, a facultative thermophile, Klebsiella 
sp., having a temperature range of 18–65°C, can also adjust to 
fluctuating temperatures with the simultaneous secretion of plant 
growth promoting factors. The inoculated Oryza sativa plants 
showed twice the length and 18 times more total grain mass yield 
than the control plants (Mukherjee et al., 2020). Similarly, the 
hyphal structure of mycorrhizal fungi changed with a rise in 
degrees celsius and transformed from having more vesicles at low 
temperatures to more hyphal networks at higher temperatures 
(Hawkes et al., 2008). A recent study showed that inoculating a 
mixture of Paecilomyces formosus LHL10 and Penicillium 
funiculosum LHL06 provided tolerance against stress induced by 
a combined high temperature (45°C)-salinity-drought condition. 

The inoculation promoted plant growth and photosynthetic 
activity, enhanced micronutrient uptake, reduced lipid 
peroxidation, and upregulated antioxidant activity (Bilal et al., 
2020). These result in better carbon allocation to the rhizosphere 
and improved resistance (Heinemeyer et  al., 2006; Compant 
et al., 2010).

The negative effects of temperature stress due to global climate 
change on plants may be reduced by the microbial community 
surrounding it, as it increases the range of temperatures at which 
the host plant grows. For example, when grown separately, tropical 
grass (Dichanthelium lanuginosum) and microbe (Curvularia 
protuberate) cannot grow at higher temperatures. However, under 
a close association, they show a symbiotic relationship and grow 
adequately, providing tolerance to heat (Márquez et al., 2007). A 
similar pattern of heat tolerance was observed in tomato plants 
when C. protuberate fungus was present in the soil (Rodriguez 
et al., 2008), suggesting the importance of microbe interaction 
with plants to enhance tolerance. Meanwhile, some microbes help 
cope with multiple stresses in plants, such as the bacteria 
Burkholderia phytofirmans PsJN strain that improve tolerance to 
heat (tomato), salinity and freezing (Arabidopsis), low temperature 
(grapevine), drought (wheat) stress (Miotto-Vilanova et al., 2016; 
Issa et  al., 2018) and also possess antifungal characteristics 
(Miotto-Vilanova et al., 2016).

Effect of salinity on plant-microbe 
interaction

Current estimates state that 7% of the total world land area 
(1.1 × 109 ha) is affected by salinization (Bayabil et  al., 2021). 
Several environmental/anthropogenic factors cause an increase in 
soil salinity. Plants absorb the water-soluble salts formed by 
weathering of minerals. However, insufficient precipitation 
prevents the salts’ leaching, leading to the accumulation of soluble 
salt in the rhizosphere (Shrivastava and Kumar, 2015). Besides, 
saltwater intrusion through surface or groundwater connections 
can significantly influence soil salinity (Bayabil et  al., 2021). 
Salinity stress in soil arises from the disruption of the soil’s ionic 
balance due to excess cations like Na+, Ca2+, K+, and anions like 
Cl−, NO3

−. This ensues ion toxicity and osmotic imbalance 
irreversibility reducing plant growth and development. Moreover, 
high salt content disrupts water and nutrient uptake from 
surrounding soil due to osmotic stress. These effects induce 
oxidative stress due to the excessive generation of reactive oxygen 
species (ROS; Isayenkov and Maathuis, 2019). In addition, it 
affects the nodulation process, crop yield and reduces nitrogen 
fixation (reduction of nitrogenase; Kumar and Verma, 2018). Ion 
homeostasis, osmolyte accumulation, antioxidant regulation, 
polyamine mediated tolerance, nitric oxide assisted tolerance, 
hormonal regulation, etc., are some of the mechanisms adopted 
by plant or through plant-microbe interaction to impart resistance 
to adverse impacts of salinity stress (Gupta and Huang, 2014). 
Carrot plant varieties exposed to salinity stress by applying 
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100 mm NaCl for 22 days to maintain a topsoil salinity of 3.0 dS/m 
noticed significant biochemical changes like elevated ROS 
scavengers like glutathione, and ascorbic acid, the decline in 
reduced to oxidized glutathione ratio, and increased levels of 
osmoprotective proline (Kamińska et al., 2022). In another case, 
salt stress induction on a two-week-old Arabidopsis thaliana 
seedling by applying 150 mm NaCl for 5 days saw a 4 fold increase 
in alternative oxidase expression. The oxidase overexpression 
ensures better growth, reduced reactive nitric oxide, and ROS 
detoxification. Meanwhile, elevated superoxide, H2O2, lipid 
peroxidation, etc., imparted salinity tolerance for alternative 
oxidase silenced seedlings (Manbir et al., 2022). Meanwhile, plants 
innate defense mechanism in response to increased salinity 
initiates strong biochemical measures in halophytes than in 
others. Increasing the salinity of Crithmum maritimum, halophyte, 
from 200 to 500 mm NaCl spiked amino acids like glutamate, 
glycine, and tyrosine, while diminished serine, lysine, alanine, 
leucine, etc., content in foliar cells. A rise in the foliar concentration 
of phenolic compounds like 3-caffeoylquinic acid (64%) and 
saturated fatty acids like C16:0, C18:0, C20:0, and C22:0 resulted 
from increasing salinity. Besides, the interaction of salinity with 
nutrient limitation induces higher unsaturated fatty acids than 
saturated fatty acids. An increase in unsaturated to saturated fatty 
acid ratio is a crucial response against salinity stress as 
unsaturation increases plasma membrane permeability and 
fluidity (Castillo et al., 2022). Similarly, the proline, flavonoid, 
glycine betaine, anthocyanin, ascorbic acid content, and catalase-
peroxidase activity increased at the expense of chlorophyll, 
biomass, and protein content up on exposure to Seidlitzia 
rosmarinus (desert halophyte) against salinity (0, 300, and 600 mm 
NaCl) and mineral dust (0 and 1.5 g/m2 month; Zilaie et al., 2022). 
On the contrary, all the markers for plant resistance to salinity 
stress showed a downward plunge in many other plants like Pisum 
sativum, indicating eventual necrosis (Gupta et  al., 2021). 
Meanwhile, in some instances, exposure to salinity stress can 
be advantageous depending on the duration of exposure, severity, 
genotype, and plant development stages. Some studies have 
suggested that exposure to salinity has improved plant fertility by 
increasing clonal and sexual reproduction (Gupta et al., 2022).

Halophiles are groups of microbes that have optimum growth 
in wide range of NaCl concentration, like extremely halophilic 
(2.5–5.2 M), moderately halophilic (0.5–2.5 M), slightly halophiles 
(0.3–0.5 M) and halotolerant (<0.3 M) through several adaptive 
mechanisms (López-Ortega et al., 2021). Salt-in strategy excludes 
Na+ ions from cytoplasm through Na+/H+ antiporters and influx 
of K+ into the cytoplasm to balance the osmotic pressure. The 
salting-out strategy synthesizes and accumulates compatible 
solutes (trehalose, glutamate, ectoine, glycine, etc.) that act as 
stabilizers in the cell against stress (stabilize biological structures). 
Microbes also adopt antioxidant (enzymatic/non-enzymatic) 
responses against oxidative stress resulting from extreme salinity. 
These mechanisms are widespread in bacteria to survive other 
extreme conditions (Liu et  al., 2019). Extracellular polymeric 
substance (EPS) production under salinity stress is a protective 

covering having mass transfer restrictions, retain water to avoid 
possible desiccation, and contains biological agents like nucleic 
acids, enzymes, exopolysaccharides, displays a protective role 
against salt incursion into a strong network of cells acting in 
unison against the stress (López-Ortega et al., 2021). These highly 
salinity resilient microbial communities spread across genera 
Halomonas, Halothermothrix, Halobacillus Pseudoalteromonas, 
Arthrobacter, Vibrio, Salipiger, Chromohalobacter Streptomyces 
Bacillus, Viribacillus, Nesterenkonia, and many more genera with 
fewer halophilic members (Liu et al., 2019; López-Ortega et al., 
2021). A 6% NaCl content triggered EPS production in 
Tetragenococcus halophilus isolated from soya sauce moromi with 
52.7% recovery (both fractions) consisting of glucose, galactose, 
mannose, and glucuronic acid (Zhang et  al., 2022). Similarly, 
Chromohalobacter japonicus isolated from a rock salt waste 
accumulated ectoine, trehalose, N(4)-acetyl-l-2,4-
diaminobutyrate, alanine, valine hydroxyectoine, and glutamate 
(compatible solutes) in the presence of 5% NaCl (Ananina et al., 
2021). However, high salinity of 25% NaCl at pH 10.07 induced 
carotenoid pigmentation (0.98 g/l) in Natrialba sp. M6, found in 
salt lake water and sediments, possesses anticancer and antiviral 
activity (Hegazy et  al., 2020). Similarly, fungi identified from 
hypersaline environments like water and sediments of salterns fall 
under genera Hortaea, Phaeotheca, Aureobasidium, 
Trimmatostroma, Cladosporium, Aspergillus, and Penicillium. The 
mechanism of halotolerant fungi aligns with that of halophilic 
bacteria/archaea, with the predominant tolerance route varying 
between species (Chung et al., 2019). A recent investigation on the 
salinity stress response of Aspergillus sydowii under hypoosmotic 
(0 mm NaCl) and hyperosmotic (2.0 mm NaCl) conditions 
revealed the accumulation of compatible solutes like glycerol, 
trehalose, arabitol, and mannitol (Rodríguez-Pupo et al., 2021).

The mostly investigated plant growth-promoting microbial 
(PGPM) species fall under genera like Pseudomonas, 
Flavobacterium, Rhizobium, Acetobacter, Bacillus, Azospirillum, 
Aeromonas, etc., (Etesami, 2020), arbuscular mycorrhizal fungi 
genera like Funneliformis, Rhizophagus, Glomus, Claroideoglomus, 
etc., (Diagne et al., 2020), and ectomycorrhizal fungi genera like 
Amanita, Paxillus, Laccaria, Hebeloma, Pisoli (Thiem et al., 2020). 
Salt tolerant PGPR confers the additional survival capacity to 
plants through nitrogen fixation, essential enzymes, 
phytohormones, solubilization of micro/macronutrients, plant 
pathogen inhibition, etc., (Etesami, 2020). Halophiles/halotolerant 
are an important class of PGPMs with immense plant growth 
promoting capacity. Such a group of strains composed of 
Halomonas pacifica, Halomonas stenophila, Bacillus haynesii, 
Bacillus licheniformis, Oceanobacillus aidingensis, etc., sequestered 
from coastal regions of Saurashtra, Gujarat, India exhibited 
nitrogen fixing, indole acetic acid production, phosphate-potash 
solubilization ability, and ACC deaminase activity (Reang et al., 
2022). Similarly, PGPM communities colonizing the rhizosphere 
(endophytic) activate defensive mechanisms against increased salt 
concentration and stabilize their growth (López-Ortega et  al., 
2021). This allows PGPM to maintain the plant growth-promoting 
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characteristics even under high salt content and stimulate the 
plant’s salinity resistance. This synergistic plant-microbe 
interaction under the influence of salinity results in a cumulative 
stress response enabling better or normal growth during plant 
salinity stress. Meanwhile, PGPMs without salt tolerance severs 
mutualistic association with plants due to cell death/senescence or 
preference for their survival like spore or cyst formation (Etesami, 
2020). The synergistic effect improved the stress response in 
Seidlitzia rosmarinus inoculated with Zhihengliuella halotolerans 
indicated by increased levels of Mg2+ (63%), Fe2+ (45%), Mn2+ 
(21%), Na+ (53%), chlorophyll (40%), biomass (35%), seedling 
quality index (104%), and protein (48%). Interestingly, the 
presence of PGPM decreased the plant’s secondary metabolite 
content in response to stress by promoting growth. PGPM 
prevents cellular damage by terminating ROS production, 
reducing allied scavenging metabolite production in plants, and 
promoting growth-related factors (Zilaie et al., 2022). Meanwhile, 
PGPM’s interaction with non-halophytes confers stress defense 
and promotes plant growth. ACC deaminase positive Bacillus 
marisflavi and Bacillus cereus, inoculated to Pisum sativum 
seedlings exposed to salinity (1% NaCl), showed alleviated levels 
of crucial parameters of plant like reducing sugars, biomass, 
phenols, flavonoid, chlorophyll content, and antioxidant enzyme 
levels (Gupta et al., 2021).

A PGPM consortium of Bacillus sp., Delftia sp., Enterobacter 
sp., Achromobacter sp. showing phosphate solubilization and 
siderophore production, indole acetic acid, and ammonia 
inoculated to Solanum lycopersicum showed enhancing effect on 
plant growth and stress response against salinity (Kapadia et al., 
2021). Plant growth promoting endophytic bacterias like 
Curtobacterium oceanosedimentum SAK1, Curtobacterium luteum 
SAK2, Enterobacter ludwigii SAK5, Bacillus cereus SA1, 
Micrococcus yunnanensis SA2, Enterobacter tabaci SA3 has shown 
to increase biomass growth of Waito-C rice under slat stress 
(150 mm NaCl) due to increased glutathione, and sugar content. 
The salt tolerance was augmented by improved expression of 
flavin monooxygenase and auxin efflux carrier (Khan et  al., 
2020a). The fungi-plant interaction also exhibited increased 
growth, antioxidant activity, and compatible solute accumulation 
under salinity stress (Diagne et al., 2020). Euonymus maackii Rupr 
exposed to salinity stress (50-200 mM NaCl) reduced nutrient 
uptake, photosynthetic capacity, and morphology but stimulated 
the antioxidant system and salt ion accumulation. Meanwhile, 
treatment with Rhizophagus intraradices showed improved 
superoxide dismutase, peroxidase, and catalase activity, plant 
growth, chlorophyll content, nutrient uptake, and reduced ion 
accumulation (Li Z. et al., 2020). Similarly, Alnus glutinosa Gaertn 
inoculated with ectomycorrhizal fungus Paxillus involutus OW-5 
showed improved growth and proline content under a moderate 
salinity of 50 mM NaCl (Thiem et al., 2020). In many cases, fungal-
plant interaction also decreases the plant’s defensive mechanism 
by stimulating plant growth and reducing salt stress. Glycine max 
seedling primed with endophytic-growth promoting fungus, 
Bipolaris sp. CSL-1 decreased plant’s stress-related gene expression 

and improved plant growth by reducing salt stress through ion 
homeostasis (Na+/K+ exchange), bioaccumulation, ion 
translocation, etc., and fungal phytohormone secretion upon 
exposure to 200 mM NaCl stress (Lubna et  al., 2022). Similar 
results were returned by applying endophytic fungus Porostereum 
spadiceum-AGH786 to Triticum aestivum at 140 mM NaCl stress 
(Gul et al., 2022).

