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Editorial on the Research Topic
Advances in marine and freshwater monitoring to support aquatic
ecosystem conservation and restoration

Monitoring, conserving, and restoring aquatic ecosystems are priorities addressed by
European and global initiatives, put in place to achieve declared national and global
conservation and sustainability goals. These initiatives are dictated by both legally
binding EU frameworks (e.g., Water and Marine Strategy Framework directives, WFD
and MSFD, respectively; EC, 2000; EC, 2008), and global initiatives—i.e., Essential Ocean
and Biodiversity Variables frameworks (EOVs and EBVs) under the Global Ocean
Observing System (GOOS), and the Group on Earth Observations Biodiversity
Observation Network (GEO BON), respectively (Pereira et al., 2013; Miloslavich et al.,
2018). Nonetheless, the extent to which all these initiatives can provide lasting positive effects
on conservation and restoration targets is often limited by the lack of robust baseline data
and systematic monitoring and protocols, which in turn are constrained by the limited
number of long-term monitoring programs and limited dedicated funding. Harmonization
of methods, data structure, and handling is a further limitation when it comes to providing a
comprehensive assessment of aquatic habitats in times of global change.

This Research Topic provides an overview of important advancements in the research
field of monitoring as a supporting tool for the conservation/restoration of aquatic
ecosystems (freshwater, marine, and transitional), and of innovative and under-
development monitoring practices and approaches at both local and large scales
(i.e., local, national, transnational).

This Research Topic contains sixteen articles that address encompassing all major
aquatic domains: freshwater (7), marine (5), and transitional (4) ecosystems, and are focused
on different habitats and groups of organisms (e.g., benthic and pelagic habitats, fishes,
benthic organisms, algae, and seagrasses) and environmental parameters (e.g., oxygen,
chlorophyll). Despite their heterogeneity, they possess the common scope of exploring,
developing, and testing different monitoring approaches with the aim of favoring
conservation and restoration strategies.
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Podda et al. use long-term data from river systems in Sardinia to
assess the effect of dams on the population dynamics of the
European Eel. Using boosted regression trees, they show that
especially time of dam construction, as well as dam height,
impair mobility and dispersal of Eel into the catchments, and
make a strong case for de-regulation of rivers.

Some studies are more methodological. For instance, Di Muri
et al. present a case study focused on the biogeography of two
invasive crustaceans and describe the procedures, resources, and
analytical web services implemented to investigate the trophic habits
of these taxa by using carbon and nitrogen stable isotope data. They
offer a number of analytical tools to determine the variability of the
trophic position of invasive crustaceans in a spatially explicit context
and to model it as a function of relevant environmental predictors.
Moe et al. provide information on theWater Information System for
Europe (WISE) biology data, their accessibility, and re-usability, and
illustrate current or planned applications and indicator development
for European-scale assessments.

Three methodological papers assess the adoption of (semi-)
automated methods for sampling Chlorophyll-a (Chl-a) in coastal
waters and lakes (Rogora et al. Alikas et al., and Farinha et al.). In the
study of Alikas et al. in vitro, fluorescence, and spectral approaches
to measure Chl-a are compared in two distinct lakes in Estonia,
characterized by diverse trophic conditions. They explore the
potential to combine the different methods for improving Chl-a
measurement accuracy. Rogora et al. focus on Chl-a data, with the
aim to test whether in situ fluorescence measurements may provide
an estimate of lake phytoplankton biovolume and its seasonal
dynamic. Their results confirm the use of in situ sensors as a
reliable approach to measure algal pigments, especially to assess
their variability in the short-term, but also to describe the seasonal
pattern of phytoplankton biovolume. Farinha et al. present and
validate the use of MEDUSA, an Unmanned Aerial-Aquatic Vehicle
capable of performing underwater sampling and inspection. This
system is successful in acquiring samples from shore and at high
precision in depth and filtered water volume, enabling the
acquisition of accurate Chl-a measurements that are on par with
manual sampling methods.

Leoni et al. investigate another important environmental
parameter, focusing on the role of sediments in Dissolved
Oxygen (DO) consumption in the Venice Lagoon (Italy), and
measuring the Sediment Oxygen Demand (SOD) rate in four test
areas with benthic chambers. They assess how the presence of the
MOSE infrastructure, which protects the lagoon from high tide-
derived flooding, will affect DO concentration and the functioning
of the waterbody during its closures.

Mackin-Mclaughlin et al. and Tesfaye et al. proposed
approaches to improve the assessment and monitoring of aquatic
habitats and associated species. Mackin-Mclaughlin et al. test the
performance of predictive modeling approaches to enable marine
coastal habitats monitoring. The authors employ habitat mapping
techniques to spatially characterize the distribution of benthic
organisms along the western coast of Placentia Bay, an
Ecologically and Biologically Significant Area (EBSA) in
Newfoundland, Canada. They find the use of fine-scale
environmental information from benthic videos to consistently
improve model accuracy, highlighting the need for in-field data
Research Topic. They provide valuable knowledge on marine

epifaunal association, distributions, and richness in the case study
area, thus strongly supporting the current and future monitoring of
Placentia Bay habitats. Tesfaye et al. focus on the Římov Reservoir
(Czech Republic) lake’s pelagic habitat and compare the
consolidated CEN (European Committee for Standardization)
protocol to assess fish abundance and biomass, with alternative
approaches, which turned out to be effective. These incorporate
information on pelagic habitats volume avoiding under-
representation of any habitat in the assessment. They additionally
evaluate the composition and trend changes of fish populations
over time.

Transitional waters and coastal wetlands are the areas of interest
in the papers from Petrocelli et al. and Duan et al., respectively. Duan
et al. use shorebird survey and land-use data to characterize the
effects of long-term habitat change (1995–2020) on shorebird
populations in the Yellow River Delta (China). They hypothesize
that habitat changes pose a more serious threat to threatened, large-
bodied, and coastal specialist species than to non-threatened, small-
bodied, and generalist/inland specialist species. Their findings
provide useful insights to conserve and manage key shorebird
habitats in the area. Petrocelli et al. analyze the 11-year
monitoring data on non-indigenous species (NIS) of seaweeds in
the Mar Piccolo of Taranto (Italy). To investigate spatial and
temporal differences in seaweed assemblages, multivariate
analyses are performed considering the NIS and the most
important native species in terms of temporal occurrence. The
Mar Piccolo seems not particularly suitable for NIS settlement
and development, especially if coming from cold-temperate zones.

Two papers are specifically dedicated to the identification of
gaps in the current conservation networks and related monitoring
efforts (Gianni et al. and Castellan et al.). Gianni et al. develop and
apply a conceptual model to some selected Adriatic Natura 2000
(N2K) sites to review and assess the management and monitoring
effectiveness of the sites, and to suggest possible improvements.
They aim to inform the management of N2K sites by providing a
knowledge baseline to support the implementation of the Adriatic
Sea ecological observing system. Castellan et al. assess the
effectiveness of the current legislative framework in providing
instruments to protect mesophotic ecosystems in the
Mediterranean Sea, through literature revision, highlighting a
heterogeneous coverage of information related to mesophotic
habitats and associated taxa and a lack of conservation efforts
towards mesophotic zones. They provide suggestions to improve
the management regime of these ecosystems starting from the
setting up of routine and ad hoc monitoring of mesophotic and
deep-sea habitats to advance the knowledge needed to inform their
conservation.

Radwan et al. and Vieira et al. test the use of indicators to favor
consistency in monitoring efforts worldwide. In particular, the first
study explores the host-parasite-metals interactions and the
potential to use the parasites’ presence as a bio-indicator of the
health status of Nile tilapia (Oreochromis niloticus), an important
source of protein for local people. After characterizing the
accumulation dynamics of heavy metals in the fish tissue, the
authors observe significant relationships between parasite
presence and heavy metal concentration. Meanwhile, the
potential to adopt an interspecific boundary line (IBL) as an
indicator of the health status of seagrass meadows is explored by
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Veira and colleagues. The IBL is adopted to define the maximum
possible efficiency in space occupation of 18 species of seagrasses in
Costa Rica, and its efficiency as an indicator is tested against
5,052 observations from 78 studies. The authors prove the
effectiveness of IBL for monitoring the health of seagrass
populations.

Finally, Orlando-Bonaca et al. highlight the importance of
monitoring environmental conditions for identifying suitable
restoration locations and ensuring efficiency in restoration
actions. They set up a restoration system for the macroalga
Gongolaria barbata, a Cystoseira s.l. species, in the marine
protected area of Miramare (Trieste, Italy) and in Piran
(Slovenia) to deepen knowledge of the reproductive potential and
success of donor populations and evaluate the out-planting success
in relation to the different donor and receiving sites. Additionally,
they test the effectiveness of ex-situ and hybrid methods combined
with mesocosm cultivation and suspended culture in the field.

We thank all contributing authors and hope that you will enjoy
reading their papers. We hope that these papers will support
progressive advancement in monitoring practices as the base of
effective conservation and restoration of aquatic ecosystems.
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Fish Parasites and Heavy Metals
Relationship in Wild and Cultivated
Fish as Potential Health Risk
Assessment in Egypt
Mahmoud Radwan1*, Mahmoud Mahrous M. Abbas1, Moharam Adel Mohamed Afifi1,
Amaal Mohammadein2 and Jamila S. Al Malki 2

1Marine Biology Branch, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt, 2Department of Biology,
College of Science, Taif University, Taif, Saudi Arabia

Despite wide studies of biomonitoring aquatic environment through dynamics of
host–parasite interaction, bio-indicators to track the influence and accumulation of
heavy metals on fish are still few. The present study sheds light on the relation
between fish parasites and heavy metals as it threatens fish’s health and, as a
consequence, that of humans after fish consumption. Samples of Nile tilapia
(Oreochromis niloticus) were collected in Burullus Lake, a wild fish source, and from a
private fish farm in Kafr El-Sheikh Governorate, in Egypt. They were exposed to various
pollutants associated with anthropogenic activities to determine the levels of accumulation
of Fe, Zn, and Cu, along with the top three most toxic metals (As, Cd, and Pb) in water and
fish tissues of gills, intestine, liver, and muscles in both wild and farmed O. niloticus. The
results showed the order of abundance: Fe < Zn < Pb < Cu < As < Cd. In waters of both
farmed and wild fish, there was a significant negative relation between parasite prevalence
and heavy metals, including Zn, Pb, and As. Also, there was a significant positive relation
between parasite prevalence with Cu while no significant relation was found with Fe and
Cd. Heavy metal content was significantly higher (p > 0.05) in non-infected than infected
farmed and wild O. niloticus. In addition, a significantly decreased concentration (p > 0.05)
of essential heavy metal was recorded in wild fish compared to farmed specimens, while
non-essential heavy metal was significantly higher (p > 0.05) in wild compared to farmed
fish. Bioaccumulation factors (BAF) of different organs of O. niloticus were ranked in
ascending order: Liver > Gills > Intestine > Muscles. In general, the risk assessment
showed safe human consumption of farmed and wild fish under the reported
environmental conditions in this study. Moreover, the parasite’s presence can be
adopted as a surrogate indicator to estimate the potential impact of heavy metal
pollution and accumulation.
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INTRODUCTION

Aquaculture has grown to become a major source of low-cost
protein in many countries globally, and production has doubled
in the last 10 years, especially in Egypt, where aquaculture
accounts for more than 80% of Egypt’s total fish production
(GAFRD, 2019; David et al., 2021). In poor countries, fish
provides up to approximately 30% of the total animal protein
consumed per capita (Wang et al., 2015). Nile tilapia,
Oreochromis niloticus, is considered the most important and
well-known farmed fish in Egypt and Africa (Authman et al.,
2012; Abdel-hakim et al., 2016). It has grown more than twenty-
fold in the last 20 years (Henriksson et al., 2017).

Due to their environmental persistence and incapacity to
dissolve, metals are considered a particular cause of concern
across the world (Abah et al., 2016; Jiang et al., 2018).
Contaminants are accumulated in aquatic species, such as fish,
either directly from contaminated water or indirectly through the
food chain (Abah et al., 2016; Ahmed et al., 2020). Some heavy
metals are important for fish metabolism within accepted ranges,
but when their quantities exceed these ranges, they become
extremely hazardous (Keke et al., 2015; Padrilah et al., 2018).
Fish uptake the heavy metals directly from the water via their skin
and gills, as well as through the consumption of contaminated
food (Hassan et al., 2018). As such, the concentration of metal in a
fish tissue depends on its amount in the water and its prey (Mousa
et al., 2015). With the capability of metals to bioaccumulate
within the fish organs, these may constitute a health risk for
consumers (Tytła, 2019). It is vital to estimate the risks of metals
on human health as a result of targeted fish intake (Salam et al.,
2019).

Concentrations of heavy metals do not have to reach high
levels in the organism’s body to be dangerous, since even if
accumulated in low quantities in the body tissues, they can exceed
the allowed limits (Sardar et al., 2013). As a result, the
consequences of heavy metals’ negative effects on fish can be
exploited in biomonitoring freshwater environments. In parallel,
the quality of fish living in environments subject to agricultural
drainage and the fresh water of the Nile should be examined to
assess their acceptability and safety for human consumption.

Metals, such as Cu, Mn, Zn, and Fe, are classified as essential
for enzyme functioning and play vital roles in a variety of
biological mechanisms. Nonetheless, when an organism
assimilates them in high quantities over long periods, they can
become poisonous. In parallel, Cr, Pb, and Cd are categorized as
non-essential metals as they have no biological significance for
living creatures. Furthermore, even in small amounts, they are
hazardous (Ju et al., 2017; Mehana et al., 2020).

Fish consumption is a small part of the overall human diet,
whereas the risk range provided by the US Environmental
Protection Agency (EPA) is for the total dietary intake of
metals. However, the metal accumulation risk through fish
consumption should not be ignored. Furthermore, given
harmful metals’ non-biodegradability and probable
accumulation in fish tissues, metal supplementation in fish
feed should be reduced, and fish should be monitored

regularly to help reduce the risk of non-essential metal
poisoning for consumers (Resma et al., 2020).

Analyses of fish-parasite-metals interactions have been
proposed as an efficient monitoring method for assessing the
health of the environmental fish ecosystem, with parasites
indicating the presence of various contaminants in aquatic
habitats, including toxic metals and sewage pollutants
(Mehana et al., 2020).

Indeed, fish parasites help their hosts survive in heavy metal-
polluted environments by collecting larger quantities of heavy
metals and therefore acting as metal sinks (Eissa et al., 2012).

This study intended to explore the following:

(1) The metal content in water, gills, intestines, livers, and edible
tissues of both farmed and wild Oreochromis niloticus;

(2) The potential human health risks associated with the
consumption of both farmed and wild fish with the use of
combined indices;

(3) The role and relationships between heavy metal
accumulation and fish parasite infestation in monitoring
ecosystem pollutions.

Moreover, by examining the possible relationship between
parasites and heavy metals as bio-monitors of pollution, the
current study fills a significant gap in the ecotoxicology field.

MATERIAL AND METHODS

Collection of Fish and Water Samples
Water samples were taken from two different locations. The first
location was Burullus Lake (lake origin), while the second was a
private fish farm in the governorate of Kafr El-Sheikh in Egypt
(Farmed origin) (Figure 1). A total of 538 Nile Tilapia specimens,
O. niloticus, were taken, 324 males and 214 females, with a
standard length of 17.48 ± 6.87 cm and an average weight of
236.26 ± 14.35 g. Fish were taken simultaneously with the water
samples from the same location and transported to the Marine
Biology Department of the Faculty of Science at Al-Azhar
University in Egypt.

Physico-Chemical Parameters
Physico-chemical parameters (pH, turbidity, TDS, ammonia,
NO2, NO3, total alkalinity, total hardness, total phosphate,
H2S, and dissolved oxygen) were measured in the water of
Burullus Lake and the private fish farm according to
procedures outlined by the American Public Health
Association (APHA, 2005). The pH levels were determined
using a digital pH meter. Total dissolved solids were calculated
using a digital TDS meter (TDS). Ammonia (NH3), nitrite (NO2),
nitrate (NO3), and total phosphate levels were measured using
colorimetric methods. Water alkalinity was precisely evaluated
following sample collection using phenolphthalein and methyl
orange as indicators. The Winkler method was used to analyze
dissolved oxygen and titration methods were utilized to
estimate H2S.
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Length-Weight Relationship
After collection, the standard length of each fish was measured to
the nearest millimeter. The body weight was also determined to
the nearest 0.1 g. The Length-weight relationship was determined
by using power equation or its logarithmic modification
according to the following method:

LogW � Log a ± b Log L

(Lagler, 1956).where W is the weight of the fish in grams; L is
the standard length in centimeter; and a and b are constants,
whose values are estimated by the least square method.

By grouping the fish in 10 mm length groups, the empirical
and calculated weights were determined.

Parasitological Assessments
Specimens were examined in the laboratory. The gills, intestines,
muscles, and liver were isolated. After incisions on the ventral
side, the excised organs were initially checked externally for
parasites with a magnifying glass. The alimentary tracts were
then isolated under a stereomicroscope in 0.09% sterile saline
for parasite extraction (Marcogliese and Pietrock, 2011).
According to Sohn’s (2009) procedures, 1 g of each tissue
was placed between two glass slides and investigated for the
detection of encysted metacercariae using a binocular dissecting
microscope. Distinct parasites were carefully removed, and
morphological features were utilized to differentiate them at
the species level. Their proportions were documented, as well as
whether they appeared alone or in clusters. They were not
tarnished when they were photographed (Elsheikha and
Elshazly, 2008; El-Shahawy et al., 2017). However, the
approaches described in Yamaguti (1963), Cheng (1973), and
Radwan (2022) were used to identify helminths. Cestodes,
nematodes, and trematodes were relaxed in warm water for

6 h before being fixed in 5% formalin and transferred to 70%
ethanol (Oros et al., 2010).

According to Radwan et al. (2021) and El-Shahawy et al.
(2017), the specimens were stained with acetic acid alum carmine
in 70% acid ethanol, dehydrated in ascending concentrations of
ethanol, cleaned with clove oil, and permanently mounted in
Canada balsam for microscopic examination. Parasites
prevalence (PP) and intensity (IN) in fish were estimated
according to the following formula:

FPP(%) � (No.HI/No.HE) × 100

where FPP (%) denotes fish PP; No. HI represents the number of
individuals of a host species infected with a particular parasite
species; and No. HE indicates the number of hosts investigated.

IN � TNPS/NIHS

where IN is the intensity; TNPS is the total number of parasite
individuals in a sample of host species; and NIHS is the number of
infected hosts in the sample.

Heavy Metals Analysis
Sample Digestion
The studied organs (intestine, gills, liver, and muscles) of infected
and non-infected fish were selected for heavy metals analysis after
parasitological inspection. The organs (0.5 g each) were treated
with 5 ml of concentrated nitric acid, warmed on the hot plate at
100°C for 10 h, cooled at room temperature, and thoroughly
digested. The digested sample was transferred to a volumetric
flask, and the volume was diluted to a final volume of 50 ml with
deionized water. Heavy metals in water samples were determined
using an acid digestion technique for total metals. The digested
solution was poured into a volumetric flask and then diluted to a
final volume of 100 ml with deionized water. After that, the

FIGURE 1 | Map showing the Burullus Lake and the Private Fish Farm location.
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diluted solution of organs and water samples were tested (AOAC,
2012).

ICP Analysis
Heavy metal (zinc Zn, cadmium Cd, copper Cu, iron Fe, lead Pb,
and arsenic As) levels were measured in diluted solutions of
tissues and water samples. The heavy metals levels in the serial
dilutions (water and fish samples, n = 5) were determined using
an inductively coupled plasma optical emission
spectrophotometer (ICP-OES, Model 4300 DV, Perkin Elmer,
Shelton, CT, United States). To estimate the ppm of each analysis
in the digested solution, samples were treated with a multi-
element standard solution containing 1 μg/L of each metal
used for calibration curve calculation. The Quality Control
sample was analyzed every ten samples to ensure that the
calibration accuracy and instrument drift were both within
acceptable limits (within 20% of the known QC values
acceptable). In each analytical batch, blank samples were run
in duplicate in random order and utilized to calculate the
technique detection limit. The heavy metals levels in the water
samples were measured in mg/L and the fish samples in mg/kg on
a wet weight basis (Abbas et al., 2021).

Bioaccumulation Factor Calculation
The BAF is the ratio between heavy metals deposited in fish
tissues and in the water. It was calculated using the following
equation:

BAF � C − fish/C − water

(Adolfsson-Erici et al., 2012).where BAF is the
bioaccumulation factor, C-fish is the heavy metal levels in fish
organs (ppm), and C-water is the heavy metal levels in
water (ppm).

Human Risk Assessment Calculation
To assess the human risk of heavy metals absorption through the
ingestion of the analyzed fish, the approach provided by the US
Environmental Protection Agency was adopted (USEPA 2018).
The average daily dosage (EDI; an average daily intake of a given
chemical over a lifetime) determined the degree of exposure
produced by oral human ingestion of certain heavy metals
found in fish tissues. The average daily dose (ADD) was
calculated using the following equation, which is given as
mg−1 kg−1 day−1.

EDI � (CF × IR × ER × EP /BW × AT) × 10−3

(Mwakalapa et al., 2019).where CF is the average heavy metals
concentration in fish muscle—mg/kg wet wt.; IR refers to the
daily intake (DI) of fish consumed (kg/day), which in this study
was considered to be 7.9 g/day for children (age 6–11 years old)
and 20.1 g/day for adults; ER is the exposure rate (365 days/year);
EP is the exposure period over a lifetime (suspected to be 70 years
old); BW is the body weight, which for adults was considered to
be 70 kg (Mannzhi et al., 2021) and for children 6–11 years old
52.5 kg body weight which refers to the 95th percentile (USEPA,
2008); AT is the average lifetime (70 years × 365 days/year).

The target hazard quotient (THQ), a non-cancer indicator of
unfavorable health consequences due to the ingestion of
particular heavy metals contaminants in fish samples, was
used to quantify human risk. THQ was computed using the
equation below, which was derived from the proportion of ADD
to ORD (oral reference dose of heavy metals).

THQ � EDI/ORD

(USEPA, 2018). where ORD refers to the oral reference doses
of heavy metals (mg/kg/days) for an adult person weighing 70 kg,
it’s recommended as an upper limit of heavy metals oral
consumption. ORDs for Cu, Pb, Zn, Cd, As, and Fe are 0.04,
0.00357, 0.3, 0.001, 0.0003, and 0.7 mg/kg/day, respectively
(USEPA, 2018). When the target hazard quotient (THQ) falls
below 1.0, it indicates that unfavorable health effects on people
are improbable. If the calculated THQ is greater than 1.0, people
should expect unfavorable health consequences.

The hazard index (HI) is a scientific formula that measures the
effect of non-carcinogenic hazards by the sum of THQ values of
the metals under investigation as follows:

HI � THQ(Cd) + THQ(Pb) + THQ(Fe) + THQ(Cu)
+ THQ(As) + THQ(Zn)

(USEPA, 2011). When the HI value is higher than 10, the
exposed persons have a higher non-carcinogenic risk.

Data Analysis
The normal distribution and homogeneity of variance were
demonstrated using Levene’s test. The statistical analysis was
performed using IBM, SPSS Statistical Program, Version 22; SPSS
Inc., IL, United States. The one-way ANOVA was applied and
when significant differences were found, multivariate, post hoc
Tukey evaluations were utilized to quantify the statistical
difference between the heavy metals’ levels in various fish
organs for each metal. The correlations between physico-
chemical parameters and heavy metal levels in farmed and
wild fish were investigated using Pearson’s correlation
coefficient. The T-test was used to compare infected and non-
infected fish, and the statistical significance was established at
p < 0.05.

RESULTS

Water Quality
Data indicated that fish farm waters had significantly higher levels
of ammonia (mg/L), pH, turbidity (%), nitrogen dioxide (mg/L),
TDS (mg/L), nitrate (mg/L), total alkalinity (mg/L), total
hardness (mg/L), phosphate (mg/L), and hydrogen sulfide
(mg/L) compared to the water of Burullus Lake. The only
exception to this pattern was the dissolved oxygen (mg/L). On
the contrary, Fe, Zn, Pb, Cu, and As levels in Burullus Lake waters
were much lower than in fish farm waters. Concentrations of
heavy metals in Burullus Lake and fish farm water were reported
in this order: Fe, Zn, Pb, Cu, As, and Cd (Table 1, 2).
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Length-Weight Relationship of Uninfected
and Infected Fish
Figure 2A–D shows the length-weight relationship of O.
niloticus fish and its relationship with parasite infection. The
wild and farmed infected and non-infected O. niloticus
specimens exhibited b values ranging from 2.56 to 2.92.
The value of “b” was less than 3 in the infected and non-
infected fish of both wild and farmed fish, indicating a
negative allometric growth pattern for fish regardless of
their infection status. Nearly, all species’ length and
weight had a strong and very significant correlation
(r > 0.96).

Parasitological Outcomes
The parasitic infection rate was 71.34% in farmed fish, while in
wild fish it was 61.16%. Furthermore, farmed fish infection was
lower in the liver (11.78%), increased gradually in the gills
(14.65%), and intestine (16.88%), and reached a higher rate
(28.03%) in muscle tissue. The parasitic infection in different
organs in lake fish fluctuated between (9.82%) in the liver and
(21.43%) in muscles. Farmed fish organs were more susceptible to
infection than lake fish. Moreover, organs were ordered as
muscles, gills, liver, and intestine according to the ratio of
infection (Table 3).

Table 4 showed that the prevalence of protozoa was higher in
farmed O. niloticus fish (14.01%) in comparison to lake fish
(7.59%). Trematodes have fluctuated between 31.53% in farmed
fish and 31.70% in lake fish. The prevalence of cestodes was 4.14%
in farmed fish and 4.91% in lake fish, respectively. Furthermore,
the highest prevalence of Acanthocephala was found in lake fish,
while the lowest rate was found in farmed fish, at 21.66% and
16.96%, respectively.

A total of 13 parasites, were isolated from the examined fish.
Platyhelminthes, two trematodes (Cichlidogyrus tilapiae,
Enterogyrus cichlidarum), one cestode (Procercoid and
plerocercoid stage of Polyonchobothrium clarias), two
nematodes (Procamallanus sp and Paracamallanus sp), one
acanthocephala (Acanthosentis tilapiae), were found, as well as
seven species of encysted metacercariae Centrocestusn
formosanus, Heterphyes sp., Pygidiopsis genata, Diplostomum
tilapiae, Cyanodiplostomum sp., Opisthorchis sp.,
Prohemistomum sp., (Table 5 and Figure 3A–O).

TABLE 1 | Water quality parameters and heavy metal concentrations of the water collected from fish farm and Burullus Lake. At p < 0.05, results from the same row with
different alphabetic letters are statistically different.

Fish farm Lake burullus Drinking water Aquatic life WHO (2011)

EWQS WHO CCME

Water quality parameters

PH 8.37 ± 0.39a 7.17 ± 0.95b 6.5–8.5 6.5–8.5 6.5–9
Turbidity (%) 84.33 ± 5.25a 68.67 ± 0.58b 1000
TDS (mg/L) 836.00 ± 19.80a 772.00 ± 34.39b

Ammonia (mg/L) 1.28 ± 0.09a 0.80 ± 0.13 b

NO2 (mg/L) 0.41 ± 0.03a 0.31 ± 0.02 b 1
NO3 (mg/L) 0.81 ± 0.01a 0.57 ± 0.06 b 50
Total alkalinity (mg/L) 207.33 ± 2.87a 186.33 ± 4.93b

Total hardness (mg/L) 235.33 ± 1.70a 203.67 ± 5.51b 500 500
Phosphate (mg/L) 0.35 ± 0.05a 0.21 ± 0.02 b

H2S (mg/L) 0.93 ± 0.04a 0.75 ± 0.05 b

Dissolved Oxygen (mg/L) 7.67 ± 0.38b 8.44 ± 0.81a 5.5–9.5

Heavy metal concentrations

Fe (PPm) 0.865 ± 0.061a 0.561 ± 0.072b 1
Zn (PPm) 0.6907 ± 0.060a 0.481 ± 0.036b 1
Pb (PPm) 0.088 ± 0.008a 0.067 ± 0.008b 0.05
Cu (PPm) 0.072 ± 0.015a 0.056 ± 0.010b 1
AS (PPm) 0.050 ± 0.004a 0.046 ± 0.007b 0.05
Cd (PPm) 0.004 ± 0.001 0.004 ± 0.001 0.01

a, bResults at p < 0.05, results from the same row with different alphabets small letters are statistically different.

TABLE 2 |Comparison between HMs levels of (μg/L = ppb) in Burullus Lake water
of the present study with the previous studies.

References HM levels values (μg/L) in water

Cu Zn Fe AS Cd Pb

Shakweer and Radwan (2004) 8.48 11.07 1031 55 6.5 5
Radwan (2005) 12.43 15.68 1920 -- 5.3 7.3
Saeed and Shaker (2008) 35 50 425 -- -- 65
Masoud et al. (2011) 3.3 30.75 1737 14 4.6 4.13
Basiony (2014) 23.42 64.15 1550 12.07
El-Alfy (2015) 7.28 2.92 14.64 37 12.3 8.88
El-Batrawy et al. (2018) 2.05 10.5 29.38 -- -- 5.98
Present study
Burullus Lake 56 481 561 46 4 67
Fish Farm 72 691 865 50 4 88
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Pearson Correlation Coefficients
Table 6 showed the Pearson correlation between parasite prevalence,
physico-chemical parameters, and water heavy metals. There was a
positive correlation between parasite prevalence and turbidity,
nitrogen dioxide, nitrate, total alkalinity, and phosphate (r = 0.75,
0.69, 0.65, and 0.67; p < 0.05). The parasite prevalence of farmed and

lake fish was correlated negatively with pH and dissolved oxygen (r =
−0.51 and −49 previously and −0.66 and −0.58 later; p < 0.05). In
both fish farm and Burullus Lake waters, there was a significant
negative correlation between parasite prevalence (PP) and water
heavy metals, including PP-Zn, PP-Pb, and PP-As. However, there
was a significant positive correlation between PP andCu. There is no
significant link between PP-Fe and PP-Cd.

Level of Heavy Metals in Fish Organs
Non-essential heavy metal concentrations, As, Cd, and Pb, were
significantly higher in both non-infected lake and farmed fish
compared to the infected specimens (p < 0.05), while the
concentrations of the essential metals Fe, Zn, and Cu were
significantly lower in non-infected fish than in infected specimens.
However, for both infected andnon-infectedfish, therewas a substantial
(p < 0.05) increase in non-essential heavy metals in lake fish compared
to farmed fish. Similarly, for both infected and non-infected groups,
organs of lake and farmedNile tilapia had the same sequence of essential
and non-essential metals: Fe > Zn > Pb > Cu > As > Cd (Table 7).

Table 8 revealed that the Pearson correlation had a strong positive
correlation (p< 0.05) for Fe-Zn, Fe-Pb, Fe-Cu, Zn-Pb, Zn-Cu, and Pb-
Cu. However, As and Cd showed no significant correlation with the
remaining examined elements in infected and non-infected groups of
farmed fish. In contrast, in lake fish, there was a substantial positive
correlation (p < 0.05) between Fe-Zn, Fe-Pb, and Zn-Pb, as well as a
non-significant correlation between the other analyzed metals.

Bioaccumulation Factors of HeavyMetals in
Fish Organs
BAF of heavy metals in organs of lake and farmed Nile Tilapia are
shown in Figures 4, 5. BAF was evaluated fromwater to fish and in

FIGURE 2 | Length-weight relationship of lake and farmed Nile Tilapia, O. niloticus. (A): Non-infected farmed fish (B): Infected farmed fish; (C): Non-infected lake
fish (D): Infected lake fish.

TABLE 3 | Number of infected specimens of O. niloticus considering the different
analyzed organs and their percentage on the total number of fish examined.

Organs Farmed fish
examined (314)

Lake fish examined (224)

No. of infected PP (%) No. of infected PP (%)

Gill 46 14.65 28 12.5
Muscles 88 28.03 48 21.43
Intestine 53 16.88 39 17.41
Liver 37 11.78 22 9.82
Total infected 224 71.34 137 61.16

TABLE 4 | Prevalence of different parasites species (PP) among the examined fish
O. niloticus, collected from Fish Farm and Burullus Lake.

Organs Farmed fish Lake fish

No. of infected PP (%) No. of infected PP (%)

Nematoda 44 14.01 17 7.59
Trematodes 99 31.53 71 31.70
Cestoda 13 4.14 11 4.91
Acanthocephala 68 21.66 38 16.96
Total infected 224 71.34 137 61.16

PP, parasites Prevalence.
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various organs of lake and farmed fish with increasing order of
metal ions according to BAF Liver > BAF Gills > BAF Intestine >
BAFMuscles. However, BAF in infected organs of lake and farmed
fish was lower when compared to non-infected fish. In the infected
and non-infected organs of lake fish, the highest accumulation
factor was detected for Cd, while the lowest factor was observed for
Cu. On the other hand, the intestine, liver, and gills of farmed fish

organs accumulated themajority of Cd from the water, whereas Zn
had the lowest accumulation factor. Fe was accumulated in the
muscles to the maximum extent in farmed fish.

Human Health Assessment
Table 9 reports the estimated daily intake (EDI, mg/kg/day) and
target hazard quotients (THQ) for trace metals in the muscles of

TABLE 5 | Parasites species isolated from farmed and wild fish, O. niloticus.

Phylum Family Species Farmed fish Wild fish

Trematoda Dactylogyridae Cichlidogyrus tilapiae a b

Ancyrocephalidae Enterogyrus cichlidarum c c

Heterophyidae Centrocestus formosanus a b

Heterphyes sp a c

Pygidiopsis genata c b

Diplostomatidae Diplostomum tilapiae a b

Cyanodiplostomatide Cyanodiplostomum sp a b

Opisthorchiidae Opisthorchis sp a c

Cyathocotylidae Prohemistomum sp a b

Cestoda Ptychobothriidae Procercoid and pleurocercoid stage of Polyonchobothrium clarias c b

Nematoda Camallanidae Procamallanus sp c b

Paracamallanus sp c

Acanthocephalan Quadrogyridae Acanthosentis tilapiae a b

aMax. mean for intensity of infection.
bMin,
cmedium

FIGURE 3 | Encysted metacercariae (EMC) of identified infected fishes (Scale bar = 50 µm). (A): Centrocestus formosanus. (B): Diplostomum tilapiae stained with
acetic acid alum carmine. (C): Opisthorchis sp. (D): Cyanodiplostomum sp. (E): Prohemistomum sp. stained with acetic acid alum carmine (F): Pygidiopsis genata
stainedwith acetic acid alum carmine (G):Heterphyes sp. stained with acetic acid alum carmine (H–O). Helminth parasites identified in infected fish (Scale bar = 0.5 mm).
(H): Cichlidogyrus tilapiae. (I): Enterogyrus cichlidarum, stained with acetic acid alum carmine (J): Acanthosentis tilapiae. (K): anterior part of A. tilapiae. (L):
Procamallanus sp. (M): Paracamallanus sp. (N,O): Procercoid and pleurocercoid stage of Polyonchobothrium clarias.
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lake and farmed fish. Children’s EDI in farmed O. niloticus
muscles varied from 5 × 10−6 to 2 × 10−3 mg/kg/day, while
adults’ EDI ranged from 9 × 10−6 to 3 × 10−3 mg/kg/day. In
lake fish, however, EDI varied from 8 × 10−5 to 1 × 10−2 mg/kg/
day for children, and from 4 × 10−5 to 3 × 10−2 mg/kg/day for
adults. Furthermore, the THQ in this investigation was all lower
than 1, indicating that eating lake and farmed fish had no negative
health consequences for both age groups. Figure 6 shows the
hazard index (HI) for heavy metals in the muscles of lake and
farmed fish. The HI values determined for this study were all
lower than 1, indicating that lake and farmed fish intake is safe. In
both groups examined, lake fish had higher HI values than farmed
fish. For both children and adults, it was greater in lake fish than
in farmed fish. Furthermore, for both children and adults, it was
greater in non-infected muscles than in infected muscles.

DISCUSSION

Water Quality and Fish Parasites
Relationship
Water quality is an essential factor in the growth of healthy fish.
Therefore, the risk of infections is linked to the water’s sanitary
conditions as well as to the overall fish health (Ojwala et al., 2018).
The values of pH in this study were neutral, even though the
optimal pH range for freshwater fish was between 6.5 and 7.0.
Also, a pH range of 6.1–8.0 was deemed adequate for fish
reproduction and survival (Makori et al., 2017). According to
the results from Soltan et al. (2016), reduced water transparency
can be linked to a higher abundance of phytoplankton, but in

lakes, it is possible that it can be due to untreated wastewater
(Negm et al., 2017). Total ammonia was also found to be higher in
fish farms than in lakes, which might be due to large fish stocks,
fish excretion, and the breakdown of extra un-consumed diet, all
of which are ammonia sources in ponds. These findings
corroborate previous research (Konsowa, 2007; Radwan et al.,
2021; Radwan, 2022).

The elevated level of dissolved oxygen concentration (DO)
detected in the farm water might be related to the abundance and
distribution of phytoplankton, which promotes photosynthesis,
resulting in the creation of a huge quantity of DO (El-Nemaki
et al., 2008). This is consistent with other observations by Soltan
et al. (2016). On the other hand, a depletion in DO concentrations
might be owing to a higher usage rate caused by biological
processes and high temperature (Radwan, 2005; Goheret al.,
2015; El Sayed et al., 2020). Dissolved oxygen and pH, on the
other hand, displayed a strong negative relation with the Parasites
Prevalence (PP) in lake and farmed Nile Tilapia. This observation
agrees with Zargar et al. (2012) and Radwan et al. (2021) who
observed strong negative relationships between parasite presence
frequency and pH and DO concentrations. Meanwhile, these
findings contradict the findings of Sosanya (2002) who found a
positive relationship between water contaminants and parasite
prevalence rates. Furthermore, H2S is very hazardous to fish.
Boyd (1985) indicated a safe H2S concentration for freshwater
fish of 0.002 mg/L. The correlation coefficient of physico-
chemical elements with parasite prevalence in this study
implies that the measured factors have an influence on the PP
(Wali et al., 2016; Qayoom and Shah, 2017; Radwan et al., 2021).
Turbidity, total alkalinity, NO2, NO3, and phosphate were shown
to be substantially related to PP (Abba et al., 2018; Ojwala et al.,
2018).

Length-Weight Relationship
The present study showed that the values of “b” of infected fishes
were significantly lower than “3” which indicates a negative
allometric growth, i.e., the fish grows but it is slender (Bagenal
and Tesch, 1978). Negative allometric growth is an indication of
slow growth, which might be due to the non-availability of food
or weakened immune status (Veeramani et al., 2010; Ndeda et al.,
2013). On the other hand, the variation of growth patterns may be
due to ecological parameters through periods of study, which
include several biotic and abiotic interactions contingent on
seasonality (Ngodhe and Owuor-JB, 2019). In contrast,
parasites are also known to act as stressors on their hosts and
then cause altered growth in their hosts (Froese, 2006; Kahraman
et al., 2014).

Parasitological Outcomes
Parasite prevalence (PP) was found to be higher in farmed fish
than in lake Nile Tilapia in the current investigation. This may be
attributed to stoking density of fish at farms and feeding habits,
which depend mainly on artificial feed and other natural aquatic
pollutants (Enyidi and Eneje, 2015). Parasites prevalence may
also be related to increased fish numbers in culture systems and
variations in physico-chemical variables related to a larger density
of fish in the cultivated site than in the lake (Violante-González

TABLE 6 | Pearson correlation coefficients between water quality and water-
heavy metals with parasites prevalence of O. niloticus, collected from Fish
Farm and Burullus Lake.

Parasites prevalence Fish farm Burullus lake

Water quality

pH −0.59a −0.49
Turbidity (%) 0.75 0.77
TDS (mg/L) −0.33 −0.42
Ammonia (mg/L) −0.48 −0.43
NO2 (mg/L) 0.58 0.89
NO3 (mg/L) 0.69 0.94
Total alkalinity (mg/L) 0.65 0.55
Total hardness (mg/L) −0.65 −0.56
Phosphate (mg/L) 0.67 0.65
H2S (mg/L) −0.34 −0.22
Dissolved Oxygen (mg/L) −0.66 −0.58

Water heavy metals

Fe (ppm) 0.20 0.14
Zn (ppm) −0.96 −0.97
Pb (ppm) −0.69 −0.58
Cu (ppm) 0.89 0.84
AS (ppm) −0.56 −0.59
Cd (ppm) −0.19 −0.28

aCorrelation is significant at the 0.05 level (2-tailed).
bCorrelation is significant at the 0.01 level (2-tailed).
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et al., 2009; Ibrahim and Soliman, 2010). This research also
revealed that trematodes have been the most common source
of parasite infection in fish populations. This finding might be
due to fish skin that may be more sensitive to infective parasite
stages penetration and the detritus and benthic invertebrates
consumed by this fish at different periods. Nile Tilapia is
considered an intermediate host which is suitable for many
parasite phases when favorable physico-chemical properties are
present (El-Shahawy et al., 2017; Shehata et al., 2018; Radwan,
2022).

Assay of Heavy Meals in Water and Fish
Tissues
Heavy metals concentrations are essential indicators of fish health
and the aquatic environment (Padrilah et al., 2018). Heavy metals
estimated levels (Fe, Zn, Pb, Cu, and As) in the water of Burullus

Lake and fish farm were within the standard allowed values except
for Pb, which exceeded the maximum permitted levels (WHO,
2011), as a result of contamination by industrial effluents and
municipal sewage concentrations that might be blamed (Chen
et al., 2010; Nafea and Zyada, 2015). Moreover, HM levels in the
current study’s findings (Burullus Lake and Farmed fish waters) are
still within the range of prior examinations, except for Zn, Cu, and
Pb, which were greater in both analyzed locations than in past
studies (Younes and Nafea, 2012; Ghabour et al., 2013; El-Batrawy
et al., 2018; Melegy et al., 2019). The following is the order of the
metals: Fe < Zn < Pb < Cu < As < Cd as reported in other studies
(Darwish, 2016; El Morshedy, 2017; El-Batrawy et al., 2018).

Metal levels (Fe, Zn, Cu, As, Cd, and Pb) in the non-infected
lake and farmed Nile Tilapia were significantly higher than in the
infected fish. This may be due to parasites accumulating high
levels of metal in their tissues, thereby acting as metal sinks for
their fish host and helping in their survival in the presence of

TABLE 7 | Heavy metal concentrations in different organs of lake and farmedO. niloticus. Different superscript letters in the same column and metal are significantly different
(T-test, p < 0.05). While results from the same row and origin with different alphabetic letters are statistically different (ANOVA, p < 0.05).

Hm Fish
status

Fish origin

Farmed fish Lake fish

Liver Gills Intestine Muscles Liver Gills Intestine Muscles

Essential heavy metals

Cu
Non-
infected
fish

0.98 ± 0.01 aA 0.81 ± 0.17 bA 0.68 ± 0.06 cA 0.38 ± 0.15 dA 0.41 ± 0.05 aA 0.40 ± 0.01 bA 0.23 ± 0.07 cA 0.17 ± 0.01 dA

Infected
fish

0.92 ± 0.11 aB 0.77 ± 0.12 bB 0.63 ± 0.09 cB 0.29 ± 0.22 dB 0.35 ± 0.03 aB 0.34 ± 0.04 bB 0.19 ± 0.03 cB 0.12 ± 0.01 dB

Zn
Non-
infected
fish

5.52 ± 0.24 aA 4.50 ± 0.62 bA 3.62 ± 0.06 cA 3.41 ± 0.91 dA 4.75 ± 0.85 aA 3.73 ± 0.47 bA 2.89 ± 0.15 cA 2.67 ± 0.28 dA

Infected
fish

5.30 ± 0.30 aB 4.34 ± 0.99 bB 3.49 ± 0.41 cB 3.29 ± 0.77 dB 4.66 ± 0.83 aB 3.57 ± 0.20 bB 2.75 ± 0.40 cB 2.55 ± 0.31 dB

Fe
Non-
infected
fish

29.10 ± 2.18 aA 22.73 ± 1.33 bA 17.41 ± 2.07 cA 11.28 ± 1.08 dA 27.49 ± 2.32 aA 21.52 ± 2.50 bA 15.19 ± 1.96 cA 9.03 ± 0.96 dA

Infected
fish

28.21 ± 1.15 aB 21.77 ± 1.57 bB 17.10 ± 0.57 cB 9.89 ± 0.49 dB 26.60 ± 1.00 aB 20.79 ± 0.75 bB 15.06 ± 0.69 cB 7.64 ± 0.58 dB

Non-essential heavy metals

Pb
Non-
infected
fish

3.58 ± 0.35 aA 2.76 ± 0.32 bA 1.55 ± 0.15 cA 0.24 ± 0.17 dA 4.37 ± 0.35 aA 3.48 ± 0.32 bA 2.36 ± 0.15 cA 0.62 ± 0.05 dA

Infected
fish

3.36 ± 0.32 aB 2.58 ± 0.05 bB 1.33 ± 0.19 cB 0.20 ± 0.20 dB 3.48 ± 0.35 aB 2.72 ± 0.05 bB 2.07 ± 0.04 cB 0.55 ± 0.06 dB

As
Non-
infected
fish

0.58 ± 0.06 aA 0.45 ± 0.05 bA 0.43 ± 0.10 cA 0.23 ± 0.10 dA 1.02 ± 0.05 aA 0.86 ± 0.20 bA 0.84 ± 0.05 cA 0.73 ± 0.06 dA

Infected
fish

0.52 ± 0.04 aB 0.44 ± 0.05 bB 0.39 ± 0.04 cB 0.15 ± 0.07 dB 1.01 ± 0.10 aB 0.81 ± 0.14 bB 0.79 ± 0.06 cB 0.61 ± 0.07 dB

Cd
Non-
infected
fish

0.41 ± 0.05 aA 0.36 ± 0.06 bA 0.21 ± 0.03 cA 0.04 ± 0.01 dA 0.81 ± 0.06 aA 0.65 ± 0.05 bA 0.49 ± 0.10 cA 0.20 ± 0.05 dA

Infected
fish

0.39 ± 0.06 aB 0.30 ± 0.06 bB 0.18 ± 0.03 cB 0.03 ± 0.01 dB 0.77 ± 0.04 aB 0.64 ± 0.12 bB 0.44 ± 0.06 cB 0.17 ± 0.05 dB

a, bResults at p < 0.05, results from the same row with different alphabets small letters are statistically different.
Different superscript capital letters in the same column and metal are significantly different Q29 (T-test, p < 0.05). While results from the same row and origin with different alphabetic small
letters are statistically different (ANOVA, p < 0.05).

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 8900399

Radwan et al. Water Quality-Fish Parasites Relationship

16

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


toxins. These observations agree with Sures (2007), Azmat et al.
(2008), and Eissa et al. (2012). Furthermore, infected fish had
decreased concentration of some heavy metals, which included
Cu, Fe, Pb, and Zn, according to some studies (Oyoo-Okoth et al.,
2010; Dural et al., 2011). This result is supported by Shahat et al.

(2011) who observed that parasitic-infected organs had lower
amounts of Cu, Cd, and Pb than non-infected fish. Similarly,
gastrointestinal parasitic worms appeared capable to decrease
levels of heavy metals in fish muscle by accumulating them (Al-
Hasawi, 2019; Mehana et al., 2020).

FIGURE 4 | Bioaccumulation factor of heavy metals in different organs of lake Nile Tilapia, O. niloticus.

TABLE 8 | Pearson correlations between heavy metal concentrations of lake and farmed in O. niloticus.

Farmed fish Lake fish

Fe Zn Pb Cu As Cd Fe Zn Pb Cu As Cd

Non- Infected fish

Fe 1 1
Zn 0.82a 1 0.80a 1
Pb 0.86a 0.78a 1 0.83a 0.77a 1
Cu 0.87a 0.82a 0.86a 1 0.53 0.38 0.52 1
As 0.53 0.22 0.54 0.51 1 0.37 0.18 0.44 0.13 1
Cd 0.36 0.21 0.42 0.43 0.47 1 0.63b 0.65b 0.67b 0.62b 0.77b 1

Infected fish

Fe 1 1
Zn 0.74a 1 0.85a 1
Pb 0.97a 0.75a 1 0.97a 0.82a 1
Cu 0.85a 0.73a 0.88a 1 0.50 0.47 0.38 1
As 0.38 0.23 0.46 0.37 1 0.34 0.28 0.36 0.29 1
Cd 0.35 0.08 0.32 0.43 0.32 1 0.84a 0.78a 0.86a 0.62b 0.62b 1
Prevalence −0.97b −0.93b −0.97b −0.61 −0.63 −0.52 −0.92b −0.94b −0.95b −0.59 −0.56 −0.57

aCorrelation is significant at the 0.01 level (2-tailed)

bCorrelation is significant at the 0.05 level (2-tailed)
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Cu, Zn, and Pb concentrations were found to be higher in
Burullus Lake compared to previous studies, while Cd and Fe
were decreased (Shakweer and Radwan, 2004; Radwan 2005;
Saeed and Shaker, 2008; Masoud et al., 2011; Basiony, 2014;
El-Alfy, 2015; El-Batrawy et al., 2018). However, in the fish farm,
Cu, Zn, As and Pb concentrations were higher compared to the
previous studies (Radwan 2005; Masoud et al., 2011; Basiony,
2014; El-Alfy, 2015; El-Batrawy et al., 2018), while Cd and Fe
concentrations were lower compared to previous studies
(Shakweer and Radwan, 2004; Saeed and Shaker, 2008).

The level of heavymetals concentration in fish tissues is influenced
by various factors such as water quality, fish species, and maturity
stage (Łuczy´nska and Paszczyk, 2019). The non-essential heavy
metals such as As, Cd, and Pb were much higher than the levels
recommended by USEPA (2010) and FAO (2016), which may be
caused by the increase in human activities in the lake or fish farms.
On the other hand, Yildiz, (2008), Fallah et al. (2011), Kim et al.
(2018), and Simukoko et al. (2022) reported that a diet that contains
animal protein ingredients has a much higher level of heavy metals,
especially of the essential heavy metals such as Zn, Fe, and Cu.

TABLE 9 | Estimated daily intake (EDI, mg/kg/day) and target hazard quotients (THQ) for HMs in muscles of farmed and lake O. niloticus.

HRA-heavy
metals

Fish origin

Farmed fish Lake fish

EDI THQ EDI (mg/kg/day) THQ

Children Adults Children Adults Children Adults Children Adults HM PTDI

Non-infected fish

Cu 6 × 10−5 1 × 10−4 3 × 10−5 5 × 10−5 1.4 × 10−2 2.7 × 10−2 6.4 × 10−3 1.2 × 10−2 35
Zn 5 × 10−4 1 × 10−3 4 × 10−4 8 × 10−4 2 × 10−3 3 × 10−3 1.3 × 10−3 2.6 × 10−3 70
Fe 2 × 10−3 3 × 10−3 1.4 × 10−3 3 × 10−3 2 × 10−3 5 × 10−3 1.9 × 10−3 3.7 × 10−3 50
As 4 × 10−5 7 × 10−5 9 × 10−5 2 × 10−4 1 × 10−2 2 × 10−2 2.67 × 10−2 5.09 × 10−2 0.14
Cd 3 × 10−5 7 × 10−5 1 × 10−4 2 × 10−4 1 × 10−4 2 × 10−4 4 × 10−4 7 × 10−4 0.07
Pb 6 × 10−6 1 × 10−5 3 × 10−5 6 × 10−5 6 × 10−3 1.1 × 10−2 3.02 × 10−2 5.74 × 10−2 0.25

Infected fish HM ORDs

Cu 4 × 10−5 8 × 10−5 2 × 10−5 3 × 10−5 1.1 × 10−2 2.1 × 10−2 4.5 × 10−3 8.6 × 10−3 0.04
Zn 5 × 10−4 9 × 10−4 4 × 10−4 7 × 10−4 2 × 10−3 3 × 10−3 1.3 × 10−3 2.4 × 10−3 0.30
Fe 1 × 10−3 3 × 10−3 1 × 10−3 2 × 10−3 2 × 10−3 4 × 10−3 1.6 × 10−3 3.1 × 10−3 0.70
As 3 × 10−5 6 × 10−5 8 × 10−5 2 × 10−4 9 × 10−3 1.6 × 10−2 2.36 × 10−2 4.51 × 10−2 0.003
Cd 2 × 10−5 4 × 10−5 9 × 10−5 2 × 10−4 8 × 10−5 1 × 10−4 3 × 10−4 6 × 10−4 0.001
Pb 5 × 10−6 9 × 10−6 3 × 10−5 5 × 10−5 5 × 10−3 9 × 10−3 2.56 × 10−2 4.88 × 10−2 0.0036

FIGURE 5 | Bioaccumulation factor of heavy metals in different organs of farmed Nile Tilapia, O. niloticus.
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Non-essential heavy metal levels (As, Cd, and Pb) in cultivated
Nile Tilapia weremuch lower than in lake fish, maybe due to the fact
that lake fish live for several years while cultivated fish are caught
within 6months (Oumar et al., 2018).When compared to cultivated
Nile Tilapia and lake fish, Nile Tilapia can absorb contaminants with
long biological half-lives, such as, Cd, and Pb, throughout a long
lifespan. These findings agree with Chatta et al. (2016), who reported
that the farmedCirrhinusmrigala and Labeo rohita accumulated less
Cd and Pb than the lake ones. Lake fish also had higher levels of non-
essential heavymetals due to a longer lifetime and exposure, but they
also had reduced levels of essentialmetals because theywere not fed a
commercial diet (Simukoko et al., 2022).

Bioaccumulation Factor of HM Levels in
Fish Tissues
The bioaccumulation (BAF) of heavymetal levels in fish tissues is the
percentage of heavy metal levels in tissues to their levels in the
aquatic environment (Hatem et al., 2015). In the current study, gill,
muscles, liver, and intestine tissues presented a strong probability of
heavy metal bioaccumulation in fish. All gill and liver samples had a
high BAF value, whereas the muscle and intestine presented lower
values. This revealed that the heavymetals were accumulating in fish
tissues after being absorbed from the water. The BAF in the current
study revealed that the heavymetal levels in the analyzed tissues were
in the following order: liver > gills > intestines >muscles, as already
reported in a previous study (Maurya et al., 2019). Active metabolic
tissues, such as the kidneys, gills, and liver, accumulate more heavy
metals than less metabolically active tissues, such as the muscles and
skin (Ali et al., 2019). Generally, muscles store the lowest amount of
heavymetals (Ronagh et al., 2009). These results are nearly similar to
those reported by Badr et al. (2014), who concluded that the level of
heavy metals in Nile Tilapia tissues were higher in the liver than in
gills and muscle.

In general, the current study found that the tissues of lake and
cultivated Nile Tilapia contained more iron (Fe) than every heavy
metal tested, with cadmium (Cd) being the lowest, and
concentrations of heavy metals were in the sequence Fe > Zn
> Pb > Cu > As > Cd. The increase in Fe accumulation in fish
tissue in all tested organs was greater than the increase of other
metals. This might be related to an increase in the total dissolved
Fe in water of fish farms and lakes, with a consequent increase in
free metal Fe levels and hence metal absorption by various organs.
These results are supported by Tayel et al. (2008) and Al-Halani
et al. (2021), who determined that the heavy metal concentration
in lake fish tissues, Dicentrarchus labrax, occurred in the
following order: Fe > Zn > Mn > Cu > Pb > Ni > Cr > Cd.

Human Health Risk Assessment
Humans consume large amounts of fish, and fish muscles are a
good source of protein. As a result, determining the human daily
consumption of heavy metals from fish is important
(Rajeshkumar and Li, 2018). The daily intake of metal through
the consumption of commercially relevant fish species by people
who eat a normal quantity of fish on a regular basis corresponds
to a hazard index (HI) of 1.0, as suggested by USEPA (2018).

To explain the safe levels of heavy metals, the average daily intake
was utilized (Keshavarzi et al., 2018). The oral reference dose (ORD)
is an oral reference dosage established on the basis of worldwide and
Egyptian fish consumption and daily exposure levels. This research
focused on the estimated daily intake (EDI) (mg/kg/day). Target
hazard quotient (THQ) and HI were used to determine the levels of
heavy metals in the muscles of farmed and lake Nile Tilapia. EDI
levels in cultivated Nile Tilapia muscles ranged from 1 × 10−5 to
0.193mg/kg/day. On the other hand, the lake fish had a range of 2 ×
10−4 to 0.024mg/kg/day. The EDI distribution against the examined
heavymetals was arranged in the following order: Cd>As >Cu > Pb
> Zn > Fe. The measured EDI of both groups was compared to the

FIGURE 6 | Hazard index (HI) for heavy metals in the muscles of lake and farmed Nile Tilapia, O. niloticus.
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FAO/WHO (2004). Similarly, for permissible tolerable daily intake
(PTDI), which is the acceptable tolerable daily intake for 70 kgweight,
it was determined that the metals’mean EDI levels have to be lower
than the PTDI values (FAO, 2016).

The THQ values estimate— for this study were all lower than
one, indicating that eating cultivated and lake Nile Tilapia will not
harm people. According to Lei et al. (2015), if the HI value is
lower than one (HI1), the impacts on humans would be
unfavorable, HI > 1 would most likely have a negative impact,
and HI > 10 would have strong or chronic acute consequences.

Human health risk assessment due to exposure to heavy
metals through farmed and lake Nile Tilapia consumption
revealed no significant non-carcinogenic adverse health risk to
humans, as all calculated values for THQ and HI were lower than
1, indicating that the analyzed fish would not cause any health
problems in both children and adults.

CONCLUSION

Generally, all studied metals in the water were found to be lower
than the permissible limits, except for Pb. HM levels were
significantly lower in infected than in non-infected Nile tilapia.
HM levels in lake and farmed Nile tilapia tissues in the area of
study were mostly recognized by the legislation of national and
international limits for not determining human risk upon their
consumption. THQ and HI values calculated for HMs levels of
lake and farmed Nile tilapia predicted for adults and children
were below the threshold level of 1. Parasites are capable to
decrease concentrations of heavy metals in the tissues of fish by
accumulating them. Also, they are a possible application as early
warning indicators of heavy metal pollution in fish. Fish farmers
lacked knowledge of diseases that affect fish and the importance
of water quality in disease transmission. Heavy metal levels in fish
tissue and water must be continuously monitored not just for
human health but also to inform aquaculture management. In
addition, employing the EDI, THQ, and HI indices to estimate
human health risk is a highly recommended method.
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When the Eel Meets Dams: Larger
Dams’ Long-Term Impacts on Anguilla
anguilla (L., 1758)
Cinzia Podda*, Francesco Palmas, Antonio Pusceddu and Andrea Sabatini

Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy

Diadromous fish, like the European eel Anguilla anguilla (L., 1758), are highly threatened by
dams that disrupt river connectivity, consequently impeding fish movements to reach
feeding and spawning habitats. In this study, variation in eel occurrence between a
historical period (1940–1970) and recent data (2016–2020) was assessed throughout
the Sardinian rivers’ network (more than 450 sites). Using Boosted Regression Trees (BRT)
we investigated relationships between eel’s occurrence and a set of spatial and temporal
environmental variables including a set of dams’ construction features for each period. An
overall decrease by 65% of eel’s occurrence was noticed during the ca. 80-years period
under scrutiny. Considering a subset (105 and 88 sites for the historical and the recent
period, respectively) characterized by the presence of larger dams (height >15m), eel’s
occurrence dropped by 85%. Conversely, eel’s occurrence dropped only by ca. 44% in
dam-free sites. During the historical period, eel’s occurrence was mostly affected by time
since the initial habitat fragmentation, flow, distance to dams, connectivity, and dams’
height. In the most recent period, eel’s occurrence is mostly affected by dams’ building
year, dam-to-sea distance, and, again, dams’ height. Results pinpoint that dams’
construction features and the time from their construction have significant negative
effects on eel’s occurrence. Addition of future effective eel restoration practices, apart
any other adverse environmental stressor, must consider dams’ removal, wherever socially
sustainable or alternatively, the modification of construction features of dams (like
excessive height) and the addition of fish ladders.

Keywords: Diadromous species, European eel, freshwater ecosystems, damming, river fragmentation

INTRODUCTION

Freshwaters are biodiversity hotspots with 13,000 fish species inhabiting rivers and lakes (Lévêque
et al., 2008). Free-flowing rivers provide migration routes for aquatic and riparian species, allow the
transportation of sediments and nutrients, enable groundwater recharge, and mitigate flooding (Poff
et al., 1997; Tickner et al., 2020). At the same time, rivers are essential elements for biodiversity and
humans’ wellbeing (Addams et al., 2009; Russi et al., 2013). Rivers are among the most threatened
ecosystems by anthropogenic disturbances (Vörösmarty et al., 2010) including a large variety of
obstacles (e.g., dams and weirs, road crossings, hydroelectric power plants, water abstraction for
irrigation, flood control systems for municipal water security) (Welcomme, 1995; Jungwirth et al.,
2000; Nilsson et al., 2005). Dams’ construction has seen an acceleration worldwide during 1950/
1960s (Dynesius and Nilsson, 1994; Postel and Richter, 2003; MacGregor et al., 2009), and more than
two thirds of larger rivers have been fragmented (Grill et al., 2015). At present, ca. 2.8 million dams
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are operating and roughly 3,700 major dams are being
constructed or planned (Zarfl et al., 2015; Grill et al., 2019).

Environmental alterations caused by anthropogenic obstacles
affect the natural hydrology and connectivity of stream networks,
and their ability to transport sediments (Bednarek 2001; Fullerton
et al., 2010; Grill et al., 2015; Rincón et al., 2017). Modifying the
river flow (Grill et al., 2015), dams pose increasing threats to
freshwater ecosystems and mobile biota, particularly fish
(Arthington et al., 2016). These barriers play a role in the
degradation of water quality (Chowdhury and Kipgen, 2013;
Galipeau et al., 2013; Opperman et al., 2019; Barbarossa et al.,
2020), cause variations in temperature and water flows (Poff et al.,
1997; Richter et al., 2010; Opperman et al., 2017), impair
biodiversity, and in particular impede migration, threat the
spawning habitats and alter the natural gene flows (Silva et al.,
2018; Wilkes et al., 2018; Birnie-Gauvin and Aarestrup, 2019),
ultimately increasing the risk of extinction of fish (Lucas and
Baras, 2001; Ding et al., 2018). In addition, to adequate habitat for
spawning and development, fish require connectivity to migrate
freely between different areas of the river and to lakes and to the
sea. High connectivity between freshwater and marine habitats
facilitates the exchange of matter, energy, and nutrients, with
species contributing to the longitudinal transfer and supporting
important ecosystem services (Holmlund and Hammer, 1999).
For instance, anthropogenic intervention in river discharge result
in reduced flushing up to unnaturally extended periods of estuary
mouth closure and reduce the connectivity between freshwater
habitats and the sea (Potter et al., 2010; Lloyd et al., 2012; Podda
et al., 2020). In many estuarine systems, especially those with
Mediterranean climate, sand bars are deposited during low flow
periods at the river mouth, resulting in truncation of the
connection between freshwater and marine habitats (Potter
et al., 2010; Suari et al., 2019; Podda et al., 2020). These
interruptions and the river flow alteration can have severe
implications especially for diadromous species (Gillanders
et al., 2003), like the European eel Anguilla anguilla (L., 1758).
This diadromous species demonstrates high plasticity in habitat
use (Daverat et al., 2006), and is currently exposed to numerous
threats along the migratory routes in both marine and freshwater
realms (Culurgioni et al., 2014, 2015; Bevacqua et al., 2015; Aalto
et al., 2016; Baltazar-Soares et al., 2014; Dekker and Beaulaton,
2016; Drouineau et al., 2018; Podda et al., 2021). Because of these
hazards, A. anguilla is progressively declining since the 1970s
(ICES, 2021), and is currently classified as Critically Endangered
(CR) (IUCN, 2014; Pike et al., 2020) and protected according to
the European Council regulation 1100/2007 (EC, 2007).

One of the major threats to the European eel is the presence of
large instream barriers restricting access to juveniles leaving the
sea after recruitment (Dekker, 2003; Piper et al., 2013; Tamario
et al., 2019). The more so as the natural recruitment is the only
source of supply of the species (Pedersen and Rasmussen, 2016).
Despite their extraordinary climb ability, only aminor proportion
of eels can successfully overcome large dams (White and Knights,
1997). Furthermore, direct mortality and sublethal injuries can
occur during obstacle passages because of impingements on hard
structures, even in the absence of turbines (Bruijs and Durif,
2009). Moreover, increased costs of metabolic energy caused by

obstacle passage may have a delayed impact on eel’s migration
success and fecundity (Van Ginneken and van den Thillart,
2000). Delays induced by dams can impair escapement,
especially when the migration suitability window is limited
(Verbiest et al., 2012; Drouineau et al., 2017).

In this study, the impacts of large dams on the occurrence of
the European eel A. anguilla in the Sardinian hydrographic
district (Central-Western Mediterranean) have been
investigated considering how the pre and post dams’ building
can affect the long-term presence of eels. We studied
relationships among current and historical occurrence of the
European eel hypothesizing potential negative effects of a set of
temporal, spatial, and dams’ related descriptors using a
multivariate approach.

MATERIALS AND METHODS

Study Area
Sardinia (Italy) is the second largest island in the Mediterranean
(area = 24,106 km2). Its hydrographic district coincides with the
entire regional territory (Figure 1). The Sardinian hydrographic
network is characterized by a reduced number of perennial rivers
and the prevalence of intermittent streams (Palmas et al., 2022).
Mediterranean climate is typically bi-seasonal with severe
drought summer and rainy autumn/winter that determine
irregular flow and strong seasonal hydrological fluctuations
(Sabatini et al., 2011, 2018; Palmas et al., 2020; Podda et al.,
2020). Average annual precipitations range from 500 to 900 mm
(De Waele et al., 2010; Moccia et al., 2020). Artificial
interruptions of longitudinal river continuity, like dams,
strongly influence the annual hydrological cycle of these
streams (Naselli-Flores and Lugliè, 2014). An increasing
construction of artificial barriers has been observed since the
end of the 19th century to provide water for human use
(Marchetto et al., 2009; Montaldo and Sarigu, 2017).

Eels’ Data
Two datasets were collected in the frame of the monitoring
program for the official Fish Inventory of the Sardinian region
(VV.AA., 2022).

The point-to-point historical occurrence data available from
1940 (1940–1970, hereafter historical period), derive from
scientific and informative publications of regional origin for a
total of 238 sites (Supplementary Table S1), and were
georeferenced in a Geographical Information System (GIS)
through the Open-Source Software Quantum Gis 2.18.3
(QGIS) (http://www.qgis.org/).

Recent occurrence data (2016–2020; hereafter current period)
were collected for 214 sites. Surveys were conducted mainly
during the dry season using electrofishing (0-4 Ampere, 0-
600 Volt) in habitats ranging from sea level to 1,262 m a.s.l.
For comparisons, current data were then integrated into the GIS
layer including historical data. Sites have been selected in
proportion to the amplitude of the hydrographic basin and in
order to have a historical continuity with the data deriving from
the previous historical period allowing an appropriate spatial
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coverage in relation to the extension of the whole hydrographic
network of Sardinia (VV.AA., 2022).

Datasets were analyzed separately, and sites influenced by at
least one downstream dam were identified. In each dataset, sites
located on free-flow rivers or under dams have been analyzed
separately from those located above dams.

Data Analysis
Twelve variables, ten continuous and two dummies, have been
investigated as potential factors explaining the eel’s occurrence
related to dams’ effects. The variables were subdivided into four
categories: temporal, spatial, dams’ features, and site-specific,
respectively (Table 1). Geospatial information on dams were
acquired from the Regional Land Information System of Sardinia
(RAS, 2021).

Differences between the percentage of eel’s occurrence during
the historical and recent period were evaluated using the Χ2 test
(p-value < 0.05). Pairwise collinearity in explanatory variables
was examined by scatter plots to exclude redundancy between
paired variables disregarding combinations with Spearman’s
rho >0.7. Variables were discarded from the pairwise
combination based on the Variance Inflation Factor (VIF)
discarding observation with VIF > 3 (Zuur et al., 2010).

The set of dams’ descriptors for the two datasets was fitted
using Boosted Regression Tree models (BRT) (Friedman 2001;
Elith et al., 2008). BRT is a machine-learning method for data
exploration and analysis recently introduced into the fields of
ecology and conservation biology (Déath, 2007; Elith et al., 2008).
BRTs are suited to select the most relevant predictors from a large
set of candidate variables, do not depend on the normality and
homoscedasticity of the data, integrate nonlinear responses, and
reduce the problem of ‘overfitting’ (Elith et al., 2008). BRTs allow
to calculate multiple regression models (regression trees) and
include an adaptive method to combine many simple models to
give improbe predictive performance (boosting). Within the BRT
model, terms that are used to optimize predictive performance
are represented by the learning rate, tree complexity, and bagging
factor (Friedman, 2001; Elith et al., 2008). BRTs were adjusted
with a learning rate to return an optimal number of regression
trees (1,000–1,500), which has been associated with data
overfitting. Trees’ complexity of two refers to the number of
nodes in a tree that has been selected (Elith et al., 2008). We use
tree complexity to control the number of nodes, to set the
maximum number of interactions between predictor variables
that are possible, and we used a bagging factor of 0.5 (Friedman,
2001). Variable selection is not necessary for constructing BRTs
because they generally ignore non-informative predictors (Elith
et al., 2008). The BRT analysis was conducted using the Bernoulli
family of occurrence. For visualizing the results, we calculated the
partial dependencies that depict the relationships between the
response and each predictor variable while controlling for the
average effects of the remaining predictors (Friedman, 2001;
Friedman and Meulman, 2003).

Our approach did not allow to assess confidence intervals for
BRTs, used when a large number of BRT sub-models are fitted.
The partial dependence plots for parameters with a
contribution >10% were used to visualize the effect of each
variable on eel’s occurrence. As this method does not deliver
p-values, but uses internal validation processes, BTRs
performance were evaluated using the amount of total
deviance explained (%) and cross-validated correlation
between model prediction and observed data (CV correlation)
(Derville et al., 2016; Nieto and Mélin, 2017; Ju et al., 2021; Saha
et al., 2021). Statistical analyses were conducted using the open-
source R software (R Core Team, 2021). Specifically, gbm
(Greenwell et al., 2020), and dismo (Hijmans et al., 2011)
packages for BRT analyses, and partial dependence plots with
smoothing for each variable.

RESULTS

Dams in the Sardinian Hydrographic District
Although the first dam in Sardinia date back to the end of the
19th century, a rapid increase in dams’ construction has been
observed from the late 1960s to the late 1990s (Figure 2A). More
than 50% of the 54 larger dams (>15 m height, mean height ±
Standard Deviation—SD, 42.5 ± 22.3 m) were built between
1940 and 1960 (Figure 2B), with two of the most recent dams
not completely built yet. Furthermore, Sardinia is currently

FIGURE 1 | Study area, location of rivers and larger dams (height >15 m)
in the Sardinian hydrographic district.
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TABLE 1 | Description of the investigated variables.

Variable Name (ABBREVIATION) Description Type Unit

Year of fragmentation
(FRAGMENTATION)

Number of years since dam construction compared to sampling year or the year of construction of the oldest dam
in cases with multiple dams

Temporal

Year of dam building (YEAR) Year of construction of the nearest dam downstream the site Temporal
Height (HEIGHT) Dam height Dam

feature
m

Volume (VOL) Dam volume Dam
feature

m3

Flow (FLOW) Dam flow Dam
feature

m3s−1

Elevation (ELEV) Elevation above sea level Dam
feature

m

Distance of the dam from the site
(D_STA)

The distance of the dam from the site Spatial km

Distance of the dam from the sea
(D_SEA)

The distance of the dam from the sea Spatial km

Dendritic Connectivity Index (DCI)
(Cote et al., 2009)

Proxy of the fragmentation of the longitudinal river connectivity caused by dams in relation to the presence of eels.
DCI = 100 l L-1 where l is the current length of the river from the sea to the first barrier without fish passage, and L is
the maximum historical eel migration distance for each site

Spatial %

Number of dams (DAM) Number of downstream dams in each site Site-
specific

1 or 2 in the historical dataset
From 1 to 6 in the current dataset

River mouth condition (MOUTH) Site-
specific

0 = closed, for rivers which don’t flow into a
lagoon
1 = open, rivers which flow into a lagoon

Fishing pressure (FISH) Presence of fishing pressure along the river to its river mouth, (http://www.sardegnaagricoltura.it) Site-
specific

0 = absence of fishing activities
1 = presence of fishing activities
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lacking river flow regulations, and fishways or fish ladders are
mainly absent or not working with one single exception
(i.e., Casteldoria dam, height = 26.6 m,
40°53.3843 N–08°53.7534 E, recently built, 2015).

Eel’s Occurrence in Sardinian Rivers
Comparing sites correspondence (one observation per site for
each dataset) between the historical and the current datasets, a
total of 54 sites matched (23% and 25% of number of sites,
respectively). The analysis of the historical period (1940–1970)
revealed that eel’s occurrence amounted of ca. 95% (Figure 3A).
In the current period (2016–2020) we observed a strong

contraction (ca. 65%, Χ2, p < 0.001) of eel’s occurrence, which
decreased to only 30% (Figure 3B).

Considering only sites with downstream dams (88 and
105 sites for the historical and current period, respectively),
eel’s occurrence dropped from 92% to 7% respectively, with a
total (statistically significant) decrease of ca. 85% (Χ2, p < 0.001).
In this subset, the proportion of sites influenced by downstream
dams was ca. 37% and 49% for the two periods, respectively.

During the historical period, 96% of free flow sites (i.e., sites
without dams or sites without downstream dams) had eels, whereas
in the current period this value dropped to 52%, with a decreasing
rate between the two periods of ca. 44% (Χ2, p < 0.001).

Effect of Larger Dams on Eel’s Occurrence
After analyzing dams’ descriptors through Spearman correlation
(Supplementary Figures S1, S2) and using VIF score >3 as a
threshold (Supplementary Tables S2, S3), only eight descriptors
were included for themodeling of the data from the historical period,
and seven for the current one. Five descriptors were common
between the datasets: dendritic connectivity index (DCI), height
(HEIGHT) and flow (FLOW) of dams, river mouth condition
(MOUTH), and fishing pressure (FISH). The predictors in the
modeling of the historical period also included the temporal
fragmentation (FRAGMENTATION), the distance of dams from
each site (D_STA) and the dams’ elevation (ELEV), while the year of
dams’ building (YEAR) and the distance of dams from the sea
(D_SEA) were included in the modeling of the current period.

The historical BRT model shows that five descriptors
cumulatively explain 88.4% of the model: FRAGMENTATION
(relative contribution = 22.3%), FLOW (22.2%), D_STA (14.7%),
DCI (14.6%), HEIGHT (14.6%). Explained deviance (51%) and
CV correlation (0.40) suggest that the relationships between
dams’ characteristics and the eel’s occurrence are quite robust.
The partial dependence plots obtained after BRT models
(Figure 4) show that the contribution of FRAGMENTATION
to eel’s occurrence is greatest 20 years after dams’ building. The
difference across that threshold is very narrow, with a value of
91% and 94% occurrence, below and above downstream dams,
respectively. The contribution of FLOW to eel’s occurrence is
maximum over a threshold of ca. 1,300 m3s−1, with a value of 87%
below and 100% above the threshold. The highest effect of
D_STA is observed more than 5 km far from dams, where
mean eel’s occurrence is 75%, whereas at closer sites this value
is 96%. The HEIGHT effect was highest above ca. 60 m, where
eel’s occurrence (100%) was higher than that (90%) in sites with
downstream dams <60 m height. The index of river connectivity
(DCI) has the highest effect on eel’s occurrence within the interval
of 60%–80% DCI with mean eel’s occurrence of 86% below 60%
of DCI, and 100% above this threshold.

The BRT model for the most recent period reveals that three
descriptors, YEAR (54.6% of relative contribution), D_SEA
(21.3%), and HEIGHT (13.4%), explain cumulatively 91% of
the model. There is well goodness of fit of the BRT with an
explained deviance of 62% and a CV correlation of 0.67. The
partial dependence plots obtained after BRT models (Figure 5)
show that the effect of dams’ age is highest (25%) after 1980
(i.e., dams with less than ca. 40 years) and drops to 2% in more

FIGURE 2 | (A) Cumulative frequency in dam building in Sardinia (%). (B)
Number of dams in Sardinia.
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recent years. The contribution of D_SEA to eel’s occurrence is
highest below 20 km, with the highest mean occurrence (13%) in
sites close to the sea and the lowest (2%) in the farthest ones. The
highest contribution of HEIGHT is observed for dams between
30 and 80 m, which have a mean eel’s occurrence of 5%. In sites
with dams <30 m occurrence is 10%, whereas in sites with
dams >80 m (some of which are still not completed) the mean
eel’s occurrence is 7%.

DISCUSSION

Impacts of Large Dams on Eel’sOccurrence
A. anguilla is worldwide ranked as critically endangered species
due to an ample array of often synergistic, anthropogenic threats
(Jacoby et al., 2015; Miller et al., 2016; Drouineau et al., 2018).
Moreover, the presence of dams, causing a physical interruption
of river connectivity, river flow reduction or modification, and
loss and deterioration of habitats, may also critically affect eel’s
survival during their freshwater life stage (Feunteun, 2002;
Tamario et al., 2019; Watz et al., 2019).

The dramatic decline of the European eel’s recruitment
reported worldwide (Dekker, 2003, 2004; ICES, 2021) also
affects the Sardinian rivers’ network, where we observed a
huge decrease in eel’s occurrence. Indeed, considering only

free-flow sites (i.e., sites in dam-free rivers or sites without
downstream dams), the European eel occupied most of the
main Sardinian rivers until the 1970s (ca. 95%). The overall
44% reduction in species’ occurrence between the two periods in
these sites suggests that a relevant proportion of such a decline is
independent by dams. Nevertheless, the decline of eel’s
occurrence in Sardinian rivers is also severely affected by
damming with eel’s occurrence in sites above dams dropping
by 85% between the two periods. Our results, ultimately, confirm
that dams have a severe impact on eels due to the fragmentation
of migration habitats and the alteration of river flow (Poff and
Schmidt, 2016; Dias et al., 2017).

We hypothesized that dams’ height (Larinier, 2001;Merg et al.,
2020), dams’ age (Atkinson et al., 2020) and the decreased river
flow due to the oldest dams (Legault et al., 2003) could negatively
affect eel’s migration.

In both periods under scrutiny, as expected, the height of dams
could have had a negative effect on eel’s occurrence and such an
impact was lower during the old period but severely exacerbated
in recent years. In the most recent period, the eel’s occurrence
above dams >80 m high is, counterintuitively, higher than that in
lower dams. This apparent discrepancy can be ascribed to the fact
that especially some of the very tall dams (>80 m) were built only
very recently, thus the presence of eels above the dam stems from
times before the dam was finalized or filled. For catadromous fish,

FIGURE 3 | (A) Historical European eel’s occurrence (1940–1970). (B) Current European eel’s occurrence (2016–2020)
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including eels, climbing out of the water to surpass a barrier is
challenging and linked to high metabolic costs (Edeline et al.,
2004; Briand et al., 2005; Bult and Dekker 2007).

The age of the dams (estimated using either year of
construction–in the most recent period—or temporal
fragmentation—in the old one) negatively influence eel’s
occurrence. We contend that the oldest dams installed in
Sardinia, possibly due to technical and financial limitations,
have been built in rivers of lower order or in the upper part of
the rivers, thus having a minor negative effect on the overall river
connectivity (Segurado et al., 2013). In the most recent period, the
strongest impact of fragmentation by dams could be attributable
to the technological progress and modernization that allowed
building dams with more effective water retention and, thus, the
stronger capacity of interrupting the river flow in more
downstream river sections (Haidvogl, 2018; Merg et al., 2020).
Nevertheless, the effect of river flow is a major factor influencing
eel’s occurrence only in the old period. The minimum or nihil
effect of river flow and the DCI index on eel’s occurrence in the
most recent period could be attributable to the very low river flow
in the last 30 years, caused by prolonged drought, which, most
probably impaired eels’ ability to migrate upstream. The negative
effect of dams appears more evident during the old period, when
either river flow or the DCI index explains significant proportions
of eel’s occurrence variations. The major role of river flow and the
DCI index, in the old period only, and their ininfluence in the
most recent one, is corroborated by the intensity of water flow
involved in the route choice (Legault et al., 2003), causing the
silencing of environmental stimuli when it is too low (Trancart

et al., 2018, 2020) and, in the most extreme cases, interrupting
downstream (Durif, 2003) and upstream migration (Podda et al.,
2020).

In both periods, the distance from the sea explains significant
proportions of eel’s occurrence. Themore distant from the sea the
more probable is the presence of natural (and artificial) obstacles
to be crossed by fish (Merg et al., 2020), which, indeed, becomes a
severe impediment to migration, especially when river
connectivity is limited due to low river flow.

Giving Future to the European Eel
Our study reveals that different dams’ attributes can explain the
current decline of A. anguilla. Along with damming, other
factors, associated with excessive human pressure but also with
climate change, are severely impairing eel’s occurrence. To foster
the conservation of the European eel, many authors have pushed
to mitigate its commercial exploitation (Nielsen and Prouzet,
2008; Henderson et al., 2011; Aalto et al., 2016; ICES, 2021). In
addition, we contend that a strong effort should be paid to
eliminate highly impacting artificial barriers or, at least, to
mitigate their impacts with more sustainable actions, tools,
and devices. While creating unobstructed migration routes
between the spawning area in the sea and freshwater growth
habitats could be preferable (Feunteun, 2002; Drouineau et al.,
2018; Rodeles et al., 2021), the removal of artificial barriers could
be, locally, socially, and economically impracticable. Some
attempts have been made and succeeded with other
catadromous endangered species (Graf, 2003; Stanley and
Doyle, 2003; Harris et al., 2016), including the American eel

FIGURE 4 | Partial dependence plots of the five variables (FRAGMENTATION, FLOW, D_STA, DCI, and HEIGHT) affecting eels ‘occurrence in Sardinian rivers
during the historical period (1940–70). The relative contribution of each variable is reported within parenthesis. Black lines refer to the raw model output.
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Anguilla rostrata (Lesueur, 1817) (Hitt et al., 2012; Turner et al.,
2018). The removal of artificial barriers could be not exempt from
collateral negative effects, including, for instance, the facilitation
of biological invasions (Rahel, 2013; Milt et al., 2018), the spill of
toxic sediments, and sudden changes in hydromorphology
(Stanley and Doyle, 2003; Gangloff, 2013).

Except these general suggestions, in our context it could be
crucial to control and reducing the uptake of water for human
use above dams and, at the same time, ensuring a Minimum
Vital Flow (MVF; Moccia et al., 2020) that guarantees the
morphological, hydrological, physical-chemical, and biological
integrity downstream will enable the protection of eel’s habitats
in the short and long term (Dudgeon et al., 2006). A potentially
compensative solution for partial restoration of dammed river
connectivity, without eliminating dams, could also profit of the
construction of artificial fishways to allow eels’ passage beyond
dams (Seliger and Zeiringer, 2018), management measures both
still lacking in Sardinia. Moreover, it would be advisable that any
management, operation, and maintenance of large dams in
Sardinia would be implemented within a regional control
system aimed at harmonizing and standardizing information
to support a correct use and management of these structures.
Although this study was conducted on a purely regional scale,
our results highlighted the major impact of dams on the
European eel’s occurrence in Sardinian rivers and its
apparent worsening in the last 10 years. We conclude that,
based on the general current crisis of this species, urgent
actions are needed worldwide to restore their habitats by

reducing humans’ pressure, ensuring a minimum vital flow,
abating, wherever possible, artificial barriers to river
connectivity, or, at least, implementing natural migration
routes with artificial fishways.
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Sediment oxygen demand rate in
a flow regulated lagoon (Venice,
Italy)

Simone Leoni, Janusz Dominik, Daniele Cassin, Giorgia Manfè,
Davide Tagliapietra, Francesco Acri and Roberto Zonta*

Consiglio Nazionale delle Ricerche - Istituto di Scienze Marine (CNR-ISMAR), Venezia, Italy

FromOctober 2020, the MOSE systemwent into operation in the three inlets to

protect Venice and its lagoon from flooding caused by high tide events in the

Adriatic Sea. While the MOSE increases the prospect of physical defense, how

will the new status of a regulated lagoon affect the functioning of the

waterbody? In particular, the dissolved oxygen balance in the water column

can be affected by the expected increase in water residence times. Sediments

play an important role in oxygen consumption in the water column and for this

reason sediment oxygen demand (SOD) was studied in situ for the first time, in

16 sites at four lagoon areas. SOD rate, measured throughout 2021 with

specially made benthic chambers, varied in the different areas and with

seasons (from 0.63 to 24.00 g m−2 d−1), with higher values at the more

confined sites and significantly lower values in those belonging to the open

lagoon. Based on SOD rate, consumption times of dissolved oxygen in thewater

columnwere estimated at theMOSE closures, from saturation values to hypoxia

and in the temperature range of 11.7–33.3°C. Especially in the confined sites,

sediments can exert an important depleting action on dissolved oxygen already

at water temperatures above 20°C, which are not particularly high for the

lagoon.

