About this Research Topic
Now is a particularly exciting time to unravel the underlying molecular mechanisms of neuronal mechanics and transport. Recent advances in quantitative live cell imaging, biophysical, and nanotechnological methods such as traction force microscopy, optical tweezers, and atomic force microscopy have enabled researchers to gain better insights into how cytoskeletal dynamics and motor-driven transport, membrane-dynamics, adhesion, and substrate rigidity contribute to axonal elongation. Given the complexity of this problem and its inherently mechanical nature, this area of research leans itself to mathematical modeling. Nonetheless, there has been limited direct interaction between experimentalists and theoreticians. In these terms, the purpose of this Frontiers Research Topic is to highlight relevant, exciting, and important work that is currently developing in the fields of neuronal cell biology, neuronal mechanics, intracellular transport, and mathematical modeling in the form of primary research articles, reviews, perspectives, and commentaries.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.