Effect of heavy metal pollutants on 
structure and function of the microbe 
and its interaction with plants

Heavy metal pollution is a serious environmental issue which 
spread across the globe. Metals and metalloids with a density ≥5 g/
cm2 causes heavy metal pollution. These fall under two groups: 
toxic metals – arsenic, cadmium, copper, nickel, chromium, 
cobalt, lead, mercury, tin, and zinc, precious metals – gold, 
platinum, ruthenium palladium, and silver, and radionuclides – 
americium, radium, thorium, and uranium. The leakage of excess 
metals into soil and water transpires due to biotic factors like 
weathering of rocks, leaching from metal ores in soil, atmospheric 
deposition, or anthropogenic sources like mining, electroplating, 
dye and pigment manufacturing, battering production, tannery, 
and other sources generating or employing metals for various 
processes (Devi et al., 2022). In soil, metal ions are an important 
abiotic factor for the proper growth of plants by supplying 
essential micronutrients. Heavy metal ions under minimum 
inhibitory level fail to elicit any significant negative implications 
on plant metabolism. However, bioaccumulation of these heavy 
metals to toxic levels leads to interference in metabolic pathways, 
distortion of biomolecules (DNA, RNA, protein), cell wall 
destabilization, etc., that triggers cellular defence mechanisms like 
ROS (Nazli et al., 2020). Leaf chlorosis, protein degradation, lipid 
peroxidation, etc., ensues from the plant’s oxidative response. 
Plants raise similar morphological and biochemical mechanisms 
to defend against heavy metal toxicity as microbes. Morphological 
modifications act as the first line of defence like cell wall alteration, 
thick cuticles, and trichomes formation. The biochemical 
mechanism overtakes toxicity resistance by increasing metal 
toxicity and paves the way for intracellular metal accumulation 
(Nazli et al., 2020).

The biochemical mechanism attempts to detoxify, reduce, 
immobilize, efflux, etc., heavy metals with the assistance of various 
biomolecules. Metal chelators like nicotianamine, citrate, proline, 
glutathione, metallothioneins, phytochelatins, flavonoids, caffeic 
acid, and quercetin enable extracellular and intracellular 
sequestration promoting metal speciation for biochemical 
processing. Various transporter systems like cation diffusion 
facilitator, ATP-binding cassette, cation antiporters, natural 
resistance-associated macrophage, heavy metal ATPases, etc., are 
involved in ion homeostasis of essential metal ions and efflux of a 
toxic level of heavy metal (Viehweger, 2014). This transporter 
system assists in heavy metal accumulation, compartmentalization 
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in inert form, and translocation into roots and shoots, negating 
the toxicity effect (Hassan et al., 2022). Metallochaperones play a 
pivotal role in the spatial relocation of metal ions in plant cells for 
further process according to relevance. ROS generation by redox 
imbalance in plants or directly by heavy metals can cause 
irreversible damage to the cellular components. Enzymatic and 
non-enzymatic antioxidants act as scavengers to quench the 
effects of oxidative stress. Phytohormone production (jasmonic 
acid, ethylene, abscisic acid, etc.) is another strategy adopted by 
plants to circumvent heavy metal toxicity by promoting cellular 
growth or as signal transduction molecules to trigger a specific 
defence mechanism (Viehweger, 2014). Cd2+ stress on Spinacia 
oleracea negatively impacted biomass growth, chlorophyll content, 
and gas exchange attributes. However, plant stress response 
elevated hydrogen peroxide, proline accumulation, ascorbic acid 
content, malondialdehyde, and enzymatic antioxidant activity. 
Meanwhile, foliar application of peptone enhanced plant growth 
and photosynthesis due to lower Cd2+ uptake, reduced oxidative 
stress response, and increased antioxidant activity (Emanuil et al., 
2020). Similarly, Capsicum annuum supplemented with 40 mg/l 
Cr4+ generated a moderate level of stress response like growth 
inhibition, rise in malondialdehyde content, etc. The addition of 
24-epibrassinolide observed a significant reaction against heavy 
metal toxicity and Cr4+ accumulation. Many genes related to auxin 
signaling, glutathione mechanism, MAPK pathway, ABC 
transporters, and other stress-related genes were upregulated, 
leading to better stress response, leaf architecture, root growth, 
and chlorophyll content. Moreover, the root accumulated more 
Cr4+ than leaves due to the regulation of metal transport gene 
expression (Mumtaz et al., 2022).

Many investigations have pointed out that heavy metal toxicity 
provokes DNA damage, protein denature, inhibits bacterial cell 
division and DNA transcription culminating in the loss of cell 
viability. Hence, microorganisms have evolved and adapted to 
survive and grow under heavy metal toxicity by adopting different 
morphological and biochemical upgradation. Heavy metal 
tolerance indicates the increasing limit till microbes cell retains its 
viability, where the tolerance mechanism can prevent metal ions 
from indulging detrimental damage to cell machinery (Syed et al., 
2021). The morphological adaptation deters metal ions from 
entering the cytoplasm and induces a series of cellular defence 
mechanisms that could lead to apoptosis. For example, microbes 
modify cell wall composition to restrict the permeability of metal, 
like down-regulation of porin production to exclude Cu2+ from 
membrane ion channel. In addition, the functional groups 
available on the cell wall direct the adsorption and accumulation 
of metal ions, especially the carboxyl groups presented by 
proteoglycan. Due to this, gram +ve bacteria possess better heavy 
metal adsorption than gram −ve bacteria. Besides, EPS production 
in response to physiological stress has also been reported to 
accumulate heavy metals depending on the amount of anionic 
carbohydrate content (Nanda et al., 2019). Autoaggregation (same 
species) or coaggregation (different species) strategy also provides 
a cumulative response against metal toxicity. The aggregation 

followed by biofilm formation is observed in some microbial 
communities (Pal et al., 2022). However, cells are armed with 
biochemical adaptations when the metal ions traverse the cell wall. 
Extracellular efflux by ionic pumps encoded by bacterial plasmid 
confers resistance against toxic heavy metals like Sb3+ and Zn2+. 
Microbes have also exhibited heavy metal detoxification by 
complex formation using thiol-containing groups like 
metallothioneins, redox conversion as an electron acceptor or 
enzymatic transformation into less toxic oxidation forms 
(cytochrome C oxidase, mercuric reductase), and intra-extra 
cellular sequestration inside vacuoles (Nanda et  al., 2019). 
Microbes secrets certain secondary metabolites like siderophore, 
oxalate, phosphate, sulfate, etc., as chelating agents for extracellular 
sequestration in a steady state heavy metal concentration. 
Enterobactin, yersiniabactin, pyoverdine, pyochelin, aerobactin, 
etc., are some of the microbial siderophores contributing to heavy 
metal resistance (Pal et  al., 2022). Different genes encode a 
combination of these mechanisms to alleviate the toxic effects of 
heavy metals. The arsRDABC operon, CadA system, merRDTPA 
operon, cnrCBA efflux system, copABCD, czrCBA operon encode 
resistance for As5+/Sb3+, Cd2+, Hg2+, Ni2+/Co2+, Cu2+, Zn2+, 
respectively via reduction-efflux mechanism (Nanda et al., 2019). 
Biomethylation of metalloids, like dimethylselenium, during 
volatile compound formation followed by permeation across cell 
membranes also assists in metal resistance. Also, some 
investigations have found microbes to down-regulate chemotaxis 
proteins and cellular motility proteins for heavy metal resistance 
(Pal et al., 2022).

Rhizobacteria are primarily involved in the heavy metal 
resistance in soil. Enterobacter cloacae MC9 cultured from 
rhizosphere soil around Capsicum annum showed maximum 
resistance towards Cd2+, Cr6+, Pb2+, and Ni2+. E.colacae MC9 
production of siderophores-salicylic acid, 2,3-dihydroxybenzoic 
acid, ACC deaminase, and EPS conferred heavy metal tolerance. 
However, as heavy metal concentration increases, the defensive 
mechanism weakens to the maximum tolerance limit, beyond 
which cell viability is lost due to respiratory inhibition. 
Increasing heavy metal content reduced the indole acetic acid 
production capacity of the rhizobacteria (Syed et  al., 2021). 
Similarly, Bacillus sp. S3 cultured from soil collected from the 
antimony mining area showed potential multi-metal resistance 
capability against Cd2+, Cr4+, Cu2+, and Sb3+. The increasing 
metal ion concentration (toxicity) induced EPS production 
from Bacillus sp. S3 with increased protein content. This 
aromatic-like protein precipitates metal ions other than 
antimony accompanied by a certain degree of intracellular 
immobilization. Meanwhile, intracellular bioaccumulation and 
detoxification depicted Sb3+ resistance rather than EPS 
adsorption (Zeng et  al., 2020). Fungi also have adapted 
resistance against metal toxicity, assisting in a strong mutualistic 
survival with plants in the heavy metal polluted rhizosphere 
(Văcar et al., 2021). Trichoderma aureoviride TaN16 found in 
the rhizosphere soil of rice plants was found to possess multi-
heavy metal resistance against Cd2+, Ni2+, and Co2+ (Sarkar et al., 
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2022). Genetically modified Pichia pastoris with overexpressed 
cytochrome b5 reductase showed high resistance to Au3+ and 
Pd2+ through bioaccumulation and reduction into nanoparticles 
(Elahian et al., 2020). Cladosporium sp., Didymella glomerata, 
Fusarium oxysporum, Phoma costaricensis, and Sarocladium 
kiliense (Ascomycota) fungal species showed very high minimal 
inhibitory concentration for Hg2+ (140–200 mg/l) attributed to 
adsorption of metal ions to the cell surface and possible 
intracellular ingestion leading to a biosorption capacity of 33.8 
to 54.9 mg/g dry weight. Lecanicillium sp., Fusarium solani, 
Fusarium equiseti, Penicillium crustosum, Penicillium 
brevicompactum, Cadophora malorum, Stagonosporopsis sp., and 
Mortierella alpina also indicated Hg2+ tolerance capacity (Văcar 
et al., 2021). Komagataella phaffi isolated from soil around a 
mine showed high resistance against Cr, Pb, Cd, and Cu 
(Liaquat et al., 2020). These metal removal characteristics in the 
form of bioaccumulation and adsorption make fungi ideal 
candidates for heavy metal bioremediation and alleviating the 
metal toxicity of plants.

In the event of heavy metal toxicity or gradual rise in toxic 
levels in soil, microbes with ability to avoid heavy metal stress 
initiate their resistance mechanism to normalize their growth 
compared to the surrounding environment. Similarly, heavy 
metal resistance protocols are activated in plants to facilitate 
growth and allied process. Microbes negative for heavy metal 
resistance can evolve the defence mechanism to an extent by 
adaptation or orthogonal gene transfer, while plants without 
stress tolerance could wilt away. Symbiotic association of 
resistant PGPMs with plants in the rhizosphere supply 
necessary plant hormones, improve nutrient availability, 
promote plant’s antioxidant response, and precipitate heavy 
metal away from plant tissues (siderophore) to sustain plant 
growth and mutualistic benefits for microbes (Kumar and 
Verma, 2018). Hence, PGPMs need to survive under metal 
toxicity to augment or impart stress tolerance to plants. 
Leclercia adecarboxylata MO1’s secretion of siderophores 
assisted the tolerance against Zn2+and allowed indole acid 
production that augmented the antioxidant enzyme activity, 
lipid peroxidation, glutathione content to minimize zinc 
toxicity in cucumber seeds (Kang et al., 2021). Meanwhile, 
some studies reported plant-microbe interaction to reduce the 
plant’s stress-related genotypic and phenotypic response by 
effectively quenching heavy metal toxicity and promoting 
growth (Jan et al., 2019). The type of heavy metal toxicity can 
modulate the PGPM’s mechanism for ensuring plant cell 
viability. Pb2+ and Cu2+ toxicity initiated considerable indole 
acetic acid production in Bradyrhizobium japonicum (nitrogen 
fixing) than a decline in Ni2+. Meanwhile, an increase in Cu2+ 
and Ni2+ showed a reduction in biomass growth. Inoculation 
of PGPM to lettuce plant showed a combined growth 
promotion and reduction in heavy metal bioavailability due to 
sorption on the cell membrane by amine and nitro group to 
impact the plant’s survivability under heavy metal toxicity 
(Seneviratne et al., 2016). Bacillus cereus inoculated to soil 

sowed with Brassica nigra seedling conferred the plant 
resistance to increasing Cr3+ with multiple defence 
mechanisms. The surge in osmotic adjustment (proline and 
sugar), antioxidant enzyme activities, bioaccumulation, and 
translocation led to increased plant growth (shoot, root 
length), biomass content, photosynthetic pigments, water 
status, etc., (Akhtar et al., 2021). The stronger heavy metal 
resistance of PGPM imparts stable interaction leading to 
higher survivability and proper plant growth. The potential 
multi-metal impedance of Bacillus anthracis PM21conferred 
proper growth and photosynthesis under Cd2+ and Cr4+ 
toxicity (Ali et al., 2021). Moreover, PGPM-plant interaction 
also improves the plant’s resistance against heavy metal 
toxicity by increasing bioaccumulation (inside cellular 
compartments) and translocation (root to stem), as observed 
for Bacillus paranthracis NT1 increasing Cd2+ uptake by 41.8% 
in Solanum nigrum (Chi et al., 2022). Similarly, the symbiotic 
relationship of fungus, Rhizophagus irregularis, and grass 
species Brachiaria mutica led to improved chlorophyll and 
protein content due to antioxidant-mediated resistance and 
bioaccumulation of Cr6+ toxicity (Kullu et al., 2020). Moreover, 
co-inoculation of arbuscular mycorrhizal fungus-Glomus 
mosseae and the rhizobacteria Sinorhizobium meliloti to alfa 
alfa showed a significant improvement in Cd2+ resistance than 
the influence of individual microbes. Co-inoculation increased 
antioxidant enzymes that mitigated the effect of lipid 
peroxidation and ROS (Wang et al., 2021).

Similar to rhizobacteria, endophytic PGPM plays a pivotal 
role in a plant’s survival against heavy metal toxicity. Endophytic 
bacteria, Enterobacter ludwigii SAK5, and Exiguobacterium 
indicum SA22 isolated from various plants growing near sea 
beach showed high Cd2+ and Ni2+ accumulation and elevated 
glutathione content for stress mitigation. Rice seed cultivars 
inoculated with the strains in hydroponic medium showed 
heavy metal accumulation in root than shoot. The endophytes 
prevented the toxic effects of heavy metals by reducing oxidative 
stress, stress response gene expression, and abscisic acid 
production. Meanwhile, biomass growth and chlorophyll 
content improved (Jan et  al., 2019). Similarly, endophytic- 
photostimulation-root colonizing fungi, Colletotrichum sp. 
isolated from the leaves of Eupatorium triplinerve effectively 
reduced the bioavailability of Cd2+ during rice seedling 
germination through bioaccumulation and biosorption. This 
augmented plant growth, biomass, and pigment production 
under metal toxicity (Mukherjee et al., 2022). Inoculation of a 
consortium of such endophytic fungi to Alocasia calidora 
imparted resistance and growth against landfill soil 
contaminated with a mixture of heavy metals through the 
production of compatible solute, antioxidant, and heavy metal 
bioaccumulation (root and shoot; Hassan et al., 2022). Recent 
works have demonstrated biochar’s beneficial traits like high 
surface area for PGPM to attach, high carbon to increase soil 
organic matter, nutrient availability for the microbes, improved 
cation exchange efficiency, high water retention, etc., to improve 
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plant’s toxicity resistance and heavy metal removal through 
plant-microbe interaction (Harindintwali et al., 2020).