KEYWORDS

benthic chamber, climate changes, lagoons, MOSE system, sediment oxygen demand,
Venice

Introduction

Dissolved oxygen (DO) in the water column is essential for aquatic life and its

concentration is a direct indicator of ecosystem health (Vellidis et al., 2006;

MacPherson et al., 2007). Low DO concentrations are harmful to aquatic life, to

the point that hypoxia (< 2.8 mg L−1) or anoxia (absence of oxygen) events entail

damage to the population structure and ecosystem functioning (Diaz and Rosenberg,

1995; Altieri and Diaz, 2019). Oxygen solubility in water is inversely proportional to

temperature and decreases in warmer waters (Garcia and Gordon, 1992). As the threat

from global warming increases, one of the main consequences is the decrease in

oxygen in aquatic environments (Breitburg et al., 2018; Pitcher et al., 2021). Other

processes that decrease DO concentration include water column stratification that
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reduces the downward supply of O2-rich surface waters

(Manabe et al., 1991; Collins et al., 2013; Breitburg et al.,

2018), land use and agricultural activities that implicate

nutrient enrichment in water (Kemp et al., 2005), and

nocturnal oxygen consumption via respiration (Caraco and

Caraco, 2002).

Major sources of DO are photosynthetic production and re-

aeration from the atmosphere, whereas natural sinks are sediment

oxygen demand (SOD) and biochemical oxygen demand (BOD) of

the water column (Rounds and Doyle 1997; Rong et al., 2016). SOD

is the rate at which DO is removed from the water by biochemical

processes in the sediment (Hatcher, 1986). It includes depletion due

to both biological respiration of benthic organisms (biological SOD,

BSOD) and chemical oxidation of reduced compounds (chemical

SOD, CSOD) arising from anaerobic metabolism (Walker and

Snodgrass, 1986; Chau, 2002; Doyle and Lynch, 2005). BSOD is

governed by aerobic heterotrophs that utilize organic material as an

energy source (Middelburg et al., 2005); CSOD involves anaerobic

bacteria which degrade organic matter, determining the sulphate

reduction (e.g., Zaggia et al., 2007) and releasing reduced compounds

(mainly of nitrogen, manganese, and iron) that react with molecular

oxygen (Rounds and Doyle, 1997; Todd et al., 2010).

Oxygen concentration is strongly dependent on the air-sea

exchange in surface waters, whereas in shallow systems - such as

lagoons - exchange across the sediment-water interface is often

important (Pitcher et al., 2021). Due to the high sediment surface

area to water volume ratios, lagoon sediments influence the

dynamics of oxygen and play an important regulatory

function for the whole ecosystem (Giordani et al., 2008;

Brigolin et al., 2021). Lagoons are also places with high

organic matter inputs (Viaroli et al., 2008). Settled organic

material is actively decomposed by microbial processes and

the DO level consequently decreases (Castel et al., 1996).

Systems with long water residence times and stratified water

columns are more prone to be subjected to hypoxia events (NRC,

2000).

Serious anoxic events occurred in the Venice Lagoon

(Figure 1) during the warm months of the 1980s (Sfriso et al.,

1987; Sfriso et al., 1995; Zirino et al., 2016), due to the rot of Ulva

rigida after major blooms. Since 1990, water conditions in the

lagoon have changed, thanks to a concomitance of climatic

situations, increased water turbidity, and biomass harvesting

(Sfriso and Marcomini, 1996). While events of that severity

did not recur after the 1980s, hypoxia/anoxia conditions have

been observed in some sectors of the lagoon since the early 2010s

(Bernardi Aubry et al., 2020), although generally lasting less than

24 h (ISPRA and ARPAV, 2016; ISPRA and ARPAV, 2018;

ISPRA and ARPAV, 2021).

The MOSE system was operated for the first time in October

2020 (Mel et al., 2021) to protect Venice and the lagoon against

FIGURE 1
Location of the 16 measurement sites in the four selected areas of the Venice Lagoon (in the insert). S1 (45°24.7934°N 12°16.4518°E) and PS
(45°25.8656°N 12°20.1826°E) identify the DO gauge station of the SAMANET network and the tide gauge of Punta Salute (managed by the Venice
Municipality), respectively.
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flooding during high sea-level events. The MOSE (Scotti, 2005;

Trincardi et al., 2016) consists of mobile gates clustered into

barriers installed on the bottom of the three inlets of the lagoon,

which rise up and temporarily seal off the waterbody from the sea

during high tide events. Although the MOSE system can

potentially be operated in the future to improve the water

exchange with the sea through appropriate maneuvers of the

barriers, it is expected to increase the water renewal time in the

lagoon as a whole (Ferrarin et al., 2013). Due to the anticipated

sea-level rise and the higher incidence of severe storms, the

number of times the MOSE is placed in operation is also foreseen

to increase (Lionello, 2012; Cavaleri et al., 2020). Moreover, an

increase in the frequency of summer heatwaves due to climate

change (Molina et al., 2020) is occurring in the Mediterranean

region, which may lead to a greater duration and severity of

hypoxic events in the Venice Lagoon (Brigolin et al., 2021).

In this context, the aim of this study was to investigate the

importance of sediments in the DO consumption in the Venice

Lagoon, measuring the SOD rate in four test areas with benthic

chambers. A further objective of the study was the evaluation of

howmuch the sediment can affect the concentration of DO in the

water column during MOSE closures.

Materials and methods

Study site

Venice Lagoon is widely described in the literature in terms

of functioning and ecosystem characteristics (e.g., Zonta et al.,

2018 - and references therein). With a surface area of 550 km2

and a mean water depth of about 1 m, it includes islands, tidal

marshes, mudflats, and a complex network of tidal channels up to

10 m deep (Figure 1). Shallow water areas account for 75% of the

total surface area (ca. 415 km2). The lagoon is linked to the

Adriatic Sea by three inlets (Lido, Malamocco and Chioggia),

which enable the exchange of water during tidal cycles. The mean

tidal excursion is 30 and 80 cm respectively in neap and spring

tide conditions (Zaggia et al., 2007).

Four shallow water areas were selected for the study:

Campalto (CA), San Giuliano (SG), Pili (PL), and Sacca

Sessola (SS). In each area, four sites were identified for the

SOD measurements and numbered from 1 to 4, for a total of

16 sites (Figure 1). The sites of the CA area were arranged along a

perpendicular to the lagoon-mainland interface, at a distance of

about 200 m from each other, while the sites of the PL area were

located along a line of about 210 m, parallel to the easternmost

sector of the industrial area of Porto Marghera. In the SG area,

two sites were closer to the mainland (SG1 and SG2) and the

other two sites (SG3 and SG4) were located further south,

towards the open lagoon north of the City of Venice; of the

former two, one (SG1) was located in the shallow waters of the

mouth of the Osellino canal, a 47-km-long watercourse draining

a crop area of 50 km2 (Zonta et al., 2005). The distance of SG1 -

SG2 from SG3 - SG4 was about 1,400 m. Sites in the SS area were

located along a line in the central zone of the lagoon, at a distance

of about 200 m from each other.

The Venice Water Authority (Provveditorato Interregionale

per le Opere Pubbliche del Veneto - Trentino Alto Adige - Friuli

Venezia Giulia) manages an O2 saturation (DO%) measurement

network in the lagoon (named SAMANET), including station S1

(Figure 1) which is located not far from this study’s measurement

areas. The station is subjected to a greater water exchange than

most of the measurement sites, thanks to its proximity to the

main tidal channels. Consequently, the concentration of DO in

the water column is assumed to be generally higher at station

S1 than in our measurement sites. In the warmmonths from June

to September of the years in the period 2018–2021, the hourly

DO values recorded by the station were below 50% in 9.2%–

31.3% of cases and below 30% in 1%–11% of cases (Table 1).

SOD measurements were carried out approximately on a

monthly basis at the 16 sites in the period March - November

2021. Geographic coordinates of site and bathymetric heights are

shown in Table 2, referring to the tidal zero level in the lagoon.

Sediment analyses

Small sediment cores (length 10 cm, diameter 6.4 cm) were

collected in the 16 sites in May 2021 by utilizing a piston corer,

taking care of not disturbing the upper sediment layers. Two

sediment samples were obtained from each core, corresponding

to the surface (0–1) and sub-surface (1–2 cm) layers. Samples

were sieved through a 1 mm Teflon mesh to remove debris and

organic fragments, and then carefully homogenized. An aliquot

of about 2 g of wet sediment was weighed and dispersed in

distilled water before grain-size measurement with a laser

diffraction particle size analyzer (Mastersizer 2000; Malvern

Instruments, Malvern, United Kingdom). The instrument

provided the volumetric percentage of particles belonging to

100 diameter classes in the range of 0.1–2,000 µm.

Total nitrogen (TN) and total carbon (TC) were determined

on duplicate samples using a ThermoFisher Flash 2000 IRMS

TABLE 1 Number of cases (and percentage) of hourly DO data below
30 and 50% of saturation value, recorded from June to September
in the period 2018–2021. Data from SAMANET measuring network.

Year DO < 30% DO < 50%

# Cases % Cases # Cases % Cases

2018 321 11.0 916 31.3

2019 111 3.8 457 15.6

2020 176 6.0 622 21.2

2021 28 1.0 269 9.2
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Elemental Analyzer (EA, ThermoFisher Scientific Inc, Aurora,

OH, United States). Samples for total organic carbon (TOC)

measurements were first decarbonated with HCl 1.5 N. As

determined by replicate analyses of the same sample, each

measurement had an average standard deviation (STD) of ±

0.01% for TN and ± 0.07% for TOC. Total inorganic carbon

(TIC) was calculated as the difference between TC and TOC and

converted to carbonates, assuming that it was entirely bound as

CaCO3.

Water content (WC) was determined from an aliquot of

sample dried in an oven at 105°C until it reached a constant

weight (Percival and Lindsay, 1997). Based on variation

coefficients of five replicate measurements in three sediment

samples, the analytical error of WC determination was less than

0.88%. WC was not corrected for salt, as this correction is

negligible.

Sediment porosity (Φ) was calculated following Hobbs

(1983), as described in Zonta et al. (2021). Organic matter

(OM) content was calculated as 1.7 TOC in %, and its density

of 1.25 g cm−3 was assumed (Avnimelech et al., 2001). The

density of the mineral fraction was calculated assuming

densities of CaCO3 and the remaining Al-Si fraction of

2.8 g cm−3 and 2.65 g cm−3, respectively.

Characteristics of the benthic chambers

Benthic chambers are used to incubate in situ a known

volume of water above a given sediment surface, measuring

over time the consumption of the DO concentration in the

isolated water. The PVC cylindrical benthic chambers were

made in-house (Figure 2), introducing some changes to the

commonly used design for SOD measurements (Murphy and

Hicks, 1986; Coenen et al., 2019). A method for measuring the

SOD flow rate in situ has not been standardized (Coenen et al.,

2019), and it may be worth experimenting with any technical

improvements.

Chambers had an internal diameter of 30 cm and a height of

27 cm, 6 cm of which are intended to be driven into the sediment;

the opacity of the material inhibited photosynthesis during

incubation. The lower edge of the cylinder was tapered to

facilitate the insertion of the chamber into the sediment. Two

centimeter-steel rods embedded with the chamber, allowed the

chamber to be driven into the sediment at the correct level of

penetration from a boat. As the 2 bars protruded from the base of

the chamber by 15 cm, they also strengthened the stability of the

apparatus once driven into the sediment. In the case of sites with

sediments that have a greater sandy component, a housing is

present on the head of the benthic chamber to allow it to be

pushed into the sediment, utilizing a wooden pole.

A multiparameter water quality probe (Aquaprobe AP 2000;

Aquaread Ltd, England) was inserted in the centre of the chamber to

measure dissolved oxygen (optically, mg L−1), temperature (°C), pH,

turbidity (NTU), and water depth (cm). The probe was mounted

vertically in the center of the chamber, thanks to a sleeve consisting

of three layers of material (Plastazote® compressed between two

layers of PVC), which maintains the hermetic seal of the chamber.

The probe was connected to a data-logger (Aquameter, Aquaread

Ltd, England), programmed to acquire data every 5 min, but

allowing instantaneous readings. The chambers exposed a

0.071 m2 area of sediment to 14.6 L of enclosed water; the

correction was made for the volume occupied by both

multiprobe and hydraulic circuits inside the chamber. Several

tests were carried out to verify that the benthic chamber was

completely sealed once it was embedded in the sediment.

A pump powered by a 12-V lead-acid rechargeable battery

was used to continuously recirculate the water inside the

chamber. The blade shape of the pump propeller was

modified to reduce its flow rate to 100 L h−1; this means that

the volume of incubated water was completely recirculated in

about 9 min. The water circuit inside the chamber had a

“recirculating fountain” configuration. The water intake

(Figure 2B), located under the probe, suctioned the water

from about 2 cm above the water-sediment interface; it

TABLE 2 Coordinates in the WGS84 reference system and bathymetric height of the 16 sites; the latter refers to the zero-tide level recorded by the
Punta Salute tide gauge (PS, Figure 1).

SITE CA1 CA2 CA3 CA4 SG1 SG2 SG3 SG4

lat. N 45° 28.6095′ 45° 28.5156′ 45° 28.4461′ 45° 28.3525′ 45° 28.3775′ 45° 28.5035′ 45° 27.7413′ 45° 27.8186′
lon. E 12° 18.4965′ 12° 18.5723′ 12° 18.6865′ 12° 18.7773′ 12° 17.0104′ 12° 17.1360′ 12° 17.5941′ 12° 17.6936′
depth (m) 0.22 0.26 0.41 0.52 0.28 0.24 0.57 0.56

SITE PL1 PL2 PL3 PL4 SS1 SS2 SS3 SS4

lat. N 45° 27.5210′ 45° 27.4875′ 45° 27.4630′ 45° 27.4403′ 45° 24.2138′ 45° 24.2252′ 45° 24.2246′ 45° 24.2294′
lon. E 12° 16.9414′ 12° 16.9200′ 12° 16.8984′ 12° 16.8728′ 12° 18.6400′ 12° 18.4768′ 12° 18.3308′ 12° 18.1776′
depth (m) 0.47 0.49 0.53 0.53 0.86 0.92 1.05 1.08
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consisted of a rectangular opening shielded towards the sediment

by a thin sheet of PVC, to prevent the aspirated flow from causing

the sediment to be resuspended. The outlet took place through

two diffusers that directed the flow towards the upper part of the

chamber.

The purpose of the water circulation is to achieve an

approximately uniform DO concentration within the chamber,

avoiding the occurrence of vertical concentration gradients and

making the distance of the probe from the sediment surface

substantially irrelevant. In natural systems, a diffusive boundary

layer (DBL) (Jørgensen and Revsbech, 1985; Glud et al., 1994;

Glud, 2008) at the sediment-water interface reduces the oxygen

uptake and may lead to an underestimation of the SOD rate

(Doyle and Rounds, 2003). DBL effectiveness is inversely related

to the water flow velocity above the interface with the sediment.

Inside the chamber, the water intake, which is designed to bring

water near the sediment interface, has the purpose of

counteracting the formation of DBL during the measurement

or - at least - reducing the “effective DBL thickness” (Jørgensen

and Des Marais, 1990). In any case, the diffusive oxygen uptake

rate in coastal marine sediments makes up roughly only a half of

the total uptake rate, the rest being due to irrigation and faunal

respiration (Glud, 2008). In all the measurements carried out in

this study, the same water recirculation speed was set to ensure

repeatability and comparability of the measurement.

On the other hand, sediment resuspension within the

chamber increases the surface area of the bottom material in

contact with water, leading to an overestimation of the SOD rate

(Doyle and Rounds, 2003). Therefore, every effort was made in

the set-up of the benthic chamber to avoid resuspension. The

shape and position of the inflow diffusers, the conformation of

the pump intake inside the chamber, and the flow rate

adjustment, obtained by modifying the propeller blades of the

pump, were fundamental to this purpose. Laboratory tests were

carried out to verify that the chamber did not generate

resuspension of sediments during the measurement due to an

excessive current speed at the water-sediment interface. To this

purpose, silt-clayey sediments similar to those from the

16 measurement sites were used in the test, and the absence

of resuspension in the incubated water was monitored with a

small camera and a turbidity sensor. In the field, the turbidity

sensor of the multi-probe used inside the benthic chamber

constituted the ultimate check of the absence of resuspension

phenomena throughout the measurement.

Preparation and use of the chamber in situ

Probes were calibrated before each field campaign using

specific Aquaread standards for each sensor. The chamber was

completely immersed in the water column by holding it by the 2-

cm-steel rods (Figure 2C). Then the pump was turned on and

primed, and it was ensured that all the air was expelled from the

chamber through the bleed valve, which was finally closed. Hence

the chamber was lowered and pushed into the bottom sediment;

this step was done with care to minimize disturbance to the

bottom. The benthic chamber had to remain completely

submerged during the entire measurement period. It could be

correctly deployed when the height of the water column was

equal to at least 40 cm and could be used for measuring up to a

FIGURE 2
(A): schematic drawing of the SODchamber (not in scale): pump (P); funnel-shaped flowdiffusers (d); pump-priming cock (p); air bleed cock (b);
multiprobe (M); centimeter steel rods, integral with the chamber (r); composite sleeve in PVC and Plastazote

®
(s); rectangular suction opening (o);

PVC shielding plate (t). (B): detail of the suction opening (o). (C): photo of a chamber being immersed in the water column before deployment in the
sediment.
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minimum height of 25 cm. The final driving depth of the

chamber could be precisely recorded, thanks to a centimeter-

scale placed on the steel rods.

The chambers were deployed for periods ranging from

100 to 200 min and, less frequently, for longer periods. The

pump, battery, and data logger were placed in a resealable

polyethylene box, hung to a post driven into the sediment in

the proximity of the benthic chamber.

SOD rate calculation

A typical plot of DO concentration depletion vs. time elapsed

is shown in Figure 3.

With a linear regression applied to the approximately straight

section of the curve, the slope m (mg L−1 min−1) was determined

and the SOD was obtained as in Murphy and Hicks (1986):

SODT � 1.44 *V *A−1*m (1)

where SODT is the sediment oxygen demand rate (g m−2 d−1) at

water temperature T (°C), V is the volume of incubated water (L),

A is the area of sediment enclosed by the chamber (m2), and

1.44 is a unit-conversion factor (from mg min−1 to g d−1).

Equation 1 can be rewritten as:

SODT � K*m (2)

where K includes the geometric parameters of the chamber and

the conversion for units of measurement. Chambers used in this

study were characterized by K = 298; when the chamber insertion

depth was slightly different from the expected 7 cm, a volume

correction was made resulting in a K value in the range 270–327,

comparable with that of other studies (Steeby et al., 2004 (K =

260); Ziadat and Berdanier, 2004 (K = 363); Doyle and Lynch,

2005 (K = 333); Utley et al., 2008 (K = 347); De Vittor et al., 2016

(K = 305)).

To compare SOD rates measured at different temperatures,

the values are corrected to 20°C through a van’t Hoff equation

(Thomann and Mueller, 1987), as temperature affects the

solubility of oxygen in water:

SOD20 � SODT *1.065(20−T), T≥ 10 °C (3)

which is no longer valid for T < 10°C (Rounds and Doyle, 1997).

The initial small increase ofDOconcentration observed in Figure 3

is due to the water mixing inside the chamber generated by the

circulation induced by the pump. The inflection of the curve that

sometimes occurs just below theDO concentration of 3mg L−1 reflects

a situation where the respiration of microorganisms at the sediment

surface begins to be oxygen limited. Beyond this point, this processmay

negatively influence the SOD rate value (Doyle and Lynch, 2005), and

therefore SOD rate was calculated in the DO ≥ 3mg L−1 range.

In the first period of the study, measurements were done to

determine the rate of DO depletion due to the oxygen demand rate

of the water incubated inside the chamber (WOD), in order to be

subtracted (blank correction) from themeasuredDOdepletion rate

values (Rounds andDoyle, 1997; Doyle and Lynch, 2005). This was

done by filling with site water a thick 10 L opaque polyethylene

container, which was left at the bottom for the entire duration of

the measurement. The water-column oxygen demand was then

determined by comparing the DO concentration at the beginning

and end of the water incubation period.

WOD measurement can be affected by significant errors

(Caldwell and Doyle, 1995; Heckathorn and Gibs, 2010) as waters

incubated in the measuring chamber and the blank one may be

dissimilar. As observed in other studies (Caldwell and Doyle,

1995; Rounds and Doyle, 1997; Wood, 2001; Heckathorn and

Gibs, 2010) the WOD was found to be very small (1%–4%)

compared to the measured SOD rate and its measurement was no

longer deemed necessary, although it cannot be excluded that it

was not negligible in particular environmental conditions

encountered during the study.

A total of 141 measurements were performed at the

16 sites and the SOD rate was determined with linear

regressions with coefficient of determination R2 > 0.94.

Results and discussion

Sediment characteristics

Sediment analyses (TN, TOC, grain size, TIC, porosity)

performed on samples from the 16 sites showed comparable

FIGURE 3
Example of oxygen depletion curve for a chamber placed at
site CA2 (July 2021). The turbidity trend is superimposed. Slope m
is calculated for the approximately straight section of the oxygen-
depletion curve, which is highlighted with light blue dots.
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values in the two sampling layers (0–1 and 1–2 cm) except for

some variables at a few sites; therefore, the mean values between

the two layers were considered. Value distributions among sites

are shown in Figure 4. Grain-size characteristics are expressed as

both the D50 value (median particle size, which is the particle size

when the cumulative percentage reaches 50%) and sand content

(in the dimensional range 63–500 μm).

The sediment of the Venice Lagoon has been extensively

investigated since the 1980s, in terms of composition, texture,

and contamination, over the entire waterbody as well as in sectors

of interest for specific environmental problems (e.g., Zonta et al.,

2018 and references therein). The obtained data reflected the

known characteristics of the lagoon sediments. A clear difference

was observed between sites of the SS area compared to the others,

with the former characterized by a coarser particle size, lower

porosity, a greater presence of TIC and a lower content of TOC

and TN.

CA, SG, and PL areas are located close to the lagoon-

mainland interface, which has higher water renewal times

(Cucco and Umgiesser, 2006; Ferrarin et al., 2013), lower

salinity (Guerzoni and Tagliapietra, 2006) and finer-sized

sediments (Zonta et al., 2018) than the SS area, which belongs

to the central lagoon. The lagoon sector that includes CA, SG,

and PL areas is classified as a “marginal”water body, based on the

classification of the Water Framework Directive (WFD), as a

result of the resolution of the transition gradient in discrete water

bodies in the lagoon (Tagliapietra et al., 2011; ISPRA and

ARPAV, 2018). This sector is interested by the presence of

the mouths of freshwater tributaries delivering nutrients and

chemical compounds from the drainage basin (Collavini et al.,

2005), and it is particularly vulnerable to low oxygen conditions

in the summer months (ISPRA and ARPAV, 2016; ISPRA and

ARPAV, 2018; ISPRA and ARPAV, 2021). The lagoon sector that

includes the SS area is instead classified as “open lagoon”,

characterized by greater salinity, water exchange, and

bathymetry, due to the water circulation driven by the inlets

that allow water exchange with the Adriatic Sea.

Among the 12 sites located in the “marginal” sector, two

groups can be distinguished on the basis of sediment variables.

The first group includes the four sites within the CA and SG areas

furthest away from the lagoon-mainland interface (CA3, CA4,

SG3, SG4); the second one includes the other four sites (CA1,

CA2, SG1, SG2) and the four sites of the PL area.

In the CA area there is a gradient of fine particle content

decreasing from the mainland towards the lagoon (from CA1 to

CA4), and the sediment of the two more confined sites (CA1 and

CA2) has a higher concentration of TN and TOC than the other

two (CA3 and CA4). Similarly, these differences are observed

between the SG sites close to the mainland (SG1 and SG2) and

the more distant ones (SG3 and SG4). SG1 has the finest median

grain size and the greatest content of TN and TOC among the

16 sites, due to the proximity of the mouth of the Osellino canal,

which is a source of fresh water and fine particles from the

drainage basin into the lagoon. Incidentally, small but significant

FIGURE 4
TN, TOC and TIC concentration values, D50 diameter, sand content (63–500 μm) and porosity in the 0–2 cm sediment layer of the 16 sites. Bar
coloring highlights the three groups of sites.
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differences are observed due to the greater proximity of SG3,

compared to SG4, to a main channel that determines the tidal

impulse propagation and therefore the water renewal in the area.

Grain size, porosity, and TIC in these sites are not expected to

change substantially in the short term, as evidenced by the scarce

variations of the measured values between the upper layer (0–1) and

the subsurface layer (1–2 cm), in agreement with previous studies

(Sfriso et al., 2005; Zonta et al., 2018). TOC and TN may instead be

subject to greater annual variability.

SOD values distribution

Two field tests were conducted to verify the repeatability of the

SOD rate measurement. For this purpose, four benthic chambers

were placed within a small area at the CA3 and CA4 sites. Low

coefficients of variation (CV%) were obtained for the SOD rate

(6.2 and 14.8%, respectively), which we attribute more to the

heterogeneous nature of the bottom sediments than to possible

artifacts in the measurement.

Distributions of the measured SODT and SOD20 values over

the year are shown in Figure 5, together with the water

temperature (T) measured inside the benthic chamber. SODT

values ranged from 0.63 to 24.00 g m−2 d−1 and T values from

11.7 to 33.3°C. Higher values were registered in the warmmonths

in all sites, due to the increase of the rate of oxygen-depleting

processes. A significant values increase was recorded as early as

June in the more confined sites of CA (CA1 and CA2) and SG

(SG1 and SG2) areas, whereas it occurred in July in the PL area.

Towards the end of the year, amore or lessmarked increase in the

SODT rate was observed in several sites, despite the decrease in water

temperature. Particularly, in the SS3 and SS4 sites, the highest values of

the study were recorded in October and rates remained relatively high

in November. We ascribed these values to the presence of macroalgae

fragments (Ulva spp. and Gracilaria spp.) near the water-sediment

interface, some of which may have become trapped in the benthic

chamber, producing an extra contribution to oxygen consumption.

Correcting the SODT value by the water temperature resulted

in a more flattened SOD20 rate distribution. The latter, however,

retained considerable variability between sites and months of

measurement (from 0.87 to 14.48 g m−2 d−1).

Relation between SOD rate and sediment
characteristics

The SOD20 records were in agreement with the subdivision of

the 16 sites in the three groups observed on the basis of sediment

FIGURE 5
SODT and SOD20 2021 monthly trend rates at the 16 sites. Water temperature measured inside the benthic chamber is also shown. Two
measurements were done in the CA area in June, and two in SG both in August and September.
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characteristic (Figure 4). Figure 6 shows mean SOD20 values

(from 1.58 to 6.16 g m−2 d−1) recorded over the entire

measurement period. The more confined eight sites (CA1,

CA2, SG1, SG2, and the four sites in the PL area) had the

highest SOD20 values (Type M sites–marginal), whereas the

lowest ones were recorded in the SS area (Type O sites–open

lagoon). The remaining four sites (CA3, CA4, SG3, SG4) had

intermediate values (Type I sites–intermediate).

The subdivision of the 16 sites in three types is highlighted in

the dendrogram of Figure 7, obtained from a cluster analysis

performed on SOD20, TN and D50 values. It is important to

underline how small distances in the position of a pair of sites

(1 and 2) with respect to the other (3 and 4) in the SG area and

especially in the CA area determined different characteristics of

the sediment and consequently different SOD rates.

The correspondence between the sediment characteristics

and the mean SOD20 rates is summarized by the correlation

matrix shown in Table 3. Data normality for each variable was

verified using the Kolmogorov-Smirnov test (p > 0.01) after a

Iglewicz and Hoaglin outlier test (Iglewicz and Hoaglin, 1993).

The latter indicated the two aforementioned values recorded in

the SS3 and SS4 sites in October as outliers, which were therefore

excluded from the statistics.

Two elements (regression of SOD20 concerning TN and D50,

respectively) of the correlation matrix in Table 3 are shown in

Figure 8 to highlight the differentiation of the 16 sites into three

types. Various authors have considered sediment grain size and

organic matter concentration (frequently measured with the Loss

on Ignition technique) with respect to the variation of SOD rate

in statistical analyses (e.g., Butts and Evans, 1979; Wood, 2001;

Doyle and Lynch, 2005; Foster et al., 2016). Generally, clear-cut

relationships were not obtained but instead amore or less defined

linear dependence. The degree of correlation obtained in the

present study was relatively high among all the variables

involved. The reason presumably lay in both having compared

mean values of SOD20 measured for a long period and the

selection of a set of sites with quite diversified characteristics -

even if typical of the Venice Lagoon.

Among the few studies of sediment and DO in the Venice

Lagoon, Melaku Canu et al. (2003) developed an ecological

model that simulated the evolution of nine ecological state

variables, including DO concentration. In the mass balance

components, they assumed a value of SOD20 = 1.08 g m−2 d−1.

Based on the experimental results of our study, the value assumed

in the model seems excessively low, being respectively about

66 and 20% of the mean SOD20 rate value measured in sites

representative of the open lagoon (Type O, 1.65) and the more

confined sites (Type M, 5.35 g m−2 d−1). SOD rate distribution

values obtained from the study may be useful for mathematical

models aimed at the simulation of the distribution of DO

concentration in the lagoon system.

The correction of SODT measurement (Eq. 3) - which

produces the SOD20 value - removes the effect of temperature

on the solubility of the oxygen in the water column, but other

factors still introduce a dependence of SOD20 on T. Observing

the temporal trend of SOD20 (Figure 5), the permanence of an

indirect relationship with the temperature after the rate

correction is in fact evident, in particular in the Type M sites

that in the summer period showed significantly higher values

than in the other months.

In addition to temperature and sediment characteristics,

SOD is influenced by variables that depend on the conditions

of the water column (available oxygen, velocity of the current on

the sediments, aeration), as well as the chemistry of the interstitial

water. Even more important factors are the quality and quantity

FIGURE 6
Mean SOD20 rate for the whole period in the 16 sites, in
increasing order; the line indicates the standard deviation value.
Bar coloring highlights the three types of sites.

TABLE 3 Pearson correlation matrix calculated among variables
measured in the sediment collected in May 2021 at 16 sites, mean
SOD20 rate in the 2021 and site depth. Two SOD20 rates measured in
SS3 and SS4 in October were excluded. All correlation coefficients are
significant at α < 0.05. Distribution normality for each variable was
verified using the Kolmogorov-Smirnov test (p > 0.01).

SOD20 TN TOC TIC D50 Sand Φ

TN 0.88

TOC 0.88 0.97

TIC −0.89 −0.97 −0.96

D50 −0.84 −0.88 −0.84 0.88

sand −0.85 −0.89 −0.84 0.91 0.97

Φ 0.86 0.93 0.94 −0.92 −0.85 −0.85

depth −0.83 −0.81 −0.80 0.89 0.90 0.92 −0.78
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of the organic matter and the composition of the biological

community (Bowie et al., 1985), which change with the

availability of DO and nutrients.

The consumption of organic matter is due to the growth

dynamics of the microbial populations, which in turn are

linked to temperature and organic matter supply and type, as

well as the composition of the biological community and

biotic interactions. Temperature affects the metabolism of

oxygen-consuming microorganisms in the sediment, their

density, and community structure (Arnosti et al., 1998;

Thamdrup et al., 1998; Zakem et al., 2021). The

characteristics of the organic matter are also of

considerable importance in this process since the rate of

degradation depends on its lability (Boudreau, 1992;

Kirchman et al., 2005; Fagervold et al., 2014; Zakem et al.,

2021). The dependence of the SOD rate on the presence of

microbial communities and other organisms in the sediment

is beyond the scope of this study.

Estimating water column DO depletion
due to the sediment duringMOSE closures

According to the presentmanagement scenario, theMOSE gates

would temporarily isolate the Venice Lagoon from the Adriatic Sea

during tides greater than 110 cm (safeguard threshold, Ruol et al.,

2020) above the Punta Salute reference level (PS, Figure 1). The latter

is 26 cm below the current mean sea level. The 110-cm level is a

compromise among the physical protection of the city, ensuring the

naval commercial traffic through the inlets, and maintaining the

water exchanges between the lagoon and the sea (Trincardi et al.,

2016). When a high tide event is forecasted, the gates are closed

before the 110-cm level is reached, depending on the meteorological

situation (wind speed, rainfall intensity); when a normal storm

occurs, the MOSE is closed with a water level equal to 90 cm

(Umgiesser, 2020).

In the absence of exchange between lagoon and sea, the

water will be stagnant and the oxygen “starvation” of the

sediment could have a greater negative effect on the oxygen

balance. To evaluate the effect of sediment on oxygen

depletion, we considered a simplified scenario: 1) the water

column is stationary (no tide or wind-induced current) and

sediment resuspension does not occur; 2) the water level at all

sites is that corresponding to a level of 90 cm at station PS; 3)

the initial oxygen concentration in the water column is equal

to 9.17 mg L−1, i.e., the saturation concentration value at 20°C;

4) there is neither production nor consumption of oxygen due

to aeration and processes in the water column; 5) the water

column is mixed and there is no the formation of a DBL at the

sediment interface.

The time (tHYP) to reach the hypoxia value (2.8 mg L−1) in the

whole water column due to the SOD rate alone, during the closing of

the MOSE, was estimated in the 16 sites and at different water

temperatures. The rate value of SODT was used as it reflects - unlike

SOD20 - the actual DO consumption of the sediment at a given T.

In Eq. 2, m is expressed as the ratio between the difference in

oxygen concentration at saturation and at the limit of hypoxia

and the time to reach that limit, obtaining:

FIGURE 7
Dendrogram obtained from a cluster analysis performed on
mean SOD20 rate, TN concentration, and D50 data (complete-
linkage hierarchical clustering).

FIGURE 8
Regression plot betweenmean SOD20 and (A) TN concentration and (B)D50. The three types of sediments are highlighted with different colors.
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TABLE 4 Estimated time elapsing (tHYP) from the DO saturation to the limit of hypoxia values in the whole water column, due to the SODT rate at the
conditions simulating the MOSE closure.

Date
of deployment

T t HYP T t HYP T t HYP T t HYP

°C hour °C hour °C hour °C hour

CA1 CA2 CA3 CA4

16/03/2021 11.74 62 11.62 90 11.84 148 11.83 184

29/03/2021 16.24 215 16.90 84

17/05/2021 22.66 28 22.62 25 22.45 61 22.38 86

11/06/2021 26.55 11 26.72 15 26.27 22

17/06/2021 33.27 9 32.00 38

20/07/2021 30.65 11 30.69 11 29.96 29 29.75 31

25/08/2021 25.93 19 26.24 20 25.54 44

22/09/2021 19.63 38 20.50 48 23.32 93 19.62 153

26/10/2021 13.12 80 14.24 83 13.78 138 13.31 138

12/11/2021 12.35 46 13.60 59 13.02 93 12.46 109

SG1 SG2 SG3 SG4

17/03/2021 12.42 89 12.98 69 12.03 207

16/04/2021 16.43 50 15.98 47 14.81 85

17/05/2021 20.96 39 21.22 24 20.91 99 20.58 49

11/06/2021 26.96 12 28.27 12 26.54 42

20/07/2021 28.29 29 28.53 12 28.30 57 28.72 49

03/08/2021 27.36 10 29.23 12 27.02 38 27.02 44

25/08/2021 26.99 21 27.02 16 26.98 67

07/09/2021 24.82 27 25.15 67

22/09/2021 21.91 25 23.02 25 22.20 101 22.87 89

26/10/2021 13.91 45 14.64 76 13.45 207 13.36 206

12/11/2021 13.38 60 14.81 50 14.30 175 13.76 130

PL1 PL2 PL3 PL4

24/03/2021 12.26 200 12.17 233 12.42 115 12.36 118

15/04/2021 14.02 237 13.33 332 15.75 251 15.95 115

14/05/2021 20.58 92 21.70 71 21.84 53 21.45 59

10/06/2021 25.87 35 26.41 41 26.30 37

19/07/2021 28.39 25 28.02 9 28.52 11 28.59 13

23/08/2021 27.78 21 27.88 18 27.15 17 28.00 16

20/09/2021 25.96 16 25.00 25 25.14 29 25.27 52

25/10/2021 15.83 96 17.03 56 16.74 66 18.20 54

17/11/2021 15.56 44 14.58 38 15.23 46 14.72 46

SS1 SS2 SS3 SS4

24/03/2021 13.22 368 13.69 259 13.58 298 13.60 348

15/04/2021 13.42 171 13.17 223 13.21 346 13.55 328

14/05/2021 20.15 237 20.49 205 20.26 278 20.45 226

10/06/2021 25.70 213 25.14 146 25.68 112

19/07/2021 29.08 91 28.94 60 28.73 83 28.71 192

23/08/2021 27.20 70 26.88 97 26.66 123

20/09/2021 23.97 160 22.60 192 22.76 158 23.50 146

25/10/2021 15.04 138 15.07 309 14.45 93 15.15 70

17/11/2021 13.28 239 13.23 208 13.30 207 13.50 151
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tHYP
BC � (K*6.37)*SODT

−1 (4)
where tHYP

BC is the time in minutes elapsed to enter the hypoxia

condition within the benthic chamber and K is defined in Eq. 2;

the concentration of 6.37 (mg L−1) is the difference between DO

content in water at saturation and the hypoxia limit.

Considering the entire water column, the time to hypoxia

tHYP, in hours, results from a proportion:

tHYP � tHYP
BC*H*(60*h)−1 � 0.57*K*H*(102*SODT)

−1
(5)

where the height of the water column (H) is given by 90 cm plus

the bathymetric height at the site (Table 2), and h is the height of

incubated water inside the benthic chamber; 60 is the conversion

factor between minutes and hours. Obtained values of tHYP are

shown in Table 4; they range from a maximum of 368 h (SS1, in

March, with T = 13.22°C) to a minimum of 9 h (CA1 with T =

33.27 and PL2 with T = 28.02°C, both in July).

Figure 9 shows the power regression obtained for the mean

tHYP values over selected intervals of T, for the three types of

sites; data normality for each type was verified using the

Kolmogorov-Smirnov test (p > 0.01). Type M sites were

prone to reach hypoxic conditions within 48 h of MOSE

closure at a water temperature of about 22°C. For

temperatures around 30°C, these conditions can be reached

in about half a day. Despite being located near Type M sites,

oxygen consumption in Type I sites was significantly slower

and remained on the order of 2 days even at higher water

temperatures. Instead, Type O sites showed a greater

“resistance” to the depletion of oxygen caused by the

closure of the MOSE, with a tHYP always greater than 4 days.

Following the first closure of the MOSE system, on 3 October

2020, the gates were raised on 34 occasions until 11 December

2021 (MOSE, 2022), mainly in autumn, since floods conditions

frequently occur in that period, due to several forcing weather-

marine factors (Camuffo, 1993). The mean daily temperatures

recorded at the PS station on these 34 days ranged from a

minimum of 6.8 to a maximum of 16.5°C (mean 10.1 ± 2.8°C

standard deviation). The longest closure period lasted about 42 h

(from 4 to 6 December 2020), with an average water temperature

of 8.90°C. The climatic conditions in which the MOSE is

currently activated are not such as to trigger a relevant

consumption of DO by the lagoon sediments. If in the future

the MOSE closures will take place with higher temperatures and/

or for longer periods, the sediment could play an important

negative role in the oxygen balance in the water column, starting

from the marginal areas.

Brigolin et al. (2021) investigated the relationship between

sediment early diagenesis and hypoxia conditions in the water

column in five sites of the central lagoon, analyzing sediment

cores in the laboratory by using microelectrodes. The

investigation was based on the Diffusive Oxygen Uptake rates

(DOU), measured through the O2 concentration gradient

calculated over 400 μm in the sediment micro-profile. They

estimated that the DO hypoxic level at T = 25°C is reached in

the water column in 5–18 days, depending on site. As in our

scenario, they neglected oxygen renewal associated with primary

production, exchange with the atmosphere, and advection. For

sites where sediment is less likely to consume the DO of the water

column (Type O) our estimated tHYP at 25°C is around 5 days,

which corresponds to the worst situation measured by Brigolin

et al. (2021). The difference between the two results can be

ascribed to the different measurement methodology and to the

fact that DOU constitutes only a fraction of the Total Oxygen

Uptake (TOU) (Jørgensen et al., 2022). Whatever the method

(sediment cores in the laboratory or benthic chambers in the

field), the measurement systems are only an imperfect model of

natural conditions and their relative advantages or disadvantages

are questionable (Coenen et al., 2019 and references therein). If

the sediment at the measurement site is heterogeneous, especially

in respect tomacrobenthos activity, drastic differences may result

FIGURE 9
Plot of the relationship between temperature and tHYP for the three types of sites. Dots represent mean values of tHYP in the selected T range,
highlighted by horizontal arrows; vertical segments indicate the respective tHYP standard deviation.
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(Coenen et al., 2019) due to the disparity between areas of the

sediment surfaces examined.

Conclusion

A new era of “regulated flows” has begun for the Venice

Lagoon as a result of the start of operations of the MOSE system

in October 2020, which temporarily seals the water body during

high tide events in the Adriatic Sea. The regulation of the tidal

flow is expected to lead to a general increase in the water renewal

time in the lagoon and this motivated the investigation of the

oxygen-consuming action of the sediment.

SOD rate was measured in a range of water temperature from

11.7 to 33.3°C. The measured SOD rate values (SODT) ranged

from 0.63 to 24.00 g m−2 d−1; once standardization was carried

out at a temperature of 20°C (SOD20), the resulting range of

variation was equal to 0.87–14.48 g m−2 d−1.

Sediment characteristics and SOD value distribution reflected

different lagoon conditions, in terms of bathymetry, hydrodynamics,

and water renewal. A subdivision of the sites into three typologies

was observed based on the distribution of SOD20 values and

sediment characteristics. Four sites belonging to the open lagoon

(named Type O- open lagoon), characterized by coarser particle size,

a greater presence of TIC, and less TOC and TN, showed lower SOD

values. The eight more confined sites (Type M - marginal) showed

instead the higher values of SOD, particularly in the warm months.

The remaining four sites (Type I - intermediate) had intermediate

both sediment features and SOD values.

The dependence of the SOD rate on both availability and type

of organic matter presence and composition and growth of

microbial communities, which is beyond the scope of this

study, should be investigated at different water temperatures

in an adequate number of lagoon sites.

In a simplified scenario, which involved the absence of both

primary production and water renewal/aeration, the incidence of

sediment on the DO concentration in the water column has been

estimated at the closure of the MOSE, for different range of water

temperatures and the three types of sites. In a still and completely

mixed water column, it was found that the time (tHYP) elapsing

from the saturation of DO (9.17 mg L−1) to the hypoxia values

(2.8 mg L−1) has a different power relationship with the

temperature in the three types of sites. In the confined sites,

DO concentration in the water column can be depleted in about a

day, at temperatures of ca. 25°C.

The MOSE system is currently activated for short periods in

the cold months, when low water temperatures do not trigger a

relevant consumption of DO by the lagoon sediments. However,

the ongoing climate change could lead to longer lasting MOSE

closure with higher temperatures in the future. At that point the

sediment will be able to exert a strong action of oxygen

consumption in the water column, especially in the marginal

areas of the lagoon.
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Coastal habitats have the potential to be biodiversity hotspots that provide

important ecosystem services, but also hotspots for human development and

exploitation. Continued use of coastal ecosystem services requires establishing

baselines that capture the present state of the benthos. This study employs

habitat mapping to establish a baseline describing the spatial distribution of

benthic organisms along thewestern coast of Placentia Bay, an Ecologically and

Biologically Significant Area (EBSA) in Newfoundland, Canada. The influence of

seafloor characteristics on the distribution of four dominant epifaunal

assemblages and two macrophyte species were modelled using two

machine learning techniques: the well-established Random Forest and the

newer Light Gradient Boosting Machine. When investigating model

performance, the inclusion of fine-scale (<1 m) substrate information from

the benthic videos was found to consistently improve model accuracy.

Predictive maps developed here suggest that the majority of the surveyed

areas consisted of a species-rich epifaunal assemblage dominated by

ophiuroids, porifera, and hydrozoans, as well as prominent coverage by

Agarum clathratum and non-geniculate crustose coralline algae. These maps

establish a baseline that enables future monitoring of Placentia Bay’s coastal

ecosystem, helping to conserve the biodiversity and ecosystem services this

area provides.
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Introduction

Human reliance on coastal ecosystem services places stress

on benthic habitats, which may impact future availability of those

services (Costanza et al., 1997; Barbier et al., 2011) and also

biodiversity (Lotze et al., 2006), warranting management actions

that balance coastal ecosystem function and human use.

Considering the modern trend of increased utilization of

ocean resources (Bennett et al., 2019), it is imperative to

understand the current distribution of biota and non-living

resources (i.e. oil, mined goods), against which change can be

monitored over time (Shumchenia and King, 2010; Siwabessy

et al., 2018). Conserving ecosystem function and services requires

effective ecosystem-based management, which aims to preserve

biodiversity and functionality by recognizing complex ecological

linkages at varying scales, instead of relying on policies managing

individual species (O’Higgins et al., 2020). The resultant holistic

management therefore works to balance stakeholder

involvement with sustainable practice (Long et al., 2015).

The benthos plays an important role in providing physical

structure to the marine environment, supporting the ecological

niches of other biota and serving as an indicator of ecosystem

health which may be monitored to inform conservation priorities

(Brey, 2012; Oug et al., 2012, Alexandridis et al., 2017). Benthic

epifaunal invertebrates form the trophic basis for marine food

webs (Iken et al., 2010), influencing both benthic and pelagic

zones via cycling of energy, nutrients, and organic matter

(Sandnes et al., 2000; Hajializadeh et al., 2020; Lam-Gordillo

et al., 2021), and acting as ecosystem engineers (Reise, 1985;

Meadows et al., 2012). The majority of benthic species are

relatively immobile, if not completely sessile (Bilyard, 1987),

and are long-lived, resulting in prolonged exposure to stressors

and disturbances (Wei et al., 2019; Meng et al., 2021). Therefore,

long-term monitoring of ecosystem function and health may

benefit from the inclusion of epibenthic invertebrates as

bioindicators.

Brown kelp, primarily of the order Laminariales, are one

particular taxon known to enhance local biodiversity (Steneck

et al., 2002; Krumhansl et al., 2016). They act as both primary and

secondary producers, sequester carbon, provide shelter from

predators, act as nursery grounds (Gagnon et al., 2003), and

provide the physical framework to increase habitat complexity

(Steneck et al., 2002). Kelp beds in temperate and sub-polar

coastal regions of the northwest Atlantic are subject to periodic

decimation by the herbivorous green sea urchin

(Strongylocentrotus droebachiensis), resulting in coastal barrens

that are less productive, which may extend 1000s of km (Filbee-

Dexter and Scheibling, 2014). In the Northeast Atlantic, some of

the few remaining floral species not consumed by urchins may

include the kelp Agarum clathratum and non-geniculate crustose

coralline algae (CCA). A. clathratum presumably deters urchins

via phenolic compounds that render them unpalatable (Vadas,

1968; Vadas, 1977). For urchins, CCA are a poor nutritional

substitute compared to kelps (Agatsuma, 2000; Kelly et al., 2008).

BothA. clathratum and CCA are associated with a unique suite of

invertebrates [Ojeda and Dearborn, 1989; Freiwald, 1993; Bégin

et al., 2004; Swanson et al., 2006; Chenelot et al., 2011; Blain and

Gagnon, 2014; Tebben et al., 2015; Jørgensbye and Halfar, 2017],

potentially boosting subtidal biodiversity.

Benthic fauna and flora associate strongly with the physical

structure of the seafloor (Auster and Langton, 1998; Kostylev

et al., 2001), and geospatial models based on remotely sensed data

may be used to support our understanding of spatial ecological

patterns and the physical factors that drive them. The defined

species-environmental relationships can be used to develop a

baseline grounded in the function of an ecosystem that qualifies

the composition and distribution of the benthos in a target area.

These resultant habitat maps have been utilized for fisheries

management (Brown et al., 2012), to inform effective Marine

Protected Areas (MPAs) (Lacharite and Brown, 2019), for

observing the impacts following ecological disturbance (e.g. oil

spills (Botello et al., 2015)), and the first step in the establishment

of long-term monitoring programs of coastal biodiversity (Obst

et al., 2018). The effectiveness of a baseline relies on accurate and

robust modelling techniques employed during its development,

and these techniques are being improved continuously as there is

an urgent need for such spatial data products.

This study aims to establish a baseline describing the benthic

epifaunal assemblages and twomarine algae species (A. clathratum

and CCA) found in the subtidal zone of an Ecologically and

Biologically Significant Area (EBSA) in Newfoundland, Canada

(Templeman, 2007; DFO, 2016). An EBSA is an area notable for its

distinct ecosystem characteristics, role in species’ life stages (i.e.

feeding/spawning grounds), resilience, and socio-economic

utilization (DFO, 2004). The Placentia Bay EBSA has exhibited

growth in vessel traffic and coastline activities that will likely shift

the state of the benthos (DFO, 2007; LGL, 2018). The baseline

established here will enable documenting changes to the dominant

epifauna and marine algae using spatially explicit predictions of

their current distribution based on the relationships with the

physical structure of the seafloor. While modeling the

relationship between seafloor features and biota, the

performance of a new machine-learning algorithm, Light

Gradient Boosting Machine (LightGBM), is tested against a

well-established algorithm, Random Forest (RF). The predictive

models and habitat maps developed in this study may be applied

for futuremonitoring of changes in ecosystem structure and health

within the Placentia Bay EBSA.

Methods

Study area

Placentia Bay is a deep-water embayment located on the

southern side of the Island of Newfoundland, in the province of
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Newfoundland and Labrador (Atlantic Canada). Following an

overview of its ecosystem status, present fish distribution and

spawning locations, and a species inventory, Placentia Bay was

designated by the Government of Canada Department of

Fisheries and Oceans as an EBSA (Templeman, 2007; DFO,

2016). Any severe disturbance (i.e. oil spill) would be of greater

ecological consequence within the EBSA boundary than if the

same perturbation occurred beyond its extent (DFO, 2004).

Placentia Bay hosts important capelin spawning beaches,

seagrass meadows, seabird colonies, and herring

aggregations (Sjare et al., 2003). It is also a location where

charismatic megafauna such as whales (DFO, 2018) and

leatherback turtles (DFO, 2012b) may be observed. Paired

with its ecological relevance, Placentia Bay has local socio-

economic importance, including traditional and commercial

fisheries of groundfish and shellfish (Robichaud and Rose,

2006; DFO, 2012a; DFO, 2019), a growing finfish

aquaculture industry (LGL, 2018), and frequent marine

traffic, including oil tankers. Placentia Bay is considered to

be amongst marine areas at greatest risk of oil spill across

Canada (DFO, 2007).

Four survey areas along the west coast of Placentia Bay

were selected for this study: Rushoon, D’Argent Bay, Burin

and St-Lawrence (Figure 1). These sites are notable for their

local ecological importance. Rushoon was the northernmost

site surveyed, and is likely one of the more pristine of the four

due to its remoteness. This may be subject to change, as

development of salmon aquaculture progresses in the area,

which may impact the local environment (LGL, 2018). Further

southwest, D’Argent Bay was selected for its capelin spawning

sites, herring aggregations, and high occurrence of whales

(Sjare et al., 2003). Burin is near a relatively large cluster of

towns, including the towns of Burin and Marystown. Finally,

closest to the mouth of Placentia Bay, St. Lawrence was

selected for its capelin spawning sites, as well as its role as

an important seabird habitat (White, 2018).

FIGURE 1
(A) Location of Placentia Bay (highlighted in the blue box) on the southern coast of the Island of Newfoundland, located on the eastern coast of
Canada. (B) Locations of the four survey areas along the west coast of Placentia Bay. Bathymetry and ground-truth locations for (C) Rushoon, (D)
D’Argent Bay, (E) Burin, and (F) St. Lawrence.
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Environmental survey

Multibeam echosounder (MBES) surveying was carried out

between winter 2018 and summer 2020 (Table 1) on board the

27’ Fisheries and Marine Institute research vessel D. Cartwright.

MBES uses sound waves that travel from the sensor to the

seafloor and back again, forming a swath of depth soundings

across the path of the vessel. As sound waves echo back from the

seafloor, the strength of their return is also measured, and this

acoustic backscatter can be indicative of substrate types. Harder

substrates like bedrock or boulders return a higher backscatter

signal, while softer sediments like mud or sand will produce a

weaker signal (Lamarche et al., 2011; Lurton and Lamarche, 2015;

Calvert et al., 2015). Bathymetry and backscatter were collected

using a Kongsberg EM 2040P, operating at 400 kHz. Positioning

data were obtained using a Fugro 3,610 differential GPS with a

Seastar subscription that provided spatial accuracy of up to 8 cm.

Sound Velocity Profiles (SVP) between the transducer and

seafloor were obtained using an AML BaseX sound velocity

profiler, while sound velocity measurements at the MBES

transducer head were obtained by an AML Micro SV sound

speed sensor.

Raw sonar files for each survey area were imported into the

Quality Positioning Services (QPS) Qimera v2.0.3 software.

Bathymetric data were adjusted for Rushoon and D’Argent

Bay using observations from the Argentia tide station (Station

#835, https://www.tides.gc.ca/en/stations/835) and for Burin and

St. Lawrence using the St. Lawrence tide station (Station #755,

https://www.tides.gc.ca/en/stations/00755).). SVPs were

imported into each respective Qimera project: 25 for D’Argent

Bay, 19 for Rushoon, 19 for Burin, and 17 for St. Lawrence. Spline

filters were employed to automatically remove outliers, and once

processing was completed, a bathymetric surface was exported as

a Floating Point GeoTIFF Grid at 5 × 5 m spatial resolution for

each area. Processed files were additionally exported to. GSF

format, and were imported into QPS Fledermaus Geocoder

Toolbox (FMGT) v.7.8.4. For backscatter processing.

Backscatter mosaics were exported at 5 × 5 m spatial

resolution. All environmental rasters were projected to UTM

Zone 21.

Bathymetric surfaces were used to derive terrain features that

have been found to influence benthic biota distribution. These

features can act as surrogates for variables that are difficult to

measure directly (e.g. slope can act as a proxy for finer-scale

currents). Six terrain features identified by Lecours et al., 2016a

that capture a large amount of topographic information were

calculated in ESRI ArcGIS using the Terrain Attribute Selection

for Spatial Ecology toolbox (TASSE) (Lecours, 2015). These

included slope (change in elevation), eastness and northness

(orientation, calculated as the sine and cosine of slope),

relative difference to the mean value (RDMV; relative

position), and standard deviation (SD) of bathymetry (a

measure of rugosity). Additionally, bathymetric position index

(BPI) and vector ruggedness measure (VRM) were also selected

to potentially provide information on seafloor structure. BPI is an

adaptation of the topographic position index (Weiss, 2001) that

measures the relative position of an area to the surrounding

seabed (Lecours et al., 2016b). Positive and negative values

represent peaks and troughs, respectively. VRM incorporates

both slope and aspect in a single measure of surface roughness

that is independent of slope (Hobson, 1972; Sappingtom et al.,

2007; Martín-García et al., 2013), unlike SD. BPI, and VRM were

derived from the bathymetric surfaces using the Benthic Terrain

Modeller (BTM) Version 3.0 (Wright et al., 2012). Additionally, a

layer measuring the distance from the coast was calculated within

each survey area using the ‘Euclidean Distance’ tool in ESRI

ArcGIS, which has previously been used to inform on benthic

assemblage distributions (Degraer et al., 2008; Richmond and

Stevens, 2014; Vassallo et al., 2018).

Features were derived from backscatter mosaics based on the

spatial distribution of the varying shades of grey denoting

backscatter intensity (Haralick et al., 1973). Three features

were calculated using a grey-level co-occurrence matrix via

the R package ‘GLCM’ (Zvoleff, 2020): contrast (local

variation), homogeneity (closeness of distribution), and

entropy (randomness) (Haralick et al., 1973). These features

were selected for their common application in previous

studies of similar systems (Blondel and Sichi, 2009; Samsudin

and Hasan, 2017; Shang et al., 2021).

Terrain features were calculated across a range of spatial

scales (i.e. using moving-windows of varying sizes), as no single

scale can account for all ecological processes of a benthic

ecosystem (Dolan, 2012; Lecours et al., 2015). All features

(except for BPI) were derived using a 3x3-cell window, with

TABLE 1 Acquisition information for multibeam echosounder (MBES) and ground-truth (GT) surveys.

Site Survey period—MBES MBES survey
area (km2)

Survey period—gt Number of
sites

Camera system

Rushoon June—July 2019 39 August 2019 44 FDR-X300

D’Argent Bay December, February 2018 and April 2019 43 July—August 2019 48

Burin May 2019 24 July 2020 50 Deep Trekker DTPod

St. Lawrence July—August 2020 37 August 2020 50
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additional scales obtained using the “calculate-average” approach

(Dolan and Lucieer, 2014; Misiuk et al., 2021), by focal averaging

using increasing window sizes (13 × 13-and 35 × 35-cell

windows; Table 2). BPI layers were calculated by setting the

outer and inner radii (in cells) of an annulus (ring-shape) and

calculating themean elevation value of all cells within the analysis

neighborhood (Walbridge et al., 2018). BPI was calculated using

the Benthic Terrain Modeler Toolbox, with outer and inner radii

of 60 and 3, 150 and 45, 260 and 13, 630 and 195, 700 and 35, and

1750 and 525 cells.

Benthic biota

Ground-truthing sites (n = 192) across all four survey areas

were selected using a Generalized Random Tessellation Stratified

(GRTS) survey design (Supplementary Table S1) (Stevens and

Olsen, 2004), stratified by bathymetry and backscatter. For the St.

Lawrence sites, MBES data were unavailable prior to ground-

truthing, and bathymetry was interpolated from depth soundings

on a nautical chart (e.g. Great St. Lawrence Harbour, Marine

Chart CA4642_2). Ground-truthing consisted of underwater

video with two systems: a Sony FDR-X3,000 Action Cam

(1920 × 1,080 pixels, 60 frames/sec), contained in a Deep Blue

Abysso waterproof housing, paired with two 3,500 lumen neutral

white light Cree LED bulbs and two green lasers spaced 10 cm

apart; and a Deep Trekker DTPod (1920 × 1,080 pixels,

30 frames/sec) with an integrated light and two red lasers

spaced 2.5 cm apart. For both systems, a live video feed was

used to adjust the height of camera above the seabed. Boat

positioning at the start and end of each transect was obtained

using the onboard Garmin GPS 16x; the midpoint of each

transect was used to extract point-wise data from terrain features.

Two-minutes of continuous video were annotated using the

Monterey Bay Aquarium Research Institute’s (MBARI) Video

Annotation and Reference System (VARS) (Schlining and Stout,

2006). The presence or absence of Agarum clathratum and non-

geniculate coralline algae (CCA) were recorded. Because of

varying coverage across different ground-truthing sites, CCA

were divided into three classes: full coverage, partial coverage,

and absent. The full-coverage class was assigned when most of

the seafloor was covered by CCA. Partial coverage was given

when at least half of the substrate was covered. If little to no CCA

was present, the site was marked as absent. Because abundance of

TABLE 2 Multiscale environmental features calculated at each site.

Feature Scale (m) Unit Software Software source

Bathymetry (m) - meters - -

Slope 15, 45, 175 degrees TASSE Lecours, (2015)

Eastness 15, 45, 175 unitless TASSE Lecours, (2015)

Northness 15, 45, 175 unitless TASSE Lecours, (2015)

RDMV 15, 45, 175 unitless TASSE Lecours, (2015)

SD 15, 45, 175 meters TASSE Lecours, (2015)

Fine BPI 15, 45, 175 meters BTM Wright et al. (2012)

Broad BPI 15, 45, 175 meters BTM Wright et al. (2012)

VRM 15, 45, 175 unitless BTM Wright et al. (2012)

Backscatter - Value (dB) -

Contrast 15, 45, 175 unitless GLCM Zvoleff (2020)

Entropy 15, 45, 175 unitless GLCM Zvoleff (2020)

Homogeneity 15, 45, 175 unitless GLCM Zvoleff (2020)

Distance to Coast (km) 5 meters ‘Euclidean Distance’

Bedrock (%) % ImageJ

Boulder (%) % ImageJ

Gravel (%) % ImageJ

Fine sediment (%) % ImageJ

Red Algae (%) % ImageJ

Agarum clathratum (%) % ImageJ

Saccharina latissima (%) % ImageJ
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S. droebachiensismay influence macroalgae distributions, counts

at each site were included as a possible predictor variable.

All epifauna larger than 2 cm were counted and identified to

the lowest possible taxonomic level, using expert knowledge and

published species guides (Gosner, 1979; Harvey-Clark, 1997;

Martinez and Martinez, 2003; Fox et al., 2014; Salvo et al.,

2018). When species identification was not feasible, a

morphotype approach was employed (Howell et al., 2019).

The total number of individual species/morphotypes per

transect was calculated and converted to densities by

estimating the total area recorded for each transect. Using the

Blender v.2.8.2, 12 frames at 10 s intervals were extracted and the

distance between lasers was measured and used to calculate

transect width with ImageJ. This was averaged and multiplied

by the total length of the transect. Species/morphotypes that had

an abundance of <5 individuals across all ground-truthing sites

were removed to reduce the influence of low-abundance species.

The dominant assemblages for ground-truthing sites

with <5 faunal counts could not be characterized (De la

Torriente et al., 2018); these sites were removed prior to analysis.

The species matrix was Hellinger transformed to reduce the

importance of larger epifaunal abundances (Legendre and

Gallagher, 2001; Borcard et al., 2011). Faunal assemblages

were clustered using the average hierarchical clustering

method ‘Unweighted Pair-Group Method using arithmetic

Averages’ (UPGMA) (Sokal and Michener, 1958), with

hierarchical relationships plotted as a dendrogram. The

UPGMA approach is fast, simple, and may even outperform

other clustering algorithms (Kreft and Jetz, 2010). Dissimilarity

values between two branches of the derived dendrogram

(i.e., “fusion levels”) were plotted to determine the optimal

number of faunal assemblages. Silhouette widths were

additionally calculated and plotted for each fusion level,

providing a metric for distinguishing assemblages. Silhouette

widths range from -1 to 1, with one representing assemblages

that are clearly distinguished (Borcard et al., 2011). Once faunal

assemblages were identified, the characteristic species or

morphotypes of each assemblage were identified using an

IndVal procedure (Legendre, 2013). A species accumulation

curve was developed for each assemblage to identify if species

richness was effectively captured (Ugland et al., 2003; Bevilacqua

et al., 2018).

Model development

For both the assemblages and for each marine algae taxa

model, a Boruta Feature Selection (Kurse and Rudnicki, 2010)

algorithm was run separately to include terrain features

grouped by scale (window of analysis: 3 × 3, 13 × 13, 35 ×

35 cells) in order to reduce the number of candidate terrain

features and promote model parsimony and support

performance (Nemani et al., 2021). Important variables are

identified by the Boruta wrapper as it compares the importance

of a variable with a randomly shuffled version containing the

same distribution of values (i.e., “shadow features”). A variable

is deemed important if it consistently contributes more to the

model than its shadow variable. Degenhardt et al., 2019 found

that the Boruta algorithm generally outperformed other

selection methods, and previous successful applications can

be found in Li et al., 2016, Diesing and Thorsnes, (2017) and

Nemani et al., 2021. Variables identified as “important” or

“tentative” were selected for model training here. Variables

were further dropped that had absolute correlation values

exceeding 0.7, as determined using the R function ‘corrplot’

(Wei, 2013). In these cases, the variable with the lower impact

on model accuracy was dropped.

Separate multiclass classification Random Forest (RF) and

Light Gradient Boosting Machine (LightGBM) models were

developed for the epifaunal dataset, the A. clathratum dataset,

and the CCA dataset. Each model was trained with 2/3 of the

samples, which included a proportional representation of

classes (i.e. presence and absence of A. clathratum or

epifaunal assemblage). The remaining 1/3 was reserved to

test model performance. Model accuracy was assessed using

the test data by computing a confusion matrix of predicted and

observed classes (Congalton, 1991), from which overall

accuracy and Cohen’s kappa were derived. Overall accuracy

is the number of accurately predicted classifications divided by

the total number of observations. The kappa statistic

incorporates the chance of random agreement between

observed and predicted classes based on their prevalence

(Cohen, 1960; Allouche et al., 2006). Both the RF and

LightGBM models were run with and without fine-scale

(<1 m) substrate % coverage to understand the importance

of fine-scale features in explaining spatial patterns. Using both

the RF and LightGBM models and the environmental data

layers, full-coverage predictive maps were developed for the

distribution of epifaunal assemblages, presence/absence of A.

clathratum, and for the absence/partial/full coverage of CCA.

Since substrate % coverage features were not spatially

continuous, full-coverage predictions were based on the

terrain feature-only models.

RF is a well-established ensemble machine-learning

algorithm that builds a ‘forest’ of classification trees from

which predictions are obtained through majority voting. It

employs ‘bagging’, where the data are repeatedly bootstrapped

to train different classification trees (Quinlan, 1986), which are

uncorrelated. Additionally, each tree split uses a random subset

of variables, instead of the entire set. RF models were trained

using the R package ‘randomForest’ (Liaw and Weiner, 2002),

with the default number of variables included in each split

(‘mtry’) retained for each model. Random Forest has been

used successfully for predictive models with limited sample

sizes similar to the number of observations in this study

(Stephens and Diesing, 2014; Robert et al., 2015; McLaren
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TABLE 3 Parameters selected for LightGBM model tuning.

Parameter Description Range tested

‘objective’ Sets the model as regression or classification ‘multi_class’ *

‘metric’ How the model performance is evaluated ‘multi_error’ *

‘num_class’ Number of classes predicted number of faunal assemblages*

‘is_unbalance’ Algorithm automatically balances weights of classes TRUE, FALSE

‘force_col_wise’ Manages model instability when there is a large number of columns (features) TRUE, FALSE

‘max_depth’ Controls the maximum distance between a tree’s root node and each leaf node 10, 20, 40, 80

‘num_leaves’ Maximum number of leaves for each learner; manages complexity; adjust with ‘max_depth’ (2 m̂ax_depth)

‘learning_rate’ Boosting learning rate 0.05, 0.1, 0.25, 0.5

‘num_iterations’ Number of trees to build; with larger values, adjust with smaller ‘learning_rate’ 100, 200, 300, 400

‘feature_fraction’ Sets % of features selected as a subset for each iteration (tree) 0.8, 0.9, 0.95

‘lambda_l1’ L1 regularization 0.2, 0.4

‘lambda_l2’ L2 regularization 0.2, 0.4

‘min_gain_to_split’ Sets the minimum improvement value when evaluating gains at a split 0.2, 0.4

‘early_stopping_rounds’ Stops training when validation metric does not improve; adjust with ‘num_iterations’ 10% of ‘num_iterations’

* Core features that do not change during any model iteration.

TABLE 4 Indicator species by IndVal analysis of faunal assemblages.

Name n sites Indicator
morphotype/species

Species present Unique to
this cluster

Images*

OPH 64 Ophiuroidea spp. 51 8

Porifera sp.5

Hydrozoa sp.1

SDR 21 Strongylocentrotus droebachiensis 20 none

Stauromedusae sp.2

MIX 26 Hormathia sp.1 42 1

Cerianthidae sp.3

Cnidaria sp.1 Sagittidae sp.1

EPA 8 Echinarachnius parma 15 1

Pseudopleuronectes americanus

n indicates the number of ground-truthing sites identified as containing each assemblage.
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et al., 2019; Misiuk et al., 2019; Ilich et al., 2021; Janowski et al.,

2021).

LightGBM is a relatively recent Gradient Boosting Decision

Tree algorithm (Ke et al., 2017). Unlike RF, LightGBM uses

‘boosting’ rather than ‘bagging’ to enhance performance.

Boosting is another ensemble method in which classification

trees are grown on the residuals from previous trees (Vaghela

et al., 2009; Schapire and Freund, 2013). Tree growth and

learning rate are controlled by a suite of tunable parameters

(Table 3). The parameters recommended in the LightGBM

release 3.2.1.99 guide (Zhang et al., 2012) were chosen to tune

the model.

A variable importance plot was derived for each model,

ranking variables based on their predictive importance. The

RF model used Gini Importance, which measures the total

decrease in node impurity by calculating the sum over the

number of splits including a variables, across all trees

(Friedman et al., 2001). LightGBM implements a gain-based

method that is similar to the Gini Importance used by RF

(Lundberg et al., 2020), but excludes unimportant features.

Univariate partial dependence plots were derived from the

best-performing model to visualize the relationship between

an individual variable and a faunal assemblage or marine

algae (Marini et al., 2015; Vassallo et al., 2018).

By comparing model accuracy and ranked variable

importance, preliminary modelling using the derived terrain

features suggested that important variables may be missing.

Substrate heterogeneity information extracted from videos of

the seafloor was tested to improve model performance. Substrate

observations were obtained from the underwater video collected

for biological analysis (described below). An image was extracted

every 10 s from each video using Blender v.2.8.2 and images were

imported to ImageJ (Image processing and analysis in Java). A

50-square grid was superimposed on each image and each square

FIGURE 2
Images of the substrate classes identified during video annotation: (A) bedrock, (B) boulder, (C) gravel mix, (D) fine-sediment (sand), (E) fine-
sediment (mud), (F) filamentous red algae (excluding coralline algae), (G) Agarum clathratum, and (H) sugar kelp (Saccharina latissima). Distance
between lasers was 10 cm for the Sony FDR-X300 camera and 2.5 cm for the Deep Trekker DTPod.
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was labelled as one of seven classes: bedrock, boulder, gravel-mix,

fine sediment (including both mud and sand), red algae

(excluding coralligenous algae), Agarum clathratum, and

Saccharina latissima (Figure 2). Following Connell et al., 2014,

red algae can be qualitatively categorized as turfs (i.e. loosely to

densely aggregated filamentous algae <15 cm tall and covering an

area greater than 1 m2). Biogenic substrates were included

because observing the sediment underneath was often not

possible and algae presence is likely to influence the presence

of other epifauna. The number of occurrences of each class was

divided by the total number of grids for a ground-truth site,

yielding fine-scale (<1 m) percent cover for each substrate class.

Results

Epifaunal assemblages

Of the 192 ground-truthing sites collected, 117 fulfilled the

criteria for assemblage identification. One site (Rushoon-53)

exhibited two distinct epifaunal assemblages and substrate

types, and was split into two, producing 118 total samples.

From these, a total of 12,096 individuals were counted and

55 taxa were identified (Supplementary Table S2), 14 of which

(25.5%) were identified to species level. The brittle star

morphotype ‘Ophiuroidea spp.’ had the highest overall

abundance (6,693 individuals; 55.5% of all counts), followed

by ‘Hormathia sp.1’ (1,631 individuals; 13.5%),

Strongylocentrotus droebachiensis (766 individuals; 6.3%), and

Echinarachnius parma (627 individuals; 5.2%). Porifera had the

highest taxa diversity with 14 morphotypes. Echinodermata was

FIGURE 3
Dendrogram of the four dominant epifaunal assemblages identified at sites across the west coast of Placentia Bay. Illustrations by J. Mackin-
McLaughlin.

FIGURE 4
A species accumulation curve was developed for each faunal
assemblage and for the summation of species observed across all
sites included in analysis (in black).
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second in taxa diversity (7 morphotypes; six species), followed by

Cnidaria (8 morphotypes; two species).

Four epifaunal assemblages were identified (Figure 3;

Table 4). Sixty-four of 119 sites (53.8%) were identified as

OPH, typified by ‘Ophiuroidea spp.‘, ‘Porifera sp.5’, and

‘Hydrozoa sp.1’. OPH contained the highest taxa richness

(51 taxa: 39 morphotypes, 12 species), as well as the most

taxa unique to a single assemblage (8 taxa). SDR represented

21 sites (17.6%) and contained 13 morphotypes and seven

species, with S. droebachiensis and ‘Stauromedusae sp.2’ as

the typifying taxa. MIX was found at 26 sites (21.8%) and

had the second highest taxa richness, with 30 morphotypes and

12 species. It was typified by ‘Hormathia sp.1’, ‘Cerianthidae

sp.3’, ‘Cnidaria sp.1’, and ‘Sagittidae sp.1’. EPA was the rarest

assemblage, with only eight representative sites (6.7%). EPA

had the lowest taxa richness, with only eight morphotypes and

seven species, and was typified by E. parma and

Pseudopleuronectes americanus, with the former unique to

this assemblage. While OPH exhibited the highest taxa

richness, species accumulation curves indicate that the

species/morphotypes richness of SDR, MIX, and EPA are

underrepresented (Figure 4). Greater surveying effort could

reveal additional species/morphotypes for each assemblage.

However, this lack of plateau may also be the result of

removing species with <5 occurrences across all ground-

truthing sites.

Model performance and predicted
distribution

Following the Boruta algorithm and assessment of

collinearity, 18 variables were included in the epifaunal

models, 18 in the A. clathratum models, and 24 in the CCA

models. Without fine-scale substrate % features, the RF model

accuracy was 61.0% (kappa = 0.31) and the LightGBM model

accuracy was 68.3% (kappa = 0.47). With the addition of fine-

scale substrate features, the epifaunal RF test accuracy increased

to 78.1% (kappa = 0.62), and the LightGBM model accuracy

increased to of 78.1% (kappa = 0.62). Both the RF and LightGBM

models overestimated the occurrence of OPH, and as a result, a

large number of SDR and MIX observations were incorrectly

classified as OPH. This is evidenced in the RF and LightGBM

predictive maps, where OPH was predicted to cover the majority

of each survey area, excluding Rushoon (Figure 5). RF, however,

included a greater coverage of SDR along the coastal side of

D’Argent Bay and of MIX along the interior of St. Lawrence.

LightGBM underestimated the coverage of both SDR andMIX in

D’Argent Bay and St. Lawrence, respectively, even though

ground-truthing sites assigned as those assemblages were

observed. RF correctly identified all EPA observations while

LightGBM was unable to correctly predict any of the EPA sites.

Only ground-truthing sites within the observed depth range

for each marine algae were included. For A. clathratum model

FIGURE 5
Predicted spatial coverage of the identified four assemblages by the 1) Random Forest and 2) Light Gradient Boosting Machine models across
the four target survey areas: (A) Rushoon, (B) D’Argent Bay, (C) Burin, and (D) St. Lawrence.
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development, 115 sites at a depth range of 15–66 m were

included. A. clathratum was present at 60 of 115 ground-truth

sites, the majority of which occurred in Burin (25 of 60 sites;

41.7%). A. clathratum was present at over 50% of sites in all

survey areas except for St. Lawrence. Model performance without

fine-scale substrate % features was 82.1% (kappa = 0.64) for the

RF model and 87.2% (kappa = 0.74) for the LightGBM model.

Maps derived from these models predicted a majority coverage of

A. clathratum across Burin, though a patchwork of absences is

predicted by LightGBM in the interior of Burin’s extent.

Differences in predicted A. clathratum extent is apparent in

Rushoon and St. Lawrence. The greatest discrepancies were

observed in D’Argent Bay though, with very little coverage

predicted by LightGBM compared to RF (Figure 6).

132 sites were included in the CCAmodel at a depth range of

15–78 m. For CCA, 42 sites had full coverage (31.8%) and 31 sites

had partial coverage (23.5%). Rushoon had the highest number

of ground-truthing sites with full coverage off CCA (15 of 27).

Aside from one instance of full coverage, the northeastern coast

of St. Lawrence was characterized by partial coverage of CCA.

Few absences of CCA were observed in D’Argent Bay (7 out of

36 sites) and Burin (11 out of 45 sites). When models were

developed without fine-scale substrate % coverage, the CCA RF

model had an accuracy of 68.9% (kappa = 0.49) and the

LightGBM model had an accuracy of 68.9% (kappa = 0.51).

Predictive maps derived from these differed in the concentration

of absences, with LightGBM predicting an underestimation

across all four survey areas of both partial and full coverage

(Figure 7).

The accuracy of all marine algae models was increased with

the introduction of fine-scale substrate % coverage features. The

A. clathratum RF and LightGBM model accuracies increased to

89.7% (kappa = 0.80) and 92.3% (kappa = 0.85), respectively and

both the CCA RF and LightGBM accuracies increased to 82.2%

(kappa = 0.72).

Species-Environment relationships

Depth was the most important variable for explaining the

distribution of epifaunal assemblages, according to the RF

model (Figure 8). OPH and MIX were associated with

deeper portions of the surveyed areas, while SDR and EPA

were generally observed at depths shallower than 50 m.

Relationships between EPA and the five most important

variables appeared opposite to those observed for the other

assemblages (according to the best-preforming RF model)

(Figure 9). EPA was the only assemblage that was more

prevalent with increased coverage of fine sediment and flat

terrain. Assemblages SDR, MIX, and OPH appeared more

FIGURE 6
Predicted absence (white) and presence (green) of Agarum clathratum by the 1) Random Forest and 2) Light Gradient BoostingMachinemodels
across the four target survey areas: (A) Rushoon, (B) D’Argent Bay, (C) Burin, and (D) St. Lawrence. No predictions were developed where black is
seen, as depth exceeded the range established in A. clathratum model development.
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prevalent at areas of rugged and boulder terrain, according to

models. EPA was most prevalent within 2 km of the coast, with

decreasing occurrence with greater distance. Unlike SDR and

MIX, OPH was most prominent at sites closer to shore, but also

occurred at the furthest offshore sites that were sampled.

Fine-scale substrate % coverage was identified as being even

more important than depth to explain the spatial patterns of both

A. clathratum and CCA models (Figure 8). Specifically, the

presence of even low % coverage of fine sediment influences

the presence of both A. clathratum and CCA. The predicted

presence of either marine algae was higher with increasing

coverage of harder substrates, including both boulder (%) and

gravel (%) coverage (Figure 10).

According to both RF and LightGBM models, bathymetry

was the second most important variable influencing the

distribution of A. clathratum, with the majority of

occurrences constrained to depths of 15–48 m. Bathymetry

appeared less important for predicting CCA distribution in

the RFmodel, and was not included at all in the CCA LightGBM

model. The model suggested that softer sediments were more

influential than harder substrate in determining the presence of

A. clathratum (Figure 10). For CCA models, partial and full

coverage were associated with higher backscatter values, while

sites with absences were characterized by lower backscatter

(Figure 11).

Discussion

The west coast of Placentia Bay hosts a diverse and

heterogeneous collection of benthic invertebrates, with

prominent populations of A. clathratum and substantial CCA

coverage. Fine-scale (<1 m) substrate features appear highly

important for explaining observed spatial patterns.

Performance improved in all cases when substrate features

were included in the models, yet ultimately, these variables

could not be used for continuous spatial prediction due to

their discontinuous coverage. This highlights the importance

of fine-scale substrate as a benthic habitat driver. Nonetheless,

the models developed in this study provide valuable insight into

the species-environment relationships driving the distribution of

the heterogeneous benthic biota found in Placentia Bay–a

necessary step in establishing a baseline for monitoring

changes over time.

Depth has often been identified as an important variable in

explaining benthic biota distribution (Bekkby et al., 2009;

Gorman et al., 2013; Neves et al., 2014; Schückel et al.,

2015; Bekkby et al., 2019). However, depth is likely acting

as a proxy for other co-varying and harder to characterize

variables, such as light availability, temperature, salinity, wave

action, or ice scouring (Elith and Leathwick, 2009; Sandman

et al., 2013). For example, in the case of the spatial distribution

FIGURE 7
Predicted absence (white), partial coverage (light purple), and full coverage (dark purple) of non-geniculate crustose coralline algae (CCA) by the
1) RandomForest and 2) Light Gradient BoostingMachinemodels across the four target survey areas: (A)Rushoon, (B)D’Argent Bay, (C)Burin, and (D)
St. Lawrence. No predictions were developed where black is seen, as depth exceeded the range established in CCA model development.
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of A. clathratum and CCA within Placentia Bay, depth likely

acts as a proxy for light attenuation. A. clathratum extends to

greater depths than most kelp species due to its shade-

tolerance (Krause-Jensen et al., 2019), with an observed

depth limit in this study of up to 66 m, consistent with

findings along coastal Greenland (Krause-Jensen et al.,

2019). CCA are even more tolerant of low-light conditions

due to their low photosynthetic capacity (Littler et al., 1985;

Roberts et al., 2002; Nelson, 2009). CCA are found within

most coastal habitats (Littler et al., 1985), including Antarctica

(Zaneveld and Sanford, 1965; Schwarz et al., 2005; Castellan

et al., 2021), and are observed at depths greater than any other

local marine algae species (McConnaughey and Whelan,

1997). This may explain the exclusion of bathymetry from

the CCA LightGBM model. Dean et al., 2015 observed a

similar pattern with coralline algae along the Great Barrier

Reef, where depth had little effect on their distribution

compared to physical features.

FIGURE 8
Order of variable importance as determined by the Random Forest (RF) and Light Gradient Boosting Machine (LightGBM) for the epifaunal,
Agarum clathratum, and non-geniculate crustose coralline algae (CCA).
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In the case of EPA, shallower depths may be associated with a

greater abundance of food for the typifying species E. parma,

such as benthic diatoms, which are known to migrate to

shallowed depths as they grow older and larger (Cabanac and

Himmelman, 1996; Cabanac and Himmelman, 1998). In

contrast, OPH and MIX were found across most of the depth

range surveyed. The dominant epifauna of these assemblages

included porifera and cnidarians, with dense ophiuroid beds in

OPH and abundant Hormathia sp.1 aggregations in MIX. As

these epifauna rely on filter- and suspension-feeding techniques,

their survival may depend on food transport from the euphotic

zone (Maldonado et al., 2017). Food transport may be

constrained by both hydrography and depth in coastal

environments (Grebmeier and Barry, 1991; Graf, 1992;

Piepenburg, 2005; Sswat et al., 2015).

Mean current circulation in Placentia Bay is

counterclockwise, with currents entering on the eastern coast

and exiting on the west (Ma et al., 2012). The west coast is

therefore subject to upwelling currents that may be beneficial to

filter- and suspension feeders (Ma et al., 2012), such as the

porifera and cnidarians (i.e.Hormathia sp.1) observed within the

OPH and MIX assemblages. Sponge aggregations (Hogg et al.,

2010) andHormathia digitata (Dunlop et al., 2020) are known to

associate with strong, nutrient-enriched currents delivering a

constant food supply–though the current strength in these small

embayments is strongly influenced by the complex bathymetry

and shoreline (Largier, 2020). A. clathratum and CCA were

found on westward-facing substrate in line with Placentia

Bay’s south westerly currents [Supplementary Figures S2,3].

Kelp beds are well-adapted to environments of moderate wave

exposure (Gorman et al., 2013; Bekkby et al., 2019), as wave

action boosts nutrient supply and uptake, ensures continuous

light exposure (Hurd et al., 1996; Hepburn et al., 2007; Bekkby

et al., 2019), and reduce survivability of epiphytes (Strand and

Weisner, 1996). However, at exposed areas such as St. Lawrence,

which may experience excessive wave action, growth may be

inhibited due to abrasions or transport (Marrack, 1999; Sañé

et al., 2016).

With the exception of EPA, hard substrates were associated

with suitable habitat for all epifaunal assemblages, A.

clathratum, and CCA. Fine sediments and sedimentation

may reduce habitat suitability for these sessile organisms by

inhibiting feeding strategies. Large kelps such as A. clathratum

additionally require a stable foundation for holdfast attachment

to endure currents and storm surge (Morrison et al., 2009;

Watanabe et al., 2014; Masteller et al., 2015). In contrast, E.

parma would preferentially inhabit coarse sand areas (Stanley

and James, 1971; Sisson et al., 2002), enabling filtering where

coarse sand traps particulate matter for consumption without

excess fouling (Bland et al., 2019), and burying to avoid

predation (Manderson et al., 1999; Pappal et al., 2012) and

damaging storm surge (O’Neill, 1978). Distance from the coast

may act as a surrogate for sedimentation rate (Stephens and

Diesing, 2015; Misiuk et al., 2018). In the case of CCA, growth

occurs only on hard substrate (Connell, 2005; Gagnon et al.,

2012, Jørgensbye and Halfar, 2017), with fine sediment

additionally reducing light availability for photosynthesis

(Konar and Iken, 2005; Jørgensbye and Halfar, 2017).

FIGURE 9
Univariate partial dependence plots derived from the Random Forest classification model for the top five most important explanatory
environmental features explaining the distribution of individual epifaunal assemblages. The ‘yhat’ axis refers to the value of partial dependence
function. The partial response of the epifaunal assemblages to all features is provided in Supplementary Figure S1.
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Smaller grain sizes, like gravel, are more likely to be reworked in

a dynamic environment, limiting consistent light exposure and

increasing physical damage and making it more difficult for

CCA to establish growth due to abrasion (Foster, 2001;

Hetzinger et al., 2006).

Removal of fine-scale substrate features from the RF models

produced a substantial drop in predictive accuracy (~25%).

Owing to the highly heterogeneous nature of the seafloor in

Placentia Bay, the ability to capture increased structural

complexity can allow for the identification of potential

‘keystone structures’, (i.e. structures that directly bolster

species richness) (Tews et al., 2004). For example, ‘Hormathia

sp.1’ was often seen attached to the sporadic boulders scattered

across the silt-covered seafloor in the deep channels within

Rushoon. Drop stones resulting from glacial retreat (Shaw

et al., 2011) have been shown to increase diversity of more

homogeneous sediment dominated areas (Meyer et al., 2016).

