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It is not deep enough that the theoretical and empirical analysis of economic drivers on the urban heat island (UHI) effect have been researched. Consequently, the study of economic drivers of the UHI effect is not only conducive to the governance of the UHI problem but also conducive to deepening the study of related issues in the economic field. The Yangtze River Delta (YRD) region of China has developed economic status and the special geography of estuaries and coasts. Therefore, 26 central cities in the YRD region are selected as research samples, and the period from 2003 to 2017 is taken as the observation period. The Spatio-temporal variability of UHI intensity caused by industrialization and urbanization is analyzed by using MODIS land surface temperature (LST) data and related yearbook data. The conclusions are as follows:(1) The UHI intensity of cities in the YRD region is significant and fluctuates to a certain extent. (2) Empirical analysis shows that the agglomeration of single economic factors in the process of industrialization and urbanization does correlate with the UHI intensity in the YRD region, but the correlation may show a downward trend due to the influence of exogenous factors suc0h as physical geography. (3) In terms of economic drivers, the combination of multiple factors can produce a greater UHI intensity. The model of their impacts on UHI intensity is increasingly-changed, which is from a model of Fixed Asset Investment and the Motor Vehicle Population as dominant factors to a model of multiple overlapping economic factors, and the latter has a greater impact.
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Introduction

Since 1833, when Howard observed that the temperature in downtown London was higher than that in neighboring rural areas and proposed the concept of the ‘Urban Heat Island’ and the ‘hot-island Effect’ (Howard, 1833), human beings have been studying the Urban Heat Island (UHI) effect for nearly two centuries. As a special urban climate, the UHI effect not only has a negative impact on urban objectives such as urban air quality, building energy consumption, etc. (Swamy et al., 2017; Akkose et al., 2021) but also causes concern and research relating to the health problems of urban residents (Lin et al., 2009; Michelozzi et al., 2009; Lee et al., 2017). Therefore, a large number of studies have been devoted to exploring the influencing factors and driving mechanism of the UHI effect, namely the motivation research, which aims to control the intensity of the UHI by analyzing the main causes of the UHI effect.

These studies can be divided into heat island factors category and cold island factors category according to their results, while they can also be divided into physical geography and economic society categories according to their attributes. Among them, the studies on the physical geographical circle are basically about cold island factors category, and the motivations involved include mountainous area (Estoque and Murayama, 2016), residual natural mountain range (Chen et al., 2021), river (Park et al., 2019), distance from water (Cheval et al., 2020), and atmospheric circulation (Zak et al., 2020). To sum up, existing studies have fully affirmed the differential impacts of urban’s heterogeneous physical geographical factors on UHI. In the field of society and economy, a large amount of anthropogenic heat emission caused by human social and economic activities, especially in the era of industrialization and urbanization, has increasingly aroused research attention. There is not only the cold island factors category, such as a park (green space) (Salerno et al., 2018; Peng et al., 2020) or the configuration of the landscape (Sun et al., 2018); more common are heat island factors, which include city size (Imhoff et al., 2010), construction rate, permeability ratio, average height and average surface area of buildings (Badaro-Saliba et al., 2021), building density (Gabriel and Endlicher, 2011), building environment (Susca and Pomponi, 2020), anthropogenic heat emission (automobile exhaust, etc.) (Sun et al., 2019a), urban polycentric and industrial Layout (Yue et al., 2019), population and human factors (Dewan et al., 2021), population, GDP and fixed asset investment, etc. (Feyisa et al., 2014; Li et al., 2020).

With the deepening of industrialization and urbanization, the impact of these factors may not only deepen but also become more and more complex in their various ways of influence (Li et al., 2020; Feng et al., 2021) These studies undoubtedly greatly enrich people’s understanding of the causes of the urban heat island effect. However, through the review of the above studies on the economic drivers of the UHI effect, we found that there are at least two knowledge gaps in present studies: i) For UHI, there are a lot of studies on economic drivers, and most of these studies select several factors to independently explore their impacts on UHI. However, economic activities have their own scientific laws. How should we distinguish and define different economic drivers and extract key influencing factors to measure their impact on UHI with the help of relevant economic theories? There seems to be not enough consensus in the current research. ii) On this basis, different cities have different basic conditions in terms of physical geographical factors and economic factors. How should we separately measure the different impacts of economic drivers on UHI of a certain city or certain type of cities? Moreover, from the perspective of empirical analysis, how should we clarify the relationship between different economic factors and analyze their mode of action on UHI through constructing an appropriate analysis model? These questions still need to be further explored.

To try to answer these questions, the rest of this paper will be a study based on the existing theory of urbanization and industrialization, summarize them as the economic motive mechanisms of the impact of the UHI effect, and make use of the relevant data of YRD cities to carry on the empirical analysis, summed up the Spatio-temporal characteristics of economic drivers, and put forward the corresponding policy implications. The marginal contribution of this paper is as follows: i) try to use relevant economic theories to tease out the main economic influencing factors; ii) select urban agglomerations with the significant theoretical influence of economic drivers and use appropriate methods to empirically test their influence.



Review of Relevant Theories and Extraction of Economic Influencing Factors

According to the literature review in the introduction, urbanization and industrialization are the two main economic drivers of the UHI effect. Urbanization is a concept with rich connotations. In the field of economics, there has not been a unified definition that can be recognized by the global economic circle. As a branch of economics, development economics began to probe into the economic and social development of developing countries including China since the 1940s, including the theme of urbanization.  Zhao (2013) believes that the essence of the modern economy is modernization, industrialization, and urbanization. Zhang and Yang (1999) studied China’s industrialization and modernization, argued that “urbanization originated from industrialization, and subsequent population in urban agglomeration is caused by industrialization”, so urbanization can be measured by the proportion of the urban population.

The urbanization of land is another important characteristic of urbanization. It refers to the process that the land use attribute changes from agricultural land to urban construction land and the land property right attribute changes from rural collective land to state-owned land, which is accompanied by the change of the natural attributes and social-economic attributes of land. Since economic growth can rapidly increase the price of urban land, the rapid growth of land price in the short term contributes to the change of land use types, so economic development is the fundamental motivation of land urbanization (Yu, 2017). Urbanization changes urban land use types, and the latter changes surface albedo, absorption rate, and emissivity, which are important reasons for the UHI effect (Zhao et al., 2014). Further studies show that in the process of urbanization, the expansion of non-vegetation land is a continuous process, which leads to the fragmentation of vegetation land space. Affected by the edge effect, the continuous expansion of the former leads to the enhancement of the UHI effect, while the fragmentation of the latter leads to the weakening of the cold island effect (Lin et al., 2018). In addition, the process of urbanization is closely related to economic influencing factors such as investment and consumption (Zhao, 2013), which can be regarded as common elements in the process of urbanization.

On the other hand, there are abundant theoretical and empirical studies on industrialization. In most developed countries, industrialization is done by the private sector through the market, and the process is relatively slow. For developing countries, industrialization developed by the government or industrialization jointly developed by industry and the government is more common, so its process is more abrupt (Li, 2013). However, the process of industrialization is also closely related to the UHI effect due to population migration, production and consumption patterns, and changes in land-use patterns.

In all, urbanization is the inevitable result of industrialization, and industrialization is the necessary condition and driving factor of urbanization. In other words, industrialization is the economic essence of urbanization, and urbanization is the spatial expression of industrialization (Zhao, 2013). To sum up, urbanization and industrialization have an interrelated and inseparable relationship, and both include factors that affect the UHI effect.

In addition, according to regional economic theory, agglomeration formed by multiple industries in urban space is called “Urbanization economies”, which breaks through the external economies of scale of single industry agglomeration and brings benefits to all enterprises in the city (Lemelin et al., 2016). In other words, the essence of urbanization is the spatial agglomeration of various economic elements. Agglomeration is also the requirement of industrialization. Weber, the founder of industrial location theory, pointed out that agglomeration helps industrial enterprises reduce costs. Agglomeration brings the proximity effect, division of labor effect, structure effect, scale effect, and “gravitational field” effect, which not only improves economic benefits but also strengthens agglomeration itself and becomes an irreversible trend (Lemelin et al., 2016). All in all, agglomeration is the fundamental characteristic of industrialization and urbanization, and the objects of agglomeration not only include population, buildings, motor vehicles, etc., but also the economic activities derived therefrom. For example, agglomeration leads to the expansion of building land in a spatial continuous way, and building land contributes greatly to the UHI effect among various land-use types (Tian et al., 2021). Accordingly, production, consumption, service, and other economic activities also come into being with the emergence of buildings. Consequently, this paper considers that various economic influencing factors and activity intensity of industrialization and urbanization agglomeration are important drivers of the UHI effect at the socioeconomic level.

Since the essential feature of industrialization and urbanization is the agglomeration of economic influencing factors and activities, on the one hand, it increases the density of various economic influencing factors (population, buildings, industrial enterprises, and motor vehicles) in cities, and on the other hand, it increases the intensity of various economic activities (production, transportation, storage, and consumption, which constitutes GDP). Together, these economic influencing factors and activities promote the UHI effect (Figure 1). Therefore, in this paper, the Gross Domestic Production (GDP), the Permanent Urban Population (POP), the Fixed Asset Investment (FIX), the Industrial Output Value (IND), and the Motor Vehicle Population (MOT) are selected as the single influencing factors of the economic drivers of the UHI effect. Although most of its effect has been confirmed by existing studies from the perspective of a single factor. However, due to the agglomeration of economic influencing factors and activities in the urban area, they are concentrated and superimposed on each other in the urban space, and there are fluctuations and periodic changes, which may bring Spatio-temporal effects on the UHI effect.




Figure 1 | The influencing mechanism of economic drivers of UHI effect.





Materials and Methods


Study Area

China is the largest developing country in the world. Since the launch of Reform and Opening-up in 1978, the process of urbanization in China has accelerated. Along with this process, the UHI effect and its influence have become increasingly prominent in many Chinese cities. The Yangtze River Delta (YRD) is one of the regions with the highest degree of urbanization after the Reform and Opening-up in China and is also the location of major cities with significant UHI effect. Located on estuary and coast, it is vulnerable to climate change, so it has attracted a large number of similar studies (Shen et al., 2013; Li et al., 2020).

Within coastal countries and regions, the coastal zone is highly concentrated with population, industry, urban, economic activities. Being the meeting point of the two natural geographical units of the sea and land, it is vulnerable to sea-level rise, storm surge, saltwater intrusion, coastal erosion, wetland degradation, and coastal marine disasters such as the influence of ecological events. Especially the estuary of the coast is most vulnerable because it is located in the land, river, and confluence of the sea, being a strong human activity and nature-artificial compound ecological system, it is complex, sensitive with superposition of these two factors (Liu, 2014).

The YRD is located in the lower reaches of the Yangtze River and the middle of the Coastal Zone of China. Bordering the Yellow Sea and the East China Sea, it is located at the junction of the river and the sea, which is rich with marine resources. They constitute a typical estuary city and estuary coastal areas. Due to the simultaneous effects of artificial construction and sediment deposition and other natural factors, the coastline of this region is still in a state of dynamic change (Wu et al., 2022). Therefore, it is not only one of the most economically developed regions in China, but also one of the urbanization regions with the most complex human-land relationship and the most fragile ecological system. By the end of 2019, the YRD had a population of 227 million and an area of 358,000 square kilometers. In 2020, the GDP of the YRD reach 24.5 trillion CNY. The urbanization rate of permanent residents exceeded 60%, making it one of the top five urban clusters1 in China, Administratively, the YRD consists of three provinces and one city, namely Jiangsu, Zhejiang, Anhui, and Shanghai. According to the Outline of the Yangtze River Delta Regional Integration Development Plan issued by the Chinese State Council in 2019, 27 cities were selected as its central region, namely Shanghai, Nanjing, Suzhou, Wuxi, Changzhou, Zhenjiang, Nantong, Yangzhou, Yancheng, Taizhou in Jiangsu province, Hangzhou, Ningbo, Wenzhou, Huzhou, Jiaxing, Shaoxing, Jinhua, Zhoushan, Taizhou in Zhejiang province, Hefei, Wuhu, Maanshan, Tongling, Anqing Chuzhou, Chizhou, and Xuancheng in Anhui province (location distribution is shown in Figure 2). As Zhoushan is an island city, its UHI effect is not significant enough. Therefore, this paper selects the remaining 26 cities in the central region as research samples. In terms of the analysis time range, China joined the WTO in 2001, and the economy of the YRD began to enter a stage of sustained and rapid growth. In 2018, ‘Regional integration of the Yangtze River Delta’ became China’s national strategy, marking a new stage of the development of the YRD. Therefore, this paper selected the period from 2003 to 2017 as the observation period. The UHI intensity and economic motivation of the YRD are analyzed by using corresponding indexes, which match the economic and social development stage of the YRD.




Figure 2 | Geographical location of 27 central cities in the YRD.





Data Sources


MODIS Land Surface Temperatures Datasets

Remote sensing data have been widely used to reveal large-scale changes in land surface temperature in China, which are highly correlated with atmospheric temperature observations (Li et al., 2020). Land surface temperature (LST) derived from MODIS LST datasets As a typical representative of satellite remote sensing data, Moderate Resolution Imaging Spectroradiometer (MODIS) has been frequently used to measure the UHI effect in recent years. This article chooses a Chinese land surface temperature MODIS data set combined with weather station data by Zhao et al. (2020), this data set fully captures the year, quarter and monthly scale spatial and temporal variations of surface temperature, high accuracy (Zhao et al., 2020), The observation period is from 2003 to 2017, which basically corresponds to the regional integration, urbanization and industrialization of the YRD, so it is suitable for the research needs of this paper.



Land Cover Data

The land use data and urban boundaries in the YRD were extracted from the Chinese land use data in 2000 and 2015 (from the Data Center for Resource and Environmental Science of the Chinese Academy of Sciences, http://www.resdc.cn). This data set took the Landsat remote sensing image data of the United States as the main information source and then generated by artificial visual interpretation. In this paper, the construction land in the first-level land use classification is used to extract the boundaries of cities and towns in the YRD region (satellite cities and patches far from urban areas are regarded as independent units).



Economic Factors Data

As demonstrated in section 2 of this paper, the Gross Domestic Production (GDP), the Permanent Urban Population (POP), the Fixed Asset Investment (FIX), the Industrial Output Value (IND), and the Motor Vehicle Population (MOT)are selected as the single influencing factors of the economic drivers of the UHI effect. Related data come from the Statistical Yearbook of Chinese Cities (2004-2018) and the official websites of local statistical departments.




Methodology

This study examined the economic influencing mechanism of UHI effects and its Spatio-temporal characteristics based on the economic theory of urbanization and industrialization. Firstly, the UHI intensity in YRD regions is calculated by using MODIS land surface temperature (LST) data. Secondly, the Spatio-temporal characteristics of UHI intensity and economic influencing factors are analyzed. Thirdly, correlation analysis and the geographical detector are used to analyze the influencing mechanism of economic influencing factors on UHI. Finally, based on the discussion of the analysis results, our conclusions and policy implications are put forward. A work flowchart is shown in Figure 3.




Figure 3 | A work flowchart showing major processing.




Calculation of UHI Intensity

At present, the evaluation method of UHI intensity has not formed a unified standard. According to different pixel selection strategies in urban and rural areas, the measurement methods of UHI intensity can be divided into two categories: the pixel method and the buffer method. The former is a method of selecting a certain number of representative reference pixels in cities and surrounding rural lands as typical sample areas to calculate the temperature difference between urban and rural areas based on land use classification data (Zhao et al., 2014). The latter is also a mainstream method to estimate UHI intensity. The first step is to find an equal-area buffer zone or 20-25 km equal-distance buffer outward as the rural area (Yao et al., 2017; Sun et al., 2019b) based on describing the urban boundary range, and then calculate the temperature difference between urban and rural areas. To avoid the subjectivity of pixel selection and the consideration of Spatio-temporal comparability of UHI intensity, this paper uses the equal-area buffer method to estimate the UHI intensity of the YRD region. The specific approach can be divided into four steps: (1) The invariant pixels of construction land in 2000 and 2015 are taken as the urban core area; (2) The boundary of urban core area to the boundary of built-up area in 2015 is defined as urban expansion area, that is, the urban area is divided into urban core area and urban expansion area; (3) The urban area is made equal-area buffer outward, and the resulting area is taken as the rural area; (4) The average surface temperature difference between the urban area and the surrounding rural area was used as the UHI intensity of each urban patch Figure 4A. Taking Shanghai as an example, urban and rural areas generated by using the above methods are shown in Figure 4B. The advantage of this method is that the calculated values of UHI intensity in different periods are longitudinally comparable and consistent, which can be used for a comparison of the large-scale UHI effect.




Figure 4 | Divisions of urban-rural gradient zones. (A) The diagrammatic drawing of divisions. (B) The divisions result of Shanghai.





Spatial Autocorrelation Analysis

Spatial autocorrelation analysis can be divided into global spatial correlation analysis and local spatial correlation analysis, which can be represented by global Moran’s I and local Moran’s I respectively. The global Moran’s I is used to analyze the spatial distribution of UHI intensity and economic influencing factors in the YRD. For specific analysis ideas and steps, refer to relevant literature (Guo et al., 2020). The calculation formula of global Moran’s I is as follows:

	

where n is the total number of regions in the study area, wij is the spatial weight, W is the sum of the spatial weights, xi and xj are the attributes of region i and region j, respectively.  is the average value of attributes. According to the corresponding relationship shown in Table 1, this paper uses global Moran’s I to conduct spatial autocorrelation analysis on the corresponding indexes of UHI intensity and economic influencing factors of cities in the YRD region.


Table 1 | Descriptive statistics of UHI intensity in Cities of YRD (2003 to 2017).





Correlation Analysis Method

Pearson correlation coefficient is used to analyze the correlation of various economic drivers affecting UHI and judge the degree and order of their relationship with UHI. For specific analysis ideas and steps, refer to relevant literature (Lei et al., 2021). In the observed samples, the technical formula of the Pearson correlation coefficient is:

	

where r represents the sample correlation coefficient, Xi and Yi represent the sample observations of independent variable i and dependent variable j, respectively. ,  represent the sample mean values of the independent variable and dependent variable, respectively.



Geographical Detector

The geographical detector is a tool to judge whether independent variables and dependent variables are consistent in spatial distribution from the perspective of spatial stratified heterogeneity. In other words, if independent variables have an influence on dependent variables, they should also tend to be consistent in spatial distribution (Lei et al., 2021). It has the advantages of independent variable collinearity immunity (Jinfeng and Chengdong, 2017) and can detect the interaction between different independent variables. The research objective of this paper is to study the influence of different types of independent variables in economic circles on the UHI effect (dependent variable). Since there are many possible independent variables in economic circles and the existence of collinearity is common, their interaction may produce different types of influence on the dependent variable, and the spatial heterogeneity is also very significant. Consequently, it is suitable to use geographic detectors to analyze this influence. For specific analysis ideas and steps, refer to the relevant literature (Feng et al., 2021). The geographic detector consists of four detectors: factor detection, interaction detection, risk detection, and ecological detection. In this paper, factor detectors are mainly used to detect the extent to which economic influencing factor X explains the spatial differentiation of UHI, and interaction is used to evaluate whether economic influencing factors X1 and X2 will increase or weaken the explanatory power of dependent variable UHI when they work together, or whether the influences of these factors on UHI are independent. The factor detection result is measured by q value, and the expression is:

	

where i = 1,…L is the strata of dependent variable UHI or economic influence factor X. In this paper, h is the division of 26 central cities in the YRD region. Ni and N are the number of units in city i and the YRD, respectively.  and σ2 are the variances of the UHI of city i and YRD region, respectively. SSW and SST are the Within Sum of Squares and Total Sum of Squares, respectively. The range of q lies between zero and one, and the higher the q value is, the more significant the spatial differentiation of UHI is. If stratification is generated by economic influencing factor X, the higher the q value is, the stronger the explanatory power of this economic influencing factor to UHI is (and vice versa).

The method of interaction detection is to first calculate the q values of two economic influencing factors X1 and X2 on UHI respectively: q(X1)and q(X2), and calculate the q values of their interaction (the new polygon distribution formed by the tangency of the two layers of superimposed variables X1 and X2): q(X1∩X2) and compare q(X1), q(X2) and q(X1∩X2). The relationship between the two factors can be classified as follows:

	Nonlinear-weaken: q(X1∩X2) <Min(q(X1), q(X2))

	Uni-weaken: Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2))

	Nonlinear-enhance: q(X1∩X2)>q(X1) +q(X2)

	Bi-enhance: Max(q(X1), q(X2)) < q(X1∩X2) < q(X1) +q(X2)

	Independent: q(X1∩X2) = q(X1) +q(X2)







Result of Analysis


Spatio-Temporal Evolution of UHI Intensity in the YRD

The land surface temperature dataset of China from 2003 to 2017 made by Zhao et al. (2020), using MODIS satellite data, is used to calculate the UHI intensity of 26 urban core areas and buffer zones in the YRD from 2003 to 2017 (the results are in the Appendix). Descriptive statistics are made for the results, and the mean UHI intensity of each city during the observation period is arranged in descending order. As shown in Table 1. Overall, 18 of the 26 cities had a positive average UHI intensity during the observation period. Based on the average UHI intensity of 26 cities, the mean heat island intensity of cities in the YRD during the observation period was 0.143 ± 0.108°C(mean± standard deviation), indicating that it was a significant UHI effect in YRD. From 2003 to 2006, the UHI intensity in the YRD increased from 0.136°C to 0.196°C. The period from 2007 to 2014 was a period of shock adjustment, with the lowest 0.054°C in 2009 and the highest 0.186°C in 2013. From 2015 to 2016, the intensity increased to 0.202°C, which was the highest in previous years. For cities, Ningbo, Hefei, Yancheng, Nanjing, and Shanghai (> 0.4°C) had the highest mean UHI intensity in YRD. While Shanghai, Xuancheng, Yancheng, Ningbo, and Chizhou had the highest variance, indicating that these five cities had the most dramatic changes in UHI during the observation period. The geographical distribution of these cities is scattered, but this does not seem to matter to whether they ranked highly in UHI intensity or degree of change, which seems not consistent with the economic agglomeration distribution trend represented by industrialization and urbanization in the YRD region. Thus, in the next section we analyze the spatial relevance between UHI and economic influencing factors.

In terms of spatial distribution and variation, the UHI intensities of cities in 2003, 2010, and 2017 during the observation period were selected, and the UHI intensity level of corresponding years was grouped by Jenks natural breaks classification method (Figure 5). In 2003, Nanjing, Changzhou, Hefei, Hangzhou, Ningbo, and Shanghai were the cities with the maximum level, while Taizhou, Maanshan, and Chizhou were the cities with the minimum level. In 2010, four cities maintained the maximum level. Nanjing, Hefei, Ningbo, and Shanghai, Yancheng and Xuancheng increased to the maximum level, Zhenjiang and Tongling decreased to the minimum level based on the three cities in 2003. In 2017, Yancheng, Xuancheng, Hefei, and Ningbo remained at the maximum level, while Wuhu and Taizhou joined the minimum level club in addition to Maanshan and Chizhou. In terms of the change range of levels, except for Xuancheng, Tongling, Hangzhou, and Jinhua, the change of level reached two, and the change of other cities did not exceed one. In general, cities with high UHI intensity are mainly distributed in economically developed regions, while cities with low UHI intensity are mainly distributed in economically backward regions.




Figure 5 | Spatial variation of UHI intensity in the YRD.





Spatial Autocorrelation of UHI Intensity in the YRD

In this paper, Moran’s I was used to test the spatial autocorrelation of UHI intensity and its influencing factors in the YRD in 2003, 2010, and 2017, and preliminarily judge the spatial correlation of UHI intensity and its influencing factors in the YRD (Table 2). The results of Moran’s I show that the spatial autocorrelation of UHI intensity in the YRD is not significant and tends to be random distribution. In terms of the distribution of influencing factors (a total of 15), except for FIX, IND in 2010, and IND in 2017, the other 12 factors all showed a certain spatial autocorrelation and tended to be concentrated. This indicates that there are some differences in the spatial distribution of UHI intensity and economic drivers in the YRD, that is, the regions with a concentrated distribution of economic drivers are not necessarily the regions with high UHI intensity.


Table 2 | Global Moran’s I of UHI intensity and influencing factors in the YRD.





Detection of Influencing Factors

To further explore the spatial correlation between UHI intensity and economic drivers, referring to the ideas of similar studies (Shi et al., 2018), the Pearson correlation coefficient was first used to analyze the correlation of influencing factors, and then geographical detectors were used to analyze the Spatio-temporal differentiation of influencing factors of 26 cities in the YRD (Table 3). In 2003, Pearson correlation coefficients of the five influencing factors were all about 0.6, indicating a high correlation with the local UHI intensity. The coefficients of FIX, MOT, GDP, IND, and POP were in descending order. In 2010, Pearson correlation coefficients of five influencing factors all decreased, and the order was FIX, MOT, POP, GDP, and IND. In 2017, Pearson’s correlation coefficient of five influencing factors continued to decline, ranking as FIX, MOT, IND, POP, and GDP. The decreasing correlation coefficient indicates that the influence of urbanization and industrialization on UHI intensity in the YRD is decreasing. The high ranking of FIX and MOT indicates that the large increase of buildings and anthropogenic heat emission caused by motor vehicles may be the leading factors affecting UHI intensity.


Table 3 | Results of Pearson correlation coefficient and factor detector.



Affected by the spatial stratified heterogeneity, the q values obtained by the geographical detector are all lower than the corresponding Pearson correlation coefficient (Table 3). In 2003, FIX, GDP, IND, POP, and MOT were ranked as the main factors affecting UHI intensity in the YRD considering the spatial stratified heterogeneity. In 2010, the q value increased, indicating that the five factors have a great impact on UHI intensity. MOT, POP, FIX, IND, and GDP were ranked in that order. In 2017, q values of all influencing factors except MOT were low, which was consistent with the overall downward trend of the Pearson correlation coefficient. MOT, FIX, POP, GDP, and IND were ranked in that order. In general, FIX and MOT are still in the top position, indicating that these two factors still have a significant positive correlation with the UHI intensity of the YRD after considering the spatial stratified heterogeneity.



Interaction Detection of Influencing Factors

The interaction of five influencing factors on the UHI effect was measured by interaction detection. A total of 30 pairs of interaction effects were generated in 2003, 2010, and 2017 (Table 4). The results show that 25 out of 30 pairs are bi-enhancing, 5 pairs are nonlinear-enhancing, and there is no weakening or independent relationship. It shows that the influence of any two factors is stronger than that of a single factor. In 2003, the top 5 most influential factors after interaction are FIX∩POP(0.553), FIX∩IND(0.509), FIX∩MOT(0.464), POP∩GDP(0.447), and FIX∩GDP(0.419) The results show that the combination of FIX and other factors is the most important economic driver of UHI intensity in the YRD. In 2010, the top 5 most influential factors after interaction are POP∩MOT(0.629), POP∩IND(0.625), FIX∩MOT(0.622), IND∩MOT(0.621), and GDP∩MOT(0.586). The results showed that MOT was the most important economic driver of UHI intensity in the YRD in 2010. In 2017, the q values of single factors were all low, but the top 5 factors with the strongest influence after interaction were all nonlinear-enhancing relationships. FIX∩MOT(0.653), POP∩MOT(0.645), IND∩MOT(0.627), FIX∩IND(0.582), and GDP∩IND(0.425) The results indicate that the economic drivers of UHI intensity in the YRD in 2017 are more complex than before. Except for MOT, the superposition of IND and FIX can produce a more significant UHI effect than a single factor.


Table 4 | Results of the interaction detection analysis.



The results of the interaction detection can reflect the deepening of economic development and urbanization, the influencing mechanism of the UHI effect of YRD was in a complicated evolution. From the previous model of FIX and MOT as dominant factors, it gradually transited to a more diverse model, in other words, the economic factors influencing UHI intensity are increasingly diversified. Overall, the UHI intensity with overlapping factors is more significant.




Discussion

Although the results of The Moran’s test in the YRD in 4.1.1 show that regional UHI intensity and economic drivers have different spatial distribution patterns, that is, regions with a high concentration of economic influencing factors represented by urbanization and industrialization are not necessarily regions with a concentrated distribution of high UHI intensity. However, the subsequent analysis of the Pearson correlation coefficient and q value shows that the economic drivers dominated by FIX and MOT still have a significant positive correlation with the UHI intensity of cities in the YRD. This is basically consistent with the conclusion of similar studies. In terms of reasons, it may be that climatic background and other factors in the physical geographical circle also have a great impact on the UHI intensity of cities in the YRD (Zhao et al., 2014; Li et al., 2020), or that the increase of per capita income is influenced by a relationship of environmental Kuznets curve (Li et al., 2020). More importantly, the above conclusions also partially verify the theoretical influencing mechanism of urbanization and industrialization on the UHI effect in section 2. Besides, the interaction detector analysis by geographical detector confirmed the theoretical influencing mechanism proposed above, that is, with the deepening of industrialization and urbanization, cities overlapped with more influencing factors are more likely to promote high UHI intensity. And the development process of influencing factors also makes the development of the UHI effect more complicated.

By reviewing the economic and social development of the YRD, this paper argues that the above analysis can be more consistent and understanding. The industrialization process of cities in the YRD started in modern China. Compared with other regions in China (such as the Pearl River Delta), the YRD is an area with the prominent characteristics of strong government and strong capital combination (Wang et al., 2018). Such a pattern makes the industrialization process of the YRD more influenced by public policy. In this pattern, fixed-asset investment led by the government used to be an important engine of economic growth in the YRD, but its growth rate and the proportion have gradually declined since 2003, while the proportion of GDP in China tends to rise (Hou and Feng, 2011). This is basically consistent with the increasingly-changing trend of influencing mode, which is from fixed-asset investment as a dominant factor to diversified influencing factors of UHI intensity analyzed above.

With the development of urbanization, the YRD’s rising attracted attention and studies of related automobile exhaust pollution (Xu et al., 2019; Zhou et al., 2020). As an important source of anthropogenic heat emission, motor vehicles are accounted for the UHI effect, and studies on their correlation are verified year by year (Lee et al., 2014; Abutaleb et al., 2015; Alqasemi et al., 2021). In consequence, it is reasonable that motor vehicles, as a dominant influencing factor of the UHI effect in the YRD in 2010, produced more significant UHI effects after superimposing other influencing factors.

As one of the regions with the most developed economy and the deepest degree of urbanization in China, the economic development of YRD is also affected by the process of regional integration. This regional integration is increasingly reflected in the coordination of administration, public services, and infrastructure. In 1997, the first joint meeting of mayors of cities in the Yangtze River Delta was held, which opened the prelude of cooperation among cities. In 2003, the fourth Yangtze River Delta Mayors’ Summit was held, during which the concept of ‘Yangtze River Delta People’ was first proposed, and a 16-city framework structure that has been stable and widely recognized for a long time has been established. In 2010, The Chinese State Council approved the implementation of the Regional Plan for the Yangtze River Delta region, which expanded the original 16 cities to 25 for the first time at the national strategic level and explicitly proposed the construction of world-class city clusters with strong international competitiveness. In 2018, Chinese President Xi Jinping proposed to support the integrated development of the Yangtze River Delta region and made it a national strategy. Based on these arrangements, it embodies the integration of YRD as the national macro-level willingness to promote, and it is also a deepening process of economic integration for regional administration and the demand for public services and infrastructure, which indirectly reflects the fact that, with the improvement of city’s economic development, the process of urbanization and industrialization in the YRD was changing to a stage of greater complexity and diversity than ever before. In addition, their interrelated and inseparable relationship is not only in theory, but also confirmed by some studies on industrialization and urbanization in the YRD (Dewen and Yilun, 2013; Kang et al., 2021), indicating that the industrialization and urbanization in the YRD itself is also a process of mutual superposition. Consequently, their impacts on UHI intensity were increasingly complex and diversified.



Conclusions and Implications

Economic geography focuses on the study of the relationship between economic circles and other circles, such as human circles and layers of physical geography (Li et al., 2012). The idea of this paper is to investigate the influence of economic geographical circles on physical geographical circles and explore the Spatio-temporal differentiation of the influence of economic drivers on the UHI effect. Through the analysis of the YRD, this paper tries to bridge the knowledge gap proposed in the introduction, and the following main conclusions are drawn:

	(1) During the observation period from 2003 to 2017, the UHI intensity of major cities in the YRD region is significant and fluctuates to a certain extent.

	(2) The UHI intensity of the YRD has a certain correlation with the economic drivers mainly characterized by urbanization and industrialization, but this correlation tends to weaken during the observation period due to the influence of exogenous factors such as physical geographical factors.

	(3) Industrialization and urbanization are the main influencing factors of the UHI effect in the YRD from the perspective of economic motivation alone. The essence of industrialization and urbanization is the agglomeration of related economic factors in the urban space. Through the test of this paper, the economic influencing factors of UHI intensity in the YRD during the early observation period are mainly the Fixed Asset Investment and the Motor Vehicles Population but gradually transited to multiple superimposed factors. Cities with more economic influencing factors are more likely to promote higher UHI intensity.



Urbanization and industrialization, as the main economic drivers, have a certain degree of correlation with the UHI effect in the YRD. In recent years, with the deepening of urbanization and industrialization, this correlation tends to weaken, but it is still worth the attention of public service providers that the superposition of various economic factors may promote more serious impacts. To this, the policy suggestion of this paper is the YRD regional policymakers should pay attention to multiple superimposed economic factors. Combined with local progress of urbanization and industrialization, policy regulation and guidance need to be balanced to avoid in a particular city space falling within the scope of the superposition of multiple economic factors and highly-concentrated activities. At the same time, it is worthy to invest in and optimize the configuration of cold islands, such as parks, green space, and landscape configuration.

In terms of temporal segmentation, the UHI intensity of the same year fluctuates across seasons and between day and night. In terms of spatial segmentation, there are also certain differences in UHI intensity between counties and urban areas under the jurisdiction of each city. However, due to the limited granularity of relevant data used to analyze economic drivers, this study cannot match such Spatio-temporal heterogeneity and is worthy of further study.
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Small yellow croaker (Larimichthys polyactis), a benthic fish species widely distributed in the Northwest Pacific Ocean, plays an important role in the fishery catch of coastal countries. A large amount of dead small yellow croaker floated on the sea surface near 30.2°N, 125.3°E in the East China Sea on 19 February 2017, and more than 9,000 kilograms were caught by fishermen, which had never been recorded before. This study aims to investigate the dynamic causes of this sudden death event based on available in-situ, satellite and modelling data. The event occurred near the overwintering ground of small yellow croaker, where a majority of these fish assembled in winter. There were persistent ocean fronts at target site with average intensity of 0.05°C/km at sea surface and bottom in February 2017, which was the strongest in the past 5 years from 2015 to 2019. The fronts provided nutrients and food to fish, and the intense gradients prevented fish from crossing, thus forming “water barriers” to restrict the horizontal movement of fish. Due to enhanced convection, the water was well-mixed, enabling the demersal croaker to float to sea surface. The sea temperature was particularly warm in winter 2017, but then experienced a significant drop by more than 4.5°C in 40 days according to satellite and modelling datasets due to the northerly wind and the southeastward movement of cold eddy. The drop of temperature led to ‘cold shock’ of fish, affecting their physiological regulation and survival. Under the combined influence of these factors, a large number of small yellow croaker died and aggregated near the target site. This paper has a great reference value for further study on the living habits of small yellow croaker and their responses to marine dynamic changes.
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1 Introduction

Small yellow croaker (Larimichthys polyactis) is a demersal fish species widely distributed in the Bohai Sea, the Yellow Sea, and the East China Sea (ECS) in the Northwest Pacific Ocean (Li et al., 2011; Xiong et al., 2017; Ren et al., 2020). Small yellow croaker is a typical migratory species (Lin et al., 2018) that generally migrates for food and overwinters to warm waters (Li et al., 2011); and in springs, they return from the open sea to coastal waters (such as the Yangtze River Estuary and its adjacent areas) to spawn and grow up (Lin et al., 2018).

Small yellow croaker is one of the most important commercial fishery resources for coastal countries such as China, North Korea, and South Korea (Lin et al., 2011; Xiong et al., 2017), and a substantial number of fishermen in these countries depend on small yellow croaker fisheries. However, in recent years, the quantity and population structure of this fish have changed significantly due to overfishing (Shan et al., 2017; Ren et al., 2020). Moreover, environmental changes caused by marine hydrological factors and climate change have imposed a certain impact on its population (Li et al., 2011; Cheung et al., 2013b; Ren et al., 2020). Therefore, small yellow croaker resources are facing serious decline and the probability of achieving a high-density of fish population is decreasing.

At 3 p.m. (local time, GMT+8) on 19 February 2017, an unusual event happened: fishermen found more than 9,000 kilograms of small yellow croaker floating on the sea surface at approximately 30.2°N, 125.3°E over a short period, and most were dead or nearly dead (Figure 1B). The fishing vessel was surrounded by dead fish in an oval shape with a maximum radius of 60~70 m. According to the fishermen, this phenomenon had not been seen in past years. As red tide events had not been observed in the surrounding waters, and no red tide toxins or other toxins were found according to the toxicological tests by the Zhejiang Marine Fisheries Research Institute, the fish were approved for sale. The causes of death and gathering of small yellow croaker remain to be further explored.




Figure 1 | (A) The East China Sea circulation in winter (TWWC: Taiwan Warm Current; ZMCC: Zhe-Min Coastal Current) and migration grounds and routes of small yellow croaker. The circulation is redrawn based on Liu et al. (2021b); the migration grounds and routes of small yellow croakers are after Ren et al. (2020). (B) The event: a large number of small yellow croaker floated on the sea surface around the fishing vessel.



Previous studies have shown that the survivals and spatial distributions of the fish are highly correlated with the changes of marine environmental factors. Finch (1917) described the destructive effects of a cold wave event on small fish (e.g. crabs and small shrimp) in Florida. Gunter (1941) found that along the coast of Texas in the United States in January 1940, different kinds of fish (e.g. pinfish, squid, eel, etc.) died due to cooling caused by severe northerly wind. The fishes were aerated and floated on the surface or washed ashore. Misund et al. (1998) found that the large amount death of herring occurred between cold-water fronts in the Icelandic Exclusive Economic Zone. Marti-Cardona et al. (2008) described several fish kills were related to strong winds and upwelling in the Salton Sea.

By summarizing previous studies, such fish death events may have been caused by the following factors associated with atmospheric and marine dynamics. Firstly, water temperature is the most important environmental factor affecting the spatial distribution of fishes (Lin et al., 2011). Temperature not only affects the metabolic rate of fishes by adjusting the activity of enzymes, thereby regulating the survival and growth of fishes (Hurst et al., 2012; Bergstad, 2013; Shan et al., 2017), but also influences the migration of fishes, and the locations of fishing grounds (Li, 1982; Perry et al., 2005; Cheung et al., 2013a; Shan et al., 2017). The abnormal change of water temperature, especially cooling, could cause discomfort of small yellow croaker and lead to the inflation of fish bladder and eventually death. Secondly, fish might encounter “water barriers”, or ocean fronts. Ocean fronts are vertical boundaries between water masses of different physical, chemical, and hydrodynamic properties (Wolanski and Hamner, 1988). Frontal zones play an important role in fisheries, ecology, and diffusion and concentration of nutrients (Belkin, 2021). Consequently, the fish would gather near fronts because there are high nutrients and they are unable to cross strong gradients. Seasonal hypoxia forms off the Yangtze River Estuary in the ECS under the massive anthropogenic eutrophication (Zhang et al., 2022), and is known to cause detrimental consequences to fish stock and other ecosystem elements. Generally, the seasonal hypoxia in this region starts to form in late spring and early summer, reaches its peak in August, and weakens in autumn (Chi et al., 2020; Wang et al., 2022). However, winter dissolved oxygen level is generally high due to fast oxygen exchange associated with active vertical mixing and lateral advection (Zuo et al., 2019; Zhang et al., 2022). Hence, hypoxia is unlikely to be a potential cause of this event. This paper is motivated to find out the possible reasons and relevant evidence for this event.

In this paper, oceanic numerical modelling data combined with satellite data and in-situ data were used to investigate the possible marine dynamic mechanisms underlying the sudden death event in winter 2017. The paper is organized as follows. The study area and datasets used in this paper are introduced in Section 2. Section 3 presents the analysis results based on multiple datasets. Section 4 discusses two main possible causes of this event, namely, cooling and fronts, and proposes some other possible reasons and deficiencies. A summary is given in Section 5.



2 Materials and Methods


2.1 The East China Sea Circulation in Winter

The abnormal death event of small yellow croaker happened in the ECS adjacent to point 30.2°N, 125.3°E (hereinafter referred to as “target site”) (Figure 1A red spot). The ECS circulation in winter and migration routes of small yellow croaker are shown in Figure 1A.

The circulation of ECS is mainly composed of three parts: the Kuroshio in the southeast, the Taiwan Warm Current (TWWC) and Zhe-Min Coastal Current (ZMCC) in the middle, and the Yangtze River buoyant plume in the northwest (Isobe, 2008; Xu et al., 2018) (Figure 1A). Kuroshio is the strongest western boundary current in the Pacific Ocean, with characteristics of high temperature, high salinity, and high velocity. High concentrations of phosphorus are also carried by Kuroshio intrusive waters, supporting the primary production of the ECS shelf (Wang et al., 2018; Liu et al., 2021a). Kuroshio intrusion is divided into 3 branches (Yang et al., 2012; Yang et al., 2018): Kuroshio branch current (KBC), offshore Kuroshio branch current (OKBC), and nearshore Kuroshio branch current (NKBC). For demersal fishes, the NKBC may influence their spatial distribution (Xu et al., 2019). The intrusion of Kuroshio mainly occurs along the shelf break (usually 200 m isobath, Figure 1A), but can also occur at depth less than 200 m, and there is water exchange of the Kuroshio and these places (e.g. midshelf of 50-100 m) (Zhang et al., 2017). The intrusion may occur throughout the year but is more frequent in winter (Wu et al., 2014a) when the NKBC moves towards the Kuroshio mainstream (Yang et al., 2018). This event happened around 60 m isobath in February (Figure 1A); therefore, the target site would be affected by the intrusive water of Kuroshio. The Kuroshio intrusion is an important external factor of the ECS circulation, transporting nutrients from lower latitudes to higher latitudes, which plays a crucial role in the nutrient supply of the ECS and further affects marine creatures and ecology (Isobe, 2008; Guo et al., 2012; Guo et al., 2013; Yang et al., 2013).

TWWC flows northeastward along the ECS shelf and is characterized by high temperature (Yuan and Hsueh, 2010; Liu et al, 2021b). When northerly winds prevail in winter, the TWWC moves toward the shore (Liu et al., 2021b). Meanwhile, the buoyant plume from the Yangtze River transports southwestward toward the Taiwan Strait, and this current that carries cold and fresh waters is ZMCC (Liu et al., 2021b), which will reverse its direction in summer (Guan and Fang, 2006; Yang et al., 2018). All these currents control the hydrology of the ECS shelf. Ocean circulation combines nutrients with light, promoting primary productivity and interactions between higher nutrient levels (Weisberg et al., 2015), further affecting the survival of marine creatures.



2.2 Migration Routes of Small Yellow Croaker

The migration routes of small yellow croaker are inseparable from the pattern of ocean circulation in the ECS. In previous studies, three stocks were identified: North Yellow Sea stock, South Yellow Sea stock, and ECS stock (Liu, 1962; Han et al., 2009). The latter two stocks exist in our study area.

For South Yellow Sea stock, the overwintering ground is located at 32°-34°N, 123°-126°E (Han et al., 2009). The adults migrate westward to the Yangtze River estuary for spawning in March (Han et al., 2009; Lin et al., 2011), and form the largest spawning ground of small yellow croaker in China, namely, the Lvsi fishing ground (Xu and Chen, 2009) (Figure 1A).

For ECS stock, the southeastern coastal waters are overwintering ground (Han et al., 2009). From Figure 1A, the location is around 28°-30°N, 123°-125°E. In spring, the fish migrate to the Zhoushan Archipelago, Lvsi fishing ground, and Yushan fishing ground for spawning (Liu, 1990; Xu and Chen, 2009). Geographically, the death event occurred quite close to the overwintering ground, which indicated that small yellow croaker had gathered there in February. The fish can be brought to target site by ocean currents.



2.3 Datasets

Daily sea surface temperature (SST) products of GHRSST-OSTIA (Group for High Resolution Sea Surface Temperature-Operational Sea Surface Temperature and Sea Ice Analysis) are provided with a spatial resolution of 0.05°, merging in-situ data and satellite data from both infrared and microwave radiometers. These data are distributed by NOAA’s National Centers for Environmental Information (https://www.ncei.noaa.gov/data/oceans/ghrsst/L4/GLOB/UKMO/OSTIA/2017/). This dataset is generated using optimal interpolation method. The in-situ temperature from 2 coastal stations near target site in February, 2017 are from Zhejiang Ocean and Fisheries Bureau with intervals of 1 hour, as shown in Figure 2A.




Figure 2 | (A) Locations of observed data stations (blue dots) and the target site (red dot). (B) Temperature variation of in-situ data at 2 stations in February 2017. The data came from Zhejiang Ocean and Fisheries Bureau.



Two modelling datasets are used in this paper. The data of global HYCOM (HYbrid Coordinate Ocean Model) have a spatial resolution of 1/12° between 40°S-40°N and a temporal resolution of 3 hours after data assimilation (https://hycom.org/dataserver/gofs-3pt1/analysis). The spatial resolution of simulated data in Wu et al. (2011) is approximately 1/12° in the Kuroshio zone and 4 km in Zhejiang Coastal Waters, and the temporal resolution is 1 hour (hereinafter referred to as “regional model”). A detailed description can be found in Wu et al. (2011). This model was previously validated based on in-situ salinity, temperature, currents, and elevation data (Wu et al., 2011; Wu et al., 2014b; Yuan et al., 2016; Wu et al., 2018), and the results showed reasonable accuracy. The two modelling datasets are employed to perform a more comprehensive analysis. HYCOM is a global model and works well by using a distinctive vertical hybrid coordinate. It assimilates data from satellites, Argo, and other field observations (Helber et al., 2013). However, regional model has a finer resolution in our study area and involves tidal forcing. More importantly, it is refined in upper 5 m thickness, allowing to resolve the vertical structure of the Yangtze River plume (Wu et al., 2011).

The two modelling datasets are first compared with GHRSST to validate their credibility. From Figure 3, SST fields based on HYCOM and regional model show a great similarity with GHRSST. In addition to reflecting the high temperature of Kuroshio and southeast gradient of SST near this current, the modelling data can also distinguish the cold-water area along the Yellow Sea coast.




Figure 3 | Comparison of sea surface temperature obtained from GHRSST (left panels: A, E, I), global HYCOM (the second panels: B, F, J), and the regional model (the third panels: C, G, K): note that the red line refers to the NE-SW transect and the blue line refers to the NW-SE transect; the bottom temperature obtained from global HYCOM (right panels: D, H, L). The selected time is 4, 13, and 18 February 2017.



The wind data is provided by CCMP (Cross-Calibrated Multi-Platform, https://www.remss.com/measurements/ccmp/), which assimilates inter-calibrated satellite data from numerous radiometers and scatterometers. The spatial and temporal resolutions are 1/4° and 6 hours, respectively.

Altimeter satellite gridded Sea Level Anomalies (SLA) of daily intervals are obtained from AVISO, which are distributed by Copernicus Marine Environment Monitoring Service (CMEMS; http://marine.copernicus.eu/). The spatial resolution is 1/4°.




3 Results


3.1 Eddy and Wind Induced Cooling

Figure 4 demonstrates the temperature differences on the basis of 10 January 2017 from satellite data in the ECS. There was obvious and continuous cooling in February, which occurred near target site and its northwest region. The temperature has dropped by up to 5°C.




Figure 4 | Temperature differences on the basis of 10 January (color shading) and daily average winds (vectors) of 4 (A), 8 (B), 12 (C), and 17 (D) February in the ECS. The SST were obtained from GHRSST and the wind data came from CCMP.



The spatial distribution of SLA shows that the cooling was partly caused by a cold eddy (Figure 5). The center of the warm eddy had a positive value with a relatively large SLA (Morrow et al., 2003), while the center of the cold eddy had a negative value with a relatively small SLA (Morrow et al., 2004). The cold eddy will lead to a decrease in ambient temperature. In early February of 2017, a cold eddy (CE-A) was near 32.5°N, 121.5°E (Figure 5A). Driven by the northerly wind, the cold eddy then moved southeastward and appeared at 32°N, 123.5°E on 7 February (Figure 5B), during which its position and size changed. Subsequently, from 8 February to 13 February, CE-A gradually merged with a cold eddy along the coast of Jiangsu Province, thus forming a new cold eddy (CE-B) (Figure 5C). On 14 February, CE-B merged with a southeastern cold eddy at 30°N, 124°E, forming a larger cold eddy (CE-C) (Figure 5D). On 15 February, a new cold eddy (CE-D) separated from CE-C, and its position was rather close to target site (Figure 5E). From 16 February to 19 February, CE-D actually persisted and gradually moved towards target site along with the southerly wind, as shown in Figures 5F–I, leading to further cooling of the area.




Figure 5 | Changes of SLA (color shading) and wind (vectors) in 1 (A), 7 (B), 13-19 (C–I) of February 2017. Closed contour lines of SLA are cold eddies and warm eddies, and the negative centers are cold eddies. The SLA data were obtained from CMEMS and the wind data were from CCMP.



Another cause of cooling is the strong northerly wind (Figures 4, 5). The variation of wind at target site from January 10 was demonstrated in Figure 6A. The wind direction varied frequently: from 10 January to 14 February, the wind was basically from north and northwest except 28-30 January and 3-5 February, while from 15 February to 19 February, obvious wind direction alternations occurred. Furthermore, the strength of northerly and northwesterly wind (~10 m/s) was significantly stronger than the southerly winds (~5 m/s). The northwest wind brought cold and dry air from the continent, resulting in a huge loss of ocean heat from the ocean to the atmosphere (Kim et al., 2018), which could cause the cooling of February (Luis and Kawamura, 2000).




Figure 6 | Changes of wind direction at the target site from 10 January 2017 (A). The data were from CCMP. Sea temperature variation from surface to bottom within 6 km (B) and 60 km (C) of the target site. The differences of surface (D) and bottom (F) temperatures and the differences of surface (E) and bottom (G) salinities between 18 February and 10 January 2017. The areas of decline have been marked. The temperature and salinity data were from HYCOM.



At target site, the temperature had decreased by 4.5°C within 6 km during about 40 days before the sudden death event. The cooling range can reach up to 60 km with a drop of 6.6°C, which can be found from both HYCOM and GHRSST at every depth (Figures 6B, C). Figures 6D–G demonstrate that the temperatures and salinities on 18 February were lower than those on 10 January within the nearby area of target site. However, the variation in salinity was less than 1, which was weaker than that in temperature. Wang et al. (2021) discussed the effects of salinity on small yellow croaker through controlled experiments on the enzyme activities in them after salinity changed. They found that when the salinity is reduced to 5, the croaker can adjust the physiological function by mobilizing the enzymes in the body in time, thus maintaining the osmotic pressure balance of the internal and external environment and surviving. Therefore, the slight change of less than 1 (Figures 6E, G) would not cause the death of small yellow croaker. Thus, more attention should be paid to temperature decrease (cooling).

The generation algorithm of HYCOM and GHRSST involves shift, interpolation, and assimilation of observed data, which may bring unavoidable estimation errors (Minnett and Kaiser-Weiss, 2012; Helber et al., 2013), especially the underestimation of sharp variations both in space and time domain. Due to the lack of directly in-situ data of target site, we analyzed the observed surface temperature at 2 coastal stations (Figure 2A blue dots). As shown in Figure 2B, the variation of surface temperature reflected by the in-situ data has a trend of decreasing, up to 15°C, during most of February, especially from 16 to 18 February. This is similar to the variation reflected by the HYCOM and GHRSST data (Figures 6B, C). Nevertheless, the magnitude of the variation is different. It is reasonable to speculate that the actual cooling at target site at the time of this event could be greater than that shown by the modelling datasets.



3.2 Spatial Distribution of Sea Temperature

SST data can be used to explore the possible effect of the Kuroshio on this death event. The spatial distribution of daily mean SST of the ECS during February (Figure 3) shows that the warm Kuroshio was approximately 22°C and generally flowed northeastward, which could bring a wealth of nutrients. Figure 3 also illustrates the relatively cold Jiangsu Coastal Current, which has abundant inorganic nutrients (Zhang et al., 2020) and moves southeastward. The target site was in the middle of 14°C and 16°C isotherms on 4 February both at the surface and bottom. Later, it was between the isotherms of 12°C and 14°C and closer to 12°C on 18 February, which meant the temperature had decreased significantly. In addition, there were tongue-shaped temperature gradients between the Kuroshio intrusive path and target site, and a cold-water tongue was found north of it, which was easy to form thermal fronts.

Since the regional model has a higher vertical resolution near shore, we use this modelling dataset to analyze the vertical structure. The northwest-southeast and the northeast-southwest direction are represented by blue and red lines respectively in Figures 3C, G, K. As shown in Figure 7, the profiles also indicate the temperature decrease and temperature gradients, which will be further explored in the following sections. Besides, the temperature near target site shows obvious vertical uniform structures. From the surface to bottom, seawater was well-mixed and the temperature was relatively cold.




Figure 7 | Upper left panels: the vertical temperature profile of the northwest-southeast direction (A, C, E). Upper right panels: the vertical temperature profile of the northeast-southwest direction (B, D, F). Bottom panels: the vertical variation of temperature at the target site (G). The temperature data were obtained from the regional model.





3.3 Ocean Fronts

Ocean fronts can be seen in the vertical profile of temperature (Figure 7). The temperature in the southeast was higher than that in the northwest, showing a clear temperature gradient (Figures 7A, C, E). On 4 February, the vicinity of target site presented a temperature of approximately 13.5°C, followed by a gradual movement of the cold water from northwest gradually to southeast, resulting in a drop of 1.5°C in 2 weeks (Figure 7G). As cold water moved, the front around target site was also strengthened. This might be related to changes in the intrusive path of the cold-water tongue, which gradually moved southeastward.

In the northeast-southwest direction, the temperature profile presents a “sandwich” structure (Figures 7B, D, F), showing that warmer seawater was on both sides and relatively colder seawater was in the middle. The center of low temperature was located around 126°E, which indicated that there were fronts on both sides near target site, especially the southwest side. As the cold water gradually diffused, it also showed that the temperature of target site dropped, which is consistent with the results of section 3.2, whereas the fronts remained on both sides.

The horizontal gradients are commonly used to detect ocean fronts. The intensities of the temperature fronts at the surface and bottom are calculated by using the formula:

	

where x and y represent the distances of latitude and longitude respectively. The spatial distribution of intensities of temperature fronts shows that there were continuous and intense fronts at the surface and bottom near target site. The intensity of thermal fronts increased by 0.01°C/km at the bottom and 0.005 °C/km at the sea surface from 7 to 12 February 2017. The range of strong fronts near the target site expanded from 12 to 18 February (Figures 8A–F).




Figure 8 | Spatial distribution of surface (A–C) and bottom (D–F) thermal fronts near the target site in February 2017. The fronts had been averaged between two isotherms. Daily variations of thermal front intensity near the target site in February from 2015 to 2019 (G, H), (G) refers to the surface and (H) refers to the bottom. The solid lines indicate the frontal intensity in 2015-2019, respectively, and black-dashed lines indicate the average front intensity in 2015-2019. The data were obtained from HYCOM.



Daily variations of ocean fronts in February from 2015 to 2019 (Figures 8G, H) indicate that the intensity of the fronts near target site in 2017 was the largest in the past 5 years from 2015 to 2019, both at the surface and bottom. The average fronts intensity at the surface and bottom was 0.05°C/km in 2017, 0.03°C/km in 2018, while 0.02°C/km in the other 3 years. In 2017, the intensities of the temperature fronts in the bottom layer increased significantly after 14 February. The variations of ocean fronts might have acted as a barrier, affecting the movement of small yellow croaker.




4 Discussion

Based on comprehensive data analysis, the reasons for the sudden death event of small yellow croaker in the ECS during winter 2017 are illustrated in Figure 9.




Figure 9 | Schematic diagram of the reasons for the sudden death event of small yellow croaker in the ECS in winter 2017. For more details: see [1] in Figure 1A; see [2] in Xu et al. (2018); see [3] in Figures 4–6A; see [4] in Figure 5; see [5] in Figure 7; see [6] in Figure 8.



The target site is near the overwintering ground of the ECS stock, between 60 m and 200 m isobaths within the continental shelf (Figure 1A). The intrusion of nutrient-rich NKBC could provide food and attract small yellow croaker to gather. Fish larvae will be transported onto the shelf by the northward intrusion of Kuroshio and its associated streamers and eddies (Sassa, 2019). The trawl investigation of demersal fish in the ECS carried out by Xu et al. (2019) also proved that the distribution of these fish closely matched intrusion of NKBC. Also, the tongue-shaped cold-water in Figure 3 and curved fronts in Figure 8 demonstrate that high-nutrients Jiangsu Coastal Current is moving to the target site, which can also provide nutrients.

There were continuous ocean fronts near the target site, especially temperature fronts (Figures 7, 8), which provided sufficient nutrition for small yellow croaker. In the early 20th century in Japan, the first scientific expression describing the relationship between fishes and fronts was so-called Kitahara’s law, which was put in fewer words: “fish shoals tend to be congregated in ocean fronts” (Sournia, 1994). A recent study discussed the relationship between fronts and skipjack tuna fishing grounds (Zainuddin et al., 2021). They found that skipjack gathered around the thermal fronts with a distance of 0-40 km. Ding et al. (2021) used satellite and reanalysis data to explore the causes of unusual fish assemblage in February and March 2017 in the ECS. They confirmed that fish are more likely to migrate to fishing areas with relatively high temperature, northerly wind, strong thermal fronts and high chlorophyll-a concentration. Based on their analysis, fish assemblage appeared when the front intensity was around 0.05°C/km in the 32°N, 125.5°E of the ECS in March 2017, which is consistent with front intensity at the target site. Moreover, several studies have confirmed that the abundance of most fish peaked at or near fronts (Tseng et al., 2014; Woodson and Litvin, 2015; Alemany et al., 2018; Belkin, 2021). This was because fronts were usually considered as locations of maximum biodiversity and elevated production in the ocean (Palacios et al., 2006; Woodson et al., 2012; Svendsen et al., 2020; Belkin, 2021). Besides, the fronts were beneficial to development and maturation of the gonads of small yellow croaker (Kucera et al., 2002). Consequently, the fronts were conducive to the gathering of small yellow croaker.

Meanwhile, ocean fronts formed “water barriers” for small yellow croaker that might restrict their horizontal movement (crossing the front) and hinder the range of movement, thus preventing the fish from escaping or prolonging their retention time. Such phenomena occurred because the gradients were large along the fronts, and fish tended to migrate along the boundaries rather than cross them (Iwatsuki et al., 1989; Hubbard et al., 2004). Furthermore, the most important prey of small yellow croaker are planktonic crustaceans (mainly krills and decapods) (Xue et al., 2005), which don’t have the ability to swim autonomously and can only rely on the flow of seawater to move. According to Iwatsuki et al. (1989), if the surface current moves toward the fronts and the current speed is 0.1 m/s or more, the fish larvae and crustaceans will follow the water masses toward the front and then convey along the frontal zone horizontally, further increasing fish population. In our case, the ocean fronts are basically in the northeast-southwest direction. From Figure 10, the speeds are larger than 0.1 m/s in most of the time, and the current was toward the fronts, especially on 10, 16, and 19 February. Therefore, a large number of small yellow croaker would gather and be confined near the target site, thus causing the large fishery catch in February 2017. In previous studies, the influence of the fronts had also been found in lots of areas. For example, Hidayat et al. (2019) carried out a survey to confirm that the distribution of skipjack tuna fishing grounds was at or near the detected thermal fronts in the Makassar Strait. Garcés-Rodríguez et al. (2021) found that the highest fish larvae abundance was related to the strongest thermal fronts in the Midriff Archipelago region, Gulf of California through cruises.




Figure 10 | Current speeds of the target site from 10 to 21 February. The data were from HYCOM.



Fish are poikilothermic animals, meaning their body temperature changes with the ambient temperature (Lall and Tibbetts, 2009), and all of their physiological and behavioral parameters are controlled by temperature (Fry, 1947; Donaldson et al., 2008). Thus, changes of sea temperature due to wind and other factors will cause changes in the actions of fish. The small yellow croaker is warm-temperate demersal fish and prefers warmer water (Chen et al., 2010). As the temperature at the bottom of the target site continued to drop (Figures 6B, C), large numbers of small yellow croaker swim up from the bottom in search of a warmer environment. With the drop of temperature, seawater convection will be enhanced, leading to a more uniform structure (Killworth, 1983), making it possible for fish to swim up unimpededly (Figure 7). Meanwhile, high concentration of nutrients at the bottom can diffuse to the surface, which may better promote photosynthesis. In this case, the migration process of fish could occur in all water layers, which meant that the demersal yellow croaker could float to the sea surface without the limitations of thermoclines (Li, 1982). For example, the vertical isothermal structure caused by a cold wave in the Bohai Sea on 6 October 1977 led to a large number of prawns floating up to the surface, which greatly affected the catch (Li, 1982). During the process of migration, a decrease in sea temperature was caused by southerly movement of cold eddies and northerly wind (Figures 4–6A). Based on HYCOM and GHRSST datasets, the temperature had dropped at each depth by about 4.5°C in one and a half months at target site (Figures 6B, C). Moreover, we believe the actual cooling range would be greater than HYCOM and GHRSST show through the analysis of nearshore in-situ data (Figure 2).

Qi et al. (2017) studied the floating algae blooms in the ECS in 2017, in which they analyzed SST anomaly from 2010 to 2017 and found that the ECS experienced record-high temperature with a positive anomaly of 0.7-1.3°C in winter 2017. The temperature could as high as 18.21°C (Song et al., 2019). In this case, when the small yellow croaker had adapted to a specific warm water environment, the subsequent decrease of more than 4.5°C of living environment in around 40 days caused by the cold eddies and wind might cause a series of physiological and behavioral discomfort and even death. Donaldson et al. (2008) referred to the death of fish due to a decrease in temperature as “cold shock”. Cold shock is one of the stress responses of fish, and it affects the central nervous system, metabolic function, and ionic balance of fish (Donaldson et al., 2008). Furthermore, it leads to slow movement, compromised swimming and foraging ability, reduced responsiveness, shrinkage of gill, loss of equilibrium, the onset of cold coma, starvation, and respiratory failure (Fuiman and Batty, 1997; Smith and Hubert, 2003; Hurst, 2007; Donaldson et al., 2008). Several studies have focused on the effects of cold shock on fish and catches. For instance, Emery (1970) implicated declining temperatures from a seiche as a cause for high mortalities of sculpins and crayfish in Georgian Bay, Lake Huron, Canada. Lee et al. (2014) illustrated the effects of an unusual cold-water intrusion caused by a strong and continuous northeasterly wind in 2008 around Taiwan Islands. They noted that the cold water caused the death of fish but increased the catches from a set-net fishery, with the majority of the catch represented by migratory species. Through these studies, we confirmed the negative impacts of cooling on the living of small yellow croaker. Thus, the abnormal cooling caused by wind and cold eddies in February 2017 may be the main factor for the death of small yellow croaker.

This study has some limitations. We lack in-situ temperature, chlorophyll, dissolved oxygen measurements at target site. Moreover, due to the lack of higher-resolution datasets, we are unable to discuss the effects of smaller-scale motions, such as the submesoscale processes. For example, enhanced vertical and horizontal currents and high levels of shear can be produced by submesoscale fronts, which leads to nutrient flow into the surface water, and in turn causes more concentration of nutrients, phytoplankton and zooplankton (Genin et al., 2005; Lévy et al., 2012; Mahadevan, 2016; Snyder et al., 2017), affecting the migration of fish. Therefore, this abnormal event needs to be further explored from multiple aspects.



5 Conclusion

This paper discusses the possible causes of the abnormal sudden death event of small yellow croaker in the ECS during winter 2017. Satellite and modelling datasets are used to investigate the possible dynamic mechanisms of this event. The results indicate that small yellow croaker overwintered through the ECS in the winter, and the number of small yellow croaker would increase during this time. The pathways of NKBC intrusion and the development of ocean fronts might have provided nutrients, affecting the fish gathering. Moreover, the fronts formed “water barriers” that blocked the horizontal movement of the small yellow croaker. In the vertical direction, due to the vertical isothermal structure, the demersal croaker could freely swim to the sea surface. The analysis of multiple data shows that the wind directions switched several times in late February but mainly northerly, moreover, the cold eddies moved southward. There was more than 4.5°C drop of temperature caused by wind and the moving cold eddies in about 40 days, leading to “cold shock” of the fish, which finally resulted in discomfort and eventual death of small yellow croaker. Under the comprehensive influence of these factors, a large number of dead small yellow croaker emerged from the sea at the target site. In short, the impacts of changes in the marine dynamic environment on the abnormal death event of small yellow croaker are multifaceted, and the influences of other environmental factors, such as chlorophyll, dissolved oxygen, and submesoscale processes, need to be further studied. A comprehensive understanding of the relationships between marine dynamic factors and main creatures will be of great scientific significance in making fisheries policies and using marine fishery resources.
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Reconstructing chlorophyll-a (Chl-a) vertical profile is a promising approach for investigating the internal structure of marine ecosystem. Given that the process of profile classification in current process-oriented profile inversion methods are either too subjective or too complex, a novel Chl-a profile reconstruction method was proposed incorporating both a novel binary tree profile classification model and a profile inversion model in the Mediterranean Sea. The binary tree profile classification model was established based on a priori knowledge provided by clustering Chl-a profiles measured by BGC-Argo floats performed by the profile classification model (PCM), an advanced unsupervised machine learning clustering method. The profile inversion model contains the relationships between the shape-dependent parameters of the nonuniform Chl-a profile and the corresponding Chl-a surface concentration derived from satellite observations. According to quantitative evaluation, the proposed profile classification model reached an overall accuracy of 89%, and the mean absolute percent deviation (MAPD) of the proposed profile inversion model ranged from 12%–37% under different shape-dependent parameters. By generating monthly three dimensions Chl-a concentration from 2011 to 2018, the proposed process-oriented method exhibits great application potential in investigating the spatial and temporal characteristics of Chl-a profiles and even the water column total biomass throughout the Mediterranean Sea.
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1 Introduction

The assessment and monitoring of the marine environmental status has received ever-growing attention in recent years due to the potentially critical impact of ongoing natural and human-induced changes on related ecosystem functioning and services (Puissant et al., 2021). As key players in ocean biodiversity, the alteration of phytoplankton provides information on some of the principal climate-driven effects on environmental forcing, and consequently, on marine ecosystem equilibrium, making monitoring and assessing their composition and distribution is of great importance for marine ecosystem and even global change studies (Falkowski, 2012; Sammartino et al., 2018; Kotta and Kitsiou, 2019).

A deeper understanding of the dynamics and evolution of marine phytoplankton requires three dimensions (3D) observations of the algal abundance at different temporal and spatial scales and much wider and regular coverage than currently achievable (Sammartino et al., 2020). However, the traditional measurement is mainly based on in situ sampling either through coastal monitoring programs or time-limited oceanographic cruises, or fixed platforms such as moored buoys, which can accurately describe local conditions along the water column, but are clearly inadequate to describe processes occurring within the wide range of temporal and spatial scales impacted by undergoing changes (von Schuckmann et al., 2018). Advanced instruments such as Biogeochemical Argo (BGC-Argo) float allow for autonomously observing while drifting with ocean currents according to pre-programmed procedures, which largely alleviate the shortcomings of low sampling density and costly of the traditional in situ measurements, but still far from continuous in space.

Based on the shift of seawater spectrum from blue to green wavelengths caused by the seawater substances controlling the color of seawater, ocean color remote sensing (OCRS) revolutionized marine phytoplankton assessment by estimating the concentration of Chlorophyll-a (Chl-a), one of the most commonly used bioindicator of phytoplankton abundance (Gordon et al., 1980). With the advantages of low-cost and fast observation at large scales in a space continuous manner, Chl-a product of OCRS have become one of the most important data in marine researches (McClain, 2009). However, the signals measured by OCRS sensors are result from the interaction between light and water constituents, decreasing exponentially with water depth (Morel, 1988). As a consequence, OCRS product can only reveal signals integrated within the surface detectable layer and not properties at greater depth (Siswanto et al., 2005; Uitz et al., 2006).

Given their respective strengths, there have been many attempts to combine these two kinds of observations to improve our knowledge of the interior structure of the ocean. Referring to Liu et al. (2021), these methods can be categorized into result-oriented and process-oriented according to the strategy based on. Result-oriented approach is to infer Chl-a concentration at different depths directly from other measurable ocean variables. Due to the complexity of the marine ecosystem, this kind of method usually requires tools as artificial neural network (Sammartino et al., 2020) and its variants (Puissant et al., 2021), which are capable of revealing non-linear relations. Although the performance of such methods has been validated on regional and even global scale, the huge demand for input variables and computational resources greatly limits their utilization potentiality (Erickson et al., 2019; Lee et al., 2015).

Process-oriented approach is to extrapolate vertical profile by inferring parameters that control the shape of the profile. This kind of methods generally include a profile parameterization process, which characterizes the shape of profile as a certain number of parameters by fitting profile to a certain mathematic equation (Platt and Sathyendranath, 1988; Platt et al., 1988). These parameters controlling the shape of profile are usually referred to as shape-dependent parameters. After profile parameterization, the relationships between surface variables and these shape-dependent parameters then can be established explicitly by empirical models (Dierssen, 2010). However, extensive practice has revealed that it is difficult for a single model to applicable to all types of vertical profiles. It is a common practice to divide profiles into several subcategories according to certain criteria (such as surface concentration or water column total concentration), and develop subcategory-specific empirical models (Morel and Berthon, 1989; Millán-Núñez et al., 1997). Although this strategy can effectively improve the overall accuracy, profile classification is too subjective to find the theoretical basis. The advanced machine learning methods can also be used to relate the surface variable with shape-dependent parameters, but such method are not only too unintuitive, but also too complex (Silulwane et al., 2001; Charantonis et al., 2015; Sauzède et al., 2015). A simple and objective profile classification method for profile reconstruction is urgently needed.

This manuscript attempts to propose a novel process-oriented Chl-a profile inversion method by utilizing an unsupervised machine learning profile clustering method called profile classification model (PCM) in the pre-classification stage. The remainder of this paper is organized as follows: the study area and data are introduced in Section 2; the methods are described in Section 3; the accuracy of the proposed method is validated in Section 4; a discussion is presented in Section 5; and conclusions and perspectives are provided in Section 6.



2 Study Area and Data


2.1 Study Area

This study was conducted in the Mediterranean Sea, a semi-enclosed basin located in the transition zone between temperate and subtropical environments (from 30°N to 45°N and 0°E to 30°E). The Mediterranean Sea is surrounded by continental Europe, Asia, and Africa and is connected to the Atlantic Ocean through the Strait of Gibraltar. The Mediterranean Sea has remained an area of heightened interest for global climate change research over the past few decades, partly because it plays a major role in responding to global warming (Pisano et al., 2020), and partly because it is considered an ideal natural laboratory where processes can be characterized on smaller scales than can be achieved in other oceans (Robinson et al., 2001).

In this study, the Mediterranean Sea was empirically divided into five subsea areas, namely, the northwest Mediterranean Sea (NW), southwest Mediterranean Sea (SW), Tyrrhenian Sea (TYR), Ionian Sea (ION) and Levantine Sea (LEV), following Barbieux et al. (2019). The spatial extents of the Mediterranean Sea and the subdivided regions are shown in Figure 1.




Figure 1 | Spatial extent of the Mediterranean Sea and subregions divided in this study. The lines in different colors indicate the trajectories of the different Bio-Argo cruises. The background colors of the Mediterranean Sea indicate the monthly average Chl-a surface concentration derived from MODIS-Aqua data in March 2015.





2.2 BGC-Argo Chl-a Profiles

More than 70 BGC-Argo floats deployed between 2012 and 2016 alone (Cossarini et al., 2019). The long-term deployment has made the Mediterranean BGC-Argo network one of the densest networks in the global ocean in terms of the number of profiles per unit surface area, providing unique data support for studying ecosystem characteristics and dynamics.

In this study, Mediterranean Chl-a vertical profiles were obtained from a global database of vertical profiles derived from Biogeochemical Argo float measurements publicly available at https://www.seanoe.org/data/00383/49388/ (Marie et al., 2017). This dataset includes 0-1000 m vertical profiles of bio-optical and biogeochemical variables acquired by autonomous profiling BGC-Argo floats around local noon between October 2012 and January 2016. It contains profiles of downward irradiance at 3 wavelengths (380, 412 and 490 nm), photosynthetically available radiation, Chl-a concentration, fluorescent dissolved organic matter, and particle light backscattering at 700 nm. All variables have been quality controlled following specifically-developed procedures, and data corruption by biofouling and any instrumental drift has also been verified. In the Mediterranean Sea, all Chl-a profiles were collected by 27 BGC-Argo profiling floats, and their trajectories o are shown in Figure 1, with the various floats highlighted in different colors.

As a result, a total of 1611 Chl-a vertical profiles can be matched with other data used. To match up in situ Chl-a vertical profiles with other data, a 1°×1° box centered on each float location was adopted. These profiles were collected within a wide geographical area of the Mediterranean Sea in almost equal numbers during each season, with a total of 409, 411, 415 and 376 records measured in spring, summer, autumn and winter, respectively. Therefore, these profiles could represent the spatial and temporal characteristics of the phytoplankton vertical distribution in this basin.



2.3 GLBa0.08 Analysis Data

The 5-year product (from 2012 to 2016) of the Hybrid Coordinate Ocean Model–Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) global 1/12° analysis (GLBa0.08; https://www.hycom.org/dataserver/gofs-3pt0/analysis) product was used in this study. The HYCOM Consortium is a nearly real-time global ocean prediction system based on the Hybrid Coordinate Ocean Model (HYCOM) and Navy Coupled Ocean Data Assimilation (NCODA) system (Halliwell, 2004). The advantage of HYCOM-based analysis is the implementation of a substantially evolved hybrid vertical coordinate system, which remains isopycnic in the well-stratified open ocean and combines different types of coordinates, transiting into level coordinates in less stratified regions (surface mixed layer) and very shallow water and into terrain-following sigma coordinates in nearshore regions (Chassignet et al., 2007). This feature provides the HYCOM with the ability to optimally simulate coastal and open ocean circulations.

GLBa0.08 is a uniformly gridded (1/12°) global reanalysis dataset that converts native HYCOM [ab] data into NetCDF data on a native Mercator–curvilinear HYCOM horizontal grid, interpolated into 33 z-levels (Shu et al., 2014). This product provides 11 ocean essential variables, such as the surface water flux, salinity, surface salinity trend, surface temperature trend, and mixed layer depth (MLD) (Augusto Souza Tanajura et al., 2014). All these data are freely available at https://www.hycom.org/dataserver/gofs-3pt0/analysis. In this research, only MLD products pertaining to the study period were utilized.



2.4 Satellite Data

Daily and monthly Moderate Resolution Imaging Spectroradiometer (MODIS) level-2 Chl-a product from 2011 to 2018 was used in this study. This product is generated with an empirical relationship derived from in situ measurements of Chl-a and remote sensing reflectance in the blue-to -green region of the visible spectrum (Hu et al., 2012). This product is produced by the NASA Ocean Color program and is available from https://oceancolor.gsfc.nasa.gov/cgi.

In addition to the Chl-a surface concentration, the euphotic layer depth (zeu) has been verified as a main variable explaining the vertical variability in Chl-a along the water column (Vadakke-Chanat and Shanmugam, 2020). The euphotic layer depth is a common indicator of water turbidity, defined as the depth at which irradiance is attenuated to 1% of the initial value at the surface (Tett, 1989; Dera, 1992). Consequently, the corresponding level-3 product of the MODIS diffuse attenuation coefficient for the downwelling irradiance at 490 nm (hereafter referred to as Kd490), which can be used to estimate the depth of the euphotic layer, was also employed in this study. The MODIS Kd490 product is produced under the GlobColour project and is freely available at http://globcolour.info/. Kd490 was generated following the model proposed by Lee et al. (2005) . In this study, the method proposed by Lin et al. (2016)  was used to estimate the euphotic layer depth. The specific steps are as follows: (1) The diffuse attenuation coefficient for the downwelling irradiance of the usable solar radiation (USR) (KdUSR) was estimated from Kd490. USR represents the spectrally integrated solar irradiance within the spectral window of 400–560 nm, as defined by Lee et al. (2014) . (2) The depth of the euphotic layer was derived according to the equation proposed by Lin et al. (2016).

All these satellite data have undergone quality and flag assessments and are generated with a spatial resolution of 4 km. To match the BGC-Argo, satellite, and analysis data, the satellite and analysis data in a 1°×1° box centered on each float location were used to provide matchups.




3 Methods


3.1 Methodological Overview

First, all the BGC-Argo Chl-a profiles were clustered with the PCM, after which, a decision tree profile classification model was established based on a priori knowledge provided by the clustering results. Then, these profiles were parameterized with a modified Gaussian function. Finally, for each type of Chl-a profile, empirical relationships between the corresponding shape-dependent parameters derived from previous profile fitting and Chl-a surface concentration were established. A flowchart of these steps is drawn in Figure 2.




Figure 2 | Flowchart of the proposed method for reconstructing Chl-a vertical profiles in the Mediterranean Sea.





3.2 Remote Sensing Pixel-Scale Chl-a Profile Type Identification

The vertical distribution of phytoplankton exhibits different shapes under the influence of the interactions between various biological (e.g., particular species present and physiological state) and physical (e.g., currents and shear between water parcels) factors, making it difficult to obtain one set of general parameters that can be applied to extrapolate all profiles. Therefore, a common practice is to classify vertical profiles according to their characteristics and to develop an extrapolation model for each of the subcategory. To more simply and objectively identify the profile type of each pixel of the remote sensing Chl-a product, the shape characteristics of Chl-a vertical profiles in the Mediterranean Sea were first explored by clustering all BGC-Argo Chl-a profiles. According to the profile clustering result, a binary tree profile classification model based on several publicly available marine essential variables was then established.


3.2.1 Revealing the Shape Characteristics of Chl-a Profiles

Next, the Chl-a vertical distribution in the Mediterranean Sea was explored with the PCM.

The PCM is an unsupervised machine learning classification technique designed to reveal the vertical distribution of ocean temperatures (Maze et al., 2017a). This method relies on a Gaussian mixture model (GMM) to decompose the probability density function (PDF) of a collection of profiles into a weighted sum of multidimensional Gaussian PDFs, thus facilitating the identification of the representative patterns of a given dataset (Maze et al., 2017a; Maze et al., 2017b). After classification, profiles within a given category are more similar to each other than they are to profiles in other categories (Jain et al., 1999).

The PCM was originally developed to characterize coherent heat patterns in the North Atlantic Ocean. Since it is more impartial than subjective grouping of profiles into classes, the PCM has since been successfully applied to characterize the vertical distributions of a variety of oceanographic variables (Boehme and Rosso, 2021). However, the performance of the PCM in the classification of Chl-a vertical profiles remains unclear and needs to be further explored.

Through objective and trial-and-error approaches, the Chl-a profiles in the Mediterranean Sea were ultimately categorized into four types with the PCM, and the shape characteristics of these profile types are shown in Figure 3. Referring to the previous literature (Lavigne et al., 2015), these four types were denoted as mixed, exponential, quasi-Gaussian and Gaussian types according to their shape characteristics. As shown in Figure 3, due to the presence of the MLD, the Chl-a concentration in all profile types remained almost constant at either a deep or a shallow depth. Specifically, the MLD was much deeper for the mixed type than for the other three profile types, resulting in almost constant mixed type profiles up to a certain depth. The Gaussian type profiles exhibited typical Gaussian distribution shapes, namely, curves with a concentration peak, and the Chl-a concentration decreased with increasing distance from the peak depth. Furthermore, the vertical profiles of the exponential and quasi-Gaussian types were roughly similar in shape, but these profiles differed greatly with regard to the range of specific concentrations, the presence of concentration peaks, and the depth at which the concentration declines.




Figure 3 | Typical shapes for each type of Chl-a vertical profile in the Mediterranean Sea.





3.2.2 Decision Tree Profile Classification Model

By analyzing the shape characteristics of these four types of Chl-a profiles and referring to the previous literature, the Chl-a surface concentration, euphotic layer depth and MLD were adopted in this study to establish a decision tree classification model to classify the type of each pixel of the remote sensing Chl-a product.

In general, Chl-a vertical distributions could be divided into two main types: uniform and nonuniform, corresponding to mixed and stratified water, respectively (Mignot et al., 2011). The differences between these two types of Chl-a vertical distributions in the Mediterranean Sea lies in whether the MLD exceeds the euphotic layer depth. For the uniform type profile, phytoplankton are nearly evenly distributed along the water column due to strong water mixing, resulting in a homogeneous Chl-a concentration from the surface to great depths. Hence, the ratio between the MLD and euphotic layer depth is a common indicator for the identification of deep mixed water (Uitz et al., 2006). Since the euphotic layer is the maximum depth of the light zone suitable for phytoplankton photosynthesis (Khanna et al., 2009) , when the euphotic layer is shallower than the mixed layer, the phytoplankton are almost uniformly distributed vertically.

As shown in Figure 3, the Gaussian, quasi-Gaussian and exponential types are all nonuniform due to the obvious presence of a subsurface chlorophyll maximum (SCM). By analyzing the shape characteristics of these three nonuniform profiles, the surface concentrations on the exponential type profiles were found to be much higher than those on the other two types of profiles (Figure 4). In addition, Gaussian profiles could be distinguished from quasi-Gaussian profiles based on the MLD.




Figure 4 | Surface concentrations of Chl-a on the different types of vertical profiles.



As a result, a binary tree based on the surface concentration, MLD and euphotic layer depth was developed to infer the vertical profile type in each pixel of the OCRS Chl-a product. As shown in Figure 5, the following three steps were included:

	① A ratio of the MLD to the euphotic layer depth higher than 1 was adopted to identify profiles of the mixed type.

	② A Chl-a surface concentration higher than 0.799 was used to recognize profiles of the exponential type.

	③ Whether the MLD exceeded 31.1 m was considered to distinguish between Gaussian and quasi-Gaussian profiles. If the MLD exceeded this threshold, quasi-Gaussian profiles were determined; otherwise, Gaussian profiles were identified.






Figure 5 | Flowchart of the Chl-a vertical profile classification model for the Mediterranean Sea.






3.3 In Situ Chl-a Profile Parameterization

To parameterize the profiles, each profile was fitted with a certain mathematical model, allowing the profile shape to be represented by model coefficients, which is a common practice in characterizing the profile shape of essential marine and atmospheric variables (Beckmann and Hense, 2007; González-Pola et al., 2007). Various functions have been used to parameterize marine variable vertical profiles, including Gaussian functions (Morel, 1988; Platt et al., 1988; Morel and Berthon, 1989) and their derivatives (Uitz et al., 2006), power functions (Liu et al., 2021) and exponential functions (Ardyna et al., 2013). Among these functions, the generalized (or shifted) Gaussian function is the most popular, and has been verified as a suitable function for fitting profiles containing only a single peak; this function is quite common in coastal, upwelling, open oceans and Arctic waters (Lewis et al., 1983; Siswanto et al., 2005). Here, to better characterize profiles with a shallow SCM layer, where the surface concentration is higher than the deepest value, the generalized Gaussian function was updated as a modified Gaussian function by replacing the constant with a linear function (Uitz et al., 2006). The general shapes of generalized and modified Gaussian functions are shown in Figure 6.




Figure 6 | Shape difference between the generalized (A) and modified Gaussian (B) functions.



In this study, the modified Gaussian function was selected to parameterize the BGC-Argo Chl-a profiles. Since a mixed type Chl-a profile exhibits a constant concentration from the surface to great depths, these types of profiles were excluded from the subsequent parameterization to construct the inversion model. As a result, 1360 of the 1611 BGC-Argo Chl-a profiles were parameterized with the following:



where chlsurf denotes the Chl-a surface concentration measured by the BGC-Argo floats, trend indicates the trend of the background concentration, chlmax is the maximum concentration in the Chl-a profile, zmax denotes the maximum concentration depth, and width denotes the half-peak width, a fitting-related parameter indicating the thickness of the SCM that is defined as the width (measured in meters) at the half-height of the SCM layer. This fitting-related parameter is defined as controlling the shape of the profile but can be obtained only by model fitting and cannot be measured directly. According to the fitting formula used herein, the fitting-related parameters specifically refer to width and trend. Here, chlmax is regarded as the total magnitude of the Chl-a concentration, not that of the background-subtracted value.

To ensure the fitting accuracy, the Curve Fitting C program (O’Haver, 1997), a nonlinear iterative curve fitting method developed at the University of Maryland, was used to implement profile fitting. This method adjusts parameters in a systematic manner via a trial-and-error strategy until the equation yields a fitted curve that is close to the expected curve. Two commonly used fitting accuracy proxies, namely, the coefficient of determination (R2) and root-mean-square error (RMSE), were selected to evaluate the fitting effect. Overall, over 70% of the profiles had an R2 greater than 0.8, and the mean R2 was 0.93. In regard to the specific types, the Gaussian and exponential types attained the best fitting accuracy, both with an average R2 of 0.94, followed by the quasi-Gaussian profile type with an average R2 of 0.93. To illustrate the fitting effect more intuitively, panels (a), (b) and (c) of Figure 7 show example profiles with the highest fitting accuracy for each of these three types and their corresponding estimations. As shown in this figure, strong correlations were obtained between the measured and estimated vertical profiles, with R2 values of 0.9873, 09942 and 0.9914 and RMSE values of 3.176, 2.80 and 3.825, respectively.




Figure 7 | Fitting curves of the different types of Chl-a vertical profiles. Panels (A-C) show Gaussian, quasi-Gaussian and exponential profile types, respectively.



The statistical results (Table 1) for the shape-dependent parameters obtained after profile parameterization quantitatively confirmed the shape characteristics of each profile type mentioned in the previous section. Specifically, in terms of the average value, the Gaussian type yielded the lowest maximum Chl-a concentration but the greatest maximum Chl-a depth, with values of 0.4 mg m-3 and 84.25 m, respectively. The exponential type was the opposite to the Gaussian type, namely, the highest maximum concentration and shallowest maximum concentration depth were obtained, at 2.03 mg m-3 and 11.47 m, respectively. Compared to those of these two types of profiles, the maximum Chl-a concentration and corresponding depth of the quasi-Gaussian type were moderate, at 0.49 mg m-3 and 38.21 m, respectively. In terms of the half-peak width, that of the quasi-Gaussian type was the largest (81.51 m), followed by the exponential (73.08 m) and Gaussian types (55.24 m). According to the half-peak width, phytoplankton were relatively more vertically concentrated along the Gaussian profile direction and more dispersed along the exponential and quasi-Gaussian profile directions, with half-peak widths of 55.24, 73.08 and 81.51 m, respectively. The trend variable is a model fitting-related parameter, with no explicit biophysical meaning, although this parameter can, to a certain extent, reflect the difference between the Chl-a surface concentration and the Chl-a concentration at great depths.


Table 1 | Statistics for the shape-dependent parameters of the different types of Chl-a vertical profiles in the Mediterranean Sea.





3.4 Chl-a Vertical Profile Inversion Model

Reconstructing the Chl-a vertical profile from OCRS product is to establish the correlations between its surface variables and its shape-dependent parameters. Matchups between the BGC-Argo profiles and OCRS products provide the possibility to implement this inversion. After classifying and parameterizing the profile, the shape-dependent parameters of each profile were obtained. Then, the relationships between these shape-dependent parameters derived from the parameterization between their corresponding surface concentrations derived from the OCRS Chl-a products were analyzed. To ensure the robustness and accuracy of the established relationships, 487 poorly fitted profiles with R2 values lower than 0.8 were discarded. As a result, 1124 robustly parameterized vertical profiles were retained to establish the vertical profile inversion model.

To establish the inversion model, all matchups were first used to reveal the global correlations applicable to all profile types. Only when robust global relationships cannot be obtained, the type-specific correlations were considered by using matchups corresponding to different type profiles. The SCM depth (zmax) has been demonstrated to be inversely proportional to the Chl-a concentration derived from satellite observations (chlsat) over a wide range of trophic conditions (Morel & Berthon, 1989; Uitz et al., 2006; Mignot et al., 2011). This conclusion remains valid in the Mediterranean Sea. As shown in panel (a) of Figure 8, zmax had a strong negative correlation with chlsat:






Figure 8 | Relationships between the shape-dependent parameters of the Chl-a vertical profiles and the surface concentrations derived from the OCRS Chl-a products. (A, B, E) are global relationships observed from all BGC-Argo Chl-a profiles. (C, D) are type-dependent relationships obtained from quasi-Gaussian and Gaussian profiles, respectively.



This negative relationship was observed from all matchups with an R2 value of 0.79, thus indicating this global correlation suitable to estimate zmax for all types of vertical profiles with chlsat derived from OCRS products.

Panel (b) of Figure 8 shows the correlation between the maximum Chl-a concentration (chlmax) and half-peak width of the fitting curve (width) for all profile types. Similar to zmax and chlsat, a strong negative correlation between chlmax and width was observed:



This formulation yielded an R2 of 0.81. The relationship between the phytoplankton biomass maximum and SCM layer thickness is well understood, and thus, width was concluded to be closely correlated with chlmax in the study area. Notably, as the Chl-a maximum concentration rises, more phytoplankton accumulate within the SCM layer, nutrient consumption occurs more quickly, and the SCM layer becomes thinner (Barbieux et al., 2019).

In addition to these two relationships, another global correlation was observed between chlsat and the background trend of the Chl-a concentration (trend):

	

The linear relationship between trend and chlsat yielded an R2 of 0.92, as shown in panel (e) of Figure 8. The potential reason for this negative relationship between these two parameters could be the positive correlation between the attenuation intensity of solar radiation and the phytoplankton biomass at the sea surface.

Having established the relationship between zmax and chlsat and that between chlmax and width, the Chl-a vertical profile can be reconstructed only if the relationships between zmax or chlsat with both chlmax and width can be established. However, except for the above parameters, no other reliable global correlations were discovered. Therefore, the possible correlations between these parameters and the combinations of the vertical profile types were explored via exploratory data analysis.

In regard to the quasi-Gaussian Chl-a vertical profiles, a strong positive linear correlation between chlmax and chlsat was observed:



This linear relationship yielded an R2 of 0.96. With this relationship, chlmax could be derived from the sea surface concentration measured by satellite sensors. Then, zmax can be derived from chlsat via Eq. 2, and width can be estimated from the derived chlmax value based on Eq. 3. In this way, the quasi-Gaussian Chl-a vertical profile can be reconstructed.

In contrast to the quasi-Gaussian type, no direct relationships were found between chlsat and chlmax or width in the Gaussian type profiles. Considering that the thickness of the subsurface layer is top–bottom limited by both light and nutrients, zeu and the MLD were introduced here to estimate width. The variation in width with respect to zeu and the MLD can be formulated as follows:



This correlation yielded an R2 of 0.89. The establishment of this equation facilitates the estimation of all shape-dependent parameters of the Gaussian type Chl-a vertical profile. First, trend and zmax can be estimated based on the OCRS Chl-a products with Eqs. 2 and 4, respectively. Then, width can be calculated according to Eq. 6 based on the products of zeu and MLD. Finally, chlmax can be derived from the estimated width according to Eq. 3.

Unfortunately, failure to determine the correlations between chlsat and width and chlmax makes it impossible to reconstruct the exponential type Chl-a vertical profiles. Fortunately, few profiles were of this type (accounting for only 1.21% of all profiles) in the Mediterranean Sea, and thus, ignoring exponential type profiles would not significantly impact the inversion of Chl-a vertical profiles across the study region.



3.5 Accuracy Assessment Metrics

To evaluate the classification models, the most popular confusion matrix was selected in this study. Based on the selected confusion matrix, the overall accuracy (OA), user accuracy (UA) and producer accuracy (PA) were calculated. When deriving the confusion matrix, the labels provided by the PCM were regarded as the truth, and the labels obtained with the established vertical profile classification model were regarded as predictions.

To evaluate the profile inversion accuracy, the RMSE and the mean absolute percent deviation (MAPD) were selected as the accuracy metrics. Their mathematical equations are as follows:

	

where pm denotes the shape-dependent parameter measured by the Bio-Argo profiling floats, pe denotes the corresponding model estimation, and n indicates the number of vertical profiles used for evaluation.




4 Results


4.1 Spatial and Temporal Patterns of the in Situ Chl-a Vertical Profiles

To reveal the spatial and temporal patterns of the Chl-a vertical profiles in the Mediterranean Sea, the PCM classification results for all the profiles measured by the BGC-Argo floats were counted according to both the subsea area and the season, as shown in Figure 9. In general, as shown in the pie chart in panel (a) of this figure, the Gaussian type was the dominant Chl-a vertical profile type in the Mediterranean Sea, accounting for 78.48% of all measured profiles, followed by the mixed and quasi-Gaussian profile types, accounting for 15.6% and 4.72%, respectively. As mentioned above, the exponential type attained the lowest proportion, accounting for only 1.21% of all measured profiles. In terms of the spatial distribution, the Gaussian type was widely distributed in all five subsea areas, and the quasi-Gaussian type occurred in four subsea areas (all but LEV). The distribution of the mixed type was further reduced to the ION, LEV and NW subsea areas, whereas the exponential type was found only in the NW subsea area. In terms of the temporal distribution, the Gaussian type emerged mainly in summer, autumn and winter, while the exponential type occurred mostly in early summer. The mixed and quasi-Gaussian types were primarily observed in spring and summer but also in winter in some subsea areas.




Figure 9 | Spatial and temporal patterns of the Chl-a vertical profiles measured in the Mediterranean Sea. The pie chart in panel (A) shows the percentage of each profile type of all measurements. The histograms from panel (B–F) show the occurrence frequencies of the different types of Chl-a vertical profiles in the different subsea areas and seasons.



The spatial and temporal characteristics of the Chl-a vertical profiles revealed by the PCM agree with previous findings in Mediterranean bioregions (Mayot et al., 2017; Palmiéri et al., 2018). This agreement can be considered evidence that the classification results of the PCM can provide sufficiently accurate a priori knowledge for the construction of a vertical profile classification model.



4.2 Accuracy Assessment of the Proposed Profile Classification Model

The accuracy of the OCRS-based Chl-a vertical profile classification model was evaluated based on profiles measured by the four BGC-Argo floats reserved for validation with World Meteorological Organization (WMO) identifier numbers 6901511, 6901513, 6901776, and 6902828. As a result, 151 matchups were used to evaluate the performance of the trained binary tree profile classification model. Based on these matchups, the confusion matrix was calculated, as summarized in Table 2.


Table 2 | Confusion matrix of Chl-a vertical profile classification (UA denotes the user accuracy and PA denotes the producer accuracy).



The confusion matrix reveals that the classification model achieved a satisfactory overall performance with an OA value of 89%. Specifically, the PA values of the Gaussian, quasi-Gaussian, exponential and mixed Chl-a vertical profile types were 92%, 100%, 58%, and 79%, respectively, and the corresponding UA values were 96%, 63%, 88%, and 65%. Regarding the dominant Gaussian Chl-a vertical profiles, the classification model achieved both very low omission errors and very low commission errors with PA and UA values of 92% and 96%, respectively. Although the PA values of the exponential type and UA values of the quasi-Gaussian and mixed types reached only 58%, 63% and 65%, respectively, this accuracy level is considered adequate considering their low proportion in the Mediterranean Sea. The OA value of the classification model reached 89%, which is sufficiently accurate to meet the needs of inverting Chl-a vertical profiles.



4.3 Accuracy Assessment of the Established Profile Inversion Model

The matchups used in the evaluation of the proposed classification model were also used to quantitatively assess the accuracy of the established vertical profile inversion model. The performance of the profile inversion model was assessed by measuring the deviations between the measured shape-dependent parameters and corresponding model estimations. Four parameters were used to characterize the Chl-a vertical profile shape in this study, but since width and trend cannot be directly measured, only chlmax and zmax were thus used for evaluation purposes to avoid possible uncertainties due to the profile parameterization.

Comparisons of chlmax and zmax estimated with the proposed profile inversion model with the corresponding reference in situ measurements are shown in panels (a) and (b), respectively, of Figure 10. Overall, a robust relationship was observed between the zmax values estimated with the inversion model based on the OCRS products and those measured by the BGC-Argo floats. This correlation was associated with a high determination coefficient (R2 = 0.89) and low RMSE (8.49) and MAPD (6%) values. The slope of 0.89 indicates that the estimated values exhibited no significant deviation from the observed values. A satisfactory correlation was also observed between the estimated and measured chlmax values. Although the R2 value and slope of the regression were lower at 0.64 and 0.72, respectively, and although the MAPD value increased to 22%, the correlation remained highly satisfactory given the large range of the study area.




Figure 10 | Shape-dependent parameters (zmax and chlmax) estimated with the proposed Chl-a vertical profile inversion model versus those measured by the BGC-Argo floats.



The accuracy of the proposed Chl-a profile inversion model was further evaluated for each of the different types of profiles (Table 3). In general, the inversion model achieved a higher accuracy for the Gaussian type than for the quasi-Gaussian type (R2: 0.62 versus 0.51; slope: 0.72 versus 0.33; RMSE: 0.13 versus 0.2; MAPD: 22% versus 37%).


Table 3 | Accuracy of the Chl-a vertical profile inversion model.



To compensate for the lack of evaluation results for width and trend, the Chl-a concentrations at the different depths estimated with the vertical profile inversion model were further compared to those measured by the BGC-Argo floats (Figure 11). Comparisons of the Chl-a concentrations at different depths can reveal not only the accuracy of the estimated width and trend values but also the overall accuracy of the profile inversion model. According to Figure 11, the predicted vertical profiles exhibited relatively high overall accuracy in all five subsea areas. The R2 values were all higher than 0.5, and the RMSE values were all lower than 0.1. Among the specific subsea areas, the agreement between the actual measurements and predictions remained near the 1:1 line in the TYR, ION and LEV subsea areas. In contrast, in the SW and NW subsea areas, the regression lines were below the 1:1 line, indicating that the profile inversion model yielded slightly underestimated values, with R2 values of 0.71 and 0.63, respectively.




Figure 11 | Scatterplots of the in situ Chl-a concentrations at different depths and those reconstructed via the method proposed in this study. Panels (A-E) successively show the comparisons for the SW, NW, TYR, ION and LEV subsea areas.






5 Discussion


5.1 Spatial and Temporal Characteristics of the Chl-a Profile Types in the Mediterranean Sea

To investigate the spatial characteristics of the Chl-a vertical profile types in the Mediterranean Sea, the monthly Chl-a profile types from 2011 to 2018 were generated based on the proposed Chl-a profile classification model, and the proportion of each type was determined. The results are shown in Figure 12, with the proportions of the mixed, exponential, quasi-Gaussian and Gaussian types being shown successively in panels (a) through (d). In general, the findings are consistent with the classification results of the PCM applied to the BGC-Argo Chl-a profiles, as introduced in Section 4.1. Specifically, the Gaussian type is the most common Chl-a profile type in the Mediterranean Sea, followed by the quasi-Gaussian, mixed, and exponential types. Moreover, the Gaussian type Chl-a profile is evenly distributed across the whole Mediterranean Sea, with a proportion higher than 50% in most of the areas, even exceeding 80% in the northern coastal area and near the Kerkennah Islands, a group of islands off the eastern coast of Tunisia. The quasi-Gaussian type attains a higher proportion in the southern half of the sea than in the northern half, with a maximum frequency of nearly 40%. The mixed type Chl-a profile is similar to the quasi-Gaussian type profile in terms of its maximum proportion, but its spatial distribution is the opposite, namely, the former profile type is concentrated mainly in the northern half of the sea.




Figure 12 | Proportion of each profile type in the Mediterranean Sea from 2011 to 2018. Panels (A-D) successively show the mixed, exponential, quasi-Gaussian and Gaussian types.



The temporal characteristics of the Chl-a vertical profile types in the Mediterranean Sea were analyzed by adopting the monthly Chl-a profile classification results in 2013 (depicted in Figure 13) as an example. This figure shows that the Mediterranean Chl-a vertical profile types exhibit obvious seasonal characteristics. Specifically, Gaussian type Chl-a vertical profiles are distributed mainly from March to November, and are dominant from April to October, in contrast, quasi-Gaussian type Chl-a vertical profiles are distributed largely from October to March of the following year, and appear to predominate in November, December and March. The time window of the quasi-Gaussian type profiles is similar to that of the mixed type profiles, but differently appears to predominate in January and February.




Figure 13 | Monthly Chl-a profile types in the Mediterranean Sea in 2013. The subgraphs show January to December from top to bottom and left to right.





5.2 Spatial and Temporal Characteristics of the Chl-a Profile Shape-Dependent Parameters in the Mediterranean Sea

Based on the established Chl-a vertical profile classification and inversion models, the true Chl-a vertical profiles in the Mediterranean Sea can be visualized in 3D as long as the corresponding MODIS Chl-a and Kd490 products and HYCOM MLD product can be obtained. Continuous summer and autumn Chl-a concentrations in the Mediterranean were generated, for example, by using the June and September monthly MODIS Chl-a products and the monthly average MLD products. The Chl-a total concentration was further integrated according to the reconstructed vertical profiles.