Influence of drought as a result of global 
climate on plant-microbe interaction

One of the identifiable impacts of climate change is high 
fluctuation in precipitation patterns influencing the moisture 
content in air and soil, leading to inundation or drought. 
Insufficient or lack of moisture, drought stress poses a greater 
threat to food security as varying exposure affects crop yield in 
different amplitude (Gupta et al., 2022). Water deficient conditions 
trigger a series of morphological and physiological changes in 
plants as an after-effect or to stabilize the growth (Kumar and 
Verma, 2018). In the early phase, drought stress reduces shoot 
growth while maintaining root growth resulting in an enhanced 
root/shoot ratio. Besides, severe drought wrinkles the plant cell 
wall, leading to the development of fewer leaves and reducing the 
plant’s fresh weight due to a fall in turgor pressure. The root 
morphology also changes (shrinking of roots) to alter water and 
nutrient allocation to various plant parts under exposure to 
drought stress to prevent dehydration that could force leaves to 
lose the ability to use photosystem II. Lack of water also affects the 
availability and absorption of nutrients through roots and 
relocation to other parts (Gupta et al., 2022). In addition, drought 
stress affects cell wall integrity, produces ROS, promotes early leaf 
senescence, increases ethylene production, decreases chlorophyll 
content, and reduces photosynthetic activity (Kumar and Verma, 
2018). Moreover, salts released from soil accumulate in the 
rhizosphere without water to dissolve and translocate, giving rise 
to salinity stress (Gupta et al., 2022).

Certain plant varieties exposed to water scare situations for 
generations would have adapted genetical traits to survive and 
grow normally. The drought-stress tolerance evolved by these 
plants also use phytohormones to improve growth under limited 
water content, activate cellular mechanisms to efflux excess salt 
from plant cells and translocate it to other parts, produce 
compatible solutes to mitigate the effect of drought stress and 
maintain water balance, increase antioxidant enzymes/chemical 
to scavenge excess ROS generated, etc., (Gupta et al., 2022). Plants 
also take up physiological measures like altering stomatal 
conductance, root length increment, leaf rolling, shortened life 
cycle, hairy leaves, etc., to escape water scarcity or maintain water 
potential (Seleiman et  al., 2021). The metabolomic approach 
revealed the enhanced production of glycine betaine, proline, 
sorbitol, mannitol, unsaturated fatty acids, tocopherol, ascorbate, 
and jasmonate conferred drought stress tolerance in Thymus 
serpyllum (Moradi et al., 2017). Moreover, modulating the abscisic 
acid (ABA) concentration is a primary plant response to drought 
(osmotic stress or water deficit). Any change in ABA initiates a 
signaling cascade that leads to extensive transcriptional 
modification, phosphorylation events, and physiological 
modifications in stomata, such as the closing of stomata to 

mitigate transpiration rate (Li S. et al., 2020; Soma et al., 2021). 
Some studies found that exogenous addition of ABA, glycine 
betaine, and glutathione imparted drought tolerance to plants by 
lowering oxidative stress, declining lipid peroxidation, stimulating 
compatible osmolyte, antioxidant enzymes, etc., (Nawaz and 
Wang, 2020; Sohag et al., 2020). The expression of transcription 
factors, like MYB, MAT, ERF, and CCR, has been found to effect 
stress-responsive genes in plants encoding a large spectrum of 
secondary metabolites (Yadav et al., 2021). Overexpression of gene 
encoding transcription factor, TaWRKY2 significantly enhanced 
the expression of stress responsive genes like DREB1, DREB3, 
GST6, ERF5a, TaWRKY19, and TIP2 (Gao et  al., 2018). 
Aquaporins are primary water channel proteins that transport 
water and neutral solutes across the membrane. Overexpression 
of tonoplast aquaporin intrinsic protein (TaTIP4;1) in Arabidopsis 
and rice enabled seedling germination and growth under drought 
and salt stress (Wang et al., 2022).

The scarcity or absence of water also impacts microbial 
diversity, cellular functions, and soil characteristics (Manzanera, 
2021). Xerophilic microbes have been found to survive under low 
water activity (aw < 0.7), the mole fraction of water, arising due to 
lack of moisture, desiccation from radiation, high salt 
concentration, etc. The aw for pure water is considered to be 1 and 
it decreases with the increment of salts or decline in water content. 
Meanwhile, theoretical aw minima for halophiles range between 
0.611–0.632. These xerophiles become the initial colonizers on soil 
surfaces with low aw that pave the way for extended harboring of 
life similar to planetary body surfaces that are under the influence 
of radiation (Merino et al., 2019). The primary defense mechanism 
of these microbes is xeroprotectants which are osmolyte/
compatible solutes protecting the cell from an increase in salt and 
desiccation. These include sugars (trehalose, fucose, fructose, etc.), 
polyols and their derivatives (mannitol, glycerol, inositol, etc.), 
amino acid derivatives (ectoine, glycine, proline, etc.,), 
methylamine (glycine betaine), and certain DNA molecules. Ion 
homeostasis (to avert osmotic imbalance), heat shock response, 
antioxidant molecules, specific protein synthesis (dehydrin), water 
storing or attracting molecules like proteins and 
exopolysaccharides, indole acetic acid, cytokinins, ACC 
deaminase, volatile organic compounds, etc., are also involved in 
managing water deficient condition by microbes (Manzanera, 
2021). A sugar-tolerant fungus, Xeromyces bisporus was reported 
to have the lowest limit of aw, ~0.605, exhibiting proper cell 
division. Pseudomonas syringae, widely transported within 
bioaerosol, possess a protein coating that freezes water at a warmer 
temperature that provides water as an internal thin film under 
exposure to short-wave radiation. Pseudomonads also secrets 
hygroscopic biosurfactants and alginate, increasing the 
bioavailability of water in the vicinity of the microbe (Stevenson 
et  al., 2015). Microbial community analysis of a deep-sea 
hypersaline anoxic basin, the Kryos basin, at the seawater 
(MgCl2)-brine interface having aw of ~0.4 found sulfate-oxidizing 
bacteria (likely Desulfovermiculus and Desulfobacula) and aerobic 
methanotrophs (Steinle et  al., 2018). A recent investigation 
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isolated Bacillus sp. and Paenibacillus sp. from rhizosphere soil of 
the Caatinga biome, Brazil grew under aw of 0.919 by synthesizing 
exopolymeric substance, indole acetic acid, and ACC deaminase 
(Braga et  al., 2022). Similarly, species belonging to taxa 
Antarctomyces, Cladosporium, Mortierella, Leptosphaeria, 
Penicillium, Pseudogymnoascus, and Thelebolus isolated from 
rhizosphere, roots, and leaves of Antarctic angiosperms were 
capable of normal growth at aw of 0.81 and 0.66 (Coelho et al., 
2021). Another study identified xerophilic Penicillium 
michoacanense, Penicillium melanosporum, and Penicillium 
siccitolerans in the soil samples from Spain and Mexico also grew 
normally at aw of 0.76 (Rodríguez-Andrade et al., 2021).

Therefore, microbes associated with plants initiate their 
defense mechanism and stabilize their growth after exposure to 
drought stress. These microbes releases metabolites that build up 
the stress response and normal growth of associated plants by 
increasing the root/shoot ratio, developing more biomass, 
improving the water uptake capacity, improving the bioavailability 
of nutrients, increasing productivity, and resisting drought 
(Al-Karaki et al., 2004; Egerton-Warburton et al., 2008; He et al., 
2021; Rawal et  al., 2022). In return, the root exudates supply 
additional factors that influence the stress response of these 
microbes (Gupta et al., 2022). Bacteria such as P.syringae (having 
flg22 as PAMPs) can be sensed by receptor FLS2 resulting in the 
closure of stomata to prevent microbe entry in Arabidopsis as a 
result of ABA induction (Melotto et al., 2006). Moreover, elevated 
ABA leads to repression of the salicylic acid pathway in plants 
post-infection, and therefore plants have reduced ETI and 
tolerance (Jiang et al., 2010). Xu et al. (2018) examined the impact 
of soil moisture content on sorghum and concluded that there is 
a reduction in drought stress implication in the rhizosphere. 
Microbes like Ralstonia solanacearum are important in sensing the 
soil moisture content as the expression of two cell wall-related 
kinase genes (WAK16 AND WAK3-2) was reduced and reflected 
a weaker immune in ginger plants (Jiang et al., 2018). Biofilm 
formation on roots and secondary metabolites secretion from 
xerotolerant rhizobacteria diluted serious implications of drought 
stress in Glycine max L, increasing root and shoot fresh weight 
(Braga et al., 2022). Indole acetic acid drained into the rhizosphere 
by Rhodobacter sphaeroides KE149 effected notable changes in 
drought stress tolerance in adzuki bean plants. The inoculation 
decreased endogenous ABA and jasmonic acid, increasing 
salicylic acid and proline content. A significant increase in Ca2+, 
Mg2+, K+ accumulation by lowering Na+ was also observed in the 
shoot region of the plant. These biochemical changes improved 
root length, shoot length, biomass weight, and chlorophyll content 
of adzuki bean plants (Kang et al., 2020). Another study conducted 
by Cheng et  al. (2022) suggested that Funneliformis mosseae 
(Arbuscular mycorrhizal fungus) and trifoliate orange interaction 
too had a positive impact on plant growth and development as this 
interaction increased phenolics, terpenoid content and reduced 
alkanes, esters, and amides from the root exudates thus mitigating 
the effect of drought. A consortium of arbuscular mycorrhizal 
fungi belonging to genera Glomus, Gigaspora, Acaulospora, and 

Entrophospora inoculated into two carob ecotypes increased plant 
growth, stomatal conductance, photosystem II efficiency, water 
content, and mineral uptake along with a reduction in lipid 
peroxidation and oxidative stress after 4 days of recovery from 
drought stress (Boutasknit et al., 2020). The application of dual 
fungal-rhizobacterial application has also affected the 
physiological and morphological improvement in plants during 
drought stress exposure by abating oxidate damages and 
augmenting water/nutrient supply (Azizi et  al., 2021). These 
findings must also be aligned with varying climate patterns to 
improve or sustain the current agroeconomic scenario.

Effect of elevated greenhouse gases on 
plant-microbe interaction

Greenhouse gases spread layers of protective covering over the 
earth’s atmosphere, maintaining a surface temperature of 
14°C. Carbon dioxide, methane, nitrogen oxides, and ozone 
contribute to the GHG that absorbs the infrared radiation 
reflected from the earth’s surface. Besides, the gaseous layer 
absorbs UV radiations and other potentially harmful radiation 
from reaching the biosphere (Cassia et al., 2018). At balanced 
GHG levels, the gases enter the plant via stomata and get 
integrated into the plant’s biochemical cycle, thereby fixing 
atmospheric GHGs into biomass and biomolecule. This leads to 
root exudates and plant carbohydrates benefiting rhizobial and 
endophytic microbes and strengthening plant-microbe interaction 
(Weyens et  al., 2015). However, many natural and (mostly) 
anthropogenic events have destabilized GHG composition 
translating into a rise in atmospheric temperature at an alarming 
rate. The elevated GHG levels provoke climate changes like floods, 
drought, heat waves, etc., that exerts extreme stress and toxicity on 
plants and microbe, affecting the agroeconomy worldwide. 
Oxidative stress and ROS generation resulting from a rise in GHG 
levels and climate changes have severe implications for plants and 
associated microbes (Cassia et al., 2018).

Carbon dioxide occupies 76% of GHG emissions worldwide. 
Hence, increasing the level of CO2 poses grave implications 
compared to other greenhouse gases (USEPA, 2022a). The 
elevated CO2 levels (eCO2) can influence the plant-microbe 
interaction and their stress tolerance capacity. Many investigations 
have found eCO2 to directly translate into higher biomass 
production, nutrient utilization, photosynthetic rate, water 
consumption, and carbohydrate content. The improved 
photosynthetic conversion increases product allocation to roots, 
leading to branched roots and modifying root exudate 
composition. Besides, improved biomass growth enables higher 
heavy metal accumulation, extracellular sequestration by 
siderophore production, and other compatible solute production 
to mitigate rhizosphere stress factors (Rajkumar et  al., 2013). 
Arsenic accumulation and severe oxidative stress ensued from 
exposure of barley toward. As toxicity indicated by a higher level 
of H2O2 and lipid oxidation under ambient CO2. However, eCO2 
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(620 ppm) improved the plant’s root/shoot dry weight and 
antioxidant system, alleviating As stress (AbdElgawad et al., 2021). 
These changes alter the diversity and activity of the rhizosphere 
microbial community. The influence on plant growth promoting 
microbial growth in the rhizosphere further promotes plant 
growth and stress tolerance. The endophytic microbes also benefit 
from the improved biomolecule contents of plants, enabling their 
growth and plant-promoting factor production (Rajkumar et al., 
2013). Biofortification of Sedum alfredii Hance (hyper and 
non-hyper accumulator) with a combined eCO2 (800 μl/l) and 
endophyte inoculation of Bacillus megaterium sp. M002 under 
Cd2+ stress resulted in greater plant biomass, increased 
photosynthetic efficiency, decreased pH, organic carbon, nitrogen, 
and sugar content of root exudate, higher Cd2+ uptake, root to 
shoot translocation, and increased antioxidant enzyme content 
(Tang et  al., 2019). Moreover, many studies have reported 
increased biomass content of soil microbes under high CO2 partial 
pressure (Singh et al., 2019). The atmospheric CO2 can dissolve in 
the moisture trapped within the soil particles followed by 
microbial uptake, thereby influencing microbial stress response. 
The eCO2 alleviated nCeO2 and nCr2O3 nanoparticle toxicity by 
enhanced microbial utilization of carbon, reduced nanoparticle 
availability (uptake), and metal resistance microbial selection. 
These conditions improved the soil’s microbial diversity by 
selecting metal-resistant microbes belonging to classes 
Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia (Luo 
et al., 2020). Also, eCO2 could affect the biodegradation ability of 
soil microbes due to a decrease in nitrogen as a consequence of 
plant biomass growth and reduced carbon to nitrogen ratio (Singh 
et al., 2019).

Nitric oxide (NO), nitrous oxide (N2O), and nitrogen 
dioxide (NO2) make up the oxides of nitrogen involved in GHG 
emissions. The NOx in the atmosphere routes towards plants 
through foliar or rhizobial adsorption and stomatal 
translocation into the apoplast. These oxides act as one of the 
precursors of biochemical compounds (amines, amino acids) 
during photochemical reaction through the nitrate assimilation 
pathway, functioning as nutrition to plants (Weyens et  al., 
2015). Climate change induced plant stress, and increased NOx 
in the atmosphere could induce excess reactive nitrogen species 
(RNS) generation leading to oxidative stress detrimental to the 
plant’s photosynthetic activity and growth (Cassia et al., 2018). 
However, RNS also function as signaling molecules promoting 
legume-bacteria interaction for root nodulation, improving 
nitrogen-fixing capability, and regulating the transcription of 
genes encoding various nitrogenase activities (Signorelli et al., 
2020). Similar to CO2, NOx can also be  taken up by plant-
associated microbes in the form of nitrite or nitrate and 
assimilated as a nitrogen source microbial cellular growth and 
maintenance (Singh et al., 2019). In microbes, flavoprotein and 
single-domain hemoglobin have been shown to detoxify RNS 
generated through nitrite assimilation. Some microbes resort to 
EPS production as a barrier against plant-generated ROS/RNS, 
as demonstrated by Rhizobium leguminosarum bv. trifolii against 

reactive species produced by clover plants (Signorelli et  al., 
2020). Hence, a stable plant-microbe interaction imparts 
additional tolerance against GHG and other climate change 
linked stress factors, delivering microbial growth and nutritional 
requirement in the form of exudate strengthening microbial 
survivability in the stressed ambiance.

