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Editorial on the Research Topic

Computational intelligence in personalized medicine

Emerging developments and innovations in digital healthcare technologies, also known as

digital transformation, may drastically enhance current healthcare operations. Among

advanced technologies, artificial intelligence, particularly computational intelligence, has

proven successful as a technology trend contributing to the digital transformation of the

healthcare and medical industries. For example, Zhang et al. proposed a multimodal

neuroimaging embedding feature selection and fusion method for the multiclass diagnosis

of Alzheimer’s disease (Zhang et al., 2021). Zhang et al. also proposed an imbalance

classification framework and a high-generalizable classifier for distant metastases

prediction of advanced nasopharyngeal carcinoma (Zhang et al., 2022). In this research

topic, the publications have been rigorously peer-reviewed by external reviewers with strong

backgrounds in computational intelligence research. These high-quality publications provide

efficient and precise intelligent algorithms for the field of personalized medicine.

Among these publications, two research groups focused on personalized medicine in

cancer, and each has described a very good computational intelligent algorithm. Wang

et al. (Xu et al.) proposed a semi-supervised learning framework based on Vision

Transformer (ViT) for the diagnosis of breast cancer, which unifies both supervised

and consistency training to enhance the robustness of the model. The authors validated

the proposed model on both ultrasound and histopathology images. The experimental

results demonstrated its promising performance. The other group focused on the

prediction of radiation pneumonitis in patients with lung cancer based on lung

perfusion functional images (Li et al.). The study first divided the whole lung volume

into function-wise lung regions. Next, the authors extracted radiomics and dose features
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from function-wise and full lung regions, respectively. Finally, the

authors proposed a multi-feature fusion model to fuse radiomics

features, dose features, and combined dual-omics features. The

experimental results demonstrated the promise of the function-

wise dual-omics analysis method to improve the prediction of

radiation pneumonitis in patients with lung cancer.

Additionally, three research groups designed amultimodal fusion

algorithm, a registration system, and an identification system for

personalized medicine in the field of brain diseases, and dental

implants. Neuroimaging has been widely used as a precision

diagnostic technique for brain diseases. Ran et al. collected

103 subjects with magnetic resonance imaging (MRI) and positron

emission tomography (PET) data from the Alzheimer’s Disease

Neuroimaging Initiative, and then proposed a multi-kernel model

to fuse MRI and CT modalities for the diagnosis of Alzheimer’s

disease. In the multi-kernel model, unlike the modality-consistent

regularization used in previous studies, the authors designed a novel

“all-single” fusion strategy that considers every single feature and the

possible combinations, which allowed full exploration of the

complementary information. Moreover, Ran et al. extended the

compactness graph mechanism from the linear space to the multi-

kernel space to reduce the overfitting problems in multi-kernel space.

Image registration plays a significant role in the computational

intelligence-assisted diagnosis of brain diseases. Kujur et al.

proposed a general registration framework using the tissue P

system for image registration. The innovation is that the proposed

registration framework optimizes upon the mutual information

similarity metric to identify a global solution. Kujur et al. evaluated

the registration framework on single- andmulti-modality brain image

data collected from the Montreal Neurological Institute. The

experimental results indicated that among all the state-of-the-art

models, the proposed registration framework provided better

mutual information values with minimum deviation in a range of

experiment setups conducted iteratively. In the field of dental

implants, identifying the appropriate accessories for installing a

dental implant is a vital factor that impacts dental prosthesis

sustainability and reliability. X-ray images are usually used to assist

dentists in identifying the implant manufacturer to determine further

treatment procedures. Guo et al. developed a dental implant

identification system based on a novel thinner VGG (Visual

Geometry Group) model with an on-demand client-server

structure. The experimental results demonstrated the advantages of

the proposed systems compared to state-of-the-art systems.

Another takeaway from this topic are two review manuscripts.

Zhao et al. performed a systematic review on the application of

computational intelligence in the diagnosis of ophthalmic disease.

Specifically, the authors collected citation data from the Web of

Science Core Collection database to evaluate the extent of the

application of computational intelligence in the diagnosis of

ophthalmic disease in publications between 1 January 2012 and

31 December 2021. They found that the hotspots of computational

intelligence research on this topic have transitioned from the

development of computational intelligence algorithms and the

analysis of abnormal eye physiological structures to the investigation

of more mature systems for ophthalmic disease diagnosis. The meta-

analysis by Guo et al. analyzed the use of the transjugular intrahepatic

portosystemic shunt (TIPS) for the prevention of rebleeding in patients

with cirrhosis and portal vein thrombosis. The authors reported that

TIPS is feasible and effectively prevents rebleeding in these patients,

regardless of cavernous transformation of the portal vein.

In conclusion, this Research Topic mainly focused on

computational intelligence in personalized medicine. Some

representative works made use of classic computational

intelligence technologies directly, while other representative works

were based on newly proposed computational intelligence

algorithms. In general, these works are excellent and open a new

window for the development of computational intelligent algorithms

in personalized medicine. Finally, we sincerely thank all the authors

who contributed their work and provided articles, allowing us to

coordinate and edit this outstanding collection.
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Previous studies suggest that patients with nephrolithiasis exhibit dysbiosis in their gut
microbiota, but those studies were conducted in calcium oxalate stone patients. We aimed
to explore the association of gut microbiota and biochemical features of renal uric acid
stone (UAS) patients in a Chinese population and identify the related bacteria that may
affect the pathopoiesis of UAS. A case-control study of 117 patients with UAS, 123
patients with gout, and 135 healthy controls were included from January 2014 to October
2020. For each subject, data on demographics, biochemical parameters of blood and
urine were analyzed. Fifteen patients with gout, 16 patients with UAS, 17 UAS patients with
gout, and 17 healthy subjects were enrolled and provided fecal samples. The
characteristics of gut microbiota were explored by using 16S ribosomal RNA (rRNA)
gene sequencing and analyzed by using a combination of software mother and R.
Hyperuricemia was the main risk factor for the development of gout and UAS. Obesity,
dyslipidemia, and aciduria were unique risk factors for UAS patients. The richness,
diversity, and relative abundance of dominant bacteria at the phylum and genus levels
of gut microbiota in UAS patients were significantly distinct from other subjects.
Abundance of Bacteroides and Fusobacterium was significantly positively correlated
with the serum uric acid (UA) level of UAS patients. Fusobacteria was involved in the
metabolism and degradation of certain short-chain fatty acids, amino acids, and sugars in
pathopoiesis of UAS, and inhibited their synthesis pathways. Fusobacteria may be related
to the pathogenesis of UAS, and this finding contributes to the personalized treatment of
UAS from the perspective of maintaining micro-ecological equilibrium in gut.

Keywords: gut microbiota, uric acid stone, nephrolithiasis, 16srRNA, biomarker, computational intelligence

INTRODUCTION

Nephrolithiasis is a global disease across regions and ethnicities, which is considered an important
public health problem. It has a severe impact on human health and causes a huge social and
economic burden (Sakhaee, 2008). To make matters worse, the recurrence rate of nephrolithiasis
remains high, with a recurrence rate of 50% within 10 years. Renal uric acid stone (UAS) is indicated
in the presence of a radiolucent stone (Ganesan et al., 2018), accounting for 10–15% of all urinary
calculi, and its prevalence rate varies globally (Abou-Elela, 2017; Trinchieri and Montanari, 2017).
The recurrence rate of patients with UAS is close to 100% (Wang et al., 2017). Although no large-
scale epidemiological studies have been conducted, the prevalence of UAS in China has increased
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significantly in the past 30 years. In the economically developed
areas of southern China, the prevalence of UAS is as high as
12–18% (Ma et al., 2018).

The microbiota of the human intestinal tract is a complex
community composed of more than 100 trillion microbial cells,
including more than 1,000 different kinds of species (De Sordi
et al., 2017). High-throughput sequencing has facilitated great
advances in our understanding of gut microbiome. Gut
microbiota is increasingly linked to the development of
various metabolic diseases such as obesity, diabetes,
dyslipidemia, kidney disease, and nephrolithiasis (Langille
et al., 2013; Stern et al., 2016; Stanford et al., 2020). The
discovery of Oxalobacter formigenes, which is a kind of
oxalate degrading bacteria, makes it possible that the gut
microbiota affects absorption and secretion of solutes relevant
to kidney stone formation (Siva et al., 2009). To date, more
studies on the relationship between gut microbiota and
nephrolithiasis are reported (Tang et al., 2018). They found
that the cause of calcium oxalate stone was related to a group
of bacteria involved in oxalate degradation and transportation,
rather than a single kind of bacteria (Lee and Stern, 2019). The
relationship of gut microbiota and calcium oxalate stone has been
investigated in a limited amount (Stern et al., 2016; Lee and Stern,
2019), especially with no study of gut microbiota and UAS, to the
best of our knowledge.

Although hyperuricemia is the common physiological and
pathological bases of UAS and gout, only part of the population
will develop UAS or gout, and the mechanism is still being studied.
Patients with a history of gout have greater risk of forming UAS,
and patients with obesity, diabetes, dyslipidemia, or other
metabolic syndrome (Joosten et al., 2020). However, many
patients with UAS are not accompanied by gout. The loss of
bicarbonate leads to the formation of acidic urine, which is the
most direct risk factor for UAS. Gastrointestinal diseases such as
inflammatory bowel disease have been shown to cause bicarbonate

loss clearly, and we have the reason to believe that gut microbiota
and its metabolites regulate urine pH. We attempted to explore the
differences in biochemical and gut microbiota features between
UAS and gout patients, and find out bacteria genera, which
involved in the pathogenesis of UAS. Through the analysis and
detection of target bacteria by computational intelligence, it
facilitates a new thinking for the personalized diagnosis and
treatment of UAS patients.

MATERIALS AND METHODS

Human Study Designs, Subjects, and
Sampling
This study was approved by the Ethics Review Committee of
Changshu Hospital affiliated to Soochow University. All the
participants were local residents of unrelated southern Han
Chinese. A case-control study of 123 gout patients (Gout
group), 87 UAS patients without gout (UAS group), 30 UAS
patients complicated with gout (Gout + UAS group), and
135 stone-free healthy people (Control Group) who received
physical examination in Changshu Hospital affiliated to
Soochow University from January 2014 to October 2020 were
conducted. All the stone patients were diagnosed by ultrasound of
the urinary system or abdominal-computed tomography, and
received ureteroscopy or percutaneous nephrolithotomy. The
stones obtained after operation were identified as pure or
mixed uric acid calculus (uric acid content is greater than
50%) by Fourier-transformed infrared spectrophotometry
LIIR-20 (Lanmode scientific instrument Co., Ltd., Tianjin,
China). Patients who had a history of statins, chronic liver
insufficiency, malignant tumors, and thyroid or parathyroid
diseases were excluded from the study. Controls with a history
or any evidence of nephrolithiasis, self-reported history of
dyslipidemia or use of statins were excluded from the study.

TABLE 1 | Comparison of general characteristics between each group.

Variables Gout UAS Gout +
UAS

Control p value

Age, years 61.46 ± 15.58 60.32 ± 14.74 57.77 ± 14.39 59.25 ± 16.56 0.571#

Gender (%) 0.310*
Male 105 (85.37) 67 (77.01) 26 (86.67) 106 (78.52)
Female 18 (14.63) 20 (22.99) 4 (13.33) 29 (21.48)

BMI 23.88 ± 2.46b 24.92 ± 3.53a,c 26.80 ± 2.19d 23.75 ± 1.51 <0.001#

Hypertension (%) <0.001*
Yes 54 (43.90)d 36 (41.38)c 17 (56.67)c 31 (22.96)
No 69 (56.10)d 51 (58.62)c 13 (43.33)c 104 (77.04)

Diabetes (%) 0.413*
Yes 7 (5.69) 6 (6.90) 4 (13.33) 7 (5.19)
No 116 (94.31) 81 (93.10) 26 (86.67) 128 (94.81)

#Analysis of variance (ANOVA)
*2-sided Chi-square test.
ap < 0.05 (compared with the Gout + UAS, group).
bp < 0.001 (compared with the Gout + UAS, group).
cp < 0.05 (compared with the control group).
dp < 0.001 (compared with the control group).
UAS, uric acid stone; BMI, body mass index.
Bold values indicate significant difference.
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General body measurements (height, weight, and blood
pressure), past medical history, and test of blood and urine
were carried out in all subjects. About 5 ml fasting venous
blood sample and mid-stream urine of the first urine in the
morning were drawn from each subject. Under the matching of
age, sex, and BMI, 15 patients in the Gout group, 16 patients in
the UAS group, 17 patients in the Gout + UAS group, and 17
patients in the controls were selected (Supplementary Table S1).
All subjects were long-term residents with similar dietary habits,
and underwent food frequency questionnaire before enrollment.
After 3 days of eating uniform diet provided by the hospital
(Supplementary Table S2), fresh fecal samples from the
aforementioned people were collected, froze immediately, and
stored under −80°C until analysis. Subjects who support fecal
samples were excluded if they used antibiotics within 3 months,
had a history of chronic diarrhea or constipation, chronic
enteritis, irritable bowel syndrome, gastrointestinal tumor, or
intestinal surgery.

16s DNA Extraction, PCR Amplification, and
Target Gene Sequencing
The DNA was extracted from 200 mg samples using the QIAamp
DNA fecal mini kit (QIAGEN, Hilden, Germany) following the
manufacturer’s instructions. DNA was checked by running the
samples on 1.2% agarose gels.

The V3–V4 hyper-variable regions of the bacteria 16SrRNA
gene were amplified with primers 357F (5′-
ACTCCTACGGRAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) by the polymerase chain
reaction (PCR) system. Prior to library pooling, the barcoded
PCR products were purified using a DNA gel extraction kit
(Axygen, United States) and quantified using the FTC-3000
TM real-time PCR (Funglyn Shanghai). The PCR products
from different samples were indexed and mixed at equal ratios

for sequencing on the illumina platform at TinyGen Bio-Tech
(Shanghai) Co., Ltd.

Statistical and Bioinformatics Analysis
The general characteristics and biochemical parameters of the
subjects were analyzed by SPSS22.0 and 2-sided p < 0.05 was
defined as statistically significant. Continuous variables were
summarized with mean and standard deviation if they satisfied
the homogeneity of normality and variance. Otherwise, they were
reported with median and inter quartile range (IQR). The
quantitative variables were tested by the analysis of variance
(ANOVA), Kruskal–Wallis test, and Mann–Whitney test. The
chi-square test was used for categorical variables. Multiple logistic
regression analysis was used to analyze the risk factors of disease
in each group, and OR values were adjusted according to age
and sex.

16S sequences were analyzed using a combination of software
mother and R. The demultiplexed reads were clustered at 97%
sequence identity into operational taxonomic units (OTUs) and
the singleton OTUs were deleted using the UPARSE pipeline.
OTU taxonomies were determined based on the NCBI. Based on
taxonomic information, the community structure was
statistically analyzed from the classification level of phylum,
class, order, family, genus, and species. For the alpha-diversity
analysis, Shannon, Simpson, Chao, ACE index, and rarefaction
curves were calculated using mothur and plotted by R. The
Kruskal–Wallis test was used to detect the significant changes of
Shannon, Simpson, Chao, and ACE index between each group.
For the beta-diversity metrics, the weighted UniFrac distance
matrix were calculated using mothur and visualized with
principal coordinate analysis (PCoA) by ape package in R.
Linear discriminant analysis effect size (LEfSe) analysis was
performed. Linear discriminant analysis was performed on
samples with different grouping conditions according to the
taxonomic composition. LDA was used to screen the

TABLE 2 | Biochemical parameters in different groups studied.

Variables Gout UAS Gout + UAS Control

Lipid levels, mmol/L
TG 1.74 ± 1.08a,c 1.81 ± 0.98a,d 2.66 ± 1.97c 1.37 ± 0.61
TC 4.66 ± 0.98 4.83 ± 0.87 4.77 ± 1.23 4.83 ± 0.98
HDL-C 1.18 ± 0.30c 1.23 ± 0.35a 1.06 ± 0.25d 1.31 ± 0.34
LDL-C 2.60 ± 0.69 2.77 ± 0.63 2.72 ± 0.81 2.77 ± 0.71

Electrolyte levels, mmol/L
K 4.04 ± 0.37a,c 4.08 ± 0.41a 4.33 ± 0.62 4.15 ± 0.42
Na 140.31 ± 3.37 140.95 ± 2.54 140.94 ± 2.74 140.79 ± 2.18
Cl 103.95 ± 3.39 104.54 ± 3.23 105.31 ± 3.46 104.24 ± 2.98
Ca 2.29 ± 0.15a,c 2.34 ± 0.16 2.38 ± 0.16 2.35 ± 0.13
P 1.07 ± 0.24 1.05 ± 0.22 1.12 ± 0.36 1.03 ± 0.18
Mg 0.86 ± 0.10 0.87 ± 0.10 0.89 ± 0.20 0.88 ± 0.08
UA (μmol/L) 465.54 ± 126.22b,d 392.71 ± 93.12b,d 559.13 ± 76.57d 336.09 ± 76.75
Urinary pH 5.72 ± 0.55d 5.64 ± 0.55d 5.57 ± 0.63c 5.99 ± 0.67

ap < 0.05 (compared with the Gout + UAS, group).
bp < 0.001 (compared with the Gout + UAS, group).
cp < 0.05 (compared with the control group).
dp < 0.001 (compared with the control group).
UAS, uric acid stone; TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; and UA, serum uric acid.
Comparisons made using Student’s t test.
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communities or species which had significant influence on the
differences in sample division with a cutoff of 2.0. The Spearman
correlation analysis was used to evaluate association of
dominant bacteria genera and biochemical parameters. The
metabolic pathways of Kyoto Encyclopedia of Genes and
Genomes (KEGG) were predicted by PICRUST software
package.

RESULTS

General Characteristics of the Study
Population
The proportion of hypertensive patients and body mass index
(BMI) in observation groups were significantly higher than the
controls. Age (p = 0.571), gender (p = 0.310), and prevalence of
diabetes mellitus (p = 0.413) were not significantly different
among each group. However, BMI of the two stone groups,
especially the Gout + UAS group was significantly higher than
the other groups (p < 0.001). More hypertension individuals were
found among the three observation groups and the Gout + UAS
group is still with the highest prevalence rate (p < 0.001) (Table1).

Biochemical Features and Risk Factors
Analysis Among the Groups
Hyperuricemia was the main risk factor for the development of
gout as well as UAS. Obesity, hypertriglyceridemia, and aciduria
were unique risk factors for UAS patients. Main biochemical
features are summarized in Table 2 or Supplementary Figure S1.
Compared to the controls, the triglycerides (TG) level in the three
observation groups was significantly higher, and the level of TG in
the Gout + UAS group was the highest (p < 0.05). The level of
high-density lipoprotein cholesterol (HDL-C) in Gout as well as
Gout + UAS group was significantly lower than that in the control
group. The concentration of potassium in the Gout and UAS
groups was significantly lower than that in the Gout + UAS group
(p < 0.05), and the serum calcium concentration in the Gout
group was also significantly lower than the Gout + UAS group
and the controls (p < 0.05). All the three observation groups have
significantly higher serum uric acid (UA) value than the controls

(p < 0.001), and among them the Gout + UAS group’s UA value
was the highest (p < 0.001). All the patients in three observation
groups demonstrated obvious aciduria, especially in the Gout +
UAS group (Table2, Supplementary Figure S1).

Univariate logistic analysis suggested that hypertension, low
HDL-cholesterolemiamia, hyperuricemia, and aciduria were
independent risk factors for gout. Obesity, hypertension,
hypertriglyceridemia, low HDL-cholesterolemiamia,
hyperuricemia, and aciduria were common independent risk
factors for all UAS groups (Supplementary Table S3). Adjusted
for age and sex, multivariate logistic analysis indicated that only
hyperuricemia was the common risk factor for the development of
gout as well as UAS. For patients with UAS alone, obesity,
hypertriglyceridemia, and aciduria were the other three risk
factors. While obesity was another risk factor for patients with
UAS complicated with gout besides hyperuricemia (Table 3).

16S Sequencing Depth and Analysis of the
Sample Size
The study was carried out with reasonable sample collection and
high species rich, and the amount of data was reasonable and
could reflect the majority of gut microbiota information
objectively among groups. After eliminating the sequences of
repetitive and fuzzy bases that affect the quality of analysis, a total
of 2,329,290 high-quality sequences with an average length of 459
were received. The number of total OTUs in this study was 700,
including one kingdom, 12 phylum, 21 class, 29 order, 46 family,
132 genus, and 181 species. The Venn diagram shows the
common and unique OUTs among each group. Among the
648 known OUTs, the number of OUTs in the Gout + UAS
group was lower than other groups (Figure 1A). With the curve
reached the saturation plateau, more data contribute little to the
discovery of new OUTs (Figure 1B), which means the depth of
sequencing was reasonable. ANOSIM analysis calculated the
relationship ranking among samples through variables, and
performed the substitution test to determine whether the
difference between groups was significantly different from the
difference within groups. The results showed that the difference
of the gut microbiota structure among the four groups was
statistically significant (R = 0.155, p = 0.001) (Figure 1C).

TABLE 3 | Multivariate logistic analysis of risk factors in each group studied.

Variables Gout UAS Gout + UAS

p valuea Adjusted OR
(95% CI)

p valuea Adjusted OR
(95% CI)

p valuea Adjusted OR
(95% CI)

BMI 0.612b 1.03 (0.91–1.17) 0.019 1.16(1.03–1.32) 0.015 12.57(1.62–97.47)
Hypertension 0.088 1.75 (0.92–3.34) 0.066 1.93 (0.96–3.87) 0.415 0.12 (0.01–19.00)
Hypertriglyceridemia 0.154b 1.76 (0.81–3.82) 0.002 4.19(1.67–10.40) 0.208 13.90 (0.23–839.09)
Low HDL-cholesterolemiamia 0.080 1.96 (0.92–4.17) 0.213 1.70 (0.74–3.93) 0.051 89.59 (0.98–8.19e-3)
Hyperuricemia <0.001 10.08(5.27–19.27) <0.001 4.81(2.30–10.07) 0.021 2.87e-6(9.74-8.46e-11)
Urinary pH 0.122 0.68 (0.42–1.11) 0.027 0.55(0.32–0.93) 0.662 0.60 (0.06–6.09)

aAdjusted for age and sex in the multivariate logistic regression model.
bResults of univariate logistic regression analysis.
UAS, uric acid stone and BMI, body mass index.
Bold values indicate significant difference.
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Richness and Diversity of Gut Microbiota
Among Each Group
The richness and diversity of gut microbiota in UAS patients,
especially in stone patients complicated with gout, were
significantly lower than gout patients and controls. The
richness and bacterial diversity of gut microbiota in the Gout
+ UAS group were significantly lower than that in the Gout and
Control groups (Figure 1D) from the ACE, Chao, Shannon, and
Simpson indices by the Kruskal–Wallis test. PCoA analysis
indicated that there are significant differences in microbiota

communities in specific evolutionary lineages among the four
groups. (Supplementary Figure S2).

Analysis Based on Species Information of
Microbiota Between Each Group
The species diversity and relative abundance of dominant
bacteria at the phylum and genus levels among the four
groups were different, and certain bacteria were dominant in
UAS patients. At the level of phylum, Bacteroidetes, Firmicutes,

FIGURE 1 | Analysis of gut microbiota among each group by using 16s rRNA. (A) Venn diagram for indicating the common and unique OTUs among four groups.
(B) Multi-sample rarefaction curves for comparing the abundance of diverse species in each sample. (C) ANOSIM analysis for identifying the existence of differences
between each group. (D) Comparison of alpha diversity of gut microbiota between each group. The ACE, Chao, Shannon, and Simpson indices at the operational
taxonomic units (OTUs) level were compared between each group by Kruskal–Wallis test (*p < 0.05**p < 0.01).
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Proteobacteria, Fusobacteria, Actinobacteria were the most five
abundant bacterial in each group. In the Gout + UAS group, the
relative abundance of Fusobacteria was significantly higher than
other groups (p = 0.02), while Tenericutes was significantly lower
than other groups (p < 0.001) (Figures 2A,B). At the level of
genus, the most five abundant bacterial were Bacteroides,
Prevotella, Megamonas, Fusobacterium, and Faecalibacterium.
The relative abundance of Bacteroides and Fusobacterium in the
Gout + UAS group was significantly higher than other groups
(Figures 2C,D). The linear discriminant analysis effect size
diagram indicated that there were the following specific genera
in each group on the phylum and genus levels Fusobacteria in the
Gout + UAS group on the phylum level, Tenericutes in the Gout
Group on the phylum level, Bacteroides and Fusobacterium in the
Gout + UAS group on the genus level, Streptococcus,
Lactobacillus, Weissella, Gemella, and Campylobacter in the
Gout group on the genus level, Dialister in the UAS group on

the genus level, Subdoligranulum in controls on the genus level
(Figure 3).

Association of Dominant Bacteria Genera
and Biochemical Parameters
Bacteroides and Fusobacterium were significantly positively
correlated with the serum UA level of patients with UAS. We
looked for the dominant species whose LDA value was more than
two and the relative abundance was in the top 20 in each group at
the genus level, and screened out the following six species:
Bacteroides, Fusobacterium, Subdoligranulum, Streptococcus,
Dialister, and Lactobacillus. The correlation of the
aforementioned genera abundance and the significant different
biochemical parameters were analyzed. Bacteroides was positively
correlated with the UA level in the Gout + UAS group (r = 0.520,
p = 0.033), and positively correlated with the serum potassium

FIGURE 2 | (A,C) Composition of gut microbiota between each group at the phylum and genus level. (B,D) Histograms of differences in the abundance of species
analyzed by Kruskal–Wallis test among four groups at the levels of phylum and genus (*p < 0.05, **p < 0.01, and ***p < 0.001).
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level in the controls (r = 0.829, p < 0.001). Fusobacterium was
positively correlated with the UA level in the UAS group (r =
0.560, p = 0.024). Subdoligranulum was positively correlated with
the HDL-C level in the controls (r = 0.493, p = 0.044).
Streptococcus was positively correlated with urinary pH in the
Gout group (r = 0.536, p = 0.039), and inversely correlated with
the TG level in the Gout + UAS group (r = -0.517, p = 0.034).
Dialister was positively correlated with the HDL-C level (r =
0.726, p = 0.001), but was inversely correlated with the UA level in
the UAS group (r = -0.629, p = 0.009) (Table 4, Supplementary
Figure S3).

Prediction of Metabolic Function of Gut
Microbiota
Fusobacteria was involved in the metabolism and degradation of
certain short-chain fatty acids, amino acids, and sugars in
pathogenetic of UAS, and inhibited their synthesis pathways.
The PICRUSt tool was used to predict the differences in
metabolic pathways between all the stone patients (Group S)
and the controls (Group N) (Figure 4). Fusobacteria played a
dominant role in microbiota metabolism in UAS patients and
had a significant positive correlation in propanoate and
butanoate metabolism, beta-alanine and tryptophan
metabolism, amino sugar and nucleotide sugar metabolism,
fructose and mannose metabolism, lysine, valine, leucine and
isoleucine degradation and other metabolism or degradation
pathway. The biosynthesis of short-chain fatty acids, the
biosynthesis of phenylalanine, tyrosine, tryptophan and
arginine, the biosynthesis of peptidoglycan and glucosinolate,
the metabolism of cysteine, methionine, histidine, alanine,

aspartate, and glutamate were inversely correlated with
Fusobacteria while they were positively correlated with
probiotic bacteria genera in controls.

DISCUSSION

In the present study, there were significant differences in
biochemical features between UAS formers and gout patients.
Whether for gout or UAS patients, hyperuricemia was always a
risk factor. Obesity, hypertriglyceridemia, and aciduria were the
risk factors of UAS, while obesity and hyperuricemia were more
associated with UAS complicated with gout. The richness and
diversity of gut microbiota in UAS patients were significantly
lower than those in controls. Bacteroides and Fusobacterium were
the dominant species that distinguish the intestinal flora of UAS
patients from normal population, and they had a significant
positive correlation with the level of serum UA. Fusobacteria
was mainly involved in the metabolism and degradation of
certain short-chain fatty acids, amino acids, and sugars in
patients with UAS, and played an important role in inhibiting
their synthesis pathways.

It is well known that uric acid is a weak organic acid with an
ionization constant (PKA) of 5.5, the solubility of uric acid
crystals decreases sharply in acidic urine with pH less than 5.5
(Tran and Maalouf, 2020). The disturbance of Na+/H+ exchange
and decrease of ammonia secretion in renal proximal tubule will
reduce the urinal pH value, promoting the formation of UAS and
depositing of monosodium urate monohydrate, as known as the
gout crystals (Friedlander et al., 2014; Rajkumar and Pluznick,
2018).

FIGURE 3 | Histogram (A) and cladogram (B) of Linear discriminant analysis effect size (LEfSe) analysis based on OTUs characterizes microbiota among the
controls, Gout patients, UAS patients and Gout + UAS patients.
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Our study indicated that the urine pH of UAS patients,
especially stone formers with gout, was significantly lower than
other subjects. The diseases that cause acidic urine included
obesity, cardiovascular disease, insulin resistance, and chronic
diarrhea (Bobulescu et al., 2019). The baseline characteristics of
UAS patients in our study were partly consistent with the
aforementioned clinic features. Epidemiological investigation has
demonstrated that increased metabolic syndrome related factors
significantly promoted the risk of UAS (Boyd et al., 2018). Several
researchers have reported and confirmed that there was an inverse
correlation between BMI and urine pH (Nakajima et al., 2016).
Multivariate analysis was carried out in 459 24-h urine samples of
183 adult patients with nephrolithiasis and found that
hyperglycemia was associated with lower pH and higher urinary
saturation with respect to uric acid, suggesting that glycemic
control may be considered a target for the treatment of UAS
(Maciolek et al., 2018). In addition, a cross-sectional study analyzed
24-h urine parameters and abdominal CT scan results of 98
patients with nephrolithiasis and reported that the greater
abdominal visceral fat content was associated with lower
urinary pH and higher risk of UAS (Patel et al., 2017). Our
results suggested that the incidence of diabetes in UAS patients
with gout was higher than that in other groups, but there was no
statistical significance, possibly due to an insufficient sample size.

Our study revealed significant differences in the levels of TG
and HDL-C between the Gout + UAS group and the other three
groups, which indicated a positive correlation between the
severity of dyslipidemia and the risk of metabolic disorders in
patients with UAS. This conclusion was roughly similar to our
previous study’s results (Ding et al., 2019).

Nephrolithiasis is a known risk factor for chronic kidney
disease (CKD), while UAS formation is associated with greater
CKD risk compared with other stone types. Studies of patients
with nephrolithiasis in Taiwan and Saudi Arabia found that the
glomerular filtration rate (GFR) in UAS patients were
significantly lower than those with other types of stones (Li
et al., 2018; Nassir et al., 2018). While the serum potassium
concentration of the Gout + UAS group was higher than other
groups, suggesting decreased GFR and impaired renal tubule
potassium excretion. On the flip side, the serum calcium
concentration of the gout patients was the lowest, which was
related to the calcium and phosphorus metabolism disorder
caused by gouty nephropathy. Interestingly, there was no
significant difference in the serum potassium level between
gout patients and the controls. Glucocorticoid, as one of the
treatment drugs for acute gout, can promote the sodium retention
and potassium excretion of distal convoluted tubules and
collecting tubules.

TABLE 4 | | Spearman correlation coefficient of significant different biochemical parameters and major bacterial genera in each group.

Variables Bacteroides Fusobacterium Subdoligranulum Streptococcus Dialister Lactobacillus

R P R P R P R P R P R P

Gout
TG (mmol/L) −0.354 0.196 0.139 0.621 0.079 0.781 −0.096 0.732 0.057 0.839 0.171 0.542
HDL-C (mmol/L) 0.374 0.170 0.295 0.286 −0.401 0.138 0.297 0.282 −0.219 0.433 −0.050 0.861
K (mmol/L) −0.414 0.125 −0.257 0.355 0.234 0.401 −0.361 0.187 −0.241 0.374 −0.339 0.217
Ca (mmol/L) −0.442 0.099 −0.292 0.292 0.477 0.072 −0.034 0.904 0.359 0.189 0.069 0.806
UA (μmol/L) −0.401 0.132 −0.129 0.648 0.379 0.164 −0.329 0.232 0.007 0.980 0.070 0.803
Urinary pH 0.489 0.064 −0.075 0.790 −0.235 0.399 0.536 0.039 −0.075 0.789 0.194 0.487
UAS
TG (mmol/L) −0.036 0.895 0.184 0.495 0.016 0.952 0.137 0.613 −0.310 0.243 0.053 0.846
HDL-C (mmol/L) −0.301 0.257 −0.137 0.614 −0.048 0.859 −0.218 0.417 0.726 0.001 0.021 0.937
K (mmol/L) −0.467 0.068 −0.070 0.797 0.228 0.395 0.491 0.053 −0.179 0.507 0.084 0.757
Ca (mmol/L) −0.493 0.052 0.146 0.589 0.332 0.208 0.207 0.442 0.090 0.740 −0.092 0.735
UA (μmol/L) 0.231 0.390 0.560 0.024 −0.022 0.937 0.026 0.924 −0.629 0.009 −0.358 0.173
Urinary pH −0.057 0.835 −0.212 0.430 0.240 0.371 −0.172 0.525 0.352 0.181 0.249 0.352
Gout + UAS
TG (mmol/L) 0.373 0.141 −0.103 0.694 0.201 0.438 −0.517 0.034 0.040 0.880 −0.446 0.073
HDL-C (mmol/L) −0.248 0.338 0.293 0.254 −0.098 0.707 0.080 0.761 −0.033 0.899 0.083 0.752
K (mmol/L) −0.012 0.963 −0.292 0.256 −0.135 0.605 −0.064 0.808 −0.217 0.402 −0.442 0.076
Ca (mmol/L) −0.306 0.233 0.043 0.869 0.137 0.599 0.021 0.936 0.355 0.162 −0.039 0.882
UA (μmol/L) 0.520 0.033 −0.091 0.729 −0.479 0.052 −0.059 0.823 −0.122 0.642 −0.112 0.668
Urinary pH 0.160 0.539 −0.357 0.159 0.376 0.136 0.043 0.869 0.190 0.466 0.106 0.687
Control
TG (mmol/L) 0.020 0.940 0.444 0.074 0.007 0.978 0.303 0.237 0.048 0.856 0.056 0.831
HDL-C (mmol/L) −0.085 0.747 −0.342 0.179 0.493 0.044 −0.036 0.892 −0.096 0.715 0.255 0.323
K (mmol/L) 0.829 <0.001 0.273 0.289 0.001 0.996 0.101 0.700 −0.086 0.743 0.074 0.777
Ca (mmol/L) 0.249 0.334 −0.063 0.811 0.090 0.732 −0.376 0.137 −0.372 0.141 0.048 0.855
UA (μmol/L) 0.140 0.593 0.351 0.168 −0.234 0.366 −0.037 0.889 −0.088 0.738 −0.214 0.409
Urinary pH −0.037 0.889 −0.213 0.412 0.033 0.900 −0.363 0.152 0.412 0.101 0.094 0.721

TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; UA, serum uric acid; and UAS, uric acid stone.
Spearman correlation coefficient values were further adjusted for age and sex.
Bold values indicate significant difference.
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FIGURE 4 |Correlation of different bacterial abundance and Kyoto Encyclopedia of Genes andGenomes (KEGG)metabolic pathways in the controls (Group N) and
the renal uric acid stone patients (Group S). The red cell indicates a positive correlation and the blue cell indicates a negative correlation. Stars indicate the degree of
significant correlations (*,p < 0.05,**,p < 0.01).
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Under normal circumstances, the gut microbiota and host
remains in a dynamic balance, which participates in various
physiological processes of host nutrition absorption and
metabolism. The gut microbiota can also affect the urine
composition of the host, so the destruction of gut microbiota
may lead to the occurrence of nephrolithiasis. Ticinesi et al.
studied 52 patients with calcium oxalate nephrolithiasis and 48
healthy subjects, and found that the fecal microbial diversity in
the stone group was significantly lower than that of the controls
(Ticinesi et al., 2018). Stern et al. collected feces and urine samples
of stone and non-stone patients, concluded that Bacteroides genus
was the most abundant in stone formers and Prevotella genus was
the most abundant in the control group. They also indicated that
the composition of 24-h urine seemed to be related to the
abundance of gut microbiota (Stern et al., 2016). A larger
sample size and open-source project on the relationship
between Oxalobacter formigenes and nephrolithiasis is being
carried out in the United States (Liu et al., 2017).