This fine-scale feature cannot currently be captured by acoustic

surveying techniques such as MBES, but new methods such as

synthetic apertures sonar may provide this capability (Gini et al.,

2021).

Increased physical habitat complexity has previously been

linked to increases in abundance and diversity (Barry and

Dayton, 1991; Bracewell et al., 2018). In coastal environments,

rocky shores play a critical role in structuring coastal benthic

communities (Menge, 1982; Underwood and Denley, 1984).

Within Placentia Bay, boulder and gravel fields occur along

the offshore extent of D’Argent Bay and Burin and along the

shoreline of Rushoon and St. Lawrence. These fields may provide

a level of stability and topographical diversity that could increase

structural availability for sessile invertebrates (MacArthur and

Wilson, 1967; Liversage and Chapman, 2018; Franz et al., 2021),

such as the sponges and anemones observed in Rushoon and St.

Lawrence. These areas were found to be associated with a higher

presence of arcto-boreal species, such as the different

morphotypes of porifera and anthozoan as well as species of

echinoderms and crustaceans. 1,064 individuals from

25 morphotypes of the Phylum Porifera were recorded in

these areas, further increasing habitat complexity by acting as

biogenic substrate for associated fauna (Buhl-Mortensen et al.,

2017; Hogg et al., 2010, Maldonado et al., 2017). Those areas may

represent rocky reefs–an ecologically important habitat

FIGURE 10
Partial dependence plots derived from the Random Forest classification model for the most important explanatory environmental features
describing the distribution of Agarum clathratum. The ‘yhat’ axis refers to the value of partial dependence function. The partial response of A.
clathratum to all features is provided in Supplementary Figure S2.
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characterized as a subtidal natural hard substrate, which has been

linked to increased biodiversity (Taylor, 1998; Kostylev et al.,

2005; Wahl, 2009).

Rocky reefs from temperate to Arctic environments are often

covered with canopy-forming kelp species. Likely, the dense

coverage of A. clathratum observed in the subtidal would also

contribute to increased epifaunal richness (Blain and Gagnon,

2014; Teagle et al., 2017). Fewer species were observed than

expected in the SDR assemblage, but this may have resulted from

limited visibility of the seafloor due to obstruction by A.

clathratum blades.

Few other brown kelp species were observed during ground-

truthingan exception being two sites in Rushoon fully covered by

the sugar kelp S. latissima. A. clathratum was often found to co-

exist with red algae though. The potential for increased coverage

by red algae is an example of an observable change made possible

by comparing to the baseline established in this study. As

compared to kelp beds, low-lying red algae turfs are a fast-

growing and stress-tolerant opportunistic group (Airoldi, 1998;

Filbee-Dexter and Wernberg, 2018), and high turnover rates

allow them to succeed kelp forests that have been weakened by

thermal stress (Scheibling and Gagnon, 2006; Filbee-Dexter et al.,

2016; Wernberg et al., 2019). Kelp is more susceptible to stress

due to ocean warming and increased storm activity, concurrent

with cyclical herbivorous pressure by S. droebachiensis (Filbee-

Dexter and Wernberg, 2018). Once it supersedes kelp, red algae

turfs cover the substrate, preventing kelp from resettling and

inducing phase shifts to environments with reduced oxygen and

increased sediment accumulation (Gorgula and Connell, 2004),

further negatively impacting settlement of kelp spores (Norton

and Fetter, 1981; Gorman and Connell, 2009; Connell and

Russell, 2010). Kelp is susceptible to stress due to ocean

warming and increased storm activity, concurrent with

cyclical herbivorous pressure by S. droebachiensis. No

observations of turf-dominated areas show shifting back to

kelp (Filbee-Dexter and Wernberg, 2018).

The performances of the RF algorithm, which is well-established

in the field of benthic habitat mapping, and the newer LightGBM

FIGURE 11
Univariate partial dependence plots derived from the Random Forest classification model for the most important explanatory environmental
features describing the distribution of non-geniculate crustose coralline algae (CCA). The ‘yhat’ axis refers to the value of partial dependence
function. The partial response of absence, partial coverage, and full coverage of CCA to all features is provided in Supplementary Figure S3.
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were comparable considering only model accuracy and variable

importance estimates. However, disagreements occurred over the

predictions of the rarer assemblages, especially when both model

types were used to develop predictive maps. LightGBM is a powerful

modelling technique, but it was developed to manage large datasets

(e.g., 1,00,000 s of observations) (Ke et al., 2017). Sample sizes of this

magnitude are uncommon in marine ecology [Benkendorf and

Hawkins, 2020; Luan et al., 2020]. The small sample size in this

study likely resulted in overfitting of the LightGBM models,

apparent, for example, in the prediction of CCA absences.

Ground-truthing samples indicated extensive full and partial

coverage of CCA in D’Argent Bay and Burin; however,

LightGBM predicted very sparse CCA coverage for most of the

areas.

LightGBM advertises faster training speed, low memory usage

(Ke et al., 2017; McCarty et al., 2020), and in-depth control over

boosting and model learning via tunable parameters. The latter

point, though, requires the user to be confident in their

understanding of each parameter. In contrast, RF has only two

parameters that generally require manipulation, and even appears

quite robust to these in practice, making it a more user-friendly

algorithm (Brieman, 2001; Liaw and Weiner, 2002). RF has

demonstrated repeated success in benthic habitat mapping

studies comparing techniques (Lucieer et al., 2013; Robert et al.,

2015; Rooper et al., 2017;Misiuk et al., 2019; Pillay et al., 2020; Shang

et al., 2021). However, RF may be biased towards computational

efficiency in favor of accuracy (Fernandez-Delgado et al., 2011;

Wainberg et al., 2016). The comparison carried out here supports

the continued use of RF as a modelling technique that can perform

well with the limited amount of data that is common in marine

studies. It will be of great interest to determine whether the newer

LightGBM algorithm shows better performance with larger datasets.

The subtidal zone of western Placentia Bay is host to a diverse

and heterogeneous benthic environment that supports multiple

ecosystem services. The baseline information provided by this

study provides information necessary to monitor potential

changes in biodiversity and ecosystem function within the

Placentia Bay EBSA. The communities of OPH and MIX are

notable for their epifaunal diversity, comprising structure-

forming sessile invertebrates. Biogenic structural heterogeneity

is often linked to increased biodiversity (Buhl-Mortensen et al.,

2010; Thomsen et al., 2010; Lefcheck et al., 2017; Kazanidis et al.,

2021), which may support ecosystem health. Coastal townships

of Placentia Bay also rely on the health of this benthic ecosystem,

which support local livelihoods, but which may be threatened

under increased anthropogenic activity (e.g. aquaculture, oil

shipping) and shifts in ocean temperature and pH (Doney

et al., 2009). Proactive management action may mitigate

potential detrimental changes brought on by these stressors.

Conclusion

The predictive maps developed in this study indicate a

heterogenous benthic ecosystem in the western part of the

Placentia Bay EBSA, composed of habitat-forming biotasuch

as marine algae and sessile invertebrates including porifera

and anemones. This contributes substantiallyto baseline

understanding of marine epifaunal distributions and

richness in a subtidal area of recognized ecological and

socio-economic importance. Concurrent with predictive

geospatial modelling, investigation of fine-scale (<1 m)

substrate characteristics highlight their importance as

benthic habitat drivers. All models tested here performed

better with the addition of discrete fine-scale substrate

observations compared to the use of spatially continuous

acoustic backscatter proxies. The LightGBM models had

higher accuracies, but often demonstrated signs of

overfitting as compared with the predictive maps derived

from the RF models. The fundamental knowledge derived

from these models provide information that is critically

needed for monitoring the health of the Placentia Bay

EBSA over time.
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Mesophotic ecosystems in the Mediterranean Sea are biodiversity hotspots

distributed from ca 30m down to 180m, depending upon the depth of the light

compensation point. Overall, the taxonomic composition of Mediterranean

mesophotic ecosystems is dominated by corals and sponges, with subordinate

bryozoans, mollusks, ascidians, and shade-adapted algae. As for most marine

ecosystems, the mesophotic habitats are increasingly exposed to natural and

anthropogenic threats, including seawater-temperature rise, more intense and

frequent heat waves, progressive ocean acidification, fishing activities, and

littering. The establishment of effective governance guidelines is, therefore,

the necessary rationale to guarantee the good environmental status of such

widespread, highly diverse, service-provider natural resources. However, an in-

depth quantification of the extent to which Mediterranean mesophotic habitats

and taxa are included in conservation measures is lacking. In this article, we

review the available literature information on mesophotic habitats in the

Mediterranean Sea to evaluate the efficiency of the current legislative

framework in providing instruments to protect this natural heritage. Our

analysis allows identifying gaps in the current conservation network,

ultimately suggesting functional integrative actions for effective conservation

measures and the long-term survival of the Mediterranean mesophotic

ecosystems.
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1 Introduction

Global biodiversity loss is the largest ecological crisis our society

is facing together with climate change. Invaluable genetic resources

are being lost and ecosystem processes destroyed due to

anthropogenic activities (Lande, 1998; Brooks et al., 2006;

Danovaro et al., 2021). Current rates of extinction are 1,000 times

higher than those of pre-human levels, and future rates might be

100 times higher than those of today (Pimm et al., 1995). The

Intergovernmental Science-Policy Platform on Biodiversity and

Ecosystem Services assessment highlighted that almost two-thirds

of marine environments have been “severely altered” by human

activity causing massive marine biodiversity loss in the last 40 years

(Díaz et al., 2019) with a substantial erosion of the environmental

services and goods on which we depend (Worm et al., 2006).

The international community delineated the path to

strengthen marine protection by 2020 and strike the Aichi

Target 11 of the Convention on Biological Diversity, which

called for 10% of coastal and marine areas to be “conserved

through effectively and equitably managed, ecologically

representative, and well-connected systems of protected areas

and other effective area-based conservation measures.” Several

European member states claimed the achievement of the target,

but nearly 90% of the European Marine Protected Areas (MPAs)

are not managed effectively (WWF, 2019) and the network of

MPAs is not ecologically coherent yet (i.e., representing all

natural communities within an area, maintaining ecological

and evolutionary processes, and ensuring resilience to large-

scale disturbances and to long-term changes), according to the

European Environment Agency assessment (EEA, 2015).

Protecting the marine species and resources in their totality is

arguably utopistic (Brooks et al., 2006), and we need to identify

priorities for conservation (habitats and species) and guide

government agencies and environmental organizations toward

the best compromise. Many “shortcuts” have been adopted for

monitoring management plans, defining “keystone,” “indicator,”

“flagship,” “umbrella,” and “charismatic” species (Vane-Wright

et al., 1991; Roberge and Angelstam, 2004; Mace et al., 2006).

The information on the species identified as priorities is,

however, dramatically scarce. Despite various studies estimating

that between 1.4 and 1.6 million species live in the oceans

(Bouchet, 2006), currently, less than 15% of the about

240,000 known marine species are considered by the IUCN

Red List, the most comprehensive indicator of the health of

the world’s biodiversity (https://www.iucnredlist.org/about/

barometer-of-life). Summing up, if the status of marine

species and habitats is still practically unknown, how can we

effectively define what is of priority?

Providing an answer is tremendously and worryingly hard.

Geographical gaps exist in implementing conservation measures,

with an unbalance in the coverage of protected areas across

regions (with Mediterranean and Macaronesian areas as the tail

light, EEA, 2015), and between coastal and deep habitats, which

are operationally more difficult to reach and remain strongly

underrepresented in the conservation and monitoring plans

(MedPAN and SPA/RAC, 2017).

Currently, protected areas between 50 m and 200 mdepth cover

13.18% of the European designations (MedPAN and SPA/RAC,

2017). This depth range largely overlaps with themesophotic domain

(from 30m depth down to the photosynthetic compensation point)

that might cover a consistent portion of the entireMediterranean Sea

(Castellan et al., 2022). Ecologically relevant habitats occur within this

depth layer, whose composition largely varies depending on the

geographic area (Pyle and Copus, 2019). Coralligenous formations

(Ballesteros, 2006), rhodoliths s.l. (Foster et al., 2013; Basso et al.,

2017), sponge grounds (Idan et al., 2018; Goren et al., 2021),

structures built by stony corals and mollusks (Taviani et al., 2012;

Corriero et al., 2019; Angeletti and Taviani, 2020; Angeletti et al.,

2020; Cardone et al., 2020), and cnidarian forests (Bo et al., 2011; Cau

et al., 2015; Boavida et al., 2016; Chimienti et al., 2020 among many

others) dominate themesophotic zone of theMediterranean Sea. It is

well established that mesophotic habitats provide various ecosystem

services, for example, acting as hotspots of biodiversity, potential

sources of commercial species, and carbon sinks (Rossi et al., 2017).

Despite their recognized importance, mesophotic habitats do not

directly receive protection from marine conservation networks

(Rocha et al., 2018; Soares et al., 2020). The lack of a clear

definition of the mesophotic zone (Castellan et al., 2022) together

with the complex patterns of genetic connectivity of mesophotic

assemblages, characterized by critical areas of discontinuities

(Costantini et al., 2018), surely did not facilitate the delineation of

conservation measures specifically targeting mesophotic habitats.

Given their heterogeneous nature in terms of the main

structuring taxa, mesophotic habitats are characterized as the

perfect ground to test if the current conservation network in the

Mediterranean Sea is good enough to favor their long-term

preservation or whether we need ad hoc measures.

Here, we analyze the available information on mesophotic-

benthic habitats and their taxonomic composition in the

Mediterranean Sea to evaluate the efficiency of the current

legislative framework in providing instruments to protect this

natural heritage. Our contribution not only aims at identifying

persisting biases and gaps but also provides a first assessment of

the extent to which the conservation network addresses

mesophotic habitats across the basin, suggesting potential

integrative actions for their long-term survival.

2 Materials and methods

2.1 Literature review

A systematic analysis of the literature was conducted up to

31 May 2022. To identify documents regarding mesophotic

habitats in the Mediterranean Sea, the query “Mediterranean”

was used in the mesophotic.org database (http://www.
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mesophotic.org/), while “twilight AND Mediterranean” and

“mesophotic AND Mediterranean” were used in Elsevier’s

Scopus database (scopus.com). A cross-check between the

results from these two databases was performed to exclude

duplicates. The records were then screened to remove non-

benthic studies (e.g., fish fauna). The typology of habitat,

according to the definitions provided in the

literature records, and taxonomic lists,

whenever present, were extracted (Supplementary Tables

S1, S2).

2.2 Data repositories

Literature records were integrated with information from

the open-access Ocean Biogeographic Information System

(OBIS), held by the UNESCO/IOC project office for IODE in

Oostende (Belgium), which provides taxonomically and

geographically resolved data for over 47 million observations

of marine species. Taxonomic occurrences for the

Mediterranean Basin were sorted using the depth range of

30–190 m as a constraint (according to the estimation in

Castellan et al., 2022). Duplicated taxa were removed to

obtain a list of single taxa observed in the mesophotic depth

range. Finally, records were filtered to isolate only benthic taxa

(Supplementary Table S2).

2.3 Conservation status

International binding and not-binding instruments in the

field of conservation of marine environments were extensively

analyzed to extract lists of habitats and taxa currently identified

as protected or used to define areas that might deserve

management and/or conservation measures. Mesophotic

benthic habitat typologies and taxa from the literature and

data stored in repositories were compared to those listed in

conservation instruments, reporting information on the

conservation rank, whenever specified. The number of

habitats and taxa currently listed in policy instruments was

calculated as percentages.

3 Results

3.1 Conservation status of Mediterranean
mesophotic habitats

The screening of literature records on mesophotic benthic

habitats in the Mediterranean Sea resulted in 93 scientific

documents, including peer-reviewed articles and technical

reports (Figure 1; Supplementary Table S1). Most of the

literature is represented by single-taxon studies, whilst

community composition assessments and area-based censuses

FIGURE 1
Map showing the distribution of available information on mesophotic habitats and taxa in the Mediterranean Sea. Yellow and red dots refer to
the literature records (scientific articles and reports) and species occurrences from OBIS repository (obis.org), respectively.
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are scarce. About 80% of the records defined or reported a

description of the target habitats, while the remaining 20%

lacked this information since they were represented by large-

scale studies encompassing various and unspecified situations or

because they were simply not provided (Figure 2). We identified

eight categories of habitats, as listed in Table 1.

FIGURE 2
Proportion of mesophotic habitats studied in the Mediterranean Sea (A) and the proportion of records targeting habitats included in the current
International Policy Framework (B). 1Habitats defined as VME in FAO, 2009. 2Only soft-bottom habitats (1110-Sandbanks) shallower than 20 m depth
are listed under the Habitats Directive (Romão, 1996). TCR: temperate coral reefs; SB: soft bottom; OR: deep-water oyster reef; Ph: Phanerogam
meadows; NA: not available.

TABLE 1 Description of the target mesophotic habitats from the literature analysis. Definitions reported here summarize those provided in the
bibliographic records. See Supplementary Table S1 for further information.

Habitat Description

Animal forests Single- or multi-species assemblages dominated by sessile suspension feeders (octocorals, hydrozoans, and bryozoans) large in
number on hard and soft substrates

Hard bottom/cliffs Associations of different taxa (octocorals, hydrozoans, bryozoans, and brachiopods) patchily populating on hard and rocky
bottoms

Coralligenous formations Structures built by red algae (Rhodophyta) populated by highly diverse associations of bryozoans, corals, and sponges

Sponge grounds Extensive aggregations of Porifera populating on hard or soft bottoms

Temperate coral reefs Single- and multi-species assemblages of scleractinian corals, mainly represented by specimens of the Caryophylliidae family,
creating three-dimensional frameworks

Deep-water oyster reefs Three-dimensional formations built by Neopycnodonte cochlear populated by sponges, bryozoans, ascidians, and polychaetes

Phanerogam meadows Extensive communities of marine phanerogams forming sea meadows

Soft bottoms Bottoms of unconsolidated, unvegetated substrates populated by patches of vagile (mainly echinoderms) and/or erected sessile
fauna (polychaetes and soft corals)
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Most of the studies providing information on habitats

focused on animal forests (34.4%), with those formed by

octocorals and antipatharians as the preferred targets

(Figure 2). Although not forming animal forests, cnidarians

also represented a frequent focus in the mesophotic literature

on hard bottoms/cliffs, accounting for 17.2% of the whole record.

Coralligenous formations were the third most frequently studied

habitat (16%), followed by sponge grounds (5.4%), temperate

coral reefs (3.2%) and deep-water oyster reefs, phanerogam

meadows, and soft bottoms (about 1.1% each).

By analyzing the policy framework currently in force, the

Habitats Directive resulted as the main instrument for the

establishment of binding measures on marine habitats in the

Mediterranean area, with four out of the eight habitats identified

in the literature listed in its annexes. Phanerogam meadows are

listed as “Posidonia beds” (code 1120) and “Mediterranean

Cymodocea and Zostera beds” under “sandbanks which are

slightly covered by seawater all the time” (code 1110). Coral

and oyster reefs and coralligenous are listed as biogenic or

geogenic concretions under “reefs” (code 1170).

Although habitats related to soft bottoms may fall under

Habitat 1110, the interpretation manual (Romão, 1996) that

specifies this category mainly refers to situations shallower

than 20 m depth, thus not encompassing mesophotic

situations. Animal forests, sponge grounds, and hard and soft

bottoms are, instead, not directly included in the Habitats

Directive and conservation or management actions are strictly

related to the presence of taxa that are listed under Annex IV or

other binding instruments (Figure 2).

3.2 Conservation status of Mediterranean
mesophotic taxa

The taxonomic lists included in the literature documented

the occurrence of 507 benthic taxa within the mesophotic depth

range and 3,146 taxa were further obtained from the OBIS

repository, resulting in 3,653 different mesophotic-benthic

taxa for the Mediterranean Sea (Supplementary Table S1). The

final dataset was highly diverse, encompassing 21 Phyla,

53 Orders, and more than 800 Families. Arthropods,

mollusks, and annelids accounted for ca. 68% of the entire

dataset (~ 26%, ~ 21%, and ~ 20%, respectively), followed by

sponges (~10%), cnidarians (~8%), and bryozoans (~5%).

About 69.5% of the identified taxa are currently not included

in the legal framework, whilst ca. 30.5% resulted as listed under

policy instruments, comprising both those are binding and not-

binding (Figure 3). Most of these were represented by sponges,

annelids, and bryozoans, followed, by arthropods and cnidarians.

The proportions of the listed taxa varied significantly when

considering only binding instruments, with the annelids

completely disappearing and cnidarians covering about 53% of

all the species included in the policy framework, followed by

sponges, arthropods, and mollusks (Figure 3).

4 Discussion

Conservation efforts in Europe, similarly to other regions

around the globe, against biodiversity loss and the impact on

ecosystem functions and services has been focused on setting

the instruments and priorities for the management of habitat

degradation and species protection, their sustainable

exploitation, and their monitoring (Figure 4). Considerable

advances in the conservation of biodiversity have been

documented in the last decades, with 18.5% of the European

land area and almost 10% of the total EU marine area currently

covered by conservation and/or management measures (EEA,

2020). This substantial effort, however, proves insufficient to

reduce biodiversity loss (European Commission, 2020), with

only 15% of the habitats and 27% of the species listed in the

Habitats Directive have been saved from the risk of extinction

to date (European Commission, 2020). Although this

insufficient advance is surely related to the multiple impact

the biodiversity is facing, lessons from the past provide evidence

that conservation goals need to be coupled with adequate

planning and prompt integration of scientific information

into governance in order to be effective (Guidetti et al.,

2008; Yates et al., 2019).

4.1 Policy framework on the conservation
and management of marine natural
resources in the Mediterranean Sea

4.1.1 International Union for Conservation of
Nature, Red List

The IUCN Red List (iucnredlist.org) was established in

1964 and is the world’s most comprehensive inventory on the

extinction risk for flora and fauna that aims at catalyzing

action for biodiversity conservation and promoting the

protection of species. It collects information on geographic

distribution range, population size trends, habitat and ecology,

and the extinction risk of more than 142,500 species by

classifying them into nine threatening levels based on

reports performed by experts. Despite being largely used as

a reference to integrate conservation directives by government

agencies, wildlife departments, and conservation-related

organizations, the list does not have legislative implications

and cannot establish binding restrictions or measures. The list

mainly includes land species, whilst marine

species represent a small amount of the species assessed

(less than 15% https://www.iucnredlist.org/about/

barometer-of-life).
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FIGURE 3
Portion of benthic mesophotic taxa included in the International Legal Framework, considering both binding and not-binding instruments (A),
and percentage contribution of the identified Phyla to taxa listed under legal instruments (B).

FIGURE 4
International Legislative Framework, comprising binding (bold font) and not-binding instruments, which also includes Mediterranean
mesophotic habitats and taxa. The establishment years and depositary organisms are reported.
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4.1.2 Convention on International Trade in
Endangered Species of wild fauna and flora

CITES (cites.org) was signed in 1973 and entered into force

in 1975 to control international trade in wild species of flora and

fauna and their by-products for conservation purposes and avoid

them becoming threatened through international commerce.

CITES does not directly address issues of habitat destruction

and biodiversity loss, but it was intended to supplement the

management and/or protection of wildlife. It represents a

functional mechanism to control the commercial exploitation

and alleviate pressure on wild populations (Vincent et al., 2014).

The relevance of the convention is that it is legally binding for the

states that joined CITES and remains one of the most world’s

powerful tools for wildlife conservation. The species covered by

CITES are listed in three appendices, according to the degree of

restriction in trade. Appendix I includes species for which trade is

forbidden. Appendix II refers to species for which trade is

restricted and has to be authorized through an international

licensing system supported by national managing and scientific

authorities. Appendix III refers to species that are protected at

least in one country, which can impose controls on trade.

Appendices I and II are amended and updated every two/

3 years at the Conference of the Parties, participated by

184 states. Currently, the lists contain roughly 1,000 marine

species (https://cites.org/eng/app/appendices.php).

4.1.3 The Convention for the Protection of the
Mediterranean Sea against Pollution—Barcelona
Convention

The Barcelona Convention was adopted in 1976 in Barcelona

and entered into force in 1978 in the European Union, while its

amendments came into force in 2004 (unep.org/unepmap/who-

we-are/contracting-parties/barcelona-convention-and-

amendments). The convention comprises a protocol promoting

the creation of protected areas and the conservation and

regulation of threatened or endangered species of flora and

fauna. Annex I of the convention delineates the criteria for

the selection of the marine areas to be protected. Annexes II

and III provide lists of threatened or endangered species and

those whose exploitation requires regulation, including about

130 marine species (https://rac-spa.org/annexes).

4.1.4 The Council of Europe’s Convention on the
Conservation of European Wildlife and Natural
Habitats—Bern Convention

The Bern Convention (82/72/EEC) came into force in 1982,

and it was among the first international agreements aimed at

conserving habitats and wild species. The convention establishes

general guidelines to develop conservation measures and

includes a list of specific species to be protected. Despite its

adoption occurred when the information on marine

environments was in its infancy, its lists are constantly

updated with biannual reports (coe.int/en/web/bern-

convention/biennial-reports). The Bern Convention’s lists of

species to be protected include ca. 200 marine species,

encompassing mammals, invertebrates, fishes, and algae

(https://eunis.eea.europa.eu/references/2443).

4.1.5 Council Directive 92/43/EEC—Habitats
Directive

Building on the Bern Convention, the European Habitats

Directive was first adopted in 1992 by the European Union (92/

43/EEC). Contrary to the Bern Convention, this directive is a

European law and is mandatorily transposed to the national laws

of EU countries. The Habitats Directive is, together with the

Birds Directive, the main legislation regarding Europe’s nature

conservation policy as its annexes list the protected habitats and

species in the EU. It went through a number of updates and

corrections, mainly to the annexes, the last in 2007. Annexes II

and IV form the basis for the protected species lists in many

European countries, delineating the types of habitats and the

animal and plant species whose conservation requires the

designation of special areas of conservation and animal and

plant species of community interest in need of strict

protection (ec.europa.eu/environment/nature/legislation/

habitatsdirective/index_en.htm). Together with the Birds

Directive (2009/147/EC), species and habitats listed under the

Habitats Directive represent the backbone of Natura 2000, the

largest network of Sites of Community Importance (SCIs) and

conservation areas in the world aiming at ensuring the long-term

survival of species and habitats of community interest (ec.europa.

eu/environment/nature/natura2000/index_en.htm). Unlike the

Bern Convention, the Directive’s annexes are, however, not

periodically updated and have remained practically unchanged

from its establishment, including only five marine habitats and

18 marine species (rac-spa.org/annexes).

4.1.6 General Fisheries Commission for the
Mediterranean—Priority and vulnerable species

The General Fisheries Commission for the Mediterranean

(FAO-GFCM) is a regional fishery management organization

under the Food and Agriculture Organization of the United

Nations whose main objective is to ensure the conservation of

living marine resources, including aquaculture systems and their

sustainable use in the Mediterranean and Black seas (fao.org/

gfcm/en/). FAO-GFCM was established in 1949 and counts

22 contracting partners (19 Mediterranean states, 3 Black Sea

states, and the European Union). It has authority to deliberate

binding recommendations for fishery monitoring and

management. During the Ninth Session that took place in

2006, the Scientific Advisory Committee (SAC) on Fisheries

identified a list of priority species for the Mediterranean and

the Black seas (https://www.fao.org/3/a0889b/a0889b00.htm).

Mainly having authority on fishing and aquaculture activities,

the overwhelming majority of the roughly 100 marine species

included in the lists are represented by cetaceans, sharks, and
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rays, whilst benthic species are only five (four decapod species

and the cnidarian Corallium rubrum, https://www.fao.org/gfcm/

activities/fisheries/stock-assessment/priority-species/en/).

4.1.7 FAO International Guidelines for the
Management of Deep-sea Fisheries in the High
Seas

The concept of vulnerable marine ecosystems (VMEs) was

formally defined after the United Nations General Assembly

(UNGA) in 2004 (A/RES/61/105, 2007). VMEs are groups of

species, communities, or habitats that may be vulnerable to the

impact from fishing activities. The FAO International Guidelines for

theManagement of Deep-sea Fisheries in the High Seas (FAO, 2009)

were built on the UNGA Resolution 61/105 and provide details on

the VME, criteria to identify them, and examples of species groups,

communities, and potentially vulnerable habitats. Despite the

presence of VMEs leading to the establishment of management

measures, that, however, only act on restricting fishing activities

(Fishery Restricted Areas, FRA, fao.org/gfcm/data/maps/fras/en/),

the guidelines have no binding force (fao.org/in-action/vulnerable-

marine-ecosystems/background/international-framework/en/). The

list of taxa that may form VMEs has been also integrated into

Annex 1.c of Monitoring the incidental catch of vulnerable species in

the Mediterranean and Black Sea fisheries: methodology for data

collection to promote the collection of data on VME-forming species

(FAO. 2019).

To date, the European Union’s most important instrument for

the constitution of conservation areas in the marine environment

is represented by the Natura 2000 sites network whose designation

is based upon the Habitats Directive (92/43/EEC). As established

in Article 19 of theDirective, the list of habitats should be subjected

to updates and amendments each time new countries join the

European Union (Cardoso, 2012). However, the growth rate of

technical and scientific progresses is arguably different from that of

new member state inclusion, and no considerable modifications

have been registered solely as a consequence of new knowledge so

far (Fois et al., 2021). Consequently, the lists of habitats and species

currently included in the Habitats Directive annexes rely upon

outdated information, whilst some habitats of community interest

are still not considered (Evans, 2006).

4.2 Conservation network addressing
Mediterranean mesophotic habitats and
species

Information on mesophotic habitats of the Mediterranean Sea

has been largely collected in the early 2000s (e.g., Cerrano et al.,

2019), providing evidence on the paramount ecological importance

of habitats populating this depth range that serve as areas for

spawning, breeding, feeding, and growth to maturity (e.g., Lesser

et al., 2009; Bramanti et al., 2017; Capdevila et al., 2018; Santín et al.,

2019). The analysis of the literature identified eight categories of

mesophotic habitats in the Mediterranean Sea from reefs to soft

bottoms patchily populated by erect megafauna. Four of these are

included in binding instruments (i.e., Habitats Directive),

corresponding to biogenic structures and phanerogam meadows.

These habitats, however, covered a small portion of the literature,

whilst about 73% of records focused on habitats currently listed in

not-binding instruments or whose protection is related to the

presence of certain taxa. As a case in point, animal forests

resulted as the most studied habitat, accounting for ca. 34% of

the literature records. These are known to represent hotspots of

biodiversity and ecological services (Gori et al., 2017), but their

protection is strictly related to the taxonomic composition: forests

formed by Callogorgia verticillata, for instance, are considered of

priority for protection and for the establishment of conservation

measures since the species are listed in Barcelona ConventionAnnex

II. On the contrary, Paramuricea clavata, gorgonid largely studied in

the Mediterranean Sea (e.g., Linares et al., 2008 amongst many

others), is currently not listed in any binding directives. So,

identifying and collecting scientific information on situations

hosting P. clavata forests may not be enough to lead to

conservation actions.

Likewise, sponge grounds represented ca. 5% of the literature

records, but this habitat is not included in the Habitats Directive

and the chance to be subjected to conservation measures relies

upon the presence of species listed under binding legal

instruments. Despite 359 taxa of Porifera that were identified

through the literature analysis, only 13 species, however, resulted

as included in binding instruments to date. Similar arguments

can be made for hard- and soft-bottom habitats, whose

protection emerged as completely dependent on the

occurrence of taxa listed in binding instruments.

If establishing conservation measures relying upon certain taxa

which might surely represent a successful strategy to contrast

biodiversity loss, it endows lists of species included in legally

binding instruments a critical role. Of the more than

3,600 benthic mesophotic taxa identified from our analysis, 2.4%

are currently listed under binding instruments, encompassing eight

Phyla out of the 22 documented in the literature and open-access

databases. Not only do the taxa need to be listed in binding

instruments to be considered for protection, but also the different

annexes or appendices within the same instrument have different

reasoning. Annex II of the Habitats Directive, for instance, lists

species for which members have to be designated protected areas,

whilst Annex IV comprises strictly protected species but for which no

legal obligation to protect the habitat exists. Listing species in Annex

II is, therefore, more legally binding, but no marine benthic species

are included yet. In natural systems, discerning species protection

from habitat conservation might be tricky since the first concur in

forming habitats, while habitats support the presence of species.

There is no doubt that finding solutions to contrast the

jeopardization of benthic habitats is incredibly hard. A

successful path toward the effective conservation of

mesophotic-benthic habitats might be the improvement of legal
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conservation instruments to be more adaptive and promptly

incorporate the available scientific knowledge (Manea et al., 2020).

However, the spatial distribution of information on

mesophotic habitats and taxa in the Mediterranean Sea is

heterogeneous. Most of the information comes from the

northwestern sector of the basin, whilst in the easternmost

Levantine Sea and the African coasts and margins, the number

of available records is limited (Figure 1). The sole analysis of the

literature records would lead to a notable underestimation of the

diversity of mesophotic habitats and related taxa in the

southeastern Mediterranean Sea. If the scientific knowledge that

should fuel improvements in conservation measures to include

mesophotic habitats and species occurring in the easternmost

Mediterranean Sea is missing, evidence of the collapse of native

mesophotic biodiversity by non-indigenous species is largely

documented in the literature (Albano et al., 2021).

A starting point might be to update lists of species included in

binding instruments by integrating information included in not

legally binding conservation tools. These already provide data on

population trends (IUCN Red List) and/or scientific evidence

that some benthic taxa occurring within the mesophotic depths

may form ecologically relevant habitats crucial for human

supplies (GFCM priority species and VME indicator species).

For instance, considering the taxa listed in binding and not-

binding (at any “concerning” level) instruments, the portion of

mesophotic benthic taxa in the Mediterranean Sea considered by

the conservation network would increase from 2.4% to about

30% of those identified from our analysis. Including these taxa

and habitats into legally binding instruments does not necessarily

lead to their strict protection but might fuel the monitoring of

their conservation status through programs already in force.

Despite presenting strong legal (Fraschetti et al., 2018) and

conceptual limitations (Fanelli et al., 2021), the Marine

Strategy Framework Directive (MSFD 2008/56/EC) set the

path for monitoring the Good Environmental Status (GES) of

marine biodiversity in the EU, channeling scientific information

into conservation instruments (Danovaro et al., 2020).

Ensuring routine monitoring of mesophotic and deep-sea

habitats is, however, much more demanding in terms of funds,

time, and on-field effort with respect to coastal situations

(Danovaro et al., 2020). Stable funding for the onset of

innovative cabled ocean observatories, infrastructure that

provides real-time data on benthic-mesophotic habitats (Levin

et al., 2019), represents a new frontier that might not only lead to

novel scientific insights but also provide long-term data to improve

the efficiency of the current marine conservation framework.
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Monitoring of aquatic habitats for water quality and biodiversity requires regular

sampling, often in off-shore locations and underwater. Such sampling is

commonly performed manually from research vessels, or if autonomous, is

constrained to permanent installations. Consequentially, high frequency

ecological monitoring, such as for harmful algal blooms, are limited to few

sites and/or temporally infrequent. Here, we demonstrate the use of MEDUSA,

an Unmanned Aerial-Aquatic Vehicle which is capable of performing

underwater sampling and inspection at up to 10 m depth, and is composed

of a multirotor platform, a tether management unit and a tethered micro

Underwater Vehicle. The system is validated in the task of vertical profiling

of Chlorophyll-a levels in freshwater systems by means of a custom solid

sample filtering mechanism. This mechanism can collect up to two

independent samples per mission by pumping water through a pair of glass-

fibre GF/F filters. Chlorophyll levels measured from the solid deposits on the

filters are consistent and on par with traditional sampling methods, highlighting

the potential of using UAAVs to sample aquatic locations at high frequency and

high spatial resolution.

KEYWORDS

environmental sensing, aerial-aquatic robotics, aquatic habitats, water sampling, UAV
(unmanned aerial vehicle)

1 Introduction

Aquatic ecosystems—both freshwater and marine—are fundamental to both Earth

system dynamics and to human society Wang-Erlandsson et al. (2022). Water bodies

provide the foundation for our life, health, and wealth, through “ecosytem services” such

as nutrients’ cycling and primary production, climate regulation, clean water and fisheries,
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as well as tourism by means of aesthetics and recreational values

of natural aquatic resources D’Alelio et al. (2021). Aquatic

ecosystems are however very fragile and extensively perturbed

by anthropogenic activities at local and global scales Wang-

Erlandsson et al. (2022). Given the importance of aquatic

resources for biodiversity, conservation and ecosystem

services, there is a scientific interest and a societal need to

monitor ecosystem state and water quality, ideally at low cost,

high frequency and large spatial scales. Such needs imply the

selection of relevant ecosystem variables to monitor, and of

monitoring tools that minimize the imposed trade-offs

between spatial and temporal resolution, and costs.

The estimation of abundance and diversity of phytoplankton

in pelagic aquatic ecosystems is the most common, and often

mandatory, biological parameter to monitor, to evaluate the

quality of water bodies. Phytoplankton is a key component of

all aquatic food-webs, encompassing a variety of photosynthetic

organisms from eukaryotic microalgae to cyanobacteria. Having

a short lifespans and being regulated by essential inorganic

resources (including human pollutants), phytoplankton

communities are sensitive to environmental conditions and

represent effective indicators of environmental change,

ecosystem health and water quality (Directives originating

from the EU, 2000; Xu et al., 2001). One alarming response of

phytoplankton to anthropogenic pollution, and a worldwide

threat to aquatic ecosystem services, is the formation of

blooms, i.e., mass accumulation of microalgae Isles and

Pomati (2021). Phytoplankton blooms are increasing

worldwide due to eutrophication and climate warming

Huisman et al. (2018); Ho et al. (2019), with annual societal

costs in the billions of Euros. In freshwaters, dense and often

toxic blooms are associated with cyanobacteria Huisman et al.

(2018). Forecasting or real time detection of algal blooms is a

central concern in ecosystem management. The ability to

promptly identify blooms would allow stakeholders to

respond to human health or ecosystem service concerns.

However, current early warning approaches suffer from severe

drawbacks due to lack of spatial and temporal resolution in

sampling and detection of these events.

Although automated instruments are available and used

Lombard et al. (2019); Merz et al. (2021), phytoplankton

monitoring is most commonly performed by dedicated

personnel, making it difficult, time consuming and expensive

Pomati et al. (2011). Dedicated laboratories perform sample

collection, transport and storage for subsequent analysis by

technicians and trained taxonomists, in case identification of

microalgae is necessary. In many monitoring programs,

particularly those concerning public health issues like harmful

algal blooms, sampling should be rapid and target multiple

locations and ideally multiple depths underwater, which is

inconvenient and often difficult to achieve. Some locations, or

deep chlorophyll-a (Chl-a) maxima which often characterise

algal blooms, might not be easily accessible, limiting our

ability to detect potential environmental threats. Aquatic

ecosystem monitoring would hence tremendously benefit from

autonomous sampling devices for phytoplankton monitoring,

which allow multiple sample collection in offshore and/or

inaccessible sites.

As summarised in Figure 1, the use of UAVs for water

sampling shows potential for automating sampling and

expanding the breadth of water research. In fact, the use of

UAVs for this task is not a novel concept, having been employed

by Ore et al. (2015) and Schwarzbach et al. (2014), and

subsequently used in various different applications Lally et al.

(2019). Amongst these, several are of particular interest. The

sampling of a remote crater lake showcases UAV based water

sampling as an adequate method for sampling in remote and

hazardous regions Terada et al. (2018). The surface mapping of

water quality using water samples and on-board sensors

demonstrates the usage of UAVs for mapping of spatial

gradients in bodies of water, Koparan et al. (2020). Finally,

simultaneous sampling and sensor deployment showcases the

potential of integrating these methods in real-time networks

Ribeiro et al. (2016). Here, we would like to highlight two

distinguishable methods used for water sample collection. The

first relies on a pump to fill a container present on-board the

UAV, while the second is much more widely used and relies on a

cable suspended payload with a container that can be passively

triggered by buoyancy Benson et al. (2019), by a microcontroller

Koparan et al. (2020); Terada et al. (2018), or by a messenger

probe Koparan et al. (2018). The latter is remarkably similar to

standard depth water samplers and if employed for depth

sampling, could constitute a simple alternative to the method

here presented.

Remote water sampling at depth with autonomous vehicles

has been previously performed using non-flying Autonomous

Underwater Vehicles (AUVs) Zhang et al. (2019), but these

systems are normally bulky and heavy, hindering access to

many research sites. Being inherently lightweight and

facilitating access to remote locations through flight, UAV

based methods can be of particular interest in many

applications. Thus far, two UAV systems have used sensor

probes lowered from UAVs Chung et al. (2015); Ore and

Detweiler (2018) to measure thermophysical properties of

water at depth. Concerning water sampling at depth, an

author has done it successfully at up to 3 m depth using

multiple cable suspended samplers actuated by a

microcontroller Koparan et al. (2019). Also using a cable

suspended sampler, another author has commercialised a

method that has been successfully demonstrated up to an

impressive depth of 92 m Castendyk et al. (2019).

In light of this recent work, we find there is a lack of fully

integrated UAV solutions which perform targeted sampling at

accurate depths, i.e., not relying on sampler depths set a priori to

flight (Koparan et al. (2019)) or not requiring multiple flights and

interfaces for a signle sample (Castendyk et al. (2019)). A new
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class of vehicles capable of seamless motion in water and air is, in

our view, a necessity in this effort.

Unmanned Aerial-Aquatic Vehicles (UAAVs)1 are hybrid

unmanned vehicles capable of traveling through air and water,

normally fully integrated into a single package. These robots are

capable of performing a new class of hybrid aerial-aquatic

missions in challenging environments, creating opportunities

for novel data-gathering strategies. This is achieved by

providing in essence, means for researchers to access water-

bodies from more convenient launch points, collect aerial data of

said water-bodies, and perform direct measurements at the water

surface or/and at depth at multiple locations. Literature in the

UAAV field is extensive, Zeng et al. (2022), and varied mission

profiles have been proposed thus far, Farinha et al. (2021).

Amongst other achievements, UAAVs have been shown

overcoming obstacles and escaping cluttered aquatic

environments (Zufferey et al. (2019a); Siddall et al. (2017);

Tétreault et al. (2020)), autonomously traveling underwater

(Lyu et al. (2022)), and performing long duration sailing

missions (Zufferey et al. (2019b)). These technologies are

expected to extend hybrid sensing mission capabilities in

aquatic environments by performing both remote observation

and direct sampling. The direct sampling component can be

valuable as a ground-truth mechanism in remote observation

missions, but even more so in disciplines that require knowledge

of water properties at depth, where sampling is more labour

intensive.

Aerial-aquatic locomotion within a single vehicle often

comes at the cost of compromising performance and limiting

operational envelope. We previously investigated separating the

aquatic and aerial components into two agents, taking advantage

of the robustness of standard multicopter configurations and the

simplicity of modular systems, Debruyn et al. (2020). This

solution (the MEDUSA system - Multi-Environment Dual-

robot for Underwater Sample Acquisition) proved to be

simple and reliable, as well as easily expandable for different

sensing and locomotion requirements. In this paper we

demonstrate the application of the MEDUSA concept on the

task of freshwater monitoring. The primary developments and

contributions are the following: 1) Development of an

autonomous filtration depth sampling system for use with an

UAV; 2) Extension of the previous prototype’s operational

envelope by redesigning the micro Underwater Vehicle (μUV)

and its buoyancy control subsystem for operations at depth; 3)

Redesign of the communication between the different agents into

a more streamlined and robust package; 4) Field demonstration

of vertical profiling of aquatic environments and Chlorophyll-a

monitoring with MEDUSA.

2 Materials and methods

2.1 System operational envelope

By having the capacity to operate in air and in water at depth,

MEDUSA type systems are especially indicated for sample

collection and underwater inspection. The system here

described is capable of collecting up to two independent water

FIGURE 1
Sampling methods used in this publication. A multiparametric probe collects data autonomously along a vertical profile of the lake in a fixed
location. A Niskin bottle is used off-board a motor-boat to collect water at depth for later filtration and analysis. The MEDUSA system developed for
remote acquisition of water samples at depth.

1 Also designated as Hybrid Aerial Underwater Vehicles (HAUVs) and
Aquatic Unmanned Aerial Vehicles (AquaUAVs).
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samples, speeding up the characterisation of gradients, and

enabling a variety of hybrid aerial-aquatic missions as shown

in Figure 2. This system can vertically take-off and land on solid

ground or the water surface, and collect up to two water samples.

These samples can be collected from a single location at different

depths (S1, S2A), or from two different locations (S1, S2B). This

provides flexibility in the characterisation of water bodies in their

depth and span.

The underwater operational envelope is restricted by the

length of the tether to a half sphere of 10 m radius.

Consequentially, the sampling depth is also restricted to a

maximum depth of 10 m, which is generally sufficient to

cover the entirety of the epilimnion layer of stratified lakes,

where most of the phytoplankton production occurs.

2.2 System design

The MEDUSA system is composed of a standard multicopter

platform, a water-landing system, a tether management unit and

a micro underwater vehicle, with masses discretised in Table 1.

Details on this implementation of MEDUSA are shown in

Figure 3. The flying component is based on the Tarot X6

hexacopter frame with the DJI E1200 Standard propulsion

system and 6.6 Ah of installed battery capacity. We use a

Pixhawk four flight controller and the H-RTK F9P RTK GNSS

system for position control. Communication is done via

900 MHz for long range radio-control and Mavlink stream for

the ground-station, while analog video-feed is provided over

2.4 GHz.

The water landing gear is composed of eight spherical floats,

which are chosen for its low weight (each weighs 120 g),

buoyancy (each supports 1.2 kg) and high-visibility (in red

and white). The floats are mounted in such a way that it

creates a wide and stable floating platform on the water for

the UAV. The heavier system components e.g., coiling system

and μUV are located in the centre of the floating platform to

maintain stability while the UAV is floating on water.

The coiling unit holds 11 m of Ethernet cable. Among the

eight color wires in the cable, power and ground take two lines

each, serial communication twomore, analog video takes another

and one is left free. The tension for power transmission is boosted

FIGURE 2
Mission profile for the MEDUSA system. Take-off from shore - 1 fly to aquatic location of interest - 2A land on the water surface - S1 collect first
water sample at desired depth - S2A collect second water sample at different depth (OR) 2B fly to second location of interest and collect second
sample S2B- return to shore.

TABLE 1 Masses of principal components in the MEDUSA system.

Frame
(kg)

Propulsion Batteries Avionics
&
wiring

Coiling
system

Underwater
vehicle
(μUV)

μUV
ballast

Landing
gear

Total

2 1.800 kg 1.446 kg 0.207 kg 0.997 kg 0.676 kg 0.312 kg 1.52 kg 8 kg
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to 30V, which keeps the voltage drop in the line bellow 4.4%,

reducing power loss. Waterproofing at the μUV interface is

ensured by using a waterproof cable gland connector, which

also facilitates disassembly. The tether feeding is done by a high-

torque continuous-rotation servo motor and managed by an

Arduino-nano using PWM signal. Given we’re using a “dumb-

servo”, the docking unit is fitted with contact switches to detect

the terminus of recoil, while depth measured by the μUV

provides information on the length of deployed cable. The

docking unit is further fitted with a sonar range-finder to

detect the approach of the μUV and slow down before

docking contact.

The μUV is shaped as a cylindrical container, composed of a

transparent polycarbonate tube capped on both ends by

machined Aluminium 6,068 lids. One end can be opened and

holds the tether connector while the other end holds a custom

PCB. The PCB includes power modules, actuator drivers, sensors

and an Arduino-nano micro-controller. Buoyancy control is

achieved using a linear actuator connected to a piston, and a

total pressure sensor provides feedback for the control loop. An

FPV-flight analog camera placed in the μUV provides visual

feedback via the video transmitter on-board the multicopter. It is

worth noting that a major design challenge of a micro

Underwater Vehicle (μUV) with appropriate mass for flight, is

its compactness. This is made obvious by the mass of ballast used

(30% of the μUV mass), to raise the system’s mass to a neutral

buoyancy point. For this reason, the μUV needs to be designed

for minimum volume, not mass.

2.2.1 Sampling system design
The design of a water sampling system to be integrated on an

UAV comes with considerable technical challenges and design

constraints. First, the UAV payload is limited and mission range

is directly affected by an additional load. Secondly, the sample

volume is dependant on the water properties of interest, varying

the return payload depending on the application. Lastly, the

UAV needs to be stable pre and post sample acquisition. A

sampling solution that allows for flexibility in sampling volumes

and negligible added payload in the form of water is filtration.

Even though this method does not allow for some types of a

posterirori analysis that require a liquid sample, thermophysical

properties of water can still be measured in situ (albeit with lower

precision), using on-board sensors. Nevertheless, filtration alone

can provide relevant information such as concentration of

suspended particles (e.g., algae, bacteria, zooplankton), their

elemental composition (e.g., stoichiometry), and the

biodiversity of the ecosystem based on environmental DNA

Deiner et al. (2017). The sampling system demonstrated here

is shown in Figure 4 and is capable of acquiring two independent

samples per flight. This is achieved by using a pair of micro

solenoid valves for flow diversion (or 2/3 solenoid valves), which

open three parallel and independent lines. Two of these lines are

used for sampling and have an inline filter holder for glass fibre

filters (GF/F-filters). Further efforts are taken towards ensuring

that no cross-contamination occurs, by dedicating the third line

for purging before each sample; and by including a non-return

valve at the end of each sampling line, thus avoiding the

occurrence of reflux. Another feature of this design is

scalability. Considering the 2/3 valve - filter holder - non-

return valve as a single block, one can place as many of these

as necessary in parallel to perform as many samples as required,

adding only 40 g per additional line.

Filtration sampling methods rely on accurate knowledge of

the volume of filtered water. The use of a peristaltic pump is thus

FIGURE 3
Principal mechanical subsystems that compose the MEDUSA system (left). On the left, electronics framework including: controllers, sensors,
actuators and communication protocols for both the aerial (top) and underwater system (bottom).
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clearly advantageous, due to its mostly linear characteristic

(i.e., the pump’s rotation speed and flow rate remain constant

with pressure loading). There is however a source of inaccuracy

that should be accounted for, which is stall. In fact, peristaltic

pumps have drastically reduced flow rates above certain pressure

loading values, a condition that is reached as particles deposit on

the filters and block the flow. The inclusion of a differential

pressure sensor to measure the pressure loading on the pump

allows a sample to be cut-off as soon as the pump starts operating

outside its linear regime, thus leading to accurate and consistent

sampling volume estimations.

2.2.2 Dual system communication setup
The integration of the system’s aerial and underwater

components is done using customised open-source

frameworks, i.e., PX4 (Meier et al. (2015)) for the flight

control, Arduino for underwater control and sampling, and

MAVLink (Koubâa et al. (2019)) for communication between

the Ground Control Station (GCS), UAV and μUV. Control of

the vehicle is done via the Radio Control (RC) and GCS which

also receives feedback information; a complete list of control

inputs and available feedback information is provided in

Table 2.

Figure 5A shows a visualisation of the two modes for the

μUV’s depth control. A first mode uses the tether system to pull

the μUV upwards, and the μUV’s weight with the piston fully

retracted for downwards movement. A second mode uses a

piston actuated by a linear actuator, which controls the μUV’s

depth using a PID control loop and a total pressure sensor for

feedback. Even though the second mode increases the system’s

complexity and weight, it achieves tasks that would not be

possible otherwise, such as underwater current compensation

and depth control when moving in 3D space. For both cases,

depth control is achieved using depth setpoints set via the

MDSA_DEPTH_TGT parameter editable through the GCS, or

via the RC using the pitch stick mapped to the

actuator_control_0 topic.

As shown in Figure 5B, the timing, switching logic and

actuation happens internally in the μUV, which uses the

actuator_control_0 topic to trigger sample collection and

manual stopping. The value of MDSA_SMPL_NB (Table 2)

is incremented every time a sample is triggered and a

switching logic chooses valve and pump actuation status

that diverts the flow appropriately to either one of the

samples or, when necessary, the purging line. In addition to

the manual RC override, samples will automatically be

stopped after a target volume set in the GCS is reached or

the maximum Δp measured in-line is reached. The sample

volume is calculated using a calibration curve that uses only

the μC clock for the elapsed time.

2.3 Sampling procedures

In order to test and prove the functionality of the pump

system on a real case scenario, a test was performed in Greifensee,

Switzerland, with the aim of collecting a gradient of chlorophyll

values water samples at different depths. Samples were collected

from a boat by the monitoring station 47.36668 °N, 8.6651 °E

(WGS 84). For this purpose glass microfiber filters, Grade GF/F

(Whatman), 25 mm diameter and a pore size of 0.7 µm were

used. To test the performance of the UAAV sampling system,

manual samples were collected in parallel and manually filtered

with syringes and filter holders as done in the UAVV system.

Surface sample was taken directly from the boat by manually

filling a syringe with surface water and measuring the volume of

filtered water. Water samples at the different depths were

collected with a niskin bottle, parallel to the UAAV system

and the same filtering procedure was repeated. All filters were

stored at 4°C and in the dark, and frozen (−20°C) once in the lab

until sample processing.

2.3.1 On-site benchmarking
For the comparison of drone-sampled Chl-a with depth

profiles, we used data from an Idronaut multiparametric

probe and automated profiler (relevant information can be

found in previous publications) Pomati et al. (2011); Merz

et al. (2021). Water parameters monitored included pressure

(i.e., depth), temperature, conductivity, oxygen, PAR

(photosynthetic Active Radiation), turbidity, phycocyanin and

FIGURE 4
Filter based sampling system integrated in the μUV: hydraulic
diagram (top), and physical components (bottom).
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chlorophyll-a, these last three using a Trilux fluorometer (https://

chelsea.co.uk/).

2.3.2 Chlorophyll-a extraction
Chl-a extraction was done in the laboratory according to the

standard procedure in Carranzo (2012). Using 90 percent ethanol,

samples were vortexed, afterwards sonicated in an ice-waterbath for

15 min and stored at 4°C overnight. Extracted samples were filtered

with 0.2 µm cellulose acetate syringe filters to remove particles and

measured at 665 and 750 nm using a photospectrometer.

3 Results

Videos of the MEDUSA system in action during field trials

and sampling tests can be found in Supplementary Video S1. Full

system tests (flight - sample - sample - return) were performed in

various locations in the United Kingdom, Switzerland and

Croatia, in fresh and seawater. During these tests, samples

were acquired at a maximum distance of 65 m from shore,

and the maximum distance covered in flight was 600 m. The

system achieved flight times of up to 13 min, however, we

TABLE 2 List of parameters and topics used to handle the underwater locomotion mission section, sampling control, depth control and tether
extension/retraction.

Group Parameter/topic Radio-control Ground control station

Sampling MDSA_SMPL_STTUS set - start/stop/auto sample —

MDSA_SMPL_VOL — view - current sample volume

MDSA_SMPL_TGVL — set - next sample target volume

MDSA_SMPL_DP — view - current sample Δp
MDSA_SMPL_NB — view - sample number

Underwater Control MDSA_DEPTH_TGT — set - depth target

MDSA_DEPTH_CUR — view - current depth

MDSA_C_MODE set - depth control mode view/set - depth control mode

actuator_control_0 [1] set - forward motion —

actuator_control_0 [2] set - yaw rate —

actuator_control_0 [3] set - depth/buoyancy —

Mission Control actuator_control_0 [5] set - flight/underwater mode —

actuator_control_0 [6] set - hold/retract/deploy tether —

FIGURE 5
Distribution of actuators, sensors, control logic and user interfaces used across the MEDUSA system for: (A) μUV depth control and (B) sample
collection logic.
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estimate the current setup can operate for 27 min if the

maximum available battery payload is used. Flights were

performed with winds up to 25 knots in a sheltered location

where waves do not develop. While the wind was not a challenge

for flight, it lead to rather fast drifting while MEDUSA floats on

the water surface. This does not necessarily lead to failure,

however, the μUV tends to get dragged behind it, which

makes the depth control highly inaccurate. In terms of water

surface state, all flights and landing attempts were performed on

Douglas scale 0 to 1. One attempt was made for take-off in scale

two conditions, however, a safe take-off was not possible. With

increasing degrees of swell, it is not only take-off and landing that

becomes challenging, but also deployment and recovery of the

μUV can become impossible due to aggravated motion of the

tether relatively to the coiling system. We’ve observed during

sampling that the depth holding accuracy of the μUV is of ±3 cm,

which outperforms other depth samplers we found in the

literature. This estimate is however based on the on-board

total pressure sensor, so it does not account for sensor bias

that can occur due to local atmosphere or water density.

System tests where the acquired samples were analysed, were

performed in three different locations in Switzerland: Zurich lake

(47.319756, 8.553111) where there are no flight restrictions in

place, Greifensee (47.366402, 8.665131) which a nature reserve

with limited boat and flight activities allowed, and the EAWAG

ponds facility (47.405155, 8.608538), where flight plans need to

be approved by the flight authorities due to the proximity of the

Dubendorf airbase. Taking into account these restrictions, full

system tests were performed in Zurich lake, while in Greifensee

the UAV was kept onboard a motorboat and the μUV lowered

into the water using the depth control systems in place, and in the

ponds facility the UAV was left to freely float in the ponds and

the aquatic phase of the mission was carried out as in a full system

trials.

3.1 Freshwater chlorophyll sampling

Samples were obtained in Greifensee from surface level to 9 m

depth. The obtained Chlorophyll-a values are shown in Figure 6A

alongside corresponding data from manual samples and from the

Chl-a sensor values (from the multiparametric probe) logged at the

time of sampling. It is shown that the UAAV and manual samples

mostly match, with exception of the samples at 2 m depth. However,

this mismatch is most likely a result of an error either with the

manual sampling depth or with the sample tagging, as emphasised

by the fact that the UAAV-based samples better follow the trend

shown by themulti-parametric sensor values. It is also apparent that

manual and UAAV samples show slightly lower Chl-a values than

the sensor data.We expect, however, the latter ones to be less precise

in absolute terms, as they are based on pigment fluorescence after

light excitation, which can be influenced by a number of

confounding factors, Falkowski and Kiefer (1985).

In order to assess the contamination between sampler one

and two in consecutive samples, pairs of consecutive S1 and

S2 samples were ordered and a contamination hypothesis given

by ChlM2 = (1 − ϵ) (ChlS2 + αChlS1) is tested for the ordered pairs

as well as 1,000 random permutations of the same pairs. Where

Mi and Si indexes correspond respectively to manual and UAV-

sampler-i based samples of the same location and ϵ is the absolute
error incurred by the measurement performed with sampler

1 before a measurement of a different location with sampler

2. As shown in Supplementary Figure S1, the confidence interval

for the contamination ratio α is comparable to values

encountered in other random permutations, which indicates

contamination is likely not happening.

In order to validate the sampling system, samples taken using

MEDUSA were taken in tandem with manual ones. The relation

between the manual and UAAV based samples can be found in

Figure 6B, where 27 valid sample pairs are discretized. Despite

some variation in the 3–5 μg/L range, the data follows a close fit of

a line of slope one intersecting at the origin, showcasing a one to

one relation between the manual and UAAV-based methods.

These results, however, show only that Chl-a values obtained

using MEDUSA are comparable to manual methods. A full

description of the method’s precision would require several

more samples across the full range of Chl-a concentrations.

All UAAV-based samples were acquired with varying

volumes, which were the result of the samples being cut-off

when the Δp loading on the pump exceeded a threshold of

1,000 kPa. Figure 6C showcases 4 such samples where the

system’s water outlet was collected onto a set of scales and the

measured value compared to the prediction used by MEDUSA.

Sample 1 corresponds to the filtering of clear water and thus the

Δp remains constant and equivalent to the pressure loading of the

valves, filter and tubing. In this situation, MEDUSA will cut-off

the sample after reaching a predefined maximum volume, which

is here set to 200 ml. Subsequent samples correspond to

increasingly more turbid water. Thus, the sampled volume

does not reach the set maximum volume, but the maximum

Δp, after which the flow rate is no longer constant and the

predicted sampled volume accumulates error.

4 Discussion

There are three main features that distinguish the method

here described from the previous literature on UAV based depth

water sampling (Ore and Detweiler (2018); Koparan et al. (2019);

Castendyk et al. (2019)).

Firstly, as opposed to Ore and Detweiler (2018); Castendyk

et al. (2019), the MEDUSA system lands on water to collect

samples instead of hovering above it. This is done with the

intention of saving energy while the samples are being collected,

and thus increasing the system’s effective range. However, it also

comes at an increased payload which has the opposite effect. Our
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experiments show that by flying without the water landing gear,

MEDUSA can extend its flight time by ~ 2 minutes, an 18%

increase. Depending on the sample volume being collected, the

sample time can go well beyond this (it will take 150 s to collect

200 ml for example), so there is a clear advantage in increasing

the mission times like this. Moreover, given the μUV can perform

other more lengthy tasks, such as underwater inspection, the

range benefits become even greater. Adversely, landing on water

means the UAV is more exposed to the water surface and

operating conditions are limited to very calm sea states.

However, designing the UAV component to be fully

waterproof and capable of providing buoyancy with it is main

body (as some commercial platforms do) would improve stability

in waves and make the system more robust.

Secondly, the usage of a filtration system to collect samples.

This system has the advantage of not changing the UAV’s

dynamics after sample collection, however, the mass of the

samples we collected thus far (20 ~ 200mg) is rather

insignificant when compared with the mass of the entire

system (8 kg). Nevertheless, these volumes are comparable to

the ones found in the literature Koparan et al. (2019). Instead, we

have found that the main advantage of the system is on a practical

level: by providing a solid sample on a filter and eliminating the

need to do filtration manually after collection. There is also the

fact that storing the water inside the μUV would be rather

challenging, but this is more a consequence of our design

choices and not necessarily the case for other UAAVs.

Furthermore, even though the fact that samples will generally

have different volumes can initially seem convoluted, however,

given the that the condition for sample termination is the

clogging of the filter; samples will, in principle, always contain

enough solids to perform the necessary analysis.

Finally, the integration of underwater locomotion and flight

in a single robot. Besides the obvious additional tasks that can be

performed by the underwater robot, it allows us to accurately

control the depth of the μUV. We have estimated the accuracy in

depth control to be ±3 cm from the information of the depth

sensor. However, no baseline measurement was used to confirm

this value, and we do not claim to have a more accurate depth

control than in Ore and Detweiler (2018). Another useful feature

is the fact that we have access to real-time data about the samples,

μUV depth and visual feedback, which allows for missions to be

adjust in real-time. On the other hand, this level of integration

creates the need for coiling heavy and stiff electrical cable which

hinders operations. The impact of this is clearly seen as

Castendyk et al. (2019) can achieve much greater depths than

FIGURE 6
(A) Vertical section of the Chlorophyl-a values found at the Greifensee research station (47.366402, 8.665131) on the 30th of September 2021:
manual sampling values obtained with a Niskin bottle, UAAV values obtained with MEDUSA and CTD values obtained using the automated
multiparametric probe. (B) Correlation of UAAV - manual samples obtained in the same location/depth at several locations. In grey, the removed
datapoints where a manual sampling error is likely to have occurred. (C) Evolution of filtered volume with differential pressure measued in the
sampler, comparing volumes predicted using the linear model used in the sampler and the real measured volume. At 1,000 kPa, the limit for sample
cut-off put in place to avoid non-linear effects.
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what would be feasible with such a cable. There is, however, room

to improve the cable used by using higher performance tethers

for underwater rovers, or even by providing the μUV with it is

own power supply to reduce the number of lines necessary in the

line. This, of course, comes with it is own challenges.

4.1 System design and field trials: Lessons
learnt

Most UAAV systems we are aware of have operated at

shallower depths than here described, which constituted a

challenge in itself and lead to unexpected design choices. We

summarise here some lessons learnt on the system design and

trials, which we hope will prove useful in designing a similar

system.

The design of the μUV is much more driven by volume

limitations than weight. So, keeping all sealed components

outside the chamber helped keep the volume low and

consequentially reduce the payload in flight. Furthermore, the

μUV is also much less subject to drag, as travel speeds are

considerably low. It is thus not disadvantageous to design

configurations with large cross-sections, if this results in

simpler deployment and recovery by the UAV.

Opening and closing a sealed compartment in the field is

troublesome, especially with live electronics in wet environments.

We found that keeping the filter holders outside the μUV makes

the process of recovering and replacing filters considerably safer

and simpler.

A more effective coiling system than the one here described

would use a stepper motor with encoder driving the winch with

larger gear ratio through a timing belt. This results in a higher

rotating torque setup with precise measurement of cable length,

though, at the expense of weight and complexity.

The beyond visual-line-of-sight (BVLOS) requirement in

remote water sampling mission imposes challenges in on-site

operation, especially in terms of landing and take-off maneuvers,

which are dependent on local water surface conditions, weather,

obstacles, and animal activities. To give the pilot a better

situational awareness during flight, the onboard camera on

the UAV and μUV proved to be a simple and effective

setup. The camera on the UAV, being mounted properly

facing downward, allows the pilot to examine the sampling

site prior to landing, and see the deployment of the coiling

system. The camera onboard the μUV, on the other hand, allows

the pilot to have a clear view of the underwater operation and

water condition, and assists in the retrieval process of the μUV.

The LED indicators on the μUV can also be seen through the

cameras which allows immediate diagnosis of any system failures

onboard.

Another operational challenge encountered is related to the

difference in density between salt and fresh water. This was

overcome by using two different ballast masses in both

environments, however, the μUV system would ideally provide

sufficient volume variation to account for this difference, which is

considerably difficult to achieve with piston systems.

4.2 Conclusion

The primary objective of this work was to showcase a novel

method of sampling aquatic environments at depth and demonstrate

it in the particular case of Chlorophyll-a measurements. The

MEDUSA system was shown to be successful in acquiring

samples from shore and at high precision in depth and filtered

sample volume. This enables us to acquire accurate Chlorophyll-a

measurements that are on-par with manual sampling methods. The

underwater component of MEDUSA is equipped with a novel depth

sampler which is fully integrated with a modified open-source flight

controller, and is demonstrated to operate at up to 9 m depth. This

same implementation of the MEDUSA concept can be directly used

for other a posterirori analysis such as measurements of isotope

concentrations, biomass or eDNA.

Some challenges remain when it comes to implementing this

research in daily freshwater monitoring applications. For

instance, increasing the number of samples per flight would

improve usability considerably, especially if the system can

perform one full vertical profile per flight. This is easily

achieved thanks to the modularity of the sampling system,

however, it will come at a payload cost. This is not due to the

increased component mass, but rather to the increased internal

volume which needs to be compensated by ballast.

Finally, we have shown that aerial-aquatic drones can be

successful in improving access and facilitating water sampling at

depth, opening new paths in fresh-water research, amongst other

fields. We anticipate that this technology will improve data

gathering processes and help answer various ecological and

environmental questions.
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Seagrasses benefit from
mild anthropogenic
nutrient additions

Vasco M. N. C. S. Vieira1*, Jorge Lobo-Arteaga2,3,
Rafael Santos2,4, David Leitão-Silva2,4, Arthur Veronez5,6,
Joana M. Neves2,3, Marta Nogueira2,
Joel C. Creed7, Chiara M. Bertelli8, Jimena Samper-Villarreal9

and Mats R. S. Pettersen1

1Marine Environment and Technology Center, Instituto Superior Técnico, Universidade Técnica de
Lisboa, Lisbon, Portugal, 2Portuguese Institute for Sea and Atmosphere, Algés, Portugal, 3Marine
and Environmental Sciences Centre, Universidade Nova de Lisboa, Caparica, Portugal, 4Barreiro
School of Technology, Polytechnic Institute of Setubal, Lavradio, Portugal, 5Centre for Functional
Ecology, Universidade de Coimbra, Coimbra, Portugal, 6Centro de Ciências do Mar (CCMAR) -
Universidade do Algarve, Faro, Portugal, 7Departamento de Ecologia, Universidade do Estado do
Rio de Janeiro, Rio de Janeiro, Brazil, 8Department of Biosciences, Swansea University, Swansea,
United Kingdom, 9Centro de Investigación en Ciencias del Mar y Limnologı́a (CIMAR), Universidad
de Costa Rica, San José, Costa Rica
Seagrasses are declining globally, in large part due to increased anthropogenic

coastal nutrient loads that enhance smothering by macroalgae, attenuate light,

and are toxic when in excessive concentrations of inorganic nitrogen and

phosphorus. However, as sanitation is improved many seagrass meadows have

been observed to recover, with a few studies suggesting that they may even

benefit from mild anthropogenic nutrient additions. Monitoring seagrass

demography and health has faced difficulties in establishing the adequate

variables and metrics. Such uncertainty in the methods has caused

uncertainty of the significance of results presented and compromised

extrapolations to other seasons, areas, or species. One solution has come

from within the plant self-thinning theories. During the 1980s, an interspecific

boundary line (IBL) was determined as the upper limit of the combination of

plant density and above-ground biomass for any stand on Earth, setting their

maximum possible efficiency in space occupation. Recently, two meta-

analyses to determine specific IBLs for algae and for seagrasses have been

performed. The recently updated seagrass dataset comprises 5,052

observations from 78 studies on 18 species. These IBLs opened new

perspectives for monitoring: the observed distance of a stand to the

respective IBL (i.e., each stand’s relative efficiency of space occupation) was

demonstrated to be a valuable indicator of a population’s health. Thus, this

metric can be used to determine the impact of nutrients and pollutants on

algae and seagrass populations. Furthermore, because the IBLs are common to

all species, they may be used to compare all species from any location

worldwide. This novel approach showed that Halodule wrightii, Halodule

beaudettei, Halophila baillonii, Zostera marina, and Zostera noltei meadows

benefit from anthropogenic additions of nitrogen and phosphorus, as long as
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these additions are moderate. In fact, the healthier Z. noltei meadows in

Portugal (and among the healthiest meadows worldwide) were the ones

exposed to effluents from wastewater treatment plants (WWTP) and a food

factory. We conclude that those effluents are providing water with enough

quality and that their optimal management should coordinate the

technological solutions of the WWTP with the natural potential of seagrass

meadows as water purifiers and biomass producers.
KEYWORDS

seagrass, water quality, indicator, coastal, eutrophication, monitoring, mitigation,
valuation
Introduction

Seagrass meadows are one of the most common marine coastal

biotopes, representing hotspots for biodiversity and productivity

(Morrison et al., 2014; Hyman et al., 2019; McHenry et al., 2021;

Surugiu et al., 2021). Seagrasses are keystone species in these

biotopes, providing many services to both ecosystems and human

populations. The most common are nursery and shelter for fish,

bivalves, arthropods, and marine invertebrates—some of them

commercially exploited—food, and water purification (Morrison

et al., 2014; Nordlund et al., 2016). Recently, seagrass meadows have

been revealed as an important carbon sink (Bedulli et al., 2020;

Ricart et al., 2020) as well as a sustainable source of renewable raw

material and energy for construction and industry (Ntalos and

Sideras, 2014; Plis et al., 2016; Hamdaoui et al., 2018; Jedidi and

Abrough, 2020; Rammou et al., 2021), and soilless agriculture

(Parente et al., 2014).

Seagrasses have declined globally during the 20th century due

to increased anthropogenic impacts, especially those affecting water

quality. The most common negative impact is increased nutrient

load to coastal systems originating from agricultural runoff and

urban effluents. In many cases, this has led to eutrophication,

resulting in smothering by drift or epiphytic macroalgae, light

attenuation due to increased phytoplankton and turbidity, and

the toxic effects of excessive concentrations of inorganic nitrogen

(N) and phosphorus (P) (Burkholder et al., 2007; Lee et al., 2007).

Other negative impacts include clam harvesting (Cabaço et al., 2005;

Garmendia et al., 2017), herbicides (McMahon et al., 2005; Waycott

et al., 2005; Negri et al., 2015; Espel et al., 2019), pesticides (Bester,

2000; Waycott et al., 2005; Espel et al., 2019), and industrial

contamination (Waycott et al., 2005; Fraser and Kendrick, 2017;

Espel et al., 2019; Lafratta et al., 2019). However, evidence is

accumulating on the recovery of some seagrass beds worldwide

(Greening et al., 2014; Bertelli et al., 2018; Burdick et al., 2020; Orth

et al., 2020). This trend is particularly true for European seagrasses,

for which a reversal was determined from the 2000s onward (de los
02
97
Santos et al., 2019). This improvement was likely associated with the

significant European-wide efforts that took place through the latter

decades to improve sanitation and protect coastal habitats. A few

studies have suggested that seagrass stands may even benefit from

mild anthropogenic nutrient additions (Cabaço et al., 2013; Vieira

et al., 2018).

Inference about the demography and health of seagrass stands

is complex as we face difficulties in finding adequate variables,

metrics, andmodels. Often, studies have been performed exclusively

on a single species, comprising only a narrow band of its

geographical distribution, and sometimes over only part of the

seasonal cycle (Cabaço et al., 2007, 2008; Romero et al., 2007;

Garcı́ a-Marıń et al., 2013; Jones and Unsworth, 2016; Jones et al.,

2018). This has brought great uncertainty on the significance of the

results presented and compromised extrapolations to other seasons,

geographical areas, or species. Broader studies still face problems

with numerical methods. Examples of this are the debate between

Cabaço et al. (2013) and Vieira et al. (2015), or inadequate analyses

such as flawed PCA applications lacking criteria to screen the

meaningful principal components and the variables significantly

contributing to each of these components. Concomitantly, the

efficiency of space occupation and its related phalanx and

guerrilla clonal growth forms were used as indicators of the

health of seagrass meadows (Sintes et al., 2005) as well as of

meadows of other clonal plants in wetlands and their response to

environmental stressors (Chen et al., 2011, 2014, 2017; Geremew

et al., 2018). Healthier meadows adopt the phalanx strategy by

simultaneously growing new shoots and increasing their biomass.

Weak or unhealthy stands adopt the guerilla strategy by

simultaneously losing shoots and decreasing their biomass. One

aspect that has been at the core of monitoring of seagrass systems

has been the widespread use of seagrass population parameters as

indicators of health. Following on from that has been the attempt to

establish a biomass–density relationship for seagrasses and place it

on the core of the metrics and models inferring the health of

seagrass stands (Cabaço et al., 2007, 2008, 2013; Romero et al., 2007;
frontiersin.org
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Garcı́ a-Marıń et al., 2013; Jones and Unsworth, 2016, 2019; Jones

et al., 2018; Vieira et al., 2018).

Biomass–density relationships started to be investigated in the

plant kingdom from the 1960s onward (Yoda et al., 1963; White

and Harper, 1970). Some patterns emerged about how biomass and

density interact through intraspecific competition and plant growth

which led to some generalizations. The most outstanding aspects

were the “Law of Constant Final Yield” and the theory related to

self-thinning, the concurrent increase in biomass with reduction in

density due to mortality through intraspecific competition. The

dynamic self-thinning trajectory of plant stands, also known as the

“-3/2 power law” (Hutchings, 1979; Weller, 1989), was at the time

considered the only theory in ecology worthy of being named a

“law” (Harper quotea in Hutchings, 1983). Alongside this, an

interspecific boundary line (IBL) was determined as the upper

limit for any plant stand on Earth, thus setting the maximum for

efficient packing of biomass in space in plant stands (Weller, 1989;

Scrosati, 2000). Recently, revised IBLs have been determined for

algae (Creed et al., 2019) and for seagrasses (Vieira et al., 2018,

2019). Both the self-thinning theory and IBL determination rely on

the stand biomass (B) vs. density (D) plotted on log scales, i.e.,

log10B=a+b×log10D. In the case of seagrasses, “density” refers to

shoots∙m-2 and its original IBL had constants a = 4.569 and b =

-0.438 (Vieira et al., 2018). The determination of IBL specific of

algae and of seagrasses allowed updated analytical tools offering new

perspectives in the research and monitoring of these taxa as well as

their communities and ecosystems. Given that the IBL sets the

maximum space occupation efficiency, each stand’s distance to the

IBL has been used as a robust indicator of how good/healthy (small

distance) or how bad/impacted (large distance) the stand is.

Following this rationale, the distance to the IBL has been shown

as a valuable tool to access the effects of nutrients, pollutants,

seasonality, light, temperature, and depth in algae (Creed et al.,

2019) and seagrass (Vieira et al., 2018; Creed et al., 2019).

Furthermore, because the seagrass IBL is common to all seagrass

species, using the distance to the IBL (dgrass) allows different seagrass

species to be analyzed together.

Here, we use the dgrass metric as an indicator in order to

examine the health of seagrass stands subject to varying

concentrations of nitrogen and phosphorus as a consequence of

anthropogenic additions to natural background levels.We reanalyze

data from previous publications of Zostera nolteiHornemann, 1832,

Zostera marina Linnaeus, 1753, Halodule wrightii Asch., Halodule

beaudettei Hartog, Halophila baillonii Ascherson, 1874, and

Cymodocea nodosa (Ucria) Asch and analyze our own new data

from Z. noltei meadows in the Tagus and Sado estuaries, Portugal.
Methods

This study includes results of monitoring of Z. noltei in

Portugal, Z. noltei and C. nodosa in Italy, Z. marina in the British

Isles, H. wrightii in Brazil, and H. beaudettei and H. baillonii in
Frontiers in Marine Science 03
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Costa Rica. The monitoring of Z. noltei in the Tagus and Sado

estuaries, Portugal, was an unpublished experiment performed

during the summer of 2021. Therefore, below we present the

methods in detail. The remaining studies with Z. noltei, Z.

marina, H. wrightii, H. beaudettei, and H. baillonii have already

been published. Therefore, we present only the fundamental aspects

of those studies. Further details about their field sampling and

laboratory procedures are provided in their respective publications.

Z. noltei was monitored in the Tagus and Sado estuaries,

Portugal (Figure 1A), during the summer of 2021. Sampling took

place during July because that is whenmeadows peak their biomass,

density, efficiency of space occupation, and health (Vieira et al.,

2018). The rivers Tagus and Sado have meso-tidal estuaries, with a

mean tidal amplitude of 2.4 m. Detailed characterizations are

available of the geography and hydrodynamics of the Tagus (Dias

et al., 2013) and Sado (Biguino et al., 2021) estuaries. Roughly 3

million people live in the region, mainly around the Tagus estuary,

where the Portuguese capital, Lisbon, is located. Natural sources of

nutrients to these systems are riverine discharge and tidal transport

of nutrients upwelled in the coastal ocean during the summer

upwelling season. The main anthropogenic sources of nutrients are

urban effluents and agriculture, the latter being most intense in

livestock and rice fields. The Tagus monitoring included nine

stations (Figure 1B). Stations “T.Al1” and “T.Al2” were inside the

Tagus Estuary Natural Reserve and thus expected to be the most

pristine sites. Station “T.Al3” was along the Alcochete city margin.

Stations “T.Sam1,” “T.Sam2,” and “T.Sam3” were next to the

Samouco locality. Station “T.Sex” was located at the Seixalinho

wastewater treatment plant (WWTP) runoff. Station “T.Rib1” was

located at the Ribeiralves fish factory runoff, and “T.Rib2” was

approximately 300 m away. All stations were located at mid

intertidal heights. The Sado monitoring included six stations

(Figure 1C). Station “S.ST” was along the main channel, closest to

the estuary inlet and next to the “Sol Troia” resort. It was the only

station located at the lower intertidal limit, only emersed during

spring tides. In the Sado estuary, stations “S.Com1,” “S.Com2,” and

“S.Com3” were located along the Comporta channel whereas

stations “S.Cr1” and “S.Cr2” were located in the main channel

next to the Carrasqueira village. All these stations were located at

mid intertidal heights. The area next to the Comporta and

Carrasqueira villages, and landward for tens of km along the

main channel is intensively occupied by rice fields. In each

location, three cores (11 cm diameter, 20 cm length) were taken

from the center of the seagrass patch. Hence, the three distinct dgrass
observations corresponded to the three cores taken at each location.

While immersed, each location was sampled for water properties

(temperature, N, P, and Si) three times: soon after immersion,

during peak high tide, and soon before emersion. The data from

these three time instances were averaged, hence the nutrient

concentrations common to all three data points from each

location. In the laboratory, the seagrasses were cleaned from

sediment and measured for counts of shoots and nodes. Above-

ground and below-ground biomasses were separated, dried in the
frontiersin.org
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oven for 48 h at 60°C, and weighed. Samples for nutrients in the

water column were filtered through a 0.45-µm membrane

(Whatman cellulose acetate) to 25-ml plastic bottles and frozen

until analysis in the laboratory. Ammonium and phosphates were

analyzed by colorimetry in a Skalar autoanalyzer SAN+ (Hansen

and Koroleff, 1999).

Z. noltei was monitored in Ria Formosa, south Portugal, during

2001 and 2002, along a distance gradient from Montenegro’s

WWTP (Cabaço et al., 2008). One census per season was

performed in the stations S1, S2, S3, and S4, located 270, 520,

610, and 1,500 m away from WWTP, respectively. Monitoring

included the above- and below-ground biomass, shoot density, and

morphometrics of Z. noltei, as well as concentrations of ammonium

and phosphates.

Z. marina was monitored at 11 locations along the British Isles

(Jones and Unsworth, 2016; Jones et al., 2018). The monitoring

during the summer season (May to August 2013) certified that the

meadows were sampled during the seasonal peak of biomass,

density, efficiency of space occupation, and health (Vieira et al.,
Frontiers in Marine Science 04
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2018). Monitoring included the above- and below-ground biomass

and shoot density of Z. marina, as well as above-ground d15N
isotopic ratios. The seagrass biomass and density, presented by

(Jones and Unsworth, 2016; Jones et al., 2018), were relative to

quadrat area (0.25 m2). In this work, as well as in previous ones, we

present the data standardized to unit area (1 m2).

C. nodosa and Z. noltei were monitored in an intermixed

meadow at 5-m depth in a protected embayment adjacent to the

Aragonese Castle on the island of Ischia in the Gulf of Naples,

Italy (Kraemer and Mazella, 1999). Monitorization took place

from October 1994 to October 1995. Three quadrats were

sampled each month. Ammonium concentrations were

measured in the water and in the sediment.

H. wrightii was monitored along southeast Brazil (Bertelli

et al., 2020). The ecological and environmental characteristics

were quantified in April 2017 in 10 seagrass meadows along the

coast of Rio de Janeiro and São Paulo states, Brazil. At each site,

single transect lines (50 -10 m depending on the size of the

meadow) running parallel to the shore were placed through the
FIGURE 1

Region of study with the Tagus and Sado estuaries, urban areas, locations of sampling sites, and anthropogenic sources of nutrient enrichment.
Aerial photos obtained from Google Maps. (A) Lisbon and Setubal metropolitan areas with Tagus and Sado estuaries, (B) sampling locations in
the Tagus estuary, and (C) sampling locations in the Sado estuary.
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middle of the seagrass meadow and along the outer (deep) edge

of the meadow. Monitoring included above- and below-ground

biomass and shoot density of H. wrightii, as well as above-

ground concentrations of N and of the d15N isotopic ratios.

H. beaudettei and H. baillonii were monitored along the Pacific

coast of Costa Rica at Potrero during February 2016 (Samper-

Villarreal et al., 2018), at Playa Refugio Animal, Playa Colibrı,́

Golfito, and Puerto Jiménez during May 2016 (Samper-Villarreal

and Cortés, 2020); at Potrero, Jobo, and Matapalito during August

2017, December 2017, and May 2018 (Samper-Villarreal et al.,

2020); and at Sámara Bay during August 2018 and March 2019

(Samper-Villarreal et al., 2022). Measured seagrass variables

included, among others, above- and below-ground biomass, shoot

density, and above- and below-ground concentrations of N as well

as d15N isotopic ratios.

Seagrasses couple their growth in biomass and density

(Figure 2, Supplementary Material Figure S1, Cabaço et al., 2013,

2019; Vieira et al., 2018), thus allowing the use of the distance to the

seagrass IBL (dgrass) as a proxy for their health (Vieira et al., 2018).
Frontiers in Marine Science 05
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Adopting the phalanx strategy, healthier meadows approach the

IBL (and dgrass approaches zero) by simultaneously growing new

shoots and increasing their biomass. Adopting the guerilla strategy,

weak or unhealthy stands depart the IBL (and dgrass departs from

zero) by simultaneously losing shoots and decreasing their biomass.

The dgrass = (log10Ḃ − log10B)∙cosq. Here, Ḃ is the theoretical

maximum biomass given an observed density. It is estimated

from the IBL as log10Ḃ = a + b∙log10D. Coefficients are a = 4.708,

b = − 0.489, q = arctg(|b|)=0.455, and thus, cosq = 0.898. The

seagrass data compiled to estimate this IBL were here updated with

26more studies providing 1,221more observations. The current full

data set, with 5,052 observations from 78 studies on 18 seagrass

species, confirmed the seagrass clonal growth form (Figures 2, S1)

but led to a re-estimation of the seagrass IBL with slightly

different coefficients.