Methane accounts for 20% of the world’s GHG emissions after 
CO2 and is 25 times more potent in trapping heat than CO2 
(USEPA, 2022b). CH4 is emitted from many natural-
anthropogenic sources, and wetlands account for 24% of this 
evolution. Plants-microbe interaction is a centerpiece in the plant’s 
role as a source or sink for CH4. Methane evolution from plants is 
related to symbiotic methanogenic microbes or vascular conduits 
for funneling the gas produced by soil bacteria (Stępniewska et al., 
2018). Aerobic- nonmicrobial methane production from plants 
involves ROS generation during stress followed by converting 
precursor molecules like methyl groups, methionine, etc., into 
CH4 (Putkinen et al., 2021). Meanwhile, many plant-associated 
methanotrophic microbes oxidize atmospheric CH4 to CO2, 
followed by integration into the photosynthetic channel. Such 
conversion has been found in methanotrophs like Methylocella 
palustris and Methylocapsa acidiphila colonizing Sphagnum sp. 
(Stępniewska et al., 2018). In addition, several endophytic and 
rhizobial methanotrophs belonging to genera Methylocystis, 
Melthylomicrobium, Methylococcus, Methylomonas, etc., can 
convert CH4 into molecules like ectoine, hydroxyectoine, 
glutamate, sucrose, lipids, EPS, 5-oxoproline, methanol. These 
bioactive molecules can assist plants and associated microbes in 
stress tolerance induced as a result of climate change (Sahoo et al., 
2021). Hence, stronger stress tolerance of microbes renders 
improved tolerance of plants towards atmospheric methane and 
other impacts of climate change.

Assessment of techniques involved 
in the investigation of molecular 
complexity of plant-microbe 
interaction

Most of our knowledge and understanding is limited to the 
influence of microbes on plant growth based on isolated 
bacteria or microbes examined under controlled conditions 
without considering the impact of soil condition, weather 
influence, abiotic stresses, and the response of these on microbes 
as well as soil. Plant growth promoting bacteria (PGPB) usually 
functions when present in close association with other 
consortia, microbial communities, plants, and soil (Glick, 
2015). Microbiomes play a short-term role in determining plant 
adaptation to climate change, whereas microbiomes and their 
hosts form a long-term relationship in determining adaptation 
to climate change (Trivedi et  al., 2022). Therefore, it is an 
essential of the hour to develop techniques, methods, and 
approaches to understand plant-microbe interaction under 
changing environmental conditions.
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The OMICS-based approach primarily includes various 
techniques associated with genomics, transcriptomics, proteomics, 
metabolomics, and metagenomics (Hugenholtz and Tyson, 2008; 
Fadiji and Babalola, 2020). It expands the horizon of knowledge 
regarding functional, structural, ecological interactions, and the 
evolutionary history of individuals. Metagenomics is the recent 
method to determine the microbiota of soil where both plant and 
microbe interacts by directly taking the sample from soil and 
analyzing it through the nucleotide sequencing/DNA sequencing 
method (Hugenholtz and Tyson, 2008; Castro-Moretti et al., 2020; 
Fadiji and Babalola, 2020). Several studies such as soil nematode 
(cyst nematode) and its association with plant root in soyabean, 
rice root nematode association, bacterial interaction with plant 
root biome such as (Ralstonia solanacearum) and solanaceous 
crops was was highlighted using metagenomics approach to study 
microbe and plant interactions (Hu et al., 2017; Kang et al., 2018; 
Zeiss et al., 2019). The next generation sequencing method can 
be  used to analyze a plethora of samples for the presence of 
different kinds of microbes in the soil and its association with the 
plant can be  further studied using the transcriptomics-
metabolomics approach (Sogin et al., 2006; Hajibabaei et al., 2011; 
Caporaso et al., 2012). The whole genome shotgun sequencing of 
Brevibacterium frigoritolerans near maize crops facing salt stress 
and drought stress revealed to possess proteins essential for coping 
with drought and salinity and improving tolerance and crop yield 
(Zhang et al., 2019). The importance of “pan-genome” study in 
understanding the role of all genes present in the microbial strain 
is also blooming and it has helped researchers in creating an 
artificial environment supporting plant life under stress conditions 
(Brockhurst et al., 2019; Costa et al., 2020; Golicz et al., 2020). As 
suggested by Segata et al. (2013), it is possible to study a whole 
complex ecosystem using transcriptomics, proteomics, and 
metagenomics, that includes not only the host plant but also 
consists of the surrounding environment (soil, temperature, 
pathogens). The transcriptomics-based approach includes RNA 
sequencing and gene expression analysis that emphasizes the 
importance of a particular gene under specific environmental 
conditions (Lowe et al., 2017). At present, to understand plant-
microbe relations under specific conditions, RNA sequence based 
analysis is used predominantly on cultured microbes separately 
from plants revealing the significance of individual genes in 
relation to plant adaptability (Mirzaee et al., 2015; Yi et al., 2017). 
One example where a transcriptomics-based approach was used 
to study the impact of bacterial strain (Bacillus subtilis) on 
cucumber roots revealed differential expression of genes 
controlling signaling pathway (LRR, PR-4, ARG7, auxin response 
gene) as a result of biotic stress induction (Samaras et al., 2022). 
Proteomics and metabolomics are the studies of proteins and 
metabolites using techniques such as liquid chromatography, 
spectrophotometry, high performance liquid chromatography, 
and nuclear magnetic resonance spectroscopy (1H NMR).

GC/MS and LC/MS (gas chromatography, liquid 
chromatography mass spectroscopy) is used to estimate, identify, 
characterize the chemical components such as flavonoids, 

polyamines, spermidine, etc. that are released during plant 
microbe interactions (Rauha et al., 2000; Macoy et al., 2015; Zeiss 
et al., 2019). The basic steps include extraction of proteins from 
the sample, followed by isolation, characterization, analysis using 
spectroscopy, and comparing-generating a protein/metabolite 
database (Cheng et al., 2009; Levy et al., 2018). A most recent 
approach, also known as metaproteome, was used to analyze the 
bacterial community surrounding the vineyard. This can provide 
precise information regarding proteins involved in the stress 
response of plants (Novello et al., 2017; Bona et al., 2019).

Apart from the application of OMICS-based approaches, 
which is expensive and time consuming, imaging-based 
techniques like fluorescence microscopy, X-ray crystallography, 
microscopic techniques, and nanoscale secondary ion mass 
spectroscopy (NanoSIMS) can also provide a significant amount 
of information regarding plant-microbe interaction facing global 
climatic changes (Young and Crawford, 2004; Vos et al., 2013; 
Steffens et al., 2017). The prime requisite in this technique is to 
identify the individual strain with a marker and monitor the 
structure, function, and behavior of the microbe present in a 
complex environment (Steffens et  al., 2017; Wilpiszeski et  al., 
2019). A combination of techniques like FISH (fluorescence in situ 
hybridization), mass spectrometry, and Raman microspectroscopy 
(Kumar et al., 2015) have been used to analyze the environmental 
samples under complex microbial communities (Musat et  al., 
2012; Kumar and Ghosh, 2019).

Conclusion and future perspective

At present, identifying novel ways to increase global crop 
production for the growing human population is one of the 
most challenging tasks where plant stress and diseases pose a 
major threat to global food security. Research on plant diseases 
and plant immunity has made remarkable advances in the past 
couple of decades. Molecular and mechanistic insight into 
what drives plant-microbe interactions is still at a very 
primitive stage. This is because most of the experiments 
considering plant-microbe interactions are carried out in 
laboratory conditions or growth chambers that do not 
replicate the actual field conditions (static) faced by both plant 
and microbe as actual field condition keeps on changing due 
to global climate change. We have seen how plant and microbe 
interaction changes due to abiotic stresses caused by global 
climate change. The impact of high and low-temperature 
stress on changes in the structure of microbe, modification of 
gene expression, activity, and its relationship with plant roots 
was analyzed. Further, the impact of salinity, heavy metal, and 
drought on plant-microbe interactions as a result of changing 
environment revealed that microbes could have both positive 
and negative results on plant growth and development. 
We  need to consider a multidimensional plant-microbe 
interaction that includes techniques such as metagenomics, 
NGS, and imaging techniques altogether to get more detailed 
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information on the implications of changing environmental 
conditions. Abiotic and biotic stresses are equally problematic 
for crop plants, but research focused on plant-microbiome 
interactions promise for increasing their resilience and 
producing resistant crops.
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Information on the role of boron (B) on soil physico-chemical and biological

entities is scarce, and the precise mechanism in soil is still obscure. Present

field investigation aimed to assessing the implication of direct and residual

effect of graded levels of applied-B on soil biological entities and its

concomitant impact on crop productivity. The treatments comprised of five
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graded levels of B with four replications. To assess the direct effect of

B-fertilization, cauliflower was grown as a test crop wherein, B-fertilization

was done every year. For assessment of succeeding residual effects of

B-fertilization, cowpea and okra were grown as test crops and, B-fertilization

was phased out in both crops. The 100% recommended dose of NPK (RDF)

along with FYM was uniformly applied to all crops under CCOCS. Results

indicated that the direct effect of B had the edge over residual effect of

B in affecting soil physico-chemical and biological entities under CCOCS.

Amongst the graded levels of B, application of the highest B level (2 kg ha−1)

was most prominent in augmenting microbiological pools in soil at different

crop growth stages. The order of B treatments in respect of MBC, MBN, and

soil respiration at different crop growth stages was 2.0 kg B ha−1 > 1.5 kg

B ha−1 > 1.0 kg B ha−1 > 0.5 kg B ha−1 > 0 kg B ha−1, respectively.

Moreover, maximum recoveries of potentially mineralizable-C (PMC) and

potentially mineralizable-N (PMN) were noticed under 2 kg B ha−1. Analogous

trend was recorded in soil microbial populations at different crop growth

stages. Similarly, escalating B levels up to 2 kg B ha−1 exhibited significantly

greater soil enzymatic activities viz., arylsulphatase (AS), dehydrogenase (DH),

fluorescein diacetate (FDA) and phosphomonoesterase (PMA), except urease

enzyme (UE) which showed an antagonistic effect of applied-B in soil.

Greater geometric mean enzyme activity (GMEA) and soil functional diversity

index were recorded under 2 kg B ha−1 in CCOCS, at all crop growth

stages over control. The inclusive results indicated that different soil physico-

chemical and biological properties CCOCS can be invariably improved by the

application of graded levels of B up to 2 kg B ha−1 in an acid Inceptisol.

KEYWORDS

boron, Inceptisol, microbiological pools, microbial populations, microbial biomass
carbon, soil enzymatic activities

Introduction

Boron (B) is a vital micronutrient that is indispensable for
proper crop growth (Bhupenchandra et al., 2021a). Boron is a
necessary micro-element for plant cell wall structural integrity
and is involved in various plant processes like cell division,
calcium utilization, pollen production, and anther development
during the reproductive phase (Nadeem et al., 2019). Currently,
the B deficits in soils are widespread globally causing B
micronutrient malformations that impinge on agricultural
production (Shorrocks, 1997; Liu, 2000; Choudhary et al.,
2014; Behera et al., 2022). Due to excess deficiency symptoms
manifested as an implication of B deficit, the assessment of key
functions of B in plants has long been the main concern from
a nutritional point of view. For plants, managing B is difficult
because the optimum B range is narrow which can fluctuate
from soil to soil (Gupta, 1993; Marschner, 1995). Normally, B
averaged nearly 30 mg kg−1 soil depending on the main rock
wherein its content varies extensively. Satisfactory B content for

flora in soils is more or less 25 mg kg−1 (GreenFacts, 2002).
Soil microbial biomass holds a vital role in nutrient-cycling,
plant-pathogen suppression, the disintegration of debris, and
decay of pollutants establishing the vibrant living entity of
soil, and thus, attributing to ecological sustainability owing
to their diverse existence, enormous effective genetic pools,
catabolic adaptability, and stress tolerance ability in a holistic
manner (Deluca et al., 2019). The dimension and activity of
the microbial biomass determine the nutrient availability and
production potential of the agro-ecosystems (Friedel et al.,
1996; Singh et al., 2020, 2021). Therefore, it becomes obligatory
to determine microbial biomass nitrogen (MBN). Since it
becomes vital for the quantification of N-dynamics in agro-
ecosystems as it controls the soil inorganic-N accessibility
and loss and its contribution to the primary N-sources of
potentially mineralizable-N (PMN) in the soil (Bonde et al.,
1988). Microbial biomass carbon (MBC), MBN, and microbial
respiration, have further garnered added interest owing to their
sensitivity to crop management practices than the bulk soil
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organic matter (Awale et al., 2017). Soil microbes, the existing
fraction of soil organic matter (SOM) acts as a transitory
nutrient-sink and are accountable for unleashing nutrients from
SOM for exploitation by plants (Bollag et al., 2017). Basal
respiration (BR) and C-mineralization are ample indicators of
microbial activity, depending on the substrate accessibility and
the soil edaphic environment (Balota et al., 2003). On the whole,
the CO2 respired during a year in terrestrial ecosystems is the
consequence of C-mineralization of the minute active fraction
pools, which are mainly accountable for unleashing nutrients in
the soil (Brdar-Jokanović, 2020).

It is implicit to address that B acts a crucial function
in the biological activities of living organisms as proven
earlier by establishing the necessity of B for diatoms and
cyanobacteria (Bonilla et al., 1997). Soil microorganisms are
by far the most important producers of soil enzymes that
perform many ecological processes such as bio-geochemical
cycling and decomposing pollutants and debris from flora
and fauna and the microbes (Goswami et al., 2017; Furtak
and Gajda, 2018). Soil microbes are accountable for the
transformation of SOM and soil nutrients (Mooshammer et al.,
2014; Singh et al., 2020, 2021). The microbes and their enzymatic
outputs are indispensable to plants, while plant roots generate
organic substances that are vital to the populace expansion of
microbes (Jjemba and Alexander, 1999). Soil microbial indices
is touted as a substitute for organic carbon cycling and its
related nutrients viz., N, P, and S, signifying that elevated
microbial action implied increased soil productivity and vice-
versa (Pavan et al., 2005). Soil enzymes are touted as an index
for examining the activities of microbes, soil productivity and
soil quality owing to the symbiosis of microbes and flora
(Dick, 1994; Bandick and Dick, 1999). Evaluation of diverse
soil extracellular enzymes established it as a potent means
for assessment of the soil functions for nutrient-cycling and
microbial nutrient requirements (Sinsabaugh et al., 2012). We
also hypothesized that in lieu of specific enzyme activity, an
index merging diverse enzymes would be a more efficient and
appropriate indicator of soil quality, since it could specify
an inclusive diversity of soil functions. Relationships between
crop yields, nutrient availability, and these enzyme activities
are also obscure, as information on the enzymes’ ability to
predict soil quality attributes is scarce. With the induction of
intensive crop management practices like fertilizer application
exhibiting complicated and harmful implications on plants and
microbial associations, the studies on impact assessment of
B-fertilization on soil microbes and enzymes for recuperating
agricultural output in B-deficient soils become highly imperative
(Dick, 1994; Tabatabai, 1994). The necessity of B-fertilization
for the augmentation and maturity of plants has already been
established (Shelp, 1993; Marschner, 1995). Boron acts as a
vital function in the translocation and assimilation of complex
carbohydrates in the plant, production of plant hormones and
nucleic acids, germinating pollen, flower induction and fruiting,

and water utilization. The main significant roles of B in plants
are its structural role in cell wall growth and stimulating or
inhibiting of precise metabolic pathways (Ahmad et al., 2009).
In addition, B plays a crucial role in N assimilation, N fixation,
and the growth of legume root nodules (Bolaños et al., 2004a;
Bellaloui et al., 2014).