Different from previous studies, we focused on the
characteristics of gut microbiota in UAS patients for the first
time. The healthy people rely on rich micro-ecosystem so as to
maintain the necessary nutrition and metabolism, but with the
aggravation of metabolic disorder, the intestinal microecology is
destroyed. Bacteroides and Firmicutes accounted for more than
85% in the total amount of gut microbiota in our subjects,
consistent with other experimental results at home and abroad
(Ruan et al., 2020). However, there was a significant difference in
the specific gravity of Fusobacteria at the phylum level. The
relative abundance of Fusobacteria increased with the
aggravation of metabolic disorders, and the specific gravity in
Gout + UAS patients was the highest. At the genus level,
Fusobacterium and Bacteroides were the dominant bacteria in
patients with UAS, especially in the Gout + UAS group.
Furthermore, Spearman correlation analysis results indicated
that the abundance of Bacteroides and Fusobacterium was
positively correlated with the serum UA level in UAS patients.

The involvement of the gut microbiota in multiple metabolic
pathways in the host is widely recognized. Shotgunmetagenomics
sequencing technology is of course the most powerful approach
to identify specific bacteria involved in metabolic pathways and
identify gene function using the KEGG database. Liu et al. found a
highly expressed bacterial gene in patients with recurrent calcium
oxalate nephrolithiasis, which was involved in oxalate
degradation and oxalate synthesis, and was related to high
levels of urinary oxalate and acetic acid excretion (Liu et al.,
2020). In this study, our PICRUSt analysis showed that
Fusobacteria altered the microbial community functions,
especially participated in the metabolism and degradation of
certain short-chain fatty acids, amino acids, and sugars in
UAS patients, but significantly inhibited their synthetic
pathway. Future work including shotgun metagenomics
analysis would help to confirm the specific gene functions.

Fusobacteria is a kind of anaerobic Gram-negative bacteria,
which is widely colonized in human intestinal and oral mucosa
and is related to the invasion of tumor cells (Kelly et al., 2018;
Wang et al., 2020). There was a strong correlation between the
abundance of Fusobacteria and the expression of pro-

inflammatory markers such as COX-2, suggesting that
Fusobacteria could create a pro-inflammatory micro-
environment conducive to colorectal cancer by recruiting
tumor-infiltrating immune cells (Kostic et al., 2013; Sears,
2018; King et al., 2020). Fusobacteria might potentially
enhance the invasiveness of cancer cells when it existed in the
micro-environment of oral tumor (Harrandah et al., 2020). In
addition, studies have shown that the enrichment of Fusobacteria
is related to acute appendicitis in children (Zhong et al., 2014;
Rogers et al., 2016).

Our study indicated that the enrichment of Fusobacteria in the
intestinal tract of UAS formers was higher than that of
normal population for the first time. On one hand,
hyperuricemia can improve the excretion level of uric acid
in urine; on the other hand, it can cause dysfunction of the
function of renal tubules to secrete acid and then form stones.
The unique risk factors for UAS include persistent acidic
urine and hyperuricuria, which can also be verified in
biochemical parameters (Table 2) and multivariate logistic
analysis (Table 3) in this study. Fusobacterium may be
involved in the degradation and metabolism of certain
short-chain fatty acids (Figure 4), and these metabolic
pathways are related to the acid-secreting function of renal
tubules. The specific expression of Fusobacterium may
induce a pro-inflammatory micro-environment that gout
patients do not have.

Whether Fusobacteria promotes the expression of
inflammatory factors in renal tubular epithelial cells, whether
these inflammatory factors promote the formation of stones
caused by urine acidification, and whether the metabolic
pathway involved in Fusobacteria can be targeted for
pharmacological intervention? With the rapid development of
computational intelligence, the application scenarios of artificial
intelligence (AI) are becoming richer and richer. In the future,
computational intelligence can be applied to pharmacological
intervention of gut microbiota to treat metabolic diseases such as
UAS. The computer obtained the basic data group of gut
microbiota of target patients through meta-analysis of a large
number of literatures. Through algorithm improvement, a
suitable retrieval model was established to complete the
application research of the AI-based gut microbiota
intervention model for UAS. The computer intelligently
learned the basic data processing in data mining, data
processing, data cleaning and so on. Through the analysis, it
can be concluded whether pharmacological intervention for gut
microbiota of UAS is feasible based on data mining, so that
computational intelligence can learn more pharmacological
intervention plans on the basis of disease association rules.
Research and development of drugs through AI can greatly
shorten the time of drug development, improve the efficiency
of research, control the cost of research, and improve the
efficiency of doctors’ personalized treatment.

Until now, the number of subjects included in this study was
not large enough, and the results need to be further verified by
expanding the sample size. Second, there was no 24-h urine
composition analysis for stone formers in this study. The last but
not least, due to financial constraints, collected fecal samples were

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 88888310

Cao et al. Gut Microbiota and Computational Intelligence

15

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


not tested for short-chain fatty acids and lacked metabonomic
analysis.

CONCLUSION

Renal uric acid stone formers, especially complicated with gout,
often have various types of dyslipidemia, persistent hyperuricemia,
and aciduria. The richness and diversity of their gut microbiota were
different from the gout patients as well as normal population.
Bacteroides and Fusobacterium were positively correlated with the
serum UA level of patients with UAS. The pro-inflammatory
bacteria, Fusobacteria, may be related to the pathogenesis of UAS
and has the potential to become the biomarker. These findings may
provide a novel and non-invasive target for the prevention and
treatment of UAS, which requires further large-scale investigation.
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Background: Artificial intelligence (AI) has been used in the research of ophthalmic
disease diagnosis, and it may have an impact on medical and ophthalmic practice in the
future. This study explores the general application and research frontier of artificial
intelligence in ophthalmic disease detection.

Methods: Citation data were downloaded from the Web of Science Core Collection
database to evaluate the extent of the application of Artificial intelligence in ophthalmic
disease diagnosis in publications from 1 January 2012, to 31 December 2021. This
information was analyzed using CiteSpace.5.8. R3 and Vosviewer.

Results: A total of 1,498 publications from 95 areas were examined, of which the
United States was determined to be the most influential country in this research field.
The largest cluster labeled “Brownian motion” was used prior to the application of AI for
ophthalmic diagnosis from 2007 to 2017, and was an active topic during this period. The
burst keywords in the period from 2020 to 2021 were system, disease, and model.

Conclusion: The focus of artificial intelligence research in ophthalmic disease diagnosis
has transitioned from the development of AI algorithms and the analysis of abnormal eye
physiological structure to the investigation of more mature ophthalmic disease diagnosis
systems. However, there is a need for further studies in ophthalmology and computer
engineering.

Keywords: ophthalmic disease, artificial intelligence, diagnosis, bibliometric, CiteSpace

INTRODUCTION

Artificial intelligence (AI) is a broad term that refers to the use of computers to simulate intelligent
behavior with little or no human intervention (Hamet and Tremblay, 2017). It is a multifaceted
technology that includes complex algorithms, machine learning, and deep learning, transfer learning,
among other components (Balyen and Peto, 2019; Kora et al., 2022). Medicine has long been
identified as one of the most promising fields for the application of AI. Many clinical decision
support systems have been proposed and developed by researchers since the mid-twentieth century
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(Miller, 1994). AI has been used in ophthalmology to diagnose
diseases in conjunction with imaging technologies such as optical
coherence tomography, and fundus fluorescein angiography
(Ruiz Hidalgo et al., 2017; Hemalakshmi et al., 2020; Wan
et al., 2021c; Ran et al., 2021). In addition, several simple and
low-cost diagnostic system models have been under development
(Bourouis et al., 2014; Metha et al., 2021). As a possible solution
for the screening of major ophthalmic diseases and telemedicine,
AI has been applied to the study of ophthalmic disease diagnosis.
For example, diabetic retinopathy, glaucoma, hypertensive
retinopathy, high myopia, age-related macular degeneration,
familial amyloidosis, cataract, and other related conditions
have been investigated using this technology (Fang et al., 2017;
Asaoka et al., 2019; Araujo et al., 2020; Juneja et al., 2020; Kessel
et al., 2020; Zhou et al., 2020; Wan et al., 2021a; Grzybowski and
Brona, 2021; Szeskin et al., 2021; Xu et al., 2022). AI may have an
impact on medical and ophthalmic practice in the coming
decades, based on the results of several published reports
(Ting et al., 2019; Dai et al., 2021).

Previous studies have used bibliometric methods to study the
application of artificial intelligence in ophthalmic diseases in
China (Dong et al., 2021; Koh et al., 2021; Saeed et al., 2021;
Boudry et al., 2022). However, there is no bibliometric research
on the application of artificial intelligence in ophthalmic disease
diagnosis. This study aimed to gain a comprehensive
understanding of the general use and research frontier of
artificial intelligence in ocular illness detection by examining
multiple aspects. For example, Scientific Citation Index (SCI)
papers on the application of artificial intelligence to ocular illness
diagnosis were analyzed using bibliometric approaches. The
analysis emphasized data related to countries, regions,
institutions, journals, research categories, keywords, and
references. A critical aspect of our study was the development
of a repeatable and unbiased strategy for exploring the active
knowledge frontier in the research field. In particular, we
examined the active areas of applied artificial intelligence,
future development areas, and potential hurdles, relative to
ocular disease diagnostics. This report is intended to serve as a
resource for artificial intelligence professionals, ophthalmologists,
diagnosticians, and medical imaging researchers.

MATERIALS AND METHODS

On 1 April 2022, citation data published between 1 January 2012, to
31 December 2021, were retrieved from the Web of Science Core
Collection (WoSCC). These data were independently verified by two
authors (Weihua Yang and Yi Lu). The search formula was TS=
(retinal or ophthalmology or eye or ophthalmic or corneal or eyelid
or orbital or uveal or scleral) AND (AI or “Artificial Intelligence” or
“neural network” or “transfer learning” or “Machine Learning” or
“Deep Learning”) AND (diagnos* or grad* or classification). The
search selected English literature and articles and excluded early
access, proceedings papers, book chapters, data papers, and retracted
publications. To obtain the most accurate analysis results, we
manually deleted data after reading the title and abstract of each
literature. The criteria for manual exclusion are as follows: 1) the

research discipline does not include medicine; 2) The study organ is
an organ other than the eye; 3) The research method does not use
artificial intelligence method; 4) The study disease is not an eye
disease. All the data we included in the analysis were the research of
artificial intelligence in the diagnosis of ophthalmic diseases. For
each publication, we extracted the title, publication year, country or
region, institution, journal, references, and keywords. The detailed
search and analysis processes are depicted in Figure 1.

Collaborative networks of countries, institutions, journals,
keywords, references, and research categories were analyzed
using CiteSpace.5.8. R3 and Vosviewer. The article describes
all citation features.

RESULTS

Distribution of Articles by Publication Year
This study analyzed 1,498 papers that were published between
2012 and 2021 that focused on the use of AI in the diagnosis of
ophthalmic diseases. Using the Web of Science (WoS) citation
analyzer to count the annual number of citations retrieved and
using the duplicate removal function of CiteSpace software to
verify the data of the number of citations. The number of annually
published reports for this period is shown in Figure 2. Since 2018,
the annual number of articles on the application of AI in the
diagnosis of ophthalmic diseases has exceeded 100 and has
increased rapidly in subsequent years.

Countries or Regions
The citation analyzer of WoS database is used to count the
number of documents sent by countries or regions, and the
default setting of CiteSpace software analyzes the cooperative
relationship between countries and regions. These citations
involve a total of 95 countries or regions. The size of each label
and green node area in Figure 3 represents the number of
documents sent. Countries with large green node areas
include the people’s Republic of China (415 articles), the
United States (365 articles) and India (263 articles). The
connection between nodes represents the cooperative
relationship between regions. Countries with more
connecting lines have regions with strong influence, The
area of purple circle indicates the influence of national
documents, which is expressed by the centrality in Table 1.
The purple circle in the United States has the largest area
(0.25), indicating that the articles published in the
United States in the field of ophthalmic diagnosis have the
greatest overall influence. The data in Table 1 objectively
substantiate these conclusions. The H index can accurately
reflect academic achievement (Hirsch, 2005). The higher the
centrality and H index, the greater the influence of a paper. In
general, China had the largest number of articles and the
United States had the greatest influence.

Institutions
Table 2 lists the top 10 institutions for published articles that
were analysed. The displayed data is outcome from the default
settings of CiteSpace software and vosviewer software. These
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FIGURE 1 | Frame flow diagram showing the detailed selection criteria and bibliometric analysis steps for the study of the application of AI in the diagnosis of
ophthalmic diseases.

FIGURE 2 | Annual number of publications on the application of AI in the
diagnosis of ophthalmic diseases from 2012 to 2021.

FIGURE 3 | Cooperation of countries or regions that contributed to
publications on the use of AI for the diagnosis of ophthalmic diseases from
2012 to 2021.
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included three American institutions, three England
institutions, three Chinese institutions, and one Singapore
institution. Two of the top five institutions with the highest
h-index were from the United States and England. The
connection between the tags in Figure 4 shows the inter-
agency cooperation. The node size indicates the number of
documents sent.

Journals and Research Category
The documents in the cited journals constitute the knowledge
base of the referenced articles. The research fields in highly
cited journals constitute an active area of interest or hotspot.
We use CiteSpace to draw the citation relationship in the field
of journal research. The paths of the two colors shown in
Figure 5 represent the citation relationship of highly active
research fields. Among them, the red path represents the
classification of the journals with the most papers. The
research field of the citing journals is represented on the
left, and the research field of the cited journals is shown on
the right. The knowledge-based research fields of AI
application in ophthalmic disease diagnosis in the recent

10 years include systems/computing/computer/molecular/
biology/genetics/health/nursing/medicine/ophthalmology,
which constitute the hotspot subjects involved in the research
frontier such as mathematics/systems/mathematical/
neurology/sports/ophthalmology. Tables 3, 4 list the
discipline categories of the citing journals and cited
journals/proceedings that rank among the top ten in terms
of citations. The most common research field of the citing
journals includes engineering technology/computers. The
discipline that was most involved in the extracted version
was classified as medicine/ophthalmology.

Keywords
To better understand the adoption of AI in the field of ophthalmic
disease diagnosis in the recent 10 years based on an analysis
diagram of keyword co-occurrence cooperation network, the
emerging keywords that progressed over time were analyzed.
This represented the migration of research hotspots. The default
setting of CiteSpace is changed to the following mode: “Year Per
Slice” = 2, “Top N%" = 30.0%, and “Minimum Duration” = 1. We
get the result of Figure 6. The red square in Figure 6 represents
emerging keywords for the investigated timeline. The bursts
keywords from 2012 to 2021 included machine learning
classifier (2012–2015), artificial neural network (2012–2015),
nerve fiber layer (2012–2015), retinal layer (2018–2019), head
(2018–2019), macular degeneration (2018–2019), cup
(2018–2019), system (2020–2021), disease (2020–2021), and
model (2020–2021).

TABLE 1 | Top 10 countries or regions with publications on the application of the
use of AI in the diagnosis of ophthalmic diseases from 2012 to 2021.

Rank Countries or regions Counts Centrality H-index

1 China 415 0.07 38
2 United States 365 0.25 48
3 India 263 0.12 31
4 England 119 0.18 24
5 South Korea 109 0.04 21
6 Japan 76 0.03 19
7 Australia 73 0.08 19
8 Singapore 53 0.14 20
9 Germany 48 0.04 15
10 Spain 48 0.17 13

TABLE 2 | Top 10 Institutions with publications on the application or the use of AI in the diagnosis of ophthalmic diseases from 2012 to 2021.

Rank Institution Count H-index Countries or regions

1 University of California System 49 17 United States
2 Harvard University 47 15 United States
3 University of London 46 13 England
4 University College London 44 13 England
5 Moorfields Eye Hospital NHS foundation Trust 40 12 England
6 Chinese Academy of Sciences 38 10 Chinese
7 Sun Yat Sen University 38 10 Chinese
8 National Univesity of Singapore 35 17 Singapore
9 Johns Hopkins University 33 12 US
10 Shanghai Jiao Tong University 31 8 Chinese

FIGURE 4 | Cooperation of institutions that contributed to publications
on the use of AI in the diagnosis of ophthalmic diseases from 2012 to 2021.

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9305204

Zhao et al. AI in Ophthalmic Disease Diagnosis

21

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Citing Articles and References
The cited documents were highly related to the research topics.
Using the default setting of CiteSpace to cluster the co cited
documents and choose label clusters with indexing terms. The
cluster labels that represented the research frontiers of the co-

cited documents were obtained from these documents. The cited
literature constituted the knowledge base of the research, and the
size of the clusters obtained from the literature are listed in order
from top to bottom on the right side of Figure 7. The
largest cluster label #0“Brownian motion” was obtained during

FIGURE 5 | Dual map overlay of journals that contributed to publications on the use of AI in the diagnosis of ophthalmic diseases from 2012 to 2021.

TABLE 3 | Top 10 citing journals of publications on the use of AI in the diagnosis of ophthalmic diseases from 2012 to 2021.

Rank Citing journals Research fields Counts Journal
impact factor 2020

1 IEEE Access Engineering Technology/Computer: Information System 73 3.367
2 Translational Vision Science & Technology Medicine Ophthalmology 68 3.283
3 Scientific Reports Comprehensive journal 59 4.38
4 Biomedical Signal Processing and Control Engineering Technology/Engineering: Biomedicine 37 3.88
5 Computer Methods and Programs in Biomedicine Engineering Technology/Computer: Interdisciplinary Applications 33 5.428
6 Multimedia Tools and Applications Engineering Technology/Computer: Information System 32 2.757
7 American Journal of Ophthalmology Medicine/Ophthalmology 30 5.258
8 PLOS ONE Comprehensive journal 30 3.24
9 IEEE Transactions on Medical Imaging Medicine/Computer: Interdisciplinary Applications 27 10.048
10 Neurocomputing Engineering Technology/Computer: Artificial Intelligence 24 5.719

TABLE 4 | Top 10 cited journals of publications on the use of AI in the diagnosis of ophthalmic diseases from 2012 to 2021.

Rank Citing journals Research fields Counts Journal
impact factor 2020

1 Ophthalmology Medicine/Ophthalmology 702 12.079
2 Investigative Ophthalmology & Visual Science Medicine/Ophthalmology 660 4.799
3 IEEE Transactions on Medical Imaging Medicine/Computer: Interdisciplinary Applications 579 10.048
4 British Journal of Ophthalmology Medicine/Ophthalmology 527 4.638
5 American Journal of Ophthalmology Medicine/Ophthalmology 437 5.258
6 PLOS ONE Comprehensive journal 430 3.24
7 Journal of Perianesthesia Nursing Engineering Technology/Computer: Artificial Intelligence 396 1.084
8 JAMA-Journal of the American Medical Association Medicine/Internal Medicine 384 56.274
9 Computers in Biology and Medicine Engineering Technology/Biology 342 4.5892
10 IEEE Transactions on Pattern Analysis and Machine Intelligence Engineering Technology/Computer: Artificial Intelligence 338 16.389
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the pre-period of the application of AI for ophthalmic diagnosis,
which was 2007–2017, and was a research hotspot. Table 5 lists
the top ten citing literature from “times cited in all databases
“among the relevant literature based on the application of AI for
ophthalmic diagnosis. It was determined that AI techniques are
promising for use in the diagnosis of ophthalmic diseases
although there are some limitations associated with their use.

DISCUSSION

Principal Results
Based on the preceding results, it is apparent that the published
literature on the application of AI in the diagnosis of
ophthalmic diseases has increased sharply in the past
5 years. This indicates that this research field has gradually
attracted significant interest in recent years. The World

Economic 2016 Forum identified the open artificial
intelligence ecosystem as one of the ten most important
emerging technologies (President et al., 2016). Gulshan, V
et al. established that deep learning algorithms had high
sensitivity and specificity for detecting diabetic retinopathy
and macular edema (Gulshan et al., 2016). Although it is
impossible to predict the number of literature on AI for
ophthalmic disease diagnosis that will be published in the
future, it is still a promising research field and the efficacy of
the application of AI has been confirmed by many studies
(Giardini and Livingstone, 2020).

In terms of the number of national documents, the
United States has the highest centrality and h-index. This
indicates that this country has a leading position in this
research field. In addition, developed countries such as Britain,
Spain, and Singapore exhibited strong centrality and influence.
Although China published a large number of papers, it lacked

FIGURE 6 | Keywords with the strongest citation bursts for publications on the use of AI in the diagnosis of ophthalmic diseases from 2012 to 2021.

FIGURE 7 | Co-cited reference timeline map of publications on the use of AI in the diagnosis of ophthalmic diseases from 2012 to 2021.
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TABLE 5 | Top 10 citing articles on the application of the use of AI in the diagnosis of ophthalmic diseases from 2012 to 2021.

Rank Title of
citing documents

DOI Times
cited

Interpretation of
the findings

Research limitations

1 Development and Validation of a Deep
Learning Algorithm for Detection of
Diabetic Retinopathy in Retinal Fundus
Photographs (Gulshan et al., 2016)

10.1001/
jama.2016.17216

2,591 Deep machine learning-based
algorithms have high sensitivity and
specificity for detecting actionable
diabetic retinopathy.

1. Image subtly was difficult for
ophthalmologists to interpret.

2. The algorithm only displayed the lesion
grade and did not count the actual
diabetic retinopathy lesions.
3. Ophthalmic examination image data
sets were limited in number.
4. The algorithm identified only diabetic
retinopathy and diabetic macular
edema.
5. The clinical utility of user interface
settings is unknown.

2 Development and Validation of a Deep
Learning System for Diabetic
Retinopathy and Related Eye Diseases
Using Retinal Images From Multiethnic
Populations With Diabetes (Ting et al.,
2017)

10.1001/
jama.2017.18152

769 Deep learning systems for the
evaluation of retinal images in
multiethnic diabetic patients are highly
sensitive and specific for identifying
diabetic retinopathy and associated
eye diseases.

1. Inconsistencies in diagnostic criteria
among ophthalmologists.

2. The algorithm only displayed the lesion
grade and did not count the actual
diabetic retinopathy lesions.
3. Diagnosis of all diabetic macular
edema still requires the use of optical
coherence tomography

3 Segmenting Retinal Blood Vessels with
Deep Neural Networks (Liskowski and
Krawiec, 2016)

10.1109/
TMI.2016.2546227

481 Deep neural networks are a viable
methodology for medical imaging.

Only a limited set of image data including
drive database, start database, and
chase database, were used. These data
sets contained limited examination
populations.

4 Automated Identification of Diabetic
Retinopathy using Deep Learning
(Gargeya and Leng, 2017)

10.1016/
j.ophtha.2017.02.008

478 This study presented a novel deep
learning-based automatic feature
learning method for Diabetic
Retinopathy detection that offered an
efficient, low-cost, and objective
diagnostic method, which has high
efficiency without relying on clinicians
to manually review and grade images.

1. It was difficult for the algorithm to
automatically distinguish between partial
and early-stage cases of diabetic
retinopathy.

2. Limitations in the number of image
datasets analyzed.

5 Improved Automated Detection of
Diabetic Retinopathy on a Publicly
Available Dataset Through Integration
of Deep Learning (Abramoff et al.,
2016)

10.1167/iovs.16-
19964

403 Deep learning enhanced algorithms
have the potential to improve the
efficiency of diabetic retinopathy
screening

1. The ophthalmic disease examination
images in the disclosed data set
represented only part of the clinical
examination images.

2. Different reference standards may
cause differences in the performance of
device measurement algorithms.
3. The approach lacked the same
flexibility as an actual clinical diagnosis.

6 Pivotal Trial of an Autonomous AI-
Based Diagnostic System for Detection
of Diabetic Retinopathy in Primary Care
Offices (Abramoff et al., 2018)

10.1038/s41746-018-
0040-6

355 The algorithm developed in this study is
the first autonomous artificial
intelligence diagnosis system for the
detection of diabetic retinopathy in any
medical field authorized by the
United States Food and Drug
Administration.

1. Limitations of the spectrum of disease
tested in the system.

2. The sensitivity of the AI system was
lower than that of a similar AI system that
was tested using a laboratory dataset.

(Continued on following page)
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highly cited articles. The top five research institutions in terms of
the number of publications are in the United States and the
United Kingdom. From the perspective of the h-index, the
national unity of Singapore had a strong impact. This was
observed in the analysis results for national document
issuance. From the analysis of the research field of the journal,
it is evident that in recent years, research focused on the use of
computer engineering technology combined with a knowledge
base of ophthalmology to develop more suitable ophthalmic
disease detection systems. AI is widely used to identify
ophthalmic diseases, which is typically based on the analysis of
ophthalmic images (Xu et al., 2021a; Wan et al., 2021b; Xu et al.,
2021b). In addition, this research also includes the detection of
genes related to ophthalmic diseases (Saikia and Nirmala, 2022),
ocular metabolites (Myer et al., 2020), and pathology ocular
metabolites (Nezu et al., 2020). Areas of active interest and the
research frontiers of AI in ophthalmic disease diagnosis can be
identified based on the clustering timeline of emerging keywords

and co-cited references. The titles and abstracts of 936 articles
published in 2020 and 2021 were examined.

Table 6 lists the top ten diseases in the recent 2 years, among
it we can see that the hottest disease with the ophthalmic
diagnosis using AI technology is “diabetic retinopathy”. A
classic study in 2016 was that Gulshan, V and others
developed a deep machine learning algorithm based on
128,175 retinal images, which has high sensitivity and
specificity in detecting diabetes retinopathy (Gulshan et al.,
2016). In 2017, Ting, DSW and others obtained high sensitivity
and specificity when using the deep learning system to evaluate
the diagnostic images of patients with diabetes retinopathy and
related eye diseases from multiple ethnic groups (Ting et al.,
2017). Li, SC and others pointed out that the conditions for
using artificial intelligence system to replace ophthalmologists
are not mature (Li et al., 2022). Therefore, using AI technology
to diagnose diabetes retinopathy or other ophthalmic diseases
requires more research.

TABLE 5 | (Continued) Top 10 citing articles on the application of the use of AI in the diagnosis of ophthalmic diseases from 2012 to 2021.

Rank Title of
citing documents

DOI Times
cited

Interpretation of
the findings

Research limitations

7 A Cross-Modality Learning Approach
for Vessel Segmentation in Retinal
Images (Li et al., 2016)

10.1109/
TMI.2015.2457891

330 A novel supervised vascular
segmentation method for retinal
images was presented, which has
potential applications in retinal image
diagnostic systems

1. There are specific requirements for the
quality of the images to be diagnosed.

2. Special algorithms that simultaneously
predict all pixel labels in one retinal image
block remain unknown.

8 Automatic Segmentation of Nine
Retinal Layer Boundaries in OCT
Images of Non-Exudative AMD
Patients using Deep Learning and
Graph Search (Fang et al., 2017)

10.1364/
BOE.8.002732

274 A new framework combining
convolutional neural network and
pattern search method was proposed
for automatic segmentation of nine-
layer boundaries of retinal optical
coherence tomography image

The framework was validated in only
subjects with non-exclusive age-related
macular degeneration.

9 Joint Optic Disc and Cup
Segmentation Based on Multi-Label
Deep Network and Polar
Transformation (Fu et al., 2018)

10.1109/
TMI.2018.2791488

277 This study proposed a deep learning
architecture called M-net, which jointly
solved the problem of the optic disc
and cup segmentation in fundus
images in a single-stage multi-label
system, and developed a function for
glaucoma screening

The image data sets selected for
verification were limited and included
only ORIGA and SCES datasets.

10 Efficacy of a Deep Learning System for
Detecting Glaucomatous Optic
Neuropathy Based on Color Fundus
Photographs (Li et al., 2018)

10.1016/
j.ophtha.2018.01.023

272 This study proposed a deep learning
system for detecting referable
glaucomatous optic neuropathy with
high sensitivity and specificity.

The ophthalmic images used in the study
were only collected from Chinese
hospitals, resulting in limitations
associated with the image data

TABLE 6 | Top ten diseases mentioned in the published literature from 2020 to 2021.

Rank Disease Counts Rank Disease Counts

1 Diabetic Retinopathy 340 6 Cataract 54
2 Glaucoma 294 7 Retinopathy of Prematurity 35
3 Age-related Macular Degeneration 128 8 Ophthalmic Tumor 31
4 Corneal Disease 71 9 Myopia 31
5 Diabetic Macular Edema 64 10 Intraocular Pressure 26
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Hot Knowledge Base in the Start Period
According to the results of the cluster analysis of CO cited
references, it is not difficult to determine during the early
stage of the sharp increase in the number of studies, the most
important knowledge base is “Brownian motion.”

Previous studies have shown that using fractional Brownian
motion to model medical examination images can provide better
global texture indicators than traditional texture feature-based
measurement methods (Mcgarry and Deriche, 1997). Early
detection of glaucoma is important in the prevention of
blindness. Yun, WL et al. used digital fundus images to extract
texture features based on fractal dimension and Brownian
motion. Specifically, they performed two-dimensional two-level
discrete wavelet transform on the images, extracted energy and
entropy data, and finally developed a highly specific and sensitive
early glaucoma diagnosis model (Yun et al., 2014b). They also
proposed a final stage of automatic detection of diabetic
retinopathy using Brownian motion characteristics, namely,
proliferative diabetic retinopathy (Yun et al., 2014a). Earlier
literature also confirmed that the Brownian motion model can
be used to classify normal and abnormal ultrasound liver images
(Wu et al., 1992).

Research Hotspots
The research hotspots can be identified based on an analysis of
emerging keywords. The emergent keywords in different periods
represent different research hotspots.

The emerging keywords from 2012 to 2015 were “Machine
Learning Classifier,” “artificial neural network,” and “nerve fiber
layer.” This suggests that the performance of different intelligent
algorithms was under investigation for application to
ophthalmic disease diagnosis. A subfield of artificial
intelligence technology is machine learning. It employs
algorithms in a systematic manner to synthesize the potential
relationship between data and information (Awad and Khanna,
2015). Andersson, S et al. used the visual field print output of 99
glaucoma patients and 66 healthy people to compare the
sensitivity and specificity of the results obtained for a
glaucoma diagnosis system based on artificial neural network
and direct diagnosis by ophthalmologists. This study confirmed
that an artificial neural network has higher specificity and
sensitivity and fewer classification errors compared to
doctors (Andersson et al., 2013). Yousefi, S et al. compared
the detection of glaucoma progression using different machine
learning classifiers based on longitudinal structure data
sequences extracted from retinal nerve fiber layer thickness
measurement and visual function data obtained from
standard automatic visual field examination and evaluated
the performance of these classifiers (Yousefi et al., 2014). To
improve the effectiveness of treating open-angle glaucoma, Ein
Oh et al. investigated the application of a screening method to
distinguish open-angle glaucoma from suspected glaucoma
without visual field testing. They used five open-angle
glaucoma risk prediction models that were created based on
8,958 subjects (including patients with suspected open-angle
glaucoma) using an artificial neural network. It was established
that the artificial neural network method was a cost-effective

screening tool for distinguishing between patients with open-
angle glaucoma and glaucoma suspect subjects (Oh et al., 2015).

The emerging keywords from 2018 to 2019 were “retinal
layer,” “head,” “macular degeneration,” and “cup.” This
indicates that the research focus transitioned to the study of
various ophthalmic diseases and anatomical structures. Color
fundus photography facilitates the examination of the optic disc
to determine the cup-to-disc ratio, which is important in the
diagnosis of glaucoma. Al-Bander et al. proposed a new method
based on deep learning, which used the combination of a
convolution network and DenseNet to segment optical discs
and optical cups. Four data sets for image detection were then
used to evaluate its effectiveness (Al-Bander et al., 2018).
Although the image quality of optical coherence tomography
(OCT) needs to be improved and the scanning duration leads to
patient discomfort, this imaging modality has become an
established clinical routine for in vivo imaging of optic nerve
head tissue, which is very important in the diagnosis of various
ophthalmic diseases (Du et al., 2014). Devalla, SK et al. developed
a customized deep learning method to remove the noise in a
single frame OCT B-scan. The network proposed in this study
performs denoising in less than 20 milliseconds (Devalla et al.,
2019). Based on the analysis of chorioretinal OCT images,
clinicians and researchers have a better understanding of the
diagnosis of a series of ophthalmic diseases under different
conditions (Bussel et al., 2014). In practical applications,
choroidal boundary segmentation usually requires manual
segmentation, which is time-consuming. Kugelman, J et al.
proposed several depth learning methods based on complete
convolution to accurately determine the location of the
choroidal boundary of interest. Artificial intelligence
technology was compared with manual boundary
segmentation and standard image analysis technology as part
of the study. Furthermore, the investigation established the
advantage of deep learning methods in chorioretinal boundary
analysis and the segmentation of OCT images (Kugelman et al.,
2019).

The emerging keywords from 2020 to 2021 were “system,”
“disease,” and “model,” which indicate that researchers have
begun to develop various systematic diagnostic models for the
study of ophthalmic diseases. The proportion of doctors and
patients in China is unbalanced, and the regional distribution of
medical capital is uneven (National Health Commission, 2020).
To minimize these biases, Zheng, B et al. designed five intelligent
models for the diagnosis of fundus diseases using transfer
learning. These models can detect normal eyes and four
common fundus diseases including retinal vein occlusion, high
myopia, glaucoma, and diabetic retinopathy (Zheng et al., 2021).
However, the limitation of this study is that the models can only
diagnose four common fundus diseases, which may be
misdiagnosed in the case of other ophthalmic diseases. Ahn, H
usedmachine-learning artificial intelligence to develop amodel to
classify the severity of emerging ophthalmic diseases, with an
accuracy of nearly 100% (Ahn, 2020). The authors reported that
the relative lack of data set samples was a major limitation of the
study. To prevent vision loss caused by corneal diseases and to
improve the early diagnosis of corneal diseases, Elsawy, A et al.
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proposed a deep learning network based on corneal OCT images,
Fuchs’ cochlear dystrophy, and keratoconus. The developed
algorithm was then used to evaluate the data set of 16721
OCT images. It was determined that the algorithm was
superior to other network learning procedures (Elsawy and
Abdel-Mottaleb, 2021).

As the adoption of artificial intelligence increases and the
technology is continually applied to a wide array of medical fields,
more intelligent detection methods will be required for
ophthalmic diseases diagnosis.

Limitations in Citing Articles
By summarizing the limitations of the top ten cited literature, it
was determined that the constraints of AI in ophthalmic disease
diagnosis can be divided into the following five categories: 1) The
clinical examination standard is highly subjective, which leads to
difficulties in the design of intelligent auxiliary diagnosis system;
2) Limited detectability of ophthalmic diseases in intelligent
auxiliary diagnosis systems; 3) The data set used in most
training models included a limited examination population; 4)
The diagnosis of artificial intelligence of ophthalmic diseases is
still in the stage of auxiliary diagnosis, and requires the use of
traditional clinical examination tools; 5) The scope limitations of
validating intelligent auxiliary diagnosis systems.

To develop a more robust and usable diagnostic system, it is
necessary to obtain more types and larger data sets. For example,
the collection of ophthalmic examination data from different
races, countries, or regions (Bellemo et al., 2019; Raumviboonsuk
et al., 2019; Al Turk et al., 2020). More disease types should also
be included in these studies, such as pterygium, familial
amyloidosis, and thyroid-associated ophthalmopathy (Kessel
et al., 2020; Zamani et al., 2020; Xu W. et al., 2021; Song
et al., 2021). In addition, more ophthalmologists with different
levels of training should participate in the screening stage of the
data set and the examination stage of the algorithm to obtain
clinically-based diagnoses. Finally, by increasing the number of
clinical cases of the validation system and utilizing statistical
approaches to achieve high sensitivity and specificity, the
utilization rate of artificial intelligence models can be further
improved.

CONCLUSION

In summary, the training of intelligent algorithms based on the
analysis of images is of growing interest. There is ongoing
worldwide research on the use of AI in ophthalmic diagnosis.