The dgrass indicator was compared with the concentrations of

ammonium, phosphate, and the d15N isotope. In the studies by

(Jones and Unsworth, 2016; Jones et al., 2018), Bertelli et al. (2020);

Samper-Villarreal and Cortés (2020), and Samper-Villarreal et al.
frontiersin.org
FIGURE 2

The meta-analysis on the biomass–density relations of 18 seagrass species and the derived seagrass IBL. B, biomass in grams of dry weight (g
DW) per square meter; D, density of shoots per square meter.
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(2018, 2020, 2022), the proportion of the d15N isotope to the total N

in the leaf content was considered to be an indicator of the N

provenience: lower proportions (below 4 ppt) usually correspond to

N coming from natural sources, whereas higher proportions (above

4 ppt) usually correspond to N coming from anthropogenic sources,

namely, urban sewage and livestock effluents (following Macko and

Ostrom, 1994; McClelland et al., 1997; McClelland and Valiela,

1998; Kjønaas and Wright, 2007; Bruland and MacKenzie, 2010;

Román et al, 2019).

Third-order polynomials were fit to the non-linear relations

between dgrass (response) and nutrients (predictor). Distinct fitting

methods were applied, namely, ordinary least squares (OLS),

weighted least squares (WLS), iterative reweighted least squares

(IRLS), linear-in-the-parameters oblique least squares (LOLS), and

maximum likelihood estimation (MLE). A detailed presentation of

these methods and their comparison is presented by Vieira et al.

(2016). Their application was done using the Matlab software

developed by Vieira et al. (2016). The best fits should be those

presenting the highest R2 and the lowest root mean square deviation
Frontiers in Marine Science 06
101
(RMSD, also known as root mean square error: RMSE). However,

the data distribution was strongly biased (assymetrical), with many

more observations on the side of lower nutrient concentrations.

Consequently, the highest R2 and the lowest RMSD optimized the

fit on the side of lower nutrient concentrations but at the cost of

poor fits on the side of higher nutrient concentrations. This

problem was overcome by attributing relative weights to the data

on each side and applying an MLE using the Newton–Raphson

method (Vieira et al., 2016).
Results

The Z. noltei meadows monitored in south and central

Portugal, namely, in Ria Formosa and in the Tagus and Sado

estuaries, had smaller dgrass (indicative of healthier meadows)

under moderate nutrient concentrations in the water

(Figures 3A, B). The healthier Ria Formosa meadow was S2

located 510 m away from the WWTP (Figure 3C). The only
FIGURE 3

Health of Zostera noltei meadows in Portugal, namely, in the Ria Formosa lagoon system and the Tagus and Sado estuaries, and its dependency
on ammonium (A, C, D) and phosphate (B) concentrations in the water. Z. noltei meadows in Portugal are compared with other Z. noltei
meadows from elsewhere. Original data comes from this study (V), Kraemer and Mazella (1999) (K&M), Plus et al. (2001) (P), Cabaço et al. (2008)
(C), and Garcı́ a-Marıń et al. (2013) (GM). The Z. noltei health is indicated by its efficiency of space occupation, in its turn indicated by its distance
(dgrass) to the seagrass IBL. Panel (C) highlights the Ria Formosa (RF) case, with stations S1, S2, S3, and S4 sorted in increased distance from
Montenegro’s WWTP. Panel (D) highlights the Tagus case. The Seixalinho station (Sex) is immediately outside Seixalinho WWTP, whereas
Ribeiralves stations are immediately outside (Rib1) and 300 m away (Rib2) from Ribeiralves fish factory effluent. Trends fit by maximum likelihood
estimation (MLE).
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time S2 was in a poor condition was during winter under a peak

of excess ammonium. In the Tagus estuary, the healthier

meadows were located exactly next to the Seixalinho WWTP

and the Ribeiralves factory effluent (Figure 3D), where the

ammonium concentrations were similar to those observed for

the Ria Formosa meadows S2 and S3 located at intermediate

distances from the Montenegro WWTP (Figures 3C, D). Under

lower nutrient loads, the dgrass of Z. noltei meadows increased

(i.e., departed the IBL), suggesting that they were under

nutrient deprivation. These lower loads occurred in the Ria

Formosa and Tagus meadows furthest away from the WWTPs,

and in the Sado meadows, which were all far from WWTP

(Figures 3C, D). Furthermore, the Sado meadows were even

less healthy than the Tagus and Ria Formosa meadows under

equivalently low ammonium loads (Figure 3A), suggesting that

the lack of phosphate worsened its condition (Figure 3B).

Under the highest nutrient loads, Z. noltei meadows also

increased dgrass (i.e., departed the IBL), suggesting that they

were suffering from toxicity (Figures 3A, B). This happened in

the Ria Formosa S1 meadow located closer to the Montenegro

WWTP. Comparison with Z. noltei meadows from other

locations and reported in other studies shows that the

meadows from Ria Formosa and the Tagus estuary under

moderate anthropogenic nutrient additions were among the

healthier ever reported (Figure 3).

The C. nodosa and Z. noltei meadows monitored in the Bay

of Naples, Italy, had smaller dgrass (indicative of healthier

meadows) under intermediate nutrient concentrations in the

water and in the sediment (Figure 4). It is noteworthy that both

species exhibited very similar responses.
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In order to have a global perspective, we plotted all data

showing how the health of seagrass meadows may depend on the

concentrations of ammonium or phosphate, in the water or in the

sediment (Figure 5). Overall, seagrasses improved their efficiency of

space occupation (and thus, their health) as nutrient concentrations

increased, with the healthier meadows occurring under moderate

nutrient concentrations. Only under the most extreme nutrient

concentrations observed in this dataset were the seagrass meadows

less healthy. From all these cases, the healthier meadows, occupying

almost all the space available (i.e., dgrass close to zero), were located

in coastal systems subject to anthropogenic pressure, as were the

cases of Z. noltei in Ria Formosa (from Cabaço et al., 2008), in the

Tagus estuary (from this study), and in the Bay of Cadiz (from

Garcı́ a-Marıń et al., 2013), and of Z. japonica in Dadae Bay (from

Lee et al., 2006), in Koje Bay (from Kim et al., 2018), and inWillapa

Bay (from Ruesink et al., 2009). It was also the case of T. testudinum

in Laguna Madre and in Corpus Christy Bay, for both the control

and the ammonium-enriched meadows (from Lee and

Dunton, 2000).

The Z. marina meadows in the British Isles showing smaller

dgrass (thus in better health) were in Priory Bay, Isle of Wight,

Mannin Bay, Ireland, and Kircubbin Bay, Northern Ireland

(Figure 6). With d15N within 5 to 11 ppt, these meadows were

clearly under anthropogenic nutrient input. They were

particularly better than the meadow sampled in the pristine

Isles of Sicily (with d15N ≤5 ppt), or the heavily impacted

meadows sampled in Studland Bay (with d15N within 11 to 13

ppt) or in Southend-On-Sea (with d15N >15 ppt). Nevertheless,

there were also meadows showing d15N signals suggesting

moderate-to-large anthropogenic sources of N (5 ppt< d15N
FIGURE 4

Health of Cymodocea nodosa and Zostera noltei meadows in the Bay of Naples, Italy, and their relation with the ammonium concentration in
the water and sediment. Seagrass health is indicated by their distance (dgrass) to the seagrass IBL (i.e., their efficiency of space occupation). In
some locations, samples were taken from both the middle (Middle) and the edge (Edge) of the meadow. Trends fit by maximum likelihood
estimation (MLE).
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<10 ppt) for which the dgrass was large, thus indicating unhealthy

stands. Therefore, there was something else in addition to the

source of N that severely affected the health of Z. marina

meadows in the British Isles.

The H. wrightii in Brazil, as well as the H. beaudettei and H.

baillonii in Costa Rica, benefited from moderate nutrient

enrichment (Figure 6). The meadows showing smaller dgrass
were those with a d15N proportion within 4 to 6 ppt, indicating

moderate anthropogenic N enrichment. For the H. wrightii in

Brazil, these meadows were in Ossos, Manguinhos, dos Anjos,

and Pedro. The meadows showing d15N proportions either

above (Catita and Praia Grande) or below (Siriuba, Ilha do

Japonês, Ilha G1 - Abraão and Saco do Céu) these bounds also

showed larger dgrass. Furthermore, the samples taken from the

middle of the meadow systematically indicated better health

than the samples taken from the edge. For H. beaudettei and H.

baillonii in Costa Rica, within each location sampled at different

time instances, the respective meadow was generally healthier

(smaller dgrass) as the proportion of d15N in above-ground

biomass increased. In order to have a global perspective, we

plotted all data showing how the health of seagrass meadows

may depend on anthropogenic nutrient additions as inferred
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from the proportion of the d15N isotope (Figure 7). Overall,

seagrasses were healthier under moderate nutrient addition. For

the tropical seagrasses, the optimal d15N was roughly around 5 to

6 ppt, whereas for temperate seagrasses, the optimal d15N was

slightly higher, around 8 ppt.
Discussion

The monitoring of Z. noltei in Portugal showed that the

nutrient concentrations immediately next to a WWTP and a

food factory in the heavily populated Tagus estuary (outside the

Natural Reserve) during the summer of 2021 were only as

moderate as the nutrient concentrations 500 and 600 m away

from a WWTP inside the Ria Formosa Natural Reserve during

2001 and 2002. Under these moderate nutrient concentrations

were found the healthier Z. noltei meadows ever reported

(considering their efficiency of space occupation). The main

determinant of their health seems to have been the

concentration of ammonium in the water. Concentrations too

high were toxic for Z. noltei whereas concentrations too low

were limiting for their growth. Nevertheless, under similarly
FIGURE 5

Health of seagrasses worldwide and their relation with the concentrations of ammonium and phosphate in the water and in the sediments.
Seagrass health is indicated by their distance (dgrass) to the seagrass IBL (i.e., their efficiency of space occupation).
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low ammonium concentrations, the Sado meadows were

seemingly less healthy than the Tagus and Ria Formosa

meadows. The reason for this may have been the significantly

lower phosphate concentrations in the Sado estuary. The

increased vulnerability to ammonium and the light

environment under phosphate deficiency had already been

reported for Z. noltei in the Bay of Cadiz, Spain (Brun et al.,

2008). The present contrast between Sado and the other sites,

particularly regarding the phosphate concentrations, may result

from the distinct types of anthropogenic inputs. Rice crops are

abundant both in the Sado River and in the Tagus river and its

Sorraia tributary. Rice is not cultivated anywhere within the Ria

Formosa basin. However, in the Sado estuary rice crops are the

main source of anthropogenic inputs, with crops abounding in

the estuary and right next to the sampling sites. In the Tagus

estuary, urban effluents and livestock gain preponderance, with

many being located right next to the sampling sites, whereas rice
Frontiers in Marine Science 09
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crops are located many kms further upstream. Rice (Oryza sp.)

growth and production have a high demand and uptake of P,

with crops generally being limited by P availability and

consumption (Beyrouty et al., 1994; Akinrinde and Gaizer,

2006; Julia et al., 2016; Rajaona et al., 2017; Jiang et al., 2021).

It is therefore feasible that the P concentrations observed in the

Sado estuary lower than the observed in the Tagus estuary and

Ria Formosa are driven by P uptake by rice crops and that this

relative P deficiency drives the relatively less healthy status of

the Z. nolteimeadows in the Sado estuary. The monitoring of Z.

marina in the British Isles, of H. wrightii in Brazil, and of H.

beaudettei and H. baillonii in Costa Rica showed that the

meadows in better conditions were found in locations subject

to mild or moderate nutrient additions to the natural

background. In the cases of the tropical H. wrightii, H.

beaudettei, and H. baillonii, the optimal proportion of the

d15N isotope to the total N in leaf content was roughly within
A B

C

FIGURE 6

Health of (A) Halodule wrightii meadows in Brazil, (B) Zostera marina meadows in the British Isles, and (C) Halodule beaudettei and Halophila
baillonii meadows in Costa Rica and their relation with the proportion of the d15N isotope to total N in seagrass leaf content. Seagrass health is
indicated by their distance (dgrass) to the seagrass IBL (i.e., their efficiency of space occupation). In some locations, samples were taken from
both the middle (Middle) and the edge (Edge) of the meadow. Trends fit by maximum likelihood estimation (MLE).
frontiersin.org

https://doi.org/10.3389/fmars.2022.960249
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Vieira et al. 10.3389/fmars.2022.960249
4 to 5 ppt. In the case of the temperate Z. marina and Z. noltei,

the optimal range placed slightly higher around 8 ppt. The

meadows under lower nitrogen enrichment were less healthy,

presumably due to nitrogen deficiency, whereas meadows under

higher nitrogen enrichment were also less healthy, presumably

due to nitrogen toxicity. Overall, our results suggest that H.

wrightii meadows in Brazil, H. beaudettei and H. baillonii in

Costa Rica, Z. noltei meadows in Portugal, and Z. marina

meadows in the British Isles may benefit from anthropogenic

nitrogen additions, as long as these additions are moderate, and

that such meadows can in fact do better than the meadows in

pristine environments.

Our findings match previous studies on the physiological

and demographic responses of seagrass beds to nutrient

concentrations. The review by Touchette and Burkholder

(2000) also determined that many seagrass species respond

favorably to mild or moderate nutrient enrichment and that

only when enrichment is too high do the seagrasses respond

unfavorably with decreasing survival and/or growth. In this case,

the negative response can be a direct physiological response to N

or P toxicity or an indirect effect of eutrophication due to

stimulation of algal overgrowth or smothering and associated

light reduction. In the review by Waycott et al. (2005) of four

seagrass species in the Great Barrier Reef, nutrients were only

reported as limiting growth due to their weak supply. N or P

toxicity was never found. Reported pollutants with negative

impacts were only herbicides, pesticides, and other chemical

contaminants. Our findings, together with the concordant

previous findings reported above, contradict the former

generalized negative perception that anthropogenic nutrient

additions, however small these additions may be, are always

harmful to seagrass beds.
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A large contribution to this biased perception may have

come from the lack of an adequate indicator for the health of

seagrass meadows. This handicap has been solved by the

distance to the seagrass IBL (dgrass), reflecting the efficiency of

space occupation by the respective stand. The application of this

new indicator to several species scattered worldwide showed that

all monitored species benefit from moderate anthropogenic

nutrient additions, which explains the recent recovery of

seagrass meadows in populated coastlines where the improved

management of wastewaters reduced but not eradicated the

anthropogenic input of nutrients (Greening et al., 2014;

Bertelli et al., 2018; de los Santos et al., 2019; Burdick et al.,

2020; Orth et al., 2020). Furthermore, our results suggest that, in

situations where WWTP are the main source of anthropogenic

nutrient enrichment (i.e., agricultural runoff is reduced),

modern wastewater treatment cleans the wastewater well

enough to improve the health of nearby seagrass meadows,

and their level of reduced nutrient inputs may even promote

seagrass growth.

Seagrasses provide many ecosystem services, including CO2

trapping, as well as shelter and food for commercially exploited

species (Nordlund et al., 2016; de los Santos et al., 2020).

Furthermore, the restoration of formerly deteriorated seagrass

habitat leads to rapid recovery of coastal ecosystem services

(Orth et al., 2020). Here, we determined that moderate

anthropogenic nutrient additions have the potential to

enhance these ecosystem services in seagrass meadows. Instead

of trying to minimize the nutrient load in effluents from human

origin as much as possible, society might better divert its focus to

identifying maximal (beneficial) nutrient loads at specific sites

for different species as well as improving strategies to maximize

nutrient dilution when discharged to the sea, so that the
FIGURE 7

Health of seagrasses worldwide and their relation with the proportion of the d15N isotope to total N in seagrass leaf content. Seagrass health is
indicated by their distance (dgrass) to the seagrass IBL (i.e., their efficiency of space occupation).
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threshold concentrations for inorganic nitrogen and phosphorus

to become toxic are not exceeded.

In addition to the detrimental concentrations of inorganic N

and P, seagrass meadows are subject to a multitude of other

stressors, acting alone or in consonance. Large nutrient inputs

result in eutrophication, which, in estuarine and lagoon systems,

take the form of extensive algal blooms often smothering seagrass

meadows (Brun et al., 2003; Burkholder et al., 2007; Pergent et al.,

2008; Cognat et al., 2018), or epiphytes and phytoplankton

reducing light availability (Brun et al., 2003; Plus et al., 2003).

Such was the case for Z. noltei in the Tagus estuary, with

particular incidence in Samouco, where an extensive mat of

mainly Ulva sp. but also some Enteromorpha sp. and Sargassum

sp. covered almost all of the seafloor. During the summer of 2021

monitoring, patches with Z. noltei were sparce, and the healthy

but sparse Samouco patches still showed some algae coverage

(Supplementary Figure S2). During a subsequent monitoring in

the summer of 2022, patches with Z. noltei in Samouco were even

harder to find among the many tons of green algae, but the few

patches left showed some of the best efficiencies of space

occupation (dgrass) reported in the data set of seagrasses

worldwide. This sparse coverage of extremely healthy Z. noltei

patches mingled among an extensive green algae bloom suggests

that moderate anthropogenic nutrient additions may lead

seagrass meadows to their best health provided that the

collateral effects of eutrophication are avoided. Otherwise, the

formation of extensive algal mats covering the seagrasses,

epiphytes, and/or phytoplankton becomes largely detrimental to

seagrass meadows (Brun et al., 2003; Plus et al., 2003; Burkholder

et al., 2007; Pergent et al., 2008; Cognat et al., 2018; and present

study). Also, temperature affects and interacts with other factors

that determine seagrass performance. Temperature affects the

photosynthetic efficiency (P–I) curve of seagrasses (Plus et al.,

2005; Lee et al., 2007; Vieira et al., 2018), their nutrient uptake and

metabolic rates (Plus et al., 2001, 2003; Lee et al., 2007), and the

toxicity of inorganic N and P, herbicides, and trace metals

(Gamain et al., 2018). In the Tagus and Sado estuaries, during

the summer, water temperature was always above 24°C and in

their landward sections often above 30°C, which is considered too

warm for temperate seagrasses (Lee et al., 2007). However, the

largest stressor to Z. noltei in the Tagus and Sado estuaries was by

far clam harvesting. During the July 2021 monitoring, the Z.

noltei meadows in the Ribeiralves stations were composed of a

few healthy patches interspersed within the bare sediment, with

the daily pressure of tens of clandestine clam harvesters plucking

their shoots and breaking their roots. By August 2021, these

meadows had entirely disappeared, never to reappear thus far.

The same happened in many other stations and locations in the

Tagus and Sado estuaries. As examples, the Z. noltei meadow in

the original Comporta 2 station had also disappeared by July

2022. The beach front along Alcochete is abundant in clandestine

recreational clam harvesters daily destroying Z. noltei patches

spersed within the bare sediment (Supplementary Figure S3).
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(2018). New sighting of seagrasses in the Eastern tropical pacific (Bahı ́a
potrero, Costa Rica). Aquat. Bot. 151, 25–29. doi: 10.1016/j.aquabot.2018.
07.010

de los Santos, C. B., Krause-Jensen, D., Alcoverro, T., Marbà, N., Duarte, C. M.,
van Katwijk, M. M., et al. (2019). Recent trend reversal for declining European
seagrass meadows. Nat. Commun. 10 (1), 3356. doi: 10.1038/s41467-019-11340-4
frontiersin.org

https://doi.org/10.1016/j.conbuildmat.2018.05.195
https://doi.org/10.2307/2259334
https://doi.org/10.1098/rspb.2019.1861
https://doi.org/10.1016/S1002-0160(20)60053-4
https://doi.org/10.1016/S1002-0160(20)60053-4
https://doi.org/10.3389/fpls.2018.00133
https://doi.org/10.1098/rsos.150596
https://doi.org/10.1098/rsos.150596
https://doi.org/10.1093/aob/mcw164
https://doi.org/10.5343/bms.2017.1139
https://doi.org/10.1016/j.envpol.2006.06.019
https://doi.org/10.3354/meps183095
https://doi.org/10.1016/j.scitotenv.2018.08.400
https://doi.org/10.3354/meps196039
https://doi.org/10.1111/j.1439-0485.2006.00089.x
https://doi.org/10.1016/j.jembe.2007.06.016
https://doi.org/10.4319/lo.1998.43.4.0577
https://doi.org/10.4319/lo.1997.42.5.0930
https://doi.org/10.11117/ddi.13379
https://doi.org/10.1016/j.marpolbul.2004.10.045
https://doi.org/10.1016/j.aquatox.2015.05.007
https://doi.org/10.1371/journal.pone.0163091
https://doi.org/10.1126/sciadv.abc6434
https://doi.org/10.17660/ActaHortic.2014.1034.36
https://doi.org/10.17660/ActaHortic.2014.1034.36
https://doi.org/10.1186/1472-6785-8-20
https://doi.org/10.1016/j.jsm.2017.03.006
https://doi.org/10.1016/j.jsm.2017.03.006
https://doi.org/10.1016/j.aquabot.2004.10.004
https://doi.org/10.1016/j.aquabot.2004.10.004
https://doi.org/10.1016/S0304-3800(02)00350-2
https://doi.org/10.1016/S0304-3800(02)00350-2
https://doi.org/10.1016/S0022-0981(01)00223-4
https://doi.org/10.1016/S0022-0981(01)00223-4
https://doi.org/10.3390/coatings11010069
https://doi.org/10.1038/s41598-020-62639-y
https://doi.org/10.1007/s12237-019-00549-7
https://doi.org/10.1016/j.marpolbul.2006.08.032
https://doi.org/10.1007/s10530-009-9588-z
https://doi.org/10.1016/j.aquabot.2020.103237
https://doi.org/10.1515/bot-2020-0022
https://doi.org/10.1016/j.aquabot.2021.103486
https://doi.org/10.1016/j.aquabot.2018.07.010
https://doi.org/10.1016/j.aquabot.2018.07.010
https://doi.org/10.1038/s41467-019-11340-4
https://doi.org/10.3389/fmars.2022.960249
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Vieira et al. 10.3389/fmars.2022.960249
de los Santos, C. B., Scott, A., Arias-Ortiz, A., Jones, B., Kennedy, H., Mazarrasa,
I., et al. (2020). “Out of the blue - the value of seagrasses to the environment and to
people,” in Seagrass ecosystem services: assessment and scale of benefits. Eds. M.
Potouroglou, G. Grimsditch, L. Weatherdon and S. Lutz, (Nairobi: UNEP) 94.

Scrosati, R. A. (2000). The interspecific biomass–density relationship for
terrestrial plants: where do clonal red seaweeds stand and why? Ecol. Lett. 3,
191–197. doi: 10.1046/j.1461-0248.2000.00133.x

Sintes, T., Duarte, C. M., and Kendrick, G. A. (2005). Non-linear processes in
seagrass colonisation explained by simple clonal growth rules. Oikos 108 (1), 165–
175. doi: 10.1111/j.0030-1299.2005.13331.x

Surugiu, V., Adrian, T., Ilie, S., and Quijón, P. A. (2021). A hotspot in the
Romanian black Sea: Eelgrass beds drive local biodiversity in surrounding bare
sediments. Front. Mar. Sci. 8 doi: 10.3389/fmars.2021.745137

Touchette, B. W., and Burkholder, J. M. (2000). Review of nitrogen and
phosphorus metabolism in seagrasses. J. Exp. Mar. Biol. Ecol. 250 (1-2), 133–
167. doi: 10.1016/s0022-0981(00)00195-7

Vieira, V.M.N.C.S., Engelen, A. H., Huanel, O. R., and Guillemin, M.-L. (2016).
Linear-in-the-parameters oblique least squares: a case study with the estimation of
density-dependent survival in algae with isomorphic biphasic life-cycles. PloS One
11 (12), e0167418. doi: 10.1371/journal.pone.0167418
Frontiers in Marine Science 14
109
Vieira, V. M., Leitão, F., and Mateus, M. (2015). Biomass–density data analysis: a
comment on cabaço et al., (2013). J. Ecol. 103, 537–540. doi: 10.1111/1365-2745.12294

Vieira, V.M.N.C.S., Lopes, I. E., and Creed, J. C. (2018). The biomass–density
relationship in seagrasses and its use as an ecological indicator. BMC Ecol. 18, 44.
doi: 10.1186/s12898-018-0200-1

Vieira, V.M.N.C.S., Lopes, I. E., and Creed, J. C. (2019). A model for the
biomass-density dynamics of seagrasses developed and calibrated on global data.
BMC Ecol. 19 (1), 4. doi: 10.1186/s12898-019-0221-4

Waycott, M., Longstaff, B. J., and Mellors, J. (2005). Seagrass population
dynamics and water quality in the great barrier reef region: a review and future
research directions. Mar. pollut. Bull. 51 (1-4), 343–350. doi: 10.1016/
j.marpolbul.2005.01.017

Weller, D. E. (1989). The interspecific size-density relationship among crowded
plant stands and its implications for the -3/2 power rule of self-thinning. Am. Nat.
133, 20–41. doi: 10.1086/284899

White, J., and Harper, J. L. (1970). Correlated change in plant size and number
in plant populations. J. Ecol. 58, 467–485. doi: 10.2307/2258284

Yoda, K., Kira, T., Ogawa, H., and Hozumi, K. (1963). Self-thinning in
overcrowded pure stands under cultivated and natural conditions (Intraspecific
competition among higher plants. J. Biol. Osaka. City. Univ. 14, 107–129.
frontiersin.org

https://doi.org/10.1046/j.1461-0248.2000.00133.x
https://doi.org/10.1111/j.0030-1299.2005.13331.x
https://doi.org/10.3389/fmars.2021.745137
https://doi.org/10.1016/s0022-0981(00)00195-7
https://doi.org/10.1371/journal.pone.0167418
https://doi.org/10.1111/1365-2745.12294
https://doi.org/10.1186/s12898-018-0200-1
https://doi.org/10.1186/s12898-019-0221-4
https://doi.org/10.1016/j.marpolbul.2005.01.017
https://doi.org/10.1016/j.marpolbul.2005.01.017
https://doi.org/10.1086/284899
https://doi.org/10.2307/2258284
https://doi.org/10.3389/fmars.2022.960249
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Elisabetta Manea,
National Research Council (CNR), Italy

REVIEWED BY

Eva Cacabelos,
University of the Azores, Portugal
Antonella Petrocelli,
National Research Council (CNR), Italy

*CORRESPONDENCE

Martina Orlando-Bonaca
Martina.Orlando@nib.si

SPECIALTY SECTION

This article was submitted to
Marine Conservation and
Sustainability,
a section of the journal
Frontiers in Marine Science

RECEIVED 07 July 2022

ACCEPTED 10 November 2022
PUBLISHED 28 November 2022

CITATION

Orlando-Bonaca M, Savonitto G,
Asnaghi V, Trkov D, Pitacco V, Šiško M,
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Several anthropogenic factors are responsible for the decline of Cystoseira

sensu lato (hereafter Cystoseira) forests along Mediterranean coasts. Some

Cystoseira species are already regionally extinct, and their decline has been

widely recorded. Sustainable and efficient techniques for the restoration of

Cystoseira are needed. In this context, the objectives of this study were i) to

analyse the reproductive traits of three populations of Gongolaria barbata from

three nearby donor sites in the northern Adriatic Sea, assessing the differences

in their reproductive potential and reproductive success; and ii) to evaluate the

outplanting success in terms of the effectiveness of G. barbata restoration, in

relation to the different donor and receiving sites (Miramare MPA and in front of

the Marine Biology Station Piran - MBSP) and implemented methods (ex situ

and hybrid method combining a mesocosm cultivation and a suspended

culture in the field). After 2 weeks of cultivation in mesocosms, half of the

tiles with germlings were transported to the receiving sites and placed on

suspended lantern nets (hybrid method), which were later (after 3 months)

transferred to the seabed on concrete plates with protective cages. The

remaining tiles were placed on the seabed on concrete plates with

protective cages after a 4-week culture (ex situ method). At both sites,

lantern nets and plates were randomly placed at 3 m depth. Thallus length

was measured monthly in each treatment. Seedlings in suspended culture

showed lower performance at the Miramare MPA, most likely due to the

unfavourable environmental conditions. The satisfactory results obtained at

MBSP demonstrate the efficiency of the hybrid method and confirm its

potential to reduce the cost and time required for cultivation. Since
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unpredictable climatic events pose the greatest threat to restoration

performance, these challenges must be considered when establishing new

restoration practices. Moreover, herbivore regulation is extremely urgent and

should be planned and implemented on a larger regional scale.
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Introduction

Canopy-forming fucoids are dominant foundation species

found on almost all Mediterranean coasts (Bulleri et al., 2012;

Gianni et al., 2013; Assis et al., 2020; Bringloe et al., 2020). In

particular, Cystoseira sensu lato (Fucales, Phaeophyta) species

(hereafter referred to as Cystoseira), recently subdivided into the

three genera Cystoseira, Ericaria and Gongolaria (Molinari-

Novoa and Guiry, 2020), can thrive from intertidal to

circalittoral rocky bottoms, forming dense forests that are

among the most productive assemblages in the Mediterranean

coastal zone, with different species replacing each other along a

bathymetric gradient (Boudouresque and Lück, 1972; Giaccone,

1973; Ballesteros, 1989; Rull and Gómez Garreta, 1989; Otero-

Schmitt and Pérez-Cirera, 1996; Ballesteros et al., 1998; Pizzuto,

1999; Ballesteros et al., 2009).

Important ecosystem services (De La Fuente et al., 2019a)

provided by these brown algal forests include high primary

production (Ballesteros et al., 2009; Mačić and Svirčev, 2014),

rich understory communities of algae and invertebrates (Pitacco

et al., 2014; Bianchelli et al., 2016; Mancuso et al., 2021),

outstanding fish densities and diversity (Orlando-Bonaca and

Lipej, 2005; Cheminée et al., 2013), and a long term carbon sink

(Peleg et al., 2020). Other benefits of Cystoseira to humans

include the production of several bioactive metabolites (Bruno

de Sousa et al., 2017a), with antioxidant, anti-inflammatory,

antifungal, antiviral and antibacterial effects (Mhadhebi et al.,

2011; Vizetto-Duarte et al., 2016; Bruno de Sousa et al., 2017b;

De La Fuente et al., 2020).

As a result of multiple anthropogenic impacts (e.g., coastal

urbanisation, eutrophication, sediment loading and overgrazing),

Cystoseira stands have gradually disappeared in many

Mediterranean coastal areas, often being replaced by filamentous

or ephemeral taxa (e.g., Mangialajo et al., 2008; Falace et al., 2010;

Vergés et al., 2014; Thibaut et al., 2015; Rindi et al., 2017; Rindi

et al., 2018; Catra et al., 2019; Mariani et al., 2019; Bernal-Ibáñez

et al., 2021; Orlando-Bonaca et al., 2021a; Orfanidis et al., 2021). In

addition, human changes in the marine environment also affect

connectivity, leading to habitat fragmentation and loss, and genetic

disjunction even at small spatial scales (Alberto et al., 2010).
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Furthermore, an important feature of Cystoseira settlements

is that their zygotes sink rapidly (Clayton, 1990), so that they fall

and stick to the substrate near the parent algae. Due to their low

dispersal, the colonisation of new or damaged areas is therefore

difficult, so habitat fragmentation has a major impact on

these species.

The first strategy to address the decline of Cystoseira and

their habitat was their protection through international

agreements (e.g., Bern Convention, Barcelona Convention,

Directive 92/43/EEC, European Red List of Habitats).

Nevertheless, there is little evidence of natural recovery of

degraded Cystoseira forests (but see Munda, 2000; Perkol-

Finkel and Airoldi, 2010; Ives ̌a et al., 2016; Medrano

et al., 2020a).

Restoration of affected areas, but only those where

disturbance is no longer present or has been mitigated, is so

important as it can greatly accelerate habitat recovery.

Restoration is increasingly recognized as an appropriate

strategy to actively trigger the recovery of degraded coastal

habitats (Abelson et al., 2020), as proposed in the recently

proclaimed UN Decade of Ecosystem Restoration (2021−2030;

Waltham et al., 2020). However, implementing successful

restoration efforts requires detailed knowledge of the current

and past distribution of lost habitats and species, the pressures

that led to their decline, and accurate characterization of donor

populations (Gann et al., 2019). In recent years, several

restoration attempts have been made in the Mediterranean

region through different projects to address the loss of

Cystoseira (Falace et al., 2018; Verdura et al., 2018; De La

Fuente et al., 2019b; Medrano et al., 2020b; Orlando-Bonaca

et al., 2021b; Savonitto et al., 2021).

Restoration of brown algal forests can be achieved through:

transplantation of adult thalli (Falace et al., 2006; Susini et al.,

2007), deployment of bags with fertile receptacles in situ,

attached to a hoe and fixed to the seafloor at selected

restoration sites (Verdura et al., 2018; Medrano et al., 2020b),

and the outplanting of juveniles grown ex situ under laboratory

conditions (Falace et al., 2006; Sales et al., 2011; Falace et al.,

2018; Verdura et al., 2018; De La Fuente et al., 2019b; Savonitto

et al., 2021; Orlando-Bonaca et al., 2021b; Lardi et al., 2022).
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The latter two techniques are recommended for the recovery of

endangered species to avoid depleting donor populations (De La

Fuente et al., 2019b).

A sharp decline of Fucales has also been reported in the

northern Adriatic basin (Falace et al., 2010; Orlando-Bonaca and

Rotter, 2018; Orlando-Bonaca et al., 2021a), leading to

displacement by turf-forming taxa in shallow waters. The

occurrence of these low-lying algae is likely related to human-

induced hydromorphological changes to the shoreline and high

sediment resuspension rates (Falace et al., 2010; Orlando-

Bonaca and Rotter, 2018) rather than nutrient enrichment, as

the northern Adriatic is considered oligotrophic (Mozetič

et al., 2012).

Moreover, negative impacts from native herbivorous fish have

also been documented: for Sargassum vulgare C. Agardh

(Orlando-Bonaca and Mavrič, 2014) and recently for the

transplanted Gongolaria barbata (Stackhouse) Kuntze (Orlando-

Bonaca et al., 2021b; Savonitto et al., 2021). Currently, G. barbata

and Cystoseira compressa (Esper) Gerloff and Nizamuddin are

quite common in the Gulf of Trieste only on the Slovenian coast,

while they have almost disappeared on the Italian coast. Other

species from this group are already rare in Slovenian waters and

extinct in Italian waters of the Gulf of Trieste.

Based on previous results of G. barbata restoration in the

northern Adriatic (Orlando-Bonaca et al., 2021b; Savonitto et al.,

2021), the present study aimed to evaluate the performance of

different donor populations in close proximity to each other in

the restoration of two receiving sites. To successfully reduce

cultivation time (to avoid lengthy maintenance and minimise

costs), we compared the performance of the ex situ method

(already consolidated at the same sites in the ROC-POP LIFE

and J1-1702 projects) with a hybrid method combining

cultivation in mesocosm and suspended culture in the field.

In this context, the objectives of this study were (1) to analyse

the reproductive traits of three populations of G. barbata from

three nearby donor sites (i.e., Izola, Strunjan, Piran) in order to

assess the differences in their reproductive potential and

reproductive success, and (2) to evaluate the restoration success

in relation to the different donor and receiving sites (Miramare

MPA vs. Marine Biology Station Piran) and the methods used.

The added value of our work is that by combining two methods,

for the first time different donor and receiving sites were

compared in terms of restoration success of G. barbata.
Materials and methods

Study area

The study area is located in the Gulf of Trieste (Figure 1), a

shallow, semi-enclosed bay in the northernmost part of the

Adriatic and Mediterranean Seas. The gulf stretches from Cape
Frontiers in Marine Science 03
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Savudrija (Croatia) to Grado (Italy) and includes the entire

Slovenian coast, with an average depth of about 21 m. The

area is known for the lowest winter temperatures (mostly below

10°C) in the Mediterranean and the prevailing winds, which

blow mainly from the northeast in an offshore direction

(Boicourt et al. , 2021). Maximum summer seawater

temperatures reach 28°C (data from VIDA oceanographic

buoy, https://www.nib.si/mbp/en/). The average salinity is

about 37 and is mainly influenced by the freshwater inflow

from the Soča (Isonzo) River, while the water circulation is

mainly counterclockwise in the lower layer and clockwise in the

surface layer (Stravisi, 1983).

The rationale of the experiment, aimed at testing the effect of

three donor and two receiving sites, and cultivation methods

(hybrid vs. ex situ) on the restoration efficiency of G. barbata, is

shown in Figure 2.

Fertile apices of G. barbata were collected in Slovenia from

three donor populations located in:
- Izola (45.543567, 13.676371), which is characterised by a

healthy and dense populations of G. barbata and C.

compressa;

- Strunjan Natural Park (45.53379, 13.638281), where G.

barbata forms healthy stands in association with C.

compressa and Ericaria crinita (Duby) Molinari and

Guiry;

- Piran (45.5284, 13.5754), where belts of G. barbata are

present in association with C. compressa and E. crinita.
The distances along the coastline between the donor sites (at

an isobath depth of 2 m) are: Izola-Strunjan = 4.621 km, and

Strunjan-Piran = 6.873 km. All donor sites have a shallow, rocky

seabed and are moderately exposed to wave action. Due to

overgrazing by native herbivorous species such as Sarpa salpa

(L., 1758) at the Piran sampling site in March 2021, the number

of apices collected in this area was lower than at the other two

donor sites (authors’ pers. obs.).

The germlings were cultivated in the two nursery facilities at

the University of Trieste (UNITS) and at the Marine Biology

Station Piran (MBSP).

The cultured germlings were outplanted in:
- the ‘no-take’ zone of the Miramare MPA in Italy

(45.701802, 13.714223), where G. barbata once

occurred (Bussani and Vuković, 1992) and was

recently reintroduced as part of the ROC-POP LIFE

project (Savonitto et al., 2021). The MPA is located in a

highly urbanized coastal system and is affected by

herbivorous fish grazing (Savonitto et al., 2021;

Bevilacqua et al., 2022);

- the coastal area off the Marine Biology Station Piran

(hereafter MBSP) in Slovenia (45.5177, 13.5680), where
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FIGURE 2

Experiment on G. barbata restoration in the northern Adriatic Sea. UNITS, University of Trieste (Italy), MBSP, Marine Biology Station Piran
(Slovenia). It shows: i) the three donor sites where fertile receptacles were collected; ii) the two nursery facilities where germlings were
cultivated on clay tiles starting from the fertile receptacles; iii) the two receiving sites where the tiles coming from different donor populations
were outplanted using either the hybrid or ex situ method.
FIGURE 1

Map of the study area showing donor (= DS) and receiving sites (=RS) for Gongolaria barbata.
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Fron
less than a decade ago there was a dense brown algal

forest consisting mainly of G. barbata and C. compressa.

This habitat was completely destroyed in 2016 due to

invasive encroachment for beach construction, when no

precautions were taken to limit environmental damage.

This site is also affected by fish grazing pressure

(Orlando-Bonaca et al., 2021b).
Culture in mesocosms

Cultures of G. barbata were carried out following the

protocol of Falace et al. (2018) further improved in De La

Fuente et al. (2019b).

In early April 2021, apices with mature receptacles were

collected simultaneously at 1-2 m depth at the three donor sites.

They were then transported to the nursery facilities within a few

hours under cool (4°C) and dark conditions. At the laboratory,

the receptacles were cleaned with filtered seawater to remove

epibionts, and stored at 4°C for 24 h to promote gamete release.

In parallel, approximately 100 randomly selected apices

from each donor site were stored at -4°C for further analyses

(i.e., morphometric measurements).

In environmentally controlled rooms, approximately 50 mg

FW fertile apices were placed on each rough clay tile (4.5 cm

diameter with a central hole of 0.6 cm diameter), in aquaria filled

with filtered seawater (0.22 mm filter membrane) enriched with

Von Stosch solution and germanium dioxide (for details, see

Falace et al., 2018; De La Fuente et al., 2019b), and oxygenated

with air pumps and bubblers.

At UNITS, 10 aquaria with 50-55 tiles each were used. A

total of 204 tiles were seeded with Izola apices and 303 with

Strunjan apices. At MBSP, 6 aquaria were used, each containing

50-55 tiles. In total, 251 tiles were seeded with apices from Izola

and 55 with apices from Piran. The tiles were labelled according

to the donor populations. The differences in culturing efforts

and, thus, the unbalanced experimental design depend on the

availability of fertile material, which is related to the size of the

populations themselves (i.e., Strunjan is larger in terms of

population size, while the Piran population was severely

damaged by fish grazing during the fertile season).

Temperature was set at 15°C, light intensity at 125 mmol m-2

s-1, and photoperiod at 15:9 h light:dark to simulate conditions

during the reproductive period of G. barbata at donor sites. Air

temperature was automatically set by the room controller and

water temperature was measured daily with a thermometer in

each aquarium to ensure it was constant.

Apices placed on the tiles for seeding were removed after

twenty-four hours (T0). To avoid nutrient limitation, the culture

medium was renewed every 3-5 days. Both the aquaria and the

tiles within each aquarium were randomly repositioned at each

periodic change of culture medium to provide random culture

conditions to all the tiles.
tiers in Marine Science 05
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Cultures lasted two weeks for tiles destined for the hybrid

method and 4 weeks for tiles destined for the ex situ method.
Hybrid method

To test whether it is possible to shorten the cultivation time

in mesocosm, an in situ suspended culture was established after a

shorter cultivation time (i.e., 2 weeks).

Therefore, after 2 weeks of culture in the mesocosms (on

April 23rd, T2), about half of the tiles were randomly selected

and transported to the receiving sites, where they were fixed to

plastic lantern nets (55 cm diameter) suspended at 2 m depth, as

described in Savonitto et al. (2021); 108 tiles with germlings from

Izola and 150 from Strunjan were placed in the Miramare MPA,

while 107 from Izola, 26 from Strunjan and 26 from Piran were

placed in front of MBSP.

After 3 months in the lantern nets (July), the tiles were

placed on the rocky bottom using outplanting modules. The

modules consisted of 50x50 cm concrete plates (each capable of

holding up to 48-54 tiles) covered with iron anti-grazing cages

(mesh size 1x1 cm2) and secured with metal wedges, as described

in Orlando-Bonaca et al. (2021b). Tiles were randomly

positioned on the modules, interspersing tiles hosting juveniles

from the different donor populations.

In the Miramare MPA, the tiles without juveniles were

excluded, so that finally 69 tiles from Strunjan and 7 tiles from

Izola were placed on two plates. In front of the MBSP, all tiles

were laid on three plates on the seabed near the lantern nets.
Ex situ method

After 4 weeks of cultivation in the mesocosms (on May 7th,

T4), the tiles destined for the ex situmethod were transported to

the receiving sites and attached with screws to preassembled

outplanting modules (see above). As with the hybrid method,

tiles from the different donor sites were marked and randomly

placed on the plates (4 plates at Miramare MPA and 4 in front of

MBSP). The plates for the two methods were placed very close to

each other on the seafloor.

Specifically, 96 tiles with juveniles from Izola and 108 from

Strunjan were located in the Miramare MPA, while 144 from

Izola, 19 from Strunjan and 29 from Piran were placed in front

of the MBSP.

Tiles were monitored in the Miramare MPA and MBSP by

SCUBA-divers, and iron cages were cleaned regularly with a wire

brush to remove epibionts and sediment, at least twice a month

at Miramare, an MPA with dedicated staff, whereas in front of

the MBSP they were cleaned only once a month during routine

monitoring. The difference in frequency of cleaning was due to

the different degree of protection and monitoring to which the

two receiving sites are subject.
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Collected data

During mesocosm culture, the following data were collected

and processed(Table 1):
Fron
- Morphometric measurements of receptacles (i.e., length

and width in mm): 100 receptacles from each donor site

(Izola, Strunjan, Piran) were randomly collected and

photographed under a stereomicroscope (Leica MZ 6,

Leica Microsystems, Wetzlar, Germany) with a Nikon

Coolpix 4500 camera (Nikon Corporation, Tokyo,

Japan) (at T0);

- Reproductive traits: 20 tiles per donor site (Izola and

Strunjan) were randomly selected at UNITS (at T0) to

determine the:

(i) reproductive potential as RP = N. of conceptacles per

receptacle of all the receptacles on each tile. The number

of conceptacles was determined by counting the total

number of ostioles protruding from the outer surface of

the receptacle using a stereomicroscope (Supplement 1);

(ii) reproductive success (RS = N. of zygotes per tile x N. of

conceptacles per tile-1) by photographic sampling with a

Nikon D300 camera (Nikon Corporation, Tokyo, Japan).

- Germling density (i.e., number of germlings per tile): at

weeks 1 (T1), 2 (T2), 3 (T3, only at MBSP), and 4 (T4)

after fertilisation, germling density was estimated on

pictures (photographic sampling with a Nikon D300

camera) randomly selecting 42 tiles from Izola

(henceforth as juvIZ) and 76 from Strunjan (juvST) at

UNITS, while 30 from Izola (juvIZ) and 10 from Piran

(juvPI) at MBSP. No data are available at T4 for juvPI

cultured at MBSP.

- Germling length and width: at T4, 40 germlings per donor

site (only the donor populations from Izola and Strunjan

were considered: juvIZ and juvST at UNITS, juvIZ at

MBSP) were randomly selected and photographed

directly on the tiles under a stereomicroscope to
tiers in Marine Science 06
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measure their length and width. They were randomly

selected each time, thus not repeated measures. No data

are available at T4 for juvPI cultured at MBSP.

- Light intensity (Lux) and seawater temperature (°C) were

measured from the time of outplanting on the seabed

(T4) using a HOBO Pendant Data Logger (UA-OOx) at

the MBSP receiving site.
In the laboratory, receptacles’ length and width, number of

zygotes per tile at T0, number of germlings per tile at T1, T2, T3

and T4, and length and width of germlings at T4 were

determined by analysing the photos with ImageJ software

(Schneider et al., 2012).

In the field, thalli lengths were measured by SCUBA divers at

Miramare MPA and MBSP on 20 randomly selected tiles per

method and donor site monthly from May to November (7

times). In November, the percentage survival rate (i.e., the % of

tiles that had juveniles on them) was determined by SCUBA

divers. It is noteworthy that length data are not available for the

hybrid method juveniles outplanted in the Miramare MPA from

August onwards, as the mortality rate was 100%.

For the assessment of reproductive traits, germling density

and germlingmorphometry in the laboratory and thallus length in

the field, the tiles have been considered as replicates, even

acknowledging an issue of spatial pseudoreplication since some

of the tiles belong to the same aquarium/outplanting module.

Logistical constraints did not allow us to have all completely

independent replicates but care in interspersion and

randomisation allowed us to reduce the risk of an aquarium/

module effect. This aspect has been considered in results

interpretation, keeping in mind the risk of inflated Type I errors

in case of simple pseudoreplication (Millar and Anderson, 2004).
Statistical analysis

One-way ANOVA design was applied to test for possible

differences between donor sites (Izola, Piran and Strunjan) in
TABLE 1 Summary of data collected during the mesocosm culture at UNITS and MBSP.

Sampling
time

Sample size Variable Calculation/Unit

T0 100 receptacles per donor site Receptacle length and width Length and width (mm)

20 random tiles per site Receptacle reproductive
potential*

N. of conceptacles per receptacle of all the receptacles on the
tile

Reproductive success* N. zygotes released per tile x N. receptacles per tile

T1 = 1 week At UNITS: 42 tiles from Izola and 76 from
Strunjan;

At MBSP: 30 from Izola and 10 from Piran

Germling density N. germlings per tile

T2 = 2 weeks

T3 = 3 weeks

T4 = 4 weeks+ 40 germlings per donor site Germling length and width Length and width (mm)
*Only at UNITS, on tiles seeded with apices from Izola and Strunjan. +At MBSP, missing data for Piran.
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receptacle morphometry (length and width, n=100),

reproductive potential (RP, n=20), reproductive success (RS,

n=20) and germling morphometry (length and width, n=40)

after 4 weeks of culture. Verification of the assumptions

(normality with the Kolmogorov-Smirnov test and

homoscedasticity with the Bartlett’s test) was performed prior

to conducting the analyses. If the assumptions were not fulfilled,

square root transformation of the response variable was applied

and assumptions re-tested. If still not compliant with ANOVA

assumptions, the non-parametric equivalent of ANOVA, the

Kruskal-Wallis test, was performed.

Differences in germling density on the tiles according to

donor populations (juvIZ, juvPI and juvST) were assessed

applying a linear mixed model, after checking for normality of

the response variables, using the variable “Donor population” as

fixed, while “Time” as random.

As for the field data, two separate analyses were performed

on the response variable thallus length measured at the last

monitoring time (November 2021, n=20). Potential differences

linked to the donor population and the outplanting method has

been investigated through a two-way ANOVA design, testing the

effect of the fixed orthogonal factors “Donor population” (3

levels: juvIZ, juvPI, juvST), “Outplanting method” (2 levels: ex

situ, hybrid) and their interaction. This test has been performed

only onMBSP data, because this was the receiving site hosting all

donor populations and where it was possible to carry out both

methods till the end of the experimentation. A second two way

ANOVA design has been applied only considering the ex situ

method data for testing the effect of the fixed orthogonal factors

“Donor population” (2 levels: juvIZ, juvST), “Receiving site” (2

levels: Miramare MPA, MBSP) and their interaction. Normality

and homoscedasticity assumptions were tested by Kolmogorov-

Smirnov test and Bartlett’s test respectively, and a square root

transformation was required.

For all analyses, post-hoc comparisons on significant terms

were performed by Tukey test and significant differences are

shown on the corresponding plots and table (for field data). All

statistical analyses and plots were performed with “stats” and

“car” packages of the free software RStudio (RStudio

Team, 2021).
Results

- Culture in mesocosm

Morphometry of the receptacles
Significant differences were found in the length and width of

the receptacles between the three donor sites, with the

receptacles in Izola being longer and larger (length: 6.02 ± 0.26

SE mm; width: 0.96 ± 0.02 SE mm) than those from Piran

(length: 4.66 ± 0.16 SE mm; width: 0.78 ± 0.02 SE mm; p-value <

0.001) and Strunjan (length: 4.70 ± 0.18 SE mm; width: 0.83 ±
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0.02 SE mm; p-value < 0.001). No significant differences were

found between Piran and Strunjan (Figure 3, Table 2).

The fertile apical fronds from Piran and Strunjan generally

had short, simple and cylindrical receptacles that were sparsely

mucronate and had few or no aerocysts (Figure 3C). In contrast,

fronds from Izola had long fusiform or mucronate receptacles,

predominantly prominent conceptacles, and there were

numerous single or concatenated aerocysts (Figure 3C; Table 3).

Reproductive traits
The Izola population receptacles had significantly higher

reproductive potential (30.5 ± 0.4 SE conceptacles receptacle-1)

compared to Strunjan (25.0 ± 0.3 SE conceptacles receptacle-1; p-

value < 0.001; Figure 4A, Table 2). Conversely, the reproductive

success of Izola receptacles (0.4 ± 0.1 SE zygotes conceptacle-1; p-

value < 0.01) was significantly lower than those from Strunjan

(0.8 ± 0.1 SE zygotes conceptacle-1; Figure 4B, Table 2).

Germling density
Germling density gradually decreased from the first to the

fourth week in culture (Figure 5). After 4 weeks, it ranged from

132 ± 15 SE germlings per tile (juvIZ) to 73 ± 8 SE germlings per

tile (juvST) (Figure 5). JuvST had significantly different germling

density (p-value < 0.001, Table 2), and showed higher values at

earlier sampling times (T1-T2), than juvIZ and juvPI, which

were again significantly different (p-value = 0.02, Table 2).

Morphometry of germlings after 4 weeks
After 4 weeks in culture, significant differences in length and

width were observed between juvIZ (length: 1.15 ± 0.07 SE mm;

width: 0.29 ± 0.01 SE mm) and juvST (length: 0.65 ± 0.03 SE

mm; width: 0.17 ± 0.01 SE mm), with juvIZ having higher values

in both morphometric parameters (p-value < 0.001, Figures 6A,

B; Table 2).

For these last parameters (i.e., reproductive traits, germling

density andmorphometry), also considering the pseudoreplication

issue, the low p-values of statistical tests (always lower than 0.01)

allowed us to consider our results reliable.
- Field data

The two-way ANOVA on MBSP data showed a significant

effect of the interactions “Donor population” x “Outplanting

Method” (p-value =0.0001, Table 4).

The three populations showed no differences in

performance when the hybrid method was applied, while

juvIZ performed differently from juvPI and juvST in the ex

situ method (p-value <0.001). JuvIZ performed better if

outplanted through the ex situ method compared to hybrid

(p-value <0.001), while no differences were observed for juvPI

and juvST (Table 4, Figure 7A).
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Significant differences were observed in the ex situ method

between the two receiving sites: thalli of both donor populations

outplanted in Miramare MPA showed significantly higher

performances compared to the ones in MBSP (p-value <0.0001,

Figure 7B, Table 4). In both receiving sites, juvIZ performed

significantly better than juvST (p-value=0.007, Figure 7B, Table 4).

At 7 months (November 2021), the average length of thalli

outplanted by the ex situ method at Miramare MPA ranged

from 8.4 ± 0.7 SE (juvST) to 9.1 ± 0.6 SE cm (juvIZ), while at

MBSP it ranged from 2.3 ± 0.4 SE (juvST) to 4.9 ± 0.3 SE

cm (juvIZ).

It was not possible to compare the two methods in the

Miramare MPA receiving site at 7 months because after only 3

months in the field (July 2021), a lower length (0.3 ± 0.1 SE –

juvIZ; 0.5 ± 0.1 SE cm – juvST) was observed and in August (i.e.,

after 1 month on the sea bottom) juvenile mortality was 100%.

For this reason, monitoring of the hybrid method was

interrupted at this site.

The extremely low p-values of the statistical tests (always

lower than 0.001) allowed us to consider our results reliable even
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acknowledging that some of the replicates should be considered

pseudoreplicated in space.

In front of the MBSP, the percentage of tiles with germlings

(% survival) ranged from 58% (juvST), 70% (juvIZ) and 90%

(juvPI) for the ex situ method, while for the hybrid method it

was 41% for juvST, 83% for juvIZ and 100% for juvPI

(Figure 8A). At Miramare MPA, the percentage of tiles with

germlings in November 2021 ranged from 44% (juvST) to 78%

(juvIZ) for the ex situ, while it was 0% for the hybrid method for

both juvIZ and juvST (Figure 8B).
Discussion

For restoration, it is important to gain a deeper knowledge

of the phenology of the species to be restored. In the last forty

years, many studies have investigated the phenology of

Cystoseira spp., highlighting that they usually undergo both

morphological and reproductive changes during the year

(e.g., Gómez-Garreta et al., 1982; Hoffmann et al., 1992;
B

C

A

FIGURE 3

G barbata receptacles’ (A) length and (B) width in the three donor sites (mean ± SE); (C) fertile apices of G barbata populations from Izola
(orange), Piran (green) and Strunjan (blue) sampling sites. Significance levels: ‘***’ p-value < 0.001.
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Alongi et al., 1999; Marzocchi et al., 2003; Falace et al., 2005;

Falace and Bressan, 2006; Medrano et al., 2020a). Nevertheless,

few studies focused on phenotypic variation among populations

of fucoid species and also reported significant differences in

reproductive traits (De Paula and De Oliveira, 1982; Silva et al.,

2004; Sadogurska et al., 2021).

Within its geographical range, G. barbata shows

considerable ecological p last ic i ty and outstanding

morphological variability due to environmental factors

(Ercegović, 1952; Falace and Bressan, 2006). In the present

study, we found relevant differences in the shape and size of

apical fronds and the number of aerocysts between populations

of G. barbata from Izola and those from Strunjan and Piran
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(Tables 2 and 3): long spindle-shaped receptacles, bearing

aerocysts and always ending with a mucron for the population

from Izola (Falace et al., 2005; Falace and Bressan, 2006), while

the populations from Strunjan and Piran had short cylindrical

receptacles bearing almost no aerocysts and not always

mucronated (Orlando-Bonaca et al., 2021b).

In the Black Sea, Sadogurska et al. (2021) reported that this

variability might depend on the hydrodynamic regime and

season and observed two main morphologies. At sheltered

sites, G. barbata had long, sickle-shaped receptacles,

sometimes with protruding conceptacles, and numerous

concatenated aerocysts. In contrast, on exposed shores, G.

barbata had small, oval or spindle-shaped receptacles with
TABLE 3 Comparison of Gongolaria barbata populations sampled at Izola, Strunjan and Piran donor sites, in terms of receptacles’ features
(numeric values are expressed as mean ± SE).

Donor sites Izola Piran Strunjan

Cryptostomata numerous numerous numerous

Aerocysts abundant, oval to spindle shaped, isolated or in chains
(up to 5 aerocysts)

absent or few isolated absent or few isolated

Receptacle shape simple, fusiform mucronate or pedicellate simple or bifid, cylindrical,
mucronate

simple or bifid, cylindrical, mucronate

Receptacle length 6.02 ± 0.26 mm, range 1.28 – 15.12 mm 4.66 ± 0.16, range 1.61 –

10.89 mm
4.70 ± 0.18 mm, range 1.71 – 10.22 mm

Receptacle width 0.96 ± 0.02 mm, range 0.53 – 1.62 mm 0.78 ± 0.02 mm, range 0.29 –

1.31 mm
0.83 ± 0.02 mm, range 0.35 – 1.45 mm

Conceptacle prominent smooth or slightly prominent smooth or slightly prominent

Conceptacles
receptacle-¹

30.45 ± 0.45 conceptacles receptacle-¹ (up to 93
conceptacles receptacle-¹)

24.96 ± 0.25 conceptacles receptacle-¹ (up to 65
conceptacles receptacle-¹)
TABLE 2 Results of statistical analyses on laboratory data.

Response variable Statistics Tested factor

Receptacle length Anova SS F p-value

Donor site 3.465 11.3 <0.0001

Residuals 47.531

chi-sq p-value

Receptacle width KW test Donor site 36.904 <0.0001

chi-sq p-value

Reproductive potential KW test Donor site 101.09 <0.0001

SS F p-value

Reproductive success Anova Donor site 0.455 7.7237 0.008

Residuals 2.237

Std.Error t-value p-value

Germling density Linear mixed model Intercept 0.507 8.194 <0.0001

Donor pop: juvPI 0.166 -2.224 0.027

Donor pop: juvST 0.084 7.079 <0.0001

Random effect: Time 1.008

chi-sq p-value

Germling length KS test Donor population 13.433 0.0002

chi-sq p-value

Germling width KS test Donor population 31.015 <0.0001
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smooth surfaces and few aerocysts. Nevertheless, molecular

analyses revealed minor differences between the Black Sea

samples of G. barbata, representing smaller infraspecific

variations. Sadogurska et al. (2021) therefore concluded that

the morphological variability of G. barbata in the Black Sea is

not due to infraspecific taxa, but to considerable ecological

plasticity and seasonal variation. Consequently, the

populations sampled for the present study could represent two

different ecotypes.

Although the donor sites on the Slovenian coast are close to

each other (see Materials and methods), they have different

environmental characteristics. The Izola donor site is located at

the edge of Koper Bay, which is characterised by high

sedimentation and suspension rates reflected in increased
Frontiers in Marine Science 10
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water turbidity (Ogorelec et al., 1991). The area is exposed to

large freshwater inputs from the Rižana and Badasěvica rivers

(Cozzi et al., 2012) and is located close to the port of Koper. In

addition, some unidentified sources of pollution (probably

municipal sewage) affect the ecological status of macroalgae in

this area (Orlando-Bonaca and Rotter, 2018; Orlando-Bonaca

et al., 2021c). In contrast, Strunjan and Piran are exposed to

lower anthropogenic pressures (Orlando-Bonaca et al., 2015), as

they are located on a coastline that is still in a pristine state.

Moreover, these two sites are located outside the bays of Koper

and Piran, which are known to have the highest sedimentation

and suspension rates in Slovenian marine waters (Ogorelec et al.,

1991). Consequently, the three donor populations might be

adapted to different sedimentation rates, salinity, and turbidity,
FIGURE 5

Germlings density (mean ± SE) on tiles from apices collected in Izola (juvIZ), Piran (juvPI) and Strunjan juvST (data for juvIZ are pooled for UNITS
and MBSP). No data are available for juvST cultivated at UNITS at T3, and for juvPI cultivated at MBSP at T4.
BA

FIGURE 4

Reproductive potential (A) and reproductive success (B) of the receptacles from Izola and Strunjan donor sites (mean ± SE). Significance levels:
‘***’ p-value < 0.001, ‘**’ p-value < 0.01.
frontiersin.org

https://doi.org/10.3389/fmars.2022.988584
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Orlando-Bonaca et al. 10.3389/fmars.2022.988584
affecting the length of receptacles and the presence of aerocysts.

In environments with high water turbidity, the development of

aerocysts stimulates the algae to stretch upwards and in this way

improve their access to light (Lüning, 1991). The elongated

shape of the receptacles could be another adaptation to increase

surface area and better capture light to improve photosynthesis.

Therefore, the Izola population could be a morphotype adapted

to higher sedimentation.

The fertile apices of the Izola population not only had longer

and larger receptacles (Figure 3), but also a higher number of

conceptacles per receptacle (RP, Figure 4A; Table 2). However,

the number of zygotes per tile relative to the number of

conceptacles per tile (RS) was higher in the G. barbata

population from Strunjan (Figure 4B; Table 2). Furthermore,

the density of juvIZ and juvPI was lower than that of juvST after

one (T1) and two weeks of culture (T2) (Figure 5). Nevertheless,

the progressive decrease in seedling density over time (T4),
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which can be explained at least in part by the process of “self-

thinning” of a growing plant population (Ang and De Wreede,

1992; Steen and Scrosati, 2004), was more pronounced in juvST.

Not only the density but also the dimensions of juvST were

smaller than those of juvIZ at T4 (Figure 6). This result indicates

that the population from Strunjan, although more successful in

the first two weeks of culture, was less successful than the others

after three to four weeks.

The success of outplanting juveniles in the field was highly

variable and depended on both the location of the donor/

receiving sites and the outplanting method. As with the ex situ

method, the greatest differences in Slovenia (MBSP) were due to

the different donor sites. This is because although all

experimental tiles were exposed to the same environmental

conditions (Supplement 2), juvIZ thalli grew significantly

better than juvST and juvPI (Figure 7A). This was probably

due to pre-adaptation to the high sediment resuspension rate
BA

FIGURE 6

Germling size (mean ± SE) after 4 weeks of culture (data for juvIZ are pooled for UNITS and MBSP): (A) length (mm) and (B) width (mm). No data
available for juvPI cultivated at MBSP. Significance levels: ‘***’ p-value < 0.001.
TABLE 4 Results of the statistical analyses on field data. In the footnotes, results of post-hoc comparisons are reported.

Statistics Tested factor
SS F p-value

Juveniles’ length in MBSP Anova Donor pop 0.86 14.20 <0.0001

Method 0.11 3.74 0.055

Donor pop X Method 0.58 9.55 0.0001

Residuals 4.31

Post-hoc: Donor pop*Method: ex situ: juvIZ ≠ juvST=juvPI; hybrid: juvIZ=juvST=juvPI; juvIZ: ex situ ≠ hybrid

SS F p-value

Juveniles length using the ex situ method Anova Donor pop 44.17 7.47 0.007

Receiving site 458.55 77.53 <0.0001

Donor pop X Rec site 15.71 2.66 0.107

Residuals 538.24
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characteristic of this receiving site. The MBSP receiving site is

located at the edge of Piran Bay, which has a similar water

turbidity, suspension and sedimentation rate as the Izola donor

site at the edge of Koper Bay (Ogorelec et al., 1991). In addition,

the tiles were placed near an underwater pipe, to prevent the

protective cages from being damaged by fishermen’s trawls, as

the site is not a protected area. However, during monitoring, it

was found that the proximity of the pipe reduces hydrodynamics

and exposes juvenile thalli to higher sediment resuspension

during growth. This may have favoured the growth of juvIZ,

which are adapted to similar environmental conditions, and

disadvantaged juvST and juvPI. Indeed, sedimentation may be

one of the most important factors affecting the survival and

development of early life stages of macroalgae (Vadas et al.,

1992; Schiel and Foster, 2006; Irving et al., 2009). In addition, the

lower frequency of cage cleaning in the MBSP site and the
Frontiers in Marine Science 12
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resulting lower light experienced by the juveniles under the cages

may have contributed to their slower growth.

For the hybrid method, the main differences were due to the

receiving site: the method performed much better at MBSP than

at Miramare (Figure 8). As this method performed better at

Miramare in 2019 (Savonitto et al., 2021), these poorer results

could be related to a series of unfavourable environmental

conditions that occurred in the Italian part of the Gulf of

Trieste in spring and early summer 2021. An impressive

bloom of the jellyfish Rhizostoma pulmo, followed by a

massive bloom of Noctiluca scintillans, which was much more

pronounced in the Italian waters than in the Slovenian ones

(ARPA FVG, 2021), characterised the area during the laying of

the tiles on the lantern nets and in the following crucial weeks

(Supplement 3). In addition, the tiles on the lantern nets were

colonised by mussel and oyster recruits from June onwards, and
BA

FIGURE 7

Thallus length (mean ± SE) after 7 months in the field (November 2021) (A) comparing juvIZ, juvST and juvPI and the two outplanting methods at
the receiving site in front of the MBSP; (B) comparing juvIZ and juvST in the two receiving sites (Miramare and MBSP) for the ex situ method.
Significance levels: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01.
BA

FIGURE 8

Percentage survival data in the hybrid and ex situ method in November 2021 in the receiving sites (A) in front of the MBSP and (B) in Miramare MPA.
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this trend intensified in July (i.e., at the time of outplanting on

the sea bottom), favoured by a mussel farm near the MPA that

probably served as a larval source. Thus, the molluscs probably

displaced the G. barbata seedlings as already observed in

Cystoseira populations (Gros, 1978; Benedetti-Cecchi et al.,

1996; Thibaut et al., 2005; Mačić et al., 2010; Perkol-Finkel

and Airoldi, 2010). Nevertheless, the satisfactory results of the

hybrid method at MBSP support the pilot application reported

by Savonitto et al. (2021). At MBSP, the lantern net allowed us to

successfully reduce the culture time required for seedlings to

reach a “refuge size,” and it also seemed to limit the presence of

mesograzers, which typically occur on vegetated rocky bottoms.

In addition, this intermediate step of keeping seedlings in

suspended culture in the sea prior to final outplanting on the

seafloor reduced the risk of bacterial or microalgal outbreaks,

which are common with prolonged culture in mesocosms

(Orlando-Bonaca et al . , 2021b; Lardi et al . , 2022).

Nevertheless, it should be further tested in Slovenian coastal

waters to improve the outcomes in terms of thalli growth.

Shortened times in mesocosms correspond to reduced

maintenance and overall costs, which is necessary for scaling

up efforts beyond a purely experimental scale, as is now required

by international policies and standards (Gann et al., 2019).

Controlling grazers with protective cages improved overall

outplanting performance, as it has already been shown that the

loss of a protective cage for only one week resulted in significant

overgrazing of juveniles by herbivorous fish (Orlando-Bonaca

et al., 2021b). S. salpa, which is very abundant in the Miramare

MPA and also along the Slovenian coast, is most likely the main

predator of G. barbata recruits in the Gulf of Trieste, as schools

were regularly observed near the experimental plots during

monitoring by divers and with the camera also in 2021

(authors’ pers. obs.). Conversely, the influence of grazing by

sea urchins and mesograzers (e.g., molluscs, crustaceans) was

likely negligible, as our underwater observations showed. In any

case, thalli cannot be kept in a cage indefinitely. In spring 2022,

the cage that had protected thalli outplanted in spring 2020

(Orlando-Bonaca et al., 2021b) was removed, and after several

months without protection, thalli were bitten at the tips but were

at least 30 cm long overall (unpublished data). In contrast, the

sharp decline of macroalgae in the Miramare MPA has not only

affected Cystoseira, as the system has “tipped” into an alternative

state dominated by turf algae and other grazing-resistant species

(e.g., Dictyota spp., crustose calcareous Rhodophytes; Falace

et al., 2010; Bevilacqua et al., 2022). Reversing this state would

require enormous effort and the constant maintenance of

grazing protection, with great uncertainty about the long-term

viability of transplanted stands.

Our results suggest that the characteristics of the donor site

may confer higher fitness to the cultured seedlings when they are

in the field, as shown by the higher growth of juvIZ under

sediment resuspension in front of the MBSP.
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Despite its late start compared to restoration on land, marine

restoration holds enormous potential as an important tool for

developing strategies to ensure that the oceans continue to

provide the goods and services on which the well-being of life

on Earth depends (Danovaro et al., 2021). The results of this

study suggest that outplanting of infralittoral canopy-forming

species such as G. barbata in the northern Adriatic should be

further tested and improved, at least on the Slovenian coasts of

the Gulf of Trieste. Although the cultivation of Cystoseira is

already consolidated, albeit with room for improvement (Falace

et al., 2018; Verdura et al., 2018; De La Fuente et al., 2019b;

Savonitto et al., 2019; Savonitto et al., 2021; Orlando-Bonaca

et al., 2021b; Lardi et al., 2022), positive results from the

laboratory phase do not guarantee success in outplanting at

sea. Successful reestablishment of brown algal forests, even in

MPAs, is influenced by factors other than nutrient enrichment

and other pollutants, some of which cannot be controlled [i.e.,

climate change-related trends and events (Grbec et al., 2018),

complex and unpredictable environmental dynamics such as

jellyfish or N. scintillans blooms (ARPA FVG, 2021)] and others

that are more measurable/controllable, such as overgrazing by

herbivorous fishes (Gianni et al., 2017). Since environmental

conditions influenced by both natural and anthropogenic forces

appear to play a critical role in restoration effectiveness,

monitoring these variables in donor and receiving sites prior

to implementing restoration activities can help determine the

best location for restoration and/or predict restoration success.

As protection is easier and cheaper than restoration, herbivore

regulation (to reduce herbivore density) is extremely urgent and

should be planned and implemented on a larger regional scale to

save not only brown algal forests, but also other endangered

infralittoral vegetation and the habitat/biota they sustain.
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SUPPLEMENT 1

(A) Receptacles of Gongolaria barbata with several conceptacles, (B)
ostioles, (C) the circles indicate the ostioles. The reproductive potential

was assessed by counting the number of ostioles per receptacle, as each

ostiole is considered as a proxy of a conceptacle; (D) the ostiole allows
eggs and/or zygotes to emerge from the conceptacle.

SUPPLEMENT 2

Sea temperature and light intensity measured on experimental plates in
front of the MBSP fromMay to December 2021. Trends in sea temperature

and light intensity did not deviate significantly, apart from one event. On 18

and 19 July, isolated thunderstorms with showers and north-easterly winds
were recorded, leading to a decrease in water temperature.

SUPPLEMENT 3

Unfavourable environmental dynamics that characterized the Italian part
of the Gulf of Trieste (northern Adriatic) in spring 2021. (A) Rhizostoma

pulmo on a lantern net in the Miramare MPA (credits: Marco Segarich); (B)
Jellyfish bloom in Trieste, Italy (credits: Repubblica; https://www.
repubblica.it/green-and-blue/2022/04/26/news/bloom_meduse_

trieste_riscaldamento_mare_pesca_intensiva-346958254/); Noctiluca
scintillans bloom (C) next to Miramare MPA (credits: Area Marina

Protetta Miramare) and d) inside the MPA, on the experimental plots
(credits: Legambiente FVG; https://www.legambientefvg.it/component/

content/article/2-uncategorised/2411-i-complessi-equilibri-degli-

ecosistemi-marini-che-succede-nel-nostro-golfo?Itemid=337).
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Effects of habitat loss on
migratory shorebird community
structure at stopover sites: A
case study in the Yellow River
Delta, China

Houlang Duan1,2*, Xiubo Yu1,2, Kai Shan3, Chenghui Zhang3

and Haifang Liu3

1Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic
Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China, 2College
of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China, 3The
Yellow River Delta National Nature Reserve Bureau Shandong, Dongying, Shandong, China
Coastal wetlands in China provide important stopover sites for migratory

shorebird species. The loss of natural wetlands caused by land reclamation

over the past few decades poses a major threat to shorebird populations.

Although habitat loss at key stopover sites has been shown to lead to

reductions in shorebird populations, the effects of habitat loss at specific

stopover sites on shorebird populations remain unclear. Here, we used

shorebird diversity indices and landscape metrics to elucidate the long-term

(19952020) effects of habitat change on shorebird community structure in the

Yellow River Delta, which is an important stopover site for shorebirds along the

Yellow Sea coast. The results showed that the habitat area, largest patch index,

mean patch area, and the aggregation index decreased over 25 years. By

contrast, the number of patches and patch density increased over the same

period. The richness, Shannon-Wiener index, Pielou index, and Simpson index

of the shorebird community increased from 1995 to 2020, while abundance of

shorebird declined by 90.14%. Declines in the abundance of species weremore

pronounced in larger-bodied ones than in smaller-bodied species (T=1.156,

df=42, p=0.02). On the other hand, there were no significant differences in the

decline in the abundance of threatened species and non-threatened species

(T=-0.483, df=42, p=0.632) and coastal specialist species and generalist/inland

specialist species (T=-1.197, df=42, p=0.239). The decrease in mean patch area

significantly contributed to the reduction in abundance of shorebirds (N=6,

p=0.01), and its effects were more pronounced on larger-bodied ones than on

smaller-bodied species (T=-2.113, df=42, p=0.04). These results suggest that

habitat loss in the Yellow River Delta has contributed to declines in shorebird

populations and that larger-bodied ones are more sensitive to habitat change

than smaller-bodied species. Existing wetlands are in urgent need of

conservation, and further land reclamation in this region should be avoided.

In addition, the development of conservation plans for coastal wetlands
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requires consideration of variation in the responses of different functional

groups to habitat change.
KEYWORDS

habitat change, shorebird diversity, functional groups, land degradation, conservation
and management
1 Introduction

China has over 18,000 km of coastline spanning 11

provinces, municipalities, and autonomous regions, and this

coastline supports 40% of the Chinese population; it is also an

economically important region that accounts for 58.6% of

China’s Gross Domestic Product (Yu and Zhang, 2020). Aside

from their importance as natural resources, coastal wetlands are

key components of the landscape and perform important

ecological functions (Zhou et al., 2020). Coastal wetlands in

China provide key habitats for migratory waterbirds and

biodiverse groups of neritic organisms (Bai et al., 2015).

China’s coasts are considered key habitats for biodiversity

conservation. These habitats are continually being lost because

of land reclamation and the invasion of alien species driven by

economic development (Paulson Institute, 2016; Duan et al.,

2022a). According to the second national survey of wetland

resources in China in 2014 (SFA, 2014), the surface of coastal

wetlands in China has decreased by 21.91% since the first

national survey of wetland resources in 2003.

Waterbirds are important indicators of wetland ecosystem

health, and their populations are highly sensitive to changes in

coastal wetlands (Duan et al., 2020; Wang et al., 2022). Shorebird

populations in particular are more sensitive to disturbance

compared with other groups of waterbirds (Duan et al., 2022b).

Previous surveys have shown that many shorebird populations are

declining rapidly because of reductions in tidal flats along the

Yellow Sea coast (Studds et al., 2017; Chan et al., 2019). However,

these surveys have generally been conducted in wintering regions.

A recently published study conducted at a broad geographical

scale has shown that the relationship between coastal wetland loss

and shorebird population change is weak according to stopover

site data collected in the Yellow and Bohai Seas; although large

changes in the abundances of shorebirds were observed, bird

communities were generally similar between periods at the same

sites (Wang et al., 2022). This suggests that the area of the stopover

sites on which shorebird populations depend is small; thus,

clarifying the relationship between coastal wetland loss and

changes in shorebird populations requires studies conducted

over small spatial scales.

In addition, quantifying the responses of waterbird

populations to habitat changes caused by coastal wetland loss
02
127
is important for determining which conservation actions need to

be taken to mitigate declines in waterbird biodiversity. A

previous study has shown that the efficiency of the

conservation of waterbird populations and their habitat is

enhanced when variation in the response of waterbird

functional groups to habitat change is considered (Li et al.,

2022). An increasing number of studies have shown that

threatened shorebird species, larger-bodied species, and coastal

specialist species are less likely to stopover or feed in artificial

wetlands (Jackson et al., 2020). Whether the effects of changes in

coastal habitats vary among functional groups remains unclear,

yet this information is critically important for the development

of habitat management plans.

The Yellow River Delta (YRD) is the largest estuarine

wetland along the coasts of the Yellow and Bohai Seas.

Shorebird populations of more than 20 species in the YRD

meet the Ramsar 1% criterion (exceeding 1% of the total

population in the flyway) (Xia et al., 2016). There is an

inevitable conflict between land development and habitat

conservation (Hou et al., 2021). We used shorebird survey

data and land-use data to characterize the effects of long-term

habitat change (1995–2020) on shorebird populations in the

YRD. We hypothesized that habitat changes pose a more serious

threat to threatened species, larger-bodied species, and coastal

specialist species than to non-threatened species, smaller-bodied

species, and generalist/inland specialist species. The findings of

this study provide new insights that could aid the conservation

and management of key shorebird habitats.
2 Materials and methods

2.1 Study area

This study was conducted in the YRD along the Dongying

coast (37°35′N–38°12′N, 118°33′E–119°20′E), which is an

important stopover site for migratory shorebirds along the

East Asian–Australasian Flyway (EAAF) migratory route

(Figure 1). The total area of YRD is 4785.5 km2, and

represents only 4.5% of Yellow and Bohai Seas. It is a Ramsar

site and includes the YRD National Nature Reserve, which was

established in 1992. This region includes multiple habitat
frontiersin.org
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environment, i.e. tidal flats, estuarine delta, saltpan and

mariculture. It hosts globally threatened species, such as the

Eastern Curlew (Numenius madagascariensis) and Great Knot

(Calidris tenuirostris), and the number of total shorebirds

migrating northward through this region annually is greater

than 130,000 (Li et al., 2018). Most coastal wetlands have been

converted to artificial wetlands for mariculture, saltpans, and

construction land because of land reclamation (Ma et al., 2019).

This has had a significant effect on the surface and quality of

shorebird habitat and thus the stability of shorebird populations

(Hou et al., 2021).
2.2 Land cover data

Land cover maps of the YRD for 1995, 2000, 2005, 2010, 2015,

and 2020 were interpreted using the object-oriented classification

method on the basis of Landsat TM/ETM and Landsat 8 OLI data

at a scale of 1:100000, and the spatial resolution of these data was

30 m × 30 m. Images with total cloud cover less than 5% were

selected from the Geospatial Data Cloud (www.gscloud.cn/

sources/) and the USGS Global Visualization Viewer (GloVis)

(http://glovis.usgs.gov). The classification system for the land

cover map was the same as that used in Di et al. (2014). Given

that alien plant Spartina alterniflora is a major threat to shorebird

species (Jackson et al., 2021), the distribution of S. alterniflora in

2010, 2015, and 2020 for the YRD (S. alterniflora has been

spreading since 2010 [Yu et al., 2022]) at a spatial resolution of

30 m × 30 m was interpreted using object-based image analysis,

support vector machine methods, and field investigations on the
Frontiers in Marine Science 03
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basis of Landsat OLI. S. alterniflora distribution data were

obtained from the Northeast Institute of Geography and

Agroecology, Chinese Academy Sciences (Mao et al., 2019). We

used the “Mosaic ToNewRaster” tool in ArcGIS 10.5 tomerge the

S. alterniflora distribution layer with the land cover maps for 2010,

2015, and 2020. The land cover data in YRD for 1995 and 2020

see (Figure 1).
2.3 Identification of shorebird habitat

2.3.1 InVEST habitat quality model
The Natural Capital Project has developed a decision-

making support software known as the InVEST model

(Integrated Valuation of Environmental Services and

Tradeoffs; version 3.7.0), and this was used to assess the value

of ecosystem services and biodiversity (Hong et al., 2021). The

habitat module of the InVEST model was used to assess habitat

quality through consideration of habitat type and threat factors

(Sharp et al., 2016). The specific equation is below:

Qxj = Hj 1 −
Dz
xj

Dz
xj + kz

 ! !
(1)

where Qxj is the habitat quality in grid cell x with land type j,

Hj represents the habitat suitability in land type j, Dxj represents

the effects of threat factors on grid cell xwith land type j, and z and

k are the scaling constant and half-saturation constant, which

were 2.5 and 0.5 respectively considered as frequently used value

in habitat module of InVEST model (Sharp et al., 2016).
FIGURE 1

Study area of Yellow River Delta and its land use types in 1995 and 2020.
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2.3.2 Input data
The InVEST habitat model was affected by habitat type, habitat

suitability, threat sources, the sensitivity of habitat to threat factors,

threat characteristics, and habitat accessibility. (1) Habitat type for

YRD in 1995, 2000, 2005, 2010, 2015, and 2020 was determined at

the level of the grid cell at a resolution of 30 m × 30 m, and

information on habitat type was extracted from land cover data

between 1995 and 2020. Habitat types included farmland,

reservoirs/ponds, bottomlands, tidal flats, estuarine waters,

estuarine deltas, saltpans, mariculture, and unused land. (2)

Habitat suitability was between 0 (lowest suitability) and 1

(highest suitability) and was determined following the method of

Li et al. (2018). The habitat suitability of farmland, saltpan, and

mariculture was adjusted on the basis of the field investigation.

Habitat suitability can be found in Supplementary Table 1, and

input Files was in.csv format.

(3) Potential threats to habitat include construction land, roads,

invasion of alien species, and the human population. Thus, cities,

rural settlements, industrial mining, mariculture, roads, unused

land, and the presence of Spartina alterniflora are all considered

threat sources. These were extracted from land cover data between

1995 and 2020 at a spatial resolution of 30 m × 30 m. (4) The

sensitivity of habitat to threat factors indicates the relative sensitivity

of habitat to each threat source. (5) Threat characteristics include

the relative intensity, maximum disturbance distance, and type of

distance-based decay. Specific parameter values for the sensitivity of

habitat to threat factors and threat characteristics were collected

from Li et al. (2018) and are provided in Supplementary Table 1;

both input files were in.csv format.

(6) Habitat accessibility indicates the relative accessibility of

the boundary of protected areas to each threat source. YRD

National Nature Reserve was established in 1992 with the aim of

reducing the intensity of human activity and conserving

biodiversity. YRD National Nature Reserve was divided into

three parts on the basis of permissible levels of human activity:

the core area, experimental area, and buffer zone. Habitat

accessibility data were obtained from the shapefile boundaries

of the core area, experimental area, and buffer zone in ArcGIS

10.5. We set the attribute values for the shapefiles of the core

area, experimental area, and buffer zone to 0.1, 0.5, and 1.0,

respectively, with higher values indicating greater habitat

accessibility. The shapefile boundaries of the core area,

experimental area, and buffer zone were acquired from the

Institute of Geographic Sciences and Natural Resources

Research, Chinese Academy of Sciences (http://english.igsnrr.

cas.cn/).

2.3.3 Habitat quality assessment
We ran the habitat module of the InVEST model (v3.7.0)

using the above input data to estimate the distribution of

shorebird habitat in 1995, 2000, 2005, 2010, 2015, and 2020.

Habitat quality ranged from 0 to 1, with values closer to 1
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indicating high habitat quality. We reclassified the habitat

quality values into a binary format in which areas with habitat

quality above and below 0.7 were considered suitable and

unsuitable shorebird habitat, respectively (Sharp et al., 2016).
2.4 Measurements of landscape metrics

Landscapes can be defined by the spatial relationships

among all components including landscape composition and

landscape configuration. Landscape composition is mainly

related to the presence and area of patches, and landscape

configuration refers to the spatial distribution and spatial

character of patches within the landscape. They are usually

calculated using a spatial pattern analysis program in

FRAGSTATS (Kevin and Marks, 1995).

The vector and raster versions of the FRAGSTATS program

are used to process shapefiles and raster files, respectively. This

study used the raster version to calculate landscape metrics.

Raster images of shorebird habitat in.tif format in 1995, 2000,

2005, 2010, 2015, and 2020 were exported using ArcGIS 10.5 and

used as the input data in the FRAGSTATS program.

Landscape composition metrics and landscape configuration

metrics of shorebird habitat in 1995, 2000, 2005, 2010, 2015, and

2020 for the YRD were calculated using FRAGSTATS (v4.2.1).

Landscape composition metrics included total area (TA), largest

patch index (LPI), and mean patch area (AREA_MN).

Landscape configuration metrics included number of patches

(NP), patch density (PD), and the aggregation index (AI).

Definitions and methods used to calculate these metrics are

provided in Yohannes et al. (2020). TA is the total area of the

landscape in hectares. LPI is the proportion of the largest patch

to the total area of the landscape. NP represents the number of

patches in the landscape. AREA_MN is the average area of

patches in the landscape in hectares.

PD represents the sparseness of the patch distribution in the

landscape, and it can be calculated by equation (2):

PD =
NP
TA

(2)

AI represents the connectivity between patches in the

landscape, and larger AI values indicate greater aggregation. It

was calculated using equation (3):

AI =
gii

Max ! gii

� �
� 100 (3)

where gii is the number of similar adjacent patches in

the landscape.