Boron accessibility depends on many criteria that exist in
the soil–plant system such as SOM, soil texture, cultivation, soil
moisture, temperature, soil pH and liming, soil fertility, and
microbial activity (Shorrocks, 1997; Kumar et al., 2016; Shireen
et al., 2018). Microbes assimilate SOM, which in turn, helps
in releasing the B from organic complexes. Boron present in
the soil is considered as a vital fraction related to SOM and
is unleashed via microbial activities (Berger and Pratt, 1963).
Despite the prime role of B on floral growth and functioning, no
credibility has been established to explain that B is an enzyme
component and possesses a direct role in enzyme actions. It is
obscure to claim that these processes are precursor of the direct
functioning of B or the indirect role of B. The biological effects
of B are better understood in plants, where it has been proven
that it can influence physiology and biological activities (Grattan
et al., 2015). Though the impact of B on the soil microbial
community is little known, there is a paucity of information
on the element’s consolidative impacts on several characteristics
of the soil microbial community, including activity, biomass,
and diversity. Most of the soil fertility experiments stressed the
aspects of the changes in soil chemical pools without giving
much attention to biological attributes in soil rendering a lacuna
on comprehensive fertility evaluation in soil fertility research.
To date, the study on the role of B on soil biological attributes
is obscure and very limited. Consequently, advanced research
is necessitated to have a clear insight into the functioning of B
in plant development and soil biology. The study hypothesized
B-fertilization would improve the soil physio-chemical and
biological properties and productivity of cauliflower-cowpea-
okra cropping system. The objective of the study is to assess
the impact of graded levels of B-fertilization on the soil physio-
chemical and biological properties and their relationships in a
cauliflower-cowpea-okra cropping system in North East India.

Materials and methods

Experimental site

A field experiment was conducted on cauliflower-cowpea-
okra cropping system at the Horticultural Experimental Farm,
Assam Agricultural University, Jorhat, India (26◦47′N latitude,
94◦12′E longitude, 86.6 m altitude) during 2015–2017. The
climate of the experimental site is sub-tropical with hot humid
summers and comparatively dry and cool winters. Normal
annual rainfall varies between 1,500 and 2,000 mm. Usually,
rain commences from June and continues up to September
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with the pre-monsoon showers commencing from mid-March.
The highest temperature of 34◦C during summers and the
lowest about 7◦C during winters is usually prevalent. Agro-
meteorological information is presented in Figure 1. The soil
of the experimental site is Inceptisol having a sandy clay-loam
texture with pH 4.8.

Experimental design and treatments

The field experiments were uniformly laid-out for all the
three crops CCOCS in a completely randomized block design
with 4-replicates. Soil application of B was imposed at the rates
of 0, 0.5, 1.0, 1.5 and 2.0 kg ha−1 in cauliflower, wherein its
application was restricted only to cauliflower in both years of
experimentation to assess the direct effect of B fertilization.
However, B-fertilization was exempted in succeeding crops
(cowpea and okra) to assess the residual effect of B-fertilization
in the sequence. Borax (Na2B4O7.10H2O, analytical reagent
grade with 10.5% B) was applied as the source of B for
soil application. The 100% recommended dose of fertilizers
(RDF) (supplied via urea, single super phosphate, and muriate
of potash) and farmyard manure (FYM, well-decomposed
cowdung) was uniformly applied to all the crops at the time of
sowing (Supplementary Table 1). FYM used in the experiment
had the bulk density of 0.24 Mg m−3, pH (7.7), N (1.4%), P
(0.34%), K (0.8%), Mg (0.5%), Ca (1.4%), and C: N ratio (28:1)
as determined using standard procedures (Rana et al., 2014).

Soil sampling and analyses

For soil physio-chemical analysis, soil samples were
collected from a depth of 0–15 cm at different crop growth
stages in the sequence. While for soil biological properties, moist
soil samples were collected at the initial and different crop
growth stages of cauliflower, cowpea and okra for the two years.
Soil samples were then stored in the refrigerator at 4◦C for
analysis of biological parameters. All the analyses were made in
triplicate following standard protocols. The soil samples were
analyzed for soil physico-chemical and biological properties
(Supplementary Table 2).

The microbial quotient was calculated as the
ratio of MBC to SOC and expressed in percentage
(Anderson and Domsch, 1989).

Crop equivalent yields
After the harvest of each crop, the yield was recorded.

Crop equivalent yield (CEY) was computed to evaluate system
performance after converting the yield of one crop (assumed as
x) into the equivalent yield of another crop (assumed as y) on a
pricing basis:

EYX = YX
PX

PY

Where, EYx = yield of x crop converted to yield of y crop, Yx

is the yield of x crops (kg ha−1), Px is the price of x crops (US$
kg−1), and Py is the price of y crop (US$ kg−1). All the yields
of crops were converted to the equivalent yield of cauliflower,
which was planted first in the cropping sequence.

Enzyme activity-based index for
calculation of soil functional diversity

Soil quality index
Geometric mean of enzymatic activities

To better explicate the impact of B on soil enzyme activities,
we computed the geometric mean of enzymatic activities
(GMEA), as it can replicate the inclusive enzyme activity levels
(Hinojosa et al., 2004). GMEA is a consolidative method to
pool the enzyme activities associated to diverse soil functions
and nutrients; therefore, possibly it will reflect soil quality index
(Paz-Ferreiro et al., 2012).

GMEA of the assayed enzymes was computed for each
sample as:

GMEA = (FDA× PMEase× DH× AS× UE)1/5

Soil functional diversity
The Shannon index and Simpson-Yule index cater the

data about the spread or distribution of C source usage by
the microbial community (Kumar et al., 2017). The ensuing
indexes can be used for quantification of richness, evenness, and
diversity of the soil microbial community.

It was computed using the following equations
Shannon’s diversity index (H)

H = −
∑5

i = 1
Pi × ln(Pi)

where, Pi is the ratio of each enzyme activity to the summation of
whole enzymes activities for a specific sample. Enzyme activities
were deciphered as µg product formed per g of soil per hour.

Simpson-Yule index (SYI)
SYI was calculated as for each sample as:

SYI =
1∑5

i=1Pi2

The diversity of the community is directly proportional to H.

Multivariate analysis

Hierarchical cluster analysis
The data obtained on the different groups of biological

entities present in the soil samples were subjected to
agglomerative hierarchical cluster analysis (HCA) (Euclidean
distances, Ward’s agglomeration rule) to establish homogeneous
groupings of data. The nodes depicted clusters retrieved on each
step of hierarchical clustering.
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FIGURE 1

Meteorological data during the period of investigation for the year 2015–2017. Source: Department of Agrometeorology, Assam Agricultural
University, Jorhat, Assam. The vertical bars represent the SE(m)±. T, temperature; RH, relative humidity; and BSSH, bright sunshine hour.

FIGURE 2

Effect of graded B levels on crop yield (Mg ha−1) in cauliflower-cowpea–okra cropping system (A); effect of graded B levels on CEY (Mg ha−1) in
cauliflower-cowpea–okra cropping system (B).

Principal component analysis
The principal component analysis (PCA) of all the data was

performed (Andrewsi and Carroll, 2001; Andrews et al., 2002)
to ascertain the variability and show the relationship among the

various soil properties, and to extract the dominant principal
components from the whole data set in soil resorting to R
studio. PCA is a multivariate statistical dimension reduction
tool that resorts to an orthogonal transformation to transform
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a set of correlated variables to linearly uncorrelated variables
known as principal components (PC). The extracted results
of a PCA are displayed in terms of component scores, also
called factor scores and loadings (Wold et al., 1987). In the
PCA algorithm, diminution of the number of components was
yielded via the eigenvalue-one criterion i.e., eigenvalue >1 is
retained, also called as Kaiser criterion (Kaiser, 1960), and the
scree test (Cattell, 1966).

Stepwise multiple linear regression analysis
Stepwise multiple linear regression analyses were performed

using R studio with the backward exclusion method to explore
the significance of dominant soil biological entities in the
prediction of crop yield in the sequence. The relationship
between a single response variable (dependent variable) and
two or more controlled variables was evaluated using multiple
stepwise linear regressions (MLR) (independent variables). MLR
used in the research states that the higher R2 generates good
results in model fitting (Bowerman et al., 2005). The analytical
model, used to develop a model for predicting crop yield from
the biological attribute’s relationship is given by the equation:

Y = β0 + β1X1 + β2X2 + ...+ βkXk + ε

Where, βs are coefficients, Xi are the predictors, Y is the
crop yield (response) and β0 is a constant.

The null hypothesis of sequential uncorrelated errors was
tested independently on regression residuals using the Durbin–
Watson statistic.

Path analysis (causal modeling)
Path analysis is a standardized partial regression analysis

used to determine the significance of the relationship between
sets of variables and to provide estimates of the magnitude to
make the multiple regressions easier to comprehend. It also
helps to figure out the direct, indirect and total impact of
predictor variables on the response variable. An evaluation
of correlation does not specify the precise influence of the
attributes to crop yield and this correlation can be segregated
into direct and indirect effects via path coefficient analysis.
It permits the separation of the direct and their indirect
effects via other traits through allocating the correlations
(Wright, 1921) for clarity of explanation of cause and
effect.

Data analysis and visualization

The experimental data obtained from different observations
were analyzed statistically by using Fisher’s method of
ANOVA in randomized block design (Panse and Sukhatme,
1985). Significance or non-significance of the variance due
to different treatment effects was estimated by computing
concerned ‘F’ values. At a 95% confidence level, the

experimental means were compared. To compare treatment
means, the Duncan Multiple-Range-Test (DMRT) was
employed. Univariate Pearson’s correlation analysis was
executed to determine the interrelationship between
biological entities in the soil samples and crop yield.
A correlograms was built using the “corrgram package” in
R Studio.

Results

Crop yield and
cauliflower-equivalent-yield

In general, the crop yields in the cauliflower-cowpea-
okra cropping system were significantly impacted by the
imposition of a graded level of B, as evident by the significant
augmentation in yield (Figure 2A). A satisfactory cauliflower
curd yield (highest) of 23.25 Mg ha−1 was obtained as a
ramification of the direct effect of 2 kg B ha−1 imposition in
cauliflower with drastic yield augmentation up to 21.8% over
the control (19.09 Mg ha−1). While the residual implication
of 2 kg B ha−1 in cowpea and okra, also leveraged the
pod yield to the tune of 7.15 Mg ha−1 and fruit yield
of 20.61 Mg ha−1, thereby, improving the crop yield by
25.7% over the control (5.69 Mg ha−1) in cowpea and
21.2% over the control in okra (17.0 Mg ha−1). Likewise,
the CEY of the cauliflower-cowpea-okra cropping system
was significantly greater (p < 0.05) with an imposition of
2 kg B ha−1 as compared to control (Figure 2B). The
extent of growth in equivalent yield was 25.7, 21.3, and
22.5% for CEY of cowpea, CEY of okra and total CEY,
respectively over control. The increase was always higher
with 2 kg B ha−1 than the rest of the B levels including
control.

Soil physico-chemical properties

Imposition of differential B levels could not significantly
(p ≤ 0.05) affect the soil BD under cauliflower-cowpea-okra
cropping system (Table 1), however, a decrease in BD was
noticed in B applied plots as compared to control (B0).
In general, the experimental soils were mostly acidic in
reaction with pH 4.83–4.89 (Table 1), with no significant
difference among the B treatments. Continuous two years of
experimentation decreased the BD in soil by 2.4% as compared
to the initial status on addition of a maximum B level of 2 kg
ha−1. However, improvements in soil pH and SOC were noticed
to the tune of 1.5 and 30% over the initial status when 2 kg B
ha−1 was applied. The available N and P (Table 1), were also
significantly (p ≤ 0.05) influenced by the addition of graded
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TABLE 1 Effect of graded B levels on soil physico-chemical properties at different crop stages in cauliflower-cowpea-okra cropping system (Pooled data 2015–017).

B-levels (kg ha−1) Bulk density (BD) Soil pH Soil organic carbon (%) Available N Available P

Vegetative stage

Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra

B0 1.24a 1.23a 1.22a 4.83a 4.87a 4.82a 0.90a 0.95a 0.91a 301.20d 311.50d 304.73d 15.95c 18.13c 20.31c

B0.5 1.23a 1.22a 1.21a 4.85a 4.88a 4.85a 0.95a 1.01a 0.94a 307.25c 318.65c 310.95c 17.00bc 19.50bc 21.33bc

B1.0 1.24a 1.23a 1.21a 4.87a 4.88a 4.86a 0.99a 1.01a 0.97a 314.91bc 324.6b 317.61bc 17.98ab 20.58b 22.45ab

B1.5 1.23a 1.22a 1.22a 4.86a 4.89a 4.85a 1.01a 1.02a 0.99a 322.56b 329.95b 324.76b 18.95ab 21.55b 23.41ab

B2.0 1.23a 1.22a 1.21a 4.86a 4.89a 4.85a 1.01a 1.04a 1.00a 328.06a 335.35a 329.83a 20.03a 22.63a 24.70a

Mean 1.23 1.22 1.21 4.85 4.88 4.85 0.97 1.01 0.96 314.80 324.01 317.58 17.98 20.48 22.44

Reproductive stage in different crops*

Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra

Cis Fls Frs Cis Fls Frs Cis Fls Frs Cis Fls Frs Cis Fls Frs

B0 1.24a 1.23a 1.22a 4.81a 4.86a 4.84a 0.86a 0.92a 0.89a 301.30d 307.33cd 302.63c 15.63c 15.49c 18.98c

B0.5 1.23a 1.23a 1.21a 4.84a 4.87a 4.85a 0.91a 0.94a 0.92a 306.85bc 313.20c 308.55bc 16.59bc 16.50bc 20.02bc

B1.0 1.24a 1.23a 1.21a 4.84a 4.87a 4.85a 0.95a 0.96a 0.93a 313.51bc 318.37ab 315.31bc 17.54ab 17.57b 20.99bc

B1.5 1.24a 1.23a 1.21a 4.85a 4.87a 4.85a 0.98a 0.97a 0.95a 319.66b 323.55ab 321.20b 18.52ab 18.62b 22.00b

B2.0 1.23a 1.22a 1.21a 4.85a 4.86a 4.86a 1.02a 0.97a 0.95a 324.87a 328.89a 326.17a 19.45a 19.65a 23.07a

Mean 1.24 1.23 1.21 4.84 4.87 4.85 0.94 0.95 0.93 313.24 318.27 253.06 17.55 17.57 21.01

Maturity stage

Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra

B0 1.24a 1.24a 1.22a 4.82a 4.85a 4.86a 0.82a 0.93a 0.91a 296.40d 300.82d 299.10c 14.89c 15.37c 17.65c

B0.5 1.23a 1.22a 1.21a 4.83a 4.85a 4.87a 0.84a 0.95a 0.92a 302.00c 307.03cd 304.70bc 15.97ab 16.52bc 18.72b

B1.0 1.23a 1.23a 1.22a 4.83a 4.86a 4.87a 0.85a 0.95a 0.93a 308.11bc 312.53c 310.81bc 16.94ab 17.44ab 19.73b

B1.5 1.22a 1.23a 1.21a 4.84a 4.86a 4.87a 0.85a 0.96a 0.93a 312.76b 317.54b 315.46b 17.87a 18.39ab 20.69ab

B2.0 1.22a 1.23a 1.21a 4.84a 4.86a 4.88a 0.86a 0.97a 0.94a 317.56a 323.01a 320.26a 18.81a 19.41a 21.84a

Mean 1.23 1.23 1.21 4.83 4.86 4.87 0.84 0.95 0.93 307.37 312.19 310.07 16.90 17.43 19.73

*Cis, curd initiation stage in cauliflower; Fls, flowering stage in cowpea; Frs, fruiting stage in okra. The means followed by a different letter are significantly different at p ≤ 0.05 by Duncan’s multiple range test (values are means of 3-replicates).
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B levels wherein the greatest value was always with 2 kg B
ha−1 application.