To further verify the robustness of the proposed method, the characteristics of phytoplankton vertical distribution in the Mediterranean Sea revealed by the reconstruction results were compared to those reported in the literature. The per-pixel shape-dependent parameters and derived total Chl-a are shown in Figure 14, showing that the different shape-dependent parameters exhibit distinct spatial and temporal patterns. For example, in terms of their seasonality, zmax is deeper in summer than in autumn (mean depth of 88.54 ± 28.11 m versus 85.17 ± 24.94 m), while the width is larger in summer than in autumn (mean value of 64.36 ± 20.96 m versus 57.59 ± 18.67 m). However, chlmax reveals the opposite pattern, with a higher mean value in September (0.38 ± 0.18 mg m-3) than in June (0.37 ± 0.15 mg m-3), which agrees with previous findings (Lavigne et al., 2015). Spatially, zmax exhibits a longitudinal gradient in the Mediterranean Sea, with the value rising with increasing longitude up to a depth in excess of 120 m in the eastern Mediterranean Sea, except for some coastal areas. This conclusion agrees with previous findings reported by Lavigne et al. (2015) and Crise et al. (1999). A similar longitudinal gradient is also observed for width, which is larger in the eastern than in the western Mediterranean Sea. Furthermore, the existence of an east–west gradients of these shape-dependent parameters directly leads to a similar gradient of the Chl-a total concentration. As a result, the Chl-a total concentration is higher in the eastern Mediterranean Sea than in the western Mediterranean Sea in both summer and autumn.




Figure 14 | Monthly Chl-a vertical profile reconstruction results for June and September via OCRS. Panels (A), (C), (E) and (G) show zmax, width, chlmax and the Chl-a total concentration in June, respectively. Panels (B), (D), (F) and (H) show these parameters in September.






6 Conclusions and Perspectives

To observe the 3D spatial and temporal Chl-a concentration distribution in the Mediterranean Sea, a simple and robust process-oriented profile reconstruction method was proposed in this study. To estimate Chl-a vertical profiles based on corresponding OCRS products, the established vertical profile classification model was first used to identify the profile type in each of the pixels of the Chl-a product based on both Kd490 and MLD products, and the shape-dependent parameters of the vertical profiles were then estimated by using type-related correlations based on the proposed profile inversion model. A quantitative evaluation revealed that the proposed vertical profile classification model achieved an overall accuracy of 89%, and the proposed vertical profile inversion model attained an average absolute percent deviation value ranging from 12% to 37% for the different shape-dependent parameters.

The proposed profile estimation method was then used to generate monthly 3D Chl-a profiles in the Mediterranean Sea from 2011 to 2018. Based on the reconstructed Chl-a profiles, their spatial and temporal characteristics and those of the water column total biomass in the Mediterranean Sea were investigated. Considering the important role of that Mediterranean Sea plays in climate change research, the proposed method is expected to serve as a powerful tool in studying the status and changes in the Earth’s environment.
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In recent years, the Yellow River Delta has been affected by invasive species Spartina alterniflora (S. alterniflora), resulting in a fragile ecological environment. It is of great significance to monitor the ground object types in the Yellow River Delta wetlands. The classification accuracy based on Synthetic Aperture Radar (SAR)  backscattering coefficient is limited by the small difference between some ground objects. To solve this problem, a decision tree classification method for extracting the ground object types in wetland combined time series SAR backscattering and coherence characteristics was proposed. The Yellow River Delta was taken as the study area and the 112 Sentinel-1A GRD data with VV/VH dual-polarization and 64 Sentinel-1A SLC data with VH polarization were used. The decision tree method was established, based on the annual mean VH and VV backscattering characteristics, the new constructed radar backscattering indices, and the annual mean VH coherence characteristics were suitable for extracting the wetlands in the Yellow River Delta. Then the classification results in the Yellow River Delta wetlands from 2018 to 2021 were obtained using the new method proposed in this paper. The results show that the overall accuracy and Kappa coefficient of the proposed method w5ere 89.504% and 0.860, which were 9.992% and 0.127 higher than multi-temporal classification by Support Vector Machine classifier. Compared with the decision tree without coherence, the overall accuracy and Kappa coefficient were improved by 8.854% and 0.108. The spatial distributions of wetland types in the Yellow River Delta from 2018 to 2021 were obtained using the constructed decision tree. The spatio-temporal evolution analysis was conducted. The results showed that the area of S. alterniflora decreased significantly in 2020 but it increased to the area of 2018 in 2021. In addition, S. alterniflora seriously affected the living space of Phragmites australis (P. australis) and in 4 years, 10.485 km2 living space of P. australis was occupied by S. alterniflora. The proposed method can provide a theoretical basis for higher accuracy SAR wetland classification and the monitoring results can provide an effective reference for local wetland protection.
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Introduction

A wetland, known as “the kidney of the Earth”, is the ecosystem with the highest biodiversity and productivity in nature as well as one of the most important living environments for human beings (Cadier et al., 2020). A wetland plays an important role in biogeochemical cycles, flood mitigation, energy conversion, degradation of pollutants, promoting silting, and providing means of production and living resources for human beings (Delgado and Marín, 2013). At the same time, it can play a positive role in ecosystem protection, including food supply, carbon sequestration, flood control, and water quality improvement (Liu et al., 2021). A wetland breeds a large number of animal and plant resources with its unique eco-hydrological environment, provides good breeding and habitat for many wild animals, and forms a rich species community (Adame et al., 2019). Therefore, it is also of great significance to monitor the wetlands for the protection of biodiversity.

Spartina alterniflora (S. alterniflora) is a perennial halophyte native to the Atlantic coast of the Americas from Canada to Argentina (Meng et al., 2020). Presently, S. alterniflora has been recognized as one of the most serious coastal invasive species in the world, causing serious damage to coastal ecosystems. S. alterniflora was introduced into China for the first time in 1979 (Zuo et al., 2012) and showed a strong aggressiveness, gradually flooding coastal wetlands in China, and was listed as one of the “Top 10 invasive alien species” in China (Wan et al., 2009). Since 1990, S. alterniflora has spread to the Yellow River Delta, causing serious harm to the local ecosystem and leading to the decline of local biodiversity (Yue et al., 2021). At the same time, the S. alterniflora occupied the waterway space, resulting in waterway blockage and hindering the development of a variety of local industries. Due to the lack of natural enemies in China, S. alterniflora has gradually become the dominant species in coastal wetlands (Wan et al., 2014; Zhang et al., 2020), seriously squeezing the living space of other local species. Therefore, the monitoring of the Yellow River Delta wetland types, especially the accurate acquisition of the distribution range of S. alterniflora, can observe the distribution location and the changing trend of S. alterniflora in real time. This can better reflect the management achievements and shortcomings of S. alterniflora.

Wetland classification and the extraction of S. alterniflora can mainly use optical images, unmanned aerial vehicle (UAV) images, and other remote sensing methods (Zhu et al., 2019; Tian et al., 2020; Zhang et al., 2020). However, optical images are easily affected by clouds and fog, resulting in data unavailability. The monitoring range of UAV is limited and the work is easily affected by weather, which makes it impossible to better complete the monitoring task of a long time series. Synthetic Aperture Radar (SAR) images are not affected by clouds, rain, and snow, so it is possible to classify the wetlands for a long time series (Chen et al., 2017). In addition, it is particularly important to effectively distinguish Phragmites australis (P. australis) and S. alterniflora in wetland classification. S. alterniflora and P. australis are easily confused when they are extracted directly based on pixel from optical and UAV images due to their similarity in appearance. However, the unique backscattering coefficient of SAR images can be used to effectively distinguish these two species.

At present, the study on classification based on backscattering coefficients is mainly focused on the extraction of single ground object types, such as rice (Park et al., 2018) and forest (Khati et al., 2018), and has achieved good results. In addition, some scholars have achieved good classification results in distinguishing between ground object types with obvious differences, such as distinguishing between “wet” fields and “dry” fields (Keisuke et al., 2018) and between flood and vegetation (Tsyganskaya et al., 2018). However, the differences between these ground objects are easy to distinguish. When classifying complex areas such as wetlands, it is difficult to achieve high classification accuracy. The main reason is that the backscattering coefficients of some ground objects are too close to be distinguished. In wetlands study, scholars are constantly looking for new methods to achieve higher classification accuracy. Optical remote sensing image has become a popular classification method because it contains multiple spectral information, which can provide more characteristics to classification. Ottinger et al. (2013) and Liu et al. (2016) have achieved a good classification result in the Yellow River Delta by using optical image in the early years. The classification accuracy of their method is 76% and 89% respectively. Due to the advantages of optical image in classification, the combination of optical image and SAR image has also been widely applied to the classification of the Yellow River Delta wetlands in recent years. For example, Zhang et al. (2021) combined Sentinel-1A with Sentinel-2A and obtained an overall accuracy of 92.4%. Tu et al. (2021) combined GF-3 with hyperspectral satellite Zhuhai-1 and obtained an overall accuracy of 97%. Wang et al. (2022) combined GF-3 with Sentinel-2A and obtained an overall accuracy of 86.18%. All of the classification accuracy obtained was higher than 85%. The combination of optical image and SAR image has achieved a classification result with higher accuracy than only using the backscattering coefficient (Zhang et al., 2019), which has become a common classification method in wetlands. However, under the condition optical image data access being limited, knowing how to use SAR data only to achieve higher accuracy of wetlands classification has become important work.

InSAR technology is used to effectively detect ground changes and generate interferograms and coherence coefficient maps. In this process, coherence refers to the scattering information of ground object scatterers obtained by the coherent processing of two SAR images by InSAR technology. The coherence map is not only used to reflect the quality of interferometry in InSAR processing but also used to reflect the changes in ground object types (Canisius et al., 2019). If there are obvious changes in the covered ground object types between two SAR images, the coherence will decline. The coherence of S. alterniflora is quite different from that of other vegetation because it lives at the edge of the ocean where it is often submerged. Now, coherence has been applied to ground object classification. In some cases, better classification results can be obtained by using the time series coherence of different ground objects than by using the time series backscattering coefficient. This is mainly due to the growth environment of different plants, such as annual crops, grasses for pasture, and sugarcane plantations (Nikaein et al., 2021). However, it is still difficult to classify complex areas using coherence only because many ground objects are not sensitive to coherence. But coherence can enhance the distinction between objects that are difficult to distinguish using backscattering coefficients, which provides a theoretical basis for higher precision SAR classification. In the early years, coherence was mainly used for classification as part of image characteristics. Nizalapur et al. (2011) used the pseudocolor composite of coherence, backscatter difference, and mean backscatter to classify land cover in the Bilaspur forest area in Chattisgarh, India, with an overall accuracy of 82.5%. Fariba et al. (2018) used SAR backscattering and coherence maps as input features to conduct object-based Random Forest classification for marsh and shallow water in Avalon Peninsula, Newfoundland and Labrador, Canada, with an overall accuracy of 74.33%. In addition, the coherence of different temporal baselines is also introduced into the classification. Zhang et al. (2021) extracted rice in Guanghan city by using coherence maps of different time baselines and backscattering coefficients, and the extraction accuracy improved by 3% compared with only using the backscattering coefficients. These scholars have proved that coherence can contribute to achieve higher accuracy of classification. However, in some classification or ground object extraction applications (Nizalapur et al., 2011; Fariba et al., 2018; Zhang et al., 2021) that combine backscattering coefficient and coherence the coherence map is taken as part of the pseudocolor image synthesis and then samples are established for supervised classification; the classification is still limited by sample selection, resulting in reduced accuracy. The coherence and backscattering coefficients are used as a threshold index to construct a decision tree, which can effectively solve the problem.

The decision tree classifier (DTC) (Dattatreya and Kanal, 1986; Safavian and Landgrebe, 1991) is one of the methods for multi-stage decision making. The basic principle involved in any multistage approach is to break up a complex decision into a union of several simpler decisions, hoping the final solution obtained this way would resemble the intended desired solution. In the field of remote sensing monitoring, compared with traditional classification methods such as maximum likelihood classification, the decision tree classifies each pixel in the image by dividing the threshold values. This avoids misclassification and omission caused by the contingency of samples and the color of images in supervised or unsupervised classification, which has substantial advantages in land classification (Friedl and Brodley, 1997). Recently, decision tree classification has been successfully applied to land classification in cities, wetlands, forests, and sea ice (Tooke et al., 2009; Heumann, 2011; Timothy and Bartolo, 2015; Wang et al., 2021a).

In order to achieve effective monitoring of the Yellow River Delta wetland types, and especially to effectively distinguish between the S. alterniflora and P. australis, a decision tree classification method combined time series dual-polarization SAR backscattering and coherence characteristics is proposed in this paper. It can realize the Yellow River Delta wetland classification and explore the spatio-temporal evolution of the Yellow River Delta wetland types, especially the evolution of S. alterniflora.

The structure of this paper is as follows: Section 2 introduces the study area and experimental data in detail. Section 3 is the constructed method of this paper and introduces the process of establishing the decision tree by VH and VV backscattering characteristics, radar backscattering indices, and VH coherence characteristics. Section 4 is the result of this paper and the classification results were compared with the multi-temporal supervised classification. Section 5 discusses the classification accuracy of the different polarization coherences. Then the spatio-temporal evolution of wetland types in the Yellow River Delta from 2018 to 2021 is discussed and analyzed. Finally, some valuable conclusions of this study are drawn in Section 6.



Data and Materials


Study Area

The Yellow River Delta is the most widely preserved, the most complete, and the youngest wetland ecosystem in the world. It is located in the warm temperate zone of the Shandong Province, China. It is the second-largest wetland in China, covering an area of more than 10,000 km2, bordering Bohai Bay in the north and Laizhou Bay in the east. The terrain is flat and the altitude is between 0m and 15m and it has a temperate continental monsoon climate. The annual average precipitation is about 530-630 mm and the annual average temperature is about 11.7-12.6C. Due to the suitable climate conditions, the coastal wetland vegetation in this region is rich in types and covers a wide area (Zhang et al., 2019). Due to its unique ecological environment and unique natural conditions, this area is very rich in biological resources.

The study area is located in the Yellow River Estuary eco-tourism area, which is the most severely affected area by S. alterniflora in the Yellow River Delta. A large number of S. alterniflora is distributed on both sides of the estuary all year round. The study area is shown in the blue box in Figure 1A, covering a total area of 505.35 km2. The red box is the coverage area of Sentinel-1A image and the background is the shaded-relief map generated from Shuttle Radar Topography Mission (SRTM) DEM with 90 m resolution, which is used to represent the altitude of the study area. Figures 1B, C show P. australis and S. alterniflora, respectively, which were photographed in situ. It can be seen that they are very similar in appearance and cannot be directly distinguished from optical remote sensing images.




Figure 1 | Study area. (A) is the geographical location map of the study area. The red box represents the coverage of Sentinel-1A image, and the blue box represents the study area. The background is the shaded-relief map from SRTM DEM; (B) is P. australis photographed in situ; (C) is S. alterniflora photographed in situ.





Data

To obtain the wetland types and evolution information of the Yellow River Delta, Sentinel-1A radar data from European Space Agency (ESA) were selected. The Sentinel-1A radar satellite was launched from the ESA on April 3, 2014. It works in C-band and orbits at an altitude of about 700 km. The revisit period of the satellite is 12 days, mainly including StripMAP (SM) mode, Interferometric Wide swath (IW) mode, Extra Wide swath (EW) mode, and Wave (WV) mode (Attema et al., 2010). This provides data support for long-term and multi-dimensional earth observation. Sentinel-1 radar satellite data is available for free download at the website: https://scihub.copernicus.eu/.

28 Sentinel-1A dual-polarization Ground Range Detected (GRD) images in IW mode with vertical transmit and vertical receive (VV) and vertical transmit and horizontal receive (VH) in 2018 were selected to obtain backscattering characteristics. The time span was from January 10, 2018 to December 24, 2018, and the imaging dates were evenly distributed to ensure at least two scenes per month, which were used to reflect information about the average backscattering coefficient over a year. In addition, 16 Sentinel-1A dual-polarization Single Look Complex (SLC) images in IW mode with VV and VH were used to obtain coherence characteristics, and the time span was basically the same as GRD data. Because the sensitivity of the change in coherence is lower than the backscattering coefficient (Mohammadimanesh et al., 2018), the time interval between selected images is longer. We guarantee at least one image per month to reflect the coherence change at different times.

In addition, to obtain wetland type information of the study area from 2019 to 2021, 84 Sentinel-1A dual-polarization GRD images (28 images per year) and 48 Sentinel-1A dual-polarization SLC images (16 images per year) were obtained, which were used to analyze the spatio-temporal evolution of wetland types. The imaging time of selected images is similar to 2018. The image parameters of the data used in this study are shown in Table 1. The imaging mode of all data is IW, VH/VV dual-polarization, ascending orbit, and the incidence angle is about 38.9°.


Table 1 | The parameters of Sentinel-1A data used for monitoring the Yellow River Delta wetlands.



Sentinel-1A product contains GRD data and SLC data. GRD data have the same azimuth resolution and range resolution, which reduces speckle noise and geometric resolution. Therefore, compared with SLC data, GRD data eliminates thermal noise to improve image quality and can achieve better accuracy in ground object classification. However, GRD data does not contain phase information, so it cannot be used to obtain the coherence between two images. To achieve better classification accuracy, GRD data and SLC data are used together for classification in this paper.




Method

In order to obtain the accurate ground object types and spatio-temporal evolution of wetland in the Yellow River Delta, a decision tree classification method combined time series dual-polarization SAR backscattering and coherence characteristics was proposed. Based on the annual mean VH and VV backscattering characteristics, the constructed radar backscattering indices, and the annual mean VH coherence of Sentinel-1A, a decision tree suitable for extracting the ground object types was established to obtain the classification results in the Yellow River Delta wetlands from 2018 to 2021. Finally, we analyzed the wetland types in the Yellow River Delta from 2018 to 2021 and focused on the spatio-temporal evolution of the invasive species S. alterniflora. The flow chart of the method studied in this paper is shown in Figure 2, which mainly includes the acquisition of annual mean backscattering characteristics, acquisition of annual mean coherence characteristics, decision tree construction, wetland classification, accuracy verification, area statistics of wetland ground object types, and analysis of spatio-temporal evolution of S. alterniflora.




Figure 2 | Overall technical flow chart used for monitoring the wetland in the Yellow River Delta.




Annual Mean Backscattering and Coherence Characteristics


(1) Annual Mean Backscattering Characteristics

The SAR backscattering coefficient is mainly related to the ground object surface roughness, ground humidity, and terrain (Schmugge, 1983; Hu et al., 2021). The backscattering coefficient of Sentinel-1 satellite mainly depends on the ground and salt marsh canopy backscatter intensities since the terrain of the coastal zone is mainly flat and terrain correction was performed during data pre-processing (Bouman and Hoekman, 1993). First, 28 dual-polarization Sentinel-1A GRD images were preprocessed as follows Bouman and Hoekman, 1993 to obtain backscattering characteristics:

① SAR image registration. The purpose is to make the image size consistent, and remove geographical deviation. This is to facilitate the subsequent mean processing of images. Cross-correlation method is used for registration (Jiang, 2013).

② SAR image filtering. The purpose is to remove the influence of speckle noise on the backscattering coefficient in SAR images as much as possible and the filtering method uses refined Lee filtering (Lee, 1981).

③  SAR radiometric calibration. The pixel gray value (DN) of the radar image is converted into the backscattering coefficient (σ0) and the conversion formula (1) is as follows:

 

The subscript ij refers to the position of pixel in the image, where i is row and j is column. A is the radiometric calibration parameter of Sentinel-1A.

④  Geocoding. Each pixel is converted from SAR image coordinate system to World Geodetic System 84 (WGS84) geographic coordinate system.

After the above processing was completed, a total of 56 images of backscattering coefficient under VH and VV polarization was obtained. In order to reflect the average distribution of ground objects in the whole year of 2018 and eliminate the influence of noise, the 28 VH backscattering coefficient maps and 28 VV backscattering coefficient maps were averaged respectively, to obtain the annual mean backscattering coefficients maps under VH polarization and VV polarization, as shown in Figures 3A, B. Since it cannot effectively distinguish the ground objects completely, only relying on a single annual mean backscattering coefficient σVH and σVV , the two radar indices SARsub and SARdiv about the backscattering coefficient of dual-polarization are established by referring to the derived parameters SARdiff (Veloso et al., 2017) and SARNDVI (Hu et al., 2021). Compared with the parameter SARdiff, the parameter SARsub can make the value of most ground objects greater than 0, which can be better distinguished from σVH and σVV; Compared with the parameter SARNDVI, the parameter SARdiv makes the calculated value of dual-polarization backscattering coefficient of different ground objects not between 0 and 1, which can expand the range of value. This improves the distinction of different ground object types in wetlands and facilitates the threshold division in classification. The newly constructed formula SARsub and SARdiv are shown in (2) and (3):

 

 




Figure 3 | Annual mean backscattering and coherence maps of the study area. (A) is the annual mean backscattering coefficient map under VH polarization; (B) is the annual mean backscattering coefficient map under VV polarization; (C) is the SARsub map according to the formula (2); (D) is the SARdiv map according to the formula (3); (E) is the annual mean coherence coefficient map under VH polarization; and (F) is the annual mean coherence coefficient map under VV polarization. All legends are marked in the lower right corner of the figures.



Where,σVH represents the annual mean backscattering coefficient under VH polarization; σVV represents the annual mean backscattering coefficient under VV polarization. The unit of SARsub SARsub is dB. SARdiv is dimensionless value.

According to the established radar indices, the SARsub map and SARdiv map were calculated based on the annual mean backscattering coefficients maps of VH polarization and VV polarization, as shown in Figures 3C, D.



(2) Annual Mean Coherence Characteristics

Coherence (ranging between 0-1) is used to reflect the quality of interferogram. It is high if scatters remain unchanged and it is low if there is significant change in the scattering medium (Dammann et al., 2018; Wang et al., 2021b). For 16 dual-polarization Sentinel-1A SLC images after registration, Differential Interferometric Synthetic Aperture Radar (DInSAR) (Ou et al., 2018) was performed on every two scenes with adjacent dates and a total of 15 VH coherence maps and 15 VV coherence maps were acquired. The image before the date was the master image and the image after the date was the slave image. The temporal baseline of interferometric pairs was 12-36 days. The coherence coefficient is calculated according to the following formula (4) (Seymour and Cumming, 1994; Liu et al., 2016):

 

Where S1and S2 represent, respectively, two SLC complex images after registration; E{.} represents mathematical expectation; and * represents complex conjugate operator.

The same average operation is performed for the coherence coefficient maps to obtain the annual mean coherence map. The annual mean coherence maps under VH and VV polarization are shown in Figures 3E, F.




Analysis of Eigenvalues of Different Ground Object Types

Several Region of Interest (ROI) samples were established for statistical analysis of features of different ground object types. The selection of ROI was based on Google Earth images, GF-2 optical images, Sentinel-2 optical images, and study results of other scholars (Feng et al., 2019; Wang et al., 2022). Five types of ground object samples were selected in this study, including S. alterniflora, P. australis, Chinese tamarisk (C. tamarisk), tidal flats (T. flats), and water. A total of 340 ROI samples were selected. 70% of these samples were used for statistics and 30% of these samples were used for validation. The number of statistical samples was as follows: 56 S. alterniflora, 42 P. australis, 35 C. tamarisk, 84 T. flats, and 21 water. The number of validation samples was as follows: 24 S. alterniflora, 18 P. australis, 15 C. tamarisk, 36 T. flats, and 9 water. Figure 4 shows the sample distribution. The distribution of 238 statistical samples is shown in Figure 4A and the distribution of 102 verification samples is shown in Figure 4B. The background is Sentinel-2 true color image and the imaging time is July 16, 2018. Sentinel-2 is the basis for samples selection but it is not the only one.




Figure 4 | The distribution of samples. The background is the Sentinel-2 true color image, and the imaging time is July 16, 2018. (A) is the distribution of the statistical samples; (B) is the distribution of the verification samples.



The statistical method was the mean value method, that is, we calculated the mean value of backscattering coefficients or coherence of all ROI in the same object samples. The mean value of σVH, σVV, SARsub, SARdiv, γVH, and γVV of five ground objects types in 2018 were obtained, as shown in Figures 5A–D. Figure 5A represents the mean and standard deviation of backscattering coefficients at VH and VV polarization σVH and σVV . Figures 5B, C represent the mean and standard daeviation of the constructed radar indices SARsub and SARdiv , respectively. Figure 5D shows statistical coherence γVH and γVV. The mean and standard deviation of all statistical samples for every object are labeled in the figure.




Figure 5 | Mean and standard deviation of characteristic parameters of five objects through statistical analysis. (A) is the mean and standard deviation of VH and VV backscattering coefficients; (B) is the mean and standard deviation of radar index SARsub; (C) is the mean and standard deviation of radar index SARdiv; (D) is the mean and standard deviation of VH and VV coherence.





Establishing the Decision Tree

Through the analysis of Figures 5A, B, it can be found that the annual mean backscattering coefficients of water and other ground objects differ greatly. Then they can be easily distinguished from the annual mean backscattering coefficients under VH and VV polarization. Under VH polarization, the annual mean backscattering coefficients of S. alterniflora, P. australis and C. tamarisk are similar. Through the analysis of Figure 5C, the annual mean backscattering coefficients of all objects under VV polarization are relatively similar except water. This indicates that it cannot effectively distinguish ground objects only using VH and VV backscattering coefficients. Through the analysis of Figure 5D, the value of S. alterniflora and P. australis under the radar index SARsub is the smallest, and the relative difference with other ground objects is the greatest, while the value of T. flats is obviously greater than other ground objects. Although the value of C. tamarisk is close to water, the water has already been extracted in the first step, so C. tamarisk and T. flats can be extracted. The difference between S. alterniflora and P. australis under the radar index SARdiv is further magnified, and this can make them easy to distinguish. According to the above principles, the median value of the statistical mean of each two ground objects is taken as the threshold value and the decision tree is established according to the median value.

However, there are some limitations to the ground object types extraction process. For a single index or parameter, there is a certain contingency in the threshold division principle of median value, which may cause the reduction of classification accuracy when only relying on a single index to classify ground objects. Coherence differences can provide help to solve this problem. S. alterniflora grows in the humid coastal salt marsh and its coherence is quite different from that of vegetation in relatively dry areas (such as P. australis and C. tamarisk). Although it is difficult to distinguish all ground objects only based on coherence because some ground objects have similar coherence values, it can be introduced into decision tree as another index to distinguish S. alterniflora to supplement the omission of S. alterniflora extraction. S. alterniflora was easily confused with water when only relying on coherence to distinguish but water could be well extracted by the annual mean backscattering coefficient. Therefore, the distribution range of S. alterniflora can be obtained after water is extracted. We classified water and S. alterniflora into one category in Figure 6. Through analyzing Figure 6, they are distinguished from other ground objects only by the coherence characteristics under VH and VV polarization and the threshold is set as γVH < 0.32 and γVV < 0.36.




Figure 6 | Coherence classification map. Water and S. alterniflora were classified into one category, and they were distinguished from other ground objects by coherence. (A) is the coherence classification map under VH polarization, when the threshold is set as γVH < 0.32, the ground object is classified as water or S. alterniflora; when the threshold is set as γVH > 0.32, the ground object is classified as others; (B) is the coherence classification map under VV polarization, when the threshold is set as γVV < 0.36, the ground object is classified as water or S. alterniflora; when the threshold is set as γVV < 0.36, the ground object is classified as others.



According to the characteristics of selected samples, a decision treefor monitoring the ground object types in the Yellow River Delta wetlands was established. Since water has been extracted in the first step of the decision tree, when the backscattering coefficient and coherence are used to extract S. alterniflora, there is no need to set the lower limiting value of coherence threshold. When γVH < 0.32 or SARdiv >7.4, the ground object is classified as S. alterniflora. Similarly, the difference of coherence can also provide help to solve the problem of misclassification and omission between C. tamarisk and T. flats. The median coherence between C. tamarisk and T. flats is selected as the distinguishing index. When γVH <0.38, the ground object is classified as T. flats. Figure 7 shows the constructed decision tree, where the black box represents the annual mean backscattering coefficient and the constructed radar index threshold setting and the red box represents the annual mean coherence threshold setting.




Figure 7 | The decision tree constructed for monitoring the wetland ground types in the Yellow River Delta. Note that the black unfilled box represents the threshold setting of the annual mean backscattering coefficient and the constructed radar index, while the gray-filled red box represents the threshold setting of the annual mean coherence.





Multiple Temporal Classification

In order to show the advantages of the proposed method, the accuracy of the classification results of the proposed decision tree is compared with that of multi-temporal classification. It has become one of the important methods of ground object classification in the field of SAR remote sensing to make use of multiple temporal SAR images for pseudocolor synthesis and supervised classification by color difference of pseudocolor images (Lin and Perissin, 2018; Wang et al., 2018; Zhang et al., 2021). 16 Sentinel-1A GRD data and 16 Sentinel-1A SLC data with VH polarization were selected and the imaging time of GRD data and SLC data were consistent. The time series backscattering coefficient and coherence curves of different ground objects were drawn based on statistical samples, as shown in Figures 8A, B. In the time series coherence curve, the horizontal axis represents the date of the slave image of interferometric pairs, that is, January 22 represents the acquisition date of slave image of interferometric pairs between January 10 and January 22.




Figure 8 | Multi-temporal classification preprocessing. (A) is statistical time series coherence curve in 2018; (B) is statistical time series backscattering coefficient curve in 2018; (C) is multi-temporal composite pseudocolor image. Note that the horizontal axis represents the date of the slave image of interferometric pairs, that is, January 22 represents the acquisition date of slave image of interferometric pairs between January 10 and January 22.



In the statistics of coherence of different ground objects, we found that there were great differences between the coherence of objects from January to April and from November to December. Especially in winter, the coherence of S. alterniflora was obviously different from others. From May to October, the coherence of all ground objects kept about 0.25, except for C. tamarisk. Based on the backscattering coefficient analysis, S. alterniflora was easily distinguished from other ground objects from January to April, while it was easily confused with other ground objects at other times. In June, in addition to S. alterniflora, differences from each other were relatively easy to distinguish. Based on the above analysis, three channels were selected for pseudocolor synthesis to achieve better classification effect. The channels were R (21/06/2018 VH backscattering), G (18/11/2018 VH backscattering) and B (coherence generated by interferometric pairs between 18/11/2018 to 30/11/2018). The synthetic pseudocolor image is shown in Figure 8C.

Support Vector Machine (SVM) (Cortes and Vapnik, 1995) is a kind of machine learning. The SVM firstly normalized the data and then the data to be classified is mapped to the factor space of high dimension to find the optimal decision boundary and divide the data into different categories. SVM is widely used in wetland vegetation monitoring because it can better deal with the imbalance of wetland vegetation samples (Ahmed et al., 2021; Zhang and Lin, 2022). In this paper, SVM method is used to classify the synthetic pseudocolor images.




Results


Classification Results

To achieve an analysis of ground object type changes in the Yellow River Delta wetlands from 2018 to 2021, the wetland classification results of the study area during that time were obtained based on the decision tree constructed in this paper, as shown in Figures 9A–D. Red, light green, dark green, brown, and blue represent S. alterniflora, P. australis, C. tamarisk, T. flats, and water, respectively. According to the classification results, S. alterniflora was distributed in large numbers on both sides of the estuary of the Yellow River and there were many interlacing areas with P. australis. From 2018 to 2021, the distribution range of ground objects in the Yellow River Delta has changed greatly in different years, especially the S. alterniflora and P. australis.




Figure 9 | Classification results of the Yellow River Delta wetlands from 2018 to 2021 based on the decision tree constructed in this paper. (A) is classification result in 2018; (B) is classification result in 2019; (C) is classification result in 2020; (D) is classification result in 2021.





Accuracy Verification

The classification result of multiple temporal classification in 2018 is shown in Figure 10A. The classification result of the constructed decision tree in 2018 is shown in Figure 10B. Verification samples were used to establish confusion matrix (Townsend, 1971) and the result of multi-temporal classification was compared with the result from the decision tree constructed in this paper, as shown in Table 2.




Figure 10 | Classification results of different methods in 2018. (A) is the multi-temporal classification results based on SVM method. (B) is the classification results based on constructed decision tree.




Table 2 | The confusion matrix of multi-temporal classification and decision tree classification.



As shown in Table 2, the overall accuracy and Kappa coefficient of multi-temporal classification were 79.512% and 0.734. The overall accuracy and Kappa coefficient of decision tree classification were 89.504% and 0.861. Compared with the multi-temporal classification result, the overall accuracy of the decision tree classification result in this paper was improved by 9.992% and the Kappa coefficient was improved by 0.127. The decision tree constructed in this paper has advantages in all kinds of ground objects except C. tamarisk. In the multi-temporal classification result, the classification accuracy of P. australis was very low and there was a lot of confusion between P. australis and S. alterniflora, which caused a large error in the accurate monitoring of the invasion of S. alterniflora in the Yellow River Delta wetlands. In this paper, the monitoring accuracy of S. alterniflora and P. australis improved by 8.95% and 30.14%, respectively. In addition, there were many speckles in the multi-temporal classification result, which were also classified into different objects, resulting in accuracy loss. This was due to the influence of noise, while the new method in this paper avoided this phenomenon.

To verify the advantages of the proposed method, we compared the classification accuracy with the wetland classification results of other scholars. (Zhang et al., 2019) used L-band ALOS PALSAR satellite, combined with automatically selected samples and manually selected samples, and adopted the method of random forest classification to conduct wetland monitoring, achieving an accuracy of 89.79%. However, L-band SAR data are relatively few and the C-band SAR data in this paper can also achieve the same accuracy level. Wang et al. (2022) used Sentinel-2 optical images and full-polarimetric GF-3 SAR images to monitor wetlands and the overall accuracy was 86.18%. In this paper, higher accuracy was obtained using only Sentinel-1A data. Canisius et al. (2019) used the intensity and coherence of RADARSAT-2 to classify wetlands with an overall accuracy of 86%. In this paper, the combination of the backscattering coefficient and coherence can achieve better classification results. Therefore, the classification method proposed in this paper has some advantages and shows better accuracy compared with some relevant studies.




Discussion


Optimal Coherence Characteristics for Wetland Classification

To explore the difference in the contribution of coherences under different polarization to the classification accuracy, the classification results were obtained in four cases, including no coherence, only introducing VH coherence, only introducing VV coherence, and introducing both VH and VV coherence, as shown in Figures 11A–D. Here, S. alterniflora is taken as an example to illustrate the establishment of decision tree under different polarization coherence is introduced. When γVH <0.32 or SARdiv > 7.4, the ground object is classified as S. alterniflora under the condition when only introducing the VH coherence. When γVV <0.36 or SARdiv >7.4, the ground object is classified as S. alterniflora under the condition when only introducing the VV coherence. When γVH <0.32, or γVV < 0.36, or SARdiv > 7.4, the ground object is classified as S. alterniflora under the condition when introducing the coherence of VH and VV polarization. Figure 11 shows that whether only introducing VH coherence, only introducing VV coherence, or introducing both VH and VV coherence, these classification results all changed greatly and the degree of distinction between different ground objects is greater. The red area on both sides of the Yellow River estuary is denser and more uniform than the classification results based only on the backscattering coefficient, which is more consistent with the real distribution of S. alterniflora. This shows that the introduction of annual mean coherence can significantly improve the extraction accuracy of wetland ground object types. In addition, it is unrealistic for a large number of C. tamarisk to be distributed on the T. flats in Figure 11A. In Figures 11B–D, many T. flats which are misclassified as C. tamarisk have also been corrected.




Figure 11 | Classification results of the Yellow River Delta wetlands in 2018. (A) is the classification results with no coherence; (B) is the classification results with only introducing VH coherence; (C) is the classification results with only introducing VV coherence; (D) is the classification results with introducing both VH and VV coherence.



Based on the classification results and the verification samples, the confusion matrix was established and the classification accuracy of the decision tree was obtained by only relying on the annual mean backscattering coefficient of dual-polarization and the annual mean coherence coefficient of different polarization, as shown in Table 3. According to Table 3, the overall accuracy and Kappa coefficient of the classification after introducing the coherence under any polarization were higher than those based only on the backscattering coefficient. When coherence was not introduced, the overall accuracy of classification was 80.650%, and the Kappa coefficient was 0.752. When only introducing VH coherence, the overall accuracy of classification was 89.504%, and it improved by 8.854%. The Kappa coefficient was 0.861 and it improved by 0.109. When only introducing the coherence under VV polarization, the overall accuracy of classification was 87.257% and it improved by 6.607%. The Kappa coefficient was 0.831 and it improved by 0.079. When introducing both the coherence of VH and VV polarization, the overall accuracy of classification was 88.944% and it improved by 8.294%. The Kappa coefficient was 0.852 and it improved by 0.100.


Table 3 | The classification accuracies with combining different polarization coherence.



Since P. australis and S. alterniflora are prone to misclassification in optical images or UAV images, we focused on their accuracy changes. The results showed that the classification accuracy of S. alterniflora was the highest when introducing VH and VV coherence and the producer accuracy improved by 29.04% while the user accuracy decreased by 2.91%. The producer accuracy of P. australis decreased by 16.21% while the user accuracy improved by 22.69%. In general, the use of coherence played a positive role in the classification of P. australis and S. alterniflora. Although the classification accuracy of S. alterniflora was the highest when introducing both VH and VV coherence, the overall classification accuracy was the best when only introducing VH coherence. Therefore, in the decision tree classification of the study area in this paper when only introducing VH coherence. In the case of only introducing VH coherence, the producer accuracy of S. alterniflora improved by 25.72% and the user accuracy decreased by 1.60%. The producer accuracy of P. australis decreased by 9.77% and the user accuracy improved by 19.43%.

Although the coherence significantly improved the overall accuracy and the classification accuracy of S. alterniflora, the classification accuracy of C. tamarisk was still relatively low. This is mainly because the coefficient of suaeda and C. tamarisk in the statistical process of radar index is very close, and the distribution of the suaeda area is small and scattered. Suaeda was neglected in classification in this paper, which also resulted in low classification accuracy of C. tamarisk.



Competitive Analysis of P. australis and S. alterniflora

The area for this study was about 505.35 km2 and the water area is approximately about 220 km2 to 230 km2. During 2018-2021, there were no large-scale artificial activities like reclaiming the lake and mining ponds therefore, the area of water remained stable. The invasion of S. alterniflora caused damage to native species and P. australis was the specie that was most seriously affected by the invasion. Therefore, the distribution areas and their respective proportions of S. alterniflora and P. australis during 2018-2021 were statistically analyzed in this paper. The statistical graph of area changes and proportion changes are shown in Figures 12A, B.




Figure 12 | Statistical graph of S. alterniflora and P. australis from 2018 to 2021. (A) is the area statistical graph; (B) is the proportion change graph.



According to Figure 12, the area of S. alterniflora in the study area in 2018 was 34.53 km2, much larger than 27.86 km2 of P. australis. In 2019, the area of S. alterniflora was 35.05 km2, which basically remained stable. During this period, the P. australis achieved its expansion to 35.29 km2 by mainly extending to T. flats, and the proportion of S. alterniflora and P. australis had also become almost the same. In 2020, as the invasion of S. alterniflora received more attention, artificial removal methods such as mowing and plowing had begun to appear in the Yellow River Delta and the area of S. alterniflora had decreased significantly. However, because S. alterniflora intersects with P. australis in many places, many P. australis were also removed during the large-scale removal process, which caused a simultaneous reduction in the area of P. australis and S. alterniflora. In 2021, the area of S. alterniflora returned to the level in 2018, reaching 34.81 km2. However, the area of P. australis did not rise again and was still at 22.36 km2. The area proportion of S. alterniflora had increased significantly, even exceeding that in 2018. S. alterniflora gradually occupied the absolute advantage in the competition for coastal wetlands.

In order to verify the reliability of the classification results in this paper, the results were compared to that of other scholars. In this study, S. alterniflora almost occupied the entire coastline on both sides of the Yellow River estuary in 2018, covering a large area. This is consistent with the classification results of Fu et al. (2021) and Wang et al. (2022). According to the classification results in 2019, the distribution of S. alterniflora changed and the area of S. alterniflora decreased. It was replaced by P. australis along both coasts of the Yellow River estuary, which was consistent with the classification results of Hu et al. (2021) and Li et al. (2022). In 2020, the number of S. alterniflora obviously decreased, especially on the west side of the Yellow River estuary. P. australis expanded to the central area of S. alterniflora, which was similar to the classification results of Tu et al. (2021).

The growth cycle of S. alterniflora is different from that of other native vegetation. It starts to germinate in March and mature from August to December. P. australis begin to germinate from March to April, bloom from July to August, and mature from September to October. The different growth cycles make it difficult to control local S. alterniflora. When the P. australis has withered, S. alterniflora is still in the mature stage, occupying the area of P. australis and continuing to expand. However, the germination period of P. australis was similar to S. alterniflora, and slightly later than S. alterniflora. As time goes on, more P. australis invade the S. alterniflora (Lin et al., 2015; Zeng et al., 2020). Therefore, artificial management methods are urgently needed to prevent the occurrence of this phenomenon.

At present, the removal of S. alterniflora—an invasive species in the Yellow River Delta—is mainly carried out by mowing and plowing. Although this can quickly reduce the S. alterniflora on the surface in a short period of time (such as in 2020) to make it disappear from the image, due to the long rhizomes, strong survival, and reproduction ability, it is difficult to completely eliminate it. In addition, there are always numerous previously propagated S. alterniflora seeds in the T. flats and the process of mowing and plowing has little effect on the destruction of the seeds, which also led to the regrowth of S. alterniflora in the second year. Due to the lack of a natural enemy, its area is back to higher levels. According to the statistical graph, the area of S. alterniflora in 2021 is even higher than that in 2018, indicating that the effect of removal work is not sustainable. Due to its strong invasive ability, S. alterniflora occupied the original living space of P. australis on the T. flats after the P. australis were removed. Therefore, it is still necessary to adopt more effective methods to manage S. alterniflora in the study area to maintain the healthy development of the Yellow River Delta wetlands system.



Spatio-Temporal Evolution of S. alterniflora

Although the area difference between 2018 and 2021 was not significant, the annual distribution of S. alterniflora remained significantly different over the four years of evolution. To better study the growth trend of S. alterniflora and its influence on other ground objects in the Yellow River Delta, we obtained the land use type conversion map between S. alterniflora and other ground objects in the three periods of 2018-2019, 2019-2020, and 2020-2021, as shown in Figure 13.




Figure 13 | Land use type conversion map. The time corresponding to each map is marked at the bottom of the figure and the legend of ground object conversion type is marked at the bottom center of the figure.



According to Figure 13, between 2018-2019, much of the area formerly occupied by S. alterniflora on the north shore of the estuary coast of the Yellow River became occupied by P. australis (marked in red). But in the middle of the Yellow River on both sides, S. alterniflora began to appear and the distribution area is large, indicating that S. alterniflora began to occupy other areas; From 2019 to 2020, due to the gradual artificial removal of S. alterniflora, the area occupied by S. alterniflora began to reduce, especially east of the Yellow River estuary, where a large number of S. alterniflora were converted to P. australis, indicating that the governance effect was relatively successful in a short period. Between 2020-2021, S. alterniflora reappeared in several areas, and Figure 13 shows the blue area as very densely distributed on the east and west sides of the Yellow River estuary and the northwest side of the study area. More seriously, S. alterniflora also began to appear on isolated islands along the southern coast of the study area. As time goes by, S. alterniflora can easily spread to the southern coast, causing a greater risk of invasion.

The reliability of the evolutionary analysis in this paper is verified by combining the results of other scholars. According to the monitoring results in this paper, the area of S. alterniflora increased in 2018-2019, which was basically consistent with the monitoring results of Wang et al. (2021). In addition, the evolution process of S. alterniflora in this paper is basically consistent with the extraction results of S. alterniflora in different years by other scholars (Wang et al., 2022; Fu et al., 2021; Tu et al., 2021; Li et al. 2022), so the reliability of monitoring results in this paper can be confirmed.

The total area of S. alterniflora remained stable but the distribution changed significantly. The distribution of S. alterniflora from concentrated distribution along both sides of the Yellow River estuary in 2018 to multiple distributions in 2021 posed a challenge to the local ecological protection. To explore the invasion status of S. alterniflora to other ground objects, the transfer matrix between S. alterniflora and other ground objects from 2018 to 2021 was calculated, as shown in Table 4.


Table 4 | The land use type transfer matrix from 2018 to 2021.



According to Table 4, from 2018 to 2021, P. australis was the most seriously invaded of all ground objects, with 10.485 km2 of P. australis being invaded by S. alterniflora. Meanwhile, 5.627 km2 of T. flats was occupied by S. alterniflora. In conclusion, although the total area of S. alterniflora remained stable, it still caused great damage to other native species due to its super reproductive ability and lack of natural enemy in China.




Conclusions

In order to solve the problem of low accuracy of wetland classification by only relying on radar backscattering coefficient, this paper constructed a decision tree classification method combined time series SAR backscattering and coherence characteristics. Based on the annual mean VH and VV backscattering characteristics, the constructed radar backscattering indices SARsub and SARdiv and the annual mean VH coherence characteristics, a decision tree suitable for extracting the wetland types was established to monitor the ground object types in the Yellow River Delta wetlands from 2018 to 2021. In addition, the wetland types were analyzed and the spatio-temporal evolution of S. alterniflora was emphatically discussed. Through this study, the following valuable conclusions can be obtained:

	(1) The overall accuracy and Kappa coefficient of the proposed method are 89.504% and 0.860. Compared with the multi-temporal classification by SVM classifier, the overall accuracy and Kappa coefficient are improved by 9.992% and 0.127. Except for C. tamarisk, it can obtain a higher precision for other ground object types. The monitoring accuracy of S. alterniflora and P. australis improved by 8.95% and 30.14%, respectively. In addition, the proposed method avoids the influence of noise during multi-temporal classification and the result is closer to reality.

	(2) The contribution of coherence under different polarization to wetland classification accuracy is discussed. Compared with only using the annual mean backscattering coefficient, the overall accuracy of decision tree classification of the Yellow River Delta wetlands, with introducing the annual mean VH coherence, improved by 8.854% and the Kappa coefficient improved by 0.109. The producer accuracy of S. alterniflora improved by 25.72% and user accuracy decreased by 1.60%. The producer accuracy of P. australis decreased by 9.77% and user accuracy improved by 19.43%. Although it can achieve better classification results of S. alterniflora when introducing the annual mean VH and VV coherence, the overall accuracy is lower than only introducing the VH coherence. Therefore, it is more suitable for wetland classification in the Yellow River Delta when only introducing VH coherence.

	(3) The wetland classification results of the Yellow River Delta from 2018 to 2021 were obtained by using the constructed decision tree, and the spatio-temporal evolution analysis of wetland types was carried out. It was concluded that the area of S. alterniflora remained stable in 2018-2019, about 35 km2, and decreased significantly to 28.68 km2 in 2020. But in 2021, it increased again to the area of 2018. This suggested that the removal work of S. alterniflora was not sustainable. In addition, according to the land use type conversion map and transfer matrix of S. alterniflora, the invasion of S. alterniflora has seriously affected the living space of P. australis. From 2018 to 2021, 10.485 km2 of P. australis was converted to S. alterniflora, and 5.627 km2 of T.flats was occupied by S. alterniflora. More effective methods are needed to eliminate S. alterniflora.



In this paper, the time series backscattering coefficients and coherence are combined to obtain a classification result in Yellow River Delta wetlands with higher accuracy than using only backscattering coefficients. It provides a theoretical basis for achieving a higher accuracy of wetland classification using SAR data (Sentinel-1A of different product levels). At the same time, through the detailed evolution analysis of the Yellow River Delta wetland, the relevant results can provide a reference for local wetland protection. However, this paper only divided five kinds of ground objects and ignored the ground objects such as suaeda and buildings, so the results are not detailed enough. In addition, the classification accuracy of C. tamarisk in this paper is low and more effective methods should be explored to solve this problem in the future.
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The surface gravity wave equation is expanded to the fourth-order wave steepness on slowly varying topography, obtaining a topographic modified nonlinear Schrödinger (TMNLS) equation. When the time scale is longer than ε-3 times of the dominant wave period or the space scale is larger than ε-3 times the dominant wavelength, the second water depth derivative and the square of the first water depth derivative affect the first-order wave amplitude. The instability area for a uniform Stokes wave train by small perturbations is the entire wavenumber space, except for a specific stability curve on infinite and slowly varying depth. The depth variation terms affect the growth rate of uniform Stokes wave train on the order of 0.01. The stability curve shows more sensitive to the depth variation in x direction than that in y direction. The increment of the value for depth variation in x direction contributes the stable wave number of perturbation to approach or parallel to y axis. The increment of the value for depth variation in y direction helps the stable wave number of perturbation to approach or parallel to x axis.
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Introduction

The interactions among wave packets with narrowband range frequencies and wavelengths received considerable attention. Benjamin and Feir (1967) theoretically proved that wave packets were unstable when kh is larger than 1.363, where k is the dominant wavenumber, and h is the water depth. Whitham (1967) identified and explained the Benjamin–Feir instability by theoretical analysis. Benney and Roskes (1969) complemented Whitham’s theory. With a pair of nonlinear conservation equations introduced by Whitham, Lighthill (1967) analyzed the nonlinear wave evolution process after the initial stable stage of a single wave packet. Chu and Mei (1971) added the modulation rate term to Whitham’s equation for long-term wave packet evolution processes to interpret the high-order dispersion effect.

The wave packet evolution process can be studied by the cubic nonlinear Schrödinger (NLS) equation [Zakharov (1968); Benney and Roskes (1969)], which is equal to the conservation equation proposed by Chu and Mei (Hasimoto and Ono, 1972). Zakharov and Shabat (Davey, 1972) solved the analytical NLS solution. Hasimoto and Ono (Zakharov and Shabat, 1972) obtained a one-dimensional NLS for the wave packet envelope from multiple scale expansions for finite depth. Davey and Stewartson (1974) investigated the transformation of slowly varying wave packets in a three-dimensional finite depth, concluding that the wave packet envelope is confined to two nonlinear partial differential equations, similar to NLS in form. Lo and Mei (1985) highlighted the simulation value with NLS’s preferably approached measured value if &egr; < 0.1, while the departure between the simulation and measured values was larger when &egr; > 0.1. Martin (Martin H. Yuen, 1980) found that the simulated wave energy with NLS does not satisfy the conservation law due to energy attenuation. Besides the confined condition of small wave steepness, NLS showed Benjamin–Feir instability in an unbounded region by two-dimensional sideband perturbation, resulting in leaking energy from low wavenumber components to high wavenumber components (Dysthe, 1979).

The NLS has been modified to overcome these defects above. By expanding the equation to the fourth order on finite depth, Dysthe (1979) established the modified nonlinear Schrödinger equation (MNLS) to improve wave packets’ instability properties. Lo and Mei (1987) numerically solved and transformed MNLS in moving coordinates, showing poor long-time wave packet evolution reproducibility on infinite depth and asymmetry of sideband perturbation evolution. By considering that the wave spectrum in a realistic ocean is not narrowband, Trulsen and Dysthe (1996) developed a broader band modified nonlinear Schrödinger equation (BMNLS) by extending the bandwidth to the   order. It showed the same precision as MNLS in nonlinear terms but higher precision in linear dispersive terms than MNLS. In deep water, to compute the dispersive relation efficiently using the pseudo-spectrum method and keep the simple structure of the Dysthe equation, Trulsen et al. (2000) used cubic nonlinear terms to modify linear dispersive relations, improving wave packets’ instability property by comparing the result with that from the Stokes wave analytic solution of Mclean (McLean, 1982), ensuring the boundness of Benjamin–Feir instability and stopping the wave energy leaking to high wavenumber components. Craig et al. (2012) proposed that NLS is not a Hamilton partial differential equation but an approximation to the Euler equation. Craig et al. (Craig et al., 2010; Craig et al., 2011) adopted Hamilton’s method to solve the nonlinear wave modulation process and provided a Hamilton structure of the Dysthe equation (Dysthe, 1979) to describe the gravity wave evolution process on finite and infinite depth. Craig et al. (2012) developed the Hamilton method by introducing the Hamilton pair to the equations proposed by Trulsen et al. (Trulsen and Dysthe, 1996; Trulsen et al., 2000). The equations developed using this method were compatible with water wave equations. Zhang and Li (2012) modified the pseudo-spectrum method by splitting the technique to make the MNLS equation suitable for nonperiodic boundary conditions. The method can efficiently solve nonlinear wave equations through numerical examples by nonlinear parabolic and MNLS equations.

The topography under nature waters is complicated and a crucial factor affecting the propagation process of surface gravity waves in coastal areas. Mei (2005) solved the weakly nonlinear narrowband wave packet equation on a finite flat bottom, indicating the effect of a three-order nonlinearity on the first-order wave height when the time scale is longer than &egr;-2 of the dominant wave period or space scale is larger than &egr;-2 of the dominant wave length. Brinch-Nielsen and Jonsson (1986) extended the nonlinear Schrödinger equation to the fourth order in three dimensions on an arbitrary constant depth, concluding that water depth can affect the applicability of wave instability expressions in deep water. Mild slope equations (Berkhoff, 1972; Lozano and Meyer, 1976) and their extensions (Kirby, 1986; Chamberlain and Porter, 1995; Miles and Chamberlain, 1998; Agnon and Pelinovsky, 2001) are powerful tools, aiming either at steeper slopes on large length scales or shorter irregularities, primarily used for calculating wave fields on the background of ocean engineering. According to Yue and Mei (1980), restricting ∇hh to O (&egr;2), Kirby (Kirby and Dalrymple, 1983) introduced two variable x scales and one variable y scale. A parabolic equation with time independence was developed, avoiding the caustics and irregular focusing on the ray approximation while precluding wave instability analysis (Kirby and Dalrymple, 1983). Xiao and Lo (Xiao and Lo 2004) introduced the first-order depth variation terms to NLS by expanding the equation to the third-order to allow   and depth variation  . No stable region exists for a uniform Stokes wave on varying bottoms, and a higher order instability beyond the Benjamin-Feir type is introduced by depth variation (Xiao and Lo 2004). Combined with experimental results and numerical analysis, Li et al. (Li et al., 2021; Li et al., 2021) found additional wave packets propagating freely and arising at first and second orders in wave steepness in a Stokes expansion as the wave packet travels over a sudden depth transition area. Free and bound waves coexisting with different phases at the second-order wave steepness indicated that the combination of the local transient peak and the magnitude of the linear free waves explained the rogue waves observed after a sudden depth transition. Zhang and Benoit (2021) proposed that the wave-bottom interaction in coastal areas forms rogue waves and increases the possibility of big waves occurring.

Neither MNLS nor BMNLS can describe the wave packet evolution process on varying bottoms. Considering the extensive application of NLS, the wave evolution process and its instability features in realistic situations can be evaluated by improving NLS to the fourth order for variable depths. Based on a mathematical technique introduced by Mei (Chu and Mei, 1970) and a boundary condition adopted by Kirby (Kirby and Dalrymple, 1983), the narrowband wave packet evolution equation was expanded to the fourth-order wave steepness. A topographic modified nonlinear Schrödinger (TMNLS) equation is obtained and investigated for the instability of a uniform Stokes wave train.



Evolution Equation for Narrowband Wave Packets on the Finite Depth

We assign (x, y, z) as spatial coordinates with z pointing vertically upward and assume that the water depth h (x, y) is slowly varying and finite at  . In the irrotational current field of inviscid and incompressible fluids, velocity potential Ф (x, y, z, t) and free surface displacement ς (x, y, t) describe surface wave propagation.

Pa is the local atmospheric pressure, and the equations to describe waves are as follows.

Laplace equation:



Kinematic boundary condition on the bottom:

 

Dynamic boundary condition on the surface:



Kinematic boundary condition on the surface:



We act the operator   on two sides of Equation (3). pa is a constant. Equation (3) can be given as



The variable of Equation (5) is expanded into the Taylor series about (z = 0) to the fourth order, yielding

 

Incorporating pa into Ф in Equation (3) yields



The variable of Equation (7) is expanded into the Taylor series about (z = 0) to the fourth order, yielding



Thus Equations (6) and (8) are the (ka)4 order. k is the dominant wavenumber, and a is the dominant wave’s amplitude. It is supposed that ka=&egr;≪1.

It is supposed that the dominant wave direction is along the x-axis, and the wave packet is slowly modulated. The multiscale variables are



We expand the velocity potential and wave displacement into a perturbation series



Where







The variable of Laplace Equation (1) is expanded into a perturbation series to the fourth order, yielding





The variable of Equation (6) is expanded into a perturbation series to the fourth order, yielding









The variable of boundary condition (8) is expanded into a perturbation series to the fourth order, yielding









φn, Fn, and Gn are expanded as



φn-m = (φn, m)*, ()*, and c.c. are complex conjugate numbers.

According to the boundary condition introduced by Kirby (Kirby and Dalrymple, 1983), depth h is modulated at the x and y directions as



The variable of the bottom boundary condition (2) is expanded into a perturbation series to the fourth order, yielding







Equations (11), (12), (13), (14), and the bottom boundary condition (16) constitute definition conditions.

The free surface’s leading-order displacement is



A is the free surface leading-order displacement amplitude. Under third and fourth-order definition conditions, the first-order wave height’s dimensionless equation are





The coefficients in Equations (17) and (18) are

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

φ10 is the velocity potential of wave-induced current in equation (17) and (18). Equation (17) indicates that the water depth’s second derivative and the square of the water depth’s first derivative affect the first-order wave amplitude when the time scale is longer than &egr;-2 times of the dominant wave period or the space scale is larger than &egr;-2 of the dominant wavelength. Equation (18) is more complicated than Equation (17). Equation (18) improves the coefficient of Equation (17) by incorporating depth variation and wave-induced current terms. In Equation (18), higher-order dispersive and nonlinear terms are added. Equation (18) indicates that when the time scale is longer than &egr;-3 times of the dominant wave period or the space scale is larger than &egr;-3 times the dominant wavelength, the second water depth derivative and the square of the water depth’s first derivative affect the first-order wave amplitude.

When   neglected, Equation(17)is transformed to be



Equation (19) is the same as Equation (2.18) of reference (Kirby and Dalrymple, 1983). It cannot analyze wave instability properties because the equation is steady.

When kh limits to infinite, the coefficients of Equation (18) are transformed to

	

Omitting the terms about φ10, except for   before A, Equation (18) is transformed to









In contrast with the MNLS (Trulsen and Dysthe, 1996), Equation (20) is added by topography variation terms of . The first and second-order water depth derivatives affect the first-order wave amplitude on infinite depth. Equation (20) can be called a topographic modified nonlinear Schrödinger equation (TMNLS).



Instability of a Uniform Stokes Wave Train

It is supposed that the Stoke wave solution is. Its instability can be evaluated by assuming small perturbations in amplitude and phase. μ and λ are the wavenumbers of small perturbations in x and y direction.



It is supposed that small perturbations have the plane wave solution



According to Equation (20), the dispersion relation for perturbation is









Thus,



As shown in Equation (26),  influences the perturbation phase without affecting the perturbation amplitude. Equation (27) demonstrates that   and  affect the small perturbation’s amplitude. ImΩ is defined as growth rate of Stokes wave disturbed by perturbation by Lo and Mei (1987). To ensure the ungrowth of perturbations, ImΩ = 0, meaning



A uniform Stokes wave disturbed by small perturbations is stable only when Equation (28) is satisfied. Therefore, the small perturbation’s instability area is the entire perturbation wavenumber space, except for the curve satisfying Equation (28). It is shown that there are solutions for ImΩ = 0 when Equation (28) is satisfied.

When   is a higher order of magnitude than  ,   is neglected. Then,



The first depth derivative perpendicular to the dominant wave packet imposes on the wave instability disturbed by small perturbations when is a higher order of magnitude than .

Without regard to the bottom slope, , then



ImΩ must have a real root, then



The left-hand of Inequality (31) is the same as the right-hand of Equation (18) in reference (Trulsen and Dysthe, 1996) when kh limits to infinite. Inequality (31) stands for the Stokes wave instability area disturbed by the MNLS perturbation on a flat bottom.

A uniform Stokes wave train is unstable disturbed by small perturbations on infinite and slowly varying depth, except for the curve satisfying Equation (28). Compared with the MNLS perturbation analysis on the flat bottom when hx= hy = 0, the small perturbation’s instability area is the entire wavenumber space, except for the curve satisfying Equation (28) on a slowly varying bottom.



Discussions

According to the results of Mclean (McLean, 1982) and Trulsen (Trulsen and Dysthe, 1996), we choose a0 = 0.0995 and a0 = 0.196 to plot the stability curves for ǀIm Ωǀ and Im Ω = 0, corresponding to &egr; = 0.1 and &egr; = 0.2. ǀIm Ωǀ is the growth rate of Stokes wave disturbed by perturbation and the curve of Im Ω = 0 is the stable curve for Stokes wave. Figures 1–12 and Figures 1–24 in the Supplementary Material show the curves of ǀIm Ωǀ and Im Ω = 0 for a0 = 0196, the value of   and   ranging from 0 to 0.3. Figure 25 to Figure 60 in the Supplementary Material show the curves of ǀIm Ωǀ and Im Ω = 0 for a0 = 0.0995, the value of   and   varying from 0 to 0.3. To distinguish the influence of the orders of bottom variation, the selected orders of   and   are 0, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, and 0.3. In Figures 1–15, hx and hy are   and   respectively. In Figures 1, 13–15, hx = hy = 0 stands for the MNLS perturbation wave stability curve, neglecting the bottom slope and to compare with other curves.




Figure 1 | Curves of ǀIm Ωǀ and Im Ω = 0 for a0 = 0.196 and  .






Figure 2 | The magnified curves of Im Ω = 0 for a0 = 0.196 and  .






Figure 3 | Curves of ǀIm Ωǀ and Im Ω = 0 for a0 = 0.196 and  .






Figure 4 | The magnified curves of Im Ω = 0 for a0 = 0.196 and ∂  .






Figure 5 | Curves of ǀIm Ωǀ and Im Ω = 0 for a0 = 0.196 and  .






Figure 6 | The magnified curves of Im Ω = 0 for a0 = 0.196 and  .






Figure 7 | Curves of ǀIm Ωǀ and Im Ω = 0 for a0 = 0.196 and  .






Figure 8 | The magnified curves of Im Ω = 0 for a0 = 0.196 and  .






Figure 9 | Curves of ǀIm Ωǀ and Im Ω = 0 for a0 = 0.196 and  .






Figure 10 | The magnified curves of Im Ω = 0 for a0 = 0.196 and  .






Figure 11 | Curves of ǀIm Ωǀ and Im Ω = 0 for a0 = 0.196 and   






Figure 12 | The magnified curves of Im Ω = 0 for a0 = 0.196 and  .






Figure 13 | Curves of Im Ω = 0 for a0 = 0.0995 and a0 = 0.196 as  .






Figure 14 | Curves of Im Ω = 0 for a0 = 0.0995 and  .






Figure 15 | Curves of Im Ω = 0 for a0 = 0.196 and  .



Figures 1–12 and Figures 1–6 in the Supplementary Material indicate curves of ǀIm Ωǀ and the corresponding scatter diagrams of Im Ω = 0 with the invariable value of   and the variable value of   from 0 to 0.3. The discussions are as follows:

1. As Figures 1–12 shown, for a0 = 0.196 and the invariable value of  , the value of ǀIm Ωǀ increases as the value of   rises. As the value of   varying from 0 to 0.01, the value of ǀIm Ωǀ is maximum around the original point in wave number plane. As the value of   is 0.1, 0.2 and 0.3, there is no maximum value of ǀIm Ωǀ around the original point in wave number plane. As the value of   increasing from 0 to 0.001, the contours for ǀIm Ωǀ are similar. As  , the contours show obvious change by comparing with that As

 . There are no extra maximum value points of ǀIm Ωǀ beside that around the original point in wave number plane as the value of   varying from 0 to 0.001. It is indicated, on the order of 0.01,   begins to affect the curve of ǀIm Ωǀ.

2. For a0 = 0.196 and  , the shape of curves of Im Ω = 0 are similar for the value of   ranging from 0 to 0.001. The curve is reduced to the MNLS equation instability curve as  . The curve for Im Ω = 0 approaches to original point more closely with larger value of  .

3. As  , the curves of Im Ω = 0 for   and 0.00001 are not smooth lines, but scatter groups. The curves for  , 0.001, 0.01, 0.1, 0.2, 0.3 are extended in λ axis. It is suggested that   begins to influence the shape of curve for Im Ω = 0 on the order of 0.00001.

4. As  , the curve of Im Ω = 0 for   is not a smooth curve, but is a scatter group. The scatter groups for   and 0.00001 are in the upper left of the map. The curves for  , 0.01, 0.2, 0.3 are extended along and in λ axis.

5. As  , the curve of Im Ω = 0 for   is not a smooth line, but a scatter group, partially around the line of μ = 1. The scatter groups for  , 0.00001 and 0.0001 are in the upper left of the map, partially distributed in μ axis. The curves for  , 0.1, 0.2, 0.3 are extended continuously along and in λ axis.

6. As  , the curve of Im Ω = 0 for   is not a smooth line, but a scatter group, partially distributed around the line of μ = 1. The scatter groups for  , 0.00001, 0.0001 and 0.001 almostly distribute in μ axis. The curves for  , 0.2, 0.3 are lifted from λ axis.

7. As  , the scatter groups of Im Ω = 0 for   are partially in the lines of μ = 1, μ = 0.5 and μ = 0.333, with others in μ axis. The scatter groups for  , 0.00001, 0.0001, 0.001 and 0.01 are in μ axis.

8. As  , the scatter groups of Im Ω = 0 for   are partially in the lines of μ = 1 and μ = 0.667, with others in μ axis.The scatter groups for  , 0.00001, 0.0001, 0.001, 0.01 and 0.1 are in μ axis.

9. As  , the scatter groups of Im Ω =0 for   are partially in the line of μ = 1, with others in μ axis. The scatter groups for  , 0.00001, 0.0001, 0.001, 0.01, 0.1 and 0.2 are in μ axis.

10. In conclusion, as the value of   increases, the curve of Im Ω = 0 approximates to μ axis as  . The increment of depth variation in x direction contributes the the Stokes wave to be stable in or to parallel to y axis disturbed by small perturbation for  . The curve of Im Ω = 0 is the broken line composed by μ = 1 and μ axis for the value of   from 0.01 to 0.1.

Figure 7 to Figure 24 in the Supplementary Material indicate curves and the corresponding scatter diagrams for the invariable value of   and with the variable value of   from 0 to 0.3.The discussions are as follows:

1. For a0 = 0.196 and the invariable value of  , the value of ǀIm Ωǀ increases as the value of   rises. As the value of   is from 0 to 0.01, the value of ǀIm Ωǀ is maximum around the original point in wave number plane. As the values of   are 0.1, 0.2 and 0.3, there are no maximum value of ǀIm Ωǀ around the original point in wave number plane. As the value of   varying from 0 to 0.00001, the curve for Im Ω = 0 as   are similar to that as  . As  , the curve for Im Ω = 0 show obvious change as the contrast with that as  . There is no maximum value points of ǀIm Ωǀ in wave number plane as the value of  . It is indicated, on the order of 0.01,   begins to affect the curve of ǀIm Ωǀ.

2. The shape of curves for Im Ω = 0 as   are similar to that as  . The curve is reduced to the MNLS equation instability curve as  . The curves for   are in μ axis.

3. As  , the scatter groups of Im Ω =0 for  , 0.001 and 0.01 are on the bottom right relative to that as  . The scatter groups of Im Ω = 0 for   begin to be a smooth line with some scatters distributing along the line. The curves for   are in μ axis. It is suggested that,   begins to influence the shape of the curve of Im Ω =0 on the order of 0.0001.

4. As  , the scatter groups of Im Ω = 0 for

  are on the bottom right slightly compared with that as  . Partial points for   are in the line of μ = 1. The scatter groups of Im Ω = 0 for   form smooth curves. The curves for   are in μ axis. Part of scatters for

  are outside of μ axis.

5. As  , the scatter groups of Im Ω = 0 for   distribute along λ axis. The smooth lines of Im Ω = 0 for

  extend along and in λ axis. The scatter groups for

  form smooth curves. The curves for   are in μ axis. Part of scatters for   are outside of μ axis.

6. As  , the scatter groups of Im Ω = 0 for   form smooth curves. The curves for   and 0.3 are in μ axis. Scatters for   form a smooth line compose by μ = 1 and μ axis.

7. As  , part of the curves of Im Ω =0 for   and 0.1 are approximate to the line of μ = 1 and μ = 0.5 with part of which are in μ axis. The scatters for   are in μ axis.

8. As  , curves of Im Ω = 0 for   are broken lines, partially in the lines of μ = 0.333, μ = 0.667 and μ = 1, others in μ axis.

n summary, as the value of   increases, the curve of Im Ω = 0 approximates to λ axis for  . The increment of depth variation in y direction helps the Stokes wave to be stable in or to parallel to λ axis for  . The curve of Im Ω = 0 is a broken line comblined with μ = 1 and μ axis for the value of   from 0.01 to 0.1.

For a0 = 0.0995, Figure 25 to Figure 60 in supplementary material indicate curves of ǀIm Ωǀ and corresponding scatter diagrams of Im Ω = 0 for the value of   and the value of   both varying from 0 to 0.3. It is indicated that   begins to influence the shape of curve for Im Ω = 0 on the order of 0.000001 and to affect the value of ǀIm Ωǀ on the order of 0.01. It is shown   begins to influence the shape of curve for Im Ω = 0 on the order of 0.00001 and affect the value of ǀIm Ωǀ on the order of 0.01. They show similar properties to the curves and corresponding scatter diagrams for a0 = 0.196, with little value of ǀIm Ωǀ than that for a0 = 0.196.

It is concluded the curve for Im Ω = 0 is more sensitive to depth variation terms than the curve of ǀIm Ωǀ. The curve for Im Ω = 0 is more sensitive to depth variation terms as a0 = 0.0995 than that as a0 = 0.196. The curve for Im Ω = 0 is more sensitive to   than that to  .

Scatter maps of Im Ω = 0 for a0 = 0.0995, a0 = 0.196 and   are indicated in Figure 13. The values of a0 and   determine the characteristics of curves of Im Ω = 0. The value of a0 determines the intercept in λ axis, with larger intercept for a0 = 0.196 than for a0 = 0.0995. The value of   changes the amplitude of curve, with little amplitude for larger value of  .

Figures 14, 15 show the curves of Im Ω = 0 as a0 = 0.196 and a0 = 0.0995 for the value of   varying from 0 to 0.05. The scatters of Im Ω = 0 form smooth curves for  . The scatters gather to be groups for  . A broken line is formed as  , in the line of μ = 1 and μ axis.



Conclusions

On a finite slowly varying depth, the surface gravity wave equation is expanded to the fourth order by multiscale expansion in the narrowband range, and the TMNLS equation is obtained. When the time scale is longer than &egr;-3 times of the dominant wave period or the space scale is larger than &egr;-3 times of the dominant wavelength, the second depth derivative and square of the first depth derivative influence on the first-order wave height.

Compared with the MNLS perturbation analysis results on the flat bottom when hx = hy = 0, the small perturbation’s instability area by TMNLS is the entire wavenumber space, except for the curve satisfying Equation (28), which means that TMNLS increases the small perturbation’s instability area by including depth variation terms to MNLS.

For a0 = 0.196,   starts to influence the shape of curve for Im Ω = 0 on the order of 0.00001 and to affect the curve of ǀIm Ωǀ on the order of 0.01.   starts to influence the shape of curve for Im = 0 on the order of 0.0001 and affect the curve of ǀIm Ωǀ on the order of 0.01.

For a0 = 0.0995,   begins to influence the shape of curve for Im Ω = 0 on the order of 0.000001 and to affect the curve of ǀIm Ωǀ on the order of 0.01.   begins to influence the shape of curve for Im Ω = 0 on the order of 0.00001 and affect the curve of ǀIm Ωǀ on the order of 0.01.

The curve for Im Ω = 0 is more sensitive to depth variation terms than the curve of ǀIm Ωǀ. The curve for Im Ω = 0 is more sensitive to depth variation terms as a0 = 0.0995 than that as a0 = 0.196. The curve for Im Ω = 0 is more sensitive to   than that to  .

As the value of   increases, the curve for Im Ω = 0 approximates to μ axis as  . The increment of the value for depth variation in x direction contributes the Stokes wave to be stable in or paralleling μ axis disturbed by small perturbation for  . The curve of Im Ω = 0 is the broken line composed by μ = 1 and μ axis for  . As the value of   increases, the curve approximates to λ axis for  . The increment of the value for depth variation in y direction contributes the Stokes wave to be stable in or paralleling λ axis for  . The curve of Im Ω = 0 is a broken line combined by μ = 1 and μ axis for  .
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Whether the Guangdong-Hongkong-Macao Greater Bay Area (GBA) can achieve the goal of environmental protection at the same time as its rapid economic development is an important issue that deserves attention. In this paper, we obtained remote sensing data on air pollution including CO, NO2, SO2, PM10, PM2.5, and nighttime light data. We combined the remote sensing data with county-level economic statistics to study economic development and air pollution in the Guangdong-Hongkong-Macao GBA. Our research showed that the economic development in the Guangdong-Hongkong-Macao GBA significantly increased the emissions of NO2, PM10, and PM2.5 and did not have significant effects on CO and SO2. We constructed an emission intensity indicator of pollutants per unit of luminance. We found that the unit emission intensity of four categories of pollutants, PM10, PM2.5, SO2, and CO, showed a significant decreasing trend in line with economic development. The emission intensity of NO2 showed a trend of first decreasing and then increasing. The conclusion of this research illustrates that the emission intensity of pollutants per unit of luminosity in the Guangdong-Hongkong-Macao GBA is continuously reducing. The emission of pollutants will gradually change from slow growth to zero growth. However, the emission of NO2 pollution should be an area of focus in achieving the dual goals of economic development and environmental protection.




Keywords: Guangdong-Hongkong-Macao Greater Bay Area, nighttime light data, air pollution, economic development, environmental protection.



1 Introduction

Achieving economic development while protecting the ecological environment is an important challenge for countries worldwide. It is also an essential issue that China must address in achieving sustainable development. In recent years, the Chinese government has paid more attention to environmental protection while developing the economy, regarding environmental protection as an inherent requirement for the sustainable development of the Chinese nation (Wang et al., 2021a).

However, realizing the win-win goal of economic development quality and ecological environment quality faces many challenges (Grossman and Krueger, 1995; Ebenstein et al., 2015). A salient fact is that since the reform and opening up, while China has made remarkable achievements in economic development, it has also paid a high environmental price. The emissions of air pollutants, mainly SO2 and particulate matter (PM), are currently the highest worldwide. The World Bank’s “China Environmental Pollution Losses Report” released in 2007 shows that China’s air and water pollution losses were equivalent to 5.8% of its real GDP in that year. Fewer than five of the country’s 500 cities have an air quality that meets the World Health Organization’s recommended standards, and 16 of the world’s 20 most polluted cities are in China (World Bank, 2007).

Severe air pollution impacts people’s health and economic development. Brook et al. (2004) confirmed that short and long-term exposure to air pollutant-containing environments results in a sustained increase in related cardiovascular disease risk. Carey et al. (2018) and Chang et al. (2014) found an increased risk of dementia in adults with increased exposure to PM2.5, NO2, and CO. There is evidence of a significant association between PM2.5, PM10, NO2, and O3 and COVID-19 infection (Zhu et al., 2020; Liang et al., 2020). (Shi et al., 2016) confirmed that both short- and long-term exposures to PM2.5 are associated with mortality. Each year in China, 350,000 to 500,000 people die prematurely due to outdoor air pollution (Chen et al., 2013), and air pollution has become the fourth most significant threat to the health of the population in China (Yang et al., 2013). Because PM2.5 particles are smaller and can easily enter indoor spaces, their increase can significantly reduce worker productivity, affecting corporate profits (Chang et al., 2016). All things being equal, a 1% increase in PM2.5 concentration leads to a decrease of about 0.5% of GDP per capita in China, thereby harming economic development (Hao et al., 2018).

The root cause of this problem lies in the process of rapid economic development. China prioritized the development of the secondary industry represented by the manufacturing sector, and the consumption of natural resources inevitably increases in the industrialization process, leading to an increase in the level of air pollution. China prioritized economic development over environmental protection. Air pollution has seriously affected China’s sustainable development, and inevitably, this development path is unsustainable. The development concept of harmonious coexistence between human and nature requires China to comprehensively transform its economic development model, take economic growth and environmental protection into consideration, thereby achieving “green development.”

The achievement of the goals of economic development and ecological environment quality faces many difficulties. Stricter environmental protection policies will inevitably increase the cost of manufacturing. This will have a specific inhibitory effect on economic development. How to achieve a win-win situation between economic development and the ecological environment is a complex economic development problem that China must face and solve. Against this background, China’s various national strategies take environmental protection as a fundamental development goal. The Guangdong-Hongkong-Macao GBA is one of the pilot areas for exploring green development in China. The GBA includes the Hongkong Special Administrative Region, Macau Special Administrative Region, Guangzhou, Shenzhen, Zhuhai, Foshan, Huizhou, Dongguan, Zhongshan, Jiangmen, and Zhaoqing in Guangdong Province, a total area of 56,000 km2 with a population of 66.71 million people. It is one of the most open and economically dynamic regions and the most innovative in science and technology in China. For the reasons mentioned above, it has an important strategic position in the development of China. As one of the four major bay areas in the world, compared with the New York Bay Area, the San Francisco Bay Area, and the Tokyo Bay Area, the economic aggregate of the GBA was expected to reach 12.54 trillion yuan (about 1.82 trillion US dollars) with an increase of 8.1% in 2021. In line with China’s national strategy, the GBA hopes to achieve long-term sustainable development of its nature, society, and economy through green innovation and development. It is a pilot area for China’s high-quality economic development.

The coordinated development of ecological environment protection and economic development in the GBA can greatly benefit China’s future economic development path. Existing research has not analyzed this critical issue in-depth in the GBA. In the context of the pollution situation in the GBA, Li and Huang (2022) used the statistical data of prefecture-level cities to analyze the discharge of wastewater and exhaust gas from secondary industries. Lu et al. (2021) focused on the urban heat island effect in the GBA. Zhan et al. (2018) analyzed the air quality problem in the GBA based on environmental monitoring data. However, no scholars have studied the air pollution problem in the GBA using remote sensing data and analyzed air pollution and economic trends. This paper explores the economic development and environmental protection of the GBA by extracting county-level nighttime light data and remote sensing data of air pollution from 2013 to 2019 and examines the ecological environment and economic development of the GBA by constructing the indicator of pollution intensity per unit of light brightness and conducting an in-depth analysis of the factors affecting this indicator. Whether the innovation-driven GBA can effectively reduce air pollution deserves further study.



2 Materials and Methods


2.1 Nighttime Light Data

Nighttime light data have been widely used in socio-economic studies as a long-term, stable, and objective data source to monitor human activities by detecting visible and near-infrared radiation on the ground. The higher the level of economic development, the higher the brightness of nighttime light data. More and more scholars are adopting nighttime light data as a proxy variable for regional economic growth levels (Elvidge et al., 1997; Henderson et al., 2012).

There are three data sources for nighttime light data: DMPS/OLS, NPP/VIIRS, and Luojia-1. The DMSP/OLS data are for 1992 to 2013 and are no longer updated. NPP/VIIRS has been in operation since 2012, and its data are kept updated. Luojia-1 has been in operation since 2018. Considering our research purpose, we selected NPP/VIIRS as the data source to obtain the 2013-2019 nighttime light raster dataset in mainland China (Figure 1). Our selection of NPP/VIIRS was made because the data period of Luojia-1 is short, and the DMSP/OLS dataset has some shortcomings, such as the lack of in-orbit radiation calibration and the saturation phenomenon (Cao et al., 2019; Ji et al., 2019; Levin et al., 2020).




Figure 1 | Remote sensing data from 2013 to 2019.



Compared to DMSP/OLS data, the spatial resolution of the NPP/VIIRS nighttime light data increased from 1 km to 500 m, and the DN value increased from 6 to 14 bits, significantly improving the dataset quality. The NPP/VIIRS nighttime light could identify human economic and social development better (Elvidge et al., 2013; Chen et al., 2021). NOAA provides monthly and annual data, and we use annual data for analysis.



2.2 Air Pollution Data

In addition to nighttime light data, air pollution data are another critical data source. Remote sensing data can generate information about PM10, PM2.5, CO, SO2, NO2, and many other pollutants (Wei et al., 2021b). In this paper, the China High Air Pollution Dataset (CHAP) (https://weijing-rs.github.io/product.html) is used as the data source for air pollution. The CHAP dataset contains long-term, high-resolution, high-quality datasets of several major atmospheric pollutants in China, such as CO, NO2, PM10, PM2.5, and SO2 (Wei et al., 2021b).

This dataset is generated by the space-time extra-trees (STET) model, which yields more substantial selection randomness in features, parameters, models, and splits than other tree-based machine learning approaches. The MODIS Multi-Angle Implementation of Atmospheric Correction uses aerosol products, land use, population distribution, and pollution emissions in data integration to reconstruct a high-resolution and high-quality Chinese air pollutant dataset (Wang et al., 2021b; Wei et al., 2021a) (Figure 1). The STET model has high spatial prediction capability, with more accurate estimates of current air pollutant concentrations and better assessments of historical air pollutant concentrations (Wei et al., 2021a), with cross-test coefficients higher than 0.80 for several pollutant categories (Table 1). Therefore, we use the annual data for SO2, CO, PM10, PM2.5, and NO2 in the CHAP dataset as the pollutant data source (https://weijing-rs.github.io/product.html).


Table 1 | Summary of data sources.



Figure 1 shows the variety of remote sensing data used in this paper. As Figure 1 shows, several pollutants and nighttime light data show high levels in urban areas and low levels in peripheral regions. The CO trend in 2013 is different from that in other years. We use the above remote sensing data to obtain the mean values of nighttime lights and pollutants in each county by using the shapefile of administrative divisions in the Guangdong-Hongkong-Macao GBA. Table 2 shows the descriptions of the mean value of the nighttime light and pollutants.


Table 2 | Descriptive statistics of variables.





2.3 County-Level Economic Statistics

To ensure the reliability of our research, we also selected county and district statistics as the following control variables. The statistical database contains data from 2000 to 2019, and we select 2013-2019 for analysis. (1) Manufacturing level (sec_ind): The air pollution situation correlates with the local manufacturing level (Ebenstein et al., 2015). We select the value of the secondary industry (billion yuan) to measure industrial development. (2) Government regulation (budget): Government regulation is crucial in compensating for market failure. Negative externalities from environmental pollution are a typical market failure problem (Aruga, 2022). We choose general public budget revenue (billion yuan) to measure government regulation. (3) Agricultural development (fir_ind): In relative terms, the agricultural industry’s impact on the environment is smaller than that of industry (Nasih et al., 2019). Therefore, the more developed the agriculture, the smaller the degree of environmental pollution. We choose the primary industry (billion yuan) to measure agriculture development; (4) Residents’ living level (saving): The higher the living standard of residents, the higher the level of environmental requirements (Freymeyer and Johnson, 2010). Therefore, improving residents’ income levels promotes the local ecological environment. We select the logarithmic value of the balance of residents’ savings deposits (million yuan) to measure the residents’ living level; (5) Level of education (education): The increase in education level positively contributes to economic growth (Hanushek and Woessmann, 2016). and environmental awareness (Strieder Philippssen et al., 2017). We select the number of students in middle school per 100,000 people to measure the local education level; (6) Total industrial output (total_ind): This variable represents the gross domestic value of the most important secondary industry firms, which is used in robustness test; (7) Level of education (education1): We use the student number per 100,000 in primary schools, which is also used in robustness test.

Table 2 shows the descriptive statistics related to nighttime light data, air pollution data, and statistical yearbook data used in this paper.



2.4 Methodology


2.4.1 Economic Development and Air Pollution Mean Value

We analyzed the impact of economic development on air pollution to examine the relationship between economic development and air pollution in detail. Due to the rapid development of the Guangdong-Hongkong-Macao GBA in recent years, we propose Hypothesis 1:

Hypothesis 1: Total air pollution in the Guangdong-Hongkong-Macao GBA keeps rising along with economic development.

Based on Hypothesis 1, we use the Ordinary Least Squares method to test the impact of economic development on various air pollutants:

 

where i, j, and t represent the ith county, the jth air pollutant, and the tth year, respectively; Xi,j,t represents the average value of the jth air pollutant in the ith county in the tth year; lighti, t represents the nighttime light brightness of the ith county in the tth year; Controli, t is the corresponding control variable, εi,t is the error. We use the control variables of industrial development, general public budget revenue, agricultural development, residents’ savings deposits, and education level. In this model, we focus on the sign and significance of β1 . If β1 is significantly positive, it means that air pollution is rising with economic development, and if it is significantly negative, it means that the mean value of air pollutants is falling.



2.4.2 Economic Development and Air Pollution Intensity

Previous studies have confirmed that economic development increases air pollution. Therefore, environmental protection should focus on pollutant emission intensity per unit of economic growth. In particular, as the Guangdong-Hongkong-Macao GBA relies on scientific and technological innovation to develop the economy, air pollution caused by economic development will be continuously reduced by industrial restructuring, technological progress, and enhanced awareness of environmental protection. Therefore, we propose Hypothesis 2:

Hypothesis 2: The intensity of air pollution decreases with economic development.

Therefore, we construct the pollution intensity indicator, which is calculated as follows:

 

where Xper represents the total pollution intensity per unit of light brightness; X represents the mean value of various pollutants in the county, and light represents the mean of nighttime light brightness.

Next, the impact of economic development on pollution intensity is examined. We use the same control variables, industrial development, general public budget revenue, agricultural development, residents’ savings deposits, and education levels, to calculate the impact of economic development in the GBA on its pollution intensity. The equation is as follows:



In this model, we still focus on the sign and significance of α1 . If α1 is significantly positive, it indicates that the unit pollution intensity rises during the economic development process. If the opposite is true, it indicates that the unit pollution intensity keeps decreasing.

We also investigate the relationship between the intensity of air pollution and economic development. In line with Wang and Huang (2015) study, we investigate the relationship between the intensity of air pollution and economic development by setting the quadratic term of night light brightness. The model is as follows:



In Equation (4), we focus on the coefficients of β1 and β2 . If β1 is significantly negative and β2 is significantly positive, air pollution intensity decreases first and then increases with economic development in an inverted U-shaped relationship. If β1 is significantly negative and β2 is not significant, it indicates that air pollution continues to decline with economic development. If β1 is significantly positive and β2 is significantly negative, it indicates that air pollution intensity increases first and then decreases with economic development. If β1 is significantly positive and the β2 coefficient is not significant, it indicates that the intensity of air pollution continues to rise with economic development.





3 Results


3.1 Benchmark Analysis

Table 3 reports the results of the benchmark analysis of Equation (1) without adding control variables. The results from columns (1)–(5) show that the coefficients of the mean values of several air pollutants of NO2, PM10, and PM2.5 are positive, and the coefficients are all significant at the 1% confidence level. This shows that with economic development, these types of pollutants show a growing trend, and NO2 rises the most among the pollutants mentioned above. Each unit increase in nighttime light brightness will result in a 0.7316 unit increase in NO2, a 0.5505 unit increase in PM10, and a 0.2619 unit increase in PM2.5. The positive impact of economic development on these three types of air pollution is significant at the 1% confidence level.


Table 3 | The impact of economic development on air pollutants without control variables.



Table 4 shows the results of Equation (1) after the addition of control variables. After adding the control variables, the NO2 coefficient is still significantly positive at the 1% confidence level, indicating that economic development still leads to increased atmospheric NO2 levels in the GBA. The coefficient of PM10 is still positive, but the confidence level drops to 5%, and the coefficient of PM2.5 still remains positive, but the confidence level drops to 10%. Several other pollutant categories are consistent with the results in Table 3 and remain insignificant. In addition, the coefficients of the control variables show that the development of secondary industry leads to an increase in pollution levels.


Table 4 | The impact of economic development on air pollutants with control variables.



In contrast, primary industry significantly reduces air pollution. This indicates that the development of manufacturing industry is the leading cause of air pollution in the region. During the economic development of Guangdong-Hongkong-Macao GBA, the related industries caused a significant increase in NO2, PM10, and PM2.5 pollutants. However, the industries related to CO and SO2 emissions were better controlled in terms of pollutant emissions. Hypothesis 1 is partially validated.

In Equation (3), we analyze the impact of economic development on air pollution intensity. Table 5 reports the regression results of the intensity of various air pollutants without adding control variables. Columns (1)–(5) show that the coefficients of the pollution intensity of several air pollutants, such as CO, NO2, SO2, PM10, and PM2.5, are all negative, and the coefficients are all significant at the 1% confidence level. This result means that several air pollutants mentioned above show a significant decreasing trend for every unit increase in light brightness. Among these pollutants, PM10 decreases at the fastest rate, and along with the economic development, the emission intensity of PM10 decreases by −7.1248 units for each unit increase in light brightness at night, and the emission intensity of PM2.5, NO2, SO2, and CO decreases by −4.6040, −2.6534, −1.7793 and −0.1059 units, respectively.


Table 5 | The impact of economic development on air pollutants intensity without control variables.



Table 6 shows the results of Equation (3) with the addition of control variables. After adding the control variables, the intensities of several air pollutants per unit of light brightness are still negative and significant at the 1% confidence level. This indicates that even after controlling other related factors, the intensity per unit emission of several air pollutants still decreases significantly along with the economic development of the GBA. After adding the control variables, the PM10 unit pollution intensity decreases the most, reaching −10.0142, and the emission intensity of the several remaining pollutants also keeps dropping. In reducing emission intensity, the development of secondary industry does not have a significant influence. In contrast, primary industry development significantly reduces pollutant emission intensity. The effect of other control variables was not significant.


Table 6 | The impact of economic development on air pollutants intensity with control variables.



Table 7 shows the results of Equation (4) with the addition of control variables. As Table 7 shows, after adding the secondary term of night light, the primary term coefficients of CO, NO2, SO2, PM10, and PM2.5 are still significantly negative. CO and NO2 are significant at the 1% confidence level, while SO2, PM10, and PM2.5 are significant at the 5% confidence level. The quadratic coefficients of CO, SO2, PM10, and PM2.5 are insignificant, indicating that the pollution intensity of these pollutants will continue to decline with economic development. However, the quadratic coefficient of NO2 is significantly positive at the confidence level of 10%, indicating a U-shaped relationship between NO2 pollution intensity and economic development. The pollution intensity of NO2 decreases first and then increases with economic development. Hypothesis 2 is confirmed.


Table 7 | The impact of economic development on air pollutants intensity with the secondary term of night light.





3.2 Robustness Test

To ensure the reliability of the results of this paper, we adopt two methods for robustness testing, replacing control variables and replacing explanatory variables. All of the robustness tests adopt the results with control variables.


3.2.1 Replace Control Variables

We replaced two essential control variables. The first variable replaced is secondary industry. We use the total industrial output above the designated enterprises (total_ind) instead of secondary industry. This variable represents the gross domestic product value of the most important secondary industry firms. Furthermore, we use the student number per 100,000 in primary schools (education1) instead of the number of students in middle schools. Table 8 shows the robustness test results for the effect of economic development on air pollutants. The coefficients of the mean values of three air pollutants, NO2, PM10, and PM2.5, increase significantly along with economic development, consistent with the results in Tables 3, 4.


Table 8 | The impact of economic development on air pollutants with replacing control variables.



Table 9 shows the results of the robustness test on the emission intensity of air pollutants when the control variables are replaced. The results show that the emission intensity of several air pollutants still decreases significantly along with economic development. The coefficients and the significance are consistent with the results in Tables 5, 6. The decreasing trend of air pollutants has strong robustness and credibility.


Table 9 | The impact of economic development on air pollutants intensity with replacing control variables.





3.2.2 Replace the Explained Variable

In the second method, we replace the explained variables to test the robustness of the regression results. We use the logarithm of the mean values of CO, SO2, NO2, PM10, and PM2.5 instead of the mean value of these air pollutants. Table 10 shows the results of the robustness test of the impact of economic development on the ln value of air pollutants. The coefficients of NO2 and PM10 still increase significantly with economic development. The results are consistent with those in Tables 3, 4, and 7.


Table 10 | The impact of economic development on air pollutants with replacing explained variables.



Similarly, we adopt the way of taking ln values of several air pollutants for the replacement to conduct robustness tests on air pollution emission intensity. Table 11 shows the results of the robustness test of the effect of economic development on the ln value of air pollutant emission intensity. The results in Table 10 show that the emission intensity of ln values of five air pollutants, PM10, PM2.5, NO2, SO2, and CO, still show a significant decreasing trend with economic development and are still significant at the 1% confidence level, which is consistent with the results in Tables 5, 6, and 9.


Table 11 | The impact of economic development on air pollutants intensity with replacing explained variables.







4 Discussion


4.1 Economic Development and Air Pollution

Previous studies indicate that economic development, especially industrial development, aggravates air pollution, mainly because industrial development leads to the direct contribution of the consumption of coal, oil, and other energy forms to the emission of CO, SO2, NO2, and to PM, thereby increasing the concentration of such pollutants in the atmosphere. However, scholars have drawn different conclusions about the relationship between economic development and air pollution. Brajer et al. (2008) and Brajer et al. (2011) found an inverted U-shaped relationship between the concentration of SO2, PM, and NO2 and economic development by using urban data in China. However, He and Wang (2012) believed that there was an inverted U-shaped relationship between PM concentration and per capita income, and there was a U-shaped relationship between SO2 and per capita income. NO2 increases with income. Wang and Huang (2015) believed that PM10, NO2, and SO2 all had a U-shaped relationship with per capita income, which means that air pollution became more severe with economic development. The above studies mainly considered China as a whole. However, there are apparent differences in the mode of economic development and the style of production and life in different regions of China. For example, in northern China, the main fuel is coal. The industry is mainly heavy industry, so the concentration of SO2, inhalable PM, and other air pollutants increases. In contrast, industry in southern China is mainly light industry. In addition, there is no need for heating in winter, making air pollution relatively weak (Li et al., 2012).

In an outward-oriented economy, bay areas in general often becomes the core node of a country’s external and internal connections, giving the area a locational advantage in terms of industrial and population concentration and an important strategic position in national development. More than 60% of the global economy is concentrated in bay-area-dominated mega-city regions (Walker and Schafran, 2015). The trend of people moving from a country’s interior to its coastal regions has been increasing. In this study, as a particular region, we found that only NO2, PM10, and PM2.5 increased significantly with economic development. Simultaneously, CO and SO2 had no relevance to economic development in the Guangdong-Hongkong-Macao GBA. This indicates that in the development of the Guangdong-Hongkong-Macao GBA, industries are constantly emitting NO2 and PM, resulting in the concentration of pollutants in the atmosphere increasing. Table 4 also shows this conclusion. Secondary industry increases air pollution while primary industry decreases air pollution.



4.2 Economic Development and Air Pollution Intensity

The bay area economy has achieved a high level of globalization through its strengths of innovation, productivity, and investment (Volberding, 2011). Hui et al. (2020) argue that the bay area is a new mega-city region with the most critical growth pole and stimulus for global economic growth and technological innovation. The Guangdong-Hongkong-Macao GBA is selected as the research object mainly because it is one of the regions with the most substantial innovation capacity in China. We study the impact of economic development on air pollution under the influence of technological innovation by analyzing the relationship between economic development and air pollution intensity. Our conclusion shows that, under the influence of technological innovation, air pollution intensity in the GBA will continue to decrease as economic development increases. Hypothesis 1 and Hypothesis 2 jointly describe the fact that there is an inverted U-shaped relationship between air pollution and economic development. That is, air pollution increases with economic development at the beginning and eventually decreases with economic development. In GBA, NO2, PM10, and PM2.5 are shown such a trend. At present, the Guangdong-Hongkong-Macao GBA is still in the former stage. CO and SO2 showed a continuous downward trend. The quadratic coefficients of CO, SO2, PM10, and PM2.5 are insignificant, indicating that the pollution intensity of these pollutants will continue to decline with economic development. Forthese types of pollutants, air pollution intensity presents a linear relationship with economic development; the higher the level of economic development, the lower the intensity of these pollutants. It is noteworthy that the intensity of NO2 shows a U-shaped relationship between its pollution level and economic development. In line with economic development, NO2 shows a trend of first decreasing and then increasing. This may be due to the GBA’s higher dependence on NO2-producing industries or the relatively slow progress of technological innovation in reducing NO2 emissions. This result indicates that technological innovation will have different impacts on different pollutants due to existing industrial structures. In future, the GBA should pay more attention to NO2 pollution.



4.3 Remote Sensing Data Use

Remote sensing data have been widely used. These data have significant advantages in areas where it is difficult to obtain data directly (Chen et al., 2022). Human activities and air pollution both show obvious spatial aggregation distribution characteristics. In previous studies, statistics were used for economic development and ground-based monitoring for air pollution. However, these types of data lose a significant proportion of spatial information and are also affected by scale. Therefore, nighttime light data have been increasingly used in socio-economic research. Widespread studies have confirmed that the higher the level of economic development, the higher the brightness of nighttime light data (Elvidge et al., 1997; Henderson et al., 2012; Ji and Wei, 2021). In recent years, nighttime light data have been used to study built-up areas (Ma et al., 2012), freight volume (Shi et al., 2015), population change (Huang et al., 2016; Yu et al., 2019), poverty levels (Zhao et al., 2019), electricity consumption (Shi et al., 2019), housing vacancy (Chen et al., 2015), and other issues directly related to socio-economics. Compared with nighttime light data, air pollutant remote sensing data are not widely used because of the short time series and difficulty of inversion (Wei et al., 2021a). It is even rarer to combine the two types of remote sensing data.

Although this combination solves the problem of data acquisition, it also creates a series of problems. First, arising from how remote sensing data are acquired, the spatial accuracy depends on sensor accuracy, inversion model, and inversion parameters. The two remote sensing datasets are combined for trend study rather than specific values. In this study, the CO remote sensing data have inconsistent trends in different years (Figure 1), and the results may have errors. Second, the time series of data is a problem. The running years of different sensors are inconsistent, making it necessary to choose remote sensing data. The final data may be limited to the shortest data type available if using multiple data sources. Due to the enormous advantages of remote sensing data, the exploration of remote sensing data applications should not stop because of these problems.




5 Conclusions

Based on nighttime light data and remote sensing data of several air pollutants such as CO, NO2, SO2, PM10, and PM2.5 from the year 2013 to 2019 in the GBA, as well as county and regional economic statistics, we examined the relationship between economic development and environmental pollution. Through data analysis, we found that economic development in the GBA caused significant increases in three air pollutants, NO2, PM10, and PM2.5. The effects on two air pollutants, CO and SO2, were insignificant, and this trend remained significant after adding control variables. Subsequently, we further examined the effect of economic development on the emission intensity of air pollutants per unit of light brightness. The results showed that with economic development, the emission intensity per unit of CO, NO2, SO2, PM10, and PM2.5 of several major air pollutants showed a significant decreasing trend, all significant at the 1% confidence level. Among them, PM10 emission intensity decreases the most in several air pollutants. The above conclusions are still robust after testing.

The findings of this paper illustrate that during the rapid economic development of the Guangdong-Hongkong-Macao GBA, the emission intensity of pollutants generated per unit of economic growth decreased significantly. However, some categories of air pollutants increased slightly. Therefore, the Guangdong-Hongkong-Macao GBA shows potential for “green development.” It is foreseeable that with the continuous optimization of the construction of the GBA, the constant improvement of environmental regulations, and the increasing awareness of environmental protection, the level of pollution per unit of economic growth will continue to decline. The continuous reduction in unit emission intensity will eventually lead to a gradual change in the overall pollution level from growth to a cessation of growth and then to a trend of decreasing total pollution. However, whether the future development of the GBA will follow this trend requires continuous monitoring and ongoing research.
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Some of the world’s coastal saltmarshes experience loss in area due to environmental changes, such as relative sea level rise and limited sediment supply. We use satellite remote sensing to assess changes in inundation (flooding) frequency in tidal basins and investigate the bio-physical interactions with saltmarshes. We apply a simple automated method to retrieve time series of inundation frequency change and seaward habitat change of saltmarshes and tidal flats from Landsat-5 TM satellite imagery between 1985 and 2011, for a number of contrasting tidal basins (estuaries, deltas) globally. We evaluated the satellite-derived information on inundation frequency with such information obtained from elevation and tide gauge data for the Western Scheldt estuary, showing good agreement. Application of the method on all study sites reveal which tidal basins are stable or net emerging and which tidal basins are net drowning, but also show large spatial variation in the changes in inundation frequency within each basin. Tidal basins experiencing an overall significant increase in inundation frequency (Mississippi Delta and Venice Lagoon) were associated with an overall loss of saltmarsh area. Satellite-derived temporal and spatial information on inundation frequency helps to assess the fate of saltmarshes in light of sea level change, changes in sediment supply and subsidence.
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1 Introduction

Saltmarshes are the transition zone between land and sea and are regularly flooded due to tides (Adam, 1990) and waves. These highly productive ecosystems provide crucial functions for flora, fauna, and humankind (Costanza et al., 1997; Barbier et al., 2011). They provide many organisms with a place for resting, breeding, feeding, and hiding from predators. Furthermore, saltmarshes provide many ecosystem services, such as carbon sequestration, improvement of water quality, and coastal protection (Barbier et al., 2011).

Saltmarshes have the ability to increase in elevation with rising sea levels by trapping sediments, provided sufficient sediments are available (Reed, 1990; Kirwan and Murray, 2007; Day et al., 2011). Nevertheless, some studies raise concerns that saltmarshes may experience habitat loss due to high rates of sea level rise (SLR) in combination with decreasing sediment availability [(for example due to damming of rivers; see Grill et al. (2019)], so that vertical sediment accretion may not be sufficient to keep pace with global SLR (Reed, 1995; Weston, 2014). In some areas, subsidence caused by water, oil, or gas extraction adds to drowning of the saltmarsh (Turner and Mo, 2020). On the other hand, Kirwan et al. (2016) showed in their meta-analysis that saltmarshes are more resilient to SLR than widely assumed. This has been predicted by models of marsh response to SLR when considering biophysical feedback effects, which enhance accretion of sediment with SLR, as well as the possibility of landward marsh migration (Schuerch et al., 2018). The ability to survive a specific rate of sea level rise may also vary within a saltmarsh (Bartholdy et al., 2010). Overall, severe saltmarsh habitat loss mostly occurs where human activity has altered sediment and nutrient fluxes or caused relative SLR through subsidence (Kirwan et al., 2016).