In particular, the United States is the most influential country in
this research field. The application of artificial intelligence
technology to ophthalmic diagnosis has revolutionized the
clinical landscape of ophthalmologists and patients. This
technology facilitates more accurate diagnosis and remote
diagnosis services. However, there are limitations associated
with these approaches. For example, the credibility of the
training model is questionable and is often not recognized by
institutions for practical clinical work, even if it has been shown to
have high sensitivity and specificity. In addition, contemporary
research is focused on several relatively well-known diseases,
whereas the number of studies on other diseases is small, and a
mature diagnostic system has not been developed. At present, the
research focus has shifted from the development of artificial
intelligence algorithms and the analysis of the abnormal ocular
physiological structure to research on ophthalmic disease
diagnosis systems. To address the existing limitations, it is
necessary to obtain more national and ethnic ophthalmic data
to train and test the algorithm. This is a huge task. In addition to
computer engineering experts who primarily develop algorithms,
ophthalmologists from different regions and with different levels
of experience need to participate in this endeavor.
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Objective: The aim of the study was to use a network pharmacological method to
examine the mechanism of Guishao-Liujun decoction against gastric cancer (GC).

Methods: The traditional Chinese medicine systems pharmacology database and
analysis platform (TCMSP) and the Traditional Chinese Medicine Integrated Database
(TCMID) were used to obtain the chemical composition and targets of all the drugs of
Guishao-Liujun decoction, and the targets of GC were screened using GeneCards and
Online Mendelian Inheritance in Man (OMIM) databases. The obtained targets were
imported into Cytoscape 3.7.2 software by using the R language to take the
intersection for a Venn analysis to construct active ingredient target networks, and
they were imported into the STRING database to construct protein–protein interaction
(PPI) networks, with the BisoGenet plugin in Cytoscape 3.7.2 being used for analyzing
network topology. On the potential target of Guishao-Liujun decoction for GC, gene
ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis were performed using the R-language bioconductor platform,
and the outcomes were imported into Cytoscape 3.7.2 software to obtain the KEGG
network map. The core targets were docked with the active components by the
macromolecular docking software application AutoDock Vina.

Results: A total of 243 chemical components and 1,448 disease targets including 127
intersecting targets were discovered. AKT1, TP53, and GO functional analysis were mainly
associated with ubiquitination and oxidase reduction activity. In GC treatment, the KEGG
analysis revealed that Guishao-Liujun decoction mainly acted through the tumor necrosis
factor (TNF), interleukin 17 (IL-17), and cancer-related signaling pathways, with the best
binding performance with TP53, as indicated by the outcomes of macromolecular
docking.
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Conclusion: In the treatment of GC, Guishao-Liujun decoction works with a variety of
components and targets, establishing the groundwork for further research into its
mechanism of action.

Keywords: network pharmacology, macromolecular docking, mechanism of action, GC, Guishao-Liujun decoction

INTRODUCTION

Over the past 40 years, China has experienced rapid demographic
and epidemiological changes. Rapid industrialization, urbanization,
aging, and lifestyle changes have shifted the burden of the disease
spectrum from infectious to non-infectious diseases. With a large
population, China plays an important role in the global cancer
burden (He et al., 2021). Gastric cancer is common all over the
world. One in 78 women and one in 33 men have gastric cancer for
their whole life (GBD 2017 Causes of Death Collaborators, 2018).
According to GBD 2019, the DALYs in China accounted for 44.21%
of the total number (GBD 2019 Diseases and Injuries Collaborators,
2020). The causes of GC are relatively complicated and are closely
linked to dietary conditions and geographical environments along
with infection by Helicobacter pylori (H. pylori) and genetic factors.
GC is relatively insidious, and most of the affected people are
diagnosed in the middle and late stages. Presently, the key
treatment of GC is still surgery, but patients face many problems
post-surgery including immune dysfunction and the slow recovery
of digestive tract function, which has a serious impact on the life
quality and clinical efficacy of patients (Disbrow et al., 1993).
Research has revealed that Guishao-Liujun decoction improves
gastrointestinal function in a better manner and enhances the
immune function of GC patients (Zhou et al., 2022).

The ingredients of Guishao-Liujun decoction include Poria
cocos (Schw.)Wolf, Codonopsis Radix, Herba Hedyotis diffusa,
Largehead Atractylodes Rhizome, Salvia chinensis Benth., Radix
Aucklandiae, Angelica sinensis, Pinellia ternata, Sparganium
stoloniferum (Graebn.) Buch. -Ham. ex Juz., Paeonia lactiflora
Pall., Curcuma phaeocaulis Valeton, Citrus reticulata Blanco,
Amomum villosum Lour., Roasted Licorice, and Radix
Glycyrrhizae Preparata, which nourish the qi and blood, treat
the deficiencies of the spleen and stomach, and improve swelling
and abdominal fullness. At present, most reports have studied
Guishao-Liujun decoction’s mechanism of action in the treatment
of GC through clinical observation, and pharmacological studies
are lacking on the use of Guishao-Liujun decoction for the
treatment of GC as a result of the diversity of GC genes and
the complexity of herbal components (Zhang et al., 2019a).
Furthermore, this research has used a network of
pharmacological methods to examine the mechanism of action
of Guishao-Liujun decoction in the treatment of GC.

MATERIALS AND METHODS

Screening of Target Components of
Guishao-Liujun Decoction
The TCMSP and TCMID pharmacology platform of the
traditional Chinese medicine system was used to search for

the active chemical components of the Chinese herbs (Poria
cocos (Schw.)Wolf, Codonopsis Radix, Herba Hedyotis diffusa,
Largehead Atractylodes Rhizome, Salvia chinensis Benth., Radix
Aucklandiae, Angelica sinensis, Pinellia ternata, Sparganium
stoloniferum (Graebn.) Buch. -Ham. ex Juz., Paeonia lactiflora
Pall., Curcuma phaeocaulis Valeton., Citrus reticulata Blanco.,
Amomum villosum Lour., Roasted Licorice and Radix
Glycyrrhizae Preparata) in Guishao-Liujun decoction. For
screening purposes, the TCMSP was set with an oral
bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 0.18
(Zhang et al., 2019b), the TCMID was screened in
SwissADME, and screening conditions were set as follows:
gastrointestinal (GI) absorption was enhanced in
pharmacokinetics and more than two yeses in drug-likeness to
filter out ineffective components and collect the active ingredients
in Guishao-Liujun decoction. The SwissTargetPrediction
database was used to explore the possible protein targets with
the screening condition probability set at ≥ 0.1. The UniProt
database was used to convert screened protein targets into
standardized gene names.

Screening of GC-Related Targets
To find target genes linked to GC, the term “gastric cancer” was
searched on the OMIM and GeneCards databases. Because of a
large number of targets in the GeneCards database, the targets
were filtered according to their score value. The higher the score
value, the stronger will be the link between the target and the
disease, and the target with a score higher than the median is
usually set as a potential disease target, leaving the genes with a
score higher than five in the GeneCards to be combined and de-
weighted with the OMIM database, which is the target associated
with GC.

Acquisition of Effective Targets and
Drawing of the Venn Diagram
A Venn diagram was used to obtain an intersection of the target
points of Guishao-Liujun decoction and GC’s target points, and
the intersection of the two targets was indicated to be the effective
target of Guishao-Liujun decoction for GC treatment.

Active Ingredient-Active Target Network
Construction Analysis
The active components and effective target genes were imported
into Cytoscape 3.7.2 (Zhang et al., 2019a) software for developing
a network and to carry out a visualization analysis to get a drug-
active ingredient-target network diagram, and the importance of
the active component and its target of action were assessed using
analyzing network topological parameters such as degree values.
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Construction of Protein Networks
We imported the effective targets of Guishao-Liujun decoction
and GC into the STRING database; then we constructed a protein
interaction network and selected data with confidence ≥ 0.900.
The results were imported into Cytoscape 3.7.2 software (Martin
et al., 2010) in tab-separated value (TSV) format so that we can
analyze and visualize them. The PPI data were imported with R
software to obtain the number of connection points of core genes,
and the graph was obtained for the histogram’s top 30 core genes.

Enrichment Analysis of Target Functions
and Pathways
We collected gene IDs (entrezID) of potential targets using the R
software (https://www.r-project.org/) and its backend database org.
Hs.eg.db. The GO function enrichment analysis of the possible
targets was conducted with the Disease Ontology Semantic and
Enrichment analysis (DOSE), cluster profile, and path view package
(Bioconductor), comprising the following three aspects: biological
process (BP), cellular component (CC), and molecular function
(MF), set to p-value cutoff = 0.05 and q-value cutoff = 0.05.

The GO enrichment analysis was categorized into three main
groups, namely, biological process (BP), molecular function
(MF), and cellular component (CC). Each group was ranked
by significance, and bar and bubble charts were used to illustrate
the top 10 enrichment entries.

Macromolecular Docking of theMain Active
Ingredients and Targets of Guishao-Liujun
Decoction
The targets of Guishao-Liujun decoction working on GC were found
in the Protein Data Bank (PDB) database, and we saved the data in
the PDB format. The mol2 format was used to save ligands with the
top two compounds in terms of degree value after topological
analysis. We carried out molecular docking between the potential
targets of Guishao-Liujun decoction in GC and the main compounds
in Guishao-Liujun decoction using AutoDockTools-1.5.6.

RESULTS

Acquisition of Active Ingredients and
Related Targets of Guishao-Liujun
Decoction
With OB 30% and DL 0.18, GI absorption as high in
pharmacokinetics, and more than two yeses in drug-likeness
as screening conditions, a total of 181 active ingredients in
Guishao-Liujun decoction were obtained in the TCMSP and
TCMID, respectively, and some of the active ingredients are
listed in Supplementary Table S1. The TCMSP and TCMID
gave us with 243 TCM targets.

Acquisition of GC-Related Targets
GeneCards and OMIM provided the affected genes, and targets
with scores higher than the median were picked as prospective

disease targets empirically. A total of 1,448 GC-related targets
were obtained after combining the relevant targets retrieved from
the OMIM database, merging, and deleting duplicate values.

Venn Drawing
A total of 127 intersection targets of the aforementioned were
obtained using the Venn diagram tool to take the intersection of
Guishao-Liujun decoction and GC targets, and the results are
illustrated in Figure 1.

Construction of the Active
Ingredient–Effective Target Network
Diagram of Guishao-Liujun Decoction
The network of active ingredients and effective targets of
Guishao-Liujun decoction was built using Cytoscape 3.7.2,
which is shown in Figure 2. Its topological parameters for GC
were measured by the software, which were used to assess the
significance of the active components and targets of action. The
findings demonstrated that the active ingredients such as
kaempferol, quercetin, luteolin, and decursinol angelate had
the potential to act on more than one target, and they might
be the active ingredients of Guixia Shao Liujun Tang that play a
major role in GC treatment.

Construction of Protein Networks
Using the Venn tool in TBtools (Figure 1), the intersection of the
targets of Guishao-Liujun decoction and the targets of GC were
obtained and the intersection targets were uploaded to the
STRING database with a confidence level of ≥ 0.9 to obtain
the PPI network diagram of the targets. Then the existing data
were imported into Cytoscape 3.7.2 to plot protein network
relationships; the larger the node, the larger will be the degree
value. The location in the network was judged on the basis of the
degree value. As shown in Figure 3, the targets in the center of the
network are TP53, AKT1, Caspase-3 (CASP3), vascular
endothelial growth factor A (VEGFA), etc., which are

FIGURE 1 | Venn diagram of the intersectional targets of Guishao-Liujun
decoction and GC.
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supposed to be the significant targets for GC treatment using
Guishao-Liujun decoction.

Results of Enrichment Analysis of Target
Functions and Pathways
R was used for the GO annotation analysis of the effective targets.
We picked the top 20 BP, CC, and MF results, and found that these
BP targets were mostly involved in oxidative stress and cellular

oxidative stress, metal ion response, antibiotic response, etc. MF was
primarily involved in the binding of ubiquitinated protein ligase,
cytokine response, and phosphorylase. CC was mostly involved in
the membrane micro-domain, membrane rafts, transcription factor
complexes, chromatin, etc. The results are shown in Figure 4A.

KEGG enriched 179 signaling pathways such as the TNF
signaling pathway, P13K-Akt, IL-17 signaling pathway,
mitogen-activated protein kinase 8 (MAPK8), etc. The top 20
pathways were visualized, and the results are shown in Figure 4B.

FIGURE 2 | Active ingredient–active target network of Guishao-Liujun decoction.

FIGURE 3 | Intersection target PPI network diagram. (A) GO enrichment analysis; (B) core genetic map.
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Macromolecular Docking Results of the
Active Ingredients of Guishao-Liujun
Decoction
The potential targets of Guishao-Liujun decoction acting on GC
were macromolecularly docked with the main compounds of
Guishao-Liujun decoction calculated by the topological analysis
using AutoDockTools-1.5.6, and the more stable the ligand-
receptor binding confirmation was, the more likely the action
occurred. Serine/threonine-protein kinase (AKT1) and tumor
protein p3 (TP53) were chosen as the top two main targets
based on the degree value. AutoDock Vina was used for
macromolecular docking of the components, binding energies
of -4.25 kcal/mol indicate some binding activity between the
ligand small molecule and the receptor protein; binding
energies of −5.0 kcal/mol indicate good binding activity
between the two; binding energies of −7.0 kcal/mol indicate
that the ligand and the receptor have strong conjugation
activity (Hsin et al., 2013), and the binding energies of
quercetin and the two core targets were −6.7 and −7.7 (kcal/
mol), respectively. The specific docking results are shown in
Figure 5.

DISCUSSION

TCM has exceptional anti-cancer properties, and in recent years,
its anti-tumor mechanism has been of strong research interest.
The etiology of GC in TCM is the deficiency in origin and excess
in superficiality, that is, deficiency of the spleen is the origin, and
heat, dampness, stagnation of qi, and blood stasis are in excess.
Guishao-Liujun decoction is not only effective in nourishing the
qi and blood, treating spleen, and stomach deficiency but also has
a very significant function as an anti-tumor agent. In recent years,
with the rise in the combination of TCM and Western medicine,
many herbal medicines are playing a significant role in cancer
treatment.

Through the collection and screening of the active
components of Guishao-Liujun decoction, it was found that
they mostly comprise eight compounds including kaempferol,

quercetin, luteolin, etc. These components with their effective
medicinal properties are the material basis of Guishao-Liujun
decoction for GC treatment.

The major targets of Guishao-Liujun decoction for GC
treatment are IL-17, AKT1, TP53, and TNF, as derived from

FIGURE 4 | Enrichment analysis of Guishao-Liujun decoction for GC. (A) GO enrichment analysis; (B) KEGG enrichment analysis.

FIGURE 5 | Macromolecular docking pattern diagram. (A) Docking
diagram of quercetin and AKT1; (B) docking diagram of quercetin and TP53.
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the analysis of the protein interaction network (Kumar et al.,
2021). Serine/threonine-protein kinase (AKT1) has a role in
cancer cell proliferation, inhibition of apoptosis, tumor
angiogenesis, and energy metabolism (Chen et al., 2020); IL-17
is closely linked to gastric mucosal atrophy, gastric precancerous
lesions, and the degree of intestinal epithelial hyperplasia (Li et al.,
2021); TP53, a common tumor suppressor gene, is involved in
apoptosis or the regulation of cell cycle and is related to lymph
node metastasis, tissue differentiation, and infiltration depth of
GC (Wen et al., 2021); TNF is also one of the pro-inflammatory
factors; and TNF-α can induce apoptosis through the nuclear
factor kappa-B (NF-κB)-activated signaling pathway, caspase-
mediated signaling pathway, and c-Jun N-terminal kinase (JNK)
signaling pathway and it regulates the immune system to control
the proliferation and apoptosis of tumor cells. By upregulating the
serum TNF-α level and downregulating the TGF-α level,
quercetin can increase the immune function of the body
resulting in the suppression of tumors (Zhang, 2022), which is
similar to the findings of the present study that the TNF signaling
pathway is enriched. Nuclear factor κB (NF-κB) is a ubiquitous
transcription factor of the NF-κB/Rel protein family with the
ability to mediate immune stress and inflammatory response, etc.
Recent research demonstrated that NF-κB is expressed highly in
different tumor types, and its expression has a role in apoptosis
inhibition, cell proliferation, invasive behavior, and angiogenesis
(Sack, 2002; Ashrafizadeh et al., 2021; Huang et al., 2022). The
molecular mechanism of anti-apoptosis in GC after NF-κB
signaling activation involves the direct regulation of
downstream target genes’ expression, such as through the
regulation of B-cell lymphoma-2 (Bcl2) family proteins and
caspase family proteins to exert anti-apoptotic effects.
Moreover, NF-κB plays role in all phases of the inflammatory
response by causing gene expression and stimulating cytokines’
release. The NF-κB pathway is a crucial connection between
inflammation and GC (Gurevitch et al., 1997). It has been
discovered that baicalin can exert its biological effects using
different signaling pathways and has the potential to inhibit
the inflammatory response by suppressing the TLR4/NF-κB
signaling pathway. Toll-like receptors (TLR) are not only
correlated with tumor growth and immunosuppression but are
also involved in apoptosis and immune system activation, and the
detection of molecules related to this signaling pathway may
become a reference indicator for GC prognosis (Echizen et al.,
2016; Susi et al., 2019; Zargari et al., 2022).

According to the aforementioned results, the active
components in Guishao-Liujun decoction have effective
binding activities with IL-17, TP53, AKT1, and TNF, but
further validation is required for the bio-functionality of its
compounds for the treatment of GC.

There are certain limitations to network pharmacology
research: 1) the effective ingredient information sources in the
traditional Chinese medicine database are limited, and cannot fully
and timely reflect the substances found in traditional Chinese
medicine. 2) Because the dosage of each medicine prescribed in
Chinesemedicine has a varied effect, the efficacy and concentration
of Chinese medicine’s active substances are strong or weak.
However, the most present research chooses beneficial

compounds based on oral availability and drug-like qualities of
chemical substances and rarely takes into account the dose-effect
connection of Chinese medicine ingredients (Newman, 2020). 3)
Traditional Chinese medicine comprises a complicated chemical
composition system rather than a random assortment of
substances. Its effect could be the overall effect of a set of
effective components comprising numerous chemical
components or the effect of its metabolites once they enter the
body. As a result, it is unscientific to equate effective components,
targets, and pathways with diseases, and it is vital to evaluate the
holistic view of traditional Chinese medicine and the metabolic
process in vivo from a clinical standpoint (Chen et al., 2022; Mei
et al., 2022). 4) When existing network pharmacology analyzes the
action targets of pharmaceutical ingredients, it can only predict
using energy matching and compound geometric characteristics
matching, but not the combined action type of the two, such as the
target’s activation or inactivation state, the drug’s agonist or
antagonist, and so on. 5) Traditional Chinese medicine (TCM)
uses the concepts of “harmony between man and nature” and
“therapy based on syndrome distinction” to treat ailments. The
existing database of disease targets focuses primarily on the names
of diseases in western medicine, rather than TCM syndromes,
making it difficult to accurately reflect the internal relationship
between TCM diseases and syndromes, and the theoretical
foundation of TCM prescription construction (Wu et al., 2021).
6) The protein–protein interaction database is biased because it is
based on a single source. Many academics, for example, frequently
use STRING for online analysis, producing false positive or false-
negative results. 7) Typically, research begins with a target protein
that is shared by traditional Chinese medicine and diseases, and
rarely considers drug ingredients in combination with other
biological functional molecules, such as Chinese medicine
ingredients-metabolites, Chinese medicine ingredients-lncRNA,
Chinese medicine ingredients-circRNA, and so on. As a result,
traditional Chinese medicine network pharmacology research has
to be standardized and enlarged.

CONCLUSION

In conclusion, this study explores the mechanism of action of
Guishao-Liujun decoction in the treatment of GC by network
pharmacology and assessed that Guishao-Liujun decoction works
through a variety of targets and components in GC treatment. As
an emerging field, network pharmacology is useful for drug
development and clinical guidance, but there are many
ambiguities in the process of target collection and
investigation; therefore, a protein model is required to validate
the experiments, and cellular and animal experiments are needed
to improve the conclusions.
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Various imaging techniques combinedwithmachine learning (ML)models havebeen

used to build computer-aided diagnosis (CAD) systems for breast cancer (BC)

detection and classification. The rise of deep learning models in recent years,

represented by convolutional neural network (CNN) models, has pushed the

accuracy of ML-based CAD systems to a new level that is comparable to human

experts. Existing studies have explored the usage of awide spectrumof CNNmodels

for BC detection, and supervised learning has been themainstream. In this study, we

propose a semi-supervised learning framework based on the Vision Transformer

(ViT). The ViT is a model that has been validated to outperform CNN models on

numerous classification benchmarks but its application in BC detection has been

rare. Theproposedmethodoffers a customsemi-supervised learningprocedure that

unifies both supervised and consistency training to enhance the robustness of the

model. In addition, the method uses an adaptive token sampling technique that can

strategically sample the most significant tokens from the input image, leading to an

effective performance gain.We validate ourmethodon twodatasetswith ultrasound

and histopathology images. Results demonstrate that our method can consistently

outperform the CNN baselines for both learning tasks. The code repository of the

project is available at https://github.com/FeiYee/Breast-area-TWO.
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semi-supervised learning, breast cancer detection, vision transformer, adaptive token
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1 Introduction

Breast cancer (BC) has been the most common cancer type

for women. The 2020 report of the World Cancer Research Fund

shows that there were more than 2 million newly diagnosed BC

cases in 2018 (Bray et al., 2018). Such worrying numbers

highlight the significance of properly using present

technological advancements to undertake efficient BC

detection in its early stage. In particular, a recent development

in artificial intelligence (AI) that explores the usage of deep

learning models in a wide spectrum of health care applications

presents a promising direction toward building a more effective

computer-aided diagnosis (CAD) system for BC detection (Hu

et al., 2020; Mewada et al., 2020; Moon et al., 2020; Boumaraf

et al., 2021; Eroğlu et al., 2021; Mishra et al., 2021).

A variety of imaging techniques can be used for BC detection

and diagnosis, including X-rays (mammograms) (Abdelrahman

et al., 2021), ultrasound (sonography) (Moon et al., 2020; Mishra

et al., 2021), thermography (Singh and Singh, 2020), magnetic

resonance imaging (MRI) (Mann et al., 2019), and

histopathology imaging (Benhammou et al., 2020). Ultrasound

has been a widely adopted, low-cost, non-invasive, and non-

radioactive imaging modality in the procedure of BC diagnosis

and is usually followed by histopathological analysis. The latter

applies biopsy techniques to collect cell/tissue samples that are

placed on a microscope slide and then stained for microscopic

examination. With a high degree of confidence, histopathological

diagnosis has become the gold standard for almost all cancer

types (Das et al., 2020). However, in spite of the usage of various

imaging modalities, it requires radiologists or pathologists to

perform a visual inspection, which is time-consuming and in

need of a high degree of radiological/pathological expertise. In

addition, it has been shown by several studies that a high

percentage of inter-observer variability exists when the same

set of images are read by different experts (Kaushal et al., 2019).

An AI-powered system has the potential to eliminate this

assessment discrepancy caused by different experiences,

analytical methodology, and knowledge between human

beings, providing a more accurate diagnostic result to support

clinical decision-making (Hamed et al., 2020).

Recent advances in AI, especially in deep learning, have been

extensively investigated in the health care industry (Beam and

Kohane, 2018; Li and Xiao, 2022; Qu and Xiao, 2022). The

number of use cases of deep learning in BC detection has also

been increasing (Hamed et al., 2020). Our literature investigation

shows that prior efforts in breast cancer image classification share

two common characteristics. First, the learning models are

mostly based on the convolutional neural network (CNN),

including existing deep CNN architectures, custom CNNs,

and hybrid models with a CNN as a component. Despite the

effectiveness of CNN-based classification models, recent

advances have witnessed the rise of a novel vision model,

namely, the Vision Transformer (ViT) (Dosovitskiy et al.,

2020), which has been shown to be more accurate in multiple

public benchmarks. Few studies have investigated the usage of

the ViT in BC detection (Gheflati and Rivaz, 2021), and the

potential of the ViT has not been fully explored in this area.

Second, most existing studies are based on supervised learning,

which requires a full annotation for all image samples in the

dataset. The procedure of annotation is time-consuming and

requires domain expertise. Semi-supervised learning (SSL) (Van

Engelen and Hoos, 2020), on the other hand, only requires

annotation on a small subset of training data and combines a

larger subset of unlabeled data during training. SSL can

effectively reduce the efforts of annotation. However, SSL has

not been extensively used in present studies of BC detection.

Our study aims to address these methodological gaps.

Specifically, we propose a ViT-based BC classification learning

pipeline that combines both supervised learning and SSL. We use

an adaptive token sampling (ATS) technique (Fayyaz et al., 2021)

that allows the original ViT model to dynamically choose the

most critical image tokens. Moreover, we present a custom

consistency training (CT) strategy (Xie et al., 2020) to unify

supervised and unsupervised learning with image augmentation.

The CT-based SSL, when combined with an ATS-ViT (namely,

ViT with ATS), can effectively boost the model performance. The

proposed method has been validated on two datasets, including

the dataset of breast ultrasound images (BUSI) (Al-Dhabyani

et al., 2020) and the Breast Cancer Histopathological Image

Classification (BreakHis) dataset (Spanhol et al., 2016). The

results of our method have been promising and superior

compared to the CNN models. The project is released under

the MIT License and is available at https://github.com/FeiYee/

Breast-area-TWO.

The rest of this study is organized as follows. We provide a

literature review for relevant studies in Section 2. Section 3

describes the datasets used in this study and the details of the

proposed model. In Section 4, several experiments are conducted

to evaluate the effectiveness of the proposed model. Finally, in

Section 5, we conclude the study and provide future work.

2 Related work

This section reviews the prior studies in two aspects,

including DNN-based BC detection methods and SSL applied

in biomedical image classification.

2.1 Deep neural network-based breast
cancer detection

Numerous existing and custom deep CNNmodels have been

used on both ultrasound and histopathology images for breast

tumor classification. Compared to feature-based learning models

that require hand-crafted features (Mishra et al., 2021), deep
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neural network (DNN) models such as CNNs can learn

discriminative patterns with automatically extracted features

to represent an image sample (Li et al., 2021). For ultrasound

imaging, Masud et al. (2020) proposed a custom CNN model

compared with several existing CNN models, including AlexNet

(Kri zhevsky et al., 2012), Darknet19 (Redmon et al., 2016),

GoogleNet (Szegedy et al., 2015), MobileNet (Howard et al.,

2017), ResNet18 (He et al., 2016), ResNet50, VGG16 (Simonyan

and Zisserman, 2014), and Xception (Chollet, 2017). In addition

to single models, ensemble learning has also been used. Moon

et al. (2020) aggregated three CNN models, including VGGNet,

ResNet, and DenseNet (Huang et al., 2017) by fusing the image

representations. Similarly, Eroğlu et al. (2021) adopted a

concatenation of features generated by Alexnet, MobilenetV2

(Sa ndler et al., 2018), and Resnet50, followed by a Minimum

Redundancy Maximum Relevance-based feature selection

strategy to choose a set of the most valuable features that

were used to train a feature-based classifier [e.g., support

vector machine (SVM) (Pisner and Schnyer, 2020), k-nearest

neighbors (KNNs) (Peterson, 2009)]. As for histopathology

imaging, prior studies have adopted CNN models with

improvements in several aspects. Alom et al. (2019) proposed

an Inception Recurrent Residual Convolutional Neural Network

(IRRCNN) to combine the predictive power of the recurrent

CNN, ResNet, and the Inception network. Wang et al. developed

FE-BkCapsNet that integrates the CNN and CapsNet (Sabour

et al., 2017) with deep feature fusion and enhanced routing.

Mewada et al. (2020) proposed the use of both the spatial features

of a CNN and the spectral features of a wavelet transform to

address the convergence issue during training. In addition to the

improvements in models, novel training strategies have also been

developed. Boumaraf et al. (2021) used a block-wise fine-tuning

method, allowing the last few residual blocks in the CNN to be

more domain-specific. Despite the extensive studies of DNN-

based models for BC detection, other model types have not been

fully explored. The ViT, as a recently developed and highlighted

vision model, has received significant attention in a wide range of

tasks. It is desirable to validate the effect of the ViT in imaging-

based BC detection. Our study is such an attempt.

2.2 Semi-supervised learning-based
biomedical image classification

SSL has been an effective training technique to reduce the

number of training examples required for a fully supervised

learning procedure. Obtaining a data point in the biomedical

domain could be time-consuming, especially in the field of cancer

research, where it could take months or even years to determine a

patient’s final status (Zemmal et al., 2016). Thus, prior studies

have adopted SSL to use the unlabeled data. Zemmal et al. (2016)

adopted a Semi-Supervised Support Vector Machine (S3VM)

with hand-crafted features for BC detection. Jaiswal et al. (2019)

used pseudo labels on the PatchCamelyon-level to detect

metastasized cancer cells in histopathology diagnosis.Shi and

Zhang (2011) used low-density separation, an SSL method, to

conduct gene expression-based outcome prediction for cancer

recurrence. Ma and Zhang (2018) developed an SSL model that

combines affinity network fusion and a neural network to

implement few-shot learning, significantly improving the

model’s learning ability with fewer training data. Other

applications of SSL include cancer survival analysis (Liang

et al., 2016), skin cancer diagnosis (Masood et al., 2015),

bladder cancer grading (Wenger et al., 2022), and colorectal

cancer detection (Yu et al., 2021). To our best knowledge, prior

studies have not explored CT for BC detection, and our research

aims to fill this gap.

3 Materials and methods

3.1 Dataset

Two datasets are used to validate the proposed method,

including the dataset of breast ultrasound images (BUSI) (Al-

Dhabyani et al., 2020) and the Breast Cancer Histopathological

Image Classification (BreakHis) dataset (Spanhol et al., 2016)

that represent non-invasive and invasive BC detection methods,

respectively. Also, the choice of these two datasets allows our

model to be trained and validated using images from diverse

sources, which can be used to evaluate a model’s robustness.

3.1.1 Breast ultrasound images dataset
Table 1 shows the three classes of BUSI and the number of

image samples for each class. Typically, ultrasound images are in

grayscale. The images were gathered at the Baheya hospital, saved

in DICOM format, and converted to PNG format afterward.

Data collection and annotation took around 1 year to complete.

The total number of images acquired at the start of the project

was 1,100, which decreased to 780 after preprocessing to

eliminate images with unimportant information. The LOGIQ

E9 and the LOGIQ E9 Agile ultrasound systems were used in the

scanning procedure, producing images with a resolution of

1280 × 1024. Figure 1 shows two example samples per class,

totaling six samples, in which (a) and (d) are benign, (b) and (e)

TABLE 1 Three classes in the DBUI dataset.

Class # Images per class

Benign 487

Malignant 210

Normal 133

Total 780

Frontiers in Pharmacology frontiersin.org03

Wang et al. 10.3389/fphar.2022.929755

40

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.929755


are malignant, and (c) and (f) are normal. An experienced

radiologist reads an ultrasound image based on a set of

standard criteria that involve mass size, echo nodule, tumor

borders and morphology, calcification, blood flow, and so on.

These criteria can be regarded as discriminative features allowing

a trained human being to determine the class of an image.

Traditional feature-based models encode these criteria into

hand-crafted features to represent an image, while DNN-

based models can automatically extract discriminative patterns

and yield a higher accuracy (Shaheen et al., 2016; Han et al.,

2017).

3.1.2 BreakHis dataset
The BreakHis dataset contains 7,909 microscopic images of

breast tumor tissue, including 2,480 benign and 5,429 malignant

samples, collected from 82 patients by the P&D

Laboratory–Pathological Anatomy and Cytopathology, Parana,

Brazil. These images are with four magnifying factors,

namely, ×40, ×100, ×200, and ×400. All of the samples are of

700 × 460 pixels with 3-channel RGB and 8-bit depth in each

channel, stored in PNG format. A histologically benign sample

does not meet any malignancy criteria such as mitosis, basement

membranes disruption, metastasize, etc. In other words, benign

tumors grow slowly and stay localized. On the contrary, the

malignant ones have locally invasive lesions that can disrupt

adjacent structures and lead to metastasis to distant sites of the

human body. Table 2 shows a stats summary of the BreakHis

dataset.

The breast tissue slides are imaged digitally using an

Olympus BX-50 system microscope equipped with a 3.3x

relay lens and a Samsung SCC-131AN digital color camera.

The collected slides are then stained with hematoxylin and

eosin (HE). The samples are obtained through surgical (open)

biopsy (SOB), which is then processed for histological

examination and labeled by pathologists from the P&D

Laboratory. The standard paraffin method, which is widely

used in clinical routine, was used in the preparation of the

samples in this study. The primary purpose is to keep the

original tissue structure and molecular composition, which

allows it to be observed under a light microscope in its

natural state. After staining, the anatomopathologists visually

examine the tissue samples with a microscope to determine

whether or not there are any cancerous lesions present in

each slide. Experienced pathologists make the final diagnosis

FIGURE 1
BUSI samples: (A,D) are benign tumor samples, (B,E) are malignant, and (C,F) are normal.

TABLE 2 Stats of the BreakHis dataset.

Magnification Benign Malignant Total

x40 625 1,370 1,995

x100 644 1,437 2,081

x200 623 1,390 2,013

x400 588 1,232 1,820

Total 2,480 5,429 7,909

# Patients 24 58 82
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in each case, which is then confirmed by additional tests such as

immunohistochemistry (IHC) analysis. Figure 2 shows a set of

samples from the BreakHis dataset, in which the subfigures (a),

(e), and (h) are benign samples, and the rest are all malignant.

3.2 Overview of the learning framework

Figure 3 shows the overall workflow of the proposed method.

The core model to be trained is the ATS-ViT. The training

procedure comprises two parts, namely, supervised and

consistency training. The former aims to improve the model’s

predictive ability, and the latter improves its generalization. Both

parts are unified via an end-to-end training procedure (described

in Algorithm 1). It should be noted that the parameters of the

ATS-ViT are shared across both parts of training. Also, three

types of losses are combined to guide the optimization of the

neural network via gradient descent. The training details are

covered in Subsection 3.6.

3.3 Transformer

A transformer (Vaswani et al., 2017) is a neural architecture that

uses an attention mechanism to mine and capture the semantic

meanings and relations among the input tokens for sequential

modeling problems. One of the benefits of the transformer is

that it allows parallelization since tokens passing through its

architecture can be processed independently rather than

sequentially, presenting a unique advantage over recurrent

models such as long short term memory (LSTM) (Kim et al.,

2016) and recurrent gated unit (GRU) (Chung et al., 2014). The

transformer was originally designed for machine translation in

natural language processing (NLP) and showed superior

performance. Moreover, recent advances have explored

applications of the transformer in a wide spectrum of NLP tasks

and developed a rich set of pre-training techniques, making it one of

the most influential works in AI in the past 5 years.

A transformer adopts an encoder-decoder structure. The

encoder module comprises a stack of transformer encoders;

similarly, the decoder module is a stack of transformer

decoders. Each transformer encoder includes a self-attention

layer with multiple attention heads to capture the semantic

interaction among the input tokens. Specifically, each

attention head calculates a tensor of scores to express how

each token is affected (attended) by every other token. The

outputs of these attention heads are aggregated, normalized,

and passed to a feed-forward layer to generate a set of

embeddings, which are the output of the present encoder. The

subsequent encoder takes as input the embeddings generated

from its previous encoder and repeats the process. A transformer

decoder, on the other hand, comprises three layers, including a

multi-head self-attention layer, an encoder-decoder attention

layer, and a feed-forward layer. At each time step, a

FIGURE 2
BreakHis samples: (A,E,H) are benign, and (B–D,F,G) are malignant.
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transformer decoder takes as input two intermediate tensors

generated by the last encoder layer, the embeddings from its

previous decoder (it would be the output of the decoder module

at the previous time step for the first decoder); these data are fed

through a stack of decoders, followed by a linear and a softmax

layer to produce the prediction result.

FIGURE 3
Overview of the proposed learning framework. The framework comprises supervised and consistency training unified via an end-to-end
training procedure. For simplicity, the figure only uses image samples from the BUSI dataset. Themethod has been validated on both datasets used in
this study.