Implication of B on temporal dynamics
in microbiological pools of soil organic
matter

The soil microbial biomass carbon (MBC), Microbial
quotient (MBC: SOC) microbial biomass-N, (MBN), Microbial
biomass-P (MBP), and soil respiration (SR) improved
significantly (p ≤ 0.05) on the application of different B
doses at all the stages of crop growth over the control with few
exceptions in case of MBN (Table 2). The highest values of
MBC, MBC: SOC MBN, MBP, and SR in all the crop growth
stages in different crops were with 2.0 kg B ha−1 addition. After
2-years of experimentation, there was a gain of 24.5, 12.1, 54.2,
34.4, and 36.1% in MBC, MBC: SOC MBN, MBP, and SR over
the initial soil status. The order of the B treatments in respect of
MBC, MBN, and SR at different crop growth stages was 2.0 kg B
ha−1 > 1.5 B kg ha−1 > 1.0 B kg ha−1 > 0.5 B kg ha−1 > 0 kg
B ha−1 (Control), respectively.

Potentially mineralizable-C and
potentially mineralizable-N

A significant (p ≤ 0.05) increasing trend in
potentially mineralizable-C (PMC) and PMN with the
B application rate was noted in the soil of CCOCS
(Table 3). Comparatively, the higher recoveries of PMC
and PMN were always higher with 2.0 kg B ha−1 direct
and residual impact of B-fertilization in CCOCS at all
the crop growth stages. The PMC and PMN across
the crops and growth phases in the sequence were
ranked as 2 kg B ha−1 > 1.5 B kg ha−1 > 1.0 B kg
ha−1 > 0.5 B kg ha−1 > 0.0 kg B ha−1 (Control).
Compared with the initial soil status, there was an
improvement of 26.3 and 52.5% in respect of PMC and
PMN content in soil due to the imposition of graded levels
of B.

Microbial populations
There was significant (p ≤ 0.05) improvement in microbial

populations (actinomycetes, bacteria and fungi) across B
treatments in all crops in the sequence (Table 4). The addition
of escalated B level of 2.0 kg B ha−1 led to a significant
improvement in the status of microbial populations in the soil
at different crop growth stages in cauliflower (direct application
of B); and that in cowpea and okra (residual effect of B).
Interestingly, this escalated B treatment led to an augmentation
of 54.2, 55.3 and 53.7% of actinomycetes, bacteria and fungi
population in comparison to the initial soil status.

Soil enzymes

Soil enzymes viz., AS, DH, FDA, and PMA showed a
significant (p ≤ 0.05) response to graded B levels in soil
(Table 5). However, the urease enzyme (UE) showed an
antagonistic effect, thereby, exhibiting a reciprocal response to
the appliance of the graded levels of B. Across all crop growth
phases in the sequence, higher enzyme activities were noticed
under plots receiving higher B levels of 2.0 kg ha−1. The status
of the content of soil enzymes in diverse crops and growth stages
varied as: 2.0 kg B ha−1 > 1.5 B kg ha−1 > 1.0 B kg ha−1 > 0.5
B kg ha−1 > 0.0 kg B ha−1. Soil enzymes’ activity registered
an increment to the tune of 44.7 (AS), 45.1 DH), 38.6 (FDA)
and 46.7% (PMA), respectively over the initial soil status. On
contrary to that, UE enzyme activity exhibited a decrement by
20.7% over the initial soil status.

Soil quality index and functional
diversity index

The GMEA was significantly (p ≤ 0.05) higher under plots
receiving the highest B levels of 2 kg ha−1 at all the crop
growth stages under CCOCS (Table 6). Irrespective of crop
growth stages, direct application of 2 kg B ha−1 in cauliflower
recorded comparatively higher GMEA than that under cowpea
and okra (residual effect), respectively (Table 6). Similarly, the
functional diversity indexes (H and SYI) exhibited the similar
trend wherein their higher values were observed under plots
receiving 2 kg B ha−1 (Table 6).

Correlation between the soil properties
and mean yield of cropping sequence

The univariate correlation coefficients (r) in between the
soil properties (physico-chemical and biological) and mean
yield of cropping sequence (MYCS) are illustrated by the
correlogram [Auto correlation function (ACF) plot] (Figure 3).
In general, the results exhibited an existence of a significant
positive correlation (p < 0.01 and p < 0.01) between the soil
properties and MYCS barring MBN, at different crop growth
stages, thereby signaling a synergistic relationship between
them. However, BD and UE activity exceptionally showed
a negative non significant correlation with the rest of the
parameters, while both are positively and strongly correlated
to each other (p < 0.01). Selectively, pH is highly correlated
(p < 0.01) with SOC, available N and P, MBC, MBP, AP, FDA,
and MYCS but positively correlated (p < 0.05) with PMN.
Similarly, SOC showed a highly significant positive correlation
(p < 0.01) with available N and P, FDA but exhibited a positive
correlation (p < 0.05) with MBP, AP, and MYCS, respectively.
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TABLE 2 Effect of graded B levels on microbiological pools of soil organic matter at different crop stages in cauliflower-cowpea-okra cropping system (Pooled data 2015–2017).

B-levels (kg ha−1) Microbial biomass-C
(MBC) (µg g−1)

Microbial quotient
(MBC: SOC)

Microbial biomass-N
(MBN) (µg g−1)

Microbial biomass-P
(MBP) (µg g−1)

Soil respiration (SR)
(µg CO2 day−1 g−1 FW)

Vegetative stage

Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra

B0 175.35c 179.76d 176.16c 19.48c 18.92bc 19.36c 41.84b 48.97a 52.82b 4.42d 4.62c 4.57d 6.44c 6.30d 6.78c

B0.5 189.11ab 184.36c 180.91bc 19.91b 18.25bc 19.25ab 41.99a 49.21a 53.17a 4.86c 4.88bc 4.74c 6.56bc 6.41bc 6.91bc

B1.0 195.83ab 191.72c 186.17ab 19.78ab 18.98b 19.19ab 42.21a 49.11a 53.74a 4.91bc 4.95b 4.79b 6.62ab 6.49bc 6.99b

B1.5 200.68b 208.16b 191.29ab 19.87a 20.41b 19.32a 42.89a 49.98a 53.93a 4.96b 5.02ab 4.84b 6.69ab 6.59b 7.05b

B2.0 205.83a 214.81a 195.68a 20.38a 20.65a 19.57a 43.42a 51.07a 54.01a 5.01a 5.08a 4.92a 6.77a 6.71a 7.12a

Mean 193.36 195.76 186.04 19.88 19.44 19.34 32.47 39.67 43.53 4.83 4.91 4.77 6.62 6.50 6.97

Reproductive stage in different crops*

Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra

Cis Fls Frs Cis Fls Frs Cis Fls Frs Cis Fls Frs Cis Fls Frs

B0 179.94d 182.85d 176.01d 20.92bc 19.88c 19.78c 50.67b 58.03b 54.67a 4.68d 4.74d 4.65c 6.47c 7.04c 6.64c

B0.5 191.44c 194.34bc 189.27bc 21.04bc 20.67bc 20.57b 50.94a 58.44a 54.73a 4.87c 4.91c 4.82bc 6.60bc 7.15b 6.77b

B1.0 194.95c 199.86b 194.17bc 20.52b 20.82bc 20.88ab 51.11a 58.61a 54.82a 4.92b 4.95bc 4.86b 6.68b 7.23b 6.85ab

B1.5 199.75b 204.90b 200.27b 20.38b 21.12b 21.08ab 51.15a 58.98a 54.91a 4.96b 5.01b 4.90b 6.85b 7.31ab 6.94ab

B2.0 206.19a 209.93a 205.88a 20.21a 21.64a 21.67a 51.89a 59.23a 55.06a 5.01a 5.06a 4.95a 6.88a 7.42a 7.02a

Mean 194.45 198.38 193.12 20.62 20.83 20.80 51.15 58.66 54.84 4.89 4.93 4.84 6.70 7.23 6.84

Maturity stage

Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra

B0 181.57d 188.74d 178.61c 22.14c 20.29bc 19.63c 43.87b 57.21b 55.95a 4.51c 4.64c 4.48d 6.64c 6.88c 6.84d

B0.5 192.87c 195.05bc 187.20bc 22.96b 20.53b 20.35ab 44.22a 57.92a 56.68a 4.72bc 4.81b 4.64c 6.77b 6.99bc 6.97c

B1.0 197.42bc 201.19bc 194.71b 23.23a 21.18ab 20.94b 44.31a 57.98a 56.72a 4.76b 4.85ab 4.68c 6.85ab 7.07b 7.05b

B1.5 203.56b 205.96b 199.70ab 23.95a 21.45ab 21.47a 44.32a 58.04a 56.74a 4.84ab 4.89a 4.73b 6.94ab 7.15b 7.14b

B2.0 208.60a 211.94a 205.25a 24.26a 21.85a 21.84a 44.47a 58.11a 56.82a 4.88a 5.94a 4.78a 7.02a 7.24a 7.22a

Mean 196.80 200.58 193.09 23.31 21.06 20.84 44.24 57.85 56.58 4.74 5.03 4.66 6.84 7.07 7.04

*Cis, curd initiation stage in cauliflower; Fls, flowering stage in cowpea; Frs, fruiting stage in okra. The means followed by a different letter are significantly different at p ≤ 0.05 by Duncan’s multiple range test (values are means of 3-replicates).
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TABLE 3 Effect of graded B levels on PMN and PMC content in soil at different crop stages of cauliflower-cowpea-okra cropping system.

B-levels (kg ha−1) Potentially mineralisable-C Potentially mineralisable-N

Vegetative stage

Cauliflower Cowpea Okra Cauliflower Cowpea Okra

B0 144.35c 148.76c 140.16c 29.35c 32.76bc 30.16c

B0.5 151.11bc 153.36bc 146.91bc 31.11b 35.36bc 34.91bc

B1.0 155.83b 160.72ab 152.17ab 32.76ab 36.72b 36.17bc

B1.5 159.68ab 167.16b 160.29b 34.68ab 38.16b 37.29b

B2.0 164.83a 173.81a 164.68a 35.83a 40.01a 38.68a

Mean 155.16 160.76 152.84 30.15 37.56 46.44

Reproductive stage in different crops*

Cauliflower Cowpea Okra Cauliflower Cowpea Okra

Cis Fls Frs Cis Fls Frs

B0 152.94c 151.85c 145.01c 29.94c 34.85c 35.01c

B0.5 158.44b 157.34bc 158.27b 30.44c 36.34bc 37.27bc

B1.0 161.95b 160.86bc 163.17b 31.95ab 37.86bc 38.17b

B1.5 165.75b 163.9b 166.27b 33.75ab 38.39b 39.27b

B2.0 168.19a 167.93a 171.88a 35.19a 39.93a 30.88a

Mean 171.45 162.38 160.92 41.45 59.98 63.12

Maturity stage

Cauliflower Cowpea Okra Cauliflower Cowpea Okra

B0 154.57c 152.74c 147.61c 28.57c 37.74c 36.61c

B0.5 160.87bc 160.05bc 152.2b 32.87b 38.05bc 37.20b

B1.0 164.66bc 165.19bc 158.71ab 34.66b 39.19bc 38.71ab

B1.5 168.98b 169.96b 163.70ab 35.98b 40.96b 39.70ab

B2.0 171.76a 174.94a 168.25a 37.76a 41.24a 40.25a

Mean 171.17 187.78 158.09 71.17 84.18 88.09

*Cis, curd initiation stage in cauliflower; Fls, flowering stage in cowpea; Frs, fruiting stage in okr. The means followed by a different letter are significantly different at p≤ 0.05 by Duncan’s
multiple range test (values are means of 3-replicates).

Clustered analysis

Hierarchical clustering (Figure 4) in respect of soil
biological entities under different crops in CCOCS identified
the distinct clusters based on similarity in function and other
relevant biological attributes. In respect of cauliflower, three
distinct clusters were formed viz., Cluster-I (PMC and PMN),
Cluster-II (Microbiological pools of soil organic matter: MBN,
MBC, and SR) and Cluster-III (Microbial population: AP, FP,
and BP; Soil enzymes: AS, PMA, FDA, and DH). Similarly, in
the case of cowpea, three distinct clusters were generated viz.
Cluster-I (MBN, MBC, and SR), Cluster-II (PMC, PMN, and
PMA), and Cluster-III (Microbial population: FP, AP, and BP;
Soil enzymes: FDA, DH, and AS). Likewise in okra, similar

clusters were formed viz. Cluster-I (PMC and PMN), Cluster-
II (Microbiological pools of soil organic matter: MBN, MBC,
and SR) and Cluster-III (Microbial population: FP, AP, and
BP; Soil enzymes: FDA, DH, AS, and PMA). However, the UE
enzyme formed a discrete outlier as this enzyme had a reciprocal
relationship with the examined parameters (Figure 4).

Principal component analysis

Principal component analysis executed in respect of soil
physico-chemical and biological properties in CCOCS extracted
three principal components with eigenvalues equal or greater
than unity (Supplementary Table 3), accounting cumulatively
up to 95.56% of the total variance since they possessed
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TABLE 4 Effect of graded B levels on microbial populations in soil under cauliflower-cowpea-okra cropping system (Pooled data 2015–2017).

B-levels (kg ha−1) Total actinomycetes population (cfu g−1 soil) Total bacterial population (cfu g−1 soil) Total fungal population (cfu g−1 soil)

Vegetative stage

Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra

B0 16.44c 18.51c 17.18d 7.30c 8.59c 7.49c 14.14c 16.81c 17.20bc

B0.5 17.56bc 19.62bc 18.31c 7.97bc 9.83bc 8.27bc 14.50b 17.02b 17.52b

B1.0 18.62b 20.71b 19.39ab 8.15b 10.80bc 8.47b 15.10ab 17.31ab 17.71b

B1.5 19.69ab 21.79b 20.45ab 8.31ab 11.79ab 8.65ab 15.41ab 17.53ab 17.92ab

B2.0 20.77a 22.88a 21.52a 8.74a 12.84a 8.84a 15.82a 17.72a 18.30a

Mean 18.62 20.70 19.37 8.69 10.77 10.52 16.73 17.45 17.73

Reproductive stage in different crops*

Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra

Cis Fls Frs Cis Fls Frs Cis Fls Frs

B0 16.47c 19.64c 17.44c 7.38c 9.01c 8.57c 14.09c 19.61c 17.33c

B0.5 17.61b 20.77ab 18.55bc 8.04bc 10.08bc 9.04bc 16.41b 20.12b 17.51b

B1.0 18.68ab 21.85ab 19.63bc 8.31bc 10.30b 9.27b 16.70b 20.36ab 17.72b

B1.5 19.8ab 22.94a 20.71ab 8.63b 10.61b 9.45ab 17.02b 20.52ab 17.90ab

B2.0 20.88a 23.02a 21.82a 8.94a 10.87a 9.67a 17.31a 20.75a 18.14a

Mean 18.69 21.64 19.63 9.44 11.37 11.18 16.48 20.31 17.72

Maturity stage

Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra

B0 16.3c 18.88c 17.24d 7.41c 9.78c 9.68c 15.12c 20.17c 17.72b

B0.5 17.41bc 19.99bc 18.37c 8.15b 10.13bc 10.01b 16.85bc 20.82bc 18.0ab

B1.0 18.49b 20.07bc 19.45bc 8.59ab 10.24ab 10.21ab 17.13ab 21.01ab 18.21ab

B1.5 19.59ab 21.15b 20.54b 9.81b 10.47ab 10.42b 17.32ab 21.25a 18.42ab

B2.0 20.70a 22.24a 21.62a 10.10a 10.68a 10.67a 17.65a 21.42a 18.71a

Mean 20.47 19.44 9.67 11.88 11.84 16.81 20.99 18.21 20.47

*Cis, curd initiation stage in cauliflower; Fls, flowering stage in cowpea; Frs, fruiting stage in okra. The means followed by a different letter are significantly different at p ≤ 0.05 by Duncan’s multiple range test (values are means of 3-replicates).
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TABLE 5 Effect of graded B levels on soil enzymes in cauliflower-cowpea-okra cropping system (Pooled data 2015–2017).