We inputted the raster files (.tif format) of shorebird habitat

between 1995 and 2020 into FRAGSTATS software (v4.2.1) and

calculated the landscape metrics TA, LPI, AREA_MN, NP, PD,

and AI at the landscape level. All results were output as.csv files.
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2.4.1 Variation in landscape metrics

For each landscape metric, we calculated the percentage rate

of change to quantify variation between 1995 and 2020. It was

calculated using equation (4):

LMchange =
LM2020 − LM1995

LM1995
� 100 (4)

where LMchange is the percentage rate of change in each

landscape metric from 1995 to 2020; LM2020 and LM1995

represent the landscape metric values in 2020 and

1995, respectively.
2.5 Shorebird data collection
and processing

2.5.1 Shorebird data
Shorebird surveys in 2005, 2010, 2015, and 2020 for the YRD

were conducted once a month by experienced observers from the

YRD National Nature Reserve Management Bureau and

Dongying City Bird Watching Association. In addition,

shorebird population data for the peak of northward migration

in March to May 1995 and 2000 were collected from Barter

(2002). Generally, field surveys in the two different survey

periods were conducted in the same regions during the

daytime on sunny days. The number of shorebird species

observed in the YRD is highest during the northward

migration period according to previous studies (Bai et al.,

2015) therefore, only survey data collected between March and

May were compared. For each shorebird species, the highest

number of observed individuals between March and May was

used as the abundance for that species in each year. Eventually,

we acquired the abundance of each shorebird species in 1995,

2000, 2005, 2010, 2015, and 2020.
2.6 Calculation of the diversity index

2.6.1 Diversity index measurement
We calculated several shorebird diversity indices, i.e.

richness, abundance, Shannon Wiener index (SHDI), Pielou

index (E), and Simpson’s Index (D) in 1995, 2000, 2005, 2010,

2015, and 2020. The formulas for SHDI, E, and D are shown

below:

SHDI = −o(pi)Ln(pi) (5)

E = SHDI=Ln(S) (6)

D = 1 −op2i (7)
Frontiers in Marine Science 05
130
where pi is the proportion of the abundance of ith shorebird

species of the total abundance in the YRD, and S is the richness.

2.6.2 Change in diversity indices
We calculated differences from 1995 to 2020 in richness,

abundance, SHDI, E, and D as follows:

DIchange =
DI2020 − DI1995

DI1995
� 100 (8)

where DIchange represents the difference in each diversity

index between 1995 and 2000. DI2020 and DI1995 are the diversity

indices in 2020 and 1995, respectively.
2.7 Relationships between landscape
metrics and diversity indices

2.7.1 Test at the community level
To determine how changes in habitat affected shorebird

diversity, we conducted partial Mantel tests. A partial Mantel

test measures the correlation between two matrices containing

measures of distance (Cox and Hinkley, 1974). It has been widely

used to characterize the effects of environmental change on

communities. Partial Mantel tests are more effective than other

types of correlation analyses when sample sizes are low.

In this study, distance matrices were made using six

predictor variables, TA, LPI, AREA_MN, NP, PD, and AI, in

1995, 2000, 2005, 2010, and 2020; distance matrices were also

made using five response variables, i.e. richness, abundance,

SHDI, E, and D, in 1995, 2000, 2005, 2010, and 2020. Partial

Mantel tests were run using the linKET package in R version

4.0.4 (Huang, 2021). Detailed code is available at Figshare

(http://doi.org/10.6084/m9.figshare.21406911).

2.7.2 Test at the functional group level
The abundance of threatened species, larger-bodied species,

and coastal specialist species is lower than the abundance of non-

threatened species, smaller-bodied species, and generalist/inland

specialist species in artificial wetlands according to a previous

study (Jackson et al., 2020). We thus hypothesized that

threatened species, larger-bodied species, and coastal specialist

species are more vulnerable to the effects of habitat change.

We divided all shorebird species into three sets of two

functional groups: threatened species and non-threatened species,

larger-bodied species and smaller-bodied species, and coastal

specialist species and generalist/inland specialist species. We

defined threatened species as globally threatened species,

including critically endangered species, endangered species,

vulnerable species, and near-threatened species, and non-

threatened species as least concern species. The threatened status

of shorebird species was determined using the IUCN Red List

(https://www.iucnredlist.org/; IUCN, 2022). Jackson et al. (2020)
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reported that shorebird species with body mass less than 250 g were

more likely to feed in artificial wetlands; we divided shorebird

species into two groups, larger-bodied species (i.e., species with

body mass greater than 250 g) and smaller-bodied species (i.e.,

species with body mass less than 250 g). Coastal specialist species

and generalist/inland specialist species were classified according to

Jackson et al. (2020). Detailed species lists for these six functional

groups can be found in Supplementary Table 2.

We calculated changes in the abundance of each species

between 1995 and 2020, and using independent two-sample tests

in SPSS 22.0 to compare differences in the magnitude of change

between functional groups. We also conducted Pearson

correlation analysis in SPSS 22.0 to determine the correlation

coefficients between AREA_MN and the abundance between

1995 and 2020 for each species at the functional group level. We

used independent two-sample tests in SPSS 22.0 to compare

differences in correlation coefficients between functional groups.

The magnitude of the change and correlation coefficients in the

abundance of threatened species, larger-bodied species, and

coastal specialist species was greater than that in the

abundance of non-threatened species, smaller-bodied species,

and generalist/inland specialist species, respectively. We thus

suspect that habitat change has pronounced effects on
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threatened species, larger-bodied species, and coastal

specialist species.
3 Results

3.1 Landscape metrics

Shorebird habitats in the Yellow River Delta (YRD) between

1995 and 2020 were mainly distributed along the coastal region

according to the InVEST model (Figure 2). Habitat TA and LPI

increased initially from 1995 to 2000 and then declined gradually

between 2000 and 2020 (Table 1). Habitat total area (TA), largest

patch index (LPI) declined by 34.99% and 58.87%, respectively,

from 1995 to 2020 (Table 1). Mean patch area (AREA_MN) and

aggregation index (AI) declined from 1995 to 2005, increased

between 2005 and 2010, and then declined gradually from 2010

to 2020. Generally, AREA_MN decreased by 88.10%, and AI

decreased by 2.65% between 1995 and 2020 (Table 1).

Number of patches (NP) and patch density (PD) increased by

441.73% and 725.00%, respectively, between 1995 and 2020. NP and

PD increased initially from 1995 to 2005, declined from 2005 to

2010, and then increased gradually between 2010 and 2020 (Table 1).
FIGURE 2

The distribution of shorebird habitat in the Yellow River Delta between 1995 and 2020 according to the InVEST model.
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3.2 Shorebird community structure

3.2.1 Observed shorebirds
A total of 45 shorebird species from 4 orders and 6 families

were observed between 1995 and 2020, including 13 globally

threatened species and 32 non-threatened species. A total of

eight nationally protected species (NPS) were observed,

including 1 NPS-Class I species, Nordmann’s Greenshank

(Tringa guttifer), and 7 NPS-Class II species, Eurasian Curlew

(Numenius arquata), Asian Dowitcher (Limnodromus

semipalmatus), Eastern Curlew, Great Knot, Ruddy Turnstone

(Arenaria interpres), Broad-billed Sandpiper (Limicola

falcinellus), and Little Curlew (Numenius minutus). A total of

17 shorebird species between 1995 and 2020 (37.8%) met the

Ramsar 1% criterion (exceeding 1% of the total population in the

flyway) (Table 2).
3.3 Variation in diversity indices

From 1995 to 2020, the richness, Shannon-Wiener index

(SHDI), Pielou index (E), and Simpson index (D) increased by

2.63%, 17.60%, 16.77%, and 2.96%, respectively, and no

significant changes were observed in any of these variables. By

contrast, the abundance of shorebird species declined sharply

from 1995 to 2020, and the overall decline in the abundance over

this period was 90.14% (Table 3). The abundance of 19 shorebird

species declined, including the Grey Plover (Pluvialis squatarola,

98.66% reduction), Dunlin (Calidris alpina, 98.59% reduction),

Eastern Curlew (98.05% reduction), Lesser Sand Plover

(Charadrius mongolus, 98.01% reduction), Kentish Plover

(Charadrius alexandrinus, 97.74% reduction), Bar-tailed

Godwit (Limosa lapponica, 96.72% reduction), Whimbrel

(Numenius phaeopus, 96.26% reduction), Little Curlew

(95.99% reduction), Common Greenshank (Tringa nebularia,

95.73% reduction), Great Knot (94.48% reduction), Spotted

Redshank (Tringa erythropus, 88.89% reduction), Marsh

Sandpiper (Tringa stagnatilis, 88.19% reduction), Eurasian

Oystercatcher (Haematopus ostralegus, 81.58% reduction),

Red-necked Stint (Calidris ruficollis, 81.54% reduction), Black-
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tailed Godwit (Limosa limosa, 69.43% reduction), Eurasian

Curlew (67.67% reduction), Common Sandpiper (Actitis

hypoleucos, 66.67% reduction), Wood Sandpiper (Tringa

glareola, 52.63% reduction), and Ruff (Philomachus pugnax,

52.63% reduction) (Figure 3).
3.4 Responses of shorebird community
structure to habitat change

At the community level, there was a significant positive

relationship between the AREA_MN of shorebird habitat and

the abundance of shorebird species (N=6, p=0.01) (Figure 4).

This result indicated that decreases in the AREA_MN of

shorebird habitat from 1995 to 2020 contributed to reductions

in the abundance of species. In addition, the AREA_MN of

shorebird habitat was not significantly related to other diversity

indices including richness, SHDI, E, and D. There were no

significant relationships of the landscape metrics TA, LPI, NP,

PD, and AI with richness, abundance, SHDI, E, and D.

At the functional group level, the decline in the abundance of

larger-bodied species was greater than that of smaller-bodied

species (T=1.156, df=42, p=0.02) (Figure 5). There were no

significant differences in the decline in the abundance of

threatened species and non-threatened species (T=-0.483,

df=42, p=0.632) and coastal specialist species and generalist/

inland specialist species (T=-1.197, df=42, p=0.239). The

correlation coefficient between AREA_MN and the abundance

of larger-bodied species was significantly greater than that

between AREA_MN and the abundance of smaller-bodied

species (T=-2.113, df=42, p=0.04) (Figure 6). This indicates

that decreases in AREA_MN had a stronger effect on the

abundance of larger-bodied species than on the abundance of

smaller-bodied species. The correlation coefficient between

AREA_MN and the abundance in threatened species and

coastal specialist groups was not significantly higher than that

between AREA_MN and non-threatened species (T=1.502,

df=42, p=0.141) and between AREA_MN and generalist/

inland specialist species (T=1.713, df=42, p=0.09). These

findings indicate that the effects of declines in the AREA_MN
TABLE 1 Variation in the landscape metrics of shorebird habitat in the Yellow River Delta between 1995 and 2020.

Landscape metrics of habitat Year 1995-2020

1995 2000 2005 2010 2015 2020 Change ratio (%)

Total area (TA) (ha×103) 106.49 114.16 132.97 112.21 53.70 69.23 -34.99

Largest patch index (LPI) 53.08 67.79 50.91 50.73 32.58 21.83 -58.87

Mean patch area (AREA_MN) 0.84 0.68 0.28 0.39 0.15 0.10 -88.10

Number of patches (NP) 127 169 480 290 368 688 441.73

Patch density (PD) 0.12 0.15 0.36 0.26 0.69 0.99 725.00

Aggregation index (AI) 99.10 98.77 97.85 98.59 97.63 96.47 -2.65
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TABLE 2 Maximum abundance of shorebirds and their IUCN Red List and conservation status throughout the 25-year survey period.

Taxonomic order Scientific name English name Abundance 1 %criterion IUCN Red List Conservation status

Haematopodidae Haematopus ostralegus Eurasian Oystercatcher 76 Yes NT –

Recurvirostridae Himantopus himantopus Black-winged Stilt 1450 Yes LC –

Recurvirostra avosetta Pied Avocet 2750 Yes LC –

Charadriidae Charadrius veredus Oriental Dotterel 1 No LC –

Vanellus vanellus Northern Lapwing 550 No NT –

Charadrius alexandrinus Kentish Plover 24313 Yes LC –

Pluvialis squatarola Grey Plover 14899 Yes LC –

Vanellus cinereus Grey-headed Lapwing 6 No LC –

Charadrius hiaticula Common Ringed Plover 4 No LC –

Pluvialis fulva Pacific Golden Plover 62 No LC –

Charadrius dubius Little Ringed Plover 115 No LC –

Charadrius mongolus Lesser Sand Plover 201 Yes LC –

Charadrius leschenaultii Greater Sand Plover 80 No LC –

Charadrius placidus Long-billed Plover 2 No LC –

Rostratulidae Rostratula benghalensis Greater Painted-snipe 4 No LC –

Scolopacidae Numenius arquata Eurasian Curlew 9766 Yes NT II

Tringa ochropus Green Sandpiper 7 No LC –

Limosa lapponica Bar-tailed Godwit 10678 Yes NT –

Limnodromus semipalmatus Asian Dowitcher 8 No NT II

Numenius madagascariensis Eastern Curlew 1125 Yes EN II

Calidris tenuirostris Great Knot 11957 Yes EN II

Arenaria interpres Ruddy Turnstone 15 No LC II

Tringa erythropus Spotted Redshank 594 Yes LC –

Calidris alpina Dunlin 24106 Yes LC –

Limosa limosa Black-tailed Godwit 7197 Yes NT –

Calidris canutus Red Knot 450 No NT –

Tringa totanus Common Redshank 640 No LC –

Calidris ruficollis Red-necked Stint 2036 No NT –

Actitis hypoleucos Common Sandpiper 12 No LC –

Calidris acuminata Sharp-tailed Sandpiper 650 No VU –

Limicola falcinellus Broad-billed Sandpiper 6 No LC II

Tringa glareola Wood Sandpiper 321 No LC –

Philomachus pugnax Ruff 8 No LC –

Xenus cinereus Terek Sandpiper 220 No LC –

Calidris temminckii Temminck's Stint 20 No LC –

Tringa nebularia Common Greenshank 1368 Yes LC –

Calidris alba Sanderling 15 No LC –

Gallinago gallinago Common Snipe 25 No LC –

Calidris ferruginea Curlew Sandpiper 10 No NT –

Numenius minutus Little curlew 4300 Yes LC II

Tringa guttifer Nordmann's Greenshank 68 Yes EN I

Tringa stagnatilis Marsh Sandpiper 1135 No LC –

Calidris subminuta Long-toed Stint 13 No LC –

Numenius phaeopus Whimbrel 1444 Yes LC –

Glareolidae Glareola maldivarum Oriental Pratincole 1200 No LC –
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Critically endangered; CR, endangered; EN, vulnerable; VU, near threatened; NT, Least concern; LC. Species in National Protected Species class I or II were assigned as protected; “-” was
not protected. Species meet the Ramsar 1% criterion (exceeding 1% of the total population in the flyway) was marked by ‘YES’, if not was represented by ‘No’.
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of habitat on the abundance of threatened species and coastal

specialist species are similar to the effects of the declines in the

AREA_MN of habitat on non-threatened species and generalist/

inland specialist species.
4 Discussion

Waterbird diversity is sensitive to environmental change,

especially habitat change caused by land reclamation (Lei et al.,

2017). In this study, we examined the response of shorebird

community structure to habitat changes in the Yellow River

Delta, an important stopover site for migratory shorebirds. The

total area of habitat, largest patch index, mean patch area, and

aggregation index decreased from 1995 to 2020, and the number

of patches and patch density increased over this period. The

abundance of shorebird species declined over this period, and

the richness, Shannon-Wiener index, Pielou index, and Simpson

index increased. The decline in the mean patch area of shorebird
Frontiers in Marine Science 09
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habitat significantly contributed to the reduction in the

abundance of shorebirds, and the decline in the mean patch

area had a stronger effect on the abundance of larger-bodied

species than on the abundance of smaller-bodied species.
4.1 Changes in the landscape metrics of
shorebird habitat

Natural wetlands have degraded and disappeared because of

land reclamation and the invasion of Spartina alterniflora over

the past few decades in the Yellow River Delta (Jackson et al.,

2021). These changes have had major effects on the composition

and configuration of shorebird habitat. The results of this study

indicate that the largest patch index and mean patch area have

decreased by more than 50% from 1995 to 2020, and the number

of patches and patch density increased by more than 400% and

700%, respectively. This suggests that the continuous decline of

coastal wetland habitat has resulted in habitat fragmentation
TABLE 3 Changes in richness, abundance, Shannon-Wiener index, Pielou index, and Simpson index between 1995 and 2020 in the Yellow River
Delta.

Indices Year 1995-2020

1995 2000 2005 2010 2015 2019 Change ratio (%)

Richness 38 21 21 35 39 39 2.63

Abundance 104564 59503 18083 11295 16750 10313 -90.14

Shonnon-Wiener index 3.15 2.39 3.18 4.16 3.44 3.70 17.60

Pielou index 0.87 0.79 1.04 1.17 0.94 1.01 16.77

Simpson index 0.86 0.75 0.86 0.93 0.82 0.88 2.96
FIGURE 3

Changes in the abundance of shorebird species in the Yellow River Delta from 1995 to 2020.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1049765
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Duan et al. 10.3389/fmars.2022.1049765
because most large patches have been converted to various small

patches (Li et al., 2021). Previous studies have indicated that

shorebird species prefer large habitat patches (Murray and

Fuller, 2015; Zhang et al., 2017); thus, increases in the number

of small habitat patches and decreases in habitat TA might pose

major threats to the stability of migratory shorebird populations.
4.2 Changes in diversity indices

A total of 45 shorebird species, including 13 globally

threatened species, were observed in the Yellow River Delta

between 1995 and 2020 during the spring. The abundance of

more than 30% of species met the Ramsar 1% criterion

(exceeding 1% of the total population in the flyway). This

indicates that the Yellow River Delta is a critically important

site for the conservation of migratory shorebirds. Its importance

has also been demonstrated in a previous study showing that the

abundance of 17 shorebird species meets the Ramsar 1%

criterion in the Yellow River Delta according to surveys

conducted between 2005 and 2013 (Xia et al., 2016).

The total abundance of 45 shorebird species declined from

1995 to 2020, and the overall decline was greater than 90%.

Decreases in the abundance of 19 shorebird species were greater

than 50%, and these included globally threatened species, such as

the Eurasian Oystercatcher, Eurasian Curlew, Bar-tailed Godwit,
Frontiers in Marine Science 10
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Eastern Curlew, Great Knot, Black-tailed Godwit, and Red-

necked Stint. These findings are consistent with the results of

Li et al. (2018) showing that the total abundance of shorebird

species has declined by 60.27% and that the abundance of 11

shorebird species has decreased significantly over the last few

decades in the Yellow River Delta. These patterns indicate that

migratory shorebird species are in need of urgent conservation

attention. In addition, the richness, Shannon-Wiener index,

Pielou index, and Simpson index of the shorebird community

slightly increased between 1995 and 2020. A previous study has

shown that artificial wetlands can attract various shorebirds to

feed or stopover (Jackson et al., 2019); the conversion of natural

wetlands to saltpans and mariculture areas can provide diverse

habitats that increase shorebird diversity in the Yellow

River Delta.
4.3 Relationship between the shorebird
community and habitat changes

At the community level, the sharp reduction in the mean

patch area of shorebird habitat contributed to the continuous

decline in the total abundance of shorebird species between 1995

and 2020 in the Yellow River Delta. Previous studies have shown

that the loss of coastal wetlands in the Yellow Sea region has
FIGURE 4

Relationships between the landscape metrics of shorebird habitat and shorebird diversity indices in the Yellow River Delta. Pairwise comparisons
between shorebird diversity indices and landscape metrics of habitat are indicated by a color gradient denoting Pearson’s correlation
coefficients. The non-orange lines indicate non-significant relationships, and the orange line indicates a significant relationship (p< 0.05). The
thickness of the line is positively correlated with the strength of the relationship. TA, total area; LPI, largest patch index; AREA_MN, mean patch
area; NP, number of patches; PD, patch density; AI, aggregation index.
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caused declines in the populations of seven shorebird species at

an annual rate of 8% (Studds et al., 2017). The Yellow River

Delta is an important component of the Yellow Sea region, and

this result indicates that habitat loss might pose a serious threat

to migratory shorebird species.

At the functional group level, declines in the abundance of

larger-bodied species over the past few decades have been more

pronounced than those in smaller-bodied species. Larger-bodied

shorebird species were more sensitive to declines in mean patch

area than smaller-bodied species. A previous study has shown

that larger-bodied species are less likely to feed in artificial

wetlands (Jackson et al., 2020). This indicates that populations

of these species are less capable of adapting to habitat change.

Furthermore, there were no significant differences in the effects

of declines in the mean patch area on the abundance of

threatened species and non-threatened species and the

abundance of coastal specialist species and generalist/inland

specialist species. This might stem from the small sample sizes

because survey data were collected over six periods between 1995

and 2020 in the Yellow River Delta. In addition, the comparison

is between 1995 and 2020 only.
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4.4 Conservation implications

This study indicate that the habitat loss posed a serious threat

to shorebird species, especially larger-bodied species. A previous

study has indicated that habitat loss at one stopover site is unlikely

to be offset by the conservation of other habitats (Wang et al.,

2022); thus, the conservation of existing natural wetlands in the

Yellow River Delta is important for maintaining the stability of

shorebird populations. The establishment of Yellow River Delta

National Nature Reserve have been so far important for reducing

human activity and conserving biodiversity. We recommend that

the boundary of the reserve be enlarged to include the

surrounding habitat that was included in the InVEST model. In

addition, the results of this study highlight the urgency with which

the conservation of larger-bodied species needs to be prioritized.

We recommend that some larger-bodied, globally threatened

shorebirds, such as the Eurasian Oystercatcher, Bar-tailed

Godwit, and Black-tailed Godwit, be listed as nationally

protected species to promote their conservation.

Long-term systematic survey data along with remote sensing

data can provide insights into population trends and the factors
FIGURE 5

Differences in changes in the abundance of each species between functional groups in the Yellow River Delta. White squares represent mean
values, horizontal bars within boxes represent median values, the upper and lower limits of boxes represent the maxima and minima,
respectively, and whiskers represent 1% and 99%. Black squares represent abnormal value. *means significant at the 0.05 level.
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driving them; these data can also aid conservation and

management. There is thus a need to clarify the responses of

shorebird populations to changes in habitat at the scale of

migratory networks, including breeding areas, stopover sites,

and non-breeding areas. Shorebird surveys have been conducted

in China, South Korea (Moores et al., 2016), Japan (Amano et al.,

2010), New Zealand (Riegen and Sagar, 2020), and Australia

(Clemens et al., 2016), but not in North Korea and Southeast

Asia. The implementation of integrated and standardized

monitoring systems is needed to acquire long-term shorebird

survey data along the EAAF. Understanding the responses of

shorebird populations to environmental changes along their

migratory routes should be a central goal of future research.
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Anthropogenic activities continue to pose the greatest challenges to freshwater

ecosystems. Therefore, long-term monitoring is essential for the management

and conservation of these resources. Monitoring programs for freshwater

bodies often use a range of indicators, including biological elements such as

fish. Existing European standard provides a depth-stratified gillnet sampling

approach mainly in benthic habitats and at the deepest part of lakes to account

for the uneven distribution of fish. However, the commonly used CEN

(European Committee for Standardization) protocol does not weight

sufficiently habitat volumes and underrepresent pelagic habitats to calculate

whole-lake catch and biomass per unit effort (CPUE and BPUE, respectively).

Extended European standard gillnet (4 larger mesh-sizes added in the

geometric series) catch data collected over 18 years (2004–2021) in Římov

Reservoir (Czech Republic) were used for a method comparison on indices for

relative abundance and biomass of fish: CEN protocol without volume-

weighting and two volume-weighted approaches. We also evaluated

changes in species composition and trends in these fish population over

time. Results indicated interannual changes in species composition, relative

abundance, and biomass of fish community. The CEN protocol tended to put

greater emphasis on benthic habitats which generally have larger CPUE and

BPUE. Consequently, the two volume-weighting approaches produced lower

estimates of the two parameters, with the exception of the most dominant

pelagic bleak Alburnus alburnus (L.). All approaches consistently showed an

increasing trend in whole-reservoir fish abundance and a decreasing trend in

biomass over the study period. Following our assessment, we put forward the

volume-weighting approach that considers the Volume of the depth Stratum
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(VOST) for weighting as themost realistic approximation of fish populations and

therefore recommend its use.

KEYWORDS

abundance, biomass, BPUE, CEN, CPUE, sampling design, species composition,
volumeweighting

Introduction

Freshwater ecosystems are one of the most productive

ecosystems and support high biodiversity (Dudgeon et al.,

2006; Radinger et al., 2019). They provide a wide range of

important socioeconomic services, and are vital in regulating

and maintaining ecosystem services. In contrast, they are under

severe threat due to anthropogenic impacts (Sala et al., 2000;

Dudgeon et al., 2006). Anthropogenic influences such as climate

change, habitat degradation, alteration of flow patterns, pollution

(nutrients and toxic chemicals), over-exploitation, and biological

invasions are among the greatest threats to freshwater

biodiversity (Dudgeon et al., 2006; Ritterbusch et al., 2022).

Freshwater systems are recipients of pollutants and all other

anomalies in the watershed and are therefore often highly

vulnerable. Unfortunately, they also have limited capacity to

dilute significant amounts of wastes and other pressures

(Dudgeon et al., 2006). Therefore, regular monitoring and

taking timely corrective actions are imperative to address

these challenges and sustain their societal benefits and

ecological services.

Monitoring programs for freshwater often use a range of

indicators, including biological elements, such as plants,

invertebrates, fish, and microbes (Davis, 1995). Fish are

considered an important bioindicator of the ecological quality

of freshwater systems. The importance of fish as bioindicators

stems from their biological and ecological attributes. For

example, as long-lived organisms, fish can map integrated

environmental influences and provide consolidated insight

into the state of their environment over extended periods

(Harris, 1995; Alexander et al., 2015a; Plessl et al., 2017). In

addition, fish play a significant role in structuring ecosystems

through trophic interactions and often have a strong influence on

community composition, ecological condition, and water quality

(Jeppesen et al., 2000; Jakobsen et al., 2004; Alexander et al.,

2015a). Furthermore, in a healthy lake and reservoir ecosystem,

fish generally occupy all major habitats (i.e., littoral, benthic, and

pelagic) and a wide spectrum of trophic niches (Alexander et al.,

2015a). However, different fish species prefer and tolerate

different physicochemical regimes, so changes in fish

community composition can reflect shifting ecological state

(Mehner et al., 2005; Alexander et al., 2015a).

Fish community attributes specified in the EU Water

Framework Directive (WFD) to be monitored by member

states and used in the assessment of freshwater systems

include species composition, abundance, and age structure of

fish assemblages (European Commission, 2000). In theWFD and

fisheries literature, whole-lake estimates of fish catch per unit

effort (CPUE) and biomass per unit effort (BPUE) are used as

measures of relative fish abundance and biomass, respectively.

Information on long-term trends in these fish metrics is critical

for most stock assessments, and fishery scientists often use

commercial catch rate data (CPUE computed from

commercial catch and effort records) to estimate such trends

(Hilborn andWalters, 1992;Walters, 2003). However, this widely

used approach has been criticized for not fully representing the

whole lake system. Walters (2003) pointed out two common

mistakes made when analyzing catch rate data. He indicated that

the mistakes are related to the use of CPUE at an inappropriate

spatial scale: data obtained only from limited fishing grounds are

extrapolated to represent the large area (the entire system), and to

the fact that unfished strata are usually ignored in the

construction of abundance indices—he referred to these as

‘‘folly’’ and ‘‘fantasy”, respectively. Some techniques have been

proposed to address these issues (e.g., Walters, 2003; Campbell,

2004). It has been suggested that depth stratified random

sampling, and the use of appropriate statistical techniques

might overcome these limitations.

Accordingly, the European Committee for Standardization

(CEN) requires member states to apply depth stratified sampling

method mainly in benthic habitats, but also at the deepest part

(locality) of the lake in pelagic habitats (for lakes with a

maximum depth of >10 m) using European standard gillnets

(ESG) to account for the uneven distribution of fish (CEN, 2005,

2015). However, whole-lake estimates of CPUE and BPUE

derived from gillnet habitats without weighting by habitat

volume (commonly referred to as the CEN protocol) may not

provide a real picture of the system’s fish population because the

share of different depth strata is not uniform, and sampling of

pelagic habitats is not fully covered. The distribution of fish in

elongated reservoirs is also heterogeneous along the longitudinal

axis (Vašek et al., 2004; Prchalová et al., 2009a; Vašek et al., 2016).

Therefore, simply averaging the abundance and biomass indices

of the different species caught by the total number of gillnet

habitats (depth strata where gillnets were set) would mean that

such habitat and distribution heterogeneity would be

unrealistically equally weighted.

Researchers recommended volume-weighting of CPUE and

BPUE by considering the volume of habitats and depth layers

(strata) addresses this problem (Mehner et al., 2005; Lauridsen

et al., 2008; Kubečka et al., 2013; Alexander et al., 2015a; Blabolil

et al., 2016). However, previous volume weighting studies have
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FIGURE 1
Map of Římov Reservoir with depth contours and four reservoir localities (A), schematic representation of habitat definitions on the reservoir
transversal cross-section with depth strata for middle and dam localities as an example (B), and schematic representation of habitats on the reservoir
cross-sectionwith depth strata and gillnet settings of the threemethods (CEN, VOST and VOCOM) (C). The color depth of the gray shading in panel A
indicates the depth of the reservoir, and the contour lines refer to the investigated depth strata starting from 0 to 3 m. The number of depth
strata decreases from the dam (the deepest point) to the tributary. CEN refers to the European Committee for Standardization protocol, VOST is a
method that weights catch rates using the volume of the depth stratum relative to the volume of the reservoir, while VOCOM is a method that
weights catch rates using the volume of the depth compartment in each locality and stratum relative to the volume of the reservoir.
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TABLE 1 List of fish species and their hybrids known to occur and caught during the sampling period (2004–2021) in Římov Reservoir (Czech Republic). Species
caught, and not caught with the modified ESG or unreported before indicated with “yes” and “no”, respectively.

Family* Scientific name Common name References Present study Remarke

Acipenseridae Acipenser spp. Sturgeon a; d yes Non-native

Anguillidae Anguilla anguilla (L.) European eel a; b yes

Nemacheilidae Barbatula Barbatula (L.) Stone loach a; b no

Centrarchidae Lepomis gibbosus (L.) Pumpkin seed a; d yes Non-native

Cottidae Cottus gobio (L.) Bullhead a; b no

Leuciscidae Abramis brama (L.) Freshwater bream a; b; c yes

Leuciscidae Alburnus alburnus (L.) Bleak a; b; c yes

Xenocyprididae Hypophthalmichthys nobilis (R.) Bighead carp a; d no Non-native

Leuciscidae Leuciscus aspius (L.) Asp b; c; d yes

Cyprinidae Barbus barbus (L.) Barbel b; c yes

Leuciscidae Blicca bjoerkna (L.) White bream a; b; c yes

Cyprinidae Carassius gibelio (B.) Prussian carp a; c yes Non-native

Xenocyprididae Ctenopharyngodon idella (V.) Grass carp a; d no Non-native

Cyprinidae Cyprinus carpio (L.) Common carp a; b; c yes Non-native

Gobionidae Gobio gobio (L.) Gudgeon a; b; c yes

Xenocyprididae Hypophthalmichthys molitrix (V.) Silver carp a no Non-native

Leuciscidae Leuciscus idus (L.) Ide a; d yes

Leuciscidae Leuciscus leuciscus (L.) Dace b; c yes

Leuciscidae Phoxinus phoxinus (L.) Minnow a no

Gobionidae Pseudorasbora parva (T. and S.) Topmouth gudgeon a; d no Non-native

Leuciscidae Rutilus rutilus (L.) Roach a; b; c yes

Leuciscidae Scardinius erythrophthalmus (L.) Rudd b; c yes

Leuciscidae Squalius cephalus (L.) Chub a; b; c yes

Tincidae Tinca tinca (L.) Tench a; c yes

Leuciscidae Vimba vimba (L.) Vimba bream no yes

Leuciscidae A. brama X R. rutilus Hybrid bream x roach b; c; d yes

Leuciscidae A. brama x S. erythrophthalmus Hybrid bream x rudd no yes

Leuciscidae A. brama x B. bjoerkna Hybrid bream x white bream d yes

Leuciscidae R. rutilus X B. bjoerkna Hybrid roach x white bream d yes

Esocidae Esox lucius (L.) Pike a; b; c yes

Percidae Gymnocephalus cernua (L.) Ruffe a; b; c yes

Percidae Perca fluviatilis (L.) European perch b; c yes

Percidae Sander lucioperca (L.) Pikeperch b; c yes

Petromyzontidae Lamperta spp. Lamprey a; b no

Salmonidae Coregonus spp. Whitefish a; c yes Non-native

Salmonidae Oncorhynchus mykiss (W.) Rainbow trout a; b; c yes Non-native

(Continued on following page)

Frontiers in Environmental Science frontiersin.org04

Tesfaye et al. 10.3389/fenvs.2022.1000087

143

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1000087


used stratum volume as a proportion of total reservoir volume to

weight catch rates according to the CEN sampling design

(protocol). This means that pelagic fish are still

underrepresented because sampling was only conducted in the

deepest part of the lake or reservoir - which would ultimately

result in lower volume-weighted relative abundance and biomass

of fish populations and communities in pelagic habitats, so

whole-lake estimates do not show a realistic picture of the

lake or reservoir system. This is particularly important for

large lakes and reservoirs, where nutrient enrichment by

inflows and subsequent gradient formation along the

longitudinal axis is inevitable (Prchalová et al., 2009a).

Therefore, this study aims to (a) estimate and compare

reservoir-wide relative abundance and biomass indices of fish

populations and communities, derived from the established CEN

protocol and two volume-weighting approaches that consider

both depth strata and horizontal gradients (new approach) and

depth strata only, (b) assess whether species composition in

Římov Reservoir has changed over time, and (c) examine

trends in these fish population and community indices over

time. To this end, we used gillnet catch data collected over

18 years (2004–2021) in Římov Reservoir (Czech Republic).

Materials and methods

The study area

The study was conducted in the canyon-shaped Římov

Reservoir located (48°51′0.257″ N, 14°29′27.409″E) in the

České Budějovice district of the Czech Republic (Figure 1A).

The reservoir primarily serves as a drinking water supply for

South Bohemia, helping to maintain a minimum downstream

flow and flood control, and is not open to the public (neither

recreational activities nor fishing are allowed). Although the

water level fluctuates annually depending on annual

precipitation and subsequent inflow from the Malše River (its

main tributary), the reservoir has an average surface area of about

206 ha and maximum and average depths of 42 m and 16 m,

respectively. The total volume of the reservoir used for the

volume-weighting assessment (29.2 million m3) refers to the

volume of the reservoir at a usual water level of 469 m above

sea level. It is a eutrophic and mono to dimictic reservoir with

summer thermal stratification developing from April to October

(Prchalová et al., 2009a).

The reservoir harbors more than 40 freshwater fish species

belonging to 15 families (Table 1), including Acipenseridae,

Anguillidae, Centrarchidae, Cottidae, Cyprindae, Esocidae,

Gobionidae, Leuciscidae, Nemacheilidae, Percidae,

Petromyzontidae, Salmonidae, Siluridae, Tincidae, and

Xenocyprididae (Hladík et al., 2008; Prchalová et al., 2009b;

Šmejkal et al., 2015; Blabolil et al., 2021). As shown in Table 1,

about a quarter of the species are non-native species (Musil et al.,

2010). Stock enhancement of predatory fish such as asp Leuciscus

aspius L., pikeperch Sander lucioperca L., pike Esox lucius L., and

wels catfish Silurus glanis L., as well as removal of planktivorous

leuciscids such as freshwater bream Abramis brama L., roach

Rutilus rutilus L., and bleak Alburnus alburnus L., are regular

biomanipulation measures to control phytoplankton biomass

and thus improve water quality (Jůza et al., 2022). The

authors reported that the removal of planktivorous fish has

been about 1–2 kg/ha of fish per year, and the rate has

increased since 2020 with a new biomanipulation project.

According to Vašek et al. (2013), the annual stocking rate of

predatory fish in Římov Reservoir from 2004 to 2008 was 0.2 kg

ha−1 one-summer old fish and about 86 ind. ha−1 advanced fry.

Gillnet setting and data collection

The reservoir was divided along its longitudinal axis into four

main localities (tributary, upper, middle and dam) to cover the

fish distribution following the longitudinal gradients (Figure 1A).

These localities were further divided into benthic and pelagic

habitats. In each habitat, multiple depth strata (layers) were

considered to cover fish distribution along the vertical

gradient (water column), and hence, depth-stratified random

sampling was conducted in these compartments. Depth ranges

generally included 0–3, 3–6, 6–9, 9–12, 12–20 and >20 m for both

benthic and pelagic habitats (Figures 1B, C). Deeper layers >6 m
of stratified eutrophic reservoir contain little or no fish in

summer (Vašek et al., 2004, 2016; Prchalová et al., 2009a).

TABLE 1 (Continued) List of fish species and their hybrids known to occur and caught during the sampling period (2004–2021) in Římov Reservoir (Czech
Republic). Species caught, and not caught with the modified ESG or unreported before indicated with “yes” and “no”, respectively.

Family* Scientific name Common name References Present study Remarke

Salmonidae Salmo trutta (L.) Brown trout a; b; c no

Salmonidae Salvelinus spp. Char a no Non-native

Salmonidae Thymallus thymallus (L.) Grayling a no

Siluridae Silurus glanis (L.) Wels catfish a; b; c yes

*Family names are updated based on Fricke et al. (2022).

Source: a, Blabolil et al. (2021); b, Hladík et al. (2008); c, Prchalová et al. (2009b), d, Šmejkal et al. (2015); e, Musil et al. (2010).
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Following the recommendations of Blabolil et al. (2017), we

reduced the netting effort and strata resolution in deeper layers

by using greater depth intervals (12-20, 20 + m) to reduce the

sampling effort. It was also found that samplings in deeper layers

of many natural and artificial lakes were not informative in terms of

relative abundance, and therefore a reduction of sampling effort in

deeper layers was proposed (Deceliere-Vergès et al., 2009).

Fish were sampled annually in each stratum and locality

during the summer (end of July–August) for 18 years

(2004–2021) using modified ESG, which included 12 ESG

meshes and an additional four large mesh size gillnets,

because standard CEN gillnets capture fish well only up to a

standard length of 300 mm (Šmejkal et al., 2015). As many fish in

the Římov Reservoir are larger than this threshold, we included

TABLE 2 Volume of depth strata and compartments (A), and the number of gillnets set (B) in different habitats and localities of the Římov Reservoir at 469 m
above sea level–the common surface water level.

(A) Stratum (m) Volume of compartments by localities (m3) Volume of stratum (m3)

Habitat Dam Middle Upper Tributary

Benthic 0–3 61,602 136,064 70,312 82,377 350,355

Benthic 3–6 65,334 146,330 94,898 61,681 368,243

Benthic 6–9 64,129 144,188 103,022 11,218 322,558

Benthic 9–12 58,050 117,531 87,853 – 263,433

Benthic 12–20 444,980 1,009,980 – – 1,454,960

Benthic 20 + 264,124 599,488 – – 863,613

Pelagic 0–3 1,719,433 2,385,955 714,292 145,813 4,965,493

Pelagic 3–6 1,588,814 2,093,205 530,372 22,413 4,234,804

Pelagic 6–9 1,460,088 1,805,320 324,281 – 3,589,688

Pelagic 9–12 1,344,404 1,569,843 148,575 – 3,062,822

Pelagic 12–20 2,695,118 2,166,288 396,200 – 5,257,605

Pelagic 20 + 2,500,627 2,009,959 – – 4,510,586

Total 12,266,703 14,184,150 2,469,804 323,502 29,244,159

(B) Stratum (m) Number of gillnets set in each locality and strata

Habitat Dam Middle Upper Tributary Total

Benthic 0–3 3 3 3 3 12

Benthic 3–6 3 3 3 3 12

Benthic 6–9 (m) 3 3 3 – 9

Benthic 9–12 3 3 – – 6

Benthic 12–20 3 3 – – 6

Benthic 20–40 3 3 – – 6

Pelagic 0–3 3 3 3 3 12

Pelagic 3–6 3 3 – – 6

Pelagic 6–9 3 3 – – 6

Pelagic 9–12 - – – – -

Pelagic 12–20 3 3 – – 6

Pelagic 20–40 3 3 – – 6

Total 33 33 12 9 87
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data from large mesh nets to ensure that the results cover the

entire fish community. The mesh sizes of the ESG follow a

geometric series with a ratio of approximately 1.25 (5, 6.25, 8,

10, 12.5, 15.5, 19.5, 24, 29, 35, 43, and 55 mm); each panel is 1.5 m

height × 2.5 m length for benthic nets and 3 m × 2.5 m for pelagic

nets, and a total panel length of 30 m (both types). The four large

mesh nets roughly follow the mean geometric series of the ESG

and include mesh sizes of 70, 90, 110, and 135 mm: each panel is

1.5 m height × 10 m length for benthic nets and 3 m × 10 m for

pelagic nets, and a total length of 40 m. The large mesh nets

(≥70 mm) had four times higher effort (net area) than the CEN

standard nets (<70 mm) to catch sufficient numbers of larger

fish. Therefore, the catches and net areas of the large mesh

gillnets were divided by four to standardize the length of each

panel to 2.5 m for all meshes. When all 16 meshes were the same

length (2.5 m), catch data was standardized to 1,000 m2 of

net area.

Three gillnets were set parallel to the shore at each

locality, depth stratum and habitat (Table 2). All gillnets

were deployed 2 hours before dusk and hauled in 2 hours

after dawn. All fish caught were then sorted by species,

counted, a representative sample of common species and

the entire catch weighed to the nearest 0.1 g. Only fish older

than young-of-the-year (0+) were considered for this study

(scale and otolith reading). Catch data were expressed as

catch per unit effort (CPUE), measured as the number of fish

caught per 1,000 m2 of gillnet area, and biomass per unit

effort (BPUE) when catch was expressed in kilograms of fish

per 1,000 m2 of gillnet area. The same approach was used to

estimate whole-lake CPUE and BPUE. Therefore, for

simplicity and to avoid unnecessary repetition, we have

used a collective term “value per unit effort” (VPUE) for

both CPUE and BPUE in the following formulas and

discussion.

Volume estimation

The volume of the depth stratified compartment (denoted

VC, in m3) was calculated from the surface area (m2)

calculated in ArcMAP v10.6.1 (ESRI Inc., CA,

United States) based on the depth contours of the

bathymetric map (Figure 1A) generated before the

reservoir was flooded, and the depth of the stratum (in

m). The same depth strata (0–3, 3–6, 6–9, 9–12,

12–20 and >20 m) and localities (tributary, upper, middle

and dam) were used during installation of gillnets. The depth

of the stratum is the difference between the depth boundaries

of two successive strata. Benthic volume was consistent with

the results of Moraes et al. (2021) and was defined as the layer

1.5 m above the bottom within each stratum. All remaining

volume in each depth stratum was considered pelagic. Then

the volume of a stratum (VS., in m3) was calculated by

summing up compartment volumes for the benthic and

pelagic habitats separately (Table 2). For example, the

volume of a given depth stratum j in the pelagic habitat,

VPj (Figure 1C) was calculated as:

VPj � VCjDam + VCjMid + VCjUpp + VCjTrib (1)

Where, VCjDam is the volume of the pelagic habitat of the dam

locality of stratum j, VCj Mid is the same for the middle locality

of stratum j, VCj Upp analogically for the upper locality of

stratum j, and VCj Trib for tributary locality of stratum j. The

same approach applied to calculate the volume of benthic

habitat strata, VBj. The sum of the volumes of all strata in

both pelagic and benthic habitat gives the total volume of the

reservoir (Table 2).

Data analysis

Species composition
Temporal variation on fish species composition in the

reservoir was examined by assessing the changes on

percentage composition of dominant species over the

sampling period. A literature review was also conducted

to explore whether all known species in the system

(Table 1) were sufficiently sampled with gillnets or not,

and to find out if species were absent or introduced

during the last 2 decades.

CEN and volume-weighted whole reservoir
relative abundance and biomass

We compared the VPUEs derived from CEN protocol and

two volume weighting approaches that considered the reservoir

water volume of strata and compartments. Before beginning to

determine VPUEs for the entire lake (reservoir) using all

approaches, the mean VPUEs of the three nets deployed at

each locality and depth stratum were calculated for each

habitat. These VPUEs were then used as a baseline for all

subsequent analyses.

a) CEN protocol

The whole-lake or reservoir CEN_VPUEi for species i was

calculated as follows:

CEN VPUEi � 1
Gtotal

(∑
l,j

VPUEi,l,j,b +∑
j

VPUEi,dam,j,p) (2)

where, the first summation refers to the sum of the unweighted

VPUEs for species i in locality l and stratum j, but only for

benthic habitat b, while the second summation refers to the sum
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of the unweighted VPUEs for species i in stratum j, but only for

pelagic habitat p of the dam (Figures 1B, C); the denominator

“Gtotal” denote the total number of benthic gillnet sampling

points plus the number of pelagic gillnets in the deepest

locality (dam) of the reservoir.

The whole-reservoir unweighted VPUEs for the total fish

community (CEN_VPUE) were then calculated as:

CEN VPUE � ∑
n

i�1
CEN VPUEi (3)

b) VOST approach

This method used the Volume of the depth Stratum

(hereinafter VOST) as a proportion of the volume of the

reservoir for weighting (Figure 1C). This volume-weighting

approach accounts for the heterogeneous fish distribution in

the different water column layers (Lauridsen et al., 2008; CEN,

2015). Using the VOST approach, the whole-reservoir VPUE for

species i (VOST_VPUEi) was calculated following the next steps:

The first step is to calculate the mean VPUE of each species i

in depth stratum j and habitat h using the following equation:

VPUEi, j, h � 1
nj

∑
j

VPUEi,l,j,h (4)

Where, VPUEi, j, h is the mean VPUE of species i (ranging

from one to n) in strata j of each habitat h (benthic and

pelagic) of all localities l; nj,h is the number of sampled

localities in stratum j and habitat h, and the summation of

VPUE for species i was done over all the localities l in

stratum j and habitat h. Note that the mean VPUEs

obtained using Eq. 4 were calculated separately for each

habitat (benthic and pelagic), but to avoid unnecessary

duplication, we used the expression h here for both habitats.

The mean VPUEs obtained using Eq. 4 were then multiplied

by the volume of depth stratum j in each habitat h as:

VPUEi, j, hpVSj,h (5)

Where, VPUEi, j, h as defined above, and VSj,h is the volume of

the stratum j in habitat h.

The whole-reservoir VPUE for species i (VOST_VPUEi) was

then calculated by summing the results obtained in Eq. 5 for each

species in all strata and habitats, and dividing by the total volume

of the reservoir (Vtotal) as follows:

VOST VPUEi � 1
Vtotal

∑
j

VPUEi,j,hpVSj,h (6)

Then, the annual whole-reservoir VPUEs for the total fish

stock (VOST_VPUE) were calculated as:

VOST VPUE � ∑
n

i�1
VOST VPUEi (7)

c) VOCOM approach

On the other hand, VOCOM - the new volume-weighting

approach, accounts for the uneven fish distribution along the

longitudinal gradient (reservoir localities), as well as the vertical

(water column) gradients (Figure 1C; Table 2). Therefore, this

weighting approach used theVolume of the depth Compartment

(hereinafter VOCOM) in each locality and stratum as a

proportion of the volume of the reservoir for weighting. Thus,

the whole-reservoir VPUE for species i was calculated following

the next steps:

First, the VPUE of species i in each locality l at the depth

compartment c of the stratum j was multiplied by the volume of

the depth compartment in each habitat h (Figure 1C; Table 2) as:

VPUEi,c,l,j,hpVCc,l,j,h (8)

Where, VPUEi,c,l,j,h is VPUE of species i (ranging from one to n)

in the depth compartment c of locality l and stratum j of each

habitat h (benthic and pelagic), and VCc,l,j,h is volume of depth

compartment c in locality l and stratum j of each habitat h.

The whole-reservoir VPUE for species i (VOCOM_VPUEi)

was then calculated by summing the results obtained in Eq. 8 for

each species in all depth compartments of strata and habitats and

dividing by the total volume of the reservoir (Vtotal) as:

VOCOM VPUEi � 1
Vtotal

∑
l,j

VPUEi,c,l,j,hpVCc,l,j,h( ) (9)

Then, the whole-reservoir VPUEs for the total fish

community (VOCOM_VPUE) were calculated as:

VOCOM VPUE � ∑
n

i�1
VOCOM VPUEi (10)

Statistical analysis

The relative fish abundance and biomass for the whole

community and the dominant species were compared using

Analysis of covariance (ANCOVA). The ANCOVA was

performed separately for each species and for CPUE and

BPUE. The estimated weighted and unweighted CPUE and

BPUE for each species and the whole community were used

as dependent variables, method (CEN, VOST and VOCOM) as

grouping or categorical variable (factor) and year as numeric

variable (covariate). ANCOVA is a linear model similar to

Analysis of variance (ANOVA), but unlike ANOVA, it

includes at least one continuous variable, i.e., a covariate.

Covariates represent sources of variation that are assumed to

affect the dependent variable (response variable) but for which

no control was conducted during the study procedures. Thus,

including the covariate in the ANCOVA helps to control for the

effects of the covariate on the response variable by making linear
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adjustments to the estimated group means. However, if this

variable is not included in the analysis, it would be difficult to

assess the true relationship between the factor and the response

variable. In our case, we are interested in evaluating the

differences between the outputs of the three methods (CEN,

VOST and VOCOM) and thus year was included as a covariate

so that its influence on the response variable could be accounted

for in the model.

The interaction between the categorical and numeric

variables was tested to cope with the ANCOVA assumptions

of no interaction between these variables. Because their

interaction was not significant for almost all groups, the final

models were fitted without the interaction between the method

(CEN, VOST, VOCOM) and the year. Models were fitted using

the stats package (R Core Team, 2022). Model premises (e.g.,

linearity, heteroscedasticity and normality of residuals) and fits

were evaluated using the performance package (Lüdecke et al.,

2021). The means and slopes of the models were extracted using

the modelbased package (Makowski et al., 2020). All VPUEs

except for bleak were transformed (square root or log-

transformed) to cope with the model premises as needed. For

bleak, raw data were consistent with model premises and

therefore were not transformed. Tukey post hoc test was then

conducted to determine which method resulted in different

estimates. Since the interaction between method and year was

significant for roach CPUE, its marginal means were computed

using the function estimate_means from themodelbased package.

R software, v. 4.2.2 (R Core Team, 2022) was used to process the

data and perform the statistical analysis. The figures were created

using the ggplot2 package (Wickham, 2016).

Results

Fish species composition

During the 18-year sampling period, 34,714 specimens of

29 fish species and their hybrids from 11 families were captured,

including Acipenseridae, Anguillidae, Centrarchidae, Cyprindae,

Esocidae, Gobionidae, Leuciscidae, Percidae, Salmonidae,

Siluridae, and Tincidae. Leuciscids were by far the most

diverse in terms of species richness (10 species and four

hybrids, 48.3% of the total number of species caught),

followed by cyprinids (three species, 10.3%) and percids (three

species, 10.3%). The other families were represented by only one

or two species (Table 1). Of the 29 species and their hybrids,

27 had been reported in previous studies (Table 1). However,

about 11 species known to occur in the Římov Reservoir

catchment have not been caught once with gillnets (ESG and

large-mesh nets) since 2004. The species that were not caught

belong to the families Nemacheilidae (stone loach Barbatula

barbatula L.), Cottidae (bullhead Cottus gobio L.),

Xenocyprididae (bighead carp Hypophthalmichthys nobilis R.,

sliver carp Hypophthalmichthys molitrix V., and grass carp

Ctenopharyngodon Idella V.), Leuciscidae (minnow Phoxinus

phoxinus L.), Gobionidae (Topmouth gudgeon), and

Salmonidae (brown trout Salmo trutta L., char Salvelinus spp.

and grayling Thymallus thymallus L.) (Table 1). However, we

caught two leuciscids that have not been previously reported,

including the vimba breamVimba vimba L. (caught only in 2021)

and hybrid bream A. brama x rudd Scardinius erythrophthalmus

L. (caught in 2009 and 2017).

Of the species caught, about half were not regularly caught

during the annual sampling campaign. Overall, only 12 to

17 species and hybrids (15 species on average) were caught

annually, with the lowest and highest numbers of species and

hybrids caught in 2007 and 2019, respectively (Supplementary

Table S1), indicating interannual variation in species

composition and abundance. Species such as European eel

Anguilla anguilla L., Siberian sturgeon Acipenser baerii B.,

pumpkinseed, rainbow trout Oncorhynchus mykiss W.,

whitefish Coregonus spp., barbel Barbus barbus L., Prussian

carp, gudgeon Gobio gobio L., ide Leucisus idus L., dace

Leucisus leuciscus L., chub Squalius cephalus L., tench Tinca

tinca L., vimba bream and three leuciscid hybrids (bream x rudd,

bream x white bream Blicca bjoerkna L., and roach x white

bream) were not only caught less frequently, but their catch rates

were also very low, so they were excluded from further analysis of

relative abundance and biomass of dominant species (however

they are still included in the total community results). In

addition, although pike and rudd were frequently caught

during the sampling period, they were not included in the

subsequent analysis of relative abundance and biomass

because they were less represented in the gillnet catches.

Therefore, our analysis focused primarily on the remaining

10 important species and one hybrid, which accounted for

99.4% of the total fish sampled. These included bleak with a

total catch of 14,774 (42.6%), roach 7,766 (22.4%), ruffe

Gymnocephalus cernua L. 4,469 (12.9%), bream 3,750 (10.8%),

perch Perca fluviatilis L.1,746 (5.0%), white bream 586 (1.7%),

asp 578 (1.7%), pikeperch 362 (1.0%), hybrid bream x roach 307

(0.9%), common carp Cyprinus carpio L.110 (0.3%), and wels

catfish 39 (0.1%).

Relative abundance and biomass

The different methods used to estimate CPUEs (Figure 2)

and BPUEs (Figure 3) for the whole-reservoir yielded different

VPUEs (Supplementary Table S2). In general, except for a few

years, the CPUEs and BPUEs derived from CEN was bigger than

VOST, which was bigger than VOCOM. However, CPUEs in

2009, 2012, 2013 and 2020, as well as BPUEs in 2009, were higher

for VOCOM than for VOST, while CEN always generated higher

VPUEs than either volume-weighting approach except for

BPUEs in 2004 (Figure 3 Total). Comparing the estimated
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VPUEs of CEN with VOST VPUEs, the former provided on

average of 47% (16%–76%) higher CPUEs and 46% (34%–63%)

higher BPUEs. Similarly, the difference between estimates of

CEN and VOCOM VPUEs increased by an average of 52%

(35%–75%) for CPUEs and by 54% (34%–78%) for BPUEs. In

contrast, the difference between the estimates of the two volume-

weighting methods was an average of only 11% (−16%–41%) for

the CPUEs and only 16% (−11%–44%) for the BPUEs. The

negative values here indicate that VOCOM estimates were

higher than VOST VPUEs, as noted above for some years.

Looking at the estimates by species, five most abundant

species such as roach, ruffe, bleak, bream, and perch

contributed an average of 93% (87%–97%) of the CEN CPUEs

(Figure 4; Table 3), and 77% (68%–90%) of the BPUEs of the

whole reservoir (Figure 4; Table 3). Of these species, roach and

ruffe alone contributed a third and a quarter of the total CEN

CPUE, respectively, while roach and bream accounted for the

same proportion of the total CEN BPUEs. However, the

contribution of bleak was only limited to about 14% and 5%

for the total CEN CPUEs, and BPUEs, respectively. Moreover,

predatory fish (asp, perch, pike, pikeperch, and wels catfish)

accounted for 13% (6%–18%), and 21% (10%–36%) of the CEN

relative abundance and biomass, respectively (Table 3). The CEN

approach showed that perch was the most important predator

species in the reservoir, accounting for about 10% of the total

relative fish abundance and biomass, and more than three-

quarters of the abundance and half of the biomass of the

predatory fish (Tables 3).

The contribution of roach, ruffe, bleak, bream, and perch

taken together reached to an average of 95% (89%–98%) of the

VOST CPUEs, and 75% (47%–89%) of BPUEs of the whole

reservoir (Figure 4; Table 3), suggesting that other species also

made valuable contributions to VOST BPUEs. For example,

common carp and asp contributed to 8% (ranging from <1%
to 48%) and 5% (ranging from 1% to 17% of the total VOST

BPUEs), respectively, although their contribution to total VOST

CPUEs was not substantial. Unlike the CEN approach, bleak

alone contributed to an average of 63% (43%–78%) of the total

VOST CPUEs, followed by roach at 16% (9%–27%), while bleak,

bream, and roach accounted for 21% (7–35%), 24% (12–39%),

and 25% (12–40%) of the total VOST BPUEs, respectively

(Table 3). Furthermore, in contrast to the CEN approach, the

FIGURE 2
Estimated time-series whole-reservoir CPUE of the dominant fish species and the whole fish community (total) in the Římov Reservoir derived
from CEN, VOST, and VOCOM approaches.
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five predatory fishes accounted for only 6% (3%–8%), and 13%

(4%–30%) of VOST relative abundance and biomass, respectively

(Table 3). In contrast to the CEN approach, perch contributed

only about 45% of the predator abundance and a quarter of the

estimated biomass of VOST.

Similarly, the contribution of roach, ruffe, bleak, bream, and

perch reached to an average of 95% (91%–98%) of the VOCOM

CPUEs, and 77% (49%–90%) of BPUEs of the whole reservoir

(Figure 4; Table 3). In addition, common carp and asp contributed

an average of 8% and 5%, respectively, to total VOST BPUEs,

although their contribution to total VOCOM CPUEs was still low.

Like VOST approach, bleak alone contributed to an average of 64%

(36%–83%) of the total VOCOMCPUEs, followed by roach at 17%

(8%–29%), while bleak, bream, and roach accounted for 24% (6%–

38%), 21% (12%–33%), and 28% (15%–47%) of the total VOCOM

BPUEs, respectively (Figure 4; Table 3). Moreover, the five

predatory fishes accounted for only 6% (3%–8%), and 14%

(3%–42%) of VOCOM relative abundance and biomass,

respectively (Table 3). Perch alone contributed about 50% of

the predator abundance and nearly a third of the estimated

biomass (31%) of VOCOM.Worth noting is the contribution of

ruffe (the smallest fish in the system), which accounted for an

average of 24% of the total CEN CPUE reduced to only 5% of

the total VOST CPUE and to 4% of the total VOCOM CPUE

(Table 3).

Statistical evaluation of estimates from the
three methods

Looking at the temporal trends in VPUEs, it is generally

apparent that abundance of the total fish community showed an

increasing trend through time (Figures 2, 5, total), while biomass

showed a decreasing trend regardless of the methods used

(Figures 3, 6, total). Interannual changes in VPUE varied by

species and slightly by methods (Figures 2, 3).

However, the ANCOVA model with the interaction term

(method: year) were found to be non-significant (p > 0.05) for

the whole community and all species except roach CPUE,

which showed marginal significance (p = 0.046; Tables 4, 5).

FIGURE 3
Estimated time-series whole-reservoir BPUEs of the dominant fish species and the whole fish community (total) in the Římov Reservoir derived
from CEN, VOST, and VOCOM approaches.
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The significant interaction between method and year for roach

CPUE indicates that there were different responses between

methods and that trends over time (i.e., slopes) were

statistically different for the different methods (Figure 5).

On the other hand, the lack of a significant interaction

between method and year implies that although VPUEs

from CEN were higher than VOST and VOCOM VPUEs

for all species except bleak and asp (Figures 5, 6), VPUEs

from all three methods decreased or increased at more or less

similar extent during the study period. Therefore, the

interaction term was not included in our further analysis.

Species that exhibited significant changes (p < 0.05) in

CPUE over time with our final ANCOVA model (without

interaction term) include: bleak, hybrid bream x roach, white

bream, common carp and wels catfish, while about half of the

species studied, such as bream, ruffe, asp, perch and pikeperch

did not show significant changes (p > 0.05) over time

(Table 6). In contrast, all dominant species except bleak,

perch, and wels catfish showed significant changes in BPUE

(p < 0.05) during the study period (Table 6). The analysis also

showed that estimated VPUEs changed over time for the

whole community.

Furthermore, comparison of VPUEs derived from CEN,

VOST, and VOCOM indicated that community-wide VPUEs

for total relative abundance and biomass were significantly

different (Table 6). However, the Tukey post hoc test showed

that VPUEs derived from VOST and VOCOM were similar

for the pooled community data, but differed from CEN

(Table 6). When examined by individual species, CPUEs

and BPUEs derived from CEN, VOST, and VOCOM were

also significantly different for all dominant species except

common carp and asp (p < 0.05). However, the Tukey post

hoc test for the species with significant test showed that

VPUEs derived from VOST and VOCOM were similar for

all dominant species but different from CEN (Table 6).

Besides, the estimated marginal means, standard errors,

and 95% confidence intervals of the three methods for

roach CPUE (ind./1000 m2 net) were 7.50, 0.52, and

FIGURE 4
Relative composition of five predominant fish species and predators to the estimated total VPUEs of the time series obtained by three
approaches (CEN, VOST and VOCOM) in Římov Reservoir.
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TABLE 3 Average whole-reservoir CPUEs (ind./1,000 m2 net) and BPUE (kg/1,000 m2 net) from the gillnet catch and percentage contribution of five most dominant species and predators in Římov Reservoir (Czech
Republic) obtained using the three different weighting methods.

Species CEN VOST VOCOM

CPUE
(range)

Mean (%)
(range)

BPUE
(range)

Mean (%)
(range)

CPUE
(range)

Mean (%)
(range)

BPUE
(range)

Mean (%)
(range)

CPUE
(range)

Mean (%)
(range)

BPUE
(range)

Mean (%)
(range)

A. alburnus 39 14 1.0 5 83 63 2.4 21 75 64 2.2 24

(2–153) (2–39) (0.1–3.3) (0.3–15) (19–152) (43–78) (1–4) (7–35) (22–132) (36–83) (0.7–3.8) (6–38)

A. brama 26 11 4.9 23 11 9 2.8 24 7 7 2.2 21

(8–52) (5–19) (2.6–9.7) (11–35) (3–20) (4–16) (1–6) (12–39) (3–14) (2–18) (0.6–5) (12–33)

P. fluviatilis 24 10 2.4 11 3 3 0.4 3 3 3 0.3 4

(11–47) (5–15) (0.9–4.1) (4–17) (1–10) (1–7) (0.1–1) (1–8) (1–7) (1–7) (0.1–0.6) (1–9)

R. rutilus 84 34 7.8 35 18 16 3 25 17 17 2.7 28

(29–189) (21–45) (3.1–14.8) (19–56) (9–32) (9–27) (1–7) (12–40) (9–33) (8–29) (0.7–5) (15–47)

G. cernua 57 24 0.5 3 5 4 0.05 0.4 4 4 0.04 0.4

(10–108) (9–42) (0.1–1.3) (1–5) (1–10) (1–10) (0.01–0.1) (0.1–1) (1–8) (1–10) (0.01–0.1) (0.1–1)

Sum of
five spp.

230 93 16.7 76 120 94 8.6 75 105 95 7.4 77

(95–422) (87–97) (9.3–24.3) (62–92) (41–201) (89–98) (14–15.5) (47–89) (43–174) (90–98) (2.8–12.1) (50–90)

Predatorsa 31 13 4.4 21 7 6 1.4 13 6 6 1.2 14

(15–55) (6–18) (1.9–8.0) (10–36) (3–15) (3–8) (0.6–2.2) (4–30) (3–9) (3–8) (0.5–2.1) (3–42)

Whole
community

247 22 127 11.5 110 9.7

(109–436) (14.2–30.6) (44–210) (7.1–17.7) (46–181) (5.1–18.1)

Numbers in parentheses represent the minimum and maximum VPUEs, of the whole fish community, percentage contributions of five most dominant species and predators during 2004–2021.
aPredator fish in Římov include asp, wels catfish, perch, pike, and pikeperch.
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FIGURE 5
Temporal trends of CPUEs based on the ANCOVA model fits of transformed data determined by the three methods (CEN, VOST and VOCOM)
for the dominant fish species and the whole fish community in the Římov Reservoir (Czech Republic).

FIGURE 6
Temporal trends of BPUEs based on ANCOVA model fits of transformed data determined by the three methods (CEN, VOST and VOCOM) for
the dominant fish species and the whole fish community in the Římov Reservoir (Czech Republic).
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TABLE 4 ANCOVA results of the interaction test for CPUEs of the dominant species and the whole community sampled from 2004 to 2021 in Římov Reservoir,
Czech Republic.

Species Variable* df SS MS F p**

A. alburnus Method 2 19,332.647 9666.324 11.135 0.000

Year 1 42,500.039 42500.039 48.958 0.000

Method:Year 2 106.068 53.034 0.061 0.941

Residuals 48 41,668.194 868.087

A. brama Method 2 56.153 28.076 43.636 0.000

Year 1 0.206 0.206 0.320 0.574

Method:Year 2 3.729 1.864 2.898 0.065

Residuals 48 30.884 0.643

A. brama x R. rutilus Method 2 21.767 10.884 45.420 0.000

Year 1 6.985 6.985 29.148 0.000

Method:Year 2 0.191 0.095 0.398 0.674

Residuals 48 11.502 0.240

B. bjoerkna Method 2 36.081 18.040 24.781 0.000

Year 1 28.999 28.999 39.835 0.000

Method:Year 2 0.200 0.100 0.137 0.872

Residuals 42 30.575 0.728

C. carpio Method 2 0.347 0.174 1.958 0.153

Year 1 1.753 1.753 19.766 0.000

Method:Year 2 0.019 0.010 0.108 0.898

Residuals 45 3.991 0.089

G. cernua Method 2 79.647 39.824 99.802 0.000

Year 1 1.453 1.453 3.642 0.062

Method:Year 2 0.451 0.225 0.565 0.572

Residuals 48 19.153 0.399

L. aspius Method 2 1.084 0.542 0.903 0.412

Year 1 0.198 0.198 0.330 0.568

Method:Year 2 2.873 1.437 2.394 0.102

Residuals 48 28.804 0.600

P. fluviatilis Method 2 56.031 28.016 94.461 0.000

Year 1 0.622 0.622 2.096 0.154

Method:Year 2 0.023 0.011 0.039 0.962

Residuals 48 14.236 0.297

R. rutilus Method 2 28.270 14.135 104.358 0.000

Year 1 0.207 0.207 1.526 0.223

Method:Year 2 0.890 0.445 3.284 0.046

Residuals 48 6.501 0.135

(Continued on following page)

Frontiers in Environmental Science frontiersin.org15

Tesfaye et al. 10.3389/fenvs.2022.1000087

154

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1000087


6.48–8.59 for CEN; 2.82, 0.32, and 2.21–3.51 for VOST; and

2.55, 0.31, and 1.97–3.20 for VOCOM,

respectively. Therefore, similar to the Tukey post hoc test

for VPUEs of other dominant species and roach BPUE, only

the estimated marginal mean of CEN differed from VOST

and VOCOM, but the marginal means of VOST and VOCOM

were similar.

Discussion

Methods for computing whole-reservoir
relative fish abundance and biomass

The Římov Reservoir serves as a long-term ecological

research site for monitoring all important components of

aquatic biota (Znachor et al., 2017). Long-term, fishery-

independent surveys conducted annually with standardized

gear and a well-designed sampling approach can provide time

series of fish population abundance - CPUE and

biomass–BPUE indices (Martell and Froese, 2013; Froese

et al., 2018; Froese et al., 2020) and ecosystem health

indicators, as in the EU WFD (CEN, 2005; CEN, 2015).

However, scientists long ago began to question the way we

obtain input catch data and how these indices are determined

(e.g., Walters, 2003; Campbell, 2004). Accordingly, depth-

stratified sampling (a priori) (Walters, 2003; CEN, 2005) and

volume-weighting of these indices (a posteriori) have been

proposed (Mehner et al., 2005; Lauridsen et al., 2008; Kubečka

et al., 2013; Alexander et al., 2015a). Here we discuss the

results of three methods: the established CEN protocol and

two volume-weighting approaches -VOST and VOCOM.

As expected, the three methods used to calculate the

reservoir-wide relative abundance and biomass of the

dominant species and the total fish community produced

different VPUEs (Figures 2, 3). The CEN protocol places the

greatest emphasis on benthic habitats, which generally harbor

higher fish abundance, biomass, and species richness than pelagic

habitats (Prchalová et al., 2008; Prchalová et al., 2009b; Moraes

et al., 2021). Consequently, it provided higher reservoir-wide

CPUEs and BPUEs by a factor of two when estimates are

compared to the two volume-weighting approaches (Table 3).

Similar differences were found by Lauridsen et al. (2008) for

Danish lakes and by Alexander et al. (2015a) for many lakes in

eastern France, Switzerland, and northern Italy. We see spatial

scale problems in the CEN protocol that may have led to these

differences. Walters (2003) pointed out that fisheries scientists

typically use commercial catch rate data for stock assessments

that come from only a few fishing areas to extrapolate to the

entire system. Similarly, the CEN protocol uses ESG monitoring

data primarily from benthic habitats and only at the deepest

point of pelagic habitats to represent the entire lentic system.

However, several authors have noted that the CEN protocol

underrepresents pelagic species in whole-lake fish community

assessments (Diekmann et al., 2005; Deceliere-Vergès and

Guillard, 2008; Deceliere-Vergès et al., 2009; Specziár et al.,

TABLE 4 (Continued) ANCOVA results of the interaction test for CPUEs of the dominant species and the whole community sampled from 2004 to 2021 in Římov
Reservoir, Czech Republic.

Species Variable* df SS MS F p**

S. lucioperca Method 2 12.439 6.220 46.269 0.000

Year 1 0.067 0.067 0.502 0.482

Method:Year 2 0.033 0.016 0.123 0.885

Residuals 48 6.452 0.134

S. glanis Method 2 37.732 18.866 13.228 0.000

Year 1 9.244 9.244 6.481 0.015

Method:Year 2 1.164 0.582 0.408 0.668

Residuals 37 52.770 1.426

Whole community Method 2 276.128 138.064 34.608 0.000

Year 1 111.927 111.927 28.056 0.000

Method:Year 2 2.140 1.070 0.268 0.766

Residuals 48 191.492 3.989

*All CPUEs, derived from different methods, except those for A. alburnus, A. brama x R. rutilus, and the whole community, were log-transformed to cope with model premises. For the

latter two, the CPUEs, were log (CPUE+1) transformed, and for A. alburnus, the raw data were consistent with the model premises and therefore were not transformed. **p ≤ 0.05 refers to a

statistically significant difference, while p > 0.05 means that the difference is not significant. SS, the sum of squares;MS, the mean of squares; F = the F-statistic (i.e., variance ratio); p = the

p-value.
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TABLE 5 ANCOVA results of the interaction test for BPUEs of the dominant species and the whole community sampled from 2004 to 2021 in Římov Reservoir,
Czech Republic.

Species Variable* df SS MS F p**

A. alburnus Method 2 17.999 9.000 11.897 0.000

Year 1 1.332 1.332 1.760 0.191

Method:Year 2 1.082 0.541 0.715 0.494

Residuals 48 36.309 0.756

A. brama Method 2 5.631 2.816 28.556 0.000

Year 1 3.069 3.069 31.120 0.000

Method:Year 2 0.325 0.162 1.647 0.203

Residuals 48 4.733 0.099

A. brama x R. rutilus Method 2 18.191 9.096 17.545 0.000

Year 1 13.189 13.189 25.441 0.000

Method:Year 2 0.001 0.000 0.001 0.999

Residuals 48 24.884 0.518

B. bjoerkna Method 2 33.119 16.560 27.507 0.000

Year 1 22.387 22.385 37.183 0.000

Method:Year 2 0.219 0.110 0.182 0.834

Residuals 42 25.285 0.602

C. carpio Method 2 2.815 1.408 0.412 0.665

Year 1 47.375 47.375 13.861 0.001

Method:Year 2 0.235 0.117 0.034 0.966

Residuals 45 153.805 3.418

G. cernua Method 2 77.062 38.531 136.909 0.000

Year 1 3.953 3.953 14.045 0.000

Method:Year 2 0.691 0.346 1.228 0.302

Residuals 48 13.509 0.281

L. aspius Method 2 1.300 0.650 1.157 0.323

Year 1 3.320 3.320 5.911 0.019

Method:Year 2 3.495 1.747 3.111 0.054

Residuals 48 26.960 0.562

P. fluviatilis Method 2 46.544 23.272 83.766 0.000

Year 1 0.620 0.620 2.230 0.142

Method:Year 2 0.002 0.001 0.003 0.997

Residuals 48 13.335 0.278

R. rutilus Method 2 13.029 6.514 43.077 0.000

Year 1 3.834 3.834 25.351 0.000

Method:Year 2 0.847 0.423 2.800 0.071

Residuals 48 7.259 0.151

(Continued on following page)
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2009; Achleitner et al., 2012; Alexander et al., 2015b). In addition,

sampling only the deepest spot of the lake/reservoir likely

overlooks horizontal variation in fish communities in pelagic

habitats (Lauridsen et al., 2008; Specziár et al., 2009; Alexander

et al., 2015b). These issues are particularly important in large and

deep lakes where pelagic habitats make up the majority of lake

volume (Alexander et al., 2015b). Even in medium-sized

reservoirs such as Římov Reservoir, the volume of pelagic

habitats is much larger than that of benthic habitats (Table 2).

In this respect, it seems correct to weight VPUEs by habitat

volume.

CEN protocol is widely applied and suitable for assessing

ecological quality and spatial and temporal comparisons of

different water bodies (e.g., Diekmann et al., 2005; Mehner

et al., 2005; Deceliere-Vergès and Guillard, 2008; Lauridsen

et al., 2008; Prchalová et al., 2008; Achleitner et al., 2012;

Alexander et al., 2015a; Šmejkal et al., 2015; Ritterbusch

et al., 2022). However, high whole lake abundance and

biomass indices of some species from CEN protocol could

lead to expansion of resource use (e.g., by increasing fishing

effort) or increased angling in recreational fisheries, which

would have unforeseen ecological consequences for the

freshwater system and ultimately affect long-term

socioeconomic benefits. The volume weighting results

presented here using nearly 2 decades of monitoring data

and other previous studies (e.g., Lauridsen et al., 2008;

Kubečka et al., 2013; Alexander et al., 2015a) clearly

demonstrate the need to consider both vertical and

horizontal weighted fish distribution to estimate realistic

(less biased) fish metrics for the system when whole lake

data are needed and for dealing with overall role of fish in

the food web of the ecosystem.

The VOST approach used here is procedurally similar to

previous volume weighting studies (e.g., Lauridsen et al., 2008;

Kubečka et al., 2013; Alexander et al., 2015a). However, unlike

the previous studies, VPUEs in VOST were calculated from the

average catches of the four locations where pelagic nets were

deployed to account for uneven horizontal fish distribution,

whereas all previous volume-weighted studies used catches

only from the deepest locality of the pelagic habitat and

therefore have some of the limitations mentioned above. We

therefore believe that the VOST-derived VPUEs better reflect the

relative abundance and biomass of fish for the system.

Surprisingly, there are not many differences between the

VPUEs derived from the VOST and VOCOM approaches for the

Římov Reservoir. In the VOCOM calculation, the catch at each

locality is weighted by the volume of its depth compartments.

Lacustrine compartments in downstream localities (dam and

middle) therefore have a greater weight in terms of volume than

depth compartments in upper and tributary localities

(Figure 1A), where the width of the reservoir and thus their

volume is much smaller (Table 2). On the other hand, tributary

and upper localities of the reservoir usually harbor more fish

(Vašek et al., 2004, 2016; Prchalová et al., 2009a). When all

localities are weighted equally using stratum volume (VOST), the

increasing effect of tributary is not reduced by weighting their

smaller strata volumes, and the numerical values of the estimates

(VPUEs) are slightly larger than VOCOM. However, the

TABLE 5 (Continued) ANCOVA results of the interaction test for BPUEs of the dominant species and the whole community sampled from 2004 to 2021 in Římov
Reservoir, Czech Republic.

Species Variable* df SS MS F p**

S. lucioperca Method 2 20.331 10.165 16.692 0.000

Year 1 2.761 2.761 4.534 0.038

Method:Year 2 0.194 0.097 0.159 0.853

Residuals 48 29.231 0.609

S. glanis Method 2 40.409 20.205 11.285 0.000

Year 1 5.825 5.825 3.253 0.079

Method:Year 2 2.103 1.051 0.587 0.561

Residuals 37 66.243 1.790

Whole community Method 2 25.927 12.963 73.328 0.000

Year 1 3.902 3.902 22.070 0.000

Method:Year 2 0.867 0.434 2.453 0.097

Residuals 48 8.486 0.177

*All BPUEs, derived from different methods, except forA. alburnus andA. brama, were log-transformed to cope with model premises. For A. brama, BPUEs, were square root transformed,

and forA. alburnus, raw data were consistent with model assumptions and therefore were not transformed. **p ≤ 0.05 refers to a statistically significant difference, while p > 0.05 means that

the difference is not significant. SS, the sum of squares; MS, the mean of squares; F, the F-statistic (i.e., variance ratio), P, the p-value.
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difference between the CPUEs (Figure 5) and BPUEs (Figure 6)

of VOST and VOCOM was not statistically significant for both

the total fish community and the dominant fish species, except

for asp and common carp, where there was no difference between

the three methods (Table 6). The similarity of results between

VOST and VOCOM could be due to the limited morphological

differences of the canyon-shaped Římov Reservoir along its

longitudinal axis. In the case of extreme morphological

differences along this axis, which could be the case for large

lakes and reservoirs, the relative abundance and biomass indices

could differ because there would be differences in the volume

contribution of the different compartments. Mehner et al. (2005)

and Lauridsen et al. (2008) also indicated that estimates would

depend on lake morphology.

Fish assemblages of pelagic habitats in reservoirs are

generally less diverse than those of benthic habitats. There

are no truly pelagic fish species in Římov Reservoir, and the

pelagic habitat is dominated by eurytopic species such as

TABLE 6 Summary of comparisons (ANCOVA and Tukey post hoc test) for estimated VPUEs of fish community sampled in different years (2004–2021) in Římov
Reservoir (Czech Republic) derived from CEN, VOST and VOCOM.

Method Year Tukey post hoc testc

Species VPUEa F p dfb F p CEN VOST VOCOM

A. alburnus CPUE 11.57 0.000 2,50 50.87 0.000 a b b

BPUE 12.03 0.000 2,50 1.78 0.188 a b b

A. brama CPUE 36.79 0.000 2,50 0.002 0.965 a b b

BPUE 27.84 0.000 2,50 30.34 0.000 a b b

A. brama x R. rutilus CPUE 61.11 0.000 2,50 32.91 0.000 a b b

BPUE 18.28 0.000 2,50 26.50 0.000 a b b

B. bjoerkna CPUE 25.80 0.000 2,44 41.48 0.000 a b b

BPUE 28.57 0.000 2,44 38.62 0.000 a b b

C. carpio CPUE 2.78 0.072 2,47 22.17 0.000 a a a

BPUE 2.97 0.061 2,47 21.82 0.000 a a a

G. cernua CPUE 101.57 0.000 2,50 3.71 0.060 a b b

BPUE 135.67 0.000 2,50 13.92 0.000 a b b

L. aspius CPUE 0.86 0.431 2,50 0.31 0.579 a a a

BPUE 1.07 0.352 2,50 5.45 0.024 a a a

P. fluviatilis CPUE 98.24 0.000 2,50 2.18 0.146 a b b

BPUE 87.25 0.000 2,50 2.32 0.134 a b b

R. rutilus BPUE 40.18 0.000 2,50 23.65 0.000 a b b

S. lucioperca CPUE 31.64 0.000 2,50 0.92 0.342 a b b

BPUE 17.27 0.000 2,50 4.69 0.035 a b b

S. glanis CPUE 13.64 0.000 2,39 6.68 0.014 a b b

BPUE 11.53 0.000 2,39 3.32 0.076 a b b

Whole community CPUE 30.55 0.000 2,50 27.21 0.000 a b b

BPUE 62.29 0.000 2,50 23.52 0.000 a b b

aVPUEs, for B. bjoerkna, C. carpio, G. cernua, L. aspius, P. fluviatilis, R. rutilus, S. lucioperca and S. glanis were log transformed to cope with model premises. CPUEs, and BPUEs, for A.

brama were log-transformed and square-root transformed, respectively. CPUEs, and BPUEs, for A. brama x R. rutilus and the whole community were log (VPUE+1) and log-transformed,

respectively, and for A. alburnus, raw data were consistent with model assumptions and therefore were not transformed.
bThe values of the degrees of freedom for the method (e.g., df = 2, 50) refer to the value for between groups and within groups (residuals), respectively; the latter vary slightly between species

depending on the number of VPUEs, in 18 years. The degree of freedom for the covariate (year) is one for all dominant species and the whole community.
cA Tukey post hoc test with the same letters indicates no difference between the VPUEs, obtained with the three methods, whereas different letters indicate a difference between themethods.

For roach CPUE, similar to the post hoc test for VPUEs, of other dominant species and roach BPUE, only the estimated marginal mean of CEN, differed from VOST, and VOCOM, but the

marginal means of VOST, and VOCOM, were similar.
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bleak, bream, roach, asp, and pikeperch (Moraes et al., 2021).

Bleak is a highly successful species that dominates the pelagic

habitat and thus the VOST and VOCOM species composition

(Figure 4). The proportion of bleak in CEN protocol is most

likely underestimated. The opposite phenomenon can be

noticed for more benthic species such as perch and ruffe.

More species are present in benthic habitats, so the species

composition of CEN is more diverse, however the volume-

weighted results are more realistic due to real ratios of habitat

volumes. Many researchers have reached similar conclusions,

noting that the CEN protocol not only underrepresents

pelagic habitats, but whole-lake estimates of CPUE, BPUE,

and community composition are also biased toward benthic

communities, which are disproportionately influenced by the

ecological conditions of benthic habitats (Diekmann et al.,

2005; Mehner et al., 2005; Lauridsen et al., 2008; Achleitner

et al., 2012; Alexander et al., 2015a). Since we found no

significant differences between VOST and VOCOM, we put

forward the VOST approach especially for small and medium

lakes and reservoirs with less diverse bathymetric

morphologies. In cases where bathymetric morphological

differences are very large at different sites, which is often

the case for large lakes and reservoirs, VOCOMwould provide

more realistic estimates of these population and community

indices.

Monitoring fish species composition

The European Standard Gillnet (ESG) is becoming

increasingly popular and is widely used for sampling in

European waters. Our results show that despite the use of

the modified-ESG series and a sampling scheme representing

all habitats along the horizontal and vertical gradients, only a

limited number of species (<50% of the fish species present in

the reservoir) were caught annually (Table 1; Supplementary

Table S1). Apparently, dominant, and subdominant species

were caught regularly, while rare species were caught only

occasionally. The newly emerged vimba bream probably

originated from the inflow river since it was caught only in

2021 in the tributary locality of the reservoir. The hybrid

bream x rudd, on the other hand, is probably the result of

hybridization of the two species present in the reservoir.

Hybridization of the two species in the wild has been

reported in other systems (Donnelly et al., 1998; Wyatt

et al., 2006). The observed interannual variation in species

composition (Figure 4; Table 3) also suggests temporal

variation in fish community composition and species

accessibility to gillnets. Although the extended-ESG series

solved the widely reported problem of size selectivity

(Lauridsen et al., 2008; Šmejkal et al., 2015) and allowed

capture of large specimens of common species, the problem

of species selectivity–another inherent problem of gillnets that

also applies to ESG, has not yet been resolved. Other studies

also reported the problem of species selectivity in terms of low

catchability in gillnets for eel and pike (Prchalová et al., 2013;

CEN, 2015), burbot Lota lota and (Argillier et al., 2013) and

wels catfish, which has a large, depressed head that is not

suitable for gillnets. However, the comparisons with studies of

the reservoir by other active methods (Říha et al., 2009; Říha

et al., 2015) show that extended ESG cover the main players of

the community.

Trends in fish abundance and biomass

Our study revealed trends in the abundance of some common

species. Most striking is the increase in the abundance of the bleak in

the volume-weighted VPUEs (Figures 2, 5). The population of this

species has been gradually developing in the reservoir (Říha et al.,

2009) and is clearly becoming more successful, while the total

biomass of other fishes is decreasing, although bleak increase is

seen only in numbers, not biomass. Another expanding species is

white bream, which entered the reservoir relatively late and whose

density is still relatively low. Perch abundance is increasing in the

benthic habitat, which is inhabited primarily by small individuals.

Predators (asp, pikeperch, and wels catfish) were found to have a

slight population increase. They are regularly stocked into the

reservoir, but their increase is limited by illegal fishing (Vašek

et al., 2013). Common carp seldom breeds in central European

reservoirs (Souza et al., 2022), and their population is supported by

flood events that bring common carp from aquaculture ponds in the

watershed (Boukal et al., 2012). The common carp population

peaked in 2006, when significant flooding occurred (Znachor

et al., 2017), and declined since then until 2020, when further

flooding brought new inflow of common carps (Figure 2).

Roach abundance is also increasing in the benthic habitat,

which is inhabited primarily by small individuals. In fact, the

total biomass of roach is decreasing (Figures 3, 6), so the

population consists of smaller individuals. These observed

changes in roach size structure and shift in habitat from

pelagic to littoral (benthic) may have greatly influenced the

results of CEN for roach. This could also be why the CPUE

interaction test for roach was significant over time for the

different methods (Table 4), as the small (juvenile) roach

prefer littoral habitats where plankton are abundant and the

water is warmer, resulting in an increasing trend in their CPUE

for CEN, but not for VOST and VOCOM (Figures 2, 6).