Besides vertical accretion of saltmarshes to keep up with relative SLR, it is important to also consider lateral saltmarsh development at the saltmarsh–tidal flat boundary (Allen, 2000; van der Wal et al., 2008; Balke et al., 2016; Kirwan et al., 2016). Like vertical drowning, the combination of rising sea levels and reduced sediment availability leads to rapid lateral saltmarsh retreat at the seaward saltmarsh–tidal flat boundary in several places in the world (Ladd et al., 2019) and may differ from internal habitat changes (Burns et al., 2021). This may have major impacts on saltmarshes, especially when seawalls or dikes are present, which prohibits landward migration (Doody, 2004).

Indicators to reveal the fate of saltmarshes are needed, such as the flood/ebb suspended sediment concentration (SSC) differential, the organic–inorganic suspended sediment ratio (Ganju et al., 2015), or the unvegetated/vegetated marsh ratio (UVVR) (Ganju et al., 2017). In particular, there is a need to assess how saltmarshes develop relative to the tidal frame at the basin scale. Inundation frequencies in coastal wetlands are changing caused by changes in tidal range due to relative SLR and coastal engineering (Pickering et al., 2012), which may impact vertical and lateral saltmarsh development. Inundation frequency change in coastal areas indicates elevation change relative to the sea level, with consequences for the amount and habitat characteristics of intertidal areas (van der Wal et al., 2010; Laengner et al., 2019; Fitton et al., 2021).

Spatial data of elevation in the intertidal zone have been generated using UAV-borne or airborne LiDAR techniques [e.g., Gesch (2009); Rogers et al. (2018); Lin et al. (2019); Shaker et al. (2019); Pinton et al. (2020)]. These techniques are suitable for local studies for which very-high-resolution data are needed (resolution ca 1 m), as their acquisition is costly and time consuming compared to acquisition of satellite data. National precise elevation maps generated from airborne LiDAR exist as well (e.g., USGS 3DEP National Seamless DEM), but these data are merged from data acquired in different years to cover large areas. Such data sets are not available globally. Several approaches are applied to retrieve elevation in the intertidal zone over larger areas in a consistent manner, e.g., using the waterline method from SAR satellite remote sensing [e.g., Mason et al. (1995); Horritt et al. (2003); Zhang et al. (2022)] or optical satellite data (e.g., Zhao et al. (2008); Tong et al. (2020); Castelle et al. (2021)]. van der Wal et al. (2010) generated maps of emersion percentages for several tidal basins in the Netherlands and the UK using a large set of freely available MODIS 250 images from NASA’s Aqua satellite.

With the release of browser-based developer platforms for geo-spatial and remote sensing analysis, such as Google Earth Engine (GEE), the development of automated remote sensing methods to investigate coastal areas has been growing [e.g., Luijendijk et al. (2018); Laengner et al. (2019); Murray et al. (2019); Campbell and Wang (2020); Fitton et al. (2021); Li et al. (2021); Haarpaintner and Davids (2021)]. Automated techniques enable to easily analyze changes in inundation (flooding) frequency on time scales of years to decades using satellite data from e.g., Landsat, Sentinel, or MODIS, e.g., globally for surface waters in rivers, lakes, and wetlands (Donchyts et al., 2016; Pekel et al., 2016). for intertidal zones in Australia (Sagar et al., 2017), and locally, e.g., in the Mekong Delta (Park et al., 2020). Recently, Fitton et al. (2021) presented an automated method in GEE to retrieve the intertidal zone of the UK by calculating water occurrence from Sentinel-2 imagery over 5 years (2015–2020) combined with a national tidal model.

Here we apply a simple automated method to derive maps of yearly inundation frequency change and time series of mean inundation frequency over a respective basin, as well as habitat development using GEE based on the method by Laengner et al. (2019). We retrieved inundation frequency for eight contrasting tidal basins around the world using the entire Landsat 5 TM surface reflectance data set and generated time series between 1986 and 2010 in 3-year bins to investigate whether saltmarshes can keep up with relative sea level change. This study aims (1) to retrieve time series over 27 years of inundation frequency change along with saltmarsh habitat change; (2) to analyze trends in inundation frequency change in a spatial context; (3) to analyze the relationship between basin-wide inundation frequency change and changes in saltmarsh habitat.



2 Materials and Methods


2.1 Study Sites

We selected eight tidal basins across the world (Figure 1) based on their contrasting physiographic setting, such as tidal regime, sediment input, and human activity.




Figure 1 | World background made with Natural Earth.



The Western Scheldt and the Eastern Scheldt, Netherlands, are tide-dominated estuaries (meso- to macrotidal) bordering the North Sea. The Western Scheldt receives (limited) discharge from the River Scheldt, while the neighboring Eastern Scheldt estuary does not receive river inflow since the construction of compartment dams in the 1980s (De Vet et al., 2017).

The Venice Lagoon, Italy, and the Ebro Delta, Spain, are microtidal study sites in the Mediterranean Sea. Prolonged saltmarsh habitat loss in the Venice Lagoon is attributed to a reduction of sediment inputs from rivers and the sea into the lagoon, as well as subsidence, both through human activity (Day et al., 1999). The Ebro receives river discharge, but riverine sediment transport to the delta has reduced with the construction of large dams upstream in the 1960s (Jiménez et al., 1997).

The Aveiro Lagoon, Portugal, and Cádiz Bay, Spain, are mesotidal and located in the North Atlantic. The Aveiro Lagoon is a dynamic lagoon with many channels, with main fluvial input delivered from the Vouga and Antuã rivers (Picado et al., 2010). Cádiz Bay is a shallow bay. The construction of ports and the dredging and deepening of navigation channels influence the ecology and hydrodynamics in this area (Zarzuelo et al., 2015).

The Mississippi Delta, Louisiana, US, and Blackwater Marshes, Maryland, US, are microtidal areas in the North Atlantic on the US East Coast. For the Mississippi Delta, riverine input is very important for vertical accretion through direct deposition and nutrient transport to enhance organic soil formation. Subsidence and reduction of sediment input, caused by various human activities, are the main factors associated with wetland loss in this area (Cahoon et al., 1995; Day et al., 2000; Syvitski et al., 2009). The Blackwater Marshes experiences subsidence from postglacial rebound, and reduction of riverine sediment transport to the study site further contributes to ongoing saltmarsh loss in this area (Kearney et al., 2002; Kearney and Turner, 2016).



2.2 Estimating Inundation Frequency Change From Landsat 5 TM Imagery

Inundation frequency (IF) change was calculated in Google Earth Engine (GEE), using the entire atmospherically corrected Landsat 5 TM surface reflectance data set (provided by the U.S. Geological Survey) from the GEE-catalogue. Landsat 5 is a sun-synchronous satellite (NASA/USGS), with an equator crossing time between 10h00 and 10h15 a.m. in descending orbit (Chander et al., 2004). Landsat 5 TM data cover a long time period, the spatial resolution is 30 m, the revisit time is 16 days, and the spatial coverage is 185 km by 185 km (Adam et al., 2010; Gómez et al., 2016).

We delineated the eight tidal basins using a polygon drawn by hand roughly around the respective basin. Land areas included in this polygon were masked using a global land mask, proposed by Laengner et al. (2019). Furthermore, we masked unusable pixels (e.g., clouds, cloud shadow, snow, data insufficiency), following Laengner et al. (2019). We calculated the Normalized Difference Water Index (NDWI) (McFeeters, 1996) for each unmasked pixel of all images by applying the equation

 

and assigned a pixel to water with NDWI > 0, and built binaries (maps with classes water and no water). The available images were split in 3-year bins, that is, each 3-year image collection consisted of all images available within that specific 3-year period, as part of a time series between 1986 (i.e., first time step generated from images of 1985, 1986, and 1987) and 2010 (i.e., last time step generated from images of 2009, 2010, and 2011) (Laengner et al., 2019). We assume that with all available satellite images over 3 years, the whole range of tidal stages are represented well in each time step. If the amount of usable data within a 3-year image collection is too small (mean number of unmasked images per pixel < 10), we mask this 3-year bin in the generated time series, following Laengner et al. (2019).

For each pixel in each 3-year image collection, we calculated how often a pixel was inundated (i.e., assigned to class water) and expressed this as percentage, i.e., inundation frequency percentage. From these time series maps (1986–2010) of inundation frequency, we calculated the mean inundation frequency over the total area of the respective basin.

We used GEE to create a time series of inundation frequency between 1986 and 2010 for each pixel. From the time steps, we calculate the slope for each pixel using a non-parametric method called Sen’s estimator (Sen, 1968) and from this determined the yearly change in IF (slope/3) for each pixel and tested its significance using the non-parametric Mann–Kendall trend test (Mann, 1945) with a significance level of 0.05. From this, we generated maps showing the yearly change in IF for those pixels for which a significant trend could be detected. We used Inkscape 0.91 to combine the inundation maps to one figure with panels (Figure 5 and Figure S5–S12).1




Figure 5 | Maps of significant yearly change in inundation frequency [%] for each of the eight selected study sites. The background of each map is grayscale Landsat 8 OLI imagery (background images courtesy of the U.S. Geological Survey).





2.3 Evaluating Estimated Inundation Frequencies From Landsat 5 TM Imagery

To evaluate the generated inundation frequency (IF) results, we compared our results to spatial emersion frequency [%] data of the Western Scheldt obtained from Rijkswaterstaat, the Dutch Ministry of Infrastructure and Water Management 1. Furthermore, Rijkswaterstaat provides the underlying elevation data [m + NAP, i.e., above Dutch Ordnance Datum]. Both data sets were available from Rijkswaterstaat for the years 1996, 2001, 2004, 2008, and 2010 (Walburg and De Jong, 2016a; Walburg and De Jong, 2016b; Walburg and De Jong 2016c; Walburg and De Jong 2016d; Walburg and De Jong 2016e), as well as for 2015 (Buiks, 2016), 2018 (Paree, 2019), and 2020 (Paree, 2021). The elevation maps were produced by Rijkswaterstaat from a combination of airborne laser altimetry data, single-beam echo sounding data, and multibeam echo sounding data, gridded to rasters with a 20 by 20 m spatial resolution. For each year, Rijkswaterstaat combined the elevation data with a 4-year period of actual water level data at tide gauge stations, to construct the map of emersion frequency (Kers et al., 2013; Walburg and De Jong, 2016c). For example, for the emersion frequency map of 2004, the elevation map of 2004 and time series of water level data from 2001, 2002, 2003, and 2004 were used (Walburg and De Jong, 2016c).

We converted the emersion frequency data of the years available within the investigated time period (1996, 2001, 2004, 2008, 2010) to inundation frequency [%] (100−emersionfrequency) and correlated the data with our IF data generated from Landsat 5 TM pixel by pixel. The years 1996 and 2008 do not match the 3-year time steps in our generated time series of inundation frequency. In order to compare all available data within the investigated time period by Rijkswaterstaat to our results, we additionally generated IF maps for the years 1996 (based on a Landsat 5 TM image collection between 1995 and 1997) and 2008 (based on a Landsat 5 TM image collection between 2007 and 2009). We also correlated the Rijkswaterstaat elevation data with matching IF data generated from the Landsat 5 TM time series. To provide a perspective for the use of other satellite sensors, the comparison was also tested for inundation frequency retrieved from Sentinel-2 MSI, level-2A data (provided by EU/ESA/Copernicus), and atmospherically corrected surface reflectance data from the Landsat 8 OLI/TIRS sensors (provided by the U.S. Geological Survey), both obtained from the GEE catalogue. For these sensors, we used 1-year image collections rather than 3-year image collections because more usable data were available for the Western Scheldt.



2.4 Assessing Habitat Change From Landsat 5 TM Imagery

We applied an unsupervised decision tree (DT) classification procedure in Google Earth Engine (GEE), developed by Laengner et al. (2019) to the eight selected basins. We used the same data set of satellite images as used to retrieve inundation frequency time series (see Section 2.2). The DT method classifies images into the classes vegetated saltmarsh, unvegetated tidal flat, and open water automatically. For example, it considers intertidal areas with presence or absence of vegetation, respectively based on a fixed NDVI threshold of 0.3 Laengner et al. (2019). Each classification result is based on an image collection containing all available images over 3 years, thus at different seasons, tidal and wave conditions rather than only one satellite image. Frequency thresholds were set as in Laengner et al. (2019) to decide how a pixel in an image collection is classified. For example, the NDVI of a saltmarsh changes throughout the seasons or can be negative due to inundation during high tides, which is why a threshold of how often a pixel must have a NDVI value of 0.3 or higher to be classified as saltmarsh was set to 20%. Likewise, thresholds for the other land cover classes were applied (see Laengner et al. (2019) for procedure). Laengner et al. (2019) evaluated the classification results using spatial data of vegetation presence provided by Rijkswaterstaat for the Western Scheldt and found that the method was robust, and the outcome was not sensitive to the chosen thresholds. With this classification principle, local information on tides, waves, and seasonality is not needed. For the eight investigated study sites in the present paper, we generated time series of net habitat change over a respective basin from 1986 (generated from images between 1985 and 1987) to 2010 (generated from images between 2009 and 2011). If the amount of usable data within a 3-year image collection is too small (mean number of unmasked images per pixel < 10), we mask this 3-year bin in the generated time series, following Laengner et al. (2019).

We further revealed transitions between the land cover classes saltmarsh, tidal flat, and water in GEE. Between each bin of 3 years, we revealed the number of pixels of each land cover class becoming another land cover class. Then, we averaged these transitions over the time period to calculate the mean area [km2] transitioning from one land cover class to another one between two time steps in Python 3.7 and expressed them as relative area [%], i.e., area relative to the size of the respective basin. Transitions were visualized using Inkscape 0.91 (i.e., for Figure S4).



2.5 Comparing Inundation Frequency Change and Habitat Change

From the generated time series of habitat change and inundation frequency change, we calculated the yearly change for each defined land cover class (saltmarsh, tidal flat, water), as well as mean inundation frequency over a respective basin. We masked time steps with sparse usable data using the threshold for data availability (mean value of usable images per pixel over the whole basin smaller than 10), defined by Laengner et al. (2019). Yearly change was calculated in Python 3.7 using the Python module mkt which computes the Mann–Kendall trend test Mann (1945) for trends in time-series data, with slope as one of the outputs. We chose this non-parametric method as it does not require normally distributed data and is robust against missing data and outlier values, e.g., due to remaining clouds (Laengner et al., 2019). We defined a significance level of 0.05 to detect significant trends in the time series.

We compared the trends of habitat change with trends in inundation frequency change to investigate the fate of saltmarshes. The relationship between basin-wide inundation frequency change and saltmarsh habitat change was tested calculating a linear least square regression in Python 3.7 (scipy.stats.linregress) using a significance level of 0.05.




3 Results


3.1 Evaluating Estimated Inundation Frequency From Landsat 5 TM Imagery

The Western Scheldt estuary was used as a test case to evaluate the retrieval of inundation frequency from Landsat 5 imagery. Figure 2 shows a strong correlation (R ≤ 0.96) between inundation frequency (IF) provided by Rijkswaterstaat and IF estimated from the Landsat 5 TM time series. The strong fits are also highlighted by the density points around the 1:1 line, although scattering around the 1:1 line can be observed. Scattering and stripes can especially be observed for the year 2001 (Figure 2B), which was not included in the time-series analysis because of insufficient usable data. The 2008 bin (Figure 2D) also shows some scattering and stripes, but the point density around the 1:1 line is much higher compared to the scattered points. Limited data were available for the 2001 and the 2008 bins (see gray bars in Figure 3); if IF is calculated from few data, not all frequency values would occur, e.g., with only two images, we would only obtain frequencies of 0%, 50%, or 100%. In the supplementary (Figure S2), we show additional plots with strong correlations (R = 0.98) between IF provided by Rijkswaterstaat and IF generated using Landsat 8 OLI imagery (2015, 2018, 2020) or Sentinel-2 MSI data (2018, 2020). This provides a perspective for the use of the method not only for Landsat 5 TM but also for other sensors, such as Landsat 8 OLI and Sentinel-2 MSI.




Figure 2 | Correlation between inundation frequency [%] provided by Rijkswaterstaat (x-axis) and generated from Landsat 5 TM imagery (y-axis). The color shows the plot density on a logarithmic scale, with darker colors indicating higher densities of points.






Figure 3 | Time series of saltmarsh (SM), tidal flat (TF), and water (WAT) area [%] for each study site (left y-axis) and of inundation frequency [%] (right y-axis). Mean number of unmasked images per pixel of each 3-year bin is shown by the gray bars in the background (second right hand y-axis). Study sites with expanding saltmarshes are shown in the left column, and those with retreating saltmarshes in the right column. Significant trends are given with a solid line, non-significant trends are indicated by a dashed line. The slope, i.e., yearly change, is indicated in the legend.





3.2 Temporal Inundation Frequency and Habitat Change

Half of the investigated sites experienced basin-wide significant saltmarsh habitat gain (Western Scheldt, Eastern Scheldt, Ebro Delta, Cádiz Bay), and the other half of the basins experienced significant saltmarsh habitat loss (Venice Lagoon, Aveiro Lagoon, Mississippi Delta, Blackwater Marshes) over the study period (Figure 3. The trends in saltmarsh habitat change were significant for both relative change (Figure 3) and absolute change (Supplementary Figure S1). Changes in saltmarsh area, tidal flat area, and water, as well as changes in mean inundation frequency differed among the study sites, but some systems (e.g., the Blackwater and Aveiro Lagoon) show similarities (Figure 3).

In the Western Scheldt, the overall increase in saltmarsh area was accompanied by a significant increase in area of tidal flats, while the inundation frequency (IF) did not change over time. In the Ebro Delta and Cádiz Bay, tidal flats decreased with increasing saltmarsh area, and IF in the Ebro Delta decreased significantly. In the Eastern Scheldt, only saltmarsh expansion was significant. In Venice Lagoon and the Mississippi Delta, a significant decrease in saltmarsh area coincided with a significant increase in water area and IF. The Venice Lagoon further lost tidal flats. In the Aveiro Lagoon and the Blackwater Marshes, substantial tidal flat expansion with retreating saltmarshes was observed.

Mean data availability per pixel differ among the basins, as some areas are more influenced by clouds. For Venice Lagoon and the Blackwater Marshes, more unmasked images were available compared to the Western Scheldt and the Eastern Scheldt (cf gray bars, Figure 3).

A relationship could be detected between yearly change in saltmarsh habitat and yearly change in mean inundation frequency (Figure 4). In all basins experiencing net saltmarsh loss, mean IF either increased or did not change significantly, while in those basins with expanding saltmarsh habitat IF either decreased or did not change significantly (Figures 3, 4).




Figure 4 | Relationship between yearly change in saltmarsh area [%] and inundation frequency [%] between 1986 and 2010.





3.3 Spatial Patterns of Inundation Frequency Change

Maps of significant yearly inundation frequency (IF) change (Figure 5) indicate that basins with expanding saltmarshes (left column in Figure 5) experience an IF decrease in most parts of the basin or almost no change. In the Western Scheldt, it seems that tidal flats grew and moved over time with IF decreasing on parts of the tidal flats and increasing at the edges. In the Cádiz Bay, an area in the North-East showed a strong increase in IF, while other areas experienced overall less frequent inundation. Basins with retreating saltmarshes (right column in Figure 5) became more frequently inundated over time in most places. Especially Venice Lagoon and the Mississippi Delta showed a strong increase in IF throughout the basin. While mean basin-wide IF changes in the retreating Blackwater Marshes and Aveiro Lagoon were not significant (Figures 3F, H), IF maps showed similar patterns of significant increase throughout the basins as the Mississippi Delta and the Venice Lagoon. Likewise, no significant overall IF decrease was shown for the Western Scheldt and the Eastern Scheldt (Figures 3A,C) but maps revealed large areas of significant IF decrease (as well as some significant IF increase near the edges of the tidal flats). Detailed maps of yearly IF change can be found in the supplementary (Supplementary Figures S5–S12), including habitat classification results from 1986 and 2010.




4 Discussion


4.1 Assessing Estimated Inundation Frequency From Landsat 5 TM Imagery

Our methods allow an assessment of how saltmarshes and tidal flats develop relative to their inundation frequency. In order to analyze changes in inundation frequency (IF), we used the NDWI to retrieve water occurrence (Laengner et al., 2019) from 3-year Landsat 5 TM image collections to ensure a sufficient amount of usable satellite data across all basins. Other sensors than Landsat 5 TM may allow smaller bins, for example Landsat 8 OLI and Sentinel-2 show good results with only 1-year bins (Supplementary Figure S2), but long time series of these sensors are not available yet. We assumed that the whole range of tidal stages is represented well within a 3-year bin. Data availability differed among the basins and limited data in some 3-year bins may have influenced the results. In addition, Landsat and Sentinel-2 follow a sun-synchronous orbit, which may result in a bias relative to the tides (e.g., only specific combinations of the semidiurnal and fortnightly tidal stage may be captured by the satellite) (Eleveld et al., 2014). Nevertheless, the method allowed to assess trends over almost 30 years. The comparison between generated IF with local data of the Western Scheldt confirms that inundation frequency is captured well; here we assessed five bins of the basin with the least amount of usable data compared to the other investigated basins and still observed a very good agreement with local data. Scattering around the 1:1 line can partly be explained by the limitations discussed above and partly because the local inundation maps (obtained from the combination of elevation and tide gauge data) also contain errors, while morphodynamics may further add variations, particularly at the lower edge of the tidal flat (with potentially large temporal variations in elevation as slopes are steeper and, e.g., channels migrate). Further evaluation in other tidal basins is recommended to test whether the method performs well under a range of conditions, for example under different water clarity conditions.

Fitton et al. (2021) applied a similar method to derive inundation frequency using Sentinel-2 data to map the intertidal zone. They calculated water occurrence [%] and generated a 5-year mosaic. From this, they further generated a pseudo DEM [m] for the intertidal area for the UK. They calibrated the Sentinel-2 data set with a national tide model to make sure that all tidal stages are represented well, but simultaneously assume that this is not necessarily needed, which facilitates a global application. As we are primarily interested in whether saltmarshes can keep up with relative sea level rise, rather than in absolute height, we did not apply a tidal calibration to our 3-year image collections and assume that the different tidal stages are represented well.

For the time series and corresponding trends, we do not retrieve IF separately for each land cover class but as a mean over the whole basin for each 3-year bin. This is because the definition of the saltmarsh–tidal flat boundary as well as the tidal flat–water boundary is highly dynamic and difficult to define. By considering the mean over the whole basin, resulting trends from the time series imply changes in IF over both saltmarshes and tidal flats. Furthermore, inundated saltmarshes can only be detected by optical satellite remote sensing when vegetation is largely covered by water, as the sensor cannot detect water underneath vegetation cover. Attempts to solve this with Sentinel-1 C-band satellite data failed, possibly because backscatter characteristics of flooded and not flooded, but still wet sediments below the vegetation cover are too similar for an accurate discrimination. Consequently, we only used optical satellite data, meaning only highest tidal stages and storm events are detected as inundated on the high marsh, depending on vegetation height. Changes in IF on saltmarshes are still implied in the calculated trends of the means over the basins and evident from the trends per pixel shown in the generated maps of significant yearly IF change. Similar limitations and advantages regarding data availability as discussed above hold for estimated time series and trends of habitat change and have been assessed and discussed by Laengner et al. (2019).



4.2 Inundation Frequency Change and Habitat Development


Time series of long-term (27 years), basin-wide habitat and inundation frequency (IF) development indicate that prevailing processes may be similar among some of the systems. In the Western Scheldt, both saltmarsh and tidal flat area increased and maps show large areas of significant IF decrease on the tidal flats. The formation of saltmarsh habitat on tidal flats may also be assumed for the Eastern Scheldt, Ebro Delta, and Cádiz Bay. In a previous research of the Eastern Scheldt, tidal flats were found to have decreased in height (De Vet et al., 2017) following the completion of the open storm surge barrier and compartment dams in 1986 and associated changes, such as a decrease in tidal range and reduction of sediment supply (Louters et al., 1998). The reduced tides also had consequences for saltmarsh vegetation (De Leeuw et al., 1994). Our data confirm an increase in permanently flooded area in the dammed eastern part of the Eastern Scheldt since our first bin of 1985–1987. However, our data do not show significant overall long-term changes in tidal flat area or mean IF for the still open part of the basin. Instead2, strong fluctuations can be observed over time, which may be due to the limited amount of usable data for some bins in this area. The same may apply for some bins in the Western Scheldt. In the Ebro Delta and Cádiz Bay, saltmarsh habitat gain coincided with loss of tidal flat area, indicating that little new tidal flat habitat was formed. Sediment availability for new tidal flat habitat formation seems to be low in these basins or may originate from sources within the basin, which may lead to a negative sediment budget on a longer term (Ganju et al., 2015). In the Ebro Delta, overall IF decrease indicates that habitats are able to keep up with relative SLR. Strong changes of mean IF increase in Cádiz Bay may partly be explained by the newly flooded area in the North-East, i.e., the restored Balbanera saltmarshes and Salinas2.

Despite overall expanding saltmarsh habitat in the basins named above, periods of saltmarsh habitat loss occurred as well within the time series. This fluctuation may be biased due to data insufficiency as discussed above, but fluctuations also occur in basins with ample data. Fluctuations may point to a dynamic system but may also be associated with cyclic saltmarsh dynamics (Allen, 2000; van de Koppel et al., 2005). When saltmarsh erodes, tidal flats may increase in elevation through the deposition of the eroded saltmarsh sediments on the adjacent tidal flat. The more elevated tidal flat lowers wave energy, thus slowing down saltmarsh erosion so that new vegetation can establish in front of the eroding cliff, given adequate boundary conditions for saltmarsh growth, as also found from aerial photos and in situ data in the Western Scheldt by van der Wal et al. (2008). This pioneer vegetation further reduces wave energy, and with this slows down lateral retreat of saltmarsh habitat. However, when sediment availability is not sufficient, tidal flats in front of the saltmarshes may become too steep, and hence vulnerable to waves, and conditions may not be suitable for establishment of pioneer vegetation, the saltmarsh may continue to erode (van de Koppel et al., 2005; van der Wal et al., 2008). This emphasizes the importance of sediment inputs from external sources (van der Wal et al., 2008; Ganju et al., 2015).

Our results additionally reveal different processes among those basins that experience saltmarsh habitat loss over time. Time series of habitat and IF change imply similar processes prevailing in Venice Lagoon and the Mississippi Delta. Saltmarsh habitat loss in these areas coincided with increasing water area and strong IF increase, indicating that the Mississippi Delta and the Venice Lagoon cannot keep up with relative SLR. Inundation frequency change maps show a significant increase throughout the whole basins, hinting at interior drowning of habitat. Interior drowning and formation of pools have been discovered in earlier studies in the Mississippi Delta and the Venice Lagoon (Day et al., 1999; Rizzetto and Tosi, 2011), as well as in the Blackwater Marshes (Schepers et al., 2017), although in the latter area, also changes along the marsh edge are apparent. Interior pools grow until they provide a large fetch area to generate wind, triggering wave erosion at the saltmarsh edges (Mariotti and Fagherazzi, 2013). Consequently, pool formation can lead to further saltmarsh habitat loss through wave erosion, rather than drowning (Mariotti, 2020a). Our results of the Blackwater Marshes and the Aveiro Lagoon indeed suggest both that saltmarsh habitat converts to tidal flat, as tidal flat area expanded with decreasing saltmarsh area. Transitions between the land cover classes saltmarshes and tidal flats also seem to be highest in these two basins (Supplementary Figure S4). However, when pools are drained, especially when located close to channels, they can experience higher accretion rates of inorganic material, mainly due to lower relative elevation locally. Vegetation can reestablish and pools can recover within a few decades (Wilson et al., 2014; Schepers et al., 2017; Spivak et al., 2017). Nevertheless, these high accretion rates through sediments from edge erosion may be local. For basin-wide saltmarsh development, the sediment budget of the whole basin has to be taken into account (Ganju et al., 2015; Mariotti, 2020a; Mariotti et al., 2020b).

The comparison between our IF time series and habitat maps also show that local change in IF can differ from basin-wide changes (e.g., Western Scheldt, Aveiro Lagoon, Blackwater Marshes), which may point to local driving forces (e.g., wave exposure) or biophysical feedbacks. Local spatial variation in IF may also result from sediment transport (e.g., moving channels and tidal flats, see for example Western Scheldt).



4.3 Relationship Between Inundation Frequency Change and Saltmarsh Development

Basin-wide saltmarsh development was associated with basin-wide inundation frequency (IF) change. IF increase seemingly can induce saltmarsh habitat loss, as observed in the Mississippi Delta and the Venice Lagoon. Likewise, IF decrease can be associated with saltmarsh habitat gain as detected in the Ebro Delta. These associations can also result from positive feedbacks of plants trapping sediments during inundation, thereby increasing the elevation of the saltmarsh and decreasing the inundation frequency (van de Koppel et al., 2005; Cahoon et al., 2021). Even though saltmarshes can benefit from inundation delivering sediments for vertical accretion (Pethick, 1981; Temmerman et al., 2003), they also need sufficient inundation free periods to recover from inundation stress, i.e., to allow reestablishment of vegetation after disturbance (van Belzen et al., 2017). When exceeding a certain threshold of disturbance so that recovery is not possible, ecosystems may undergo a sudden shift (Scheffer et al., 2001) leading to plant disappearance in coastal saltmarshes. This recovery time can lengthen with increasing IF (van Belzen et al., 2017). Thresholds of IF tolerance vary among sites, for example due to varying plant species with specific inundation stress tolerance (Olff et al., 1988), or varying tidal or wave regimes. Thus, IF governs species compositions to a large extent (Bockelmann et al., 2002). Furthermore, stable bed levels may raise the tolerance of plants to withstand higher inundation stress (Willemsen et al., 2018).



4.4 Revealing the Fate of Saltmarshes

In conclusion, our methods allow an assessment of how saltmarshes and tidal flats develop in area, and if their relative position within the hydrodynamic frame is changing, either passively or actively through biophysical feedbacks. Such an assessment is valuable to assess the vulnerability and fate of saltmarshes. In general, we found that basins with a significant increase in inundation frequency (Mississippi Delta and Venice Lagoon) were associated with saltmarsh loss. In contrast, basins with saltmarsh loss may not necessarily also experience loss of tidal flats, and vice versa. We have also shown how our methods can be used to evaluate the effect of artificial constructions (e.g., dam building) and restoration measures, such as managed realignment schemes and conversion of salt pans into wetlands (Boorman and Hazelden, 2017).
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The high-precision estimation of mangrove leaf area index (LAI) using a deep learning regression algorithm (DLR) always requires a large amount of training sample data. However, it is difficult for LAI field measurements to collect a sufficient amount of sample data in mangrove wetlands. To tackle this challenge, this paper proposed an approach for expanding training samples and quantitatively evaluated the performance of estimating LAI for mangrove communities using Deep Neural Networks (DNN) and Transformer algorithms. This study also explored the effects of unmanned aerial vehicle (UAV) and Sentinel-2A multispectral, orbital hyper spectral (OHS), and GF-3 SAR images on LAI estimation of different mangrove communities. Finally, this paper evaluated the LAI estimation ability of mangrove communities using ensemble learning regression (ELR) and DLR algorithms. The results showed that: (1) the UAV images achieved the better LAI estimation of different mangrove communities (R2 = 0.5974–0.6186), and GF-3 SAR images were better for LAI estimation of Avicennia marina with high coverage (R2 = 0.567). The optimal spectral range for estimating LAI for mangroves in the optical images was between 650–680 nm. (2) The ELR model outperformed single base model, and produced the high-accuracy LAI estimation (R2 = 0.5266–0.713) for different mangrove communities. (3) The average accuracy (R2) of the ELR model was higher by 0.0019–0.149 than the DLR models, which demonstrated that the ELR model had a better capability (R2 = 0.5865–0.6416) in LAI estimation. The Transformer-based LAI estimation of A. marina (R2 = 0.6355) was better than the DNN model, while the DNN model produced higher accuracy for Kandelia candel (KC) (R2 = 0.5577). (4) With the increase in the expansion ratio of the training sample (10–50%), the LAI estimation accuracy (R2) of DNN and Transformer models for different mangrove communities increased by 0.1166–0.2037 and 0.1037–0.1644, respectively. Under the same estimation accuracy, the sample enhancement method in this paper could reduce the number of filed measurements by 20–40%.




Keywords: mangrove communities, LAI estimation, ensemble learning regression and deep learning regression algorithms, sample enhancement, optical and SAR images



1 Introduction

Mangroves are one of the most prolific and productive ecosystems on earth (Borges, 2003; Behrouz-Rad, 2014). It not only nurtures abundant aquatic life, but also plays an irreplaceable role in sequestering and storing carbon and maintaining sustainable development (Wang et al., 2003). The Leaf Area Index (LAI) can reflect the leaf sparsity and canopy structure characteristics and is a key indicator for monitoring the health of vegetation (Giri et al., 2007; Heumann, 2011; Tian et al., 2017). Due to high plant density, intertwined roots and branches, and tidal fluctuations, traditional in situ observations are difficult to accomplish in large-scale LAI measurements. Recently, remote sensing technology has been an effective way to estimate the LAI of mangroves (Guo et al., 2021).

The vegetation index has been used to estimate LAI (Green et al., 1997). Studies have employed the original spectral bands (e.g., Blue, NIR) and vegetation index (e.g., EVI, NDVI) to construct the LAI estimation model (Kamal et al., 2016; Wang et al., 2019). For example, Kamal et al. (2021) used WorldView-2 imagery and NDVI to achieve a high-precision (R2 = 0.98) estimation of LAI for mangroves. However, the influence of different spectral band combinations on the LAI estimation of mangrove communities had rarely been considered, so the spectral information was not fully utilized. Therefore, this paper calculated combined features with vegetation indices and original spectral bands to construct a high-dimensional mangrove LAI dataset. However, different band combinations caused information redundancy, which affected the computational efficiency and accuracy of the model. Data dimensionality reduction can eliminate data redundancy and improve model estimation accuracy (Liang et al., 2020; Lou et al., 2020). Active and passive remote sensing images in different spatial resolutions have also been used to estimate different vegetation biophysical parameters (Jia et al., 2019; Zhu et al., 2020). UAVs can provide a wide range of cost-effective image data based on their flexible imaging cycles (Hardin and Jensen, 2011; Knoth et al., 2013; Bhardwaj et al., 2016). Tian et al. (2021) achieved high precision estimation accuracy of above-ground biomass of mangroves (R2 = 0.8319, RMSE = 22.7638 Mg/ha) using UAV imagery. Hyperspectral images may provide rich spectral information. Studies have demonstrated the potential of hyperspectral imagery in estimating the LAI of mangroves (Neukermans et al., 2008; Liang et al., 2015; Yang et al., 2022). Chen et al. (2020) achieved a high accuracy (R2 = 0.834, RMSE = 0.824) estimation of the LAI of mangroves using GF-5 hyperspectral imagery and a machine learning regression model. However, the sensitivity of certain spectral bands to LAI is influenced by the canopy structure. (Zhu et al., 2017). The reflectance of bare soil under optical imaging and the spectral saturation effect under high cover can also reduce the accuracy of LAI estimation in mangrove communities (Dong et al., 2019). Meanwhile, optical sensors mainly obtain information on the top of the vegetation canopy, and it is difficult to obtain information on the vertical structure of the vegetation (Lu, 2006; Chang and Shoshany, 2016). Synthetic Aperture Radar (SAR) images have canopy penetration capability and can better obtain vertical structure information (Lucas et al., 2004; Omar et al., 2017; Ke Huang et al., 2022). There is a lack of research to compare and evaluate the differences in the accuracy of LAI estimation of mangrove communities from multispectral, hyperspectral, and SAR images.

There are two main types of remote sensing estimates of LAI: physical models based on radiative transfer theory and biophysical processes; and empirical models based on the relationship between measured data and image spectral bands (Kovacs et al., 2005; Bocca and Rodrigues, 2016; Tian et al., 2017). Although the physical models enable us to accurately reflect the physiological process of vegetation growth, such methods require a large number of biophysical parameters (Zhu et al., 2017), and the model adjustment and calibration require complex processes, making it difficult to apply to the estimation of vegetation physical parameters in a large range (Sun et al., 2019). Empirical models have been successfully used to estimate various vegetation biophysical parameters (Kovacs et al., 2005; Tian et al., 2017). Shallow machine learning regression models explain the relationship between biophysical parameters and model parameters (Zhu et al., 2017). For example, Liang et al. (2020) obtained good estimation accuracy (R2 = 0.939, NRMSE = 6.474%) for crop LAI using a shallow machine learning regression model. But the shallow machine learning regression algorithm is prone to overfitting (Chlingaryan et al., 2018), and the single regression model has poor stability and low prediction accuracy, which requires frequent trade-offs between the balance and accuracy of the model (Christensen, 2003). The ensemble learning algorithm integrates the advantages of each algorithm, makes up for the shortcomings of a single algorithm, and improves the model stability and prediction accuracy. For example, Yan et al. (2021) proposed and used EIM for estimating water, carbon, and ecological footprints. Compared to traditional methods, EIM achieves similar predictive performance but with 80% less data than a single machine learning regression algorithm that improves estimation accuracy by more than 20%. Stacking models integrate the advantages of multiple base regression models to generate stable estimation results and provide better generalization ability for regression predictions (Dietterich, 2000; Ghosh et al., 2021). However, the ability of the ensemble learning algorithm to estimate the LAI of different mangrove communities remains to be verified. Deep learning (DL) algorithms are regarded as a breakthrough technology in machine learning and remote sensing data mining (Zhu et al., 2017). DL algorithms have been used for vegetation parameter and crop yield estimation (Sun et al., 2019; Khaki and Wang, 2019). Tamiminia et al. (2021) achieved high estimation accuracy (RMSE = 2.69 Mg/ha and R2 = 0.89) for shrub willow biomass using a DL (Convolutional Neural Networks, CNN) model. The traditional DL algorithm requires a large amount of computation and complex model training, while the Tansformer algorithm proposed by the Google AI team (Vaswani et al., 2017) realizes the “self-attention” mechanism, which reduces the complexity of the architecture and enables the achievement of very fast computation, and reduced training time. At present, the applicability of the Tansformer algorithm for LAI estimation of different mangrove communities has not been verified. Few studies have evaluated the ability of ELR and DLR models (Tansformer and DNN) to estimate the LAI of different mangrove communities.

Quantitative remote sensing research has high requirements for measured data and requires a large amount of measured data for model training and verification (Kamal et al., 2016). The number of training samples was also critical for the high-accuracy estimation of the DLR model (LeCun et al., 2015). For example, Kamal et al. (2016) validated the accuracy of LAI estimation for mangroves in different regions using 63 and 37 independent samples, respectively, and obtained better results (R2 = 0.83 and R2 = 0.82). Huang et al. (2020) found that insufficient training data can lead to severe overfitting problems in the DLR model and reduce model accuracy. However, for most of the natural vegetation with a more complex growth environment, such as mangroves growing mainly in the coastal intertidal zone, it is difficult to obtain sufficient actual measurement data. To solve this problem, a training sample expansion method based on UAV multispectral images and the ELR model was proposed in this paper. At the same time, this paper quantitatively analyzes the effects of different training sample expansion ratios on the accuracy of mangrove LAI estimation by Tansformer and DNN models, and argumentative sample expansion addresses the problem of insufficient training samples for Tansformer and DNN models.

To fill the research gaps, this paper takes the mangrove nature reserve in Beibu Gulf, China as the study area, and estimates the LAI of different mangrove communities using the ELR and DLR algorithms with multispectral, hyperspectral, and SAR images. The main objectives of this study include: (1) exploring the differences in LAI estimation of different mangrove communities between optical and SAR images; (2) comparative analysis of the stability and accuracy of LAI estimation between ELR and a single base model; (3) quantitatively evaluating the ability of ELR and DLR models to estimate LAI of mangroves and determining the optimal LAI estimation model for each mangrove community; (4) examining the effectiveness of the sample enhancement method proposed in this study for LAI estimation; and quantifying the effect of different expansion ratios of the training sample on the accuracy of LAI estimation using Transformer and DNN models.



2 Study Area and Data Source


2.1 Study Area

The total area of mangroves in Guangxi Province reaches 9,330.34 hectares, accounting for 32.7% of the country, ranking second in the country, with the largest area of Avicennia marin natural growing place. The experimental research area is located in the coastal mangrove nature reserve in Qinzhou City, Beibu Gulf, China. The geographical location is 108°48′50″E-108°52′17″E, 21°37′02″N-21°38′21″N (Figure 1). The region is mainly in subtropical to tropical transitional marine monsoon climate. The annual average sunshine is 1,782.9 hours, and the precipitation is 2,104.2 mm. However, because of the influence of natural and human factors, mangroves have been degraded on a large scale. The large-scale, high-precision estimation of LAI for mangroves can effectively monitor the growth of mangroves and provide data support for the protection and restoration of mangroves.




Figure 1 | Location of study area.





2.2 Data Sources


2.2.1 UAV Images Acquisition and Processing

This study uses a DJI Matrice 210 (DJI M210) UAV equipped with a Micasense Red Edge-MX sensor from 10:30 to 15:30 (UTC+08:00) every day from 4 to 25 April 2021, and the resolution of the research area was obtained as a 0.07 m multispectral image. The flight altitude was 100 m. Both the side-to-side overlap rate and the heading overlap rate were set to 80%. Timed shots were taken for 3 s and 45 sorties were flown. Before each flight, radiometric calibration was performed using a calibration plate provided by Micasense. The sensors and calibration parameters are shown in Table 1. Before each sortie, six ground control points were laid out for UAV image processing by using Hi-Target V90 RTK ( ± 0.25 cm).


Table 1 | Red Edge-MX multispectral sensor and calibration parameter settings.



Multispectral data processing: In this paper, Pix4D mapper 4.7 software was used to process the acquired UAV images, including image quality check, image matching, aerial triangulation solution, dense point cloud generation, 3D modeling, and finally, multispectral images with a spatial resolution of 0.07 m were generated for the study area, and the projection coordinate system was set to WGS 1984 UTM Zone 49N.

The Sentinel-2A multispectral image (S2), Zhuhai No. 1 Orbita Hyper Spectral (OHS) hyperspectral image, and C-band VV/VH polarized Gaofen-3 (GF-3) SAR image were selected. The specific information and imaging times are shown in Supplementary Table 1.

OHS is China’s commercial satellite with hyperspectral data acquisition capability. Equipped with a CMOSMSS sensor, the image has a spatial resolution of 10 m and a spectral resolution of 2.5 nm in 32 bands. Launched on 10 August 2016, the GF-3 SAR image has 12 imaging modes with a 1 m spatial resolution. In this paper, the SAR images are processed by dual polarization in fine strip map 1 (FSI) mode. The specific imaging parameters of the four images are shown in Supplementary Table 1.

For Sentinel-2A image processing, we used the Sen2cor 2.5.5 model written in Python code to process L1C-level image data into L2A-level products. We also used SNAP software to resample the L2A-level data to 10 m resolution by nearest neighbor to be consistent with the field measurement sample (10 × 10 m).

For GF-3 (SAR) image processing, the backscattering coefficient image (sigma0) with a projected coordinate system was generated by VV/VH dual-polarization processing, radiometric correction, multi-view processing, filtering processing (Lee), and geocoding in GF-3 SAR image data.

For OHS image processing, we used the ENVI 5.4 software for radiometric calibration, atmospheric correction, and orthorectification. We generated the reflectance image data with accurate geometric positioning.

In this study, the six ground control points collected by GNSS RTK were used to georeference and subset the UAV and satellite images in the ENVI 5.6 software. The georeferenced errors were less than one pixel. The final projection coordinate system for UAV and satellite images of the study area was unified as the WGS-84 data and the Universal Transverse Mercator (UTM) Zone 49 North coordinate system.



2.2.2 Multiscale LAI Field Measurements

We used the hand-held LAI-2200C leaf area index meter to measure the leaf area index of different communities of mangroves in the study area. The in-situ measurements were conducted from 4 to 25 April 2021. To ensure data accuracy, the measurements were taken between 6:30–9:00 and 16:30–19:00 Beijing time every day when the sky was cloud free and there was no direct sunlight. We measured single plants at 5 m × 5 m and 10 m × 10 m (Figure 2) to obtain the LAI data.




Figure 2 | Measurement method of multi-scale plots.



The specific protocol of measurements includes: (1) for a single plant LAI: independent and representative plants were selected, and a leaf area index meter was used to measure once above four times the height of the leaf above the canopy in each direction of the plant to record the A value. The bottom of the crown was measured from the root and stem of the plant to the outside in turn, and the average of four times was recorded as the B value. Each plant was measured in four directions. (2) For 10 m × 10 m (OHS and S2) plots LAI: On each 10 m × 10 m plot, 10–15 plants were evenly measured with LAI-2200 leaf area index meter. The position of the center point of the plot was recorded with Hi-Target V90RTK ( ± 0.25 cm + 1 ppm). The LAI value of the plants was averaged as the LAI value of the center point of the plot. (3) For 5 m × 5 m (GF-3 SAR) plot LAI: a 5 m × 5 m plot was set up in the center of each 10 m × 10 m plot, and 6–8 plants were evenly measured using LAI-2200 leaf area indexer. The position of the center point of the plot was recorded with Hi-Target V90RTK ( ± 0.25 cm + 1 ppm). The LAI value of the plants measured in the plot was averaged as the LAI value of the center point of the plot. The field measurement methods of mangrove LAI are shown in Table 2.


Table 2 | Ground LAI measured data based on different image resolutions.







3 Methods

The technical route includes four parts, as illustrated in Figure 3. (1) The vegetation index and combined features were calculated using active and passive remote sensing images to create a high-dimensional data set, and data dimensionality reduction was used for feature optimization. (2) ensemble BPNN, Elastic Net, Gradient Boosting and Random Forest algorithms to build an ensemble learning model, Comparing the estimation accuracy of ELR and DLR models (DNN and Transformer) for the LAI of different communities; (3) The effects of optical and SAR images on the LAI estimation accuracy of different mangrove communities were analyzed; (4) The method of extending the training samples of DLR algorithm based on UAV images and ELR model is proposed to solve the problem of insufficient training samples of DLR model.




Figure 3 | Experimental flow chart.




3.1 High Dimensional Datasets and Dimensionality Reduction


3.1.1 High Dimensional Dataset Generation

This study integrates the original band, vegetation index, combined features, or polarized backscatter coefficient combined features. A high-dimensional dataset of LAI estimation for different mangrove communities was constructed, as shown in Table 3. Seventeen vegetation indices (see Appendix Table A1 for details) and 168 to 2,169 combined features were calculated under optical remote sensing images (UAV, S2, and OHS). For GF-3 SAR images, 43 combined polarized backscatter coefficient features were calculated. The specific calculations of the combined features and polarized backscattering coefficient combination features are shown in formulas (1)–(4).

	(1)

	(2)

	(3)

	(4)


Table 3 | High-dimensional dataset generation based on optical and GF-3 SAR images.



Where bi and bjare any two bands or different polarizations of the UAV, S2, OHS images, and GF-3 SAR data, respectively, ρbi, ρbj are the mangrove canopy reflectance values or the backscattering coefficients (sigma0) of VV and VH polarization for the two bands corresponding to bi, bj, respectively.



3.1.2 Data Dimensionality Reduction

High Correlation filter and Backward Feature Elimination were used to reduce dimensionality and eliminate redundant data on the mangrove LAI high-dimensional dataset of UAV, S2, OHS, and GF-3 SAR observations.

(1) The vegetation index calculation and band combination were performed to construct the LAI high-dimensional dataset for optical and SAR images. The normal distribution test was used to generate the normal distribution trend and kernel density maps of each spectral band and combined feature (Figures 4A, B), and the combined features without conforming to a normal distribution were normalized and log-transformed (Figures 4C–E).




Figure 4 | Processing process of four kinds of high-dimensional image datasets. (A, B) Normal distribution map and kernel density map representing unprocessed feature bands. (C) Indicates standardization and logarithmic transformation of feature bands that do not conform to the normal distribution. (D, E) Indicates the normal distribution map and kernel density map of the processed feature bands. (F) Represents a graph of correlation coefficients between bands and between bands and target values (LAI). (G) represents the removal of outliers.



(2) Correlation analysis was performed on the transformed high-dimensional dataset and the field-based measurement LAI values using the mcorr package in Python, and removed the combined features with low correlation (R<0.5) in the high-dimensional dataset (Figure 4F).

(3) Model iterative training was performed until achieving high prediction accuracy (R2 >0.85) and no performance improvement was achieved using the remaining combined features. In the iterative training procedure, redundant features with a high correlation were further removed according to the model training accuracy. (4) According to the difference in LAI values between remote sensing estimation and field-based measurement, the abnormal field-measured sample points are automatically removed to improve the estimation accuracy of the model (Figure 4G). The final measured sample points were selected and used to estimate the LAI of mangrove communities (Table 4). The calculation formula is shown in Supplementary Table 2.


Table 4 | Preferred feature variables for mangrove LAI estimation from UAV, S2, OHS, and GF-3 SAR images.






3.2 Ensemble Learning Regression (ELR) Model

Stacking is a technique that integrates multiple compatible learning algorithms or models to perform a single task and obtains better estimation results by integrating the advantages of multiple base models. This paper stacked four base models (BPNN, Elastic Net, Gradient Boosting, and Random Forest algorithms) for an ELR model to estimate LAI with feature variables. The specific process is as follows:

(1) The datasets combining feature variables with the LAI of different mangrove communities were randomly divided into 70% for training and 30% for testing, and the training sets were equally divided into train1, train2, train3, train4, and train5.(2) One dataset from train1 to train5 was selected as the validation set for different base models in turn, and the remaining 4 datasets are the training set. Each training model was performed with 5-fold cross-validation, and achieved five copies of prediction data, which were stacked and divided into training (A1–A4) and prediction (B1–B4) data.(3) An ELR model was built and trained using the A1–A4 dataset, and the final prediction results were obtained using the B1–B4 dataset. The ELR model structure is shown in Supplementary Figure 1.



3.3 Deep Learning Regression (DLR) Models


3.3.1 DNN Algorithm

The DNN (Hinton and Salakhutdinov, 2006) network consists of several inputs and outputs with multiple implicit layers (Hidden Layer) of perceptrons (as shown in Supplementary Figure 2), and the multilayer perceptron solves the defects of the previous inability to simulate or logic and enhances the model expression capability.



3.3.2 Transformer Algorithm

A Transformer (Vaswani et al., 2017) network includes multiple identical encoders and decoders stacked together to form a stack encoder and decoder with the same number of units. The encoder has a layer of multi-head attention and a layer of a feedforward neural network. The decoder has an additional multi-head attention mask. The network structure is shown in Supplementary Figure 3.




3.4 Model Parameters Optimization

In order to achieve high accuracy estimation of LAI for different mangrove communities, this paper optimized the parameters for building mangrove LAI estimation models based on ELR and DLR algorithms (Transformer and DNN). The specific optimization parameters are shown in Supplementary Table 3.

The maximum number of iterations, the depth of the decision tree, the minimum number of samples required for segmentation, and the learning rate are set by n_estimators, max_depth, min_samples_split, and learning_rate for optical and SAR image data respectively to prevent overfitting of the model and to tune the parameters to improve the estimation accuracy of the ELR model for different mangrove communities LAI under optical and SAR image data.

The model optimizer was set to Adam (Diederik and Jimmy, 2015), and the input layer was set to X (X: number of mangrove communities variables under different images). DNN model: the initial learning rate was set to 0.0001, the iterative number (epochs) was set to 1,500; the loss function was set to mean_squared_error. Transformer model: the encoder and decoder were set to 6 layers, and the initial learning rate was set to 0.0001. The iterative number was set to 8. The loss function was set to mean_squared_error.



3.5 Mangrove LAI Estimation Using Training Sample Enhancement

In this paper, we propose a training sample expansion method based on an ELR model and UAV multispectral images, which is then used in the DLR algorithm for high-accuracy estimation of LAI of mangrove communities. We tested five training sample expansion schemes with an expansion ratio of 10 to 50%. The ability of the Transformer and DNN models to improve the LAI estimation accuracy of mangrove communities under different expansion ratios was explored. To ensure the reliability of the experimental results, this paper only increased the number of training samples for the DLR model, and the verification samples of the LAI estimation model under each expansion scheme use the ground-measured LAI data. The specific process is as follows:

① The expanded sample points of three mangrove communities were selected from the UAV images using the random sampling method. The type of mangrove community one by one was determined by field measurements and visual interpretation of UAV images (0.07 m). The spectral reflectance of each sample point was extracted and input into the ELR model trained with high precision to estimate its corresponding LAI value, as the real LAI value of the extended training sample in the DLR model under 4 kinds of images (UAV, S2, OHS, and GF-3). The specific calculation formula is as in formula (5). The proportion of the extended training sample data of various mangrove communities in the measured data ranges from 0 to 50%.

	(5)

Where LAIUAV represents the LAI values of mangroves at different extended sample points estimated based on the high-precision training ELR model and UAV multispectral images, x is the number of mangrove communities LAI measured data points, i is the proportion of extended sample data to the measured data (0–50%).

②; Extract the spectral reflectance or backscattering coefficient values of the expanded sample points from the optical (UAV, S2, and OHS) and GF-3 SAR images, respectively, and use the LAI value estimated by formula (5) as the true value of the LAI of the extended sample points in the four types of images to generate the extended training data of the DLR model under different images. We used extended training data and measured data to build high-dimensional data sets and perform data dimensionality reduction and feature optimization. Finally, the optimal feature variables are input into the Transformer and DNN models, respectively, to estimate the LAI value of the mangrove communities. After training samples expand under different images, the calculation formula is as in formula (6).

	(6)

In the formula   represents the mangrove LAI value estimated by the DLR model under different expansion ratios in each image, D represents DNN and Transformer models, j represents UAV, S2, OHS, and GF-3 remote sensing images, x is the number of LAI measured data points of mangrove communities, and i Indicates the proportion of the extended sample data to the measured data (0–50%).



3.6 Accuracy Assessment

Accuracy validation is the process of evaluating the accuracy of model estimates using independent validation data. The uncertainty of field LAI measurements was caused by the spatial structure of the canopy, sampling methods, instrument errors, and measurement environment (Waske et al., 2009). In this paper, the coefficient of determination (R2) and root mean square error (RMSE) were used to verify the model prediction accuracy, and 30% of the ground-measured LAI values (single plant and sample scale) were used as independent validation data to evaluate the model estimation accuracythe calculation formulas are as in formula(7)-(8).

	(7)

	(8)

Where yi is the mangrove LAI value measured in the field,  is the estimated value of mangrove LAI, wi is the weight, wi >0 usually set to 1,  represents the mean value of mangrove LAI, and m represents the number of mangrove samples.




4 Results Analysis


4.1 Assessing the Effect of Optical and SAR Images on LAI Estimation of Mangrove Communities

In order to explore the difference in the accuracy of LAI estimation of different mangrove communities under optical and SAR image data. In this paper, seven mangrove LAI estimation models were constructed using shallow machine learning, ELR, and DLR algorithms. The accuracy of LAI estimation for the three dominant communities in mangroves under different image data is shown in Figure 5.




Figure 5 | Statistical analysis of optical and SAR images for LAI estimation.



Figure 5 shows that the spatial resolution, spectral reflectance, and radar backscatter coefficient have a certain effect on the estimation accuracy of mangrove LAI. The average LAI estimation accuracy of mangrove communities by different models under UAV multispectral images was the highest (R2 = 0.597–0.619), which was 0.052–0.109 higher than that by OHS hyperspectral images, respectively. Compared with GF-3 SAR images, the mean LAI estimation accuracy (R2) of different mangrove communities was improved by 0.052–0.098 from UAV images, and the LAI estimation accuracy (R2) of Kandelia candel was the most affected. The average LAI estimation accuracy of different images for K. candel was UAV> GF-3> OHS. The reasons are as follows: (1) Compared with 5 × 5 m and 10 × 10 m sample plots, the ultra-high spatial resolution (0.07 m) of UAV images and individual tree measurement method of mangrove LAI reduced the influence of bare soil, thus improving the accuracy of LAI estimation by images; (2) There were inevitably other communities in 10 m × 10 m plots, leading to errors in the spectral reflectance extraction.

The UAV image produced the highest average LAI estimation accuracy (R2) of three mangrove communities using different models, followed by the S2 and OHS images. S2 and OHS images both obtained good accuracy for LAI estimation of different mangrove communities (R2 = 0.508–0.598). There are 26 feature variables extracted by dimensionality reduction in the S2 multi-spectral image (Table 3 and Supplementary Table 2), among which 20 feature variables are calculated using the original bands B4 (Red) and B8 (NIR) of the image. The results showed that the Red Edge (650–680 nm) and NIR (785–900 nm) bands were sensitive to mangrove LAI. Additionally, 20 feature variables were extracted from OHS hyperspectral image data after dimensional-reduction. The calculation of 19 feature variables included the original band B12 (637–642 nm) and B17 (713–718 nm). Meanwhile, 15 of the 21 feature bands selected from the UAV images are calculated by the B4 (Red Edge) and B5 (NIR) bands, indicating that the Red Edge (707–727 nm) and NIR (800–880 nm) are more sensitive to mangrove LAI. The reflectance range of different spectral bands also has a certain influence on the LAI estimation of mangrove communities. The optimal spectral reflectance range of optical images for LAI estimation of mangroves was 650–900 nm.

In Figure 5, the average LAI estimation accuracy (R2) of A. marina under different images is in the following order: GF-3 >S2 >OHS. Comparing S2 multispectral and OHS hyperspectral images, the mean estimation accuracy (R2 = 0.567) of GF-3 for LAI for A. marina was improved by 0.015 and 0.018, respectively. The reasons for this are as follows: 1) optical images cannot penetrate the vegetation canopy, making it difficult to obtain vegetation structure information; and 2) the problem of spectral saturation of surface reflectance and vegetation index under high coverage, while SAR images can penetrate the canopy to obtain vegetation structure information.



4.2 Evaluating LAI Estimation Accuracy Between ELR and Single Base Models

To make LAI estimates more comparable, this study selected four machine learning algorithms (BPNN, Elastic Net, Gradient Boosting, and Random Forest) with different regression criteria to construct an ELR model and explored the differences in the accuracy and stability of LAI estimates for mangrove communities between ELR and single-base models. This paper estimated the LAI of three mangrove communities using ELR and single base models, respectively. The specific estimation accuracy is shown in Supplementary Table 4.

In Figure 6, the ELR model has higher accuracy in estimating LAI for different mangrove communities under optical and SAR image data, and the R2 was mainly concentrated between 0.5266 and 0.713. The estimation accuracy (R2) of the ELR model for the LAI of A. marina was improved by 0.0197–0.1497 compared to the single base model; the best estimation accuracy of LAI for K. candel (R2 = 0.713) was improved by 0.0126–0.0887 over the single base model; the estimation accuracy (R2) of LAI for Aegiceras corniculatum (AC) was improved by 0.0117–0.0785, and the RMSE was reduced by 0.0253–0.0262. The estimates of LAI of different mangrove communities from the ELR model were mainly concentrated within one standard deviation of the measured values than the single-base model, indicating that the ELR model has better generalizability and stability for LAI estimation of different mangrove communities under optical and SAR images.




Figure 6 | Statistical analysis of the LAI estimation accuracy of different mangrove communities using the ELR model. The shaded area represents the standard deviation (σ) between the estimated and measured LAI value of mangrove communities. (A–L) Respectively represent the LAI estimation accuracy (R2) of 'Avicennia marina', 'Kandelia candel' and 'Aegiceras corniculatum' using 5 algorithms under 4 image data.



The estimation of LAI for mangrove communities also differed between different base models under optical and SAR image data. The accuracy of the BP model for LAI estimation of A. marina (R2 = 0.5276 to 0.6123) improved by 0.0256 to 0.0656 and RMSE decreased by 0.0074 to 0.0381 compared with the other three algorithms. The accuracy of the GB model for LAI estimation of K. candel (R2 = 0.5175–0.63) improved by 0.0039–0.0182 in R2 and was reduced by 0.0049–0.0234 in RMSE compared to the other three algorithms; the LAI estimation accuracy of the RF model for A. corniculatum (R2 = 0.6206, RMSE = 0.3042) improved by 0.0348–0.0543 and RMSE decreased by 0.0227–0.0873 compared with the other three algorithms. The EN model showed better accuracy in LAI estimation of A. corniculatum under OHS and GF-3 image data (R2 = 0.5108, 0.5031).



4.3 Comparative Analysis of LAI Estimation Ability of ELR and DLR Algorithms

This study explores the ability of ELR and DLR models to estimate the LAI of mangrove communities. This study quantitatively analyzes the estimation accuracy of the ELR and DLR models for the LAI of different communities. It can be seen from Table 5 that the average estimation accuracy (R2) of the ELR model for the LAI of different mangrove communities under optical and SAR images was improved by 0.001–0.149 compared with the DLR model (Transformer and DNN).


Table 5 | The LAI estimation accuracy of mangrove communities using the ELR and DLR models.



From Table 5, it can be seen that the average estimation accuracy (R2) of the ELR model for the LAI of mangrove communities under different images improved by 0.0019–0.149 compared with the Transformer and DNN models, and the estimation accuracy of the ELR model for the LAI of different mangrove communities was relatively stable. DLR algorithms, especially the Transformer model, in optical and SAR images gradually decreases with the average estimation accuracy of the estimation models for the LAI from A. marina to K. candel. The average estimation accuracy of the LAI for A. marina (R2 = 0.6355) was only 0.006 lower than the ELR model (R2 = 0.6416), and the average estimation accuracy (R2) of the Transformer model for the LAI of K. candel was 0.149 lower than that of the ELR model. The reason for the analysis may be that A. marina has 300 measured LAI data points and K. candel has only 70, which reduces the training accuracy of the DLR model and leads to lower accuracy of LAI estimation.

Figure 7 showed that under UAV and S2 images, the accuracy of the ELR model for LAI estimation of A. marin (R2 = 0.6971, RMSE = 0.1897, and P<0.005) increased by 0.0355–0.0445 compared with the DNN and Transformer models; under OHS and GF-3 images, the accuracy of the LAI estimation of the Transformer model for A. marin (R2 = 0.6316, RMSE = 0.2302, and P<0.005) increased by 0.0424 and 0.0366, and RMSE decreased by 0.1179 and 0.1017 compared with the ELR and DNN models.




Figure 7 | Comparative analysis of estimation accuracy of the LAI for mangrove communities between the ELR and DLR models. The P-value represents the significant difference between the estimated and measured LAI values of mangrove communities. (A–L) Represent the LAI estimation accuracy (R2 and RMSE) of the optimal model for 'Avicennia marina', 'Kandelia candel' and 'Aegiceras corniculatum' under the 4 image data, respectively.



At 95% confidence interval, the LAI estimation accuracy (R2) of the ELR model for K. candel was better than that of the Transformer model, which was 0.1886–0.2483 higher than that of the DNN and Transformer models, and RMSE decreased by 0.085–0.1835. Under the GF-3 radar image, the LAI estimation accuracy of the DNN model for K. candel (R2 = 0.5599, RMSE = 0.2031) was 0.014 and 0.107 higher than that of the ELR and Transformer models, and RMSE was reduced by 0.008 and 0.1829, respectively.

The LAI estimation accuracy of the DNN model for A. corniculatum (R2 = 0.5961, RMSE = 0.3021) was 0.015–0.1141 higher than that of the ELR and Transformer models using the S2, OHS, and GF-3 images, while the ELR model with the UAV image produced better accuracy for the LAI estimation of A. corniculatum (R2 = 0.6991, RMSE = 0.2789).



4.4 The Effect of Training Sample Enhancement on LAI Estimation Using DLR Models

In this study, a method of combining the ELR and DLR models of UAV images to train sample expansion was proposed. Five sample expansion schemes were carried out, with the proportion of extended training samples accounting for 10–50% of ground measured data, to verify the ability of the Transformer and DNN models to improve the accuracy of mangrove community LAI estimation under different schemes.


4.4.1 The Effect of Training Sample Expansion for Estimating the LAI of Mangrove Communities Using the DNN Model

In this paper, mangrove communities with the lowest LAI estimation accuracy were selected from under 4 images, and training sample expansion was carried out for the DNN model according to 5 sample expansion schemes. The improvement of the LAI estimation accuracy of different mangrove communities by training sample expansion is shown in Table 6.


Table 6 | The LAI estimation accuracy of mangrove communities for the DNN and Transformer models with training sample extension.



Figure 8 shows the changes in LAI estimation accuracy of different mangrove communities by the DNN model under five expansion schemes. The improvement of the LAI estimation accuracy of A. corniculatum by training sample expansion is the largest, as shown in Figures 8A–F. Under GF-3 SAR images, as the number of A. corniculatum samples increased from 90 to 135, the LAI estimation accuracy (R2) of the DNN model for A. corniculatum increased from 0.5751 to 0.7788, an increase of 0.2037. The RMSE decreased from 0.4814 to 0.2757. When the number of extended training samples accounted for 40% of the measured data, the LAI estimation accuracy (R2) of A. corniculatum by the DNN model improved the most (0.0674), with an improvement of 9.63%. However, when the number of training samples accounted for 30% of actual data, the DNN model had the greatest influence on the LAI estimation accuracy (R2) of A. corniculatum (10.3%).




Figure 8 | Estimating mangrove LAI based on the DNN model under different sample expansion ratios. (A–C) Represents the variation trend of the estimation accuracy of the DNN model for the LAI of 'Avicennia marina', 'Kandelia candel' and 'Aegiceras corniculatum' under OHS and GF-3 image data with the enhancement of training sample data. (A–F) Indicates the variation trend of the estimation accuracy of the DNN model for the LAI of 'Aegiceras corniculatum' under the GF-3 image data, with the increase of the training sample expansion ratio (0%-50%).



The expansion of training samples had relatively little influence on the accuracy of the LAI estimation of A. marina. Under GF-3 images, as the number of samples of A. marina increased from 300 to 450, the LAI estimation accuracy (R2) of A. marina by the DNN model increased from 0.595 to 0.7116, increasing by 0.1166, and RMSE decreased from 0.3319 to 0.2801. When the number of extended training samples accounted for 20% of the measured data, the LAI estimation accuracy of A. marina was improved the most by the extension of training samples (4.63%). The LAI estimation accuracy (R2) of A. marina was improved by 0.0285, and RMSE decreased by 0.005.

Under OHS hyperspectral images, as the number of K. candel samples expanded from 70 to 105, the LAI estimation accuracy (R2) of the DNN model for K. candel increased from 0.5098 to 0.6708, increasing by 0.161. When the number of extended training samples accounted for 30% of the measured data, the LAI estimation accuracy of K. candel of the DNN model improved the most (10.46%), the LAI estimation accuracy (R2) of K. candel of the DNN model increased by 0.0583, and RMSE decreased by 0.016.



4.4.2 The Effect of Training Sample Expansion for Estimating the LAI of Mangrove Communities Using the Transformer Model

Mangrove communities with the lowest LAI estimation accuracy were selected under different image data and the Transformer model was trained for sample expansion according to five sample expansion schemes. The improvement of the LAI estimation accuracy of different mangrove communities is shown in Table 6.

Figure 9 shows the changes in the LAI estimation accuracy of the Transformer model for different mangrove communities under different training sample expansion ratios (10–50%). The LAI estimation accuracy of A. corniculatum improved the most by training sample expansion, as shown in Figures 9A–F. With the increase in the number of extended training samples, the accuracy of the LAI estimation of different mangrove communities by the Transformer model increased by 0.1015–0.1644.




Figure 9 | Estimating mangrove LAI using the Transformer model under different sample expansion ratios. (A–C) Represents the variation trend of the estimation accuracy of the Transformer model for the LAI of 'Avicennia marina', 'Kandelia candel' and 'Aegiceras corniculatum' under S2,GF-3 and OHS image data with the enhancement of training sample data. (A–F) Indicates the variation trend of the estimation accuracy of the Transformer model for the LAI of 'Aegiceras corniculatum' under the OHS image data, with the increase of the training sample expansion ratio (0%-50%).



Compared with the DNN model, the influence of training sample expansion on the Transformer model was relatively small, but the LAI estimation accuracy (R2) of the Transformer model for different communities was also improved by 0.1015–0.1644. The optimal training expansion ratio of the Transformer model for the LAI estimation of three mangrove communities was 40% (AM), 20% (KC), and 30% (AC). Under the optimal expansion ratio, the amplitude of the LAI estimation accuracy of different communities increased by 7.18–15.55%, and R2 increased by 0.0419–0.076. The optimal expansion ratio of training samples for estimating the LAI of A. marina, K. candel, and A. corniculatum using the DNN model was 20, 30, and 40%, respectively. The LAI estimation accuracy (R2) of three communities increased by 0.0285–0.0674. With the sample expansion ratio reaching 50% of three mangrove communities, the training time of the DNN model for the LAI of A. marina, K. candel, and A. corniculatum increased by 6.28, 2.059, and 2.112 s, respectively. The training time of the Transformer model for A. marina, K. candel, and A. corniculatum increased by 17.361, 3.945, and 5.431 s, respectively.

As shown in Figures 8, 9, with the increase in the number of training samples of the DLR model, the LAI estimation accuracy (R2) of different mangrove communities by the DNN and Transformer models showed an upward trend, while RMSE gradually decreased. However, when the number of extended training samples reached 40% of the measured data, the improvement range of the LAI estimation accuracy of different mangrove communities began to slow down significantly (Table 6). By training sample expansion, the LAI estimation accuracy (R2) of A. corniculatum was improved by 0.2631 and 0.1415 under GF-3 SAR and OHS images, respectively. Under GF-3 SAR and S2 images, the LAI estimation accuracy (R2) of A. marina increased by 0.1166 and 0.1015, respectively. The influence of training sample expansion on the LAI estimation accuracy (R2) of different communities was A. corniculatum > K. candel > A. marina.





5 Discussion

This study found that after data dimension reduction, the number of combined VEGETATION indices used for LAI estimation of different mangrove communities was more than that of vegetation indices (Table 3), and high estimation accuracy was obtained (R2 = 0.6971~0.713, RMSE=0.1352~0.1897). This was because the spectral similarity of mangrove communities and the vegetation index only uses limited spectral bands, which cannot make full use of effective information of spectral bands. The combined features were used to arrange and combine all band information of multispectral image, which can estimate the characteristics of different communities more accurately. It was the same conclusion as that of Zhu et al. (2017); Feng et al. (2019) and Curran et al. (1992). In this study, under UAV images, the average LAI estimation accuracy of different communities (R2 = 0.5865~0.6416) was superior to other images; This indicated that UAV images had better applicability for LAI estimation of mangroves. but it was different from the conclusion of Guo et al. (2021). They found that the LAI model constructed by using the combined features under UAV images was not suitable for LAI estimation of mangrove communities. This may be because bare soil in 10m×10m plots under high-resolution UAV images has a more prominent impact on LAI estimation of different mangroves (Tian et al., 2017). However, in this study, single mangrove communities were measured one by one under UAV images, so that UAV images completely corresponded to each ground measured point, reducing the impact of bare soil on vegetation index. This study found that the reflectance range of different spectral bands also had certain influence on LAI estimation of mangrove communities, and the optimal spectral reflectance range for LAI estimation of mangroves by optical images was 650nm~900nm. This was consistent with the results of Zhen et al. (2021), who calculated the combinations of five types of vegetation indices in the spectral range of 400~1000 nm to estimate the mangrove SPAD and obtained good estimation results (R2 = 0.792, RMSE=3.578).

Compared with the single base model, the estimation accuracy (R2) of the ELR model for LAI of different mangrove communities was improved by 0.009~0.232 under optical and SAR images; This study found that ensemble learning algorithm can integrate the advantages of different algorithms, make up for the shortcomings of single algorithm, produce more robust estimation results, and can provide better generalization ability in regression prediction, This was consistent with the findings of (Dietterich, 2000). Ghosh et al. (2021) used multi-temporal image stack data set to estimate aboveground biomass of mangrove forests (RMSE 74.493t/ha), which was better than single data set (RMSE=151.149t/ha). The accuracy of AGB inversion using stack algorithm was further improved (RMSE was 72.864t/ha). After data dimension reduction, the LAI estimation accuracy (R2) of DNN and Transformer models for mangrove communities could reach up to 0.6619, and the LAI estimation accuracy of Avicennia marina could reach above 0.61. It was found in this study that data dimension reduction was suitable for mangrove LAI estimation of DLR model, and data dimension reduction can eliminate redundant data caused by spectral information combination and improve the calculation efficiency and accuracy of estimation model. This was the same as the findings of Pyo et al. (2020). They combined convolutional autoencoders and CNN reflectance spectroscopy for data dimensionality reduction to estimate As, Cu, and Pb and obtained good estimation results (R2 = 0.86, 0.72 and 0.82).

This study found that insufficient training data would lead to overfitting of the model and reduced the accuracy of model estimation. The average LAI estimation accuracy of the Transformer model for Avicennia marina (R2 = 0.6355) was only 0.006 lower than that of the ELR model (R2 = 0.6416). However, the mean LAI estimation accuracy (R2) of Transformer model for Kandelia candel was 0.149 lower than that of ELR model. It was also found that training sample expansion can reduce the measured data required for DLR model training and effectively improve the LAI estimation accuracy of the model. In this paper, the accuracy (R2) of LAI estimation of mangrove communities by DNN and Transformer models increased by 0.1166~0.2037 and 0.1015~0.1644, respectively, after the extension of training samples. This obtained the same conclusion as Huang et al. (2020). At the same time, this study found that with the increase of the expansion proportion of training samples, the LAI estimation accuracy (R2) of different mangrove communities by DNN and Transformer models was rapidly improved, When the expansion data amount reached 40% of the measured data, the growth trend of estimation accuracy would slow down. Therefore, we set the maximum expansion ratio of training samples estimated by LAI of mangroves as 40%, which was the identical to the findings of Chen et al. (2017).



6 Conclusion

This study proposed a novel approach for estimating mangrove LAI by combining training sample expansion with the DLR algorithm to resolve the problem of insufficient field measurement and quantitatively evaluated the ability of the ELR and DLR algorithms to estimate the LAI of different mangrove communities using multispectral, hyperspectral, and SAR images. The UAV images produced the highest LAI estimation accuracy of different mangrove communities (R2 = 0.597–0.619). GF-3 SAR images have high estimation accuracy (R2 = 0.567) for the LAI of A. marina with high coverage. The ELR algorithm outperformed the DLR algorithm in mangrove LAI retrieval, which has better stability and higher estimation accuracy (R2 = 0.5266–0.713), and was the optimal model for mapping mangrove LAI. The Transformer model produced a better LAI estimation (R2 = 0.6355) for A. marina, which was 0.007–0.037 higher than the DNN model. The DNN model achieved a better LAI estimation for K. candel (R2 = 0.5577). Training sample expansion improved the performance of the DLR models for LAI retrieval. When the expansion ratio of training samples increased from 10 to 50%, the estimation accuracy (R2) of the DNN and Transformer models for mangrove LAI increased by 0.1166–0.2037 and 0.1037–0.1644, respectively. The effect of training sample expansion on the LAI estimation of different communities was in the order of A. corniculatum > K. candel > A. marina. With the same LAI estimation accuracy, the sample enhancement method presented in this paper could reduce the number of field measurements by 20–40%.
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Vegetation is the functional subject in the wetland ecosystem and plays an irreplaceable role in biodiversity conservation. It is of great significance to monitor wetland vegetation for scientific assessment of the impact of vegetation on ecological environment and biodiversity. In this paper, a method for extracting wetland vegetation based on short time series Normalized Difference Vegetation Index (NDVI) data set was constructed. First, time series NDVI data were constructed using Sentinel-2 images. Then, the Support Vector Machine (SVM) classifier was used to classify the wetland vegetation types. The distributions of the main wetland vegetation in the study area in 2018 and 2020 were got. Finally, the land cover transfer matrix was calculated to analyze the spatial pattern and change of wetland vegetation emphatically from 2018 to 2020. Based on 46 Sentinel-2 images acquired in 2018 and 2020, the spatial pattern and change of vegetation in the Yellow River Delta wetlands were extracted and analyzed in this paper. The results show that: (1) The method for extracting wetland vegetation in estuary delta based on PIE-Engine platform and short time series NDVI data constructed in this paper can effectively extract the wetland vegetation information. The overall accuracy of the classification results reached 90.47% in 2018 and 80.30% in 2020. The Kappa coefficient of the classification results are 0.874 in 2018 and 0.739 in 2020 respectively. Compared with the results from the random forest classification method and the maximum likelihood classification method, the accuracy is improved by 6.40% and 13.04%, and the Kappa coefficient is improved by 0.055 and 0.069. (2) There were significant changes in vegetation coverage in the Yellow River Delta wetlands from 2018 to 2020. The Spartina alterniflora increased by 3.74km2. The Suaeda salsa degraded seriously, and the total area decreased by 20.38km2. In addition, the increase of Spartina alterniflora effectively guaranteed the stability of the coastline in the study area. This study can provide a theoretical basis for wetlands vegetation classificaton, and the classificaton results can provide scientific reference for protecting the ecological environment of wetlands and maintaining ecological stability. 
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Introduction

As one of the most dynamic and valuable ecosystems in the coastal zone, salt marsh wetland has a variety of ecological functions, such as intercepting sediment, coastal protection, water purification and food supply, while also being some of the most threatened areas (Costanza et al., 1997; Sun et al., 2016; Borges et al., 2021). The Yellow River Delta wetlands plays an irreplaceable role in providing humans with land, tourism and natural resources, so it is of great significance to protect the Yellow River Delta wetlands (Wang et al., 2022). However, due to the single vegetation type of the wetland ecosystem in the Yellow River Delta in early years, the ecological environment is very fragile and easily disturbed by natural or human factors (Liu et al., 2021). Since the 1990s, relevant departments in China have introduced Spartina alterniflora into the Yellow River Delta to improve the salt marsh wetland environment, and succeeded in trial planting (Zuo et al., 2012; Huang et al., 2022). Then, the Spartina alterniflora spreads rapidly to the intertidal zone of Yellow River Delta wetlands. In the 21st century, Spartina alterniflora has become one of the main vegetation communities in this region (Wan et al., 2009), showing strong invasiveness. The introduction of Spartina alterniflora has created great ecological benefits for the Yellow River Delta, but the explosive spread of Spartina alterniflora threatens the biodiversity and ecological stability. Therefore, it is of great significance to quantitatively monitor the species distribution of vegetation for protecting wetland biodiversity and maintaining the sustainable development of the ecosystem.

Medium and low resolution remote sensing images play an important role in wetland monitoring, including ecosystem evaluation (Wang et al., 2021), biomass inversion (Yu et al., 2022), and monitoring of seasonal and spatial variability (Daggers et al., 2020). In the early, medium and low resolution remote sensing images have been used to monitor Spartina alterniflora (Mao et al., 2019; Cavallo et al., 2021). But the spectral characteristics of Spartina alterniflora were similar to those of other green vegetation, such as Phragmites australis, they could not distinguish Spartina alterniflora accurately from other vegetation. With the further study, researchers found that Spartina alterniflora and other vegetation have significant differences in growth cycle. This is manifested in the differences of different spectral features (Zheng et al., 2017) and texture features (Guo et al., 2020) in optical images, and in the characteristics of backscattering coefficient (Hu et al., 2021) and coherence (Li Z. J. et al., 2022) in SAR images. At present, medium and low resolution remote sensing images are effective materials for monitoring Spartina alterniflora and vegetation classification in a large area. Mao et al. (2019) applied the multi-scale segmentation method to process Landsat 8 OLI images, used the object-oriented SVM classification algorithm to monitor the spread of Spartina alterniflora in coastal areas of Mainland China from 1995 to 2015, and analyzed the invasion of Spartina alterniflora in different coastal areas based on available image data. It was found that the rapid spread of Spartina alterniflora had potential harm to coastal wetland ecology in China. Cavallo et al. (2021) studied the evolution of land cover in Albufera wetland in Spain in winter by using Sentinel-2 and Landsat 8 OLI images, with an overall accuracy of over 95%. Chen et al. (2021) land-use researched the landscape patterns of Zhoushan Island using multi-temporal Landsat satellite data, the classification results from 1984 to 2020 is over 75%. The above scholars verified the feasibility of vegetation classification with medium and low resolution remote sensing images.

Early wetland vegetation monitoring was limited to single species monitoring (Wan et al., 2009; Chen et al., 2020; Ren et al., 2021). The remote sensing images with medium and low resolution, such as Landsat 8 and Sentinel-2, could complete the task of monitoring the wetlands in a large area (Wang et al., 2020; Ashok et al., 2021). However, in further exploring the influence mechanism between invasive species and native species in wetland environment, it is urgent to carry out fine and quantitative monitoring of salt marsh vegetation community. Due to the limitation of satellite image resolution, it cannot effectively monitor different vegetation communities using the classification results of medium and low resolution remote sensing images. It is an important challenge for monitoring the wetland vegetation. The high resolution remote sensing images can better monitor vegetation by using texture features, such as Worldview images, UAV aerial images and multispectral images (Jiao et al., 2019; Wang et al., 2019; Zhu et al., 2019). However, due to expensive data and long image acquisition cycle, it is difficult to obtain a large amount of high-quality data to form an effective long time series monitoring, which cannot be promoted in practical application. In addition, due to the complexity of wetland environment, the traditional use of multi-spectral features (Zheng et al., 2017; Jiao et al., 2019) and texture features (Wang et al., 2018) for monitoring wetlands cannot well meet the needs of research. Therefore, how to obtain more valuable information from the remote sensing images with medium and low resolution for classification has become an urgent problem to be solved.

Vegetation phenology information (Zeng et al., 2020) records vegetation growth characteristics from time scale, providing a new idea for wetland vegetation classification. Relevant scholars have carried out a lot of research in this aspect. Such as Sun et al. (2016) for the first time introduced temporal phenology information and temporal spectrum information of remote sensing image into monitoring the vegetation of salt marsh, and used HJ-1 temporal Normalized Difference Vegetation Index (NDVI) image to get the vegetation classification results of Salt marsh in Jiangcheng, and the classification accuracy reached 88.2%. Since the Sentinel-2 satellite launching in 2017, Sentinel-2 satellite images, as one of the representatives of medium and low resolution images, have become an important data source for time series analysis, wetland vegetation monitoring and other related studies (Mahdianpari et al., 2018; Sun et al., 2020). Cai et al. (2019) used the data fusion between MODIS and Sentinel-2 to obtain multi-temporal Sentinel-2 data and studied rice classification. The overall accuracy of classification based on object-oriented random forest algorithm was 95%. When targeting complex communities, Sentinel-2 can also effectively map the distribution of vegetation. For example, Rapinel et al. (2019) used Sentinel-2 temporal images to map the distribution of seven vegetation communities in the Bay of Mont Saint-Michel in France using unsupervised classification, with an overall accuracy of 78%. However, under the background that the classification accuracy was less than 80%, Vrieling et al. (2018) introduced Sentinel-2 time series NDVI information, and verified that the vegetation phenological information by using spectral features could be effectively obtained based on the time series Sentinel-2 images.

Time series data has great potential in monitoring vegetation and has received extensive attention from researchers (Chapple and Dronova, 2017). However, it requires complex computation and expensive storage equipment to construct and store time series data, which seriously hinders the application and popularization of time series data. The cloud computing method provides researchers with powerful computing capacity and cloud storage space. It can overcome the problems of low efficiency such as local download, storage and pre-processing, and is widely used in monitoring the land cover and change in a large scale (Liang et al., 2020; Akhoondzadeh, 2022; Li Z. J. et al., 2022; Ning et al., 2022). PIE-Engine (Cheng et al., 2022) is an online remote sensing cloud computing open platform integrating real-time distributed computing, interactive analysis and data visualization. It contains an elastic big data environment for automatic management and integrates technologies such as multi-source remote sensing data processing, distributed resource scheduling, real-time computing, batch computing and deep learning framework. PIE-Engine remote sensing computing cloud service platform combines massive remote sensing data and computing resources to quickly realize complex image calculation through simple codes, providing open data and elastic computing force support for research in the field of earth science.Compared with Google Earth Engine (GEE) (Li X. et al., 2022), PIE-Engine lowers the barrier for Chinese researchers to learn and use with its detailed Chinese help documents, communication community and friendly interactive interface. Therefore, based on PIE-Engine, this paper used Sentinel-2A to construct intensive short time series NDVI data (number of images > 12) to extract salt marsh vegetation in the Yellow River Delta wetlands, and then explored the wetland vegetation distribution pattern and change characteristics from 2018 to 2020. It can provide scientific reference for protecting and managing the Yellow River Delta wetlands and maintaining wetland biodiversity and ecological stability.

The structure of this paper is as follows: In Section 2, the situation of the study area and the experimental data are introduced. Section 3 is the study method of this paper. Based on PIE-Engine remote sensing cloud computing platform, a method for extracting the wetland vegetation based on short time series NDVI data set was constructed. Section 4 is the study results of this paper, including the thematic map of wetland vegetation classification in the Yellow River Delta wetlands in 2018 and 2020, as well as the accuracy verification. In section 5, the spatial and temporal change analysis of vegetation in the Yellow River Delta wetlands was carried out, and the spatial distribution and change characteristics of the invasive species – Spartina alterniflora were mainly analyzed. In the last section, some important conclusions were given.



Data and materials


Study Area

The Yellow River Delta wetlands is selected as the experimental area in this paper. The Yellow River Delta is located in the south of Bohai Bay and the west of Laizhou Bay in China (Xie et al., 2022), and its latitude and longitude coordinates are 37°35’N ~ 37°52’N, and 118°56’E ~ 119°18’E. It mainly distributes in Dongying, Shandong Province, China. It is the estuary delta with the largest newly added land area in China. The Yellow River Delta located in the mid-latitude warm temperate zone, has a sub-humid continental monsoon climate with distinct four seasons, an average annual temperature of 12.1 °C, and annual precipitation of about 560-590mm, which varies greatly from year to year. The Yellow River Delta is the most well-preserved, broadest and youngest wetland ecosystem in China’s warm temperate zone (Zhang B. et al., 2019), which is rich in animal and plant resources.

The study area in this paper is the Yellow River Estuary, covering an area of about 487km2. This area is susceptible to the influence of the Yellow River sediment and ocean dynamic, resulting in a large change of shoreline sedimentation erosion. Therefore, this is a typical area for studying the change of wetland vegetation and ecological environment in the Yellow River Delta. The geographical location of the study area is shown in red box in Figure 1A. Figure 1B shows an enlarged view of the study area with Sentinel-2 image as the background.




Figure 1 | Study area map. (A) is the location of the study area; (B) is the specific delineation with Sentinel-2 optical remote sensing images as the background; (C) is Spartina alterniflora photographed in situ; (D) is Phragmites australis photographed in situ; and (E) is Suaeda salsa photographed in situ.



The native vegetation of the Yellow River Delta is mainly Phragmites australis, Suaeda salsa and Spartina alterniflora. Studies have shown that the restoration of Phragmites australis can significantly increase soil moisture content, reduce soil salinity, and provide habitat for migratory birds. Suaeda salsa is a salt polyethylene plant, which is prone to high humidity, saline-alkali resistance and barren resistance. Suaeda salsa growing in saline-alkali land can absorb and store water through succulent stems and leaves, and dilute the concentration of salt absorbed from the soil and transported to the plant, so as to improve soil salinity. In the low-tide zone, the tiller mutant of Spartina alterniflora is washed into the sea by seawater, which accelerates the outward expansion of Spartina alterniflora. Moreover, because of its high tolerance and adaptability to saline-alkali land, Spartina alterniflora seriously damages native species (Meng et al., 2020). In our field investigation, Spartina alterniflora, Phragmites australis and Suaeda salsa were photographed in situ, as shown in Figure 1C-E respectively. It can be seen that Phragmites australis and Spartina alterniflora are similar in appearance, mainly in green. Suaeda salsa is short and red in color, which is significantly different from Phragmites australis and Spartina alterniflora.



Data

In this paper, Sentinel-2 optical remote sensing satellite data were used to monitor the wetland vegetation in the Yellow River Delta. Sentinel-2 satellite (Spoto et al., 2012) consists of two satellites in synchronous orbit, which completed satellite network observation in 2017 (Sentinel-2A satellite was launched in June 2015, and Sentinel-2B satellite was launched in March 2017). After the network observation of these two satellites, the revisiting period in low latitude area is 5 days, and the revisiting period in high latitude area is only 3 days. Each of the Sentinel-2A/B satellites carries a MultiSpectral Imager (MSI) that captures images in 13 spectral bands with ground resolutions of 10m, 20m and 60m respectively. There are two product levels of Sentinel-2 data: Level-1C and Level-2A. The product of Level-1C is the original reflection data of the atmosphere at the top, and the product of Level-2A is the surface reflection data released by the European Space Agency (ESA) after atmospheric correction.

In this paper, Sentinel-2A Level-2A products were selected. The band B2 (Blue, 490nm), band B3 (Green, 560nm), band B4 (Red, 665nm), and band B8 (NIR, 842nm) with 10-meter resolution were used to calculate Normalized Difference Vegetation Index (NDVI), sample selection and accuracy verification. A total of 46 Sentinel-2A images were selected in this paper, including 25 images in 2018 and 21 images in 2020. The number of Sentinel-2A images acquired in different months in 2018 and 2020 is shown in Figure 2.




Figure 2 | The number of Sentinel-2A images acquired in different months in 2018 and 2020.






Method

To improve the accurate of monitoring vegetation in the Yellow River Delta wetlands, a method for extracting the wetland vegetation and change analysis using short time series NDVI data set was constructed based on PIE-Engine remote sensing cloud computing platform. Firstly, PIE-Engine was used for cloud screening, cloud removal and calculating the NDVI. Then, the Sentinel-2 images with large cloud coverage were removed by visual screening, and the short time series NDVI data were constructed. Finally, SVM classifier was used to monitor and classify wetland vegetation, and thematic maps of wetland vegetation coverage in 2018 and 2020 were obtained. On this basis, the land cover transfer matrix was calculated to analyze the wetland vegetation pattern and spatio-temporal evolution from 2018 to 2020. The overall flow chart is shown in Figure 3.




Figure 3 | Overall flow chart for analyzing vegetation changes in the Yellow River Delta wetlands from 2018 to 2020.




Construction of time series NDVI data set

NDVI is an important vegetation index for vegetation classification and biomass reproduction, which is widely used in monitoring the wetland vegetation (Mahdianpari et al., 2018; Sun et al., 2020). In this paper, based on PIE-Engine remote sensing computing cloud platform, Sentinel-2A surface reflectance data with cloud cover less 40% were obtained. Cloud detection band (QA60) was used to remove cloud from the Sentinel-2A image. Then, the NDVI of each Sentinel-2A image was calculated according to different bands (Sun et al., 2021). The calculation formula of NDVI is as follows:

 

Where Nir and Red represent the band B8 and band B4 of Senienel-2 MSI respectively.

According to the time of Sentinel-2A image acquisition, the calculated NDVI are matched pixel by pixel according to pixel coordinates to construct short time series NDVI data set. The creation process is completed on the PIE-Engine platform.

The cloud cover is calculated from the whole image, but the area of the study area is less than 1% of the Sentine-2 image area, so the low volume screening value may abandon part of the effective data. In order to obtain more available images, the threshold range of cloud cover screening is set to be large (0~40%) in the process of data acquisition. The short-time sequence NDVI data of multiple bands were obtained through the cloud platform, and the band serial number of corresponding time was obtained. Through visual interpretation of true color images, the bands which completely blocked in the study area were removed, and the images which partially blocked by clouds and fog were retained. But the results in a large range of null value areas in calculating NDVI data after cloud removal of some images in the study area. To solve this problem, visual inspection method was adopted to remove the image with large missing areas, so as to avoid interference caused by cloud cover in the process of obtaining original data. For the empty values in NDVI data after cloud removal, the nearest neighbor interpolation method was applied to fill the empty values in each pixel from the time dimension. Based on the attributes of the nearest pixel, the nearest neighbor algorithm was used to fill the missing attributes of the object behind the mask.



Time series NDVI analysis

The main vegetation communities in the Yellow River Delta region are rich, mainly including Phragmites australis, Spartina alterniflora and other vegetation suaeda grass is the main surface vegetation in this region. And they can be identified by visual interpretation in remote sensing images. In the classification process of this paper, the land features are classified into five categories, namely Spartina alterniflora (SA), Suaeda salsa (SS), Phragmites australis (PA), Open water (OW) and Tidal flat (TF). Among them, the buildings, saline-alkali land and tidal flats in the region with very similar spectral characteristics are divided into tidal flats. The distribution of Phragmites australis and Spartina alterniflora was relatively concentrated, and there were many intersections. The Sentinel-2 true-color images acquired from June to October in 2018 are shown in Figure 4. It can be seen from the figures that the characteristics of Phragmites australis, Spartina alterniflora and Suaeda salsa in different months are significantly different, and there are obvious seasonal changes. In the Sentinel-2 images from June to August, Phragmites australis was green. In Sentinel-2 images from August to October, Spartina alterniflora was green and Phragmites australis was dark purple. Suaeda salsa matures from October to November, showing “red carpet” on the Sentinel-2 images.




Figure 4 | Sentinel-2 true-color images of the Yellow River Delta wetlands in 2018. (A) is the true-color image of Sentinel-2A acquired in June; (B) is the true-color image of Sentinel-2A acquired in July; (C) is the true-color image of Sentinel-2A acquired in August; (D) is the true-color image of Sentinel-2A acquired in September; (E) is the true-color image of Sentinel-2A acquired in October.



Based on true-color Sentinel-2 images, ground truth were selected and the distribution is shown in Figure 5A. According to the divided ground object types and time series data, the time series NDVI curves of different land objects in different months were counted, as shown in Figure 5B. It can be seen from the curves that there are significant differences in time series NDVI of different land types, which can provide a theoretical basis for subsequent classification.




Figure 5 | The training samples location and time series NDVI curves. (A) The distribution of training samples; (B) Time series NDVI curves based on training samples. SA, Spartina alterniflora; OW, Open water; TF, Tidal flat; SS, Suaeda salsa; PA, Phragmites australis.





SVM classification method

Support Vector Machine (SVM) classifier (Cortes and Vapnik, 1995) is widely used in monitoring the wetland vegetation because it can better deal with the imbalance of wetland vegetation samples (Ahmed et al., 2021; Zhang and Lin, 2022). The SVM classifier firstly normalizes the data, and then the data to be classified is mapped to the factor space of high dimension to find the optimal decision boundary and classify data into different categories. SVM was originally applied to binary classification problems. In two dimensions, two kinds of points that can be completely separated by a line are called linearly separable. The line that extends the two-dimensional space to the multi-dimensional space and divides each category: WTx+b=0 is called the hyperplane, which is the decision boundary of the furthest distance closest to the two types of samples sought by SVM. SVM obtains the optimal decision boundary by maximizing the solution to maximize margin. The binary classification problem is extended to the multi-classification problem, that is, for each class, it is treated as +1 class and all samples of the remaining M-1 classes are treated as -1 class, and a binary SVM is constructed. As shown in the Figure 6 below, for class 1 shown in the red dot, all other categories are regarded as -1 classes and binary SVM is constructed, whose decision boundary is gray dotted line. For the categories shown by the red dot, all other categories are regarded as -1 classes, and binary SVM is constructed, whose decision boundary is a red dotted line. We get others by the similar methods. SVM method classifies nonlinear data by identifying a decision boundary. In the case of non-linear data without linear classification, this decision boundary can increase the dimension of data artificially by using kernel function (Yu et al., 2021).




Figure 6 | Classification principle of SVM.



In this paper, SVM classifier was used to classify wetland vegetation based on short time series NDVI data. The specific method was as follows: According to the different characteristics of five typical lands in different times in the Yellow River Delta wetlands, Sentinel-2 multi-temporal images were used as the judgment basis to select training samples; The constructed short time series NDVI data set and training samples were input into the SVM classifier. To ensure the objectivity of sample selection, the samples were randomly selected as training, and the maximum sampling value was set to 500.




Results


Classification results

According to 46 Sentinel-2 optical remote sensing images in 2018 and 2020, the wetland types in the Yellow River Delta are classified based on the method constructed in this paper, and the classification results are shown in Figure 7. The classification result in 2018 is shown in Figure 7A, and the classification result in 2020 is shown in Figure 7B. Legends are all represented in the lower right corner of the figures, where the red represents Spartina alterniflora, green represents Phragmites australis, yellow represents Suaeda salsa, sky blue represents Tidal flat, and dark blue represents Open water.




Figure 7 | Classification results from the method constructed in this paper. (A) is the classification result in 2018. (B) is the classification result in 2020.



As can be seen from Figure 7, the distribution of ground objects in the Yellow River Delta wetlands was complex. In 2018 and 2020, and a large amount of Spartina alterniflora was distributed along the estuary. At the same time, there was a lot of trivial Suaeda salsa in the Tidal flat, especially in the west of the estuary, but it can be seen that the number of Suaeda salsa is significantly reduced. Phragmites australis were mainly distributed on both sides of the Yellow River channel. There is obvious interlacing between Spartina alterniflora and Phragmites australis near the estuary, and the situation is similar in 2018 and 2020. In general, the cover pattern of wetland vegetation in the Yellow River Delta is as follows: from the coastal edge to the Yellow River channel, the vegetation distribution presents a pattern of “Spartina alterniflora - Suaeda salsa - Phragmites australis”.



Accuracy verification

Confusion matrix verification (Townsend, 1971) has been proved to be effective in verifying classification accuracy. In this paper, combined with GF-2 remote sensing images with high resolution, Google Earth images and the classification results of other scholars (Wang et al., 2022; Li Z. J. et al., 2022; Zhang B. et al., 2019), 127 verification samples were used to evaluate the accuracy of classification results. The locations of verification samples are shown in Figure 8. The number of verification samples is as follows: 27 Spartina alterniflora, 24 Suaeda salsa, 24 Phragmites australis, 36 Tidal flats, and 16 Open water.




Figure 8 | The distribution of Verification samples.



The accuracy verification results are shown in Table 1. The overall classification accuracies in 2018 and 2020 are 90.47% and 80.30% respectively, and the kappa coefficients in 2018 and 2020 are 0.874 and 0.739 respectively. It is worth noting that in 2018 and 2020, the classification accuracies of Spartina alterniflora are high, about 94.34% and 96.72% respectively. It can be concluded that the method proposed in this paper can achieve good classification accuracy, and it can meet the needs of spatial and temporal change analysis of wetland vegetation.


Table 1 | Accuracy verification of the classification results in 2018 and 2020 from the method constructed in this paper.



In order to verify the advantages of the proposed method in monitoring the wetland vegetation types, the classification result in 2018 from the proposed method was compared with the classification results obtained by two traditional classification methods: the maximum likelihood classification method and the random forest classification method. Figure 9A is the result from the proposed method; Figure 9B is the result from the random forest classification method; Figure 9C is the result from the maximum likelihood classification method. As can be seen from Figure 9, the classification result from the proposed method in this paper is relatively smooth, especially the distribution of Spartina alterniflora is relatively consistent with the real situation. In addition, Tidal flat also shows a more realistic classification effect.




Figure 9 | Comparison of different classification methods in 2018. (A) is the result from the proposed method; (B) is the result from the random forest classification method; (C) is the result from the maximum likelihood classification method.



The same verification samples of the confusion matrix verification method were used to verify the accuracy of the three classification results in 2018, and the obtained accuracy is shown in Table 2. As can be seen from the table, compared with the random forest classification, the overall accuracy and Kappa coefficient of the proposed method were improved by 6.40% and 0.088, and the classification accuracy of Spartina alterniflora was improved by 12.13%. Compared with the maximum likelihood classification, the overall accuracy and Kappa coefficient of the proposed method were improved by 13.04% and 0.174, and the classification accuracy of Spartina alterniflora was improved by 10.68%. Therefore, the proposed method has achieved better results in monitoring the vegetation types in the Yellow River Delta wetlands. Especially in the monitoring Spartina alterniflora, the accuracy has significantly improved.


Table 2 | Accuracy verification of different classification methods in 2018.






Discussion and analysis


Wetland vegetation change

To explore the process of wetland vegetation change, the transfer matrix of land use type was calculated based on the classification results in the Yellow River Delta wetlands in 2018 and 2020, as shown in Table 3, and the distribution and change of wetland vegetation were analyzed. According to Table 3, the coverage areas of Spartina alterniflora, Suaeda salsa and Phragmites australis in 2018 were 31.72 km2, 52.46 km2 and 38.46 km2, respectively. In 2020, the coverage areas of Spartina alterniflora, Suaeda salsa and Phragmites australis were 35.46 km2, 32.08 km2 and 39.52 km2, respectively. Compared with 2018, the coverage area of Spartina alterniflora increased by 3.74 km2, the coverage area of Phragmites australis increased by 1.06 km2, and the coverage area of Suaeda salsa decreased by 20.38 km2.


Table 3 | Land cover transfer matrix from 2018 to 2020 in Yellow River Delta wetlands.