B-levels
(kg ha−1)

Fluorescein di-acetate (FDA)
hydrolysis activity

(µg fluorescein g−1 h−1)

Phosphomonoesterase
(PMEase) activity

(µgp-nitrophenol g−1 h−1)

Dehydrogenase (DH) activity
(µg TPF g−1 24 h−1)

Arylsulphatase (AS) activity
(µgp-nitrophenol g−1 h−1)

Urease activity (UE)
(µg NH4-N g−1 soil 2 h−1)

Vegetative stage

Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra

B0 5.11b 5.21c 5.02bc 42.34d 44.47c 43.25c 122.21cd 135.96c 117.21c 8.15b 8.41c 8.13c 29.65a 24.24a 21.24a

B0.5 5.71b 5.85bc 5.78bc 44.59c 46.51b 45.29bc 131.45c 146.59b 126.45bc 9.42b 9.03b 8.84bc 28.76ab 22.95a 19.85b

B1.0 6.24ab 6.54bc 6.29b 46.22b 48.16ab 46.94b 140.11bc 151.81b 135.11bc 9.71ab 9.32ab 9.22b 27.91ab 21.07ab 18.57b

B1.5 6.79a 6.93b 6.64a 47.94b 49.66a 48.44b 146.08b 159.28ab 141.08b 10.02a 9.51ab 9.59b 26.54b 19.91bc 18.21b

B2.0 7.12a 7.29a 6.99a 49.12a 50.87a 49.65a 152.25a 166.95a 146.75a 10.41a 9.74a 9.74a 24.43c 19.78c 17.28c

Mean 6.19 6.36 6.14 46.04 47.93 46.71 138.42 152.12 133.32 11.14 13.14 14.30 27.46 21.03 18.23

Reproductive stage in different crops*

Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra

Cis Fls Frs Cis Fls Frs Cis Fls Frs Cis Fls Frs Cis Fls Frs

B0 5.22c 6.06c 5.17c 43.89c 45.24c 44.02c 129.32d 138.66c 124.51c 9.13c 9.71c 9.10bc 31.25a 22.22a 27.22a

B0.5 5.89bc 6.69bc 5.67bc 45.65ab 47.71b 46.49bc 138.54c 147.74bc 134.25b 10.41b 10.22b 9.38b 29.98b 20.94ab 25.54ab

B1.0 6.34b 7.06ab 6.05ab 47.52ab 49.47b 48.25b 147.11bc 156.08b 142.91ab 10.74b 10.44ab 9.53ab 28.71b 21.05b 24.45ab

B1.5 6.79b 7.36ab 6.49ab 49.26ab 50.87ab 49.65b 152.86bc 164.88ab 149.38ab 10.92b 10.68ab 9.67ab 27.20b 19.97b 23.39ab

B2.0 7.04a 7.81a 6.75a 50.32a 52.05a 50.83a 160.75a 171.55a 155.05a 11.22a 10.93a 9.84a 21.61c 18.84c 22.24c

Mean 6.42 7.14 6.35 47.33 49.07 47.85 145.72 155.78 141.22 11.90 15.26 14.38 37.75 39.00 23.97

Maturity stage

Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra Cauliflower Cowpea Okra

B0 5.41c 6.30c 5.48c 44.67c 45.93c 44.71c 135.59c 142.01c 127.41c 10.04c 10.36c 9.67c 28.08a 23.67a 26.85a

B0.5 5.95b 6.84c 5.84bc 46.96ab 48.4b 47.18b 144.15bc 150.75bc 136.65bc 10.31bc 10.83bc 10.03b 27.12ab 22.05a 26.74ab

B1.0 6.24ab 7.02bc 6.16bc 48.73ab 50.4ab 49.18b 151.31bc 157.91b 145.31b 10.43b 11.04bc 10.38b 25.90ab 21.95b 25.01b

B1.5 6.41ab 7.34b 6.40b 50.11a 53.85a 50.93ab 157.28b 161.36b 151.28b 10.64b 11.26b 10.57b 24.81ab 20.54b 23.45b

B2.0 6.70a 7.58a 6.68a 51.18a 54.10a 52.41a 164.95a 168.05a 156.95a 10.89a 11.41a 10.79a 22.32c 19.26c 22.98c

Mean 5.41 6.3 5.48 44.67 45.93 44.71 135.59 142.01 127.41 12.24 15.36 14.67 28.8 33.67 17.85

*Cis, Curd initiation stage in cauliflower, Fls, flowering stage in cowpea, Frs, fruiting stage in okra. The means followed by a different letter are significantly different at p ≤ 0.05 by Duncan’s multiple range test (values are means of 3-replicates).
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TABLE 6 Geometric mean enzyme activity (GMEA), Shannon diversity index (H) and Simpson diversity index (SYI) as affected by graded B levels under cauliflower-cowpea-okra cropping system (Pooled
data 2015–2017).

B-levels (kg ha−1) Geometric mean of enzymatic activities (GMEA) Shannon diversity index (H) Simpson diversity index (SYI)

Cauli-flower Cowpea Okra Cauli-flower Cowpea Okra Cauli-flower Cowpea Okra

Vegetative stage

B0 22.97c 22.99c 21.31bc 2.35bc 2.24c 2.22c 3.76c 3.69bc 3.44c

B0.5 24.63b 24.18b 22.53bc 2.36bc 2.26ab 2.24c 3.79bc 3.71bc 3.48c

B1.0 25.58ab 24.80b 23.27b 2.38b 2.28ab 2.27ab 3.80bc 3.77b 3.53b

B1.5 26.33a 25.31ab 23.98b 2.40ab 2.31b 2.29a 3.86b 3.80b 3.57b

B2.0 26.69a 26.02a 24.36a 2.43a 2.33a 2.31a 3.94a 3.85a 3.64a

Mean 25.24 24.66 23.09 2.38 2.29 2.27 3.83 3.76 3.532

Reproductive stage in different crops*

Cis Fls Frs Fls Cis Frs Fls Cis Frs

B0 24.29b 24.14b 23.40b 2.34c 2.27bc 2.26c 3.78bc 3.74c 3.75b

B0.5 25.89b 25.16ab 24.30b 2.37bc 2.29bc 2.29b 3.80bc 3.78bc 3.78b

B1.0 26.74ab 26.04ab 24.98ab 2.39bc 2.30b 2.32b 3.83b 3.81b 3.82ab

B1.5 27.31a 26.54ab 25.55a 2.41b 2.33a 2.35ab 3.88ab 3.86ab 3.85ab

B2.0 27.79a 27.00a 25.89a 2.44a 2.34a 2.37a 3.94a 3.90a 3.91a

Mean 26.20 25.78 24.83 2.39 2.31 2.32 3.85 3.82 3.82

Maturity

B0 25.16c 24.72bc 24.09c 2.28c 2.25c 2.26b 3.74b 3.71bc 3.71b

B0.5 26.02b 25.72b 25.17ab 2.31b 2.28ab 2.27b 3.78b 3.74b 3.73ab

B1.0 26.69b 26.24a 25.80ab 2.33b 2.30ab 2.29ab 3.81ab 3.77b 3.75ab

B1.5 27.15a 26.61a 26.15a 2.35b 2.32b 2.32a 3.83a 3.81a 3.78ab

B2.0 27.29a 26.77a 26.72a 2.38a 2.35a 2.33a 3.84a 3.83a 3.82a

Mean 26.46 26.01 25.58 2.33 2.30 2.29 3.80 3.77 3.76

*Cis, curd initiation stage in cauliflower, Fls, flowering stage in cowpea; Frs, fruiting stage in okra. The means followed by a different letter are significantly different at p ≤ 0.05 by Duncan’s multiple range test (values are means of 3-replicates).
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FIGURE 3

Correlograms of Pearson correlation coefficients (r) matrix between the soil physico-chemical and biological entities under
cauliflower–cowpea–okra cropping system. The correlation coefficient (r) values are significantly positive at p < 0.01 (**) and p < 0.05 (*) levels
of probability (2-tailed); the color assigned to a point in the correlograms grid indicates the strength of a correlation between the soil biological
entities, and r values correspond directly to the color codes ranging from red to blue, respectively. Right and left tilted ellipse in the
correlograms grid indicate positive and negative correlation, respectively. where, Bd, bulk density; SOC, soil organic carbon; MBC, microbial
biomass carbon; MINN, mineralizable nitrogen; AP, actinomycetes population; BP, bacterial population; FP, fungal population; AS, arylsulphatase
activity; DHA, dehydrogenase activity; FDA, fluorescein di-acetate hydrolysis activity; PMA, phosphomonoesterase activity; UE, urease activity.

eigenvalues >1.0 and explained >5% of the variance in the
total dataset of the available data (Supplementary Table 3). The
loading plot (Figure 5), generated three PCs with eigenvalues
equal or greater than unity viz. PC1 (68.7%), PC2 (14.8%),
and PC3 (8.2%), respectively. Barring the soil physiochemical
properties, the loading plot (Figure 5) (denoted by blue lines),
elucidated that PC1 had large positive loadings on BP, MBC,
MBN, MBP, PMC, and SR and subsequently followed by
soil enzymes, and they were highly correlated to each other.
Similarly, PC 2 exerted higher loadings on PMC and PMN,
whereas PC 3 had heavy loadings on MBN and UE (Figure 5),
respectively. Contrarily, UE activity was negatively correlated
with PC1 which is attributed to the reciprocal relation with
added corresponding B levels. In case of PC2, it showed heavy
loading on PMA and PMC. The respective score plots (denoted
by red colored dots) of the crops in CCOCS were divided into
four quadrants (I, II, III, and IV) based on component (1 and
2) scores (Figure 5) to allow for better visual discrimination of
B levels on soil physico-chemical and biological properties in
CCOCS. The scoreplot showed that the first quadrant identifies
that the B levels of 1 and 1.5 kg ha−1 displayed positive
heavy loading on some PC1 components viz. soil chemical
properties (SOC and pH), soil enzymes (FDA, PMA, DH,
and AS) and microbial population (AP and FP), respectively.

Similarly, the 2nd quadrant, indicated that B level of 0.5 kg
ha−1 had greater loadings on BD and UE wherein both these
variables had reciprocal relation with the rest of the studied
parameters. The 3rd quadrant was occupied by control (B level
of 0 kg ha−1) which did not influence any soil parameters.
Interestingly, the 4th quadrant harbored the most important
parameters influencing the crop yield in the sequence namely
BP, MBC, MBN, MBP, PMN, PMC, SR, respectively in the biplot
(Figure 5), which in turn, was affected by higher B level of 2 B
kg ha−1.

Stepwise multiple linear regressions for
predicting the best model for crop
yield

The stepwise multiple linear regressions (SMLR)exercised
on MYCS showed the best fitting model that may produce
maximum yield is enlisted in Table 7. The results of SMLR
implied that the retained biological entities BP, MBC, MBN,
MBP and PMC (Table 8) were the best predictors contributing
44.8, 22.17, 18.67, and 14.18%, respectively to the MYCS.
Fitting MYCS as a dependent attribute (response variable) and
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FIGURE 4

Hierarchical clustering of the soil biological entities indicating similarities in different soil physico-chemical and biological entities in
cauliflower-cowpea–okra cropping system. MBC, microbial biomass carbon; SR, soil respiration; MINC, mineralizable carbon; MINN,
mineralizable nitrogen; AP, actinomycetes population; BP, bacterial population; FP, fungal population; AS, arylsulphatase activity; DHA,
dehydrogenase activity; FDA, fluorescein di-acetate hydrolysis activity; PMA, phosphomonoesterase activity; UE, urease activity; VS, vegetative
stage; CIS, curd initiation stage; MS, maturity stages are the Blevels, respectively.

biological properties as the independent attributes (predictor
variables) (Eq. 1), a best-fitting regression model was generated
below as:

MYCS = 11.97+ 1.625 BP+ 0.760 MBC+ 0.494 MBN

+ 0.0843 MBP (1)

Path analysis

For the execution of path analysis, all the biological
entities were assigned as predictor variables excluding soil
physiochemical properties, while the MYCS under CCOS
was assigned as a response variable to avoid the redundancy
of data. In path analysis, the magnitude of the contribution
of all the biological entities to MYCS was quantified by its
corresponding path coefficient values. Results of the path
analysis (Figure 6) showed that BP with path coefficient
values of 2.09 had the highest and most significant direct

effect on MYCS and had twelve numbers of indirect effects
emanating from the rest of the twelve biological parameters
under investigation. Barring, urease enzymes, these twelve
biological parameters indirectly contributed to MYCS by
largely linking to the BP and their indirect path coefficients
through BP. The contributions and impact of the biological
entities to MYCS can be ranked in decreasing order as
BP > MBC > MBN > MBP > PMC > PMN > SR > DH > AP >

FP > AS > FDA > UE > PMA, respectively.

Discussion

Boron is one of the indispensable nutrients for the ideal
growth, development, produce, and quality of crops (Shireen
et al., 2018). In general, B being a vital nutrient plays a role
in plant growth, phenols, lignification, tissue expansion,
membrane-related reactions, ribose nucleic acid (RNA)
metabolism, hydrocarbon metabolism, pollen germination and
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FIGURE 5

Three-dimensional graphical biplot showing the loading and score plot formed by principal components 1, 2, and 3 with different soil
physicochemical and biological entities in cauliflower-cowpea–okra cropping system. Percentage values on PC1, PC2, and PC3 indicate the
respective variance explained by the first three PCA axes; where, MBC, microbial biomass carbon; MINN, mineralizable nitrogen; AP,
actinomycetes population; BP, bacterial population; FP, fungal population; AS, arylsulphatase activity; DHA, dehydrogenase activity; FDA,
fluorescein di-acetate hydrolysis activity; PMA, phosphomonoesterase activity; UE, urease activity.

TABLE 7 Model summary of SMLR under cauliflower-cowpea-okra cropping system.

S R2 R2 (adjusted) PRESS R2 (predicted) Residuals Durbin-Watson statistic

0.32 99.74% 99.64% 2.08 99.47% 2.18 1.84

TABLE 8 Stepwise regression variances analysis of different soil biological properties in cauliflower-cowpea-okra cropping system.