As a result, regardless of the methods used, a general downward

trend in the relative biomass of the entire fish community was

observed (Figures 3, 6), while abundance showed the opposite trend

(Figures 2, 5). Also, the increasing trend in abundance clearly reflects

the increase in abundance of small fish species (e.g., bleak) and small

individuals of bream, roach, and white bream (Figure 2). Several

factors may be responsible for this contrasting situation. Regular

biomanipulation of fish (removal of planktivorous fish such as bleak,
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bream, and roach and enhancement of predators) could be a

possible reason for this declining trend in size and thus total

community biomass. Although biomass of predators has slowly

increased over time (Figures 3, 6), they have generally remained at

low levels (Figure 4). The most abundant predators, such as

pikeperch, asp, and perch, consume small prey (Kubečka et al.,

1998; Vašek et al., 2018) and are therefore unlikely to eliminate the

largest individuals and reduce the average size of populations.

Emerging wels catfish may play a role here. In addition, a

fishery-induced evolution toward smaller size (Law, 2000; de

Roos et al., 2006) is very unlikely, as the usual catches of

planktivorous fish are only 1–2 kg/ha, except in the years from

2020 onwards, when more biomanipulation occurred (Jůza et al.,

2022). Therefore, we can say that the direct impact on fish

population size is unlikely. The most likely impact of fish

removal could be more indirect through their food web. A study

of bream growth performance in the Římov Reservoir using several

decades of age structure and climate data showed a decreasing trend

in the von Bertalanffy growth parameter K - a growth curvature

parameter that indicates the growth rate of fish toward the

asymptotic length (L∞) or weight (W∞) (Souza AT et al.,

unpublished data). This situation signals that predation pressure

on zooplankton by abundant small planktivorous fish was high and

these fish may have suffered from strong competition for food,

resulting in a downward trend in their biomass.

Conclusion

This paper provides the most comprehensive description of

long-term fish community dynamics, as it summarizes fish

samples from all habitats (i.e., all fish older than 0+) collected

with both European standard and large mesh gillnets. Using

long-term fish catch data from Římov Reservoir, we present

whole-reservoir species composition, abundance, and biomass

indices for the dominant fish species and the entire community

derived from volume-weighted and unweighted catch rates.

The CEN appeared to provided higher estimates of population

and total community abundance and biomass by a factor of two

when compared to the two volume weighting approaches.

Therefore, using such a high VPUE could have serious

implications for resource management plans and strategies, and

food web models for ecosystem level assessments. We believe that

the volume-weighted results are more realistic because habitat

volumes are used for weighting and sampling accounts for

heterogeneity in the vertical and horizontal distribution of fish.

Since we found no significant differences between VOST and

VOCOM, we put forward the VOST approach especially for

small and medium lakes and reservoirs with less diverse

bathymetric morphologies. In cases where bathymetric

morphological differences are very large at different sites, which

is often the case for large lakes and reservoirs, VOCOM would

provide more realistic estimates of these population and community

indices. To avoid overestimating the importance of benthic species at

the expense of pelagic species (e.g., ruffe, perch, and roach vs bleak in

Římov), we recommend pelagic sampling atmore locations than just

over the deepest part of the water body to cover heterogeneity of fish

distribution in this habitat (usually the largest volume of the water

body) as well, and weighting catches by the volume of a given depth

stratum in a given water body to properly reflect actual volume

proportions and provide the most representative picture of the

whole community, as required by the WFD for ecosystem status

assessment.

All approaches consistently showed an increasing trend in

whole fish community abundance and a decreasing trend in

biomass during the study period, which is supported by the

observed increase in abundance of small fish. Overall, long-term

fish monitoring data have proven critical for examining the status

and understanding of fish community composition, relative

abundance, and biomass trends, and for deciphering a realistic

picture of fish populations and communities in the freshwater

system by using habitat volume for weighting.
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Grgur Pleslić 5, Ivica Vilibić6 and Vinko Bandelj1,3

1National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy, 2National
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CNR-ISMAR, Milan, Italy, 5Blue World Institute of Marine Research and Conservation, Veli Lošinj,
Croatia, 6Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
Since the adoption of the Habitats and Birds Directives by EU governments, marine

Natura 2000 (N2K) sites have been established in the EuropeanMediterranean Sea,

creating one of the largest international networks of protected areas. Nevertheless,

to date, marine N2K sites are generally scarcely implemented, studied and

monitored, and thus their management effectiveness is weak, and their

environmental status is often unknown. The Interreg Italy-Croatia ECOSS project

aimedatestablishing theECOlogicalobservingsystemof theAdriaticSea (ECOAdS),

to integrate the existing research and monitoring activities in the area, and to

promote data sharing at international level, for enhancing monitoring and

conservation in Adriatic N2K network. In the framework of ECOSS, a conceptual

model was developed and applied to selected N2K sites, to review the existing

knowledge, assess site effectiveness, and suggest possible improvements in their

monitoring andmanagement based on the contribution that ECOAdS can provide

to their implementation. Information on social, ecological, and oceanographic

elements related to the conservation and management of these case studies was

gathered by consulting the project partners involved in the management and

monitoring of the sites and through a literature review. The results of this study

revealed a discouraging condition with no management plan in most of the sites,

while regulatory measures are generally in place but without surveillance.

Monitoring activities are performed occasionally, and information on presence

and status of protected species is often lacking or outdated. Although the N2K

networkprovidesauniqueopportunity toadvancemarineconservationandachieve

the 30% conservation target by 2030, the biggest challenge ahead is the proper

managementandmonitoringofN2Ksites.Theproposedconceptualmodelmaybe

taken as a framework to properly set up ecological observing systems in the N2K

network and help overcome current limitations, integrating scientific research

within the N2K conservation strategies.
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1 Introduction
1 www.italy-croatia.eu/web/ecoss
Healthy ecosystems are critical for providing goods and

services to human well-being. However, multiple stressors are

leading to widespread changes in marine habitat structure and

ecosystem functioning at all latitudes (Claudet and Fraschetti,

2010; Halpern et al., 2015; Zunino et al., 2017; Breitburg et al.,

2018; Bucci et al., 2020).

Since the ‘70s, the European Union has demanded common

policies to halt further biodiversity decline and protect the

environment. In line with the provisions of the Convention on

Biological Diversity (CBD) at the 1992 Rio Earth Summit, the

Habitats Directive (HD; EC, 1992) and the Birds Directive (BD;

EC, 2009) were among the first directives set off to ensure the

conservation of a wide range of rare, threatened, or endemic

flora and fauna. The HD and BD established, also thanks to the

help of the funds provided by the LIFE Programme, a system of

protected areas across Europe known as Natura 2000 (N2K),

forming a transnational network (Evans, 2012). Currently, the

N2K network includes more than 3000 marine sites and covers

almost 9% of European seas (EEA, 2021). Their number is

steadily growing (EC, 2017a), also to meet the requests of the

latest environmental conservation policies and initiatives which

include Agenda 30 (UN, 2015), the EU Biodiversity Strategy for

2030 (EC, 2020), and the 30 by 30 target (CBD, 2021). Such a

vast network adds to other types of protected areas under

national legislation and in the framework of different

international legal instruments (e.g., Barcelona, Bern, Helsinki,

OSPAR conventions).

As demonstrated by some decades of studies, when marine

protected areas are well managed and adequately enforced,

biodiversity and ecosystem functions can be preserved, in

particular from fishing pressure (Garcıá-Rubies and Zabala,

1990; Marbà et al., 2002; Sala et al., 2012; Edgar et al., 2014;

Zupan et al., 2018; Fraschetti et al., 2022). Fish are not the only

organisms that can benefit from protection; other species, such

as marine mammals, birds, and macrophytes can be safeguarded

if their habitats are preserved (Ronconi et al., 2012; Filby et al.,

2017; Tursi et al., 2022). The effects of protection measures in the

ecosystems may then lead to the preservation of numerous

ecosystem services needed to support both small and large-

scale economies (e.g., increase in catches, income from other

resources), and determine an improvement of human well-being

and the social relevance of protected areas (Mascia et al., 2010;

Ban et al., 2019).

To guarantee successful, well-managed protected areas and a

possible return in benefits for local communities, all related

socio-economic, governance, and ecological elements and their

relationships need to be identified and taken into consideration

(Cicin-Sain and Belfiore, 2005; Charles andWilson, 2009). These

elements are critical factors because they determine people’s

willingness to set and pursue conservation objectives, thus
Frontiers in Marine Science 02
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dramatically affecting the outcome of protected areas’

implementation (Charles and Wilson, 2009; Di Franco et al.,

2016; Giakoumi et al., 2018; Ban et al., 2019). Similarly,

information on the status of species and habitats targeted for

protection and the oceanographic processes affecting them is

important to facilitate predictions of how marine environments

will respond to anthropogenic alterations and assess if

conservation objectives are achieved in the long term. In this

context, integrated oceanographic and ecological observing

systems, defined as networks of monitoring facilities and

infrastructures collecting physicochemical and ecological data,

may be the key to identify changes in ecosystems at multiple

spatial and temporal scales (see Carr et al., 2011; Benedetti-

Cecchi et al., 2018; Crise et al., 2018; Manea et al., 2020; Manea

et al., 2021; Manea et al., 2022). Protected areas may, then,

benefit from incorporating integrated observing systems into

monitoring, as already demonstrated by several examples

worldwide (e.g., Carr et al., 2011; Miranda et al., 2020; Perera-

Valderrama et al., 2020). Indeed, through collection of ecological

and oceanographic data and assessment of indicators by

monitoring programs, the achievement of management goals

and objectives can be tested and, if needed, additional regulatory

actions implemented (Pomeroy et al., 2004; Cicin-Sain and

Belfiore, 2005; Pomeroy et al., 2005). This approach is

particularly useful for N2K sites, which represents an

extraordinary tool for achieving international conservation

targets. Nevertheless, marine N2K sites have been often

overlooked with respect to terrestrial and freshwater N2K sites

(e.g., Kati et al., 2015; Meinesz and Blanfuné, 2015; Orlikowska

et al., 2016; Guidetti et al., 2019; Schéré et al., 2020), probably

because the formers have been implemented more recently than

the latter ones (Evans, 2012; Sundseth, 2013; EEA, 2021).

Therefore, the greatest challenge that still lies ahead is the

appropriate management and monitoring of marine N2K sites.

The Interreg Italy-Croatia project ECOSS1 aimed to

contribute filling these gaps through the establishment of the

ECOlogical observing system in the Adriatic Sea (ECOAdS)2

(Manea et al., 2021; Pugnetti et al., 2022). The scope behind this

project was to connect tightly different actors through the

science-society-policy interface at an international level,

through a permanent and stable partnership between Italy and

Croatia. ECOAdS is constituted by the facilities, infrastructures,

and long-term ecological monitoring programs that already exist

in the Adriatic Sea and that are managed by different research

institutes, universities, and organizations. Data on ecological and

oceanographic processes and variables collected in ECOAdS at

local, national, and regional scales, can be used to get

information on the status of target species and habitats, and

assess the conservation effectiveness of N2K sites in the project

area (Manea et al., 2022). The integration of marine ecological
frontiersin.org
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observing systems would also provide a valuable tool for the

implementation of EU Environmental Directives, for instance

for defining Good Environmental Status (GES) under the

Marine Strategy Framework Directive (MSFD; EC, 2008), and

for achieving the objectives of the EUSAIR Action Plan (Manea

et al., 2020; Solly and Berisha, 2021; Pugnetti et al., 2022).

In the framework of this project, a conceptual model was

developed and applied to some selected N2K sites with the aim

to review the existing information, assess the management and

monitoring effectiveness, suggest possible improvements and

highlight the contribution of ECOAdS in this context. In

particular, for each case study, we identified social, ecological,

and oceanographic elements, displayed and discussed the

relationships among them, and highlighted possible pressures

and gaps that management authorities should address to

enhance the conservation of N2K sites. ECOAdS was

connected to the management goals and target species of each

N2K case study. Ecological and oceanographic variables and

indicators that ECOAdS should monitor to assess the status of

the conservation targets were also outlined.

The results of this study will inform the management of N2K

sites and provide a baseline of knowledge to support the

implementation of the ecological observing system in the

Adriatic Sea. In addition, the conceptual model proposed here

could be applied in other protected areas. Finally, since data on

N2K sites is often difficult to gather, scattered, or not available,

the information provided in this work can be useful to future

studies aiming to investigate N2K management.
2 Materials and methods

2.1 Setting up of the conceptual model

The conceptual model was created using Cmaps v.6.04 free

software3, which allows constructing, sharing, and modifying

online knowledge models represented as concept maps (Cañas

et al., 2005). Specifically, the conceptual model consists of a

schematic box-arrow model and was formulated following a

stepwise process, as described in Grant et al. (1997). Firstly, the

model required a deep understanding of all the key elements

related to the management of protected areas. Social, ecological,

and oceanographic elements of the N2K management were

identified based on literature review on the subject (e.g.,

Pomeroy et al., 2004; Carr et al., 2011) and our own

experience, represented graphically by boxes, and linked to

one another according to their relationships. Efforts were done

to keep the model as simple as possible, by avoiding an

overcrowded scheme. Thus, only the most important elements

and relationships were shown (Figure 1). The color of the box
2 https://ecoads.eu/
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defines the typology of the element related to the N2K

management, while the size is not relevant. Social elements

(yellow boxes) are characterized by all those elements

concerning the governance of N2K sites: EU Directives

targeted by ECOSS (i.e., HD, BD, Water Framework Directive

(WFD; EC, 2000), MSFD), the management authority, the

management goal and objectives, the conservation measures,

the stakeholders and the human activities. The identified

ecological elements (green boxes) include the target species for

which N2K sites were designated, the ecosystem services, the

ecological monitoring programs, and the ecological variables

measured. Oceanographic elements (blue boxes) include global

changes, ocean processes, the oceanographic observing system,

and the monitored oceanographic variables. Performance

indicators used to assess environmental conditions or changes

and to set environmental goals, constitute a cross-cutting

element (orange box) since they can be obtained from a single

ecological or oceanographic variable, or from multiple

combinations of them. The monitoring programs, the

variables, and the performance indicators were all included in

the ECOAdS (red) box. A complete definition of the elements

used in the conceptual model is provided in the Table S1.

The spatial arrangement of the boxes in the model follows a

hierarchical organization: boxes at the top and bottom of the

model refer to global aspects such as EU Directives, wide-scale

monitoring programs, and ecosystem services, while in the

center of the model, the elements are related to local aspects of

the N2K sites, such as the goal, objectives, and target species. The

ECOAdS box occupies a preeminent position in the conceptual

model to make clear how ECOAdS can be integrated into the

management workflow of the N2K sites. All the elements are

strictly connected and the change of one determines changes in

others. Arrows indicate the relationships among the elements.

They can go in one direction from one box to another or can be

bi-directional in case elements are expected to influence each

other. Dotted lines indicate data flow, while continuous lines

indicate a causal relationship between two boxes based on the

direction of the arrow (Figure 1).

Starting from the top of the model, we outlined that the EU

Environmental Directives ask management bodies to define the

conservation measures and management goal of N2K sites. At

the same time, the EU Directives also demand the effectiveness

of these measures be assessed and this can be done by adopting

performance indicators. The goal can be then split into more

management objectives that in turn influence the choice of

conservation measures. Management bodies generally engage

stakeholders to discuss the limitation of the activities in the N2K

sites and agree on the conservation measures. In fact, human

activities in the N2K sites can directly affect species targeted for

conservation, as well as functions and services provided by
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ecosystems. Natural processes and events can also affect target

species. For instance, global changes, in particular those related

to anthropogenically-driven climate alterations, and ocean

processes are two of the main drivers of change for species

and communities. Through ecological and oceanographic

monitoring programs, ECOAdS collects data on environmental

variables related to target species and both ecological and ocean

processes. The variables, which depict the status of the system,

are then used to obtain performance indicators that, in the end,

track the progress towards objectives and evaluate the effects of

management actions.

While the conceptual model was built around the need to

manage N2K sites, i.e., with the ‘Management Goal’ box as an

entry point, different users may start from different entry points

according to their needs. For instance, an agency involved in

monitoring activities may enter at the ‘Ecological monitoring’

box, while a public authority at the ‘Management authority’ box.

In case, management objectives or conservation measures

should be revised, the entry point could be based on these boxes.
2.2 Application of the model

The conceptual model was applied to seven Adriatic N2K

sites (Figure 2) identified within the ECOSS project. These sites

can be considered representative of the N2K network of the area

since they include different typologies of habitats and
4 natura2000.eea.europa.eu
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environmental features. In addition, they are managed by the

project partners, who therefore could provide information on

the status of the target species and management activities.

However, since some of these sites share similar ecological and

geographical features, they were treated together and thus a total

of four case studies were analyzed:
Case study 1: N2K sites Cres-Losǐnj (HR3000161) and Visǩi

akvatorij (HR3000469).

Case study 2: N2K site Malostonski zaljev (HR4000015).

Case study 3: N2K sites Trezze San Pietro e Bardelli

(IT3330009) and Tegnùe di Chioggia (IT3250047).

Case study 4: N2K sites Delta del Po: tratto terminale e delta

veneto (IT3270017) and Delta del Po (IT3270023).
Information to feed the application models was derived from

questionnaires provided to the partners aimed to report the

ecological monitoring programs they carry out (Vilibić and

ECOSS Partnership, 2019), from technical tables at the project

meetings, from the Standard Data Form (SDF) of the N2K sites4,

and from the project deliverables (Cataletto et al., 2019; Ciriaco

et al., 2019; Markov and ECOSS Partnership, 2019; Golec and

ECOSS Partnership, 2020; Miočić-Stosǐć et al., 2020; Pranovi

et al., 2020). The management plan of the Delta del Po N2K site

was also consulted to derive elements for this case study, even if

it has not yet been approved (Ente Regionale Parco Delta del Po

Veneto, 2010). When information was not available, elements

were derived from literature review and knowledge available

through our own experience. This was especially necessary for
FIGURE 1

Generic conceptual model linking ECOAdS with N2K management and EU Directives. Dotted lines: data flow; continuous lines: causal relationship.
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the management goals, objectives, conservation measures,

monitoring variables and performance indicators that were

missing in most cases. Criteria and requirements of the HD,

BD, WFD (Annex V), and MSFD (Zampoukas et al., 2012; EC,

2017b) were also considered to identify such elements.

In particular, once target species, stakeholders, and human

activities were identified, the management goals were outlined

for N2K case studies reflecting the general objective of the HD

and BD that aim at conserving the species and habitats of

protection in a favorable status. To achieve these goals, specific

management objectives and conservation measures were defined

on the base of the target species of the case studies, and the

human activities that may affect them. In the case pressures in

N2K sites are expected to affect only one species, the

management objectives were specifically focused on that

species, otherwise, they were stated in a more general form,

considering communities or ecosystems.

Ecological and oceanographic variables and performance

indicators suitable to describe the status of the conservation

targets and N2K effectiveness were also outlined based on the

specific features of the target species and human activities, the

identified management objectives, and the characteristics of the

N2K case studies (Markov and ECOSS Partnership, 2019;

Miočić-Stosǐć et al., 2020). Both state and pressure monitoring

variables were considered, since they may also allow the

detection of possible impacts acting on conservation targets
Frontiers in Marine Science 05
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and triggering changes in their original status. To keep the

number of variables as low as possible and optimize efforts and

costs for management authorities, they were also defined based

on the general criteria of non-redundancy, sensitivity to change,

feasibility, relevance for the N2K site, and cost-effectiveness

(Pomeroy et al., 2004; Bundy et al., 2019). Even if none of the

HD, BD, WFD, and MSFD specifically refer to performance

indicators, the indicators here proposed are particularly in

agreement with the eleven qualitative descriptors of the MSFD

aimed to determine the GES. For instance, Descriptor 1, focused

on biodiversity, can be investigated by different performance

indicators such as change in species population demography,

genetic diversity, and change in species home range and

behavior. HD and BD also find correspondence in this

descriptor since they do aim at conserving the species and

habitats of protection in a favorable status. Descriptor 2,

focused on non-indigenous species, can be monitored by

analyzing trends in cover and density of invasive species.

Descriptors 5 (eutrophication) and 8 (contaminants), also

related to the requirements of the WFD, can be monitored by

water quality indices.

To be in line with the aim of the ECOSS project, only

management goals, objectives, conservation measures, variables,

and indicators related to the biophysical-conservation aspects

were considered (e.g., habitat quality, biological diversity, human

activity regulation), while those related to socio-economic
FIGURE 2

Map of the N2K sites considered as case studies in the ECOSS project. The two sites of Delta del Po are partially overlapping.
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aspects (e.g., non-monetary benefits, food security, resource use

conflicts) were not included.
3 Results

3.1 Case study 1: Viški akvatorij and Cres
– Lošinj

3.1.1 Management aspects and target species
The N2K sites of Visǩi akvatorij and Cres – Losǐnj in Croatia

are managed by the Public Institution ‘Sea and Karst’ and Public

Institution ‘Priroda’, respectively (Figure 3 and Tables S2, S3).

These are two of the most important feeding and breeding areas

for the common bottlenose dolphin (Tursiops truncatus,

Montagu, 1821) in the Eastern Adriatic Sea (the only species

listed in their respective SDF), so their main management goal is

the preservation of the natural habitat of this species in a

favorable status (Figure 3 and Tables S2, S3). However, to

date, there is still no management plan, nor management

objectives and other conservation measures in charge to

effectively protect the target species (Markov and ECOSS

Partnership, 2019). Management objectives necessary to

achieve the N2K sites’ goal should consider, for instance, the

preservation and increase of T. truncatus population and its

genetic connectivity with other populations, the preservation of

dolphin prey species populations, the decrease of human-

derived pressures, the preservation of a good seawater quality,

and the mitigation of climate change and diseases impacts

(Figure 3 and Tables S2, S3).

Different stakeholders act in this area including fishers, fish

farmers, and, most of all, tourism companies due to the high

touristic value of the area (Figure 3 and Tables S2, S3). Thus,

fishing, aquaculture, tourism, and nautical sports including

boating, are the main human activities in the N2K sites

potentially causing dolphin bycatch (López, 2012), collision

with boats, noise and water pollution (Rako-Gospić et al.,

2013), change in dolphin habitat use (Pleslić et al., 2015), and

marine debris pollution (Stagličić et al., 2021). Conservation

measures that could effectively reduce such threats should be

primarily focused on regulating all human activities, raising

awareness of the local community, and increasing surveillance

(Figure 3 and Tables S2, S3). In addition, the expansion of the

size of the N2K site and protected area network beyond Cres-

Losǐnj and Visǩi akvatorij would guarantee the preservation of a

larger portion of the home range of this highly mobile species

(Pleslić et al., 2015; Fortuna et al., 2018), enhance genetic

exchange between populations (Gaspari et al., 2015), and allow

a better management of the source of threats that may be located

outside the current borders of the N2K sites (Fortuna et al.,

2018). The implementation of these measures would favor the

resilience of the species to the effects of climate change (Wild

et al., 2019; van Weelden et al., 2021).
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3.1.2 ECOAdS and monitoring aspects
The Blue World Institute (BWI) conducts monitoring

activities to assess the status of the bottlenose dolphin in the

two studied sites. In addition, a considerable body of literature

on the target species biology and ecology is available, especially

for Cres-Losǐnj (e.g., Bearzi et al., 2009; Genov et al., 2009; Rako-

Gospić et al., 2013; Pleslić et al., 2015; Rako-Gospić et al., 2017;

Pleslić et al., 2019). Based on the monitoring results, the dolphin

populations in the two sites can be considered stable (Golec and

ECOSS Partnership, 2020). Nevertheless, the main deficiency in

the existing monitoring programs is that they are not conducted

on a regular basis, because of the lack of resources (experts of

mar ine mammals and funds) (Golec and ECOSS

Partnership, 2020).

The effectiveness of the proposed conservation measures and

the achievement of the management objectives can be assessed by

some performance indicators, such as changes in dolphin

population demography and behavior, genetic diversity, water

quality indices, and trend in the amount of marine litter (Galgani

et al., 2013; Jaiteh et al., 2013; Gaspari et al., 2015; Pavlidou et al.,

2015; Pleslić et al., 2015; Fandel et al., 2020) (Figure 3 and Tables

S2, S3). As an example of application of the conceptual model, the

success of the regulatory actions aimed to reduce the impact of the

marine traffic in the protected sites could be assessed by estimating

the trend in the number of vessels inside the N2K sites and

changes in dolphin home ranges or vocalizations. These

performance indicators can be then calculated by collecting

number, type and distribution of vessels, sound levels in water,

the occurrence rate of dolphins in different areas and the

characteristics of their vocalizations (Rako-Gospić et al., 2013;

Pleslić et al., 2015; Fouda et al., 2018) (Figure 3 and Tables S2, S3).

Other useful monitoring variables could be, for instance,

those related to the interaction of the species with fishing

activities, as suggested by the project partners: signs of injuries

in dolphins, number of interactions of dolphins with fishing

gears or fish farms and, if possible, an estimate of the number of

deaths due to bycatch (Jaiteh et al., 2013; Revuelta et al., 2018;

Leone et al., 2019). These variables can be used to derive

performance indicators such as the proportion of injured

individuals, the interaction rate with fishing activities, and

change in population demography (Figure 3 and Tables S2,

S3). In addition, BWI recommended biopsy sampling for genetic

and contamination analyses to better understand processes

affecting the well-being of the local dolphin population

(Gaspari et al., 2015; Zanuttini et al., 2019).

In relation to climate change, variables that may indicate an

impact of extreme events on the species or alteration of

oceanographic conditions may include the survival of dolphin

offspring, dolphin prey population structure, spatial

distributions of dolphins and their prey, time spent foraging

by the target species per encounter, and frequency, duration,

intensity of the heatwaves (Figure 3 and Tables S2, S3). In fact,

different studies demonstrated that a catastrophic alteration of
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habitats, following marine heatwaves, caused a decline in

reproductive success and survival of offspring (Wild et al.,

2019); while alteration of distribution and behavior of dolphin

prey species due to intense storm events, also induces a change

in dolphin distribution and foraging behavior (Fandel

et al., 2020).
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Some of the variables proposed here are already collected in

the two sites, and these include dolphin population demography,

habitat use, spatial-temporal distribution, and underwater noise.

The Croatian Institute of Oceanography and Fisheries (IZOR)

also collects a wide range of data on physicochemical

parameters, biological quality elements of the WFD, hydro-
FIGURE 3

Application model of Cres-Lošinj and Viški akvatorij N2K sites for the target species Tursiops truncatus. For additional information see Tables S2, S3.
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morphological alterations, specific pollutants, benthic

invertebrate fauna, macro-algae, and phytoplankton

community (Ciriaco et al., 2019; Vilibić and ECOSS

Partnership, 2019; Golec and ECOSS Partnership, 2020).
3.2 Case study 2: Malostonski zaljev

3.2.1 Management aspects and target species
The management body of Malostonski zaljev N2K site in

Croatia is the Public Institution for the Management of

Protected Natural Areas of Dubrovnik-Neretva County

(PIDNIC), but a management plan has not been implemented

yet, neither management objectives nor regulatory measures are

officially defined (Markov and ECOSS Partnership, 2019). The

N2K site protects two target habitats listed in the Annex I of the

HD: ‘Reefs’ (1170) and ‘Large shallow inlets and bays’ (1160).

This area is also under the significant influence of freshwater and

characterized by the cultivation of the European flat oyster, a

traditional, protected activity. Since there are no target species

listed in the SDF, with the help of the project deliverables and

partners, some relevant species deserving protection on the site

were identified: seagrasses, the large brown algae Fucus virsoides

J. Agardh, the noble pen shell Pinna nobilis (Linnaeus, 1758), the

twaite shad Alosa fallax (Lacépède, 1803), and species forming

coralligenous assemblages on the rocky substratum due to the

presence of the ‘Reefs’Habitat. Thus, the main management goal

for this protected area could be the preservation of the target

habitats (‘Reefs’ and ‘Large shallow inlets and bays’), and the

identified target species in a favorable status (Figure S1 and

Tables S4, S5).

Management objectives necessary to achieve such goal

should consider, for instance, the preservation of the target

habitats and species in a good status, the preservation of the

reef community diversity and gene pool, the decrease of human-

derived pressures, the preservation of a good seawater quality

and the mitigation of climate change, diseases, and the spread of

invasive species impacts (Figure S1 and Tables S4, S5). As a

primary conservation measure, PIDNIC suggested preserving

the traditional shellfish cultivation together with natural

habitats. To make this possible, it is necessary to actively

support sustainable bivalve shellfish farming as part of cultural

heritage and traditional value, and, at the same time, do an

inventory of the biodiversity components, and monitor

periodically the status of the marine environment (Golec and

ECOSS Partnership, 2020). Indeed, aquaculture may impact the

benthic habitats by increasing biodeposition to the seafloor (by

mussel feces and pseudofeces) and induce variation in nutrient

loading and fluxes, anaerobic metabolism in sediments and

change in benthic community structure and functioning

(Lacoste et al., 2020). In addition, the ecosystem in

Malostonski zaljev N2K site is under the influence of the

mainland, thus the surrounding land-based activities must be
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regulated to reduce water pollution and physical destruction of

habitats due to urbanization. Other conservation measures that

should be implemented are those aimed to limit several direct

human pressures that may cause possible impact on target

species, such as trampling on F. virsoides, anchoring and

trawling on the seagrass Cymodocea nodosa (Ucria) (Asch.

1870) and P. nobilis (Francour et al., 1999; Vázquez-Luis et al.,

2015), and poaching of the date mussel Lithophaga lithophaga

(Linnaeus 1758) (Colletti et al., 2020). Installation of mooring

buoys, a better surveillance, as well as the setting up of new

regulations on the number of visitors, could be potential

solutions to halt such threats. Regular monitoring activities in

the area are required also to constantly assess the status of the

target species and habitats (Figure S1 and Tables S4, S5).
3.2.2 ECOAdS and monitoring aspects
Currently, monitoring activities in the area are performed by

IZOR and the University of Dubrovnik for the assessment of

water quality and the status of MSFD descriptors. The activity

includes the collection of physicochemical and biological

parameters (e.g., chlorophyll-a, temperature, nutrients,

pollutants, phytoplankton composition and abundance,

sedimentation) (Vilibić and ECOSS Partnership, 2019; Golec

and ECOSS Partnership, 2020). The variables collected by these

monitoring activities may be particularly useful in the N2K site

to assess the potential impact of the aquaculture (Ninčević-

Gladan et al., 2015). The surface area devoted to aquaculture and

abundance and biomass of benthic organisms, may also give us

an indication of the impact of this activity in the bay (see for

instance Borja et al., 2009; Valenti et al., 2018). At present, for

most of the identified target species there is no adequate

information (Markov and ECOSS Partnership, 2019),

therefore, it is strictly urgent to create a knowledge base of

their overall ecological status that would make a foundation for a

management plan of the area. However, according to Miočić-

Stosǐć et al. (2020), C. nodosa meadows seem to be stable, while

P. nobilis is critically endangered due to a disease at regional

scale (Carella et al., 2019; Šarić et al., 2020).

Other ecological and oceanographic variables that could be

collected in the area to assess the efficacy of protection together

with the corresponding performance indicators are listed in the

Tables S4, S5 and in Figure S1. In particular, regarding F.

virsoides, some monitoring variables that can give an

indication of possible changes occurring to this species

include, for example, spatial distribution, genetic information,

individual size, biomass, adult and recruit density, mortality, and

fertility rates. These variables should be then associated with

data on temperature, nutrient concentration, and frequency,

duration, and severity of sea storms and heatwaves. Indeed, F.

virsoides, endemic to the Adriatic Sea, has faced an extensive

regression in the last years (Battelli, 2016), probably due to the

changes in the trophic status of this basin (Grilli et al., 2020) and
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climate change effects that seem to induce a shift in reproductive

timing of this species (authors’ personal observation), but

further research is needed to clarify this aspect. Special

attention should be also paid to other potential threats to this

species, such as chemical pollutants (Falace et al., 2018) and

intense herbivory (Battelli, 2016). Monitoring of contaminant

concentration in F. virsoides tissues, as well as an assessment of

the herbivore density is, hence, strictly recommended to

implement adequate conservation actions (Figure S1 and

Tables S4, S5).

Another destructive activity that has been reported in Mali

Ston Bay is the date mussel poaching (Miočić-Stosǐć et al., 2020).

This illegal practice often causes extensive and lasting reduction

of the benthic habitat diversity with a shift from highly complex

to structurally simplified habitats (i.e., biological deserts

dominated by sea urchins) (Colletti et al., 2020). Efficacy of

protection measures can be assessed by measuring percent cover

of benthic habitat destructed by poaching and spatial and

temporal extent of the disturbance (Figure S1 and Tables S4,

S5). Useful information for managers may also infer from data

on the number of reported offences in a year or kilograms of

confiscated date mussels.
3.3 Case study 3: Trezze San Pietro e
Bardelli and Tegnùe di Chioggia

3.3.1 Management aspects and target species
The Veneto Region is the main management authority of the

Tegnùe di Chioggia N2K site, while the management authority

of Trezze San Pietro e Bardelli N2K site is the Friuli Venezia

Giulia Region, Italy (Figure S2 and Tables S6, S7). Both sites have

been established to protect the mesophotic biogenic reefs of the

Northern Adriatic Sea. They also share the same ecological and

oceanographic processes and are subject to the same pressures.

The loggerhead sea turtle Caretta caretta (Linnaeus, 1758) and

T. truncatus are listed as target species in the SDFs of both sites,

while A. fallax, and seabirds (the Mediterraneean gull

Ichthyaetus melanocephalus (Temminck, 1820), the common

shag Phalacrocorax aristotelis desmarestii (Payraudeau, 1826),

and the yelkouan shearwater Puffinus yelkouan (Acerbi, 1827))

only for Trezze San Pietro e Bardelli N2K site. Many benthic

species, such as the cushion coral Cladocora caespitosa

(Linnaeus, 1758) and the stony cup coral Astroides calycularis

(Pallas, 1766), are additionally listed in the SDFs and were here

considered as relevant target species grouped under the name

‘Coralligenous community’, since most of them contribute to

form coralligenous-like habitats with high biodiversity (Ponti

et al., 2011; Falace et al., 2015). P. nobilis was also identified as a

target species of these sites for its protected status under the HD

and the recent threats it is facing (Carella et al., 2019) (Figure S2

and Tables S6, S7).
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The management goal of these sites is the protection of the

habitats and species identified in the N2K SDFs, and thus the

conservation of all reef communities at a favorable status should

be considered as the main management goal (Figure S2 and

Tables S6, S7). Management plans have not been implemented

for these sites. Management objectives should aim to maintain or

restore a good status of the target species and their genetic

diversity, minimize the effects of water pollution, the impact of

invasive species, of the human activities and the effects of

extreme events also linked to the climate change (Figure S2

and Tables S6, S7). Some conservation measures were issued by

the management authorities including the prohibition of

anchoring, professional and recreational fishing, organism

collection, and the regulation of diving activities (Tables S6,

S7). However, to date, the observance of the conservation

measures is not guaranteed since surveillance and effective

management of the sites is still lacking (S. Ciriaco personal

observation). As additional conservation measures, it is

advisable to remove marine litter that generally accumulates

on these sites (e.g., Moschino et al., 2019) and install buoys

signaling the N2K site boundaries for improving compliance

with the current regulations. One of the main conservation

strategies that should be put in place is increasing the

protected area size and the creation of a network of mutually

connected and protected sites in the Northern Adriatic Sea.

Indeed, different studies have highlighted the high heterogeneity

of these reefs and the importance to preserve more sites that are

not currently protected, to guarantee connectivity through

dispersal of the associated populations (Ponti et al., 2011;

Falace et al., 2015; Fortuna et al., 2018; Bandelj et al., 2020).

Joint management strategies, including offshore and terrestrial

areas, with the adoption of ecosystem-based solutions are then

necessary to avoid that high nutrient and sediment loads from

rivers and the coast can affect the biogenic reef communities of

these protected sites (Curiel et al., 2012; Falace et al., 2015)

(Figure S2 and Tables S6, S7).

3.3.2 ECOAdS and monitoring aspects
Monitoring is performed only occasionally. There is no long,

regular, and consistent data on species and oceanographic

conditions, which is one of the main shortcomings in the

management process, as highlighted by the project partners.

Physicochemical or biological data can be partially derived from

monitoring facilities in the proximity (e.g., buoys), or from

remote sensing (e.g., chlorophyll-a from satellite), or modeling

outputs (sea-current field components). This is not true for

ecological data (e.g., community structure and composition) that

were collected only during some projects (e.g., Interreg ITA-SLO

TRECORALA, Italian PRIN ReefReseArcH) by different

research institutions and companies investigating the diversity

and connectivity of the mesophotic biogenic reefs (Vilibić and

ECOSS Partnership, 2019; Golec and ECOSS Partnership, 2020).
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Even less information is available on the spatial and temporal

density and distribution of T. truncatus, C. caretta, A. fallax and

seabirds in the N2K sites, and further monitoring programs

should be carried out on these species (see La Mesa et al., 2015;

Fortuna et al., 2018; Bearzi et al., 2021).

Taking as an example the application of the model for the

‘coralligenous community’, the effectiveness of the conservation

measures aimed to reduce direct physical damages to the benthic

organisms due to anchoring, scuba divers, or fishing can be

assessed by different performance indicators, such as the

proportion of injured organisms and changes in population

demography. These indicators can be estimated by collecting

data on population cover or density, signs of injuries on the

target species, and number or cover of dead and injured

organisms (e.g., Ferrigno et al., 2018) (Figure S2 and Tables

S6, S7).

Particularly important for the benthic community is the

early assessment of the presence, distribution, cover or density of

invasive species to assess the potential risk posed by them

(Figure S2 and Tables S6, S7). Similarly, the assessment of

the amount, type, and weight of litter on the seafloor, as well as

the number or cover of individuals adversely affected by litter is

necessary to quantify the impact of such threat over time

(Galgani et al., 2013) (Figure S2 and Tables S6, S7). The

setting up of regular monitoring programs is, in these cases,

an important strategy to report the spread of allochthonous

species at their first stage or the presence of marine debris and to

organize eradication and cleaning campaigns.

Alterations in pH and seawater temperature are the main

consequences of climate change that interfere with the growth,

body size, stress, reproductive success, and survival of many

benthic species (Garrabou et al., 2009; Asnaghi et al., 2013;

Zunino et al., 2017 and references therein). In addition, both

processes have synergistic effects on species (Pörtner et al.,

2014). To monitor such threats, it is advisable collecting data

on the time of reproduction to assess potential phenological

shifts, cover or density of organisms, presence of necrotic tissues,

and growth, as well as data on oceanographic variables:

temperature, number of extreme events (i.e., heatwaves), pH,

and dissolved oxygen (Figure S2 and Tables S6, S7).
3.4 Case study 4: Delta del Po and Delta
del Po: Tratto terminale e delta veneto

3.4.1 Management aspects and target species
The two Delta del Po N2K sites geographically overlap and

compose a single delta system with shared habitats and species.

The management body of both N2K sites is the Po Delta Veneto

Regional Park Authority (Figure S3 and Tables S8, S9). A

management plan was drafted for the Delta del Po N2K site

(IT3270023), but to date, it has not been formally approved, even

if it is used as a management tool for both sites (Ente Regionale
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Parco Delta del Po Veneto, 2010; Markov and ECOSS

Partnership, 2019). Most of the species are exclusively related to

freshwater and terrestrial habitats. For the aim of the ECOSS

project, only those species strongly dependent on the marine

environment were selected from the list of species under

protection in these sites. These include different migratory and

sedentary seabirds (the little tern Sternula albifrons (Pallas, 1764),

the common tern Sterna hirundo (Linnaeus, 1758), the sandwich

tern Thalasseus sandvicensis (Latham, 1787), the gull-billed tern

Gelochelidon nilotica (Gmelin, 1789), the Caspian tern

Hydroprogne caspia (Pallas 1770), the black-headed gull

Chroicocephalus ridibundus (Linneus, 1766), the slender-billed

gull Chroicocephalus genei (Breme, 1839), I. melanocephalus, and

P. aristotelis desmarestii), all listed in the Annexes I and II of the

BD. Some anadromous fish are also present (A. fallax, the

Adriatic sturgeon Acipenser naccarii (Bonaparte, 1836), and

the great sea lamprey Petromyzon marinus (Linnaeus, 1758))

that migrate from the sea to the upper part of the rivers for

reproduction and listed in Annex II of the HD. Seagrasses used to

thrive in the past in the Po Delta but they have not been recorded

in recent years. However, since restoration activities are planned,

and monitoring will be necessary for the next future, seagrasses

were also considered as target species (Figure S3 and Tables S8,

S9). The main management goal of these sites should include,

therefore, the conservation of all these target species and their

habitats (Figure S3 and Tables S8, S9).

Since both N2K sites extend on a vast terrestrial area

characterized by numerous villages, human uses and pressures

on target species are many and diffuse. Rivers, canals, and banks

are modified by maintenance works, dike and barrier

construction, soil erosion, rising of the salt wedge, and water

level changes; all inducing alteration of sedimentation rate and

water circulation. Recreational and commercial fishing,

aquaculture and agriculture are also widely practiced in the

area and are particularly important for the local economy;

however, they contribute to cause changes in target species

population and water quality, together with habitat

fragmentation (Ente Regionale Parco Delta del Po Veneto,

2010). Finally, the river system is frequently visited by tourists

as it is an attractive area for many outdoor activities

(birdwatching, swimming, boating, trekking, etc.), but

regulation measures should be improved since this sector

represents another source of disturbance for the target species

(Ente Regionale Parco Delta del Po Veneto, 2010; Verza and

Cattozzo, 2015) (Figure S3 and Tables S8, S9).

Many management objectives and regulatory measures are

reported in the management plan of the N2K to address the

reported issues. They are mainly aimed to increase water

circulation and passages for migratory fish, restore the

Adriatic sturgeon population and the suitable habitats for

seabirds, regulate human activities and predators’ abundance

to avoid impacts on target species and in particular on nesting

seabirds, monitor target species status, assess pollution and
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improve water quality (Ente Regionale Parco Delta del Po

Veneto, 2010; Markov and ECOSS Partnership, 2019) (Figure

S3 and Tables S8, S9). In addition, one of the main objectives

that should be considered is the implementation of integrated

management strategies with other protected areas and in

particular with a recent established N2K site offshore the Po

River estuary (IT3270025 ‘Adriatico Settentrionale Veneto –

Delta del Po’) to enhance protection of target species whose

home range includes also the marine realm. Major benefits for a

more successful conservation, may also derive from involving

stakeholders in the decision process and developing educational

programs that could foster long-term interest and personal

engagement in the management of ecosystems and natural

resources (Giakoumi et al., 2018; Golec and ECOSS

Partnership, 2020) (Figure S3 and Tables S8, S9).
3.4.2 ECOAdS and monitoring aspects
The Regional Agency for Environmental Protection and

Prevention of the Veneto and the Institute of Marine Sciences

– National Research Council perform monitoring activities in

these N2K sites, assessing different physicochemical variables

(e.g., temperature, salinity, current direction and velocity,

organic matter, nutrients, and contaminants) and ecological

variables (e.g., species composition, diversity, and abundance

of phytoplankton, benthic macroinvertebrates , and

macrophytes) (Vilibić and ECOSS Partnership, 2019; Golec

and ECOSS Partnership, 2020). Occasionally, the management

authority also monitors the spatial distribution of species,

density, coverage, species richness, and community structure

(Markov and ECOSS Partnership, 2019). Data on the status and

distribution of P. marinus, A. fallax, and seagrasses are deficient,

while much more information is available for the identified

target seabirds (Ente Regionale Parco Delta del Po Veneto, 2010;

Verza et al., 2011; Bon et al., 2013; Scarton et al., 2013; Verza,

2015; Scarton et al., 2018; Valle and Scarton, 2018; Miočić-Stosǐć

et al., 2020; Scarton and Valle, 2020; Valle and Verza, 2020;

Scarton, 2022). However, regular monitoring, necessary to detect

population trends of these species and guide the adoption of

adequate measure, is still lacking (Markov and ECOSS

Partnership, 2019; Golec and ECOSS Partnership, 2020).

Regarding, A. naccarii, this is an emblematic species of the Po

River, endemic in the Adriatic Sea (Caramori et al., 2007; Arlati

and Poliakova, 2009), and a priority species for conservation

since its natural population has drastically decreased (Bronzi

et al., 2011; Meadows and Coll, 2013). For this reason, the

Adriatic sturgeon has been object of different reintroduction

projects in the last decade (e.g., Life03nat/it/000113; Life04NAT/

IT/000126; Life15 NAT/IT/0000989).

Conservation measures that can enhance restoration of the

Adriatic sturgeon should include the improvement of river

connectivity and water quality, control of illegal fishing,

removal of invasive species, conservation and restoration of
Frontiers in Marine Science 11
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the spawning and foraging areas for A. naccarii, increase

species abundance, and increase public awareness on the

endangered status of this species (Caramori et al., 2007)

(Figure S3 and Tables S8, S9). The effectiveness of such

measures can be assessed by different performance indicators.

For instance, the improvement of water circulation can be

assessed by measuring some indicators of hydrological

alteration (e.g., monthly magnitude of stream flow; magnitude,

timing and duration of annual extreme stream flow; frequency

and duration of flood and drought events) and their change over

time (Richter et al., 1996; Lee et al., 2014) (Figure S3, Tables S8

and S9). To assess if the actions put in place to improve water

quality are working, change in turbidity, water quality indices,

the proportion of sick organisms and related contaminant level

could be measured. These indicators are fed by several variables,

some of which are already collected by local monitoring

agencies, for instance, physicochemical water parameters,

chlorophyll-a, nutrients and contaminants, and number of sick

or dead organisms (Figure S3 and Tables S8, S9).

Special attention should be also given to monitoring the

increase of the salinity in the delta system. Indeed, due to climate

change, water extraction and alteration of river flow, salt-wedge

intrusions into coastal zones are becoming more frequent and

progressing upstream to the river, affecting numerous freshwater

ecological processes, the migration of some target species, and

the possibility to use water for drinking and soil irrigation

(Simeoni and Corbau, 2009; Bellafiore et al., 2021). It is strictly

urgent to adopt measures that regulate water extraction for

different uses at the basin scale, creating phytodepuration

basins, promoting the cultivation of plants that are more

resistant to higher levels of salinity, and reducing those works

that alter hydrological conditions (Zuazo and Pleguezuelo,

2009). Among the possible variables that can be monitored to

detect environmental alterations are temperature, salinity,

seawater level, water flow rate, amount of extracted water,

number and frequency of heatwaves, amount of precipitation,

population size of target species, number of dead or sick

individuals, and species fertility (Figure S3 and Tables S8, S9).
4 Discussion

The application of the generic conceptual model to the four

case studies selected in the ECOSS project, allowed to identify

and analyze the main socio-ecological elements related to the

management of these N2K sites, with the aim to understand the

status of knowledge concerning such elements and the potential

effectiveness of the existing management.

Overall, the management authorities were easily identified in

our analysis since they have been already named locally or are

represented by a regional or national institution, even if an

effective management is still not in place. Also, the goal of the

N2K sites can be considered well-defined since it follows the
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main objective of the HD and BD, which is maintaining and

restoring the habitat types and species of community interest at a

favorable conservation status. Human activities, and the relative

stakeholders, were in part already available from the SDFs of the

sites and from the questionnaires provided to the project

partners (Vilibić and ECOSS Partnership, 2019). On the

contrary, a general gap of information emerged regarding the

management objectives and conservation measures, as well as a

paucity of monitoring activities. This leads to a general lack of

knowledge on the conservation status of target species in most of

the considered N2K sites. In the two N2K sites protecting the

mesophotic biogenic reefs of the Northern Adriatic Sea (‘Trezze

S. Pietro e Bardelli’ and ‘Tegnùe di Chioggia’), highly mobile

species are listed in the SDFs as priorities for conservation, but

very little information is available on their status (La Mesa et al.,

2015; Fortuna et al., 2018; Bearzi et al., 2021), and they were

observed only sporadically in the area. Hence they might be

considered only occasional visitors. Much more information is

available on the coralligenous communities present in these sites

(e.g., Ponti et al., 2011; Falace et al., 2015; Nesto et al., 2020), but

they are not monitored regularly. In the Malostonski zaljev N2K

site, target species were not even identified and only two priority

habitats were listed in the SDFs. The N2K sites where more

efforts are invested in monitoring target species are Cres –

Losǐnj, Visǩi akvatorij, and Po Delta.

The lack of management plans and a concrete management

process in these sites is the main reason for such data-deficiency.

Even if management plans are not mandatory for N2K sites, as

specified in the Article six of the HD, they may represent

important tools for enhancing environmental conservation in

N2K sites respect to the establishment of few regulatory

measures. Indeed, in the absence of specific requirements from

a management plan, objectives and conservation measures are

often not defined, and monitoring activities are not performed or

are often restricted to the time frame of specific research projects

focusing on few processes or habitats (Golec and ECOSS

Partnership, 2020). This also hampers the possibility to follow

ecological trends and detect changes in population dynamics

(White, 2019). The multiple human activities and pressures and

the absence of surveillance are further constraints that limit the

effectiveness of these protected areas.

In the light of these results, we tried to propose management

objectives and conservation measures taking into consideration

the target species, the human activities and their relationship, in

order to address the potential sources of impact. The definition

of clearly stated objectives is the primary step to specify the most

appropriate performance indicators and variables to assess the

achievement of the desired short-term management outcomes in

the protected areas (Thomas and Middleton, 2003; Pomeroy

et al., 2004). The variables and performance indicators linked to

the expected objectives, target species and human pressures were

identified here starting from the parameters that are already

collected in the monitoring activities inside the N2K sites or in
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their proximity (Ciriaco et al., 2019). However, many other

variables and indicators were suggested to be collected through

ECOAdS, as the current monitoring is not sufficient to assess the

status of the different target species and the impact of the many

threats documented in the N2K sites. At this point, it is

important to precise that the list of management objectives,

performance indicators, and variables outlined for each N2K site

are not intended to be used prescriptively but represent a starting

point for effective management and appropriate monitoring

programs in the N2K sites. In absence of specific and detailed

information on the occurring species and their actual status, the

definition of the elements to monitor is a difficult task. Future

management authorities should adapt monitoring programs

accordingly to the characteristics of the site, the available

knowledge, the objectives, and the available human, technical

and financial resources (Pomeroy et al., 2005). In the present

study, only ecological indicators were considered within the

ECOSS project. Other specific indicators for the assessment of

stakeholder engagement, the role of leadership, the capacity of

enforcement and compliance with protected areas’ objectives

need to be considered. Indeed, public support, and in particular

strong commitment, education and participation of local

stakeholders, has been found to be crucial for the long-term

success of N2K management (Morris et al., 2014; Kati

et al., 2015).

Our results particularly agree with those obtained by other

authors that have investigated the N2K system in the last decade.

Although this has an enormous potential to create a consistent

network of interconnected protected areas, such a network does

not still exist, and its implementation progress is considered slow

in most Member States (MS). Mazaris et al. (2017) reported that

the N2K system presently fails to meet several CBD targets

(CBD, 2021): the relative percentage of protected marine surface

area is variable among MS, offshore marine ecosystems are not

well-represented, and ecological connectivity is not guaranteed.

Moreover, less than 40% of the marine N2K sites have

management plans, indicating limited or absent management

activities in most cases (Mazaris et al., 2017). The effectiveness of

the N2K network is even difficult to measure because the paucity

of data due to sparse monitoring (Morris et al., 2014; Mazaris

and Katsanevakis, 2018) and the absence of information on

spatial distribution of threats, as in our cases (Mazaris and

Katsanevakis, 2018; Mazaris et al., 2019). Our results also

agree with a recent study that assessed the representativeness

of the Adriatic N2K sites for the bottlenose dolphin and the

loggerhead turtle (Fortuna et al., 2018). Authors found that, at

present, site-based conservation tools are unlikely to be sufficient

to protect a significant proportion (i.e., 60%) of both species,

unless very large protected areas are designated and wide-scale

mitigation measures of the threats are implemented (Fortuna

et al., 2018).

Management bodies, governments and funding agencies are

increasingly demanding information on management
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effectiveness of protected areas to assess whether results are in

line with policy and management goals, and commensurate with

efforts and resources (Roberts et al., 2018; Dunham et al., 2020).

The conceptual model developed in this study can provide useful

insights in protected areas’ management and the proposed

approach could be also extended to other N2K sites. Indeed,

by summarizing the different components of N2K management,

the model can help identify them and assess their relationship,

highlight potential knowledge gaps, and provide a base for

developing management plans. In addition, through the

ecological observing system box, the model may help to

develop adequate monitoring programs that collect data on

ecological-oceanographic variables and performance

indicators. Performance indicators then help to evaluate the

effectiveness of conservation actions in each N2K site and revise

related objectives, plans, and results. For example, if a

performance indicator shows that a management objective is

not being met, it may be necessary to modify or strengthen

conservation measures; these will then regulate human activities

and enable the conservation of target species. Vice versa, the

model also allows detecting new human pressures that can act on

the protected site or a new species that deserves protection, thus

conservation measures or the variables necessary to monitor

may require revision. Such a cyclic process follows an adaptive

management approach, where the expectations of the set actions

are systematically verified, and the results of such testing allow

further revision and improvement of management practices

(McCook et al., 2010; Nickols et al., 2019). Other types of

stakeholders may also apply the model. For instance,

environmental monitoring agencies may propose or change

sampling techniques, variables, and performance indicators

according to the target species and processes they are

monitoring, and in relation to the management outcomes they

are asked to verify. Thus, the observing system is not only

important in the decision-making process but also in merging

different fields: research, monitoring and nature management.

For the aim of the ECOSS project, our conceptual model relies

on ECOAdS2, the ecological observing system in the Adriatic Sea

established under the IT-HR project ECOSS1. However, any

other observing systems or monitoring programs can be

integrated in the model, according to the N2K site and local

framework to which the model is applied.

To this regard, with the present study we also wanted to

highlight the need to integrate existing monitoring initiatives and

adopt a data sharing approach at transnational level in line with

the principles of the Open Science (EC, 2018). This approach

would facilitate the collection of data on ecological variables,

which is generally expensive and difficult to achieve in the long-

term. Ecological monitoring can be then further optimized by

linking it to oceanographicmonitoring, which can help predict the

best timing of survey based on the ocean conditions that control

the ecological process under study. For example, the optimal

period for carrying out the surveys of anadromous fish
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populations could be derived by examining the physicochemical

variables that trigger their migration (Thorstad et al., 2008). The

creation of an observing system is also essential to enlarge the

spatial and temporal scales of the monitoring activities and extend

them outside the N2K sites, for taking into consideration different

processes and species life stages (Garcìa-Charton et al., 2000;

Edwards, 2004; Carr et al., 2011; Allen and Singh, 2016; Kaplan

et al., 2019; Zipkin et al., 2021). While monitoring activities inside

each N2K site can still be conducted by the management

authority, local research institutes or private companies, large-

scale data can derive only from a connected network of observing

systems (Manea et al., 2022). This strategy links the potential of

the protected areas to detect processes at local scales with that of

the oceanographic monitoring systems at a larger scale. Thus, the

response of habitats and species to both climate change and local

human impacts can be revealed at multiple scales through the

combination of N2K sites and observing system monitoring.

Examples of extended and successful ocean monitoring systems

that help to assess the effectiveness of protected area networks

already exist worldwide, such as the Central and Northern

California Ocean Observing System5, and the Australia’s

Integrated Marine Observing System6. The extension and

integration of the monitoring programs at different scales can

also strengthen and elevate the role of the N2K sites in the Adriatic

Sea: from a current condition of single isolated units to an efficient

network of co-monitored and effective protected areas, as required

by the CBD. This is particularly true for the N2K case studies here

investigated because many of the species targeted for protection,

such as seabirds, some fish, dolphins, and sea turtles, are expected

to move significantly in the region (Fortuna et al., 2018). In

addition, the complexity of some territories and the high number

of human interests, such as in the Po Delta Park, require a broader

and holistic management approach.

The results obtained in our study do not detract at all the role

of N2K sites relative to the objectives for which they have been

established. However, to achieve ecosystem‐wide benefits, it is

crucial to rethink and enlarge the aim of N2K sites. EU Member

States should invest a great effort in the social and policy fields to

greatly enhance N2K ability to meet its conservation targets.

N2K site managers should follow an ecosystem-based approach

and take into consideration the development of shared

management processes between multiple N2K sites, as it is

conceived in the HD (Bastmeijer, 2018). A stronger

cooperation among different stakeholders is also needed to

allow data and knowledge exchange (Bertzky and Stoll-

Kleemann, 2009; Cvitanovic et al., 2014). In addition, to

achieve broader coverage of the monitored area and focus on

specific ecological factors, it may be useful to increase the
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number of sampling stations within N2K sites and standardize

the variables sampled (Manea et al., 2022). In the present study,

an ecological observing system (ECOAdS) for the Adriatic Sea

has been described, but, also, more generally, we suggest that

existing or future ecological observing systems in other areas

may be a suitable tool to improve monitoring programs, to share

data between different producers and users, and ultimately to

support the protection of marine habitats and species (Manea

et al., 2022; Pugnetti et al., 2022).
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protected areas. Eds. L. Alfaré and E. Ruoss (Roma, Italy: CNR Edizioni), 23–39.

Marbà, N., Duarte, C. M., Holmer, M., Martıńez, R., Basterretxea, G., Orfila, A.,
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Vilibić, I., and ECOSS Partnership. (2019). D3.1.1. Report on the assessment of
existing ecological monitoring programs and observing systems. Deliverable of the
Interreg Italy-Croatia ECOSS project. Zenodo pp 84. doi: 10.5281/zenodo.6845435
Frontiers in Marine Science 18
180
White, E. R. (2019). Minimum time required to detect population trends: the
need for long-term monitoring programs. BioScience 69 (1), 40–46. doi: 10.1093/
biosci/biy144

Wild, S., Krützen, M., Rankin, R. W., Hoppitt, W. J., Gerber, L., and Allen, S. J.
(2019). Long-term decline in survival and reproduction of dolphins following a
marine heatwave. Curr. Biol. 29 (7), R239–R240. doi: 10.1016/j.cub.2019.02.047

Zampoukas, N., Piha, H., Bigagli, E., Hoepffner, N., Hanke, G., Cardoso, A. C.,
et al. (2012).Monitoring for the Marine Strategy Framework Directive: requirements
and options (Luxembourg: Publications Office of the European Union), pp 42.
doi: 10.2788/77640

Zanuttini, C., Gally, F., Scholl, G., Thomé, J. P., Eppe, G., and Das, K. (2019).
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Consistency of six in situ, in vitro
and satellite-based methods to
derive chlorophyll a in two
optically different lakes
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Phytoplankton and its most common pigment chlorophyll a (Chl-a) are

important parameters in characterizing lake ecosystems. We compared six

methods to measure the concentration of Chl a (CChl-a) in two optically

different lakes: stratified clear-water Lake Saadjärv and non-stratified turbid

Lake Võrtsjärv. CChl-a was estimated from: in vitro (spectrophotometric, high-

performance liquid chromatography); fluorescence (in situ automated high-

frequency measurement (AHFM) buoys) and spectral (in situ high-frequency

hyperspectral above-water radiometer (WISPStation), satellites Sentinel-3 OLCI

and Sentinel-2 MSI) measurements. The agreement between methods ranged

fromweak (R2 = 0.26) to strong (R2 = 0.93). The consistency was better in turbid

lake compared to the clear-water lake where the vertical and short-term

temporal variability of the CChl-a was larger. The agreement between the

methods depends on multiple factors, e.g., the environmental and in-water

conditions, placement of sensors, sensitivity of algorithms. Also in case of some

methods, seasonal bias can be detected in both lakes due to signal strength and

background turbidity. The inherent differences of the methods should be

studied before the synergistic use of data which will clearly increase the

spatial (via satellites), temporal (AHFM buoy, WISPStation and satellites) and

vertical (profiling AHFM buoy) coverage of data necessary to advance the

research on phytoplankton dynamics in lakes.

KEYWORDS

chlorophyll-a,WISPstation, HPLC, fluorescence, high-frequencymeasurements, lakes,
Sentinel-3 OLCI, Sentinel-2 MSI

1 Introduction

Phytoplankton forms the basis of the aquatic food web (Fenchel, 1988), reacts fast to

the changes in the environment (Reynolds, 2006; Hama et al., 2015), and reflects the

alterations in climate (Winder and Sommer, 2012; Guinder and Molinero, 2013). The

main photosynthetic pigment in phytoplankton is chlorophyll a (Chl a), which has hence

been used for a long time as a metric for describing phytoplankton properties, either as a
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proxy for biomass (Vörös and Padisak, 1991; Boyer et al., 2009;

Bernát et al., 2020), a measure of eutrophication (Ferreira et al.,

2011; Matthews, 2014; Guan et al., 2020), an indicator for blooms

(Reinart and Kutser, 2006; Gittings et al., 2017), or basis for

primary production calculations (Longhurst et al., 1995; Tilstone

et al., 2014). It is also one of the important parameters in

assigning the ecological status class of water bodies by various

legislative acts, e.g. Water Framework Directive (European

Commission, 2000) and Marine Strategy Framework Directive

(European Commission, 2008) both in pan-European scale and

regional conventions, such as OSPAR (Convention for the

Protection of the Marine Environment of the North-East

Atlantic) or HELCOM (Baltic Marine Environment Protection

Commission) (HELCOM, 2006; OSPAR Commission, 2009).

The variety of ways to determine the concentration of Chl a

(CChl-a) is constantly increasing. In laboratory conditions,

spectrophotometric method for CChl-a detection is widely

used, although details in methodology (used solvent,

calculation scheme, etc.) may differ among recommended

standards and research groups (Gitelson et al., 2007; Zhang

et al., 2009; Matthews et al., 2012; Pahlevan et al., 2020).

High-performance liquid chromatography (HPLC) is by

design more precise and has become a standard for analyzing

phytoplankton pigments in marine and freshwaters (Simmons

et al., 2016). Regardless of being relatively fast, objective and

sensitive (Tamm, 2019), it is often unaffordable for smaller

research teams or when high number of samples needs to be

analyzed.

Automated high-frequency measurements (AHFM) of

chlorophyll fluorescence with buoys equipped with various

sensors, allow insight into processes within a lake in sub-

hourly timescales (Laas et al., 2016). This enables the study of

the diurnal and seasonal variations of CChl-a and lake metabolism

in close details (Meinson et al., 2016) and provides a deeper

insight into ecosystem dynamics, suits for assessing matter fluxes,

and establishing precise chemical budgets (Rinke et al., 2013).

AHFM systems are particularly useful to capture short-term

events (e.g., cyanobacterial blooms) and fast water quality

shifts in highly dynamic systems, together with enhancements

in overall predictive capacity (Marcé et al., 2016). Profiling

sensors in lakes give an overview of the vertical water column,

while sensors deployed at fixed depths give information about

one specific depth and location. Earlier, AHFM buoys were

mainly equipped with underwater sensors to measure water

temperature, electrical conductivity, pH, and dissolved oxygen

properties, while information about biota, e.g., CChl-a, was much

scarcer (Meinson et al., 2016; Meinson, 2017). Over the last

decade, most of the new AHFM systems have at least some

sensors to detect algal pigment changes, and therefore many

studies have also explained CChl-a variability in lakes (Brentrup

et al., 2016; Rusak et al., 2018). Continuous AHFM monitoring

allows comprehensive studies of fast-evolving processes in lakes

in short-term scales (Snortheim et al., 2017; Woolway et al.,

2017). The presence of sensors in many lakes around the globe

(e.g., via GLEON network) gives means to draw broader

conclusions about the effects of changing climate and

resulting factors. This is important from both scientific and

management point of view.

Spectral radiometric measurements allow the quantification of

CChl-a via the absorption and scattering features in the recorded

signal. In situ hyperspectral optical sensors (e.g., WISPStation)

provide high spectral and temporal resolution, which enables the

validation of visible and near-infrared bands of present and future

satellite missions providing water reflectance data within minutes

(Vansteenwegen, et al., 2019). WISPStation is an optical

measurement system deriving above-water reflectance (spectral

range 350–900 nm, spectral resolution 4.6 nm) and in-water

substances (Peters et al., 2018) e.g., CChl-a. High-frequency

hyperspectral optical data can complement relatively scarce in

situ measurements. This allows improving the knowledge about

short-term processes in lakes and could be linked with Earth

Observation (EO) measurements to increase knowledge in spatial

scale (Siegel et al., 2013; Binding et al., 2018; Hu et al., 2019). EO

data provides a frequent, large-scale synoptic overview of lakes and

has been increasingly integrated operationally into inland water

algal bloom monitoring (Binding et al., 2021). European Union’s

EO Programme Copernicus currently provides data access up to

four Sentinel series satellites to derive optical water quality

parameters in lakes. Sentinel-3 (S3) Ocean and Land Colour

Instrument (OLCI) offers an opportunity to monitor inland

and coastal waters with high spectral (21 bands) and temporal

(global coverage every 2 days) resolution. Still, it is more suitable

for monitoring large water bodies because of its spatial resolution

(pixel size 300 m on the ground). Another European Space Agency

satellite Sentinel-2 (S2) Multispectral Instrument (MSI) allows

monitoring smaller water bodies, with spatial resolution of

10–60 m on the ground, but has lower spectral, radiometric

and temporal resolution compared to Sentinel-3 OLCI.

Although Sentinel-2 was initially created for land applications,

water quality parameters can be still successfully mapped (Toming

et al., 2016; Pahlevan et al., 2017; Ansper & Alikas, 2018; Bonansea

et al., 2019; Page et al., 2019; Al-Kharusi et al., 2020).

Various methods to derive CChl-a are widely used depending

on the traditional monitoring methods, availability of the

resources, instruments, specialists and laboratory facilities.

Data gathered with different methods are then used to

conclude the phytoplankton properties from regional to global

scales (Sayers et al., 2015; Pahlevan et al., 2020), despite

methodological differences within a dataset. The monitoring

requirements of CChl-a by different methods can vary and

depend on multiple factors. The expected accuracy is variable:

for example for the fluorescence measurements by sonde, the

manufacturer gives ±5% as the accuracy estimation. The

photometric accuracy of spectrophotometer is dependent on

absorbance range (±0.002 absorbance at 0 to 0.5 absorbance

range; ±0.003 absorbance at 0.5 to one absorbance range).
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Sentinel-3 Copernicus requirements have set 10% accuracy goal

for CChl-a for both Case 1 and Case 2 waters, while thresholds are

30% and 70% respectively, depending on the optical complexity

of the waters (Drinkwater and Rebhan, 2007). Here we have used

a comprehensive dataset where CChl-a has been measured

simultaneously by several methods, commonly used in

limnology and satellite-based estimations. Despite high

temporal frequency of some methods (e.g., AHFM of

fluorescence for 24 h, radiometric measurements up to 10 h

(depending on Sun elevation)), the focus is set on midday

measurements to allow the minimum time gap between all

methods constrained by satellite overpasses and in vitro

sample analyses in the laboratory. In this study, we compared

six different methods to derive CChl-a values, and analyzed the

linkage and merging between different methods to estimate the

consistency of the methods to derive CChl-a in two optically

different lakes.

2 Materials and methods

2.1 Study lakes

Lake Võrtsjärv is a shallow eutrophic lake located in the

southern part of Estonia (Table 1; Figure 1). The water in the

lake is generally well mixed, and there is no significant stratification.

The dominant algal groups are diatoms and cyanobacteria

(Limnothrix planctonica and L. redekei tend to dominate during

the entire year), the rest (green algae, cryptophytes and

dinoflagellates) belong to aminority group (Järvet andNõges, 1998).

Lake Saadjärv is a relatively deep (maximum 25 m)

mesotrophic lake in South Estonia. It is dimictic, and is

stratified for most of the year (Cremona et al., 2016), with

significant temperature differences between the surface and

bottom layer, especially in summer. The dominant algal

groups by biomass are diatoms, cryptophytes, and cyanobacteria.

Both lakes differ greatly in terms of the amount of optically

active substances (Table 1), the resulting underwater light field

and seasonal dynamics in phytoplankton. Võrtsjärv has typically

increasing phytoplankton biomass towards autumn, while in

Saadjärv phytoplankton is more abundant in spring. Võrtsjärv

has almost an order of magnitude higher CChl-a mean value

compared to Saadjärv (36.3 μg/L and 4.8 μg/L respectively,

Table 1). Absorption of colored dissolved organic matter

(aCDOM) is higher in spring in both lakes and decreases

towards autumn. Total suspended matter (TSM) increases

towards autumn in Võrtsjärv (from ~10 mg/L to 30 mg/L in

2018 and up to 40 mg/L in 2019) compared to low concentrations

(~1.5 mg/L) during the entire year in Saadjärv.

2.2 Data

2.2.1 Laboratory measurements
Water samples for CChl-a analyses were gathered from surface

water (e.g., 0.5 m depth) in Saadjärv and from various depth

integrated water (surface, then after every 0.5 m) in Võrtsjärv.

Water samples were kept in the dark and cooled container and

filtered during the same day of the fieldwork.

Duplicate samples for CChl-a were filtered onto 25 mm ø GF/

F filters (0.7 μm pore size). Filters were stored at −20°C until

being extracted with 5 ml 96% ethanol for 24 h, centrifuged for

10 min (4,000 rpm), measured spectrophotometrically (Hitachi,

2020) and CChl-a was calculated for mixed phytoplankton

assemblage according to Jeffrey and Humphrey (1975).

For HPLC analysis, 100–700 ml of sampled lake water was

vacuum filtered through 47-mmWhatman GF/F, triplicate filters

were stored in 5 ml plastic vials, frozen immediately and kept

at −70°C before analysis. Phytoplankton pigments were extracted

in 100% acetone (2 ml) containing internal standard and

sonicated (Branson 1210) for 5 min. Samples were stored

at −20°C for 24 h. After that, the extracts were filtered

through 0.45 μm syringe filters (Millex LCR, Millipore) and

stored in dark refrigerator until HPLC analysis (for details, see

Tamm et al., 2015). CChl-a and Chlorophyllide a values were

summed up for total CChl-a.

2.2.2 Fluorescence measurements
Data from two AHFM buoy stations measuring fluorescence

were used (Figure 1). Võrtsjärv AHFM buoy (58.211798 N,

26.103163 E) was equipped with a Yellow Springs Instruments

(YSI) model 6600 V2-4 multiparameter sonde in 1-m depth. The

sonde has been fitted with a chlorophyll fluorescence probe

TABLE 1 Main morphological and bio-optical parameters in Võrtsjärv and
Saadjärv. Mean values are given in parentheses. TSM refers to total
suspended matter (mg/L) and aCDOM(442) to the absorption of coloured
dissolved organic matter at 440 nm.

Parameter Võrtsjärv Saadjärv

Area (km2) 270 7.24

Mean depth (m) 2.8 8

Max depth (m) 6 25

Volume (km3) 0.75 0.056

Catchment Area (km2) 3,104 28.4

Length (km) 34.8 6

CChl-a (µg/L) 5.1–83.18 (36.26) 3.23–9.15 (4.77)a

TSM (mg/L) 4–58.8 (19.88) 0.6–2.4 (1.52)a

aCDOM(440) (m
−1) 1.2–13.8 (3.0) 0.8–1.2 (1.0)a

Secchi depth (m) 0.3–2.15 (0.7) 3–6.5 (4.25)

Surface elevation (m) 34.6 52.5

aindicates samples collected from the surface layer (down to 0.5 m).

Frontiers in Environmental Science frontiersin.org03

Alikas et al. 10.3389/fenvs.2022.989671

183

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.989671


(model 6025) and was recording after every 10 min frequency.

Saadjärv AHFM buoy station (58.536963 N, 26.647558 E) was

equipped with a YSI EXO-2multiparameter sonde and worked as

a vertical profiler within 2–20 m water column. This sonde was

fitted with an EXO Total Algae-Phycocyanin sensor. The buoy

was set to make profiles after every 30 min in 2018 and 1-h

frequency in 2019, from surface to bottom and the data was

recorded every 4–5 cm. The automated sensor-based

measurements of chlorophyll fluorescence (ChlF) was

converted into CChl-a using standard manufactory coefficient

and local conversion factors, derived via linear interpolation

from monthly in vitro spectrophotometrically measured CChl-a.

All underwater sensors in both AHFM systems were calibrated at

least once per month according to the manufacturer instructions.

Both AHFM systems were also equipped with the

multiparameter weather stations (Vaisala Weather Transmitter

WXT520 in Võrtsjärv; Airmar 200WX Weather Station

Instrument in Saadjärv) and solar irradiance sensors for above-

water measurements. Photosynthetically active radiation (PAR) for

Saadjärv was recorded with a Li-Cor quantum sensor (model LI-

190SZ), while in Võrtsjärv, the buoy was equipped with a Li-Cor

pyranometer (model LI-200SA), where PARwas calculated as 0.436 x

Q (Q—incident global radiation) (Reinart and Pedusaar, 2008).

The non-photochemical quenching (NPQ) correction was

performed according to Moiseeva et al. (2020):

PARz � PAR0 × e− Kd × z( ) (1)
dop � e −0.0019 × PARz( ) (2)

FIGURE 1
Location of the studied lakes on European scale (A) and within Estonia (B). The location of AHFM buoy and pin location for the satellite data in
Saadjärv are in the image with orange frame (C,D). The location of WISPStation and AHFM buoy in Võrtsjärv are in light blue frame (C,E). Estonian
contour was obtained from the Estonian Land Board (2021).
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Freal � Ft × 2 − dop( ) (3)

where PARz is photosynthetically active radiation, which

penetrates to depth z, PAR0 is PAR falling to the lake surface,

Kd is a diffuse attenuation coefficient, dop is a portion of the open

reaction centres (photosystem 2), Ft is a quasi-stationary level of

fluorescence in an object adapted to light and Freal is a corrected

chlorophyll fluorescence. In Võrtsjärv, Kd was obtained from the

WISPStation radiometric data (Alikas et al., 2015). In Saadjärv, in

situmeasured Secchi depth was used to derive the euphotic depth

(Zeu) as a ratio between coefficient 2.69 and Secchi depth (Luhtala

and Tolvanen, 2013), which was then converted to Kd (Koenings

and Edmundson, 1991). The corresponding Z90 depth (depth at

which 90% of the surface downwelling irradiance is attenuated)

and Zeu (reflects the depth where PAR is 1% of its surface value)

were derived.

2.2.3 Spectral measurements
Fixed WISPStation was located in the pier of Võrtsjärv

(Figure 1E, 58.211186 N, 26.107979 E). The station contains

three radiometers that measure radiance and irradiance under

fixed angles (Peters et al., 2018) with 15-min frequency. For a

detailed description of the measurement setup, data processing

and calibration ofWISPStation, see Peters et al. (2018). Processed

WISPStation data was downloaded from the WISPweb (https://

wispweb.waterinsight.nl), where CChl-a has been calculated from

derived reflectance according to Gons (1999). Data was filtered

based on the solar zenith angle (>70°), and exceptionally high

values of CChl-a (>200 μg/L), not consistent with the known

natural background, were removed.

Satellite images from S2 MSI and S3 OLCI were used. Data

was downloaded from Estonian National Satellite Data Centre

ESTHub (ESTHub, 2022) with a pixel size of 60 m for S2MSI and

300 m for S3 OLCI. First, S2 and S3 L1 data were processed with

IDEPIX in SeNtinel Application Platform (SNAP) and pixels

marked with cloud, cloud ambiguous, cloud sure, cloud buffer,

cloud shadow, snow_ice and Sun glint risk flags were removed.

Next, lake specific CChl-a algorithms were applied (Table 2).

Previous studies (Mograne et al., 2019; Pereira-Sandoval

et al., 2019; Warren et al., 2019; Alikas et al., 2020) have

shown that C2RCC and POLYMER (Steinmetz et al., 2011)

tend to work relatively well compared to other available

atmospheric correction methods on MSI and OLCI data over

optically different waters. The atmospherically corrected data,

standard CChl-a products from these processors together with

previously developed approaches, based on L1 data (Alikas et al.,

2015; Ansper and Alikas, 2018; Alikas et al., 2020), were tested

over both lakes in terms of their accuracy and data availability.

In eutrophic Võrtsjärv (mean CChl-a 36.3 μg/L, TSM 19.9 mg/

L, aCDOM(440) 3.0 m
−1), L1 data based CChl-a retrieval showed to

be more robust and resulted in more retrievals than

atmospherically corrected L2 or any standard product for

deriving CChl-a. Therefore, the Maximum Chlorophyll Index

(MCI) (Gower et al., 2008) was applied to L1 data and CChl-a

was derived by using empirical algorithms from S2 and S3 data in

Võrtsjärv (Table 2).

In mesotrophic Saadjärv (mean CChl-a 4.8 μg/L, TSM 1.5 mg/

L, aCDOM(440) 1.0 m
−1), for S2 data POLYMER products resulted

only in two quality controlled points in 2018 and four points in

2019, therefore C2RCC was chosen. C2RCC processor’s standard

CChl-a product (chl_conc) with regional conversion factors was

applied to S2 data. Also various empirical approaches were tested

but due to high uncertainties in the shape and in the magnitude

of the water-leaving reflectance from C2RCC, it did not result in

more accurate CChl-a retrievals. For S3 data, POLYMER

atmospheric correction was applied to derive remote sensing

reflectance (ρ) and a ratio of 709 and 665 after Gilerson et al.

(2010) was applied with lake-specific coefficients (Table 2).

For S2 and S3 images, 3 × 3 pixel area centered at the

coordinates (ROI—region of interest) of the in situ stations

were extracted for further analyses (Figure 1). The mean (µ)

and standard deviation (σ) were calculated within the ROI. Each

ROI was checked for outliers following the OLCI validation

guidelines (EUMETSAT, 2019). Single pixel outliers were

removed if CChl-a < (µ—1.5σ) or CChl-a > (µ + 1.5σ). Entire
ROI was excluded when the ratio between standard deviation and

mean e.g., coefficient of variation (CV), was greater than 0.2

(e.g. 20%).

2.3 Temporal frequency of data

Depending on the setup of the different AHFM systems

(WISPStation, fixed/profiler buoy) they provided from 50 to

900 measurements daily, covering more than 100 days of data

during the vegetation period (Table 3). Availability of satellite

data was mainly regulated by cloud cover and combination of

signal strength versus lake size, which resulted on average in

40 images over Võrtsjärv compared to 15 over Saadjärv (Table 3).

2.4 Statistical analyses

Open-source software tool R was used for statistical analyses

and graphics. Bias and error between different methods were

estimated according to Seegers et al. (2018):

TABLE 2 Selected algorithms for Sentinel-2 MSI and Sentinel-3 OLCI data
over study lakes.

S2 S3

Saadjärv Chl a = 1.7119* chl_conc +7.115
Chl a � 6.42 × (

ρ709
ρ665

)
1.2

Võrtsjärv Chl a � 2211.3 × MCI + 22.77 Chl a � 8.8 × MCI + 16.7
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bias � 10∧
∑

n

i�1 log10 Mi( )−log10 Refi( )
n( )

(4)

MAE � 10∧
∑

n

i�1 log| 10 Mi( )−log10 Refi( ) |
n( )

(5)

where Mi is a model value, Refi is a reference value, and n is a

number of paired observations. Bias represents log-

transformed residuals, whereas MAE stands for the mean

absolute error computed in log-space. These metrics are

dimensionless, where the value of 1.5 indicates the model

predicted value is 50% higher on average than the reference in

case of bias and relative measurement error is 50% in case

of MAE.

Mean Absolute Percentage Difference (MAPD) was used to

study the short-term variability in respect of the midday

reading

MAPD �
∑n

i�1100
xmidday,i−xday,i

xmidday,i

∣∣∣∣∣∣

∣∣∣∣∣∣

n
(6)

where xmidday,i is a CChl-a reference value on a midday

(12.30 GMT+3), xday,i CChl-a value before or after midday, n is

a number of observations.

The non-parametric two-sample Mann-Whitney U test was

used to detect statistically significant differences between paired

measurements.

3 Results

We first show the results from the inter-comparison of all

methods in both lakes and in a second step analyze the

consistency between the methods in lakes separately in

terms of the changing environmental and in-water

background conditions. Third, based on the spectral and

fluorescence high frequency measurements, the causes for

seasonal bias and outliers between two methods are

demonstrated.

3.1 Method based comparison to derive
CChl-a in two optically different lakes

The combination of seasonal dynamics (Figure 2) and

pairwise comparison (Figure 3) showed smaller differences

between the methods in eutrophic Võrtsjärv compared to

Saadjärv (Table 4). The bias between different methods was

smaller in Võrtsjärv (average 3%, up to 31%) compared to

Saadjärv (average 27%, up to 55%). Similarly, the average

MAE was smaller in Võrtsjärv (average 28%, with a range

from 7% to 51%) compared to Saadjärv (average 97%, with a

range from 51%–159%) (Table 4). While the sparse in vitro

measurements showed generally good agreement with all

available methods, the results were more scattered between

spectral and fluorescence measurements.

3.1.1 Laboratory measurements
Comparison of in vitro methods showed generally higher

CChl-a by spectrophotometric approach compared to HPLC

(Figure 3D). HPLC readings were, on average, 31% lower than

spectrophotometrically measured CChl-a in Võrtsjärv (Table 4).

In Saadjärv, the discrepancy was even more considerable.

The difference between the in vitro methods reflected also in

the comparison with other methods. Comparison with

WISPstation data showed underestimation of

spectrophotometric CChl-a (24% bias, 29% MAE) and

overestimation of HPLC CChl-a (11% bias, 13% MAE).

Compared to all methods, the smallest bias and MAE were

derived between spectrophotometric and S3 (e.g., 2% bias in

Võrtsjärv) and fluorescence (e.g., 6% bias in Võrtsjärv) based

estimates in both lakes (Table 4).

3.1.2 Fluorescence measurements
In both lakes, the AHFM on ChlF delivered more than

100 days of data per year to study the seasonal dynamics of

phytoplankton. As seen on Figure 2, the changes can be with

high magnitude and rapid (e.g., daily changes in CChl-a ~10 μg/L

TABLE 3 Number of days with data used in this study. Slash (/) separates observations from years 2018 and 2019.

Method Võrtsjärva Saadjärvb Measurement depth Nr of measurements in a day

Spectrophotometric 8/9 3/3 Integrala, surfaceb 1

HPLC 8/– 3/2 Integrala, surfaceb 1

Fluorescence 103/160 169/163 Subsurfacea, vertical profilerb 120–144a 900/400b

WISPStation 152/101 – Z90 depth 30–51

Sentinel-2 MSI 38/36 14/16 Z90 depth 1

Sentinel-3 OLCI 44/74 15/25 Z90 depth 1–2

aVõrtsjärv.
bSaadjärv.
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in Saadjärv and ~30 μg/L in Võrtsjärv). This seasonal dynamics

is well captured by all methods with varying measurement

frequency in Võrtsjärv (Figure 2A, B) with a bias from 6%–

13% and MAE from 7%–38% in respective to fluorescence

measurements (Table 4). In Saadjärv, there is a clear

difference between the S2 and S3 derived seasonal dynamics

(Figures 2C, D), with S3 tends to follow more similar pattern

with fluorescence measurements than S2. It resulted in

statistically significant different retrievals with 55% bias and

70% MAE.

In terms of the fluorescence measurements, in both lakes, the

difference between the midday and night-time ChlF increased

with increasing phytoplankton amount. Night-time ChlF tends

to be higher during more abundant phytoplankton e.g. during

the spring bloom in Saadjärv (up to 5.9 RFU) and late summer

bloom in Võrtsjärv (up to 1.7 RFU). With this in mind, statistics

between all methods in respective to ChlF night measurements

were derived, which showed that the daytime ChlF

measurements resulted in better consistency in eutrophic

Võrtsjärv with all methods. In Saadjärv, the differences in the

derived statistics were small and more data would be needed to

study the impact of choosing between night or daytime ChlF as a

reference data.

The comparison of in-water fluorescence measurements

showed that the short-term temporal variability was 60%

higher on average in the clear water Saadjärv (MAPD 11%)

than in turbid Võrtsjärv (MAPD 4.5%) within the ±30 min time

interval (Supplementary Figure S1). While in Saadjärv the short-

term variability in recorded ChlF measurements was higher

during spring bloom (in both day and night measurements),

no seasonal dependence respective to the phytoplankton quantity

was observed in Võrtsjärv. In comparison, spectral data

(i.e., WISPStation) showed higher standard deviation around

the midday measurements towards autumn—during low light

conditions. The comparison of in-water fluorescence and above-

water radiometric methods in Võrtsjärv showed the in-water

measurements tend to be more stable while the above-water

measurements are more prone to outliers (Supplementary

Figure S1).

3.1.3 Spectral measurements
Despite the methodological similarities in deriving CChl-a

from WISPStation, S2 and S3 data, the comparison showed

statistically significant differences, high scatter (Figures 3A1,2)

and error up to 45% (Table 4) betweenWISPStation and EO data.