The growth of Phragmites australis vegetation community was relatively stable, mainly distributed in perennial or seasonal water flood beaches, depression and soil erosion zone at the Yellow River estuary. In the boundary between Spartina alterniflora and Phragmites australis on both sides of the estuary, the area of Phragmites australis decreased by 0.39 km2 due to the expansion of Spartina alterniflora. However, some Spartina alterniflora were also replaced by Phragmite australis in the Yellow River estuary. Figure 10 shows the change of wetland vegetation coverage. In Figure 10, a large area of Suaeda salsa disappeared, as shown in blue. This area was eroded by soil salinization, resulting in vegetation degradation, which requires more attention. Spartina alterniflora was mainly distributed in the south and north sides of the Yellow River estuary. From 2018 to 2020, Spartina alterniflora increased by 3.74 km2, and its expansion rate was 11.8%. The expansion area was concentrated in the boundary area of Spartina alterniflora and Suaeda salsa and the boundary area of Spartina alterniflora and Phragmites australis, and a total of 2.42 km2 of Phragmites australis and Suaeda salsa were invaded. The direction of expansion was from Spartina alterniflora to Phragmites australis and Suaeda salsa. In terms of species competition, Spartina alterniflora had good adaptability to saline-alkali wetland environment, and the continuous growth of Spartina alterniflora seriously invaded the living space of Suaeda salsa and Phragmites australis. On both sides of the Yellow River estuary, Spartina alterniflora increased significantly and replaced part of Phragmites australis from 2018 to 2020.




Figure 10 | Typical vegetation cover changes map. The yellow represents the change from Open water to Spartina alterniflora. The violet represents the change from Phragmites australis to Spartina alterniflora. The red represents the change from Suaeda salsa to Spartina alterniflora. The blue represents the change from Suaeda salsa to Tidal flat.





Spartina alterniflora change and ecological benefit

Using remote sensing images to extract coastline data can usually accurately separate water and land areas (Chen et al., 2022). In this paper, to further analyze the expansion of invasive species Spartina alterniflora at the Yellow River estuary, the classification results were combined to obtain the binary image of land and sea, and the cavity filling was carried out. The filled binary image was vectorized as the land and sea boundary. Because the method adopted in this paper has high accuracy for Open water and other non-vegetation objects, it can obtain the water-land boundary with high precision. The distribution of Spartina alterniflora at the Yellow River estuary is shown in Figure 11. Figure 11A shows the distribution of Spartina alterniflora in 2018, and Figure 11B shows the distribution of Spartina alterniflora in 2020. Green vegetation communities can be observed in Tidal flats formed by sediment deposits outside the shoreline.




Figure 11 | Water-land boundary map. (A) is the distribution of Spartina alterniflora in 2018; (B) is the distribution of Spartina alterniflora in 2020.



After the Yellow River carries a large amount of terrestrial sediment into the sea from the upper reaches, the land in the Yellow River Delta is deposited near the shore with the decrease in flow velocity. The coastline of the Yellow River Delta is vulnerable to sea erosion, so Spartina alterniflora is introduced to protect the coastline. Figure 12 shows the changes between land and water and the ever-present Spartina alterniflora area from 2018 to 2020. Combined with the extracted coastline, it can be found that in Figure 12, the water-land boundary of the area with Spartina alterniflora distribution in the red box at the bottom right presents a trend of outward expansion, as shown in the yellow area. There is no Spartina alterniflora distribution in the southwest and north coastal areas, and the water-land boundary is seriously eroded, as shown in the blue area. In the southwest of the Yellow River Delta wetlands (the bigger yellow box), Tidal flats are severely eroded by the sea. In Figure 12, Spartina alterniflora in the south showed a significant trend of outward expansion, as shown in the red area. In conclusion, Spartina alterniflora effectively attenuates seawater erosion and plays a positive ecological benefit in protecting the coastline.




Figure 12 | Land and water changes from 2018 to 2020.






Conclusions

In this paper, based on PIE-Engine remote sensing cloud computing platform and 46 Sentinel-2 optical remote sensing images, a method for extracting wetland vegetation based on short time series NDVI data set was constructed. SVM classifier was used to classify the main vegetation in the Yellow River Delta wetlands in 2018 and 2020, and the change of wetland vegetation from 2018 to 2020 was analyzed. Some important conclusions can be drawn:

	The overall accuracy of vegetation classification in 2018 and 2020 obtained by using the method proposed in this paper are 90.47% and 80.30% respectively, and the Kappa coefficients are 0.874 and 0.739 respectively. Compared with the results from the random forest classification method and the maximum likelihood classification method, the overall accuracy is improved by 6.40% and 13.04%, the Kappa coefficient is improved by 0.088 and 0.174, and the classification accuracy of Spartina alterniflora is improved 12.13% and 10.68%. The proposed method provides a basis for monitoring the salt marsh vegetation using remote sensing cloud computing platform in large scale, and it provides a scientific reference for classification the vegetation community and ecological evolution in the Yellow River Delta.

	The cover pattern of wetland vegetation classification in the Yellow River Delta wetlands is as follows: From the coastal edge to the Yellow River channel, the vegetation distribution presents a pattern of “Spartina alterniflora - Suaeda salsa - Phragmites australis”. From 2018 to 2020, the area of Suaeda salsa in the Tidal flat was degraded in a large area, and the vegetation coverage decreased by 20.38 km2. Spartina alterniflora continued to expand in the south and north of the Yellow River estuary, and the area increased by 3.74 km2. Meanwhile, it expanded from the coastline to the Yellow River channel, occupying 2.42 km2 of local vegetation area. However, Spartina alterniflora still showed positive effects in some aspects. On the southwest coast of the Yellow River Delta wetlands, where there was no distribution of Spartina alterniflora, the Tidal flats were severely eroded by seawater. However, in the coastal areas where Spartina alterniflora existed, the community of Spartina alterniflora showed an obvious trend of outward expansion, which effectively weakened the erosion of seawater.



It provides an effective technical method for clssification and analyzing the vegetation in Yellow River Delta wetlands in this paper, and the results can also provide a reference for local ecological protection. However, the study still has the following shortcomings, which need further research for improvement: Although Spartina alterniflora can be observed in the image outside the water-land boundary of the south of the Yellow River Delta estuary, SVM classifier cannot detect the vegetation in these areas from the NDVI data because the area has been invaded by sea for a long time. In addition, due to the limitations of the algorithm, cloud shadow and fog cannot be removed, so there are probably some errors in the final results.
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In the last decades, climate change and the rapid urbanization due to the development of the coastal economy have led to biodiversity loss and the fragmentation of habitat in many coastal zones. The presence of protected areas cannot prevent the progress of land degradation. However, these areas are very important because they provide significant ecosystem services and affect local tourism. With regard to increasing adaptation strategies to human pressures and climate change, the present study proposes a detailed monitoring activity and an ecological restoration plan which could improve the resilience of a protected coastal zone in the Pantano forest of Policoro, located on the Ionian coast (southern Italy). In this area, continuous phenomena of intensive deforestation, hydraulic reclamation actions, and fires have reduced the native species of particular naturalistic value, favouring the advancement of desertification, coastal erosion, and saltwater intrusion. The proposed actions are derived from a preliminary analysis on maps, UAV-images, climate data and from meetings with the local community. The operative process detailed in this article could be applied to other protected areas which are subjected to the same phenomena and problems.
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Introduction

Protected coastal areas (PCAs) provide a multitude of ecosystem functions and services able to improve the delicate ecological balance and human well-being (Rousseau and Deschacht, 2020; Samuelsson et al., 2020). They are essential for reducing the effects of climate change through the protection of coasts from erosion and of the hinterlands from storm surges, flood events, and extreme winds (Yáñez-Arancibia and Day, 2004; Spalding et al., 2014; Epanchin-Niell et al., 2017; Littles et al., 2018; Ferro-Azcona et al., 2019). Thanks to the presence of a rich biodiversity, these areas reduce greenhouse gas emissions by sequestering and storing large amounts of carbon, help to improve water quality, and regulate water availability through filtration, groundwater renewal and maintenance of natural flows (Spalding et al., 2014; Epanchin-Niell et al., 2017; You et al., 2018).

At the same time, PCAs are places of interest for tourism and for recreational and leisure activities, thus contributing to the socio-economic growth of entire territories (You et al., 2018; Zhai et al., 2020).

In many cases PCAs host lowland forests that act as windbreaks (You et al., 2018), preventing sand and marine aerosol from reaching agricultural land and plantations, and thus enabling their use.

In the past few decades, PCAs have been subjected to serious threats deriving mainly from climate change which, together with an increase in intensity and a reduction in the duration of rainfalls, higher temperatures, and the rise of sea level, favours a rapid alien species invasion (Epanchin-Niell et al., 2017) and coastal habitats fragmentation and loss (Yu et al., 2017; You et al., 2018).

Other stressors are related to human activities represented by urban expansion, agricultural production, industrialization, mining, tidal flat farming, development of tourist infrastructures, logging, and land reclamation, which have caused phenomena of marine pollution, soil degradation, loss of biological diversity, and reduced resilience of coastal communities (Kim et al., 2017; Yu et al., 2017; Adhikari and Hansen, 2018; Xie et al., 2018; You et al., 2018; Zhai et al., 2020).

Hence the importance of implementing actions to safeguard and redevelop PCAs in order to ensure the continuous supply of ecosystem services, prevent biodiversity loss, and achieve sustainable and integrated management of landscapes and natural resources, according to the goals outlined by the Agenda 2030, the Treaty 2002/413/CE ICZM (Integrated Coastal Zone Management), the Directive 2008/56/CE (Marine Strategy Framework Directive, MSFD), the Commission Decision 2010/477/UE, and the Directive 2014/89/UE (Maiolo et al., 2020).

In the ongoing discussion on the need for a post-2020 Global Biodiversity Framework, the time is ripe for showcasing the essential role of PCAs in maintaining biodiversity, and promoting global human health should be deemed essential. It is equally important to remember that the protection of natural capital, including ecosystem resilience and regeneration, biodiversity protection and adaptation to climate change, can also be an economic multiplier (Hepburn et al., 2019). Investments in nature-based solutions can foster long-term health and promote job creation (Hockings et al., 2020). In the last few years, the number of research papers on coastal restoration has considerably grown (Zhang et al., 2018), together with the many restoration projects implemented worldwide (Bayraktarov et al., 2016), many of which are centred on the return to a condition of the ecosystem as close as possible to the original one. However, these restoration activities might not be entirely feasible in the future due to various obstacles, such as climate change and anthropic activities (Hobbs and Norton, 1996). In addition, empirical research and experimental tests over recent decades have demonstrated that incorporating indirect positive interactions among transplants and between foundation species can increase ecosystem resilience (Zhang et al., 2018). Therefore, ecological engineering is focussing on restoring habitats in a sustainable manner, taking into account both man and the environment, especially in places where human pressure is greater (Mitsch, 2012). In particular, the coastal protection infrastructures are considerably growing and will continue to do this according to the increase of populations and related intensification of hazards (Scyphers et al., 2011; Hinkel et al., 2014). However, the downsides of common coastal armouring strategies (e.g., seawalls, revetments, groins) also need to be considered: habitat loss (Titus, 1998), lower floral and faunal biodiversity (Gittman et al., 2016), and depressed socio-economic resilience (Smith et al., 2020), especially due to their expensive maintenance cost. In this view, ecosystem-friendly alternatives to traditional coastal defence structures are emerging, such as natural and nature-based infrastructure (Sutton-Grier et al., 2018), nature-based solutions (Nesshöver et al., 2017), hybrid infrastructure (Sutton-Grier et al., 2015), ecosystem-based coastal defence (Temmerman et al., 2013), soft ecological engineering (Strain et al., 2019), and living shorelines.

The substitution of hard structures with environmentally-friendly interventions and nature-based infrastructures (NBS), after having properly analysed the bio-geomorphic feedbacks concerning the ecosystems, is thus fundamental in order to create a more sustainable coastal economy (Speybroeck et al., 2006; Warnken and Mosadeghi, 2018; Ružic et al., 2019). Even the high cost involved in the use of NBS and their potential failures need to be taken into account, together with the specific nature of the area to be restored (Maiolo et al., 2020).

In addition to the NBS there are various measures of environmental improvement such as a correct landscape conservation design, dune, beach and shore face nourishments, re-location and retreat from coasts or decision support tools (Powell et al., 2019). The correct landscape conservation design is addressed to the habitat migration and to the extension of protected areas. These actions allow coastal habitats to: respond dynamically to sea level rise; secure additional long-term protection of habitat for fish, plants, and wildlife (Morelli et al., 2016); reduce habitat loss and degradation; maintain the diversity of habitats; facilitate shifts in species’ range, distribution, phenology and adaptation in response to changing conditions by providing corridors for migration and dispersal (Bartuszevige et al., 2016); secure freshwater and sediment inflows.

Dune, beach and shore face nourishments have been termed an environmentally friendly alternative to hard coastal protection structures, such as groins, revetments or breakwaters (Schoonees et al., 2019; Staudt et al., 2021). Unlike hard structures, these “soft” or “green” measures are believed to adapt to rising sea levels or changing sea states, and do not lead to scour or erosion of down drift beaches (Dean, 2002; Bird and Lewis, 2015). Beach nourishments increase the beach volume and can be used to restore or create new habitats for coastal and marine flora and fauna, such as seabirds, sea turtles etc. (Jones and Mangun, 2001; Van Egmond et al., 2018).

Re-location and retreat from coasts (e.g., shoreline setbacks and rolling easements) help protect coastal ecosystems by reducing anthropogenic impacts such as from structures that inhibit dynamic responses of habitats (e.g., shoreline armouring) and from runoff that can increase water pollution. They also enable the natural migration of the shoreline up to a point by reducing impediments from the built environment, if based on long-term estimates of erosion or sea level rise, and reserve habitat for vulnerable species, such as by prohibiting new development or construction within a certain distance from the coast. Lastly, decision support tools that allow managers to integrate and continuously update predictions of risk from climate change, land use, and human population growth projections can increase the effectiveness of different natural infrastructures and support short- and long-term biological, cultural, social, and economic goals (e.g., Bartuszevige et al., 2016; Powell et al., 2019). Some management options (e.g., retreat from coasts and open space preservation) could focus on risk reduction by moving people and property out of harm’s way, often with economic incentives like flood insurance discounts. When combined with other zoning and land use protections, these actions could create the secondary and tertiary benefits of increasing the persistence and resilience of natural habitats and species. For example, managing lands after the re-location of people or infrastructure in the coastal zone could enable the natural migration of coastal systems as needed in response to the relative sea level rise.

It often happens that restoration actions are carried out on an area with minimal or no knowledge of the natural resources state or how plant and animal species react and adapt to climate changes and human activities, as well as of what kind of interventions can reduce land degradation and biodiversity loss (DeAngelis et al., 2020; Binley et al., 2021). Unfortunately, the lack of funding has progressively reduced the monitoring activities both before and after the implementation of preservation projects and plans, allowing for only small-size interventions in limited areas (maximum 350 acres), and so reducing their efficacy (DeAngelis et al., 2020; Smith et al., 2020).

In this context, the main goal of the present paper is to illustrate a proposal of a detailed monitoring activity and an ecological restoration plan in a protected area located on the Ionian coast (southern Italy) in order to allow the conservation and provision of ecosystem services and to improve the resilience of coastal habitats. The case study is Pantano forest of Policoro where continuous phenomena of intensive deforestation, hydraulic reclamation actions, and fires have reduced the native species of particular naturalistic value, favouring the advancement of desertification, coastal erosion, and saltwater intrusion.

The proposed actions are derived from a preliminary analysis on maps, UAV-images, climate data, and from meetings with the local community. In this direction, a process involving the population has been set in motion, aiming at choosing and sharing environmental recovering actions and interventions leading to a River Agreement (Antunesa et al, 2009; Voghera, 2020). This will allow strengthening people’s bond with nature and thus their commitment to the environment (Camargo et al., 2009; Aceves-Bueno et al., 2015; Jakobcic and Stokowski, 2019), since the local community would be more aware of the actions to be adopted for the sustainable management of their own territory. This way, conflicts between the different stakeholders would be reduced and the conservation programs could benefit long-term (Cooper et al., 2007; Aceves-Bueno et al., 2015).

The operative process detailed in this article could be applied to other protected areas which are subjected to the same phenomena and problems.



Material and methods


Case study

The Pantano forest of Policoro is located at 40°6’-40°18’N and 16°30’-16°48’E in southern Italy, in the province of Matera, between the municipalities of Policoro and Rotondella (Figure 1). It is a protected natural area of about 4 km2 and has an altitude between 0 and 5 m asl. It includes, according to Directive 92/43/CE “Habitat”, the Site of Community Importance (SCI) “Bosco Pantano di Policoro and Costa Ionica Foce Sinni” and is a Special Area of Conservation (SAC).




Figure 1 | Study area location.



The Pantano forest of Policoro is located to the right of the river Sinni, near the mouth which, during the flood events, brings sand and clay to the area and contributes to its modelling with depressed areas and hills, influencing the diversification of the existing vegetation. It is characterised by an extensive flat surface with low and sandy beaches, sometimes pebbly. Until 1930, this area was covered by marshes that extended from the hilly inland areas to the sea and which have been reduced since the 1930s thanks to the construction of a drainage system (Figure 2). Currently, the water is carried into a dewatering pump and is partly used for irrigation purposes and partly discharged into the sea.




Figure 2 | Drainage system drawn on satellite image of 2019 acquired via web-service GoogleMaps (publisher: Data SIO, NOAA, U.S. Navy, NGA, GEBCO; year of publication: 10 August 2019; created map title: Google Landsat/Copernicus; access date 7 March 2022).



The area has a high biodiversity and is rich in habitats. In detail, the inner vegetation is mainly represented by a hygrophilous forest, while near the coastline it is characterised by psammophilous communities typically suitable to sandy environments.

The plant species of the hygrophilous forest are the field elm, the English oak, the black alder, the poplars, and the laurel. In addition, the area shows 27 species of fauna of community interest according to the Habitat Directives (42/93/EEC) and the “Birds” Directive (79/409/EEC) and in particular 21 species of birds, 2 of mammals, 2 of reptiles and 2 of invertebrates. The site is also an important rest area for migrating species such as the Osprey. In the riparian environments of the river Sinni and in the open channels there are the Spinarello, the Eel and the Otter, a species at risk of extinction and a priority of Annex II of the Habitat Directive. While the coastline and the shallow water host a large number of Carretta turtles and Cetaceans, in its deepest marine waters live the common dolphin, numerous pods of Stenellas and the Sperm Whale, the largest living carnivore.



Analysis of the area-specific phenomena

The intensive deforestation and hydraulic reclamation actions, already begun in the early 90s and aimed at the recovery of areas for agricultural use, have led to the gradual disappearance of forest cenosis and native species of particular naturalistic value, which have been replaced by shrubby Mediterranean scrub and meso-hygrophilous formations. In particular, these actions have reduced the forest area by about 8 km2. Furthermore, repeated fires over the years have caused excessive density and decay of the topsoil, scarcity of ecological corridors and excessive fragmentation of forests (Bovio et al., 2002). The Monte Cotugno dam, the largest reservoir in Europe in rammed earth (built between May 1972 and March 1983) and the extraction activities of gravel and sand from the bed have limited the supply of water and sediments of the river Sinni over time, thus altering the delicate eco-systemic balance of the area and favouring the advancement of the desertification, saltwater intrusion and coastal erosion. This latter, in addition to the reduction of river solid discharge, is caused by changes of wind pattern, wave climate and increase of wave energy. In this area, the directions of the wave motion characterised by the greatest energy are between 130° N and 150° N. Besides, the widespread presence of permanent and seasonal structures, built on the longshore sand dune close to the foreshore, amplified the wave action increasing the local erosion rates with an appreciable reduction in beach width. Studies of literature on shoreline changes for the Ionic coast of Basilicata region underlined how at the Sinni mouth there has been a retreat of the emerged beach of over 500 m in the last fifty years (Spilotro et al., 2006), with a beach loss ranging from 2 mm to 20 mm per year (Greco et al., 2005).

Figure 3 reports the evolution of land use from 1990 to 2018 in the area surrounding the Pantano forest. As evidenced by the maps, where only the land use typology over 0.5% is depicted, this area is covered by complex cultivation patterns, which have increased by about 14% since 1990. The remaining area is mainly constituted of fruit trees and berry plantations and non-irrigated arable land. Discontinuous urban fabric has given way to continuous one. A slight growth of industrial or commercial units (from 0.2% to 0.7%) and the birth of port areas are observed. Near the coasts, the transformation of a little part of broad-leaved and coniferous forests into mixed forests, the reduction of sand dunes and the disappearance of lagoons are visible. In detail, the last Corine Biotopes habitat map (2013), reported in Figure 4, underlines the presence of fruit and citrus orchards (37% and 16% respectively), extensive cultivation (11.5%), and Mediterranean Subnitrophilous grass communities (7.9%).




Figure 3 | Land use in 1990 and 2018 in the Pantano forest area.






Figure 4 | Corine Biotopes habitat map of Pantano forest surrounding in 2013.



A monitoring activity, carried out with UAV imaging between the end of 2020 and the beginning of 2021, was useful to evaluate some phenomena. For example, it showed the spread of desertification in the hinterland with the presence of non-vegetated areas (Figure 5A) and an absence of the retro-dune plants (Figure 5B). In addition, literature studies highlighted a retreat of the coastline equal to 30/40 cm per year, representing a threat to tourist structures and infrastructures (Greco et al., 2004; Greco et al., 2005) and puts the inland areas at risks of storm surges, strong sirocco winds and marine aerosol problems, especially in winter. This thinning of the beach (Figure 6A) has changed the vegetation in the area over time (Figure 6B). In fact, Figure 7 shows a scarce and uneven presence of Elymeto and Ammophila Arenaria, which do not favour the colonisation of other species or the growth of the dune. As a result, the pioneer maquis in direct contact with the beach is subject to the negative effects of the marine spray and winds (Figure 8).




Figure 5 | (A) Signs of desertification phenomenon in areas near the coast. (B) Disappearance of the back-barrier plants.






Figure 6 | Change of the vegetation due to the thinning of (A) north west and (B) southwestern area of the beach.






Figure 7 | Scarce and uneven presence of (A) Elymeto and (B) Ammophila Arenaria.






Figure 8 | Negative effects of the marine spray and winds in the (A) north west and (B) southwestern area of the beach.



Furthermore, the rise in temperatures has favoured the settlement of invasive alien species, seriously threatening the biodiversity and ecological integrity of the biotope. The invasive alien species are mainly artificial plantations consisting of pines, carried out in the past to protect the agricultural inland, and a rapid and progressive colonisation of woody plant weeds, such as Pinus spp., Eucaliptus spp., Robinia pseudoacaia, Acacia spp. and Agave. From an ecological point of view, the massive presence of these invasive species caused a serious impoverishment of biodiversity, trivializing the phytocoenoses and altering the trophic chains linked to the ecotones. For example, acacias have a greater degree of invasiveness and tend to spread to the detriment of native species. The Aleppo pine represents a concrete threat to the habitats, such as the habitat of priority interest 2250 “Coastal dunes with Juniperus”, with the presence of two junipers: Juniperus oxycedrus ssp. Macrocarpa and Juniperus phoenicea. Reforestation with Aleppo pine and eucalyptus, in addition to reducing the quality and heterogeneity of environment and landscape, constitutes a serious risk of fires.

The seasonal analysis of the maximum and minimum temperatures acquired by the gauge station located near to Forest Pantano (Figure 1) underlines a light increase in winter and autumn of Tmax and Tmin in the last five years (Figure 9). In particular, for the maximum temperature, an oscillating trend is observed around the average value determined in the period 2000-2021 equal to 21.38°C for winter and 33.26°C for autumn. Instead, there has been an increase in recent years of minimum temperatures in the winter months, which are approximately 20% higher than the average value (-3.55°C) in 2019 up to 50% by 2021, while in the autumn of the same years the value is almost four times the average value (1.58°C).




Figure 9 | Maximum and minimum seasonal temperatures acquired by the gauge station in 2000-2021 period in (A) winter; (B) spring; (C) summer and (D) autumn.



In the same period, an unusual decrease of rainfall is noted in the winter months, which influences the water discharge in rivers for the rest of the year (Figure 10A). In fact, a reduction in 2019 of about 27% compared to the average value calculated over the period 2000-2021 is recorded, reaching the 64% in 2021.




Figure 10 | Total seasonal rainfall acquired by the gauge station in 2000-2021 period in (A) winter; (B) spring; (C) summer and (D) autumn.



An increase of total seasonal rainfall (usually storm events) compared to the average value is instead observed in the spring (30%), summer (33%) and autumn (10%) months of the last three years. These weather conditions, associated with tidal bore (propagation of marine waves from the mouth towards upstream), have created floods and soil impoverishment (Figure 10B–D).

Currently, the degradation process does not seem to stop despite the restoration and reforestation interventions that have taken place in the last decades. For example, some sporadic reforestation works on sandy dunes were carried out as early as the 2000s, in order to create an effective breakwater for the protection of agricultural and unproductive lands. In 2007, through a project funded by European Regional Development Fund 2007-2013, some nature-based solutions were used for the reconstruction of the dunes and the planting of native species along the coast. However, these interventions were concentrated only in the sandy dunes and retro-dunes, failing to completely prevent the coastal erosion and the presence of the saline wedge. In 2009, the Natura 2000 network project, from which the Site of Community Interest Management Plan was born, increased the knowledge of the area, even if still very limited with regard to some hydraulic, hydro-geological, geomorphological, ecological and landscaping aspects. All this emphasizes the importance of adopting a detailed monitoring plan useful to detect a series of interventions and actions on the area.




Proposed improvement of the coastal habitat resilience

The preliminary analysis described above showed the presence of worrying phenomena such as desertification, coastal erosion, and saltwater intrusion. As regards the presence of the seawater intrusion in the study area, the analysis of the concentration maps of Total Dissolved Solids (TDS), groundwater electrical conductivity, and of the ions present in seawater generally indicated that seawater contamination is relevant along a strip of land stretching for 2.5-3 km from the coastline inwards. The highest concentrations above 1000 mg/L have been recorded near the shoreline along rivers. One of the causes of this phenomenon is that in the altimetrically depressed areas during the periods of low pressure and absence of runoff, seawater through the high tides rises up the river beds and infiltrates the aquifers (Polemio et al., 2003).

Consequently, it is strongly advised to intervene before the progress of these phenomena completely compromises the habitats and biodiversity of the area. For this reason, a new planning of actions that would contribute to the upgrading of aspects related to the sustainable management of coastal ecosystems is required.

Various meetings in the area, involving various stakeholders, allowed addressing some actions and interventions in order to recover and enhance the environment and landscape, while favouring the socio-economic growth of the territory at the same time.

These meetings are part of a bottom-up participation process started in 2019 by the consortium FLAG Coast to Coast within the local development operational program EMFF (European Maritime and Fisheries Fund) 2014-2020 Basilicata, leading to the Sinni River Agreement.

River Agreement (RA) represents an innovative governance model that can help in the drafting of potential plans and practices for a sustainable management of fluvial territories (Antunesa et al, 2009; Voghera, 2020). It is an advanced form of negotiated planning that involves social actors in order to: improve people’s knowledge of existing territorial conditions and the effects of human activities; increase social awareness; include society in the identification and implementation of solutions; encourage innovative changes in setting objectives and urban and architectural design, starting with the legal and planning framework of an Action Plan. In other words, RA allows the development of a convergence and coordination between bottom-up and top-down strategies and practices, as well as an integration between multi-level and multi-scale actions carried out by the main actors in the territorial systems.

The Sinni River Agreement is aimed at giving value to the fluvial and coastal landscape and achieving the delicate balance between the exploitation of natural resources for socio-economic development and the conservation of ecosystem services needed for community well-being.

Currently, about 60 actors among public and private entities have joined forces: 16 municipal administrations of the concerned river basin; 1 regional tourism promotion company; 1 national park, 7 trade organisations; 26 associations; 4 companies; and 3 schools.

So far, a first document has been drawn up detecting 4 macro-sectors such as Environment, Identity, Landscape and Local Development, which correspond to medium-long term interventions for the achievement of the objectives of the European strategy: Safety and Prevention of Hydraulic Risk and Hydrogeological Disruption; Improvement of the river state ecology; Sustainable use of resources, Sustainable development, Territorial identity and landscape enhancement, Protection of ecosystems and biodiversity; Protection of groundwater and surface water resources (Figure 11).




Figure 11 | Link between the objectives of the River Agreement and those of the EU strategy.



Within each macro-sector, the actions indicated in Figure 12 are aimed at: improving the health of the rivers and surrounding areas; the rediscovery and enhancement of the historical and cultural heritage of the area; reconstituting the link between inland and coastal areas; the sustainable use of soil and natural resources; the diversification of production processes; reversing the trend of migration of young people; and generating wealth from the redevelopment of rural areas.




Figure 12 | The 4 macro-sectors of the preliminary River Agreement.



The proposal described below belongs to the macro-sector Environment and considers an integrated monitoring activity on hydraulic, hydro-geological, geomorphological, ecological and landscaping aspects, in order to have detailed knowledge of the area and a first ecological restoration plan.


Monitoring activity plan

Figure 13 shows the flow-chart of the proposed monitoring activity.




Figure 13 | The planned monitoring activities in Pantano forest of Policoro area.



With regard on-site surveys of vegetation, woody cores will be taken from a sample of tree species for dendroclimatic analyses, in order to study the growth trend over time and highlight the changes in the physiological state as well as the climatic and anthropic stresses determining the deterioration of the plant. DNA will be extracted from the leaves to investigate the genetic structure of the population and to identify, through next-generation sequencing (NGS) techniques, the processes of adaptation to the main environmental factors. These technologies greatly facilitate handling the genomic data and the understanding of the complex nature of epigenetic modifications at the genomic level, providing advantages such as parallel computation power, thereby minimising data analysis time (Arora and Tollefsbol, 2021). They are able to generate a vast amount of DNA sequence information from a broad array of lifeforms in an amazingly short time. NGS has also made possible the investigation of the genetic bases of diseases and gene mapping through large scale screening of genome variation (Ejigu and Jung, 2020). The comparison of the sequence data with a growing standard reference library of identified organisms will help in presenting the different taxa available environmental samples with high accuracy (Hajibabaei et al., 2011; Fadiji and Babalola, 2020). Recent findings in the computational techniques have aided the study of biodiversity across space and time through the use of annotation and DNA clustering employing phylogenetic and alignment techniques (Hajibabaei et al., 2011). Due to corresponding increases recorded in both breadth and number of data using NGS platforms, ecological researches are now been channelled towards the use of large volumes of sequence data. This approach has helped reducing error and bias results attributed to PCR and the run time is significantly shorter. Many platforms have been discovered lately, each with advantages and disadvantages. These identified platforms use distinct template in its preparation and different chemistries in its sequencing signal detection (Mardis, 2013; Van Dijk et al., 2014).

The monitoring of the floristic species will be carried out with a diachronic analysis through interpretation of orthophotos obtained from satellites and UAVs. These latter are capable of taking high-quality photos and videos that can provide better, cheaper, and more timely information in order to improve the management of PAs (Pimm et al., 2015; Ho et al., 2018). The accuracy of the data provided by UAV has now been confirmed by several studies (e.g., Addo et al., 2018). Harwin and Lucieer (2012) have verified this by comparing the results of the drone with Differential Global Positioning System (DGPS) and total station measurements for the coastal erosion monitoring in a sheltered estuary, while Vousdoukas et al. (2011) observed how the images of nearshore sand bars generated by the UAVs have a greater spatial coverage and a better observation point with regards to those acquired with satellite. Other studies, carried out on coasts monitoring, compared data from drone point cloud, terrestrial laser scanner (TLS) and Global Navigation Satellite System (GNSS) surveys and concluded that the results obtained by UAVs are very good (Mancini et al, 2013; Chikhradze et al., 2015; Hackney and Clayton, 2015). Drones also make it possible to monitor environmental changes that can lead to the loss of native plant species and, at the same time, the expansion of alien or introduced species. Drones are also used for forest fire monitoring as well as for the identification of undergrowth vegetation, the identification of dead wood and canopy mortality, which in coastal areas could be due to marine aerosol.

In particular, for this research the traditional photo interpretation of UAV data will allow a first subdivision of the territory into homogeneous areas based on the physiognomy and structure of the vegetation (agricultural areas, woods, shrubs, grasslands, etc.). Successively, the backward photo interpretation (Walz, 2008; Acosta and Ercole, 2015) will make it possible to obtain some information from the past through reverse order processing of recent images and to investigate how the different habitats have been influenced by changes in composition and landscape structure, which have occurred in the last 90 years. This technique has been successfully applied to the backward monitoring of coastal dune habitats in central Italy (Malavasi et al., 2013), investigating how these habitats have been influenced by changes in the composition and structure of the landscape occurred in the last 60 years. An advantage of this technique is that it is based on the interpretation of photos and numerical data detected by low-cost planes, satellites, drones or space probes and over very large areas.

The floristic census in the field will mainly focus on the identification of species of conservation interest, threatened species and species which may have a key role in representing the ecological needs of other species (umbrella species), in highlighting the functionality of an ecosystem (key species), in underlining an ecological problem (e.g., species sensitive to the fragmentation of the territory), in providing a framework of possible expansion (introduced species), and in drawing the attention of the public and facilitating conservation actions (flag species). This field research represents the main tool to deepen basic knowledge on the biological heritage of fragile and poorly investigated areas where endangered plants and habitats may co-occur. Moreover, the correct identification and the standardised description of rare vegetation units may play a key role in protecting locally endangered plant communities and preserving all the steps of local vegetation series. These actions improve the survival and the natural dynamics between and within the patches of natural and semi-natural habitats, rare at the national (Rosati et al., 2007; Rosati et al., 2008) or the regional scale (Viciani et al., 2016).

At the same time, a physiognomic analysis to recognize the different vegetation formations and phytosociological surveys will be performed which, statistically processed, will propose different clusters based on levels of qualitative-quantitative floristic similarity, to which the phytosociological types consistent with the syntaxonomic hierarchy will be referred. The analysis will be conducted by distinguishing plant associations that are dynamically connected from the neighbouring ones belonging to different series. This discrimination of the vegetation physiognomic characteristics will be relevant to tracking the changes in vegetation structure and composition, thus understanding the vegetation responses to changes in environmental conditions (Sharma et al., 2017). Different attempts have been made for the classification and mapping of vegetation by exploiting the remote sensing data obtained from satellites or aircrafts. More recently, vegetation mapping by using near surface multispectral, hyperspectral, or lidar imaging from manned or unmanned aircrafts is growing (Su et al., 2016; Sankey et al., 2017). Though some researchers have reported satisfactory results using multiple spectral mixture analysis (Roberts et al., 1997), digital image enhancements (Chikr El-Mezouar et al., 2011), temporal image fusion (Schmidt et al., 2015), and texture based classifications (Murray et al., 2010), the physiognomic analysis is probably the mostly used method for the vegetation classification. The use of data from satellite or UAV reduces greatly the costs of this analysis.

In order to analyse the impacts of climate change and anthropogenic activities on rivers and irrigation channels, water discharges and quality parameters measurements will be carried out both with UAV’s flights and with in situ sampling. In addition, for the same purpose, geognostic surveys are provided for the reconstruction of the lithostratigraphic structure and the definition of the aquifer depth, the soils monitoring for the determination of the granulometric and permeability characteristics and, finally, field and laboratory investigations for the tracing of thermal-saline and hydrogeochemical profiles. A numerical modelling will then be carried out to simulate the behaviour of groundwater and surface water, addressed to planning hydraulic-forestry interventions, in order to both reduce flooding phenomena during the rainy periods and irrigate some areas during dry periods. In detail, for surface water it will be possible to use the open source software HEC-RAS 6.1, able to model the flows for low and high values of water discharges. Being an extra-urban residential area, for high flows a water discharge with return period equal to ten years is advised (Leal et al., 2022; Parizi et al., 2022). To simulate numerically the behaviour of groundwater, the MODFLOW software, based on a generalised control-volume finite-difference (CVFD) approach, will be used (Hanckmann et al., 2022; Suponik et al., 2022). It is capable of modelling small and large aquifers for several years and with a high degree of accuracy.



An ecological restoration plan

Coastal sand dunes are among the most vulnerable and threatened ecosystems in the world (Prisco et al., 2020; Laporte-Fauret et al., 2021). Despite their dynamic structure and the high resilience of biotic communities, these ecosystems are fragile due to general fragmentation, limited extensions, and excessive anthropogenic pressure (Lazarus, 2017). Compared to terrestrial ecosystems, because of the environmental and microclimatic conditions, they have selected peculiar and specialised fauna and flora, often also exclusive (Gracia et al., 2019; Fabbri et al., 2021). Furthermore, these environments represent important ecological corridors for the animals in the coastal environment (Cooper and Jackson, 2020). This habitat exclusivity involves the coexistence of multiple elements of different biogeographical origins, united by high levels of specialisation.

In addition to having a high ecological and landscape value (Gracia et al., 2019; D’Alessandro et al., 2020), these environments also play an essential role in the defence of the coasts (Arulmoorthy and Srinivasan, 2017; Tordoni et al., 2018) by increasing their resilience. In particular, they are able to reduce the risk of coastal erosion since they constitute a sediment reserve capable of replenishing the beach (Gracia et al., 2019; Tordoni et al., 2020).

The dunes can oppose marine flooding and defend the hinterland vegetation from the saline aerosol of the wave motion. In addition, the native vegetation of these environments provides a significant refuge and source of food for a wide range of invertebrates, birds, mammals, reptiles, amphibians and other wildlife (Feagin et al., 2010; Drius et al., 2019). According to the 4th Monitoring Report (92/43/EEC Habitats Directive), the conservation status of Italian coastal sand dunes and inland dunes habitats is dramatically bad: the overall assessment reports 88% of habitats in a bad conservation status and the remaining 12% in an inadequate condition (Prisco et al., 2020). One of the greatest threats is related to their limited geographical extent which, with a continuously decreasing trend over the years, will lead to an increasingly worse future scenario. The most affected habitats are those with the minimum extension, which are mainly concentrated in the Mediterranean Region (shifting dunes, fixed dunes, dunes with Hippophae rhamnoides, dune grasslands, dunes with Juniperus species, maquis with Sclerophyllous shrubs, inland dunes).

Currently, coastal dunes of the Pantano forest are threatened by anthropic disturbances (tourism, urbanization), shoreline erosion, climate change, and biological invasion. Impacts due to the latter factor include the occupation and transformation of the habitat, the alteration of ecological relations and evolutionary processes, as well as the loss and fragmentation of biodiversity (Tordoni et al., 2018). Once alien species are set, they may outcompete the native fauna and flora, causing severe imbalances in the ecosystem, and seriously affecting economic activities (Gracia et al., 2019). For all these reasons, the restoration of the dunes environments is essential for the conservation of the forests and biological communities.

Consequently, in the first phase the actions will be aimed at gradually eliminating the invasive species on the dunes in order to favour the development of natural vegetation, and in particular of rare species.

To reduce coastal erosion and protect inland areas from wave motions and winds, windbreak barriers will be provided in semi-rigid natural and degradable material (wood and reeds) arranged in a “checkerboard” pattern, in order to accumulate sand and protect native and pioneer species.

Once the embryonic dunes have formed, it will be necessary to consolidate them through the replanting of native species selected during the census and analysis phase. For example, different studies have shown how Ammophila transplantation has had positive stabilisation effects by requiring low maintenance costs, a long useful life, and fast realisation. In particular, the Ammophila Arenaria has excellent dune building capabilities compared to other grass species (Konlechner and Hilton, 2009; Walker et al., 2013; van Puijenbroek et al., 2017). It creates high, hummocky peaked dunes, which can easily withstand flooding and erosion (Seabloom et al., 2013; Bruls et al., 2016). Even the practice of sprinkling the dunes with the beached remains of Posidonia and other beached sea herbs has given good results, as these are natural materials widely available on site and which rapidly decompose without leaving traces or requiring restoration work (De Falco et al., 2003; Ruiz and Romero, 2003; Corenblit et al., 2007; Balestri et al., 2012; Cooper and Jackson, 2020; Maiolo et al., 2020). Recent studies demonstrated that planting mangroves along the shore or beach can reduce the wave height by 50% to 99% (McIvor et al., 2012; Raju and Arockiasamy, 2022). The aim of this intervention is also to restore the integrity of the habitats and allow a reconstruction of the shrub vegetation profiles in the internal areas over time. It has been showed, in fact, that increasing habitat areas inland from the shoreline results in quadratic and exponential reductions in wave heights.

Subsequently, in order to avoid the trampling of the dunes by swimmers, which is the first cause of their deterioration, an elevated walkway and fences will be planned. These interventions, if carried out with natural materials such as wood, have a low environmental impact and a good useful life even if the maintenance costs are high.

The formation of mobile and fixed dunes will allow a renovation of the hinterland forest with the reforestation of typical species of the area such as English oak, poplar, oxyphilous ash and elm.

The restoration interventions will also include the re-naturalisation of the artificial channels both in the riverbed and on the banks. This phase will be preceded by in-depth maintenance and cleaning through the use of techniques and tools with low environmental impact.

As a last step, an existing backdunal pond will be recovered both to further facilitate the repopulation of fauna and flora and to create a reserve of freshwater in order to hinder the intrusion of the saline wedge. The lake will be fed by a system of small canals made with naturalistic engineering techniques and organised in such a way as to connect with the drainage canals and the natural hydrographic network.




Discussion and conclusions

The present paper reports an improvement action plan, which should be implemented at the Pantano forest of Policoro, a protected area located on the Ionian coast of southern Italy, in order to stop the biodiversity loss and fragmentation of habitat.

The study area has a high biodiversity and is rich in habitats. In fact, it shows 27 species of fauna of community interest according to the Habitat Directives (42/93/EEC) and the “Birds” Directive (79/409/EEC) and, in particular, 21 species of birds, 2 of mammals, 2 of reptiles and 2 of invertebrates.

According to the analysis on maps, UAV images and climate data, described in this paper, for years the area has been subjected to desertification in the hinterland, with a drastic reduction in soil fertility, coastal erosion and saltwater intrusion. These phenomena have led to a significant disappearance of the retro-dune plants, exposing the pioneer maquis to the negative effects of the marine spray and winds and to the growth of invasive alien species, which threaten the biodiversity and ecological integrity of the autochthonous vegetation. The past reforestation projects addressed to the reconstruction of the dunes and the planting of native species along the coast did not have a significant effect on the prevention of the coastal erosion and biodiversity loss, having concentrated only in some areas.

Various meetings on the area, involving over 60 actors among public and private entities and aimed at reaching a River Agreement, have underlined the need for a more detailed knowledge of the area and the realisation of a first ecological restoration plan.

Therefore, the present work illustrates some actions that can help improve the resilience of coastal habitats, reduce desertification, coastal erosion, and saltwater intrusion phenomena, as well as contribute to the enhancement of an area, so favouring its socio-economic growth.

In particular, a detailed monitoring activity addressed to the analysis of the hydraulic, hydro-geological, geomorphological, ecological and landscaping aspects will be fundamental to identify and fill any gaps in knowledge that are relevant to saving threatened species and habitats (Knight et al., 2008).

Census activities on tree and floristic species should be carried out to provide insights on the potential ecological consequences of the change, and help decision makers determine how management practices should be implemented. They should include advanced and recent methodologies, such as the next-generation sequencing (NGS) techniques (Hajibabaei et al., 2011; Mardis, 2013; Van Dijk et al., 2014; Fadiji and Babalola, 2020; Arora and Tollefsbol, 2021), and the backward interpretation of orthophotos (Walz, 2008; Malavasi et al., 2013; Acosta and Ercole, 2015), in order to investigate how the different habitats have been influenced by the impacts of climate change and anthropogenic activities and, thus, to identify the actions of different habitats adaptation to the main environmental factors. At the same time, water discharges and quality parameters measurements should be performed within groundwater and surface water, in order to know their behaviour towards the external stressors and evaluate their resilience (Hanckmann et al., 2022; Leal et al., 2022; Parizi et al., 2022; Suponik et al., 2022). At present, there are still significant data gaps and the existing ones have provided only qualitative assessments rather than quantitative evaluations. This issue is mainly due to the limited research funding. The first findings of this monitoring activity suggested an ecological restoration plan that prioritises the recovery of coastal sand dunes, rather than other land uses. This type of ecological restoration plan could be implemented through a project aimed at eliminating alien vegetation, planting native species to stabilise sandy soil, protecting inland areas from sea currents and winds with windbreak barriers in semi-rigid natural and degradable material (wood and reeds), and reducing the trampling phenomenon by swimmers through the building of elevated walkway and fences. Cleaning and re-naturalisation of the existing drainage canals are also predicted both on the banks and in the riverbed, with techniques at low environmental impact, and the recovery of a lake connect with the drainage canals and the natural hydrographic network to facilitate the repopulation of fauna and flora and to create a reserve of freshwater in order to hinder the intrusion of the saline wedge.

The ecological restoration plan is a long-term strategic task. In an era of climate change, rapid coastal population expansion, and habitat degradation, restoration is becoming an increasingly important strategy for combating coastal biodiversity loss and maintaining ecosystem services. The most recent contribution in literature on the ecological restoration refer to the resilience of vegetated coastal dunes (Figlus et al., 2014; Silva et al., 2016; Ajedegba et al., 2019) and to hybrid coastal protection structures (Spalding et al., 2014; Figlus et al., 2015). A recent systematic review shows how most studies on the implementation of ecological restoration plans are performed in North America, with about eighty-three percent, followed by 11% in Asia and 7% in Europe (Smith et al., 2020). In Italy, although coastal dunes are among the most threatened environments, especially during summer due to intense trampling and degradation by uncontrolled access of tourists, few are the areas subjected to suitable restoration plans.

For example, in two pilot field studies in the Salento coastal area, south of Italy, an innovative mineral grout colloidal silica-based consolidation technique for coastal sand dunes was tested (D’Alessandro et al., 2020). This ecological restoration demonstrated to be more resilient to near-surface wind effects and/or minor storms events, to reduce the volume of dune erosion and the dune scarp retreat rate, to favour the vegetation growth, and to be at zero impact on the environment. The latter is very important for tourism and recreational purposes.

A second example is the plan of coastal protection at Calabaia Beach, located in the Marine Experimental Station of Capo Tirone (Cosenza, Italy). It consists in planting Posidonia oceanica meadows beyond the groynes, which serve as lung, larder, nursery of the sea and as a shelter where several marine species can thrive. The main purpose of this intervention is to reduce the effects of waves and currents (Maiolo et al., 2020).

The last example is the foredune restoration along the North Adriatic Italian coast (Della Bella et al., 2021). This consolidation was achieved through the plantation of seedlings of focal species (i.e., C. arenaria subsp. arundinacea) produced from local germplasm. The Authors have demonstrated that, after a one year-long monitoring activity, human disturbance can significantly affect the sustainability of foredune restoration already in the earliest stages, limiting the survival and growth of both transplanted and spontaneous seedlings. The only passive conservation measures (e.g., closure of accesses and no entry areas) are not enough to ensure restoration success. They should be combined with a correct management of the area, including a strict control of touristic fluxes through the design of appropriate accesses to the beach (fences, boardwalks, etc.) accompanied by information panels (Acosta et al., 2013; Muñoz-Vallés and Cambrollé, 2014; Prisco et al., 2021). Furthermore, an early-stage awareness campaign and educational activities are necessary to stimulate a pro-environmental behaviour and lead visitors to act in a way that benefits the natural environment, or at least does not result in adverse environmental impacts (Kim, 2012).

Compared to the three examples here reported, the plan described in this paper is more than a simple ecological restoration action, representing a whole sustainable and integrated approach including the monitoring activity, coastal protection interventions, and community involvement at the same time. As underlined in the last example, in fact, an ecological restoration plan is not successful without the involvement of the local population. Close cooperation and joint efforts between the local administrators and citizens are thus necessary. Information and education activities can serve to improve knowledge of coastal lands and to foster consciousness of the need for their protection (Jiang et al., 2015). Moreover, the participation of stakeholders in coastal management may help solve funding problems in order to improve the methodology and applications of success evaluation of landscape-scale restoration (Zhao et al., 2016). In fact, an innovative and advanced governance method such as the River Agreement, involving the main institutional and social actors of the territory, is being built in the study area in order to drive the development and realization of interventions and actions focused on improving ecosystem services, increasing the land resilience, and favouring the sustainable management of natural resources.

What has been presented in this paper is justified by a current context in which most countries of the world, in response to COVID-19, are investing great amounts of money in sustainable management of protected areas. According to Kroner’s analysis (Kroner et al., 2021), the ‘Next Generation EU’ recovery package proposes to allocate € 215 billion of its stimulus funds (30% of the total € 714 billion) to green initiatives, of which € 10 billion for “natural capital and circular economy” (other funds would support decarbonisation, green infrastructure and renewable energy). It also specifies ‘do no harm’ environmental safeguards. The recovery package would help to implement the EU Biodiversity Strategy for 2030, fostering the protection of at least 30% of Europe’s lands and seas in effectively managed protected areas, as well as sustainable agriculture by reversing the decline of pollinators and reducing the use of dangerous pesticides. The recovery plan in Italy foresees about € 60 billion for the green revolution and the ecological transition, part of which will be allocated to sustainable management and increasing the resilience of the territories.

In conclusion, these proposed actions could be funded under the post-COVID-19 recovery plan, in an effort to both conserve biodiversity and ecosystem services as well as remediate degraded natural habitats. Some of the secondary effects could be promoting job creation and favouring fair employment, while providing an opportunity to test innovative approaches and tools in order to elaborate a post-2020 Global Biodiversity Framework and successful responses to the global crises that are happening at an accelerating pace.
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Developing a unified chlorophyll-a (Chla) inversion algorithm for cross-water types is a significant challenge owing to the insufficiency of input features and training samples. Although machine learning algorithms can build a consistent model for different trophic waters, the accuracy of the inversion is dependent on the quality of the extended features. Here, we designed a novel hybrid framework called CHLNET, which combines a one-dimensional convolutional neural network (1D CNN) and support vector regression (SVR). The 1D CNN is used to extract features from the original band features, and the SVR is used to perform a fit of Chla. CHLNET is trained and tested using match-up pairs of SeaWiFS remote sensing reflectance [Rrs(λ)] in situ with Chla ranging from 0.009 mg/m³ to 138.046 mg/m³, which covers mostly ocean water types. Performance metrics in the log space of CHLNET were better than those of the state-of-the-art algorithms on the testing dataset, and CHLNET had the best overall performance with the largest cover area in the star plot. The frequency distribution of predicted Chla by CHLNET was more consistent with that of in situ Chla. While the spatial pattern was not smooth in low Chla concentration waters, CHLNET demonstrated excellent mapping ability at the global and local scales in high Chla concentration waters. Through the band-shift method, which transfers the Rrs(λ) of MERIS and MODIS-Aqua to the Rrs(λ) of SeaWiFS in the visible spectral range, CHLNET obtained better accuracy than the blended algorithm of OCx and CI on MERIS and MODIS-Aqua matchups, which validates the generalization of CHLNET on cross-sensor types. The results indicate that CHLNET avoids the drawbacks of manually constructing extended features and the need for merging water type-appropriate algorithms for Chla retrieval, as well as provides a new idea for unified Chla concentration inversion across water types. Thus, CHLNET may serve as an alternative approach for Chla inversion.
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Introduction

Chlorophyll-a (Chla) is the predominant pigment in phytoplankton. It is crucial in determining phytoplankton biomass, which is used to estimate the trophic state of waters. Chla concentration in the water column affects the absorption and reflection of the spectrum. Based on this characteristic, Chla concentration can be empirically estimated from remote sensing spectral reflectance signals by relating the remote-sensing reflectance (Rrs(λ), sr-1) to the concentration of Chla (Bailey and Werdell, 2006). Rrs(λ) at the wavelengths measured by sensors varies according to Chla concentration, suspended particulate matter (SPM), and color dissolved organic materials (CDOM) in the different trophic waters (Pekel et al., 2016). In open ocean, the optical properties are determined primarily by phytoplankton. Chla concentrations can be estimated using band ratios or band subtractions (Hu et al., 2020). In coastal and inland waters where the optical properties do not covary with phytoplankton, the Chla inversion algorithms may lead to large uncertainties (Dierssen, 2010; Szeto et al., 2011).

Chla inversion algorithms based on the blue-green band ratio (O'Reilly et al., 1998) or the near-infrared region band ratio (Gitelson, 1992), have high inversion accuracy where water constituents tend to covary with phytoplankton, and have become the main operational algorithms (O’Reilly et al., 2000; Hu, 2009; Hu et al., 2012; O'Reilly and Werdell, 2019). When these algorithms are applied to complex optical waters, such as coastal or inland waters, performance significantly degrades. Other models have been developed to estimate Chla in complex optical waters. For example, three-band models (Hu et al., 2005; Gitelson et al., 2007; Song et al., 2013; Shah et al., 2019), four-band models (Lee et al., 2009), and the chlorophyll fluorescence peak (Hu et al., 2005; Gower, 2016; Zeng et al., 2017) were used to inverse the Chla concentration in coastal or turbid waters. Although these algorithms are mostly robust at their respective optimal Chla ranges, where phytoplankton biomass coherently varies with bio-optical properties, it is a non-trivial challenge to build a unified algorithm across all water types. In order to establish a cross-water-type Chla inversion algorithm, an idea to merge different Chla algorithms according to the optical water type (OWT) was proposed. In this method, the Chla concentration is inversed based on water-type-appropriate algorithms. As the most suitable algorithm is applied to each OWT, the OWT-based method performs well (Moore et al., 2014; Matsushita et al., 2015; Neil et al., 2019). Multiple ocean color products are derived from this method. The NASA chlor_a product combines the OCx (O’Reilly et al., 2000) and CI (Hu et al., 2012) algorithms for Chla ≥ 0.2 mg/m³ and Chla ≤ 0.15 mg/m³, respectively. In between these values, the OCx and CI algorithms are blended with weights. The ESA Climate Change Initiative also applies this method to blend classic appropriate algorithms to produce ocean color products (Jackson et al., 2017). Similar methods have been employed to retrieve SPM (Yu et al., 2019; Jiang et al., 2021). However, the OWT-based model is limited by the optical water classification algorithm and requires merging different algorithms.

Machine learning techniques for ocean water color inversion have become increasingly popular owing to the continual increase in in situ measurement data and synchronous satellite data and the advancement of computer technology. In contrast to the OWT-based inverse method, machine learning algorithms eliminate the assumptions about the Chla absorption spectrum in bio-optical models and learn the relationship between Chla concentration and Rrs(λ). Therefore, machine learning was also used to build a unified Chla inversion algorithm across water types. Among them, multilayer perceptron (MLP) (Vilas et al., 2011; D'Alimonte et al., 2012; Awad, 2014), Gaussian process regression (GPR) (Asim et al., 2021), support vector regression(SVR) (Hafeez et al., 2019; He et al., 2020; Hu et al., 2020), and random forest regression (RFR) (Cheng et al., 2021) have demonstrated potential in retrieving Chla. Several approaches that derived from neural network algorithms, including mixture density network (MDN) (Pahlevan et al., 2020), OLCI Neural Network Swarm(ONNS) (Hieronymi et al., 2017), and Case 2 Regional CoastColour (C2RCC) (Doerffer and Schiller, 2007), were used to inverse Chla concentrations for Cases I and II waters. These methods, however, require more extensive samples and are highly impacted by input features, which are usually spectral bands, band components, or both of them. The quality of the input features describing Chla properties determines the accuracy of machine learning algorithms (Kim et al., 2014; Hafeez et al., 2019; Hu et al., 2020). When machine learning algorithms are used to inverse Chla, it is frequently challenging to manually extend input features to improve model accuracy owing to the few input features or limited training samples. The convolutional neural network (CNN) is an extension of neural network architecture. It can extract high-dimensional or complex features from raw band features as long as the training dataset covers a wide enough range of data. However, to the best of our knowledge, limited studies have been conducted on 1D CNN approaches to unified Chla inversion.

To fill the gap in the lack of an algorithm based on 1D CNN to inverse unified Chla across trophic levels, we designed a novel model that is a hybrid of 1D CNN and a regression algorithm, dubbed CHLNET, to build a relationship between Rrs(λ) and Chla. We aimed to explore a unified inversion algorithm based on 1D CNN for estimating the Chla concentration for most ocean waters using only original Rrs(λ) as input features. We demonstrated the performance of the CHLNET through a comparison with a number of the state-of-the-art algorithms previously published, and we verified the CHLNET model accuracy at different trophic levels. An ocean surface Chla concentration inversion was performed using CHLNET to analyze its ability in spatial mapping. Then, cross-sensor applications were performed to analyze the generalization capability of CHLNET. Finally, we discuss how CHLNET works, the advantages of the 1D CNN structure compared to MLP, and the limitations of CHLNET.



Data sources and data preprocessing


Match-up pairs of satellite sensors and field measurements

The match-up pairs used in the paper were derived from the validation system of the SeaBASS website provided by the NASA Ocean Biology Processing Group (OBPG). The match-up pairs are widely available for algorithm performance assessments. The field measurements represent the in situ chlorophyll data derived from the NOMAD V2 dataset (Werdell and Bailey, 2005). Fluorescence and high-performance liquid chromatography were used to measure the in situ chlorophyll data. The chlorophyll measured by the two methods was found to be in good agreement. Therefore, we concluded that there is no difference between the two measurements of chlorophyll. In situ measurements of chlorophyll data in NOMAD included Chla and chlorophyll, and the errors associated with the measurement instrument were neglected. The satellite sensor measurements that represent Rrs(λ) were acquired from three sensors, Sea-viewing Wide Field-of view Sensor (SeaWiFS, 1997–2010), Moderate Resolution Spectroradiometer (MODIS-Aqua, 2002–present), and Medium Resolution Imaging Spectrometer (MERIS, 2002–2012). The match-up pairs were found based on Bailey’s criteria (Bailey and Werdell, 2006). Figure 1 illustrates the spatial and temporal distribution of the match-up pairs of SeaWiFS. Spatially, match-up pairs covered both the open and coastal oceans and data from low and high latitudes. Temporally, the matchups were concentrated in 2001, with approximately twice as many matches as in the other years.




Figure 1 | Spatial distribution (A) and time histogram (B) of matchups of SeaWiFS.





Preprocessing of matchups

The satellite in situ matchups were separated into 12 range segments according to Chla concentration, and pairs with considerable noise in each range segment were eliminated based on the trend of the spectral curve. We also eliminated pairs containing negative Rrs(λ). After the above steps, the noise points of matchups were removed, which produced a more consistent spectral reflectance curve in the segmented range (Figure 2). SeaWiFS, MERIS, and MODIS-Aqua matchups were reduced to 2151, 611, and 846, respectively. Table 1 shows the in situ Chla concentration statistical information for three sensors after noise rejection. As shown in Figure 2, the peak of spectral reflectance shifted toward the long-wave direction as the chlorophyll concentration increased, which is consistent with the literature (Werdell and Bailey, 2005). Approximately 75% of the matchups were less than 4 mg/m3, and fewer were greater than 20 mg/m3, which resulted in some bias in matchups. We used the log criterion to transform the Chla concentration and remove the bias so that it conformed to the Gaussian distribution (Zhan et al., 2003).




Figure 2 | Spectral line graph of satellite in situ matchups in different Chla segments of SeaWiFS.




Table 1 | In situ Chla statistical information of three sensors after preprocessing.



The matchups of SeaWiFS were used to assess the CHLNET algorithm. The matchups of MERIS and MODIS-Aqua were used to evaluate the generalization of the CHLNET algorithm on cross-sensor types. Although MODIS-Aqua and MERIS satellite in situ match-up pairs are accessible via the SeaBASS website, it is impossible to directly use match-up pairs for the CHLNET model owing to the difference in the number of bands and center wavelengths. Thus, according to the nearest principle, the Rrs(λ) of MODIS-Aqua and that of MERIS were band-shifted to the input band used by the CHLNET model. The subtle differences in Rrs(λ) caused by sensors are beyond the scope of this paper. Table 2 lists the bands that required band shifting for Aqua and MERIS sensors. The gray cell in Table 2 indicates the band center that would be band-shifted. Band shifting uses Mélin's method (Mélin and Sclep, 2015), which relies on a bio-optical algorithm, namely, the quasi-analytical algorithm (QAA) (Le et al., 2009) to calculate Rrs(λ) at the target band.


Table 2 | Band-shifted bands of MODIS-Aqua and MERIS.






Model development of CHLNET

CHLNET consists of a 1D CNN for automatic feature extraction and a regression algorithm for Chla concentration fitting for Chla concentration inversion. Figure 3 shows the framework of CHLNET. Rrs(λ) indicates the remote sensing reflectance in the matchups dataset. The 1D CNN performs feature extraction. We used SVR as a regression algorithm after comparing its performance with other regression algorithms (Supplementary Table S1).




Figure 3 | Framework of CHLNET.




Feature extraction based on 1D CNN

A traditional CNN includes three main elements: a convolutional layer, a pooling layer, and a fully connected layer. The convolutional layer extracts local characteristics from the input features through a convolutional kernel, the output of which is then sampled by the pooling layer. The 1D CNN differs slightly from traditional networks. The input of the convolutional layer is a three-dimensional (3D) vector (samples, time steps, and features), and the output is also a 3D vector (samples, time steps, and channels). Actually, the 1D CNN views the input data as a sequence, on which it can perform convolutional operations. The pooling layer follows the convolutional layer, which is also a 3D vector (samples, time steps, and channels). The pooling layer is used to reduce dimensionality, remove redundant information, and reduce the complexity of the network. Since the original training samples are two-dimensional vectors (samples and features), it is necessary to convert the two-dimensional vector into a 3D vector. It is also desirable to perform a convolution operation to extract more features from a limited number of features (five spectral bands). Too few features limit the number of convolution layers. In this study, there were only five features corresponding to five central bands. Therefore, it is necessary to add input features to meet the quantity requirements of input features for the convolution operation. There are two ways to solve this problem: one way is to repeat features, that is, to simply repeat a feature without changing the feature; for example, the original input vector is (F, 1), and in the case of repeated features, the input vector becomes (F*n, 1), with n denoting the number of repetitions and the other way is to use a fully connected layer for feature addition, such as using a fully connected action of n neuron nodes on the input vector (F, 1), whose output is (F, n), and after performing a reshape operation, the same dimensionality as the first method can be obtained. Both approaches have been tested and have almost the same inversion accuracy. Since the first method requires extra operation, the second method was selected in this study for extending the feature volume. Its structure is shown in Figure 4.




Figure 4 | 1D CNN structure.



As shown in Figure 4, the 1D CNN is divided into three stages. Stage 1 is the input feature preparation stage, where 500 new input features consisting of original features [Rrs(λ) at 443, 490, 510, 555, and 670 nm] are constructed using the fully connected layer. Stage 2 is the feature extraction stage. As the original number of features is five, a convolutional layer with a convolutional kernel size of 5, strides of 5, and filters of 16 is used to extract 100×16 high-dimensional features. Three CNN blocks follow. Each block consists of two convolutional layers and one pooling layer. In the same block, both convolutional layers have the same parameters, such as kernel size and strides. The pooling layer is calculated according to the maximum pooling, with its pool size set to 2. Figure 5 shows a CNN block where the convolutional kernel size is 3, the stride is 1, and the maximum pooling size is 2. Meanwhile, in each convolutional layer, the activation function is set. The activation function is uniformly set to the ReLU function throughout the 1D CNN network, because the ReLU function showed the best performance during the experiment, as shown in Table 3. Stage 3 is a linear regression that fits the features extracted in Stage 2 to the in situ Chla concentration. The detailed parameters of the 1D CNN are shown in Supplementary Table S2.




Figure 5 | 1D CNN block.




Table 3 | Performance of different activation functions.





Chla inversion workflow of CHLNET

As CHLNET is composed of a 1D CNN and an SVR, its training and testing processes differ from those of conventional neural networks. Therefore, it is necessary to clarify the training and testing processes for CHLNET. During the training phase, five Rrs(λ)s are taken as input features (X), which are input to the 1D CNN for training after normalization. The Chla concentration in log space represents the 1D CNN output (Y). When the model loss settles within an error range around the final value, the 1D CNN completes the training. Then, the outputs of 1D CNN in Stage 2 are normalized to X’, which are used as inputs by the SVR algorithm to fit Chla concentration in log space (Y). During the testing phase, the samples are normalized and predicted with the first two stages of the 1D CNN. The output results are normalized and then input to the SVR model for an estimate to obtain the final prediction results. The training and testing workflow of CHLNET is shown in Figure 6.




Figure 6 | Chla inversion workflow of CHLNET.





Performance assessment metrics

Standard statistical metrics such as the coefficient of determination (R²), root mean square error (RMSE), and regression slope, are often used to evaluate the accuracy of an inversion algorithm. However, these evaluation metrics are usually applied to Gaussian distribution samples without outliers and are still inadequate in the Chla inversion algorithm (Seegers et al., 2018). Thus, we used the raw and log-transformed Chla metrics for the performance assessment. These metrics included:











The R², root mean squared log error (RMSLE), MAE, and Bias metrics were evaluated in the log-transformed space of Chla. The RMSE was also calculated for Chla without log transformation to assess the standard deviation. The mean absolute error (MAE) was used to quantify the actual error between the estimated Chla and the measured Chla. Slope was used to calculate the linear relationship between estimated Chla and measured Chla in the log-transformed space. The model win percent (MWP) was used to evaluate different Chla inversion models (Seegers et al., 2018).

When there are multiple assessment metrics, it is difficult to judge the pros and cons of the algorithm from one metric. We improved the star plot visualization method proposed by Seegers to evaluate the performance of the algorithm comprehensively. To avoid exaggerating the differences between different metrics, the maximum and minimum of each metric were set according to Equations 6–9, where Pi denotes the ith metric (Chambers et al., 2018). For R², Slope, and MWP, the scalar results could be calculated directly using Equations 6 and 7. For RMSE, RMSLE, and MAE, the smaller the values, the better the performance. The max and min of the scalar were set using Equations 8 and 9, respectively.












Experiments and results


Performance assessment of CHLNET

To evaluate the performance metrics of the CHLNET model, RFR, SVR (Hu et al., 2020), and MDN were used for comparison. Because SeaWiFS L3 Chla product data were derived from the OC4 and CI algorithms, the performance results of OC4 and CI algorithms were no longer listed. The SeaWiFS Chla product data were listed as a comparative analysis. In machine learning algorithms, input features can directly affect the model's accuracy. Hu et al. (2020) extended the original features when applying the SVR algorithm to the inverse of ocean surface Chla. So, in this paper, we followed Hu's method for feature extension, using the raw spectral features and extended features to train and evaluate the RFR and SVR models. The matchups of SeaWiFS were split into training and testing datasets according to the ratio of 7:3. All algorithms use the same training data (n = 1505) and testing data (n = 646). Table 4 lists the performance metrics of these algorithms. We normalized the performance metrics of the four algorithms on the whole dataset and testing dataset according to the comprehensive evaluation method in Section 3.3, using the SeaWiFS Chla product metric as the baseline. Figure 7 shows the Seegers plot based on the normalized results for whole dataset and testing dataset.


Table 4 | Performance metrics of different algorithms on whole dataset and testing dataset.






Figure 7 | Comparison of seven metrics in the star plot on the whole (A) and testing dataset (B).



Because the inputs of SVR and RFR are merged features of original Rrs(λ)s and extended features that are based on the band ratio and band difference, the performance metrics of the two algorithms in this paper were higher than those of the SeaWiFS Chla product. Some metrics were even higher than those of the neural network (MDN and CHLNET) algorithms, such as the bias of SVR. RFR covered the largest area on the whole dataset, but it covered only a small area on the testing dataset, indicating the overfitting of RFR on the training data. In Hu et al.’s study, SVR showed better performance, which is also corroborated by this paper, where SVR was second only to CHLNET in terms of the coverage area on the testing dataset. Overall, SVR and RFR outperformed the SeaWiFS Chla product, showing that when extended features are available, the SVR and RFR algorithms have the capability of inversing Chla.

The MDN used in the experiment consists of one input layer (n = 5), five hidden layers (n = 100), one mixture layer, and one output layer. From Table 4, the performance metrics Slope and RMSE of MDN were the best performers, which outperformed those of the other four algorithms. However, in terms of real metric values, the Slope and RMSE metrics of CHLNET were close to the values of MDN, and the difference between them was only 0.016 in Slope and 1.073 mg/m³ in RMSE on the testing dataset. CHLNET showed good performance on the testing dataset, outperforming the other four algorithms in several metrics (e.g., R², MWP, and MAE). From the scatter plot (Figure 8), we can see that there was an overestimation of low Chla concentration and an underestimation of high Chla concentration for all algorithms (Slope < 1). These four algorithms were very close to each other in scatter morphology on the testing dataset. Table 4 shows that the CHLNET outperformed the SVR and RFR, which indicates that the CHLNET without feature extension provides a novel perspective on Chla inversion.




Figure 8 | Scatter plot of CHLNET (A), MDN (B), SVR (C) and RFR (D) on the testing dataset.





Evaluation of CHLNET performance at different trophic levels

To further analyze the accuracy of CHLNET at different Chla concentrations, the testing dataset was divided into three trophic levels, defined as oligotrophic (Chla ≤ 0.1 mg/m3), mesotrophic (0.1 < Chla ≤1 mg/m3), and eutrophic (Chla > 1 mg/m3) (Seegers et al., 2018). Table 5 lists the performance metrics on the testing dataset for each trophic level. For oligotrophic waters, although CHLNET was not the optimal model, its performance metrics (RMSE, RMSLE, MAE, and MWP) were the second best. Bias metrics for all models were greater than 1, which indicates that all models overestimate for oligotrophic waters. For mesotrophic waters, CHLNET outperformed other models on almost every metric, except for the Bias metric (1.041), which is slightly lower than that of MDN (0.995) and SVR (1.031). The Slope metric improved from 0.866 to 0.984. The Bias metric was closer to 1, moving from 1.587 to 1.041. This indicates that the predicted Chla concentrations are more evenly distributed on both sides of the in situ measurements at this trophic level. CHLNET also offered performance advantages at the eutrophic level compared to other models. The R², RMSLE, Bias, MAE and MWP of CHLNET had the second-best performance. In Figure 9, the Chla frequency distribution of CHLNET and SVR was significantly better than that of the other models. As the frequency distribution plots of Chla concentration of SVR and CHLNET seem to be similar, it is difficult to directly infer which model is better. However, in Table 4, the MAE metric of CHLNET (1.487) was slightly lower than that of SVR (1.504). Therefore, CHLNET at the three trophic levels is more consistent with the in situ measurements. Based on the results it can be concluded that CHLNET exhibits higher inversion accuracy at different trophic levels and avoids the problem of combining OWT-based inversions to establish a consistent inversion model of Chla.


Table 5 | Performance metrics for different trophic levels.






Figure 9 | Predicted Chla frequency distribution of SeaWiFS (A), RFR (B), SVR (C), MDN (D), and CHLNET (E) on the testing dataset.





Spatial mapping capability of CHLNET

The spatial mapping capability of CHLNET was verified at two time scales: one is the monthly average (June 2010) Chla concentration, and the other is the 8-day (24–31 October 2010) fused Chla concentration. Figures 10C–F show the SeaWiFS global Chla distributions derived from CHLNET and SVR algorithms. SeaWiFS Chla product data (Figures 10A, B) from the same period were used as a comparison. For Chla concentration mapping on two time scales, the inversion results of CHLNET, SVR, and SeaWiFS products have similar spatial patterns. Large-scale oceanic elements, such as upwelling near the Equator and the phenomenon of high Chla concentration in coastal waters, could be seen. Although there were some differences in the performance of CHLNET, SVR, and SeaWiFS, as shown in Table 4, such differences would be difficult to be observed at large-scale global Chla concentrations. Therefore, we compared the Chla concentration of CHLNET, SVR, and SeaWiFS from three latitudes (30°N, 0°, 30°S). Figure 11 shows the scatter plots of the concentrations in the range of −180° to 180° for the three latitudes and the difference plots (Diff = CHLNET/MDN−SeaWiFS). For simplicity, only differences in the range of −0.5 (mg/m³) to 0.5 (mg/m³) are retained in Figure 11. The differences in Chla of both CHLNET and SVR at latitude 30°N, 30°S (Figures 11A, C) show a consistent fluctuation pattern; that is, the estimated Chla was generally higher than that of SeaWiFS in the open ocean (difference > 0). The estimated Chla was generally lower than that of SeaWiFS in the coastal waters (difference < 0). The differences on the equatorial line (Figures 11B) had a significant fluctuation. However, there were some subtle differences in CHLNET and SVR. Although the differences in CHLNET were bigger than SVR’s on the Equator, it is hard to conclude that SVR mapping results were better, due to the lack of ground truth. In oligotrophic waters (Chla < 0.1 mg/m³), the Chla values assessed by CHLNET showed dispersion (green scatter points for Chla < 0.1 mg/m³ in Figures 11A). This result is consistent with the evaluation of oligotrophic waters in Figure 9 based on in situ measurements.




Figure 10 | (A, B) SeaWiFS Chla distribution, (C, D) SVR Chla distribution, and (E, F) CHLNET Chla distribution of the global map on monthly and 8-day scales.






Figure 11 | (A–F) indicate the scatter plot of CHLNET, MDN, and SeaWiFS Chla distribution at 30N°, 0°, and 30°S, respectively, on an 8-day scale (24–31 October 2010).



The eastern waters of Tasman Asia, Australia (147°–156°E, 49°–38°S) in the southern hemisphere were selected for further analysis of CHLNET performance at local scales (as shown in Figure 12) because of the occurrence of mesotrophic and eutrophic waters in this region. The MODIS-Aqua Chla product from NASA in this region was introduced as the reference to observe more detailed Chla spatial patterns because of its higher spatial resolution than SeaWiFS. CHLNET (Figure 12C) and SVR (Figure 12B) have nearly consistent spatial patterns. Compared with SeaWiFS data (Figure 12A), the CHLNET data are smoother and almost contain no noise points at the same spatial resolution in the open ocean (pale blue ellipse), indicating that CHLNET has a higher noise tolerance. In the coastal region (blue ellipse), CHLNET data are higher than those of the SeaWiFS and MODIS-Aqua Chla product, and changes in Chla concentration are smoother throughout this region. In another open ocean (red ellipse), Chla concentration of MODIS-Aqua generally had higher Chla values, with the highest values occurring at the bottom of this region. Compared to the SeaWiFS Chla product, the distribution of CHLNET Chla concentration was more similar to that of the MODIS-Aqua Chla product, indicating that even at a low spatial resolution (9 km), CHLNET can still capture detailed changes. In addition, the MODIS-Aqua Chla product showed a striped distribution (black ellipse), and CHLNET represents the Chla distribution in this region. In contrast, SeaWiFS showed a break and low Chla concentration in the middle part.




Figure 12 | Comparison of region (147°–156°E, 49°–38°S) Chla distribution of the SeaWiFS product (9 km) (A), SVR model (9 km) (B), CHLNET model (9 km) (C), and MODIS-Aqua product (4 km) (D) on 24–31 October 2010.



The eastern U.S. coastal region in the northern hemisphere was selected for further analysis of CHLNET’s mapping capabilities at low Chla concentrations, which was used by Hu in developing the OCI algorithm. Figure 13 shows the mapping results of Chla concentrations in this region. In eutrophic waters (blue ellipse), the spatial pattern of Chla concentration was different for the four data. CHLNET’s Chla concentrations showed a smooth transition, unlike MODIS-Aqua’s Chla concentrations, which suddenly rose from the northeast to the southwest, as well as the Chla concentrations of both SeaWiFS and SVR, which had high values. In oligotrophic waters, CHLNET’s Chla spatial pattern no longer exhibited smoothness (red ellipse). The CHLNET model generally shows excellent mapping performance in mesotrophic and eutrophic waters. However, the mapping ability at low Chla concentrations could be improved.




Figure 13 | Comparison of region (76.6°–70.5°W, 28.5°–36.5°N) Chla distribution of the SeaWiFS product (9 km) (A), SVR model (9 km) (B), CHLNET model (9 km) (C), and MODIS-Aqua product (4 km) (D) on 24–31 October 2010.





Generalization of CHLNET on cross-sensor

In addition to accuracy, the CHLNET model was evaluated for its ability to generalize across sensors, rather than sensor-specific algorithms. To quantify the generalization ability of the CHLNET model on cross-sensor data, the satellite in situ matchups of MERIS and MODIS-Aqua after band shifting were split into training and testing datasets in the ratio of 7:3. The CHLNET model trained on the SeaWiFS dataset was applied to the MERIS and MODIS-Aqua testing datasets. Table 6 shows the performance metrics of the two sensors. CHLNETseawifs denotes the CHLNET model trained on SeaWiFS matchups. Product denotes the OCx algorithm used to generate the Chla product. In addition, we wanted to investigate how the model’s accuracy changes when a specific sensor sample is covered.


Table 6 | Performance metrics of cross-sensor.



From Table 6, it can be seen that the CHLNETseawifs could still achieve good performance metrics in the cross-sensor Chla inversion, indicating that the CHLNETseawifs captures some of the spectral features when applied to new sensor data and has certain generalization ability. For the MERIS testing dataset, except for the Slope metric, which was slightly smaller, the performance metrics of CHLNETseawifs were better than the MERIS Chla product accuracy. For the MODIS-Aqua testing dataset, the accuracy of the CHLNETseawifs model was greater than that for the Chla product, but the difference was small (MWP = 51%). Note that the Slope metric of the CHLNETseawifs was low (Slope = 0.728). This is because the model overestimated Chla concentration at the oligotrophic level and underestimated it at the eutrophic level. As a result, R2 was larger (0.859), while the Slope was lower.

For horizontal comparison, a cross-sensor inversion model was built, called CHLNETcross, based on the CHLNETseawifs model using 70% match-up pairs of MERIS and MODIS-Aqua. Compared to the CHLNETseawifs, CHLNETcross performance metrics were improved. The performance improvement of the CHLNETcross model on the MODIS-Aqua testing dataset was significantly greater than that of MERIS. For example, on the R² metric, the performance of MODIS-Aqua increased by 6%, while that of MERIS increased by only 2%. This phenomenon might be because the band to be band-shifted in MODIS-Aqua was too far (~21 nm) from the target band, resulting in a significant error after the band shift. After the addition of match-up samples from MODIS-Aqua, the CHLNET model filled the gap that failed to capture the features for this sensor, and the model accuracy was immediately improved. The above results demonstrate that the CHLNETseawifs can capture the standard spectral features of cross-sensor types. With the addition of specific sensor samples, the CHLNETcross captured some features on the MERIS and MODIS-Aqua testing datasets that CHLNETseawifs did not extract. This demonstrates that the CHLNET model can be applied for cross-sensor generalization when the target sensor samples are insufficient for building CNN models.




Discussion


Feature extension effect on the performance of CHLNET

The CNN is excellent at detecting simple patterns in data and then in leveraging those simple patterns to produce more complex patterns in higher layers. In the Chla inversion model, the Rrs(λ) can be viewed as a shorter sequence with a fixed length. Then, the 1D CNN can extract features efficiently from such a sequence segment. Therefore, we designed the first layer of the CHLNET network with a kernel size of 5 and a stride of 5. Under this convolution layer, each newly extracted feature combines five bands [Rrs(λ) at 443, 490, 510, 555, and 610 nm]. This concept is similar to the classical concept of combining through bands (two- or three-band combination). Based on this, when creating the network structure, this paper employs 1D CNN to extract features and SVR as a regression algorithm for Chla fitting, and the two combine to form the new model, CHLNET. The difference is that the CHLNET model learns the weights of the band combinations through convolutional networks. Through multiple iterations, the model learns the mathematical form similar to the band combination to realize the inversion of Chla.

To determine whether the CHLNET model can learn the band combination or higher-dimensional features, we added extended features into the input to observe the change in CHLNET performance. To simplify the work, we only discuss the R² and MAE performance metrics. In order to prevent the influence of random noise, the performance metrics were recorded at a median value of 20 times when a new feature was added. Figure 14 shows the changes in the R² and MAE metrics when the input features increased. o denotes the original band feature, e denotes the extended feature, and the detailed description of each feature combination is shown in Supplementary Table S3. For comparison, we performed 3 experiments on the original band features (o, o1, and o2) and 11 experiments on the extended feature combinations. As illustrated in Figure 14, when features were added, except for metrics that fluctuated in the training dataset (solid line), there was little change in the testing dataset (dash line). The metrics when o was used as the input feature were treated as the baseline in Figure 14, and the metrics of different input features were subtracted from this baseline as difference. The maximum change in R² was found to be 0.007, while the maximum change in MAE was 0.011. The amount of change compared to the original metric value was essentially negligible. This indicates that the introduction of extended features hardly improves the accuracy of CHLNET, thus verifying that CHLNET is capable of extracting more complex or high-dimensional features from simple bands [Rrs(λ)].




Figure 14 | Effect of different input features on R² and MAE metrics of CHLNET. (A) represents the change of R² and MAE when input features have changed. (B) indicates the metric variation of R² and MAE using the accuracy of origin input features as the baseline.





Effect of network structure on model convergence for Chla inversion

MDN can implement one-to-many inversion, that is, the same input can output multiple different values. In recent years, the model has been frequently used for regression applications with multiple normal distribution patterns (Pahlevan et al., 2020; Smith et al., 2021). MDN is a combined model based on MLP and Gaussian Mixture Model (GMM). GMM consists of several Gaussian components. MLP is responsible for extracting each Gaussian component's weight, variance, and mean. Prediction output is based on the mixture weights and the morphology of Gaussian components, which enables MDN to predict multiple outputs based on the same input. In this paper, we propose CHLNET, combining 1DCNN and SVR. CHLNET and MDN have many similarities: both models are ensemble models; the former is MLP+GMM, and the latter is 1D CNN+SVR; moreover, the input features of the models are original features; so, there is no need to extend the features. MLP and 1D CNN play a similar role in the overall model, that is, feature extraction. From the experimental results (Table 4), it can be noted that both MLP and 1D CNN obtained better performance and played an essential role in completing the feature extraction. However, the following questions need further discussion: what is the difference between the two structures? Which network structure should be chosen when inversing Chla.

Theoretically, there is a fundamental difference between how MLP and 1D CNN extract features. As MLP is a fully connected form, one fully connected layer can extract features consisting of different numbers of bands. If there are five input feature bands and 100 neurons in hidden layer (Figure 15A), and if the weights w11, w12, and w13 tend to 0, then the X1 feature consists of two bands, Rrs (555) and Rrs (670). Similarly, X1 can also be composed of any three or four bands. However,1D CNN networks perform feature extraction by way of convolution. Figure 15B shows the case of extracting features consisting of two bands with a convolution kernel size of 2, and a stride of 1. It shows that the number of parameters used by the 1D CNN to extract features was less than that of MLP. In an extreme case, when extracting 100 new features consisting of two bands, in the structure shown in Figure 15B, the MLP required 5 × 100 = 500 parameters, while the 1D CNN required only 2 × 100 = 200 parameters. We built a five-layer network structure using MLP and 1D CNN, where the MLP consisted of five fully connected layers and the 1D CNN consisted of five CNN layers. The impact of parameter increases on model loss can be observed by increasing the network parameters by changing the number of neurons in the hidden layer (1D CNN is the number of channels). Figure 15C shows the changes in the loss metric on the training dataset when the MLP and 1D CNN network parameters increased. The loss of the 1D CNN stabilized at 5000 parameters, while the loss of MLP stabilized at 10,000 parameters. The 1D CNN could stabilize the loss with one and a half fewer parameters than MLP. Therefore, the 1D CNN could achieve the expected inversion results with a smaller network structure compared to MLP networks. Thus, it can be inferred that CNN networks can be widely used in water color remote sensing inversion, especially when the number of samples is limited.




Figure 15 | Feature extraction diagram of MLP (A), 1D CNN (B), and loss change with increasing parameter number (C).





Capability of CHLNET

CHLNET is an empirical model obtained by training based on in situ measurements. Therefore, it also has the pros and cons of an empirical model. As CHLNET does not have an explicit functional form, it is impossible to determine the physical meaning of the features. Therefore, obtaining Chla accuracy beyond the training range is challenging when the training data are insufficient. Greater attention should be paid to the CHLNET model when Chla exceeds the training range. In Table 5 and Figure 9, the limited inversion capability of CHLNET in low Chla concentration waters would overestimate the Chla concentrations. When performing global Chla mapping, discrete noise points appeared (Figures 11E, F). However, this does not mean that the model cannot be used for low concentration Chla inversion. CHLNET performance metrics (Supplementary Figure S4) outperformed the model built on the whole dataset when the model was trained individually on different trophic level samples (Table 5). From Supplementary Figure S4, it can be seen that the overestimation and underestimation of the CHLNET model occurred at the head and tail of the training dataset, respectively. They were not related to the trophic level, which is an inherent flaw of the model. Therefore, when applying the CHLENT model, attention needs to be paid to the range where the Chla concentrations are in the head and tail of the training dataset.

CHLNET could perform better than the OCx algorithm for cross-sensor applications (Table 6), which provides a new idea for the retrieval of Chla. When the sensor sample size is limited, CHLNET’s feature extraction weights learned in the original sensor (e.g., SeaWiFS matchups) can be transferred to the new sensor (e.g., MERIS matchups) via transfer learning. A small number of new sensor samples can be used to optimize the original CHLNET and establish high-performance inversion capabilities of the target sensor. For example, the performance of CHLNETcross, as shown in Table 6, was better than that of CHLNETseawifs. However, it should be noted that the capability of the cross-sensor model was affected by the band-shift algorithm. In Table 6, the performance metrics of the CHLNETseawifs model on the MERIS testing dataset were significantly better than the performance metrics on the MODIS-Aqua testing dataset. The reason for this result might be that the MERIS sensor only needs two bands (560 nm and 665 nm) for the band shift. The band center was close to the SeaWiFS band center (555 nm and 670 nm), while the MODIS-Aqua sensor required three band shifts (488 nm, 531 nm, and 667 nm), and the center bands of 531 nm and 510 nm were far from each other, which might cause a more significant error. Supplementary Table S5 shows the performance results for cross-sensor applications with the original bands of MERIS and MODIS-Aqua as input features of CHLNET. It can be seen that without band shifting, the performance of MODIS-Aqua was significantly reduced. For instance, R² of the testing dataset was reduced from 0.859, 0.894 to 0.838, 0.889 on model CHLNETseawifs and CHLNETcross, respectively. Therefore, attention should be paid to the impact of the accuracy of the band-shift algorithm on the accuracy of the cross-sensor model based on CHLNET.




Conclusion

In this study, we developed a new model for ocean surface Chla inversion using the SeaWiFS Chla validation dataset provided by SeaBASS. The performance assessment demonstrated that the CHLNET algorithm performed better than the state-of-the-art algorithms, namely, OCx, SVR, RFR, and MDN algorithms. Application on different trophic waters indicates that CHLNET avoids the need to combine OWT-based inverse algorithms to establish a unified inversion model for Chla across various water types. The Chla mappings on global and local scales illustrate the quality of the spatial pattern. Although performance was slightly poor when mapping oligotrophic waters, CHLNET inversion results in coastal waters were more realistic and showed richer details and higher tolerance to noise. The generalization applications on MERIS and MOIDS-Aqua satellite–in situ matchups indicate that CHLNET can significantly improve the performance of CHLNET in cross-sensor Chla inversion by adding a small number of target sensor matchups to the training dataset. Therefore, CHLNET can serve as an alternative approach for ocean surface Chla concentration retrievals. With the widespread implementation of multispectral and hyperspectral satellites, the hybrid algorithm of the inversion of Chla based on the 1D CNN and SVR to extract high-dimensional features from raw Rrs(λ) can be a new approach to inverse more bio-optical properties.
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Marine floating raft aquaculture forms an integral component of the monitoring of coastal marine environments. It is essential to accurately obtain the spatial distribution of marine floating raft aquaculture to gain the fullest understanding of the development of marine fishery production, optimization of the spatial layout of aquaculture, and protection of the marine environment. The Sentinel-2 Multispectral Instrument (MSI) is used to acquire optical imagery at a high spatial and temporal resolution, sampling 13 spectral bands in the visible, near-infrared, and short-wave infrared parts of the spectrum. This research reports how a decision-tree-based procedure was developed to map marine floating raft aquaculture using Sentinel-2A MSI imagery and DEM (Digital Elevation Model) data. Three indices and spectral features were used in this algorithm to differentiate marine floating rafts from other land-cover and land-use types in Fangchenggang City, China. These included the Differential Ratio Floating Raft Index (DRRI), newly proposed in the paper, the Normalized Difference Vegetation Index (NDVI), and visible reflectance. Additionally, a comparison was made between the decision tree classification method (DT) and the random forest (RF) and support vector machine (SVM) methods. The results demonstrate that these three methods can obtain raft information with high accuracy. Finally, the classification results were merged into aquaculture rafts and non-aquaculture rafts. The overall accuracy for DT was 98.20% and 1.28 and 4.99 percentage points higher than RF and SVM, respectively. The user accuracy for marine floating rafts for DT (98.25%) was also markedly higher than that of RF and SVM methods (93.97% and 86.50%, respectively). The producer accuracy for marine floating rafts through the DT method was 98.17%, 0.81 percent lower than that of RF, and 1.03 percent lower than that of SVM. The decision-tree method does not assume strict data distribution parameters, optimization of the application of multispectral imagery and elevation data becomes possible, and combing with the DRRI index, then results in higher classification accuracies of marine floating rafts. When using multi-source data of different types and distributions to map marine floating rafts, a decision-tree method, therefore, appears to be superior to RF and SVM classifiers.
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1. Introduction

Floating raft aquaculture is generally found in the shallow marine regions, consisting of cultures of macroalgae, shellfish, and other marine animals (Yu, 2019). Following the rapid growth of the fishery market scale, the floating raft density in seawater continues to increase, resulting in the slowdown of seawater flow, thereby reducing the exchange capacity of the bay water, causing many marine ecological problems. It is important to ascertain the distribution of floating rafts in the marine area for the following reasons: to inform and develop macro governmental regulations; to ensure the protection of marine ecological environments; to guarantee safe ship navigation and reasonable planning of cultures, facilitating production value estimations.

Floating raft aquaculture is primarily located in offshore areas that are difficult to cover using traditional manual monitoring methods. With a wide range of distribution and a tendency to increase year by year, this represents the urgent requirement for timely monitoring. Manual aerial surveys are time-consuming and laborious, showing the potential in the use of satellite remote sensing as an efficient means to obtain information on floating raft distribution, a method that is suitable for long-term dynamic monitoring. Remote sensing extraction of floating raft aquaculture areas carried out by both domestic and foreign scholars usually uses visual interpretation (Yang et al., 2005; Cheng et al., 2012), object-oriented methods (Chu et al., 2008; Loberternos et al., 2016; Wang et al., 2018; Yu, 2019; Liu et al., 2020), image enhancement methods (Liu et al., 2013; Fan et al., 2015), and deep learning (Cui et al., 2019a; Cui et al., 2019b; Liu et al., 2019a; Liu et al., 2019b) based methods.

Visual interpretation methods involve interpreting floating raft information directly using the human eye alone by following certain interpretation markers (Yang et al., 2005; Cheng et al., 2012). The efficiency of this type of method is low (Rajitha et al., 2007; Jayanthi, 2011), and generally focuses on a small number of floating rafts as training samples. Image enhancement methods normally involve the use of information enhancement indices to extract floating raft information. The image enhancement and classification method based on neighborhood analysis being designed (Liu et al., 2013) demonstrate a good extraction effect for seine farming areas. Through the use of feature extraction with a joint sparse representation classification method and other information enhancement methods, Fan (Fan et al., 2015) efficiently extracted floating raft information from a single high-resolution SAR image.

However, there is room for improvement in classification accuracy. The mariculture floating raft extraction methods which combine optical and SAR images to create one single fused image can improve the classification accuracy (Yu, 2019), but the fused image makes full use of the rich spectral features of the original optical images difficult. Object-oriented methods establish classification systems based on the spectral, textural, and spatial features of floating raft targets (Du et al., 2013; Xu et al., 2018). Liu (Liu et al., 2020) located floating raft targets by processing Landsat8 images using object-oriented NDVI, NDWI, and edge extraction operators, however, most object-oriented classification systems require additional expert experience, making such methods more subjective (Xue et al., 2018).

Compared with traditional methods, machine learning and deep learning methods can improve the extraction efficiency of floating raft information. However, it should be noted that general machine learning and object-oriented methods are more prone to the phenomenon of “adhesion”(Liu et al., 2019a; Liu et al., 2019b; Yu, 2019; Liu et al., 2020), and the fact that a large number of aquaculture areas on land are misclassified as floating raft targets when this method is used is problematic. Chu (Chu et al., 2020) proposed a support vector machine method combining spectral and texture features based on GF-1 image data. This improved overall classification accuracy, acting to reduce the “adhesion” phenomenon when compared with general machine learning methods, however, the extraction accuracy was reduced without the presence of strong local spectral features due to the reduced number of bands in GF-1 data. Cui (Cui et al., 2019a; Cui et al., 2019b) proposed a fully convolutional neural network method as another way to overcome this “adhesion” phenomenon. However, this method requires a large number of training samples with high spatial resolution and the extraction of floating rafts on a large spatial scale, which can lead to the omission of floating rafts in coastal rivers. Sui (Sui et al., 2020) proposed a semantic segmentation-based algorithm for offshore fish box and floating raft extraction, but the learning and extraction efficiency of this method is reduced when dealing with remote sensing images over larger areas.

Commonly used remote sensing data for extracting marine floating raft aquaculture areas mainly includes optical images such as GF-1 (Wang et al., 2018; Cui et al., 2019a; Cui et al., 2019b; Chu et al., 2020); GF-2(Liu et al., 2019a; Liu et al., 2019b); SPOT-5 (Chu et al., 2008; Liu et al., 2013); Landsat TM (Yang et al., 2005); Landsat 8 OLI (Yu, 2019; Liu et al., 2020) and SAR images (such as GF-3 (Yu, 2019) X-band SAR images (Fan et al., 2015)), and Phil-Lidar2 LiDAR (Loberternos et al., 2016) point cloud data. Extraction studies of mariculture rafts based on Sentinel-2 imagery have been less reported. Sentinel-2 consists of two satellites, Sentinel-2A and Sentinel-2B, which carry a multispectral imager (MSI). This covers 13 spectral bands, from visible to short-wave infrared, and can acquire multispectral images with a revisit period of 5 d (10 d for a single satellite) with a spatial resolution of up to 10m. Therefore, its high spatial and temporal resolution alongside the wide working band has great potential for the remote sensing identification of floating rafts. Additionally, marine-farmed rafts are distributed in coastal waters with low elevation, and a combination of DEM (Digital Elevation Model) data can make full use of this feature leading to the potential improvement of the accuracy of raft extraction.

Accordingly, this paper uses Pearl Bay in Fangchenggang City, Guangxi as the study area. This study aims to construct a spectral index of floating rafts by comparing the differences in spectral characteristics of typical features based on Sentinel-2MSI satellite images and making full use of the special coastal environment in which the offshore floating rafts are located, to eventually establish a decision tree model to extract offshore floating raft areas based on Sentinel-2 and DEM data.



2. Data & methodology


2.1 Overview of the study area

The study area selected in this paper is at the southernmost point of the Chinese mainland coastline (107°28′E~108°36′E, 20°36′N~22°22′N), located in Pearl Bay, Fangchenggang City. The area borders Vietnam to the southwest and contains 580 km of coastline with a subtropical monsoon climate. The latitude and longitude range of the study area is 108°0′E~108°19′E, 21°25′N~21°39′N, as shown in Figure 1.




Figure 1 | The geographical location of the study area and Sentinel-2A standard false color composite image of the study area.



The deep-water wind & wave-resistant aquaculture base for fish farming in Pearl Bay represents the first national marine ranching core demonstration area in Guangxi Province, where enterprises develop the deep-sea net box and new shellfish floating raft aquaculture in both the marine breeding area and surrounding waters. The offshore deep-water wind and wave resistant net cage and new shellfish floating raft culture cage are two new types of aquacultures forming an important element of the development of marine fisheries in Fangchenggang City, possessing a large economic value. The floating raft in this area averages about 15m-20m wide and 55m-60m long. This means that when the spatial resolution is 10m, the floating raft target generally occupies about 2-3 pixels in width and about 6-8 pixels in length.



2.2 Data acquisition


2.2.1 Satellite imagery data

In this paper, the satellite image data used for the extraction of aquaculture floating raft information is the Sentinel-2A satellite image. Sentinel-2 is composed of two satellites, “2A” and “2B”, carrying a high-resolution multispectral imaging device with 13 bands from the visible to the near-infrared and short-wave infrared, whose band settings and performance indicators are detailed in Table 1. This experiment uses the atmospherically corrected S2A satellite data product of the L2A level acquired on December 21, 2020. The atmospheric correction of data is based on Sen2Cor. To allow for the difference in resolution of Sentinel-2A data in different bands, the data are resampled using cubic convolutions. This experiment includes band data with 10m (B2, B3, B4, B8) and 20m (B6) resolution, and data with a 20m spatial resolution are resampled to 10m resolution to enable subsequent experiments. Data are selected for the newly formed index and model used in this study and were selected by index principle and accuracy assessment of models.


Table 1 | Sentinel-2A band data.






2.2.2 DEM data

The DEM data used in this paper is the SRTM (Shuttle Radar Topography Mission) DEM, comprising digital elevation data obtained from the Shuttle Radar Topography Mission SRTM. NASA and the National Geospatial-Intelligence Agency (NGA) conducted this 11-day mission from February 11 to 22, 2000, on board the Space Shuttle Endeavour. The data used for this experiment are 30m resolution SRTM DEM products.



2.2.3 Sample data set

The data sample for this study was determined through the combining of quasi-synchronous high-resolution Google images with visual interpretation from Sentinel-2 images. The spatial distribution of the samples is shown in Figure 2. 7488 sample pixels were extracted by sample polygons, of which 639, 631, 505, 661, 679, 861, 915, 2597 were artificial buildings, bare soil, sandy beaches, land vegetation, mangroves, water bodies, land aquaculture ponds, and floating rafts, respectively. 1369 floating raft pixels and 1941 non-floating pixels (including artificial buildings, bare soil, sandy beaches, land vegetation, mangroves, water bodies, and land-based aquaculture ponds 494, 472, 242, 390, 460, 431, 461 respectively) were randomly selected as training samples, with the remaining ones being validation samples. Data is processed with weights in RF and SVM, detailed process models are in Section 3.2. Category definitions are shown in Table 2.




Figure 2 | Sample Distribution.




Table 2 | Category Definition.





2.3 Research methodology


2.3.1 Analysis of Spectral Characteristics

The typical features in this study area comprise floating rafts, land-based aquaculture areas (Aquafarm), water bodies, vegetation (land-based vegetation and mangroves), bare land, artificial buildings, and sandy beaches (Sand). The Sentinel-2A reflectance data were combined with the region of interest (ROI) for statistical purposes (in Figure 3) to analyze the reflectance characteristics of the typical features within the study area. The reflectance of the floating raft shows a peak with increasing wavelength, a trough value (0.040) in the near-infrared band (740.2 nm-782.5 nm), and reflectance of 0.061 at 835.1 nm. The reflectance of the floating raft decreases continuously from 835.1 nm to 945 nm, decreases to 0.021 at 945 nm, and then increases to 0.040 at 2202.4 nm. The reflectivity of the raft at the wavelength of 2202.4 nm is 0.030.




Figure 3 | Schematic of the reflectivity curve between the floating raft and the water body.



The reflectance of the land-based aquafarm and the floating raft were close to each other, however, the difference between them was obvious in the visible wavelength, while the similarity is high in the NIR. The difference between the two is most obvious at 496.6 nm, where the reflectance of the floating raft is about twice as high as that of the land-based aquafarm. From the perspective of the change in reflectance values with wavelength, the change in reflectance between the floating raft and the land-based aquafarm is in the opposite direction from 835.1 nm to 945 nm, and the slope of the change in reflectance of the floating raft is larger in absolute value than that of the aquafarm. The reflectance of the floating raft increased while that of the aquafarm decreased.

The reflectance of the water bodies increases with wavelength then decreases and tends to level off in general, with the highest being 0.076 (560 nm) and the lowest being 0.008 (945 nm). This is closer to the reflectance of the floating raft in the visible band, while the difference in the NIR is relatively large (703.9 nm-835.1 nm). The average difference in reflectance between the water bodies and the floating raft is up to 0.029.

The reflectance of bare land and artificial buildings is high in all wavelengths, so they are different from the floating raft, making it easier to distinguish the floating raft from them. The lowest reflectance of bare land and artificial building is at 443.9 nm (0.10 and 0.08, respectively), and the highest is at 1613.7 nm (0.36 and 0.230 for bare land and artificial building, respectively). The beach reflectance does not vary much in bands and is higher than that of the floating raft, so it is generally easy to discern the two when classifying.

Reflectance changes in the mangrove forest and terrestrial vegetation are identical, making it easy to distinguish between these and the floating raft, because of their distinct vegetation characteristics and high reflectance at the NIR.



2.3.2 Spectral index

NDVI (Normalized Difference Vegetation Index) is a widely used vegetation index (Rouse et al., 1974). The near-infrared and red bands of Sentinel-2 multispectral remote sensing data fall in Band 8 (central wavelength 842 nm) and Band 4 (central wavelength 665 nm), respectively. NDVI attempts to indicate information about vegetation in the study area and is calculated as follows



In Equation (1), ρR corresponds to the Band4 (red band) and ρNIR corresponds to the Band8 (NIR band).

Due to the diversity of features in the study area, the overall NDVI values ranged from -0.9974 to 0.9994, and eight types of features were analyzed: raft, Aquafarm, water bodies, mangrove forest, land vegetation, bare land, sand, and artificial building. This was done in order to extract information on floating rafts in the ocean and exclude the influence of aquafarm. Statistical information on the NDVI values of features is shown in Table 3. Information in the table demonstrates that the NDVI values of land and water bodies are distinct, meaning the index can be used to distinguish land and water bodies effectively, however, the NDVI values of land areas such as rivers and lakes are negative, which would have an influence on the result.


Table 3 | Statistics of typical feature indices in the study area.



NDWI (Normalized Difference Water Index) is a normalized difference water index calculated using green and near-infrared bands (McFeeters, 1996), and is commonly used to extract information about water bodies in images. The NDWI can be calculated using Band3 and Band8 in Sentinel-2 to extract water body information in the study area, and its calculation formula is as follows.