Source DF Seq SS Contri-bution Adj SS Adj MS F-value P-value Coef SE Coef

Regression 4 394.54 99.74% 394.54 98.63 966.30 0.00 11.97 3.18

BP 1 388.07 44.8% 4.05 4.05 39.71 0.00 1.63 0.26

MBC 1 4.74 22.17% 2.51 2.51 24.61 0.00 0.76 0.15

MBN 1 1.04 18.67% 1.49 1.49 14.62 0.00 3.49 0.91

MBP 1 0.69 14.18% 0.69 0.69 6.80 0.03 -0.08 0.03

Error 10 1.02 0.26% 1.02 0.10

Total 14 395.55 100.00%

Stepwise selection of terms: α to enter = 0.15, α to remove = 0.15. S, standard error of the regression; PRESS, predicted residual error sum of squares; Seq SS, sequential sums of squares;
Adj SS, adjusted sum of squares; Adj MS, adjusted mean squares; SE Coef = Standard error of the coefficient.

seed development which are directly implicated in increasing
crop yield (Goldbach and Monika, 2007). The enhancement in
crop yield as a result of B-fertilization could be ascribed to the
improved availability and accessibility of nutrients to plants
(Kumar et al., 2016, 2017), hence producing and mobilizing

surplus carbohydrates and proteins along with its role in
enhancing their translocation from the site of synthesis to the
storage organs (Takkar and Randhawa, 1978; Verma et al., 2012).
Moreover, B acts as a key role in many metabolic processes such
as cell wall differentiation, cell development, N-metabolism,
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FIGURE 6

Path diagram depicting the contribution of soil biological entities to the MYCS in cauliflower-cowpea–okra cropping system. Single-headed
arrows, double-headed arrows and connectors signify the path coefficient (β) (direct effect), simple correlation coefficients between variables
and mutual association, respectively; where, MYCS, mean yield of the cropping system; MBC, microbial biomass carbon; MBN, microbial
biomass nitrogen; SR, soil respiration; PMC, potentially mineralizable carbon; PMN, potentially mineralizable nitrogen; AP, total actinomycetes
population; BP, total bacterial population; FP, total fungal population; AS, arylsulphatase activity; DH, dehydrogenase activity; FDA, fluorescein
di-acetate hydrolysis; PMA, phosphomonoesterase activity; UE, urease activity.

fertilization, fat metabolism, hormone metabolism, active salt
absorption, and photosynthesis (Nason and McElory, 1963),
which in turn contributed to higher fresh and dry matter yield
of cauliflower. Similar findings in okra were also reported earlier
(Saha et al., 2010; Rahman et al., 2017). Kumar and Sen (2004)
reported that the application of B and Zn improved the yield
and quality of okra seed. The beneficial impacts of B on curd
quality and yield of cauliflower were acknowledged by Gupta
(1993).

The decrease in BD under CCOCS might be due to an
improvement in soil structure and porosity due to the addition
of FYM. A slight increment in soil pH could be possibly due
to the ligand exchange between OH−groups of soil Al and
Fe(OH)2 and organic compounds, and the disintegration and
binding of organic complexes of the applied FYM (Xu et al.,
2006). Similarly, SOC in soil remained significantly (p ≤ 0.05)
(Table 1) unaffected after two years of B application, however, an
increment in SOC was observed possibly due to the SOC build-
up through regular addition of FYM and desirable changes in
biochemical and physical properties of soil (Ghosh et al., 2012;

Bhupenchandra et al., 2022; Harish et al., 2022; Kumar et al.,
2022). Also, another reason for the improvement in SOC could
be due to the formation of a strong diol complex of B with
organic matter in soils and the capacity of organic matter to
improve CEC of soils (Bhupenchandra et al., 2021b). Increase
in available N could be due the release of mineralized N by the
addition of organic matter along with the concurrent release
of N via symbiotic biological N fixation by cowpea roots,
since B plays a vital role in biological N fixation and upsurges
the number of effective nodules (Bolaños et al., 2001). The
improvement in the status of available P could be explicated by
the existence of positive interaction between P and B in the soil
as both are in anionic forms and might have been involved in
anion exchange (Bhupenchandra et al., 2021b).

Microbial biomass carbon is the measure of the C
present within the living constituent of soil organic matter.
Soil respiration (SR) is the CO2 released by the biological
activities of soil organisms, involving plant roots, microbes, and
soil animals are usually calculated as a flux of CO2 from the
soil surface. Escalating B appliance quickly altered soil MBC
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content and soil respiration (Bilen et al., 2011). Improvement
in MBC and CO2-C production in soil with the application of
graded B could also be due to the continuous application of
FYM in all the crops for two years in the sequence, which in
turn, might have created a conducive atmosphere for intensified
microbial activities in soil (Singh et al., 2020, 2021). Soil MBC,
being an active and labile component of SOC dependent on the
SOM (Chen et al., 2005; Kumar et al., 2022). There is no direct
evidence of the effect of B application on microbial properties of
soil. But, the enhancement in these biological properties with
the incremental doses of B indicated a possible relationship
between the B-fertilization and microbial activity of the soils.
Subsequently, microbes are implicated in the assimilation of
SOM, which further led to the release of B from organic
complexes in soil (Kumar et al., 2016, 2017). Also, total B
present in the soil fraction is closely related to SOM and was
unleashed via microorganism action (Berger and Pratt, 1963).
Upon intensifying the B appliance, the soil microbial biomass
load in the soil quickly transformed and escalated vibrantly.
Moreover, the accessibility of readily mineralized C and N, and
improvement in soil physico-chemical properties might have
enhanced the microbial population in soil (Bhardwaj and Datt,
1995; Kumar et al., 2022). Application of FYM improves the
SOC pool by supplying organic matter in greater mineralizable
form, thereby, delivering substrate for microbial utilization and
this could be the cause of higher MBC and SR in the current
study (Goldberg, 1997; Liu, 2000; Rajpoot et al., 2021).

The PMC, also known as biodegradable C, is the entirety
of organic matter which can be decomposed through microbial
action (Guo et al., 2019). Potentially mineralizable-N (PMN) is a
measure of the active fraction of soil organic-N, predominantly
accountable for the discharge of mineral-N via microbial
accomplishment (Campbell and Curtin, 2007). The PMN is
availed to plants and microorganisms in the form of NO3

−

by aerobic mineralization. It is a fraction of N linked to the
microbial biomass which is positively related to MBC. With
crop growth, PMN content in soil is augmented as it is the
quantum of N that mineralize with time at the most favorable
temperature and moisture. It comprises a diverse group of
organic complexes which encompass microbial biomass, crop
residues and humus. The increment of PMC content might
be attributed to the soil application of well-decomposed FYM
which acts as a substrate for microbial entities. The enhanced
N-mineralization was observed during the symbiotic biological
N-fixation by cowpea roots since B acts a vital role in the
biological fixation of N and augments the number of effectual
nodules (Bonilla et al., 1997; Bolaños et al., 2001), and hence,
might have created signaling compound through the rhizobia
infection on roots of legume crop (Dénarié and Cullimore, 1993;
Spaink, 2000).

It is established that B is vital for symbiont/plant signaling,
namely nod-gene activation by root plant exudates and
nodule invasion (Redondo-Nieto et al., 2001). Moreover, B

is essential for infectivity thread advancement and nodule
initiation (Bolaños et al., 1996) due to the function of B as a
modulator of the interactions amidst plants derived infection
thread matrix glycoproteins and the bacteria cell surface. Boron
stabilizes membranes, which aids the relationship between
bacterial cell surfaces and the peri-bacteroid membranes,
helping them in regulating symbiotic setup (Bolaños et al.,
1996). Specifically, B is indispensable for the target of nodule-
specific plant-derived glycoproteins that are critical for signaling
bacteroid differentiation into a N2-fixing form (Bolaños
et al., 2004b). Thus, all these factors created a conducive
atmosphere for augmenting the microbial population in the
soil. Several B tolerant bacterial strains belonging to the
genus Bacillus,Chimaereicella, Pseudomonas, Microbacterium,
Shewanella, Mycobacterium, and Rhodococcus have been
reported with the ability to accumulate B from soil (Ahmed
et al., 2007; Raja and Omine, 2013). There are reports on
increased rhizosphere microbial populations by B in soybean
(Sun et al., 2013). There were reports of B improving
the population of diverse bacterial orders (Burkholderiales,
Nitrosospherales, and Rhodospirales) (Vera et al., 2019).
Boron aids in the enhancement of endomycorrhizae in
roots owing to the action of indole 3-acetic acid (IAA)
oxidase activity that activates IAA intensities eventually
augmenting the translocation of carbohydrates to roots
thereby improving fungi–mycorrhizal interaction and its fungal
population (Lambert et al., 1980; Kumar et al., 2017). Related
findings were reported by Bilen et al. (2011), where the highest
population of bacteria and fungi production were observed with
2 kg B ha−1 in altered growth periods of the plant and diverse
soil depths.

Even though the direct role of the effect of B on soil
enzymes could not be established, however, the improvement
in the status of enzyme activities (AS, DH, FDA, and PMA)
was observed during the two years of experimentation. Possibly
it was speculated that the enhanced enzyme activities could be
attributed to improved soil condition due to the continuous
addition of organic matter in the form of FYM in all
the crops for two years which enhanced greater microbial
activities. Since mineralised C and N from FYM enhanced
the soil physico-chemical properties and the quantum of
applied-B, the microbial populace and soil enzyme activities
increased (Bhardwaj and Datt, 1995; Kumar et al., 2022). The
improvement in the soil enzymatic activities might be attributed
to the readily degradable organic matter added to the soil,
which increases soil microorganisms and soil enzyme activities
(Perucci, 1992). Also, DH enzyme activities in soil improved
under graded B-fertilization. A similar finding was reported
by Bilen et al. (2011) who observed a significant (p < 0.01)
positive correlation with B and DH enzyme activity. DHA
is a key indicator of microbial activity and organic matter
stability since it is directly implicated in microbial respiration
(Nikaeen et al., 2015). Improvement in the rhizosphere soil
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enzyme activity of soybean on the appliance of B was also
reported (Goldberg, 1997; Liu, 2000). It was reported that
surface residues encouraged the conservation of mineralizable C
via residues that bettered the activities of soil enzymes ensuing
in higher soil microbial biomass carbon and enhanced soil
quality (Mohammadi et al., 2012). The increment in the soil
microbial populations enhanced the rhizosphere metabolisms
and bettered the soil enzyme activities on the appliance of B
(Sun et al., 2013). Urease (urea amidohydrolase, EC 3.5.1.5) is
N-related extracellular enzyme, the enzyme implicated in the
degradation of urea cleaving urea to NH3 and CO2 (Kappaun
et al., 2018). Evidently, UE enzyme activity de-escalation in
all the crops at different growth stages was observed in B
applied to soil as compared to control. The most likely reason
may be due to the fact that B containing acids acts as a UE
inhibitor in soil (Vera et al., 2019). It was reported that UE
activity was inhibited and minimized by the application of
higher B levels. Furthermore, this profound effect of B on the
UE enzyme activity might be attributed to its action on water-
soluble N, apart from the structural impairment to the enzyme
and improved availability of N, as amino-boranes, which might
have inhibited the urease activity via feedback mechanism
(Kappaun et al., 2018). It was reported that the enzyme UE
was immobilized on a membrane of microbes as inhibited B
(Zaborska, 1995).

Soil functional diversity is governed by substrate amount,
quality, and microbial accessibility. (Bending et al., 2002).
Consequently, the plots which received higher C sources could
alter microbial load of organic matter and the functional
diversity of the microbial community in soils (Sall et al., 2006).
Higher H values observed under the plots receiving escalated
2 kg B ha−1 might be due to the higher receipt of B dose which in
turn improves SOC contents in the soil as there existed a positive
correlation between B and SOC had been earlier documented
(Bilen et al., 2011). Similarly, in the current investigation also,
higher SYI values hold true in those plots where the highest
B levels were applied and this is attributed to the greatest C
availability by catabolic diversity (Lagomarsino et al., 2011)
ensuing in better soil functional diversity.

The forming of clusters (Figure 4) with MBC, MBN, and SR
in the soil in CCOCS may be possibly due to the fact that MBC
is on the whole readily decomposable pool of organic material
owing to the simplest structure and high quality of C and
nutrients where soil bacteria used to nourish (Singh et al., 1992).
The primary activation of microbial activity possibly ensued
from swift catabolism of simple soluble C compounds, thereby,
augmenting microbial biomass load in soil (Singh and Singh,
1991). Due to the possibility of similarity in their function, the
soil enzymes were found to accumulate in similar clusters in
the soil.

Normally, the first component explains most of the
variability contained in the data set (Johnson and Wichern,
2002). The loading plot (Figure 5) exhibited that BP,

MBN, PMC and MBC, PMN, actinomycetes, soil enzymes
barring urease and subsequently followed by FP, and are
highly correlated to each other in CCOCS. Because these
parameters are highly correlated to each other as the angle
within the variables of 0 or 180◦ reveals a correlation
of 1 or −1, respectively (Kohler and Luniak, 2005).
However, UE activity was negatively correlated with PC1
which is ascribed to the inverse link between levels (Vera
et al., 2019). Results of the path analysis (Figure 6) also
showed that barring urease enzymes, all twelve biological
parameters indirectly contributed to MYCS by largely
linking to the BP and their indirect path coefficients
through BP. The contributions of the biological entities to
mean yield of the cropping sequence followed the trend of
BP > MBN > PMC > AP > PMC > PMN > AP > BP > FP >

AS > DH > FDA > PMA > UE, respectively. The execution of
SMLR regression models is considered best fitting (R2 > 0.9),
as, R2 is in the range of 0.90 and 1 (Ogwueleka and Ogwueleka,
2010). In general, an R2 value ranging between 0.8 and 0.9
implies a good fitting and values lesser than 0.8 signify a
poor model.

Conclusion

The results of the foregoing study revealed a tangible
and significant impact of the graded levels of B-fertilization
on soil biological entities under cauliflower-cowpea-okra
cropping system in an acid Inceptisol. The key biological
properties like BP, MBC, MBP, PMC, microbial population,
and soil respiration were enhanced significantly with the
incremental dose of B-fertilization. The order of the B
treatments in respect of MBC, MBN and soil respiration
at different crop growth stages was 2.0 kg B ha−1 > 1.5
B kg ha−1 > 1.0 B kg ha−1 > 0.5 B kg ha−1 > 0 kg
B ha−1, respectively. Higher recoveries of PMC and PMN
were noticed under 2 kg B ha−1 in cauliflower, cowpea
and okra, respectively, at all the crop growth stages over
control. Barring urease, the activities of all other important
soil enzymes (AS, DH, FDA, and PMA) were increased
significantly up to the application of 2 kg B ha−1. The
positive impact of B-fertilization on these biological properties
was observed at different growth stages of all three crops in
the sequence which ultimately led to higher and sustainable
crop production. A significant and positive relationship
between these properties and crop yield greatly supported
this observation. Multivariate analysis also confirmed the role
of B-fertilization in the augmentation of the soil’s biological
properties and yield enhancement. Overall, it was concluded
that different soil physico-chemical and biological properties
under the cauliflower-cowpea-okra cropping sequence can be
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invariably improved by the application of graded levels of B
up to 2 kg B ha−1 in an acid Inceptisol. Future research
entails more advanced research between B with soil microbial
pools, microbial populations and soil enzymes to explore the
precise mechanism of their interaction in soil. Comprehension
of the mechanisms underlying established functions of B may
explicate the significance of B and, in the end, lead to an
advanced perception of its biological function, which has vital
pragmatic implications in agriculture. The continuity of the
residual impact as well as the beneficial effect of B-fertilization
in such cropping sequences is therefore an important subject for
future empirical research to elucidate its sustainability.
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