FIGURE 4
Architecture of the ATS-ViT. The ATS module can be integrated into each transformer block to perform two steps, including token score
assignment and inverse transform sampling. The ATS can identify the most informative tokens that are passed to the subsequent layers, effectively
reducing the computational cost and improving the classification accuracy.
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3.4 Vision transformer

The wide success of a transformer in NLP tasks inspired

researchers to explore its potential in computer vision. The ViT

has been one of the first efforts. TheViT adopts the same structure as

the original transformer with the following changes to the input. An

image is chunked into a set of image patches to meet the input

requirement of the transformer. The so-called image patch

embedding operation is essentially a linear transformation, that

is, a fully connected layer. Specifically, if an input image of size H ×

W × C is split into N patches (i.e., tokens), each of size P × P × C,

then we can determine thatN � HW
P2 . Then, each patch is spread out

into a vector of size D. Thus, the input is transformed into a 2D

tensor of size N × D. In addition, a special [CLS] token is inserted

into the first position of the token sequence to encode the

information used for classification. This strategy has been

commonly seen in other pre-training strategies such as the

Bidirectional Encoder Representations from Transformers

(BERT) (Devlin et al., 2018). Furthermore, to maintain the

relative position relationship between different patches, a position

encoding vector is added to each patch embedding, generating a

token embedding used by the first layer of the transformer encoder.

3.5 Adaptive token sampler

The ViT is computationally expensive since the computing

cost rises quadratically with the number of tokens. CNNs reduce

the resolution inside the network with different pooling

operations. However, because the tokens are permutation

invariant, using pooling in the ViT is not feasible. Thus, we

adopt an adaptive token sampler (ATS), a technique that allows

the model to dynamically choose significant tokens from the

input tokens to reduce computational cost. Figure 4 shows the

network structure of ViT with ATS.

An ATS works by assigning a score to each of the N input

tokens to determine which ones to keep. The score indicates a

token’s contribution to the final prediction. Let K be the

maximum number of retained tokens, and a sampling strategy

is adopted as follows. LetK,Q, and V be the query, key, and value

vectors, respectively, in the standard self-attention layer of the

transformer. The attention matrix A can be computed via Eq. 1.

A � Softmax
QK⊤��

d
√( ). (1)

Thus, A is (N + 1) × (N + 1) (with the [CLS] token counted)

and sums up to 1 after the softmax operation. The output tokens,

before sampling, are given by Eq. 2.

O � AV . (2)

Let Ai,j denote the element at row i and column j in A, the

significance score of token j can be calculated by Eq. 3.

Sj � A1,j‖Vj‖∑i�2A1,i‖V i‖. (3)

Only the first row of the attention matrixA is used since each

element A1,j represents the importance of token j to token 1,

namely, the [cls] token. With a significance score calculated for

each input token, the inverse transform sampling strategy is used

for token sampling. First, the cumulative distribution function of

S can be calculated via Eq. (4).

CDFi � ∑j�i
j�2

Sj. (4)

It is noted that the first token is excluded since it is used to

encode the classification information, and thus, is not needed for

the calculation of the CDF. The sampling function, denoted by

ϒ(k), can now be obtained via the inverse function of the CDF,

which is given by Eq. 5.

ϒ k( ) � CDF−1 k( ). (5)

To obtain K′ samples (K′ ≤ K), ϒ(·) is run K′ times from

uniform distribution U[0, 1], which generates K′ real numbers that

are rounded to the nearest integers and used as the sampling indices.

The selected K′ output tokens should carry more informative

patterns and are passed to the next transformer block.

3.6 Semi-supervised learning

SSL is a training paradigm that explores both labeled and

unlabeled data to enhance the robustness of a model. Also, SSL is

a popular strategy when the number of training samples is

limited because of high annotation costs. In this study, we

assume that similar images should belong to the same class,

which is referred to as the smoothness assumption and has been

adopted by many SSL training systems (Chen and Wang, 2010).

CT is a typical SSL method used in prior studies (Xie et al., 2020;

Lee and Cho, 2021). CT allows a model to be trained to yield

consistent results for an image and its augmented versions with

various perturbations such as crop, contrast, flip, jittering, etc.

The proposed CT method is described in detail as follows.

First, we divide the original training setX into two setsXl andXu,

treated as labeled and unlabeled datasets during CT, respectively.

Second, a set of image augmentation algorithms {hi}mi�1 are defined.
An unlabeled sample xu is fed into algorithm hi to generate an

augmented image denoted by zu,i. Let F denote the ViT model. The

training objective of our SSL algorithm is three-fold.

• First, the supervised loss should be minimized to improve

the predictive ability of model F. For our study, the binary

cross-entropy loss is used, denoted by LCE. For a batch ofm

labeled samples {(xl, yl)}ml�1, we can calculate LCE based

on Eq. 6
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LCE � − 1
m

∑m
l�1

yl logF xl( ). (6)

• Second, the pseudo-label loss should be minimized to

encourage the model to produce consistent results for an

image and its augmented versions with perturbations. For

each image xu in a batch of m unlabeled data, a random

augmentation algorithm is selected from {hi}mi�1 and applied

to the image xu to generate an augmented image zu. Let F(xu)

be a pseudo-label, and we can then calculate pseudo-label loss

using the mean squared error based on Eq. 7.

LMSE � 1
m

∑m
u�1

F xu( ) − F zu( )( )2. (7)

• Last, to ensure the consistency of the whole process, we also

need to measure the intermediate result of unlabeled data and

its augmented version, and since the intermediate result of the

ViT is a one-dimensional sequence, we use Earth Mover’s

distance (Rubner et al., 2000), noted as LEM, which is used to

describe the degree of similarity of two distributions. Given

two sets of distributions p1, p2. . ..pm and q1, q2. . ..qm, we need

to find a way to arrange q in such a way that the EML loss is

minimized. The loss can be given by Eq. 8.

LEM p, q( ) � min
q∈Q

∑m
i

l qi, pi( ), (8)

whereQ is the set of all possible permutations of q and l stands for

the measurement, here, we choose it as L2 loss.

Aggregating the three aforementioned individual losses

yields the following overall loss function, which is our final

optimization objective.

L � LCE + LMSE + LEM. (9)

When we ask the model to obtain similar features for data

before and after adding multiple join perturbations, we can force

the model to learn what does not change with perturbation, and

the information that remains constant before and after

perturbation is more relevant to the classification result, and

such a strategy will lead to stronger generalization ability.

Therefore, we can confirm that combining data augmentation

strategies with semi-supervised learning can give better results.

Algorithm 1. SSL algorithm.

4 Results

Codes in this study have been written in Python 3.6.10 and

using PyTorch 1.8.0 as the deep learning framework. All

experiments were run on a workstation with a Windows

10 operating system, an i7-10875h CPU, and an Nvidia

GTX2080TI 12G graphic card.

4.1 Evaluation metrics

Since the classes for both datasets are imbalanced, accuracy

(Acc) is not sufficient to reflect the true performance of a model.

Therefore, in addition to ACC, we also use precision (Pre), recall

(Rec), and F1 scores for performance evaluation. These

indicators are defined in Eqs 10–13.

Acc � TP + TN

TP + TN + FP + FN
, (10)

Pre � TP

TP + FP
×, (11)

Rec � TP

TP + FN
×, (12)

F1 � 2 ×
Pre × Rec

Pre + Rec
, (13)

where TP, TN, FP, and FN refer to the number of true positives,

true negatives, false positives, and false negatives, respectively.

Pre reflects the ratio of false alarms. The higher the pre, the fewer

false alarms the model has. Meanwhile, Rec reflects the quantity

of missed positive samples. In other words, the higher the Rec,

the fewer positive samples that have been missed. F1 represents

the harmonic mean of Pre and Rec, presenting a more suitable

metric than Acc for a classification task with an imbalanced

dataset.

4.2 Baselines

Four models have been chosen as the baselines in this study,

namely, the VGG16, ResNet101, DenseNet201, and ViT. All four

models have been extensively used in a variety of image

classification tasks and served as solid baselines.

• The VGG16 network comprises a sequence of five blocks,

each with two or three convolutional layers for feature

extraction, followed by a pooling layer for downscale

sampling. The last block is further followed by three fully

connected layers and a softmax layer to generate a normalized

vector as the prediction result. The VGG neural architecture

extensively uses small (3 × 3) convolutional filters, which is the

basis for building a deep and accurate network.
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• The ResNet neural architecture stacks a sequence of

residual blocks, each of which facilitates the learning of

an identity function via a shortcut connection by feeding

the input of a block directly into the output. This way, an

identify function can be easily learned, allowing a network

with more layers to be trained more effectively without

diminishing returns. ResNet101 contains a series of

repeated residual blocks followed by a dense and a

softmax layer, with a total of 101 layers.

• DenseNet is a variant of ResNet with two differences. First,

DenseNet uses a concatenation instead of a summation

(used in ResNet) to aggregate the layer output and the

shortcut data within each block. Second, DenseNet

introduces a transition layer placed between two dense

blocks. Each transition layer comprises a 1 × 1

convolutional layer and an average pooling layer with a

stride of two to control the model complexity.

• The ViT has been covered in Section 3.4.

4.3 Training setting

The main hyperparameters used for training are shown in

Table 3. We adopted Adam as the optimizer with a learning rate

of 2e-5. We set eps = 1e-08 to prevent the denominator from

being 0. A batch size of 64 was chosen. The loss function was the

binary cross entropy with logits. All evaluated models were

trained with 300 epochs. For the ViT, each input image was

re-scaled to a fixed size of 256 × 256 and split into 16 patches. The

ViT model used in the study comprises six encoders. In the ATS

procedure, the numbers of tokens kept in each layer were 256,

128, 64, 32, 16, and 8, which was the default setting from the

original paper of the ATS. These parameters were obtained based

on empirical results. It is noted that we tried a variety of token

sample numbers in addition to the default setting and did not

observe a significant difference in results, which was because of

the fact that the sampling strategy of the ATS ensures that the

model focuses on key regions, but does not completely discard

the information of some outlier data, so it can adjust the pattern

extraction ability of the model for different types of data

according to the input.

Both datasets are split into training, validation, and test sets

in the ratio of 7:1:2. In addition, the training set is further split in

the ratio of 8:2; 80% of the data in the training set participate in

the supervised training to learn an ATS-ViT model, and the rest

20% are treated as unlabeled data used for CT.

4.4 Results

Table 4 presents a performance comparison between the

proposed method and the chosen baselines. Also, an ablation

study has been conducted to evaluate the efficacy of the ATS and

CT. Specifically, we used the ViT as a base model and added the

ATS and CT to form the ViT + ATS model and the CT + ViT +

ATS model. For each evaluated model, four metrics defined in

Section 3.1 have been reported, including Acc, Pre, Rec, and F1.

We provide the result interpretation as follows.

• It is observed that the CNN models, namely, VGG19,

ResNet101, and DenseNet201, can achieve similar

performance compared with the ViT base model. In

particular, ResNet101 presents the highest Acc (95.59%)

and F1 (94.76%) among the four baselines.

• The ViT base model does not perform better in our

experiments than the CNN models. In the original study

on the ViT, it has been validated to outperform the CNN

models on several image classification tasks such as

ImageNet (Deng et al., 2009). In our experiment, the

ViT achieves an Acc of 93.38% and an F1 of 93.43%,

ranked the third and second places among the four

baselines. The reason why the ViT does not outperform

all CNN models may be because of the training

configuration or the hyperparameter setting that has not

been sufficiently optimized.

• The addition of the ATS to the ViT has improved the Acc

and F1 by 1.07 and 1.04%, respectively. However, the ViT +

ATS is still not as good as ResNet101. The performance

gain is mainly due to the sampling strategy that can

effectively select a subset of tokens that contribute the

most to the classification task.

TABLE 3 Training setting.

Hyperparameter Value

Learning rate 2e-5

Eps 1e-8

Batch size 64

Epochs 300

Input image size 256 × 256

ATS # tokens [256, 128, 64, 32, 16, 8]

TABLE 4 Results on BUSI.

Model Acc Pre Rec F1

VGG19 93.02 92.3 92.07 92.19

ResNet101 94.95 94.29 95.23 94.76

DenseNet201 93.62 92.88 93.71 93.29

ViT 93.38 93.02 93.37 93.43

ViT + ATS 94.45 94.29 94.78 94.47

CT + ViT + ATS (ours) 95.29 96.29 96.01 96.15

The highest scores of each metric are in bold.
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• Our best model, namely, CT + ViT + ATS, achieves the best

results on all four metrics with 95.29% Acc, 96.29% Pre,

96.01% Rec, and 95.15% F1, outperforming the second-best

scores by 0.34, 2, 0.78, and 1.39%, respectively. Compared with

the Vit + ATSmodel, the four scores have improved by 0.84, 2,

1.23, and 1.86%. The performance gains are mainly due to the

training procedure that combines both supervised and

unsupervised training so that the model can experience

more diversified samples via data augmentation during

consistency training.

Table 5 shows the results of the validated models on BreakHis.

The same set ofmodels has been evaluated, and the results are similar

to the ones on BUSI. We highlight the observations as follows.

• Among the four baseline models, DenseNet201 shows the

highest Acc of 97.42%, while VGG19 presents the highest

F1 of 96.16%. The ViT base model posts an Acc of 95.68%

and an F1 of 95.69%, ranked the third and second places,

respectively. Again, the ViT does not stand out on this

classification task.

• The addition of the ATS improves the Acc and F1 by 1.3 and

0.57%, respectively, lifting the model to the top place in F1

(96.26), with CT + ViT + ATS excluded. This improvement

shows that theATS can effectively locate the image tokenswith

the most informative parts, allowing the model to learn more

distinguishable patterns to boost accuracy. The result shows

that theATSpresents the desired effect and has been consistent

across both classification tasks.

• CT + ViT + ATS, on the other hand, achieves the best

performance for all four metrics with an Acc of 98.12%, a

Pre of 98.17%, a Rec of 98.65%, and an F1 of 98.41%. This

result shows that CT can bring consistent performance

boost on both datasets and is a promising strategy to

improve a model’s generalization ability.

Figure 5 shows the effect of the ATS on the four samples, with

two from each dataset. In this, Figures 5A,B are ultrasound

images; and Figures 5C,D are histopathology samples.

Meanwhile, Figures 5E–H are the same images as Figures

5A–D with the eight most significant tokens (image patches)

kept for each image. These eight tokens are obtained from the last

transformer block, which is closer to the detection head, and

FIGURE 5
Visualized effect of the ATS. Subfigures (A,B) are ultrasound images; and (C,D) are histopathology samples. Meanwhile, (E–H) are the same
images as (A–D) with the eight most significant tokens (image patches) kept for each image.

TABLE 5 Results on BreakHis.

Model Acc Pre Rec F1

VGG19 96.41 96.45 95.88 96.16

ResNet101 95.53 95.54 94.38 94.96

DenseNet201 97.42 93.98 97.89 95.6

ViT 95.68 95.67 95.7 95.69

ViT + ATS 96.98 96.85 95.68 96.26

CT + ViT + ATS (ours) 98.12 98.17 98.65 98.41

The highest scores of each metric are in bold.
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thus, is more expressive for the classification result. It is observed

that these tokens can accurately identify the regions of interest

that are more indicative of the actual classes. Instead of looking at

the whole image, an ATS-enabled model can reduce the amount

of global information and pinpoint the most critical areas that

contribute the most to the prediction results, which explains the

effectiveness of the ATS.

5 Discussion

This study presents CT + ViT + ATS, a ViTmodel trained via

CT and boosted via ATS. The proposed model has been validated

on two BC imaging datasets and shown superior performance

compared to three representative CNN baseline models. The

results have demonstrated the efficacy of both the ATS and CT.

The former allows the learning algorithm to identify the regions

of interest that provide significant patterns for the classification

task, and the latter unifies both supervised and unsupervised

training to improve the generalization ability of the model. The

proposed model, with the validated results, can serve as a credible

benchmark for future research.

There are several notable findings from this study. Our

experimental results show that the original ViT model does

not present superior performance compared to its CNN

competitors. On the BUSI dataset, the ViT is on a par with

the CNN models, whereas on the BreakHis dataset, the ViT is

slightly worse but still comparable. This could be because of

the BC detection task, in which the images may contain subtle

patterns hard to capture even with the self-attention

mechanism used by the ViT. To discover these subtle

patterns and improve detection accuracy, we adopt the ATS

and CT as two boosting modules, which turn out to be

effective. The gains, in Acc and F1, brought by the ATS

and CT, have been notable and consistent on both datasets.

Although the ATS was originally developed to reduce

computational costs, we demonstrate that it also improves

the detection accuracy since the model is encouraged to focus

more on the critical image tokens and learn more subtle

patterns. CT, on the other hand, exploits the existing

training resources via a weakly-supervised training

paradigm that effectively improves the robustness of the

model. The two boosting modules refine the original ViT in

three aspects: model, data, and training procedure. These joint

efforts have been consistent for our task and have the potential

to be used for other biomedical computer vision tasks.

The proposed CT + ViT + ATS method can be a core

functional module of a CAD system for BC detection. It offers

two merits. First, the ATS component allows the system to

highlight the most informative image patches, which can help

physicians quickly pinpoint the critical areas for precise and

personalized diagnosis. Second, the backend of the CAD system

can be easily modified to be a continuous learning system once

new images are available. Since CT is semi-supervised, only a

portion of the newly added data needs to be labeled, significantly

reducing the labor cost for annotation.

The proposed method can be extended in the following

directions. First, we mainly compared CNN models and the

ViT, while an ensemble of the two or feature-level aggregation

can be another model design option that may bring together

the strengths of both neural architectures. Given that the

underlying designs of the CNN and the ViT are

fundamentally different, the former adopts multiple filters

to capture multi-scale features, while the latter explores

semantic relations between each pair of tokens; a

combination of the two could present superior performance

compared to any single model. Second, a generative model

such as a generative adversarial network (GAN) can be used to

perform data augmentation in CT. Since a GAN captures the

distribution of images belonging to a class, a well-trained

GAN can generate synthetic images that look similar to real

ones. These generated images can enhance the quantity and

diversity of the training samples during CT, potentially

leading to a more robust model. Lastly, the proposed

method can be applied to a wider range of BC imaging

datasets with additional image modalities such as X-ray,

MRI, and thermography that are not considered in this

study. It would be interesting to evaluate the proposed

method on a multi-modal BC imaging dataset that offers

multi-dimensional feature representations.
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Vicious LQT induced by a
combination of factors different
from hERG inhibition

Xinping Xu, Yue Yin, Dayan Li, Binwei Yao, Li Zhao, HaoyuWang,
Hui Wang, Ji Dong, Jing Zhang* and Ruiyun Peng*

Beijing Institute of Radiation Medicine, Beijing, China

Clinically, drug-induced torsades de pointes (TdP) are rare events, whereas the

reduction of the human ether-à-go-go-related gene (hERG) current is

common. In this study, we aimed to explore the specific factors that

contribute to the deterioration of hERG inhibition into malignant ventricular

arrhythmias. Cisapride, a drug removed from themarket because it caused long

QT (LQT) syndrome and torsade de pointes (TdP), was used to induce hERG

inhibition. The effects of cisapride on the hERG current were evaluated using a

whole-cell patch clamp. Based on the dose-response curve of cisapride,

models of its effects at different doses (10, 100, and 1,000 nM) on guinea

pig heart in vitro were established. The effects of cisapride on

electrocardiogram (ECG) signals and QT interval changes in the guinea pigs

were then comprehensively evaluated by multi-channel electrical mapping and

high-resolution fluorescence mapping, and changes in the action potential

were simultaneously detected. Cisapride dose-dependently inhibited the hERG

current with a half inhibitory concentration (IC50) of 32.63 ± 3.71 nM. The

complete hERG suppression by a high dose of cisapride (1,000 nM) prolonged

the action potential duration (APD), but not early after depolarizations (EADs)

and TdP occurred. With 1 μM cisapride and lower Mg2+/K+, the APD exhibited

triangulation, dispersion, and instability. VT was induced in two of 12 guinea pig

hearts. Furthermore, the combined administration of isoproterenol was not

therapeutic and increased susceptibility to ventricular fibrillation (VF)

development. hERG inhibition alone led to QT and ERP prolongation and

exerted an anti-arrhythmic effect. However, after the combination with low

concentrations of magnesium and potassium, the prolonged action potential

became unstable, triangular, and dispersed, and VT was easy to induce. The

combination of catecholamines shortened the APD, but triangulation and

dispersion still existed. At this time, VF was easily induced and sustained.
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Introduction

Drug-induced long QT syndrome (LQT) is generally

considered to be proarrhythmic and is often associated with

torsade de pointes (TdP) arrhythmias and sudden death (De

Bruin et al., 2005; Sanguinetti and Mitcheson, 2005; Hoffmann

and Warner, 2006; Vandenberg et al., 2012). Human ether-à-go-

go-related gene (hERG) blockade can cause LQT, and many

drugs have been identified to pose a risk for arrhythmia because

of hERG inhibition and prolongation of the action potential

duration (APD) (De Bruin. et al., 2005; Sanguinetti and

Mitcheson, 2005; Gintant, et al., 2006; Dennis, et al., 2012).

Previous evidence supports this correlation between anti-

hERG activity and pro-arrhythmic risk (De Bruin. et al.,

2005). In fact, many drugs, such as cetirizine, loratadine, and

ranolazine (Shenasa. et al., 2016) which cause QT and APD

prolongation or hERG inhibition, are non-proarrhythmic. Since

these typical cases still need case-by-case investigations, it is

inaccurate to use QT prolongation and hERG inhibition to

determine the pro-arrhythmic risk of drugs (Hondeghem,

2008; Friedman. et al., 2021). Meanwhile, hERG inhibition has

a beneficial class III anti-arrhythmic effect. Consequently, other

factors which differentiate hERG inhibition as benign and vicious

should be taken into consideration but not hERG inhibition

per se.

Cisapride, a gastrointestinal motility drug, has been

removed from the market because of causing LQT and

inducing TdP (Wysowski and Bacsanyi, 1996; Drolet. et al.,

1998; Di Diego, et al., 2003a). Clinical evidence suggests that

TdP occurs in approximately 1.5% of the patients taking

cisapride. Significantly, however, patients who developed

arrhythmia events induced by cisapride generally had a

history of heart disease (e.g., atrial fibrillation, coronary

heart disease, etc.), electrolyte disturbances, renal

insufficiency, or long-term use of the drug in combination

with other medicines that may cause arrhythmias or prolong

QT intervals (Wysowski. and Bacsanyi, 1996). Hence, we

hypothesized that in normal hearts, QT prolongation

induced by hERG inhibition, such as that caused by

cisapride alone does not induce TdP and that pathogenic

changes in QT or the action potential may occur because of

the action of certain other factors.

Taking cisapride as an example, in our present study, we

investigated the changes in the action potential, especially

changes in the ventricular repolarization, in isolated guinea

pig hearts after treatment with cisapride alone or in

combination with the action of other factors. The action

potential or ventricular repolarization can be described

precisely by its APD triangulation, instability, and dispersion.

Optical mapping can be applied for the visual detection of

changes in the ventricular action potential, which can provide

an important evaluation index for the cardiac safety evaluation of

drugs (Niu, et al., 2021; Wang. et al., 2021).

Materials and methods

Experimental animals

Guinea pigs (weighing 200–250 g, male or female) were

purchased from SPF (Beijing) Biotechnology Co., Ltd. Each

cage contained five of these animals fed normally in an SPF-

grade animal facility, with ad libitum access to food and water.

They were kept at 20–25°C, under good ventilation and a

humidity of 50% ± 5%. The ethics approval number of this

study is SGLL220305018 (Henan, Henan Province, China).

Drug preparation

Cisapride powder (Sigma, United States) was dissolved in a

DMSO solution to prepare a 10 μM stock solution, which was

stored at −20°C for 2–4 weeks until use. The working solution

was diluted with extracellular or KH solutions with a final DMSO

concentration of less than 3‰.

Cell culture

In this study, HEK293 cells stably expressing hERG were

provided by Henan Scope Research Institute of

Electrophysiology. The cells were cultured in a complete

medium (DMEM medium plus 10% fetal bovine serum) in an

incubator at 37°C and 5% CO2. After 2–3 days of adherent cell

growth, when the cell density reached approximately 90% of the

culture flask, the cells were digested with trypsin digestion

solution for 1–2 min, gently blown, and centrifuged. Then,

2–3 ml of DMEM complete culture medium was used to

disperse the cell precipitate. A volume of 20–50 μl of the

mixture was next taken and placed on a sterile slide of a

prepared Petri dish. Furthermore, 1 ml of the mixture was

placed in the cell incubator for patch-clamp recording.

Patch-clamp testing

The channel current was recorded in HEK293 cells stably

expressing the hERG channel protein by the voltage-clamp

technique with an Axon 700A patch-clamp amplifier

(Molecular Devices, San Jose, CA, United States). The

microelectrode was made of borosilicate hard glass blank, and

the glass electrode was drawn by a puller. The following

extracellular solution component concentrations (mM) in the

K+ channel were used: NaCl 140, KCl 5.4, MgCl2 1, CaCl2 2,

glucose 10, and HEPES 10, and the pH was adjusted to 7.4 with

NaOH. The intracellular solution component concentrations

(mM) used were KCl 140, Mg-ATP 4, MgCl2 1, EGTA 5, and

HEPES 10, and the pH was adjusted to 7.2 with KOH. All
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reagents were purchased from Sigma (Budapest, Hungary). The

electrode resistance was 2–4 MΩ after filling the electrode

solution. In the experiment, the slides pre-plated with cells

were placed in a bath, single cells were selected, and a clear

field of view was obtained by adjustment. A microelectrode

manipulator was used to fill the electrode into the liquid for

liquid potential compensation. The electrode was given negative

pressure after contacting the cells. After the negative pressure was

maintained for several seconds, the electrode tip formed a GΩ
sealing connection with the surface of the cell membrane. Then,

to compensate for the electrode capacitance, the negative

pressure was applied to suck up the cell membrane. The series

resistance and cell membrane capacitance were compensated.

The electrophysiological recording was further performed at

room temperature. The sampling rate was 10 kHz and the rate

of Bessel filtering was 6 kHz. The experimental process was

controlled by pCLAMP10 software and Axoclamp700A

software equipped with an amplifier. The digital-to-analog

converter completed the generation of stimulation signals and

fed back the acquisition of signals.

Optical mapping

Guinea pigs were intraperitoneally injected with heparin

(3125 U/kg) and sacrificed approximately 15 min later (after

isoflurane gas anesthesia). Inverted T-shaped thoracotomy was

performed, and the heart was placed in a glass Petri dish filled

with precooled bench-top solution. Then, the aorta was quickly

found, and the excess tissue was cut off. Next, the aorta was

carefully sleeved at the bottom of the cardiac cannula using

forceps, tied with surgical sutures, and pre-prepared KH solution

in a syringe was gently pushed into the heart to pump out the

residual blood of the heart, followed by Langendorff perfusion at

a perfusion rate of 8 ml/min and a perfusion temperature of 37 ±

0.5°C. A KH solution was used as the perfusion solution, which

contained the following compounds (mM): NaCl 119, KCl 4,

CaCl2 1.8, MgCl2 1, NaH2PO4 1.2, NaHCO3 25, and D-Glucose

10. The lower Mg2+/K+ perfusion solution contained 2 mM KCl

and 0.5 mM MgCl2, with the other components unchanged. The

experiment was performed after the heart returned to a normal

rhythm and remained stabilized for 15 min. Then, 100 ml of KH

solution was added to a circulating perfusion tank, 300 μl of

1 mg/ml Blebbistatin (Abcam, United Kingdom) was added to

the dosing port to arrest the heart, and 50 μl of Pluronic F127

(Invitrogen, United States) was added to the circulating perfusion

tank for 10 min. Later, 100 μl of 1 mg/ml voltage-sensitive dye

RH237 (Santa Cruz Biotechnology, United States) was

successively added to the dosing port and circulated for

15 min. The dye-loaded heart was then moved to the imaging

perfusion chamber, and a stimulating electrode was inserted at

the apex for pacing stimulation. The ECG electrodes were

attached to the RA and LV of the heart, respectively. The

action potential of normal hearts was recorded using the

OMS-PICE-2002 system (MappingLab, United Kingdom) with

EMapRecord 5.0 (MappingLab, United Kingdom). Cisapride was

then perfused sequentially at 10 nM, 100 nM, and 1,000 nM, and

the drug effect was measured 10 min after drug perfusion. Data

FIGURE 1
Cisapride dose-dependently inhibited the hERG current and increased APD and ERP. (A) Representative diagram of the concentration-
dependent inhibition of the hERG channel by cisapride; (B) dose-response curve for the inhibition of the hERG channel by cisapride (n = 10); (C)
representative graph of cisapride concentration-dependently increase APD; (D) APD and (E) ERP in the absence of different concentrations of
cisapride (10, 100, and 1,000 nM) (n = 8).
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analysis was performed using a commercially available analysis

program (EMapScope5.7, MappingLab, United Kingdom). The

activation time was presented as an iso-chronogram (Lee, et al.,

2012; Liao, et al., 2020).

Statistical analyses

All patch-clamp recorded data were analyzed using

Clampfit 10.6 (Molecular Devices, United States),

OriginPro 8.0 (Origin Lab, United States), and Adobe

Illustrator 10 (Adobe, United States). The concentration-

response curve was fitted by the logistic equation y =

A2+(A1-A2)/(1+(x/x0)
p), where x is the drug concentration

and p is the Hill coefficient. All data were expressed as means ±

SEM. One-way ANOVA, followed by a multiple-comparison

test, was used to evaluate multiple test treatments. A value of

p < 0.05 was considered to indicate statistically significant

differences. IC50 denotes the concentration determined for

half-maximal inhibitory effects. In the figures, the

designations for the p-values are: *p < 0.05, **p < 0.01, and

***p < 0.001, respectively.

Results

Dose-dependence of cisapride effect on
the hERG current and overall cardiac
action potential duration

Many studies have shown that cisapride-induced QT

prolongation may be related to the block of potassium

current, which prolongs the action potential repolarization in

cardiomyocytes (Qian and Guo. 2010; Liang, et al., 2013). In this

experiment, HEK293 cells stably expressing the hERG protein

were studied, and it was found that cisapride dose-dependently

inhibited the hERG current with an IC50 of 32.63 ± 3.71 nM

(Figure 1B), and a high dose (1,000 nM) caused 100% inhibition

of the hERG current (Figure 1A). Action potentials were

recorded at a pacing rate of 4 Hz. In the whole heart, the

FIGURE 2
Representative traces and statistical graph of induced VF/VT under different conditions. (A) High-frequency stimulation induced VT/VF with
1 μM Cis (n = 18); (B) VT/VF was induced by high-frequency stimulation of 1 μM Cis + low Mg2+/K+(n = 12); (C) high-frequency stimulation induced
VT/VF with 1 μM Cis + low Mg2+/K++ iso (n = 7); (D) statistical chart of VT/VF induction rate under different conditions.
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maximum APD prolongation was achieved at 1,000 nM (Figures

1C,D), with no significant difference between 1,000 nM and the

increased concentration of 3,000 nM (not displayed). Ventricular

effective refractory period (ERP) analysis of the recorded results

revealed that cisapride could dose-dependently increase the ERP,

similar to APD90 (Figure 1E). However, based on these data

alone, it is hard to discriminate whether cisapride has an

arrhythmia-inducing effect.

Arrhythmias (EAD/DAD/VT/VF) induced by
high-frequency stimulation (50Hz)

To further investigate the pro-arrhythmic risk of cisapride,

we attempted to induce arrhythmias (EAD/DAD/VT/VF) with

high-frequency stimulation (50 Hz) under different conditions

(cisapride 1 μM alone, combined with lower Mg2+/K+ or

continued with isoproterenol 0.5 μM) in Langendorff-

perfusion guinea pig hearts. Using 1 μM cisapride alone

hardly induced VT/VF by high-frequency stimulation (n = 18,

Figure 2A). With the combination of 1 μM cisapride and lower

Mg2+/K+, 2 of 12 guinea pig hearts induced VT but was not

sustained and was reversible (Figure 2B). Furthermore, VF was

observed in 100% of the hearts of the guinea pigs treated with

1 μM cisapride in combination with lower Mg2+/K+ and 0.5 μM

isoproterenol. All VFs induced were continuous and irreversible

(n = 7, Figure 2C). The probability of induced VF/VT was

compared under different conditions (Figure 2D). The results

showed that using cisapride 1 μM alone induced no VT/VF,

whereas its combination with lower Mg2+/K+ or continued with

0.5 μM isoproterenol had different levels of pro-arrhythmic risk.

Triangulation and dispersion changes after
cisapride treatment or other factors added

We compared the graphics of the action potentials under

different conditions (Figure3A). The action potential duration

was significantly prolonged at 1 μM cisapride alone or its

combination with lower Mg2+/K+, but it was shortened after

isoproterenol was continued (Figure 3B). The APD30/

APD80 ratio was used to represent the trend of triangulation.

A smaller ratio indicated increased triangulation AP

morphology. We found that the triangulation was more

FIGURE 3
Effects of different conditions on APmorphology and dispersion. (A) Effects of different conditions on APmorphology; (B) quantitative statistics
of APD prolongation under different conditions; (C) quantitative statistics of AP triangulation under different conditions. The APD30/APD80 ratio was
used to quantify the AP triangular morphology under different conditions. A smaller ratio was associated with more significant AP triangular
morphology; (D) optical mapping of ventricular AP under different conditions; (E) quantitative statistics of ventricular AP dispersion under
different conditions were expressed by APD (Q3)-APD (Q1). We found that under low-magnesium and -potassium conditions, the dispersion of AP
was significantly increased by cisapride (*p < 0.05; **p < 0.01; and ***p < 0.001).

Frontiers in Pharmacology frontiersin.org05

Xu et al. 10.3389/fphar.2022.930831

55

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.930831


significant when 1 μM cisapride was given or combined with

lower Mg2+/K+ or the combination was continued with

isoproterenol (Figure 3C). Meanwhile, we compared the

APD90 dispersion map of the anterior ventricular wall in

Langendorff-perfusion guinea pig hearts (Figure 3D) and

conducted a statistical analysis on its dispersion (Q3-Q1). We

established that the dispersion of cisapride alone did not increase

significantly compared with that in the control group, but the

dispersion increased dramatically under the condition of lower

Mg2+/K+(Figure 3E). Elevated dispersion might be a major risk of

arrhythmias.

Instability changes after cisapride
treatment or other factors added

The instability of consecutive APs provides the substrate for the

development of severe arrhythmias. We analyzed the changes in

APD instability in the control and in the group with perfusion of

1 μMcisapride alone or combined with lowerMg2+/K+ or continued

combined with isoproterenol. Figure 4A shows the optical maps of

APD90 of the odd and even beats under the four conditions tested.

As can be seen, it reflects the differences between different beats

directly. In this study, the absolute value of the maximum

APD90 difference (Max△APD90) between the odd and even

beats (Instability = |APD90Odd-APD90Even|Max) was analyzed

(Figure 4B). The instability of the APD was similar to that in the

control when cisapride was perfused alone (con: 7.12 ± 0.46 ms, n =

17 vs. cis: 9.33 ± 0.99 ms, n = 6). In the 1 μM cisapride treatment

combined with lower Mg2+/K+ and continued combined with

isoproterenol, the APD instability increased significantly (Cis +

low Mg2+/K+: 31.56 ± 4.42 ms, n = 9, p < 0.001; Cis + low Mg2+/

K++iso: 19.43 ± 7.45 ms, n = 7, p < 0.001). Figures 4C,D show the

morphology of the recorded consecutive APs and corresponding

APD30/50/70/90 with 4 Hz stimulation under the four conditions.

As can be seen, the treatment with 1 μM cisapride combined with

lower Mg2+/K+ led to greater instability. In addition, during the

experiment, we found that the spontaneous heart rhythm slowed

down, and EAD occasionally occurred when cisapride was

combined with lower Mg2+/K+ (Figure 4E).

Discussion

In the present study, we established the relationship between

hERG channel inhibition alone or combined with other factors.

Cisapride dose-dependently prolonged QT/APD and increased the

ERP by the inhibition of the hERG channel. Increased ERP is

described as a dominant mechanism of the anti-arrhythmic effect

(Hondeghem. et al., 2001). When the hERG current was thoroughly

FIGURE 4
Instability. (A)Map of the APD90 difference (Dif) in the epicardial between the odd beats and the even beats under different inducing conditions.
Dif = Odd-Even; (B) statistics of max dif. There was no significant change in instability when cisapride was given alone, but the instability was
significantly altered by the combination of cisapride and low Mg2+/K+ or that with low Mg2+/K+ and iso (p-values were all less than 0.001); (C) action
potential representative traces of eight consecutive beats were recorded; (D) instability of the action potential duration of eight beats APs in
Figure C (■ APD30; C APD50; ▲ APD70; ▼APD90). APDs fluctuated most significantly after the treatment with cisapride and low Mg2+/K+;€ EAD
occurred only under cisapride combined with low Mg2+/K+ and iso. (E) EAD occurred only under cisapride with low Mg&K and ISO
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inhibited by 1 μM cisapride alone, no EAD/DAD/VT/VF occurred

spontaneously or was induced. If LQT exists, ERP begins to increase

without instability/triangulation/dispersion and it is less likely to

induce arrhythmia, but when LQT exists combined with other

factors, such as lower Mg2+/K+ and low heart rate, it might be to

induce arrhythmia and tend to be EAD and VT. Although choosing

catecholamine as one of the medicines based on the LQT, the APD

was shortened, instability, triangulation, and increased dispersion

still existed, which could easily induce VF and persist (Figure 5).