In Equation (2), ρG corresponds to the Band3 (green band), and ρNIR corresponds to the Band8 (NIR band).

From the statistical information of NDWI, it can be analyzed that in this index, the difference between floating rafts and water bodies is obvious: the mean value of NDWI for the floating rafts is 0.0135, while that for water bodies is 0.6485. In a marine context, the NDWI index can be used to distinguish floating rafts and water bodies, and the statistical information for eight types of features is shown in Table 3.

DRRI (Difference-Ratio Raft Index) is improved by using bands in NDWI, which is calculated based on green (Band3 560nm), red (Band4 664.5nm), and red edge (Band6 740.2nm), and near-infrared (Band8 835.1nm). The index is capable of separating the ocean background from floating rafts and is applicable for the extraction of floating rafts on the sea surface by using the following calculation formula.



The theory of DRRI lies mainly in using the difference between the floating raft and the water body in the following four bands: green, red, red edge, and near-infrared in order to extract the floating raft from the water bodies. In Equation(3) the following band reflectance is thusly represented:ρNIR represents the NIR, ρRE represents the red-edge, ρG represents the green, and ρR represents the red.

As is indicated by the red and purple arrows in Figure 4, the index is built based on the differences in red-green and NIR-red-edge bands between Raft and water bodies. For water bodies, there is a steep in red-green bands(pointed by the first red arrow), while in the NIR-red-edge band, the reflectance change in water bodies is small(pointed by the second red arrow). The floating raft target has large differences in reflectance in both the red-green band(pointed by the first purple arrow) and the NIR-red-edge band(pointed by the second arrow). Short lines indicat their changes. By amplifying the difference in the green-red band by a factor of 1.25 (measuring the mean standardized distance with the coefficient, and optimizing the factor by the least square method) and adding the amplified part with the NIR-red-edge band, the floating raft target becomes brighter and the water background darker. Then the extraction index is normalized to -1 and 1, and the water bodies are always smaller than 0. The difference between the floating raft and water bodies being processed by DRRI is more obvious than using a single band, or a simple combination of bands.




Figure 4 | Characteristic curves of typical feature reflection.



From the analysis of the DRRI statistical information obtained, the mean value of DRRI of water bodies is -0.3994. The standard deviation is 0.0587. The DRRI values of marine water bodies are all small and distinctive, and the standard deviation is smaller than the statistical value in NDWI. Other features that are easily confused with rafts, such as aquafarm, have large differences in DRRI with rafts and can be better identified using the DRRI. The DRRI statistics of typical features are shown in Table 3 below.

This study uses mean standardized distance to evaluate the effectiveness of the three indexes mentioned above and aims to select indexes that have better separability within the group of categories. The mean standardized distance d is calculated as follows:



In the Equation, μ1μ2 is the statistical mean of the sample on the corresponding index for both feature categories, and σ1σ2 is the statistical standard deviation of the sample on the corresponding index for both feature categories.

The mean standardized distance of NDVI, NDWI, and DRRI are shown in Table 4. The NDWI index has good differentiability for raft & water bodies, raft & artificial building, raft & mangrove forest, and raft & land vegetation, with distances d of 3.703, 1.032, 4.186, and 4.873, respectively. The newly constructed DRRI index of this experiment has better differentiability between raft and water bodies than NDWI, with the best distance d between the floating raft and water body (4.211), and distance between raft and aquafarm was 1.389.


Table 4 | Index Separability of NDVI, NDWI, and DRRI.



In summary, among the three indexes in this experiment, NDVI is applicable to distinguish floating rafts from terrestrial vegetation and mangrove forest, and DRRI is applicable to distinguish floating rafts from water bodies and aquafarms. The validity of the DRRI index proposed in this experiment is verified and applies to the extraction of floating raft targets from the marine surface.



2.3.3 DEM feature analysis

The study area includes land, islands, ocean, mudflats, and other topography. It can be seen from the SRTM DEM data that the elevation of the marine area is 0m, while the land and island areas are generally higher, in the mudflats area at the junction of land and ocean and elevation of some aquafarms, it is also 0m. The difference in elevation characteristics can be roughly distinguished between land rivers, lakes and other water bodies, and marine water bodies.




2.3.4 Classification and accuracy assessment method

To validate the classification result, the accuracy assessment is carried out by computing User’s Accuracy(UA), Producer’s Accuracy, Overall Accuracy, and Kappa coefficient using the test dataset.











In equations above, TP represents True Positive, FN represents False Negative, FP represents False Positive, and TN represents True Negative.

The decision tree method is one of supervised classification, this study uses ENVI to realize the decision tree model. The decision tree subdivides the study objects level by level so that the probability of the Raft at the end point is maximized through multiple discriminative classifications to obtain highly accurate classification results. Coastal aquaculture areas and sand areas influence the remote sensing extraction results of floating rafts. A decision tree model is established based on Sentinel-2A, DEM data, and spectral indexes to reduce the influence of other features, therefore, achieving a more effective identification of floating rafts in the ocean. The overall accuracy of the decision tree is 98.20%. A detailed explanation of the decision tree model is introduced in section 3.1.

The random forest method is a widely used machine learning remote sensing information extraction method. It has the advantages of low human intervention, fast computing speed, and robustness (Yu et al., 2019). Based on the random forest classification tool of van der Linden (Van der Linden et al., 2015) we used the following parameters, and input the visual interpretation of the floating raft ROI; the number of trees was set to 1000 with the number of features determined using the log function, and Gini Impurity is employed to measure whether to continue splitting. The overall accuracy of the random forest model is 96.92%. The detailed data processing method is in “3.2”.

Support vector machine is a kind of machine learning method based on statistical learning theory. Ocean surface information is complex and has a lot of interference. The principle of the support vector machine is to segment the samples into different classes by using the hyperplane. This allows the maximum interval on the feature space, making the support vector machine method capable of achieving better results for general classification problems. For nonlinear classification problems, they are generally converted to a high-dimensional feature space by nonlinear transformation for linear support vector machine learning (Li, 2012). The general process includes inputting a training data set (region of interest); selecting a radial basis function as the kernel function; setting the penalty parameter as 100, and then constructing the model. The overall accuracy of the SVM model is 93.21%. The detailed data processing method is in “3.2”.

Further discussion of accuracy assessment is shown in “3.3 Evaluation”.




3. Results and analysis


3.1 Decision tree model construction

From the analysis of NDVI, NDWI, and DRRI, it can be seen that, relative to the results of the index operation, the differentiation degree of various types of features on Sentinel-2 images (b1-b11) is not high, and only land objects (vegetation, mangrove forest, and artificial building) are distinguishable from other features. This means that the floating raft cannot be identified by directly using the original remote sensing reflectance data in the Decision Tree (Figure 5).




Figure 5 | Schematic diagram of decision tree algorithm.



Since the floating raft is located on the marine surface, its identification depends on segmenting the land and the ocean for extraction to avoid the misclassification of objects on land with materials similar to the floating raft. Using DEM can distinguish most of the marine water bodies from the land. In coastal regions, there is a large area of mangrove forest, and the DEM value in this area is consistent with the marine water bodies. Therefore, it is difficult to eliminate the mangrove forest only by the DEM value, however, because the NDVI of the mangrove forests is positive, the NDVI index can be used to extract it efficiently. The sand can also be eliminated according to the positive NDVI. Therefore, the combination of NDVI and DEM is applied in order to exclude the influence of land water bodies (rivers, lakes, etc.) and mangroves. However, for land-based aquaculture areas (Aquafarms) and marine water bodies in coastal areas with DEM less than or equal to 0m, the influence of such features cannot be excluded in this step and need to be further processed and analyzed in the subsequent steps.

To locate the floating raft target, it needs to complete further processing of the obtained part containing the marine water body, aquafarm, and floating rafts. It can be seen from the DRRI index that the water bodies’ DRRI value is low, where the mean value is -0.3994 and the maximum value is -0.2849, while that of floating rafts and aquafarm is 0.0647 and -0.1726, respectively. The separability index of floating rafts and water bodies is 4.211. The histogram of the index shows that it is best extracted at -0.175 for floating rafts and extracting floating rafts and aquafarm areas from the marine surface.

The Sentinel-2 B2 band is used to help extract the floating rafts target. This eliminates the interference of aquafarm in identifying floating rafts because the distinction (measured by mean standardized distance) between the two features in the Sentinel-2A B2 band is the highest among all bands and indexes, which is 1.645. Aquafarm areas have low reflectance in the blue band, and the average reflectance of the floating rafts is two times that of aquafarm areas, so the B2 band can be used to separate them. Then set the threshold at 0.0430 to extract the floating raft target.

Finally, the decision tree is constructed by combining NDVI, DRRI, DEM, and Band 2 to improve the recognition accuracy of the floating raft, in the reason of the high mean standardized distance between them and features (in Section 2.3.1).



3.2 SVM and random forest construction

The parameter set for SVM and Random Forest is written in 2.3.4, while the input data is unclear. Considering the Accuracy of different band combinations in Tables 5, 6 then select the best combination as input data. Eventually, the combination of B2, B3, B4, and B8 is selected for SVM, and the combination of B2, B3, B4, B6, and B8 is selected for Random Forest.


Table 5 | Comparison of input in RF.




Table 6 | Comparison of input in SVM.



If the DEM data is added, the overall accuracy will have a 0.0056(SVM) and 0.2180(RF) drop due to the lower resolution of DEM, which would cause the aggravated adhesion phenomenon, and more image pixels misclassified around the floating raft target.

Input ROI for SVM and Random Forest is unbalanced, so Cost-Sensitive learning (CSL) is used in this study for comparison, and assign a higher weight to minority groups, settings of weight are 4.05,4.10, 5.12, 3.92, 3.82, 3.01, 2.83, 1 for artificial buildings, bare soil, sandy beaches, land vegetation, mangroves, water bodies, land aquaculture ponds, and floating rafts, respectively. But there is no significant effect while using CSL in the process of learning (Tables 5, 6).



3.3 Evaluation


3.3.1 Evaluation of results and accuracy

The three methods mentioned in Section 2.3.4 were used to identify the floating rafts in the coastal area from the remote sensing image of Fangchenggang City on December 21, 2020. The classification results were finally combined into two categories: raft and non-raft, and the identification results are shown in Figure 6. Firstly, the subjective evaluation of the classification results shows that all three methods can effectively extract floating rafts. The decision tree method extracts the purest information about floating rafts, with the RF forming the second most accurate and the SVM representing the worst. The following is an objective evaluation of each of the three classification methods, the accuracy of which is evaluated using the validation sample dataset. From Table 7, it can be seen that in terms of overall accuracy, the decision tree method has the highest success rate at 98.20%; the RF method is the second highest at 96.92%, with the SVM method at 93.21%. From the perspective of producer accuracy, the SVM method is optimal at 99.20%, but the user accuracy of this method is lower at only 86.50%. The decision tree method has 98.25% user accuracy, producer accuracy of 98.17%, and overall accuracy is 98.20%. It is also the classification method with the highest Kappa coefficient among the three methods.




Figure 6 | Comparison of floating raft extraction results and spatial distribution, Original Image (A), Support Vector Machine (B), Random Forest (C), Decision Tree (D).




Table 7 | The extraction results of floating raft.



Overall, the SVM method has the lowest user accuracy and lowest overall accuracy due to the misclassification of non-raft pixels as rafts. The decision tree method is more suitable for floating raft identification because it has higher producer accuracy, user accuracy, and the highest overall accuracy, the identification results are also clear and reliable. Detailed statistical information on different models is shown in Table 7.



3.3.2 Comparison of extraction algorithms

The extraction of floating raft information mainly depends on the spectral information of the material within the floating raft: there are spectral characteristic differences among different features, and information about floating rafts can be effectively extracted through the selection of classification features and amplifying differences among them. In this study, the decision tree method, SVM method, and random forest method are applied to identify marine floating rafts. Among them, the RF method and the SVM method require less human intervention, while the decision tree model is obtained through the statistical analysis of remote sensing data. For raft extraction algorithms, there are some distinctions in their principles, which lead to differences in recognition accuracy. Figure 7 shows some of the intercepted areas, and the reasons for the differences in classification accuracy are as followed.




Figure 7 | Examples of floating raft extraction comparison and misclassification, (A–C) and (D) are for raft areas, (E) and (F) are for misclassification aquafarm.



For the decision tree method, the difference in spectral features between the raft and non-raft areas can be used to better extract the target, however, a small number of misclassified elements around the floating raft still exists due to the similarity of the spectrum. Since the number of bands in multispectral images is small, which means there are fewer features that can be used for classification, leading to a higher probability of misclassification when the object material is similar to that of the floating raft. In the process of floating raft extraction, the normalized vegetation index NDVI and DEM were used for the initial screening of water bodies. Next, the DRRI index and blue band were used to screen out rafts. Choosing a variety of features such as band, index, and elevation can better avoid misclassification. The decision tree method has the highest overall accuracy, and good classification effect, with the clearer and more accurate acquisition of floating raft contours.

The SVM method is a category classification method. Multispectral remote sensing data often do not have a high enough spatial resolution for the sensing of smaller features. Supervised classification methods have a high dependence on samples, and the selected training samples may have the problem of mixed image elements. This in turn affects the computation of the support vector machine hyperplane, then reducing the accuracy of classification, while the increase in the number of samples leads to an increase in the time required for successful training. The data used for the SVM method are bands selected from Sentinel-2A (L2A). The actual size of the floating raft in this area should be 2-3 pixels in width and 6-8 pixels in length (10m resolution). Extraction results show that the target of the floating raft obtained by the support vector machine method is larger than its actual size. Furthermore, there is the phenomenon of misclassification of water body pixels into floating rafts (Figure 7).

For the random forest method, the principle is to integrate multiple decision trees to obtain the output category, however, the number of trees, inter-tree correlation, and data quality affect the accuracy of this algorithm. For the problem of floating raft extraction, the adjacent non-raft pixels are more similar to the floating raft pixels, causing a mixed pixel problem, thus affecting the inter-tree correlation, leading to problems such as larger contours and serious adhesion between floating rafts (as shown in Figure 7C). This misclassification results in lower user accuracy, while some of the floating raft pixels are also classified as other features such as water bodies. Although the Random Forest method should have higher Accuracy than the Decision Tree method theoretically, the complexity of features, the newly formed DRRI index, and the application of DEM make the Decision tree method has higher precision, which also verifies the effectiveness of the DRRI index.

The decision tree has the best classification effect of the four sets of classification results in Figure 7. The rafts extracted using the decision tree method have low adhesion to the rafts, better distinguishability, a clearer raft outline, and the area is closer to the actual size of the rafts.

For aquafarms, all three methods have the phenomenon of misclassification, mainly because the two elevations are similar, and comprise similar material, which cannot be distinguished using DEM value (decision tree method) or other algorithms. However, the overall classification accuracy of the decision tree method is the best of the three, and the misclassification phenomenon is smaller than in the other two methods (in Figure 7E, F).



3.3.3 Influence of data and objects

The identification accuracy of the floating raft is related both to the chosen classification method, and the spatial resolution of the remote sensing images used for classification, which shows a greater relationship with when the spatial resolution is higher, the corresponding extraction accuracy also increases. Chu (Chu et al., 2020) used the high-resolution remote sensing images and texture features of GF-1 for classification using the SVM method, and the classification accuracy was as high as 97.803%. However, for data with lower spatial resolution, the classification accuracy will be reduced. The floating raft target is about 15m-20m in width and 55m-60m in length, and the spatial resolution of Sentinel-2A data is 10m, so the accuracy of extracting floating raft information with Sentinel-2A meets the basic requirements, improving the efficiency of floating raft information extraction.

There are more aquafarm areas in coastal areas that are easily confused with floating raft areas (in Figure 7E, F), and coastal aquafarm areas have lower reflectance at 496.6 nm than marine waters and floating rafts. The decision tree method can use this feature to distinguish them from marine waters and floating rafts. Some of the coastal aquaculture areas have similar spectral features to the floating rafts, which may be caused by the same or similar materials within both elements, thus affecting the extraction accuracy. However, this issue can be investigated further by subsequent research.




3.4 Evaluation of another coastal area

Another coastal area in China was chosen to demonstrate the practical utility of the newly formed index DRRI and the decision tree model. It is Sandu Gulf located in Ningde city, Fujian Province. The location is shown in Figure 8.




Figure 8 | Location of verifying area and the identification results in Sandu Gulf.



The overall accuracy (OA) and the Kappa are computed to validate the performance of the DRRI index and the decision tree model, and the validation samples were randomly selected from Google Earth high-resolution images. The OA of classification results is 98.03%, and the Kappa is 0.9591, which represents high precision. Partial extraction results are in Figure 8. The water bodies’ DRRI is always smaller than 0. There are tiny differences in the setting of the parameters due to the material used for floating rafts, although they are both rafts for fish farming. The threshold of DRRI to distinguish between water bodies and rafts was set to -0.039 (raise 0.136), and the separability (measured by mean standardized distance, which is 2.1) of water bodies and rafts in DRRI is also strong.




4. Discussion


4.1 Strengths and potential

Floating rafts are located in the offshore bay area, where individual rafts are small and densely arranged, which makes “adhesion” easier between the rafts when using remote sensing images for classification. The problem of “adhesion” is more obvious in studies with low spatial resolution such as Landsat images (Yu, 2019; Liu et al., 2020), however, it is reduced with the use of higher spatial resolution images such as SPOT and GF-2. It should be noted that the phenomenon of “adhesion” still exists in areas with high floating raft density (Liu et al., 2013; Liu et al., 2019a). General machine learning and object-oriented methods show poor performance in dealing with this problem (Liu et al., 2019a; Liu et al., 2019b; Yu, 2019; Liu et al., 2020), whereas the DRRI index proposed in this study can efficiently extract the floating raft targets at images with 10m and 20m spatial resolution, thereby alleviating the “adhesion” phenomenon to a large extent. To alleviate the problem of similar spectral characteristics in the aquafarm regions and floating rafts, the use of the land elevation feature of the region where it is higher than 0 and uses DEM elevation information effectively reduces part of the misclassification phenomenon. The decision tree constructed in this study successfully distinguished aquafarms with low elevation in the coastal region from marine aquaculture floating raft areas.

Decision tree-based models are suitable for large-scale floating raft aquaculture extraction, which can provide accurate results (Hou et al., 2022). This study proposes a floating raft identification index that aims to extract the floating raft target from the background of marine water bodies, and it is demonstrated success in reducing the degree of “adhesion” between these water bodies and the floating rafts caused by mixed pixels. The index is different from the HIS-FRA index constructed by Hou (Hou et al., 2022), which uses four bands, including red band, green band, red-edge band, and near-infrared, in order to make full use of the differences in the spectral characteristics of the typical features discussed. It shows a relatively stable ability to distinguish between floating raft targets and marine water bodies. The index can not only effectively extract the floating raft target from the background of the marine water, but also fully distinguish the floating raft from artificial buildings, sand, vegetation, aquafarms, etc. The DRRI index also outperforms NDVI and NDWI in the extraction of floating rafts and has a good application value.

This study innovatively uses DEM data in the process of floating raft target extraction, thereby improving the spatial range adaptation capability of the algorithm. For large-scale remote sensing images, floating raft extraction can also be applied directly without the need for sea-land boundary data. The use of DEM data can effectively utilize elevation information, thus avoiding the influence of land features with similar spectral characteristics on floating raft extraction and does not lose the floating raft targets in the river channels in coastal areas.



4.2 Limitations

This study shows that there is a significant difference between the spectral reflectance of the marine water bodies and the floating raft target, so DRRI can effectively identify and detect the target from the marine background. The DRRI index in the decision tree algorithm is designed based on the difference in reflectance variation in the red-green band and red edge-NIR band. A small percentage of local water bodies adjacent to floating rafts will be classified as floating rafts limited by the spatial resolution. This may lead to misclassification in the region with a higher density of rafts. Constructing the DRRI index needs four bands: red band, green band, red-edge band, and NIR band, which limit the use of different sensors, such as Landsat TM/OLI, SPOT, GF-2, etc., so this algorithm needs to consider the data availability.

The study area of this paper is in the Pearl Bay area of Fangchenggang City, Guangxi Province, and the decision tree algorithm has a good extraction effect for the rafts used for fish culture in this area and was also evaluated to be effective in another coastal area. There may be lower precision for the raft of different materials or purposes in other areas.

Equally, the tide level may have some influence on the results, and the images processed in this study are remote sensing images taken at high tide, so the possible influence of the intertidal zone on the extraction of the floating raft has not been considered.




5. Conclusion

Obtaining the distribution of mariculture floating rafts has great potential significance for marine environmental pollution prevention and control as well as macroscopic control. In this study, the DRRI raft identification index was proposed using the 10m and 20m multispectral remote sensing digital image of Sentinel-2A. Decision tree, random forest, and support vector machine methods were used for classification comparison experiments, leading to the extraction of raft information in the study area. The decision tree method based on statistical analysis has the highest accuracy.

The following conclusions can be obtained from this experiment.

There is a certain difference between the spectral features of water bodies and floating rafts in the study area, and this can be used to extract floating rafts accurately from the background of marine water bodies. The construction of the DRRI floating raft extraction index is used to amplify the difference between the two and improve the category differentiability. This forms a key feature for floating raft information extraction.

This paper innovatively uses DEM data in the floating raft extraction process, thereby improving the spatial adaptability of the algorithm, and the DEM elevation information can be used to effectively screen out features on land with spectral characteristics similar to those of the floating raft.

The decision tree method, random forest method, and support vector machine method constructed in this experiment all display desirable levels of accuracy. The overall accuracy of all methods was more than 90%, among which the decision tree classification method had the highest accuracy of 98.20%. This indicates that the Sentinel-2A multispectral remote sensing images obtain desirable classification results of floating rafts. Sentinel-2A has a high temporal and spatial resolution and is easy to acquire and is useful for learning about the spatial distribution of floating rafts, marine fishery production, and the assessment of the damage to aquaculture areas after marine disasters.
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Among the climate change-induced threats to coastal regions, coastal flooding caused by sea level rise (SLR) is considered one of the most serious and presents an intensifying trend over time. The negative impacts and risks associated with coastal flooding are difficult to visualize spatially and cause great inconvenience to policy-makers in understanding the distribution of different risk levels and developing adaptation policies. Our study proposes a framework for coastal flood risk (CFR) based on the hazard, exposure & sensitivity, and adaptive capacity of China’s coastal zone (CCZ) and maps the spatial distribution of CFR by GIS in 2030, 2050, and 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, respectively. Our results reveal that (1) low-lying coastal areas with densely populated, economically developed, or industrially diverse are faced with serious CFRs, such as the Yellow River Delta, the Yangtze River Delta, the Pearl River Delta, and the coastal areas in Jiangsu. (2) The area of “Very high” CFR level in the CCZ reaches a peak of 44.10×103 km2 in 2100 under RCP8.5-SSP5. And under the higher emission scenario, the areas of five CFR levels would change dramatically in the future. (3) The coastal area of Guangdong is significantly faced with the massive expected population and GDP affected due to CFR among scenarios and years. (4) As threatened by CFR mostly, built-up and farmland are particularly required to guard against the negative impact of coastal flooding, especially in Guangdong and Jiangsu. Results in this study are expected to provide the intuitive information and basis for governments, policy-makers, and local communities in addressing the increased CFR over the CCZ. Besides, our framework of CFR and methodology are flexible and can be adapted for other countries facing the threat of SLR.
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1 Introduction

In the context of global warming, coastal flooding caused by sea level rise (SLR) has become one of the major risks worldwide, with substantial effects on socio-economic development and natural ecosystems in the coastal area (Nicholls and Cazenave, 2010; Tadesse and Wahl, 2021). For example, it can not only damage the infrastructure by inundation, such as buildings and roads, and damage the tourism and fishery, causing huge economic losses and human casualties (Hallegatte et al., 2013; Fang et al., 2016; Vousdoukas et al., 2018), but also lead to the serious damage to the ecological environment of coral reefs, mangroves, and coastal wetlands (Lovelock et al., 2015). In the past decades, the frequent occurrence of severe coastal floods has gained widespread attentions (Gornitz, 1991; Thumerer et al., 2000; Nadal et al., 2010; Toimil et al., 2020), such as those in the U.S. Atlantic and Gulf coasts (Sajjad et al., 2020), northwestern Europe (Ganguli et al., 2020), southeastern Australia (Asbridge et al., 2021), and East Asia (Fang et al., 2020). As climate change progresses and sea level rises, the coastal flood risk (CFR) is expected to become more serious across the planet in the future (Woodruff et al., 2013). According to the series of reports from the Intergovernmental Panel on Climate Change (IPCC), the United Nations Office for Disaster Risk Reduction (UNISDR), and the Ministry of Natural Resources of the People’s Republic of China (MNR), (UNISDR, 2017; IPCC, 2019; IPCC, 2021;  MNR, 2022), the rate of SLR in China’s adjacent seas was 3.4 mm/a from 1980-2021, which was higher than the global average for the same period and may continue to rise in the future. This means that CFR will be increased significantly correspondingly in China’s coastal zone (CCZ). However, the CCZ is recognized as an important population and economic center in China, e.g., over 40% of China’s population lives in coastal provincial administrative regions, and the region contributes nearly 60% of the national gross domestic product (GDP) (Du et al., 2022). Obviously, coastal flooding poses a serious threat to coastal societies (Fang et al., 2020). Therefore, it is crucial to analyze the future impacts of coastal flooding in China at different levels of SLR under socio-economic change scenarios, which is beneficial for policy-makers to draw up proper the coastal urban planning and formulate scientific disaster prevention and adaptation policies in the future.

Risk refers to the potential for adverse consequences for human and ecological systems (IPCC, 2022). Recently, a growing number of studies have examined methods for assessing flood risk (Yang et al., 2015; Chakraborty and Mukhopadhyay, 2019; Lin et al., 2020), mainly including the subjective assessment, the objective assessment, and a combination of both. The subjective assessment approach (such as the analytical hierarchy process, AHP) assigns weights to indicators based on experts’ experience, which has the advantages of being close to reality and flexibility, but lacks the reflection of actual data. Hadipour et al. (2020) used the AHP and fuzzy AHP models to assess the social vulnerability to SLR and flooding in the coastal area of Abbas city, southern Iran. The objective assessment approach (such as the Shannon’s entropy and entropy weight method, EW) automatically assigns weights to indicators based on the amount of information contained in the actual data of indicators (without manual setting). Al-Hinai and Abdalla (2021) used Shannon’s entropy model to predict the factors that cause flooding in the Governorate of Muscat, Sultanate of Oman. Nevertheless, the combined subjective and objective approach (such as the AHP-EW combined method) reduces the subjectivity of weight setting and improves the scientific nature of the assessment by combining the advantages of subjective and objective approaches. For example, Wu et al. (2017) employed the AHP-EW combined method to assess the temporal variation of flood risk in the Huaihe River Basin, China. And Xiao et al. (2022) used the AHP-entropy weight method to obtain an overall evaluation of coastal water quality in Yangjiang, China. Overall, the combination of subjective and objective methods avoids the one-sidedness caused by using only one weight calibration method in the risk assessment and becomes widely used gradually (Wu et al., 2017).

Due to the serious threat of coastal flooding in the CCZ, various studies have assessed the CFR in the CCZ at various scales (Huang et al., 2017; Liao et al., 2019; Xu et al., 2021). For example, Fang et al. (2016) created a GIS-based dataset of major coastal tourist attractions in the coastal area of Zhejiang province, China, to assess their potential flood risk by using a simple inundation model and a risk matrix. Li et al. (2017) simulated and mapped the comprehensive risk of surge floods in Yuhuan county, China. Shi et al. (2020) assessed the risk level distribution of storm surges in Jinshan District, Shanghai in light of the hazard and vulnerability levels to the disasters. Overall, these studies highlight the assessment of CFRs at provincial and sub-provincial scales. However, for policy-makers, the detailed information on national-scale flood risk assessment is important to support the national policy development, especially in the urban cluster planning, disaster prevention construction, and coastal wetland protection (Kourgialas and Karatzas, 2017). Thus far, only a few studies have attempted to evaluate the national CFR in China. For example, Fang et al. (2020) tried to fill the gap in national coastal flood impact assessment by quantifying potential damage and adaptation costs of coastal flooding in China over the 21st century, but did not give a CFR distribution map to better support the identification of risk zones and the development of specific adaptation strategies. The above studies have generally contributed positively to the assessment of CFR in parts of CCZ, however, there is still a lack of studies focusing specifically on the spatial assessment of CFR, mapping the different CFR levels, and analyzing the possible socio-economic impact of CFR in the entire CCZ, with the integration of the hazard, exposure & sensitivity, and adaptive capacity at the pixel-scale.

The National Disaster Risk Assessment from UNISDR divided the risk assessment exercises into two stages: a preliminary flood risk assessment (PFRA) and a final, more detailed, flood risk assessment (FRA) (UNISDR, 2017). The PFRA is mainly focused on the detailed coastal flood inundation modeling to identify the inundation areas, which is suitable for hazard assessment rather than the assessment of exposure and vulnerability. After the PFRA, the FRA is mainly to quantitatively assess the comprehensive risk based on hazard, exposure & sensitivity, and adaptive capacity. Referring to the above steps, this study aims to fill the gap in the future CFR spatial assessment in the CCZ by integrating a wide range of hazard, exposure & sensitivity, and adaptive capacity by considering three Representative Concentration Pathways (RCP2.6, 4.5, and 8.5) and three Shared Socioeconomic Pathways (SSP1, 2, and 5) combinations representing climate change and socio-economic change, respectively (see chapter 2.2.2). This is achieved by three objectives: 1) to develop a spatial assessment framework of CFR for CCZ with reference to SLR; 2) to estimate the temporal and spatial characteristics of CFR in the future under different scenarios; and 3) to quantify the number of the expected socio-economic affected in the typical areas of CFR. The findings of this study shed new light on the spatial assessment of CFR with high spatial resolution in the entire CCZ in order to inform the professionals in the field of risk planning/management to develop more comprehensive and proper decisions.

The paper is structured as follows. Section 2 describes the geography of the study area, the assessment framework of CFR, the selection of scenarios and CFR indicators, and the methods of CFR assessment indicator weights. Section 3 shows the results of the characteristics of CFR. Section 4 discusses the CFR by considering various dimensions. Conclusions are presented in Section 5.



2 Materials and methods


2.1 Study area

China’s coastal zone (CCZ) is bounded by the great Eurasian continent in the west and the vast Pacific Ocean in the east, including the mainland part, offshore islands, and shallow/offshore waters. From north to south, CCZ covers 14 administrative regions, including Liaoning, Hebei, Tianjin, Shandong, Jiangsu, Shanghai, Zhejiang, Fujian, Taiwan, Guangdong, Hong Kong, Macau, Guangxi, and Hainan, as well as the waters and islands under their jurisdiction.

CCZ is densely populated and has superior natural location conditions, abundant natural resources, and a well-developed and convenient transportation network, making it one of the fastest-growing economies in the country and the world. Moreover, China’s mainland coastline is over 18,000 km long and the total area of the marginal seas is more than 4.73 × 106 km2 (Figure 1). The topography of CCZ, divided by Hangzhou Bay, differs significantly from north to south: the northern coastal zone is dominated by low hills and plains, with average elevation below 200 m. The southern coastal zone is dominated by low hills and terraces, with average elevation of less than 500 m (Wang et al., 2017). There are many islands and indirectly distributed estuarine delta plains. Overall, wide seas, long shorelines, and well-developed population and economic agglomerations have resulted in the CCZ being one of the world’s most severely at CFR from SLR.




Figure 1 | Location and elevation of the study area (China’s coastal zone).



In this paper, the study area is selected based on the administrative divisions of prefecture-level cities along the eastern coast of mainland China. Due to the absence of demographic and economic data, Hong Kong, Macao, Taiwan, and the islands in the South China Sea are excluded from the CFR assessment. Therefore, this study area covers a total of 11 coastal provinces (autonomous regions and municipalities). In addition, the six prefecture-level cities those are close to the coastline but not directly adjacent to the sea (which are more influenced by the sea), such as Anshan, Dezhou, Linyi, Huzhou, Foshan, and Yulin, are included in the study area (Figure 1).



2.2 Methods


2.2.1 Assessment framework of CFR

The IPCC AR6 explained the risk from flooding to human and ecological systems is caused by the flood hazards, the exposure of the system affected, and the vulnerability of the system (IPCC, 2022). The flood hazard is “A flood process or phenomenon that may cause loss of life, injury or other health impacts, property damage, social and economic disruption, or environmental degradation” (e.g., the frequency and/or depth of flooding) (UNISDR, 2017). The exposure is the nature and degree to which systems are exposed to flooding (e.g., the population, GDP, Land use/cover (LULC), or infrastructure potentially affected by flooding). Besides, the vulnerability also includes the sensitivity and the adaptive capacity. The sensitivity is the degree to which a human-environmental system is affected by flooding either adversely or beneficially (e.g., proximity to the coastline and the density of infrastructure development). The exposure and sensitivity are determined by the features of extreme occurrences and their interaction with system characteristics. They all represent intricately related properties of the system or community under the influence of the exact hazard. Therefore, they are frequently grouped together (Smit and Wandel, 2006; Nguyen et al., 2019). Here, dimensions of exposure and sensitivity include the physical, economic, and social sensitivity, transportation junction location and types, and livelihoods. In addition, the adaptive capacity is the potential to implement planned adaptation measures, mainly to lessen the effects of negative impacts and to take advantage of any opportunities (e.g., disaster shelters, disaster response agencies, and post-disaster reconstruction capabilities) (IPCC, 2014). Based on these concepts above mentioned, changes in CFR in the future periods cannot be uniquely determined by changes in flood depth or frequency, but also by changes in exposure and vulnerability of the overall assessment system. For example, if there are future economic setbacks, population decreases, or effective flood adaptation measures are implemented, then damage from flooding may also be reduced. Overall, future changes in CFR will inevitably depend on concurrent socio-economic changes.

In this paper, the assessment framework of CFR in the CCZ is referred to Nguyen et al. (2019) and incorporated a series of sub-indicators adapted from Yin et al. (2013), Weis et al. (2016), and Zhang et al. (2021) (Figure 2 and Table 1) to measure the degree of CFR under future multi-scenarios. As indicated in Equation (1), the CFR assessment framework encompasses hazard, exposure & sensitivity, and adaptive capability. However, this equation isn’t meant to represent a mathematical function; rather, it’s meant to highlight the relationship between the elements of risk assessment. According to the equation, it can be found that CFR increases when hazard, exposure, and sensitivity increase, and decreases as adaptive capacity increases.

 




Figure 2 | An assessment framework for coastal flood risk caused by SLR in the CCZ.




Table 1 | Components and indicators used to determine hazard, exposure & sensitivity, and adaptive capacity to SLR in the CCZ.



Overall, within the risk assessment framework (Figure 2), the CFR assessment follows these steps: firstly, the CFR assessment indicators are selected based on their availability and attribute characteristics; secondly, the value of each indicator is reclassified and normalized to establish the spatial database based on a Geographic Information System (i.e., ArcGIS software); thirdly, the AHP-EW combined method is used for calculating the combined weight of each indicator layer; finally, the indicators are weighted and stacked for obtaining the values of the hazard, exposure & sensitivity, and adaptive capacity, respectively, and further weighted by 50%, 30%, and 20% for hazard, exposure & sensitivity, and adaptive capacity, respectively, to calculate the CFR values. These weight values were converted from the qualitative judgment of six experts (see chapter 2.2.4.2) based on their scientific knowledge, work experience, and understanding of the CFR assessment framework. In addition, in order to make the results easily comparable across scenarios and years, a combined manual and equal interval classification methods are employed to rank the final composite risk values after observing the distribution of CFR values (Yin et al., 2013). Based on the values of CFR, five ranked levels e.g., “Very low” (0-0.2), “Low” (0.2-0.3), “Medium” (0.3-0.4), “High” (0.4-0.5), and “Very high” (>0.5) are designated. Moreover, the CFR map is visualized using ArcGIS software to represent the spatial distribution of the five CFR levels.



2.2.2 Selection of scenarios

Scenarios describe the likelihood of future development changes and assumptions about important drivers and relationships, following the principles of coherence and internal consistency. Projecting future global and regional climate change requires the construction of a range of scenarios, such as greenhouse gas emissions and socioeconomics, which require quantitative or qualitative descriptions of various development possibilities (Rounsevell and Metzger, 2010).

In order to assess the change of CFR caused by SLR in the future, two kinds of future scenarios were considered: Representative Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs). RCPs are consistent with a wide range of possible changes in future anthropogenic carbon emissions and aim to represent their radiative forcing. SSPs reflect the correlation between radiative forcing and socio-economic development and describe global development in the future. According to the recommended combination for climate and socio-economic scenarios (Engström et al., 2016; Deng et al., 2021), in this study, three combinations of future scenarios (named RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5) are used. The RCP2.6-SSP1 scenario describes future scenarios under low mitigation pressure and low radiative forcing, also regarded as sustainability scenarios. The RCP4.5-SSP2 scenario describes future scenarios under moderate radiative forcing, referring to scenarios that maintain current socio-economic, scientific, and technological trends. The RCP8.5-SSP5 scenario describes future scenarios under high radiative forcing, referring to a high fossil fuel-based development pathway. In addition, according to Tebaldi et al. (2012) and Spirandelli et al. (2016) for the division of development stages in the future period, 2030, 2050, and 2100 are defined as near-term, mid-term, and long-term, respectively.



2.2.3 Selection of CFR indicators

Indicators are actually simple numbers and inherent features of a system that reflect reality and quantitatively estimate the state of a system (Balica et al., 2012; Chakraborty and Mukhopadhyay, 2019). In this study, the indicators selected represent the hazard, exposure & sensitivity, and adaptive capacity that define the CFR. And the following sections describe the reasons for the selection and treatment of each indicator.


2.2.3.1 Hazard sub-indicators

Six sub-indicators were utilized to describe the pattern of coastal flood hazards across the CCZ: (1) Flood depth; (2) Flood frequency; (3) Elevation; (4) Slope; (5) Soil erosion; and (6) River network density. In this paper, coastal flood inundation caused by SLR is the dominant risk source. And flood depth and flood frequency are important indicators to indicate the degree of inundation (Stephens et al., 2017; Dandapat and Panda, 2018). We used a high spatial resolution dataset of future inundation area in the CCZ under multi-scenarios for sub-indicators 1 and 2. This coastal flood inundation dataset was established by two detailed operation steps: firstly, simulating the local sea levels in China’s adjacent seas by the Finite Volume Coast and Ocean Model (FVCOM, a physical ocean model) in a super-computing platform based on the regional sea level data of the Integrated Climate Data Center (ICDC), the University of Hamburg, from 2021-2100 under RCP2.6, 4.5, and 8.5 scenarios (Church et al., 2013); secondly, calculating the flood inundation characteristics, such as flood area, flood frequency, and flood depth, by the improved hydraulic connectivity model. This dataset has the advantages of high spatial resolution (100 m), high temporal resolution (year-by-year from 2021 to 2100), and multiple scenario simulations (RCP2.6, 4.5, and 8.5). The flood depth was gained by subtracting the land elevation value from the simulated water level value in 2030, 2050, and 2100 under different scenarios, respectively. The flood frequency was calculated by counting the number of inundations per pixel in 2021-2030, 2041-2050, and 2091-2100 under different scenarios, respectively. Elevation and slope indicators (3 and 4) were derived based on DEM data (SRTM, https://earthexplorer.usgs.gov/; GEBCO, https://www.gebco.net/data_and_products/gridded_bathymetry_data/). Soil erosion (5) was collected from the European Soil Data Centre (Borrelli et al., 2020). Since this dataset only provides baseline data for 2015 and multi-scenario projection data for 2070, we used the soil erosion data in 2015 for the near and mid-term erosion conditions, and used the soil erosion data in 2070 for the long-term erosion condition. For sub-indicator 6, we captured the distribution of river networks in the CCZ using global water distribution data (Pekel et al., 2016), which were visually interpreted and supplemented by using medium- and high spatial resolution satellite images such as Landsat-8 and Gaofen-1. After converting the rasters to vectors and calculating the kernel density in ArcGIS software, we obtained the density distribution data of river networks in the CCZ.



2.2.3.2 Exposure and sensitivity sub-indicators

The exposure and sensitivity pattern of coastal flood across CCZ was represented by nine sub-indicators, such as (1) Population; (2) GDP; (3) LULC; (4) Proximity to coastline; (5) Wetland park density; (6) Airport density; (7) Railway station density; (8) Port density; and (9) Coach station density. Generally, areas with a large population and high GDP will cause a large number of casualties and property losses in the face of flood inundation. In this paper, the projection data of population obtained from Chen et al. (2020) estimates China’s provincial population from 2010 to 2100 under SSPs. And this data is allocated to spatially explicit population grids for each year at 30 arc-seconds spatial resolution based on RCP urban grids and historical population grids. The projection data of GDP obtained from Wang and Sun (2022) includes a set of comparable spatially explicit global gridded GDP for future projections from 2030 to 2100 at a ten-year interval for all five SSPs. In addition, different LULC types could cause different losses when faced with the coastal flood. For example, the economic loss of built-up land is greater than that of grassland when faced with the same level of coastal flood. Thus, we used the future LULC data which were simulated by the SD-FLUS model from 2021 to 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5 from Song (2021). The LULC data includes eight types, including farmland, inland freshwater, constructed wetland, forest, coastal wetland, grassland, shallow water, and unused. As the areas located nearer to the coastline are generally more frequently affected by coastal flooding than areas farther away, for sub-indicator 4, the distances from the coastline across the CCZ were calculated in ArcGIS. Moreover, the areas with the concentrated distribution of ecological protection, transportation, and other infrastructures are usually more affected by flooding, leading to the destruction of the original ecological environment, difficulties in the evacuation of people, and transportation of rescue supplies. Therefore, the location data of wetland parks, airports, railway stations, ports, and coach stations were downloaded from China’s leading digital map content, navigation, and location service solution provider (GaoDe, https://www.amap.com/). In addition, the density of these location data was calculated based on the kernel density tool in ArcGIS.



2.2.3.3 Adaptive capacity sub-indicators

The ability of a human system to cope with harsh occurrences was referred to as adaptive capacity. To describe the extent and spatial distribution of the adaptive capacity of the CCZ to cope with the CFR, seven sub-indicators were chosen, which are dimensions in the social or economic domain, such as: (1) Emergency shelter density; (2) 3A hospital density; (3) Academic institution density; (4) University density; (5) Government institute density; (6) Urbanization rate; and (7) Vegetation coverage. Among them, 3A hospital is the high-level hospital in China that can provide high-level medical and health care services to its region and the surrounding radiation area, as well as perform higher education and scientific research. Urbanization rate is the urbanization rate of the population, i.e., the proportion of the urban population to the total population. For sub-indicators 1 and 2, Emergency shelters and 3A hospitals can provide the shelter and treatment for humans in the event of a flood, respectively, in order to reduce mortality and improve adaptive capacity. In general, the more academic research institutions, universities, and government agencies in a region mean that the region has a stronger research power and organizational capacity, which will help prevent coastal flooding, post-disaster reconstruction planning, and improve regional disaster resilience. In this paper, the location data of emergency shelters, 3A hospitals, academic institutions, universities, and government institutions were downloaded from GaoDe, and the density of these location data were calculated by using the kernel density tool in ArcGIS. For sub sub-indicators 6, an area with high urbanization rate can reduce the social vulnerability and increase the adaptive capacity by improving health conditions and social welfare for all people, especially the poor and marginalized. Referring to the literature review by Nur and Shrestha (2017), the poor and marginalized are the most vulnerable groups since their entitlement to resources is low. The vulnerable do not only require structural measures to lessen flood excess but they demand an improved adaptive capacity to maintain their livelihood sustainability before and after flooding. In addition, an area with high vegetation coverage rate can effectively slow down the rate of flood inundation. Therefore, we used urbanization rate projection data from Chen et al. (2020) and vegetation coverage data from Copernicus Global Land Service (https://land.copernicus.eu/global/products/fcover) as the adaptive capacity sub-indicator 6 and 7, respectively.




2.2.4 Calculation of CFR assessment indicator weights

The reasonable setting of indicator weights has a significant impact on the assessment results. In this paper, the reasonableness and accuracy of indicator weights were improved by taking the subjective judgment of multiple experts as well as the information about indicator values into account, which was achieved by four steps: (1) Classification and normalization of each indicator; (2) Calculation of subjective weight for each indicator based on experts’ judgments by the Analytic Hierarchy Process method (AHP); (3) Calculation of objective weight for each indicator based on the indicator information by the Entropy Weight method (EW); and (4) Calculation of the combination weights by the AHP-EW combined method and the CFR values among years and scenarios.


2.2.4.1 Classification and normalization of each indicator

The 22 indicators were classified into positive and negative indicators based on their association with CFR (Table 1). Positive indicators are positively correlated with the value of CFR, and negative indicators are negatively correlated with the value of CFR. Moreover, referring to previous studies and expert judgments (Lopes et al., 2017; Nguyen et al., 2019), each indicator was classified into five ranks, such as “Very low”, “Low”, “Medium”, “High”, and “Very high”, using the qualitative classification method or the Jenks natural break technique in ArcGIS (Table S1) and these ranked levels were labeled by the numbers 1, 2, 3, 4, and 5, respectively. Then, in order to normalize all indicators within the range of 0-1, the linear scale transformation for positive indicators in Equation (2) and for negative indicators in Equation (3) were used.

 

 

where N+ is the normalized value of the positive indicator, N- is the normalized value of the negative indicator. Pvalue is the value of the pixel. In addition, min and max are denoted the minimum or maximum value of each indicator, respectively.



2.2.4.2 Subjective weights calculated by AHP

The Analytic Hierarchy Process (AHP) is used for scientific decision-making on complex problems and is now widely used in decision-making and evaluation work in various fields (Saaty, 1988). The AHP is a subjective empowerment method and can be used to determine the weights of evaluation indicators based on expert experience and knowledge. In this paper, six experts from the fields of climate change response, ecological protection, and remote sensing monitoring of coastal zone with extensive experience in risk assessment made qualitative judgments on 22 CFR indicators and constructed a two-by-two comparison matrix for the indicators using a 9-point scale developed by Saaty (2008) (Table S2). Moreover, a standard AHP linear scale was then applied to integrate individuals’ judgments and the weight of each indicator (WAHP) was calculated (Table S3). Finally, a consistency ratio (CR) was computed to justify the evaluation of experts in the pairwise comparison matrix. The consistency will be acceptable if the CR value is <0.1. CR was calculated by using Equation (4) (Table S3):

 

where RI represents the random index, and CI represents the consistency index as calculated:

 

where λmax refers to the largest eigenvalue of the matrix and n represents the order of the matrix.



2.2.4.3 Objective weights calculated by EW

The Entropy Weight method (EW) is an objective evaluation method for the indicator weight based on the principle of information entropy (Shannon, 1948). If the information entropy of an assessment indicator is smaller, it will indicate that the greater the amount of information provided by the indicator, the greater the role played in the comprehensive evaluation of the system, the greater the weight value should be assigned. In this paper, it is assumed that there are m pixels in the CCZ to calculate the EW, and each pixel is designed with n indicators, and Xij represents the j-th assessment value of the i-th pixel (i=1,2,3…m, j=1,2,3…n). The Equation (2) or Equation (3) was used to normalize Xij to gain Nij. The feature weight (Qij) of the i-th pixel under the j-th indicator was calculated by using Equation (6). The entropy value (ej) was calculated by using Equation (7). The variability coefficient (gj) was calculated by using Equation (8). Equation (9) was used to calculate the weight of each assessment indicator (WEW) (Table S4).

 

 

 

 



2.2.4.4 Combination weights calculated by AHP-EW combined method

In order to reflect both the expert’s subjective judgment about CFR and the information entropy characteristics of the objective data, the linear combination method was used to derive the combination weights (Wz) for CFR assessment after using the AHP method to derive the subjective weights (WAHP) and the EW method to derive the objective weights (WEW). The calculation formula is as follows:

 

where Wz represents the linear combination weights of AHP and EW, α and β represent their weight coefficients, respectively, and α + β =1.

The distance function was used to match the degree of difference between the WAHP and WEW weight values with the degree of difference between their corresponding distribution coefficients α and β. This helped to remove data disturbances with large fluctuations and improve the accuracy of the composite weights. The calculation formula is as follows:

 

 

where d (WAHP,WEW) represents the distance between WAHP and WEW, D represents the difference between the distribution coefficients.

Based on the definitions of Equation (10-12), the system of equations was constructed as Equation (13). The α and β of the distribution coefficients for each weight were derived by solving Equation (13) (Liu et al., 2020), and the distribution coefficients were brought into Equation (10) to estimate the combination weights (Wz) (Table S5).

 






3 Results


3.1 Temporal and spatial characteristics of CFR


3.1.1 Spatial characteristics of CFR at key time nodes

Figure 3 shows the spatial distribution of CFR in 2030, 2050, and 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, respectively. Overall, the spatial patterns of CFR in the CCZ are similar among scenarios and years. The regions with “High” level are mainly distributed around the regions with “Very high” level. And they are mainly distributed in the southern coastal area of Liaoning, the coastal area from eastern Hebei to northwestern Shandong, the Jiaozhou Bay area in southeastern Shandong, the northern to central Jiangsu, the Yangtze River Delta (southern Jiangsu, Shanghai, and northern Zhejiang), and the Pearl River Delta (southeast Guangdong), which are low-lying coastal areas with densely populated, economically developed, or industrially diverse. By contrast, the CFR level in inland mountainous or hilly areas with higher elevations is “Very low”, such as the northeastern part of the coastal zone in Liaoning, the western part of the coastal zone in Zhejiang and Fujian, and the southern part of Hainan. Moreover, the regions with “Low” CFR level are primarily concentrated in the coastal areas of Hebei and Tianjin, the eastern part of the coastal area in Shandong and Zhejiang, the central part of the Guangxi coastal zone, and the northeastern part of Hainan. In addition, the regions with “Medium” CFR level are mainly distributed in the central part of the Liaoning coastal area, the northwestern part of Shandong, the southwestern part of the Jiangsu coastal area, and the central part of the Zhejiang coastal zone.




Figure 3 | Spatiotemporal distribution of the CFR in 2030, 2050, and 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, respectively. YRD, YaRD, and PRD represent the Yellow River Delta, Yangtze River Delta, and Pearl River Delta, respectively.





3.1.2 Area changes of CFR under different scenarios

Figure 4 shows the variation of area and area change rate for the five CFR levels among scenarios and years. In contrast to the spatial distribution, the temporal change in CFR was clearly different among scenarios and years. For example, from near-term to long-term, under RCP2.6-SSP1, the area of the “Very Low” level is dramatically increased, from 74.86×103 km2 in 2030 to 100.68×103 km2 in 2100, with an area change rate of 34.50%; At the same period, the area of “Medium” level is gradually decreased, from 128.51×103 km2 in 2030 to 97.33×103 km2 in 2100, with an area change rate of -24.27%; The areas of “Low” and “Very high” levels are slightly increased, whereas the area of “High” level is slightly decreased. Under RCP4.5-SSP2, the areas of “Very low” and “Very high” are significantly increased, from 72.21×103 km2 and 35.59×103 km2 in 2030 to 82.75×103 km2 and 40.17×103 km2 in 2100, respectively. The area of “Medium” level is significantly decreased, from 131.00×103 km2 in 2030 to 111.21×103 km2 in 2100, with the area change rate of -15.10%; The areas of the “Low” and “High” levels are slightly increased and decreased, respectively. Under RCP8.5-SSP5, the area of “Very High” level is sharply increased, from 35.82×103 km2 in 2030 to 44.10×103 km2 in 2100, with the area change rate of 23.13%; Except for the small increase in the area of the “Low” level, the areas of the “Very low”, “Medium”, and “High” level are all markedly decreased. By comparing the three scenarios, it is found that although the area of the five CFR levels in 2030 is similar to the three scenarios, the area of “Very high” level under RCP8.5-SSP5 increases the most during 2030-2100, followed by RCP4.5-SSP2 and RCP2.6-SSP1.




Figure 4 | Area and area change rate of the five CFR levels among scenarios and years. (A) Is the area of the five CFR levels in 2030, 2050, and 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, respectively. (B) Is the area change rate of the five CFR levels from 2030 to 2100 among scenarios.






3.2 Characteristics of CFR at provincial level


3.2.1 Area proportion change of CFR in different provinces

As shown in Figure 5, the area proportions of five CFR levels in 11 coastal provinces are different among scenarios and years. In general, if the area proportions of the higher CFR levels in a certain province are significantly bigger than in other provinces, the province will be faced with the more obvious threat of coastal flooding. For example, among different scenarios and years, Jiangsu, Shanghai, and Guangdong have higher area proportions of “High” and “Very high” levels than other coastal provinces. Especially in Jiangsu, the total area proportion of the two levels reaches a peak of 54.01% in 2100 under RCP8.5-SSP5. In addition, Fujian, Zhejiang, and Hainan have higher area proportions of “Very low” level. Especially in Fujian, the area proportion of “Very low” level reaches a high point of 49.00% in 2050 under RCP2.6-SSP1.




Figure 5 | Area proportions of five CFR levels in 11 coastal provinces in 2030, 2050, and 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, respectively. (A–I) Represent the area proportion of five CFR levels for the 11 provinces from 2030 to 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, respectively.



Further analysis of the data reveals that the area proportion change of each CFR level in the same province varies markedly among scenarios and years. If a certain province is under a high emissions scenario, the area proportion of each CFR level in that certain province will be changed sharply, otherwise, it will be changed slightly. For example, under RCP2.6-SSP1, the area proportion of “Very high” level in Jiangsu is increased from 33.78% in 2030 to 34.12% in 2100, with an increase of 0.34; Under RCP4.5-SSP2, the area proportion of “Very high” level is increased from 34.58% in 2030 to 39.32% in 2100, with an increase of 4.75; Whereas the area proportion of “Very high” level is increased from 34.28% in 2030 to 42.48% in 2100, with an increase of 8.20 under RCP8.5-SSP5. Although, under RCP2.6-SSP1, the area proportions of “Very high” level in Guangdong, Guangxi, Shanghai, and Tianjin are slightly decreased by 0.24, 0.04, 0.14, and 0.54, respectively, under the other two scenarios, the area proportions of all provinces are increased.



3.2.2 Area changes of typical CFR in different provinces

In the assessment of CFR, the risk levels of “High” and “Very high” are needed for special attention (called the typical CFR levels). Due to the large differences in the area between the coastal provinces, the area proportion does not reflect the magnitude and variation of area for the typical CFR level in each province. To assess the area size and change of the typical CFR level, the areas of “High” and “Very high” levels in 11 coastal provinces among scenarios and years are calculated, as shown in Figure 6. As can be seen from the figure, there are significant interprovincial differences in the area of “High” and “Very high” levels. Overall, among different scenarios and years, Jiangsu, Guangdong, Shandong, and Zhejiang have larger areas of “High” and “Very high”, with Jiangsu ranking first among the 11 provinces, whereas Guangxi and Hainan have the smallest areas.




Figure 6 | Area of typical CFR levels in 11 coastal provinces in 2030, 2050, and 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, respectively. (A–I) Represent the area of typical CFR levels for the 11 provinces from 2030 to 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, respectively.



Similar to the variation pattern of the area proportion of the typical CFR level, under the higher emission scenario, the area change of the typical CFR is more dramatic for the coastal provinces. For example, in Jiangsu, under RCP2.6-SSP1, the total area of typical CFR levels is increased from 19.96×103 km2 in 2030 to 20.25×103 km2 in 2100, with an area change rate of 1.47%; Under RCP4.5-SSP2, the total area is increased from 20.14×103 km2 in 2030 to 21.80×103 km2 in 2100, with an area change rate of 8.26%; And under RCP8.5-SSP5, the total area is increased from 20.20×103 km2 in 2030 to 22.71×103 km2 in 2100, with an area change rate of 12.47%. In addition, although the area proportion of typical CFR levels in Shanghai is significantly high in Figure 5, the area of typical CFR levels in Shanghai is obviously low. By contrast, the area proportion of typical CFR levels in Guangdong is low in Figure 5. The area of typical CFR levels in Guangdong is high in Figure 6.




3.3 Expected socio-economic damage in typical CFR areas


3.3.1 Expected population and GDP affected in typical CFR areas

In the typical CFR areas, there are significant differences in the expected population and GDP affected among scenarios and years, as shown in Figure 7A. Under the three scenarios, the numbers of the expected population affected rise to a high point and peak in 2050, with a maximum of 202.82 million (RCP2.6-SSP1), 195.91 million (RCP4.5-SSP2), and 199.74 million (RCP8.5-SSP5), respectively, and then fell to a low point in 2100, with 119.71 million (RCP2.6-SSP1), 136.72 million (RCP4.5-SSP2), and 120.81 million (RCP8.5-SSP5), respectively. As for the expected GDP affected, under RCP2.6-SSP1, the number of expected GDP affected peaks at 15.97 trillion USD in 2050 and then fell to 12.62 trillion USD in 2100. However, under RCP4.5-SSP2 and RCP8.5-SSP5, the numbers of expected GDP affected reach a peak in 2100 at 13.37 trillion USD and 22.31 trillion USD, respectively.




Figure 7 | Number of expected population and GDP affected in typical CFR areas in 2030, 2050, and 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, respectively. (A) is the total number of the expected population and GDP affected in the typical CFR areas, (B) is the number of the expected population and GDP affected in the “High” CFR area, and (C) is the number of the expected population and GDP affected in the “Very high” CFR area.



In addition, the differences in the expected population and GDP affected between the “High” and “Very high” CFR areas are significant, as shown in Figures 7B, C. Although the area of “Very high” level is larger than the “High” level under the three scenarios as shown in Figure 6, the numbers of the expected population and GDP affected in the “High” CFR area are much higher than those in the “Very high” CFR area (Figures 7B, C). For example, in the “High” CFR area, the numbers of the expected population and GDP affected in 2100 under the three scenarios are 97.64 million (9.88 trillion USD), 106.43 million (10.03 trillion USD), and 91.49 million (16.30 trillion USD), respectively. Whereas in the “Very high” CFR area, the numbers of the expected population and GDP affected in 2100 under the three scenarios are 22.07 million (2.74 trillion USD), 30.29 million (3.34 trillion USD), and 29.32 million (6.01 trillion USD), respectively. Moreover, the numbers of the expected GDP affected in the “High” CFR area under the three scenarios basically reach their peaks in 2050. By contrast, the expected GDP affected in the “Very high” CFR area under RCP4.5-SSP2 and RCP8.5-SSP5 reach their peaks in 2100.

Figure 8 shows the expected population and GDP affected in the typical CFR areas of the 11 coastal provinces among scenarios and years. In general, Guangdong’s GDP and population are expected to be the most affected in the coastal provinces, with an affected GDP of 7914.96 billion USD (RCP8.5-SSP5 2100) and an affected population of 68.30 million (RCP2.6-SSP1 2050), followed by Zhejiang. Moreover, Guangxi and Hainan have the lowest expected effects on population and GDP in the coastal provinces among scenarios and years.




Figure 8 | Number of expected population and GDP affected in typical CFR areas of the 11 coastal provinces in 2030, 2050, and 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, respectively. (A) Is the number of the expected population affected in the typical CFR areas of 11 coastal provinces. (B) Is the number of the expected GDP affected in the typical CFR areas of 11 coastal provinces.





3.3.2 Expected LULC losses in typical CFR areas

Further analysis of the expected LULC losses in the area of “High” and “Very high” CFR areas is shown in Figures 9A, B. As can be seen from the figures, in the “High” CFR area, the types of expected LULC losses are similar among scenarios and years. The LULC with the highest area proportion is built-up, whose area proportions exceeded 40% among all scenarios and years, followed by the farmland (which exceeded 30%). By contrast, in the “Very high” CFR area, the types of expected LULC losses are significantly different among scenarios and years. For example, under RCP2.6-SSP1, the constructed wetland, built-up, and coastal wetland become the third major loss type in 2030, 2050, and 2100, respectively; Under RCP4.5-SSP2, built-up overtakes constructed wetland as the third major loss type in 2050. Under RCP8.5-SSP5, built-up overtakes inland freshwater as the second major loss type, and inland freshwater as the third major loss type after 2050. In addition, the area proportions of farmland are the highest and exceeded 30% among scenarios and years, followed by the inland freshwater or built-up.




Figure 9 | Area proportion and area of expected LULC losses in the typical CFR areas in 2030, 2050, and 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, respectively. (A) Is the area proportion of expected LULC losses in the “High” CFR area. (B) Is the area proportion of expected LULC losses in the “Very high” CFR area. (C) Is the area of expected LULC losses in the typical CFR areas of 11 coastal provinces.



Figure 9C shows the area change of each type of expected LULC loss in the typical CFR areas of 11 coastal provinces among scenarios and years. It is found that the total area of the typical CFR areas in Jiangsu is the largest among scenarios and years, and its LULC losses type with the largest area is mainly farmland, followed by inland freshwater and built-up. Although Guangdong’s total areas of typical CFR areas are slightly smaller than Jiangsu’s, the main type of expected LULC losses is built-up, followed by farmland and inland freshwater, and the area loss of built-up in Guangdong is the largest in all coastal provinces, followed by Jiangsu, Shandong, and Zhejiang. In addition, the expected loss of constructed wetland in Shandong is the largest in all coastal provinces among scenarios and years.





4 Discussion

CFR spatial assessment is eagerly necessary to improve the understanding of the risk of climate change and develop proper flood adaptation measures. In this study, we developed a CFR spatial assessment framework for CCZ by combining three categories of hazard, exposure & sensitivity, and adaptive capacity (22 sub-indicators in total). It is meaningful to combine the three categories for an integrated spatial assessment of CFR under climate change (Nguyen et al., 2019). Then, each indicator was assigned a weight value by the AHP-EW combined method in order to calculate the value of CFR. The AHP-EW combined method considered both the subjective judgment of multiple experts and the information entropy contained in indicator values. Therefore, the weight values calculated by this method would be more scientific (Hu et al., 2019). Finally, the values of CFR were divided into five risk levels and shown in risk maps (Figure 3). To the best of our knowledge, it is the first time that CFR assessment maps (with 100 m spatial resolution) have been conducted in China’s coastal zone. This improves the understanding of the differences in the spatial distribution of CFR at the regional scale. The clear mappings and geo visualizations allow researchers and policy-makers to easily compare CFR in the coastal zone and help understand which areas should be focused on for disaster planning in the future.

The results of this study indicate that the CCZ is faced with different levels of CFR and those areas with higher risk levels will be extensive in the future under different scenarios. For example, a large number of coastal low-lying areas with densely populated and economically developed have been identified as “High” and “Very high” risk, such as the Yellow River Delta, the Yangtze River Delta, the Pearl River Delta, and the coastal areas in Jiangsu (Figure 3). Some inland hilly or mountainous areas are less affected by coastal floods due to their topography, such as the inland areas of Liaoning, Zhejiang, Fujian, and Hainan. These results are consistent with previous studies showing that coastal flood is one of the most serious hazards and deeply affected by the SLR under climate change (Zuo et al., 2013; Fang et al., 2020). In addition, because of the large variation in the area across provinces, it is necessary to consider both the area proportion and area of each CFR level. For example, although the area proportions of “High” and “Very High” CFR levels in Shanghai and Tianjin are higher than in many provinces, the area of these two levels is very small. This also suggests that Shanghai and Tianjin are facing the CFR with urgency (Figure 5 and 6). It is consistent with previous reports by Yan et al. (2016); Cui et al. (2018), and Du et al. (2020). Across the CCZ, one interesting finding is that although the area of “Very high” level is larger than that of “High” level, the expected losses of GDP and population in “High” CFR areas are much larger than that in “Very high” level (Figures 4A, 7B, C). This result may be explained by the fact that the LULU types in “Very high” CFR areas are mainly farmland, inland freshwater, and built-up, where the sum of socio-economic activity in the areas is less; the LULC types in “High” CFR areas are mainly built-up, farmland, and constructed wetland, where the sum of socio-economic activity in the areas is more (Figures 9A, B). Similarly, the area and area proportion of typical CFR in Jiangsu are higher than that in Guangdong, whereas the expected GDP and population affected in Guangdong are higher than that in Jiangsu. This finding could be due to the main LULC type of typical CFR areas in Guangdong is built-up with densely populated and economically developed. Nevertheless, the main LULC type of typical CFR areas in Jiangsu is farmland (Figures 5, 6, 8 and 9C). By comparing the three scenarios, the different emission scenarios lead to different performances of CFR characteristics, demonstrating a trend suggesting that the high emission scenario leads to a larger spatial area of higher CFR levels, more losses in GDP, population, and LULC, followed by the medium and low emission scenarios, which is consistent with the findings of Taherkhani et al. (2020). These results provide further support for the hypothesis that humans should choose to follow a low emission development path as much as possible to avoid the risks of serious coastal flooding in the future.

In this study, the high spatial resolution CFR maps under different scenarios throughout the 21st century can provide policy-makers at different levels with intuitive and detailed decision support for adaptation strategies. For example, policy-makers at the national level should not only focus on economically developed and densely populated provinces such as Guangdong, Jiangsu, and Shanghai, which are indeed facing potentially significant demographic, economic and ecological losses due to the CFR, but also on the high risk area in the less economically developed provinces, such as Guangxi and Hainan, which should receive more attention in terms of their current disaster adaptation capability, early warning system, public disaster prevention education, and future urban agglomeration planning. In addition, policy-makers at the city level, such as Shanghai and Guangzhou, should consider their high urbanization rates to develop efficient countermeasures. For instance, with reference to high spatial resolution risk maps, governments should take hard measures such as reinforcing tidal sluices, floodwalls, and seawalls at critical locations to effectively block the spread of floods (Du et al., 2020), and soft measures such as building and protecting coastal wetlands at general locations to make wave attenuation, reduce hydrodynamics, and increase the bed surface elevation to offset some of the effects of SLR (Yang et al., 2012; Shi et al., 2014; Yang et al., 2020).

Although a large number of indicators with physical and social attributes are considered in the CFR spatial assessment of this study, it is possible that 22 indicators may not cover the complete spectrum of influences on CFR in the CCZ. For example, if the projection data could provide a more precise age structure of the population, the number of children, women, and elderly, and primary, secondary, and tertiary GDP data, the exposure analysis could be more accurate. And the materials of buildings and roads, year of construction, and use in the coastal zone area have a significant impact on the analysis of sensitivity or adaptive capacity. In addition, if the spatial density changes of schools, hospitals, evacuation sites, government agencies, etc. could be predicted, it would further improve the analysis of adaptive capacity. Obviously, due to a lack of data, it was not possible to include much more detail or a wider range of indicators in the CFR assessment at this time. Moreover, it is inevitable that there is uncertainty in every projected data, such as the future inundation area, inundation frequency, and the growth of GDP and population, etc., because what happens in the future is unknown and can only be speculated on based on known rules (Yin et al., 2019; Liu and Chen, 2021). However, as researchers study the development patterns of human society and the natural environment in greater depth and data sharing between scientific research institutions as well as free downloads of open source data are increasingly frequent and encouraged, this situation should gradually improve over time (Aitsi-Selmi et al., 2016). Nevertheless, in spite of any limitations, our findings are of great value for the understanding and reduction of CFR in China’s coastal zone. This is primarily because the current work is a spatial assessment of coastal flood risk with a high spatial resolution and the integrated consideration of hazard, exposure & sensitivity, and adaptive capacity at the macro-scale.



5 Conclusion

This paper investigates the future coastal flood risk caused by SLR in China’s coastal zone based on the hazard, exposure & sensitivity, and adaptive capacity by developing a CFR assessment framework, using the AHP-EW combined method to calculate the weight values, calculating the values of CFR in 2030, 2050, and 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5 scenarios, respectively, and displaying CFR values using risk maps. The results show that low-lying coastal areas with densely populated, economically developed, or industrially diverse are faced with serious coastal flood risks, such as the Yellow River Delta, the Yangtze River Delta, the Pearl River Delta, and the coastal areas in Jiangsu. The area of “Very High” CFR level reaches a peak of 44.10×103 km2 in 2100 under RCP8.5-SSP5. The area proportion and area of typical CFR levels in the coastal areas of Jiangsu and Guangdong are significantly larger than those in other provinces. In the typical CFR areas, the number of the expected population affected rises to a high point and peaks in 2050, with a maximum of 202.82 million under RCP2.6-SSP1, and the expected GDP affected reaches a peak in 2100, with 22.31 trillion USD under RCP8.5-SSP5. In addition, in the “High” and “Very high” CFR areas, the LULC types of built-up and farmland are most affected, respectively. As the provinces most threatened by CFR, Guangdong and Jiangsu are required to guard against the impact of coastal flooding on built-up and farmland, respectively. This study will provide the intuitive information and basis for governments, policy-makers, and local communities to address the increased coastal flood risk.
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Global climate change and disturbances from human activities lead to habitat loss and changes in habitat quality, resulting in a reduction in biodiversity. The continental coastline of China distributes some cities with highly developed economies and coastal wetlands with rich biodiversity, and both economic development and biodiversity conservation are important topics. In order to clarify the spatial distribution of bird biodiversity in coastal areas, based on the MaxEnt model and GIS spatial analysis, the distribution data of 488 species of birds and 15 environmental variables were used to simulate the suitable distribution areas of birds, and to analyze the spatial distribution and hotspots of bird biodiversity in coastal areas. The main findings of this study are as follows. (1) A total of 488 species in 249 genera of 21 orders and 81 families of birds were involved in the modeling of coastal areas. The main environmental factors affecting the potential distribution of birds in general are: land use, monthly mean diurnal temperature range, and precipitation of the driest month. (2) High value areas of bird richness are distributed in different locations in the four sea areas: In the Bohai Rim region, they are mainly distributed in the Liaohe Estuary Wetland in Liaoning Province, the vicinity of the Yongdingxin River and Haihe River in Tianjin, the eastern part of Tianjin, and the Yellow River and Yellow River Delta Wetland in Shandong Province; In the coastal area of the Yellow Sea, they are primarily found in Kunyu Mountain National Nature Reserve, Laoshan Provincial Nature Reserve in Shandong Province, and Yancheng Wetland Rare Birds National Nature Reserve in Jiangsu Province; In the coastal areas of the East China Sea, they are mainly found at the mouth of the Yangtze River, at the national nature reserve of Dongtan birds on Chongming Island, along the southeastern coast of Zhejiang Province, near the Min River and along the coast of Quanzhou in Fujian Province; In the coastal areas of the South China Sea, they are mainly distributed in the Pearl River Delta wetlands of Guangdong Province, the southeastern coastal areas of the Guangdong-Hong Kong-Macao Greater Bay Area, and the Shiwanda Mountain National Nature Reserve in Guangxi Province. (3) The spatial trends in the distribution of hotspots of birds of national priority protection in coastal areas are generally consistent, but more concentrated than the distribution of all birds. (4) After the high-value areas of bird richness were superimposed with protected areas, it was found that the intersecting area accounted for a small proportion of the protected area, and many areas near the inland had low bird richness. Finally, the findings provide references for bird biodiversity conservation and planning in coastal areas.
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Introduction

The coastal zone is the transitional zone between ocean and land, with complex and diverse geographical environment. It is pregnant with rich biodiversity and is also the region with the most developed social economy. In particular, the intensity of human interference is increasing and coastal wetlands are decreasing (Murray et al., 2022), the impact of climate change is more obvious, so the important habitat of birds in the coastal zone is more seriously threatened in recent years (Debue et al., 2022). Then, biodiversity conservation in coastal areas has attracted more attention from international biodiversity conservation and scientific research. China’s coastal areas have many types of coastal zones, estuaries, bays, wetland ecosystems, etc., which are important parts of the flyway of East Asia and Australasia, and also key areas for global biodiversity protection.

The preservation of species habitats is essential for biodiversity conservation. A series of studies on species habitat assessment and suitable habitat identification, including identifying conservation gaps in suitable habitat, adopting conservation measures in suitable habitat areas, limiting human activities and avoiding excessive disturbance, are the main ways to achieve biodiversity conservation goals. Using the habitat suitability model to evaluate the habitat suitability of species, identify the potential distribution areas of species and reveal the possible influencing factors of species changes are the scientific basis of biodiversity conservation (Guisan & Zimmermann, 2000; Gurnell et al., 2002; Peterson, 2006; Peterson et al., 2011; Araújo et al., 2019). According to whether the sample data of species distribution is needed when the model is established, the habitat suitability model can be divided into three types: mechanism model, statistical model and ecological niche model. Ecological niche models are popular, because that they can be modeled by combining environmental variable data with species occurrence point data only, and have good evaluation effect (Phillips et al., 2006; Merow et al., 2013; Radosavljevic & Anderson, 2014; Bai et al., 2022b). Among them, MaxEnt model is easy to operate and has good applicability. Even if he distribution sample data and environmental variable data are insufficient, MaxEnt model has a good prediction effect, too (Elith et al., 2006; Hernandez et al., 2006; Bai et al., 2022a).

As an important part of the East Asian-Australasian flyway, more than 20 species of waterfowl are globally threatened in China’s coastal wetlands, and the population of about 100 species of waterfowl exceeds 1% of the population of the world or the East Asian-Australasian flyway (Zhang, 2017). Globally, 60% of the population is concentrated in the coastal zone, and 2/3 of the cities with a population of more than 1.6 million are located in the coastal zone (Xu et al., 2006), the coastal zone is also the most concentrated area of human activities in China. This poses a serious challenge to the protection of biodiversity and suitable habitats. Before 2014, the length of the artificial shoreline increased from 0.33 × 104 km in the early 1940s to 1.32× 104 km in 2014, the proportion increased from 18.30% to 67.08%, and the length of natural shoreline decreased from 1.48× 104 km in the early 1940s down to 0.65× 104 km in 2014, the proportion decreased from 81.70% to 32.92% (Chen et al., 2021). In recent years, with the Chinese government paying more attention to wetland protection, the protection of coastal wetlands in China has achieved good results (Hou et al., 2016). As of 2018, there are 18 International Important Wetlands, more than 80 Wetland Nature Reserves and more than 160 National Wetland Parks in coastal provinces, and the area of coastal wetlands included in the reserve system is 1.395 million hm2 (Zhang et al., 2018). By consulting literatures, it is found that there are few biodiversity assessment cases for China’s coastal areas. Therefore, taking the prefecture-level cities involved in the coastline of Chinese Mainland as the research scope, this paper carries out biodiversity distribution, identification of suitable habitats, and analysis of conservation preliminary gaps, which is of great significance to the biodiversity conservation in China’s coastal areas and even the global coastal areas.



Materials and methods


Study area

The study area is located in the coastal area of mainland China (107°28′E, 20°13′N—125°42′E, 42°7′N), Starting from the Yalu River estuary in the north and the Beicang River estuary in the south, including four administrative levels: 48 prefecture-level cities, 2 municipalities (Tianjin and Shanghai), and 1 special administrative region (Hong Kong), with a total area of about 470,000 km2, as shown in Figure 1. The study area belongs to temperate monsoon climate and subtropical monsoon climate, including multiple climate zones such as mid-temperate, warm temperate, northern subtropical, central subtropical, southern subtropical and tropical (Zheng et al., 2013). The continental coastline belongs to four sea areas: Bohai Sea, Yellow Sea, East China Sea and South China Sea.




Figure 1 | Location of study area. Based on the standard map with the approval number GS (2020) 4619 downloaded from the Standard Map Service Website of the National Bureau of Surveying, Mapping and Geographic Information of China, with no modification to the base map.





Species occurrence records

Download all birds recorded in the study area since 2000 from http://www.gbif.org (GBIF, 2022). The species distribution data of GBIF are provided by several institutions, so the data often contain some problems. Therefore, it is necessary to remove duplicate data and missing data of longitude and latitude, and check the species scientific names according to the third edition of the Chinese Bird Taxonomy and Distribution List. Ideally, the study area should have undergone systematic or random unbiased sampling, but in practice, limited by the terrain of the study area, some places are not covered, resulting in different degrees of sampling bias (Kramer-Schadt et al., 2013). Thus, to avoid overfitting the model and eliminate spatial autocorrelation, this study selected birds with more than 10 occurrence records as the research object, and the SDMtoolbox tool of ArcGIS10.8 software was used to spatially filter the data, so that only one distribution record was retained in each 1 km×1 km raster (Brown et al., 2017). Finally, 488 bird species with a total of 61,153 points were used in this study.



Environmental data

On the basis of previous studies (Dong et al., 2014; Wu et al., 2016; Luo et al., 2021), combined with the comprehensive impact of climate change, terrain, habitat type and human disturbance on the distribution of birds, this paper selects a total of 26 environmental variables that affect the distribution of bird species to construct the model, including 19 climate variables, NDVI, altitude, slope, aspect, land use type, distance to water sources, distance from human activities. There might be relationships between some environmental variables, and applying all environmental factors to modeling can lead to overfitting. Therefore, this study used the R package of ENMTools 1.0.6 developed by Warren et al. for the correlation analysis of various environmental factors, independent of distribution data, and able to obtain reliable results (Warren et al., 2021). The secondary environmental variables with |R|≥0.9 were eliminated, and the following 15 environmental factors affecting the distribution of birds were screened (Table 1). The climate factor data comes from the bioclimatic data of the World Climate Database (http://www.worldclim.org) version 2.1 with a resolution of 1km, and the NDVI comes from were obtained from the 2000–2020 NASA MODIS product data MODIS09A1 (http://ladsweb.nascom.nasa.gov/), Topographic variables and land use types were downloaded from the Resource and Environment Science and Data Center (https://www.resdc.cn/). Distances to water sources and distances to human activities were obtained by calculating Euclidean distances after extracting data based on land use types. The above data is uniformly resampled to a resolution of 1km × 1km.


Table 1 | Variables used for modeling.





MaxEnt Model Construction and Analysis of Hotspots Area

This study uses the SDMtoolbox tool to call the MaxEnt model to predict the potential distribution areas of 488 bird species in coastal areas. Due to the spatial deviation of species sampling, this study first used the SDMtoolbox tool to create a Gaussian kernel density deviation file for each species, so that more background points were selected in the area with large sampling deviation (Brown, 2014). Five cross-validations were performed on each bird, and the output type of the result was a Clogclog model, and the rest of the parameters were default. The Jackknife method was chosen to test the importance of each environmental factor. The model prediction results were tested by the area enclosed by the receiver operating characteristic curve (ROC) and the abscissa, that is, the AUC value, to evaluate the model prediction accuracy (Phillips et al., 2006; Phillips & Dudík, 2008; Merow et al., 2013; Radosavljevic & Anderson, 2014). The AUC value ranged from 0.5 to 1. The closer the value was to 1, the higher the model prediction accuracy. The AUC values are 0.5–0.6, unqualified; 0.6–0.7, poor; 0.7–0.8, fair; 0.8–0.9, good; and 0.9–1.0, excellent. Select Maximum training sensitivity plus specificity (MTSS) Cloglog threshold as the threshold (Phillips et al., 2017), and convert the model prediction results into binomial values of 0 and 1. If the distribution probability of a species in a grid is greater than this threshold, the species is considered to be distributed in this grid, otherwise it is not distributed.

Based on the prediction results of MaxEnt model, the raster calculator of ArcGIS was used to superimpose the binarized prediction results of all birds to obtain the spatial distribution pattern of the abundance of all birds in the coastal area. Then, according to the “List of National Key Protected Wild Animals in China” (China Forestry and Grass Bureau website, 2022.2.9), 97 key protected bird species were screened, and the predicted results of national key protected birds were superimposed to obtain their distribution pattern. The results were divided into 5 categories using the natural discontinuity method, including: cold spot areas, sub-cold spot areas, moderate hot areas, sub-hot spot areas and hot spot areas. Further, the high biodiversity value areas of all birds and national key protected birds were overlaid with national protected areas and provincial protected areas respectively to identify the conservation vacant areas. The technical roadmap of the paper is shown in Appendix Figure S1.




Results and analysis


Species composition

The birds involved in the MaxEnt modeling were 488 species in 249 genera of 21 orders and 81 families, Passeriformes,250 species, Ploverformes Charadriiformes, 68 species, Anseriformes, 30 species, and Accipitriformes, 27 species are the orders with the most species, making up 51.23%, 13.93%, 6.15%, and 5.53% of all the birds in the study area, respectively (Table 2), indicating that songbirds, wetland waterbirds, and raptors were predominant in the study area. The most common families are Muscicapidae with 39 species, Scolopacidae with 36 species and Anatidae with 30 species. There are 18 national key protected wild animals and 79 national key protected wild animals.


Table 2 | Number of bird orders, families, genera, species and percentage of total number of species in the study area.





MaxEnt model results

The results showed that the average AUC of the MaxEnt model for 488 bird species was 0.923 ± 0.069 (for details, see Table S1), indicating that the vast majority of models had good prediction accuracy. The results showed that the average AUC of the MaxEnt model for 488 bird species was 0.923 ± 0.069, indicating that the vast majority of models had good prediction accuracy. As shown in Figure 2, the environmental variables with high contribution to the model are mainly land use (19.70%), monthly mean diurnal temperature range (15.48%), and precipitation of the driest month (11.35%). For 97 species of national key protected birds, the environmental variables with high contribution to the model are mainly land use (18.31%) and monthly mean diurnal temperature range (16.19%). The impact of different environmental variables on the birds distribution is also different. It may have a greater impact on some birds, but less on others. For instance, land use had a greater effect on the distribution of birds such as Limnodromus scolopaceus and Turnix tanki, and a lesser effect on birds such as Emberiza aureolah and Corvus pectoralis. The selection of land use types of birds is mostly concentrated in areas where they are lakes, rivers and wetlands. The complete ecosystem and good ecological environment of wetlands can provide suitable habitats for birds.




Figure 2 | Average contribution of environmental variables.





Bird biodiversity distribution pattern

The distribution pattern of bird biodiversity in Figure 3A shows that all bird diversity hotspots are mainly concentrated in: 1) Near the Liaohe estuary wetlands in the Bohai Sea, northwest of Yingkou City, south of Jinzhou City, and southwest of Dalian City in Liaoning Province; 2) Near the Yongdingxin River and Haihe River in Tianjin, the eastern coastal area of Tianjin; 3) Near the Yellow River Delta, the northwestern coastal areas of Shandong Province, Weihai City, and the southeastern coastal areas of Qingdao City; 4) East of Lianyungang, North of Yancheng and South of Nantong, Jiangsu Province; 5) At the mouth of the Yangtze River in the East China Sea, northwest of Shanghai, Chongming Island, Zhoushan City; 6) The southern coastal areas of Taizhou City and the northeastern coastal areas of Wenzhou City in Zhejiang Province; 7) the cities near the Minjiang River and the coastal areas of Quanzhou City in Fujian Province; 8) Cities near the Xijiang and Pearl Rivers in Guangdong Province, and the southeastern coastal areas of the Guangdong-Hong Kong-Macao Greater Bay Area, mainly Zhuhai, Shenzhen, and Zhongshan; 9) Fangchenggang City and Beihai City in Guangxi Province. The distribution of birds is mainly concentrated near the coastline and near the estuary, and in coastal cities near the East China Sea and the South China Sea all birds are concentrated and distributed over a larger area than in the Bohai Sea and the Yellow Sea, with sub-hot spots and medium areas gradually extending outward in the hot spots. Figure 3B shows that the distribution hotspots of national key protected birds are essentially the same in terms of spatial distribution as all bird diversity hotspots, but that the distribution is more concentrated, with hotspots concentrated in the Bohai Rim and close to the Pearl River Delta, the Guangdong-Hong Kong-Macao Greater Bay Area, as well as sub-hotspots and moderate hot areas close to the hotspots. However, the biodiversity of national key protected birds in coastal areas of Fujian Province and Zhejiang Province was significantly lower than all birds.




Figure 3 | Biodiversity distribution pattern of All birds in coastal areas (A) and national key protected birds (B).





Spatial distribution of hotspots and protected areas

The sub-hotspot areas and hotspot areas of the spatial distribution of bird richness are collectively referred to as high biodiversity areas (HBA). The next step is to analyze the spatial superposition of HBA of all birds and national key protected birds with national nature reserves (NNRs) and provincial nature reserves (PNRs), respectively, and the intersection of HBA and NNRs/PNRs in terms of area and proportion. There are a total of 53 NRRs around the study area, with an area of about 17740.34 km2, and 94 PNRs with an area of about 10516.65 km2. The HBA area of all birds is about 84572.55 km2, and the HBA of national key protected birds is about 58908.26 km2. The next step is to analyze the spatial superposition of HBA of all birds and national key protected birds with national nature reserves (NRRs) and provincial nature reserves (PNRs), respectively, and the intersection of HBA and NNR/PNR in terms of area and proportion. As shown in Table 3, the area of the intersection of HBA and NNRs of all birds is 2078.96km2, accounting for 11.72% of the area of all NNRs, and the area of the intersection of HBA and PNRs of all birds is 1605.67km2, accounting for the area of all PNRs of 15.27%. The area of the intersection of HBA and NNRs of national key protected birds is 1737.36km2, accounting for 9.79% of the area of all NNRs, and the area of the intersection of HBA and PNRs of national key protected birds is 1175.07km2, accounting for 11.17% of all PNRs. The overlap between HBA and protected areas for all birds is primarily distributed in the coastal regions of China’s four major seas, as shown in Figure 4. It can be seen that the proportion of suitable distribution areas for birds belonging to HBA and in protected areas in the coastal areas of mainland China is not high, and there are protection gaps in non-HBA areas and areas close to inland areas.


Table 3 | Spatial relationships of all birds and national key protected birds with NRRs and PNRs.






Figure 4 | Spatial distribution of all birds (A, B), national key protected birds (C, D) with NRR and PNR.



From the analysis in Figure 4, it can be concluded that for the Bohai Rim area of HBA where birds are distributed, the degree of biodiversity of birds is relatively high, and the spatial distribution of national key protected birds is also relatively concentrated, mainly in the Liaohe estuary National Nature Reserve and Panjin Liaohe estuary Provincial Nature Reserve in Liaoning Province; Beidagang Wetland Provincial Nature Reserve in Tianjin; Caofeidian Wetland and Birds Provincial Nature Reserve, Nandagang Wetland Provincial Nature Reserve and Haixing Wetland Provincial Nature Reserve in Hebei Province; Binzhou Shell Embankment Island and Wetland National Nature Reserve and Yellow River Delta National Nature Reserve in Shandong Province. The Liaohe estuary National Nature Reserve and the Yellow River Delta Nature Reserve are strictly controlled, and the existence of nature reserves can effectively improve the habitat quality of the area. The Liaohe Estuary National Nature Reserve is located at the downstream of Liaohe River and Hun River, at the estuary of Liaohe River in Liaodong Bay. Upstream fresh water carries a lot of nutrients and is deposited near the downstream coastal zone, forming a wetland environment suitable for birds with reed marshes and coastal intertidal zone (Shi, 2020). It is situated in the crucial area along the flyway of migratory birds from East Asia to Australia, and is the wintering and breeding site of many national key protected birds, and the national protected wild animal Larus saundersi breeds here. The HBA area in Tianjin and Hebei Province is mainly in the southwestern part of Bohai Bay and the northwestern part of Laizhou Bay, and the main sea-entering rivers are Luan River, Hai River, Yongdingxin River and Yellow River. The annual sediment accumulation at the mouth of the Yellow River, which merges with oceanic rivers to form the Yellow River delta wetland, is the most complete and extensive wetland ecosystem preserved in the warm temperate zone in China, with vegetation communities dominated by the Phragmites australis community and the Suaeda heteroptera community and a rich variety of aquatic organisms (Chen et al., 2017). The good wetland habitat conditions provide sufficient food and good habitat for birds to breed and overwinter.

For the distribution of HBA of birds around the Yellow Sea, the HBA of birds is mainly in the coastal area of Weihai City, Shandong Province, Kunyushan National Nature Reserve, Laoshan Provincial Nature Reserve and Yancheng Wetland Rare Bird National Nature Reserve in Jiangsu Province. In the past decade, ecological restoration projects have been implemented in Yancheng Wetland Rare Bird National Nature Reserve, and large artificial wetlands have been established. The upstream water system of Yancheng Wetland has Guanhe rivers and Huaihe River converging into the ocean, with sufficient water resources and vigorous growth of mudflat organisms and Phragmites australis communities and Spartina anglica Hubb. communities. The Yancheng Wetland Rare Bird National Nature Reserve is the largest wintering habitat for the internationally endangered species of cranes (Ma et al., 2009).

For the coastal areas of the East China Sea where HBAs of birds are distributed, they are mainly near the mouth of the Yangtze River, Chongming Island Dongtan Bird National Nature Reserve, Jiuduansha Wetland National Nature Reserve, cities near the Minjiang River and Quanzhou City coastal areas in Fujian Province. The sediment deposition at the estuary of the Yangtze River promotes the formation of wetlands at the estuary of the Yangtze River. It is a typical estuarine wetland in China. The main wetland types are paddy fields and tidal flats. The vegetation community is dominated by the Phragmites australis community and the Spartina alterniflora community. The Chongming Island Dongtan Bird National Nature Reserve, located in the wetlands at the mouth of the Yangtze River, is rich in benthic fauna and vegetation resources, and is a resting place for many migratory birds on their way, as well as a wintering ground for some waterfowl. In the highly urbanized city of Shanghai, where citizen science provides more abundant data (Xu et al., 2022), more bird distribution data are obtained at this location, and thus bird hotspots are concentrated in the MaxEnt model prediction results. The Minjiang River in Fujian Province is one of the major rivers that feeds into the East China Sea, and its estuary has a warm, hot and humid climate with typical semi-diurnal tides, salty grass marsh wetlands, reed marsh wetlands and invaded areas of flowering rice grass (Tong et al., 2011), flat mudflats and abundant food. Ardeidae and Scolopacidae birds mostly inhabit this area (Chen et al., 2001).

For the coastal areas of the South China Sea where the HBAs of birds are distributed, they are mainly near the Pearl River system and the southeastern part of the Guangdong-Hong Kong-Macao Greater Bay Area, Gudoushan Provincial Nature Reserve in Guangdong Province, and Shiwanda Mountain National Nature Reserve in Guangxi Province. The distribution of HBA of birds in the coastal areas of the South China Sea is consistent with the spatial distribution of local water resources. The Dongjiang, Xijiang, Beijiang and other rivers flow into the Pearl River Delta, and the entire water system is fan-shaped. The region has a subtropical monsoon climate, which is warm and humid all year round, and the habitat is suitable for birds to overwinter. The Guangdong-Hong Kong-Macao Greater Bay Area is an important resting and wintering ground for migratory waterbirds from the north to the south and many rare and endangered waterbirds. There are a lot of mangrove trees, which can prevent wind and waves, store carbon, maintain biodiversity, and shelter a lot of marine benthic creatures (Zhang & Sui, 2001). There are also lots of coastal wetlands and water network wetlands, which distributes a large number of water birds.




Discussion

The hotspot areas of bird diversity in coastal areas are mainly concentrated in the Liaohe estuary wetlands in the Bohai Sea waters, near the Yongdingxin River and Haihe River basin in Tianjin, at the estuary of the Yellow River and in the Yellow River Delta Nature Reserve, in the urban coastal areas of northwestern Shandong Province, in the Yancheng Wetland Rare Bird National Nature Reserve in northern Yancheng City, Jiangsu Province, at the estuary of the Yangtze River, Chongming Island Dongtan Bird National Nature Reserve, in the southeastern Zhejiang coastal areas, near the Min River and coastal areas of Quanzhou City in Fujian Province, the Pearl River system in Guangdong Province, and the southeastern coastal areas of the Guangdong-Hong Kong-Macao Greater Bay Area, Fangchenggang City in Guangxi Province, and Beihai City. Large wetlands are distributed near the coastline, with rich biodiversity. Many coastal cities in mainland China are economically developed areas, and some important coastal wetlands located in these cities are also an important part of the East Asian-Australasian flyway and are critical habitat for many migratory birds. Most of these places are close to the mouths of rivers, and lakes, swamps, and wetlands can provide good habitats for birds.


Problems and suggestions for habitat conservation of birds in coastal areas

The coastal wetlands are the weak link of wetland protection in China, and there are obvious protection gaps. In recent years, the loss of migratory bird habitat caused by the reclamation and exploitation of coastal wetlands has led to a reduction in the biodiversity of birds along the migration routes. The degree of bird biodiversity in the coastal areas of the Bohai Sea is high, and the spatial distribution of the national key protected birds is also more concentrated. The development of urbanization in the central Liaodong Bay and southern Bohai Bay over the past fifteen years has led to a gradual decrease in the ecological quality of coastal wetlands and a trend of biodiversity degradation (Xiao et al., 2018). Therefore, in the areas with intense human activities, it is recommended to implement restoration and management countermeasures by expanding the scope of protection. The hotspot of bird biodiversity in the Yellow Sea waters is in Weihai City and Yancheng Wetland Rare Bird National Nature Reserve in Shandong Province, where bird populations forage and overwinter in the wetlands around the Yellow Sea and Bohai Sea. In recent years, affected by the invasive species Spartina alterniflora and the reclamation and aquaculture of sea tidal flats, some wetlands have been degraded and food resources have been reduced. It is necessary to pay attention to the habitat quality of these wintering waterbirds to ensure sufficient food resources and a good ecological environment (Wang et al., 2022). The bird biodiversity area in the East China Sea region is near the estuary of the Yangtze River, near Chongming Island Dongtan Bird National Nature Reserve and Jiuduansha Wetland National Nature Reserve. Focusing on the ecological protection of the whole Yangtze River basin is not only related to people’s production and life, but also to the quality of the habitat of birds in the estuary. The bird biodiversity hotspots in the coastal areas of the South China Sea are near the Pearl River system and the southeastern part of the Guangdong-Hong Kong-Macao Greater Bay Area, which is consistent with the spatial distribution of local water resources. With the development of urbanization and industrialization, the coastal wetlands are seriously degraded and biodiversity is lost, and it is necessary to pay attention to the vacant areas of bird protection in this region (Ma et al., 2021).

In general, for areas where bird biodiversity hotspots overlap with protected areas, it is recommended to continue to deepen control measures in hotspots, improve management and assessment mechanisms, establish or expand the area of protected areas on the basis of the original hotspots with large wetland marsh distribution areas as core areas, fill protection gaps, and actively carry out monitoring and assessment of coastal wetland ecosystems. Hotspot areas that do not overlap with protected areas and have small wetland areas should be combined with local land use planning, make rational use, give full play to the advantages of ecological resources, and lead to the realization of a new trend of economic development and conservation synergy. In the hot spots of coastal cities with highly developed urbanization and industrialization, considering the local development status and land use types, optimizing the urban ecological spatial structure and realizing the development goals of urban characteristics, not only establishing protected areas, but also focusing on coordinating the relationship between nature and economic and social development. In the Yangtze River Delta, Pearl River Delta and other regions, it is possible to consider establishing waterbird ecological corridors (Luo et al., 2021), constructing and improving biodiversity protection networks, restoring waterbird habitats, promoting popular science, developing bird watching activities and wetland tourism.

In bird surveys, citizen science generally has a long survey cycle and sufficient time, which can solve the problems of manpower and funding, and also allow the public to understand ornithological research and increase environmental awareness (Tulloch et al., 2013). The data and related research provided by citizen science are widely recognized (Devictor et al., 2010), and these data have been corrected by database professionals with a high degree of quality assurance, so they are widely used in the estimation and assessment of bird biodiversity (Sullivan et al., 2014). It is recommended to continue to carry out bird distribution surveys in coastal areas to obtain comprehensive and continuous bird distribution data, and regularly hold bird population surveys and identification activities, and carry out coastal wetland habitat assessment work. Strengthen the public’s awareness of wetland protection and bird biodiversity protection, and improve the policy system and protection measures for coastal wetland protection.



Effects of key environmental factors on bird habitats in coastal areas

Studying the relationship between bird communities and environmental factors is important for the conservation and restoration of bird habitats. Influenced by global climate change and human activities, the behavior pattern, population dynamics and distribution range of birds have also been greatly affected. Coastal wetlands are distributed along the coast of mainland China, which is a transition zone between terrestrial and marine ecosystems and plays an important role in maintaining national security and biodiversity security. For a long time, the waters and wetlands near the coast have maintained the development of marine fisheries and are key areas for fish breeding sites. Marine fish, mangroves, and seagrass beds also provide abundant food sources and habitats for birds. In the results of this study, the main driving factors affecting the suitable distribution of birds are land use, monthly mean diurnal temperature range, precipitation of the driest month. Rapid changes in land use patterns and extreme changes in climate may lead to habitat loss for birds, and economic and social development over time has led to degradation of natural wetland areas in coastal areas and incomplete ecosystems in artificial wetlands, all of which dynamically affect changes in the core distribution areas of birds. We need to focus on the response of individual species to future land use patterns and climate change, model the extent and degree to which these factors alter core areas, and dynamically adjust the boundaries of protected area design (Soultan et al., 2022). The urbanization process of coastal areas will change the pattern of land use. Urban bird habitats mainly include wetlands, woodlands, agricultural lands and public green spaces, and studies have shown that the area of urban public green spaces is the main factor affecting bird richness, and in cities with non-hotspot areas of bird distribution, it is recommended that maintaining vegetated areas, reducing the use of pesticides, and it is an effective measure to improve the quality of urban bird habitats (Huang et al., 2015). Studies have shown that larger, structurally complex and resource-rich habitats can provide a diversity of microhabitats and maintain greater bird biodiversity (Honkanen et al., 2010). In coastal areas, the unique mangrove resources are one of the environments that birds rely on, and follow-up research also needs to pay attention to this environmental factor. The habitat structure of mangroves is mainly determined by the species of mangroves and the density of the river network. For mangrove plants in the East China Sea and the South China Sea, priority should be given to protection and restoration, assessing the ecological status of mangroves, and understanding the impact of mangroves on bird protection in order to maintain bird biodiversity (Mohd-Azlan et al., 2015). In this manuscript, we only distinguish the national key protected birds that need urgent attention, and discuss the distribution areas of all the birds and the national key protected birds in the coastal area. These birds are also of great conservation significance. As an important part of wetland ecosystems, waterbirds play a key role in maintaining wetland ecological balance, material and energy flow, and wetlands also provide waterbirds with rich food sources and good habitats. The study of wetland birds has always been one of the important contents of wetland science. In follow-up studies, we will consider more specific studies of the breeding and wintering sites of wetland waterbirds to explore their interactions with wetland habitats.
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The suspended sediment in water infers water quality, and directly reflects optical properties such as water transparency, turbidity, and water color. Thus, these physical properties provide a viable basis to rigorously retrieve for suspended sediment concentration (SSC) using satellite remote sensing water color measurements in estuaries. The contemporary Ocean and Land Color Instrument (OLCI) on Sentinel-3A, provides more waveband options for remote sensing of water color and an opportunity for retrieval of suspended sediment in estuarine coast. Yet, accurate retrieval of SSC in high turbid waters from OLCI is still challenging due primarily to the high uncertainty of atmospheric correction. Here, we use OLCI images to measure water quality in Hangzhou Bay, and construct a retrieval model of SSC, and cross-validated using Geostationary Ocean Color Imager (GOCI) data. The study shows that: (1) the atmospheric correction algorithm based on ultraviolet wavelengths (UV-AC) can achieve better results for both OLCI and GOCI data, and the overall correction accuracy for OLCI is higher than that for GOCI data; (2) the multi-band index model constructed by using Rrs(Oa16)/Rrs(Oa5) of OLCI data has higher retrieval accuracy and model stability, with R2 is 0.96, MRE is 17.52%, and RMSE is 69.10 mg/L; (3) the spatial distribution of SSC in the study area is complex, mainly showing that the SCC in the top of the bay is larger than the mouth of the bay, and the south shore is larger than the north shore; (4) whe distribution of SSC obtained from retrieving OLCI and GOCI data in general is consistent, with the OLCI SSC estimates with higher accuracy than GOCI data, and the numerical difference between the two retrieval results is more obvious in the ocean with high SSC; and (5) with appropriate atmospheric corrections and retrieval models, OLCI data can be used to estimate improved SSC observables in Hangzhou Bay. We conclude that the SSC retrieval models proposed here provide a good reference method for retrieval of water color observable in Hangzhou Bay  coastal estuary.




Keywords: Sentinel-3A/OLCI, GOCI, suspended sediment concentration, water color element retrieval, Hangzhou bay



Introduction

Estuaries and coastal areas are located at the junction of the continent and the coastal ocean, where the interaction of Earth’s atmosphere, hydrosphere, lithosphere, biosphere, and biochemical processes and the feedback they bring are quite complex and covers a wide range of temporal scales (Lyons et al., 1982). As an important water quality parameter of inland and near-shore Class II water, the relevant water color information is directly related to the suspended sediment content in the coastal ocean, including water transparency/turbidity, underwater light field, and water primary productivity, etc. (Liu et al., 2013; Sun et al., 2013; Shi et al., 2015; Gao et al., 2018). Further, improved knowledge of the suspended sediment concentration (SCC) is the key to better understand the natural regulation processes of estuarine and coastal zones.

With the rapid development of nearshore and coastal economies, estuaries have been adversely affected by major human activities and anthropogenic climate changes in recent years (Wu et al., 2018), and water pollution has worsen significantly. The suspended sediment is one of the main optically active substances in the water, and its concentration is directly related to the strength of the water color satellite remote sensing signal. Remote sensing quantitative technology has the advantages of good instantaneous synchronization and a short period of repeated data acquisition. It can greatly improve the acquisition of SSC data in coastal estuary. Therefore, remote sensing observation is an effective approach for obtaining large-scale and long-term observation of water quality/color. The research on remote sensing retrieval of estuarine and coastal SSC is significant for the protection of the surrounding ecological environment and utilization of related sensor data (Chen et al., 2021; Wang et al., 2021). In addition, the corresponding research results can also provide auxiliary decision-making support for government departments to monitor estuary water quality evolution, assess water quality, and manage regional water, which has important theoretical and practical significance.