Consistency was better between EO approaches in Võrtsjärv

(Figure 3C; Table 4). In Saadjärv, although S2 and

fluorescence measurements resulted in smallest bias (5%) and

error (51%) from all methods in Saadjärv (Table 4), the C2RCC

derived CChl-a estimates from S2 data resulted in fairly stable

FIGURE 2
Midday CChl-a time-series during vegetation period of 2018 and 2019, derived from various sensors in Võrtsjärv (A,B): AHFM buoy, WISPStation,
HPLC, spectrophotometric, S3, S2; and in Saadjärv (C,D): AHFM buoy at Z90 depth, HPLC, spectrophotometric, S3, S2. Note the different y-scale in
figures.
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phytoplankton seasonal dynamics (Figures 2C, D) which was not

supported by S3 and fluorescence based data.

In terms of spatial variability within the ROI, it was higher in

Saadjärv during periods with more abundant phytoplankton (i.e.

spring), but there were no systematic seasonal differences in

S2 and S3 data over Võrtsjärv despite of the distinctive periods

with higher CChl-a (Figures 2A, B).

The data from two AHFM systems (WISPstation and

fluorescence buoy) in Võrtsjärv, resulted in

140 simultaneous measurements over 2 year period.

Despite their moderate agreement (R2 = 0.5), CChl-a from

WISPStation was statistically significantly lower (on average

26%) than from fluorescence measurements (Table 4), larger

values (>80 μg/L) were especially underestimated

(Figure 3). Based on the statistics (Table 4), the

fluorescence derived CChl-a tends to have better

consistency with other methods than radiometric

WISPStation measurements.

FIGURE 3
Comparison of CChl-a (µg·L−1) acquired by various methods in Võrtsjärv (blue dots) and Saadjärv (red dots): (A) CChl-a from WISPStation in
comparison with S2 (1), S3 (2), spectrophotometry (3) and HPLC (4), (B)CChl-a from fluorescence in comparison with S3 (1), S2 (2) andWISPStation (3),
(C)CChl-a from S3 in comparisonwith S2 (1) and spectrophotometry (2) and (D)CChl-a fromHPLC in comparisonwith spectrophotometry. R2 denotes
the coefficient of determination about the entire dataset.
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TABLE 4 Evaluated bias and mean absolute error (MAE) between studied methods according to Eqs 4, 5.

Bias MAE N

Model Reference Saadjärv Võrtsjärv Saadjärv Võrtsjärv Saadjärv Võrtsjärv

HPLC Spectrop 0.39 0.69 2.59 1.51 5 8

Spectrop S3 0.43a 0.98 2.33a 1.15 2 4

S3 S2 1.39 0.91 1.95 1.22 8 46

S2 Fluoresc 1.05 0.94 1.51 1.23 26 42

S3 Fluoresc 1.55 0.88 1.7 1.25 23 69

Spectrop Fluoresc 0.58a 0.94 1.72a 1.07 3 6

WISPstation Fluoresc 0.87 1.38 140

HPLC WISPstation 0.89 1.13 5

S2 WISPstation 1.32 1.45 40

S3 WISPstation 1.3 1.39 44

Spectrop WISPstation 1.24 1.29 8

aZ90 vs. surface.

FIGURE 4
Impact of environmental and background conditions to method-based differences in estimating CChl-a in Lake Võrtsjärv.
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3.2 Environmental and in-water
background conditions

In vitro measurements have been mainly performed in good

measurement conditions (low wind speed, low wave height)

which can partly explain their good agreement with other

available methods.

Pairwise comparison of CChl-a estimates from radiometric

(WISPStation, S2, S3) and fluorescence (buoy) measurements

were coupled with buoy time series of observations of in-water

and environmental conditions to determine their impact on the

consistency of CChl-a retrievals. Here again, the impact of the

environmental and background conditions during the

measurements had different effect in eutrophic shallow

Võrtsjärv and in stratified mesotrophic lake Saadjärv.

The increase in turbidity (due to CChl-a and TSM) tends to

increase the differences between the methods in Võrtsjärv

(Figure 4). This is evident especially in case of WISPStation

data, whose CChl-a tend to be smaller compared to S2, S3 and

fluorescence retrievals during elevated turbidity. This results in

an increasing systematic bias between fluorescence and

WISPStation data. Similarly, the increase in wind speed,

causing surface distortions (foam, waves, glint) and

resuspension from the bottom, has an impact on WISPStation

data but it also explains the switch from under- to overestimation

of values in case of fluorescence and S3 data. Due to the location

of the WISPStation (Figure 1E), poorer consistency with other

methods is observed in case of northerly winds, when subsurface

scum and foam are transported along the pier. High flux densities

in July and August, and low flux densities in September and

October explain some of the outliers. In Võrtsjärv, the

consistency between S2 and S3 tend to have lowest impact

from the environmental and background conditions.

In stratified clear water Saadjärv, the consistency between S2,

S3, fluorescence measurements tend to depend largely on the

signal strength e.g. ChlF and wind speed (Figure 5). The

agreement between S2 and S3 decreases with decreasing ChlF,

indicating the need for better algorithms for lower level of CChl-a.

FIGURE 5
Impact of environmental and background conditions to method based differences in estimating CChl-a in Lake Saadjärv.
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The dependence on signal strength is reflected also in the

comparison of EO data with fluorescence measurements

indicating larger biases during lower CChl-a. The low

background turbidity (lower aCDOM and TSM compared to

Võrtsjärv, Table 1) results in higher amount of light available

for phytoplankton in the subsurface layer and leads up to 81%

change in ChlF due to the NPQ correction in Saadjärv. This could

explain higher differences between fluorescence and spectral data

during high flux density conditions, when the correction has the

highest impact (Supplementary Figure S2). Despite the need for

improved algorithms, the results also indicate improved

consistency between fluorescence and EO based retrievals in

case of increased wind speed, e.g. due to increased vertical

mixing.

3.3 Method based differences to explain
the seasonal bias and outliers

The inherent differences in the methods affect the

consistency of CChl-a retrievals and might therefore result in

seasonal bias. For example, monthly-based difference in the

consistency between fluorescence and WISPStation CChl-a

retrievals (Figure 6) could be explained by combined effect of

various factors. First, timing of the in situ measurements to

calibrate ChlF readings in high seasonal dynamics condition

(Figure 2A). Second, increase of turbidity impacts both ChlF

readings and sensitivity of the CChl-a algorithm applied on

WISPStation radiometric data. Third, outliers in September

and October can be explained with low light and high wind

speed conditions, while outliers in July and August more by wind

direction (Figure 4). Fourth, higher short-term variability in

WISPStation data in autumn measurements with more noise

in the radiometric data during low light conditions increases the

uncertainty of the measurements.

4 Discussion

The advancement of phytoplankton monitoring possibilities

by various sensors requires the inter-comparison exercises to

analyse the consistency of methods and outline the biases. The

evaluation of CChl-a derived by six methods over 2-year time

period in optically different lakes indicated the importance to

consider both environmental and method-based factors while

interpreting the results.

4.1 Method-based factors affecting CChl-a
retrievals

4.1.1 Fluorescence measurements
There are various methods available to estimate the CChl-a

from the ChlF measurements (Ferreira et al., 2012; Zeng et al.,

2017). The fluorescence yield per chlorophyll unit is very variable

and depends on phytoplankton community composition, cell

size, packaging effect and NPQ (Carberry et al., 2019 and

references therein) and is difficult to account for regular basis.

This is especially a challenge in the waters where phytoplankton

community consists of many different species and various life

cycle phases are present.

High-frequency measurements allow obtaining information

from ChlF in sufficient temporal scale relevant to natural

dynamics of the phytoplankton community. Photoprotection

against high light induced by the xanthophyll cycle will lead

to a non-photochemical quenching. The effect of NPQ correction

clearly increased with increased PAR (Kromkamp et al., 2008;

Ruban, 2016) and also depended on the level of OAS (optically

active substances), leading up to 15% change in ChlF readings in

Võrtsjärv compared to 81% in Saadjärv (Supplementary Figure

S2). The amount of PAR of the total solar radiation depends on

the wavelength, solar zenith angle, the aerosol amount in the

atmosphere and clouds (Ross & Sulev, 2000). In Estonian

geographic location the monthly total PAR is highest in June

and decreases towards spring and autumn (Russak & Kallis,

2003). Here we showed the consistency between CChl-a derived

from above water radiometry (S2, S3, WISPStation) and

fluorometers tended to decrease during high flux intensities in

summer, especially pronounced in clear water Saadjärv

(Figure 5). On the contrary, during autumn, when the

illumination conditions were poorer, the consistency between

the same methods was better during high flux intensities and

FIGURE 6
Hourly averaged and respective standard deviation for CChl-a

derived from fluorescence (y-axis) and CChl-a derived from the
spectral WISPStation data (x-axis) in Võrtsjärv during July-October
2018. Different months are coded with different colours.
Time GMT+3 is used.
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decreased during low flux intensities (Figure 4). While in

Võrtsjärv day-time ChlF was better reference based on the

derived statistics (results not shown here), there was no clear

pattern in Saadjärv. As the night-time ChlF tends to be higher

during the bloom period and the difference was substantially

higher in Saadjärv (up to 230%) compared to Võrtsjärv (up to

40%), it should be studied further in conjunction with inter-

comparison of different methods to account for the NPQ.

It has been shown that CDOM and non-algal particles

impede the accurate estimation of Sun-induced ChlF from

the total reflectance spectra (McKee et al., 2007; Gilerson

et al., 2008). Despite, the results from eutrophic Võrtsjärv

show a strong correlation between CChl-a derived from below

water fluorometry and above-water radiometry (Figure 6), it

was also shown that both methods depend on the background

turbidity (Figure 4). Proctor & Roesler (2010) and Kuha et al.

(2020) outlined that organic matter may lead to an

underestimation of CChl-a by absorbing excitation or

emission wavelengths or, on the other hand, cause seemingly

intensified Chl emission by contributing to the signal detected

by Chl fluorometers. For example, a significant overestimation

of CChl-a with increased organic matter concentrations in an

estuary was shown by Goldman et al. (2013). Results by

Cremella et al. (2018) showed a linear response between

ChlF and aCDOM(440) up to 20 m−1 and a non-linear

response between ChlF and CDOM at aCDOM(440) > 20 m−1,

also noting the negligible effect in CDOM ranges

(aCDOM(440) < 2 m−1) and pointing out the lack of

interaction between turbidity and CDOM effects. In

Saadjärv, the effect of CDOM and non-algal particles can be

considered negligible. In Võrtsjärv, both the mean value and

seasonal variation of aCDOM(440) and TSM were higher

(Table 1), which requires the adaption of algorithms to

different levels of OAS and more frequent measurements to

calibrate ChlF readings.

4.1.2 Laboratory measurements
The fact that spectrophotometric measurements give higher

values in comparison with HPLC, is not a new finding (Meyns

et al., 1994; Sørensen et al., 2007). A strong positive correlation

has been demonstrated between HPLC and

spectrophotometrically measured CChl-a, with CChl-a being

15%–20% higher via spectrophotometry than via HPLC

(Sørensen et al., 2007; Tamm et al., 2015). Meyns et al. (1994)

associated the differences in the measurements by HPLC and

spectrophotometric methods with the degradation products of

CChl-a in the samples. Spectrophotometric measurements

resulted in higher CChl-a values, especially due to

Chlorophyllide a. In this study Chlorophyllide a was included

in HPLC measurements. This discrepancy could be attributed to

the presence of other CChl-a derivatives (allomers and epimers)

and accessory pigments with overlapping spectra (Picazo et al.,

2013; Tamm et al., 2015).

4.1.3 Spectral measurements
In case of above-water radiometry (S2, S3, WISPStation), CChl-a

is evaluated via indirect methods by the absorption and scattering

features. In Lake Võrtsjärv, same type of approach was applied on

both S2 and S3 data, which resulted in good agreement (9% bias and

22% MAE) even in the changing environmental and background

conditions. The discrepancies were larger betweenWISPStation and

EO-based approaches (bias ≥30%, MAE ≥39%) (Table 4). This can
be due to sensor (i.e. different spectral response function, spatial

resolution, sensitivity of the sensor) and also algorithm specific

differences. This was especially evident during periods with elevated

turbidity, indicating the need for optical water type specific

algorithms. Similarly in Saadjärv, different approaches, the

empirical (S3) and neural network (S2) derived CChl-a showed

clearly poorer agreement and stronger water type dependence.

The study on optically different lakes indicates, despite the

magnitude of seasonal dynamics of phytoplankton i.e. CChl-a and

other optically active substances, the change in the optical water type

requires the adaption of algorithms to have confidence in the derived

CChl-a product throughout the season and over spatial scale.

Lake-specific approaches and previously developed regional

conversion factors tuned with spectrophotometric CChl-a (Alikas

et al., 2010; Ansper and Alikas, 2018) were used. The tuning of

the algorithm is sensitive to the calibration dataset, e.g., good

agreement between spectrophotometric, S2, S3 derived CChl-a in

case of Võrtsjärv. The systematic underestimation of WISPStation

CChl-a (~20%) in Võrtsjärv compared to other methods (except

HPLC) could be potentially corrected by further tuning or

development of lake specific algorithm in order to minimize the

differences between the methods. As shown also in previous studies,

the agreement even between spectrophotometrically measured CChl-a

depends largely on the solvent but also on the calculationmethod. For

example, the calculation method according to Lorenzen (1967)

yielded on average 16% smaller CChl-a values compared to Jeffrey

and Humphrey (1975). Therefore, the inherent differences in the

calibration dataset have to be considered and uncertainties evaluated,

which will be then reflected in the higher order products (e.g.,

conversion factors, training dataset for neural network, satellite-

based products, spatio-temporal analyses).

It was also observed, in case of both lakes and both S2 and

S3 data, that the amount of quality-controlled data decreased

towards autumn, which can be partly explained by clouds.

However, this issue was stronger for narrower and smaller

Saadjärv (width 1.8 km, length 6 km), where CChl-a and TSM

gradually decreased towards autumn, therefore the level of signal

from the lake decreased, but the constant strong signal from the

surrounding area continued. The land adjacency effect correction

is known issue in the use of EO data over water surfaces (Kiselev

et al., 2014; Bulgarelli & Zibordi, 2018) and might limit the use of

data obtained over smaller water bodies or from coastal sites. In

eutrophic Võrtsjärv, the propagated errors due to adjacency

effect and atmospheric correction in the final CChl-a

measurement resulted in the use of L1 as the basis of the
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processing which showed more reliable results. In clear Saadjärv,

in case of S2 data, only few POLYMER processed pixels passed

the quality control during 1 year, therefore C2RCC neural

network CChl-a product was used. Despite providing

continuous seasonal time series, it had low sensitivity to CChl-a

patterns detected by fluorescence and S3 data. Due to the

inaccuracies in the shape and the magnitude of the C2RCC

derived Rrs, the application of various empirical algorithms did

not improve the result.

The environmental effects had lower impact on S2 and

S3 data compared to WISPStation measurements. High wind

speed, increase in wave height and poor illumination conditions

resulted in high uncertainties in the measured radiometric data

(Alikas et al., 2020), which propagated errors to CChl-a retrievals

(Figure 4) and could explain occasional outliers and seasonal

patterns (e.g., increased variations in the recorded signal).

4.2 Consistency between the approaches

The synergistic use of various methods allows to create a linkage

between them, crucial to develop and advance the study of

phytoplankton CChl-a over different water types. As shown in this

study, similar methods resulted in more consistent results (e.g.,

S2 and S3 over Võrtsjärv), while addingmethods ormoving towards

clearer lake, the consistency decreased. Therefore, it is important to

perform inter-comparison exercises to cover the vegetation period to

see method-based differences but also outline potential cause for

biases due to constantly varying environmental and background

conditions present in the outdoors.

While all methods had better consistency in large, shallow, well-

mixed, eutrophic Võrtsjärv, the discrepancies were larger in stratified

clear-water mesotrophic Saadjärv. Inhomogeneous phytoplankton

vertical distribution resulted in high variability on a profiler data

(~10% on average) within the Z90 layer (Figure 7). Therefore, in these

conditions, it is crucial that all methods (used for calibration,

validation) would obtain signal exactly from the same water

column. In traditional limnological water quality monitoring in

stratified lakes, three water samples are taken (from surface,

metalimnion and near-bottom layer). From vertical fluorescence

distribution (Figure 7), it is evident that those sampling depths do

not represent the actual biomass maximum, which in Saadjärv is

generally between surface and the layer of temperature change, from

where metalimnetic sample is gathered. Therefore the use of surface

samples (as in this study), integral samples from discrete depths

(waters samples, buoy) or from fixed layer e.g., Z90 (depends on

wavelength) might cause seasonal biases depending on vertical

distribution of phytoplankton.

With the advancement of sensors and new methods, ways to

study phytoplankton are increasing. Here, we inter-compared three

types of methods e.g., laboratory, fluorescence and spectral. While

each method has its own advantages, the disadvantages should be or

FIGURE 7
NPQ corrected ChlF midday profile in Saadjärv in 2018 (A) and in 2019 (B). Crosses denote Z90 (derived from in situ Secchi depth).
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can be filled by alternative method included in the comparison. In

parallel, research done on estimating full uncertainty budget for

different methods would allow the user to estimate the suitability

of each method for their application. Growing constellation of EO

satellites allow already now global spatiotemporal analyses on lake

phytoplankton, which can be complemented by present and future

hyperspectral missions, however, the derived data, either used for

calibration, validation or decision making, must be analyzed carefully

to avoid artefacts due to selected method.

5 Conclusion

CChl-a estimation obtained from six different methods

complement each other but are not transferable due to

method and season-based differences. Our study on optically

different lakes showed:

• The consistency was better in large, well-mixed, eutrophic

lake (average bias 0.97, MAE 1.28) compared to the clear-

water mesotrophic lake (average bias 0.73, MAE 1.97)

where the vertical and short-term temporal variability of

the CChl-a was larger.

• Similar methods resulted in more consistent results (e.g.,

S2 and S3 over Võrtsjärv), while adding methods or

moving towards clearer lake, the consistency decreased.

• In eutrophic Võrtsjärv, both fluorescence and spectral

WISPStation data had high impact on the CChl-a retrievals

during elevated turbidity indicating the need for more frequent

calibration (fluorescence) and adaption of CChl-a algorithm for

different optical conditions.

• The consistency between CChl-a derived from above water

radiometry (S2, S3, WISPStation) and fluorescence tended

to decrease during high flux intensities in summer

(especially in clear water lake) and during low flux

intensities in autumn.

• The inherent differences in the methods affect the

consistency of CChl-a retrievals and might therefore

result in seasonal or spatial bias.

Perspectives for future studies include analysis of AHFM

fluorescence data, focusing on extrapolation method of integral

measurements, effect of frequent calibration and different

corrections (e.g., removal of the influence of CDOM and non-algal

particles to ChlF) to further investigate the intra-day variability and

utilize possibilities by various new hyperspectral sensors (e.g.,

absorption and scattering features, shift of peaks).
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LifeWatchERIC, thee-ScienceEuropean infrastructure forbiodiversity andecosystem

research, launchedan Internal Joint InitiativeonNon-indigenousSpecies and Invasive

Alien Species (NIS-IAS) as they are considered one of themajor drivers of biodiversity

and ecosystemchange. Here, the case study focused on the trophic biogeography of

invasivecrustaceans is presented, describing theprocedures, resources, andanalytical

web services implemented to investigate the trophic habits of these taxa by using

carbon and nitrogen stable isotope data. The case study offers a number of analytical

tools to determine the variability of the trophic position of invasive crustaceans in a

spatially-explicit context and to model it as a function of relevant environmental

predictors. Literature-based stable isotope data of the Atlantic blue crab Callinectes

sapidus and of the Louisiana crayfish Procambarus clarkii have been used to evaluate

the functionalities and outcomes of the workflow. The Tesseract Virtual Research

Environment integrates all the analytical services offered by LifeWatch ERIC, including

the ones developed for this case study, by means of a user-friendly interface. The

analytical functions implemented for the crustacean workflow provide a proof of

concept for future open e-science platforms focusing on NIS-IAS. The workflow

conceptual structure can be adapted to a wide range of species, and can be further

improved to support researchers in monitoring and predicting trophic-related

impacts of NIS-IAS. In addition, it can support policymakers and stakeholders in

the implementation of effective management and control measures to limit the

negative effects of bioinvaders in recipient environments.

KEYWORDS

virtual research environment, invasive species, carbon 13, nitrogen 15, Callinectes
sapidus, Procambarus clarkii, trophic position, ecological impact
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1 Introduction

The modern era of globalization is characterized by an

intensification of human activities, such as the transport of

people and goods and the creation of artificial corridors,

facilitating the introduction of species outside their native

geographic ranges (Banks et al., 2015). The European Union

has recognized that Non-Indigenous Species (NIS hereafter)

require immediate consideration and adequate management

and control actions, and has addressed this issue in Regulation

1143/2014 (European Commission, 2014) and in the

Biodiversity Strategy to 2030 (European Commission,

2020). The former requires member states to provide lists

of NIS that could determine significant negative impacts on

biodiversity and on related ecosystem services. However, the

availability of comprehensive and measurable impact

estimates is still limited (see e.g., Katsanevakis et al., 2014;

Tsirintanis et al., 2022 for the Mediterranean Sea), partly due

to the scarce information on NIS ecology in nature and on the

type and strength of the interactions they establish with the

native biota (Cardeccia et al., 2018; Katsanevakis and

Moustakas, 2018). The need for a thorough assessment of

NIS impacts is particularly imperative when they cause

adverse ecological and economic effects and reach the

“invasive” status (after UNEP, 1992; Invasive Alien

Species–IAS: Russell and Blackburn, 2017).

To date, the impacts of IAS have been mostly evaluated by

using qualitative evidence-based knowledge of experts rather

than quantitative evidence (Corrales et al., 2020; Essl et al.,

2020). In addition, it is difficult to infer common patterns

from the observed impacts, as this evidence is generally

context-dependent and limited in space and time (Courchamp

et al., 2017; Torchin et al., 2021; Watkins et al., 2021). A number

of recent regional and global scale investigations, focusing on the

impact of bioinvaders, have demonstrated that meta-analytical

approaches can overcome the paucity and diversity of available

information, and can identify and test the primary factors

affecting the context-dependency of IAS impacts. Moreover,

they have indicated relatively straightforward ecological rules

to locally predict the threat of biological invasions on native

communities (Thomsen et al., 2014; Gallardo et al., 2016; Mollot

et al., 2017; Anton et al., 2019; Bradley et al., 2019). These studies

have shown that the impact of invaders on the biodiversity and

functioning of recipient ecosystems depend critically on their

trophic habits. For example, Thomsen et al. (2014), Mollot et al.

(2017), and Anton et al. (2019) indicated that the trophic position

of aquatic invaders controls their adverse effects on biodiversity,

a result confirmed by a global meta-analysis on community

responses to invasion performed by Bradley et al. (2019).

Additionally, Gallardo et al. (2016) indicated that introduced

predators and omnivores are the trophic groups that exert the

most negative effects on the lowest levels of benthic food webs in

aquatic ecosystems as also acknowledged by other studies

(Vazquez, 2006; Romanuk et al., 2009; Havel et al., 2015;

Mancinelli et al., 2017b; Médoc et al., 2018).

Building on this evidence, a validation case focused on

the trophic habits of crustacean IAS and their impact on

invaded benthic food webs was conceived. The case study has

been developed by LifeWatch ERIC (https://www.lifewatch.

eu/), the e-Science European infrastructure offering

e-science tools and facilities to the scientific community

committed to biodiversity and ecosystems research.

Nowadays, a large variety of projects/initiatives provides

datasets, databases, and data analysis tools to tackle

different emerging challenges in the field of biodiversity

and ecosystem conservation (Escribano et al., 2018;

Stephenson and Stengel, 2020). However, the

fragmentation of available data often hinders the capacity

to reveal key ecological patterns and hampers analytical

efforts aiming at integrating such a heterogeneous body of

information (Bingham et al., 2017). To overcome the existing

limitations in data accessibility, discoverability, and

interoperability, LifeWatch ERIC has devoted its efforts to

collate and harmonize biodiversity and ecosystems-related

data according to the FAIR principles (Findable, Accessible,

Interoperable, Reusable: Wilkinson et al., 2016). Most

importantly, LifeWatch ERIC provides a diverse range of

data and analytical web services, arranged in purpose-built

pipelines of work or workflows, and properly structured in

Virtual Research Environments (VREs). The latter are web-

based, community-oriented, comprehensive, flexible, and

secure working environments, allowing users to perform

and complete their analyses in biodiversity and ecosystems

research (Basset and Los, 2012; see also Enke et al., 2012;

Candela et al., 2013). Given the strict association between

biological invasions on one hand and the conservation and

management of biodiversity in natural ecosystems on the

other, in 2019 the executive board of LifeWatch ERIC

launched an Internal Joint Initiative (https://www.

lifewatch.eu/internal-joint-initiative/). Through the

identification of demonstrative case studies on NIS-IAS,

the aim of the initiative was to implement validation cases

providing data and e-tools to the scientific community to

develop evidence-based knowledge on key ecological topics

in different research areas of invasion ecology. They included

the prediction of dispersion scenarios of keystone NIS in

terrestrial ecosystems, the early-detection and monitoring of

NIS spread in aquatic habitats through conventional

ecological monitoring procedures and DNA

metabarcoding, the EUNIS (European Nature Information

System, https://eunis.eea.europa.eu/) habitat and ecosystem

vulnerability to NIS invasion, and the evaluation of the

spatial variability and predictability of trophic-related

ecological impacts of invasive crustaceans.

Here the latter validation case is presented, describing the

spatially-explicit trophic variations of two study species, i.e., the
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Louisiana crayfish Procambarus clarkii and the Atlantic blue crab

Callinectes sapidus, two omnivorous invasive species in European

freshwaters and coastal waters. The possibility that climatic

drivers acting at large spatial scales may influence the trophic

behavior of omnivorous species, independently from their native

or non-indigenous nature, remains to date unexplored. This

occurs notwithstanding the increasing interest in the linkage

between species’ trophic-related traits and the ongoing global

climate change, since global warming has the potential to

determine trophic shifts and variations in the trophic niche of

aquatic organisms, ultimately altering the structure and functions

of both freshwater and marine food webs (Bartley et al., 2019;

Wallingford et al., 2020; Henry and Sorte, 2022).

Specifically, here an effort was made to describe: 1) the

procedures used to conceive, design, and define the structure

and the tools needed to assess the trophic habits of invasive

crustaceans using stable isotope data; 2) the methodological

approaches adopted to implement the validation case and the

workflow design, and 3) the structure of the datasets on which the

analytical workflow relies.

Moreover, two preliminary examples focused on the analysis

of stable isotope datasets collated for the validation case and

resolved at both population- and individual-scale are provided,

illustrating the potential outcomes expected from the advanced

implementation of the analytical workflow at the core of the

validation case.

2 Methods

2.1 Study species

The validation case focused on two widely distributed species

of invasive omnivorous crustaceans, i.e., the Louisiana crayfish P.

clarkii and the Atlantic blue crab C. sapidus (Figure 1).

Procambarus clarkii (Girard, 1852) is native to the southern

United States and northern Mexico, but it has been introduced

widely in all continents, with the exception of Australia and

Antarctica (Loureiro et al., 2015), for economic purposes,

i.e., aquaculture and fishing activities (Hobbs et al., 1989;

Oficialdegui et al., 2019) and for the biological control of

schistosomes and of other snail-transmitted parasites, as

occurred in a number of African countries (Hofkin et al.,

1991; Sulieman et al., 2013). Procambarus clarkii is included

in the European list of IAS of greatest concern (European

Commission, 2008). Due to its biological and ecological

characteristics (Hänfling et al., 2011), this species causes

serious harm to the biodiversity and functions of the invaded

environments as well as to ecosystem services and human

infrastructures (e.g. irrigation canals and rice crops:

Twardochleb et al., 2013; Souty-Grosset et al., 2016).

The origin of the Atlantic blue crab C. sapidus (Rathbun,

1896) is the western Atlantic coast and its native range spans

from New England to Uruguay (Millikin and Williams, 1984).

This omnivorous crab was introduced in Europe in 1901 and

first recorded in the Mediterranean basin in 1947, although it

has been suggested that it had arrived a decade earlier

(Nehring, 2011). In the last decade, C. sapidus has spread

almost ubiquitously in the Black Sea and in the eastern and

central Mediterranean Sea, with the western and southern

sectors of the basin as fronts of the most recent range

expansions (Mancinelli et al., 2021). Since 2006, C. sapidus

has been recognized as an invasive species in the

Mediterranean Sea (Streftaris and Zenetos, 2006), however,

a review published in 2017 (Mancinelli et al., 2017a) and a risk

assessment performed in 2021 for the EU (Rabitsch et al.,

2022), highlighted the rather scant information on its actual

impact on recipient communities. Clavero et al. (2022)

provided the first quantitative assessment of the adverse

effects exerted by the blue crab on the biodiversity of

recipient communities.

FIGURE 1
Photographs of Procambarus clarkii (upper side) and
Callinectes sapidus (lower side), the two model crustaceans used
for the validation of the LifeWatch ERIC case study on trophic
habits of omnivorous invasive species. Note that the two
photos are not in scale.
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2.2 Data collection

Stable isotopic data were collated from the literature to

provide extensive, standardized, and spatially-explicit

information on the trophic habits of the study species at

different spatial scales. Stable isotopes analysis has gained

huge popularity for the study of aquatic food webs in the last

decades, allowing for robust comparisons of species dietary

habits at a local as well as regional and global scale (e.g.,

Mancinelli, 2012; Annabi et al., 2018; Pethybridge et al., 2018;

Mancini et al., 2021; Mancini et al., 2022). This methodology is

currently recognized as a key tool to deepen the understanding of

ecosystem processes and functioning and to evaluate the

response of aquatic ecosystems to anthropogenic impacts,

including global climate change (Mancinelli and Vizzini, 2015;

Gautam and Lee, 2016).

An extensive literature search was performed to collate

geo-referenced stable isotope data resolved at individual-

and population-scale. Extensive details on the adopted

procedures are provided in Di Muri et al. (2022a); Di

Muri et al. (2022b). In brief, the online databases ISI Web

of Science and Scopus were searched by using a multiple

search criterion and the term “Procambarus clarkii” or

“Callinectes sapidus” in conjunction with “stable isotopes”.

The results were complemented with those obtained from

queries on Google Scholar (https://scholar.google.com/)

using identical keywords. The entries obtained from the

literature search had their titles and abstracts screened in

order to remove manipulative studies and reviews. The full

text of the remaining studies was examined in detail to select

those where the occurrence of the two species was reported

explicitly, together with information on the country, latitude and

longitude, the year of the record, and at least the δ15N value of the

sampled specimens. Publications where the sampling locations

were reported in maps were also included in the selection and

Google Earth was used to extract the geographic coordinates. In

addition, the literature sources to be eligible had to include

isotopic information on potential vegetal or animal prey. The

publications meeting the aforementioned criteria were eventually

selected and δ15N and δ13C values were extracted from tables and

figures. Figures were digitized after a fivefold enlargement and

converted to numerical form using the graph capture freeware

WebPlotDigitizer (ver. 4.5; https://automeris.io/

WebPlotDigitizer/). In the dataset resolved at individual scale,

δ 15N and δ 13C values refer to single specimens, whereas in the

population-scale dataset, mean values of carbon and nitrogen

FIGURE 2
Crustacean Validation Case diagram. The diagram shows the analytical workflow and its components including services (steps in green boxes)
and input/output datasets produced. A detailed guide to the symbols included in the diagram is provided in the Supplementary Material “Workflow
Standard–Guidelines”.
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stable isotopes were extracted from the literature along with their

standard deviations and sample sizes if available. Lastly, the

authors of the selected publications were contacted directly to

obtain additional unpublished information and raw data, hence,

the collated datasets include published data from peer-reviewed

articles and grey literature as well as data gathered from

unpublished sources, ultimately offering visibility to previously

unavailable information.

2.3 The workflow

The datasets are conceived and designed to be analyzed

by means of a number of sequential analytical web services

included in a workflow. The structure of the workflow is

presented as a diagram in Figure 2 and was developed using

the LifeWatch ERIC guidelines as a general reference and

through a collaborative approach between scientists and ICT

FIGURE 3
LifeWatch ERICmetadata profile for workflows (yellow), services (green), and datasets (blue). The asterisks (*) indicate the mandatory attributes.
A complete description of the LifeWatch ERIC Application profiles is available in Vaira et al. (2022).
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experts. The overall goal of the workflow is to analyze the

trophic geography of the two crustacean species under

analysis, assuming their trophic position as an indirect

indicator of their ecological impact on recipient aquatic

food webs. This is performed by first running a spatially-

explicit quantitative assessment of the trophic position of the

two species and then by finding potential correlations

between the invaders’ trophic position and climatic

drivers that are expected to change in the future (e.g.,

water temperature or salinity for marine ecosystems and

air temperature for terrestrial ecosystems).

Specifically, the workflow was designed to include three

functional analytical services for calculating the impact of the

invaders (data analysis, in green in Figure 2) and three additional

services to check the quality of the data entered by the users (data

control, in yellow in Figure 2) and allowing for automatic

corrections and adjustments if required.

The key data analysis steps and services included therein

consist of: 1) the calculation of the trophic position of the invasive

species through a Bayesian approach (Trophic Position

Analyzer); 2) the extraction of environmental predictors from

cloud-based repositories (Environmental Data Extractor); this

service fetches and downloads from available repositories

oceanographic and bioclimatic raster layers for the geographic

coordinates included in the input dataset; and 3) the modelling of

the invaders’ trophic position as a function of the environmental

variables using a Generalized Additive Model (Trophic Positions

Modeler). The data control steps allow the user to: 1) check the

scientific names of the species included in the input dataset

(WoRMS Taxonomic Checker); 2) create a shapefile using the

geographic coordinates included in the input dataset

(Geographic Checker); and 3) verify the accuracy of the

geographic coordinates (Spatial Viewer and Coordinates

Verifier) by matching the latitude and the longitude with the

corresponding locations and countries included in the input

dataset, and by using the shapefile created within the previous

service (i.e., Geographic Checker).

The resources created for the workflow (i.e., workflow,

services, and datasets) are described using the LifeWatch

ERIC application profiles and are published on the LifeWatch

ERIC Metadata Catalogue (https://metadatacatalogue.lifewatch.

eu). The metadata records of the workflow and services are

documented with the ISO19139 standard and include

respectively 24 and 34 metadata attributes (Figure 3). Dataset

metadata records are documented with EML2.2.0 standard and

the metadata schema includes 77 attributes (Figure 3). A

complete description of the LifeWatch ERIC Application

profiles is available in Vaira et al. (2022).

Links to metadata resources within the LifeWatch ERIC

Metadata Catalogue and used for this case study are provided

in the Supplementary Material.

2.4 Data analysis

The analyses are implemented within the workflow through

the R statistical environment (R Development Core Team, 2022).

Specifically, the trophic position of the invasive species (Trophic

Position Analyzer, Figure 2) is calculated using the

tRophicPosition package (version 0.7.7; Quezada-Romegialli

et al., 2018; Quezada-Romegialli et al., 2019). Trophic position

estimations are conventionally performed using:

TPδ15N � δ15NConsumer − δ15NBaseline( )/Δ15N + λ

This equation is a generalization of that presented in Vander

Zanden et al. (1997), where δ15NConsumer is the nitrogen isotopic

signature of the invasive species under investigation (i.e., P.

clarkii or C. sapidus), Δ15N is the trophic discrimination

factor of δ15N (TDF hereafter), and δ15NBaseline and λ are,

respectively, the nitrogen isotopic signature and the trophic

level of the baseline species.

In the tRophicPosition package, the trophic position is

estimated using a Bayesian approach whereby nitrogen values

of consumers and baselines as well as the TDF are modelled as

random variables, each having a prior normal distribution on

their means and a uniform prior distribution on their standard

deviations, and the trophic position is treated as a random

TABLE 1 List of climatic variables and related databases and layer names
used for the multiple correlation analysis.

Database Variable name Layer name

MARSPEC Mean annual SST biogeo13

MARSPEC SST of the coldest ice-free month biogeo14

MARSPEC SST of the warmest ice-free month biogeo15

MARSPEC Annual Range in SST biogeo16

MARSPEC Annual Variance in SST biogeo17

MERRAclim Annual Mean Temperature BIO1

MERRAclim Mean Diurnal Range BIO2

MERRAclim Isothermality BIO3

MERRAclim Temperature Seasonality BIO4

MERRAclim Max Temperature of Warmest Month BIO5

MERRAclim Min Temperature of Coldest Month BIO6

MERRAclim Temperature Annual Range BIO7

MERRAclim Mean Temperature of Wettest Quarter BIO8

MERRAclim Mean Temperature of Driest Quarter BIO9

MERRAclim Mean Temperature of Warmest Quarter BIO10

MERRAclim Mean Temperature of Coldest Quarter BIO11

*SST, sea surface temperature.
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parameter. The trophic position is also modelled as having a

uniform prior distribution whereas λ is fixed. Given the

omnivorous trophic habits of the species considered in this

case study, the values of the trophic positions are estimated

adopting a TDF of 0.27 ± 2.15 for carbon and a TDF of 2.58 ±

1.96 for nitrogen (mean ± 1SD, n = 49 and 91, respectively),

calculated as the average of published enrichment factors for

aquatic crustaceans (including C. sapidus and the crayfish

Orconectes viridis and Cherax destructor) feeding on both

vegetal and animal items (De Giorgi et al., 2022), and more

consistent with other literature syntheses focused on crustaceans

(Vanderklift and Ponsard, 2003; Carrozzo et al., 2014). The

complete list of species selected as baselines and their assigned

trophic levels can be found in Mancinelli and Di Muri. (2022a);

Mancinelli and Di Muri. (2022b).

The Environmental Data Extractor service (Figure 2)

performs the selection of a suite of oceanographic and

climatic data from Bio-Oracle v2.0 (Tyberghein et al., 2012;

Assis et al., 2018 for C. sapidus) and from WorldClim 2 (Fick

and Hijmans, 2017 for P. clarkii). Bio-Oracle is a high-

resolution GIS database of oceanic climate layers obtained

from remotely sensed and in situ oceanographic observations

with a common spatial resolution of five arcmin. The database

additionally includes future projections produced for

2040–2050 and for 2090–2100 by averaging data from

distinct Atmosphere/Ocean Global Climate Models

(AOGCMs). WorldClim is a dataset with a global coverage

including satellite-based climatic layers that have been built

for the period 1970–2000 with a 30 arc-seconds spatial

resolution and including downscaled future climate

projections. The bioclimatic variables from these repositories

are retrieved in R using the package sdmpredictors (v. 0.2.12;

Bosch et al., 2022).

In the Trophic Position Modeler service (Figure 2), a

generalized additive mixed model (GAMM; Wood, 2017) is

used to examine relationships between the values of the

trophic position and the suite of selected environmental

predictors. GAMMs are built in R using the gamm4

FIGURE 4
Maps of the locations included in the datasets of stable isotope data for Procambarus clarkii (A) andCallinectes sapidus (B). The isotopic records
shown in red are resolved at population-scale and the ones in blue are resolved at individual-scale.
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package (Wood and Scheipl, 2020) with a Gaussian error

distribution and an identity link function; smoothing

splines are used to examine non-linear fits for all marginal

terms considered in the model. Exclusive economic zones and

countries are incorporated as random effects to account for

intra-group correlations and over-dispersion frequently

arising in spatial analyses (Wood, 2017), whereas a scale-

invariant tensor product is used to model the covariates for

the geographical locations. Model selection is then performed

manually using a backward elimination approach (starting

with all candidate variables), and the best model fit is selected

using the Akaike Information Criterion for small sample sizes

(AICc).

Here, for illustrative purposes, the analyses presented focus

on the population-scale dataset of P. clarkii (Mancinelli and Di

Muri, 2022b) and on the individual-scale dataset of C. sapidus

(Mancinelli and Di Muri, 2022a) using temperature-related

continuous predictors for present conditions. The geo-

referenced trophic position values were estimated according to

Vander Zanden et al. (1997) and temperature-related

oceanographic and climatic high-resolution layers were

selected from MERRAclim (Carrete Vega et al., 2017 for P.

clarkii) and MARSPEC (Sbrocco and Barber, 2013 for C.

sapidus) (Table 1). Sea surface temperatures were used for C.

sapidus, whereas air temperatures were used as a proxy of inland

water temperatures for P. clarkii due to the unavailability of

detailed raster layers for surface water temperatures in freshwater

habitats (Piccolroaz et al., 2018; Table. 1). Subsequently, a

simplified procedure based on a multiple correlation approach

was performed with the aim of identifying the most adequate

temperature-related variables to predict the variation in the

trophic positions observed within the two datasets. Climatic

variables and trophic position values were log-transformed

and mean-centered for the analysis. The identification of the

Minimum Adequate Model (MAM hereafter; Whittingham

et al., 2006) was based on the heuristic generation of

FIGURE 5
Heatmaps showing the values of the trophic position for Procambarus clarkii (A) and Callinectes sapidus (B) calculated respectively using the
population-scale and the individual-scale dataset. Trophic position valuesweremediated for locations occurringwithin the same tile of the heatmap.
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alternative regression models. Model selection was performed

by adopting an information theoretic criterion (Burnham and

Anderson, 2002; Hegyi and Garamszegi, 2011) based on the

estimation of the Bayesian Information Criterion (BIC;

Schwarz, 1978) calculated for each combination of n

explanatory variables. For model comparisons, approximate

Bayes factors B1,2 were calculated as:

B1,2 � exp
−1
2
Δ1,2{ }

where B1,2 = BIC(k1)−BIC(k2), and BIC(kn) are the BIC

values of models k1 and k2. If B1,2 > 1, then model k1 is

the model selected by the procedure (Neath and Cavanaugh,

2012) and identified as the best MAM. Model building and

statistical analyses were performed following Fox and

Weisberg. (2011).

Further analyses, not included in the current version of the

workflow, were performed to provide an example of metrics

that could be inferred by using stable isotope data, as well as to

present the possible future implementations of the workflow.

Using the individual-resolved data of C. sapidus six quantitative

population metrics, originally described by Layman et al.

(2007), were estimated for each location including the mean

distance to centroid (CD) as a measure of population trophic

diversity, nitrogen range (NR) and carbon range (CR) as

indicators of the total nitrogen and carbon range exploited

by each population, the standard deviation of nearest neighbor

distance (SDNND) as an index of population trophic evenness,

the total area (TA) as a measure of each population niche area

estimated using a convex hull drawn around the most extreme

data points on an isotope bi-plot. As TA is expected to increase

with sample size (Jackson et al., 2011), additional estimations of

niche areas were performed using the corrected standard ellipse

area (SEAc) as a measure of each population niche area

estimated using a standard ellipse calculated from the

variance and covariance of δ13C and δ15N values and

corrected for small sample sizes. All metrics were calculated

using the package SIBER (Jackson and Parnell, 2021) in the R

statistical computing environment (R Development Core

Team, 2022).

3 Results

Two datasets for P. clarkii and one dataset for C. sapiduswere

collated and included carbon and nitrogen isotopic values of the

species and of their potential prey, and used as baselines for the

analyses, within invaded habitats Mancinelli and Di Muri.

(2022a); Mancinelli and Di Muri. (2022b). An additional

dataset with stable isotope values of C. sapidus collected

within the native area is currently under completion.

The literature search on P. clarkii identified 41 studies,

performed between 2005 and 2021 within the global invaded

range of the species, including geo-referenced stable isotope

information. A population-scale dataset with mean and

standard deviation values of 160 carbon and nitrogen isotopic

records for P. clarkii and its potential prey was collated. In

addition, a dataset resolved at the individual scale and

TABLE 2 Bayesian Information Criterion (BIC) values and Bayes factors (B)
estimated by the heuristic procedure implemented for MinimumAdequate
Model (MAM) selection for Procambarus clarkii. Only the 10 models
showing the lowest BIC values are reported. See Table 1 for layer acronyms.

Layers included in the model BIC B

BIO8 3.66

BIO1 4.43 1.47

BIO10 5.12 2.08

BIO6 5.21 2.17

BIO9 5.53 2.55

BIO6-BIO8 6.43 3.99

BIO5-BIO8 6.73 4.64

BIO8-BIO10 6.74 4.66

BIO7-BIO8 6.93 5.13

BIO2-BIO8 7.28 6.11

FIGURE 6
Trophic position of Procambarus clarkii calculated from the
population-scale dataset as predicted by local mean temperature
of the wettest quarter values. For the regression curve (solid line)
95% confidence intervals are included (dashed line). Log-
transformed and mean-centered data are used in the scatterplot.
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consisting of 1,168 isotopic records was produced. The isotopic

values included within the two datasets were gathered from

39 locations and 10 countries across Europe, Asia, Africa, and

North America and, therefore, including all continents where P.

clarkii has been found (Figure 4A).

The average trophic position of P. clarkii calculated from the

population-scale isotopic dataset was 2.7 ± 0.07 (mean ± SE);

estimations varied considerably among locations and ranged

between values close to 2, indicating fully herbivorous trophic

habits, and values >4, suggesting a carnivorous diet including

other predatory species (Figure 5).

The multiple regression and the subsequent heuristic search

for the MAM performed using the trophic positions of P. clarkii

as the response variable and the 11 temperature-related

MERRAclim variables as predictors, indicated that the best

MAM was a single-variable model including the mean

temperature of the wettest quarter as the only significant

predictor (Table 2: BIC; Figure 6) and a significant negative

relationship was observed (Pearson correlation: r = -0.35; p =

0.002; Figure 6). Noticeably, a significant inverse correlation was

observed also with the mean annual temperature (Pearson

correlation: r = -0.24, p = 0.03).

For C. sapidus, an individual-scale dataset was collated

including 360 isotopic records gathered from

12 Mediterranean locations where C. sapidus has been

introduced and is currently considered invasive.

The mean trophic position of C. sapidus was 3.5 ± 0.2

(mean ± SE), with values showing a two-fold variation

between 2.3 and 4.5 (Table 3; Figure 5). The multiple

regression and MAM identification procedure performed

to find relations between the trophic positions of C.

sapidus and five MARSPEC temperature-related variables

indicated that the best predictive MAM was provided by the

mean annual sea surface temperature (Table 4; Figure 7).

Specifically, a significant negative relationship was observed

(Figure 7; Pearson correlation: r = -0.59, p = 0.04), indicating

that the highest trophic positions were related with the

lowest sea surface temperatures. The isotopic niche

metrics estimated for the 12 populations of C. sapidus

included in the individual-scale dataset are reported in

Table 3. None of them was correlated with sample size or

trophic position estimations (Table 5); furthermore, total

TABLE 3 Sample number (n), trophic position (TP), mean distance to centroid (CD), nitrogen range (NR), carbon range (CR), standard deviation of nearest
neighbor distance (SDNND), total area (TA), and corrected standard ellipse area (SEAc) of the 12 Callinectes sapidus populations included in the individual-
scale dataset.

Location n TP CD NR CR SDNND TA SEAc

Acquatina 20 3.35 2.06 3.24 8.63 0.4 15.96 6.52

Gandia 19 3.8 2.91 7.55 9.22 0.78 35.46 15.14

Lesina 24 2.96 0.85 2.65 3.31 0.25 4.83 1.4

Loudias 15 4.04 2.52 6.57 6.97 0.83 24.91 12.17

Pogonitsa 19 2.73 1.77 5.18 4.78 0.51 14.96 6.32

Parila 15 4.26 1.12 2.78 3.37 0.19 5 2.59

Alimini 7 3.34 1.29 3.29 3.14 1.1 5.23 4.46

Mar Piccolo 13 4.49 3.63 4.93 8.34 0.26 20.87 17.57

Torre Colimena 48 3.4 2.61 8.76 7.85 0.43 34.9 11.95

Spunderati 16 3.74 3.16 2.04 11.57 0.25 9.53 4.41

Alento River 10 2.34 0.88 2.51 2.19 0.28 2.44 1.5

Gokceada 30 3.46 0.74 3.2 2 0.24 2.9 0.82

TABLE 4 Bayesian Information Criterion (BIC) values and Bayes factors (B)
estimated by the heuristic procedure implemented for Minimum Adequate
Model (MAM) selection for Callinectes sapidus. Only the 10models showing
the lowest BIC values are reported. See Table 1 for layer acronyms.

Layers included in the model BIC B

biogeo13 −0.1

biogeo15 3.31 5.5

biogeo14 4.42 9.58

biogeo16 4.94 12.43

biogeo17 4.97 12.62

biogeo13-biogeo15 0.78 1.55

biogeo13-biogeo14 1.84 2.64

biogeo13-biogeo17 2.35 3.4

biogeo13-biogeo16 2.35 3.4

biogeo15-biogeo16 5.56 16.95
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area (TA), and corrected standard ellipse area (SEAc)

estimations resulted highly correlated with each other and

with mean distance to centroid (CD), nitrogen range (NR),

and carbon range (CR) values. No significant bivariate

relationships were observed between isotopic niche

metrics and temperature-related MARSPEC predictors

(Table 6), even though total area (TA) and corrected

standard ellipse area (SEAc) values showed a positive

relationship with the sea surface temperature of the

warmest ice-free month (p < 0.09; Table 5).

4 Discussion

This paper described the procedures employed to collect

data and design the workflow at the basis of the validation case

focused on the two invasive crustaceans, i.e., C. sapidus and P.

clarkii, and developed within the LifeWatch ERIC Internal

Joint Initiative on non-indigenous and invasive species. The

functionalities of the workflow have been illustrated by

carrying out a preliminary analysis of the data performed

both at population- and individual-scale. Independently from

the resolution of the datasets, the results revealed the existence

of significant relationships between temperature-related

variables and the trophic positions of the two invasive

crustaceans.

Ultimately, the outcomes showed the ability of the workflow

to identify environmental-driven trophic patterns at different

spatio-temporal scales by using stable isotope analysis.

The availability of stable isotope information is crucial to

investigate drivers of changes in the trophic structure within

different ecosystems; however, such studies are often

hampered by the availability of stable isotope data. For

example, within this case study, an extensive and labour-

intensive literature search was performed to gather stable

isotope information across a variety of sources. Isotopic data

collected by researchers worldwide are currently spread over

a variety of sources, including peer-reviewed articles, gray

literature, datasets stored in different repositories, or other

resources which are not accessible to users (Woo and Scheipl,

2020). The lack of a unique and standardized data repository

for stable isotopes hinders the possibility of casting these

data into wide, continental or global, spatial contexts and of

using them beyond the scope for which they were originally

generated (Pauli et al., 2017). Therefore, potential drivers of

trophic variations acting at large geographical scales may

remain undetected and the possibility of estimating the role

of global environmental pressures, such as climate warming,

in species trophic habits may be overlooked. It follows that

this precious body of information deserves to be properly

standardized, managed and disseminated, and made

available in the long-term in a stable, reliable, and

organized repository. Scientists have long acknowledged

the need to build centralized databases for stable isotope

data obtained from ecological studies in order to facilitate the

integration and re-usability of such data across multiple

scientific disciplines (Pauli et al., 2017; Eftimov et al.,

2019; Woo et al., 2021). Such a centralized repository of

stable isotope data would prevent the time-consuming

efforts of data collection from different sources. In

FIGURE 7
Trophic position of Callinectes sapidus calculated from the
individual-scale dataset as predicted by local annual mean sea
surface temperature. For the regression curve (solid line) 95%
confidence intervals are included (dashed line). Log-
transformed and mean-centered data are used in the scatterplot.

TABLE 5 Correlation matrix (Pearson r coefficient) among sample number
(n), trophic position (TP), mean distance to centroid (CD), nitrogen range
(NR), carbon range (CR), standard deviation of nearest neighbor distance
(SDNND), total area (TA), and corrected standard ellipse area (SEAc) of the
12 Callinectes sapidus populations included in the individual-scale dataset.
All metrics log-transformed andmean-centered before analysis. Significant
correlations with p < 0.05 are highlighted in bold.

TP CD NR CR SDNND TA SEAc

N 0.01 0.07 0.40 0.19 -0.34 0.33 0.04

TP 0.55 0.25 0.49 0.04 0.43 0.51

CD 0.53 0.94 0.21 0.86 0.90

NR 0.42 0.48 0.84 0.78

CR 0.14 0.84 0.80

SDNND 0.38 0.46

TA 0.94
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addition, it would facilitate data integration,

standardization, harmonization, and ensure data

interoperability by making each dataset accessible in a

both human and machine-readable format through the use

of controlled metadata and defined ontologies (Eftimov et al.,

2019). In this context, the LifeWatch e-Infrastructure with its

distributed nodes and facilities offers suitable features to

guarantee the long-term storage of data, metadata, and

semantic resources, such as those of the LifeWatch Italy

Data Portal (https://dataportal.lifewatchitaly.eu), the

LifeWatch ERIC Metadata Catalogue (https://

metadatacatalogue.lifewatch.eu), and EcoPortal (http://

ecoportal.lifewatch.eu/). The e-Infrastructure provides

stable and reliable web-based solutions to share data and

analytical tools and to make them findable, accessible,

interoperable, and reusable according to the FAIR

principles (Wilkinson et al., 2016), and it would,

therefore, represent an ideal repository of stable isotope

data for both ecological and environmental studies.

The validation of our analytical workflow on the

population-scale dataset for P. clarkii and on the

individual-scale dataset for C. sapidus indicated that the

collection of geo-referenced stable isotope information on

invasive species and on their potential prey can be used to

explore ecologically-meaningful relationships between

environmental variables and the trophic positions of the

invaders and, ultimately, develop scenarios for future

trends. The preliminary analytical outcomes presented here

are supported by other studies where such associations were

also observed. For example, the use of a global meta-analysis

of stable isotope data demonstrated that changes in the

trophic positions of three tuna species were associated with

latitudinal and oxygen gradients (Pethybridge et al., 2018).

Using a similar analytical approach, this study revealed that

temperature-related variables may be associated with the

variations in the trophic positions of P. clarkii and C.

sapidus within invaded aquatic food webs (Figures 6,7). It

follows that, independently from ecological constraints

related to the structure of the recipient communities in

terms of e.g., resource availability, species composition, or

local environmental conditions, the trophic role played by an

invader within a food web is related with large-scale

environmental drivers ultimately influenced by climate

change. Specifically, the results of this study indicated that

at relatively high temperatures omnivorous invaders occupy

higher trophic levels in food webs, whereas at lower

temperatures they may shift to lower positions within the

trophic network. To provide an in-depth analysis of the

factors involved in the observed relationships goes beyond

the scope of the present study; however, as it is acknowledged

that the whole-body metabolic costs increase with higher

external temperatures (Brown et al., 2004; Arim et al.,

2007; Bonnaffé et al., 2021), the observed shifts in the

trophic positions of P. clarkii and C. sapidus may be

explained by changes in the metabolic responses of the

species as a result of their trophic plasticity. How and to

what extent the observed trophic shifts affect the ecological

impact of omnivorous invasive species on recipient

communities is an open question which requires additional

investigation. Yet it is likely the variation from omnivorous to

primarily carnivorous trophic habits may increase their

overall impact as previously suggested (Thomsen et al.,

2014; Gallardo et al., 2016; Mollot et al., 2017; Anton et al.,

2019; Bradley et al., 2019). The observed relationships

between external temperature and trophic position

additionally indicate that future changes in the climatic

conditions experienced by the two species may affect their

trophic positions and, in turn, their impact in invaded food

webs. To date, while a considerable effort has been made to

evaluate the effects of climate warming on the frequency of

introduction and invasiveness of NIS-IAS (Bellard et al., 2018;

Ricciardi et al., 2021), less consideration has been given to the

TABLE 6 Correlationmatrix (Pearson r coefficient) betweenMARSPEC temperature-related predictors (see Table 1 for acronyms) and sample number (n), mean
distance to centroid (CD), nitrogen range (NR), carbon range (CR), standard deviation of nearest neighbor distance (SDNND), total area (TA), and corrected
standard ellipse area (SEAc) of the 12 Callinectes sapidus populations included in the individual-scale dataset. All metrics log-transformed andmean-centered
before analysis.

biogeo13 biogeo14 biogeo15 biogeo16 biogeo17

n −0.20 −0.24 −0.12 0.20 0.23

CD 0.20 0.24 0.46 0.03 0.03

NR 0.27 0.15 0.40 0.08 0.13

CR 0.14 0.13 0.42 0.13 0.13

SDNND 0.40 0.15 0.55 0.16 0.22

TA 0.24 0.13 0.49 0.16 0.20

SEAc 0.29 0.27 0.49 0.01 0.05
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study of climatic variations and on their influence on the

impact of established invaders. This study clearly shows that

aquatic predators and their functional role in food webs may

be particularly vulnerable to climate change and that global

warming may play a major role in determining future

functional characteristics of the species, and, in the case of

bioinvaders, their trophic impact on recipient communities

and ecosystems.

To provide higher flexibility to the end-users and to

expand the current scope of the workflow it would be

essential to widen its analytical features by, for instance,

adding trophic niche metrics calculation and accounting for

all possible combinations of climatic variables that could

shape the trophic habits of invasive species. The future

implementations will allow for the testing of bioclimatic

predictors of trophic positions of different species, native

and non-indigenous, in potentially all types of

environments, including aquatic and terrestrial. The

possibility of querying and extracting environmental

variables of all kinds from different repositories, online

platforms, and databases, beyond the ones used within the

case study, will allow for greater customization by end-users

and make the potentiality of this workflow unlimited.

In conclusion, the present work clearly demonstrated how

collaboration between scientific and ICT communities for the

development of cutting-edge e-tools could greatly facilitate

scientists in finding evidence on rapid responses of

biodiversity and ecosystems to the most critical issues for

conservation and inform environmental managers to take

prompt action. The LifeWatch ERIC Internal Joint Initiative

on invasive species and the specific case study described herein

focuses on evaluating and predicting the trophic geography and,

indirectly, trophic-related impacts of large invasive omnivorous

crustaceans in invaded food webs. Such types of workflows could

be implemented and deployed to address a variety of key

questions in ecology including biodiversity and ecosystem

responses to climate change or to other anthropogenic

pressures acting at global scales.
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Lake Maggiore is a site of the Long-Term Ecosystem Research (LTER) network,

belonging to the deep subalpine Lake District in Northern Italy. Studies on the

physical, chemical, and biological features of the lake have been performed

continuously since the 1980s. The lake recovered from eutrophication reaching

the present oligotrophic condition. In the last decade, climate change

represents the main driving factor for the long-term evolution of the lake,

affecting its hydrodynamics, nutrient status, and biological communities. In

2020 a high-frequency monitoring (HFM) systemwas deployed, with the aim to

integrate long-term monitoring based on discrete sampling and analysis. The

system consists of a buoy equipped with sensors for limnological variables and

algal pigments. The high-frequency monitoring program is part of a cross-

border project between Italy and Switzerland focusing on lake quality

monitoring as a critical input for successful lake management. In this paper

we focus on Chlorophyll-a data, with the aim to test whether in-situ

fluorescence measurements may provide a reliable estimate of lake

phytoplankton biovolume and its seasonal dynamic. Sensor’s performance

was regularly tested comparing chlorophyll-a data taken by the in-situ

fluorescent sensors (Cyclops7, Turner Design), data from laboratory

fluorescence analysis (FluoroProbe, BBE Moldaenke), values obtained from

chlorophyll-a analysis by UV-VIS spectrophotometry and data from

phytoplankton microscopy analysis. We found a general good agreement

between the Chlorophyll-a data obtained with the different methods,

confirming the use of in-situ sensors as a reliable approach to measure algal

pigments, especially to assess their variability in the short-term, but also to

describe the seasonal pattern of phytoplankton biovolume. However,

phytoplankton community composition played a substantial role in the

performance of the different methods and in the reliability of in-situ data as

a tool to assess algal biovolume. This study demonstrates that high-frequency

monitoring (HFM), used in conjunction with discrete chemical and biological

monitoring, represents an important advance and support in the long-term

monitoring of freshwaters and is a useful tool to detect ecological changes.
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Regular checking and validation of the sensor readings through laboratory

analyses are important to get trustworthy data.

KEYWORDS

chlorophyll, fluorimetry, high frequency monitoring, LTER, phytoplankton

1 Introduction

Monitoring the surface water quality is compulsory for the

current environmental policies under the EU Water Framework

Directive (WFD, 2000/60/EC) (European Commission, 2000).

This directive commits EU member countries to achieve good

qualitative status for their water bodies and prevent further

deterioration. The first step to reaching these ambitious goals

is to assess the ecological status of aquatic environments through

monitoring and assigning them to specific quality classes. This is

central to the operation of theWFD, though the monitoring itself

also has other objectives such as increasing system understanding

and designing mitigation options (Skeffington et al., 2015).

Traditionally, freshwater monitoring involves fieldwork for

sample collection and subsequent laboratory work. Samples are

collected manually from selected waterbody stations and depth at

scheduled intervals throughout the year. The amount of manual

work required makes these methods costly and time-consuming.

Moreover, because of the low sampling frequency, this approach

often fails to capture the dynamics of biotic and abiotic processes

within freshwater ecosystems. Despite the usefulness of

traditional monitoring programs, the discrete nature of

sampling means it is vital to fill the knowledge gaps related to

short-lived, extremely episodic, or unpredictable events, and in

general to any process with a characteristic temporal scale shorter

than the sampling frequency (Jennings et al., 2012; Meinson et al.,

2016).

TheWFD requires the classification of the ecological status of

surface waters in an integrative way, by using multiple taxonomic

groups (biological quality elements, BQEs) together with

supporting physico-chemical and hydro-morphological

variables (Caroni et al., 2013). For lake monitoring,

phytoplankton is one of the required BQEs to be assessed.

Phytoplankton biomass is widely used as an indicator of the

status assessment of surface waters (Salmaso et al., 2006; Boyer

et al., 2009). Microscopy identification and enumeration of

phytoplankton performed in the laboratory are essential to

provide reliable data for assessing the ecological state of lakes.

However, phytoplankton microscopy analysis is a time-

consuming method, requiring specialized scientific personnel

to determine taxonomy and to make biomass calculations of

phytoplankton communities in lakes.

Chlorophyll-a (hereinafter Chl-a) concentration is often

used as a proxy for phytoplankton biomass (Vörös, and

Padisák, 1991; Kasprzak et al., 2008). It represents one of the

key indicators of water quality for lakes, in particular concerning

eutrophication-related problems (e.g., deterioration of water

quality, development of algal blooms). Chl-a is traditionally

quantified in the laboratory from water samples using ethanol

or acetone extraction followed by spectrophotometric

measurement (Lorenzen, 1967; ISO 10260, 1992). Although it

is nowadays a well-established technique, Chl-a extraction

protocols may have some shortcomings as they require the

manual collection of large water sample volumes, sample

transportation, and laboratory personnel to perform extraction

and spectrophotometric analyses.

A global increase in the frequency, intensity, and duration of

cyanobacterial blooms is raising concerns as many bloom-

forming species produce harmful compounds that pose a risk

to human and animal health (Taranu et al., 2015; Harke et al.,

2016). To evaluate the threat posed by cyanobacteria bloom

formations and to assist in the understanding of bloom

dynamics, the biomass of cyanobacteria is required to be

quantified. The identification of taxa and estimation of the

abundance of cyanobacteria, as well as of pigment and

cyanotoxin concentrations, are important tasks given the

increase in the frequency, intensity, and duration of

cyanobacterial blooms that are raising concerns worldwide.

However, laboratory determination procedures for the

quantification of cyanobacterial pigments, such as

phycocyanin, are labour-intensive and time-consuming

(Sarada et al., 1999; Randolph et al., 2008).

Laboratory analysis to assess phytoplankton biomass and

algal pigments have been extensively used in long-term

monitoring programs of lakes and the time series produced

have contributed to extended datasets and synoptic studies

across different ecosystems (e.g., Salmaso et al., 2003;

Morabito et al., 2018a; Stockwell et al., 2020). However, both

phytoplankton microscopy analysis and Chl-a determination in

the laboratory do not allow the monitoring of lake productivity

and phytoplankton variations in real time or at high frequency:

these methods are indeed not able to detect accurately

phytoplankton successions and bloom formation with a

sufficient temporal resolution. In particular, the short-lived

nature of cyanobacterial blooms makes traditional laboratory

methods difficult to be used for their early detection and

monitoring (Hunter et al., 2009; Stumpf et al., 2012; Bertone

et al., 2018).

The limited spatial and temporal coverage of discrete

monitoring methods prompted the development of

alternative and complementary monitoring techniques. As

regards algal pigment, during the last 2 decades, field
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fluorometers for in-situmeasurement have become increasingly

common worldwide (Marcé et al., 2016; Meinson et al., 2016).

Fluorometric quantification of Chl-a and other common algal

pigments such as phycocyanin and phycoerythrin is generally

cost-effective and allows frequent observations during sudden

phenomena such as mixing events or short-lived algal blooms

(Jennings et al., 2012; Klug et al., 2012). These sensors have been

incorporated into in-situ monitoring systems across the globe

(McQuaid et al., 2011; Hamilton et al., 2014; Hodges et al.,

2018), showing potential for assessment of phytoplankton

biomass spatially and temporally.

Lake Maggiore is a deep oligomictic lake belonging to the

“IT-08 Southern Alpine Lake” LTER site. The lake has been

studied for its physical, chemical, and biological aspects since the

1980s. It recovered from eutrophication thanks to the reduction

of catchment loads and reached a stable oligotrophic status by the

end of the 1990s. Nowadays, dissolved oxygen and nutrient

dynamics are mainly driven by in-lake processes, in particular,

the stratification andmixing regime, which in turn are affected by

climate change (Rogora et al., 2018, Rogora et al., 2021). Water

temperature increased, at different rates according to depth and

season, causing increased stability of the water column and a

decreasing frequency of deep mixing events, the last full turnover

having occurred in 2006 (Fenocchi et al., 2018). As an effect,

oxygen is steadily decreasing and phosphorus, nitrate, and silica

are accumulating in the deep layers, with limited replenishment

of the trophogenic layers (Rogora et al., 2021). These changes are

affecting phytoplankton composition and seasonal succession

(Morabito et al., 2012; Tanentzap et al., 2020), with a slightly

increasing trend of Chl-a concentrations and the evidence of

short-lived phytoplankton blooms triggered by heavy

precipitation events (Morabito et al., 2018b).

To integrate the discrete monitoring of the lake, in particular,

to get information on short-term lake dynamics, an HFM of Lake

Maggiore was started in 2020 within the cross-border

cooperation project SIMILE (Italian acronym for “Integrated

monitoring system for knowledge, protection, and valorization of

the subalpine lakes and their ecosystems”). Its general objectives

are the improvement/optimization of the monitoring of the deep

subalpine lakes (Lugano, Maggiore, and Como) in the so-called

“Insubric” region of Northern Italy and the strengthening of the

coordinated management of water through an intensification of

stakeholders’ participation in the processes of knowledge gain

and monitoring of the water resource. The first aim of SIMILE is

the testing and developing of an innovative monitoring

approach, integrating satellite data, in-situ high-frequency

sensor data, and user-contributed georeferenced data (Brovelli

et al., 2019).

Within the SIMILE project, an assessment of the high-

frequency data quality was started, with a focus on algal

pigment data. This paper presents a comparison of the in-situ

high-frequency measurements of Chl-a provided by the sensors

with those obtained from laboratory analysis on water samples

collected in 2020–21. We also measured phytoplankton

abundance and composition in each sample by microscopy

analysis. Finally, we aimed to critically discuss HFM as a

complementary approach to the discrete monitoring of lakes,

highlighting both its strong points and major drawbacks,

focusing on the contribution that HFM may provide in long-

term ecological research.

2 Methods

2.1 Study site

Lake Maggiore is the second deepest (370 m) and largest

(212.5 km2) lake in Italy. It belongs to the subalpine lake district,

and together with lakes Lugano, Como, Garda, and Iseo, it

contributes to almost 80% of the total volume of freshwater in

Italy. These lakes altogether are an invaluable water resource for

several uses including hydroelectric power production,

potabilization, irrigation, as well as they are key elements for

the tourist economy of the Alpine region (Salmaso et al., 2020).

Lake Maggiore is oligotrophic by nature; a eutrophication

process started in the 1960s, when nutrient concentration,

mainly phosphorus, started to rise, followed by an increase in

phytoplankton abundance, biovolume, and primary production.

After reaching a eutrophic state in the late 1970s-early 1980s, a

recovery process started, thanks to the reduction of catchment

loads and the lake gradually returned to an oligotrophic

condition, with total phosphorus concentrations around

10 μg P L−1 (Ruggiu et al., 1998; Morabito et al., 2012). Since

the late 1980s, changes in phytoplankton species diversity and

composition appeared, with a decrease in average cell size, Chl-a,

and total biovolume, as well as of annual primary production

(Ruggiu et al., 1998).

Lake Maggiore watershed (about 6,600 km2) is shared almost

equally between Italy and Switzerland, so issues related to the lake

water quality and its restoration and management have been

afforded through cooperation between the two countries. In

particular, lake monitoring has been performed monthly since

the 1980s at the deepest point (Ghiffa station), within the

limnological campaigns funded by the International

Commission for the Protection of Italian-Swiss Waters

(CIPAIS; www.cipais.org). The monitoring covered several

physical, chemical, and biological variables, and these long-

term data series allowed us to evaluate the lake trophic

evolution i.e., oligotrophication, as well as its response to

climate drivers (Tanentzap et al., 2020; Rogora et al., 2021).

However, until recently, only discrete data, based on regular field

campaigns, have been collected, except for meteo-hydrological

data for which high-frequency monitoring stations have been

established in the lake watershed (Ciampittiello et al., 2021).

As regards phytoplankton, integrated samples (0–20 m) have

been regularly collected and analyzed by microscopy to identify
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taxa at the species level (Morabito et al., 2012) and assess

biovolume of the main groups (Ruggiu et al., 1998). Chl-a

concentration was also measured on integrated samples by

spectrophotometric technique in the period 1984–2009

(APAT-IRSA-CNR, 2003), while from 2010 measurements

were taken using a vertical profiling instrument (FluoroProbe,

BBE Moldaenke) after a careful check of the comparability of the

two methods.

2.2 LM1 buoy

The monitoring buoy LM1 was deployed in LakeMaggiore in

the Pallanza basin (about 50 m from the shoreline, anchored at a

depth of about 40 m; Figure 1). The buoy was developed in-house

and conceived as a low-cost modular system (Tiberti et al., 2021).

It is equipped with sensors for pH, conductivity, dissolved

oxygen—surface (1.5 m depth) and deep (10 m depth)—and

algal pigments (Chl-a, both at surface and deep, phycocyanin

(PC) and phycoerythrin (PE) at surface), a thermistor chain, a

weather station, and a live webcam (https://www.meteolivevco.it/

boa-limnologica-sul-lago-maggiore/). Sensors used for pigment

monitoring (Cyclops7, Turner Design) include two Chl-a sensors

(surface and deep) which were deployed in 2020, and one PC and

one PE sensors which were added in March 2021. Each sensor is

wire connected to the electronic control unit, which has been

specifically designed within the project for signal acquisition

from the sensors, data storage, basic data elaboration, and

wireless transfer. The open-source data management software

istSOS (http://istsos.org/) was selected for managing and

dispatching the observations from the monitoring sensors

(Strigaro et al., 2022). Further details on the system hardware

and software are provided by Tiberti et al. (2021).

For the present study, pigment raw data (in Volt) were stored

in daily text files at 1 minute frequency. Successively, the data

were processed by applying quality assurance/quality control

(QA/QC) procedures and aggregated on an hourly basis.

Sensor signal at the surface was clearly affected by quenching

during daylight, as shown by the daily cycle in fluorescence data

(Tiberti et al., 2021). As suggested by McBride and Rose (2018),

night measurements should be considered the most indicative of

Chl-a concentration. In particular, for the comparison with

laboratory data, we selected fluorescence sensor data between

00:00 and 05:00 a.m. on the day of the sampling. The conversion

FIGURE 1
Location andmain characteristics of themonitoring buoy LM1 in Lake Maggiore (see Tiberti et al., 2021 for the details). On the bottom-left map,
Italy is coloured blue while Switzerland is grey.
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from signal data (in Volt) to Chl-a concentrations (µg L−1) was

done by applying a measured factor obtained from laboratory

calibration (Tiberti et al., 2021).

2.3 Chl-a analysis

During the first 2 years of the HFM (2020-2021) we collected

54 water samples within 37 sampling dates, approximatively

fortnightly, during the periods of high biological activity, and

monthly in the other months. Samples were collected close to

the buoy using a Ruttner bottle. Part of the samples were taken

at 1 m depth (n = 37), and part at 10 m depth (n = 17), where the

surface and deepChl-a sensors are placed, respectively. Data covered

the periods January-September 2020 and March-December 2021.

Unfortunately, no data were available between October 2020 and

February 2021 because a violent storm seriously damaged the buoy

and the sensors on 2 October 2020 and the repairing operation took

several months before the monitoring could be restarted.

All the samples were analyzed as follows:

- acetone extraction followed by UV-VIS

spectrophotometrical reading (APAT IRSA 9020) to

quantify Chl a, b, c, according to APAT—IRSA/CNR, 2003.

FIGURE 2
Comparison between Chl-a concentrations obtained from the in-situ sensors (buoy) and laboratory analysis UV-VIS (left panels) and FP (right
panels). In the panels data are shown for all the samples, surface and deep samples. Statistics of the linear regressions are provided in Table 1.
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- fluorometric determination of total Chl-a and of the

contribution by the main algal classes through the multi-

wavelength probe FluoroProbe (bbe Moldaenke GmbH),

used as a Workstation benchtop unit. The instrument can

detect four phytoplankton classes: green algae,

xanthophyll-containing brown algae (dinoflagellates,

diatoms, chrysophyceae), blue-green algae (PC-rich

cyanobacteria), and red algae (PE-rich cyanobacteria,

cryptophyceae) (Callieri et al., 2021).

On a subset of the surface samples (n = 23), microscopy

analysis of phytoplankton based on the inverted microscopy

techniques (Utermöhl, 1931; Lund et al., 1958) and the CEN

guidance (CEN, 2004) was performed. Taxa were classified at

species or genus level by an inverted microscope (Zeiss) at

intermediate (200x) and high (×400) magnification.

Community composition was estimated as taxa relative

abundance. The total biovolume and biovolume of each group

were estimated from density data and original measurements of

cell volume (Morabito et al., 2012).

To evaluate how well in-situ sensor data reflect the results of

laboratory techniques, we used a series of linear regressions,

with the average in-situ night values (from 00:00 and 05:

00 a.m.) of Chl-a as the dependent variable and the

laboratory measures of Chl-a (by UV-VIS and FP) as

independent variables, both considering all samples together

(n = 54) and surface and deep samples separately (n = 37 and

n = 17, respectively). In addition, we described the linear

relationship between the in-situ Chl-a measures and the

estimated algal biovolume (available only for 23 surface

samples) with a further regression analysis. All analyses were

performed in the R environment for statistical computing (R

Core Team, 2022).

3 Results

3.1 Evaluation of Chl-a estimation by in-
situ sensors

Chl-a concentrations measured in Lake Maggiore during the

study period throughHFM ranged between 2 and 13 μg L−1 at the

surface and 1 and 12 μg L−1 at the deep sample points, with

average values of 4.7 and 3.3 μg L−1, respectively. These values are

typical of mesotrophic lakes; however, they lie in the low range of

Chl-a concentrations characterizing freshwater lakes worldwide

(Filazzola et al., 2020). Some peaks (above 10 μg L−1) were

detected in spring and summer, usually in correspondence

with diatom blooms, such as in May 2021.

Altogether the results of the linear regression indicate a good

fit between the values recorded by the buoy and both UV-VIS

and FP data (Table 1; Figure 2). The slopes of the regression lines

are frequently significantly lower than 1 (1 is not included in the

95% Confidence Intervals), which indicates that laboratory

calibration, based on dilutions of algal cultures, may be

inaccurate under natural conditions, i.e., natural algal

communities. Because of this, discrete laboratory measures

from discrete samples could be used to recalibrate the sensors.

The high frequency (HF) data collected in 2020 and 2021

(hourly average) allowed us to describe the seasonal pattern of

Chl-a concentrations in great detail (Figure 3): sensor readings

were able to describe the annual Chl-a dynamics, its main peaks

(e.g., March, late April and June 2020 and May 2021) and a

number of short-lived peaks of Chl-a (Figure 3) that would have

passed unnoticed or poorly described by discrete data. Some

discrepancy was observed between HF and laboratory data in late

summer 2020, when the in-situ data slightly underestimated the

Chl-a values.

3.2 Algal groups and their role in Chl-a
detection

To get additional data on phytoplankton biovolume and

composition, a subset of surface samples were counted by

microscope (Figure 4). As regards the phytoplankton

community composition, our results confirmed those obtained

from the long-term monitoring of Lake Maggiore (Morabito

et al., 2012; Rogora et al., 2021). We found a limited presence of

cyanobacteria, which were present in small amounts mostly in

late summer (e.g., 290 mm3 m−3 in August 2020).

Bacillariophyceae were dominant in almost all the samples,

representing between 50 and 80% of the total biovolume. The

second most important group was that of cryptophyceae, which

were dominant in a few spring samples (e.g., about 500 and

750 mm3 m−3 in March and May 2021).

The Chl-a values, both from the buoy and UV-VIS analysis,

closely followed the pattern of the Bacillariophyceae group

(Figure 4). Diatoms are indeed the dominant taxon in Lake

Maggiore, and their blooms in spring and summer are the main

responsible for the Chl-a peaks observed in the lake, especially in

recent years (Rogora et al., 2021).

When considering total biovolume, the highest values

were measured in early March 2020 (2,800 mm3 m−3), June

2020 (2,500 and 2,800 mm3 m−3 respectively on the 16 and

30 of June), and May 2021 (4,200 mm3 m−3). Despite the

limited number of samples available in 2021, the seasonal

pattern in both years was similar to the long-term monitoring

of the lake, with the highest biovolume measured in spring

(Rogora et al., 2021). The pattern of total biovolume followed

well that of Chl-a concentrations resulting from the HFM

(Figure 4). The linear regression parameters (R2 = 0.72, p <
0.001; a = 1.82 (0.77–2.87 95% CI); b = 0.002 (0.001–0.003 95%

CI)) indicate a good fit between in-situ Chl-a sensor and the

biovolume estimates from the microscopic analysis, as shown

in Figure 5.
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4 Discussion

The comparison between field and laboratory methods to

estimate Chl-a concentrations in Lake Maggiore showed an

overall good agreement. In particular, in-situ fluorimetric

sensors provided a reliable estimate of Chl-a values and

captured peaks occurring during algal blooms in spring and

summer. Linear regressions were statistically significant between

the data from the buoy and those from laboratory analyses. As

expected, we found a higher correlation coefficient with the buoy

sensor and FP data since both estimate Chl-a concentrations

through a fluorimetric measure. A better fit with laboratory data

emerged for the deep sensor, with respect to the surface one,

possibly due to the more limited variability of deep Chl-a

concentrations. A fair agreement was also found between the

in-situ fluorometric data and the total phytoplankton biovolume

estimated by cell counting, suggesting in-situHF data as a tool to

assess phytoplankton biomass variability in the short term.

However, the phytoplankton community composition should

be considered in this evaluation.

In this study, during most of the year, the phytoplankton

community of Lake Maggiore was dominated by diatoms, and

their biovolume variation during the 2-year period had a fair

agreement with the in-situ HF Chl-a sensor trend. However,

during the summer, cyanobacteria started to be an important

part of the phytoplankton community. In particular, in late

TABLE 1 Results from linear regressions between chlorophyll-a concentrations measured by in-situ sensors (buoy) and by UV-VIS spectrophotometry or
FluoroProbe (FP). The intercept (a), slope (b), coefficient of determination (R2), and p-values are reported; lower and upper 95% confidence intervals of a and b
are reported in brackets.

Buoy vs. UV-VIS Buoy vs. FP

n a b p R2 a b p R2

All data 52 0.52 (−0.44, 1.47) 0.77 (0.60, 0.94) <0.001 0.62 0.71 (−0.13, 1.55) 0.67 (0.53, 0.80) <0.001 0.66

Surface 35 0.78 (−0.27 1.83) 0.84 (0.64, 1.03) <0.001 0.70 1.18 (0.24, 2.11) 0.69 (0.53, 0.84) <0.001 0.71

Deep 17 −0.41 (−1.80,0.99) 0.72 (0.48,0.96) <0.001 0.73 −0.50 (−1.61, 0.61) 0.68 (0.50, 0.85) <0.001 0.82

FIGURE 3
Hourly average data of Chl-a concentrations from in-situ sensors (bluish area) and Chl-a concentrations in the surface samples collected in
2020–21 and analysed by UV-VIS spectrophotometry (yellow dots).
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summer and early autumn small cell-sized (Chroococcales, cell

sizes 2–4 µm) colonial cyanobacteria taxa such as Aphanoteche

sp. and Aphanocapsa sp. reached considerable density values.

During this period, Chl-a concentration by in-situ sensors

recorded lower values with respect to laboratory methods and

phytoplankton counting. A similar discrepancy was observed by

other studies that highlighted how at low Chl-a concentrations

(approx. below 10 μg L−1), the percentage contribution of

picocyanobacteria to total phytoplankton biomass can be high

(Voros et al., 1998). PE-rich picocyanobacteria are commonly

found in oligotrophic waters where green and blue-green light is

available, as in the case of Lake Maggiore (Callieri et al., 2021).

FIGURE 4
Biovolume of the main phytoplankton groups based on microscopy analysis of surface samples (n = 23) collected in 2020 and 2021. The grey
area shows the pattern of HF Chl-a data from the in-situ sensor.

FIGURE 5
Linear regressions between Chl-a concentrations obtained from the in-situ sensors (buoy) and total phytoplankton biovolume by microscopy
analysis (n = 23).
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Picocyanobacteria are characterized by a low Chl:biomass ratio

with respect to other phytoplankton groups, so their presence

could lead to an underestimate of total phytoplankton biomass

based on in-situ Chl-a data.

Our results confirmed what was highlighted by other studies

about the limitations of sensor use to estimate Chl-a variations,

including interference from water turbidity and the different

contribution by phytoplankton classes (Zamyadi et al., 2012;

Kong et al., 2014; Kasinak et al., 2015). In fact, in-situ

fluorescence estimation mainly depends on phytoplankton

biomass, its community composition, and its physiological

state (Richardson et al., 2010). However, other physical and

chemical factors such as water temperature, water column

stratification, underwater light, back light scattering, and light

absorption by organic and inorganic particles can affect the final

measure of chlorophyll and phycobiliprotein values (Proctor &

Roesler 2010; Ostrowska 2012).

A limitation of our study consists in the narrow range of Chl-

a values considered in the method comparison: Chl-a in Lake

Maggiore is in the low range of concentrations for freshwater,

with most of the data between 2 and 3 μg L−1 and only a few data

above 10 μg L−1, during spring algal density increases. Moreover,

the phytoplankton community was dominated by diatoms,

which also contributed to the highest Chl-a values recorded,

followed by green algae. PC-containing cyanobacteria were rarely

detected in the lake, and this prevented us from assessing the use

of phycocyanin in-situ sensors as early warning systems for

potentially toxic cyanobacteria blooms.

A further limitation of our assessment lies in the uneven

distribution of samples (more frequent sampling in 2020 and a

higher number of surfaces with respect to deep samples) and in

the lack of replicates, which prevented the evaluation of random

errors. However, we tested the agreement between methods on a

total of 54 samples covering the seasonal pattern of Chl-a and the

results clearly demonstrate an overall agreement between in-situ

sensor data and extracted Chl-a.

A further problem we encountered was the presence of gaps in

the HF data due to technical issues (e.g., sensor damages, fouling,

lack of data transmission), the most relevant being a 5-month

interruption between 2020 and 2021 due to the damages caused to

the buoy by a severe storm. However, these issues are not rare in

HFM applications and should be considered when designing the

monitoring system and evaluating the costs and benefits of the

system itself (Seifert-Dähnn et al., 2021). Despite these drawbacks,

the HFM systems in Lake Maggiore performed well in depicting

the seasonal pattern of Chl-a concentrations, which in turn proved

to be a good proxy of phytoplankton biovolume. We still need to

test the performance of the PC and PE sensors deployed in 2021.

However, we think these sensors will be a useful integration to the

HFM of Lake Maggiore, for a more comprehensive evaluation of

the phytoplankton succession. Overall, our results confirmed that

in-situ sensors may be useful in measuring diagnostic pigments

and estimating algae abundance in near real-time, especially when

sensors for different pigments are combined (Pace et al., 2017;

Bertone et al., 2018; Chegoonian et al., 2022). These data may be

relevant in planning field campaigns for institutional monitoring

purposes, e.g., targeting the sampling and analysis effort on

bringing information on critical or representative periods in

terms of algal blooms.

It is worth mentioning that in some periods of 2020 (March-

May and November-December) the field campaigns for the

monitoring of Lake Maggiore had to be delayed due to the

lockdowns caused by the outbreak of the COVID-19

pandemic. In those situations, the HF data provided by the

buoy were the only data available and, even though limited to

a few variables, provided useful information on the lake

dynamics. Some relative maxima in Chl-a concentrations

recorded by the buoy (e.g., 7.8–8.6 μg L−1 on 16 and 23 of

June 2020) were not detected by the discrete monitoring

program based on monthly surveys (3.1 μg L−1 for June 2020;

CIPAIS, 2022) confirming that monthly or even lower-frequent

sampling is likely to miss the short-term variability of some lake

processes. HF data may not only detect short-term events but

also improve the estimate of key parameters for water quality

assessment, such as Chl-a concentrations (Bresciani et al., 2011).