First of all, researchers found that the addition of the action

potential is one of the electrophysiological mechanisms for inducing

arrhythmias according to a dose-dependent study of cisapride

inhibiting the hERG channel and prolonging QT/APD. When

hERG currents were completely inhibited by cisapride 1 μM

alone, the AP increased without significant changes in dispersion,

and no spontaneous or induced EAD/DAD/VT/VF occurred. But

when additional experimental factors such as relatively low levels of

Mg2+/K+ and heart rate were considered during the research, the

dispersion increased and it is likely to induce arrhythmia (EAD and

VT). Second, presently, isoproterenol is recommended as the

preferred drug for the treatment of TdP because it could increase

the basic heart rate and shorten the QT interval. The research

showed that when combined with isoproterenol, the APD was

shortened and the dispersion was increased, and it was also easy

to induce VF and persistent VT. Inconclusion, isoproterenol also has

a risk of causing cardiac arrhythmias.

In 1996, Wysowski and Bacsanyi (1996)reported that LQT

and TdP occurred in 57 patients treated with cisapride.

Nevertheless, it should be noted that all these patients had

combinations with other risk factors, such as coronary disease,

arrhythmia (especially atrial fibrillation), renal insufficiency or

renal failure, electrolyte imbalance, and long-term intake of

medications associated with the prolongation of QT intervals

or arrhythmia. In our study, we also confirmed this view that

more attention should be paid to other factors in addition to

cisapride itself. Here, only the combination of 1 μM cisapride

with other factors (such as low magnesium and potassium levels)

induced EAD and VT, with a relatively low induction rate.

Isoproterenol is clinically recommended for TdP therapy

because it can increase the basal heart rate and shorten the QT

interval (Suarez. et al., 2018). However, the pro-arrhythmic risk of

isoproterenol has also recently attracted increasing research

attention. Wataru Shimizu et al. explained why oproterenol

makes the occurrence of TdP easier in acquired or inherited

LQT1/LQT2. Isoproterenol lengthens the APD of M cells,

shortens the APD of epi and endo cells, and increases the

transmural repolarization dispersion of the AP of ventricular

myocytes (Shimizu and Antzelevitch, 2000). However, after

isoproterenol was administered in our experiment, the APD was

shortened, and dispersion decreased while the triangulated form of

the action potential became more serious and more likely to induce

ventricular fibrillation. Meanwhile, the risks associated with

shortening QT with isoproterenol may be even greater than

those associated with TdP, which is only 15–20% likely to

progress to ventricular fibrillation[22]. The cardiac wavelength

(conduction velocity * ERP) is an important concept for the

development of arrhythmias. Increased λ could impede re-entry

and vice versa. Shortening QT and triangulation might be the major

reason for VF development. Therefore, the clinical application of

isoproterenol for TdP therapy should be reexamined.

As for indicators of drug cardiac safety, QT prolongation and

hERG inhibition may cause false-positive results, which may result

in the blind screening of many valuable drugs (Zang. et al., 2012; Lu.

et al., 2019). The findings of our present study show that in addition

to hERG inhibition andQTprolongation, combinedwith changes in

instability, triangulation, and dispersion may be a more

comprehensive method to evaluate drug cardiotoxicity.

Previous results showed that cisapride (200 μM) caused the

largest TDR and induced TdP (2 in 6) in dog left ventricular

wedges; however, it should be noted that the stimulation

frequency BCL = 2000 ms was far below the normal heart

rhythm, and such a frequency only can be induced from

epicardial (Di Diego, J. M. et al., 2003b). Differently, we did

not observe TdP induction at any concentration in the

FIGURE 5
Evolution of QT prolongation caused by hERG inhibition and
other factors. HERG inhibition alone led to QT prolongation, along
with ERP prolongation, and exerted anti-arrhythmic effects.
However, when combined with the effects of low
magnesium, low potassium, or low frequency, the prolonged
action potential became unstable, triangular, and discrete, and it
was easy to induce VT. Still, without the occurrence of VF, VT could
not be sustained. When catecholamines or ischemia and hypoxia
continued to be combined, the APD was shortened, but instability,
triangulation, and dispersion still existed. At this time, VF was easily
induced and could be sustained.
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Langendorff-perfusion whole heart of a guinea pig without the

action of other factors. EAD and VT would occur in combination

with low magnesium and low potassium, but the probability was

low. In our previous experiments, TdP was not induced when E-

4031, cisapride, or sotalol were used alone. However, when

combined with low magnesium, low potassium, and

isoproterenol, VF was easily induced (Shimizu and

Antzelevitch, 2000; Di Diego, J. M. et al., 2003b).

Limitations

First, the ion channel expression of guinea pig ventricular

myocytes was different from that of humans, so the experiment

on guinea pig heart cannot explain the effect on the human

myocardium (Guo. et al., 2009; Horvath. et al., 2020). It has been

reported that there is no Ito current in guinea pig

cardiomyocytes, and the expression level of hERG is lower

than that of humans. Second, cisapride slowed conduction at

high concentrations, suggesting that it was not only the hERG

channel which was affected by cisapride but other ion channels as

well. However, according to λ = conduction velocity * ERP,

deceleration of the conduction velocity would lead to a higher

heart safety risk. Nevertheless, no EAD/DAD/VT/VF occurred

spontaneously or was induced by 1 μM cisapride alone. Third,

after the addition of isoproterenol, the signal of the edge was not

good because of the incomplete stop motivation. Thus, there was

a large SE of instability after the perfusion of isoproterenol.
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Medical image registration
utilizing tissue P systems

Saleem Sanatan Kujur* and Sudip Kumar Sahana

Department of Computer Science and Engineering, Birla Institute of Technology Mesra, Ranchi, India

The tissue P system (TPS) possesses intrinsic attributes of parallel execution in

comprehensive data and instruction space, which provides fast convergence

during the transition from local to global optima. Method- In this study, we have

proposed and built a TPSysIR framework using the TPS for image registration

that optimizes upon themutual information (MI) similarity metric to find a global

solution. Result- The model was tested on single- and multimodal brain MRI

scans and other prominent optimization-based image registration techniques.

Conclusion- Results show that, among all methods, TPSysIR provides better MI

values with minimum deviation in a range of experiment setups conducted

iteratively.

KEYWORDS

P systems, MRI, TPS, optimization, medical image registration

Introduction

Medical image registration involves processing image data from multiple sources,

each having a different coordinate system. These sources often have different sensors and

viewpoints, transforming the data collected into a single spatial coordinate system. Image

registration requires optimized parameter values for the required transformation,

translation, or rotation to be applied over the source images with respect to the

reference image to achieve matching. Image registration has been utilized in many

recent advances in image reconstruction (Prakash et al., 2019), land cover mapping

(Wang et al., 2020), and weather prediction (Kakimoto et al., 2019). A large number of

image registration methods are already available, which can be classified as single or

multimodal, automatic vs. inter-active, spatial domain vs. frequency domain-based,

intensity vs. feature-based, and transform-based. Image registration finds essential

applicability in the areas of remote sensing and medical image processing. Image

registration can be viewed as an optimization problem (Song et al., 2017) whose aim

is to maximize the similarity or minimize the cost in the process. It takes single or multiple

image data and transforms them according to the parameters to maximize the similarity

to the target reference image. Various parameters which can be optimized are correlation

ratio (Gong et al., 2019), mutual information (Ramamoorthy et al., 2010), energy of joint

probability distribution (Susskind et al., 2011), normalized correlation (Lewis, 2001), and

normalized mutual information (Knops et al., 2005).

Optimization methods such as Powell’s were among the earliest attempts to solve

image registration problems. However, the algorithm provided local optimum results, and

the objective search speed was also low. These shortcomings lead to the utilization of
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nature-based optimization techniques for image registration as

the next-generation solution. The genetic algorithm (GA)-based

method has been proposed by Rouet, Jacq, and Roux (Rouet et al.,

2000). Utilizing the local optima, LI Zuo-zhu (Zuo-zhu, 2007)

applied GA on mutual information (MI) metric optimization to

achieve an image registration solution. Rajapakse and Guojun

(Rajapakse and Guojun, 1999) performed image registration by

utilizing GA on time-series images. Still, the nonexistence of fine-

tuning ability coupled with considerable execution time led

researchers to explore better methods. Chen, Lin, and Mimori

(Lin et al., 2012) utilized particle swarm optimization (PSO) on

the image dataset, optimizing the MI measure. Wachowiak et al.

(Wachowiak et al., 2004), Chel, and Nandi (Chel and Nandi,

2013) used hybrid PSO on 3-D medical images; similarly

optimization was performed on normalized MI decreasing the

overall execution time. Basset et al. (Abdel-Basset et al., 2017)

utilized modified MI metric and PSO for image registration. This

method fell into local maxima with increasing degrees of

rotation. Zhang et al. (Zhang et al., 2010) integrated PSO with

Powell to overcome these shortcomings and applied them to

image registration.

In recent years, machine learning (Zhu et al., 2022) and deep

learning (Zhu et al., 2021) have found applications in image

processing and registration. Balakrishna et al. (Balakrishnan

et al., 2019) used a convolutional neural network for 3D

image registration. Ali and Rittscher (Ali and Rittscher, 2019)

utilized concatenated convolutional layers for deformable image

registration. Mansilla, Milone, and Ferrante (Mansilla et al.,

2020) proposed the AC-RegNet architecture to achieve image

registration.

Membrane computing (MC) (Paun, 2000) was introduced by

Gheorghe Paun, inspired by the computational mechanisms of

living cells or tissue systems. Biological and computational

processes at the cellular and tissue level are performed in a

maximally parallel and randomly distributed manner. These

random processes and communications are triggered when

appropriate compounds and catalyst inhibitors are present in

the cellular environment. Membrane computing forms the

computational model called P systems; these have been

efficiently utilized to obtain solutions to many NP-complete

(Paun, 2001) problems by creating a trade-off between time

and space complexity. P systems are built upon low-level

biological interactions or processes by equipping them to

capture the computational essence of complex cell metabolism

and information interchange. The P system may use any one of

the following mechanism or mechanisms to create variants of the

system: selective object recognition, controlled exchange of

particles through protein channels, cytoplasmic metabolism or

division, and dissolution of membranes. The P system has been

proved computationally complete and is utilized to solve many

optimization-based and NP-complete problems (Paun, 2001),

such as subset sum (Jiménez and Núñez, 2005), TSP, and tricolor

problems. Computation in a P system proceeds in a maximally

FIGURE 1
Membrane system.

FIGURE 2
Membrane hierarchy.
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parallel and non-deterministic path, which can be tuned

according to the execution model of the problem.

Membrane system

The membrane system shown in Figure 1 can be viewed as a

hierarchically organized set of membranes existing inside an

outer space called the environment. The tree in Figure 2 can

represent the hierarchical organization of a membrane system in

Figure 1. The tree’s root is associated with the skin membrane,

and the leaves are associated with the elementary membranes.

The membranes at the same level can float around in the same

membrane compartment. The hierarchical string expression 1) is

written for Figure 2 membrane structure:

[1[2]2[3]3[4[5 ]5[6 ] 6 ] 4 ]1. (1)

P systems

The operations of a P System can be visualized as an

extended distributed computation machine that presents a

range of solutions to a particular problem. The nature of the

multiset solution present in the output environment or

membrane varies, based on the halting condition associated

with the problem. The distribution and transition of multisets

in the membrane regions determine the generated languages

and their related grammar.Formally a P system ∏ can be

defined as

∏ � O,M,m1, m2, . . .mn, R1, R2, . . . , Rn, δ0( ). (2)

Here, O is the finite set of objects. M is the set of membranes.

mi is the multiset of objects in the membrane. Ri is the rule inside

the corresponding membrane. δ0 is the set of output membrane.

A P System can be viewed as a hierarchical system

comprising of a three-dimensional space referred environment

containing membranes. The membranes contain a set of objects

called multiset, coexisting with rules and other

membranes.Figure 3 shows a P System.

The P System can be formally written as

FIGURE 3
P system.

FIGURE 4
P system.

FIGURE 5
Tissue P system for TPSysIR algorithm.
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∏ � a, b, c, d, , e{ }, 1, 2, 3, 4, 5, 6{ }, , ac, cd2, ab2c, b2c2{ }(
e → eout,{ } ac → ab, a → bout{ }, cd → eout{ },{
bc → eout{ }, bc → cd, ac → #{ }, bc → eout{ },

bc → a, a → #{ }}, 1{ })
. (3)

Here, O = {a, b, c, d, e}, M = {1, 2, 3, 4, 5, 6}, and mi =

{, ac, cd2, ab2c, b2c2} Ri � {e → eout,}, {ac{
→ ab, a → bout}, {cd → eout}, {bc → eout}, bc → cd, ac{
→ #}, {bc → a, a → #}} δ0� 1{ }.The rules in the membranes

are represented as x → y or x → y#, with x ϵ O+ and v ϵ
(O × Tar)*, where Tar = {here; in; out}. Many forms of multiset

rewriting and communicating rules have been utilized to

convey more information about the state. There are mainly

two types of rules: evolution and communication rules. The

evolution rules govern the evolution of the membrane state,

and communication rules facilitate communication, i.e., data

transportation from one membrane to another. Evolution

rules are of the form l → m or l → #; here, the occurrence

of the # symbol leads to the dissolution of the membrane

wherever the rule is executed, and all multisets currently

existing inside it are passed onto its parent membrane.

Communication rules are of form w → xoutyin; here the

multiset w forms two multisets, x and y ; here, x moves

outside the membrane to the parent whereas y moves to

the child existing inside the current membrane.

Computation process in a P system

Computation in a P system is performed in a non-

deterministic and maximally parallel manner. The

configuration changes from an initial state to the next

state in an asynchronous manner, referred to as the

transition of a P system. The computation is thus the

continuous transition of the P system by applying the rules

in a non-deterministic and maximally parallel manner until

the system halts. The halting condition is achieved when no

further rules can be applied and the output is obtained as the

contents of the output membrane. A non-deterministic

manner ensures that the rules are chosen at random. This

randomness may lead to different transition paths. The order

of application of rules is also an important aspect. Maximally

parallel application of rules ensures that all possible rules are

executed simultaneously in every transition step of the

computation. The rules rewrite the multiset content inside

a membrane. The execution of u → v rules is dependent

mainly on the availability of the multiset composing the left

side of the membrane u, which transforms into the right side

multiset v.

Figure 4 shows a simple P System with four membranes 1, 2,

3, and 4. Membrane one is the outermost membrane that holds

the output on halting. The system can transit through multiple

process paths due to the non-deterministic nature of the

computation.

Example steps of computation

• Step 1: Observing the initial configuration in membranes

three and four Figure 4

m3, R3 = {a2b2}, {ab→ ac, ac→ c#} ab is assigned to rule ab→
ac m4, R4 = {b2c2}, {bc→ a, a→ dout} bc is assigned to rule bc→ a.

• Step 2: After transition in step 1 we have

m3, R3 = {a2c2}, {ac → c#} ac is assigned to rule ac → c# #

dissolves membrane three and multiset ac2 moves into

membrane two

m4, R4 = {a2}, {a → dout} a is assigned to rule a → dout d
2 is

passed out of membrane four and no more transitions can

happen in it.

• Step 3: After step 2 we have the membrane possible for

transition

FIGURE 6
TPSysIR algorithm.
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m2, R2 = {ac2d2}, {cd → e, e → eout} cd is assigned to rule cd

→ e.

• Step 4:After step 3 membrane two new state

m2, R2 = {ae2}, {e→ eout} e is assigned by e→ eout e
2 is passed

out to membrane one.

• membrane one is the output membrane so the

computation halts here

m1, R1 = {e2}

The computation halts since no more rules can be executed.

Mutual Information

Mutual information measures the statistical dependency

between two sets of data (here the image data sets)

independent of the intensity values of images. The MI value

between two images or voxels is maximum when the geometrical

alignment between them is good. MI measures two sets of image

data , A and B, obtained as follows:

MI A, B( ) � ∑
a,b

Prob a, b( )log Prob a, b( )
Prob a( )Prob b( ). (4)

Here, Prob (a, b) is the joint probability of a ϵ A and b ϵ B.
Prob(a) and Prob(b) are the independent probabilities.

Methods

Tissue P system

Tissue P system (Pan and Perez-Jim´enez, 2010) can be

viewed as the graph of P system membranes connected with

bidirectional protein channels (Freund et al., 2005). The protein

channels facilitate the communication (transportation) of

multisets of objects between the membranes. The

communication can be performed in a replicative manner

where a copy of the multiset can be sent to all adjacent

membranes attached to the communication channel (protein

FIGURE 7
(A) Original Image: row first left. (B) Float Image Unscaled: row first right. (C) Float Image Scaled: second row center.
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channel) or in a non-replicative manner where only one copy of

the membrane is communicated to a particular membrane.

Mathematically, the tissue P system (Bernardini and

Gheorghe, 2005) of degree (number of membranes) n can be

defined as

Γ � O, μ1, μ2, . . . , μn, comm, μout( ). (5)

Here,

1. O is a finite set of objects (alphabets)

2. comm ⊆{1, 2, 3, .., n}×{1, 2, 3, . . . , n}
3. μout = {μ1, μ2, . . . , μn} is the output membrane

4. {μ1, μ2, . . . , μn} are the membranes of form μ1 = {si,0, muli,0,

Rulei}

(a) si,0 is initial state of ith membrane

(b) muli,0 multiset of ith membrane

(c) Rulei set of rules in ith membrane

The tissue P system in Figure 5 is organized in the form of a

multilevel membrane structure, with levels one and two having three

membranes as child membranes. The output membrane or level

1 membrane is labeled usingμ0. It contains three child membranes

labeled by μ01, μ02, and μ03 respectively; these form level two in the

system. The level two membranes further contain three child

membranes each. Child membranes are labelled as μab, where a is

the parent node and b is the child membrane. The system is

interconnected with a bidirectional transportation channel that

facilitates the transportation or communication of objects between

the membranes. Each membrane contains multisets of objects along

with the rules governing the evolution and communication of objects.

The algorithm searches for the optimal solution among the floating

image objects configured with the transform parameters inside the

membranes. The objects in the solution space continuously evolve by

utilizing the rules and are examined for the existence of a better

optimized solution.

The objects

The object in the solution space can be represented as the set

of transformation parameters:

Ojbrs � xrs, yrs, θrs, Zrs. (6)

1. r = 1 . . . n and s = 1 . . . m

2. n is the membrane count of tissue P system

3. m is the object count in membrane r

4. θrs is the degree of rotation

5. Zrs is the image scaling factor

6. xrs is the displacement in x axis

7. yrs is the displacement in y axis

The algorithm utilizes the MI metric as the optimization

function to measure and maximize the similarity of the

parameters in the evolved objects. The object evolves

inside the membranes, and the local best is selected for

each level 3 membrane. This local best value is

communicated to the neighboring membrane and level

2 membranes through the bidirectional channel. The level

2 membranes communicate between themselves and their

children to search for the global best solution. This solution

is then transferred to the level 1 output membrane, thus

representing the final solution.

The evolution rules

The evolution rules govern the evolution of float image

object configurations inside the membrane; the evolution is

performed so as to achieve the optimal best object according

to the optimization criteria. Each level 3 membrane contains

three optimal objects; Objt,bestab , the local optimal best object

obtained at the tth moment inside the abth membrane,

Objt,bestab,n , one of the optimal best object randomly selected

among all the optimal objects received from the neighbors to

the abth membrane, and Objt,bestab,u , the optimal best object

transferred from the parent level 2 membrane u to abth child

membrane.

The PSO (particle swarm optimization) technique is utilized

here to govern the formation and execution of rule1 and rule2,

and its velocity position equation is modified to define the

evolution rules. These rules evolve the objects according to

the position (configuration) and time.

vt+1k,ab � ωtvtk,ab + l0z0 Objt,bestab − Objtk,ab( ) + l1z1 Objt,bestab,n − Objtk,ab( )
+l2z2 Objt,bestab,u − Objtk,ab( ),

(7)
Objt+1k,ab � Objtk,ab + vt+1k,ab, (8)

rule1 ≡ Objtk,ab[ ]t
ab
↔ Objt+1k,ab[ ]t+1

ab
, (9)

Objt+2,bestab � max MI Objt+1k,ab( ){ } ∪ MI Objt,bestab( ){ } , (10)
rule2 ≡ Objt,bestab[ ]t+1

ab
↔ Objt+2,bestab[ ]t+2

ab
. (11)

The velocity component is updated using (7) ωt is the

weight balancing factor which gradually decreases; l0,l1,and

l2 are the learning factor; z0, z1, and z2 are the random

numbers between 0 and 1. Objtk,ab is the kth float object in

abth membrane having a configuration of the floating image.

This is updated by rule1 in Eqs. 8, 9 .This updates the new

configuration of each object inside the membrane. The local

best object of the membrane is selected by utilizing Eq 10,

and the old one is replaced by the new local best utilizing

rule2 at Eq 11.
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The communication rules

The communication (Paun and Paun, 2002) rules facilitate

the transportation of objects between the membranes at inter- or

intra-level utilizing the bidirectional channel connecting them.

Intra-level object communication rule

The local optimal object Objt,bestab is updated during the

evolution stage inside each membrane at level 3. These

objects are further communicated to every neighboring

FIGURE 8
(A)Multimodal Experiment 1 T2: row first left. (B)Multimodal Experiment 1 T1: row first right. (C)Multimodal Experiment 2 T1: row second left.
(D) Multimodal Experiment 1 T2: row second right. (E) Multimodal Experiment 3 T1: row third left. (F) Multimodal Experiment 1 T2: row third right.
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membrane under the shared parent membrane. This process

involves the creation of a duplicate copy of the local optimal

object Objt,bestab in each membrane, exchanging it with every

other membrane under the common parent. The

intracommunication rule is described as follows:

rule3 ≡ Objt,bestaj[ ]t
ai
↔ Objt,bestai[ ]t

aj
. (12)

In Eq 12 rule3 the objects Objt,bestaj and Objt,bestai are the

local optimal bests in membranes aj and ai, respectively.

Both are located at level 3 under the same parent membrane.

The objects are exchanged and rule3 is executed in Eq 12.

Inter-level object communication rule

The copy of the local optimal object Objt,bestab is updated

during the evolution stage in each membrane at level 3, and

this object is also communicated to the parent membrane at

level 2. All the membranes in the child level 3 receive a copy

of Objt,bestu optimal object updated at the parent level. This

process involves simultaneous duplication and

communication between a membrane at the parent and

another at the child level. The intercommunication rule is

described as

FIGURE 9
(A) Multi Modal Experiment 1 Float: row first left. (B) Multi Modal Experiment 1 GA output: row first right. (C) Multi Modal Experiment 1 PSO
output: row second left. (D)Multi Modal Experiment 1 PSO and Powell Output: row second right. (E)Multi Modal Experiment 1 TPSysIR Output: row
third center.
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rule4 ≡ Objt,bestu[ ]t
ab
↔ Objt,bestab[ ]t

u
, (13)

rule5 ≡ Objt,bestu[ ]t
u
↔ Objt,bestu[ ]t

0
. (14)

In (13), rule4 exchanges the objects Obj
t,best
ab and Objt,bestu from

membrane ab in level 3 andmembrane u at level 2, respectively. The

objects are first copied and are then exchanged between each child

FIGURE 10
(A) Multi Modal Experiment 2 Float: row first left. (B) Multi Modal Experiment 2 GA output: row first right. (C) Multi Modal Experiment 2 PSO
output: row second left. (D)Multi Modal Experiment 2 PSO and Powell Output: row second right. (E)Multi Modal Experiment 2 TPSysIR Output: row
third center.
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FIGURE 11
(A) Multi Modal Experiment 3 Float: row first left. (B) Multi Modal Experiment 3 GA output: row first right. (C) Multi Modal Experiment 3 PSO
output: row second left. (D)Multi Modal Experiment 4 PSO and Powell Output: row second right. (E)Multi Modal Experiment 5 TPSysIR Output: row
third center.
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and parent membrane, executing rule4 for each child’s membrane.

The membrane at level 2 will have local optimal best objects from all

its child membranes, and all its children will have a copy of the

optimal object from its parent.

The (14) rule5 communicates the objectObjt,bestu optimal best

of membrane u at level 2 is copied and sent to output membrane

at level 1 as the global best.

The selection and substitution rules

After the inter level object communication stage, the

membrane at level 2 has n copies of the object from each

of its child nodes. Level 2 membrane selects the best among

all the objects received from the child membranes and

compares it with its local optimal best. The MI metric is

utilized to perform the selection between the two best

optimal values. The maximal object obtained from the

above process is substituted as the current local best of

this membrane. The rule can be described as

Objt+2,bestab � max MI Objt+1k,ab( ){ } ∪ MI Objt,bestab( ){ } , (15)
rule6 ≡ Objt,bestu[ ]t

u
→ Objt+1,bestu[ ]t+1

u
. (16)

Eq. 15 examines the MI of all objects Objt+1k,ab received from

the child membranes along with the MI of the current best object

Objt,bestu of membrane u for the maximum among all of them.

This value is replaced as the new local best of membrane u by

rule6 in Eq 16.

The designed TPS utilizes the search capability of the PSO

algorithm and explores the search space filled with floating image

object solutions. The local object evolution is performed at the

third level of the system; this generates local optimum objects.

The optimized objects then move to the neighboring membrane

and higher level 2 membranes.

The halting condition

The system is executed in the manner of steps; it is halted

after the desired number of steps are performed. The optimal

object obtained at the output level 1 membrane at that instance is

recorded as the best solution to the problem.

The TPSysIR algorithm

The algorithm is designed using the TPS framework in the

form of three membrane levels; the algorithm is shown in

Figure 6. The system utilizes each level for specific evolution

and optimization objectives. The level 3 membranes are utilized

to evolve the floating image objects to achieve local optimal

values at their level inside each membrane. Communication of

local optimal objects among membranes under a common parent

is done to optimize the configuration object further. This optimal

object, obtained from each child membrane at level 3, is

communicated to the level 2 membranes to form the global

optimal solution. Level 2 membranes examine the optimality of

the received objects from the child membranes to create a global

maximal. The optimal value of level 2 is sent to the level 1 output

membrane. The copy of the optimal value of the level

2 membrane is also sent back to the children’s membrane.

The entire process, from the evolution of objects in the level

3 membrane to the transfer of global optima from level 2 to level

1, constitutes a step. The specified number of steps must be

completed before the system halts; otherwise, the system restarts

TABLE 1 Without scaling DATA.

Algorithm X − 8 Y − 6 θ − 5 MI

GA Max 0.925 0.888 0.132 1.459
Min 0.688 0.722 0.030 1.075
Mean 0.806 0.805 0.081 1.267
Δ 0.118 0.083 0.051 0.192

PSO Max 0.679 0.741 0.111 1.232
Min 0.490 0.607 0.073 0.962
Mean 0.584 0.674 0.092 1.097
Δ 0.094 0.067 0.019 0.135

PSO and POWELL Max 0.530 0.496 0.072 1.569
Min 0.493 0.465 0.055 1.356
Mean 0.511 0.480 0.063 1.462
Δ 0.018 0.015 0.008 0.106

TPSysIR Max 0.511 0.508 0.058 1.712
Min 0.470 0.484 0.036 1.669
Mean 0.49 0.496 0.047 1.690
Δ 0.020 0.012 0.011 0.021
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TABLE 2 With scaling DATA.

Algorithm X − 8 Y − 6 θ − 5 S-1.25 MI

Single multimodal experiment 2

GA Max 0.717 0.678 0.316 0.010 0.385
Min 0.516 0.123 0.139 0.003 0.291
Mean 0.616 0.400 0.227 0.006 0.324
Δ 0.10 0.24 0.08 0.003 0.033

PSO Max 0.845 0.507 0.234 0.006 0.445
Min 0.633 0.039 0.132 0.002 0.402
Mean 0.739 0.273 0.183 0.004 0.423
Δ 0.106 0.234 0.051 0.002 0.021

PSO and POWELL Max 0.567 0.461 0.189 0.005 0.519
Min 0.421 0.055 0.143 0.003 0.477
Mean 0.494 0.251 0.166 0.004 0.498
Δ 0.073 0.196 0.023 0.001 0.021

TPSysIR Max 0.459 0.362 0.189 0.004 0 0.551
Min 0.400 0.049 0.123 0.002 0.532
Mean 0.429 0.206 0.156 0.003 0.541
Δ 0.029 0.156 0.033 0.001 0.019

Multimodal expreiment 1

GA Max 0.98 0.48 0.50 0.025 0.0079
Min 0.75 0.12 0.32 0.018 0.0013
Mean 0.86 0.30 0.41 0.006 0.0046
Δ 0.12 0.18 0.09 0.003 0.0033

PSO Max 0.84 0.31 0.47 0.023 0.0100
Min 0.62 0.03 0.16 0.019 0.0031
Mean 0.73 0.17 0.31 0.004 0.0065
Δ 0.11 0.14 0.11 0.002 0.0034

PSO and POWELL Max 0.56 0.24 0.30 0.013 0.0112
Min 0.42 0.05 0.18 0.011 0.0070
Mean 0.49 0.14 0.24 0.004 0.0091
Δ 0.07 0.10 0.06 0.001 0.0021

TPSysIR Max 0.38 0.22 0.25 0.010 0.0136
Min 0.31 0.03 0.21 0.008 0.0098
Mean 0.35 0.13 0.23 0.003 0.0112
Δ 0.03 0.09 0.02 0.001 0.0019

Multimodal experiment 2

GA Max 1.655 1.751 0.965 0.074 0.0191
Min 1.295 1.591 0.074 0.018 0.0071
Mean 1.475 1.671 0.854 0.062 0.0131
Δ 0.180 0.80 0.111 0.012 0.0060

PSO Max 1.126 1.506 0.751 0.060 0.0204
Min 0.862 1.400 0.419 0.043 0.0115
Mean 0.994 1.453 0.585 0.051 0.0160
Δ 0.132 0.053 0.83 0.009 0.0045

PSO and POWELL Max 0.850 1.118 0.452 0.023 0.0225
Min 0.664 1.047 0.353 0.015 0.0147
Mean 0.757 1.082 0.402 0.019 0.0186
Δ 0.093 0.036 0.050 0.004 0.0039

TPSysIR Max 0.503 0.643 0.324 0.012 0.0271
Min 0.381 0.547 0.280 0.010 0.0221
Mean 0.442 0.608 0.242 0.008 0.0246
Δ 0.061 0.035 0.040 0.002 0.0024

Multimodal experiment 3

GA Max 1.122 1.990 0.965 0.617 0.0308
Min 0.810 1.796 0.743 0.578 0.0071
Mean 0.966 1.893 1.204 0.597 0.0235
Δ 0.156 0.097 0.093 0.020 0.0162

PSO Max 1.009 1.838 1.067 0.471 0.0387
Min 0.739 1.445 0.982 0.424 0.0261
Mean 0.874 1.641 0.984 0.447 0.0324
Δ 0.135 0.197 0.083 0.023 0.0063

(Continued on following page)
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the evolution process utilizing the previously obtained locally

optimized solutions.

Experimental setup

All the experiments were conducted using python

(Python Programming Language, 2021) and plingua (P

Lingua Programming Language, 2021) on a platform with

Intel i5 four-core CPU at 2.5 GHz each and 8 gigabytes of

RAM. The image data consisting of standard brain atlas was

obtained from the Montreal Neurological Institute (MNI)

(McConnell Brain Imaging Centre, 2021). The data was

utilized by different optimization-based methods, utilizing

MI as an optimization metric for image registration. The

experiments are divided into two sets; first set of two

experiments utilizes the single modal data and second set

of three experiment utilizes the multimodal data.

Experiments with a single-modal image

1) Experiment 1: The float Figure 7B in this experiment is

created by moving the original Figures 7A, 8 pixel units in x-axis

up direction, six pixel units in y-axis in the left direction, and

rotated 5° in a counterclockwise direction.

2) Experiment 2: The original Figure 7A in this experiment is

moved eight pixel-units in x-axis up direction, six pixel-units in

y-axis, rotated 5° in a counterclockwise direction, and scaled into

0.8 times of its original size to create float Figure 7C.

Experiment with multimodal images

1) Experiment 1: The multimodal image set one contains

images from two different modes, cerebrospinal fluid (CSF)

section T1-weighted MRI Figure 8B having low signal and

T2-weighted Figure 8A having high signal in the CSF section.

T1 in X-Y plane image was utilized to create the float image

Figure 9A after it was panned eight pixel units in x axis in the

upward direction, six pixel units in Y axis in the left direction,

rotated 5° in a counter clockwise direction, and scaled into 0.8 of

its original size.

2) Experiment 2: The multimodal image set two contains

T1 Figure 8C and T2 Figure 8D in the X-Z plane. The float

Figure 10A was created from T2 after it was panned 10 pixel units

in X axis in the upward direction, 13 pixel units in Z axis in the

left direction, rotated 7° in a counter clockwise direction, and

scaled into 1.1 of its original size. T1 is the target image.

3) Experiment 3: The multimodal image set two contains

T1 and T2 images in the Y-Z plane. T1 Figure 8E is the target

image while T2 Figure 8F was utilized as the float image.

Figure 11A was created after it was panned 12 pixel units in

Y axis in the upward direction, nine pixel units in Z axis in the left

TABLE 2 (Continued) With scaling DATA.

Algorithm X − 8 Y − 6 θ − 5 S-1.25 MI

PSO and POWELL Max 0.598 0.523 0.708 0.163 0.0447
Min 0.400 0.377 0.568 0.129 0.0147
Mean 0.499 0.450 0.638 0.146 0.0401
Δ 0.099 0.073 0.070 0.017 0.0355

TPSysIR Max 0.323 0.361 0.531 0.088 0.0544
Min 0.187 0.267 0.460 0.062 0.0476
Mean 0.237 0.314 0.495 0.075 0.0510
Δ 0.086 0.047 0.035 0.013 0.0034

FIGURE 12
Mutual Information ranges in each algorithm for Table 1
single modal experiment 1.
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direction, rotated 10° in a counter clockwise direction, and scaled

into 0.7 of its original size.

Experimental results and analysis

The experiments designed above are applied to the

proposed TPSysIR algorithm along with three other

optimization-based algorithms, GA, PSO, PSO, and

POWELL. The experiments were repeated eight times for

each method, and the maximum and minimum variance

values were recorded and tabulated. MI value was also

calculated for the output configuration on recorded data.

The results for the variance along the X-axis and Y-axis and

rotation angle(θ) are recorded in Table 1 for experiment 1,

utilizing single modal images with no scaling factor. Table 2

shows that scaling factor variance S is considered for

experiment 2 utilizing single modal image data with a

FIGURE 13
(A) Single Modal Experiment 2 Float: row first left. (B) Single Modal Experiment 2 GA output: row first right. (C) Single Modal Experiment 2 PSO
output: row second left. (D) Single Modal Experiment 2 PSO and Powell Output: row second right. (E) Single Modal Experiment 2 TPSysIR Output:
row third center.
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scaling factor. Table 2 with multimodal experiments 1, 2, and

3 utilizes multimodal images for the experiments, and all four

variables are considered.

Table 1 results with no size scaling experiment show that PSO

and POWELL have the lowest mean variance (Mean) and

deviation(Δ) among the results in the Y-axis. TPSysIR has the

lowest variance value on the X-axis and equals the deviation to

PSO and POWELL. The mean rotation variance (θ) is the least in

TPSysIR than all other algorithms including GA, PSO, and PSO and

POWELL. TPSysIR has themaximum values, in mutual information,

of 1.76 and the slightest deviation 0.02. The boxplot Figure 12 shows

that the range ofMI values obtained by PSO and Powell and TPSysIR

is better than other algorithms, but TPSysIR obtains the range of least

deviation. The maximumMI results for TPSysIR has shown 17.93%,

19.58%, and 9.61% improvement against the corresponding

maximumMI values ofGA, PSO, andPSOandPOWELL algorithms.