In recent years, the use of remote sensing satellites to study water color and water environment has been popular. Liu et al. (2013) used small environmental satellite CCD (HJ CCD) images to construct an SSC retrieval model, and they performed relevant atmospheric correction to investigate the applicability of HJ CCD images to estimate SSC in the Hangzhou Bay, China. Peng and Shen (2014) adopted the method of Shen et al. (2010) to retrieve and calculate the radiance at the entrance pupil of Terra/MODIS, FY-3A/MERSI, COMS/GOCI sensors, and obtained the data of remote sensing reflectance (Rrs) and suspended particle concentration. Then, they compared the retrieval results using the Envisat/MERIS retrieval results and performed a correlation analysis. Li et al. (2019) compared 6 atmospheric correction models and 8 suspended matter estimation models based on OLCI data. Then, combined with synchronous sampling data, they selected and analyzed atmospheric correction methods and TSM estimation models suitable for the Hangzhou Bay and OLCI data. Besides, they verified the accuracy and applicability of OLCI data secondary products. Hu et al. (2018) used Geostatic Ocean Color Imager (GOCI) data and in-situ data over Hangzhou Bay, to develop a suitable remote sensing model to quantify SSC of the Hangzhou Bay, and analyzed the impact of ocean tides on SSC retrieval; Shao et al. (2020) combined with in-situ data and remote sensing spectral data in the study area to construct an retrieval model, and they performed cross-validation using the satellite data with known stable results to explore the monitoring ability of the GF-4 satellite on SSC. Blix et al. (2018) studied the derived chlorophyll-a (Chl-a), colored dissolved organic matter (CDOM), and total suspended matter (TSM) in complex waters based on the in-situ measurement data of the Balaton Lake and to verify the feasibility of using S3 OLCI L2 products to monitor optically highly complex shallow lakes. Tuuli et al. (2020) derived an applicable atmospheric correction algorithm based on Sentinel-2/MSI and Sentinel-3/OLCI data, and then they obtained the Baltic lake water quality product through the cross-validation of case-2 optical water quality products and in-situ data. Pahlevan et al. (2021) calculated and analyzed radiometric derivative data from more than 1000 measurement points in freshwater (rivers, lakes, reservoirs) and coastal waters based on Landsat-8 and Sentinel-2 data to perform a global assessment of the applicability of eight state-of-the-art atmospheric correction methods. The above research results show that it is significant to conduct remote sensing monitoring of suspended sediment in estuarine and coastal areas.

In 2016, a new generation of ocean color satellite Sentinel-3A was launched by the European Space Agency, which provides a new data source for remote sensing monitoring of ocean color (see Table 1 for specific parameters). The OLCI sensor retains the band setting of the MERIS sensor, and it adds spectral channels in the blue, red, and near-infrared spectral regions [up to 21 bands, including the band range of 392.5 to 1040 nm (Bi et al., 2018)], thus providing more band options for remote sensing estimation of water color elements. Moreover, since the Sentinel-3B satellite is also equipped with OLCI sensors in 2018, with the cooperation of the two satellites, a scene image can be obtained from OLCI data in less than two days, which greatly improves the time resolution. In addition, the spatial resolution is up to 300 m. Many previous studies have shown that the GOCI water color products launched and put into use in South Korea in 2010 are highly reliable for monitoring the water environment in a complex short time range (Lamquin et al., 2012; Jiang et al., 2015; Liu et al., 2016; Yang, 2016; Sun et al., 2017). Therefore, to evaluate the applicability of OLCI data in remote sensing monitoring of suspended sediment, this study combines the spectral response function of the OLCI sensor, measured spectral data and SSC data, establishes the retrieval model of SSC based on OLCI data, and cross-verifies the retrieval accuracy of OLCI satellite data by using GOCI satellite data. The research results will make up for the low spatial resolution of suspended sediment retrieval from GOCI data and provide a new model and method for the retrieval of suspended sediment from OLCI data in the Hangzhou Bay area.


Table 1 | Basic parameters of OLCI and GOCI sensors.





Data and methods


Study Area

In this study, Hangzhou Bay, China, is studied as a typical estuarine coast to investigate the remote sensing retrieval of SSC based on OLCI data. Hangzhou Bay is located in the middle section of China’s coastline, in the north of Zhejiang Province, with a trumpet-like shape (Figure 1). The top and the mouth of the bay are about 20 km and 100 km wide respectively, and the maximum water depth is about 10 m. The total water area is about 5000 km2, and the port channel, mudflats, and aquatic resources are abundant. The topography of Hangzhou Bay differs from other places and has special characteristics. Its atypical topography of the funnel-shaped estuary makes the strong tidal action caused by suspended sediment combined with the diluted water of the Yangtze River, which leads to a large amount of sediment accumulated at the south shore of Hangzhou Bay every year (Su and Wang, 1989), thus characterized by high tides, rapid currents, and high sediment content (He et al., 2013). The high SSC has a great impact on the port, so it is crucial to grasp the distribution of SSC in the Hangzhou Bay marine area for making future engineering decisions, understanding regional topographic evolutions, and obtaining the accumulation corrosion rate in the marine area.




Figure 1 | Study area and the distribution of in situ points.





In situ data and processing

The in-situ data required for this study include water quality data and spectral data, and a combination of continuous flow observation and fixed-point observation methods are adopted to collect and measure the in-situ data. From July 22 to 24, 2017, field water sampling and remote sensing reflectance measurements were conducted sequentially at 50 in-situ sampling sites in Hangzhou Bay, as shown in Figure 1.

Water sampling was performed with remote sensing reflectance measurements. Specifically, the sample water was collected by standard samplers from the surface layer of the water at each sampling point. Then, the concentration of suspended sediment in water was measured by conventional methods of drying, roasting, and weighing (Li et al., 2017). Finally, the in-situ SSC at each sampling point was obtained through analysis and calculation, thereby obtaining 50 sets of effective observation data. Remote sensing reflectance data were obtained based on the above-water spectral measurement method proposed by Tang et al. (2004), which uses a hand-held ASD portable spectral radiometer and a standard reflectivity board (30%), to obtain the remote sensing reflectance data of each sampling point at observation angles of 40° and 135°.



Remote sensing data and processing

Combined with the time of the in-situ data, the Level-1 Earth Observation Full Resolution (EFR) product imaged at 10:13 on July 23, 2017 is used as the Sentinel-3A/OLCI image data in this study. It covers the Hangzhou Bay area under sunny and less cloudy conditions, and it is obtained from the official website of the European Space Agency (https://codarep.eumetsat.int). Meanwhile, the Level-1B product imaged at 10:16 on July 23, 2017 is used as GOCI image data, and it is obtained from the Korea Ocean Satellite Center (http://kosc.kiost.ac.kr/index.nm). The band settings and detailed parameter information of OLCI and GOCI sensors are presented in Table 1.

This study employs the processing software SNAP (8.0) released on the official website of the European Space Agency to preprocess the OLCI and GOCI data, such as cropping and geometric correction. The image data requires atmospheric correction to reduce the influence of atmospheric scattering when the sensor receives the optical signal. Atmospheric correction refers to the process of removing atmospheric scattering and water surface reflection noise from the total radiance received by satellite remote sensors and extracting the water-leaving radiance that carries the information of water elements (Windle et al., 2022). The atmospheric correction for remote sensing of ocean color is extremely challenging because it needs to extract weak effective water signals from about 90% of the background noise. He et al. (2012) proposed the ultraviolet wavelengths atmospheric correction (UV-AC) algorithm for the low and stable water-leaving radiance values at the UV band of highly turbid water. This algorithm regards the UV band as a dark pixel band and assumes that the water-leaving radiance at the UV band isnegligible. Then, it uses the medium-precision extrapolation model proposed by Gordon and Wang (1994) to estimate the aerosol scattering radiance in the long and near-infrared band, i.e.,.

	. Eq. 1

	Eq. 2

In Eq. 1 and Eq. 2, the superscript “(e)” means the estimated value instead of the actual value,   and   are the short near-infrared band and the long near-infrared band, respectively. Finally, the UV-AC algorithm assumes that the aerosol scattering reflectance is the same in each band, thus further retrieving the water-leaving radiance in each band.

He et al. (2017) applied the UV-AC algorithm to the Tiangong II Moderate-resolution Wide-wavelengths Imager (MWI) in 2017. Then, they conducted a comparative analysis of the performance of the UV-AC algorithm, SWIR (Shortwave Infrared Wavelength Module) algorithm (Wang and Shi, 2005; Wang, 2007), and MUMM (Management Unit Mathematical Models) algorithm (Ruddick et al., 2000) in the Hangzhou Bay region. The analysis results showed that the retrieval results of the UV-AC algorithm were in the best agreement with the measured spectra of Hangzhou Bay. Therefore, this study also uses the UV-AC algorithm for OLCI and GOCI images. Specifically, for the OLCI data, this study uses 400 nm as the UV band (i.e., the water-leaving radiance at 400 nm is assumed to be 0), 754 nm and 865 nm as the NIRs band and NIRL band, respectively; for the GOCI data, 412 nm is used as the UV band, and 745 nm and 865 nm as the NIRs band and NIRL band, respectively.



Model establishment

Since the SSC retrieval model constructed based on remote sensing images requires the simulated remote sensing reflectance at the sensor band, this study combines the in-situ remote sensing reflectance obtained from field sampling with the spectral response function of each band of the corresponding sensor and then calculates the band equivalent value of the corresponding band according to its band settings. The calculation equation is as follows:

	Eq. 3

In Eq. 3,   is the remote sensing reflectance equivalent to the sensor x-th band, with integration from   to  ;   is the spectral response function of the sensor x-th band;   and   are the wavelength range of the spectral response function;   is the in-situ remote sensing reflectance.

The multi-band exponential model is used in this study mainly because the exponential model is one of the most common models in the current water color retrieval studies (Liu et al., 2013; Shi et al., 2019). After the in-situ SSC data obtained from field sampling and the equivalent band remote sensing reflectance data are ordered one by one, 50 pairs of sample data are obtained. Then, in the modeling process, the data are randomly divided into a modeling set (33 pairs) and a validation set (17 pairs) at the ratio of 2:1. The former is used to construct the retrieval model, while the latter is used to verify the model accuracy. In this study, the accuracy of the retrieval model is evaluated by three indicators, namely, coefficient of determination (R2), root mean square error (RMSE), and mean relative error (MRE). These indicators are used to analyze the degree of fit of the regression model coefficients, and their calculation equations are shown as follows:

	Eq. 4

	Eq. 5

	Eq. 6

In Eqs. 4-6,   is the in-situ SSC for the i-th sample;   is the SSC estimated by the retrieval model for the i-th sample;   is the average value of in-situ SSC for the i-th sample; n is the total number of samples.




Results and analysis


Analysis of spectral characteristics of hangzhou bay water

The relationship between the in-situ remote sensing reflectance curves and the spectral bands for some of the water bodies in Hangzhou Bay with different SCCs acquired on July 23, 2017 is shown in Figure 2. Two reflection peaks appear in the band ranges of about 600-700 nm and 765-810 nm. Previous experiments have shown (Han et al., 2003) that the reflectance spectra of water bodies containing suspended sediment are characterized by two peaks in the band of about 600-700 nm and 760-820 nm, where the former is the main peak and the latter is the secondary peak; when the sediment content of the water body is low, the main peak is generally higher than that of the secondary peak, and the reflectance of the secondary peak will gradually increase as the sediment content. The SSC values at most of the experimental measurement points taken in this study are relatively low, and it can be seen from the figure that most of the main peaks of the spectral curves are higher than the secondary peaks, except for the line corresponding to the SSC of 695.24 mg/L. The reflectance of the secondary reflectance peaks in the figure shows an increase with the SSC, which also verifies the pattern shown in the previous study. Particularly, when the SSC reaches 695.24 mg/L, the reflectance of the secondary peak approaches the reflectance of the main peak. Additionally, although the reflectance of the whole visible spectral band generally shows that the higher the SSC of the water body, the stronger the spectral signal of remote sensing reflectance. This is consistent with the previous findings (Doxaran et al., 2002), but the “redshift” phenomenon is not obvious, and the positions of the reflectance peaks of different SCCs in the band are generally consistent. Moreover, for each waveband of the OLCI data (see Table 1 for the specific waveband settings), the remote sensing reflectance in the NIR waveband shows a good agreement with the SCC of the water body. Generally, the in-situ remote sensing reflectance and SSC show a good correlation, which is mainly because of the high concentration of suspended sediment in Hangzhou Bay, and thus a strong optical signal is obtained, which is convenient for computational analysis and research.




Figure 2 | The relationship between in situ Rrs and SSC in the study area.





Atmospheric correction accuracy inspection and analysis

To verify the atmospheric correction accuracy of OLCI and GOCI images based on the UV-AC algorithm, this study combines the satellite imaging time with the sampling time of each sampling point, selects the four sampling points closest to each other, and combines the in-situ remote sensing reflectance data acquired at the corresponding points with the remote sensing reflectance data of the atmospherically corrected images at that point for comparative analysis (Figure 3). Specifically, for the OLCI data, this study only performs atmospheric correction for the bands (bands Oa1~Oa12 and bands Oa16~Oa17) in the visible part of its primary product.




Figure 3 | Scatter validation of atmospheric correction accuracy based on OLCI (A) and GOCI (B) data.



It can be seen from Figure 3 that the atmospheric correction results of both OLCI and GOCI data are lower than those of the in-situ data (except for a small portion of the Oa1 and Oa2 bands of OLCI), but in general, the atmospheric correction accuracy of both is not much different, and their atmospheric correction results are more satisfactory. In comparison, the atmospheric correction results of the former are relatively better than those of the latter. Specifically, the slope of the regression equation of the atmospheric correction validation points based on the OLCI data is about 0.7661 with an intercept of about 0.0019; while the slope of the regression equation of the atmospheric correction validation points based on the GOCI data is about 0.7989 with an intercept of about -0.0016. Also, the distribution of the latter validation points is relatively closer to the 1:1 line. However, the RMSE and the MRE of the atmospheric calibration results calculated based on the OLCI data are 0.0316 sr-1 and 16.17%, respectively, while those of the atmospheric calibration results calculated based on the GOCI data are 0.0363 sr-1 and 29.34%, respectively. Therefore, the atmospheric correction results based on the OLCI data are more accurate than those of the GOCI data.

Additionally, combining Figure 3A with Table 2, it can be seen that for the OLCI data, the atmospheric correction results are satisfactory for the Oa1~Oa3, Oa12, and Oa16~Oa17 bands, with RMSEs of less than 0.007 sr-1, while the atmospheric correction errors are relatively large for the Oa5~Oa7 and Oa11 bands. Combining Figure 3B with Table 2, it can be seen that for the GOCI data, the atmospheric correction results for the B7 and B8 bands are relatively satisfactory, with RMSEs of less than 0.008 sr-1, and the atmospheric correction results for the rest of the bands have a certain degree of error.


Table 2 | Band-by-band RMSE and MRE statistics of the atmospheric correction results based on the OLCI and GOCI data.



To sum up, it is concluded that:

	The atmospheric correction accuracy of the OLCI data is higher than that of the GOCI data.

	The atmospheric correction results of both the OLCI and GOCI data are underestimated.

	For OLCI data, the highest atmospheric correction accuracy is obtained in the blue, red, and near-infrared bands; for GOCI data, the highest atmospheric correction accuracy is obtained in the red and near-infrared bands.

	The atmospheric correction of OLCI and GOCI data based on the UV-AC algorithm can achieve quite satisfactory results.





Model accuracy validation and analysis

By analyzing the correlation between the equivalent band remote sensing reflectance of each band of the OLCI sensor and the in-situ SSC, and combined with the existing research results (Li et al., 2019; Lu and Su, 2020), this study adopts the equivalent band remote sensing reflectance of Oa5, Oa12, Oa16, and Oa17 of the OLCI data to construct the remote sensing factor. In the modeling process, the R2 obtained based on the modeling set data, the RMSE and MRE obtained based on the validation set data are used as accuracy evaluation indexes, and the three are analyzed in combination with each other to compare and determine the overall strengths and weaknesses of the model.

It can be seen from Figure 4 that in order to construct a multi-band index model for retrieval of SSC, four combinations of remote sensing factors were selected in this studyretrieval. When Rrs(Oa12)/Rrs(Oa5), Rrs(Oa16)/Rrs(Oa5) and Rrs(Oa17)/Rrs(Oa5) are used as remote sensing factors, the R2 values of the three models are very similar and all are greater than 0.9, indicating that the fit of the coefficients of these three regression models is very high. Specifically, when Rrs(Oa16)/Rrs(Oa5) is used as the remote sensing factor, the R2 reaches 0.956; when Rrs(Oa17)/Rrs(Oa12) is used as the remote sensing factor, the R2 of the model is slightly lower than the first three, but it still reaches nearly 0.87. In addition, it can be seen from the figure that when Rrs(Oa12)/Rrs(Oa5) and Rrs(Oa16)/Rrs(Oa5) are used as remote sensing factors, the distribution of modeling points is very close to the 1:1 line, which can reflect the in-situ data well. However, when Rrs(Oa17)/Rrs(Oa5) and Rrs(Oa17)/Rrs(Oa12) are used as remote sensing factors, their retrieval SSC is relatively low, and the modeling points are mostly distributed below the 1:1 line with large relative errors.




Figure 4 | Scatter validation of estimated SSC based on OLCI data with in situ concentration. (A) Rrs(Oa12)/Rrs(Oa5); (B) Rrs(Oa16)/Rrs(Oa5); (C) Rrs(Oa17)/Rrs(Oa5); (D) Rrs(Oa17)/Rrs(Oa12).



Combined with Table 3, it can be seen that when Rrs(Oa12)/Rrs(Oa5) and Rrs(Oa16)/Rrs(Oa5) are used as remote sensing factors, the two models constructed have superior accuracy. Generally, the difference between the two values is not very large, and their RMSEs are both less than 100 mg/L and close to 70 mg/L; meanwhile, their MREs are both less than 20% and close to 17%. Specifically, the model has the minimum RMSE of 69.10 mg/L when Rrs(Oa16)/Rrs(Oa5) is used as the remote sensing factor, and the minimum MRE of 17.31% when Rrs(Oa12)/Rrs(Oa5) is used as the remote sensing factor. However, when Rrs(Oa17)/Rrs(Oa5) and Rrs(Oa17)/Rrs(Oa12) are used as remote sensing factors, the errors of the two constructed models are relatively large. Their RMSEs reach 156.52 mg/L and 126.12 mg/L respectively, and their MREs reach 35.34% and 43.31% respectively.


Table 3 | Band-by-band RMSE and MRE statistics of atmospheric correction results based on OLCI and GOCI.



Then, the model developed for selecting the remote sensing factor Rrs(Oa16)/Rrs(Oa5) is applied to the retrieval of SSC in the study area based on OLCI data. The retrieval model is calculated as:

	Eq. 7

In Eq. 7, SSC is the suspended sediment retrieval concentration; X is the ratio of the equivalent band remote sensing reflectance of the 16th to the 5th band of the OLCI sensor.

Similarly, for the construction of the retrieval model based on GOCI data, the multi-band index model is also used in this study. According to the existing research results (Lamquin et al., 2012; Hu et al., 2018), the final retrieval model is determined through analysis and summarization as follows:

	Eq. 8

In Eq. 8, SSC is the suspended sediment retrieval concentration; X is the ratio of the equivalent band remote sensing reflectance of the 8th and 6th bands of the GOCI sensor. Combining Figure 5 and Table 3, it can be seen that the R2 of this retrieval model reaches 0.91, and the RMSE and MRE reach 102.23 mg/L and 25.04%, respectively. These results indicate that this model achieves good performances and can better reflect the actual values of SSC.




Figure 5 | Scatter validation of estimated SSC based on GOCI data with in situ concentration.



Overall, it can be seen from Table 3 that the retrieval model of SSC in the study area based on OLCI data has higher accuracy and lower error than the model based on GOCI data, with better values of R2, RMSE, and MRE. Combined with Figures 4, 5, it can be seen that for the estimated SSC based on OLCI data and GOCI data obtained by model retrieval, the main error between the estimation result and in-situ concentrations is from the waters with an SSC of greater than about 300 mg/L. In waters where the SSC is less than 100 mg/L, the errors are the minimum, and the model can reflect the actual SSC more accurately.



Analysis of SSC retrieval results

The retrieval model of SSC based on OLCI and GOCI data is applied to the corresponding remote sensing images after pre-processing, and the final retrieval results of SSC in the study area are obtained (Figures 6, 9). The land mask part in the resulting map adopts the shoreline information extraction method proposed by Chen et al. (2022).




Figure 6 | Retrieval results of SSC based on OLCI (A) and GOCI (B) data (July 23, 2017).



As can be seen from Figure 6 that the variation trend of SSC distribution in the study area based on the retrieval of OLCI and GOCI data tends to be consistent. Generally, the SSC at the top of the bay near the upstream area of the river is higher, while the SSC at the mouth of the bay near the inlet of the river is lower; the SSC at the south bank of the river is higher, while the SSC at the north bank of the river is lower. Specifically, a strip-shaped area with a high concentration of suspended sediment is formed at the convex bank of the river. It is also the place with the highest concentration of suspended sediment in the study area. This is caused by the centrifugal force of water flow because the convex shore is easy to accumulate suspended sediment and form mudflats. Particularly, there are two regions of high concentration of suspended sediment accumulation at the longitude of about 121°30′E at the mouth of the bay, showing an up-and-down position distribution, and the concentration of the sediment accumulation region near the southern shore is higher than that near the northern shore. Additionally, the water between the top of the bay and the mouth of the bay (between longitudes of about 121°00′E and 121°20′E) has a low concentration of suspended sediment, which is caused by the artificial blocking of objects in the middle of the river.

Since July 23, 2017 was a high tide day (Figure 7), the tidal changes on that day had a large impact on the distribution of suspended sediment in the study area. The two images in Figure 6 were imaged at around 10:00 on that day, when the tide in Hangzhou Bay was rising, with a high current rate. Meanwhile, the seawater at the mouth of the bay was flooding into the top of the bay, which led to the SSC at the mouth of the bay being significantly lower than that at the top of the bay. To sum up, the distribution of SSC in the waters of the study area shown in the figure is complex due to the combined effects of tidal shape, topography, and human factors in the Hangzhou Bay area.




Figure 7 | Tidal changes in the study area (July 23, 2017).



Figure 8 selects the region with low SSC in Hangzhou Bay on that day for the 2017 data. From the figure, it can be seen that the retrieval results of OLCI data can reflect the distribution of SSC in the study area in more details than GOCI data, which can be obtained that its SNR and digitization level are better than GOCI data.




Figure 8 | Comparison of partial SSC retrieval results of the study area based on OLCI (A) and GOCI (B) data.



To further verify the reliability of the retrieval model, another set of remote sensing images covering the Hangzhou Bay area under clear and low cloud conditions are selected and retrieved by the same method (Figure 9). The OLCI data was imaged at 10:17 a.m. on April 13, 2020, and the GOCI data was imaged at 10:16 a.m. on April 13, 2020. As shown in the figure, the waters in the study area showed a high SSC on that date. Specifically, the SSC on the north bank of the river is lower than that on the south bank of the river, and the lowest SSC in the study area is formed at a longitude of about 121°30′E on the north bank. Specifically, Figure 9A indicates that the SSC in the area at the top of the bay is lower than that in the area at the mouth of the bay. Also, at the longitude of about 121°15′E on the south bank of the river, the SSC increases steeply and forms a suspended sediment accumulation area with a high concentration.




Figure 9 | Retrieval results of SSC based on OLCI (A) and GOCI (B) data (April 13, 2020).



Combining the fieldwork experience with the theoretical basis, since the Hangzhou Bay area is located in the eastern coastal region of the continent near 30°N, it has a typical subtropical monsoon climate. Meanwhile, since the image was imaged at 10:17 a.m. on April 13, 2020, which was a mid-tide day (Figure 10), the tidal change has a certain influence on the suspended sediment distribution in the study area. Therefore, it can be seen that since the water level of the Hangzhou Bay area is not high in spring, and the tide was receding at this time. In this case, a large amount of suspended sediment accumulated at the bottom of the river bed on the convex bank of the river was exposed, resulting in the distribution of suspended sediment shown in the figure. Figure 6 and Figure 9 indicate that the distribution of SSC in the Hangzhou Bay waters under the influence of different tidal patterns in different seasons varies greatly, which further confirms the diversity of suspended sediment distribution in Hangzhou Bay waters.




Figure 10 | Tidal changes in the study area (April 13, 2020).



To sum up, the high complexity and diversity of the distribution of SSC in the study area are mainly due to the special topography and other objective factors in the Hangzhou Bay area. This results in complex and diverse internal hydrodynamic conditions [it mainly shows a trend of decreasing and then increasing from the bay mouth area to the top of the bay (Ye, 2019)], thus presenting a large variation of regional SSC.



Comparison of satellite retrieved results

Comparing Figure 6 and Figure 9, the distribution of SSC based on the retrieval of the two data sources shows that the SSC in the study area based on the retrieval of OLCI data is higher than that based on the retrieval of GOCI data. This phenomenon is more obvious in waters with a high SSC, while there is little difference between the two in waters with a low concentration. Specifically, in the top area of the bay where the channel is the narrowest, the SSC is high in the entire study area due to the rapid flow and the strong resuspension of suspended materials in this water. Comparing the two images in Figure 6, it can be found that the SSC based on the retrieval of OLCI data is slightly higher than that based on the retrieval of GOCI data, which is consistent with the result shown in Figure 9. Meanwhile, in the area near the convex bank, the SSC in this water is the maximum because it is on the south bank of the river; the flow velocity is slower, and the sinking and siltation effect is more obvious. By comparing Figure 6 and Figure 9, it can be seen that the SSC obtained from the retrieval based on OLCI data are significantly higher than that obtained from the retrieval based on GOCI data. This result can be also observed for the waters with a high SSC near the longitude of 121°30′E. In Figure 6, the SSC between the top of the bay and the mouth of the bay and near the north coast (121°00′E to 121°20′E) is low, and the same result can be obtained based on the retrieval of the two data sources.

To further improve the visualization of the retrieval data, the following will divide the area (Figure 11), and select 4 waters under the influence of different hydrodynamic conditions as the experimental region. As shown in Figure 12 and Figure 13, the retrieval results were quantitatively analyzed (the specific values are shown in Table 4 and Table 5 respectively) to evaluate the applicability of using OLCI data to retrieve the SSC in the study area. Among them, Region A is located at the top of the bay, with a narrow and curved channel, faster current flow and stronger re-suspension capacity; Region B is near the south coast of Hangzhou Bay, with slower current flow and shallower water depth; Region C is located in the key part of Hangzhou Bay tidal channel, mainly affected by the scouring effect of the current; Region D is located in Zhoushan archipelago near the mouth of the bay, less affected by Hangzhou Bay tides. Due to the threshold setting in the atmospheric correction process (the specific atmospheric correction calculation procedure can be found in He et al., 2012), the data for 2020 has the problem that the values in the area of high SSC located on the south bank of the river and near the mouth of the bay are covered by a mask. Therefore, this study will avoid these regions with missing values for cross-validation and analysis.




Figure 11 | Experimental region division of suspended sediment average concentration statistics.






Figure 12 | Box line plots of SSC in four experimental regions based on 2017 data.






Figure 13 | Box line plots of SSC in four experimental regions based on 2020 data.




Table 4 | Statistics of SSC in the experimental regions based on 2017 data (unit: mg/L).




Table 5 | Statistics of SSC in the experimental regions based on 2020 data (unit: mg/L).



Combining Figure 12 with Table 4, it can be seen that the SSC in the water bodies of Region D and Region B belong to the lower level in the range of the study area in the retrieval results of the 2017 data. Among them, the average SSC based on OLCI data were about 48.6 mg/L and 153.0 mg/L, while the average SSC based on GOCI data retrieval were about 44.1 mg/L and 78.3 mg/L, the former was about 10.2% and 95.4% higher than the latter, respectively. The SSC in the water bodies of region A and region C are at high levels within the study area, where the average SSC based on OLCI data are about 449.1 mg/L and 2066 mg/L, respectively, while the average SSC based on the retrieval of GOCI data are about 246.8 mg/L and 430.7 mg/L, respectively, the former being higher than the latter by about 82.0% and 379.7%, respectively. In summary, comparing the retrieval results based on the two data sources, the numerical difference is more obvious in the waters with higher SSC; comparing the average SSC in different areas in the retrieval results of each data source, the difference between the areas with high SSC and low SSC is larger in the retrieval results based on OLCI data, while the results based on GOCI data are relatively smaller. During the high tide (July 23, 2017), SSC levels were high in Region C and at low levels in Region B.

In addition, for the retrieval results in 2020, combining Figure 13 with Table 5, it can be seen that the SSC in the study area is generally at a high level during the mid-tide (April 13, 2020). Among them, the SSC in the water body of Region B is relatively the highest, and its average SSC based on OLCI data is about 2349.2 mg/L, while the average SSC based on GOCI data retrieval is about 894.1 mg/L, and the former is about 162.7% higher than the latter. In summary, the overall SSC in the study area based on OLCI data is generally higher than that based on GOCI data, and the difference in the estimated SSC between the two retrievals becomes more and more obvious as the SSC in water increases.

In different SSC intervals in the study area, the estimated concentrations with different numerical differences are obtained based on the retrieval of OLCI and GOCI data. The main reason is that the retrieval models applied to the two images are exponential models with e-based parameters. Since the base as an index is greater than 1, the estimation results will keep increasing with the increase of the independent variable and its rate will also increase rapidly, which leads to a larger difference between the estimated concentrations obtained from the retrieval based on OLCI and GOCI data in the region of high SSC, while in the region of low concentration, the difference between the two shows less obvious. In addition, since the SSC in the in-situ data are all relatively low, the retrieval accuracy of the proposed retrieval model is higher in the low concentration region, while there are some errors in the high concentration region. Furthermore, the atmospheric correction results of COCI data also have some influence on the error of the final retrieval results. A study (Li et al., 2015) pointed out that the atmospheric correction algorithm of GOCI satellite is not accurate enough in highly turbid water bodies, and the water-leaving radiance in the near-infrared band is not accurate enough, which leads to the difference of remote sensing reflectance of GOCI satellite with the increase of water turbidity, and this is the main reason for the difference of the retrieval results based on OLCI and GOCI data in this study.




Conclusions

In this study, the remote sensing retrieval model of SSC on the  Hangzhou Bay estuar based on OLCI data was investigated using Sentinel-3A/OLCI. The main research method is to calculate the equivalent band remote sensing reflectance by combining in-situ data and satellite sensor spectral response function, then do the correlation analysis between remote sensing reflectance and in-situ data to select the applicable band. The equivalent band remote sensing reflectance of well-correlated bands is used to construct the remote sensing factor, and the best retrieval model is obtained by computational analysis. The retrieval model is finally applied to the pre-processed remote sensing images to obtain the distribution of SSC in the study area based on remote sensing images.

To evaluate the applicability of the retrieval results of SSC in the study area obtained based on the OLCI sensor, this study also utilized the retrieval results based on GOCI data for cross-validation. Through the computational analysis of the experimental data and results, the following conclusions were reached from this study:

	The atmospheric correction based on the UV-AC algorithm for both OLCI and GOCI data can obtain more satisfactory results, and the former has a higher overall correction accuracy than the latter. For OLCI data, the bands with the highest atmospheric correction accuracy are blue, red and NIR bands; for GOCI data, the bands with the highest atmospheric correction accuracy are red and NIR bands.

	The multi-band index model constructed with Rrs(Oa16)/Rrs(Oa5) of OLCI data as remote sensing factors has higher retrieval accuracy and model stability; the R2 is 0.96, the MRE is 17.52%, and the RMSE is 69.10 mg/L.

	The spatial distribution of SSC in the study area is mainly as follows: the SSC at the top of the bay is greater than that at the mouth of the bay; the SSC at the south shore is greater than that at the north shore. The special geographical environment of Hangzhou Bay makes the hydrodynamic conditions in the area very diverse, which is one of the reasons for the complexity of the spatial distribution of SSC in the area.

	By comparing the retrieval results of OLCI data and GOCI data, the general trend of SSC distribution in the study area obtained from both retrievals tends to be consistent, but the estimated SSC based on OLCI data is higher than the estimated concentration from GOCI data. Moreover, the numerical differences between the retrieval results of the two data sources are more obvious in the waters with high SSC, but not much in the waters with low SSC. This phenomenon is mainly attributed to the fact that the structure of the retrieval models constructed based on the two data sources is an exponential model with an e-base, the in-situ data used to construct the models have lower SSC, and the atmospheric correction error of the GOCI data in highly turbid waters.

	The study shows that the OLCI data can be better used for monitoring SSC in Hangzhou Bay with suitable atmospheric correction methods and retrieval models. Moreover, its excellent spectral resolution can provide more options for remote sensing retrieval of suspended sediment, and its experimental results can meet more application requirements. The research method and retrieval model proposed in this study can also provide a certain reference value and basis for the research involving remote sensing water color retrieval.
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In recent decades, large-scale reclamation projects have been performed in the intertidal flat area of Shanghai, China. Due to the self-weight consolidation of the foundation and dynamic load caused by human activities, the newly reclamation area will sink within a period of time after the land is formed. Therefore, it is necessary to carry out surface deformation monitoring for taking preventive measures in advance. In this research, the PS-InSAR technology, mostly used for urban subsidence monitoring, was applied to obtain the ground deformation information of Shanghai coastal area based on ENVISAT/ASAR (2007.07-2010.02) and Sentinel-1A (2017.07-2020.02) datasets. The results showed that: 1) Compared with ASAR data, the Sentinel-1A data could distinguish more coherent points and get more comprehensive deformation distribution characteristics. 2) Most high-coherent points were detected in artificial objects, especially airport runways, buildings, roads and seawalls. 3) There was obvious uneven land subsidence in the study area during the two monitoring periods, the PS points with high subsidence rates (<-20 mm/a) mainly distributed around Dishui Lake and artificial seawalls. 4) The ground subsidence velocity of the newly formed land gradually slowed down over times, with the average subsidence rate decreased from -10.45 mm/a to -4.94 mm/a. Our study proved that remote sensing monitoring for ground subsidence in reclaimed land could be realized based on PS-InSAR technology, which could provide the spatial distribution characteristics of subsidence in large-scale and long-term series and help the sustainable development of coastal engineering construction.
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1 Introduction

Subsidence, the lowering of land surface, is a potentially damaging hazard, mainly resulting from a diversity of natural or man-made triggers (Herrera-García et al., 2021), such as settlement of loose sediments, compression of unconsolidated strata and overexploitation of underground resources (Li et al., 2020). At present, it has developed into one of the major global environmental geological disasters. For example, land subsidence occurs in 22 provinces (cities) in China including megacities such as Shanghai, whose maximum cumulative subsidence has reached 2.63 m from 1921 to 2013 (Ye et al., 2016). In Indonesia, the coastal of Jakarta has sunk by as much as 2.5 m in the past decade, and government authorities are planning to move the capital to the island of Borneo (Herrera-García et al., 2021). Other large cities in the world, such as Tokyo (Japan), Mexico City (Mexico), Houston (United States), Venice (Italy) and so on also suffer from land subsidence.

The direct or potential results of land subsidence involve aquifer systems degradation and damage to the utility infrastructure, buildings, roads, and bridges, threatening people’s lives and property (Zhang et al., 2019). Traditional land subsidence monitoring methods, such as ground leveling and GPS technique, are always single-point measurements (Luo et al., 2014), which are inefficient and not suitable for large-scale implementation. The interferometric synthetic aperture radar (InSAR) measurement technique, especially multi-temporal In-SAR (MT-InSAR), developed in recent years has significant advantages in spatiotemporal monitoring, and has been widely used in remote sensing inversion of land subsidence, with millimetric accuracy. Although the accuracy of monitoring points can be guaranteed, the traditional land subsidence monitoring methods have obvious shortcomings to achieve long-term land subsidence monitoring in large areas. The investment in manpower and material resources during the setting and implementation of monitoring point density, monitoring network range, and measurement frequency is much higher than that of InSAR measurement technique. Persistent scatterer InSAR (PS-InSAR) (Ferretti et al., 2000) and small baseline subset (SBAS) (Berardino et al., 2002) are the two most widely utilized MT-InSAR technique. Especially, the PS-InSAR method focuses on the temporally coherent radar targets in a time series of SAR images (Liu et al., 2009), which are regarded as persistent scatterers (PS). It is mostly applied in urban subsidence monitoring because of dense man-made buildings usually giving out a stable signal phase, easy to be detected as PS. There have been a great number of application cases of using PS-InSAR in land subsidence, providing valuable insights for urban sustainable development planning and subsidence control policy formulation. Malik et al. (2022) estimated the ground subsidence of New Delhi, India, finding a twenty centimeter of land settlement in some areas, and indicated that compared with ground-based conventional technology, PS-InSAR method is time-saving and can be carried out in a limited area due to the financial implication. Agarwal et al. (2021) used PS-InSAR methodology to study land movement for London, which is closely related to groundwater level, suggesting that the PS-InSAR inversion results could help to examine the potential implications of ground-level movement on the city’s resource management, safety, and economics. Moreover, it was demonstrated the validity of the PS-InSAR technique as a monitoring way to investigate the space-time evolution of surface deformation patterns during tunneling activities (Ramirez et al., 2022).

Compared with inland areas, the disaster risk caused by land subsidence in low-level coastal zones is more significant. In addition to the above-mentioned disasters, in coastal zones, the combined effects of land subsidence and absolute sea level rise contribute to relative sea level rise (Syvitski et al., 2009), leading to seawater intrusion, soil salinization and inundation hazard. Therefore, the monitoring and control of land subsidence in the coastal zone is more urgent. Shanghai is a typical city with land subsidence in China’s coastal zone, with a history of subsidence for about a hundred years. The local government had taken various measures, such as reduce of groundwater exploitation, artificial recharge of groundwater to control subsidence in the central urban area, making it with a low settlement rate (about -6 mm/a) (Wang and Jiao, 2015). However, the ground subsidence of suburbs, especially the reclamation area, has not been paid enough attention. At present, Shanghai has the largest newly reclaimed land in China’s coastal areas (Wu et al., 2020). Dredger fill in the reclamation area is characterized by high porosity, high compressibility, high water content, low permeability, and a low bearing capacity (Yuan et al., 2018). After dredged soils are deposited, consolidation can occur not only in dredger fill but also in underlying soil layers. As a result, land subsidence is an unavoidable problem (Yu et al., 2020). However, subsidence monitoring network is imperfect or even missing in most of the newly reclaimed zones. Limited distribution of benchmarks and GPS measurements with low sampling frequency are deficient to analyze the spatiotemporal features of subsidence in macro-scale level (Zhao et al., 2019). It is necessary to use remote sensing means to monitor land subsidence in reclaimed areas. There have been some reports on the analysis of ground deformation in Shanghai coastal zone through In-SAR technology. For instance, Zhao et al. (2019) evaluated the ground displacement of Shanghai coastal area in the period of 2007-2017, Ding et al. (2020) analyzed the land subsidence velocity of ocean-reclaimed lands from 2007 to 2016, and Yu et al. (2020) obtained the map of velocity distribution and accumulated deformation of ground deformation in reclamation area over a 5-year period (2015-2019). Previous research mostly applied the SBAS method to perform remote sensing inversion of subsidence in reclamation area. There are few studies on the settlement analysis using PS-InSAR method and the status of recent subsidence are unknown. In fact, roads, airport, seawalls and buildings, easily being identified as PS targets, provide the basis for the effective application of PS-InSAR technique. They form the basic structure of the Shanghai reclamation area, and their subsidence features basically reflect the situation of the whole area.

Therefore, the goal of this research is to (1) explore the feasibility of PS-InSAR technique in inversion of land subsidence in Shanghai reclamation area; (2) compare the performance differences between two kinds of SAR data (ENVISAT/ASAR and Sentinel-1A) in subsidence inversion and (3) clarify the spatial distribution characteristics and development trend of ground subsidence in different periods. This paper is organized as follows. Section 2 describes the materials and methods, including the introduction of the study area, the data used and PS-InSAR technique. Main results of this research are displayed and discussed in Section 3 and 4. Finally, the conclusions are presented in Section 5.



2 Materials and methods


2.1 Study area

Shanghai is located at the Yangtze River Delta, eastern coast of China (Figure 1). The sediments carried by the Yangtze River are deposited because of the comprehensive effect of the widened river, seawater support and flocculation phenomenon, creating natural conditions for coastal land reclamation (Jiang et al., 2002; Yu et al., 2020). Shanghai has undertaken large-scale land reclamation along coast in recent decades to meet the growing demands of rapid industrial and urban development (Ma et al., 2018).




Figure 1 | (A) Location of Shanghai city with the coverage of the datasets used; and (B) the study area outlined by a white rectangle.



In our research, the eastern coastal zone was selected as the study area (Figure 1), where several magnificent reclamation projects have been carried out in recent years (Figures 2A-E). The main projects include: (1) Pudong Airport Reclamation Project (1995-2001), (2) Lingang New City Reclamation Project (1999-2004), (3) Reclamation Project outside Pudong Airport (1999-2006), (4) Nanhui Dongtan Reclamation Project (2007-2009) and (5) the Second Phase Project of Nanhui Dongtan Reclamation (2016-2020). These projects are represented by Project I, II, III, IV and V respectively in the following text.




Figure 2 | Satellite monitoring of land reclamation along the east coast of Shanghai from 2002 to 2020 (A–E). The reclamation projects, including (1) Pudong Airport Reclamation Project (1995-2001), (2) Lingang New City Reclamation Project (1999-2004), (3) Reclamation Project outside Pudong Airport (1999-2006), (4) Nanhui Dongtan Reclamation Project (2007-2009) and (5) the Second Phase Project of Nanhui Dongtan Reclamation (2016-2020), are represented by Project I, II, III, V and VI, respectively in (E).



Dense man-made facilities are mainly distributed in the reclamation areas of Project I and II, i.e., Pudong Airport and Nanhui New City were constructed on these two reclaimed lands. Pudong Airport with an area of 40 km2 was built on an old and recently reclaimed land formed by both artificial fill materials and natural sediments (Jiang et al., 2016). As the largest hub airport in East China, it currently has five runways (R1-R5) and two terminals (T1-T2). Nanhui New City, 37 km from Pudong Airport, is located at the intersection of Hangzhou Bay and the mouth of Yangtze River. The total planned area of the new satellite city is about 312 km2, nearly 42% created through reclamation projects (Yang et al., 2018; Ding et al., 2020). Some commercial complex, residential districts, parks, new university campuses and supporting facilities have been built around Dishui Lake, the landmark of Nanhui New City. The density of artificial buildings in the other 3 reclaimed projects is relatively small, mainly including seawalls along the coastline and scattered ecological agricultural land, waste comprehensive utilization base and other environmental protection land.



2.2 Data description

Two different SAR datasets, ENVISAT/ASAR from July 2007 to February 2010 (25 images) and Sentinel-1A from July 2017 to February 2020 (32 images), both working in the C-band, were used to get ground deformation in the study area. The coverage of these two types of data is shown in Figure 1 and some of their parameters are listed in Supplementary Table S1.

In the process of land subsidence inversion based on PS-InSAR method, the corresponding precise orbit determination ephemerides released by Europe Space Agency (ESA) were adopted to perform the orbital refinement and phase reflattening procedure. The Shuttle Radar Topography Mission (SRTM) data product with a spatial resolution of 30 m, provided by U.S. Geological Survey (USGS) was utilized to remove topographic phase. In addition, Google Earth images, multi-spectral Sentinel-2A image and field survey were used to explain PS-InSAR results.



2.3 PS-InSAR method

PS-InSAR distinguishes the PS points by analyzing the amplitude and phase variation in a series of interferograms, produced by a group of SAR image pairs (Chen et al., 2018). These PS points, with stable phase information over long time periods, are selected for generating a displacement velocity map at a millimeter level (Jiang et al., 2016).

During the PS-InSAR processing, a Delaunay triangle network is created from the PS points (Hooper et al., 2004). The wrap phase  at the point i in the k th interferogram is expressed by the following formula (Chen et al., 2022):

 

where W{·} means the wrapping operator,   is the phase from ground deformation,   stands for the phase related to height errors,   indicates the phase caused by orbit errors,   denotes the atmospheric phase delay, and   represents the noise.

Topographic phase can be removed using external DEM, while the phase associated with orbit and atmosphere will be separated through spatial and temporal filtering. At last, displacement phase in sequence time and average deformation velocity of line-of-sight (LOS) direction are gained. The phase change caused by PS deformation can be expressed as follows (Chen et al., 2022):

 

where λ means radar signal’s wavelength, and DefLOS represents deformation of LOS direction. A detailed description of the PS-InSAR method is given in Ferretti et al. (2000).

In this research, the PS-InSAR was applied to process the two kinds of datasets, which is incorporated into the ENVI platform through the SARScape module. The PS-InSAR processing steps are summarized in Li et al. (2020) and spatio-temporal baselines of interferometric pairs of the two datasets are shown in Figure 3.




Figure 3 | Temporal and spatial baseline distribution of (A) ENVISAT/ASAR and (B) Sentinel-1A interferograms based on PS-InSAR method. The blue lines stand for the interferometric pairs, the yellow diamond represents the super master image and the green diamonds indicate slave images.






3 Results


3.1 Precision evaluation

The available ENVISAT/ASAR and Sentinel-1A datasets were processed using the PS-InSAR technique, described in Section 2.3.

In the study area, there were 244,330 and 626,097 PS points detected in the two periods of 2007-2010 and 2017-2020, respectively. In order to assess the accuracy of the PS-InSAR technology, the standard deviation value of the PS points’ velocity in the LOS direction were calculated for the two datasets. The formula used for the precision calculation is:

 

where γ is the interferometric coherence. This output product, which is derived from parameters such as coherence and wavelength, provides an estimate of the measurement precision. The lower this value the higher the measurement precision.

Results showed that the P values for both datasets were in the low range (Figure 4), less than 2.0 mm/a. The standard deviation value of the derived velocity for ASAR PS points was between 0.03 mm/a to 1.99 mm/a, while the Sentinel-1 PS points was 0.19 mm/a to 1.73 mm/a. In the study area, for nearly 60% of the ASAR and more than 93% of the Sentinel-1A PS points, the standard deviation was less 1 mm/a, suggesting the PS points retained a relatively high precision and deformation derived by PS-InSAR are reliable.




Figure 4 | Distribution of the standard deviation of the velocity for PS points in the direction of LOS.





3.2 Comparison of results gained from the two datasets

These detected PS points were mainly distributed in man-made objects. It is evident that more PS points existed in the non-reclamation area than in the reclamation zone (Figure 5). In particular, in the zone of Project I and IV, most stable targets were detected in Pudong Airport and corresponding infrastructure; in Project II, Nanhui New City with a great quantity of buildings and roads contributed a large percentage of PS points, while in Project III and V, a part of high-coherent points were linearly distributed on the seawalls. Table 1 showed the statistical results of PS points in different reclamation areas during the two periods. On the whole, the PS points acquired from Sentinel-1A in the period of 2017-2020 were more than that of ASAR from 2007-2010. In Project I, the density of PS points obtained from Sentinel-1A dataset was 447.62 units/km2, and ASAR was 257.85 units/km2, respectively. Likewise, in Project II, the Sentinel-1A PS points density was also significantly higher than that from ASAR, reaching 5.83 times. In the zone of Project III, the number of PS points were 5,312 and 11,157 in the two periods, respectively. Combined with the Google image map, it is found that in the period of 2017-2020, except for the seawall, there were more PS points distributed on the factory buildings, which belonged to some new companies such as garbage disposal company and ecological agriculture development company. In Project IV, the Sentinel-1A PS points density was 173.33 units/km2, and the ASAR was 75.26 units/km2. Objectively, because of Project V starting on the year of 2016, there were no PS points during the period of 2007-2010 in the zone of Second Phase Project of Nanhui Dongtan Reclamation. The high-coherent points from 2017 to 2020 were mainly detected on artificial seawalls, such as breakwater and diversion dike in the zone of Project V.




Figure 5 | (A) The scope of the five reclamation projects with the background of Sentinel-2A images acquired in 2020; (B) Distribution of PS points (marked in blue) obtained by ENVISAT/ASAR images; and (C) Distribution of PS points (marked in green) obtained by Sentinel-1A images. The background of (B, C) is a mean SAR intensity map of the two kinds of used dataset, respectively.




Table 1 | Statistics of PS points and subsidence value in reclamation zone.



The annual mean ground deformation velocity maps during the periods of 2007-2010 and 2017-2020 are shown in Figure 6. The PS-InSAR method measures the projection of 3D land deformation in the LOS direction. Negative values correspond to an increase of the sensor-to-object slant range distance (Guo et al., 2017), suggesting the land surface is sinking, whereas positive values mean the ground uplift. As can be seen, uneven land subsidence apparently existed in both periods in the study area, with the spatial distribution characteristics of gradually increasing subsidence rates from inland to offshore.




Figure 6 | Inversion results of ground deformation in the study area during 2007-2010 (A) and 2017-2020 (B). The background of (A, B) is a mean SAR intensity map of the two kinds of used dataset, respectively.



In the period of 2007-2010, the mean deformation rate of the study area was -2.41 mm/a, and the maximum subsidence velocity was -39.50 mm/a. A total of 5,829 out of 244,330 PS points in the study area had a high subsidence rate (less than -20 mm/a), and 70.18% (i.e., 4091 points) of the PS points with high subsidence rate were located within the reclamation area. By comparison, from 2017 to 2020, the mean deformation rate of the study area was -1.09 mm/a, and the maximum subsidence velocity was -29.50 mm/a. A total of 2,404 out of 626,097 PS points in the study area had a subsidence rate less than -20 mm/a, and 85.12% (i.e., 2047 points) of the PS points with high settlement rate were located in the reclamation area.

The specific ground deformation situation of the reclamation area is as follows. Statistics (described in Table 1) showed that, the average annual subsidence rate of the overall reclamation areas changed from -10.45 mm/a to -4.94 mm/a during the two monitoring periods. In the zone of Project I, the mean subsidence velocities in the two periods were -7.80 mm/a and -0.30 mm/a, respectively, suggesting that the surface deformation of Pudong Airport gradually slowed down and stabilized over the 10 years. Similarly, in the Project II area, the average settlement rate also decreased, from -9.49 mm/a to -6.59 mm/a. It is worth noting that although the subsidence rate of Nanhui New City had decreased over times, compared with the Pudong Airport, its subsidence situation was still serious, especially the roads and buildings around Dishui Lake, most of which had a subsidence velocity of< -15 mm/a in both periods. In the reclamation area of Project III, PS points with subsidence rate< -20 mm/a accounted for 19.49% (1136 out of 5829 points) and 33.01% (794 out of 2404 points) in these two periods, respectively. The mean subsidence velocity in the period of 2007-2010 was -13.66 mm/a, and it decreased to -4.92 mm/a after 10 years. Possibly, due to the fact that the Project IV was only completed in the year of 2009, the subsidence process in this area was still in progress during the study periods, resulting that the average settlement rate had not decreased too much, just from -14.63 mm/a to -9.97 mm/a. In the newly reclaimed zone, the ground subsidence was even more obvious. In Project V zone, a total of 156 PS points, detected on the seawalls from the Sentinel-1A dataset, has a mean subsidence rate of -23.46 mm/a, significantly higher than that in other reclamation zones in the same period.



3.3 Comparison of the corresponding points

Considering the difference in the construction time of the reclamation projects, it could help to clarify the variation trend of land subsidence by comparing the deformation characteristics of the corresponding points, with the same geographical location in the two PS points datasets of ASAR and Sentinel-1A. In our study, the corresponding points were defined in the following manner. First, the Sentinel-1A PS point a’ in the area within a radius of 30 m (pixel resolution of ASAR data) of the ASAR PS point a was selected, then points a and a’ together formed the corresponding points. If there were multiple Sentinel-1A PS points in the defined area, these points were averaged as one point.

A total of 11,211 pairs of corresponding points were identified in the reclamation area for the two PS points datasets, and their spatial distribution was shown in Figure 7A. Nearly 75% of the corresponding points were distinguished in the area of Project I and II (Table 2), mainly concentrated on the Pudong Airport, Nanhui New City and seawalls. Most of these targets are artificial buildings, which are hardly affected by speckle noise in time-series SAR images, with stable scattering characteristics over long time. Since no PS points was detected by ASAR data in Project V zone, there was no corresponding point in this area.




Figure 7 | (A) Distribution of corresponding points (CPs) in the reclamation area, superimposed on the Sentinel-2A image; (B, C) Deformation rate statistics of CPs.




Table 2 | Statistics of corresponding points and subsidence value in reclamation zone.



In terms of the average subsidence rate of all the corresponding points, it decreased from -9.33 mm/a to -4.03 mm/a over the ten years (Table 2). From the perspective of the proportion of PS points with settlement rates, the percentage of corresponding points with settlement velocity<-10 mm/a accounted for 40.13% in the period of 2007-2010, while during the 2017-2020 period, that was 6.64% (Figures 7B, C).

The subsidence characteristics of the corresponding points in the four reclamation project areas were different (Figures 8–11). The specific location of typical corresponding points P1, P2, P3 and P4 are shown in Figure 8C, 9C, 10C and 11C.




Figure 8 | Subsidence comparison of typical site (CP_P1) in Pudong Airport Reclamation Project during the two periods of 2007-2010 (A) and 2017-2020 (B). The background of (A, B) is a mean SAR intensity map of the two kinds of used dataset, respectively, and (C) is superimposed on the Sentinel-2A image.






Figure 9 | Subsidence comparison of typical site (CP_P2) in Nanhui New City (i.e., Lingang New City Reclamation Project) during the two periods of 2007-2010 (A) and 2017-2020 (B). The background of this figure (A–C) is the same as that of Figure 8.






Figure 10 | Subsidence comparison of typical site (CP_P3) in Nanhui Dongtan Reclamation Project during the two periods of 2007-2010 (A) and 2017-2020 (B). The background of this figure (A–C) is the same as that of Figure 8.






Figure 11 | Subsidence comparison of typical site (CP_P4) in Reclamation Project outside Pudong Airport during the two periods of 2007-2010 (A) and 2017-2020 (B). The background of this figure (A–C) is the same as that of Figure 8.



In Project I area, the average subsidence rates were -7.24 mm/a (2007-2010) and -2.49 mm/a (2007-2010), respectively (Table 2). Especially, the settlement trend of the building on the north side of the T2 terminal had slowed down significantly (Figure 8), with the average subsidence rate changing from -17.57 mm/a to -3.05 mm/a. Figure 12A showed the cumulative deformation statistics for the two periods of the typical corresponding point P1, located on the R2 airport runway. From 2007 to 2010, the cumulative deformation value reached -72.42 mm, while it was only -18.52 mm from 2017 to 2020.




Figure 12 | Time series of the surface subsidence at selected points CP_P1 (A), CP_P2 (B), CP_P3 (C) and CP_P4 (D) during the two periods of 2007-2010 and 2017-2020.



In the zone of Project II, although the mean settlement velocity of corresponding points had decreased, the decline degree was not great, just from -7.65 mm/a to -5.31 mm/a during the two periods (Table 2). The corresponding points with subsidence rate of less than -10 mm/a were mainly concentrated on the seawalls in the south and buildings on the west of Dishui Lake (Figure 9). As a whole, the subsidence of this zone was still serious, however, the subsidence trend of the seawalls had been relieved comparatively, of which the average deformation rate changed from -21.06 mm/a to -10.02 mm/a. For example, the cumulative deformation value of the corresponding point P2 was -65.89 mm during the period of 2007-2010, and it decreased to -22.03 mm from 2017 to 2020 (Figure 12B).

Although Project III is the largest of the four reclaimed areas, it has only 1/5 of all the corresponding points, and nearly 60% of them are located on the seawall (Figure 7A). The average subsidence rates were -13.88 mm/a (2007-2010) and -5.26 mm/a (2017-2020), respectively (Table 2). It is worth noting that the subsidence of corresponding points on the seawall in this area had not been effectively improved. The mean settlement velocity of the northern seawall only decreased from -17.91 mm/a to -16.21 mm/a (Figure 10). Figure 12C displayed the cumulative deformation results for the two periods of the corresponding point P3. During the period of 2007 to 2010, the cumulative deformation value was -47.26 mm, and it was still at a high value of -36.85 mm from 2017 to 2020.

There were the least corresponding points in the area of Project IV, accounting for less than 5% of the total number of reclamation areas. All the corresponding points in this zone were distributed on the seawall (Figure 7A), the subsidence of which had been obviously mitigated (Figure 11), with the mean settlement velocity decreasing from -19.74 mm/a to -2.71 mm/a during the two periods (Table 2). Taking the typical corresponding point P4 as an example, its cumulative deformation value was -46.04 mm from 2007 to 2010, and it decreased to -20.76 mm during the period of 2017 to 2020 (Figure 12D).




4 Discussion


4.1 Performance of the two datasets for monitoring land subsidence

The ENVISAT/ASAR and Sentinel-1A datasets, Image Mode (IM) and interferometric wide swath (IW) images, respectively, selected in our study have been proved to be effective in inverting ground subsidence. This concurs with many previous similar research. For instance, Foroughnia et al. (2019) used these two kinds of SAR data stack to analyze the deformation rate in south-west of Tehran, Iran, finding that LOS velocities obtained from both them were highly compatible with each other. Besides, the accuracy of land subsidence obtained by the two datasets had also been verified. After comparing the InSAR results and leveling measurements, Lyu et al. (2020) found that they showed good consistency with each other and the coefficient of determination of the linear regression between them were 0.96 and 0.98, respectively. However, in previous studies, ground subsidence monitoring based on these two kinds of SAR data using PS technique is usually applied in urban areas, and relatively less in non-urban areas. In this research, we attempted to apply them to monitor the ground deformation for newly reclamation area. Some man-made objects, easy to detect as PS point targets, such as the airport, buildings, and seawalls constitute the basic ‘skeleton’ of the reclaimed zone, whose deformation information basically represents the spatial distribution characteristics of the subsidence in the entire study area. Further, this makes it possible to have a macroscopic understanding of the development trend of land subsidence. In our research, the high-coherent points were successfully identified using PS method based on the two datasets, showing that there was obvious uneven land subsidence during the two monitoring periods (Figure 6), which provides data support for understanding the subsidence history and tendency in the study area.

In general, there were more PS points obtained from Sentinel-1A data than from ASAR data in our study area (Figure 5, Table 1). This is mainly due to the following two reasons. Firstly, the spatial resolutions of the two kinds of SAR data are different. Compared with ENVISAT/ASAR data, Sentinel-1A has higher spatial resolution, i.e., 30 m vs 20 m. Higher spatial resolution means that the number of scatterers in a single resolution unit is reduced, which is beneficial to maintain the stability of a single resolution unit, facilitating the extraction of more coherent target points. Secondly, the two SAR datasets used in the study have different acquisition time. The ASAR data detected the ground PS points in the period of 2007-2010, while Sentinel-1A data reflected the situation ten years later. Generally speaking, after the reclamation project is completed, infrastructure construction will be carried out according to the plan, which can be confirmed in multi-phase optical satellite images (Figures 2A–E). With the continuous increase of man-made facilities, PS points would also increase accordingly. In order to exclude the impact of new infrastructure construction on PS detection in the reclamation area in the later stage, the area of Project I, completed in 2001 and no new infrastructure had been built in subsequent periods, can be selected to compare the performance of the two kinds of data for PS point detection. Statistics (Table 1) showed that the density of PS points obtained from Sentinel-1A dataset was 1.74 times higher than that of ASAR data in Project I zone, and more detailed and comprehensive features of the ground subsidence could be reflected from Sentinel-1A results than ASAR. Therefore, it can be concluded that the new generation of Sentinel-1A satellite SAR data has obvious advantages over ENVISAT/ASAR data in detecting PS points and inverting land subsidence characteristics in reclaimed area.



4.2 Influencing factors of subsidence in different reclaimed areas

Land subsidence is the result of a combination of multiple factors, with obvious spatial and temporal differences. It is confirmed that the land vertical movements in Shanghai reclamation area are closely related to soil consolidation and engineering construction (Yu et al., 2020; Yuan et al., 2020).

After land reclamation, there is a natural consolidation and compression process, which often varies to some extent due to the different reclamation time and soil type. Previous studies have pointed out that initial consolidation, lasting secondary consolidation of alluvial clay deposits under the dredger fill, and creep within the dredger fill are regarded as the three mechanisms relative to ground subsidence in reclamation zones (Jiang and Lin, 2010; Yu et al., 2020). As described in Section 2.1, the eastern part of Pudong Airport is built on the reclaimed land of Project I and IV, and its foundation consists of both artificial fill materials and natural sediments. The ground of the airport’s second runway was formed by blown sand and backfill in the year of 2001 when Project I ended, whose geological foundation was soft and weak due to the lack of a crust layer (silty clay) (Jiang et al., 2016). Therefore, analysis of the deformation of the second runway, being in operation since 2005, can illustrate the influence of consolidation time and soil type on the subsidence. Jiang and Lin (2010) suggested that the normal secondary consolidation starts gradually three years after the completion of the airport reclamation project. The first monitoring period in this study was from 2007 to 2010, and the ground consolidation settlement was still at the stage of secondary consolidation. So, during this period, the maximum and mean subsidence velocities of the runway were as high as -37.59 mm/a and -16.70 mm/a, respectively. In addition, pumping and pouring water experiment showed it would take about 30 years for the deformation of the reclamation area to be steady and reach the level of micro-subsidence (Gong, 1995). Our monitoring results showed the foundation of the airport’s second runway gradually stabilized over time. Ten years later, the maximum and mean velocities decreased to –9.91 mm/a and -2.31 mm/a, respectively.

Engineering construction is another crucial factor affecting land deformation, which is evident in the subsidence analysis of the seawall. As the main means of resisting storm surge disasters, seawall engineering is an important artificial barrier to ensure urban safety, and the elevation changes of it have a significant impact on flood control decisions. Because the reclaimed land advances to the sea, new seawalls need to be built in some areas. For example, in the Project IV area, a new seawall was constructed in a near-parallel direction 500 m outside the old one (Figure 13). The existence of the new seawall significantly reduced the impact of waves on the old, which led to the slowing of its deformation to a certain extent. Some dated ground fragmentation caused by subsidence was found during the field inspection in the year of 2021 (Figure 13D), which had been repaired a few years ago. As described in Section 3.2, the average subsidence of the corresponding points on the old seawall substantially decreased from -19.74 mm/a to -2.71 mm/a during the two periods of 2007-2010 and 2017-2020. However, if there was large-scale continuous engineering construction around the seawall, it would likely make a great difference to its deformation. This can be reflected in the seawall settlement in the zone of Project III. From 2016 to 2020, the Second Phase Project of Nanhui Dongtan Reclamation (Project V) was carried out in the outer area of Project III (Figures 2D, E), resulting the deformation of seawall in Project III area had not been effectively relieved, and the mean settlement rate of the northern seawall only decreased from -17.91 mm/a (2007-2010) to -16.21 mm/a (2017-2020) (Figure 10).




Figure 13 | Comparison of land subsidence between old and new seawalls in different periods. Land subsidence velocity maps (A, B) are superimposed on Landsat 5 and Landsat 8 images of the area in 2010 and 2020, respectively. (C) shows the field photograph of the seawalls, while (D) displays a ground breakage restoration of the old seawall.





4.3 Significance of remote sensing monitoring of land subsidence for coastal zone’s sustainable development

Storm flooding is a major threat to the safety and sustainability of the low-lying coastal cities (Wang et al., 2018). In the past ten years, the average annual direct economic loss caused by storm surges in Shanghai has reached ¥11.94 million (Bulletin of China Marine Disaster in 2021, http://www.mnr.gov.cn). The double accumulative effect of land subsidence and sea level rise has become a key factor directly related to the risk of inundation, especially in sedimentary coastal lowlands (Nicholls et al., 2021). The contribution of land subsidence may exceed that of absolute sea level rise by a factor of 10 or more (Herrera-García et al., 2021). Hydrological simulation showed that for long-term scenarios, land subsidence is the most important factor for the changes in Shanghai coastal flooding, and it accounts for more flooding than sea level rise and bathymetric change to the year of 2050 (Wang et al., 2018).

In fact, compared with sea level rise, land subsidence, with regional characteristics and closely related to human activities, has relatively larger change rate. In the past 100 years, the maximum cumulative subsidence of Shanghai has reached 2.63 m (Ye et al., 2016), while it is expected that the sea level along Shanghai coast will rise by 70 to 175 mm in the next 30 years (China Sea Level Bulletin of 2021, http://www.mnr.gov.cn). Therefore, it is particularly urgent to monitor and control the land subsidence in Shanghai reclaimed areas. However, the lack of an on-site monitoring network in reclaimed area limits the understanding of the development of its subsidence pattern to a certain extent. Fortunately, the settlement characteristics of ocean-reclaimed lands can be obtained by remote sensing means. In theory, the ground deformation information in any area covered by remote sensing images can be obtained by differential interferometry. In-SAR method, the emerging and potential earth observation technique, can obtain the surface deformation characteristics of monitoring area from the macro level. It could help to find out the history and current situation of land subsidence development in the study area, understand its spatial distribution features and delineate key monitoring areas according to analysis of In-SAR inversion information. Particularly, the current solidification degree of basement can be judged according to the subsidence velocity. For example, in our study, the subsidence rate and settlement area in the offshore were both larger than those in the inland zone in the two different monitoring periods (Figure 6), indicating that the foundation of Shanghai new land area was still in the process of consolidation and has not reached a stable state. In-SAR inversion results showed that the seawall subsidence rates varied in different time periods and regions (Figures 10, 11 and 13), which can provide intuitive information for the arrangement of seawall monitoring points, saving time and labour costs. In addition, the information on the uneven subsidence characteristics of Nanhui New City (Figures 6, 9) is also helpful to urban planning and engineering construction, promoting sustainable development of Shanghai’s new reclamation land.

Human-induced subsidence in reclaimed areas can be reduced with appropriate policy, which would offer substantial and rapid benefits to reduce growth of coastal flood exposure. Considering the advantages of remote sensing inversion methods, the monitoring and control measures for land subsidence in Shanghai new reclaimed land should focus on the following aspects.

	(1) Both traditional and emerging land subsidence monitoring methods should be applied to understand the overall and key subsidence characteristics of the new reclamation area. For example, a practical face-to-point approach can be considered for generalization. Firstly, the spatial distribution features and development trend of the ground subsidence in large-scale and long-term sequence of the reclamation area are obtained using In-SAR technique. Based on this, key monitoring areas are determined, and then a subsidence monitoring network in key areas is established using traditional methods, such as GPS, ground leveling and so on.

	(2) Land subsidence mechanism of Shanghai new reclamation area needs to be further studied. Although the fact is well known that land subsidence of new reclamation area is largely caused by soil consolidation, the evaluation on consolidation degree of soil layers and its influence have rarely been reported (Yu et al., 2021). It is critical to monitor land settlement continuously and to estimate the soil consolidation towards better construction planning for the subsequent coastal engineering. Therefore, in addition to the need for a multi-scale comprehensive analysis for the soil consolidation subsidence mechanism, In-SAR measurements and geotechnical-derived modes are suggested to combine for predicting the forthcoming time evolution of ground subsidence over reclaimed land.

	(3) The laws and regulations on subsidence control in the new reclamation area are supposed to be dynamically adjusted and to be seriously implemented. Though the Regulations for the Prevention of Land Subsidence in Shanghai has come into effect since 2013, and the land subsidence risk level of each district in Shanghai has been determined, the management system of its prevention and control needs to be further improved. For example, the settlement control plan should be refined by subdivision according to subsidence monitoring data and local conditions. At the same time, the formulation of the implementation programme of civil engineering project needs to be based on the scientific evaluation of the impact of land subsidence, which should weigh the short and long-term interests to ensure the sustainable development of the new reclamation area.





4.4 Limitations and future work

The remote sensing inversion results can be compared with previous ones. For example, in the period of 2007-2010, the subsidence area and magnitude of settlement obtained in our research are consistent with the study of Yang et al. (2018) and Zhao et al. (2019). Yet, the reliability of recent subsidence (2017-2020) needs to be further confirmed. In future research, we can try to verify the results with leveling observation data, compare the results of different datasets using the same method, or compare the results of different inversion methods for the same dataset. However, the precision evaluation for PS points proved that the subsidence information is reliable in our study (stated in 3.1), and the inversion results are valuable for understanding the characteristics of land subsidence in Shanghai reclaimed area from a macroscopic and long-term perspective.




5 Conclusions

The spatial-temporal distribution of land subsidence in Shanghai new reclaimed area was presented in the research based on ENVIST ASAR and Sentinel-1A SLC images, respectively. It was proved that PS-InSAR technique can obtain large-scale and long-term land subsidence characteristics of new reclaimed land, reveal the strength trend and spatial distribution of the ground deformation field, and provide guidance for the network monitoring of field measurement methods. Compared with ASAR data, Sentinel-1A, with higher temporal and spatial resolution, can detect more coherent point targets, displaying more comprehensive and detailed deformation field distribution features. Settlement rates showed that there was uneven subsidence in the reclaimed area, gradually slowing down over the 10 years, and the subsidence in offshore was more significant than that in the inland area, serious zones (subsidence rate exceeding -20 mm/a) mainly concentrated around Dishui Lake and the seawall. The subsidence monitoring of the reclamation area in Shanghai will help to provide data and technical support for the development and construction of Shanghai’s coastal zone and the risk assessment of urban inundation.
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Offshore wind farms (OWFs) have developed rapidly in recent years. However, it is difficult to accurately evaluate their impact on marine ecosystems and the marine environment due to the complexity of marine dynamic monitoring and various marine environment evaluation indicators. The spatial distribution of chlorophyll-a (Chl-a) on the surface of seawater is one of basic spatial information of the sea area, which is the key determines the distribution and productivity of offshore biological resources at different spatial levels. Evaluating the impact of OWFs on the spatial distribution of Chl-a is of significance but the research carried out to date has been scarce. In this study, 682 Landsat images were selected from 1990 to 2021 as well as 38 OWFs from around the world as the research areas. The spatial distribution of Chl-a on the sea surface was calculated using the O’Reilly band ratio OC2 algorithm and HU color index (CI) algorithm and the influence of OWFs on the spatial distribution pattern of Chl-a was determined by using the global and local Moran Indexes. Among the 38 wind farms, it was found that: (1) the spatial autocorrelation of Chl-a concentration at 37 wind farms increased after the construction of the wind turbines; (2) the spatial distribution pattern of Chl-a at 28 wind farms showed pronounced aggregation after the construction of the wind turbines. Therefore, it was determined that the construction of OWFs will change the spatial distribution pattern of Chl-a, which may affect the original balance of local marine ecosystems.
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Introduction

The construction of OWFs plays an important role in reducing carbon emissions (Li et al., 2022), so there has been large-scale construction of OWFs in recent years. However, the development of OWFs has impacts on marine organisms (Andersson, 2011; Tricas and Gill, 2011; Coates et al., 2014; Raoux et al., 2017; Oh et al., 2021; Pollock et al., 2021), marine water quality (Kamermans et al., 2018), birds (Furness et al., 2013) and sediments (De Borger et al., 2021). In particular, OWFs adversely affect the marine ecological environment and the behavior, physiology, growth and survival of marine organisms (Methratta and Dardick, 2019; Mavraki et al., 2020). Previous studies have played a very positive role in promoting the sustainable development of OWFs. That is, changes in local marine dynamics at the turbine base may affect the behavior, distribution and physiological state of marine animals (Methratta and Dardick, 2019), and local climate changes may be caused by fan operation. OWFs ultimately affect the marine environment and marine ecosystem by changing the local climate and marine dynamics (Degraer et al., 2020; van Berkel et al., 2020). However, due to the complexity of dynamic marine monitoring and the diversity of marine environment evaluation indicators, it is difficult to accurately evaluate the impact of wind farms on marine ecosystems and the marine environment. Therefore, a more detailed analysis of the impacts of OWFs on representative factors of the marine environment may play an important role in better understanding the impacts of wind farms on marine ecosystems (Fishman and Graedel, 2019; Pryor et al., 2020).

Chlorophyll-a (Chl-a) is one of the main dye in phytoplankton and an indicator of marine primary productivity and an important parameter for evaluating the degree of marine water quality and organic pollution (Zhang et al., 2019; Wang et al., 2020). The spatial distribution pattern of seawater Chl-a is a reflection of basic marine spatial information and determines the distribution status and production capacity of offshore living resources at different spatial levels (Zhang et al., 2019; Callbeck et al., 2021). Therefore, the evaluation of the impact of OWFs on the spatial distribution pattern of Chl-a would be of significance.

Benassai et al. (2014) used MERIS data when determining the correlation between the OWFs in Europe and the sustainability index and found an increasing trend in the concentration of Chl-a in the vicinity of the OWF in the North Sea (Benassai et al., 2014). Floeter et al. (2017) also found that the concentration of Chl-a near the North Sea OWF increased by combining the measured Chl-a with a MODIS image. Additionally, they proposed that the increase in Chl-a concentration near OWFs was probably the result of the upwelling of lower phytoplankton (Floeter et al., 2017). This prior research is helpful to determine the impact of OWFs on marine ecology. However, the Chl-a of OWFs is greatly affected by tidal currents and waves and verification of these findings, for example with high spatial resolution, through numerous studies and considering global OWF distribution areas, is lacking. Therefore, the present study used Landsat data from 1990 to 2021 to calculate the Chl-a concentration of typical OWFs around the world and applied this to determine the impact of OWFs on the spatial distribution of Chl-a on the sea surface.



Data and methods


Data resources

Landsat 5 and Landsat 8 data: From Landsat 5 and Landsat 8 data from the Google Earth Engine (GEE) platform from 1990 to 2021, remote sensing images with cloud cover of less than 5% were selected. These included 423 Landsat 5 images from 1990 to 2012 and 259 Landsat 8 images from 2013 to 2021.

Offshore wind farms (OWF) locations: A global OWF dataset was developed using geospatial technology and advanced mathematical operations on the GEE platform using earth observation Sentinel 1 SAR time-series imagery. It was verified that the extraction accuracy of this data set exceeded 99% (Zhang et al., 2021).



Study area

OWFs in Europe and China were selected as the research object. These OWFs were divided according to their construction date. The OWFs in Europe were denoted WF1–WF36 and those in China were denoted WF37–WF38. The total number of Offshore wind turbines(OWTs) in the OWFs was 4263, accounting for 85.4% of global OWTs (Díaz and Guedes Soares, 2020). The location of the study area is shown in Figure 1.




Figure 1 | Location map of OWFs.





Methods


Calculation of Chl-a

OC2 algorithm and HU color index (CI) algorithm are used in this paper. When Chl-a > 0.3 mg·m–3, the O’Reilly band ratio OC2 algorithm was used, as shown in equation (1) (O’Reilly et al., 2000).



The OC2 algorithm is a fourth-order polynomial relationship between a ratio of Rrs and Chl-a. The terms a0–a4 are derived from the NASA Ocean Color website (https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/) and were a0 = 0.1977, a1 = –1.8117, a2 = 1.9743, a3 = –2.5635 and a4 = –0.7218 in the Landsat sensor.

When 0 mg·m–3< Chl-a ≤ 0.25 mg·m–3, the HU color index (CI) algorithm was used, as shown in equation (2) (Hu et al., 2012).



Here, ChlCI is the concentration of Chl-a calculated by HU color index (CI) algorithm, as shown in equation (3). (Hu, 2011)



The CI value in equation (2) is derived from equation (3). (Hu, 2011) Rrs is the surface reflectance, where λblue, λgreen and λred are the instrument-specific wavelengths closest to 443, 555 and 670 nm, respectively; these correspond to the blue, green and red wavelength bands λblue, λgreen and λred in the Landsat satellite, respectively.

When 0.25 mg·m–3< Chl-a ≤ 0.3mg·m–3, a hybrid algorithm of the two algorithms was used, as shown in equation (4).



Here, α = (ChlCI – 0.25)/(0.05) and β = (0.3 – ChlCI)/(0.05) (Hu et al., 2012). Finally, equation (5) for calculating the Chl-a of the sea surface was obtained.



This refinement was restricted to relatively clear water and the general impact was to reduce artifacts and biases in clear-water chlorophyll retrievals due to residual glint, stray light, atmospheric correction errors, and white or spectrally-linear bias errors in Rrs. In this algorithm, the value range was first determined by the Chl-a concentration calculated by CI algorithm, and then the algorithm was selected to calculate according to different value ranges.

The OC2 and CI algorithms not only have high accuracy, but also can smooth and smooth the transition in different Chl-a ranges(https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/). After that, the algorithm was adopted by multiple studies, and the CI algorithm performed better in low-concentration Chl-a (< 0.25 mg•m-3). Brewin et al. evaluated the inversion precision of Chl-a in the Red Sea using this algorithm, and found that the precision and accuracy of the algorithm in the Red Sea were comparable to those in the global ocean (Brewin et al., 2013). Seegers et al. compared the global oceanic Chl-a data acquired by different algorithms and adopted the in-situ measurement data set of Chl-a for verification, and found that the error between the results of HU algorithm and OC algorithm was the lowest (Seegers et al., 2018). In addition, many studies show that the Chl-a algorithm based on CI in this paper further reduces the instrument noise and the error caused by atmospheric correction (Brewin et al., 2016; Wang and Son, 2016). Therefore, we believe that the Chl-a algorithm used in this paper is reasonable and can obtain accurate results.



Global Moran’s I

The global Moran’s index (I) is a rational number. After variance normalization, its value will be normalized to between –1.0 and 1.0 (Moran, 1950). Values in the [–1,0] interval have a negative spatial correlation and values in the [0,1] interval have a positive spatial correlation. The larger the value, the higher the spatial correlation. Moran’s I is calculated using equation (6).



Here, n is the total number of regional units. yi and yjare random variables that are the attribute values in geographic units i and j; in this study, i and j were the Chl-a concentration values of the geographic unit. y is the average value of the sample attribute values of n spatial units; that is, the average Chl-a concentration in the whole OWF. wijis the weight matrix of geographical units adjacent to each other; that is, the spatial weight value (Anselin, 2019).



Local Moran’s I

The local Moran’s I was used to analyses the impact of OWFs on Chl-a concentration in their region. The calculation of the local Moran’s index passed the significance test (p ≤ 0.05) and output the results, which were divided into four types:high-value (HH) clustering, low-value (LL)clustering and abnormal values (HL) where the high value is mainly surrounded by low value, and abnormal value (LH) where the low value is mainly surrounded by high value (Khosravi et al., 2018). In this study, HH and LL patterns represented spatial aggregates of Chl-a with high and low values at the center, respectively. HL mode represents Chl-a outliers with high values mainly surrounded by low values and the LH mode represented Chl-a outliers with low values mainly surrounded by high values.

The local Moran’s I of region i is calculated using equation (7).



Here, n is the total number of Chl-a pixels in the OWFs’ areas. yi and yj are the attribute values of the ith geographical unit and the jth geographical unit; that is, the concentration of Chl-a. y is the average value of the sample attribute values of n spatial units; that is, the average Chl-a concentration in the whole OWF area. wij is the spatial weight value (Anselin, 1995).

Using the O’Reilly band ratio OC2 algorithm and HU CI algorithm, the Chl-a concentrations of the Landsat 5 and Landsat 8 data from the GEE platform were calculated (https://code.earthengine.google.com/chla). All Landsat data have been atmospheric corrected. These calculated results were exported to the local computer and the global Moran’s I and local Moran’s I were then calculated using ArcGIS10.7.





Results


Spatial autocorrelation of Chl-a in OWFs increased

According to the construction date of the OWFs, the global Moran’s I was divided into pre-construction and post-construction. The mean and standard deviation of the global Moran’s I before and after construction are shown in Figure 2. The average value of the global Moran’s I increased by different degrees after the wind farms are built. The global Moran’s I increased for 97.3% of all OWFs. Compared with before the construction, the global Moran’s I after the construction of the OWFs had a maximum value of 0.665 and a minimum value of 0.003. Therefore, it was concluded that the construction of the OWFs has an impact on the spatial distribution pattern of Chl-a.




Figure 2 | Mean change in global Moran’s I before and after OWF construction.





Aggregation of Chl-a at OWFs

Based on the global Moran’s I, the local Moran’s I results of 38 study areas were compared and analyzed. The number of pixels of high-value clustering (HH) and low-value clustering (LL) in each study area were counted and it was found that the spatial distribution pattern of Chl-a at 73.7% OWFs and the number of HH and LL pixels had increased significantly, as shown in Figure 3. A comparison of the average values of HH and LL before and after OWF construction revealed that the number of HH pixels increased by 90.7% while the number of LL pixels increased by 68.9%. This indicated that HH and LL increased in the spatial distribution pattern of Chl-a concentration and that HH increased more than LL for these OWFs. Therefore, it appeared that the construction of OWFs resulted in significant aggregations of Chl-a.




Figure 3 | Spatial distribution pattern of Chl-a showing obvious aggregation before and after OWF construction.



To determine the spatial aggregation changes of Chl-a before and after OWF construction, the local Moran’s I aggregation pattern of the above OWFs was also compared, some typical OWFs as shown in Figure 4. The aggregation of Chl-a changed significantly after OWF construction compared with that before OWF construction. The distribution of HH and LL pixels before OWF construction was scattered but, after OWF construction, HH and LL pixels were aggregated. This indicated that high and low concentrations of Chl-a accumulated spatially. Therefore, through the above comparative analysis, it was concluded that the construction of OWFs affected the spatial distribution pattern of Chl-a.




Figure 4 | The local Moran’s I aggregation pattern before and after OWF construction.



The local Moran’s I analysis results of the 28 OWFs revealed that there was a higher concentration of Chl-a after OWF construction than before. Not only was there an increase in the number of HH and LL pixels but HH and LL pixels also had more concentrated spatial distribution patterns than before construction. Therefore, it was concluded that OWF construction led to the aggregation of Chl-a.



Areas with no significant aggregation of Chl-a

According to the local Moran’s I results, there were 10 OWFs where Chl-a did not show significant aggregation. Therefore, the same method as used above was used to compare the changes in the local Moran’s I within these OWFs. The results are shown in Figure 5.




Figure 5 | Spatial distribution pattern of Chl-a showing no obvious changes after OWF construction.



The changes in the number of HH and LL pixels had no unified trend and no significant increase in the number of HH and LL pixels was found (Figure 5). There was no obvious change in the spatial distribution pattern of Chl-a before and after OWF construction and even a decrease in the number of HH and LL pixels was observed after the construction of some OWFs, such as WF5. To further explore this phenomenon, spatial HH and LL changes based on the local Moran’s I were compared, some typical OWFs as shown in Figure 6.




Figure 6 | Local Moran’s I with no obvious change areas after OWF construction.



For WF19, WF20, WF21, WF25, WF26, WF27 and WF30, no significant HH or LL Chl-a spatial aggregation after OWF construction was found: the HH and LL picture elements still had decentralized distributions. For WF5, WF7 and WF10, there was greater HH and LL Chl-a spatial aggregation before OWF construction. Even after the construction of WF5, the number of internal HH and LL pixels decreased. This irregular spatial variation of Chl-a concentration indicated that the construction of these OWFs did not cause significant concentrations of HH and LL.

Through the above analysis, the changes in Chl-a concentrations for all OWFs were determined. Across 38 study areas, the spatial distribution pattern of Chl-a concentration at 28 OWFs showed aggregation after the OWF construction, accounting for 73.7% of the total number of OWFs. For the other 10 OWFs, accounting for 26.3% of the total number of OWFs, no significant trends in the spatial distribution patterns of Chl-a concentration were found. Therefore, it was concluded that the construction of OWFs has a certain impact on Chl-a concentration, which is manifest as the aggregation of HH and LL.




Discussion


Reasons for Chl-a aggregation

The global Moran’s I results revealed that the spatial autocorrelation of Chl-a concentration increased after the construction of 37 out of the 38 OWFs. This indicated that the increase in Chl-a spatial autocorrelation was related to OWF construction. The construction of an OWF changed the Chl-a concentration in the region; that is, the phytoplankton in the region was affected. However, the increase in spatial autocorrelation did not mean that the Chl-a concentration had increased or decreased; rather, it was only a reflection of the spatial correlation between concentrations.

The local Moran’s I results revealed that HH and LL Chl-a concentrations occurred. That is, there were both high-concentration Chl-a concentration areas and low-concentration Chl-a concentration areas near the OWFs. It is thought that an increase in Chl-a concentration is due to an increase in the mean photosynthetic active radiation underwater and a decrease in nutrient concentration, resulting in pronounced eutrophication (McQuatters-Gollop et al., 2007; Alvarez-Fernandez and Riegman, 2014). Studies have also shown that the hard substrate of the OWT attracts many benthic organisms, turning the area into their habitat. This in turn causes local changes in phytoplankton—such as algae—in the seawater (Gill et al., 2018; Michaelis et al., 2019; Voet et al., 2022) and changes the spatial distribution pattern of Chl-a in the area. Additionally, the eddy currents generated during the operation of the turbines in the OWFs cause an increase in the turbulence in the upper and middle seawater layers, which leads to the upwelling of nutrients and phytoplankton in the seawater and finally results in significant discontinuous changes in the phytoplankton concentration in the vicinity of the OWFs (Floeter et al., 2015). This effect is also related to the size of the OWTs (Tweddle et al., 2016). The aggregation of HH Chl-a concentrations may be because phytoplankton, such as algae, cover individual OWFs (Pedersen et al.), or due to the increase of phytoplankton upwelling in the thermocline. The reason for LL aggregation is the gathering of fish and shellfish near OWFs. The aggregation of these marine predators, which feed on phytoplankton, results in a decrease in the Chl-a concentration, but this often occurs in a small-scale spatial range (Wilhelmsson and Malm, 2008; Krone et al., 2013). In the present study, the Chl-a concentration in the vicinity of the OWFs did not simply increase or decrease but showed high-value and low-value aggregation in the spatial distribution. Therefore, this effect needs further study.

According to the results of the present study, before and after the construction of the OWFs in 10 regions, there was no identifiable trend in the spatial distribution of Chl-a within the region. Of these OWFs, WF19, WF20, WF21, WF25, WF26 and WF30 are in the southeast of the North Sea in Europe. From the research results on the spatial-temporal evolution trend of Chl-a in the North Atlantic Ocean, it is possible that the evolution trend in offshore Chl-a may be affected by ocean currents and become part of multi-decade changes. As these OWFs are far offshore compared to other OWFs, they are more likely to be affected by the North Atlantic Ocean currents (Queste et al., 2013; Zhang et al., 2018).

In addition, the region with no obvious trend in the spatial distribution in this study coincided with low PH areas in the North Sea, which resulted in a decrease in phytoplankton and a decrease in Chl-a concentration (Artioli et al., 2012). Low Chl-a concentrations combined with significant changes in ocean currents resulting in no significant accumulation of Chl-a in the spatial distribution pattern in the above regions.



Impacts of OWFs on marine ecosystems

The number of OWFs around the world is increasing. To reduce carbon emissions and make efficient use of wind energy, a clean energy source, the global development of offshore wind power technology is rapidly progressing. But the development of offshore wind power will bring certain ecological impacts. In this paper, the marine environment is evaluated by using the Chl-a retrieved from remote sensing images. this method is of great significance to the ecosystem value (Wang et al., 2021), coastal ecological change (Chen et al., 2022), land use monitoring (Chen et al., 2021), and so on.The results of this study revealed that the construction of OWFs caused HH and LL spatial concentrations of Chl-a. This indicated that the OWFs affected the distribution of phytoplankton, with areas of increased phytoplankton biomass aggregation (HH) and areas of decreased phytoplankton biomass aggregation (LL). Because of this aggregation of phytoplankton near OWFs, the feasibility of the co-location of OWFs and aquaculture has been explored via numerous studies. This approach is based on the belief that the co-location of aquaculture with OWFs would consume increased Chl-a concentrations (Pogoda et al., 2011; Jansen et al., 2016; von Thenen et al., 2020) and provide a mutually beneficial solution with positive impacts on the marine ecosystem.




Conclusion

The development of offshore wind energy contributes to goals such as saving energy and reducing carbon emissions. However, as thousands of offshore wind turbines enter the oceans, determining their ecological impact is also important. In this study, changes in the concentration of Chl-a—which is closely related to the marine ecosystem—were selected to determine the impact of the construction of OWFs on the marine ecological environment. Through a comparative analysis of the spatial distribution pattern and spatial autocorrelation of Chl-a before and after the construction of OWFs, it was found that the OWFs resulted in a concentration of the spatial distribution pattern of Chl-a and the co-occurrence of HH and LL concentrations in each OWF area. These results indicated that there were increased and decreased risks relating to the concentration of seawater Chl-a arising from the construction of OWFs.

With the booming development of offshore wind power, not only will many OWTs enter the sea in the future but the decommissioning and dismantling of OWTs will also occur. Minimizing the negative impact of the construction and dismantling of OWTs on the marine ecological environment is of great significance for the sustainable development of offshore wind power. Determining the spatial variation of Chl-a could provide insights into the impacts of the development of offshore wind power in the future and be conducive to designing and formulating a reasonable installation or removal plan to obtain the optimal environmental effect.
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As one of the most sensitive factors in the sea–land interaction zone, the shoreline is significantly influenced by natural processes and anthropogenic activities. Monitoring long-term shoreline changes offers a basis for the integrated management and protection of coastal zones. The spatiotemporal distribution and the utilization types of shorelines had changed a lot, along with the advancement of the socioeconomics of the countries around the South China Sea (SCS) since 1980. However, the changes in shoreline characteristics for a long time around the whole SCS under anthropogenic influence remain uncertain. Using Landsat and high-resolution satellite images, this study monitored the changes in the spatial location and type of shorelines around the SCS from 1980 to 2020. Additionally, the possible reasons for the shoreline changes around the SCS were analyzed. The results showed the following: 1) the length of shorelines around the SCS maintained growth, especially in the 1990s, which increased by 734.8 km, from 28,243.8 km (1990) to 28,978.6 km (2000). 2) The proportion of natural shorelines around the SCS decreased from 92.4% to 73.3% during the past 40 years. Bedrock and mangrove shorelines disappeared most sharply by 34.2% and 21.6%, respectively. The increase of artificial shorelines was mostly driven by the expansion of constructed and aquaculture dikes. 3) The spatial location changes of most artificial shorelines can be attributed to seaward advancement, with an average advancing speed of 7.98 m/year. Of the natural shorelines, 58.4% changed in terms of their location (30.4% advancement and 28.0% retreat). Most natural shorelines around the SCS were threatened by erosion, but the extent of which was largely determined by the shorelines’ own stability, with less influence from the surrounding environment. Artificialization was the most prominent feature of shorelines around the SCS over the past 40 years, which was closely related to the original types of shorelines and the socioeconomic conditions of the area where they are located, and often accompanied by dramatic changes in shoreline morphology and spatial location. In addition, human interventions were not only the dominant factor in shoreline artificialization but also a major driver of natural shoreline protection.
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Introduction

The coastal zone is the most densely populated and contains key infrastructure and a valuable ecosystem, which is affected by both natural processes and anthropogenic activities (Martinez et al., 2007; Temmerman et al., 2013; Mentaschi et al., 2018). The shoreline is naturally dynamic and one of the most sensitive factors in the sea–land interaction zone, shifting over time in response to coastal geomorphological processes and anthropogenic activities (Nguyen et al., 2015). The shoreline is not only seen as the embodiment of coastal ecosystem evolution but also as a significant symbol of coastal zone exploitation activities (Zhang and Hou, 2020; Duan et al., 2021). Shorelines can be considered special natural resources that can be exploited, protected, and provide ecological and economic value (Currin, 2019). With the impact of global climate change such as sea level rise, global warming, weather extremes, and anthropogenic activities including reclamation and nearshore engineering, the utilization type and the spatial location of the shorelines have changed a lot. Thus, monitoring and understanding changes in shorelines are of great importance to their protection and reasonable use, as stated in Sustainable Development Goals (SDGs) 14: “conserve and sustainably use the oceans, seas, and marine resources for sustainable development” (Wright et al., 2017).

Shorelines can be defined as the physical interface of land and water in the idealized situation (Dolan et al., 1980). Due to nearshore hydrodynamic processes (e.g., ocean waves, tides, and currents, among others), it is difficult to obtain the precise location of shorelines on a large scale. Therefore, the shoreline indicator is widely used as a proxy to represent the “true” shoreline location (Boak and Turner, 2005; McAllister et al., 2022). There are many physical features that can be used as shoreline indicators, which include vegetable line, debris line, wet/dry boundaries, high water line (HWL), mean high water line (MHWL), instantaneous high water line (IHWL), and low water line (LWL) (Zhang and Hou, 2020). The MHWL, which can be obtained by correcting the IHWL to eliminate the effect of tides, is widely considered to be a useful shoreline indicator for easy identification in remote sensing images (Zhang and Hou, 2020).

Research on the changes in shorelines was limited by technical constraints; usually focuses on the changes of shorelines along small areas such as bays, estuaries, or cities with similar natural and socioeconomic conditions; and lacks data on the variability of multiple shoreline types over larger spatial and temporal scales (Schwimmer, 2001; Turner et al., 2021). Kuleli et al. found that the coastal Ramsar wetlands of Turkey had been under threat of erosion for many years (1989–2009) using Landsat images and the Digital Shoreline Analysis System (DSAS). Agriculture, damming rivers, sand extraction from beaches, and other anthropogenic activities had caused most of this threat (Kuleli et al., 2011). Based on multi-temporal topographic maps, remote sensing images, and field surveys covering the entire coastal zone of Mainland China, Hou et al. have extracted shoreline data at six stages for 70 years. They found that the scale and speed of shoreline artificialization were dramatic: more than 68% of shorelines expanded toward the sea, with an average rate of 24.3 m/year, while over 22% of shorelines retreated toward the land, with an average rate of −3.27 m/year; only 10% of shorelines remained stable. The physical factors tended to gradually give way to human factors, such as sea reclamation and engineering protection, which have significantly altered the intrinsic evolution processes of the shorelines of China (Hou et al., 2016). Manuela et al. investigated the spatiotemporal shift of shorelines along the Gulf of Cagliari across a time frame of 62 years (1954–2016) and found that these shorelines had undergone great modification as a result of the intense anthropogenic activities impacting the coastal areas (Biondo et al., 2020).

Except for Japan, Netherlands, Singapore, and China, there are a few large-scale reclamation activities in other countries around the world, but the increasing exploitation of the coastal zone, including agriculture and aquaculture development, the manufacturing and maritime industry, and tourism and recreation, as well as natural factors such as extreme weathers, global warming, sea level rise, and the reduction of river sediments, have created more and more problems and threats on the coastal zone (Wu and Hou, 2016). Research studies on shorelines have focused more on the spatial location change of natural shorelines, such as sandy and mangrove shorelines, and relatively little research has been done on the changes in shoreline utilization types and spatial location caused by anthropogenic activities. An understanding of the characteristics of shoreline changes under intense anthropogenic activities and various natural and socioeconomic environments is still lacking, especially on large spatial and temporal scales. Compared with other regions of the world, the socioeconomic development pattern and the diverse natural environments of the countries around the South China Sea (SCS) provide an ideal case to examine the influence of anthropogenic activities on shoreline changes. To fill these gaps, our study intended to establish a shoreline dataset around the SCS for the past 40 years, when the economy of the surrounding countries experienced great development, and explore the characteristic driving factors of these shoreline changes.



Data and methods


Study area

Located at the heart of the Indo-Pacific region, the SCS bridges the Indian and Pacific Oceans and is also a crucial international shipping lane. The SCS is a semi-closed marginal sea located in the tropics, spanning the Northern and the Southern Hemisphere, and is surrounded by the South China Continent, Indochinese Peninsula, and Malay Archipelago. The areas surrounding the SCS are dominated by a tropical climate, with a large amount of precipitation, which created dense rivers with vast deltas and alluvial plains (Sidi et al., 2003; Wit et al., 2015; Beck et al., 2018) (Figure 1). To its north and west, the SCS is bordered by South China and the Indochina Peninsula; to the east and south, it is surrounded by a chain of islands, from Luzon in the north to Borneo in the south. The continent side to the north and west is mainly a mountainous land with a narrow coastal plain, except for deltas of large rivers such as the Zhujiang River, Red River, and Mekong River (Wang and Li, 2009). The island chains in the south and east of the SCS are mostly mountainous and hilly, and the coastal areas are usually full of alluvial or marine deposition plains and swampy wetlands. The main geological features of the study area were established in the Triassic, when the large lithospheric plate of Sinoburmalaya, which had earlier rifted from the Australian part of Gondwanaland, collided with and became attached to South China and Indochina, together named Cathaysia (Spencer et al., 2005). The rich variety of rock types and the winding shorelines have created many open sea-facing shores and dense bays, with diverse hydrodynamic environments (Shusheng et al., 2018).




Figure 1 | Location map of the study area.



The study area has a mix of tropical rainforest climate, tropical monsoon climate, and tropical savanna climate, with significant precipitation and a monthly average temperature of 18°C or higher (Beck et al., 2018). The low-level wind patterns over the SCS are affected by the orographic features of the surrounding land. In winter, the northeast monsoon prevails in the SCS, with an average wind speed of 10–14 m/s in December, while the southwest monsoon prevails in the summer, with an average wind speed of 6–8 m/s in August (Qiao and Gan, 2012). The sea surface circulation pattern in the SCS is a cyclonic gyre in winter and an anticyclone gyre in summer suggested as being the result of the seasonally reversing monsoon winds.

Tidal waves propagate from the Pacific Ocean into the SCS mainly through the Luzon Strait (Phan et al., 2019). Most areas of the SCS are dominated by mixed, mainly diurnal, tides, but the adjacent areas of the Malay Peninsula are semidiurnal and mixed, mainly semidiurnal (Qiao and Gan, 2012). The tidal amplitude in the central areas of the SCS is usually weaker than that of the shallow coastal zone, such as the Gulf of Tonkin, and the Gulf of Thailand, which reach 7 and 4 m, respectively (Wang and Xie, 2012). Due to the bathymetry of the SCS, the tide current in most sea areas is weak, except for the shallow environments such as the Mekong estuary, Gulf of Tonkin, Gulf of Thailand, and the sea around the Malay Peninsula, where the tide current is stronger, up to about 120 cm/s (Qiao and Gan, 2012). According to the direction of the wave, three wave patterns were defined in the SCS: its prevailing wave direction is NE in winter and autumn and then SE and S in summer; the prevailing wave direction in spring is more complicated, with SE in the north and S in the middle and south. The maxima of the climatological monthly significant wave height in the narrow area from the Luzon Strait to Central Vietnam are high, about 2.5–3.0 m, while those in the southern part of the SCS, Gulf of Thailand, and Gulf of Tonkin are only 0–2 m (Zhai et al., 2021).

Regarding the socioeconomic environment, the SCS is surrounded by countries that have undergone rapid economic and social development since 1980, but the countries’ socioeconomic conditions in the region vary greatly (Bong and Premaratne, 2018). Over the past 40 years, the economies of the countries surrounding the SCS have improved significantly, from 5.4% (1980) to 21.3% (2020) of the world’s GDP (Dataset World Bank, 2022). However, the level of socioeconomic development in these countries varied greatly. China is the biggest developing country, and its economic center, the Guangdong–Hong Kong–Macao Greater Bay Area, is part of the SCS and has the longest shorelines around the SCS. Singapore is a developed city-state that has the highest artificial shoreline rate. Cambodia is one of the least developed countries designated by the United Nations before 2021 (Department of Economic and Social Affairs Economic Analysis, 2021). Indonesia has the lowest artificial shoreline rate and the largest mangrove forest in the world, with the longest mangrove shorelines (Hansen et al., 2013).

Therefore, the diverse natural environment and the different socioeconomic backgrounds have combined to create a rich diversity of shoreline types and distinct development patterns around the SCS. However, the continuous changes in the shoreline characteristics around the whole SCS under anthropogenic influence remain unclear.



Data source

Landsat data are widely used in the research and management of coastal zones due to their long time series, medium spatial–temporal resolution, and global coverage (Wulder et al., 2019). The Landsat data used for this study included 102 scenes of Landsat Multispectral Scanner (MSS) images in 1980, 114 scenes of Landsat Thematic Mapper (TM) images in 1990, 108 scenes of Landsat TM images in 2000, 107 scenes of Landsat TM and Enhanced TM-Plus (ETM+) images in 2010, and 631 scenes of Landsat Operational Land Imager (OLI) images in 2020. All these images were downloaded from the United States Geological Survey (USGS) database and Google Earth Engine (GEE) (Gorelick et al., 2017). To improve the accuracy and assess the uncertainty of the spatial locations and types of shorelines, Google Earth Pro, ESRI (Environmental Systems Research Institute), Bing satellite high-resolution images, and other datasets were also used as references.

Changes in the sea level, temperature, precipitation, ocean wave, storm surge, and other natural factors have significant effects on shoreline erosion and accretion. The artificialization of shorelines is driven by anthropogenic activities, which can be observed in the night light (NTL), impervious surface, and population density. The sea level and storm surge data were derived from Ocean Reanalysis System 5 (ORAS5) and the Global Tide and Surge Reanalysis (GTSR) dataset (Hao et al., 2014; Muis et al., 2016). Due to the impact of storm surges on shorelines being mainly achieved through short periods of sea level rise and ocean wave action, the wave energy can be seen as the index, which can evaluate its impact on shorelines (Mentaschi et al., 2017; Mentaschi et al., 2018). The wave energy density was computed through the ocean wave data from ERA5 (Mentaschi et al., 2017; Hersbach et al., 2020). To assess the energy of the ocean wave, the wave energy density (Pw) is expressed as follows:

	

where Te denotes the mean wave period and Hs is the significant height of the combined wind waves and swell (Mentaschi et al., 2017; Mentaschi et al., 2018). In addition, temperature and precipitation were also derived from the ERA5 dataset (1980–2020) (Hersbach et al., 2020).