Further, the HF Chl-a data may be employed in assessing the

performance of the monitoring systems based on satellite data,

also under development within the SIMILE project (Luciani et al.,

2021; Bratic et al., 2022).

Long-term monitoring has proved to disproportionately

contribute to a better understanding of ecosystems as well as

to support management and restoration policy (Hughes et al.,

2017). However, a multi-scale approach is required in ecological

study, combining monitoring at different temporal and spatial

scales (Sparrow et al., 2020). In-depth information on lake

productivity and phytoplankton biomass, such as those

provided by microscopy and laboratory analysis of discrete

samples, cannot be replaced by sensor data. Nevertheless,

HFM, even when limited to a few basic variables, may

supplement time series of highly detailed data, contributing to

a deeper knowledge of ecosystem dynamics, especially as regards

short-term and highly variable processes (Carpenter et al., 2020).

5 Conclusion

Our study confirmed that in-situ sensors measuring in vivo

fluorescence are an interesting approach for monitoring algal

blooms in lakes and are an effective tool to detect and track

bloom formation, complementing the more classical laboratory

analysis. HFM is not limited to Chl-a, but also includes other

algal pigments (i.e., PC and PE) that may improve the evaluation

of lake productivity and phytoplankton succession: used in

conjunction with discrete chemical and biological monitoring,

it represents an important advance in the monitoring of

freshwaters and a useful tool to detect ecological changes.
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However, regular check and validation of the sensor readings

through laboratory analyses is needed to get reliable data.

Automated in-situmonitoring can warn water managers and

local authorities when measures against blooms are required and

data can be used for successive selection of sites to be sampled

and analyzed in the laboratory. In summary, lake monitoring,

programs based on discrete sample collection and analysis may

be successfully integrated by HFM and other approaches, such as

the use of satellite data and of observations provided by citizens:

this can hold both for lakes subject to operational monitoring

under the WFD, where early warning systems could be needed to

assess critical issue such as algal blooms, but also for lakes under

the surveillance monitoring, to supplement and validate long-

term discrete data.
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Biological monitoring data from aquatic ecosystems are collected from European
countries on a yearly basis by the European Environment Agency (EEA) through
the Water Information System for Europe (WISE). The WISE-SoE (State of
Environment) data flows provide indicators of pressures, states and impacts of
surface waters and groundwaters on a pan-European scale. The WISE-2 Biology
was established to obtain a harmonised flow of biology data reported annually as
Ecological Quality Ratios (EQRs) from European surface waters, as a supplement
to the mandatory 6-yearly reporting of ecological status of water bodies for the
Water Framework Directive. The purposes of this paper are 1) to describe the
compilation of national aquatic biology monitoring data indicators and to inform
about the public availability of these data, 2) to give an overview of the reported
data and indicate the potential for assessments based on these data, and 3) to
illustrate the potential for further use of the underlying species abundance data in
biodiversity research and assessment. WISE-2 data are reported for the following
biological quality elements: phytoplankton, phytobenthos, macrophytes,
macroalgae, angiosperms, benthic invertebrates and fish in rivers, lakes,
transitional and/or coastal waters. The EQR values represent the deviation from
reference conditions. The final processed and quality-checked data are published
in EEA’s databaseWaterbase - Biology, which currently holds data frommore than
13,000 waterbodies in 26 countries from the reporting years 2011–2021.
Examples of time series aggregated by geographic regions give an indication
of the type of trends that can be obtained from the reported data at the nEQR
scale. However, the current results are representative only for certain geographic
regions with high coverage of water bodies. Within the European research project
EuropaBON (Europa Biodiversity Observation Network), the use of WISE-2 data
can be leveraged to support biodiversity policy and conservation planning.
EuropaBON’s online database provides an overview of how biodiversity
monitoring schemes across Europe flows through different integration nodes,
to produce Essential Biodiversity Variables and other policy-relevant indicators.
Here, we use the EuropaBON visualisation tool to illustrate the WISE-2 as a
European integration node for 157 biology datasets via the national integration
nodes.
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1 Introduction

The European Water Framework Directive (WFD) requires
monitoring and assessment of the ecosystems of surface water
bodies in rivers, lakes, transitional and coastal waters in all EU
member states (European Commission, 2000). The ecological
status assessment should be based primarily on metrics
representing a selection of biological quality elements (BQEs)
and supported abiotic quality elements (physical, chemical and
hydromorphological variables) (Hering et al., 2015). Ecological
status of water bodies is reported according to river basin
management plans (RBMP) every 6 years through the Water
Information System for Europe (WISE); the 3rd WFD
reporting cycle was completed in 2022.

In addition to the mandatory reporting to WISE-WFD,
biological data from monitoring of aquatic ecosystems are
collected and integrated by the European Environment Agency
(EEA) through the voluntary State of the Environment reporting
(WISE-SoE). The data are collected on a yearly basis through the
European Environment Information and Observation Network
(EIONET), and used by EEA in State of the Environment reports
which are published every 5 years (EEA, 2019). Since the
reporting to WISE-SoE is voluntary, the selection of water
bodies often constitutes a subset of those reported to the
WFD. Still, the WISE-SoE data flows aim to provide a
representative set of indicators of pressures, states and impacts
of waters on a pan-European scale.

Within the WISE-SoE system, the WISE-2 Biology data flow
(https://cdr.eionet.europa.eu/help/WISE_SoE/wise2) was

established to obtain a harmonised flow of biology data reported
as ecological quality ratios (EQRs) from all surface water categories;
rivers, lakes, transitional and coastal waters.

The added value of the WISE-SoE biology data in comparison
to other main relevant data sources is illustrated in a conceptual
diagram (Figure 1). Other data sources such as national
monitoring data can provide even longer time series and
higher resolution of information, such as abundance per
species. However, compilation of raw species data is beyond
the scope of EEA. While the WISE-2 data flow has a lower
spatial coverage than the WFD reporting, the former has
several benefits in the context of biodiversity information:

(1) more frequent reporting: annual SoE data calls vs. WFD
reporting every 6 years.

(2) higher resolution: EQR (Ecological quality ratio) values on
continuous scale (0-1) vs. categorical (5 status classes) (see
Section 2.1 below).

(3) the biological determinands of SoE can be related to physical or
chemical pressures and impacts (e.g., eutrophication vs. general
degradation).

WISE-2 Biology data is the most recent of the four current
WISE-SoE data flows: chemical emission (WISE-1), water
quantity (WISE-3) and water quality (WISE-6). In this
context, the WISE-2 data can fill the gap in the DPSIR
(Drivers—Pressures—States—Impacts—Responses) model used
for water management in Europe (EEA, 2018), by representing
the biotic states and impact part of the DPSIR cycle (Moe et al.,

FIGURE 1
Schematic diagram of the spatial and temporal extent and resolution of WISE-SoE biology data, compared to alternative monitoring data sources
(national data and WISE-WFD data). Note: the position and extent of the text boxes do not represent exact values.
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2016). These data can provide an important building block
towards the development of a new aquatic biology indicator
(sensu EEA) with relevance for the WFD as well as other EU
directives and policies. EEA indicators are designed to answer key
policy questions and to support all phases of environmental
policy making from policy monitoring and evaluation to
communicating to policymakers and the public, and to inform
the reader about the trend or status of the phenomenon being
investigated over a given period of time.

The assessment of SoE biology data is also relevant for the
focus on Biodiversity in the new EU Commission. An assessment
based on the biological data can be expected to give added value
compared to the assessment of the overall ecological status for
river and lake water bodies reported in the RBMPs in several
ways:

• Good ecological status is an objective of the WFD for rivers
and lakes and should be assessed primarily by using BQEs and
secondarily by physico-chemical quality elements. While the
assessment of ecological status of water bodies according to
WFD should be based on several different BQEs (e.g.,
phytoplankton, macrophytes, macroinvertebrates and fish in
lakes), only a subset of the BQEs are requested by reporting to
EEA (e.g., phytoplankton, macrophytes and fish in lakes). The
selected BQEs are typically those for which assessment
methods are best developed by the countries implementing
the WFD.

• Most of the biological indicators can provide direct information on
the impacts of specific pressures, e.g., nutrient enrichment and
organic pollution, hydromorphological pressures, acidification
etc., and can therefore provide a link to the underlying causes
for change in the ecological status of river and lake water bodies.

• The normalised EQR values (ecological quality ratio on a
scale from 0 to 1) provide more accurate measurement of
ecological status than the categorical status class given in
the WFD-RBMP reporting and can be used to assess
changes within a status class, as well as between status
classes.

While the WISE-2 data are publicly available in tabular format,
further evaluation and context is needed for these data to become
useful to support biodiversity policy and conservation planning.
This is an ongoing activity of the European Horizon 2020 project
EuropaBON (Europa Biodiversity Observation Network:
integrating data streams to support policy) (Pereira et al., 2022).
The project’s mission is to overcome existing data gaps and
workflow bottlenecks by designing an EU-wide framework for
monitoring biodiversity and ecosystem services (Santana et al.,
2023). EuropaBON has set up a web-based platform to collect and
record the current biodiversity monitoring data workflows across
Europe in a database (Figure 2) (Morán-Ordóñez et al. 2023). This
database is in essence a metadatabase, which will provide an
overview of how biodiversity data collected in monitoring
schemes across Europe flows through different institutions and
programs and is processed to produce Essential Biodiversity
Variables (EBVs) (Pereira et al., 2013), Essential Ecosystem
Services Variables (EESVs) (Balvanera et al., 2022), and other
EU policy-relevant indicators. This database will also provide
more detailed information on the individual national
biodiversity datasets, underlying monitoring programs, species
lists, contact information and other metadata, which can be
relevant information for scientists interested in accessing the
original monitoring data. As such, the EuropaBON monitoring
database will provide useful information on aquatic biological data

FIGURE 2
The EuropaBON biodiversity monitoring database: Schematic diagram of the dataflow across an integration initiative. The European node
corresponds to WISE-2; the Sub-EU level nodes corresponds to national data compilation for reporting to WISE-2. Modified after Figure 1 in Morán-
Ordóñez et al. (2023).
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at all levels from the national monitoring programs to European
indicators of ecosystem state and services.

The objective of this paper is to provide information on the
WISE-2 biology data, how they can be accessed and used, and to
illustrates current or planned applications and indicator
development for European-scale assessments. Moreover, we
describe how information on these dataflows are used in the EU
project EuropaBON, which can in turn provide more detailed
information on the original monitoring data underlying the
WISE-2 data flow.

2 Reporting and processing of WISE-2
biology data

2.1 Biological quality elements (BQEs)

Response to stress differs between organism groups, water types
and stressors. A conceptual model from the EU project WISER
(Hering et al., 2013) summarises how the individual organism
groups respond to different types of degradation in rivers, lakes,
transitional and coastal waters. A recent comprehensive study across

TABLE 1 Number of waterbodies reported per country and water category, by one or more BQEs (see Table 2) for one or more years. Countries are grouped into
geographic regions for assessment of trends. Abbreviations: RW = river water bodies, LW = lake water bodies, TW = transitional water bodies, CW = coastal water
bodies. “Status class” is the count of waterbodies with status class reported (mandatory). “nEQR” is the count number of waterbodies with normalised Ecological
Quality Ratio values, either reported or calculated based on the reported national EQR values and classification systems. Note: For countries that have not
implemented the WFD (e.g CH), the national classification is not necessarily WFD-compliant.

Country code Geographic
region

RW status
class

RW
nEQR

LW status
class

LW
nEQR

TW status
class

TW
nEQR

CW status
class

CW
nEQR

Austria (AT) Southeast 242 242 156 26 — — — —

Belgium (BE) West 3,942 3,942 6 6 10 10 — —

Bulgaria (BG) Southeast 831 831 2 2 — — — —

Switzerland (CH) West 108 — — — — — — —

Cyprus (CY) South 160 139 3 — — — — —

Germany (DE) West 28 — 89 — — — — —

Denmark (DK) West 144 — — — — — — —

Estonia (EE) East 394 392 13 7 — — — —

Spain (ES) South 7,617 7,375 118 118 173 157 257 80

Finland (FI) North 67 67 48 48 — — — —

France (FR) West 1,681 1,681 — — — — — —

Croatia (HR) Southeast 156 156 8 8 — — — —

Ireland (IE) West 498 458 325 186 — — — —

Italy (IT) South 5,130 5,034 382 317 601 499 914 887

Lithuania (LT) East 2,422 2,420 946 946 24 24 6 6

Luxembourg (LU) West 19 18 — — — — — —

Latvia (LV) East 89 89 35 35 11 11 21 21

Netherlands (NL) West 158 127 349 343 — — — —

Norway (NO) North 442 270 137 35 — — 210 128

Poland (PL) East 4,293 3,781 2,124 1,845 4 4 — —

Portugal (PT) South 53 — 1 — — — — —

Romania (RO) Southeast 1,060 885 10 10 — — — —

Sweden (SE) North 324 314 2,563 2,437 — — 4 —

Slovenia (SI) East 112 — 65 10 — — — —

Slovakia (SK) East 272 252 — — — — — —

United Kingdom
(UK)

West 7,570 6,373 326 235 — — — —

Sum 37,812 34,846 7,706 6,614 823 705 1,412 1,122
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spatial scales and water categories reported that nutrient enrichment
was the overriding stressor for lakes, while for rivers the effects of
nutrient enrichment were dependent on the specific stressor
combination and biological response variable {Birk, 2020 #24}.

The WISE-2 data include data from rivers, lakes, transitional
and/or coastal water bodies in 26 countries (Table 1). The data are
reported for the following biological quality elements (BQEs)
(Table 2): phytobenthos and macroinvertebrates in rivers;
phytoplankton and macrophytes in lakes; phytoplankton,
macroalgae, angiosperms and invertebrates in coastal and
transitional waters; as well as fish in rivers, lakes and transitional
waters. Specific information on pressure-response relationships for
the different BQEs and water categories can be found in the overview
by (Birk et al., 2012) and the references within.

For rivers, phytobenthos is used as an indicator for the impact of
nutrient enrichment, based on changes in taxonomic composition of
diatoms or non-diatom algae. Macroinvertebrates in rivers respond to
several pressures, e.g., organic enrichment, hydromorphological
pressures, acidification, or general degradation, which is usually a
mixture of point source pollution causing organic enrichment and
hydromorphological pressures causing altered habitats. For lakes,
phytoplankton is a sensitive indicator for the impact of nutrient
enrichment caused by diffuse and point source pollution.

Macrophytes are also responding to nutrient enrichment caused by
diffuse and point source pollution. In addition, macrophytes respond to
siltation and to hydromorphological pressures, but the metrics selected
for reporting to WISE-2 are those responding to nutrient enrichment.
Likewise, the determinands for coastal and transitional waters have been
selected as those most suitable to indicate the ecological status of water
bodies in these water categories.

The biology data include the status classes (high, good,
moderate, poor, bad) for each determinand, as a mandatory
element in the SoE data reporting. The ecological status
assessment is based on the ecological quality ratio (EQR values)
as required by the Water Framework Directive (WFD). Reporting of
EQR values is not mandatory but strongly encouraged. The EQR is a
measure of the deviation from reference conditions for each
biological quality element (BQE). The national metrics used to
measure the EQR are normally based on a general response to
increasing pressure seen as a decrease of the sensitive taxa usually
dominating under reference conditions and an increase of tolerant
taxa, and a change in abundance for some of the metrics (e.g.,
increase in phytoplankton chlorophyll). The national EQR values
reported by each country are normalised to a common scale, either
by the reporters or by the EEA as part of the data processing (see
section Calculation and processing of normalised EQR values).

TABLE 2 Number of records per determinand reported to WISE-2 and published in Waterbase—Biology 2021. Each determinand represents a biological quality
element (BQE), as well as a specific impact type (for rivers and lakes). Retired determinands are not included in the table. Abbreviations for water categories: RW =
river water bodies, LW = lake water bodies, TW = transitional water bodies, CW = coastal water bodies: Abbreviations for water BQEs: PB = phytobenthos, MI =
benthic macroinvertebrates, FI = fish, PP = phytoplankton, MP =macrophytes, MA =macroalgae, AN = angiosperms. Abbreviations for water impact types (suffixes
to determinand labels): _E = eutrophication, _A = acidifiction, _G = general degradation, H = hydromorphological pressures.

Water
category

Biological quality
element

Determinand
code

Determinand
label

No. of status class
values

No. of normalised EQR
values

RW PB EEA_124-04-9 PhytobenthosEQR_E 15,670 9,925

RW MI EEA_13-03-6 InvertebrateEQR_A 470 469

RW MI EEA_13-01-4 InvertebrateEQR_G 20,548 13,106

RW FI EEA_14-01-7 FishEQR_G 554 479

RW FI EEA_14-02-8 FishEQR_H 570 400

LW PP EEA_11-04-1 PhytoplanktonEQR_E 5,788 5,030

LW MP EEA_123-04-6 MacrophyteEQR_E 1,571 1,416

LW FI EEA_14-01-7 FishEQR_G 281 275

LW FI EEA_14-02-8 FishEQR_H 66 0

TW PP EEA_11-08-5 PhytoplanktonEQR 253 51

TW MA EEA_121-01-7 MacroalgaeEQR 193 65

TW AN EEA_122-02-1 AngiospermsEQR 45 4

TW MI EEA_13-05-8 InvertebrateEQR 288 163

TW FI EEA_14-05-1 FishEQR 44 36

CW PP EEA_11-08-5 PhytoplanktonEQR 731 361

CW MA EEA_121-01-7 MacroalgaeEQR 186 107

CW AN EEA_122-02-1 AngiospermsEQR 94 29

CW MI EEA_13-05-8 InvertebrateEQR 401 138

Total 47,753 32,054
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Biological data can also be reported to WISE-SoE in absolute
scale (original metric scale) for certain determinands for
phytoplankton: Chlorophyll a, Cyanobacteria biomass,
Cyanobacteria proportion and Total phytoplankton biomass.
These determinands are also relevant for an aquatic biological
indicator, but are subject to another data flow (WISE-6 water
quality) for data-technical reasons. Therefore, these data will not
be presented further in this paper.

2.2 Data sources

Waterbase is the generic name given to the EEA’s databases on
the status and quality of Europe’s rivers, lakes, groundwater bodies
and transitional, coastal and marine waters, on the quantity of
Europe’s water resources, and on the emissions to surface waters
from point and diffuse sources of pollution. Waterbase data is
collected and published to produce comparable indicators of
pressures, state and impacts on European waters. Waterbase is
intended for a European-wide scale of analysis. It is not intended
for assessing compliance with any European Directive or any other
legal instrument. Information on the national and sub-national
scales should be sought from other sources.

Data reported to WISE-2 Biology are published in Waterbase
Biology (https://www.eea.europa.eu/data-and-maps/data/waterbase-
biology-1), which comprises four tables: EQR values by site, EQR
values bywater body, classification procedures, and spatial data (derived
fromWFD and fromWISE-5). The WISE-2 Biology data presented in
Section 2 were downloaded from the 2021 version of Waterbase
Biology, published 16.05.2022 (see Data Availability Statement). This
database contains all officially reported and quality-assured biological
data from the first reporting cycle in 2011 until the 2021 reporting cycle,
which ended in January 2022. Additional data may have been delivered
but not passed the automatic quality checking in the Central Data
Repository (https://cdr.eionet.europa.eu). The overviews reported here
used data from the following tables:

1) Waterbase_v2021_1_T_WISE2_BiologyEQRData. Data
reported by monitoring site. Mandatory values: determinand
status class, i.e., status class at the determinand level (impact-
specific BQE). Recommended values: national EQR values and/
or normalised EQR values (nEQR).

2) Waterbase_v2021_1_T_WISE2_
BiologyEQRDataByWaterbody. Data as above but aggregated to
waterbody level before reporting.

3) Waterbase_v2021_1_T_WISE2_
BiologyEQRClassificationProcedure. National class boundaries
used for calculation of nEQR values from the reported national
EQR values for each determinand. (Some countries have
multiple impact-specific determinands for the same BQE, e.g.,
for invertebrates’ responses to acidification and general
degradation).

4) Waterbase_v2021_1_T_WISE4_MonitoringSite_DerivedData.
This table provides a link from monitoringSiteIdentifier to
waterBodyIdentifier and coordinates (longitude and latitude).

Spatial information for the water bodies of biology data includes
information on water category, water body type, natural/artificial/

highly modified water body, and coordinates. This information was
extracted from theWISE-WFD database as far as possible (i.e., for all
water bodies already reported to theWFD). For the remaining water
bodies (e.g., for EEA member states not reporting to the WFD), the
spatial information was extracted from EEA’s WISE-5 Spatial
data flow.

The overview of the four tables (https://www.eea.europa.eu/data-
and-maps/data/waterbase-biology/#tab-european-data) contains a
definition of each element (i.e., table column), including additional
metadata information for individual records such as the status and the
reliability of the record. Further information for all tables, elements
and allowable values (codes) are available from the WISE-2 data
dictionary (https://dd.eionet.europa.eu/datasets/latest/WISE-SoE_
Biology). The published data furthermore contains fields with
metadata information such as the version ID, status code,
observation status, and statements from expert-based quality
checking.

The metadata associated with this dataset (https://www.eea.europa.
eu/data-and-maps/data/waterbase-biology-1/#tab-metadata) provides
more information on the reporting obligation (WISE SoE Biology
data), the rights to use, disclaimers, methodology and data sources.
For more detailes, see the Data Availability Statement.

As a more user-friendly alternative to downloading tables
from Waterbase with additional functionalities, the Discodata
server (https://discodata.eea.europa.eu/) is a public tool and
service where anybody can access data published by the
European Environment Agency (EEA). It offers two
functionalities: A human-readable web application to inspect
and query databases using Structured Query Language (SQL),
and a machine-readable application programming interface
(API) to get data from databases, using SQL queries, as
JavaScript Object Notation information.

Biological data in EQR scale were extracted from the tables
BiologyEQRData and BiologyEQRDataByWaterbody. The number
of status class values and normalised EQR values available for each
determinand is shown in Table 2. Data reporters have also been
encouraged to report more of their existing monitoring data to
WISE-2 to fill the gaps both in space, time and taxonomy (biological
quality elements).

2.3 Calculation and processing of
normalised EQR values

All countries reporting to WFD have developed national
classification systems for assessment of ecological status based on
EQR values. However, the boundaries defined between status classes
(e.g., Good/Moderate) in national EQR scale vary among countries,
as well as among determinands and water body types (Birk et al.,
2012). For example, the Good/Moderate boundary of a given BQE
could be 0.62 in one country and 0.66 in another case; an EQR value
of 0.64 would then mean Good status in the former case but
Moderate status in the latter case. This means that national EQR
values are not directly comparable between countries, without
considering the distance to their respective class boundaries (Birk
et al., 2013). Therefore, the national EQR values are being
normalised to a scale of 0–1, in order to obtain a consistent scale
across all countries (Figure 3). On the normalised scale, the status
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class boundaries are identical for all countries (high: 0.8–1.0, good:
0.6–0.8, moderate: 0.4–0.6, poor: 0.2–0.4, bad: 0.0–0.2). An EQR
value identical to the boundary between two status classes belongs to
the worse of the two status classes.

The conversion from national to normalised EQR requires the
information on class boundaries (in EQR scale) which can be
specific for the determinand and for the national water body
type, as well as for natural vs. artificial and highly modified water
bodies. The normalised EQR are calculated using the formula:

normalisedEQR � EQR − LowerBoundaryEQR( )

× 0.2/ UpperBoundaryEQR − LowerBoundaryEQR( )

+ LowerBoundaryNormEQR

where LowerBoundaryEQR and UpperBoundaryEQR are the lower
and upper status class boundaries in the national EQR scale,
respectively, the factor 0.2 is the width of any status class at the
normalised EQR scale, and LowerBoundaryNormEQR is the lower
class boundary in the normalised EQR scale. The calculation can be
performed by the WISE-2 reporters before reporting, or by EEA
after reported if sufficient information is provided on the national
classification system.

To maximise the number of so-called indicator values for
aggregated time series plots and for trend analysis, missing yearly

values were replaced with imputed values as far as possible. Gaps of
up to 3 years within a data series have been interpolated as the average
of the previous and following years. Likewise, gaps of up to 3 years at the
beginning or end of a series were extrapolated to be identical as the first
or last available value. This procedure follows the methodology used for
the EEA indicator “Nutrients in Freshwater”, as described in its
Supplementary Material section (https://www.eea.europa.eu/ims/
nutrients-in-freshwater-in-europe).

3 Overview of data reported to WISE-2
biology

3.1 Quantity and quality of data reported to
WISE-2

The official biology data reporting started in 2011 (with records
from sampling year 2010), after 2 years of test reporting in 2009-
2010. The published dataset Waterbase - Biology 2021, which is
based on WISE-2 reporting from 2021, now contains more than
47,000 indicator values in the form of ecological status class, and
more than 32,000 indicator values quantified as normalised EQR
values. These data are reported from more than 11,000 river
waterbodies, 1,800 lake water bodies, 260 transitional water

FIGURE 3
Example of calculation of normalised ecological quality ratios (EQRs) from national EQRs. Colour codes represent ecological status classes: blue =
H(igh), green = G(ood), yellow = M(oderate), orange = P(oor), red = B(ad). REF = reference condition, defined as the metric value of unimpacted water
bodies. Note that the maximum value of the metric scale can exceed the reference condition, therefore the national EQR value can exceed 1. Source:
https://dd.eionet.europa.eu/datasets/latest/WISE-SoE_Biology/tables/BiologyEQRData.
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bodies and 440 coastal water bodies, in 26 countries (Table 1). The
dataset from rivers is dominated by Spain, Italy, Poland and
Lithuania, while the dataset from lakes are dominated by Sweden
and Poland. Italy is currently also the dominating country in
reporting from transitional and coastal waters.

The biological data described in this report are available from
approximately 13,500 waterbodies. The majority of waterbodies
have values from 1–5 years (Figure 1), while a few water bodies
have series lasting 15 years. The number of waterbodies in the WFD
database is an order of magnitude higher, but so far only from three
reporting years. For the WISE-SoE data, the longer series and the
more detailed data type both contribute to higher probability of
detecting temporal trends with statistical significance.

Normalised EQR values are now available for the majority of
water bodies with status class reported (Table 1). A few countries
have still reported only status class (e.g., Switzerland, Germany,
Denmark and Portugal).

WISE-2 contains >3,000 indicator values (reported or imputed)
for each of the sampling years from 2009 to 2020 (Figure 4). The
latest year of reporting in 2021 (sampling year 2020) resulted in
more than 6,000 reported indicator values, and almost
12,000 indicator values when imputed values are included.

3.2 Spatial patterns in reported ecological
status class

The maps (Figure 5) display the latest BQE status (or potential)
class of each waterbody (from Waterbase Biology 2019). The left
panel shows the reported determinand status class for valid
determinands and aggregated to the BQE level, while the right
panel shows the BQE status class calculated based on available
nEQR values. The lack of coloured points in the right panel is due to
lack of reported EQR data or class boundaries in only a few cases
(e.g., Switzerland, Germany, Denmark). The missing values are
usually due to missing coordinates, inconsistencies in the spatial
information or other technical issues. The map of invertebrates in

rivers does not include the determinand InvertebrateEQR_A
(response to acidification), due to the limited geographic
representativity (United Kingdom, Germany, Norway, Sweden).

Earlier versions of WISE-SoE Biology maps have been published
previously (2015, last modified 2019):

• https://www.eea.europa.eu/data-and-maps/explore-interactive-
maps/phytobenthos-in-rivers

• https://www.eea.europa.eu/data-and-maps/explore-interactive-
maps/macroinvertebrates-in-rivers

• https://www.eea.europa.eu/data-and-maps/explore-interactive-
maps/phytoplankton-in-lakes

• https://www.eea.europa.eu/data-and-maps/explore-interactive-
maps/macrophytes-in-lakes

3.3 Temporal patterns of normalised EQR
aggregated to European level

This section shows one example of how the time series for
individual water bodies can be aggregated to trans-national level
in different ways - here by the geographic regions of Europe
(defined in Table 1). Other types of aggregation that has been
explored for these data are by initial ecological status class as well
as to the pan-European level (not shown here). The selection of
data series includes only waterbodies nEQR values for all 8 years
2011–2018 after the imputation of missing values (described in
the section Calculation and processing of normalised EQR
values).

When all indicator value series are aggregated to the European
level, the time series so far display only weak tendencies (not shown
here). Invertebrates in rivers show a decrease from the upper range
to the lower range of good status, which is the WFD management
target. This tendency would not have been possible to document
from reporting of ecological status class only. For the three botanical
BQEs, the aggregated time series do not display any clear or
monotonous trend.

FIGURE 4
Number of indicator values reported and imputed for the years 1990–2020. Indicator values are unique combinations of water bodies (Table 1) and
determinands (Table 2). Imputed indicator values result from interpolation and extrapolation of time series (described in Section 2.3). Data source:
Waterbase Biology 2021.
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The time series aggregated by geographic region (Figure 6) reveal
more differences. For example, the invertebrate nEQR values reported
from Eastern Europe show a decreasing trend from the mid-range to
the lower range of Good status, approaching the Good/Moderate
boundary. Moreover, invertebrates nEQR values reported from
Southern Europe show a decreasing trend from High to the upper
range of Good status, but this trend is based on 3 series only. (More
series of invertebrates have been reported from Southern Europe
recently, but most series have length up to 5 years, and are therefore
not yet included in this figure). The average invertebrate nEQR values in
Western Europe, which is the region with the highest number of series,
has been fluctuating below the Good/Moderate boundary until
2015 and remained just above boundary since 2016.

As another example, phytoplankton values reported from
Eastern Europe started in the upper range Moderate status, and

barely reached Good status in the period 2013–2016. Since 2017, the
nEQR values have returned to the upper range ofModerate status. In
this example, reporting ofWFD status classes only showGood status
for the period 2013–2016, without revealing that the ecological
status was still very close to the Good/Moderate boundary,
implying a high risk of decline back to Moderate status.

The number of complete series per BQE is unevenly distributed
among the regions of Europe. Western Europe has the highest
number of both phytobenthos (n = 230) and invertebrates (n =
221) in rivers. A high number of series from rivers are also reported
from East (phytobenthos: n = 199) and Southeast (invertebrates: n =
70). Northern Europe has the most series of lake phytoplankton (n =
117). However, the count of complete series depends on the criteria
set; for example, setting the start year to 2012 will result in a higher
number of series.

FIGURE 5
Spatial patterns in ecological status: Reported ecological status class for a selection of biological quality elements: (A) phytobenthos in rivers, (B)
invertebrates in rivers, (C) phytoplankton in lakes, (D)macrophytes in lakes (see also Table 2). For eachwater body, the latest reported value is used. Colour
code: blue = High, green = Good, yellow = Moderate, orange = Poor, red = Bad. Colour code for artificial and highly modified water bodies with
incomplete class boundaries: green = good potential, orange = moderate/poor/bad. Data source: Waterbase Biology 2019.
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Obtaining a representative picture of pan-European trends across
will require time series from a higher number of waterbodies than what
has reported until now, and better representativity both across
geographic regions and across the different status classes. For the
version of Waterbase Biology presented here (published 2019),
assessments can only be representative for certain geographic
regions with high coverage of water bodies. Nevertheless, these
figures give an indication of the type of results and trends that can
be obtained from the reported SoE biology data at the nEQR scale.

4 Potential use of WISE-2 biology data

4.1 Development of an aquatic biological
indicator for EEA

The biological data (normalised EQR values) accumulated in
Waterbase since 2010 have the potential to be applied as an
indicator of environmental status and trends in regions of Europe,
in a similar way as nutrients data reported toWISE-6. Assessment of the
nutrients data show that nutrient conditions in European surface waters
have improved in recent decades, as the average nitrate and phosphate
concentrations in rivers and total phosphorus concentration in lakes

have decreased (https://www.eea.europa.eu/ims/nutrients-in-
freshwater-in-europe). The data reported to WISE-2 Biology can be
supplemented by the phytoplankton data reported in original metric
scale stored in WISE-6 (Water quality), including data on chlorophyll
and cyanobacteria in originalmetric scale, as these are clear indicators of
eutrophication in lakes (Ho et al., 2019). Moreover, the biology data can
be analysed as responses to the chemical data in WISE-6 representing
specific pressures (Phillips et al., 2008). Preliminary analyses (not
shown) suggest that the biological determinands show significant
relationships with the selected general physico-chemical quality
elements, such as total phosphorus representing eutrophication, and
biological oxygen demand representing general degradation. However,
these estimated relationships also contain large variation, which
warrants more detailed analysis.

As the biology data provide longer time series with each reporting
year, analysis of the series can be used to address questions such as:

• Can we see any progress in ecological status for biology in
rivers and lakes, in response to the decrease in nutrients
and BOD concentrations reported for freshwater
indicators?

• Are further measures to reduce pressures needed to achieve
progress in the biological conditions in rivers and lakes?

FIGURE 6
Temporal patterns in ecological status: Time series of normalised EQR values for the years 2011–2018 aggregated by geographic regions of Europe
(see Table 1). The numbers above the plots show the total number of water bodies for each BQE. The number of water bodies per geographic region for
each BQE is given below the figure. Data source: Waterbase Biology 2019.

Frontiers in Environmental Science frontiersin.org10

Moe et al. 10.3389/fenvs.2023.1057742

235

https://www.eea.europa.eu/ims/nutrients-in-freshwater-in-europe
https://www.eea.europa.eu/ims/nutrients-in-freshwater-in-europe
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1057742


• Is there a time lag in the biological response to the decrease in
nutrients and organic pollution?

• Will the European Green Deal make progress towards
restoration of biodiversity in rivers and lakes?

A biological indicator can be developed with a similar structure
as the existing indicator “Nutrients in freshwater” (https://www.eea.
europa.eu/data-and-maps/ indicators/nutrients-in-freshwater/
nutrients-in-freshwater-assessment-published-6), but could be
specific to regions or and/or broad water types, which may have
different levels of environmental pressures (Lyche Solheim et al.,
2019). However, dynamic tableaus with an online user interface will
be preferable to static pictures. Further work on an aquatic biological
indicator based on the WISE-2 data is planned to take place within
the European Topic Center on Biodiversity and Ecosystems (ETC
BE, 2023–2026) (https://www.eionet.europa.eu/etcs/etc-be).

The indicator outlined here is related to specific policy targets of the
Water Framework Directive (WFD) “good ecological status” of rivers
and lakes and prevention of deterioration of ecological status, also
including no deterioration from high to good or worse. The indicator
can also be linked to other water related directives, e.g., the Nitrates
Directive (91/676/EEC) dealing with pollution pressures from
agriculture and the Urban Wastewater Directive (91/271/EEC), as
well as to the Habitats Directive target of favourable conservation
status for freshwater habitats and species and the EU Biodiversity
strategy 2020. Diffuse pollution from agriculture is still one of the most
important pressures on European rivers and lakes (EEA, 2018).
Indicators showing the biological impacts of this pollution are
essential to plan pollution reduction measures and assess their
effectiveness in terms of improvements of ecological status. Most of
the BQEs included in this dataflow are particularly sensitive to nutrients
and/or organic pollution.

The biological data would provide a better aquatic SEBI
(Streamlined European Biodiversity Indicator) (Feest, 2013) than
the currently used abiotic indicators. The overall ecological status
class is not a good option because it is less comparable across
countries than the BQE status class, due to different combination
rules for BQEs vs. supporting quality element, and since overall
ecological status class is reported only once every 6 years. In
addition, the uncertainty associated with the classification of each
individual BQE is accumulated at the water body level (Moe et al.,
2015).

4.2 Use of WISE-2 biology data through
EuropaBON

The project EuropaBON (https://europabon.org/) work package
3.1 has developed a web-based platform to collect and record the
current biodiversity data workflows across Europe, with the
underlying database (https://monitoring.europabon.org/
monitoring). The purpose of this database is to give an overview
of existing biodiversity datasets and describe the major workflows
used to generate and use these data in policy and research
environments. The focus of WP3.1 is not to map all monitoring
initiatives in Europe, but to ensure that those monitoring initiatives
providing data for current biodiversity workflows are well
represented in the underlying database. This database will help

understand how biodiversity data collected in monitoring
schemes across Europe flows through different institutions and
programs and gets processed to produce Essential Biodiversity
Variables (EBVs) and Ecosystem Services Indicators (ESS) other
EU policy-relevant indicators. The term “integration initiatives”
refers to each one of these full biodiversity data workflows. The
priority is to collect integration initiatives at the European level, but
integration initiatives at lower levels (e.g., National) are also be
accommodated.

The compilation of national datasets and reporting toWISE-2 as
a European integration node is illustrated in (Figure 7), using the
EuropaBON database’s visualisation tool. In total 157 national
biology datasets from WISE-2 are reported in the EuropaBON
database, where each biological quality element constitutes a
separate dataset (Table 2). The European-level integration node
(WISE-2; by EEA) and the national-level integration nodes (national
WISE-2 deliveries; typically by national environmental agencies)
have so far been completed with the information that is publicly
available for all countries. The national integration node for Norway
has been elaborated with more details on the underlying biodiversity
data, monitoring methods and indicator calculation from three
ecological monitoring programmes, as well as contact persons for
the national data flow. These types of information can also be
registered for other countries, if made available to the
EuropaBON project Additional information on the national
dataset that can be extracted from Waterbase Biology, such as
the number of water bodies per dataset, as well as the first and
last sampling year of sampling, has also been registered in the
EuropaBON database. This additional information is displayed in
the Supplementary Material.

The concept of Essential Biodiversity Variables (EBVs) was
introduced to structure biodiversity monitoring globally, and to
harmonize and standardize biodiversity data from disparate sources to
capture a minimum set of critical variables required to study, report and
manage biodiversity change. (Kissling et al., 2018). The list of EBVs has
been used as an analytical framework to help bridge the gap between
biodiversity data and policy reporting needs (Geijzendorffer et al., 2016).
Within EuropaBON, EBVs have been defined for terrestrial, freshwater
and marine ecosystems by the research partners in close dialogue with
stakeholders (Moersberger et al., 2022), and is currently being further
specified in another deliverable from the EuropaBON project (D4.1)
(Junker et al., 2023). Three of the groups of EBVs are particularly relevant
to WISE-2 Biology data:

1) Species distribution and abundance, incl. macrophytes,
invertebrates, fish.

2) Community composition, including EQR values for all BQEs.
3) Ecosystem structure, including distribution of EUNIS inland

water habitats, which are mostly comparable to broad surface
water body types (Lyche Solheim et al., 2019).

A fourth group of EBVs is Ecosystem function, which includes
harmful algal blooms (i.e., cyanobacteria biomass) is reported to
WISE-6.

Regarding the need for data on community composition
(group 2 above), the data flow through WISE-2 is already
established and the normalised EQR values are comparable
across countries. However, the spatial and temporal
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resolution is currently insufficient for assessing representative
spatial status and trends in biodiversity. The EQR data are based
on taxonomic analysis of samples from stations used for WFD
surveillance and/or operational monitoring. If these underlying
data could become accessible, they would support the EBV
group 1 above as a basis for further species modeling at the
European scale.

4.3 Conclusion and outlook

Biological data have been reported as EQR values from
26 countries, mostly from river and lakes, and to a lower
degree from transitional and coastal waters. The growing
number of records and water bodies, as well as the growing
length of the time series, suggest that these indicator values can
become useful in assessments of ecological status and trends in
Europe. The use of normalised EQR values enables both analysis
of geographical and temporal patterns, as well as statistical trend
analysis, with higher resolution than the status class data
reported to WFD. However, the WISE-2 Biology data still
show large variations in number of sites and years among
countries, which indicate challenges concerning geographical
representativity in the context of a European-scale
indicator. To obtain more representative data, reflecting the
actual distribution of status classes, the countries should
report more data from water bodies in less than good status,
which are mainly included in the operational monitoring
programmes.

While the normalised EQR values presented here can serve as
essential biodiversity variables, as they show the deviation from
natural aquatic biodiversity at the community composition level, the
underlying georeferenced species data could provide an added value
for biodiversity modeling and assessment, if those data were
accessible. We hope that the information provided on the
national WISE-2 data flows in the EuropaBON monitoring
database, currently and in future updates, can help to provide a
connection from these national data resources to support
assessment and conservation/restoration of biodiversity in aquatic
ecosystems.
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FIGURE 7
Integration of biodiversity data flowswithinWISE-2 as registered in and visualised by the EuropaBON database (simplified diagrams). (A) Example of a
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represent national integration nodes (e.g., databases at national environmental agencies). Red lines represent original biological monitoring data
compiled at the national integration nodes; dashed green lines represent indicator values (EQR values) compiled at the European integration node.
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Long-term data prove useful to
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The Mar Piccolo of Taranto (southern Italy, Mediterranean Sea), a site of the
European LTER network, is a transitional water system, where a century-old
intensive mussel farming activity has been carried out, together with an intense
import-export business of bivalve mollusks. Previous studies showed that this
basin is third for NIS seaweed introduction in theMediterranean Sea, after the Thau
Lagoon and the Venice Lagoon. The present paper deals with the results of 11-year
monitoring activity on non-indigenous species (NIS) of seaweeds, which was
performed in the Mar Piccolo. In the studied period (2011–2021), two different
time frames (i.e., 2011–2015 and 2016–2021) were considered, since they were
based on a different number of sampling sites. To investigate spatial and temporal
differences in the seaweed assemblage, a multivariate analysis was performed
considering the NIS and the most important native species in terms of temporal
occurrence. Fourteen NIS were recorded in total in the Mar Piccolo of Taranto
during this period, with variable abundances among sites and years: nine species in
the first time period, and thirteen species in the second one.Caulerpa cylindracea,
recorded with negligible biomass in the first period, was absent in the second-
period samplings. Molecular analyses confirmed the taxonomy of three species
(i.e., Grateloupia minima, Neopyropia koreana, and Polysiphonia morrowii),
previously identified only through morphological features. The most abundant
species wasHypnea corona, which almost doubled its biomass in the second time
period compared to the first one. Three species (i.e., Caulacanthus okamurae, G.
minima, and P. morrowii) increased their biomass by an order of magnitude in the
second time period. No significant differences were found over years. Site 1
resulted in significant differences among the sites and different seasonal
pattern occurred among the investigated sites. No significant long-term
changes occurred in the seaweed assemblages, suggesting the absence of
strong disturbances due to the settlement of NIS.

KEYWORDS

long term ecological research, Mar Piccolo, Mediterranean Sea, non-indigenous species,
seaweeds, transitional water systems
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1 Introduction

It is well known that long-term ecosystem observations and
measurements are an invaluable means to understanding the causes
and consequences of perturbations occurring (Turner et al., 2003).
For this reason, Long Term Ecological Research (LTER) networks
have been established over the years both at national and
international levels, starting from the first United States network
that began its activities in 1980 (Callahan, 1984). Nowadays, the
LTER series have become a starting point to assess and interpret the
effects of climate change and other anthropogenic pressures
(Pugnetti et al., 2013; Zingone et al., 2019). In particular, the
importance of LTER datasets for biodiversity studies has been
underlined (Compagnoni et al., 2020), and the United Nations
Convention on Biological Diversity considers them recommended
indicators (Zilioli et al., 2019).

Since 2011 the Mar Piccolo of Taranto has been part of the
Italian and European LTER network (https://deims.org/ac3f674d-
2922-47f6-b1d8-2c91daa81ce1), mainly due to the presence of
historical data sets on chemical-physical variables and benthic
macrophyte biodiversity (Petrocelli et al., 2021). It is a
transitional water system, where intensive mussels farming
activity has been carried out for approximately 100 years, as well
as a strong import site for bivalve mollusks. For this reason, it is
highly exposed to the introduction of non-indigenous species (NIS)
(Newton et al., 2014), in particular, seaweeds (Mineur et al., 2014;
Wolf et al., 2018). According to Copp et al. (2007), the frequency and
success rate of NIS introduction are closely related to propagule
pressure too. In Australia, after a boom-population, the invasive
Codium fragile heavily declined up to densities lower than 2 thalli/m2,
most likely due to the presence of very few propagules with limited
viability (Trowbridge et al., 2016). Conversely, in a newly-built
marina in Brittany (France) Undaria pinnatifida (Harvey)
Suringar reached densities of up to 50 specimens/m2 in 2 years,
due to a continuous propagule supply from populations settled on
adjacent rocky shores (Salamon et al., 2020). Climate conditions
are another important factor that affects the establishment
of NIS, becoming more limiting in transitional waters. The
tropical Grateloupia yinggehaiensis H.W. Wang et R.X. Luan
had a considerable spread in the industrial area of Porto
Marghera (northern Adriatic, Mediterranean Sea), due to the
thermal pollution caused by a thermoelectric power plant
operating in the area (Wolf et al., 2014).

In the Mar Piccolo of Taranto, the regular and longtime LTER
data collection has allowed a continuous update of the basin
phytobenthic biodiversity, the prompt detection of newly
introduced NIS, the assessment of NIS fate, and the detection
of the most important factors for either their success or decline
(Petrocelli et al., 2019). For example, two seaweed species have
been observed only temporarily and disappeared without
establishing in the basin. In June 2012, for the first time and
no longer after that date, very few thalli of Ascophyllum nodosum
(Linnaeus) Le Jolis were observed on sparse pebbles in the Mar
Piccolo. This species was first reported in the Mediterranean in
2009, after the casual finding of very few floating specimens in the
Mar Grande basin, near a mollusk import-export center
(Petrocelli and Cecere, 2010). This led to the hypothesis that
the introduction vector for A. nodosum in Taranto seas was

oyster imports from France. Ascophyllum nodosum thalli were
most likely used to cover and keep the mollusks fresh during
transportation (Verlaque et al., 2007), and then dumped in the
seawater. Since this species is native to the cold-temperate waters
of the North Atlantic, with a temperature tolerance not higher
than 25°C (Keser et al., 2005), and the temperature of Mar Piccolo
seawater is often higher than 27°C (Petrocelli et al., 2020a), this
conceivably prevented the establishment of A. nodosum
(Petrocelli et al., 2013). Undaria pinnatifida, a cold-temperate
species native to the Pacific Japanese seawaters, underwent a
similar fate in the Mar Piccolo. After first detection in 1998, this
species showed a short initial period of increasing settlement,
followed by a quick decline and its final disappearance over
11 years (Cecere et al., 2016). Laboratory and field
observations in the native area have suggested an optimum
temperature of 19°C for U. pinnatifida reproduction and
survival (Akiyama and Kurogi, 1982; Sanderson, 1990;
Watanabe et al., 2014). The temperature extremes recorded in
Mar Piccolo seawater, both in the coldest week and in the
warmest one in the last year of U. pinnatifida flourishing
growth, were far from the optimum. This most likely
contributed to U. pinnatifida disappearing, even though the
additional and combined influence of low salinity and heavy
metal contamination could not be excluded (Cecere et al., 2016).

The presence of NIS seaweeds is often overlooked due to their
possible morphological similarity with native species. In this case,
molecular analyses through the DNA barcoding method have
proved to be fundamental in discriminating cryptic introduced
species (Zucarello et al., 2002; Saunders, 2009; Montes et al.,
2016; 2017; Piñeiro-Corbeira et al., 2020). In the Mar Piccolo,
DNA barcoding analyses confirmed the taxonomic identity of
several species previously identified through classical
morphological methods. Agardhiella subulata was initially
identified through a morphological analysis (Perrone and Cecere,
1994). In 2011, after a new introduction event, its identification was
confirmed by the rbcL gene analysis (Cecere et al., 2011a). In
December 2000, specimens of Hypnea cornuta (Kützing)
J. Agardh were collected in the Mar Piccolo for the first time.
The species identification was based on anatomical features and
the presence of stellate propagules (Cecere et al., 2004), as well as
confirmed by molecular analysis (Yamagishi et al., 2003). Since the
taxonomic identity of this taxon became less defined over time,
recently a molecular study was focused on the H. cornuta complex,
detecting three different clades inside this group (Jesus et al., 2019).
The Taranto specimens, together with those from Western
Australia, New Zealand, and Japan were ascribed to a generic
Clade#3, which was then named Hypnea corona Huisman and
Petrocelli (Huisman et al., 2021). Due to the presence of
ambiguous morphological features, some specimens of a
rhodophycean seaweed collected in the Mar Piccolo in 2010,
were doubtfully identified as Grateloupia cf. filicina (J.V.
Lamouroux) C. Agardh, a species exclusively distributed in the
Mediterranean Sea (De Clerck et al., 2005; Wilkes et al., 2005).
Molecular analyses, based on the rbcL gene, were therefore carried
out on these specimens from Mar Piccolo and also on specimens
from the French Thau Lagoon collected in 1998 and tagged as
Grateloupia sp. This molecular survey identified all the samples asG.
minima P. and H. Crouan, described in 1867 from the Atlantic
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Ocean, allowing its first report as a NIS both in the Mar Piccolo and
in the Mediterranean Sea (Cecere et al., 2011b). The taxonomic
identity of Grateloupia turuturu specimens collected in the Mar
Piccolo and the Venice Lagoon in 2007, was confirmed through
DNA analysis in recent years (Cecere et al., 2011c). A turf-forming
rhodophycean species, observed for the first time in the Mar
Piccolo in 2012, was identified based on the morphological
analysis as Caulacanthus ustulatus (Turner) Kützing (Rhodophyta,
Gigartinales), a taxon commonly distributed in the Mediterranean
Sea. Some specimens from the French Mediterranean coast were
successively ascribed to the NIS taxon Caulacanthus okamurae
(Verlaque et al., 2015). Therefore, rbcL gene molecular analyses
were carried out on C. ustulatus specimens collected both in the
Mar Piccolo and in the Venice Lagoon, confirming the presence of
the non-indigenous taxon also in these two Mediterranean hot spots
(Petrocelli et al., 2020b).

With this background and exploiting the long-term data
potential, this paper aims to take stock of the NIS seaweed
situation in the Mar Piccolo of Taranto, also through the help of
molecular methods. Continuous introductions have been recorded
over time, with the different species displaying many adaptive
strategies. Therefore, several years after their first detection, they
show different distribution pathways and fates. Based on their
growth and reproduction requirements, if known, their further
development has been hypothesized too. Climate change, and in
particular heat waves, are becoming well-known phenomena; thus,
the less adaptive species will most likely disappear from the basin.
Finally, the DNA barcodingmethod has further proved to be a useful
means for cryptic introduced species issues, otherwise doubtfully
identified with classical approaches.

2 Materials and methods

This research was carried out in the Mar Piccolo of Taranto
(40°28′46″ N, 17°13′41″ E) (southern Italy, Mediterranean Sea). It
has a somewhat elliptical shape and is divided into two sub-basins,
the First Inlet and the Second Inlet (Figure 1). The Mar Piccolo is a
transitional water system, characterized by the input of brackish
water, at a mean temperature of 18°C and a salinity range of 2.3–4.7,
coming from 34 submarine springs, locally named “citri,” variously
distributed in the two Inlets. In the basin, seawater temperature
ranges between 7.5°C and 32.3°C, while salinity ranges between
33.0 and 37.8.

During the 11-year study, two time periods were considered due
to a different number of investigated sites. From 2011 to 2015, the
sampling sites were four, two in the First Inlet and two in the Second
Inlet (Figure 1). In 2016, a fifth site, located in the Second Inlet, was
added (Figure 1).

Seasonal manual harvests were carried out at a maximum depth
of 50 cm. For each site, three 50 cm × 50 cm quadrats were collected
by scraping the surface within the quadrats and picking all the
seaweeds. Seaweeds were put in plastic bags identified by an encoded
box for each replicate and brought to the laboratory, where they
were stored in plastic nets and dipped in concrete tanks filled with
seawater. Harvested samples were individually sorted to separate
single species. After sorting, taxonomic identification of each taxon
was performed through stereomicroscopes (LEICA MZ
12 Stereoscope, Leica Microsystems GmbH, Wetzlar, Germany)
and light microscopes (LEICA DMR Trinocular Microscope,
Leica Microsystems GmbH, Wetzlar, Germany). Successively,
biomass (drained wet weight) was measured by means of a

FIGURE 1
Map of the Mar Piccolo of Taranto and location of sampling sites. The arrow in the frame indicates the location of Taranto in Italy.
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double-digit analytical balance (Sartorius L2200P, Sartorius Lab
Instruments GmbH, Göttingen, Germany).

2.1 Molecular analyses

Since the identification was considered dubious for some
specimens, a small part of the thallus was carefully cleaned from
epiphytes and debris and dried in silica gel (J.T. Baker, Deventer,
Holland) for molecular analyses.

Silica-dried fragments of thalli were ground in a mortar with
quartz sand (Honeywell Fluka, Charlotte, NC, United States), and
total genomic DNA was extracted with the Genomic DNA
Purification Kit (Thermo Fisher Scientific, Waltham,
Massachusetts, United States) following the manufacturer’s
recommendations. Since the dubious specimens belonged to the
phylum Rhodophyta, the 5P portion of the rbcL gene (rbcL-5P) was
selected to identify them following the DNA barcoding method.

The rbcL-5P fragment (about 700 bp) was amplified using the
primer pairs F57-R753 (Freshwater and Rueness, 1994) and the PCR
conditions reported by Wolf et al. (2011). The obtained amplicons
were verified by agarose gel electrophoresis and purified with
ExoSAP-IT (Thermo Fisher Scientific, Waltham, Massachusetts,
United States) before sequencing. Sequencing was performed at
the Eurofins Genomics Sequencing Service (Eurofins Genomics
GmbH, Ebersberg, Germany) with the same primer pairs used
for amplification. Final consensus sequences were assembled with
the help of the GeneStudio program (http://genestudio.com/) and
then compared with the sequences available in the INSDC
(International Nucleotide Sequence Database Collaboration)
archives using the BLAST tool (Altschul et al., 1990). The newly
obtained sequences were also deposited in the INSDC archives
through the GenBank platform BankIt.

2.2 Multivariate analysis

A multivariate analysis was carried out to explore spatial and
temporal differences in the macroalgae assemblages. Three sites (1,
3, 4) were chosen, since they were sampled along the entire time
series and represent different zones in the First and Second Inlet of
the Mar Piccolo (Figure 1). In this way the sampling design resulted
less unbalanced. The characteristic species of the assemblage were
selected according to their frequency of occurrence (FO%, expressed
in percentage) during the entire period, selecting the species with a
FO% > 5% and maintaining all NIS in the analysis (Supplementary
Table S1). A total of 37 species were selected and the biomass data (g
m-2) were four-root transformed to balance the contribution of rare
and very abundant species. Multivariate analyses were conducted by
means of a Bray-Curtis similarity calculated on a “stations × species”
matrix (377 × 37).

The null hypothesis of no spatial variation or temporal
differences in seaweed assemblage structure was investigated by
adopting a multifactorial model tested by the Permutational
Multivariate Analysis of Variance (Anderson et al., 2008). Data
collected from each site were considered independent because they
were carried out in random positions within each site, and thus, the
exchangeability of the observations under the null hypothesis was

assumed, fulfilling the requirements of hypothesis testing with
permutation methods (Anderson, 2001). Year (fixed with
11 levels), Season (fixed with 4 levels), and Site (random with
3 levels) were tested as orthogonal factors in the PERMANOVA
test, with p-values calculated through 9,999 permutations using the
“Permutation of residuals under a reduced model” as permutation
method. In the model, “Year × Site” and “Season × Site” interactions
were tested. When the PERMANOVA test result was significant (p <
0.05), a post hoc PAIRWISE t-test was carried out to evaluate
differences between the levels of each factor and their
interactions, calculating Monte Carlo p-values (Anderson et al.,
2008). Data were plotted using both unconstrained ordinations,
the nonmetric multidimensional scaling (nMDS, Clarke and
Warwick, 2001), and Principal Coordinate Analysis, PCoA,
Gower, 1966). In both ordination methods, the sites were plotted
together with the species mainly correlated to the first two axes in the
PCoA using Spearman’s correlation coefficient (rs). In addition, the
distances among centroids were explored for significant complex
interactions between factors using both ordination methods to
visualize complex spatio-temporal patterns (Guerra-Castro et al.,
2016).

The contribution of species to the differences among sites was
explored through the Similarity Percentage analysis (SIMPER;
Clarke, 1993; Clarke and Warwick, 2001). All multivariate
analyses were carried out by means of PRIMER
v.6+PERMANOVA (Primer-E Ltd., Plymouth, United Kingdom).

3 Results

3.1 NIS species

In the studied period (2011–2021), fourteen NIS were recorded
in the Mar Piccolo of Taranto. In the 2011–2015 time frame, nine
species were recorded in four sites. In the 2016–2021 time frame,
thirteen species were found in five sites. Eight species were recorded
throughout the study period, one species was present only from
2011 to 2015, and five species were present only from 2016 to 2021
(Table 1).

Figure 2 reports the biomass trend of NIS species in the studied
period. Due to their very low biomass values, A. subulata,
Asparagopsis taxiformis, Caulerpa cylindracea, and Solieria
filiformis were not plotted. In both time frames, the highest total
biomass values were reached byH. corona (Table 1). It was observed
only in the Second Inlet, from spring to autumn with ups and downs
throughout the study period. From 2011 to 2015, it was present at
Site 3 and Site 4, while from 2016 to 2021 also at Site 5. For each year,
summer was the season of maximum abundance. For each year and
in all the seasons, Site 3 collected quantities were higher than those
of Site 4, while starting from 2016, H. corona abundance at Site
5 sometimes exceeded that at Site 3. The highest yearly total biomass
value was measured in 2018 and corresponded to 28.8 ×
103 gwwt m

−2.
In the summer of 2012, for the first time and with very few

specimens, C. okamurae was recorded at Site 4; it was settled on
basal parts of Chondracanthus acicularis (Mertens ex Turner)
Kützing. Since then, it was observed every year and in every
season, mainly at Site 4, but also occasionally with small
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quantities at the other sites (except for Site 2), reaching the peak in
spring 2016 (i.e., 6.4 × 103 gwwt m

−2). From 2017, a considerable
decrease was observed, with ups and downs until autumn 2021.

Grateloupia minima was collected for the first time in 2011 at
Site 4. Successively, it was recorded every year mainly at Site 4, and
since 2016 also at Site 5, where it became one of the most luxuriant
species in the last 3 years. The highest total yearly biomass value,
corresponding to 2.7 × 103 gwwt m

−2, was reached in 2019.
Colpomenia peregrina was observed for the first time in the

winter of 2012 at Site 1. Since then, it was observed every year only at
the same site, with the following seasonal occurrence: always in
spring, several times in winter (except in 2014, 2015, and 2017), and
fewer occurrences in autumn (i.e., 2014, 2015, and 2020). The yearly
biomass peak was reached in 2014, with 9.0 × 102 gwwt m−2.
Considering the whole study period, C. peregrina biomass
showed ups and downs in the first time frame and reached a
certain uniformity in the second time frame, with values
considerably lower compared to the peak.

The presence of Cutleria multifida was detected for the first time
in 2017, even though it was collected with measurable biomass only
in the winters of 2018 and 2021 at Site 1. The highest yearly total
biomass value was reached in 2021 and corresponded to 1.2 ×
103 gwwt m

−2. Concerning Neopyropia koreana, a very low biomass
was recorded for the first time in winter 2012 at Site 4. Successively,
this species was collected always in winter only at Site 1 and with
highly variable biomass values. The highest total yearly value was
recorded in 2017 and corresponded to 6.1 × 102 gwwt m−2.
Polysiphonia morrowii was found for the first time in the winter
of 2012 at Site 1; since then, starting from 2014, it was recorded every
year at the same site, and from 2015 also at Site 4. The highest

TABLE 1 List of NIS and their total abundances (gwwt m−2) recorded in the Mar Piccolo of Taranto in the study period 2011–2021.

Species 2011–2015 2016–2021 Total

Agardhiella subulata (C. Agardh) Kraft & M.J. Wynne 0 18 18

Asparagopsis cf. taxiformis (Delile) Trevisan 0 2 2

Caulacanthus okamurae Yamada 1,498 12,614 14,112

Caulerpa cylindracea Sonder 0.1 0 0.1

Codium fragile (Suringar) Hariot 222 0.4 222

Colpomenia peregrina Sauvageau 1,408 2,113 3,526

Cutleria multifida (Turner) Greville 0 1,188 1,188

Grateloupia minima P. Crouan & H. Crouan 1,621 11,641 13,261

Grateloupia turuturu Y. Yamada 85 39 124

Hypnea corona Huisman & Petrocelli 51,928 98,879 150,807

Neopyropia koreana (M.S. Hwang & I.K. Lee) L.-E. Yang & J. Brodie 89 1,161 1,250

Osmundea oederi (Gunnerus) G. Furnari 0 3,076 3,076

Polysiphonia morrowii Harvey 175 1,721 1,896

Solieria filiformis (Kützing) Gabrielson 0 0.3 0.3

FIGURE 2
Abundances (mean total value + s.d.) of NIS collected in the Mar
Piccolo for each year in the study period 2011–2021.
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biomass values were found at Site 1. The highest total yearly biomass
was measured in 2018 and reached 6.3 × 102 gwwt m

−2.
Codium fragilewas recorded in the summers of 2011 and 2013 at

Site 1, with a biomass peak of 128 gwwt m
−2 in 2013. In the springs of

2016 and 2018, few thalli were observed with negligible biomass.
Grateloupia turuturu was detected every year except in 2014. It was
observed at Site 1, mainly in winter, but sometimes in spring and
autumn, with few thalli attached to plastic nets. The highest total
yearly biomass was measured in spring 2013 and reached
75.3 gwwt m

−2.
Agardhiella subulata was recorded, with very few thalli, at Site

4 only in spring 2016 and in winter 2017, when the highest total
yearly biomass was reached (i.e., 18.2 gwwt m

−2). Very few tetrasporic
thalli of A. taxiformis (i.e., Falkenbergia rufolanosa) were collected
for the first time in the summer of 2016 at Site 1 and, then, in the
autumn of 2021. It was then detected at Site 2 in the summers of
2018, 2020, and 2021, and in winter 2021. Caulerpa cylindracea was
found, with undetectable biomass, only in summer 2013 at Site 4.
Solieria filiformis was also observed only once, with undetectable
biomass, at Site 4 in spring 2017.

3.2 Molecular analysis

Some of the analyzed specimens were attributed to non-
indigenous species that are difficult to recognize based only on
morphology. For two species, the molecular analyses confirmed
their belonging to NIS already reported in the study area such as G.
minima (four specimens sequenced), and P. morrowii (two
specimens sequenced). A newly introduced NIS was detected
(three specimens sequenced) (Table 2), that is Neopyropia
koreana, reported for the first time in the Mar Piccolo of Taranto.

3.3 Multivariate analysis of the seaweed’s
assemblages

PERMANOVA analysis showed a significant difference in the
seaweed assemblages for the Site factor and both interactions
between “Year × Site” and “Season × Site” (Tables 3, 4). Site
1 was separated from the others, as detected by nMDS
ordination and PCoA (Figures 3, 4), although the variance
explained by the first two axes was low (PCo1 = 25.1% and
PCo2 = 14.7%). The main species positively correlated to the first
axis (rs > 0.35) were Dictyota dichotoma var. intricata, Ellisolandia
elongata, Amphiroa beauvoisii, and C. peregrina (NIS), which were
associated with Site 1 (Supplementary Table S2). Replications of sites
3 and 4 showed a gradient of separation along the PCo2 axis,
confirmed by the post hoc test (Table 4). Hypnea corona (NIS),
Alsidium corallinum, and Spyridia filamentosawere themain species
correlated to Site 3, while C. acicularis, Gelidium crinale, and C.
okamurae (NIS) were characteristic of Site 4.

Considering the “Season × Site” interaction, differences in the
seasonal pattern within the sites were detected by post hoc test and
the centroids’ ordinations (Table 4; Figure 5; Supplementary Figure
S1). In the PCoA, the sites were distributed along the first axis
(55.2% of explained variance), with Site 1 characterized by different
seasonal assemblages composed by D. dichotoma var. intricata, D.
dichotoma var. dichotoma, E. elongata, G. turuturu (NIS), Corallina
officinalis, Padina pavonica, A. beauvoisii, P. morrowii (NIS), C.
peregrina (NIS) (correlation to PCo1, rs > 0.75; Supplementary

TABLE 2 List of NIS detected in the Mar Piccolo of Taranto with the DNA barcoding method. For each specimen, the recognized species and the highest BLAST
percent identity are reported.

Morphological
identification

Sampling
date

Collection
site

Recognized
species

GenBank accession
number

BLAST percent
identity (%)

Grateloupia cf. filicina 16.04.2018 Site 4 Grateloupia minima OP503631 100

Grateloupia cf. filicina 16.04.2018 Site 4 Grateloupia minima

Grateloupia cf. filicina 03.06.2019 Site 5 Grateloupia minima

Grateloupia cf. filicina 10.06.2019 Site 4 Grateloupia minima

Polysiphonia cf. morrowii 26.02.2013 Site 1 Polysiphonia morrowii OP503632 100

Polysiphonia cf. morrowii 11.04.2018 Site 4 Polysiphonia morrowii

Porphyra cf. leucosticta 16.12.2014 Site 1 Neopyropia koreana OP503633 100

Porphyra sp 25.03.2019 Site 1 Neopyropia koreana

Porphyra sp 03.06.2019 Site 1 Neopyropia koreana

TABLE 3 Summary of PERMANOVA test based on Bray-Curtis similarity for four-
root transformed biomass data on the basis of a multifactorial model with
3 factors (Year, Ye, Season, Se, Site, Si). The probabilities of each Pseudo-F
value were obtained with 9,999 permutations of residuals under a reduced
model. In red significant p-value, with significance levels coded by asterisks
(*p < 0.05, **p < 0.01, ***p < 0.001).

Source df SS MS Pseudo-
F

P(perm) perms

Ye 10 73,588 7,359 1.5779 0.0013** 9,832

Se 3 100,290 33,428 2.2176 0.0276* 9,942

Si 2 377,060 188,530 90.7370 0.0001*** 9,921

Ye × Si 20 93,330 4,667 2.2460 0.0001*** 9,720

Se × Si 6 90,513 15,085 7.2606 0.0001*** 9,838

Res 335 696,040 2,078

Total 376 1,443,000

Frontiers in Environmental Science frontiersin.org06

Petrocelli et al. 10.3389/fenvs.2023.1075458

244

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1075458


Table S2). Along the second axis (21.6% of explained variance), Site
3 assemblage showed the greatest differences between seasons, with
H. corona (NIS) as the typical species in summer and autumn, while
A. corallinum and Chaetomorpha linum were abundant in spring. In
winter, Site 3 assemblage was characterized by C. acicularis. In Site 4,
small but significant changes among the seasons were observed,
except for the winter-spring season pair, with Gracilaria gracilis, C.
okamurae (NIS), and G. crinale as characteristic of these seasons.

Considering the “Year × Site” interaction, the distance among
centroids confirmed the separation of sites in the nMDS plot,
resulting in line with post hoc test results (Supplementary Figure
S2; Supplementary Table S3). Indeed, the seaweed assemblages of
Site 1 were more similar in terms of year (centroids close among
them), while a higher temporal variability in the assemblages was
observed in Sites 3 and 4 (increase in the distance among centroids).
Site 3 showed the highest variability in the assemblages over time,

andH. corona was the most important NIS to contribute to seasonal
changes. The remaining post hoc tests on seasons and year pairs are
reported in Supplementary Table S3.

4 Discussion

Over the past 11 years, long-term observations have allowed for
the detection of an increasing number of seaweed NIS in the Mar
Piccolo of Taranto, confirming the susceptibility of this basin to
biopollution. The Mar Piccolo is a very important place for mussel
farming and shellfish imports, mainly consisting of Japanese oysters
from Atlantic waters, which are supposed to be the main
introduction vector for most seaweed NIS (Manghisi et al., 2010;
Verlaque and Breton, 2019). In the Mar Piccolo, local mussel
farmers’ observations have confirmed the introduction of U.
pinnatifida since the 1990s through imported oysters (Cecere
et al., 2000).

With a total number of 16 non-indigenous seaweeds recorded in
the last 35 years, the Mar Piccolo basin is confirmed as the third
seaweed NIS hot spot among the Mediterranean transitional water
systems, after the Thau Lagoon and the Venice Lagoon
(Boudouresque et al., 2020). These seaweed species show
different behaviors mainly linked to their area of origin and their
eco-physiological requirements. Therefore, different fates can be
foreseen for each of them in the next years.

The warm tolerantH. corona (Rhodophyta, Gigartinales), which
is the most abundant NIS in the basin until now, has proved to be the
only NIS that behaves as an invasive species since it was first detected
in 2000 (identified as H. cornuta). It spread into two zones of the
Mar Piccolo Second Inlet (Cecere et al., 2016), seasonally monitored
within the framework of LTER activities, until 2011. In 2016,
observations along the NE coast of the basin showed the
presence of H. corona in considerable amounts also in another
zone, and in response, a new sampling site was added to the routine
monitoring. According to recent studies, this species is part of theH.
cornuta complex and has a tropical and subtropical distribution
(Jesus de et al., 2019; Huisman et al., 2021). This indicates its long-
lasting establishment in the increasingly warm Mar Piccolo
seawaters, and, at the same time, enables us to make previsions
on its permanence and further spread in the basin. The present study
has confirmed thatH. corona is widespread in theMar Piccolo, likely
enhanced by the high production of stellate propagules, which are an
important means of vegetative propagation (Cecere et al., 2004).

Eight NIS species, native from cold-temperate oceanic waters,
either in the Pacific or Atlantic Ocean, can be considered established
in Mar Piccolo, ups and downs of biomass. Caulacanthus okamurae,
C. peregrina, Neopyropia koreana, and P. morrowii have optimum
growth temperatures between 18°C and 23°C (Kudo and Masuda,
1981; Vandermeulen, 1986; Choi et al., 2001; Choi and Nam, 2001;
Croce and Parodi, 2017; Kim et al., 2022). Starting from 2011, the
temperature in the Mar Piccolo seawaters generally exceeded 27°C in
the warmest week, and, in recent years, these values have persisted
for several weeks (Petrocelli et al., 2020a). At the same time, ever
more frequent heat waves have affected wide areas around the world
(Mentaschi et al., 2017). Therefore, for these species limited growth
and their eventual disappearance in the long run, are predictable in
the Mar Piccolo basin. For C. multifida, G. minima, and Osmundea

TABLE 4 Summary of PAIRWISE t-test among levels of Site and Season × Site
interaction, with the seasons levels within the sites (Spring Sp, Summer Su,
Autumn Au, Winter Wi). Values t-test (t), number of permutations (perms),
Monte Carlo p-values (PMC) and Average Similarity (Av. Sim. %) between
seasons pairs are reported. In red significant p-value, with significance levels
coded by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001).

PAIRWISE test: Site

Site pairs t perms P(MC) Av. Sim. (%)

1, 3 13.726 9,944 0.0001*** 2.2

1, 4 10.928 9,936 0.0001*** 3.8

3, 4 6.0823 9,935 0.0001*** 17.6

PAIRWISE test: Site × Season

Site Season pairs t perms P(MC) Av. Sim. (%)

1 Sp, Su 42.548 9,943 0.0001*** 24.9

Sp, Au 38.166 9,954 0.0001*** 31.8

Sp, Wi 20.179 9,946 0.0028** 35.9

Su, Au 16.068 9,967 0.0818 36.3

Su, Wi 32.721 9,959 0.0001*** 26.5

Au, Wi 25.472 9,949 0.0006*** 33.5

3 Sp, Su 56.971 9,953 0.0001*** 27.6

Sp, Au 3.548 9,948 0.0001*** 26.8

Sp, Wi 25.835 9,933 0.0001*** 20.7

Su, Au 56.981 9,948 0.0001*** 40.8

Su, Wi 77.651 9,949 0.0001*** 88.3

Au, Wi 43.358 9,947 0.0001*** 21.7

4 Sp, Su 28.642 9,941 0.0001*** 19.5

Sp, Au 31.065 9,927 0.0001*** 17.6

Sp, Wi 14.228 9,939 0.0645 23.9

Su, Au 20.909 9,936 0.0003*** 23.3

Su, Wi 30.672 9,933 0.0001*** 17.4

Au, Wi 24.887 9,920 0.0001*** 20.5
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oederi there is no information about the environmental
requirements for their growth, so it is hard to gain an
understanding of the reasons for fluctuations in their biomass as

well as to foresee the fate of their populations in the basin.
Concerning C. multifida, since the species has been present in
the Mediterranean for a long time (Cormaci et al., 2012), we can
also hypothesize that it has adapted to this environment and,
therefore, it will become a constant element of the Mar Piccolo
macrobenthic flora.

Grateloupia turuturu showed a first phase of population growth
in the Mar Piccolo of Taranto, followed by a considerable fall, up to
the current vestigial community (Petrocelli et al., 2020a). This
species is considered among the most dangerous invasive
seaweeds, due to its ability to replace both animal and plant
native species on hard substrata in coastal ecosystems (Freitas
et al., 2016), taking particular advantage in the absence of well-
structured benthic communities (Mulas and Bertocci, 2016). Recent
studies using an Ecological Niche Model based on ecophysiological
responses forecast its future geographical distribution in temperate
and warm-temperate seawaters (Koerich et al., 2020). Indeed, G.
turuturu tolerates wider ranges of both temperature and salinity and
nutrient concentrations up to eutrophication (Simon et al., 2001),
which explains its permanence in the Mar Piccolo 15 years after its
first record. No detrimental effect on the local communities has been
observed to date, despite the presence of predisposing conditions.

Five NIS species were sporadically observed. Few thalli of C. fragile
were not continuously observed. We suggest that these were most
probably separate introductions, without a propagule pressure that
can sustain its establishment. Codium fragile is considered a warm-
temperate species with optimal growth temperatures between 21°C and
24°C (Fralick and Mathieson, 1973), and temperature is the most
important environmental factor controlling its seasonal growth
(Hanisak, 1979). Therefore, we suppose that C. fragile will never
establish in the Mar Piccolo, due to the currently reported
temperatures higher regimes than the optimal growth ones.
Agardhiella subulata was particularly abundant in the Mar Piccolo
from the end of the 1980s up to the second half of the 1990s (Cecere

FIGURE 3
Nonmetric multidimensional scaling ordination (nMDS) based on the Bray–Curtis similarity matrix with the sites marked in the plot (1 = green; 3 =
dark blue; 4 = light blue).

FIGURE 4
Principal Coordinate Analysis ordination (PCoA) based on the
Bray–Curtis similarity measure of the stations labeled as sites (1 =
green; 3 = dark blue; 4 = light blue). The percentages of explained
variance (%) of both PCO1 and PCO2 axes are reported, and
vectors indicate the main correlated species with the two axes (rs >
0.35). Species’ names are coded as: Ac, Alsidium corallinum; Ab (f),
Amphiroa beauvoisii (f); Co, Caulacanthus okamurae; Cl,
Chaetomorpha linum; Ca, Chondracanthus acicularis; Cp,
Colpomenia peregrina; Co (f), Corallina officinalis (f); Dd var. d,
Dictyota dichotoma var. dichotoma; Dd var. i, Dictyota dichotoma var.
intricata; Ee, Ellisolandia elongata; Gc, Gelidium crinale; Gg (t),
Gracilaria gracilis (t); Gt, Grateloupia turuturu; Hc, Hypnea corona; Pp,
Padina pavonica; Pm, Polysiphonia morrowii; Sf, Spyridia filamentosa.
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et al., 1992). Afterward, it underwent a complete disappearance, until
sporadic new findings were recorded during this study, most probably
due to different secondary re-introductions through shellfish import
(Petrocelli et al., 2013), as already hypothesized in the Ganzirri Lake
(Sicily, Ionian Sea) (Manghisi et al., 2010). Both male and female
gametophytic thalli were collected in 2011, but to date, A. subulata
has not been re-established in theMar Piccolo. This species, preferentially
distributed in shallow and sheltered environments, is native to the cold
temperate Atlantic Ocean. P and N in seawater are limiting growth
factors (Chopin et al., 1990).Agardhiella subulata is well established in the
Venice lagoon, where temperatures can rise to 32.5°C (Sfriso et al., 2020),
and was observed as a dominant species in the Po Delta lagoons, where
high P and N concentrations were recorded (Sfriso et al., 2016).
Therefore, temperature could seem less important than nutrients in
fostering A. subulata settlement and establishment in the Mar Piccolo.
Indeed, in the last 20 years a trend of temperature increase has been
recorded (Cecere et al., 2016), but a considerable improvement in
seawater quality was also observed in the basin, due to the closure of
several urban sewage disposals (Kralj et al., 2016); this can be a
disadvantage for A. subulata establishment in the basin.

In the studied period, negligible quantities of the tetrasporophyte
(stage Falkenbergia) of Asparagopsis sp. were occasionally collected in
the First Inlet. The genus Asparagopsis has still unsolved taxonomic
questions and, thus, for the correct identification of species, the DNA
barcoding method is imperative (Andreakis et al., 2007).
Unfortunately, up to now, not enough quantities of Asparagopsis
have been collected in the Mar Piccolo to performmolecular analysis.
Therefore, in this study, we refer to Asparagopsis cf. taxiformis, since
this species was reported for the first time in the basin in
2014 according to morphological identification (Bottalico et al.,
2015). However, it is worth remembering that the congeneric NIS
Asparagopsis armata Harvey is present in the nearby Mar Grande
(Cecere et al., 1996). Solieria filiformiswas the first NIS recorded in the
Mar Piccolo. Indeed, its presence in the basin was already witnessed in
a herbarium sheet dating back to 1922 (identified as Gracilaria
confervoides Greville) (Perrone and Cecere, 1994). However, the
first record of this species, which was also the first report for the
Mediterranean, was based on a collection in 1987 (Cecere, 1990) when
several unattached floating and sterile thalli of Solieriaceae (including
A. subulata and S. filiformis) were sampled in both the basin inlets.
Since then, recurring observations have shown that S. filiformis has
spread considerably in the Mar Piccolo, becoming one of the
dominant species in summer in the Second Inlet (Cecere et al.,
1992). At the end of the 1990s, S. filiformis disappeared from the
basin, because it was used in an experimental cultivation withmussels,
starting in 1994, which led to the massive harvest of thalli (Cecere and
Petrocelli, 2009). Solieria filiformis growth is strongly enhanced by a
high content of N, mainly ammonium (Peñuela et al., 2018). During
this study, in spring 2017, few sterile thalli were collected in the Mar
Piccolo, most likely due to a new introduction event, not followed by
the species re-establishment. The failure to find again this species in
the following years could be due to a reduced propagule pressure,
combined with the lower N content in seawater (Kralj et al., 2016).
Caulerpa cylindraceawas detected for the first time in theMar Piccolo
in 2001 (reported as Caulerpa racemosa), and continuously until
2004 by research projects focused solely on NIS (E. Cecere and A.
Petrocelli unpublished data). It was widely distributed in the First
Inlet, with some spots in the north-eastern part of the Second Inlet, at

a depth between 0.5 and 3 m. Since then, a few filaments of C.
cylindracea were collected again as part of this study in summer 2013.
In the Tyrrhenian Sea, in situ studies showed that C. cylindracea is a
nitrophilic species, but while N does not represent a limitative
nutrient, P is limitative (Gennaro et al., 2015). Light is another
limiting environmental factor for C. cylindracea growth. This
species has elevated photosynthetic plasticity, but the energetic
costs required for the acclimation often reduce its survival at low
light conditions (Bernardeau-Esteller et al., 2015). These could have
been themain factors leading to the disappearance ofC. cylindracea in
the Mar Piccolo, where urban effluents were mainly closed, but
sedimentation remained very high (Bellucci et al., 2016). Caulerpa
cylindracea is considered the first among the ten most invasive non-
indigenous seaweed species in the Mediterranean Sea, with both
negative and positive impacts on the invaded communities
(Tsirintanis et al., 2022). However, for the moment, it can be
considered another unsuccessful NIS in the Mar Piccolo of Taranto.

The DNA barcoding method has proved a very useful
investigative tool for species identification, as it has enabled the
identification of several other doubtful taxa present in the basin.
Indeed, within the framework of the National Biodiversity Future
Center (NBFC), funded by the Italian National Recovery and
Resilience Plan (PNRR), a specific task is devoted to this issue in
the future. Concerning G. minima, the molecular analyses helped the
inclusion of morphologically different specimens under the same
taxon. For P. morrowii, the first report for the Mar Piccolo was
tentatively attributed to this taxon, because all the specimens collected
in the Mediterranean Sea belonged to this species (Petrocelli et al.,
2013). However, a misidentification with Polysiphonia senticulosa
Harvey (Kudo and Masuda, 1981) could not be excluded.
Polysiphonia morrowii was very probably present as an epiphyte
on several other seaweeds: for some seaweed specimens the
sequencing signal was disturbed, indicating the presence of more
than one species (despite our efforts to clean the samples before the
molecular analyses), and thus these results could not be included in
this paper. However, it is worth underlining that, based on the BLAST
search, the readable part of the sequence of each of these specimens
had a 100% identity with P. morrowii sequences. Finally, it was
possible to solve the misidentification of Neopyropia koreana with
other congeneric species, commonly based only on morphological
features until now (Kim et al., 2022).

The multivariate analysis results highlight the absence of long-
term changes in the structure of seaweed assemblages, indicating no
relevant disturbances due to NIS settlement in the Mar Piccolo.
Indeed, most NIS species seem to follow a seasonal cycle in
equilibrium with native species. This condition is particularly
evident in Site 1, where the assemblage seems to maintain
stability during the entire year, driven by high abundances of
Corallinales, Dictyotales, and the regular occurrence of some NIS,
as C. peregrina and P. morrowii. The main differences detected in the
analyses could be affected by the spatial positions of investigated
sites, with the assemblage in the First Inlet of Mar Piccolo (Site 1)
being different from other sites in the Second Inlet (Sites 3 and 4). In
the last two sites, the difference between the assemblages arises at a
seasonal scale, with Site 3 showing the most relevant seasonal
differences due to the high abundance of H. corona in the
summer. This observation is in line with the studies on the
seasonal cycle of this species in the Mar Piccolo (Cecere et al.,

Frontiers in Environmental Science frontiersin.org09

Petrocelli et al. 10.3389/fenvs.2023.1075458

247

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1075458


2016; Petrocelli et al., 2019). On the other hand, Site 4 showed a
pattern of small changes in the macroalgal assemblages, with the
summer-autumn and winter-spring periods showing slightly
different results, and the latter being characterized by C.
okamurae as the most important NIS, as observed in previous
analyses (Petrocelli et al., 2020b).

Since 2011, a substantial increase in imported bivalve mollusks has
been registered at the Taranto market. This was mainly due to a strong
decline in local production, caused by the detection of organic pollutants
beyond the limits permitted by current legislation (Cecere et al., 2016).
Once they arrive by track, adult organisms (for direct sale) and juveniles
(for fattening) were both indiscriminately immersed in the Mar Piccolo,
also in contravention of European law (Cecere et al., 2016). During an
informal conversation, two local shellfish importers and sellers reported
that 200,000 quintals of bivalve mollusks officially reached the Taranto
market in 2021. Moreover, they outlined that this value is surely
underestimated due to the massive amount of product that is
unlawfully imported, which could be estimated at around
500,000 quintals. Most of the imported bivalve mollusks (mainly
mussels and clams) came from the Northern Adriatic, Greece, and
Spain. Only a small percentage (mainly oysters) was imported from
France. Most likely, the imported organisms have contributed to the
continuousNIS introduction in theMar Piccolo assessed in this study, as
has already been demonstrated in other world zones (Mineur et al., 2007;
2014; Wolf et al., 2018). In this respect, continuous dialogue among

researchers, mollusk producers, and local authorities has recently led the
mayor of Taranto to enact a specific issue that bans juveniles and adults
of allochthonous bivalvemollusks from theMar Piccolo, to preserve both
the original animal genetic pool fromhybridization and the environment
from the introduction of new NIS.

Higher quantities of imported products can also explain the
significant differences among sites, with the separation of Site 1 in
the First Inlet. Indeed, there are numerous bivalve mollusk retailers,
restaurants, and immersed packets near this site, containing adult
bivalve mollusks (mainly oysters), which have often been observed,
with heaps of shells discarded there. The situation is different in the
other investigated sites located in the Second Inlet, which are instead
characterized by the presence of farming plants where the imported
juvenile products are improvidently immersed for fattening. This
could explain similarities.

Based on the current study, the Mar Piccolo seems not
particularly suitable for NIS settlement and development. Most
NIS native to cold-temperate zones have either disappeared or
did not succeed in forming luxurious populations. The only
exception is H. corona, a warm-tolerant species well adapted to
the increasing seawater temperatures of the basin. Further
systematic seasonal LTER observations will allow for the
continuous monitoring of the situation and the early detection of
any new NIS. Recently, the relevance of these activities was sealed by
the Italian PNRR, which funded the enhancement of the e-LTER
infrastructure, to which the Mar Piccolo belongs, thereby ensuring
the continuation of data collection over time.
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Species’ names are coded as: Ac, Alsidium corallinum; Ab (f), Amphiroa
beauvoisii (f); Co, Caulacanthus okamurae; Cl, Chaetomorpha linum;
Ca, Chondracanthus acicularis; Cp, Colpomenia peregrina; Co (f),
Corallina officinalis (f); Dd var. d, Dictyota dichotoma var. dichotoma;
Dd var. i, Dictyota dichotoma var. intricata; Ee, Ellisolandia elongata;
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