Table 2 singlemodal experiment 2 data includes the scaling factor

along with all other parameters measured in experiment 1 to obtain

FIGURE 14
Mutual Information ranges in each algorithm for Table 2
single model experiment 2.

FIGURE 15
Mutual Information ranges in each algorithm for Table 2
Multimodal Experiment 1.

FIGURE 16
Mutual Information ranges in each algorithm for Table 2
Multimodal Experiment 2.

FIGURE 17
Mutual Information ranges in each algorithm for Table 2
Multimodal Experiment 3.
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results from all fourmethods. Notably in this experiment 2, the overall

MI is lower than the previous experiment 1 as the similarity between

the original and output image has decreased. The deviation in the

X-axis is least in the TPSysIR algorithm. The deviation angle of

rotation varies from 0.08 to 0.02 for GA to PSO and POWELL and

TPSysIR. TPSysIR has a deviation value of 0.03 but has a lower max

value than PSO and POWELL. The results of the experiments are

shown in Figure 13B–E. PSO and POWELL and TPSysIR did a better

job on image scaling. Mutual interference values show slightly better

results for TPSysIR than PSO and POWELL, whereas other

algorithms such as GA and PSO have lower scores. Angular bias

is present in the output configuration images for GA Figure 13B and

PSOFigure 13C. The boxplot Figure 14 shows that all algorithms gave

minimum deviation in the range of MI values, but the maximum

value range was obtained by TPSysIR to obtain best alignment. The

maximum MI results for TPSysIR have shown 57.14%, 25%, and

7.84% improvement against the corresponding maximum MI values

of GA, PSO, and PSO and POWELL algorithms, respectively.

Table 2 multimodal experiment 1 data shows lower ranges of the

MI values than in previous experiments, expressing further

dissimilarity between the reference and the output image. The

TPSysIR algorithm shows lower deviation values for X, Y, and

rotation angle variance. The scalability factor deviation has relative

range values for PSO and POWELL andTPSysIR, whileMI values are

best for TPSysIR. The boxplot Figure 15 shows that the ranges of MI

values obtained by TPsysIR were the best. The maximum MI results

for TPSysIR has shown 72.15%, 36%, and 21.42% improvement

against corresponding maximum MI values of GA, PSO, and PSO

and POWELL algorithms, respectively. The configuration results

obtained for each method in the experiment for multimodal

images are shown in Figure 9B–E.

Table 2 multimodal experiment 2 contains the data from the

experiment performed over multimodal T1 and T2 images taken in

the X-Z plane. The output in Figure 10B–E shows the output for the

experiment. The table values for GA and PSO variance over X and Z

have significantly higher values than PSO and Powell and TPSysIR.

The MI value shows overlapping ranges for GA, PSO, and PSO and

Powell while TPSysIR has higher ranges, as shown in the boxplot

Figure 16. The TPSysIR has 29.52%, 24.72%, and 16.97% better MI

values than GA, PSO, and PSO and Powell.

Table 2 multimodal experiment 3 data is obtained from the

experiment performed over multimodal T1 and T2 images taken

in the Y-Z plane. The output data for this experiment are shown

in Figures 11B–E. The data shows the variance in Y of GA is the

maximum of all other algorithms, and TPSysIR has the lowest.

The MI range values of GA, PSO, and PSO and Powell show

overlapping, while TPSysIR has a higher range of values. The

same is confirmed in the boxplot in Figure 17. The TPSysIR MI

values are 43.38%, 28.86%, and 17.83% are better than GA, PSO,

and PSO and Powell respectively.

PSO and POWELL has good optimization capability due to

its hybridization to acquire local and global search capabilities.

The TPSysIR algorithm employs the TPS’s parallel execution

capability, optimizing the local search and creating a globally

optimal solution with faster convergence of results.

Conclusion

The method described in this paper utilizes the tissue P

system’s parallel and simultaneous execution feature to guide its

velocity position model-based rules. The novelty of this work is

the use of the TPS, which enables faster convergence and highMI

with the parallel feature using an optimization-based model to

obtain parameters for image registration and the use of the PSO

technique to make the evolution rules. The algorithm is tested on

multimodal and unimodal MRI image sets to verify its

effectiveness. The results of the tests prove it to be a good

optimization-based solution to the image registration problem

compared to other state-of-the-art algorithms.
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Identifying the right accessories for installing the dental implant is a vital element that
impacts the sustainability and the reliability of the dental prosthesis when the medical case
of a patient is not comprehensive. Dentists need to identify the implant manufacturer from
the x-ray image to determine further treatment procedures. Identifying the manufacturer is
a high-pressure task under the scaling volume of patients pending in the queue for
treatment. To reduce the burden on the doctors, a dental implant identification system is
built based on a new proposed thinner VGG model with an on-demand client-server
structure. We propose a thinner version of VGG16 called TVGG by reducing the number of
neurons in the dense layers to improve the system’s performance and gain advantages
from the limited texture and patterns in the dental radiography images. The outcome of the
proposed system is compared with the original pre-trained VGG16 to verify the usability of
the proposed system.

Keywords: VGG, CNN, dental implant, radiography image, implant identification

1 INTRODUCTION

Oral radiography images are widely used in assisting dentists in making judgements on a patient’s
case, evaluating the conditions, and deciding on further treatment or operations that work the best
for the patient. One of the essential steps in observing the oral radiography image is that the dentist
needs to identify which manufacturer is the one who manufactured the particular implant that has
been placed in the patient’s mouth. Identifying the correct implant manufacturer is vital because
different implant manufacturers have different operating procedures and corresponding accessories
for their products. Using the right supplements and operating procedures ensures the dental
prosthesis’s sustainability and reliability. Thus, identifying the dental implant manufacturer from
either the intraoral or the extraoral x-ray image is the key to ensuring the quality of the work.

An intraoral x-ray image is obtained by having a film positioned in the buccal cavity. Unlike the
intraoral x-ray image, an extraoral x-ray image is obtained by positioning the patient between the
x-ray source and the radiographic film. The intraoral technique produces images focusing on a local
region of the mouth, but the extraoral approach provides panoramic x-ray images of the mouth.
Either way, the dentist needs to identify the manufacturer by observing the implant’s characteristics
(Saghiri et al., 2020), shapes (Guarnieri et al., 2019), and patterns (Makary et al., 2019) from the x-ray
image and judge from which manufacturer the implant should be. This can be a high-pressure task
when a large volume of patients are pending in the queue for proper treatments. The chance of

Edited by:
Khin Wee Lai,

University of Malaya, Malaysia

Reviewed by:
Wen Zhang,

Fuzhou University, China
Yinghong Zhou,

The University of Queensland,
Australia

*Correspondence:
Jianbin Guo

jianbin@fjmu.edu.cn

Specialty section:
This article was submitted to

Experimental Pharmacology and Drug
Discovery,

a section of the journal
Frontiers in Pharmacology

Received: 19 May 2022
Accepted: 09 June 2022

Published: 08 August 2022

Citation:
Guo J, Tsai P-W, Xue X, WuD, Van QT,

Kaluarachchi CN, Dang HT and
Chintha N (2022) TVGG Dental Implant

Identification System.
Front. Pharmacol. 13:948283.

doi: 10.3389/fphar.2022.948283

Frontiers in Pharmacology | www.frontiersin.org August 2022 | Volume 13 | Article 9482831

ORIGINAL RESEARCH
published: 08 August 2022

doi: 10.3389/fphar.2022.948283

77

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.948283&domain=pdf&date_stamp=2022-08-08
https://www.frontiersin.org/articles/10.3389/fphar.2022.948283/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.948283/full
http://creativecommons.org/licenses/by/4.0/
mailto:jianbin@fjmu.edu.cn
https://doi.org/10.3389/fphar.2022.948283
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.948283


humans making mistakes under a high-pressure scenario is much
greater than average. Having a support system assisting the
dentists in identifying the implant’s manufacturer is ideal for
lifting the burden on the dentists as a solution for this. Hence,
manymachine learning-based support systems for identifying the
dental implant’s manufacturer and related usability studies have
been proposed in recent years.

The remaining of this article is organised as follows: the related
works are discussed in Section 2, the proposed system model is
revealed in Section 3, the experiments and results are
summarized and discussed in Section 4 and is followed by the
conclusion in Section 5.

2 RELATED WORKS

Training a deep neural network from scratch is heavily resource
consuming. To avoid getting the model with the hard way, using
transfer learning to adjust the model based on a pre-trained
model is a popular solution. For example, Kim et al. test a set of
transfer learning-based systems for identifying the dental implant
in 2020 (Kim et al., 2020). They conclude that the tested
convolutional neural network (CNN) models can properly
classify four dental implants from manufactors of “Brånemark
Mk TiUnite,” “Dentium Implantium,” “Straumann Bone Level,”
and “Straumann Tissue Level” with high accuracy. Some data
augmentation techniques are applied to their collected data set for
preventing overfitting. Their experimental results are produced
by SquuezeNet (Iandola et al., 2016), GoogLeNet (Szegedy et al.,
2015), ResNet (He et al., 2015), and MobileNet-v2 (Sandler et al.,
2018). All models used in their work are pre-trained by ImageNet.
However, image sources collected in ImageNet are natural
images. The pattern and details contained in those images are
very different from and much more complex than those in
medical radiography images. Using a thinner network
structure may already be sufficient for the dental implant
identification task. The terminology “thinner” refers to a
network layer with less neurons and thus the width of a layer
is narrower. A thinner network structure can save much more
resources and computational cost in training and model
deployment.

Sukegawa et al. compare the dental implant classification
results obtained by the basic CNN with three convolution
layers, the VGG16 and the VGG19 models (Sukegawa et al.,
2020). According to their findings, the classification accuracy
before fine-tuning the VGG models is already higher than the
basic CNN model. The accuracy is lifted to above 90% after the
fine-tuning for both VGG16 and VGG19. This result shows the
advantage of using VGG model over the conventional CNN. In
2015, Simonyan and Zisserman conclude that having up to 19
weight layers of the CNN structure is sufficient for the
classification accuracy on the ImageNet challenge dataset
(Simonyan and Zisserman, 2015). Nevertheless, fine-tuning a
deep learning model is highly resource consuming. Lighten the
model to accommodate the radiography images may be a more
efficient solution.

In 2020, Almubarak et al. propose a two-stage mask R-CNN
model for decomposing the object identification task into the
object cropping task and the object classification task in a
sequence (Almubarak et al., 2020). Their approach utilizes the
bounding box and the semantic segmentation output from the
mask R-CNN (He et al., 2020) to locate the target for cropping in
the first stage. The cropped target is sent to the second stage as the
input for classification. The drawback of this method is that it
requires the annotation mask to indicate the ground truth for
training. The annotation is highly labor demanded and thus is less
preferred in many applications. Besides, the quality of the
annotation is vital to the model accuracy. Keeping the
annotation in the same quality level is also challenging.

Vuola et al. utilize the ensemble learning technique to
aggregate the output from a mask R-CNN and a U-Net
(Ronneberger et al., 2015) in the nuclei segmentation
application (Vvola et al., 2019). Their finding indicate that the
mask R-CNN and the U-Net models make mistakes in different
parts of the input image. Thus, using ensemble learning to
integrate their output provides a better result in the nuclei
segmentation task. Although their experiment is carried out
with the fluorescence and histology images, similar experience
is potential to be taken in use in the dental implant application
as well.

In 2022, Liu et al. use R-CNN to detect marginal bone loss
around dental implants (Liu et al., 2022). They find that their
model output performs similarly to the resident dentist but is less
accurate than the experienced dentist. The reason could be that
the model is yet fine-tuned. With proper fine-tuning and
optimization, the model is expected to be improved.
Moreover, R-CNN model has been improved from the original
version to the fast R-CNN, the faster R-CNN, and the current
state-of-the-art: the mask R-CNN. By using the more advanced
model, the result should be lifted to the next level.

Summarizing the lesson learned from the related works, we
notice that the radiography image has more minor features and
patterns than the natural image. This implies that a thinner
network structure may already be sufficient to complete the
task. The observed knowledge inspired us to simplify the
complexity of the VGG structure for our system.

3 PROPOSED METHOD

Our goal in this work is to create a support system for the dentist
to quickly identify the dental implant manufacturers from the
x-ray image automatically. With the output from the support
system, the dentist only needs to verify whether the result is
correct rather than identifying the manufacturer with no
reference information. Furthermore, considering the x-ray
image is relatively monotone than the natural image, we
expect a thinner network structure can accommodate the
given task. Thus, we build a thinner VGG16 network called
TVGG16 with a reduced number of neurons in the dense
layers to reduce the computational cost. Figure 1 shows the
diagram of the proposed dentist supporting system.
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To make the system user friendly, the system is equipped with
a graphical user interface (GUI), which is built by JavaScript with
React plus the Flask API with Python. The model training is

completed offline. The trained model is stored and loaded on the
server. When the user inputs a dental x-ray image, the GUI offers
cropping boxes for users to pinpoint the region of interest (RoI).

FIGURE 1 | Proposed supporting system diagram.

FIGURE 2 | GUI of the proposed system (A) is the entry GUI (B) is the model selection and RoI specification GUI.

Frontiers in Pharmacology | www.frontiersin.org August 2022 | Volume 13 | Article 9482833

Guo et al. TVGG Dental Implant Identification System

79

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


The copped image is further resized to fit the model’s input and is
uploaded from the client to the server for manufacturer
identification. The identification results are collected from the

enabled models, stacked up as the final result, and returned to the
user with probabilities corresponding to different manufacturers.
The back-end, including model building, training and test, are

FIGURE 3 | Result presentation GUI.

FIGURE 4 | Network layout comparison (A) is the network layout of the conventional VGG16 (B) is the network layout of the TVGG (C) is the legend.
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processed via Python with Google Colab as the IDE. Amazon
Web Services (AWS) is used to host the server and the
database. The database stores the information about the
RoIs and the information will be used if a user latches a
ticket for correcting the identification result. The server is
used to store the trained models and to process the user-input
test image. Users can hook up to the system via any web
browser and connect to the web server to pass the submitted
test image to the back-end process. The GUI guides the user
through the process of choosing the test images and the RoIs.
The identification result will then be returned and displayed in
the browser. Since the built-in models are treated as on-
demand modules to be loaded depending on whether the
user chooses to include them in the identification process,
the designed system can be easily scaled up by integrating new
models in the back-end. More details of the components in the
proposed system are given in the following subsections.

3.1 Graphical User Interface
Considering the potential users of the proposed support system
are not from the computer science background, a user-friendly
interface is essential to lift the system’s usability. Hence, the
system is designed with a GUI instead of a command line-based
interface. Figure 2A demonstrates the GUI of the system for users
to upload the x-ray image, and select the size of the bounding box.
Figure 2B shows the GUI for users to indicate the RoI and select
models. Two standard sizes, e.g. 224 × 224 and 256 × 256 of the
RoI are built into the system to match the input image size of the
pre-trained models. After uploading the x-ray image, users can
drag on the interface to draw the user-defined RoIs. Once the RoIs
are drawn, the cropping function is triggered automatically and
resizes the RoIs to fit in the model input size. Users can then tick
the boxes to select which models are employed in the

identification process. Users can delete the RoIs or the
uploaded image anytime before submitting them to the system
by clicking the bin icon.

After the user clicks on the submission button, the RoIs are fed
into the selected models on the server. After all models complete
their prediction, the probabilities output from the selected models
are returned for displaying on the system interface (see Figure 3).
If the user clicks on the home button, the system returns to the
entry page and stand-by to receive other dental x-ray images.

3.2 Thinner VGG (TVGG)
We choose VGG to be our base model for implementation
because the existing study shows that VGG has more advantages
in terms of energy consumption than other models (Canziani et al.,
2017). As mentioned in Section 2, the monotone texture and
patterns in the dental x-ray image caught our attention, and we
assume that a simplified network structure is sufficient to cope with
the implant manufacturer identification task. Nevertheless, adopting
pre-trained models also has a strong point in reducing the training
cost. If we remove layers in the model, we will need to start the
training from scratch, which is much more resources and power-
hungry than adopting the pre-trained model and performing fine-
tuning. Aside from fine-tuning, we use the well-known dropout
technique (Srivastava et al., 2014) as the tool to thinner the width of

FIGURE 5 | Confusion matrices (A) is obtained by VGG16 (B) is obtained by VGG16-GAP (C) is obtained by TVGG15.

TABLE 1 | Evaluation matrices of all class.

Model Bego Bicon Straumann

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

VGG16 0.33 1.00 0.50 0 0 0 0 0 0
VGG16-GAP 0.66 0.90 0.76 0.98 0.57 0.73 0.78 0.82 0.80
TVGG15 0.70 0.92 0.79 0.96 0.68 0.80 0.80 0.78 0.79

The bold values represents those presents the best across all methods.

TABLE 2 | Model training information.

Precision Recall F1-score

VGG16 0.11 0.33 0.17
VGG16-GAP 0.81 0.77 0.76
TVGG15 0.82 0.79 0.79

The bold values represents those presents the best across all methods.
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the dense layers. Dropout was originally proposed to prevent the
network goes into overfitting. We adopt this technique but use its
concept in removing neurons in the dense layers. Thus, this results in
the dense layer in themodified VGG, e.g. the TVGGhasmuch fewer
neurons in the last few layers.

Figure 4A shows the conventional VGG16 layout (Simonyan
and Zisserman, 2015), Figure 4B reveals our proposed TVGG
layout, and Figure 4C presents the legend. Since the pre-trained
VGG16model is adopted as the base model, weights on the first-five
convolution blocks are frozen in the training process. Only the
weights on the full-connection layers are updated. Moreover, we
replaced the original full connection layers from the flatten layer
followed by three dense layers to the compact structure composed of
the global average pooling and two dense layers. The dense layer size
is also reduced by dropping out more than three-fourths of neurons.

4 EXPERIMENTS AND RESULT
DISCUSSIONS

The experiments are conducted in Python with Google Colab.
The training environment contains two virtual CPUs, 24GB

RAM, 150 GB storage space, and GPUs of K80, P100, and T4.
Python libraries used in constructing the models include
Tensorflow and Keras. Details of the experiment contents
are described below.

4.1 Dataset
The dental x-ray images are collected at Fujian Medical
University - Fujian Stomatological Hospital in P.R. China. It
contains three classes of the dental implant manufacturer,
namely, the Bego, the Bicon, and the Straumann, with 850,
892, and 527 x-ray images for the corresponding groups,
respectively. This dataset is a hybrid of intraoral and extraoral
x-ray images. Each of the classes contains both types of images.
All collected x-ray images are containing implants from a single
manufacturer. Mixture cases are not included in the collection.

4.2 Experiment Design
To ensure we have a balanced dataset across images from all
manufacturers, data augmentation methods are used to expand
the volume of the dataset to ensure all classes have the same
quantity of data. Moreover, having data augmentation involved
in the process helps avoid the overfitting issue. The methods
used in the data augmentation process include a random
rotation between [−π

9,
π
9] degrees, object shifting in both

vertical and horizontal directions within a 20% range,
cropping and zooming both within 20% range, and
horizontal flipping. With the help of the data augmentation,
our model is capable of adopting the implant facing multiple
directions. Thus the RoIs are not rotated to a specific angle in the
test phase of our design. In the end, we have 550, 185, and 200
images for training, validation, and test, respectively, for
each class.

FIGURE 6 | Identification accuracy across all models.

TABLE 3 | Model training information.

VGG16 VGG16-GAP TVGG15

Occupied Storage 1.38 GB 272.4 MB 62.3 MB
Training Time (hours) 6.04 5.81 5.78
Best Training Accuracy 0.33 0.91 0.92
Best Validation Accuracy 0.33 0.88 0.89

The bold values represents those presents the best across all methods.
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The structure of the conventional VGG16 and our proposed
TVGG is described in Section 3.2. We add another VGG16 model
for comparison but replace the flatten layer with the global-
average-pooling to have more models for comparison. The
Adam optimization is used in all models in the training phase.

4.3 Evaluation Criteria
The common evaluation criteria in classification, including
precision, recall, f1-score, and accuracy, are used to quantify
the experimental results. Let TP, FP, TN, and FN represent the
true positive, false positive, true negative, and false negative,
respectively; these matrices can be calculated by Eqs 1–4.

Precision � TP

TP + FP
(1)

Recall � TP

TP + FN
(2)

F1 − score � TP

TP + 0.5 × FP + FN( ) (3)

Accuracy � TP + TN

TP + TN + FP + FN
(4)

4.4 Experiment Results and Discussions
We use VGG16, VGG16-GAP, and TVGG15 to indicate the
conventional VGG16 model, the conventional VGG16 but
replacing the flatten layer with global-average-pooling, and the
thinner VGG, respectively. Figure 5 shows the confusion
matrices from all models.

Our dataset size is relatively small compared to other studies.
Figure 5A shows that using a small dataset to fine-tune the pre-
trained VGG16 is not feasible because the training data volume is
insufficient to support the tuning on a large scale of weights. Thus,
we create the VGG16-GAP model to give the network a boost.
From Figure 5B, the improvement is observable by the eye, and the
correct classification results start to go across all classes. On the
other hand, in the TVGG15 model, the correctly classified results
(see Figure 5C) are getting higher than in the VGG16-GAPmodel.

Table 1 reveals the values from the evaluation matrices
obtained by different implant manufacturers, namely, Bego,
Bicon, and Straumann, respectively. The bold font marks the
model performing the best in the column. It is observable that
TVGG15 owns the most counts of achieving the best. The average
performance across all classes is summarized in Table 2.

Figure 6 shows the accuracy calculated from the test results.
TVGG15 presents the highest accuracy while VGG16-GAP
achieves the second.

Table 3 shows the resource occupation, the training cost, and
the training outcomes recorded by executing 200 epochs for each
model. We can see that the TVGG15 model size is 2, 215 times
less than VGG16 and 4.37 times less than VGG16-GAP. This
compact characteristic gives TVGG15 an advantage in deploying
the client-server internet environment. Moreover, by using the
same resources for training the model, the training time of
TVGG15 is reduced 4.3% than VGG16. The TVGG15 model
also achieved the highest best training and validation accuracy.

5 CONCLUSION

In this work, we create a dentist supporting system for automatic
dental implant manufacturer identification from the dental x-ray
images. The proposed system uses the TVGG15 model, which is an
improved version from the VGG16model pre-trained by ImageNet.
The experiment results indicate that the pre-trained VGG16 is too
large to be fine-tunedwith the available quantity of data in our study.
However, the proposed TVGG15 presents a satisfactory result in the
case that the available training data is limited. Moreover, the
proposed model occupies 2, 215 times less storage resource for
preserving the model parameters given that the structure is not only
more compact but also much thinner than the conventional VGG16
model. To gain the advantage of using a pre-trained model, the
modification is only applied to the full connection layers in the CNN
structure.

The dataset used in the experiment contains dental implants from
a single manufacturer in each x-ray image, and thus no mixture case
is included. However, our proposed system crops images into
multiple RoIs. Even if there is an x-ray image containing a
mixture of dental implants from numerous manufacturers, the
proposed system should also present its performance as stable on
the same level as in the current experiments.

In terms of building an application system, we see the potential
to adopt the ensemble learning structure into the system back-
end to increase the number of available candidate models in the
future work. Heterogeneous models are more preferred because
they can discover different characteristics of the input data.
Moreover, we plan to remove the option for selecting the RoI
cropping size in the GUI and only keep the one to a greater extent.
Although different pre-trained models may require other input
image sizes, the smaller RoI can be obtained by applying proper
down-sampling techniques in the back-end and automatically
satisfying this need. Furthermore, we plan to use some intelligent
optimization methods to extend the modifiable parameters from
the dense layers to the convolutional layers. This is a potential
way to further imporve the performance of the models without
retrain the whole models.
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Transjugular intrahepatic
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prevention of rebleeding in
patients with cirrhosis and portal
vein thrombosis: Systematic
review and meta-analysis
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Background: Transjugular intrahepatic portosystemic shunt (TIPS) has been

performed on patients with cirrhosis and portal vein thrombosis (PVT) to

prevent rebleeding; however, the associated evidence is scarce. Hence, the

study aimed to evaluate the feasibility and efficacy of TIPS in patients with

cirrhosis and PVT and promote personalized treatment in such patients.

Methods: Literature was systematically obtained from PubMed, EMBASE,

Cochrane Library, and Web of Science. Data from the included studies were

extracted, and meta-analyses by the random effects model were used to pool

data across studies. Heterogeneity was assessed using Cochran’s Q and I2

statistics. The source of heterogeneity was explored using subgroup

analyses and meta-regressions.

Results: A total of 11 studies comprising 703 patients with cirrhosis and portal vein

thrombosis (PVT: complete, 32.2%; chronic, 90.2%; superior mesenteric vein or

splenic vein involvement, 55.2%; cavernous transformation, 26.8%) were included.

TIPS showed feasibility in 95%of the cases (95%confidence interval [CI]: 89%–99%)

with heterogeneity (I2 = 84%, p < 0.01) due to cavernous transformation. The

pooled rebleeding ratewas 13% (95%CI: 7%–20%)with heterogeneity (I2 = 75%, p <
0.01) explained by chronic PVT and anticoagulation (AC) therapy. Hepatic

encephalopathy occurred in 32% of patients. The survival rate, portal vein

recanalization rate, and shunt patency rate were 80%, 82%, and 77%, respectively.
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Conclusion: TIPS is feasible and effectively prevents rebleeding in patients with

cirrhosis and PVT, regardless of cavernous transformation of the portal vein.

Due to a potentially high risk of rebleeding and no apparent benefits of AC, post-

TIPS AC must be employed cautiously.

Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/

display_record.php?RecordID=258765], identifier [CRD42021258765].

KEYWORDS

transjugular intrahepatic portosystemic shunt, liver cirrhosis, portal vein thrombosis,
meta-analysis, systematic review

Introduction

Non-neoplastic portal vein thrombosis (PVT) is a prevalent

complication of liver cirrhosis, with incidence rates ranging from

10% to 23% (Qi et al., 2014; Harding et al., 2015). PVT raises

portal vein pressure and reduces blood flow to the liver,

worsening liver function, which is a hallmark of poor

outcomes (Englesbe et al., 2010a; Werner et al., 2013). In

addition, PVT increases mortality after liver transplantation

and contraindicates the procedure when the thrombus extends

to the superior mesenteric or splenic vein (Englesbe et al., 2010b).

Variceal bleeding (VB) is a life-threatening complication with a

6-weeks mortality rate of 20% (Sarin et al., 2011). PVT increases

the threat of VB and sometimes death by potentially increasing

the portal vein pressure (Englesbe et al., 2010a).

At present, no consensus or guideline elucidates the optimal

prophylactic treatment for patients with cirrhosis with VB and PVT.

Standard treatments, including endoscopic treatments such as

endoscopic band ligation and non-selective beta-blockers (NSBB),

provide an effect to achieve immediate hemostasis andmaximize the

prevention of rebleeding (de Franchis, 2015). Transjugular

intrahepatic portosystemic shunt (TIPS) is advised when patients

fail to respond to endoscopic therapy andNSBB (de Franchis, 2015).

Studies have reported that patients with cirrhosis and PVT require

long time to achieve complete variceal eradication (Englesbe et al.,

2010a; Dell’Era et al., 2014). Moreover, PVTmay aggravate VB after

endoscopic variceal ligation (Huang et al., 2020). Endoscopic

treatments such as endoscopic band ligation are disconnection

procedures that increase portal vein pressure. The side effects of

NSBB treatment may lead to thrombus formation by reducing

splanchnic blood flow (Groszmann et al., 2005). Hence, the

standard treatments have limitations.

Recent advances in interventional radiological techniques and

refinement of stent materials could facilitate the use of TIPS in

complex cases, even with cavernous transformation of the portal

vein (CTPV), which has been viewed as a contraindication in the

past (Boyer and Haskal, 2010; Han et al., 2011). Studies have

investigated the efficacy and safety of TIPS in patients with

cirrhosis and PVT (Van Ha et al., 2006; Han et al., 2011; Luca

et al., 2011; Luo et al., 2015; Wang et al., 2015; Lakhoo and Gaba,

2016; Qi et al., 2016; Wang et al., 2016; Luo et al., 2018; Lv et al.,

2018; Lv et al., 2021). Two randomized clinical trials (RCT) reported

that TIPS placement effectively prevented recurrent VB in patients

with cirrhosis and PVT (Luo et al., 2015; Lv et al., 2018).

However, implementation of TIPS in a clinical setting is low

due to the lack of consensus on the details of TIPS in preventing

rebleeding in patients with cirrhosis and PVT. Hence, the present

study conducted a systematic review and meta-analysis on the

feasibility and efficacy of TIPS in preventing rebleeding in

patients with cirrhosis and PVT to facilitate personalized

treatment.

Methods

This systematic review was conducted according to the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses statement and registered with PROSPERO (CRD

42021258765) (Page et al., 2021).

The following definitions were adopted in the study: Complete

PVT was defined as an occlusion that occupied the entire crucial

portal vein vessel lumen. Chronic PVT was defined as the presence

of portal cavernoma, replacement of the original principal portal

vein with a fibrotic cord, or a low intraluminal density on contrast-

enhanced computed tomography (CT) (Lv et al., 2018). Post-TIPS

anticoagulation (AC) was defined as a long-term AC (warfarin and

other anticoagulant drugs for at least 6 months) after TIPS.

Technical feasibility was defined as successful access to the portal

vein, formation of an intrahepatic shunt between the hepatic and

portal veins, and placement of stents. Recanalization was defined as

the complete disappearance of the previous thrombosis.

Search strategy

PubMed, Cochrane Library, EMBASE, andWeb of Science were

searched systematically from the inception to October 2021. Search

terms, such as liver cirrhosis, hepatic fibrosis, and portal vein

thrombosis, were devised for the population, whereas TIPS and

transjugular intrahepatic portosystemic shunt were devised for the

intervention. The medical subject heading, Embase subject heading,

and free text terms were used to maximize search sensitivity.
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Study selection and data extraction

The inclusion and exclusion criteria were predefined to reduce

the risk of bias. The inclusion criteria were as follows: 1) patients

with cirrhosis and PVT diagnosed using imaging; 2) patients

receiving TIPS to treat VB; and 3) reported rebleeding and

clinical outcomes. The exclusion criteria were as follows: 1)

letters, editorials, case reports, reviews, and animal experiments;

2) studies unavailable in English or Chinese; 3) patients with cancer

or Budd–Chiari syndrome; 4) exclusively postoperative PVT; 5)

follow-up period <6 months; and 6) insufficient outcome data. The

articles with the highest number of cases or the most applicable

information were selected in the case of studies with multiple

publications. Two authors, D.F. Guo and L.W. Fan screened the

titles and abstracts identified in the literature search and scrutinized

the potentially eligible studies by reading full texts, extracting the

following information: 1) Characteristics of the included studies and

patient populations: first author, publication year, country, study

design, and the number of patients, age, sex, etiology of cirrhosis,

Child-Pugh classification, Model for end-stage liver disease score,

and thrombosis characteristics; 2) characteristics of TIPS placement:

indication for TIPS, approach to the portal vein, types of stents,

related AC therapy, portosystemic pressure gradient (PPG)

reduction, and additional procedures; and 3) clinical follow-up:

the number and proportion of patients with rebleeding, hepatic

encephalopathy (HE), survival, recanalization, shunt patency, and

technical feasibility. Moreover, relevant information was obtained

from the authors whose studies lacked critical information.

Most discrepancies in opinions were resolved through

discussion between the two authors. If unresolved, the opinion

of the third author (C.B. Huang) was sought.

Quality assessment

D.F. Guo and L.W. Fan independently assessed all the included

articles. The quality assessments for non-randomized and randomized

studies were conducted using the risk of bias in non-randomized

studies of interventions tool (Sterne et al., 2016) and the Cochrane risk

of bias 2.0 tool (Sterne et al., 2019), respectively.

Statistical analysis

A meta-analysis was performed to devise the pooled

proportions and 95% confidence interval (CI), followed by

Freeman–Tukey double arcsine transformation of the raw

proportions (Barendregt et al., 2013). Assuming that

heterogeneity was present among the participant studies,

calculations were determined using the random effects model.

Heterogeneity among studies was evaluated using the Cochran’s

Q test (p < 0.1 was considered significant) and I2 statistic (values of

25%, 50%, and 75% indicated low, moderate, and high degrees of

heterogeneity, respectively) (Higgins et al., 2003; Huedo-Medina

et al., 2006). Potential factors associated with the heterogeneity were

examined using subgroup analysis and a meta-regression model.

Several predefined potential confounders were considered in the

subgroup analysis and meta-regression model: study design, the

proportions of complete and chronic PVT, CTPV, superior

mesenteric vein (SMV), or splenic vein (SV) involvement,

covered stent, approach to PV, and post-TIPS AC. Publication

bias was assessed using Egger’s linear regression test and funnel plot

(the number of included studies was ≥10). Statistical analysis was
performed using the R software (version 4.1.0; R Foundation Inc.;

http://cran.r-project.org/).

Results

Study selection and quality assessment

After the initial search, 1,439 citations were retrieved from

the database. After removing the duplicate results, 986 records

were selected for screening. Of these, 11 full-text articles followed

the predefined criteria and were included in the meta-analysis

(Van Ha et al., 2006; Han et al., 2011; Luca et al., 2011; Luo et al.,

2015; Wang et al., 2015; Lakhoo and Gaba, 2016; Qi et al., 2016;

Wang et al., 2016; Luo et al., 2018; Lv et al., 2018; Lv et al., 2021).

A flowchart illustrating the study selection process is shown in

Figure 1. The quality of the studies was estimated, and the risk of

bias is shown in Supplementary Figure S1.

Characteristics of included studies and
patients

As shown in Table 1, 11 studies (3 RCT and 8 observational

studies) published over the last 15 years were included in the

meta-analysis. Eight, two, and one studies were performed in

China, America, and Italy, respectively. Many studies were

excluded due to the inclusion of cancer or Budd–Chiari

syndrome. Most studies reported that the leading etiology of

cirrhosis is viral hepatitis. PVT was complete and chronic in

32.2% and 90.2% of cases, respectively, SMV or SV involvement

was present in 55.2% of cases, and cavernous transformation was

observed in 26.8% of cases.

Application of TIPS technique and its
technical feasibility

As shown in Table 2, the main indication for TIPS was portal

hypertension, a complication of cirrhosis. Two studies reported

an additional indication of maintaining the portal vein patency

before liver transplantation. All studies included patients with

VB. Other complications, such as refractory ascites and
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refractory hydrothorax, were also observed. In five studies, the

traditional transjugular approach to the portal vein was used, and

in one study, the transhepatic approach was used. In the other

five studies, the transhepatic/transsplenic approach to the portal

vein was used when the traditional transjugular approach failed.

In nine studies, concomitant variceal embolization and local

thrombolysis were employed. In two studies, the bare-metal

stents to complete shunt creation were employed, whereas, in

nine studies, covered stents were employed. Different covered

stents, including the viatorr, fluency, and unspecified expanded

polytetrafluoroethylene stent grafts, were employed in the

studies. In seven studies, post-TIPS AC was used.

Anticoagulant methods included oral warfarin and low-

molecular-weight heparin. PPG reduction ranged from 10 to

19 mm Hg.

The forest plot showed the feasibility rate for each study and

a pooled rate of 95% (95% CI: 89%–99%) with high

heterogeneity (I2 = 84%, p < 0.01) (Figure 2). The rate in the

studies that excluded patients with CTPV increased to 100%

(95% CI: 98%–100%) without heterogeneity (I2 = 0%, p = 0.94).

A similar result was found in five studies using only the

transjugular approach, with the pooled rate of 100% (95%

CI: 98%–100%) without heterogeneity (I2 = 0%, p = 0.98).

The subgroup analyses are shown in Figure 3. Publication

bias was not significant (Egger’s test, z = 1.02, p = 0.33)

(Supplementary Figure S2A).

FIGURE 1
Flowchart showing the selection of studies for the present systematic review and meta-analysis.
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TABLE 1 Characteristics of the included studies and patient populations.