Impervious surface data were selected from the Global Impervious Surface Area (GISA) dataset for the corresponding or adjacent periods (Huang et al., 2022). NTL data were integrated with the Defense Meteorological Satellite Program’s Operational Line Scan System (DMSP-OLS) and Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) dataset on the GEE platform (Small et al., 2005; Li et al., 2013). In addition, datasets from the Global Population Density Grid Time Series Estimates (1980–2000) and UN WPP-Adjusted Population Density (2000–2020) were used as the population data, which covered the past 40 years (Dataset Center for International Earth Science Information Network - CIESIN - Columbia University, 2017). The index of coastline utilization degree (ICUD) was also used to indicate the intensity of the anthropogenic impacts on shorelines (Wu et al., 2014).



Shoreline extraction

MHWL is an ideal shoreline indicator for monitoring long-term shoreline changes. However, it is complicated to obtain enough long-term tide gauge station data to correct the IHWL in a large area such as the SCS. The revisiting time of the Landsat images is 16 or 18 days, and the tidal period is 12 h for the semidiurnal tide around the SCS (Vousdoukas et al., 2020; Bishop-Taylor et al., 2021). Thus, composite images, which were obtained from cloud-free images and processed on the GEE for every stage to remove the short-term variability in the MHWL location over tidal cycles, were adopted in this study.

The shoreline classification system was established based on the substrate types, spatial morphology, and the utilization of shorelines (Figure 2). According to the degree of perturbation, the shorelines were classified into natural and artificial shorelines. Natural shorelines comprise five subclasses, namely, bedrock, sandy, muddy, biological, and river estuary shorelines. Artificial shorelines were also divided into six subclasses according to their utilization type: aquaculture, constructed, reclamation, salt pan, traffic, and wharf dikes.




Figure 2 | Examples of Landsat and high-resolution satellite images of the different types of shorelines.



Bedrock shorelines are irregular and jagged and are located at the strait of the headland bay coast and rocky coast, and their color depends on the rock type. The location of bedrock shorelines is at the base of the cliff or the inside of the surf zone. Muddy shorelines are relatively straight and have gentle slopes; there are usually some tidal channels on the beach. Muddy shorelines are generally located at the vegetation line. Sandy shorelines are also relatively straight, located at the bay of headland bay coast with beach ridges, and the tone of the sandy beach is bright white or dark, which is affected by the tides. The sandy shoreline location is at the dry/wet line. Biological shorelines are generally distributed on silt flats with weak hydrodynamics and fine substrates, mainly including mangrove and coral reefs. Mangrove shorelines occupy the majority of the biological shorelines around the SCS. Mangrove forests are irregularly shaped and darker than terrestrial vegetation, and the mangrove shoreline location is generally on the landward side of the vegetation patch (Figure 2). According to the utilization, artificial shorelines can be classified into six subclasses, as mentioned above. The width of aquaculture dikes is usually narrow, with water bodies on both sides. Constructed and wharf dikes are both surrounded by large impervious surfaces, with the wharf dikes surrounded by harbor ponds and ships (Figure 2).

Generally, the methods of shoreline extraction can be categorized into three: manual visual interpretation, automatic extraction, and semi-automatic extraction. For automatic and semi-automatic extraction, the shoreline extraction can be treated as edge detection or classification problem, with the characteristics of higher efficiency and lower accuracy compared with manual visual interpretation (Bishop-Taylor et al., 2021). Thus, manual visual interpretation was used, which is the most reliable shoreline extraction method applied to identify shoreline locations and types. According to the degree of shoreline curvature, points with appropriate sparsity, which are on the MHWL image pixel, were considered as shorelines. Then, the length of the shoreline was calculated using ArcGIS with a scale of 1:10,000 under the EPSG:32651 projected coordinate system. Using composite images and the normalized difference water index (NDWI), normalized difference vegetation index (NDVI), and normalized difference built-up index (NDBI) combined with high-resolution images, Open Street Map, Google Street View, geology map, fieldwork reports, and other data, the shorelines in 2020 were first extracted and established corresponding to the interpretation standards on remote sensing images (Rokni et al., 2014; Ke et al., 2015; Guha et al., 2018) (Figure 3). Subsequently, these standards were used to identify the locations and the types of shorelines in the other stages.




Figure 3 | Workflow of the study. GISA, Global Impervious Surface Area; DMSP-OLS, Defense Meteorological Satellite Program’s Operational Line Scan System; NPP-VIIRS, National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite; ORAS5, Ocean Reanalysis System 5; GTSR, Global Tide and Surge Reanalysis; MSS, Multispectral Scanner; TM, Thematic Mapper; ETM+, Enhanced TM-Plus; OLI, Operational Land Imager; MHWL, mean high water line; NDWI, normalized difference water index; NDVI, normalized difference vegetation index; NDBI, normalized difference built-up index; ICUD, index of coastline utilization degree.





Accuracy verification

The uncertainties in the estimation of the shoreline locations can be roughly divided into two types: positional and measurement uncertainties. Positional uncertainties are related to the features and phenomena that reduce the precision and accuracy of the shoreline position, such as seasonal error, tidal fluctuation, and ocean waves (Mondal et al., 2021). On the other hand, the measurement uncertainties are usually related to pixel, geometric, and terrain errors, among others. Most of the factors in the positional uncertainties can be minimized as much as possible by synthesizing multiple images of different seasons and tides. In addition, we focused on long-term shoreline changes and the positional uncertainties due to short-term random factors such as seasonal error, tidal fluctuation, and ocean waves having limited impact on the study. Regarding measurement uncertainties, the original satellite images were from the USGS Level 2 Landsat surface reflectance production in GEE, with the good and consistent effect of geometric correction, terrain correction, and alignment. Thus, the accuracy of a shoreline location is mainly related to the pixel error, which depends on the spatial resolution of remote sensing images. One hundred sample points were generated using a random sampling method for shorelines of each stage, these points were imported into Google Earth Pro, and then high-resolution satellite images of the corresponding time were selected to obtain the accurate location of the verification points on the shoreline. The uncertainty of shoreline location can be measured using the distance between the sample points and the corresponding validation points (Zhang et al., 2021). The whole average error of shoreline location was 21.8 m and the standard deviation (SD) was 20.2 m, both less than the theoretical maximum permissible error (TMPE) (Zhang et al., 2021). In addition, the average error and SD of each stage were both less than those of the TMPE. The accuracy of shoreline type was also assessed through the same sample points and the corresponding validation points; the confusion matrix showed that the overall accuracy was 89.6% and the kappa coefficient was 0.871. Therefore, the accuracies of shoreline type and location are acceptable for this study.

Regarding the applicability of the auxiliary dataset, sea level data were from ORAS5, which are reconstructed and analyzed data generated by the model to overcome the deficiency of satellite altimetry data in time (1993 to the present) and the uneven distribution of tide gauge stations in the SCS with different data (Hao et al., 2014). By comparing these with the data from the tide gauge stations in Manila and other places, the ORAS5 data were found acceptable to reflect the decadal variability of the sea level (Hao et al., 2018; Han et al., 2019). Most of root mean square error of GTSR sea level across the validation sites in the SCS was lower than 0.2 m. Moreover, the correlation coefficient between GTSR sea level and the observed daily maximum sea level was higher than 0.8 (Muis et al., 2016). Compared to the observational data, the wave parameters, such as Hs and Te, provided by ERA5 showed high accuracy in the SCS, and the correlation coefficient of Hs was in the range of 0.87–0.93 (Liu et al., 2022). Regarding temperature and precipitation, ERA5 is also a widely used climate reanalysis dataset with 0.1 degree spatial resolution, spanning the period from 1950 to the present in the study of Southeast Asia and southern China. It can capture the annual patterns of observed precipitation in southern China well, with correlation coefficient values ranging from 0.796 to 0.945 (Jiao et al., 2021). The correlation coefficient between the ERA5 monthly temperature and weather station data ranged from 0.98 to 0.99 (Li, 2020; Hamed et al., 2022; Zou et al., 2022).



Digital shoreline analysis system

The DSAS is a software extension developed by USGS and works with ArcGIS (Himmelstoss et al., 2018). DSAS can generate transects from the baseline at regular intervals and ensures that each transect has intersected points with the shoreline vector. The distance from the baseline to the time series of shoreline data along the transect was used to calculate the rate-of-change statistic. The regular interval was 300 m and generated 91,510 transects in the study. The intersect multipoint, which was from the same transect, can obtain attributes from the corresponding shoreline data and represent the change of shorelines. Thus, the shoreline utilization type can be denoted as a transfer matrix disregarding changes in shoreline location.



Influencing factors

The decadal net shoreline movement (NSM) can be calculated by measuring the difference between the length from baseline to shorelines of adjacent times along the transect. On the other hand, the nearest natural factor data point to the transect is considered the natural factor that influences the shoreline at the transect location. Similar to the NSM, the difference between the natural factors of adjacent times can be calculated as the decadal net natural factor change (NNFC). Thus, there were four sets of each transect consisting of the NSM and NNFC (ocean wave, sea surface height, storm surge, temperature, and precipitation), which were calculated from the five-stage shoreline and natural factor datasets. All of the above datasets were first z-standardized, and then the bivariate correlations between all NSMs and each NNFC of adjacent times were calculated; finally, the overall correlation between NSM and NNFC was evaluated using multiple correlation analysis.

The density of NTL, the GISA, and the population were calculated by dividing the total values of NTL, GISA, and population by the area of each province. Corresponding to shoreline data, there were five sets of each province consisting of the ICUD; the percentages of natural shorelines, constructed dikes, and wharf dikes; the density of NTL, GISA, and population. All of these data were also z-standardized, and then the bivariate correlations between the index of shorelines and the anthropogenic activities were calculated.




Results


The length changes of shorelines

The shoreline around the SCS has increased by nearly 1,000 km, from 28,168.9 (1980) to 29,164.4 km (2020), which maintained continuous growth during the past 40 years, with the most rapid growth being in the 1990s (Table 1).


Table 1 | Length of shorelines by countries (in kilometers).



The changes of shorelines in most countries were consistent with the trend of the whole SCS, especially in China and Singapore (Table 1). These two countries had the most significant growth in shorelines. China, attributed with the longest shoreline around the SCS, contributed 71.3% (approx. 710.0 km) of the overall SCS shoreline growth. Singapore had the highest percentage of shoreline growth among all countries around the SCS, about 60% (approx. 122.0 km). Similar to Singapore, another country that had more than 10% (approx. 23.6 km) shoreline growth is Brunei, which had shorter shorelines of only about 200 km. The increases of shorelines in Thailand and Vietnam were 116.8 and 87.1 km, respectively, accounting for 11.7% and 8.8% of the overall SCS shoreline growth. Moreover, Cambodia was the only country that has seen a decrease in shorelines. In addition, changes in the shoreline length in the remaining countries (Malaysia, Indonesia, and the Philippines) were relatively low, less than 1%.

The ICUD of the provinces around the SCS showed a continuous growth trend, with that of Guangdong, Bangkok, Singapore, Kuala Lumpur, and Manila particularly obvious, indicating that the anthropogenic activities and exploitation intensity of the shorelines around the SCS had been increasing stage by stage (Figure 4).




Figure 4 | Index of coastline utilization degree (ICUD) of provinces and the types of shoreline evolution around the South China Sea (SCS).



In Singapore, the length of the shorelines increased by 122.1 km, from 205.8 (1980) to 327.9 km (2020), which is almost 60% of the total shorelines, and the period of the most rapid shoreline growth has been the last 10 years (Table 1). This growth has been achieved generally through nearshore engineering and reclamation (Figure 5A). The length of Brunei’s shorelines also increased by 12.0%, from 197.3 (1980) to 221.0 km (2020), with nearshore engineering and wharf embankment also playing a significant role in the shoreline growth (Figure 5B).




Figure 5 | Anthropogenic activities on different shorelines.  Nearshore engineering, wharf embankment and reclamation in Singapore, Brunei (A, B). Growth of the mangrove forest in Cambodia (C). Reclamation engineering connecting nearshore islands to the mainland in Guangdong. (D, E) Growth of mangrove forest in Guangxi (F). Conversion of aquaculture dikes into constructed dikes (G).



In China, the length of shorelines increased by 11% (approx. 710.0 km) over the past 40 years, with the major growth occurring in the 1990s and during the last decade (Table 1). Guangdong increased by 417.2 km, from 3,337.3 (1980) to 3,754.5 km (2020), accounting for approximately 58% of the SCS shoreline growth. The provinces of Guangxi and Hainan also increased by about 141 km, but the shoreline lengths of these provinces were 1,307.3 and 1,597.3 km, respectively (Figure 4). Changes in the shoreline length in Hong Kong and Macao had relatively small impacts on the whole SCS shorelines due to them being shorter.

The length of Cambodia’s shorelines decreased by nearly 120 km during the past 40 years, and the highest decrease occurred in the Peam Krasaop Wildlife Sanctuary, which is a protected area located in southwestern Cambodia. Despite the impact of anthropogenic activities on the shoreline of this sanctuary, the mangrove forests were still relatively well protected, with little increase toward the sea since 1993, when this sanctuary was established. This growth of the mangrove forest led to the truncation of the mangrove shorelines, resulting in a reduction in shoreline length (Figure 5C).



The utilization types of shorelines

Artificialization was the most prominent feature of the shorelines around the SCS over the past 40 years. The natural shorelines declined from 26,026.0 (1980) to 21,377.0 km (2020), with a percentage decrease from 92.4% to 73.3%. At the same time, artificial shorelines showed a more than twofold increase from 2,143.1 (1980) to 7,787.3 km (2020) (Figure 6). The increase of artificial shorelines was due not only to the artificialization of natural shorelines but also to nearshore engineering and reclamation (Figures 5B, D). The proportions of artificial shorelines varied greatly from country to country, from city-states like Singapore to countries with long and diverse shorelines like China. In 2020, the highest shoreline artificiality rate of 77.6% was in Singapore, while the lowest, which was 9.6%, was in Indonesia.




Figure 6 | Sankey map and lengths of the different shorelines around the South China Sea (SCS).



In China, natural shorelines decreased from 5,490.9 (1980) to 3,259.4 km (2020), with a percentage decline from 85.7% to 45.8% accordingly. Among natural shorelines, bedrock and mangrove shorelines declined most significantly, with their lengths declining by 49.3% and 65.7%, respectively. For artificial shorelines, the growth of aquaculture dikes occurred mainly before 2000, while the growth rate of constructed dikes remained largely stable, with only a slight increase in the last decade. Regarding the source of new artificial shorelines, aquaculture dikes generally developed from mangrove shorelines and some muddy shorelines, and more than 10% of mangrove shorelines were reclaimed for aquaculture dikes every decade. Unlike aquaculture dikes, which usually developed from natural shorelines, the newly constructed dikes developed from a variety of sources, including natural shorelines such as sandy and bedrock shorelines, as well as from conversions of aquaculture and reclamation dikes, with the proportions of shorelines developed from natural shorelines gradually decreasing from 84.0% (1980) to 44.2% in the last decade. In addition, the growth of the wharf dikes was significant, from 13.5 (1980) to 388.1 km (2020), even though it represented only 5.5% of the total shorelines in 2020. The main growth period of wharf dikes was before 2010, with an average annual growth rate of more than 10%.

The percentage of Vietnamese natural shorelines declined from 91.4% (1980) to 76.0% (2020), reducing the length of natural shorelines by 623.4 km; on the other hand, artificial shorelines increased from 382.0 to 1,092.5 km. According to shoreline type, Vietnamese natural shorelines can be divided into three parts: mangrove and muddy shorelines along the Gulf of Tonkin, bedrock and sandy shorelines in the central part, and mangrove and muddy shorelines in the Mekong River Delta (Figure 4). Vietnamese artificial shorelines were also dominated by aquaculture and constructed dikes, which occupied 11.1% and 9.7% of the total shorelines in 2020, respectively. Moreover, they were mainly distributed in economically developed areas such as Hanoi and Ho Chi Minh City. All types of natural shorelines in Vietnam declined to varying degrees, especially the mangrove shorelines which decreased from 1,456.5 (1980) to 1,129.6 km (2020), accounting for 24.9% of the total shorelines in 2020, down from 32.7% (1980). The growth of artificial shorelines was dominated by constructed and aquaculture dikes, which increased by nearly eight times and 54.3% in four decades, respectively. The growth of aquaculture dikes occurred mainly before 2000, especially in the 1980s, with an increase of 73.9%. More than 60% of the new aquaculture dikes developed from mangrove shorelines, with some from muddy shorelines.

Compared with Vietnam, the percentage of artificial shorelines in Thailand was lower, at 21.6%. Most of the natural shorelines were sandy shorelines, with small proportions of bedrock and mangrove shorelines. The sandy and bedrock shorelines were generally located in the east of the Malay Peninsula, while most of the mangrove shorelines were in the north of Bangkok Bay. The artificial shorelines were mostly aquaculture and constructed dikes located in the eastern and northern parts of Bangkok Bay (Figure 4). The proportion of natural shorelines decreased from 93.9% (1980) to 78.4% (2020), chiefly due to the bedrock and mangrove shorelines being developed into aquaculture and constructed dikes. The proportion of artificial shorelines in Cambodia was also low, only 17.4% in 2020, with the mangrove shorelines accounting for more than 40% of the overall shorelines, generally in the bays and estuaries; the artificial shorelines were aquaculture and constructed dikes, which were concentrated near Sihanoukville (Figure 4).

Singapore had the highest proportion of artificial shorelines around the SCS, with only a small amount of sandy and bedrock shorelines, which was in conformity with its role in world maritime logistics. Most of the bedrock and mangrove shorelines developed as constructed and wharf dikes in the 1980s. Apart from the development of natural shorelines, Singapore’s artificial shorelines developed from reclamation and outlying island engineering (Figure 5A). The growth of constructed dikes remained relatively stable at a rate of more than 50%, except in the 2000s. The growth of wharf dikes, on the other hand, mainly occurred in the 1980s and had been growing modestly since then. As the country with the shortest shoreline around the SCS, Brunei’s shorelines were relatively homogeneous, consisting of over 58.1% sandy shorelines, 23.5% mangrove shorelines, and 10.6% constructed dikes. Sandy and mangrove shorelines were mainly along the western shorelines facing the open sea and the Brunei Bay, respectively, and the constructed dikes were in the capital city of Bandar Seri Begawan (Figure 4).

Indonesia was second only to China in terms of shoreline length around the SCS, with the lowest percentage (9.6%) of artificial shorelines in 2020, which were chiefly aquaculture, reclamation, and constructed dikes. Indonesia is located in the tropics, and most of its shorelines have weak hydrodynamic environments, with extensive muddy and mangrove shorelines accounting for 39.1% and 27.5%, respectively, and only a number of sandy shorelines (17.9%) distributed in the northern part of Sumatra Island, Bangka Island, and Belitung Island (Figure 4). The sandy and bedrock shorelines in Indonesia had not changed much in the past 40 years. On the other hand, the muddy and mangrove shorelines had been widely developed as artificial shorelines. The development of the aquaculture dikes occurred mainly between 1990 and 2010, from 33.1 (1990) to 209.7 km (2010), with their proportion increasing from 0.6% to 3.6%. Unlike in other countries, most of the new aquaculture dikes in Indonesia developed from sandy shorelines, with muddy and mangrove shorelines accounting for only about 23%. The increase in constructed dikes (from 97.1 to 165.6 km) occurred between 2000 and 2010, generally from the development of muddy and mangrove shorelines around the city. In addition, the percentage of reclamation dikes also increased after 2000, accounting for more than 3.0% (approx. 176.1 km) in 2020, with more than 70% of the new reclamation dikes reclaimed from muddy shorelines (Figure 4).

Malaysia’s artificial shorelines had grown from 210.8 (1980) to 753.8 km (2020), increasing from 5% to 17.8% of the overall shorelines. The natural shorelines consisted of sandy and mangrove shorelines, with the sandy shorelines chiefly located in the eastern part of the Malay Peninsula and the part of Kalimantan Island facing the open ocean and the mangrove shorelines mostly located in the western part of the Malay Peninsula and around the bays in Kalimantan Island (Figure 4). The artificial shorelines were mainly constructed dikes, located in the western and southern parts of the Malay Peninsula, which had gradually increased from 144.3 (1980) to 450.3 km (2020), with the growth rate being over 40% per decade until 2010. The new constructed dikes were generally developed from the natural shorelines, with muddy and sandy shorelines being the mainstay.



The location change of shorelines

According to the whole average error of shoreline location and the SD, stable shorelines can be defined as the shoreline with NSM less than ±42 m. Naturally, advancing shorelines have NSM greater than 42 m, and the NSM of retreating shorelines was less than −42 m. More than 40% (approx. 12,000 km) of shorelines had been stable during the last 40 years, with an average NSM of 0.52 m. About 28% (approx. 6,800 km) of the shorelines showed a landward retreat, with an average NSM of −175.6 m. The distribution of the retreating shorelines was spatially homogeneous, and most were sandy and muddy shorelines. About 30% (approx. 6,800 km) of the shorelines showed a seaward advance, with the average NSM being 633.5 m. Most of the advancing shorelines were concentrated in areas with high anthropogenic activities, such as the Greater Bay Area, the Gulf of Tonkin, Bangkok Bay, Singapore, and Manila. In terms of shoreline type, most of the advancing shorelines were artificial shorelines such as constructed, aquaculture, and wharf dikes.

The overall trend of the SCS shorelines was seaward, showing an average end point rate (EPR) of 4.4 m/year, with 2% of the EPRs being less than −10 m/year, 26.5% between −10 and −1 m/year, 37.6% between −1 and 1 m/year, 20.2% between 1 and 5 m/year, 5.7% between 5 and 10 m/year, and 10% of the EPRs being greater than 10 m/year. There were significant differences in the EPRs between the different shoreline transformation types (p< 0.05). The EPRs of shorelines larger than 10 m/year were generally located in the Greater Bay Area, Gulf of Tonkin, Singapore, Manila, and other cities (Figure 7). The most rapid advance of shorelines to the sea occurred in Guangdong Province in the 1980s, which was due to reclamation engineering connecting nearshore islands to the mainland (Figure 5E). The EPRs of the sandy, bedrock, and muddy shorelines were −2.31, 0.43, and −1.07 m/year between 1980 and 2020, respectively.




Figure 7 | Net shoreline movement (NSM) and end point rate (EPR) map of the South China Sea (SCS) between 1980 and 2020.



In the 1980s, most of the sandy shorelines retreated, with an EPR of −2.08 m/year. Of the mangrove shorelines, 84.4% retained their type, but their average EPR was 11.59 m/year seaward, indicating that although the shoreline type did not change, the survival space of mangrove forests was more severely compressed. Muddy shorelines also had a minor retreat, with an EPR of −1.2 m/year. In addition, the new artificial shorelines were mainly aquaculture and constructed dikes, of which the aquaculture dikes developed from mangrove, muddy, and bedrock shorelines, with EPRs of 112.31, 11.17, and 10.61 m/year, respectively. The new constructed dikes generally developed from sandy and bedrock shorelines. In the process of developing into constructed dikes, sandy shorelines retreated with an EPR of −2.48 m/year, but bedrock shorelines had a greater seaward EPR of 8.24 m/year due to their stability and development pattern (Figure 8).




Figure 8 | Transfer matrix (in kilometers) of shoreline types with end point rates (EPRs) around the South China Sea (SCS).



In the 1990s, the sandy, bedrock, and muddy shorelines remained relatively stable, with EPRs of 0.73, 0.17, and 1.12 m/year, respectively, while the mangrove shorelines were still retreating, with an EPR of 5.66 m/year, meaning that its survival space continued to be compressed (Figure 8). The new artificial shorelines were still mainly aquaculture and constructed dikes, with most constructed dikes from the development of sandy and bedrock shorelines, with EPRs of 3.55 and 15.57 m/year, respectively, while the aquaculture dikes developed from various sources: mangrove (403.2 km), sandy (150.0 km), muddy (144.6 km), and bedrock (120.0 km) shorelines.

In the 2000s, the spatial location of the natural shorelines remained largely unchanged, and the EPR of the mangrove shorelines was 1.6 m/year, which was still being exploited, but at a significantly constrained rate (Figure 8). The types of the new artificial shorelines still included aquaculture and constructed dikes, but the increase in constructed dikes (767.1 km) exceeded that of aquaculture dikes (680.4 km) for the first time. Similar to that in the previous two decades, the increase of aquaculture dikes was also from the development of natural shorelines, mainly mangrove, sandy, and bedrock shorelines, with EPRs of 15.3, −5.96, and 11.65 m/year, respectively. Of the newly constructed dikes, 75.8% developed from sandy and bedrock shorelines. At the same time, 24.2% of the newly constructed dikes were converted from aquaculture, reclamation dikes, and other artificial shorelines. In the process of developing into constructed dikes, the change in shoreline location due to the exploitation of sandy shorelines was not significant, with an EPR of 0.97 m/year, that of bedrock shorelines was 8.68 m/year, and the EPR of the conversion from aquaculture dikes was 1.1 m/year.

The spatial locations of the sandy, bedrock, and muddy shorelines also did not change much during the last decades, and their EPRs were −0.65, 1.12, and −0.86 m/year, respectively, while the EPR of mangrove shorelines reached 5.9 m/year, highlighting the continuous pressure on mangrove survival (Figure 8). Among the new artificial shorelines, the proportion of constructed dikes (1,087.5 km) again exceeded that of aquaculture dikes (762.6 km), with EPRs of 7.51 and 1.52 m/year, respectively.



Correlation analysis

The correlation coefficients between the NSM and NNFC of ocean wave density, precipitation, temperature, sea surface height, and sea surface height due to surge were 0.008, 0.021, 0.011, 0.022, and 0.048, respectively. The multiple correlation coefficient between the NSM and all NNFC was only 0.063. In contrast to natural factors, there were some higher correlation coefficients between the indexes of shoreline types and human activities, especially the ICUD and the percentage of constructed dikes (Table 2).


Table 2 | Correlation coefficients between the index of shorelines and anthropogenic activities (p< 0.01).






Discussion


Change of shoreline type


Natural shorelines

Over the past 40 years, 34.3% (about 9,800 km) of the SCS shoreline types had changed, with nearly 90% of the changes occurring in natural shorelines. Most of the changes in natural shorelines had been dominated by anthropogenic activities, with different development approaches and strategies for different natural shorelines. More than half of the developed sandy shorelines were used as constructed dikes and 31.0% as aquaculture dikes. Bedrock shorelines developed in a similar manner to sandy shorelines, with most of them also developed as constructed dikes and one-third as aquaculture dikes. The development of mangrove shorelines was covered by aquaculture, constructed, and reclamation dikes, with more than 61.4% of the exploited mangrove shorelines being aquaculture dikes and 24.7% as constructed dikes.

Except for the development of artificial shorelines, the proportion of unchanged natural shoreline types was over 82.3%. Most of the shorelines with changing types were located in areas of high-intensity anthropogenic activity, such as the Greater Bay Area, the Gulf of Tonkin, Ho Chi Minh City, Bangkok, Singapore, Kuala Lumpur, and Manila (Figure 4). However, the areas where natural factors changed significantly differed; for example, wave energy changed significantly in Central Vietnam, sea level changed significantly in the north and south of the SCS, and the precipitation and temperature changes primarily occurred in northeast Sumatra and Central Kalimantan (Figure 9). This means that, in the long process of topographic and geomorphological evolution, most shorelines have reached a dynamic balance with the surrounding environment and kept their types relatively unchanged at decadal scales (Stive et al., 2002). Thus, the spatial mismatch between areas with changing shoreline types and that of natural factors indicates that most natural shorelines can maintain their types and were less affected by the change in sea level, ocean waves, precipitation, and temperature without the influence of anthropogenic activities.




Figure 9 | Evolution of natural factors around the South China Sea (SCS).



Therefore, since natural shorelines remain relatively stable without human influence, the most prominent characteristic of the shoreline types around the SCS is artificialization. Different natural shoreline types were subjected to different development patterns, generally depending on the original shoreline types, socioeconomic environment, the policies of the regions, and other factors. In addition, the impact of anthropogenic activity was not only on the exploitation of natural shorelines but also on the protection of natural shorelines through nearshore engineering and protected areas (Jia et al., 2018; Jianing et al., 2019; Veettil et al., 2020; Latif and Yong, 2021). For instance, the Beilunhe Mangrove Natural Reserve was first established as a county mangrove reserve in 1985, then became a provincial marine nature reserve in 1990, and finally a national reserve in 1999. With the improvement in reserve level, the area and shoreline length of the mangrove forest maintained sustained growth (Chen et al., 2009) (Figure 5F).



Artificial shorelines

For artificial shorelines, the development pattern varied over time. Taking the whole SCS as an example, the development of the aquaculture dikes was mainly before 2010, while that of the constructed dikes was growing continuously, and the significant increase in wharf dikes occurred after 1990. Additionally, in the 1980s, there was little conversion between the different utilization types of artificial shorelines, accounting for only about 2%, while in the 2010s, the utilization type of the conversion of artificial shorelines was about 14.7%, generally from aquaculture dikes to constructed dikes and some wharf dikes.

For aquaculture dikes, the production and area of coastal aquaculture ponds in Southeast Asia maintained a sustained growth from 1990 to 2015 with two expansion patterns: outlying expansion from 1990 to 2000 and infilling after 2000. Infilling meant a lower increase in length for the same area, which was consistent with the major growth periods of the length of aquaculture dikes (Luo et al., 2022). The development priorities of different countries also varied. The peak development of aquaculture dikes in most countries around the SCS was consistent with that of the whole SCS, all before 2010, but the development process of the aquaculture dikes in Cambodia was significantly behind that of the whole SCS, peaking around 2010, with the rapid increase of brackish water and marine aquaculture production (Zhe et al., 2020; Dataset Statistics Team of the FAO Fisheries and Aquaculture Division, 2021). Regarding the constructed and wharf dikes, their expansions were closely related to the economic and industrial structure of each country. With the exception of countries like Singapore and Brunei, which have short shorelines and extremely high urbanization rates in the 1980s, urbanization and constructed dikes continued to grow in most countries during the four decades (Dataset World Bank, 2022). The maritime logistics in China and the Southeast Asian countries saw rapid growth after 1990, which coincided with the expansion of shipping infrastructure such as wharves and ports (Salim et al., 2017; Dataset UNCTADstat, 2020). For example, the Zhujiang River Estuary had been one of the most important economic engines around the SCS since the Chinese reform and opening up in 1978, with dramatic changes on the shoreline driven by anthropogenic activities (Ai et al., 2019) (Figure 5E). In contrast to China, where the percentage of constructed dikes was typically more than three times that of wharf dikes, Singapore’s constructed dikes were far fewer than wharf dikes, revealing the very different industrial structures and shoreline development patterns in these two regions (Glaser et al., 1991; Lai et al., 2015).

Regarding the source of new artificial shorelines, the ratio of development from natural shorelines to converted from other artificial shorelines continued to decrease. The ratios around the SCS were 9.3 (1980) and 1.8 (2020), and the ratios in China, Philippines, Vietnam, and Singapore were 1.4, 1.6, 1.5, and 0.1 in 2020, respectively, lower than that of the whole SCS in both time points. This means that the shoreline development in these countries had shifted from the increment stage to both inventory and increment stages, while other countries were still focused on developing natural shorelines.

Therefore, the development priorities of countries in different periods were consistent with their socioeconomic states at the corresponding time, and these factors not only influenced the exploitation of natural shorelines but also had a significant impact on the transformation between artificial shorelines of different utilization types.




The change of shoreline location


Natural processes

The most seaward advance of the SCS shorelines was distributed in China, northern Vietnam, Singapore, and other areas where human impact was intense, while the landward retreat was mainly spatially homogeneous and most were sandy and muddy shorelines (Luijendijk et al., 2018) (Figure 7). The change in spatial location with utilization type transformation was significant compared with that of the shorelines that maintained their types (Figures 7 and 8). The EPRs of sandy, bedrock, and muddy shorelines were −2.31, 0.43, and −1.07 m/year, respectively, while the average EPRs on the artificialization process of aquaculture, constructed, and wharf dikes were 26.3, 27.8, and 34.0 m/year, respectively.

The geological structures and the topography of coastal zones both determine the shoreline type, stability, and evolution; climate and the ocean environment also have a significant influence (Sérgio et al., 2000; Zhang et al., 2021). Bedrock shorelines, which are generally located at the base of bluff or cape of a headland bay, are more stable than other natural shorelines, which are usually distributed in bays, flatlands, and other environments with weak hydrodynamics (Zhang et al., 2021). Compared with bedrock shorelines, the sandy, mangrove, and muddy shorelines are more sensitive and vulnerable to sea level rise and storm surges, and mangrove shorelines are also affected by meteorological variables (Luijendijk et al., 2018; Sippo et al., 2018; Zhang et al., 2021). Thus, a lot of natural factors can influence the location of shorelines, such as the sea level, storm surges, and sediment supply (Le Cozannet et al., 2014; Spencer et al., 2015; Luijendijk et al., 2018; Sippo et al., 2018; Besset et al., 2019; Vousdoukas et al., 2020). Mangrove shorelines are affected not only by these factors but also by the temperature and precipitation, which are important for mangrove forests (Adame and Lovelock, 2011).

The wave energy density around the SCS has not changed a lot during the past 40 years, but showing a significant increase in Central Vietnam (Figure 9). There had been a general rise of sea level in the SCS, but this rise had been largely uniform and showed little relation to the location change of shorelines (Figure 9). In addition, the correlation coefficient between the NSM and NNFC was lower than 0.1. In general, bedrock shorelines have the strongest hydrodynamic environment, followed by sandy shorelines, with the muddy and mangrove shorelines having the weakest. The weaker stability of sandy shorelines and the relatively stronger hydrodynamic environment together created a higher retreat rate (−2.31 m/year), the weaker hydrodynamic environment of muddy shorelines created a lower retreat rate (−1.07 m/year), and bedrock shorelines faced the strongest hydrodynamic environment, with the highest stability, causing them to have the lowest retreat rate (0.43 m/year). In addition, temperature and precipitation were also used to assess the impact on natural shorelines, especially mangrove shorelines, which indicates that temperature and precipitation did not have a significant correlation with shoreline location change (Figures 9D, E).

Therefore, there was no significant correlation between the change in shoreline location and natural factors. Both the bivariate and multiple correlation coefficients between the NSM and NNFC were less than 0.1. This means that not only was the influence of single natural factors on shoreline location change not significant but also that the influence of multiple factors together was relatively small. The change in spatial location of natural shorelines, which maintained their types, was chiefly determined by their own stability and less affected by the surrounding ocean environment.



Anthropogenic activities

Artificialization, which was the most obvious feature of shorelines around the SCS, was not only a change in the type but also a corresponding change in spatial location and morphology. In terms of the EPRs corresponding to the transformation between the different shoreline types, wharf dikes showed the highest, up to 34.0 m/year, which was closely related to the fact that they were mainly composed of breakwaters, wharves, and other buildings that were deeper into the sea (Figure 5A). Constructed dikes had the second highest EPR (27.8 m/year), usually composed of coastal residential areas, factories, and other buildings, which also appeared to be more advanced into the sea during the development process, especially in economically developed areas such as the Greater Bay Area and Singapore (Figures 5A, E). In the process of developing natural shorelines into aquaculture dikes, the shoreline also appeared to have a higher seaward advancement (26.3 m/year), which was related to the manner of coastal aquaculture development, generally by filling out cofferdams into the sea to form ponds for aquaculture (Ottinger et al., 2022). In addition, the conversion of utilization type between artificial shorelines was often accompanied by a seaward advance, with only a smaller retreat in the conversion of aquaculture dikes into constructed dikes (Figure 5G).

The change of shorelines by anthropogenic activities was in accordance with the regional economic development level. As the socioeconomic level of countries continued to increase, the exploitation of natural shorelines had been intensified, usually with more seaward advance. Not only the level of economic development but also the industrial structure had a significant influence on the types of shoreline utilization. Singapore’s tertiary industries, mainly shipping and service industries, had jointly created its shoreline types, which were mainly wharf and constructed dikes, corresponding to a huge seaward advance (Cullinane et al., 2006). In contrast, the aquaculture-based industrial structure of countries such as Cambodia and Malaysia has led to a relatively small seaward advance for their aquaculture dikes (Joffre et al., 2021; Kurniawan et al., 2021). There were some significant correlations between the ICUD of provinces, the percentage of natural shorelines, constructed and wharf dikes, and the index of anthropogenic activities, which demonstrated the close relationship between shoreline development and the socioeconomic environment (Table 2). The correlation coefficients between the natural shorelines and the socioeconomic index were all less than zero, indicating that anthropogenic activities have negative effects on natural shorelines.

Therefore, the distinct correlation between shorelines and natural factors and anthropogenic activities showed that the influence of natural factors on shorelines was relatively small, and natural processes such as sea level rise and ocean waves contributed to the retreat of natural shorelines, with different EPRs due to the varied stability and hydrodynamic environments of the different shorelines The influence of anthropogenic activities on shoreline utilization types was significant, and changes in the utilization type often corresponded to drastic changes in the shoreline’s spatial location.

Compared with regions that had similar socioeconomic conditions to the study area, the most significant feature of shoreline changes was the artificialization of the surrounding areas of the Bohai Sea, China, especially since the 1990s. Like the SCS, the total length of the shorelines around the Bohai Sea had increased, accompanied by the decrease of natural shorelines and the increase of artificial shorelines. Similar to the location changes of the shorelines around the SCS, the maximum progradation occurred in Caofeidian, where massive land reclamation and wharf and constructed dikes can be seen; maximum erosion occurred at the head of the abandoned Diaokou promontories, which had muddy shorelines (Wu et al., 2014; Zhu et al., 2014). A number of special features were observed in the utilization types of the shorelines around the Bohai Sea, including the non-existence of mangrove shorelines and the relatively high number of salt pan dikes. Unlike the aquaculture dikes around the SCS, which mostly developed from mangrove shorelines, those of the Bohai Sea developed from muddy shorelines and bedrock shorelines (Xu et al., 2016; Lei et al., 2020).

In summary, the artificialization of shorelines in regions with rapid economic and societal development usually exhibits the following characteristics: an increase in the total shoreline length; a decrease of natural shorelines, and an increase of artificial shorelines; most erosion usually occurs along natural shorelines with a strong hydrodynamic environment and weak stability, such as muddy and sandy shorelines; and significant progradation occurs along artificial shorelines, especially the wharf, constructed, and aquaculture dikes. In addition, different natural environments often mean different shoreline development patterns; for example, the aquaculture dikes around the SCS and Bohai Sea have varied origins.





Conclusion and future directions

We established a five-stage shoreline dataset around the SCS during the past 40 years based on remote sensing images and GIS techniques. The length, utilization type, and location changed a lot under the influence of natural processes and anthropogenic activities. The length of shorelines around the SCS maintained growth over the past four decades. But all types of natural shorelines showed varying degrees of decline, with mangrove shorelines declining most severely, by 1,955.5 km over 40 years, followed by bedrock and muddy shorelines. All types of artificial shorelines showed an increasing trend, with the constructed dikes growing the most, at 2,634.8 km, followed by the aquaculture and wharf dikes, which grew by 2,074.0 and 618.5 km, respectively. The sources of the new aquaculture dikes were diverse, with 44.3% developed from mangrove shorelines, 16.3% from bedrock and sandy shorelines, and 15.6% from muddy shorelines; the sources of the newly constructed dikes were mainly bedrock and sandy shorelines, accounting for 28.9% and 28.3%, respectively, while mangrove shorelines accounted for 17.5%. It is worth noting that shoreline development in some countries shifted from the increment stage to both the inventory and increment stages.

Except for the mangrove shorelines, the EPRs corresponding to the other types of natural shorelines were relatively small, among which those of sandy and muddy shorelines were −2.31 and −1.07 m/year, respectively, indicating little erosion; the bedrock shoreline location was basically unchanged. The EPR of mangrove shorelines, on the other hand, reached 37.6 m/year, meaning that the survival space of mangrove forests was severely compressed. The spatial locations of natural shorelines that maintained their types were mainly influenced by their stability and had little to do with the surrounding marine environment. In contrast, all types of artificial shorelines showed a substantial seaward advance, with the largest EPR of 34.0 m/year for wharf dikes, followed by 27.8 m/year for constructed dikes and 26.3 m/year for aquaculture dikes. Therefore, the spatial location of the shorelines around the SCS was generally influenced by their artificialization, which was dominated by anthropogenic activities. All types of natural shorelines around the SCS were at risk of erosion, especially the mangrove shorelines, and anthropogenic interventions such as nearshore engineering and the establishment of protected areas can reduce this risk to some extent.

The major limitation of the study is the efficiency of shoreline extraction and classification. Although we have completed 40 years of shoreline extraction and classification around the SCS, automatic shoreline extraction and classification algorithms are indispensable for studies at higher temporal resolution or in a larger region. Another limitation is the lack of an assessment of the effects of government policies on shoreline changes. It is well known that the government usually plays the role of decision maker in the process of shoreline development, but the study only indirectly responds to policy changes through NTL data, impervious surface area, and population density. Future work will be of great importance to coastal zone research and management if the impact of government policies on shoreline changes can be evaluated quantitatively.
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Monitoring the long-term human expansions in coastal zones and evaluating their associated environmental impacts are critical to promoting a sustainable transformation of a society. This paper evaluated the long-term human expansion of reclamation, aquaculture ponds (saltern) and artificial surface in the Circum-Bohai Coastal Zone (CBCZ) of China based on the Google Earth Engine (GEE) platform and time-series land use (LU) function classification, and analyzed the impact of human expansion on the sustainability of coastal environment. Results show: (i) human activities in this coastal zone have expanded dramatically during the past 30 years, including an increase of 1555.50 km2 (+76.9%) for the reclamation area, 2065.53 km2 (+51.33%) for the aquaculture pond area, and 14329.99 km2 (+308%) for the artificial surface area; (ii) there are substantial spatial and temporal variations in human expansion in this coastal zone, mainly for Bohai Bay, Laizhou Bay, and Liaoning Bay, with the most intense expansion in the period 2003-2013, (iii) the spatial and temporal evolution of human activity expansion is strongly related to changes of water environmental quality and wetland loss, with the coupling degree of 70.73% and 79.41%, respectively. The expansion of human activity has led to a considerable loss of wetland number (from 2666.54 km2 to 1698.27 km2), indirectly affecting changes in offshore water quality. We found that human expansion is mostly driven by economic interests such as port construction, industrial parks, resource development, and tourism development, as well as a direct response to coastal zone development and protection policies.




Keywords: land use function, Google Earth Engine (GEE), time-series, reclamation, water quality, wetland loss, sustainability, Bohai



Introduction

Coastal zones host over 70% of the world’s large cities and populations (Tu et al., 2022), with intensifying human expansion in terms of rapid urbanization and increasing economic activities (Halpern et al., 2019; Zou et al., 2019; Jouffray et al., 2020). These human expansions have imposed great ecological pressure on coastal zones, such as ecosystem function degradation, biodiversity loss, affecting local ecosystem resilience (Mentaschi et al., 2018; Goldberg et al., 2020). Take the Bohai Sea as an example. From 2000 to 2015, the total value of ecosystem services decreased by 3.80%, from 581.06 billion yuan to 558.97 billion yuan (Liu et al., 2020). In addition, combined with the data from the Statistical Bulletin of Marine Environment, the proportion of Class IV and inferior Class IV seawater in the coastal waters of the Bohai Sea increased from 19.2% to 29.03% from 2005 to 2015. Therefore, monitoring human expansion in the coastal zone and evaluating the associated environmental impacts is a crucial way to promote sustainable transformation.

As the continuous growth in human demand for seafood and the rapid development of new industries and ports adjacent to the sea, human expansion is mainly represented as reclamation, increase of aquaculture, and rapid expansion of coastal artificial surface (Wu et al., 2018; Ren et al., 2018; Sengupta et al., 2018). Human expansion has inevitably caused serious impacts on local and neighboring sea ecosystems, triggering a series of negative effects such as water pollution, habitat degradation, and reduction of species diversity (Dou et al., 2013; Murray et al., 2014; Murray et al., 2015; Finnegan et al., 2015; Blowes et al., 2019). The total reclamation area in China was up to 11,162.89 km² between 1979 and 2014. The reclamation hotspots include Bohai Bay, the coast of Jiangsu Province, and Hangzhou Bay (Meng et al., 2017). The formation of port terminals, industrial parks, and tourism facilities can lead to a conversion of a large number of natural shorelines into hardened artificial shorelines, leading to profound changes in the hydrodynamic environment such as tides and waves, and a weakening of the water exchange and pollutant transport capacity of the bay (Gao et al., 2014; Nazeer et al., 2020). Also, pollutant discharges such as domestic sewage and industrial wastewater from highly populated regions and industrial activities further deteriorated the coastal environment (Maanan et al., 2015; Flo et al., 2019). In addition, the expansion of constructed surfaces and aquaculture ponds has been threatening wetlands, mudflats, and intertidal zones, and causing habitat fragmentation. The loss of many fish spawning grounds and migratory birds significantly affects the ecosystem functions of the coastal zone (Jiang et al., 2015; Li et al., 2018; Murray et al., 2022). Some studies have shown that construction, such as port terminals, could increase the vulnerability of coastal zones to sea level rise and increase ecological risk of coastal zones (Wu et al., 2016; Zhai et al., 2020). In human intensive coastal areas such as ports and urban areas, the level of microplastics in soil and shellfish is significantly higher than that in other coastal areas (Li et al., 2016). Human expansion has degraded the ecosystem of the coastal zone as well as diminishing the various ecosystem services (Wang et al., 2021).

Limited by the spatial and temporal resolution of remote sensing data and the processing capacity of the platform, it was difficult to detect changes and long-term patterns in human expansion in the coastal zone (Kuenzer et al., 2011; Schneider, 2012; Gallant, 2015). As the open applications of remote sensing big data platforms such as Google Earth Engine (GEE), monitoring human expansion in the coastal zone using GEE has become a current hot issue and has made breakthroughs. Methodologically, these studies can be classified into three groups. The first group is to construct long-term time-series remote sensing ecological indices, such as Normalized Difference Water Index (NDWI) (Xie et al., 2016; Ezzine et al., 2017), Normalized Difference Built-Up Index (NDBI) (Ranagalage et al., 2017), Modified Normalized Difference Water Index (MNDWI) (Ghosh et al., 2015; Du et al., 2016), etc. These indices can achieve the identification of human activities such as aquaculture (Ottinger et al., 2016; Zhang et al., 2019), artificialized net pens (Fu et al., 2021), land reclamation (Wang et al., 2017; Hua et al., 2017), and drilling platforms (Dong et al., 2022). Second, the full element classification and mapping for change detection of human expansion such as construction land and reclamation using long-term time series Landsat images (Tian et al., 2016; Jia et al., 2018). Third, a multi-source image fusion approach is used to input densely stacked (dense stacking) time series data to the classifier to directly classify and extract change information, which has been shown to significantly improve the accuracy of change detection (Yi et al., 2018). Moreover, the material exchange and physical processes occurring in land-sea environmental processes are extremely complex. Long-term time-series data allow an accurate evaluation of the negative impacts of human expansion (Santos et al., 2016; Xu et al., 2021). Available studies have shown that there is an urgent need to enrich studies that analyze the spatial and temporal variation regarding the evolution of coastal human activity from a long time series perspective and reveal the ecological feedback induced in the process (Benway et al., 2019).

The objective of this study is to explore the impact of human expansion on the environmental sustainability of coastal zone. This objective can be resolved into three key questions: First, how to evaluate long-term human expansion in the coastal zone? Second, how to characterize the changes of environmental sustainability of coastal zone? Third, how to quantify and analyze the spatial and temporal correlations between them? Thus, the paper takes Circum-Bohai Coastal Zone of China as study area, and uses the GEE platform and long-term time series multi-source data to achieve a long-term land use classification from 1990 to 2020. Based on the classification results, we integrated and analyzed the temporal and spatial variation of the long-term sequence human expansion in the coastal zone from three aspects: reclamation (loss of natural seawater caused by human activities), aquaculture pond (saltern) (shallow artificial water bodies with distinctly), and artificial surface (construction land formed by human activities). Next, we select the long-term time series of water environmental quality and coastal wetland loss to characterize the environmental sustainability of coastal zone, and analyze the changes of them during the same period. Finally, we analyze the spatial and temporal correlations between human expansion and environmental sustainability of coastal zone, and verify and analyze the impact of different types of human expansion on the environmental sustainability of coastal zone with the investigations of sample areas and coastal zone policies.



Study area

The Bohai Sea is China’s only semi-enclosed inland sea and also one of the 11 typical semi-enclosed seas in the world. It consists of the main seas and Liaodong Bay, Bohai Bay, and Laizhou Bay (Figure 1), along which more than one hundred rivers are flowing into the sea, including the Yellow River, the Hai River, the Liao River, and the Luan River, which forms three major basins: the Hai River, the Yellow River, and the Liao River. The sand load of the flowing rivers makes the Bohai Sea become a shallow basin on the continental shelf, with gentle topography, wide mudflats and an annual siltation area of 20 square kilometers. The wide delta wetlands of the Liaohe estuary, the Yellow River estuary, and the Haihe estuary are inhabited by more than 150 species of birds and other rare animals and are important ecological shelter in northern China.




Figure 1 | Overview map of the study area. The panel on the left shows the location of the study area, and the right shows the bay areas and important port cities included. Red boxes and labels on the right indicate the spatial extents of regional examples shown in Figure 3.



The CBCZ involves 17 coastal cities in Liaoning, Hebei, Shandong, and Tianjin, and its resident population grew from 77.17 million to 91.07 million between 2000 and 2020, an increase of 18%, accommodating nearly 6.5% of the population within 2% of the country’s land. Moreover, the Bohai Sea coastal zone has been occupying an important position in the national marine economy. Since the reform and opening up, most cities on the Bohai Sea have been dominated by intensive industries. The offshore oil field in the Bohai Sea, as well as the Shengli oil field, Dagang oil field, and Liaohe oil field in Bohai Bay, constitute the second largest crude oil production area in China. Most coastal zones are low-lying plains, involving the North China Plain, the Yellow and Huaihai Sea Plain, and the Liao River Plain, which are covered with a large amount of arable land and serve as an important barn for China. The shallow water area of estuaries is rich in nutrient salts and has many bait organisms. The deep-water area in the middle of the Bohai Sea is both a staging area for economic fish, shrimp, and crab migration in the Yellow and Bohai Seas, and an overwintering ground for local fish, shrimp, and crabs in the Bohai Sea. It is evidently a large marine aquaculture base in China. Besides, it is the largest salt farming base in China due to its suitable climate.

With the launch of the national ocean strategy and the “Belt and Road” strategy, authorities at all levels in the CBCZ are still playing the banner of “ocean economy” and “blue land”, ignoring the constraints of coastal natural environmental conditions on development intensity, spatial structure, and development mode. These authorities also ignored the reasonable coordination of various resources and the spatial configuration of production and living in the coastal zone, and were unceasingly enthusiastic about the blind large-scale development of the coastal zone. These would potentially cause great damage to the sustainability of coastal zone by the failure of coastal zone development strategies and policies, such as continuous water quality pollution in land and offshore waters, massive loss of coastal wetlands and biodiversity damages, etc.



Methods

We obtained the long-term time-series LU classification images in the coastal zone on the GEE platform using the RF algorithm and separated seawater and aquaculture ponds (including salt fields) using the optimization method of spatial morphology and temporal change logic. Based on the classification results, the space-time variation of the long-term human expansion in the coastal zone is integrated and analyzed from three perspectives: reclamation, aquaculture ponds, and artificial surface. Human expansion is coupled with long-time-series offshore water quality and ecological degradation processes to reveal its resulting environmental effects. Combined with the field research in the study area and a review of the evolution of the main coastal zone policies, we verified and analyzed the impact of human expansion types and coastal zone development and protection policies on the coastal environment. The diagram of the technical process is shown in Figure 2.




Figure 2 | An integrative schematic of this study, including acquisition of core datasets (blue), processing of land use classification (green), and subsequent suggestive analysis (orange), which aimed to characterize the relationship between human expansion and environmental sustainability.




Data

The data used in this study includes the historical image data of the Landsat series on the GEE platform, including the Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI). We used the GEE platform to screen the available Landsat data in the Bohai Sea region during 1990–2020. The screening conditions include (1) obtaining data for two periods, June to October (lush vegetation period) and November to March (vegetation withering period), and (2) less than 10% cloudiness. We also selected several spectral indices to enhance the identification of features, such as the NDVI, NDWI, etc. (Jiang et al., 2014; Zhou et al., 2017). Moreover, we made use of some additional data to assist the classification, such as Visible Infrared Imaging Radiometer (VIIRS) night light data, Shuttle Radar Topography Mission (SRTM) digital elevation data, and some climate monitoring data. The VIIRS night light data is from its nighttime day/night band (DNB) dataset, and we used the monthly averaged images to distinguish the urban area from others. The SRTM data is from the U.S. Land Distributed Activity Archive Center and has been interpolated using open-source data (ASTER GDEM2, GMTED 2010, and NED). The climate monitoring data include precipitation, temperature, and accumulated temperature from Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS). To conduct cross-validation and to obtain prior knowledge, we used Point of Interest (POI) data and land cover products from the Resource and Environment Science and Data Center, Chinese Academy of Sciences. The water quality data consists of fluvial and coastal quality data. The former comes from monitoring sensors managed by the department of ecology and environment, which is classified into 5 levels from I to V, according to “Environmental quality standards for surface water” (GB3838-2002). The latter is from “China’s near-shore sea area environmental quality bulletin”. Combining with vector data of county boundary, we obtained long-time-series county-scale offshore water quality data.



Long-term LU classification of coastal zone based on the GEE platform

Based on the GEE platform, we used the RF algorithm to initially classify the long-time-series LU products, and then adopted the scan line seed fill algorithm and geometric feature analysis to separate seawater and aquaculture ponds (saltern). Then, the LU types involved in the transformation of arable land, aquaculture ponds, and reclamation are corrected based on the logical rules of space-time changes. The main process is listed as follows:

	(1) Initial LU classification. We selected sample points of different LU types each year within the period based on high-resolution historical images and field research. We conducted 10-20 times random position distribution on the training sample points on the GEE and took the result with the highest accuracy as the final training sample. Then, we computed spectral indices including NDWI, NDVI, and normalized difference building index (NDBI), and introduced the VIIRS nighttime light data, SRTM digital elevation data, and all texture features from the raw Landsat images that can be calculated by GEE to form combinations of different feature variables. Accuracies of different combinations were compared to get the optimal feature vector. The RF classifier was trained with the selected training samples and the optimal feature variable combination. After the training, the raw images were classified year by year.

	(2) Separation of seawater and aquaculture ponds. We adopted the scan line seed fill algorithm (Yu et al., 2010) to separate seawater from all water bodies, which can be described as ① selecting a seawater pixel as a seed point and putting it into the stack as the object to be filled; ② filling the section from the horizontal scanning line where the current seed point is located to the land boundary; ③ deleting the seed point in the stack after filling, and determining the upper and lower parallel scanning lines adjacent to the seed point, and ④ storing the points adjacent to the seed point in the stack as the seed point to be filled next time in the section between the two parallel scanning lines and the boundary. This process was repeated until all seed points in the stack were cleared. After that, preprocessing object segmentation and contour extraction were performed on the inland water body, and three morphological features of the ith inland water object Pi were calculated in sequence: the centerline length Li, the aspect ratio Ri and the convex hull Convi. The aspect ratio Ri is the ratio of the centerline length Li of the inland water object Pi to the total number of pixels Si of the inland water object Pi, and the convex hull Convi is the ratio of the convex perimeter Pi (c) to the perimeter Pi (P) (Chen et al., 2022), which can evaluate the convexity of the object. If Li> 30, Ri > 0.2, and Convi< 0.45 are established, then the inland water object Pi was determined as a natural water body, otherwise, it was classified into an aquaculture pond.

	(3) Spatio-temporal consistency correction. We sorted each LU type time series on the pixel level and marked it with a unique key, which corresponds to different sequence types. The sliding window WM and the seed window WS of the space-time records were constructed then. The initial position of the sliding window WM was located immediately outside the corresponding seed window S, and the time consistency correction was performed on the long-term LU classification data in the study area. Taking pixel-level time series as a processing unit, we used the 3*3 sliding window and adopted a mode filtering method to correct the classification data in the center of the window integrally, and applied this method to all pixels. The detailed process can be described as:

	① Constructing two seed windows WS and two sliding detection windows WM, respectively, for the time series stored by each key. The initial positions of the two seed windows WS were located at the beginning and end of the time series, and the sliding time window step size N was set. N is a natural number greater than 3;

	② Placing the sliding window WM inside the seed window WS;

	③ Calculating the dominant functional LU type FM within the sliding window WM;

	④ Determining whether the feature type FS in the seed window WS is consistent with the dominant functional ground type FM in the adjacent sliding detection window WM. If so, set all the ground types between the leading and trailing dominant ground type grids in the sliding window WM as FS, and move the seed window position to the grid position where the dominant ground type FS finally appears in the sliding window. Go to step ② until the first or last year of the time period, and process all the records stored in the hash table; If it is inconsistent, move the seed window inward by one bit, go to step ② until the first or last year of the time sequence, and process all the spatiotemporal cubes stored in the hash table.





Spatio-temporal change detection of human expansion in the coastal zone

Based on the LU classification products, we extracted the areas of reclamation, aquaculture ponds, and artificial surface in each county unit by tabulating areas. The reclamation area was defined as the reduction of seawater coverage, and the artificial surface area was the total amount of the urban land area, rural land area, and other artificial surface area in the LU classification data. We aggregated the results of the corresponding counties by year, thus obtaining the time series of human expansion area in all of them.

A clustering algorithm Partitioning Around Medoid (PAM) was adopted in this study to mine the spatial disparity pattern behind the long time-series LU classification data. The PAM algorithm is an implementation of K-Medoids clustering, which uses the medoid point existing in the cluster as the center of the cluster, whose sum of distances to all other points in the cluster is minimal. It is more robust to noise and outliers and is commonly used in the field of time series clustering, and can show the similar LU pattern spatially based on the similarity of time series. We chose the Euclidean distance to measure the similarity of time series, which is one of the most common distance measures for clustering time series of equal length and one-to-one mapping. Let  denote a time series of length n, the distance dist (i, j) between it and another series  can be described as the sum of the distances between all corresponding points, which is:

	

We uniformly set the cluster numbers as 5 under different circumstances, which can not only clearly and comprehensively show the spatial and temporal evolution pattern of the study area, but also help to unify the understanding framework. A higher cluster level represents a more intense human expansion. To comprehensively characterize the extent of human expansion, we adopted the weighting method and combined it with expert knowledge to give different weights to the areas of reclamation, aquaculture ponds, and artificial surface, and summarized the comprehensive index of human expansion. Among them, the higher the value of the index, the more significant human expansion.



Analysis of environmental effects in the coastal zone

The wetland loss and water quality in the coastal zone were selected as the main indicators of environmental effect analysis. Among them, the wetland loss data mainly comes from the classification results of land use functions in section 3.1, which is expressed as the area of natural land (forest land, grassland, unused land, natural water body, tidal flat, and seawater) within the buffer zone 2km from the coastal boundary of the administrative division to the land that has been transformed into production and living land (cultivated land, aquaculture ponds, and artificial land). We divided the buffer zone according to the boundaries of the counties, counted the wetland area in the buffer zone included in each unit, and clustered the natural land area in each unit in the time series concerning section 3.2.

The offshore water quality data includes the monitoring data of the main river sections in land areas and offshore sea areas. According to the water quality standards, it is divided into six grades, I, II, III, IV, V, and inferior V. The smaller the grade, the better the water quality. Due to the different time availability of land and offshore water quality data, we adopted a qualitative evaluation standard to uniformly classify the water quality grades of each county into the following five categories: ① continuously good, class I or class II exist in all time nodes only, and the number of class II does not exceed 20% of the entire time range, with no significant change trend in the time series of water quality; ② improved, the water quality series has an upward trend significantly; ③ fluctuating, the water quality in different years has a difference of more than or equal to one grade, which includes at least three consecutive time nodes, and there is no trend in the time series; ④ degrading, the water quality series has a downward trend significantly; ⑤continuously poor, class II or above exist in all time nodes, and there is no significant change trend.

In order to explore the relationship between human expansion and wetland loss and water quality change in the coastal zone, we connected different analysis results in space to further calculate the corresponding relationship between indicators. We counted the frequency of each data pair and calculated their coupling degree. It is noted that some inland counties which do not border the coastline buffer zone were not included in the calculation when exploring the relationship between the human expansion and the loss of wetlands.




Results


The Long-term human expansion in coastal zone

The human expansion on the Bohai coast is reflected in three aspects: reclamation, aquaculture ponds, and artificial surface expansion. In the past three decades, the land reclamation along the CBCZ has reached 1555.5km2, and the top three target reclamation land use types are artificial surface (772.64km2, 49.67%), aquaculture ponds (570.11km2, 36.65%), and cropland (103.29km2, 6.64%). As can be seen from the four typical examples (Figures 3A-D), the reclamation is concentrated in the port areas, such as the Tianjin Port and Caofeidian Port in Bohai Bay, the Weifang Port in Laizhou Bay, the Jinzhou Port, Yingkou Port, and Dalian Port in Liaodong Bay, etc. Around these ports, there are large areas of new land formed by reclaiming land from the sea. The period 2003-2014 was the most severe period of reclamation expansion along the CBCZ, in which the average annual growth rate of reclamation reached 165.5 km2 (Figure 4A). From 2015 to 2018, the phenomenon of reclamation in the CBCZ eased. However, in 2019 and 2020, the reclamation area showed an increasing trend. From 1990 to 2020, the total area of expanded aquaculture ponds in the coastal zone were 2065.5km2, with a planar or punctate manner (Figure 4B). The expansion of aquaculture ponds has been clustering in the three major bay areas (Figures 3e–g), whereas in Qingdao, the expanded aquaculture ponds were generally scattered and dotted, except for the local regions of Jiaozhou Bay (Figure 3h). Timewise, the area of aquaculture ponds in the CBCZ has fluctuated greatly in the past three decades. During the three time periods (or nodes) of 1995-2001, 2006-2009, and 2015, the total amount of aquaculture pond area has been on the rise. In the first growth stage, the expansion of aquaculture ponds was the most obvious, with an area of 2389.4 km2. The growth areas of the following two time periods (nodes) were 997.3 km2 and 693.8 km2 respectively. However, in 2002-2005, 2010-2013, and 2014-2019, the pond area decreased, and the reduced part reached 950.1 km2, 644.1 km2, and 830.3 km2, respectively. The purple line in Figure 4B represents the newly increased pond areas (i.e., only consider the situation that other LU types convert to aquaculture ponds), and it can be found that though the newly increased pond areas were higher than that in other years, the total area may still decline. Compared with the fluctuating situations in the previous two types, the artificial surface has maintained an upward trend in the past three decades (Figure 4C). From 1990 to 2020, the expanded artificial surface area around the CBCZ was 14626.9 km2. It can be seen that the expanded artificial surface was mainly distributed along the coastline, and more concentrated in important ports like Qingdao port, Yantai port, Tianjin port and Tangshan port. Besides, a spreading trend from the coast to the inland was visible in the artificial surface expansion, which generally occurred later than that of aquaculture ponds (Figures 3i–l). Although the artificial surface area along the CBCZ increased from 1990 to 2003, the amplification was not large. From 2004 to 2020, the expansion rate of artificial ground increased significantly, and the average annual growth rate increased from 206.8 km2/y to 693 km2/y. Figure 5 shows the county-level time series clustering results based on the human expansion in the CBCZ in the past 30 years. Figure 5A shows the clustering result of reclamation (corresponding to the reduction of seawater), and the reclamation expansion of class 5 and class 4 counties are the most intense. These two classes of counties correspond to the important ports in several bay areas around the Bohai Sea. The former includes Binhai New Area and Caofeidian District of Tianjin port, and the latter corresponds to Wafangdian City of Dalian port. The area of reclamation area in class 5 has expanded rapidly since 2003, while in class 4 the expansion lagged by one year. In contrast, the reclamation area in class 3 and class 2 also expanded, but the increase rate was less than that of class 5 and class 4. Figure 5B shows the clustering result of aquaculture ponds. Class 4 with an obvious upward trend in the ponds area is mainly distributed in the south of Bohai Bay, such as Wudi County, Zhanhua District, and Hekou District. However, the areas of the remaining four types either fluctuated or maintained in a small number. Among them, class 5 corresponding to Binhai New Area and Caofeidian District showed a trend of increasing first and decreasing then, and the total area of aquaculture ponds remained at a high level. Figure 5C shows the clustering result of the artificial surface. As mentioned above, the artificial surface area along the CBCZ was continuously increasing from 1990 to 2020. Among them, Binhai New Area, Huangye City, and Caofeidian District in Bohai Bay, Dongying City, Yantai City, Weifang City, and other coastal counties in Shandong Province had the most obvious growth. The mean area of the artificial surface in the cluster increased from 106.43km2 in 1987 to 724.28km2 in 2020. In addition, the artificial surface of the Qingdao port area has also increased significantly. In general, the CBCZ has seen a huge growth in the extent of reclamation and artificial land, particularly after 2003. While the area of aquaculture ponds has been fluctuating, only a few districts and counties showed significant growth. Figure 5D shows the expansion intensity of human activities. It can be seen that the human expansion along the CBCZ is mainly concentrated in Bohai Bay, Laizhou Bay, and the two important port cities of Dalian and Qingdao. Especially in the Binhai New Area, Caofeidian District, Huanghua City, Hekou District, Hanting District, Kenli district, and Wafangdian City, the expansion intensity of human activities are significantly higher than other districts and counties.




Figure 3 | Human expansion across the Circum-Bohai Coastal Zone during the period 1990 to 2020. (a-d), Reclamation. (e-h), Aquaculture pond. (i-l), Artificial surface. The four example areas are: (A), The northern part of Liaodong Bay. (B), The northwestern part of Bohai Bay. (C), The southern side of Laizhou Bay. (D), The southern part of Qingdao city. The colors represent the year when the new LU type appear, and the extent of these examples are marked as red boxes in Figure 1.






Figure 4 | Analysis on the area changes of (A) reclamation, (B) aquaculture ponds, and (C) artificial surface in the Circum-Bohai Coastal Zone from 1990 to 2020.






Figure 5 | Time series clustering results of human expansion in the Circum-Bohai Coastal Zone: (A) reclamation, (B) aquaculture ponds, (C) artificial surface, (D) composite expansion index.





Environmental changes in the coastal zone

We analyzed the ecological change evolution of the CBCZ coastal zone from wetland loss and water environmental quality. Figure 6A shows the overall loss of wetlands around the CBCZ. As can be seen from the panel, the total wetland area in the buffer zone has been fluctuating since 2000, with no significant decline. During the period 2000 to 2003, the wetland area around the Bohai Sea was restored. However, the wetland area has entered a serious degradation stage since 2003, and it has decreased by 1287.3km2 from 2004 to 2014. Although the wetland ecosystem has recovered slightly in the following years, it is still far from its peak. It can be seen that the evolution of wetlands is significantly influenced by policy regulation. After the Regulation on the Prevention and Control of Pollution from Coastal Construction Projects in 1990 and Opinions on the Implementation of the Marine Ecological Red Line System in the Bohai Sea in 2012, the wetland ecology has been restored to some extent. However, the regulatory impact of the policy also has a certain lag, and it often takes two or three years to see obvious results. According to the clustering results, the areas with the most serious wetland degradation are Binhai New Area, Caofeidian District in Bohai Bay and Wafangdian City, Jinzhou district, and Zhuanghe City in Dalian city (class 5). The changing trend in this area is consistent with the overall trend. It has been in a rapid decline stage since 2003. From 2008 to 2014, there was a fluctuating change, afterwards, the wetland area gradually recovered. Figure 6B shows the combination of water quality changes. Overall, the water environment along the CBCZ is rather poor. There are 14 districts (17.1%) with serious water pollution and a worsening trend, and 43 districts and counties have extremely unstable water quality. There are different degrees of water pollution in Bohai Bay, Liaodong Bay, and Laizhou Bay, among which Weifang Port in Laizhou Bay and Jinzhou Port in Liaodong Bay are the most serious. The water environment of Shouguang City and Hanting district in Weifang port, Linghai city of Jinzhou port, and the nearby Pingdu City and Shuangtaizi District has been seriously polluted in the past 30 years. In addition, the water quality of 9 districts and counties, including Zhaoyuan City, Qixia City, Kenli District, Lijin County, and Dawa district, is continuously deteriorating. Although the water quality of Bohai Bay has not been seriously polluted or deteriorated, the water environment of most districts and counties was fluctuating, such as Binhai New Area and Huanghua City. Once the discharge of pollutants from human activities along the coast exceeds the threshold, this unsteady state will break and the water quality will deteriorate rapidly. As the only semi-enclosed sea in China, the environmental problems of the Bohai Sea are characterized by large inertia, high hysteresis, and strong outburst, which also bring great challenges to water quality management. Along the coast of the Bohai Sea, there are 49 seagoing rivers, such as the Haihe River, Daliao River, Daling River, and Luanhe River. The pollutants carried by these rivers remain in the offshore water for a long time. In addition, a large number of highly polluting industries, such as papermaking, coking, and electroplating, are distributed in Tangshan, Qinhuangdao, and Cangzhou, which further aggravates the water pollution in the Bohai Sea. In contrast, as Weihai, Yantai, Qingdao, and other cities are located on the east side of the Bohai Sea where the sea is open, they have strong water exchange capacity and self-purification capacity, so the water environment quality is better than that of the inner Bohai Sea. And the water quality of several districts and counties in Weihai is gradually improving.




Figure 6 | (A) Time series clustering results in wetland loss within the 2km buffer zone, the color of the buffer zone in each county is mapped to the whole region. The panel shows the overall trend of wetland area in the whole buffer zone; (B) the comprehensive land and seawater quality level.



Combining Figure 5, 6, it can be seen that there is a high coupling degree between environmental changes and human expansion intensity in the CBCZ spatially and temporally. Firstly, the period of the most severe degradation of coastal wetlands overlaps with the expansion of artificial surfaces and reclamation. Secondly, the areas with more serious wetland degradation and water pollution, such as Binhai New Area, Caofeidian District, and Hanting District, also have larger expansion levels for the three types of human activities. Figure 7 is a heatmap showing the correlation between human expansion and environmental change in the CBCZ. The value of each bin represents the frequency of two variable pairs. As can be seen from Figure 7A, except that the 1st stage of wetland loss corresponds to several levels of human expansion, the remaining scenarios are mainly distributed along diagonals and adjacent units. The number of the first level was large, indicating that although the comprehensive expansion degree of some districts and counties was relatively high, the development intensity in the coastal buffer zone was not necessarily as intense as that in the inland urban area. Based on the rule that the difference between the two indexes is not more than 1 and that the wetland loss is not lower than the human expansion over level 3, it can be calculated that there is a 79.41% coupling between the human expansion and the wetland loss. Figure 7B shows the relationship between the comprehensive index of human expansion and the water quality rank. The water quality of most districts and counties in Qingdao and Rizhao, which are located on the east side of the Bohai Sea, has remained at a good level (Level 1). On the one hand, it is due to the strong exchange and self-purification capacity of the water body in this area, and on the other hand, it shows that the water environmental quality can be taken into account while expanding the human surface in this area. Considering that water quality level 3 (severe fluctuation of water quality) has a large proportion in all levels of human expansion, it can be concluded that the coupling degree between the two factors has reached 70.73% based on the rule that the difference between the two indexes is not more than 1 and the human expansion index corresponding to water quality level 3 is not limited. In a word, it can be found that human expansion is closely related to ecological benefits spatially and quantitatively. Human expansion indirectly leads to changes in the offshore water environment and promotes the wetland loss.




Figure 7 | The correlation (frequency) heatmap between human expansion and environmental change: (A) wetland loss, (B) water environmental quality.






Discussion

As the transition zone between terrestrial and marine ecosystems, coastal zones have chronically been affected by the confluence of global climate change, regional environmental change, and human activities, of which human activities have increasingly become dominant (Hapke et al., 2013; Mentaschi et al., 2018). According to the sea level monitoring and analysis results released by the China Oceanic Administration, the rate of sea level rise in the Bohai Sea is 3.6 mm/year from 1980 to 2020, which is 0.2 mm/year higher than the average level of China’s coast. The long-term cumulative effect of sea level rise will, logically, directly cause loss of mudflats and ecological damage, and lead to storm surges, coastal urban flooding, and saltwater intrusion. In contrast to natural factors, changes induced by human activities interfering with coastal zones are often irreversible. Given the inherent enclosed nature of the Bohai Sea and its weak self-purification ability, the pollutant discharge from marine and coastal development activities and the degradation of natural ecosystems on land and sea are gradually increasing the stress on coastal zones. Combining the POI data, long-term remote sensing images, and field samples in CBCZ, and from the existing related works, we analyzed the representative human activities in coastal zones, such as town expansion, industrial parks, port construction, tourism development, mariculture, coastal engineering, resource extraction, and restoration works, to discuss their environmental impacts on coastal zones.

The impact of urban expansion on coastal zones mostly comes from its occupation of coastal wetlands and mudflats and the environmental pollution caused by various types of residential and commercial land use. In Tangshan, Dalian, and Yingkou on the Bohai coast, substantial amounts of arable land and mudflats have been converted into residential, commercial, and other building sites (Figure 8A). Millions of migratory birds and amphibians have lost their habitat due to the loss of coastal wetland mudflats (Yan et al., 2017; Xie et al., 2018; Murray et al., 2019; Ma et al., 2019). The domestic sewage from new residential land often contains large amounts of microplastics that are difficult to degrade, which also poses a great threat to the marine environment and marine animals (Zhou et al., 2018; Zhu et al., 2021). Reclamation is the main pathway for four types of human activities: port construction, tourism development, industrial parks, and coastal engineering. For example, there are a large number of port terminals and harbor industrial parks formed by reclamation along the coastline of Cangzhou City from Qikou to Dakouhekou (Figure 8B), and the artificial tourist island built next to the golden coast of Nan Daihe (Figure 8C), etc. Although reclamation can alleviate the problem of land constraints in the coastal zone, it also has a negative impact on the coastal ecosystem. The artificial shoreline of reclamation (Figure 8F) will change the hydro-dynamic environment, exacerbate the erosion and wetland degradation in the coastal zone, as well as destroy the living environment of marine fish (Jin et al., 2016; Xu et al., 2016; Zhang and Niu, 2021). Similarly, human activities such as port terminal operations and industrial zone development (Figure 8E) have increased the discharge of coastal pollutants, and long-term reclamation will weaken the water exchange and pollutant transport capacity of the bays, further exacerbating the pollution of offshore waters. (Zhang et al., 2017; Xu et al., 2021). While some coastal tourism projects in the region have boosted local economic development, many hidden dangers have been sown. For instance, the number of tourists in those tourist attractions exceeds the environmental capacity limit, and the massive tourists’ influx has increased the pollution of the local environment (Sánchez-Quiles and Tovar-Sánchez, 2015; Williams et al., 2016); some tourist attractions are disorderly and over-developed, which have greatly occupied the wetlands and affected the surrounding marine protected areas (Gil et al., 2015).




Figure 8 | Typical types of human expansion in the coastal zone. (A) urban expansion in Tangshan, (B) port construction in Huanghua, (C) tourism development in Nandaihe, (D) mariculture in Luanhe River estuary, (E) industrial parks in Qinhuangdao, (F) coastal engineering in Qinhuangdao, (G) resource exploitation in Caofeidian, (H) repair engineering in Nandaihe.



China has become the world’s largest country in terms of mariculture area and production and mariculture is a common human activity in CBCZ. Figure 8D shows a substantial number of aquaculture ponds enclosed in a tidal flat wetland to the north of the entrance to the Luan River. The nutrients and chemicals put into mariculture will aggravate the eutrophication and heavy metal pollution of offshore waters (Zhang et al., 2012; Le Moal et al., 2019). Since coastal areas are rich in mineral and energy resources, such as alluvium, rare earth, oil, tidal energy, etc., the development of these resources is among the important human activities in coastal areas, such as the artificial island built by CNPC for oil extraction along the coast of Caofeidian District (Figure 8G). Various pollution dangers often associated with the process of resource extraction, such as oil spills from offshore drilling rigs and oil pollution from ruptured pipelines, all threaten the marine ecosystem. Encouragingly, not all human activities have a negative impact on the coastal area ecosystem. In recent years, with the emergence of environmental problems in the coastal zone and the increasing awareness of ecological civilization, many coastal provinces have carried out a series of ecological restoration efforts (Sun et al., 2015; Jia et al., 2018). Figure 8H shows the comparison of before and after the restoration of the mudflats around the Nandai River. In remote sensing images of Qinhuangdao, Yingkou, Zhoushan, and many other places, significant amounts of mudflat wetland restoration can be seen. Since 2010, when the Bohai Sea Rim region launched an ecological restoration campaign, 61 ecological restoration projects have been implemented in various provinces and cities. About 8,800 hectares of wetlands have been restored by the end of 2020, and about 130 kilometers of damaged shoreline have been repaired.

We also analyzed the relationship between the scale of reclamation and regional social economy, finding that the scale of reclamation was positive correlated with the average annual growth rate of resident population and gross domestic product (GDP), especially since 2003 the country encouraged marine economy. We found that the period 2003-2014, with the most reclamation, also has the highest average annual GDP growth rate, over twice as high as the period 2015-2020. The region’s GDP growth rate during this period exceeded the national average by about 20% as well. The population agglomeration shows the same characteristics. When it comes to water quality, it is found that the overall water quality of the study area deteriorated severely since 2008, which is later than the start of the most severe reclamation period 2003-2014. During 2008-2013, the water quality of the northern part of Bohai Bay and the western side of Liaodong Bay deteriorated greatly, which is in line with the reclamation in these regions. As for Laizhou Bay, its water quality remained good until 2011, which is slightly later than the other two bay areas. However, its reclamation land started intensive expanding since 2007, when the water quality remained well. During the period 2014-2016, the water quality of the entire study area has been improved, when the land reclamation area was basically unchanged, indicating that the water quality improvement and the decreased reclamation intensity were relevant. After 2017, the western Liaodong Bay’s water quality deteriorated again, but its reclamation intensity remained low level. Therefore, it is said that the reclamation scale and the water quality are relevant on the whole, but there exist different or asynchronous patterns in local regions.

As shown in the previous analysis, impervious surface growth, mariculture and reclamation as the main factors affecting the ecosystem of the CBCZ (Ren et al., 2018; Sengupta et al., 2018; Wu et al., 2018). These dynamics of human activity over time, however, are influenced to some extent by policies and institutions as well (Fan et al., 2018). When analyzing the changes in offshore water quality, it can be found that if the water quality was heavily polluted in the previous year, the water quality generally improved in the second year. Although the water environmental quality data are affected by the monitoring point location, sampling time, and spatial analysis unit, which may cause some errors, the results of this study are relatively credible benefiting from the stability of time series data. Probably the reason is that the deterioration of water quality for some time will attract the attention of the government, which will conduct corresponding measures to improve the water environment and bring the water quality back to good condition in the following year. A few clues can probably be found in the policy’s overview (Figure 9). As early as 2001, marine environment pollution in the Bohai Sea had caused national attention. In the same year, the State Council approved and implemented “the Blue Sea Activity Plan of Bohai”. However, since the governance of the CBCZ involves many provinces and departments, it is difficult to form a unified governance situation, so the “Blue Sea Action” has not achieved the desired results. During the same period, the State Council issued the “National Marine Economic Development Plan Outline”, which enabled the economic development and human exploitation activities on the CBCZ to enter a stage of rapid growth, further increasing the difficulty of environmental governance. Subsequently, Tianjin Binhai New Area, Liaoning Coastal Economic Zone, and Shandong Peninsula Blue Economic Zone became national development strategies one after another, stimulating the development of marine industries and coastal zones in the Bohai Sea Rim. Obviously, with the rapid development of the coastal economy, many environmental problems have worsened continuously, such as the degradation of fishery resources, water pollution, and the sharp decrease of wetlands (Wu et al., 2016; Zhou et al., 2018; Liu et al., 2020). Based on the previous analysis, the annual average increment of reclamation from 2003 to 2014 reached 165.5 km2. This period (2003-2014) is also the period of the most severe degradation of Bohai coastal wetlands, with a reduction of 1287.3km2. In 2008, the state promulgated the “Master Plan for Environmental Protection in the Bohai Sea Rim”, which set the goal of reaching more than 90% compliance with major marine functional zones by 2020. Subsequently, the State Oceanic Administration issued the “Opinions on Implementing the Marine Ecological Red Line System in the Bohai Sea” in 2012, requiring those exploitation activities that damage the ecosystem of marine areas, such as land enclosure and reclamation, are strictly forbidden in the restricted development zones. Since the Opinions were issued, the expansion of reclamation along the CBCZ slowed down gradually within two years. In 2017, ten ministries and commissions, including the State Oceanic Administration and the National Development and Reform Commission, jointly issued the Nearshore Sea Pollution Prevention and Control Plan. Subsequently, the state issued the first coastline regulations – the Measures for the Protection and Utilization of Coastlines and the Measures for the Control and Control of Reclamation. It is emphasized once again that ecological protection of coastal zone should be put in the first place. In December 2018, the State issued a new round of the Bohai Sea Comprehensive Governance Struggle Action Plan, and since then the environment around the Bohai Sea has improved again. It can be presumed that all kinds of exploitation activities in the coastal zones derive from the direct benefits of economic growth, and when the pollution caused by human activities affects the economic benefits, enterprises will spontaneously participate in environmental protection and form a joint effort with the government (Jiang et al., 2015; Tu et al., 2022). That’s the reason why the environment in the CBCZ is always in a cycle of deterioration, improvement, and deterioration.




Figure 9 | Development of coastal zone and changes in protection policies in the Circum-Bohai Coastal Zone.



Although the impact of natural changes such as sea level rise in the past 30 years is limited and incomparable with the impact of human expansion on the results of this paper. However, with further global changes in the future, the impact on the environmental sustainability of the coastal zone is expected to be increasingly significant. Accordingly, we recommend strengthening the long-term monitoring of climate change and human expansion such as reclamation in the coastal zone. In accordance with the conditions of the coastal zone’s resource and environmental carrying capacity, suitability for development, and importance of ecological protection, we should delineate the development boundary for human activities such as reclamation and ecological protection red line. We should strictly control the scale and intensity of reclamation and increase the difficulty and requirements for approval. For the completed reclamation projects, we should strengthen the monitoring of the surrounding water environmental quality and ecosystem, and improve the legislation and enforcement efforts. For the completed reclamation projects, we should strengthen the monitoring of the surrounding offshore water environment and ecosystem, and improve the legislation and enforcement efforts. In addition, it is desirable for governments at all levels to establish a coordination mechanism that integrates sea and land and crosses administrative regions to achieve reciprocal supervision and cooperation in governance.



Conclusion

How human societies use, manage and interact with the coastal zone land is the key to addressing current issues of sustainable development of coastal zones. This paper uses the remote sensing big data processing platform and long-term time-series image data to analyze the interannual land use function and structural evolution of the Bohai Sea coastal zone, which has the only enclosed inland sea in China. Then we explored the spatial and temporal patterns of human expansion in the CBCZ coastal zone from three aspects: reclamation, aquaculture ponds (saltern), and artificial surface, and analyzed the environmental impacts of human expansion on coastal wetlands, land, and offshore water quality. The study found that: (1) human expansion in the Bohai Sea coastal zone over the past 30 years has been continuous and significant, where human expansion such as reclamation, port construction, town and industrial park construction, tourism development, and coastal engineering have dominated the changes in land use in the coastal zone, except for a few estuarine areas such as the Yellow River Delta; (2) There are significant temporal and spatial variations in human expansion in the coastal zone, which not only depends on the local natural development conditions of the coastal zone itself, but also is highly correlated with the high level of economic interests demanded by humans for the sea in different periods and the policies of coastal zone development; (3) The spatial and temporal patterns of offshore water quality and wetland degradation in the CBCZ have a high coupling with human expansion such as man-made surface and reclamation, which clearly indicates that the rapid human expansion threatens the ecosystem of the offshore land and sea areas tremendously. They damage the original hydrodynamic and circulation mechanisms of the coastal zone, and also cause a large loss of coastal wetlands, which seriously threatens biodiversity. In addition, the response of human expansion to coastal zone development policies is far higher than that of protection policies. As the negative effects of human activities are becoming more and more pronounced, coastal zone protection policies have been introduced more frequently and with greater force, which have also achieved certain governance outcomes. However, the key to addressing the problem is to coordinate the relationship between coastal development and protection, and to coordinate the cooperation between land and sea areas and different coastal zones in terms of long-term sustainable development.
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Detailed management of the coastline is critical to the development of coastal states. However, the current classification of the coastline is relatively weak. This study proposed an automatic method to detect coastlines with category attributes based on multi-scale segmentation and multi-level inheritance classification. Fully integrating the advantages of multi-scale segmentation and multi-level classification, it solved the problems that traditional methods could not solve, such as extracting coastlines with categorical attributes, cultivation ponds that are easily affected by tidal flats, and complex coastal terrain. The Chinese GF-2 satellite images are used to extract various types of coastlines in Jiaozhou Bay and its surrounding areas such as the harbor-wharf coastline, silt coastline, pond coastline, rocky coastline, and sandy coastline. Compared with the human interpretation, it is found that the coastline extracted by our proposed method is different by 10.104 km in the harbor-wharf coastline, 0.099 km in the silt coastline, 2.677 km in the pond coastline, 8.831 km in the rocky coastline, and 0.218 km in the sandy coastline. Furthermore, compared to the object-based region growing integrating edge detection (OBRGIE) method, it is increased by 13.52%, 2.16%, 14.48%, 52.57%, and 22.97%, respectively. The results show that our proposed method is algorithmically more reasonable, accurate, and powerful. It can provide data support for refined coastline management.
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Introduction

The coastline is the dividing line between sea and land formed by the average high tide of the spring tide for many years (Boak and Turner, 2005; Lui et al., 2011). It is the basis for coastal zone management, as well as the baseline for ocean navigation and sea area determination. The coastal zone is of great significance to economic development and the natural environment, although it has a higher risk of natural disasters such as tsunamis, waves, and coastal erosion (Mulder et al., 2011; Chen et al., 2021). Coastal areas have better resource exchange opportunities and economic development capabilities than inland areas (Rangel-Buitrago et al., 2015). Therefore, quickly extracting coastline from remote sensing images plays a vital role in the local government’s unified development, utilization, and management of coastal resources.

High-resolution remote sensing technology provides a technical means for coastline measurement with its advantages of high resolution and high positioning accuracy (Lui et al., 2011). With the rapid development of high-resolution satellites, the research on coastline extraction based on high-resolution images has also been widely used. Various research scholars have presented many methods for remote sensing interpretation of coastline; the automatic coastline extraction methods such as edge detection (Liu and Jezek, 2004; Sheng et al., 2021), region growth (Jin et al., 2020), threshold segmentation (Wang et al., 2016; Chen et al., 2022), deep learning (Liu et al., 2019), and object-oriented method (Ge et al., 2014; Wu et al., 2015) are used worldwide, while traditional methods, such as the visual interpretation of human–computer interaction, are still widely used by experts to extract coastal information (Yasir et al., 2021). The edge detection, regional growth, and threshold segmentation methods are easily affected by the complex coastal environment, and the type attributes of the coastline cannot be obtained (Yasir et al., 2020; Chang et al., 2021; Yi et al., 2022). The deep learning methods are required to produce a large number of samples, which is challenging to cover various scenes (Cheng, 2022). However, the object-oriented method can accurately obtain the boundary of coastal features through multi-scale segmentation and eliminate the influence of the coastal environment through classification results.

In recent years, the object-oriented method to obtain coastline has been widely used. Most scholars use the optimal global segmentation scale to extract coastlines without types (Wu et al., 2017; Bi et al., 2019; Zhang et al., 2022). For complex coasts, some new methods based on object orientation have been proposed, such as the OBRGIE method, which can delineate aquaculture coastlines (Zhang et al., 2013). A few scholars applied the object-oriented method to distinguish coastline types. It can be divided into two methods: one is to use the threshold method (Ju et al., 2017), and the other is to use the classification results (Wang, 2020) to determine the types of the coastline. However, their work has many flaws, such as the types of the coastline are not clear, or some coastlines will lose the category attribute. In view of these studies, we proposed a method to automatically detect coastlines with category attributes based on multi-scale segmentation and multi-level inheritance classification. Our main contributions are as follows:

	Develop a method to automatically extract coastlines based on multi-scale segmentation and multi-level inheritance classification, which perfectly integrates multi-scale segmentation and multi-level inheritance classification. It can eliminate the influence of coastal terrain on coastline extraction and obtain accurate coastlines.

	Identify various types of coastlines such as harbor-wharf coastline, pond coastline, rocky coastline, silt coastline, and sandy coastline.





Methods

In this paper, a coastline extraction method based on multi-scale segmentation and multi-level inheritance classification was presented. The technical steps are shown in Figure 1.




Figure 1 | The overall methodology flowchart adopted in current research work for coastline extraction.




Multi-scale segmentation

Image segmentation is the first step in object-oriented image classification and analysis. The selection of the segmentation scale directly determines the size of the image object and the spatial scale level of the study area (Sun et al., 2018); thus, multi-scale segmentation results determine the location accuracy of coastline extraction. The method proposed by us performs optimal segmentation according to the characteristics of each coastal feature, which provides a basis for multi-level inheritance classification. The specific principle is shown in Figure 2.




Figure 2 | The principle of multi-scale segmentation.



The near-infrared (NIR) band is sensitive to water. To better segment ocean and land, the weight of the image bands is set as blue:green:red:NIR = 1:1:1:2. Image segmentation needs to determine the shape index and compactness, that is, the weight of shape heterogeneity and the weight of compactness heterogeneity. The sum of the weights of the shape index and the spectral index is 1. If the shape index is determined, the spectral index is also known, and the same is true for compactness and smoothness. Many scholars have used the relationship between homogeneity and heterogeneity to construct a segmentation evaluation index and an optimal segmentation scale model to select the optimal segmentation scale. However, the shape index and compactness cannot be automatically determined. Therefore, this paper adopts a trial-and-error approach to determine these two parameters.

When the segmentation scale matches the real ground objects, the local variance will reach the maximum value. At this time, the homogeneity within a single object and the difference between the objects will reach the maximum, and we can achieve effective segmentation of ground objects by calculating the maximum value of the difference. The Estimation of Scale Parameter (ESP) scale evaluation algorithm is used to calculate the possible value of the optimal scale (Drăguţ et al., 2014; Bai, 2020). The algorithm determines the optimal segmentation scale by calculating the mean of local variance (LV) and the rate of change of the mean local variance rate of change (ROC). Equations (1) and (2) are as follows:





where CL is the average brightness of a single image object in the band L,   is the average brightness of all objects in the image in the band L, m is the sum of the number of objects in the image, K is the local variance of the target layer, and K - 1 is the local variance of a layer.

When the ROC reaches the maximum value, the segmentation scale corresponding to LV is the optimal possible value. Then, the optimal value is determined according to the segmentation effect.



Multi-level inheritance classification

In order to obtain accurate classification results of each coastal feature, we applied the multi-level inheritance classification. Its working principle is as follows: each classification layer extracts the corresponding coastal features and then inherits other features to the next classification layer until all coastal features are classified.

The selection of remote sensing interpretation marks is the key to correctly identifying the type of coastline and extracting the position of the coastline. The classification of coastal features must be based on the interpretation marks of the coastline. Based on the topic “Comprehensive Survey and Evaluation of China’s Offshore Oceans”, China surveyed and evaluated the coastline (Sun et al., 2011) and divided the coastline into a natural and an artificial coastline. The natural coastline is further subdivided into the following: rocky coastline, sandy coastline, silt coastline, and biological coastline. The artificial coastline includes the harbor-wharf coastline, the dam coastline, and the pond coastline, among others. The classification marks of coastal features in this paper refer to Sun’s interpretation marks research.

According to the characteristics of coastal features, a total of 48 index features, spectral features, geometric features, and texture features (Su et al., 2008; Wang, 2020) were selected for the classification features (Table 1).


Table 1 | Categorical features including blue, green, red, and NIR bands.



Based on each object segmentation, a classification hierarchy is constructed according to the segmentation scale and segmentation effect. The nearest-neighbor classification method can extract coastal features layer by layer (Lin et al., 2018). Outside areas of the extracted coastal features are inherited to the next level to reclass. Different features have different feature expressions; when the classification features do not apply to a particular feature, classification accuracy will be reduced. It is necessary to optimize the features of the samples selected by each classification layer and finally classify all the features. Then, all classification results will be inherited to a layer.



Automatic coastline extraction steps

In this section, we describe how to automatically obtain coastlines with attributes based on the classification result. The classified coastal features have attribute information corresponding to various shorelines. In this part, we only need to filter the location according to the definition of coastline to obtain various coastlines.

	(1) By merging objects of the same type at adjacent positions, we can reduce the number of objects and find the largest area of the ocean from it. The largest ocean as a basis for screening coastline.

	(2) Filter the objects adjacent to the sea and convert them into line features. Since the classification result has attributes of coastline types, the line features also have corresponding attributes. Traverse lines with attributes of the breeding pond, harbor-wharf, rock, and land, then filter those that are adjacent to the biggest sea. The pond coastline, harbor-wharf coastline, rocky coastline, and silt coastline can get. Similarly, keep the beach attribute lines that are not adjacent to the sea. The sandy coastline is available.

	(3) Multi-scale segmentation is based on pixels, and the obtained segmentation boundary will have a lot of sawtooth, which will cause the extracted coastline to be too curved. Thus, extracted lines need smoothing before the final coastline can be obtained.






Experiments


Study area and data

Jiaozhou Bay is located in the south coast of Jiaodong Peninsula, Qingdao City, Shandong Province, China, at 120° 06’–120° 22’ east longitude, 36° 03’–36° 15’ north latitude. The total area is 25 km wide from east to west and 32 km long from north to south, covers an area of 446 km2, and has a maximum water depth of 64 m and an average water depth of 7 m (Shen, 2001). Figure 3 depicts the geographical location of the study area.




Figure 3 | The geographical location of the study area.



In the current study, we collected four images from the GF-2 Chinese satellite of the year 2018 for the region of Jiaozhou Bay and surrounding areas. The images were acquired from the China Centre for Resources Satellite Data and Application website (http://36.112.130.153:7777/DSSPlatform/index.html), and the specific details of the parameters are listed in Table 2.


Table 2 | The details of the Chinese GF-2 sensor parameters used in the current study.



Data preprocessing is the premise of the whole experiment. First of all, radiometric calibration, atmospheric correction, and orthorectification were performed on the panchromatic bands of the four images. Radiometric calibration and orthorectification were performed on the multi-spectral bands. Then, the processed panchromatic and multi-spectral bands are fused and mosaicked to obtain a 1 × 1 m resolution image of the study area (Wang, 2021). Second, the Normalized Difference Water Index (NDWI) image was obtained by band calculation on the mosaicked image (Gao, 1996), and the water edge (coastline) was extracted from NDWI by the regional growing method (Liu et al., 2017; Incekara et al., 2018) (Figure 4A). Equation (3) is as follows:






Figure 4 | Image pre-processing: (A) the result of the regional growth method coastline extraction corresponding to NDWI; (B) the buffer of the research area.



where Green and NIR are bands of the GF-2 satellite image.

A 600-m-distance buffer was generated through the extracted water edge. Finally, crop the research area from the whole image scene as shown in Figure 4B.




Results

After investigating and analyzing the coastline of Jiaozhou Bay and its surrounding areas, they are classified into the harbor-wharf coastline, pond coastline, rocky coastline, silt coastline, and sandy coastline. The feature segmentation parameters corresponding to each type of coastline are determined (Tables 3, 4), and the segmentation effect is presented in Figure 5.


Table 3 | LV and ROC of each coastal feature.




Table 4 | Segmentation parameters of each coastal land type.






Figure 5 | Different types of segmentation effects: (A) ocean, (B) sand, (C) harbor-wharf, (D) ship, and (E) rock.



According to the interpretation of coastline signs, combined with the distribution characteristics of the coastline in Jiaozhou Bay and its surrounding areas, a classification system was established (Figure 6).




Figure 6 | Coastline classification system.



In the current study area, we performed multi-level inheritance classification to attain the classification result (Figure 7). Classification results include ocean, land, silt, pond, sand, ship, rock, and harbor-wharf. After processing the classification results, such as merging different categories, we can get an accurate boundary between ocean and land, on which the next step of coastline extraction can proceed.




Figure 7 | Classification result of coastal features of Jiaozhou Bay.



Based on the post-processing result, the harbor-wharf coastline, pond coastline, silt coastline, rocky coastline, and sandy coastline were automatically extracted and then smoothed to acquire the final coastline (Figure 8). The coastlines have a very good effect on visuals.




Figure 8 | Automatic selection of various types of coastlines: From A-E represents the sandy coastline, pond coastline, silt coastline, harbor-wharf coastline, and rocky coastline.




Analysis

To verify the effectiveness of our proposed method, we used the methods of canny edge detection, regional growth, and OBRGIE to extract the coastline and compared the results with our method. In the canny operator, we set the threshold to 0.2, and in the regional growth method, the threshold is set to 0.15. Different techniques were used for the automated coastline extraction, but our algorithm is the most applicable because it creates an accurate result (Figure 9).




Figure 9 | Extraction results of Jiaozhou Bay: (A) the original image, (B) canny edge detection coastline, (C) the regional growth extracted coastline, (D) OBRGIE extracted coastline, and (E) our method extracted coastline.



In different methods, manually adjust the river port line, Jiaozhou Bay Bridge, and the slender waterway in the breeding pond to make the evaluation standard uniform with human interpretation. The coastline of human interpretation is used as the truth value to evaluate the accuracy of the extracted coastline. The extracted results by different methods are superimposed for comparison, as shown in Figure 10. We concluded from Figure 10 that our extraction technique is more reliable and quicker than other techniques.




Figure 10 | Coastline extraction results of different methods and comparisons.



Figures 9, 10 show that in Jiaozhou Bay, the impact of seawater has formed several kilometers of tidal flats, and people have built large-scale breeding ponds on the edges of the tidal flats. The extraction results of canny edge detection in tidal flats and breeding ponds are not good, and the regional growth does not achieve the ideal extraction effect in some tidal flats. The OBRGIE method and our proposed method work well, but our method is more detailed and has better accuracy.

The accuracy assessment of the coastline can be described as length and position. The statistical length of various coastlines by our method is shown in Table 5. Mean offset (mean) and root mean square error (RMSE) are used to verify the position accuracy. For the coastline extracted by different methods, take a point every 10 m and make the vertical distance from the point to the coastline of human interpretation. The mean and RMSE of the vertical distance were calculated (Tables 6, 7).


Table 5 | Length statistics of coastline types by different methods (unit: km).




Table 6 | Position accuracy of different methods (unit: m).




Table 7 | Position accuracy of coastline types in different methods (unit: m).



From Table 5, it can be determined that the canny edge detection and regional growth method cannot obtain the coastline types. The principle of the OBRGIE method is to first extract the coastline from the image and then classify the buffer zone. Finally, use ArcGIS to assign the attributes of the landline segment to the ocean line segment. When performing spatial connection of attributes, there are many possibilities in space between landline and ocean line segments, such as intersection and separation. This will lead to errors in the length of the acquired coastline and partial loss of attributes. Due to the defects of this method, the coastline extracted by this method has 34 km without the coastline type. Our method differs from human interpretation by 15.957 km. The lengths of our extracted harbor-wharf coastline, pond coastline, rocky coastline, silt coastline, and sandy coastline differ from the real coastline by 10.104 km, 2.676 km, 8.831 km, 0.099 km, and 0.229 km, which is the closest to the truth value among all methods.

There are many ports in our research area, and the ships parked at the port cannot be accurately segmented due to the influence of the overhead crane. They will be classified as harbor-wharf and increase the length of the harbor-wharf coastline. Furthermore, due to the human activities around Niu Island in the Tangdao Bay coastline so it is identified as a harbor-wharf coastline. After removing these two factors, it can be considered that our result is reasonable.

The position accuracies are presented in Tables 6, 7. It can be found that our method improved by an order of magnitude at the mean, and the RMSE is the best of all methods. In the OBRGIE method, the mean and RMSE of silt and sandy coastline are very large, which indicates that this method is unstable. In our method, the mean of various coastlines is less than 10 m as a whole; the RMSE of various coastlines is approximately 20 m. All data show that our method outperforms other methods.




Conclusion and future work

Our proposed method algorithmically combines multi-scale segmentation and multi-level inheritance classification. Among them, multi-scale segmentation introduces ROC and LV to determine the optimal segmentation scale of each coastal feature, and multi-level inheritance classification enables each coastal feature to be classified with high precision. As a result, a coastline recognition algorithm is used, which can automatically obtain various types of coastlines.