Study Country Design Patients
number

Male
(%)

Age Etiology,
viral/
other

Child-
pugh
A/B/C

MELD
score

Characteristics of PVT

Complete(%) Chronic
(%)

SMV or
SV(%)

CTPV
(%)

Lv et al. (2021) China Prospective 324 195 (60.2) 52.6 264/60 102/183/39 11.8 94/324 (29.0) N/A 192/324 (59.3) 107/324 (33.0)

Luo et al. (2018) China Retrospective 24 19 (79.2) 44.6 17/7 7/14/3 10.7 24/24 (100.0) 24/24 (100.0) 3/24 (12.5) N/A

Lv et al. (2018) China RCT 24 13 (54.2) 49.0a 21/3 9/13/2 12.0a 8/24 (33.3) 22/24 (91.7) 22/24 (91.7) 11/24 (45.8)

Wang et al. (2016) China RCT 64 38 (59.4) 54.8 53/11 24/32/8 10.8 N/A 61/64 (95.3) 24/64 (37.5) 4/64 (6.3)

Qi et al. (2016) China Prospective 51 31 (60.8) 51.5 35/16 8/34/9 8.1 23/51 (45.1) N/A N/A 24/51 (47.1)

Lakhoo and Gaba, (2016) America Retrospective 12 5 (41.7) 63.0a 3/9 4/5/3 15.0a 0/12 (0) 7/12 (58.3) 9/12 (75.0) 0/12 (0)

Wang et al. (2015) China Retrospective 25 22 (88.0) 47.3 22/3 3/20/2 12.0 2/25 (8.0) 25/25 (100.0) 4/25 (16.0) 0/25 (0)

Luo et al. (2015) China RCT 37 19 (51.4) 50.8 30/7 0/25/12 14.2 13/37 (35.1) 37/37 (100.0) N/A 0/37 (0)

Luca et al. (2011) Italy Retrospective 70 47 (67.1) 55.0 43/27 17/42/11 11.6 24/70 (34.3) 52/70 (74.3) 52/70 (74.3) 2/70 (2.9)

Han et al. (2011) China Retrospective 57 20 (35.1) 50.0 40/17 25/26/6 N/A 14/57 (24.6) 57/57 (100.0) N/A 30/57 (52.6)

Van Ha et al. (2006) America Retrospective 15 12 (80.0) 53.0a N/A 0/11/4 18.3 4/15 (26.7) 11/15 (73.3) 2/15 (13.3) 4/15 (26.7)

MELD, Model for End-Stage Liver Disease; PVT, portal vein thrombosis; SMV, superior mesenteric vein; SV, splenic vein; CTPV, cavernous transformation of portal vein; RCT, randomized controlled trail; N/A, not accessible.
aData was expressed as median.
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Rebleeding

All studies reported the overall rebleeding rate ranging from

0% to 27.9% (Table 3). The pooled rebleeding rate was 13% (95%

CI: 7%–20%) with high heterogeneity (I2 = 75%, p < 0.01)

(Figure 4). The rebleeding rate in four studies that exclusively

included patients with chronic PVT increased to 23% (95% CI:

16%–31%) without heterogeneity (I2 = 0%, p = 0.89). Studies that

involved not less than 90% of patients receiving AC showed an

elevated pooled rebleeding rate of 23%. No heterogeneity was

observed in this subgroup (I2 = 0%, p = 0.96). Other factors

associated with the heterogeneity were not confirmed. The

subgroup analyses are shown in Figure 5. Funnel plot and

Egger’s test (z = 0.07, p = 0.94) showed no significant

publication bias (Supplementary Figure S2B).

Hepatic encephalopathy and survival

HE incidence was reported in 8 of 11 studies and varied

among studies, ranging from 14% to 60.5% (Table 3). The

pooled rate was 32% (95% CI: 24%–42%) with moderate

heterogeneity (I2 = 69%, p < 0.01) (Figure 6). The

remaining studies, excluding those that included patients

with chronic PVT, showed an HE incidence of 26% (95%

CI: 19%–33%) with no heterogeneity (I2 = 0%, p = 0.38).

Regarding the extent of PVT, the HE incidence was lower in

studies that included 30% of patients with SMV or SV than

that in the remaining studies (20% vs. 29%, respectively).

Heterogeneity among these studies was not significant (I2 =

0%, p = 0.87). The HE incidence was 30% (95% CI: 22%–39%)

in studies using post-TIPS AC with low heterogeneity (I2 =

10%, p = 0.34). These subgroup analyses are shown in

Supplementary Figure S3. The publication bias was not

examined due to the low number of studies.

All 11 studies were included in the meta-analysis of survival

rates. The pooled survival rate for all studies was 80% (95% CI:

71%–87%) with high heterogeneity (I2 = 78%, p < 0.01)

(Figure 7). In the studies using post-TIPS AC, the survival

rate was similar (76%; 95% CI: 68%–84%) with low

heterogeneity (I2 = 19%, p = 0.31). These subgroup analyses

are shown in Supplementary Figure S4. Egger’s test (z = 0.30,

TABLE 2 Characteristics of TIPS placement.

Study Indication for
TIPS

Approach
to PV

Additional
procedure

Covered
stents (%)

AC
post-
TIPS
(%)

AC
methods

PPG (mmHg)

Before
TIPS

After
TIPS

Reduction

Lv et al.
(2021)

PH complication TJ, TH, TS Some used variceal
embolization

285/285
(100.0)

197/285
(69.1)

Oral warfarin 23.0 8.3 15.7

Luo et al.
(2018)

PH complication TH Some used variceal
embolization

22/22 (100.0) 21/22
(95.5)

LMWH, oral
warfarin

22.0 10.6 11.4

Lv et al.
(2018)

PH complication TJ, TH, TS 5 used local
thrombolysis, 7 used
variceal embolization

23/23 (100.0) 21/23
(91.3)

LMWH, oral
warfarin

27.7 8.7 19.0

Wang et al.
(2016)

PH complication TJ some used mechanical
lysis with a balloon
catheter

64/64 (100.0) 31/64
(48.4)

LMWH, oral
warfarin

21.2 9.8 11.4

Qi et al.
(2016)

PH complication TJ, TH, TS 26/43 (60.5) 0/43 (0) N/A N/A N/A

Lakhoo
and Gaba,
(2016)

PH complication,
PV patency pre-LT

TJ 3 used variceal
embolization

12/12 (100.0) 0/12 (0)a 18.0 8.0 10.0

Wang et al.
(2015)

PH complication TJ some used variceal
embolization

25/25 (100.0) 25/25
(100.0)

Oral warfarin 20.4 9.1 11.3

Luo et al.
(2015)

PH complication TJ 21 used variceal
embolization

37/37(100.0) 37/37
(100.0)

LMWH, oral
warfarin

27.5 10.4 17.1

Luca et al.
(2011)

PH complication,
PV patency pre-LT

TJ 1 used variceal
embolization

57/70 (81.4) 0/70 (0) 20.8 8.5 12.3

Han et al.
(2011)

PH complication TJ, TH, TS 0/43 (0) 43/43
(100.0)

LMWH, oral
warfarin

25.7 14.0 11.7

Van Ha
et al. (2006)

PH complication TJ, TH 1 used local
thrombolysis

0/13 (0) 0/13 (0)a 20.0 8.0 12.0

TIPS, transjugular intrahepatic portosystemic shunt; PV, portal vein; AC, anticoagulation; PPG, portosystemic pressure gradient; PH, portal hypertension; TJ, transjugular; TH,

transhepatic; TS, transsplenic; LT, liver transplantation; LMWH, low-molecular-weight heparin; N/A, not accessible.
aAnticoagulant time was less than 6 months.
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p = 0.77) showed no significant publication bias

(Supplementary Figure S2C).

Portal vein recanalization and shunt
patency

Eight studies reported data on complete recanalization. The

recanalization rate ranged from 57.1 to 93.7%, with a pooled rate

of 82% (95% CI: 67%–93%; I2 = 92%) (Supplementary Figure S5).

The recanalization rate of studies involving at most 30% of

patients with SMV or SV was 81% (95% CI: 71%–88%).

Heterogeneity among these studies was not significant (I2 =

0%, p = 0.38). The subgroup analysis is shown in

Supplementary Figure S6. The publication bias was not

estimated since the number of studies was <10.
Shunt patency rates were reported in 10 studies, and the

pooled rate was 77% (95% CI: 69%–83%; I2 = 63%)

(Supplementary Figure S7). Egger’s test (z = 0.22, p = 0.83)

showed no significant publication bias (Supplementary

Figure S2D).

Subgroup analysis

The studies were divided into subgroups based on the

distribution of observed characteristics, as shown in Figures 3,

5. All other subgroup analysis results, which have been discussed

above, are provided in the Supplementary Figures.

Meta-regression analysis

Meta-regression was performed on technical feasibility,

rebleeding, and survival. As shown in Table 4, a transhepatic/

transsplenic approach to the portal vein was significantly

associated with a decreased technical feasibility rate. In

contrast, AC therapy post-TIPS was significantly associated

with a higher rebleeding rate. Due to insufficient data, the

meta-regression analysis was not conducted for other factors

and outcomes.

Discussion

The present systematic review and meta-analysis

comprehensively and strictly examined three RCT and eight

non-RCT studies to evaluate the feasibility and efficacy of

TIPS in preventing rebleeding in patients with cirrhosis and

PVT. The pooled analyses revealed that TIPS implantation was

significantly feasible in most cases (95%). Regarding the clinical

outcome, the pooled rebleeding rate was 13%, HE incidence was

32%, survival rate was 80%, recanalization rate was 82%, and

shunt patency rate was 77%. These results showed that TIPS was

significantly associated with effective prevention of rebleeding

and high survival rate.

A previous meta-analysis of 12 studies designed to investigate

the outcome of TIPS in patients with cirrhosis and PVT

suggested that portal hypertension-associated complications

are indications for TIPS (Zhang et al., 2021). The present

FIGURE 2
Forest plots for pooled rates of technical feasibility.
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study had some limitations. First, the low number of records

available through database search showed that a comprehensive

literature search was not performed, potentially producing biased

results. Second, high heterogeneity in several analyses may have

hindered the robust conclusions and recommendations.

Unfortunately, the potential sources of heterogeneity and

rebleeding-related clinical outcomes were not identified and

discussed. Hence, further investigation is warranted to

estimate the real benefit of TIPS before its widespread

application.

FIGURE 3
Subgroup analysis of technical feasibility by study design, proportion of complete and chronic PVT, proportion of CTPV, proportion of
involvement of SMV or SV, indication of TIPS, approach to PV, proportion of covered stent, and proportion of post-TIPS AC.
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TABLE 3 Clinical follow-up.

Study Technical
feasibility (%)

Rebleeding
(%)

HE
(%)

Survival (%) Complete
recanalization (%)

Shunt
patency (%)

Follow-up
time
(months)

Lv et al. (2021) 285/324 (88.0) 41/285 (14.4) 82/285
(14.0)

210/285 (73.7) 267/285 (93.7) 217/285 (76.1) >6.0

Luo et al. (2018) 22/24 (91.7) 4/22 (18.2) 4/22
(18.2)

19/22 (86.4) N/A 17/22 (77.3) 34.0

Lv et al. (2018) 23/24 (95.8) 5/23 (21.7) 6/23
(26.1)

15/23 (65.2) 19/22 (86.4) 19/22 (86.4) 30.9a

Wang et al.
(2016)

64/64 (100.0) 5/63 (7.9) 13/63
(20.6)

62/63 (98.4) 49/63 (77.8) 58/63 (92.1) 12.0

Qi et al. (2016) 43/51 (84.3) 12/43 (27.9) 26/43
(60.5)

27/43 (62.8) N/A 32/43 (74.4) 40.1a

Lakhoo and
Gaba, (2016)

12/12 (100.0) 0/12 (0) N/A 9/12 (75.0) 7/12 (58.3) N/A 15.0a

Wang et al.
(2015)

25/25 (100.0) 5/25 (20.0) N/A 20/25 (80.0) 20/23 (87.0) 20/25 (80.0) 25.6

Luo et al. (2015) 37/37 (100.0) 10/37 (27.0) 15/37
(40.5)

25/37 (67.6) 24/37 (64.9) 25/37 (67.6) 22.8

Luca et al. (2011) 70/70 (100) 1/70 (1.4) 22/70
(31.4)

60/70 (85.7) 40/70 (57.1) 43/70 (61.4) 23.4a

Han et al. (2011) 43/57 (75.5) 10/43 (23.3) 13/43
(30.2)

35/43 (81.4) 43/43 (100.0) 26/43 (60.5) >6.0

Van Ha et al.
(2006)

13/15 (86.7) 0/13 (0) N/A 11/13 (84.6) N/A 12/13 (92.3) 17.0a

HE, hepatic encephalopathy; N/A, not accessible.
aData was expressed as median.

FIGURE 4
Forest plots for pooled rates of rebleeding.
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First, we evaluated the technical feasibility of TIPS. CTPV

was the main barrier hindering the implementation of TIPS.

However, the feasibility rate decreased slightly from 95% to

93%, indicating that TIPS remained successful despite the

presence of cavernous transformation. The subgroup

analyses suggested that these patients had good outcomes

after TIPS. Surprisingly, compared with the studies that used

the traditional transjugular approach, advanced puncture

techniques such as the transsplenic and transhepatic

approaches did not improve the feasibility rate, perhaps

since the two studies that employed the transsplenic and

transhepatic approaches were published 10 years ago.

FIGURE 5
Subgroup analysis of rebleeding by study design, proportion of complete and chronic PVT, proportion of CTPV, proportion of involvement of
SMV or SV, indication of TIPS, approach to PV, proportion of covered stent, and proportion of post-TIPS AC.
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Therefore, the feasibility could be improved with increased

technical experience.

One of the key findings of this meta-analysis is that post-

TIPS AC treatment is not necessary for certain patients with

cirrhosis and PVT. Although post-TIPS AC promoted

recanalization in the subgroup analysis, it was associated with

a higher rebleeding rate and a lower survival rate. Previous

studies concluded that TIPS alone effectively maintained the

portal vein patency due to the high-velocity flow created by the

shunt, not requiring AC treatment (Wang et al., 2016; Rodrigues

et al., 2019). In addition, heterogeneity prevailed after subgroup

analyses based on the AC treatment, indicating that AC is not a

unique source of heterogeneity. A slightly lower shunt patency

rate was observed in the subgroup analysis when the thrombus

FIGURE 6
Forest plots for pooled rates of HE.

FIGURE 7
Forest plots for pooled rates of survival.
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extended to the SMV or SV. Hence, the extent of PVT should be

considered to balance the risk of rebleeding and portal vein

patency in the long-term clinical management of patients.

Another important aspect of our findings is that the covered

stents for TIPS reduce HE incidence without decreasing the risk

of rebleeding. Despite clinical heterogeneity, these results are

crucial and may help advocate for covered stents (Bureau et al.,

2007; Perarnau et al., 2014). A randomized multileft study stated

the superiority of 8-mm stents in decreasing the rate of

spontaneous overt HE and severe and recurrent/persistent HE

after TIPS (Wang et al., 2017). Further, the size of covered stents

is essential. However, this meta-analysis showed that the post-

TIPS HE incidence was high, a major post-TIPS complication yet

(Han et al., 2011). In addition, improved shunt patency and

recanalization were observed in the subgroup analyses based on

the type of stent but with heterogeneity. This implies that

recanalization and shunt patency are associated with the

characteristics of PVT. The specific sources of heterogeneity

were not found, as shunt patency and recanalization are

dependent on multiple factors, including patient

characteristics, stent sizes, types of stents, and operator

expertise (Patidar et al., 2014; Tang et al., 2017).

Although TIPS and its associated materials and stents have

been developed and refined over the last two decades, the

placement of TIPS remains a rescue or second-line therapy in

patients with cirrhosis and PVT. TIPS is performed when AC

treatment is contraindicated or in patients with uncontrolled

bleeding post endoscopic therapy. Therefore, there is a low

utilization rate in the actual clinical setting, with only some

patients with cirrhosis receiving the TIPS placement.

Nevertheless, it is encouraging that TIPS has significant

clinical benefits and may provide novel insights into treating

patients with cirrhosis and PVT. Further studies are warranted to

accumulate sufficient evidence to standardize operating

procedures, associated adjuvant drug treatments, and

periprocedural care, optimizing current treatment strategies.

The present systematic review and meta-analysis have a few

shortcomings. First, technical methods, types, andmanufacturers

of stents might bring significant heterogeneity to this meta-

analysis; however, these factors were not considered.

Nevertheless, most heterogeneity could be explained using

subgroup analysis with a random-effects model and meta-

regression. Second, the included studies spanned 15 years

during which the techniques and medical devices for TIPS

have made swift advances. Nevertheless, the endpoints of

previous and current studies were homogeneous; thus, these

studies were included in the quantitative studies. Third, many

related studies were excluded from our meta-analysis due to the

lack of outcomes and full-text availability. However, an extensive

search strategy was performed to collect all related information,

and no evidence of publication bias was revealed. Lastly, a

difference in the follow-up time was observed among

the included studies, limiting the interpretation of some

outcomes.

Conclusion

TIPS is feasible and effectively prevents rebleeding in patients

with cirrhosis and PVT, including those with CTPV. Due to a

potentially high risk of rebleeding and no apparent benefits of

AC, post-TIPS AC must be used cautiously. Further, the

characteristics of PVT should be considered before making

decisions on the TIPS procedure and during long-term

clinical management.
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TABLE 4 Meta-regression analysis according to outcomes.

Factors Feasiblity Rebleeding Survival

Coeff. 95%CI P Coeff. 95%CI P Coeff. 95%CI P

Study characteristics

RCT vs. non-RCT 0.176 −0.153 to 1.402 0.098 0.075 −0.136 to 0.286 0.489 0.046 −0.163 to 0.254 0.667

TIPS technical and treatment characteristics

Approach to PV −0.302 −0.383 to −0.222 <0.001 0.114 −0.063 to 0.292 0.206 −0.113 −0.287 to 0.060 0.200

Covered or bare metal stents 0.155 −0.082 to 0.393 0.200 0.058 −0.140 to 0.255 0.567 0.015 −0.198 to 0.228 0.891

Post-TIPS AC −0.020 −0.249 to 0.208 0.861 0.198 0.035 to 0.360 0.017 −0.069 −0.270 to 0.133 0.506

Coeff., coefficient; HE, hepatic encephalopathy; PV, portal vein; TIPS, transjugular intrahepatic portosystemic shunt; RCT, randomised controlled trail; AC, anticoagulation.
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Multimodal neuroimage data
fusion based on multikernel
learning in personalized
medicine

Xue Ran†, Junyi Shi†, Yalan Chen and Kui Jiang*

Department of Medical Informatics, Nantong University, Nantong, China

Neuroimaging has been widely used as a diagnostic technique for brain

diseases. With the development of artificial intelligence, neuroimaging

analysis using intelligent algorithms can capture more image feature patterns

than artificial experience-based diagnosis. However, using only single

neuroimaging techniques, e.g., magnetic resonance imaging, may omit

some significant patterns that may have high relevance to the clinical target.

Therefore, so far, combining different types of neuroimaging techniques that

providemultimodal data for joint diagnosis has received extensive attention and

research in the area of personalized medicine. In this study, based on the

regularized label relaxation linear regression model, we propose a multikernel

version for multimodal data fusion. The proposed method inherits the merits of

the regularized label relaxation linear regression model and also has its own

superiority. It can explore complementary patterns across different modal data

and paymore attention to themodal data that havemore significant patterns. In

the experimental study, the proposed method is evaluated in the scenario of

Alzheimer’s disease diagnosis. The promising performance indicates that the

performance of multimodality fusion viamultikernel learning is better than that

of single modality. Moreover, the decreased square difference between training

and testing performance indicates that overfitting is reduced and hence the

generalization ability is improved.

KEYWORDS

neuroimaging, personalized medicine, multimodal data fusion, multikernel learning,
magnetic resonance imaging, positron emission tomography

1 Introduction

Neuroimaging technologies are currently the most widely used methods to study

brain diseases, and they can directly or indirectly image the nervous system. Common

neuroimaging techniques include structural magnetic resonance imaging (sMRI), which

can provide rich morphological features of brain tissues; functional magnetic resonance

imaging (fMRI), which not only provides anatomical information but also shows the

response mechanism of the nervous system; positron emission tomography (PET), which

is the only novel imaging technique that can display biomolecular metabolism, receptors,
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and neuromediator activity in vivo; diffusion tensor imaging

(DTI), which can reflect the structure of white matter fibrin in the

brain, etc (Klöppel et al., 2012; Friston, 2009). Neuroimaging

technologies play a very important role in the research of

Alzheimer’s disease (AD) (Bao et al., 2021; Karikari et al.,

2021; Zhang et al., 2021). Previous studies on AD and mild

cognitive impairment (MCI) were often based on a single

neuroimaging technique (single modality data). However,

single modality data have obvious defects; they can only

provide information on local brain abnormalities, which will

affect the diagnostic accuracy of AD and MCI. In recent years,

many studies have found that multimodal data have the

advantage of realizing information complementation (Zhang

et al., 2022a). The features of multimodal data can be

combined to obtain more comprehensive disease information,

which is of great significance for the early diagnosis and

treatment of AD. In particular, with the development of

artificial intelligence (AI) technologies, multimodal fusion has

been developed rapidly for AD diagnosis studies. For example,

Kohannim et al. (2010) used support vector machines (SVMs) to

classify AD. When using MRI as single-modal data for

experiments, the classification accuracy of AD vs. normal

control (NC) and that of MCI vs. NC were 79.07% and

71.21%, respectively. When experiments were performed after

combining MRI, fluorodeoxyglucose-PET, and cerebrospinal

fluid (CSF), the classification accuracy of AD vs. NC and that

of MC vs. NC were 90.70% and 75.76%, respectively. Compared

to single modality, the classification accuracy is improved by

5–10%. Zhang et al. (2011) combinedMRI, PET, and CSF for AD

classification. A multikernel SVM was taken as the classifier. The

classification accuracy of AD vs. NC was 93.2%. Compared with

using single-modal data, the accuracy was improved by 7–10%.

The accuracy of MCI vs. NC was 76.4%, which was an

improvement of 4.4–5% compared to using single modality

data. Buvaneswari and Gayathri (2021) combined the features

extracted from DTI and fMRI into a multikernel SVM for AD

classification, and the accuracy of AD vs. NC was 98.4%;

however, when the two modalities were used alone for

classification, the highest achieved accuracy was only 90.9%.

The above research further verifies that in the classification of

AD, compared with single-modal data, the use of multimodal

data can obtain richer and more valuable features, and the

classifier can obtain higher classification accuracy.

From existing studies regarding multimodality fusion, we

found that classifiers based on multikernel learning were

commonly used. This is because each modality can be

mapped into the kernel space by a kernel function. Therefore,

multikernel learning actually provides a natural framework for

multimodality fusion. However, when multikernel learning is

applied to practice, e.g., medical data analysis, overfitting often

exists. Therefore, to overcome overfitting and to obtain

promising prediction performance, in this study, according to

regularized label relaxation linear regression (Fang et al., 2017),

we integrate label relaxation and compactness graphmechanisms

into multikernel learning and propose a new multikernel

learning algorithm for AD diagnosis.

The main differences with the existing studies can be

summarized as follows.

(1) Unlike the modality-consistent regularization used in

previous studies (Jiang et al., 2016), the “all-single” fusion

strategy is introduced so that every single feature and the

possible combinations are all considered so that the

complementary information can be fully explored.

(2) We extend the compactness graph mechanism from the

linear space to the multikernel space so that the

overfitting problems can be reduced in the multikernel space.

The remaining article is organized into four sections. In

Section 2, we will state some related work regarding AI-

assisted AD diagnosis based on multimodality fusion. In

Section 3, we will present our new method and its

optimization. In Section 4, we will report our experimental

results and in the last, we will conclude our study and

indicate our future work.

2 Related work

Multimodality fusion strategies can be divided into three

levels: pixel-level fusion, feature-level fusion, and decision-level

fusion (Xia et al., 2020). Pixel-level fusion is to directly perform

pixel-related fusion based on strict registration. Feature-level

fusion refers to transforming different modal data into high-

dimensional feature spaces and then merging them before or

duringmodeling. Decision-level fusion is to use certain strategies,

such as voting, to fuse the decision result of each modal, to obtain

the globally optimal result. In Table 1, we summarize some

representative previous works belonging to these three

categories.

Strict registration plays a key role in pixel-level fusion. For

example, Daneshvar et al. proposed a fusion strategy based on

integrated intensity-hue-saturation and retina-inspired model to

improve the fusion performance. The strategy often used in

decision-level fusion is ensemble learning. In the early studies

of AD diagnosis, the most commonly used learning components

in ensemble learning were SVM (Shukla et al., 2020) and also

linear classifiers (Jiang et al., 2020), Bayesian networks (Zhang

et al., 2017), decision trees (Zhang et al., 2020), etc. For example,

Fan et al. (2008) took the two-modal data of the bilateral

hippocampus volume and the bilateral entorhinal cortex

volume as core features and used SVM as the learning

component. The accuracies of AD vs. MCI, AD vs. NC, and

MCI vs. NC are 58.30%, 82.00%, and 76.00% respectively.

Feature-level fusion has been widely used in AD studies. For

example, Suk et al. (2014) obtained high-level latent and shared
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feature representations from neuroimaging via deep network-

confined Boltzmann machines. In the binary classification of AD

vs. NC and MCI vs. NC, maximum accuracies of 95.35% and

85.67% were finally obtained, respectively. Madusanka et al.

(2019) used the fusion of texture and morphological features

as a biomarker to diagnose AD and used SVM as the classifier.

The classification accuracy reached 86.61%. Zhang et al. (2020)

proposed a deep multimodal fusion network based on an

attention mechanism, which was able to selectively extract

deep features from MRI and PET, while suppressing irrelevant

information. In the attention mechanism-based model, the

fusion ratio of each modality is automatically assigned

according to the importance of the modality. In addition, a

hierarchical fusion method was adopted to ensure the

effectiveness of multimodal data fusion. The final classification

accuracies of NC vs. AD and SMCI vs. PMCI were 95.21% and

89.79%, respectively.

In this study, we also focus on feature-level fusion. From

previous studies regarding feature-level fusion, we find that there

are still some issues that should be addressed in the future.

(1) Most of the previous studies only direct concatenate features

from different modalities and then input them into a model

for AD prediction. This strategy does not consider

complementary patterns across different modalities.

(2) Some multikernel-based studies achieved promising

performance and also consider complementary patterns

across different modalities. However, with a sparse or

small training set, overfitting often occurs.

Therefore, to address the abovementioned issues, in this

study, we will propose a novel multimodality fusion model at

the feature-fusion level.

3 Data and methods

3.1 Data

The data (MRI and PET) used in this study were collected

from Alzheimer’s Disease Neuroimaging Initiative. There are

103 subjects in the dataset, where 51 subjects were organized

into the NC group and 52 subjects were organized into the

AD group. We used the following workflows (Zhang et al.,

2021), as shown in Figure 1, to perform data preprocessing.

As can be seen from Figure 1A, the tissue probability map

template was first used to segment the original MRI into white

matter (WM), gray matter (GM), and other tissues. In particular,

WM and GM tissues were mapped into the Montreal

Neurological Institute (MNI) space during preprocessing.

Second, diffeomorphic anatomical registration through

exponentiated lie algebra (DARTEL) was employed to create

average templates for the obtained WM and GM tissues. In the

last, GM was modulated to transform the density

information into volume information. In addition, GM was

smoothed (8 mm Gaussian) to avoid the influences caused by

noises.

As can be seen from Figure 1B, SPM-12 was employed to

fuse these PET images (one subject has 96 images) to

construct a 3-D image that provides brain spatial

information and the feature information between tissue

structures was also retained. Moreover, head motion was

corrected. After fusion alignment, MRI and PET of each

subject were registered and affinely aligned. In the last, the

average template data generated in Figure 1A were used to

spatially normalize all PET images to the standard MNI

space. PET images were also smoothed (8 mm Gaussian) to

avoid the influences caused by noises.

TABLE 1 Representative works of multimodality fusion.

Categories Authors Modalities Methodologies

Pixel-level Daneshvar and Hassan,
(2010)

MRI, PET A model based on integrated intensity-hue-saturation and retina-inspired model was proposed to
improve the fusion performance

Li and Wang, (2012) SPECT, MRI A method of multiscaled combination of MR and SPECT images based on variable-weight
Bhatnagar et al. (2015) MRI and PET A novel framework for spatially registered multimodal medical image fusion based on nonsubsampled

contourlet transform

Decision-
level

Dimitriadis et al. (2018) MRI A random forest feature selection, fusion, and ensemble strategy was applied to the classification and
prediction of AD

Fan et al. (2008) MRI and PET An SVM-based ensemble method was proposed and two modal data of the bilateral hippocampus
volume and the bilateral entorhinal cortex volume as core features were used for AD prediction

Zeng et al. (2018) sMRI, PET,
and CSF

An SVM-based ensemble method was proposed and the combined features of sMRI, PET, and CSF were
used to build an ensemble classification model for AD prediction

Feature-level Zhang et al. (2020) MRI and PET A deep multimodal fusion network based on an attention mechanism, which was able to selectively
extract deep features from MRI and PET was proposed to predict AD

Suk et al. (2014) MRI and PET High-level latent and shared feature representations were extracted and fused from neuroimaging via
deep network-confined Boltzmann machines

Madusanka et al. (2019) MRI and PET Texture and morphological features were fused as a biomarker to diagnose AD. SVM was taken as the
classifier
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3.2 Methods

3.2.1 Kernelized regularized label relaxation
A regularized label relaxation (RLR) linear regression

model was proposed to address the overfitting problem

(Fang et al., 2017). The objective function is defined as

follows:

min
A,M

‖XA − (Y + B ⊙ M)‖2F + λtr(ATXTLXA)
s.t M≥ 0

(1)

where {X,Y} represents the training set, B represents a luxury

matrix derived from Y, A represents the transformation matrix,

M represents a nonnegative label relaxation matrix, L represents

the Laplacian matrix, λ is a regularized parameter, tr() represents

FIGURE 1
Data preprocessing: (A) magnetic resonance imaging (MRI) and (B) positron emission tomography (PET).

FIGURE 2
“All-single” fusion strategy.
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the trace of a matrix, and ⊙ is a Hadamard product operator. RLR

can classify linear data well and restrain overfitting. However, in

many real-world scenarios, especially in the medical field, many

data are not linear, which may limit the application of RLR.

Therefore, Fang et al. employed the kernel technique to further

extend RLR to its nonlinear version, that is, kernelized RLR

(KRLR). The objective function of KRLR is defined as follows:

min
Θ,M

‖KΘ − (Y + B ⊙ M)‖2F + λtr(ΘTKTLKΘ)
s.t M≥ 0

(2)

where Θ can be considered the transformation matrix and the

new K is a positive semidefinite kernel Gram matrix in which

each element can be calculated as follows:

Kij � [< ϕ(X), ϕ(X)T > ]
ij
� k(xTi , xTj ). (3)

In Eq. 3, ϕ(X) � [ϕ(x1)T, ϕ(x2)T, ..., ϕ(xN)T], ϕ: Rd → Γ is a

nonlinear function that maps the input data from the original

feature space to the Hilbert space Γ. k: Rd × Rd → R represents a

kernel function in which the polynomial kernel, Gaussian kernel,

and the hyperbolic tangle kernel are usually adopted.

3.2.2 Multikernel kernelized regularized label
relaxation

We know that multikernel learning provides us a natural

framework for multimodal data fusion (Wang et al., 2021).

Therefore, we can extend KRLR to its multikernel version by

adjusting the generation way of the kernel Gram matrix. In this

study, a linear combination is used to generate the new kernel

Gram matrix in the multikernel space, that is,

K � ∑M
m�1

αmKm. (4)

By substituting Eq. 4 into Eq. 2, we can obtain the objective

function of multikernel KRLR,

min
Θ,M,αm

									∑
M

m�1
αmKmΘ − (Y + B ⊙ M)

									
2

F

+λtr⎛⎝ΘT⎛⎝∑M
m�1

αmKm
⎞⎠

T

L⎛⎝∑M
m�1

αmKm
⎞⎠Θ⎞⎠ s.t M≥ 0, ∑M

m�1
αm � 1 .

(5)
In Eq. 5, three components are required to be optimized; they are the

transformation matrix Θ, the relaxation matrix M, and the linear

kernel combination coefficient αm. Since the objective function in

Eq. 6 is convex, an iterative updating strategy is adopted for

optimization so that in each iteration a closed-form solution can

be guaranteed (Xiang et al., 2012).

To devise the updating rule regarding the transformation

matrixΘ, we suppose that the relaxation matrixM and the linear

kernel combination coefficient αm have been fixed; thus, the

optimization problem becomes

J(Θ) � min
Θ

									∑
M

m�1
αmKmΘ − (Y + B ⊙ M)

									
2

F

+ λtr⎛⎝ΘT⎛⎝∑M
m�1

αmKm
⎞⎠

T

L⎛⎝∑M
m�1

αmKm
⎞⎠Θ⎞⎠ (6)

By setting the derivation of Eq. 6 with respect to the

transformation matrix Θ to 0, that is, zJ(Θ)/zΘ � 0, we have

Θ � ⎛⎝⎛⎝∑M
m�1

αmKm
⎞⎠

T

⎛⎝∑M
m�1

αmKm
⎞⎠ + λ⎛⎝∑M

m�1
αmKm

⎞⎠
T

L⎛⎝∑M
m�1

αmKm
⎞⎠⎞⎠

−1
⎛⎝∑M

m�1
αmKm

⎞⎠
T

(Y + B ⊙ M) (7)

FIGURE 3
Workflow of training.

Frontiers in Pharmacology frontiersin.org05

Ran et al. 10.3389/fphar.2022.947657

103

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.947657


To devise the updating rule regarding the relaxation matrix M,

we suppose that the transformation matrix Θ and the linear

kernel combination coefficient αm have been fixed; thus, the

optimization problem becomes

min
Θ,M,αm

									∑
M

m�1
αmKmΘ − (Y + B ⊙ M)

									
2

F
s.t M≥ 0

. (8)

The solution of M can be finally obtained as follows:

M � max⎛⎝B, ∑M
m�1

αmKm Θ − Y⎞⎠. (9)

To devise the updating rule regarding the kernel combination

coefficient αm, we suppose that the transformation matrix Θ and

the relaxation matrix M have been fixed; thus, the optimization

problem becomes

J(Θ) � min
Θ

									∑
M

m�1
αmKmΘ − (Y + B ⊙ M)

									
2

F

+λtr⎛⎝ΘT⎛⎝∑M
m�1

αmKm
⎞⎠

T

L⎛⎝∑M
m�1

αmKm
⎞⎠Θ⎞⎠ s.t ∑M

m�1
αm � 1 . (10)

From Eq. 10, it can be seen that the analytical solution of αm
cannot be directly obtained. In this study, the reduced

gradient method is used to obtain the optimal αm
(Rakotomamonjy et al., 2008). To be specific, when the

gradient of Eq. 10 with respect to αm is obtained, αm can

be updated along its decent direction Dm to ensure that the

equality constraint and the nonnegativity constraints on αm
are satisfied. Let αg be a nonzero entry of α, then ∇regJ, which

represents the reduced gradient of Eq. 10, has components

[∇regJ]m and [∇regJ]g that are defined as

[∇regJ]m � zJ

zαm
− zJ

αg
,∀m ≠ g (11)

[∇regJ]g � ∑
m≠g

( zJ

zαg
− zJ

αm
) (12)

where g is the index of the largest element in α. The positivity

constraints have also to be taken into account in the descent

direction. However, if there is an index m such that αm � 0 and

[∇regJ]m> 0, using this direction would violate the positivity

constraint for αm. Hence, the descent direction for that

component is set to 0. This gives the descent direction for

update Dm as

Dm �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if αm > 0 and zJ

zαm
− zJ

αg
> 0

− zJ

zαm
+ zJ

αg
if αm > 0 andm ≠ g

∑
m≠g

( zJ

zαg
− zJ

αm
) if m ≠ g

(13)

3.3 Algorithm

Based on the solutions to the transformation matrix Θ, the

relaxation matrix M, and the kernel combination coefficient αm,

detailed algorithm steps were deduced as follows.

Algorithm 1.
Input: Multi-modal training data {x(m)

i , yi} and the regularized

parameter λ.

Output: Transformation matrix Θ, relaxation matrix M and

kernel combination coefficient αm Procedures:

Use “All-single” fusion strategy to obtain input data from

{x(m)
i , yi}. Initialize α by setting αm � 1/M.

Randomize M.

Repeat

Update Θ by equation (7).

Update M by equation (9).

Update zJ/zαm and Dm by equation (13).

Update g � argmax
m

αm.

Set J† � 0, α† � α, D† � D.

Repeat

Update α � α†, D � D†.

Update v � argmin
{m|Dm < 0}

−αm/Dm.

Update βmax � −αv/Dv.

Update α† � α + βmaxD.

Update D†
m � Dm −Dv,D†

v � 0.

Update J† by ∑M
m�1α

†
mKm

Until (J† ≥ J)

Until (convergence)

The time complexity of Algorithm 1 consists of 3 parts: the

computation of Θ, the computation of M, and the computation

of α. From Eq. 7, it is easy to find that the time complexity of the

computation of Θ is O(N3), and from Eqs. 9 and 13, we see that

the computation ofM and α isO(N2). Therefore, the asymptotic

time complexity of Algorithm 1 is O(N3).

4 Experimental results

4.1 Settings

The original features extracted from sMRI and PET images

were represented in a very high-dimensional feature space.

Therefore, the direct use of high-dimensional features for

modeling will lead to the curse of dimensionality

(Chandrashekar and Sahin, 2014). That is to say, samples

become very sparse in the high-dimensional space, so the

discriminability between samples will be significantly reduced.

Therefore, before modeling, feature selection was performed to

reduce the dimension of feature spaces. In this study, the Fish

score was employed as the supervised method to reduce the
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irrelevant features to the outcome. In Fish score, we select the first

30 features with the highest-ranking values for the next

unsupervised feature selection. Person score was employed as

the unsupervised method to reduce the redundancy between

features. In Person score, the threshold is set to 0.4.

Regarding multikernel learning, the “all-single” strategy, as

shown in Figure 2, was adopted to fuse sMRI features and PET

features. In Figure 3, “A” represents the combined features of

sMRI and PET, “S” represents each sMRI or PET feature, and

“KM” denotes the kernel matrix. Suppose we had a dataset χ �
[x(m)

i1 , x(m)
i2 , x(m)

i3 ]i�1,2,3,4,m�1,2 having 3 subjects, each subject has

two modalities (m = 1 and 2), and each modality has 4 features

(i = 1, 2, 3, and 4), then “A” in Figure 2 can be expressed as

[x(1)
i1 , x(1)

i2 , x(1)
id , x(2)

i1 , x(2)
i2 , x(2)

id ]i�1,2,3,4, and “S” can be expressed as
[x(m)

i1 , x(m)
i2 , x(m)

i3 ]i�1,2,3,4,m�1,2. According to Rakotomamonjy

et al., (2008), {0.5, 1, 2, 5, 7, 10, 12, 15, 17, 20} is taken as a

Gaussian kernel parameter candidate set and {1, 3, 5} is taken as a

polynomial kernel parameter candidate set. Therefore, with such

settings, 91 KMs were finally generated, and the goal of

multikernel learning is to learn the coefficient of each KM.

The workflow chart of training is shown in Figure 3. The AD

cohort is first partitioned into K (K = 5 in our study) folds, one is

taken as the testing set and the remaining are taken as the

validation set (50%) and training set (50%). At the stage of

validation, the Fish score is employed as the supervised method to

reduce the irrelevant features to the outcome. Person score is

employed as the unsupervised method to reduce the redundancy

between features. Then the cross-validation (5-CV) strategy is

used to determine the optimal feature set and hyper parameters

(the regularized parameter λ is searched from 0.0001 to 1) with

respect to the proposed model. At the stage of training, with the

optimal feature set and hyper parameters, the best model can be

obtained. At the stage of testing, with the best model, we can

obtain the corresponding testing results. The workflow shown in

Figure 3 is repeated K times so that each fold has the opportunity

to become the testing set.

To highlight the performance of our multimodality fusion

method, a single modality model ridge regression (RR) and

4 multimodality fusion models, i.e., MV-TSK-FS (Jiang et al.,

2016), simpleMKL (Rakotomamonjy et al., 2008), RFF-MKL (Liu

et al., 2013), and MV-L2-SVM (Wang et al., 2015), are

introduced for comparison study. Table 2 shows the

parameter settings of RR and our method.

4.2 Result analysis

The experimental results were reported from three aspects,

i.e., feature selection of every single modality, comparison

TABLE 2 Parameter settings.

Methods Parameter settings

RR The regularized parameter was searched from 0.0001 to 1

Our method The regularized parameter λ was searched from 0.0001 to 1

MV-TSK-FS We use the parameter settings recommended by the original
references

simpleMKL We use the parameter settings recommended by the original
references

RFF-MKL We use the parameter settings recommended by the original
references

MV-
L2-SVM

FIGURE 4
Model selection of every single modality: (A) sMRI and (B) PET.
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between single modality andmultimodality in terms of AUC, and

overfitting analysis in terms of the discrepancy between training

and testing.

4.2.1 Feature selection of every single modality
In this study, before modality fusion, we have to select the

best model for every single modality. That is to say, we should

find an optimal feature subset for each modality. As we stated

before, the Fish score was employed as the supervised method to

reduce the irrelevant features to the outcome. Person score was

employed as the unsupervised method to reduce the redundancy

between features. After the two-step feature selection, we select

the optimal feature set that deduces the best training AUC. As

shown in Figure 4, for sMRI, it can be found that the first

6 features were selected for the following modality fusion, and for

PET, the first 7 features were selected for the following modality

fusion.

4.2.2 Comparison between single modality and
multimodality

When the optimal feature sets of sMRI and PET were

combined, feature redundancy between different modalities

may also exist. Therefore, Person score was also employed as

the unsupervised method to reduce the redundancy

across different modalities. After this procedure, the best

model can be obtained by finding the best training AUC. As

shown in Figure 5, the first 12 features can generate the best

model.

Figure 6 shows the comparison results in terms of the ROC

curve of sMRI, PET, and their combination. It can be found that

the testing AUC of multimodality fusion is 0.9188, which is

better than that of every single modality. This is because each

modality is mapped into the kernel space and multikernel

learning can explore the complementary information

FIGURE 5
Model selection of combined features.

FIGURE 6
Performance comparison of sMRI, PET, and their combination.

Frontiers in Pharmacology frontiersin.org08

Ran et al. 10.3389/fphar.2022.947657

106

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.947657


between the two modalities. In addition, from Eq. 10, we can see

that the coefficient of the kernel matrix is sparse so that the

modality which contains more patterns is endowed with more

attention.

4.2.3 Comparison with state-of-art
multimodality methods

To highlight the promising performance of the proposed

method, we introduce 4 state-of-art multimodality fusion

methods for comparison studies. In addition to AUC,

accuracy is also introduced to measure the classification

performance. Table 3 shows the comparison results in terms

of both accuracy and AUC, where the best results are marked in

bold, and “*” means that the difference between state-of-art

methods and the proposed method is significant.

From Table 3, we can find that our method achieves the best

performance. In particular, simpleMKL and RFF-MKL are also

multikernel-based methods, but both of them perform worse

than our method. This phenomenon indicates that label

relaxation and compactness graph mechanisms are useful to

improve the classification performance. In addition, we see that

MV-TSK-FS and MV-L2-SVM perform worse than

multikernel-based methods. This is because MV-TSK-FS and

MV-L2-SVM both used modality-consistent regularization to

achieve multimodality fusion, which did not consider the

complementary information across different modalities. With

the “all-single” fusion strategy used in multikernel-based

methods, every single feature and the possible combinations

are all considered so that the complementary information can

be fully explored.

4.2.4 Overfitting analysis
From Eq. 10, we can see that λ was used to control the

contribution of the manifold regularization term.We know that

the manifold regularization term can reduce overfitting;

therefore, to quantificationally observe the overfitting, the

square difference between training AUC and testing AUC

was used. Figure 7 shows the square difference against the

regularized parameter λ. From Figure 7, it can be found that

from λ � 0.001 to λ � 0.05, the square difference between

training AUC and testing AUC decreased gradually, which

means that overfitting was reduced and the generalization

ability was improved. This is because the manifold

regularization term in the objective function assumes that

when the training samples were transformed from the

feature space to the label space, if two samples are in the

same manifold in the feature space, they are also in the same

class the label space (Fang et al., 2017). With this assumption,

sparse samples, noisy samples, or outlies will be compressed

into a compact class so that the hyperplane will not excessively

fit these samples.

5 Conclusion

In the area of personalized medicine, multimodal

neuroimage data fusion plays a significant role in brain

disease diagnosis. Multikernel learning actually provides a

natural framework for multimodality fusion. However, when

multikernel learning is applied to practice, e.g., medical data

analysis, overfitting often exists. Therefore, in this study,

according to RLR linear regression, we integrate label

relaxation and compactness graph mechanisms into

multikernel learning and propose a new multikernel learning

algorithm for AD diagnosis. In the experimental study, the

proposed method is evaluated in the scenario of AD diagnosis.

The promising performance indicates the advantages of our

method. However, from Figure 2, we can find that there are

many kernel matrices generated during model training, which

TABLE 3 Comparison with state-of-art multimodality methods in
terms of accuracy and AUC.

Methods Accuracy AUC

MV-TSK-FS 0.9236 ± 0.0058* 0.8897 ± 0.0032*

simpleMKL 0.9454 ± 0.0047* 0.9059 ± 0.0063*

RFF-MKL 0.9402 ± 0.0025* 0.8987 ± 0.0036*

MV-L2-SVM 0.9489 ± 0.0046* 0.9021 ± 0.0047*

Our method 0.9586 ± 0.0032 0.9188 ± 0.0028

The bold means the best performance.

FIGURE 7
Square difference against the regularized parameter λ.
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may consume a lot of CPU seconds and storage memory.

Therefore, how to speed up the training and reduce storage

memory is a hot topic in our future work.
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Purpose: This study investigates the impact of lung function on radiation

pneumonitis prediction using a dual-omics analysis method.

Methods:We retrospectively collected data of 126 stage III lung cancer patients

treated with chemo-radiotherapy using intensity-modulated radiotherapy,

including pre-treatment planning CT images, radiotherapy dose distribution,

and contours of organs and structures. Lung perfusion functional images were

generated using a previously developed deep learning method. The whole lung

(WL) volume was divided into function-wise lung (FWL) regions based on the

lung perfusion functional images. A total of 5,474 radiomics features and

213 dose features (including dosiomics features and dose-volume histogram

factors) were extracted from the FWL and WL regions, respectively. The

radiomics features (R), dose features (D), and combined dual-omics features

(RD) were used for the analysis in each lung region of WL and FWL, labeled as

WL-R, WL-D, WL-RD, FWL-R, FWL-D, and FWL-RD. The feature selection was

carried out using ANOVA, followed by a statistical F-test and Pearson

correlation test. Thirty times train-test splits were used to evaluate the

predictability of each group. The overall average area under the receiver

operating characteristic curve (AUC), accuracy, precision, recall, and f1-score

were calculated to assess the performance of each group.

Results: The FWL-RD achieved a significantly higher average AUC than the WL-

RD group in the training (FWL-RD: 0.927 ± 0.031, WL-RD: 0.849 ± 0.064) and

testing cohorts (FWL-RD: 0.885 ± 0.028, WL-RD: 0.762 ± 0.053, p < 0.001).

When using radiomics features only, the FWL-R group yielded a better

classification result than the model trained with WL-R features in the training

(FWL-R: 0.919 ± 0.036, WL-R: 0.820 ± 0.052) and testing cohorts (FWL-R:

0.862 ± 0.028, WL-R: 0.750 ± 0.057, p < 0.001). The FWL-D group obtained an

average AUC of 0.782 ± 0.032, obtaining a better classification performance

than the WL-D feature-based model of 0.740 ± 0.028 in the training cohort,

while no significant difference was observed in the testing cohort (FWL-D:

0.725 ± 0.064, WL-D: 0.710 ± 0.068, p = 0.54).
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Conclusion: The dual-omics features fromdifferent lung functional regions can

improve the prediction of radiation pneumonitis for lung cancer patients under

IMRT treatment. This function-wise dual-omics analysis method holds great

promise to improve the prediction of radiation pneumonitis for lung cancer

patients.

KEYWORDS

lung functional imaging, radiation pneumonitis, radiomics, dosiomics, radiotherapy

Introduction

Lung cancer is the leading cause of cancer-related death

worldwide (Sung et al., 2021). Radiation therapy or radiotherapy

(RT) is one of the golden-standard treatment techniques for

patients with locally advanced non-small-cell lung cancer

(NSCLC) (Kong et al., 2005; Chang et al., 2016). Study shows

a higher radiation dose can achieve better tumor control and

improve the treatment outcome (Kong et al., 2005). However,

dose escalation of lung cancer is greatly limited by radiation-

induced side effects, such as radiation pneumonitis (RP). RP may

occur in up to 30% of lung RT patients and is lethal in 2% of them

(Zhang et al., 2012; Kipritidis et al., 2015). Hence, predicting RP

is highly desirable for better dose optimization and

personalization to maximize the treatment outcome in lung

cancer RT.

At present treatment planning of lung cancer RT, several

dosimetric factors from the dose-volume histogram (DVH) were

found to be associated with RP, such as V5, V20, and Dmean

(Baisden et al., 2007; Barriger et al., 2012; Bongers et al., 2013;

Palma et al., 2013; Cai et al., 2014; Pinnix et al., 2015). These

parameters are commonly used as dose constraints in clinical

plan evaluation (Ganti et al., 2021). Meanwhile, several prevalent

models using DVH parameters, such as normal tissue

complication probability (NTCP), were proposed to predict

high risk RP patients (Begosh-Mayne et al., 2020; Wang et al.,

2020). However, DVH parameters can only distinguish statistical

one-dimensional dose information rather than characterizing the

dose distribution heterogeneity. With the aid of the radiomics

definition (Lambin et al., 2017), dosiomics features were

calculated based on the three-dimensional dose distribution to

describe the dose spatial information (Liang et al., 2019). Several

studies also have demonstrated significantly superior models

with the dosiomics feature compared to the DVH-based

model or the NTCP model for predicting RP (Liang et al.,

2019; Palma et al., 2019; Adachi et al., 2021). Meanwhile, CT-

based radiomics features describe the statistical information,

shaped, and textual characteristics in a certain volume. The

dual-omics combines the radiomics and dose features and is

able to further improves the prediction for RP (Adachi et al.,

2021; Jiang et al., 2021; Puttanawarut et al., 2022). However,

those radiomics or dose features utilized in current studies were

calculated from the whole lung region, rather than considering

the heterogeneity inside the lung, for example, the difference in

high- and low- functional lung regions.

Lung function information has been proven to be associated

with RP, which promises to improve the RP prediction accuracy

(Bucknell et al., 2018; Lee et al., 2018; Weller et al., 2019;

Bourbonne et al., 2020; O’Reilly et al., 2020). O’Reilly et al.

demonstrated the RP prediction improvement using the DVH

factor (V20) from three high functional lung regions and

compared these biomarkers to the entire lung region (O’Reilly

et al., 2020). Lee et al. evaluated the correlation between several

DVH factors (V5, V20, and Dmean) between the high functional

lung region and the whole lung region, showing the potential of

stratifying patients for pneumonitis prediction (Lee et al., 2018).

Owen et al. demonstrated that irradiating to low functional lung

regionmay increase radiation toxicity (Owen et al., 2021). Several

studies also showed the potential of using dosimetry parameters

based on functional lung images in predicting RP (Wang et al.,

2012; Farr et al., 2015; Kimura et al., 2015; Xiao et al., 2018; Owen

et al., 2021). However, these studies only explored the association

between the dose factors and the RP without investigating the

correlation between anatomical CT images and the RP. Besides,

most studies focused on the dose features in the high functional

lung region rather than the low functional lung region.

In this study, we developed a function-wise lung (FWL)

analysis approach by integrating radiomics and dose features

from both whole lung (WL) and FWL (including separated high-

and low- functional lung) to predict RP for NSCLC patients. The

radiomics features, dose features, and combined dual-omics

features of each group were utilized for analysis. The feature

selection metrics are the ANOVA followed by the statistical

F-test and the Pearson correlation test. Thirty times train-test

splits were used to evaluate the predictability of each group. The

overall average area under the receiver operating characteristic

curve (AUC), accuracy, precision, recall, and f1-score were

calculated to assess the performance of each group.

Materials and methods

Data characteristics

The inclusion criteria are as follows: 1) diagnosed as primary

locally-advanced lung cancer (stages IIIA/IIIC (AJCC 8th)); 2)
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having no distant metastasis; 3) treated with curative intensity-

modulated radiotherapy (IMRT); 4) receiving contrast-enhanced

CT for RT; 5) 18–70 years old. And the exclusion criteria are as

follows:1) received chest RT or surgery or chemotherapy

previously; 2) having previous chest malignancies; 3) received

RT < 2 weeks; 4) incomplete RT treatment due to factors other

than acute RP; 5) incomplete RT data.

The study was approved by the Institutional Review Board of

the Affiliated Cancer Hospital of Zhengzhou University. Initially,

a total of 162 pathological confirmed NSCLC patients staging

IIIA/IIIC between 2015 and 2019 were retrospectively collected

from the hospital. Considering the excluded criteria (shown in

below), 126 cases were final enrolled in the study (Figure 1). All

patients were treated by the 6 MV IMRT with a 50–70 Gy total

prescription dose and 1.8–2.2 Gy fractional dose for 5 days per

week. The radiation pneumonitis (RP) case was consecutively

followed up at least 6 months after the first radiotherapy, and

then graded with the Common Terminology Criteria for Adverse

Events (CTCAE) V4.0. by one qualified imaging physician based

on the CT scans. In this study, RP patients with grading ≥ 2 are

defined as severe RP events because of dose escalation

consideration.

Image acquisition

Three types of image data were involved in this study,

including planning CT images, three-dimension dose

distribution images, and organs-at-risk (OAR) structures. All

planning CT images were acquired from a 16-slice Brilliance Big

Bore CT (Philips Medical System, Cleveland, OH, U.S.). The

scanning parameters were as follows: scanning X-ray tube

voltage = 120 kV, current = 321 mA, thickness = 3 mm, slice

pixels = 512 × 512 and spacing = 1.152 mm × 1.152 mm. The

scanning range was from the level of the cricoid cartilage to the

lower border of the 12th thoracic vertebra covering the WL

volume (Bradley et al., 2020). The 3D dose was calculated with a

grid of 3 mm in the treatment planning system (TPS). The gross

tumor volume was excluded from the lung volume with manually

contouring by a qualified physician.

Function-wise lung region

In this study, the functional images were generated using a

previously developed deep learning neural network, which can

translate the pulmonary anatomy information into functional

information (Ren et al., 2021a; Ren et al., 2021b). In general, a 3D

attention residual neural network was utilized to extract high

level features from CT images and synthesize the perfusion

images. This model was trained with CT and single-photon

emission computerized tomography (SPECT) perfusion

images of lung disease patients. This model used a 3D

encoding-decoding structure to capture the hierarchical

texture features of the input CT images with two attention

modules to help focus on the defect regions, which is able to

achieve a medium-to-high approximation with the ground truth

SPECT perfusion images.

After image synthesis, the functional image was normalized

to the range of 0–1 by subtracting the minimum value and then

FIGURE 1
Flowchart of the inclusion and exclusion criteria.
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divided by the maximum pixel value of function images. A

threshold of 0.3 was used to divide the lung into high- and

low- functional regions. Then the high- and low- functional lung

regions were segmented on the CT image. This procedure is

illustrated in Figure 2. After thresholding, the FWL was defined

as the combination of the high- and low- functional lung regions.

Besides, the WL region was also utilized as the basic comparison

model.

Feature extraction

In the study, radiomics features (Lambin et al., 2017) and

dose features of the previous regions were extracted from the CT

images and 3D dose distribution.

For radiomics features, the first-order and high-order

radiomics features were extracted based on the original image

and 11 filter-based images. The details of these radiomics features

were described in the study (Lam et al., 2021). The only difference

was the settings of bin counts, in the range of [20, 50, 100, 150,

200] and a total of 5,474 radiomics features were extracted from a

region of interest (ROI).

The dose features can be categorized into three types: 1)

scale-invariant 3D dose statistical moments (Pham et al., 2011),

2) DVH parameters (Marks et al., 2010; Faught et al., 2017), and

3) dosiomics features (Liang et al., 2019). The scale-invariant 3D

dose statistical moments described the dose spatial distribution

along three directions of anterior-posterior, medial-lateral, and

craniocaudal (Pham et al., 2011). Except for the constant value of

the order of [0, 0, 0], a total of 63 dose statistical moments were

employed in the dose features. The DVH parameters consisted of

Dx and Vx, where Dx is the dose larger than x% volume, and Vx

is the volume larger than the x Gy or x% of the prescription dose.

A total of 59 DVH parameters were included. The dosiomics

features were radiomics features based on the image of 3D dose

distribution. In the study, only the original image type was

adopted in extracting dosiomics features. A number of

91 dosiomics features were extracted from the original 3D

dose distribution in an ROI. Eventually, a total of 213 dose

features were included.

In the study, two kinds of regions (WL and FWL) were used

to extract features with a total of 5,687 features and

11,374 features, respectively.

Feature selection

The feature dimension reduction is a crucial step to avoidmodel

overfitting or underfitting. A combination of the F-test and the

Pearson correlation test was utilized for the feature selection on the

scikit-learn package in Python (version 1.0.1) (Pedregosa et al., 2011;

Buitinck et al., 2013). Besides, the randomly under-samplingmethod

FIGURE 2
The scheme of the function-wise lung region generation.
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was performed for comprehensively screening out the optimal

feature group, which was described in the study (Yu et al., 2019;

Lam et al., 2021).

The detail of feature selection is illustrated in Figure 3.

70% patients were randomly under-sampled from the whole

patient cohorts by 100 times. At each sampling, all features

with a variance of zero were filtered out to reduce the feature

dimensions and the subsequent computational complexity.

After that, the F-score of all features was calculated by

combing the label data based on the F-test, and an F-score

with a p-value smaller than 0.01 was marked as 1, otherwise as

0. Through 100 times sampling, a matric with 100×N (N:

feature quantity with variance >0) was obtained. It is followed
by the frequency filtering process to acquire more stable and

robust features. Then, 10% of the quantity of all features or at

least 40 features were reserved. Finally, the primary feature

group was chosen by the Pearson correlation test with the

threshold of coefficient of 0.5 as keeping the higher frequency

one for two correlated features.

Model construction and evaluation

In the study, two single-omics models, radiomics model (R) and

dosiomicsmodel (D), and the combinedmodel (RD)were developed

for WL and FWL regions separately, producing six models in total,

labeled as WL-R, WL-D, WL-RD, FWL-R, FWL-D, and FWL-RD.

The schematic diagram of the model development and

evaluation is shown in Figure 4. All patient cohort was randomly

divided into training and testing cohorts with a ratio of 3:1 across a

repeat stratified splitting process of 30 times with different

randomization, which simulated various patients’ data

distributions to assess the model performance. At each split,

training cohorts were sent to the procedure of feature selection,

and the relevant primary feature groupwas obtained. Then, different

feature combinations owning from one to all primary features were

explored. The finally optimal feature group was determined by the

maximum of the following overall average area under the receiver

operating characteristic curve (ROC) curve (AUC) in the testing

cohort. With the optimal feature combination, a classification

regression algorithm of Ridge was utilized to develop a

classification model using 10-fold cross-validation and hyper-

parameters optimization search in the training cohort. The loss

function for the Ridge classifier is min
ω

‖Xω − y‖22 + α‖ω‖22, where α
is complexity parameter with α> 0. After that, the model

performance in the training and testing cohorts was performed

by using a series of evaluationmetrics, including accuracy, precision,

recall, F1-score, and AUC. The average and the standard deviation

(STD) were calculated in the training and testing cohorts by

considering all splitting. The final model was evaluated by using

the optimal feature group.

Model comparison and statistic analysis

For each omics feature, the model performance using the

corresponding omics features extracted from the function-

FIGURE 3
The scheme of randomly under-sampled feature selection
method using unsupervised ans supervised feature selection
algorithms.

FIGURE 4
The scheme of model construction and evaluation.
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wise lung regions was compared against the WL region in the

training and testing cohorts using the five evaluation metrics.

For each involved lung region, the model using dual-omics

features was compared against the single-omics features in

both training and testing cohorts using five

evaluation metrics. Besides, net clinical benefits for all

models were investigated using decision curve analyses

(DCA) (Vickers and Elkin, 2006; Vickers et al., 2019). The

DCA is a method to evaluate the clinical valuation of

models overcoming the limitations of both

traditional statistical metrics, such as discrimination and

calibration.

The two-sided paired student t-test was utilized to

compare the above-mentioned models with a group of

features. On the other hand, the two-sided paired student

t-test was also performed for the continuous clinical

characteristics, while the Chi-square test was applied for

the categorical variables. A p-value smaller than 0.05 was

considered statistically significant. Except for the previously

mentioned five evaluation metrics, the 95% confidence

interval (CI) by the Delong method with (DeLong et al.,

1988) 2000 times for all metrics was provided to access the

ability to discriminate between severe RP cases and non-RP

cases. Statistical analysis was performed with Python 3.7 and

Pingouin 0.5.0 (Vallat, 2018).

Results

Patients characteristics

A total of 126 NSCLC patients were retrospectively involved

in the study. The main characteristics of the patients are listed in

Table 1. As shown in the table, 50.8% of patients (64 cases)

developed the radiation pneumonitis with a grade ≥2. Except for
the gender with a p-value of 0.04, the other clinical factors had no

statistically significant difference between severe RP cases and

non-RP cases.

Optimal feature group

The final optimal features for six sets of WL-R, WL-D, WL-

RD, FWL-R, FWL-D, and FWL-RDwere listed in Supplementary

Table S1. The model performance with different feature numbers

was plotted in Supplementary Figure S1. A total of 39, 24, and

34 features were kept in the final optimal feature groups for FWL-

R, FWL-D, and FWL-RD, respectively. The FWL-RD features

consisted of 6 dosiomics and 28 radiomics features. For the

region of WL, a total of 31, 4, and 29 features were utilized in the

final optimal feature group for the R, D, and RD sets, respectively.

The RD features consist of 6 dosiomics and 23 radiomics features.

The feature number in the model of WL-R set was 35 with the

maximum testing AUC. However, only 31 features were utilized

in the final optimal feature group.

Model performance

Table 2 shows the average model performance for six feature

sets of WL-D, WL-R, WL-RD, FWL-D, FWL-R, and FWL-RD in

training and testing cohorts. Figure 5 shows model performance

comparison between theWL and FWLmodels using each feature

modality by considering 30 times data separations. For using

dual-omics, the model using FWL-RD achieved significantly

higher performance than the model using WL-RD in both

training and testing cohorts, with an average AUC ± STD and

95% confidence interval of 0.927 ± 0.031 [0.917, 0.939]/0.849 ±

0.064 [0.823, 0.869] and 0.885 ± 0.028 [0.874, 0.893]/0.762 ±

0.053 [0.743, 0.781] (p< 0.001), respectively. For using

radiomics, the model using FWL-R feature yielded a better

classification result than the model using WL-R features both

in the training and testing cohorts with AUC ± STD [95% CI] of

0.919 ± 0.036 [0.907, 0.933]/0.820 ± 0.052 [0.802, 0.838] and

0.862 ± 0.028 [0.851, 0.871]/0.750 ± 0.057 [0.730, 0.771]

(p< 0.001), respectively. The FWL-D feature-based model

performance with AUC ± STD [95% CI] of 0.782 ±

0.032 [0.771, 0.794] obtained a better classification

performance than the WL-D feature-based model with

AUC ± STD [95% CI] of 0.740 ± 0.028 [0.729, 0.750],

TABLE 1 Patients’ characteristics.

Characteristics Overall (126)

Gender p � 0.04

Male (N/%) 109/86.5%

Female(N/%) 17/13.5%

Age, median (range) 61 (29 -- 82) (p � 0.67)

Pathology p � 0.46

SCC (N/%) 79/62.7%

ADC (N/%) 42/33.3%

Others (N/%) 5/4.0%

RT Dose, median (range) 60 (50–70) Gy (p � 0.94)

Smoking p � 0.23

Activity or former (N/%) 97/77.0%

Never (N/%) 29/23.0%

Overall Stage p � 0.30

IIIA (N/%) 72/57.1%

IIIB (N/%) 37/29.4%

IIIC (N/%) 17/13.5%

Treatment method p � 0.97

SCRT (N/%) 83/65.9%

CCRT (N/%) 42/33.3%

RT (N/%) 1/0.8%

RP (N/%) 64/50.8%

SCC, squamous carcinoma cancer; ADC, adenocarcinoma cancer; SCRT, sequence

chemoradiotherapy; CCRT, concomitant chemoradiotherapy.
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however there were no significant difference in the testing

cohorts with AUC ± STD [95% CI] of 0.725 ± 0.064 [0.703,

0.746] against to 0.710 ± 0.068 [0.686, 0.734] (p = 0.37).

The decision curve analysis for all models is shown in

Figure 6. The models using the FWL region’s feature

performed a better clinical value than the models using WL

region’s feature for both single and dual-omics. And, the model

using FWL-RD achieved the highest overall net benefit across the

majority of the range of reasonable threshold probabilities in

both training and testing cohorts compared with the other

feature group. ROC in the training and testing cohorts for all

six models and their comparison in each feature modality and

lung region were shown in Supplementary Figures S2, S3. For the

best model with FWL-RD feature set, the weights of each final

optimal features are displayed in Supplementary Table S3.

Discussion

In the study, we proposed an FWL sub-region generation

method to benefit the prediction of acute radiation pneumonitis

using pre-treatment imaging data. The predictability of each

single omics and dual-omics (radiomics, dosiomics, and their

combination) from the FWL were investigated and compared

with the features from the WL region. As shown in Table 2 and

Figure 6, the evaluation metrics and the decision curve analysis

revealed that the FWL subregion generation method presented a

significant prediction improvement in terms of radiomics and

dual-omics features than using theWL region (p < 0.001), but not

for dosiomics features.

For the models using FWL feature sets, the prediction

accuracy has significant improvement as compared with the

models using WL feature sets. This may suggest the features

from both high and low functional lung regions have better

prognostic power than the WL region. In FWL-R, FWL-D, and

FWL-RD final features sets, there are 16, 7, and 15 features from

the high functional regions, while they are 23, 2, and 19 for low

functional regions. It should be noted that the high FWL

dosiomics features played a more critical role in the FWL-D

signatures. Several studies have showed the same conclusion for

predicting RP when using the dose features from the high

functional region (Yorke et al., 2002; Hunt et al., 2006; Wang

et al., 2012; Hoover et al., 2014; Faught et al., 2017; Bucknell et al.,

2018; Lee et al., 2018; O’Reilly et al., 2020). The low functional

TABLE 2 The average model performance in the training and testing cohorts using six feature sets of WL-D, WL-R, WL-RD, FWL-D, FWL-R, FWL-RD.
The dark red color represents higher values.

AUC, area under the receiver operator characteristic curve; ACC, accuracy; Pre, Precision; Re, Recall; F1, F1-score.

FIGURE 5
The comparison of model performance in the training and
testing cohorts by using two region features of the whole lung and
function-wise lung regions. The star means the p-value smaller
0.001 (p<0.001).
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lung radiomics occupied a slightly more quantity than high FWL

regions. The lower FWL’s radiomics signatures further lead to the

more low FWL’s dual-omics signatures. It may imply that the

heterogeneity of lung tissue, characterized by radiomics feature,

presented both in high and low functional regions. The

improvement for FWL-R to WL-R and FWL-RD to WL-RD

may come from the smaller volume of region (high or low

functional regions) than the WL region can benefit from

extracting and distinguishing more heterogeneous radiomics

features. Palm et al. (Palma et al., 2019) also found that the

lower right lung has a significant correlation with radiation

pneumonitis. In general, the lower functional region covers

part of the lower right lung region. This may be one reason

for the improvement by integrating the features from the low

functional lung region.

For the FWL-RD signatures, except for one radiomics

feature, the other radiomics signatures come from filtered CT

images. The other radiomics signatures of FWL-RD are high-

order features to describe gray level textural information of the

lung region. For dosiomics signatures of FWL-RD, most of the

signatures come from high-order features describing the dose

distribution in the lung region or subregion. The selected final

features are dominated by high-order omics features, which are

also similar to previous studies (Hirose et al., 2020; Bourbonne

et al., 2021; Jiang et al., 2021; Puttanawarut et al., 2022). None of

DVH parameters (such as V5, V20, Dmean) were included in our

data study, which is inconsistent with the previous studies (Palma

et al., 2013; Glick et al., 2018; Onishi et al., 2018).

In our dataset, the threshold of 0.3 only was adopted in

dividing the lung into high and low functional lung regions.

Previous studies report that the threshold can be different,

ranging from 20% to the value of the maximum functional

lung image pixel (Seppenwoolde et al., 2000; Kawakami et al.,

2007; Lavrenkov et al., 2007; Ohno et al., 2011; Ding et al., 2018).

Following their method, we have investigated the model

performance using three omics features from the FWL regions

using a list threshold from 0.2 to 0.8 with a step of 0.1, as shown

in Supplementary Figure S4. Besides, we statistically analyzed the

difference for the testing AUC between the threshold of 0.3 and

the others by using the t-test, as shown in Supplementary Table

S4. As shown in the figure and table, except for dosiomics, the

threshold of 0.3 achieved a statistical higher classification result

in testing cohorts for the majority of feature groups of radiomics

and dual-omics (except for the threshold of 0.2, 0.6 and 0.8 in RD

feature groups with p = 0.107, 0.054 and p = 0.343 respectively),

which is consistent with a previous study (Seppenwoolde et al.,

2000). Based on the previous observations, we determine the

threshold of 0.3 as an optimal threshold by considering three

kinds of features. For dosiomics, the threshold of 0.2 obtained a

maximum AUC value, which agreed with the study (Ding et al.,

2018). In addition, an optimal threshold only using the high

functional lung region’s omics features was also assessed with the

threshold list, as shown in Supplementary Figure S5. And the

corresponding statistical analysis was shown in Supplementary

Table S5. However, non-ignificant improvement (p > 0.05) was

observed by comparing the high-functional lung regions to the

whole lung region.

The current study still faces several limitations. First, the

functional lung images generated by DL model may have

uncertainties. Even though the DL-based approach can make

FIGURE 6
The comparison of clinical application values using decision curve analysis. The left and right plots showed the results of training and testing
cohorts, respectively. The solid cyan line, solid brown line, solid light green line, solid pink line, solid green line, and solid red line represent the results
of WL-D, FWL-D, WL-R, FWL-R, WL-RD, FWL-RD sets, respectively. The horizontal solid black line denotes that all patients didn’t suffer from RP. On
the contrary, the dashed black line represents a condition that all patients occurred RP.
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the image acquisition convenient and less costly for patients, the

uncertainty caused by the DL model can cause a discrepancy in

high and low functional lung regions. This variance may finally

affect the correlation relation between some omics features and

the RP, thus changing final signature features. This proposed

FWL approach should be verified using the real perfusion lung

image. Second, all involved patients were treated by the IMRT

technique. The other radiotherapy, such as volumetric

modulated arc therapy and proton radiotherapy, should be

investigated for our proposed FWL region method to further

explore its feasibility and capability. Third, the unbalanced

between the small sample cohort and a large number of

features can induce overfitting both in training and testing

cohorts (Hawkins, 2004). To minimize this effect, we adopted

randomly under-sampling method in the feature selection to

enhance the stability of final feature signatures. However, a large

prospective cohort should be carried out to access the validation

of our proposed FWL method. Finally, the reproducibility and

stability of omics features were not validated against disturbance.

Some studies have demonstrated that the reproducibility and

stability of features can be affected by the dose calculation grid

size and algorithm (Placidi et al., 2020), CT image acquisition,

ROI segmentation (Zwanenburg et al., 2019), and time or volume

change in 4D-CT (Larue et al., 2017; Lafata et al., 2018), etc.

Therefore, it is important to validate the feature robustness

before clinical application.

Conclusion

In the study, we proposed an FWL approach to deeply

explore the heterogeneous lung tissue and omics features and

evaluated the approach in improvement of the prediction of the

RP for lung cancer IMRT patients. The dual-omics features from

different functional regions can improve the prediction of

radiation pneumonitis for lung cancer patients under IMRT

treatment. This function-wise dual-omics analysis method

holds great promise to improve the prediction of radiation

pneumonitis for lung cancer patients.
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