This method improved the defects of other methods in tidal flats and breeding ponds. Based on the classification results, the automatic extraction of the coastline is realized, which solves the problem that the traditional methods cannot directly obtain the attributes of the coastline. Compared with the different methods, it is found that the coastline extracted by this method has significant advantages in the accuracy of length and position. The extraction result of our method is 9.04% higher than the canny edge detection, 7.85% higher than the regional growth, and 10.71% higher than the OBRGIE in length accuracy. The mean and RMSE increased by 14.45 m and 15.09 m compared to the canny edge detection, by 22.62 m and 57.94 m compared to OBRGIE, and by 87.18 m and 159.16 m compared to the regional growth in position accuracy. It can be used in the refined management of the coastline. This paper only realizes the preliminary coastline extraction and has not considered the influence of factors such as suspended sediment, tide level, and season. Therefore, the next task is to perform tide level correction according to the type of coastline to acquire the real coastline.
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Saltmarshes in coastal wetlands provide important ecosystem services. Satellite remote sensing has been widely used for mapping and classification of saltmarsh vegetation, however, medium-spatial-resolution satellite datasets such as Landsat-series imagery may induce mixed pixel problems over saltmarsh landscapes which are spatially heterogeneous.  Sub-pixel fractional cover estimation of saltmarsh vegetation at species level are required to better understand the distribution and canopy structure of saltmarsh vegetation. In this study, we presented an approach framework for estimating and mapping the fractional cover of major saltmarsh species in the Yellow River Delta, China based on time series Landsat 8 Operational Land Imager data. To solve the problem that the coastal area is frequently covered by clouds, we adopted the recently developed virtual image-based cloud removal (VICR) algorithm to reconstruct missing image values under the cloud/cloud shadows over the time series Landsat imagery. Then, we developed an ensemble learning model (ELM), which incorporates Random Forest Regression (RFR), K-Nearest Neighbor Regression (KNNR) and Gradient Boosted Regression Tree (GBRT) based on temporal-spectral features derived from the time-series cloudless images to estimate the fractional cover of major vegetation types, i.e., Phragmites australis, Suaeda salsa and the invasive species, Spartina alterniflora. High spatial resolution imagery acquired by the Unmanned Aerial Vehicle and Gaofen-6 satellites were used for reference sample collections. The results showed that our approach successfully estimated the fractional cover of each saltmarsh species (average of R-square:0.891, RMSE: 7.48%). Through four scenarios of experiments, we found that the ELM is advantageous over each individual model. When the images during key months were absent, cloud removal for the Landsat images considerably improved the estimation accuracies. In the study area, Spartina alterniflora covers the largest area (5753.97 ha), followed by Phragmites australis with spatial extent area of 4208.4 ha and Suaeda salsa of 1984.41 ha. The average fractional cover of S. alterniflora was 58.45%, that of P. australis was 51.64% and that of S.salsa was 51.64%.
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1 Introduction

Saltmarshes in coastal wetlands provide significant ecosystem services such as flood protection, erosion control, biodiversity maintenance, carbon sequestration and climate change mitigation (Mojica Vélez et al., 2018; Wang et al., 2021a; Wang et al., 2021b). During the past decades, saltmarshes in many coastal areas have been suffering from degradation and ecosystem function loss (Hao et al., 2020; Zhang et al., 2020; Ding et al., 2021). Monitoring the spatial extent, growth status and canopy structure of saltmarshes is essential for assessing the process of ecological degradation and restoration. With the development of remote sensing technology, an increasing number of studies have been focusing on the mapping of saltmarsh vegetation in coastal wetlands (Chen et al., 2020; Wang et al., 2020b; Zhang et al., 2020; Wang et al., 2021a). For example, our previous study conducted annual mapping for the coastal wetlands in the Yellow River Delta (YRD) based on Landsat time series imagery, and analyzed the expansion of the Spartina Alterniflora, an invasive saltmarsh species in coastal China (Wang et al., 2021b). These studies basically adopted the strategy of “hard classification”, assuming that one pixel corresponds to a single classification category (Zhou et al., 2018; Zhang et al., 2020; Wang et al., 2021b). For medium to coarse resolution imagery over coastal wetlands, a pixel may have multiple classes because of the strong landscape heterogeneity (Chen et al., 2020; Yang et al., 2020). Hard classification based on medium-resolution remote sensing images such as those acquired by Landsat series satellites tends to produce significant mixed pixel effect. To reduce these effects, researchers have paid attention to the fractional cover estimation of each land cover type at sub-pixel scale. At present, fractional cover estimation has been mostly applied in urban areas, forests, shrubland, etc., and it is relatively less applied in coastal salt marsh wetlands (Mu et al., 2018; Yang et al., 2020). For vegetation cover estimation, many studies considered different vegetation species as a single category, or estimated the coverage at the community level (Jia et al., 2016; Zhou et al., 2018; Song et al., 2022), and the studies on the vegetation coverage estimation at the species level are limited.

The methods for fractional cover estimation can be categorized into spectral mixture analysis models (Shanmugam et al., 2006; Gao et al., 2020), geometric optical models based on multi-angle observations (Mu et al., 2018), and supervised regression models (Xu et al., 2005; Jia et al., 2016; Yang et al., 2020). Spectral mixture analysis involves physically-based models assuming that the spectrum in a pixel is a linear or non-linear combination of the spectra of all components within the pixel. In the multispectral image, the existence of endmember spectral variability largely affects modeling accuracies. In particular, different vegetation species in coastal wetlands may have very similar spectra, which brings more challenges to the spectral mixture analysis. Geometric optical models require multi-angle observations, which are only applicable to a few satellite sensors like MODIS (Chopping et al., 2012; Mu et al., 2018). Supervised regression methods, particularly machine learning models have the characteristics of flexibility, stability and ease of use. The basic idea of this method is to derive the fractional cover of each land cover by modeling the internal relationship between remote sensing image features and the land cover fractions. At present, machine learning models have been widely used to estimate vegetation cover of forest and cropland (Jia et al., 2016; Wang et al., 2018; Song et al., 2022), while studies have reported that individual machine learning models tend to have different performances at different locations across the study area (Di et al., 2019), although the overall performance can be very similar. Other research fields have applied ensemble learning models (ELMs) currently, and verified the advantages of ensemble learning over a single model (Di et al., 2019; Requia et al., 2020).

Existing studies on vegetation cover estimation have mostly used a single cloudless image (Shanmugam et al., 2006; Zhou et al., 2018; Song et al., 2022). For example, Zhou et al. (2018) estimated fractional cover of S. alterniflora in coastal area of Fujian Province, China based on SPOT imagery during growing season. However, the spectra of different vegetation species over an image can be very similar, bringing great challenges for cover estimation of different species (Wu et al., 2021; Zhang et al., 2021). Due to the differences in phenology among different vegetation types, in recent years, studies have proposed using time series images for vegetation cover estimation (He et al., 2019; Song et al., 2022). However, for cloudy and rainy coastal wetlands, acquiring cloud-free time series imagery are difficult. Wang et al. (2021b) found that when mapping coastal wetland vegetations, the absence of images in several key months of plant growth decreased the classification accuracy significantly. At present, many scholars have developed cloud removal algorithms for optical remote sensing images, which can reconstruct the reflectance of the land surface covered by thick clouds and cloud shadows (Zhu et al., 2012a; Chen et al., 2017; Cao et al., 2020). Our previous research found that the existing algorithms tended to produce poor reconstruction results over the coastal wetlands because the coastal wetlands are highly dynamic due to tidal inundation (Wang et al., 2022). Therefore, we proposed a new cloud removal algorithm, i.e., virtual image-based cloud removal (VICR) algorithm (Wang et al., 2022), which improved the cloud removal accuracy over the coastal wetlands. We expect that the full time-series cloud-removed images reconstructed by VICR help to enhance the fractional cover estimation of saltmarsh vegetation at species level at the coastal wetlands.

The Yellow River Delta (YRD) is one of the youngest and most extensive coastal wetland systems in the world (Li et al., 2019; Wang et al., 2021b; Zhang et al., 2021). Due to the invasion of Spartina alterniflora in recent years, the habitats of native species Suaeda salsa and Phragmites australis have shrunk, resulting in the reduction of S.salsa cover and the fragmentation of the habitats. In this study, we took the YRD wetland as study area and aimed to (1) present a machine-learning-based ensemble model for species-level vegetation cover estimation, and (2) evaluate the role of cloud-removed time-series images in vegetation cover estimation. We hope that this study will provide a technical framework for fractional cover estimation of saltmarsh species, and help to analyze the ecological security of wetlands, supporting the sustainable development of coastal wetlands.



2 Study area and dataset


2.1 Study area

The study area is in the Yellow River Delta National Nature Reserve, which is located in the northeast of Dongying City, Shandong Province, China (118°32’58’’E-119°20’27’’E, 37°34’46’’N-38°12’18’’N). It belongs to warm temperate zone and semi-humid continental monsoon climate, with four distinct seasons and rainy summers. The annual average temperature is 11.7-12.6°C, the annual average precipitation is 530-630 mm, and about 70% of the precipitation is concentrated in summer. The study area covers the intertidal zones of the Yellow River Estuary (
Figure 1
), with an area of 923 km2. P.australis, S.salsa, and S.alterniflora are the primary vegetation species in the study area (Wang et al., 2021b; Zhang et al., 2021). P.australis generally grows on both sides of the river bank; in the inner part of tidal flat, it is mixed with Tamarix Chinensis. P. australis starts to grow in April, flowering from August to September, and start senescence in October. P.australis near the river generally grows better with higher density, while P.australis in the area with higher salinity is relatively short and sparse. S.salsa is an annual herb with strong salt-tolerance. It is mostly found in mid to high tide areas and covers a wide range. It blooms red from July to October. S.alterniflora is a perennial herb native to the Atlantic coast of North America. It was introduced to the Yellow River Estuary in the 1990s. Due to its strong reproductive capacity and environmental adaptability, S.alterniflora has expanded rapidly in the tidal flat area of Yellow River Delta in recent years, resulting in degradation of the native S.salsa and seagrass bed, which has seriously affected the biodiversity in the coastal wetland. The study area was divided into four zones where Zone A and B are located in the north bank of the estuary, and Zone C and D are located in the south bank. Zone B and C are located near the river mouth.




Figure 1 | 
Location of the study area. Qingshuigou course was the old river channel before 1996. The study area is divided in Zone (A–D) based on the distribution of artificial groins and the river channel.






2.2 Landsat 8 imagery and pre-processing

Landsat 8 satellite is a multispectral imaging satellite launched in 2013. Its carries Operational Land Imager (OLI) sensor with 9 spectral bands from visible to shortwave infrared wavelengths. We downloaded all available Landsat 8 Level 2 Tier 1 surface reflectance images covering the study area (Row 121, Path 43) acquired during January 1, 2020 ~ December 31, 2020 from Google Earth Engine (GEE) platform. The quality assessment (QA) bands of the images were used to identify the area covered by clouds and cloud shadows. There were 18 images in total, and the average cloud coverage was 29.2%. 
Figure 2
 illustrates the spatial distribution of the number of valid observations (no cloud/cloud shadow). The average number of valid observations is 12.7 per pixel, while the number was 11.5 per pixel over the intertidal area.




Figure 2 | 
Landsat 8 OLI good observations in the Yellow River Delta in 2020.






2.3 Auxiliary data and preprocessing

Auxiliary datasets include high-spatial-resolution images taken by DJI Phantom 4 Multispectral (P4M) Unmanned Aerial Vehicle (UAV) and Gaofen-6 satellite images, which were primarily used for reference data collection. DJI P4M UAV carries a RGB camera and a multispectral sensor with 5 spectral bands including blue, green, red, red-edge and near-infrared (NIR). In September 2020, around 11 UAV flights with an average coverage of 10.2ha were taken in the study area (
Figure 1
). For each flight, the flight height was 50 m, resulting in 2.65 cm spatial resolution. The along path and cross path overlapping area were over 70%. Within the coverages of UAV flights, 68 field plots with size 1m × 1m were randomly selected. Location of each plot was recorded with handheld GPS RTK equipment, the vegetation species, density and growth status were also recorded at the field surveys. For all UAV images, DJI Terra software was used to generate multispectral orthophoto images. The ortho-images were then segmented into objects using multiresolution segmentation algorithm embedded in eCognition software. Base on the vegetation indexes calculated for each object, the threshold method was used to classify the objects into bare flat, S. salsa, S. alterniflora and P. australis. The classification maps were then upscaled to Landsat 30 m resolution and the fractional cover of each vegetation type within 30 m-grids were calculated using area aggregation approach. The total of 112.3 ha UAV flight coverage resulted in 826 samples.

Because many areas in the YRD wetlands were difficult to access, the UAV flight coverages and the reference samples generated from the UAV images were limited. To supplement the reference samples, high-spatial resolution imagery acquired by Gaofen 6 satellite (GF-6) on September 4, 2020 was used to generate additional reference samples of fractional cover. GF-6 is a high-spatial-resolution satellite that was launched in 2018 as one of the series of China High-resolution Earth Observation System (CHEOS) satellites. It carries a 2-meter resolution panchromatic camera and an 8-meter multi-spectral imager with blue, green, red, and near-infrared band. We first fused the panchromatic imagery with the multispectral imagery using NNDiffuse Pan Sharpening method to obtain 2 meters-resolution multispectral image. Then, we utilized the dimidiate pixel model to estimate the fractional vegetation cover for every 2 m pixel (Song et al., 2022). As the dimidiate pixel model cannot discriminate vegetation species, we only selected those pixels that contain a single vegetation species as reference pixels. Expert knowledge and field experiences helped to determine whether a pixel contain one species. For example, S. alterniflora at the landward edge is unlikely mixed with other species (Zhang et al., 2020). As a result, 348 sample points were generated based on GF-6 images (
Figure 1
).




3 Methods

In this study, we developed a machine learning-based ensemble model for fractional cover estimation for different salt marsh vegetation species based on time series Landsat imagery (
Figure 3
). The ELM aimed to enhance the performance of each individual model and improve the fractional cover estimation accuracy. Temporal composite spectral features were generated from time series Landsat imagery. As some Landsat images have cloud and cloud shadow contamination, we conducted cloud removal with the newly proposed VICR algorithm. In order to compare and verify the role of cloud removal in vegetation coverage estimation, we compared the fractional cover estimation accuracies by using the original time-series Landsat images and the cloud-removed images. Section 3.1 and Section 3.2 briefly introduces the VICR cloud removal algorithm and generation of temporal features, respectively. Section 3.3 describes the details of the ELM; Section 3.4 describes the accuracy assessment approach and the scenarios tested in our study.




Figure 3 | 
Flowchart of the study.





3.1 Cloud removal for Landsat imagery using VICR algorithm

To date, many cloud removal algorithms have been developed (Zhu et al., 2012a; Cao et al., 2020; Wang et al., 2022). These algorithms used one or more cloud-free imagery as reference images to predict the missing values in the cloud and cloud shadows in the target image (i.e., the cloud image). However, these algorithms had limited performance when dealing with landscapes with abrupt changes (Wang et al., 2022) such as the estuarian wetlands that are frequently inundated by tidal water.

To solve the above problems, our previous research proposed VICR, a new cloud removal algorithm based on time series reference images. VICR implements cloud removal by filling each cloud region separately. For each cloud region, it consists of three steps: (1) Virtual image construction by linear transformation using time series Landsat imagery. In this step, optimal number of reference images is determined. (2) Similar neighboring pixel selection with assist of a newly proposed temporal-weighted spectral distance. (3) Residual image estimation and cloud image reconstruction by adding residual image to the virtual image. VICR also proposed a strategy for time-series cloud image processing. Details of the model can be found in Wang et al. (2022). Following this strategy, the Landsat imagery acquired in 2020 over the study area (
Table 1
) were sorted in the order of the cloud cover percentage; the image with the lowest cloud cover was processed first and then the cloud-removed image was used as reference image for images with larger cloud cover.


Table 1 | 
Landsat 8 OLI images acquired in 2020 over the study area.






3.2 Generation of temporal features

Temporal information is helpful to distinguish different salt marsh vegetation types and different fractional cover of the same vegetation type (Song et al., 2022). Our previous research found that temporal composite of spectral indices as input features help to discriminate different coastal wetland cover types (Wang et al., 2021b). We also found that the harmonic regression features improved the classification accuracies. Harmonic regression fits the time series spectral indices [such as the normalized difference vegetation index (NDVI)] using superposition of periodic curves and can well represent the phenological pattern of each vegetation species. Following our previous study, we first calculated seven spectral indexes from each Landsat 8 OLI images in 2020 (Wang et al., 2021b), including Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil Adjustment Vegetation Index (SAVI), Green Chlorophyll Vegetation Index (GCVI), Green Normalized Difference Vegetation index (GNDVI), Land Surface Water Index (LSWI) and Modified Normalized Difference Water Index (MNDWI). NDVI is the most common vegetation index to reflect the vegetation type and growth status (Tucker, 1979). EVI takes into account the canopy background and aerosol influences, so it is more sensitive to high biomass than NDVI (Huete et al., 2002). Compared to NDVI, SAVI is more suitable for low vegetation cover areas because it adds soil adjustment coefficient (Huete, 1988). GCVI has a larger dynamic range than NDVI and is suitable for densely vegetation areas (Grevstad et al., 2003). GNDVI has significant correlation with chlorophyll content and leaf area index (Gitelson and Merzlyak, 1998). LWSI is sensitive to canopy water content and soil moisture (Xiao et al., 2005), and MNDWI is good at identifying open water (Xu, 2006). The spectral indices were calculated using the following functions:















where ρblue ρgreen
, ρred
, ρNIR
 and ρSWIR1
 are the surface reflectance in blue, green, red, near infrared and short-wave infrared 1 bands in Landsat 8 OLI images.

The annual maximum, minimum, mean, median and standard deviation of the six spectral bands (blue, green, red, NIR, SWIR1 and SWIR2) and the seven spectral indexes were calculated for each pixel based on all Landsat imagery in 2020. Therefore, a total of 39 temporal composite images were generated.

In addition, the Harmonic ANalysis of Time Series (HANTS) method was used for all spectral indexes with obvious periodicity except for MNDWI. This method is beneficial to identify plant phenology, which helps to distinguish different plants (Zhou et al., 2015). The mathematical expression of HANTS used in this study is as follows:



where A is the amplitude of the harmonic wave, which represents the fluctuation range of the spectral index time series curve; the value can reflect the difference in productivity of different vegetation types in the whole cycle. Phase φ represents the peak time of spectral index, i.e., the peak time of vegetation growth. a
0 is the remainder value of the curve, representing the annual average value of the spectral index. In this study, the amplitude, phase and remainder of six spectral indexes constituted a total of 18 harmonic regression features.



3.3 Ensemble learning model

The ELM combined Random Forest Regression (RFR), K-Nearest Neighbor Regression (KNNR) and Gradient Boosted Regression Tree (GBRT). RFR is composed of multiple regression trees based on the bagging algorithm. There is no association with each decision tree in the forest, and the final output of the model is jointly determined by each decision tree. The selection of samples and features in RFR is random, which can effectively reduce the occurrence of over fitting. In addition, RFR can evaluate the importance of different features, has strong processing ability for high-dimensional data, and has a certain anti-noise ability, which makes this method widely used in remote sensing data (Ge et al., 2020; Yang et al., 2020). KNNR is an instance-based machine learning regression model which assumes that similar samples are more proximity in the feature space (Ge et al., 2020). In the process of regression prediction, the value of k neighbors is used as the prediction result. KNNR needs to normalize all features first, and then choose a distance measurement method to calculate the similarity between pixels. In this paper, Euclidean distance was used to calculate the similarity. GBRT is also a regression-tree-based machine learning model. Different from RFR where each regression tree is independent, GBRT connects each tree (weak learner) in a linear combination to continuously reduce the residual errors by the loss function. (Di et al., 2019; Yu et al., 2021). In the training process of GBRT, weak learners are generated through multiple iterations, and each learner is trained according to the residuals of the previous learner. Through iterative improvement of each weak learner, the GBRT model is finally obtained.

The ELM developed in this study integrated three models by using GBRT model. This is because that GBRT model has the following advantages: (1) strong prediction ability for low dimensional data; (2) strong processing ability for nonlinear data; and (3) strong flexibility in handling various continuous values, discrete values, and other types of data. Specifically, the predicted values from each of the RFR, KNNR and GBRT were used as temporal-spectral features, and the same training samples for each individual model were used to train the GBRT model, which was then used to predict the fractional cover of salt marsh vegetation species. Different machine learning models all used the grid search method to determine the optimal parameters.



3.4 Experimental scenarios and accuracy assessments

We aimed to investigate whether the cloud-removed imagery help to enhance the fractional cover estimation of different salt marsh species, and whether the ensemble learning regression algorithm helped to improve the accuracies. For this purpose, we designed four experimental scenarios as follows.


	
Scenario 1: All 57 temporal features (temporal composite features and harmonic regression features) were generated based on the original Landsat imagery (cloud and cloud shadows were masked out) and the cloud-removed Landsat imagery, respectively; Using these temporal features as input features, the ensemble learning regression model, as well as each individual model was used as fractional cover estimation model.


	
Scenario 2: A total of 39 composite features (i.e., the harmonic regression features were removed) were generated based on the original Landsat imagery (cloud and cloud shadows were masked out) and the cloud-removed Landsat imagery, respectively; Using these temporal features as input features, the ensemble learning regression model, as well as each individual model was used as fractional cover estimation model.


	
Scenario 3: same as Scenario 1 unless that Landsat images acquired in March, July and October were eliminated from the original image sets.


	
Scenario 4: same as Scenario 2 unless that Landsat images acquired in March, July and October were eliminated from the original image sets.




For each scenario, we can compare the estimation accuracies from the original imagery with those from the cloud-removed imagery; we can also compare the accuracies from each of the individual models and that from the ELM. By comparing scenario 1 with scenario 3 and by comparing scenario 2 with scenario 4, we can evaluate whether cloud removal can compensate the unavailability of observations during critical months. By comparing scenario 1 with scenario 2 and by comparing scenario 3 with scenario 4, we can evaluate the role of harmonic regression. Note that harmonic regression is essentially a gap filling algorithm which can build full time series observations, although its purpose is not recovering missing values obscured by cloud/cloud shadow.

For each scenario, ten-fold cross validation was used to evaluate the model performance. Specifically, the model was trained for ten times, at each time the model is fitted by a training data set consisting of randomly selected 90% of the total reference data, and the remaining 10% was used for validation. The accuracy assessment metrics include determination coefficient (R-square), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), and the formula are as follows:







where yi
 represents the reference fractional cover measured by UAV or high-spatial-resolution imagery,   represents the mean value of reference fractional cover, and   represents the predicted fractional cover. R-square represents the reliability of the regression model. Larger R-square indicates higher fitting accuracy. MAE can measure the average absolute difference between the fractional cover estimation and the reference values. RMSE is similar to MAE, but it can amplify larger errors.




4 Results


4.1 Comparison of fractional cover estimation accuracies from original and cloud-removed imagery



Figures 4
–
7
 showed the fractional cover estimation accuracies of the four scenarios using RFR, KNNR, GBRT and ELM, respectively. For all three vegetation species, the fractional cover estimation accuracies using the cloud-removed imagery were higher (greater R-square, lower RMSE and MAE) than those using the original imagery regardless of the scenarios and the machine learning models (expect for S.salsa in Scenario 2). Although the fractional cover estimation accuracies were different, all three independent models showed similar patterns as the ELM. The improvements were especially noticeable in Scenario 3 and Scenario 4 when assuming the images in March, July and October were unavailable. For example, for ELM, in Scenario 3 the average R-square increased from 0.859 to 0.922 (RMSE decreased from 8.4% to 6.2%), and in Scenario 4 the average R-square increased from 0.818 to 0.902 (RMSE decreased from 10.1% to 7.2%) when cloud removal was performed (
Figure 7
). However, when all the original Landsat images were used, good accuracies could be achieved even without cloud removal as long as harmonic regression parameters were added as input features, and the improvement resulted from cloud removal was minimal. For example, for ELM, in Scenario 1 the average R-square was 0.881 when the original Landsat images were used, and the average R-square was 0.891 when all cloud-removed imagery were used (
Figure 7A
). When the harmonic regression parameters were not involved in the fractional cover estimation model (Scenario 2), the accuracies considerably decreased, with R-square of only 0.839 with the original imagery and 0.849 with the cloud-removed imagery. This indicates that the harmonic regression features were more important than removing clouds from the images in discriminating saltmarsh species as well as in discriminating the vegetation cover differences if the time series images were sufficient. When the images in March, July and October were not involved, the fractional cover estimation accuracies decreased significantly even when the harmonic regression features were used, especially for S.salsa and the average accuracies (Scenario 3 vs. Scenario 1 without cloud removal). For the ELM, the R-square of the estimated S.salsa fractional cover declined from 0.854 to 0.794 when images acquired during the three months were not used. In this case, cloud removal for the remaining images improved the accuracies substantially. And the R-square of the estimated S. salsa fractional cover was 0.889 (S3-CR in 
Figure 7
), even higher than Scenario 1 (S1-CR in 
Figure 7A
). In general, cloud removal is helpful to improve the accuracy of fractional cover estimation, especially when there are few good observations.




Figure 4 | 
(A) R-square, (B) RMSE and (C) MAE of the fractional cover estimation of different salt marsh vegetation species from four scenarios using Random Forest Regression model. S1~S4: Scenario 1 ~ Scenario 4 based on the original Landsat imagery; S1-CR ~ S4-CR: Scenario 1 ~ Scenario 4 based on the cloud-removed Landsat imagery.







Figure 5 | 
(A) R-square, (B) RMSE and (C) MAE of the fractional cover estimation of different salt marsh vegetation species from four scenarios using K-Nearest Neighbor Regression model. S1~S4: Scenario 1 ~ Scenario 4 based on the original Landsat imagery; S1-CR ~ S4-CR: Scenario 1 ~ Scenario 4 based on the cloud-removed Landsat imagery.







Figure 6 | 
(A) R-square, (B) RMSE and (C) MAE of the fractional cover estimation of different salt marsh vegetation species from four scenarios using Gradient Boosting Regression Tree model. S1~S4: Scenario 1 ~ Scenario 4 based on the original Landsat imagery; S1-CR ~ S4-CR: Scenario 1 ~ Scenario 4 based on the cloud-removed Landsat imagery.







Figure 7 | 
(A) R-square, (B) RMSE and (C) MAE of the fractional cover estimation of different salt marsh vegetation species from four scenarios using Ensemble Learning model. S1~S4: Scenario 1 ~ Scenario 4 based on the original Landsat imagery; S1-CR ~ S4-CR: Scenario 1 ~ Scenario 4 based on the cloud-removed Landsat imagery.






4.2 Comparison of fractional cover estimation accuracies from different machine learning models

From 
Figures 4
-
7
, the ELM generally achieved the best accuracies for all scenarios regardless of using the original imagery or using the cloud-removed imagery. 
Tables 2
–
4
 respectively list the R-squares, RMSEs and MAEs of the estimated fractional cover derived from RFR, KNNR, GBRT and the ELM in Scenario 1 based on the cloud-removed images. The average R-square of the ELM estimation was 0.891, the average RMSE was 7.5% and the average MAE was 2.6%, which was higher than each individual model. Among the three individual models, RFR yielded the highest accuracies, slightly lower than those of the ELM. Compared to KNNR and GBRT, the accuracy was significantly improved when the models were integrated through GBRT, indicating that the GBRT can learn the residuals of each individual model through the integration process and effectively improve the estimation accuracy. For example, the average RMSE of the three-sub models is 8.03%, while the RMSE of the ELM is 7.48% (
Table 4
). Especially for P.australis, the RMSE of the three sub-models is 2.87%, while the RMSE of the ELM is 8.96%, and the RMSE decreases by an average of 9.97%, which indicating that ELM significantly improved the estimation accuracy of fractional cover of P.australis. 
Table 2
 showed the accuracy of vegetation coverage estimation of P.australis is the highest, followed by S.alterniflora, and finally S.salsa. The average R-square values of their sub-models are 0.905, 0.891, and 0.812 respectively. And for the ELM, the R-square for P.australis, S.alterniflora and S.salsa were 0.924, 0.890 and 0.859 respectively. For S. alterniflora, although the R-square of the ELM was very close to the average R-square of the three models, the ELM has obvious improvement in MAE. This also shows that the integration process can help improve the estimation accuracy.


Table 2 | 
R-square of the estimated fractional cover based on cloud-removed images in Scenario 1.





Table 3 | 
MAE (%) of the estimated fractional cover based on cloud-removed images in Scenario 1.





Table 4 | 
RMSE (%) of the estimated fractional cover based on cloud-removed images in Scenario 1. RFR, Random Forest Regression; KNNR, K-Nearest Neighbor Regression; GBRT, Gradient Boosted Regression Tree; ELM, Ensemble Learning Model.






Figure 8
 presents the fractional cover maps of the three salt marsh vegetation types estimated by each individual model and ELM respectively. All four models show generally similar spatial patterns of dense patches of S.alterniflora and P.australis: dense coverage (fractional cover over 0.5) of S.alterniflora was mainly distributed near the river mouth, while dense coverage of P.autralis was distributed along the river bank. However, considerable differences existed in terms of the distributions of low coverage of different vegetation types. From the KNNR model, low density S. alterniflora (fractional cover between 0.1 and 0.4) was widely distributed in the supra tidal zone (Zone D), where S. alterniflora growth is impossible due to high frequency of inundation. Compared to the GBRT model, wide area of P.australis with low density was distributed in the supratidal zone in Zone D, which was also inconsistent with the reality. In addition, a small patch of high-density P.australis (fractional cover over 0.8) was found through GBRT model in the sand bar at the river mouth (Zone C), which is also unlikely to occur. In contrast, the spatial extent estimated by RFR and GBRT was similar, but there were considerable differences in the fractional cover estimations for each vegetation type. For example, the spatial extent of S.alterniflora estimated by RFR model is much smaller than that estimated by GBRT in the south coast. But it is obvious that S.alterniflora should not grow on the sea, and there are some errors in both models. On the tidal flat of the south bank, the spatial extent of P.australis estimated by RFR model is less than that estimated by GBRT, while the estimations for S.salsa by two models are obviously opposite.




Figure 8 | 
The fractional cover of three salt marsh vegetation species based on different machine learning model. (A) based on RFR; (B) based on KNNR; (C) based on GBRT and (D) based on ELM.




Although there are some obvious errors in the fractional cover estimated by each individual models, the estimation accuracy was significantly improved by integrating the estimation results with the GBRT. For example, the over-estimation of S.alterniflora coverage along the south coast was significantly reduced, and the newly formed S.alterniflora patches can still be discovered. The estimated fractional cover of P.australis was also more reasonable. In the middle-low intertidal area with high soil salinity, the over-estimation of P.australis coverage is significantly reduced. Compared to the other two vegetation types, the final estimated fractional cover of S.salsa was low (ranging from 0.05 to 0.3) and the spatial extents of S.salsa was smaller than that estimated from the other models, which was consistent with field investigations and our previous reports (Han et al., 2022b). S.salsa is vulnerable to the tidal influence and the plants are generally sparse, therefore the estimation for S.salsa coverage is relatively difficult. By combining the three models, the fractional cover estimation for S.salsa was more robust. In general, the integration of the three individual models helps to improve the fractional cover estimation accuracy, and the spatial distribution of the estimated fractional cover of the saltmarsh vegetation species by the ELM is more reasonable.



4.3 Fractional cover of saltmarsh vegetation species across YRD

The results from ELM showed that the three species, S. alterniflora, P. australis and S. salsa, covered 5753.97 ha, 4208.4 ha and 1984.41 ha, respectively; and the average fractional cover was 58.45%, 51.64% and 51.64%, respectively. The fractional vegetation cover maps (
Figure 8D
) showed that P.australis was mainly distributed along the river banks and along the Qingshuigou course, the old river channel before 1996 (
Figure 1
). According to the zonal statistics (
Figure 9A
), the average fractional cover of P.australis was the highest in Zone B, which is 58.26%. The average fractional cover of P.australis in Zone D and in Zone C were 48.93% and 48.47%, respectively. Zone C demonstrated large spatial variation in P.australis coverage (
Figure 9A
). The coverage showed decreasing trend from the river banks to the tidal flats. This is consistent with the existing field-based studies (Xie et al., 2021), which reported that the biomass and coverage of P.australis decreased with increasing soil salinity and decreasing freshwater supply in the tidal flat. The coverage along the old Qingshuigou course is lower than that along the current river course, which is probably due to the insufficient water supply (Wu, 2022). With the expansion of S.alterniflora, the habitat of P.australis was invaded. As a result, the spatial extent area of P.australis was much lower than that of S.alterniflora in Zone C (1152.2 ha vs. 2604.6 ha, 
Figure 9E
). In Zone D, the area of P.australis was significantly larger than that of S.alterniflora (948.1 ha vs. 664.5 ha).




Figure 9 | 
Zonal statistics of salt marsh vegetation. Box and whiskers plots of the fractional cover of (A) P.australis, (B) S.salsa, (C) S.alterniflora within different zones. (D) The box and whiskers plots of the fractional cover of S.alterniflora with different invasion years. And (E) The spatial extent area of different salt marsh vegetations within different zones. The whiskers boundaries are 25th and 75th percentile, and the blue and red lines represent the median and mean values, respectively.





S.salsa had the smallest spatial extent and lowest fractional cover among the three vegetation types (
Figures 9B, E
). S.salsa was mainly distributed in the mid-high intertidal area, and the average fractional cover was around 12.6%. The dams and groins in Zone A and D blocked the tide waves (Xie et al., 2018), which affected the salinity and moisture content of the intertidal zone. 
Figures 9E
 shows the average coverages of S.salsa in zone A and D (13.07% and 10.91%, respectively) were slightly lower than those in zone B and C (14.27% and 13.44%, respectively). In the west part of Zone A, S.salsa was mixed with S.alterniflora, in the landward front of S. alterniflora invasion. In Zone B and Zone C, S. salsa was mixed with P.australis around the river banks.


S.alterniflora generally has the widest spatial extent and densest fractional cover among the three vegetation types. The average fractional cover of S. alterniflora is higher in Zone B and Zone C near the river mouth than those in other zones (
Figure 9C
). Although the area of S.alterniflora in zone C is larger than that in zone B (2604.6 ha vs. 1672.5 ha, 
Figure 9E
), the average fractional cover of zone B is higher (59.72% in Zone C vs. 70.82% in Zone B). S.alterniflora is also widely distributed along the coast of zone A, and the fractional cover in its west is higher than that in its east, which is associated with less tidal inundation due to higher elevation in Zone A. On the whole, the zonal difference of S.alterniflora coverage is associated with the invasion ages. S.alterniflora was first found in Zone B in 2008, then expanded to Zone A and Zone C, and finally expanded to Zone D in 2017 (Wang et al., 2021b). In addition, it has been reported that the live stem density of S.alterniflora is related to the invasion ages (Han et al., 2022a). Therefore, we calculated the statistics of fractional cover of S.alterniflora with different invasion ages (
Figure 9D
). 
Figure 9D
 shows that the coverage of S.alterniflora gradually increased during the first five years of the invasion (average values from 55.04% with 1 year of invasion to 75.42% with 5 years of invasion), and then kept high (around 70%). It is worth mentioning that in other studies (Wang et al., 2021b; Han et al., 2022a), they are also reported that the first five years of invasion is the key period for the expansion of S.alterniflora.





5 Discussion


5.1 Necessities of cloud removal in fractional cover estimation for saltmarsh species

Cloud contamination is inevitable in optical remote sensing, especially for the optical imagery acquired over the cloudy coastal area. To date, many algorithms, such as mNSPI, GNSPI, WLR, ARCC, have been developed for removing clouds/cloud shadows and reconstructing missing images (Zhu et al., 2012a; Zhu et al., 2012b; Zeng et al., 2013; Cao et al., 2020). Compared to the number of algorithms that have been developed, the number of applications are limited. A few studies in recent years have applied cloud removal as preprocessing step for phenological metrics derivation (Tian et al., 2020; Zhu et al., 2021), paddy rice mapping (Zhao et al., 2021) or vegetation cover estimation (Wang et al., 2020). Zhu et al. (2021) built time-series cloud-free Landsat imagery by reconstructing cloud-contaminated imagery using NSPI algorithm and then derived dry-season phenology in tropical forest. Their study found that cloud removal could help better characterize the phenological features. Zhao et al. (2021) applied mNSPI to remove cloud from Landsat imagery, and then extracted phenological features from the time series imagery for paddy rice mapping. They mentioned that the mNSPI could not accurately restore the small and continuous boundaries on the image under the clouds. Wang et al. (2020a) is probably the only study that applied cloud removal algorithm (GNSPI algorithm) to build cloud-free Landsat imagery for green vegetation cover estimation. However, their study did not estimate vegetation cover at species level.

Most of the existing studies applied the cloud removal for constructing time-series imagery, based on which phenological features can be derived. However, cloud removal may not be the necessary step for phenological features retrieval, although few studies have discussed this issue. Time-series vegetation indices can also be reconstructed by fitting and filtering methods, such as harmonic regression (Yan and Roy, 2020) or Savitzky-Golay filtering method (Chen et al., 2021). For example, the harmonic regression utilized in our study produced a simplified continuous time-series curve that can fill the data gaps. Interestingly, our results showed that cloud removal is not necessary in all cases. When the number of Landsat imagery were sufficient and temporal features based on harmonic regression were used, cloud removal did not significantly improve the fractional cover estimation accuracy (Scenario 1) (
Figures 4A–C
). In this case, it seemed that harmonic regression played more important roles than cloud removal in fractional cover estimation, as the accuracies decreased significantly without the temporal features derived by harmonic regression. However, when the Landsat observations during the critical months were not incorporated, cloud removal for the remained imagery was very important (Scenario 3), while harmonic regression did not help to improve the accuracy. Different from green vegetation cover estimation, the fractional cover estimation at species level not only needs to build the relationship between the temporal features and the fractional cover, but also needs to discriminate among the species. Our previous research showed that the imagery in the key months was critical to represent the phenological patterns of each species and to ensure the discrimination accuracy (Wang et al., 2021b). P. autstralis starts to grow in April, reaches the maximum greenness during July and August, and enters senescence in September. S.alterniflora starts to grow in late May and early June, reaches the maximum greenness during August and September, and then enters senescence in late October to early November (Han et al., 2022a). S. salsa presents red-purple color and the abundance reached the maximum during October. When the images during the critical months are absent, harmonic regression cannot represent the correct phenological patterns. In this case, the remaining cloud-removed images provides important supplementary information. Surprisingly, we found that the utilization of all available cloud-removed imagery produced even slightly lower accuracies than that excluding the critical months. Detailed examination showed that the reconstructed imagery in October had poor visual effects because the cloud covered almost the entire the saltmarsh extent in the estuary (
Figure S1
), which is quite challenging for all cloud-removal algorithms. This also indicates that when applying cloud removal as preprocessing step, cloud coverage and cloud-removal accuracies need to be considered.



5.2 Advantages of ELM in fractional cover estimation for saltmarsh species

Previous studies have confirmed that machine learning algorithms have great potential in green vegetation cover estimation. For example, Wang et al. (2018) reported high accuracy (RMSE=8.5%) of RFR for green vegetation cover estimation based on Sentinel-2 imagery. Yang et al. (2020) used RF soft classification method to estimate fractional abundance of halophytic species based on high-spatial resolution WorldView-2 imagery over Venice lagoon, Italy, and also achieved high accuracy (RMSE ranging from 0.06 to 0.19). However, the integration of multiple machine learning models into one ensemble model has not been introduced into vegetation cover estimation, especially at species level. Our results showed that the performance of the model can be ranked as the following order: ELM > RFR > GBRT > KNNR.

However, it was also found that the accuracy improvement of the ELM, which was measured by R-square and RMSE seemed not considerable compared to RFR. For example, the increase in the average R-square was only 0.002. Note that the accuracy assessment metrics were calculated based on reference samples, whose spatial locations might influence the evaluation. And when we looked at the spatial distribution of high to low coverage of each salt marsh species, the ELM apparently yielded more reasonable results. Some examples are shown in 
Figure 10
, illustrating the results in zoomed-in area in 
Figure 8
. Compared to ELM, RFR overestimated the spatial extent of S. alterniflora in the bare tidal flat close to the sea, and some S. alterniflora even appeared in the seawater (first column in 
Figure 10
). In addition, it was unlikely that S. salsa grew on the sand bar near the river mouth (third column in 
Figure 10
). Although both RFR and ELM over-estimated S. salsa cover in this area, ELM generally produced lower error than RFR. Previous research in other fields also reported that similar RMSEs or R-squares from different methods does not necessarily mean similar performance in every location (Di et al., 2019; Requia et al., 2020). Di et al. (2019) applied the ELM to estimation PM2.5 concentration across the contiguous United States. They found that each individual model did not perform equally well in every location or at all PM2.5 concentration levels although the overall R-squares are similar; however, the ensemble model complemented each other and produced more spatially balanced results. By integrating individual models in a non-linear manner, the model that performs better at some locations contribute more to the ensemble model, which improves the overall performance of the ELM.




Figure 10 | 
Fractional cover of S. alterniflora (left column), P.australis (middle column), and S.salsa (right column) from (A) RFR; (B) KNNR; (C) GBRT and (D) ELM in the three sub-areas shown in Figure 8D (black squares).






5.3 Uncertainties and implications for future work

The performance of the ensemble-learning-based fractional cover estimation depends on at least three factors: (1) whether the reference samples can represent the reality of fractional cover (2) whether the predictor indicators (temporal composite features used in our study) can be associated with the variability of response variable (fractional cover in our study), and (3) whether the model can capture the relationship between predictor indicators and the fractional cover of each vegetation species. Our study attempts to improve (2) and (3) by using time-series cloud-removed imagery and by developing ELM, respectively. As field surveys in coastal wetlands are difficult, in this study we relied on UAV images and GF-6 high-spatial-resolution imagery to create reference samples (Di et al., 2019; Yang et al., 2020; Song et al., 2022). Although high-spatial-resolution imagery has been widely used for reference sample collection for fractional cover estimation model, uncertainties still existed. First, the spatial coverage of each UAV flight was very small compared to the whole study area, and there might be little difference in the vegetation fractional cover over each UAV image. We need to conduct many UAV flights to generate enough reference samples, which is time and labor consuming. Second, using GF-6 and other high spatial resolution satellites would still have a certain mixed pixel effect. In the future, more efforts need to be taken to overcome the problem of sample selection. Future research will explore deep learning models for sample augmentation for the fractional cover estimation. In addition, in YRD several wetland restoration projects are being implemented in recent years. Continued monitoring of the fractional cover change in the coastal wetlands are necessary for better evaluating the effectiveness of the restoration.




6 Conclusion

In this study, we mapped the fractional cover of three major saltmarsh species, i.e., P. australis, S. salsa and S. alterniflora in the Yellow River Delta. We developed an approach framework for fractional cover estimation by utilizing the ELM based on time-series Landsat imagery which were preprocessed by VICR cloud removal. By validating with reference data collected by UAV and high-spatial-resolution GF-6 images, our results showed that the framework yielded high accuracy in fractional cover estimation, with the average R-square of 0.891, and RMSE of 7.48%.

Through experiments in four scenarios, we analyzed the role of cloud removal in fractional cover estimation and explored the advantages of ensemble model over individual models. Results showed that cloud removal as a preprocessing step can effectively improve the accuracy of vegetation coverage estimation especially when the images of key months for vegetation phenology observation (March, July and October) are missing. ELM that integrates three machine learning algorithms also helped to improve the estimation accuracy and effectively reduced the error of each individual method. The fractional cover maps revealed the spatial distribution characteristics of the three saltmarsh species, and the variations in the fractional cover are associated with invasion ages (for S. alterniflora), soil salinity and water contents. S.alterniflora covers the largest area (5753.97 ha) in the Yellow River Delta, followed by P.australis with spatial extent area of 4208.4 ha and S. salsa of 1984.41 ha. The results of this study verify the application potential of cloud removal technology and the advantages of ELM, and provide a technical framework and data support for the monitoring of native and invasive saltmarsh species in the wetlands of YRD.
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Introduction

The Zhejiang coastal area is the most important fishery ground in East China Sea, located south of the Yangtze River Estuary. The previous studies on hypoxia and mechanisms mainly focused on the outer shelf and Yangtze River Estuary, and limited knowledge on the DO depletion and low DO information in this area.



Methods

In this study, the relationships among the DO spatial variation and depletion with nutrients, Chl-a, algal blooms, stratification were analyzed based on the investigation from July to August in 2020.



Results and discussion

The results showed that, the DO contents were high in the surface water (4.6–11.8 mg/L) than in the bottom water (3.0-8.4 mg/L) with an increasing trend from nearshore to offshore in the surface layer, but opposite in the bottom. The vertical profile of DO showed that low DO concentrations (≤3.0 mg/L) started from the water depth of 12 m with a depth of 45 m. The low DO area appeared in the northeast and central Zhejiang coastal areas covering an area of 6,000 km2 and 4,000 km2, respectively. Our analysis indicated that the successive algal blooms (Chl-a > 40.0 μg/L) occurred in late June and during the investigation prepared the low DO pool for the hypoxia development. Stratification, generated from upper warm, light, diluted freshwater from the Yangtze River and the deeper cold, heavy, salty Taiwan Warm Current ceased the vertical convection of DO in the surface, and accelerated the hypoxia development. The hypoxia starting time was earlier and the duration was longer in this complicated area. The rising temperature, more frequency of algal blooms by global warming would likely to make this worse. Continued interdisciplinary research are badly needed to get a better view in the future.





Keywords: dissolved oxygen, hypoxia, stratification, Zhejiang coastal area, algal bloom



1 Introduction

As the key ingredient that makes life in the ocean work, dissolved oxygen (DO) is of great significance. The diversity and productivity of ocean life, the complex biochemical cycles that keep ocean life in balance and the health of the marine ecosystem all depend on oxygen. The declining of DO can affect the loss of bottom fauna which are important food sources, the organisms that can’t move, the habitat of fish and the benthic community structure (Diaz and Rosenberg, 2008). When environments become too anoxic, the nitrogen cycle in the marine ecosystem will change as well as the microbial community (Seitz et al., 2009; Deutsch et al., 2011). The DO declining and low oxygen has been reported since the middle of the 20th century in many coastal area world widely (Diaz and Rosenberg, 2008; Stramma et al., 2008; Keeling et al., 2010; Breitburg et al., 2018). When the dissolved oxygen in the waters is less than 2.0 mg/L, it was defined as hypoxia area. Studies have shown that hypoxia frequently occurs in important estuaries and coastal waters where the nutrients were rich, such as the Gulf of Mexico (Trucco-Pignata et al., 2019; Pauer et al., 2020), the Mediterranean Sea (Coppola et al., 2018; Kralj et al., 2019), the Baltic Sea (Meier et al., 2019; Brzana et al., 2020; Rak et al., 2020), Chesapeake Bay (Seitz et al., 2009), the Yangtze River Estuary (Wang et al., 2012; Liu et al., 2020) and so on. The occurrence of hypoxia is usually connected with eutrophication and hydrological factors (Rabalais et al., 2009; Katin et al., 2019). The evidences have approved that eutrophication may drive and promote the hypoxia development (Li et al., 2002).

The DO depletion and hypoxia in offshore Changjiang Estuary has been concerned after the first report in 1959, more and more researches on the occurrences and mechanisms of hypoxia formation have been carried out in recent decades (Li et al., 2002; Chen et al., 2007; Wei et al., 2007; Wang et al., 2016; Zhu et al., 2017; Chen et al., 2021). Eutrophication, stratification, water masses invasion in the bottom from Taiwan warm current and strong tidal currents all have been considered the causes for low DO and hypoxia development in different seasons, especially in summer. A three-dimensional circulation model also has been applied to find out the physical forcing (flow, wind speed, and wind direction) on hypoxia in the Yangtze River Estuary (Chen et al., 2015). It was found that the center of the hypoxia area mainly around 123°E, 31°N, and extended to north in summer, although some research found that two hypoxia centers appeared in some year. Most of the studies on DO in the East China Sea have mainly focused on the offshore of Yangtze River Estuary and the adjacent area (Wang et al., 2012; Hsiao et al., 2014; Chen et al., 2015; Wei et al., 2015; Chi et al., 2017; Zhu et al., 2017; Chen et al., 2021) according to the investigation data before 2010. Less attentions were paid on the southward part of East China Sea. The Zhejiang coastal area, the most important fishery ground in China, is located south of the Yangtze River Estuary which has been under the pressures from human activities (e.g., overfishing) and excess nutrients loading from large rivers (Yangtze River, Qiantang River, etc.). This area has been suffered from more frequencies and larger areas of algal bloom outbreaks since 2012 (http://sthjt.zj.gov.cn/). The ecological effects and impacts on the stability of marine ecosystems caused by algal bloom have been reported (Wang et al., 2016; Zhu et al., 2017; Li et al., 2021; Yin et al., 2021). However, will the algal bloom impact the DO depletion and the development of hypoxia in the bottom? Will these phytoplankton blooms influence the hypoxia starting time, and the area extension and duration of hypoxia in Zhejiang coastal area? There are still some knowledge gaps about these questions in Zhejiang coastal area.

This study analyzed the surface and bottom DO contents in early summer based on the large area investigation after and during the successive algal blooms in 2020, with an attempt to find out the developing trend of low DO and hypoxia risks in this important area. Related environmental parameters of temperature, salinity, Chl-a, and nutrients were also analyzed to determine the relationships between. The results contribute to a new point of view to this important coastal area in the East China Sea, which will help on a better understanding of the future low DO and hypoxia start time, expansion areas and other ecological effects and risks.



2 Materials and methods


2.1 Study area

The Zhejiang coastal area (27°16′N~30°91′N, 120°54′E~123°38′E) is located south of the Yangtze River Estuary, impacted directly by the large amount of freshwater carrying all kinds of nutrients loading from human activities (Figure 1). There are different scales of fjords (Hangzhou Bay, Yueqing Bay, Sanmen Bay, and Xiangshan Bay) and islands (Zhoushan Archipelago) distributed in this area (Chen et al., 2021; Chen et al., 2022) with a water depth ranging from 5m to 75m. Such a complicated topography with large rivers running through resulted in a complex hydrodynamic system. The most important water masses and currents in this area are Changjiang Diluted Water (CDW), Kuroshio Branch Current (KBC), Taiwan Warm Current (TWC), and Zhejiang-Fujian Coastal Current (ZMCC). The arrows in different scales with abbreviation represent different water masses in summer (Figures 1B, C) Due to the complicated topography, four regions were divided to get a better understanding of the spatial variation in this area, which were northern, central, southern, and Hangzhou Bay (Figure 1A).




Figure 1 | Sampling sites (blue dots) (A) and currents (B, C) in the Zhejiang coastal area. The current images (B, C) were changed and redrawn based on Zuo et al., 2019. The name of the bays and islands were all abbreviated, where HZB is Hangzhou Bay, XSH is Xiangshan Harbor, SMB is Sanmen Bay, TZB is Taizhou Bay, YQB is Yueqing Bay, ZSI is Zhoushan Archipelago, SSI is Shengsi Islands, QSI is Qushan Island, YSI is Yushan Islands, DJI is Dongji Islands, and TZI is Taizhou Islands.





2.2 Sampling and analysis

Water samples from 165 stations were collected in the study area from 2nd July to 20th August 2020. The temperature, salinity, DO and depth were acquired simultaneously by a Sea-Bird SBE19 plus (Sea-Bird Electronics Inc., USA). Lab analysis of DO through water samples by the Winkler Titration method were carried out in order to calibrate the DO data taken by the probe. Special attentions were paid on six stations in the northern (N1, N2), central (M1, M2), and southern (S1, S2) respectively to found out the stratification development and vertical profile (Figure 1A). Water samples for inorganic nitrogen (DIN), inorganic phosphorus (DIP), and Chl-a for lab analysis were collected by a 5 L acid-cleaned (1 N HCl) Niskin Bottle from 2 to 6 depths based on the water depth. Subsamples for nutrients and chlorophyll-a (Chl-a) were filtered immediately through a GF/F filter membrane (0.70 μm) and stored at −20°C for later laboratory analysis. Acetone was added to the subsamples for Chl-a analysis before storage. The DIN (  ) and DIP ( ) were analyzed by SEAL QuAAtro39-SFA, and Chl-a was determined by Trilogy (Turner Design Ltd., USA). Chemical oxygen demand (COD) was measured by the alkaline potassium permanganate method.



2.3 Data processing and analysis

The spatial distributions of DO, temperature, salinity, nutrients, and other environmental parameters were mapped by OriginPro2018 and Ocean Data View (ODV 5.4.0). The relationships between DO and other environmental parameters were analyzed by SPSS 20.0. The low DO (< 3.0 mg/L) area was calculated by ArcGIS10.7.

Dissolved oxygen saturation at different temperatures and salinities was calculated according to the Weiss equation (Weiss, 1970), and apparent oxygen utilization (AOU) was calculated by the equation below:

	

where   is the equilibrium saturated concentration in water at certain temperatures and salinities and DO is the measured concentration.




3 Results


3.1 Spatial variation of DO

Due to the complicated topography and water masses in this area, the DO content varied greatly in the four regions which ranged from 4.6 to 11.8 mg/L in the surface layer and from 3.0 to 8.4 mg/L in the bottom layer (Figures 2A, B, Table 1). In Hangzhou Bay, the water was shallow and well mixed, the DO contents were homogeneous, ranging from 6.6 to 7.5 mg/L. The water was deep but also well mixed in southern Zhejiang sea area with a mean DO value of 6.0 mg/L (Figure 2A, Table 1). It was much more complex in northern and central Zhejiang sea area. A few patched high-DO areas in the surface have been found in the offshore areas of northern and central Zhejiang sea area, with the highest surface DO concentration above 11.8 mg/L in Qushan Island and 11.2 mg/L in Taizhou Bay respectively. The surface DO saturations presented the similar pattern as the DO content, which were over 140% at all of the high DO areas (Figures 2A, C). The DO concentration was over 9.0 mg/L in all of the regions with the DO saturation above 100%, and it was below 4.0 mg/L when the saturation was less than 50%.




Figure 2 | Horizontal distribution of DO concentration: surface (A) and bottom (B), DO saturation: surface (C) and bottom (D), AOU: surface (E) and bottom (F).




Table 1 | Surface and bottom DO concentration and saturation in Zhejiang coastal area.



The visible low DO areas appeared in the northern (29.83-30.92°N, 121.78-123.38°E) and central (28.33-29.78°N, 121.53-122.78°E) bottom layer which were consist with the high surface DO, especially in northeast Zhejiang sea areas. In these areas, the bottom DO contents were less than 4.0 mg/L with the DO saturations under 40% (Figures 2B, D). In Qushan Island (QSI), southward off the Yangtze River Estuary, hypoxia occurred with a bottom DO concentration of 3.0 mg/L but a high surface DO of 11.8 mg/L. The low-DO region in northern covered an area of 6,000.0 km2, and it was about 4,000.0 km2 in the central region. The vertical profile of DO has presented the clear trend of hypoxia development with the depth (Figure 6).

AOU was considered an indicator of DO depletion, where AOU>0 means the DO was deficient and AOU<0 means it was oxygen-rich. The DO depletion was strong in the bottom of the most study area except Taizhou Bay (Figures 2E, F). In the surface layer, the distributions of AOU were similar with the DO content (Figures 2A, E). The AOU was high in the inner bay areas, indicating the oxygen depletion. The over-saturation in the offshore of surface means it was oxygen rich.



3.2 Spatial pattern of temperature and salinity

There was obvious spatial difference for the temperature in different regions and different water layers. The temperature was high in the surface layer (23.6 - 30.5°C) than in the bottom (18.4 - 29.6°C) (Figures 3A, B), especially in the offshore areas. The low-temperature (T< 20.0°C) waters in the bottom distributed in the offshore central and southern regions with a declining trend from the coast to offshore. In the surface layer, the temperature was high in the south than in the north which made the big difference between the two layers, especially in the south, the temperature difference was about 10°C in the offshore south Zhejiang sea area. In the well mixed inner bay areas (such as Sanmen Bay, Taizhou Bay, and Yueqing Bay), which extended deeply into the land, the temperatures were high (T>30.0°C) both in the surface and the bottom.




Figure 3 | Horizontal distribution of temperature [surface (A) and bottom (B)] and salinity [surface (C) and bottom (D)] in the Zhejiang coastal area.



The spatial distribution of salinity was similar as that of temperature, but with more clearly and significant change. The low salinity mainly appeared in the surface and bottom of Hangzhou Bay (Salmin= 3.3), where the water was shallow and well mixed (Figures 3C, D) and it was around 22.0 to 27.0 in the north. In contrast, the high salinity (>30.0) distributed in most part of southern Zhejiang sea area. In the bottom water, the salinity was over 30.0 and even reached to 35.0 in the south, except Hangzhou Bay and part of the northern sea area around Zhoushan Archipelago (Table 2, Figure 3D). The opposite pattern created the dramatic salinity difference of 9.0 between the bottom and surface in the offshore of north and central Zhejiang sea area.


Table 2 | Temperature and salinity variation in the Surface and bottom of Zhejiang coastal area.





3.3 Spatial distribution of nutrients

The DIN, DIP, and COD concentrations in the surface and bottom of the Zhejiang coastal area were presented (Figure 4). High nutrients levels were mainly found in the surface and bottom waters of Hangzhou Bay with the maximum value of 1.7 mg/L for DIN and 0.06 mg/L for DIP. The N:P was about 43.0, which was high than Redfield ratio (N:P=16). The nutrients contents were much higher than the national seawater quality criteria level IV (0.5 mg/L for DIN and 0.045 mg/L for DIP) (Ministry of Ecology and Environment of the People’s Republic of China, 1997). In Zhoushan Archipelago area, the nutrients concentrations were low, but still in a high level of 0.5 mg/L to 1.3 mg/L for DIN, and 0.02 to 0.035 mg/L for DIP. It was much lower (DIN< 0.2 mg/L, DIP<0.015 mg/L) in most of southern Zhejiang sea area. There were very low patched DIP concentration areas in the surface, especially in the offshore of northeast (Figure 4C). This area was found to couple with the high surface DO value distribution (Figure 2A) indicating the negative relations (r= -0.62, p< 0.001) between DO generation process with the nutrient consuming (Figure 5). There was also a high bottom DIP distribution in the offshore areas of central and northern Zhejiang sea area with the concentration ranging from 0.02 to 0.045 mg/L.




Figure 4 | The horizontal distribution of (A) surface DIN, (B) bottom DIN, (C) surface DIP, (D) bottom DIP, (E) surface COD, (F) bottom COD, (G) surface Chl-a and (H) bottom Chl-a in the Zhejiang Coastal Area.






Figure 5 | Comparative analysis of AOU and biochemical parameters in the Zhejiang Coastal Area. The red circle indicates negative correlation, the blue circle indicates positive correlation, and ***means P<0.001, **means p<0.01, *means p<0.05.



The close relationships between AOU and the biochemical parameters were analyzed to determine how they work in different areas (Figure 5). The consumption of DO in the transformation process can be reflected by AOU (Williams et al., 2015) where a high AOU indicated more DO depletion. There was a strong correlation between AOU and DIN in Hangzhou Bay (r=0.87, p<0.001), indicating that the biogeochemical cycle of DIN was the possible reason for DO depletion. Large quantities of DIN and DIP from the rivers contributed to eutrophication in Hangzhou Bay. The strong vertical exchange and shallow water resulting in no difference between the bottom and surface. Eutrophication usually promotes microbial growth and respiration, which results in a greater oxygen demand. However, in the central and other areas, the relationship between AOU and DIN (or DIP) was weak, and the low DIN and DIP concentrations in the southern area were due to the invasion of oligotrophic water masses from the Taiwan Warm. Current and Kuroshio tributaries (Figures 1B, C). A significant positive correlation between AOU and DIP (r = 0.96, p< 0.001) and DIN (r = 0.812, P< 0.001) has been reported in the bottom water of the East China Sea in summer (Zhu et al., 2017). However, the negative correlation between AOU and nutrients in the bottom water suggests that the biogeochemical process of nutrients in the bottom water may not be the main reason of DO depletion.

The spatial distribution pattern of COD was consistent with that of DIN and DIP, with the concentration meeting seawater quality standard level I (COD< 2.0 mg/L) in most of the study areas (Figure 4E), except for two patched areas in Shenjia Bay and Nanfei Bay in northern Zhejiang sea area. An extremely high COD concentration occurred south of Hangzhou Bay, with maximum values of 7.0 mg/L and 10.0 mg/L at the surface and bottom, respectively, which were much higher than the national seawater quality criteria level IV (5.0 mg/L). A possible reason for this may be the wastewater discharged from Hangzhou Bay Industrial District.



3.4 Spatial distribution of Chl-a

In most of the study area, the Chl-a concentration varied from 0.1 to 4.0 μg/L in the surface and bottom (Figures 4G, F). However, there was a very large area at the northeast, where the surface Chl-a concentration was over 10.0 μg/L, and with a maximum value of 40.0 μg/L (Figure 4G). There were another two high surface Chl-a areas (>10.0 μg/L) in Taizhou Bay and near Taizhou Islands, central Zhejiang sea area (Figure 4G), where the surrounding Chl-a concentration was below 3.0 μg/L. These high Chl-a areas all happened to correspond well with the high surface DO but low nutrients areas (Figures 2A, C, 4A, C).



3.5 Vertical profile of DO, temperature and salinity

Haloclines (ΔT/ΔZ > 0.2°C/m, ΔS/ΔZ > 0.1 PSU/m) were found in northern and central Zhejiang sea area from the vertical profiles of salinity, temperature and DO (Figure 6). The halocline occurred at different depth (ranging from 10.0m to 15.0m) at different sites, however, they shared a very similar halocline profile structure from the surface to where the halocline occurred (Figures 1, 6). The temperature decreased from 27.0°C to 19.0°C, and the salinity increased from 23.0 to 34.0 at site N2 and M1 (Figures 6B, C). At site N1, the variation is dramatic within a shallow water depth. The salinity increased from 16.0 to 34.0 and the DO decreased from 9.0 mg/L to <3.0 mg/L within a water depth of 12.0 m, indicating a low DO and hypoxia development (Figure 6A). The hypoxia thickness was estimated to be 40.0 meters. At site M2, the thermocline layers were thick and had a smooth temperature decrease from 27.0°C to 19.0°C, and salinity increased from 26.0 to 34.0 ending at a depth of approximately 20.0-25.0 m. The temperature and DO varied greatly with the halocline (ΔT>7°C, ΔDO>6.0 mg/L), while the salinity changed slowly (ΔS<10.0) at site M2. No stratification was found in the south Zhejiang sea area where the water was well mixed. The homogenous spatial variation of temperature, salinity and DO in the south of the Zhejiang sea in the surface and bottom were presented in Figures 2A, B, 3.




Figure 6 | Vertical profiles of DO (A), temperature (B) and salinity (C) in different sites.






4 Discussion


4.1 Effect of temperature and salinity on the DO distribution

Without the oxygen consumption and reoxygenation processes, the DO concentration in seawater is usually affected by temperature and salinity (Weiss, 1970). High temperature often reduces the thermodynamic solubility of DO in seawater, so the temperature was considered the key driving force of DO solubility in spring and autumn when it was low. A negative correlation between DO saturation and temperature (r = -0.59, p< 0.01) and a positive correlation with salinity (r = 0.721, p< 0.01) were found in the study area in spring (unpublished data). The similar situation has also been found in the South Yellow Sea in autumn (r = -0.702, p< 0.001) (Guo et al., 2020).

However, if biological processes dominated, such as the outbreak of algal bloom, it would be different. Active phytoplankton photosynthesis processes will produce a large amount of oxygen when the temperature was as high as suitable for phytoplankton growth. During our survey in the summer of 2020, there was a significant positive correlation between DO saturation and temperature (r=0.849, p< 0.001) and a negative correlation with salinity (Figure 7). The high Chl-a concentration in the northeast and central Zhejiang sea area has been found to be consistent with the DO concentration during the survey. Chl-a was positively correlated with DO saturation (r=0.85, p < 0.001) and DO concentration (r=0.84, p < 0.001) (Figure 5). A similar correlation has been found in the surface water of the northern Gulf of Mexico approved that summer hypoxia was found (Jiang et al., 2019). Positive relations between temperature and DO contents usually occurred in summer, when the surface DO saturation was mainly dominated by biochemical processes, such as algal blooms, especially in nutrient-rich areas such as the Zhejiang coastal area.




Figure 7 | Correlation analysis. Correlation analysis between DO saturation and salinity (A, C, E, G). Correlation analysis between DO saturation and temperature (B, D, F, H).





4.2 Algal blooms on the DO distribution and the formation of hypoxia

Abundant nutrients from the CDW were conducive to the occurrence of algal bloom when the temperature and light were suitable. Algal bloom was another controlling factor on DO variation. The photosynthesis of phytoplankton in the euphotic layer is the main sources of DO in surface seawater especially in eutrophic sea area. In the summer of 2020, a significant positive correlation between Chl-a and DO concentrations (and DO saturation) was found in the surface water of northern and central Zhejiang sea area (r=0.85, p<0.001). The maximum Chl-a concentration was over 40.0 μg/L, and the DO saturation reached a very high level of 144.29%, which presented a typical characteristic of algal blooms. According to the report from Zhoushan Marine Workstation, there were three algal bloom outbreaks in northeast Zhejiang sea area from 16th June to 23th August in 2020, which was just before and during our survey. The most important thing was that the outbreak happened at the similar area covering a total area of 165.0 km2. Prorocentrum donghaiense dominated the first and third algal outbreaks, and Skeletonema costatum was the main species from July 14th to 20th. During this survey period in 2020, low DIP concentrations were found to be less than 0.01 mg/L at all of these high surface Chl-a areas (Figure 4C). The N:P ratio was over 100.0 at the areas with the Chl-a concentration >10.0 μg/L, and it even reached to 150.0 at the Chl-a > 40.0 μg/L area. Research has found that the growth and production of Prorocentrum donghaiense consumed more phosphorus than nitrogen with a minimum DIP requirement of 0.01 mg/L (Zhou et al., 2017). High N:P ratio was usually the phenomenon of Prorocentrum donghaiense bloom in the sea. Phosphorus was consumed largely when the bloom occurred until it was limited to the growth of the algal.

The algal blooms produced large amount of DO in the surface as well as a plenty of organic maters. The tremendous amount of marine biogenic organic matter deposited into the bottom water will consume large quantities of DO during the decomposition process. The high values of AOU in the bottom water indicate the evidence of this activity  (Figure 2F). The low bottom DO areas distributed well below the high surface Chl-a areas. The successive algal blooms occurred in northeastern Zhejiang sea area were considered the key factor for the high Chl-a, high DO concentration as well as the low bottom DO value. Another low-bottom DO area in Taizhou Bay, central Zhejiang sea area, was also caused by the deposition of bloomed algal where the Chl-a content was over 10.0 μg/L. The decomposition of organic matter after the blooms plays an important role in the DO content and the formation of hypoxia zones. Hypoxia has been found simultaneously with the occurrence of phytoplankton blooms in 2006 (Chen et al., 2021). Hypoxia was often found at the nutrient rich estuaries or bays after the algal blooms (Diaz, 2001). Hypoxia at the bottom of the Lazdornaya Estuary was caused by the phytoplankton outbreak at the surface as well as the formation of the thermocline (Tishchenko et al., 2017). An anoxic event in St. Helena Bay was related to the intermittent deposition of organic matter (Pitcher and Probyn, 2017).



4.3 Effect of hydrodynamics and stratification on the DO distribution and hypoxia

Air-sea exchange and hydrodynamic conditions in the sea greatly influence the DO concentration (Guo et al., 2020). Our study area was in a complicated sea with different hydrodynamic processes and water masses from the coastal line to offshore combined with obvious seasonal variation. The high salinity in the bottom during the survey has showed the water mass impact from the Taiwan Warm Current and the Kuroshio subsurface tributaries, which went up to the north strongly from the bottom along the coast through cross-shelf transportation with high salinity and low nutrients. The diluted freshwater from the Yangtze River was the dominant surface water mass in most of the northern and central Zhejiang sea area with a significant low salinity, high temperature and rich nutrients. The CDW affected area usually starts from 31°N down to 29°N along the coastline (Zhou et al., 2010). The spatial distributions of salinity and temperature in the surface and bottom water have presented the clear information about how these two different water masses work in this study area during the survey period (Figures 3, 4). The water masses structure of low-salinity freshwater (CDW) moving down to the south on the surface and the intrusion of high-salinity water mass (TWC) coming up to the north at the bottom layer can generated the stratification easily in northern and central Zhejiang sea area. Temperature invasion in the oceans is usually observed to coincide with the halocline, where higher salinity in the subsurface layer compensates for stability loss due to lower SST and maintains stable temperature inversion. The stability of oceanographic is characterized by the buoyancy frequency N. Calculation of N2 for typical hydrographic casts at six sampling sites (Figure 1) found that a positive N2 values varied from 0.01/s2 to 0.045/s2 at the depth between 5m and 15m in northern (N1, N2) and central (M1, M2), especially at site N1 and M2, indicating a strong stratification happened in these areas. The vertical profile of DO showed that the minimum DO content happened right at the bottom of the stratification layer.

Water stratification has been considered a controlling factor in the formation of hypoxia (Zhu et al., 2016; Dzwonkowski et al., 2018). Studies in the Bohai Sea found that the DO concentration decreased sharply in the summer where the thermocline occurred at a depth of 10.0-15.0 m (Song et al., 2020). Seasonal bottom hypoxia in the Black Sea northwestern shelf was also caused by the seasonal stratification of the water column (Ukrainskii and Popov, 2009). The stable stratification ceased the vertical water exchanges and DO, which further advanced the development of hypoxia. Our results in the northern Zhejiang sea area indicated that strong stratification of the water column was essential for hypoxia development, as it isolates the exchange of oxygen-rich surface water to the bottom. Successive outbreaks of algal bloom have generated high DO in the surface and followed by the low DO pool in the bottom. Strong stratifications due to the water masses in the two layers further promoted the hypoxia development. The occurrence of algal bloom and stratification have been proved as the two main reasons for the occurrence of hypoxia in the Zhejiang coastal area in the summer of 2020. One, stratification of the water column to cease the vertical exchange of the oxygen rich surface water to the bottom. Two, the oxygen depletion driven by decomposition of rich organic matter in the bottom waters. This has also been concluded by Diaz in 2001 (Diaz, 2001). In this case, successive algal blooms from June played an important role on the low DO pool preparation, although researches found that the low DO from Taiwan Warm current played the foundation of hypoxia. Other factors in summer may strengthen this hypoxia development.



4.4 The low DO and hypoxia area expansion and duration

The algal bloom outbreaks in East China sea distributed mostly at adjacent areas of Yangtze River Estuary before 2000. However, it extended significantly to northeast Zhejiang sea area with more frequency after that, and this has been worse since 2010. A statistic of 30 years algal bloom data in East China Sea found that northeast Zhejiang (122°45′E-123°20′E, 29°40′N-30°50′N) was the most frequency bloom areas. Most of the previous studies on the hypoxia off the Yangtze River Estuary and East China Sea have found that the center area of hypoxia areas was around 123°E, 31°N (Chen et al., 2007; Li et al., 2002; Zhu et al., 2017). Our results found that the hypoxia area in the northeast(121.53-122.78°E, 28.33-29.78°N)and central (121.78-123.38°E, 29.83-30.92°N)distributed in southward compared to the previous studies(Figure 2B, Table 3). Our analysis found that the hypoxia area extended further to the south, which may have already started in early summer after the algal blooms. A tongue-like hypoxia area has been found in the south-west of Yangtze River Estuary with the minimum DO of 2.5 mg/L in June of 2006 (Wang et al., 2012).

The algal bloom usually happened from May to August, however, 60.65% of the blooms occurred in May and June. The reported Prorocentrum donghaiense outbreak from 16th to 23th June, 2020 in northeast Zhejiang sea area was only one week before the start of this survey. The mineralization and decomposition of these organic matters has consumed a large amount of DO, which prepared a low bottom DO pool for the hypoxia development in July, although KSSW with low DO has also been suggested as one of the causes for the formation of hypoxia in ECS (Wang et al., 2016). Compared with the previous reports on hypoxia formation in August, hypoxia may start earlier and have a longer duration time due to the algal blooms (Table 3).


Table 3 | Historical records of hypoxia and covered area in the East China Sea.



The duration of hypoxia that occurs over an annual cycle will also increase. Rising surface ocean temperatures, freshwater and nutrient inputs, more frequency of algal blooms would likely be further exacerbating the hypoxia expansion by global warming. Biogeochemical models for the northern Gulf of Mexico (nGoM) predict that the hypoxic area (DO< 2.0 mg/L) will increase by 26% between 2000s and ~2100 (Laurent et al., 2018). How this will be in the future in East China sea should be considered seriously, although the historical hypoxia covering areas in offshore Yangtze River varied in different years.




5 Conclusions

According to the investigation of the summertime DO spatial variation, saturation, and AOU, the DO depletion in the bottom layer was obvious. There was a low DO and even hypoxia area at the bottom layer of the northeast and central regions, covering an area of about 6,000km2 and 4,000 km2 respectively, which may harm marine ecosystem health and fishery resources. The decomposition and mineralization of organic matter after successive algal blooms enhanced the DO consumption at the bottom, promoting hypoxia development. Stratification generated by the combined effect of light warm freshwater from the Yangtze River on the surface layer and the heavy salty Taiwan Warm Current intrusion up to the north at the bottom prevented the vertical advection of high DO from the surface to the bottom, especially in northern Zhejiang sea area. These combination of strong stratification and successive algal blooms were the key driving factors leading to hypoxia formation in this area. The low DO and hypoxia started in early July in this study has proposed a deep thinking of the starting time and duration of hypoxia. The rising temperature, more frequency of algal blooms by global warming would likely to make the hypoxia starts earlier and keeps longer. Further works are badly needed to get a better understanding of the future expansion of existing hypoxic regions in summer as well as the DO status in other seasons. Continued interdisciplinary research should be further developed, which will provide more useful information for understanding the potential trend in DO depletion in the Zhejiang coastal area.
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Study of resource and environmental carrying capacity is an important research content of sustainable development science and the theoretical support for land space optimization. Existing research theories need to be deepened, and spatial simulation studies are relatively lacking. This study aimed to assess the current and future resource and environmental carrying capacity in the Yangtze River Delta region’s coastal zone and enhance sustainable development by exploring the application of shared socioeconomic pathway (SSPs) scenarios at the spatial pattern scale in regional resource and environmental carrying capacity simulation studies. Based on the FLUS and InVEST models, this study introduced the Coastal Resource and Environmental Carrying Capacity Index (CRECC) from the dimensions of “pressure” and “support” using land use remote sensing monitoring data and SSPs scenario data. A CRECC evaluation index system and quantitative evaluation method for the Yangtze River Delta were constructed. The results showed that from 2000 to 2020, the CRECC of the Yangtze River Delta coastal zone increased, the carrying capacity decreased, and the spatial distribution was low in the north and high in the south. The carrying capacity under the five SSP scenarios did not improve. The mismatch between natural ecological conditions and the intensity of human activities in the shoreline area was more prominent than in the study area, with the SSP1 and SSP5 scenarios being the most obvious. The supporting indicators have a more significant influence on improving CRECC than the pressure indicators, among which the supply capacity of water resources, land resources, and atmospheric environmental quality are the main limiting factors in the process of future sustainable economic-ecological development. This study provides ideas and examples for exploring spatial and temporal predictions of resources and environmental carrying capacity in coastal zones.




Keywords: coastal resource and environmental carrying capacity, scenario simulation, shared socioeconomic pathways, The Yangtze River Delta coastal zone, temporal and spatial variation




1 Introduction

In China, coastal areas carry approximately 44.66% of the human population and 56.02% of the economic aggregate (according to the Statistical Bulletin of China’s National Economic and Social Development in 2020). Coastal zones, with their abundance of terrestrial and aquatic resources, are a rich source of material and ecosystem services, and constitute a complex system of human-ecological interactions (Díaz et al., 2018). As a result, they provide an excellent research opportunity for the field of Earth system science (Ramesh et al., 2015). Additionally, given continued resource depletion and industrial development, coastal areas face enormous pressures and challenges in securing human livelihoods while conserving their environment. Therefore, whether coastal zones can sustainably support human-economic demands while remaining environmentally sound is a widespread and critical concern for researchers, governments, and various other stakeholders (Nyima, 2015; Chen D. et al., 2020; Yan et al., 2022). Accordingly, achieving socioeconomic progress within the carrying capacity of coastal areas’ material resources and ecosystems has become a key focus of geography, ecology, and sustainability science, and a path to reaching Sustainable Development Goals (Sowman and Raemaekers, 2018).

Humans have a long history of understanding carrying capacity. Since the advent of the Anthropocene, the impact of socioeconomic activities on ecosystem structure and function, as well as the sustainable provision of ecosystem services, has become more profound. Consequently, their effects on human well-being have become more pronounced. “Carrying capacity” is a scientific concept that measures the relationship between human economic and social activities and the natural environment. Hence it is a crucial tool for managing sustainable development (Del Monte-Luna et al., 2004). It calculates the baselines and capacities of various elements, including population, land, water resources, and so on, and prompts equitable and sustainable use of resources in line with these environmental thresholds (Hák et al., 2016). This includes research on population carrying capacity (Lei et al., 2009), ecological carrying capacity (Rees, 1992; Nakajima and Ortega, 2016), and resource carrying capacity (Shi et al., 2013; Naimi-Ait-Aoudia and Berezowska-Azzag, 2014).

The concepts of sustainable resource use and environmental carrying capacity first emerged in China at the end of the 20th century (Yang and Ding, 2018; Liao et al., 2020). Current research methods include the ecological footprint (Mathis et al., 1999; Tang et al., 2022), state-space method (Mao and Yu, 2001), system dynamics model (Ercan et al., 2016), “pressure-state-response” and derived models (Matinzadeh et al., 2017), and comprehensive index method (Wu et al., 2020). Among these, the evaluation index system is currently the most widely used method, with index systems constructed using the following approaches: indicator systems based on the connotation of carrying capacity, such as “socio-economic-resource-environment,” “population-economy-resource-environment,” and other combinations of indicators (Cui et al., 2019); indicator systems based on the physical connotation of “carrying capacity,” with indicators divided into support and pressure systems and load and carrying systems (Shen et al., 2020; Du et al., 2021); and those based on element composition, such as land resource carrying capacity, water resource carrying capacity, atmospheric environment, and so on (Shi et al., 2013; Peng et al., 2019). However, there is a lack of authoritative methods for constructing index systems.

Studying the carrying capacity of coastal zone resources and ecosystems demands consideration of the unique characteristics of offshore resources, which are still being explored (Rani et al., 2015; Sowman and Raemaekers, 2018; Yang and Ding, 2018). Proposing a series of remediation measures, Wang et al. (2017) established a comprehensive method to identify important control factors in the Qingdao City Sea area, such as sewage discharge, livestock production, ammonia and nitrogen discharge, river runoff, and sewage treatment. Based on marine functional zoning, indicators showing human exploitation of marine and coastal areas, such as artificial shoreline classification and fishery farming areas, have been used to evaluate the marine utilization carrying capacity of Liaodong Bay (Xu et al., 2019).

Most resource and environmental carrying capacity studies have evaluated the current situation. However, to cope with resource and environmental problems arising from rapid urbanization and high-speed economic development, it is important to explore the coordinated development of coastal ecosystems and human activities in the future. Most studies on carrying capacity simulation adopt the system dynamics model to explore the relationship between carrying capacity and influencing factors and to predict its trends (Xing et al., 2019), or use the ecosystem service simulation method with land use simulation as the entry point (Yue et al., 2019). In the international field of sustainable science research, scenario analysis methods have gradually advanced in modeling future development (Duinker and Greig, 2007). Among multiple scenario frameworks, the Shared Socioeconomic Pathways (SSPs) developed by the Intergovernmental Panel on Climate Change (IPCC) depict different trajectories of future socioeconomic system development, resource use patterns, and environmental evolution. They are a powerful tool for exploring human and natural system development pathways (O’Neill et al., 2014; Elahi et al., 2021). SSPs have a unified and internationalized scenario framework that can provide several possibilities for the foreseeable future economic and social development of resources and environmental carrying capacity so that government organizations at all levels can improve the adaptability and support of decision-making based on different future development trends. Resource and environmental carrying capacity simulation and prediction based on SSPs can be connected to a higher degree with socioeconomic, agricultural production, or ecosystem fields.

Resource and environmental carrying capacity simulation studies often focus on predicting the future trend of the carrying capacity index, but fail to reveal the mechanisms of its carriers and carrying objects, which may not provide sufficient warning or foresight for the region’s future sustainable development. This study aimed to answer the following questions: i) How can we determine the influencing elements and assessment framework of coastal resources and environmental carrying capacity? ii) How can we determine the dynamic spatial and temporal evaluation mechanisms and simulation methods? iii) How can theoretical support be provided for sustainable regional optimization?

After examining current research progress, this study aims to explore the mechanism of resource and environmental carrying capacity, using the Yangtze River Delta as a case study area. We construct an evaluation framework for Coastal Resource and Environmental Carrying Capacity (CRECC), an index system, and a quantitative assessment method (Section 2). By conducting a simulation study from 2020 to 2050 based on the Shared Socioeconomic Pathways (SSPs), we display the current and future trends of regional CRECC changes and identify obstacles (Section 3). We then discuss and analyze the results (Section 4). This study makes the following contributions: i) presents new ideas for spatial and temporal simulation studies of resource and environmental carrying capacity, using an interdisciplinary approach that combines geography and sustainable development science; ii) tests the applicability and scalability of current theoretical methods and assessment frameworks in a typical coastal zone; and iii) provides new empirical analysis cases.




2 Materials and methods



2.1 Study area

Coastal and riverside areas have been strategically important for China to promote and achieve its coordinated regional development. The coastal provinces of the Yangtze River Delta (Shanghai, Jiangsu, and Zhejiang) are located at the intersection of the coast and river. The area has the greatest economic influence and largest industrial scale in China, with coastal cities along the river (Lianyungang, Yancheng, Nantong, and Shanghai in Jiangsu Province, and Jiaxing, Ningbo, Taizhou, and Wenzhou in Zhejiang Province) playing a pivotal role. By the end of 2020, the total resident population of the coastal provinces and cities in the Yangtze River Delta was approximately 174 million, and the total GDP reached 20.60 trillion yuan. The economic aggregates of Shanghai, Jiangsu, and Zhejiang rank among the top ten of China’s 31 provinces and cities in China. Eight coastal cities had a GDP of approximately 8.80 trillion-yuan, accounting for 42.72% of the total economic output of the Yangtze River Delta. In addition, according to the Global Port Development Report 2021, Shanghai and Ningbo ports rank first and third, respectively, in global port rankings and play a major role in international shipping and trade.

The Yangtze River Delta has a coastline of over 3,000 kilometers, which consists of extensive mudflats and other coastal ecosystems containing rich natural resources. The habitat of the Natural Heritage-listed Chinese Yellow (Bohai) Sea Migratory Bird is located in Yancheng City, which also houses 17 endangered IUCN species. However, since the 1990s, high-intensity beach reclamation, fishing, industrial production, and other human activities have led to the destruction and degradation of the local environment, resulting in a decline in biodiversity, the loss of coastal wetlands, and the degradation of fishery resources. Marine pollution and other disasters occur frequently, threatening the sustainability of the region. Therefore, the Yangtze River Delta coastal zone is a representative area for studying the carrying capacity of resources and the environment.

In this study, the eight coastal cities of Lianyungang, Yancheng, Nantong, Shanghai, Jiaxing, Ningbo, Taizhou, and Wenzhou were selected as the study area (Figure 1), covering 7.44×104km2. A scenario simulation and prediction analysis for 2020-2050 was conducted based on the period between 2000 and 2020, during which economic and ecological conflicts were on the rise, serving as the base year for evaluation.




Figure 1 | Geographical location of study area.






2.2 Data source

	(1) Remote sensing data: land use data were obtained from Landsat satellite remote sensing images and generated by manual visual interpretation, which were reclassified into five categories: cultivated land (drylands and paddy fields), ecological land (forestland and grassland), wetlands (including rivers, lakes, and coastal mudflats), urban land (land in large, medium, and small cities and built-up areas above the county town), and other construction lands (rural settlements and other construction lands). The images for 2000 and 2020 were obtained from Landsat 5 TM and Landsat 8 OLI_TIRS satellites.

	(2) Statistical data: agricultural, forestry, animal husbandry, and fishery production of various agricultural products, and other socioeconomic data were obtained from the China Statistical Yearbook, China Rural Statistical Yearbook, and China Urban Statistical Yearbook (2000-2020). Environmental monitoring data were obtained from the China Ecological Environment Quality Bulletin, the Global Ecological Environment Remote Sensing Monitoring Report, and the China Nearshore Marine Environment Quality Bulletin (2000-2020), etc.

	(3) Other data: population and economic spatial data were calculated from land use types, nightlight data, and settlement density. The spatial resolution of the above data was 1 km, and they were all obtained from http://www.resdc.cn/. SSPs population and economic projections panel Spatial data for constructing the simulation scenarios in 2020-2050 were obtained from Chen Y. et al. (2020), Jiang et al. (2018); Murakami and Yamagata (2019), and from this online database: https:/www.cgd.ucar.edu/iam/modeling/spatial-population-scenarios.html. Shoreline data were obtained from the global multiscale sea–land (island) shoreline dataset based on Google Earth remote sensing images (Liu et al., 2019).



The grid evaluation scale was set to 1 km, and the projection format was uniformly set to “WGS_1984.” The nearest neighbor method was more applicable to discrete data (e.g., land use classification) and did not change the values of the image elements. The maximum spatial error was approximately half the image element size, which can preserve the original data attributes to the maximum extent. The spatial data were cropped and extracted using the vector layer of the study area as a mask to generate a raster dataset with uniform boundary and resolution for the calculation of the results. For statistical data, the per-capita value of an indicator is usually obtained based on the population of the data year and subsequently spatialized by overlaying spatial data on population density.




2.3 Methods



2.3.1 Study framework and theoretical basis

First, the CRECC framework and evaluation index system were constructed. Second, remote sensing, spatial, and statistical data were collected to establish a quantitative evaluation scheme for the indicators. Based on InVEST and other models, we analyzed spatial and temporal variation characteristics and dynamic mechanisms, and the SSPs and FLUS models were used to conduct CRECC simulation studies. Finally, an obstacle factor model was used to determine the main current and future limiting factors (Figure 2).




Figure 2 | Flowchart of study.



To establish a reasonable measurement method, it is necessary to understand the components of regional resources and the environment, as well as their interrelationships, from a systematic perspective. Ideally, a geospatial system should maintain its function and structure in a relatively dynamic equilibrium. However, in reality, complex spatial systems rarely remain at the equilibrium point or in a stable state for a long time. When the pressure exerted by human activities is not in balance with the ecosystem’s carrying capacity, the regional resource-environment system may reach a critical point and enter a fluctuating phase. It can also be understood that whether a system can maintain its function and configuration depends on the pressure of human activity and ecosystem support capacity, as well as the interaction between them. Pressure mainly refers to human living and production activities, including agriculture, industry, urban construction, transportation, and daily life activities, during which resources are constantly consumed and pollutants affect the environment’s quality. The resource-environment system has carriers that are indispensable for supporting human activities, such as water, land, and energy (Elahi et al., 2022). Different pressures require corresponding carriers to support them. For example, agricultural activities extract biomass from nature, and industrial activities obtain raw materials from natural systems. These activities also generate various types of pollution and waste, which need to be dealt with by providing various socio-economic infrastructures and natural environments. The equilibrium state of the regional resource-environment system depends on the degree of impact that human activities have on natural resources and ecosystem subsystems.

According to Shen et al., 2020, the resource-environmental carrying capacity can be defined as the ratio of pressure to support, i.e. RECC = pressure/support, if 0< RECC ≤ 1, it indicates that the resource-environmental pressure is less than the support capacity. RECC > 1 means that the capacity to carry the pressure of human activities is insufficient, the region is at a higher risk of overload, and the sustainability of resources and the environment is poor.




2.3.2 Indicator system

The Yangtze River Delta coastal zone has long been facing a series of resource and environmental constraint problems due to population growth and economic development; marine economic development and shoreline environmental quality improvement are urgently needed. Based on the natural and socioeconomic characteristics of the coastal zone, a resource and environmental carrying capacity evaluation indicator system was constructed (Table 1). The indicator system contains the target layer (CRECC), two guideline indicators (support index and pressure index), and 14 sub-indicators (agricultural production carrying capacity, fishery production carrying capacity, construction space carrying capacity, water resources carrying capacity, carbon emissions carrying capacity, atmospheric environment carrying capacity, and coastal ecological environment stress) from the pressure and support dimensions.


Table 1 | Index system and weight for Coastal Resources and Environmental Carrying Capacity.



Considering the characteristics of food supply and consumption in coastal areas, we divided them into agricultural production and fishery production carrying capacities and took total food production and demand and total fishery food production and demand as “support” and “pressure” dimensions, respectively. Construction spaces primarily undertake the functions of residence, development, and infrastructure construction, reflecting the carrying capacity of land resources for population growth and economic development. The demand and supply areas of the construction space were selected as pressure and support indicators, respectively. Nearly two-thirds of cities in coastal areas face different degrees of water shortage, and it is important to evaluate the quantity and quality of existing water resources to support socioeconomic development. Water resource consumption and total available water resources were selected as the pressure and support indicators, respectively, to assess the carrying capacity of water resources. In the context of China’s aggressive emission reduction targets, monitoring current carbon emission patterns and changing trends is important. Carbon emissions and carbon sequestration indicators were selected to assess the carbon balance. Enhancing the atmospheric quality is a critical objective for the development of ecological civilization, and the emission and absorption of significant atmospheric pollutants serve as key parameters to determine the carrying capacity of the atmospheric environment. Finally, habitat quality and potential habitat risk were coupled to assess the coastal ecological stresses.




2.3.3 Quantitative evaluation method



2.3.3.1 Agricultural production carrying capacity

Different land use types have varying capacities for producing food. Cultivated lands provide cereals, oilseeds, and vegetables; orchards provide fruits; and grasslands provide beef, lamb, and dairy products, all of which fall under the category of ecological land. Wetlands provide freshwater aquatic products. (Zhang et al., 2017). According to the total food production statistics of these land use types and the corresponding land use types in the study area, the average agricultural product yields in the cultivated land, ecological land, and wetland areas are 1214.27 t/km2, 222.57 t/km2 and 308.22 t/km2, respectively. The total food production, Cfood (tons), for each evaluation year was calculated by superimposing the spatial land use data.

	

Where is the total area provided by land use type k for the production of the food j (cereals, oils, dairy, vegetables, meat, and freshwater aquatic products), and  is the production per unit area for the food j provided by the land use type k.

This was performed in accordance with the 2016 Chinese food guide (Supplementary Table 1). The given reference range of food demand is taken as its median value to obtain the per capita food demand, demandj, which is 539.36 kg/person, and superimposed on the population spatial distribution data (POP is the number of populations in the cell) to obtain the total food demand (ton), Lfood, which is calculated as:

	




2.3.3.2 Fishery production carrying capacity

Due to the limitations of data acquisition, the fishery production carrying capacity can only calculate the total fishery food production (Cfishery, ton) and demand (Lfishery, ton) between 2000 and 2020, and scenario simulation is not currently available for the time being.

	

	

Where Pn is the production of seawater products in the coastal city n, obtained from the China Rural Statistical Yearbook (2000-2020), demm is the per capita demand of seawater products, which is 10.23 kg/person according to the 2016 Chinese food guide and the China Statistical Yearbook (2000-2020), and pop is the population.




2.3.3.3 Construction space carrying capacity

To analyze the spatial carrying capacity, the actual supply and demand of rural living space and urban construction space were calculated separately using the following methods:

	

	

Where CC is the spatial supply of construction land (km2), representing the construction land support indicator. Cr and Cu are the actual supply of rural and urban living spaces respectively. Rx,y and Ux,y represent the proportion of rural living space and urban construction space in the cell, which is calculated by the “aggregation” tool of the ArcGIS10.5 platform; A is the actual area of the cell.

Lc is the spatial demand for construction land (km2), representing the pressure indicator for construction land; Lr and Lu are the demand for rural and urban living spaces, respectively; Rdemand and Udemand represent the per capita demand for rural and urban spaces, which were 150 and 77 m2/person, respectively (from the Urban and Rural Land Classification and Planning for Construction Land Standard) (Supplementary Table 2). Rpop and Upop are the total populations in rural and urban areas, respectively (https://www.cgd.ucar.edu/iam/modeling/spatial-population-scenarios.html).




2.3.3.4 Water resources carrying capacity

Water resources support capacity Cw includes surface water resources Wsu(m3) and groundwater resources Wgr(m3):

	

	

	

	

Where Wrep is the total amount of water resources double-counted when measuring surface water and groundwater resources. The per capita groundwater resources (Aw-gr) obtained from the statistical yearbooks from 2000 to 2020 were -0.65% and -0.62%, respectively, which can be used as the basis for simulation evaluation. A indicates the actual area of the cell (km2). Px,y is the annual precipitation of the cell (mm) (https://www.worldclim.org (2000–2100)), and Rk,x,y is the runoff coefficient of the cell (x,y) in land use type k, which refers to the proportion of precipitation converted into runoff (Yan et al., 2019).

The water load pressure, i.e., the total water consumption Lw (m3) could be expressed as :

	

Where Wdo, Win, War, and Wen are the regional per capita domestic, industrial, agricultural, and ecological water consumption, m3/person, respectively (the statistical yearbooks from 2000 ~ 2020) The annual average change rates of per capita water consumption for all years are - 0.60, - 0.17, 1.85, and 9.48%/a, respectively, which are also used as the basis for simulation evaluation; pop is the population.




2.3.3.5 Carbon emission carrying capacity

The InVEST model can assess the amount of carbon stored in each unit based on the carbon density of each land use type and land use map. The estimation of total carbon sequestration (Ccarbon, tons) considered four carbon pools: aboveground, belowground, soil organic matter, and dead organic matter. According to Goldstein et al. (2012); He et al. (2016), and Li (2004), the carbon density numbers were taken as shown in Supplementary Table 3 and calculated as:

	

where A denotes the actual area of each cell,  ,  ,  , and  represent the carbon density (t/km2) of above-ground, below-ground, soil organic matter, and dead organic matter in the kth land use type, respectively.

The total carbon emission Lcarbon (ton) can be expressed as:  Where Cemission represents the carbon emissions from human socioeconomic activities and pop represents the population. According to Liu C. et al. (2020), the product of the standard coal carbon emission factor (0.69 tC/tce) and the energy consumption is taken as the carbon emission per capita, and the required data for coal, oil, natural gas, primary electricity, and other energy consumption are obtained from the China Statistical Yearbook (2000-2020). On this basis, according to the net-zero emission scenario proposed in the World Energy Outlook 2020 (BP Amocol, 2020), the rates of change in the consumption of oil, coal, natural gas, primary electricity, and other energy sources in China between 2018 and 2050 are - 4.1, - 8.2, 1.6, and - 0.9%/a. Based on these rates of change, the per capita carbon emissions in 2050 under different SSP scenarios are about 0.91 to 1.01 tC/person, combined with the SSP population projection panel data and the standard coal carbon emission coefficients.




2.3.3.6 Atmospheric environment carrying capacity

The current status and future trends of the atmospheric environmental support capacity of the coastal zone were estimated using PM10 as an example. The atmospheric environmental support capacity refers to the capture and sorption capacity of vegetation for PM air pollution.

	

Where Cair is the total amount of PM10 adsorbed (ton); Ax,y is the actual area of the cell; PMx,y is the amount of PM10 adsorbed per unit area of cell (x, y) in the land use type k. PM10 adsorption capacity of cultivated land and ecological land is 92 t/km2 and 445 t/km2(Landuyt et al., 2016; Zhang et al., 2017),.

According to the Technical Guide for the Preparation of Particulate Matter Emission Inventory of Dust Sources issued by the Ministry of Environmental Protection of China, the atmospheric environmental load pressure was calculated using the emission inventory method of soil wind erosion of dust particles (PM10) based on the land use distribution map.




2.3.3.7 Coastal ecological environment pressure

The Habitat Quality and Habitat Risk Assessment models in the InVEST model were coupled to comprehensively assess the impact of human activities on coastal ecosystems, and to determine current and future ecological and environmental stresses in the study area. In the Habitat Quality model, stressors are selected and assigned weights that reflect the intensity of disturbance to the habitat type, which decreases with increasing distance, such that the maximum distance of each stressor is set. The HQ index interval was [0, 1], and the larger the value, the higher the habitat quality. Simultaneously, the responses of different habitat types to stressors varied, and the different sensitivity levels are shown in Supplementary Table 4. In the Habitat Risk Assessment model, the risk or impact of human activities on ecosystems was assessed using six indicators in the “exposure” and “consequence” dimensions (Supplementary Table 5). The HRA index range is [0, 1]; the higher the value, the higher the habitat risk (Zhai et al., 2020).




2.3.3.8 CRECC evaluation

The extreme difference normalization method was used to normalize the original indicator result values such that the index values were between 0 and 1 (Sun et al., 2017), and the indicator weights were calculated based on the entropy weighting method (Mikulic et al., 2015) (Table 1).

Based on the standardized values of each carrying capacity indicator and weights (Wi), the linear weighting method is used to obtain the pressure (Li), index and support index (Ci), which is:   and  ; The indicator CRECC of region i is equal to the ratio of Li and Ci:  .

Theoretically, according to the relationship between the pressure and the support index, the CRECC can be divided into three cases: when CRECC = 1, the resource and environment carrying capacity can just meet the pressure exerted by human activities; when CRECC< 1, the support capacity is greater than the pressure; When CRECC > 1, the support capacity is less than the pressure. The larger the CRECC value, the lower the carrying capacity level; the opposite is true.





2.3.4 Obstacle factors model

The obstacle degree model was used to diagnose the obstacle factors affecting the development of objects (Yang et al., 2022), and consisted of the factor contribution degree Iij and indicator deviation degree Jij, which was calculated as follows:

	

	

Where wi is the weight of the indicator i, Rj is the weight, and Mijis the degree of the obstacle to the support indicator.






3 Results



3.1 Spatial and temporal variation of CRECC from 2000 to 2020

Using the quantitative evaluation method described in Section 2.4, combined with the indicator weight, the pressure index, support index, and fourteen indicators were calculated for the study area between 2000 and 2020.

In the pressure dimension (Table 2), the average pressure index of the Yangtze River Delta coastal zone increased from 0.115 to 0.144 (+25.73%) between 2000 and 2020, mainly due to the growth in food demand and carbon emissions, with respective growths of 32.92% and 212.16%. All other pressure indicators exhibited a decreasing trend. The decreases in other pressure indicators were -49.90%, -75.40%, -1.31%, -23.71%, and -23.15% for fishery demand, construction space demand, water resource demand, air pollutant emissions, and habitat risk. At the city scale, Shanghai, Ningbo, and Lianyungang ranked top three in the pressure index, and the index of all cities showed an increasing trend, with the most significant change from 0.258 to 0.397 in Shanghai (53.94%), and the lowest change of 0.13% in Taizhou. Among the seven pressure indicators, food demand and carbon emissions in the eight cities showed increasing trends, whereas fishery food demand, construction space demand, air pollutant emissions, and habitat risk decreased.


Table 2 | Pressure index value in 2000-2020.



In Table 3, the average support index shows a slight growth trend, increasing from 0.570 to 0.596. This was mainly due to increases in fishery food production, total construction space, and total water resources, which reached 19.11%, 63.94%, and 8.84%, respectively. All other support indicators showed a downward trend. Agricultural food production, carbon storage, air pollutant emissions, and habitat risk decreased by -8.54%, -5.76%, -5.03%, and -30.70%, respectively. On the city scale, Wenzhou, Taizhou, and Ningbo ranked in the top three in terms of the support index in 2000 and 2020. The support index of Shanghai and Ningbo decreased most significantly by-5.97% and-1.04%, while all other cities showed an increasing trend, with Nantong and Lianyungang having the highest values of 5.36% and 5.29%, respectively. Among the seven pressure indicators, agricultural food production, carbon storage, air pollutant emissions, and habitat risk in the eight cities decreased, whereas most of the other support indicators increased.


Table 3 | Support index value in 2000-2020.



According to the method utilized in 2.4.8, the spatial distribution of the CRECC from 2000 to 2020 was obtained in Figure 3. The larger the CRECC value, the lower the bearing capacity; otherwise, the higher the value. From 2000 to 2020, the CRECC increased from 0.535 to 0.578, which is a sustainable level. In 2020, the CRECC in Shanghai reached 1.525, making it the only city where the pressure index was greater than the support index. These eight cities were divided into four categories based on the natural-point method using ArcGIS. In 2000, the carrying capacity of Shanghai was the minimum, that of Wenzhou was the maximum, and three cities had low and high levels. In 2020, the rank of Shanghai remained unchanged, and Taizhou replaced the maximum level. The carrying capacities of Wenzhou and Jiaxing dropped by one, whereas those of Taizhou and Yancheng rose by one. From the perspective of the spatial distribution of change rate grades, the change rates of CRECC in Shanghai and Nantong were 1.57 and 0.56%/a, respectively, which were the maximum levels, indicating that the carrying capacity of these two regions has experienced the largest decline in the past 20 years. Taizhou is the only city that has improved its carrying capacity, at -0.0356%/a.




Figure 3 | Spatial distribution of carrying capacity and change trend classification in the Yangtze River Delta coastal zone from 2000 to 2020.



Overall, the increasing trend of the support index was lower than that of the pressure index. Changes in food and water supply and demand, carbon emissions, and construction space resources were the most prominent. Shanghai was the only city in which the pressure index increased while the support index decreased. The three cities north of Shanghai experienced a much higher change in pressure than the four cities south of Shanghai, whereas the support index had a more balanced spatial distribution. The cities with a higher carrying capacity were mainly located in Zhejiang Province in the south of the study area, which had significantly higher levels than the three cities in Jiangsu Province to the north. Shanghai, which has the largest population and highest economic and urbanization levels, maintained the lowest carrying capacity and showed a decreasing trend.




3.2 Simulation of CRECC based on SSPs in 2020-2050



3.2.1 Scenarios description of SSPs

By coupling the SSP framework and a Future Land Use Simulation Model (FLUS model), the development prospects of coastal zone resources and the environmental carrying capacity of the Yangtze River Delta under different paths in 2050 were explored. The SSPs describe future changes in multiple key variables of scenarios (GDP, population, energy, land use/cover, emissions, climate, agricultural indicators, economic indicators, and technical indicators) and five scenarios (SSP1-sustainable pathway, SSP2-middle pathway, SSP3-regional rivalry pathway, SP4-divided pathway, and SSP5-fossil-fueled development pathway) (O’Neill et al., 2014).

Popp et al. (2017) classified the five SSP scenarios as follows, and this interpretation is adopted in this study: SSP1 has a relatively small population, high energy and resource utilization efficiency, small regional development differences, and a high level of urbanization. SSP2 is consistent with historical development trends, with regional differences still existing, but the process of economic growth and urbanization being relatively stable. The technological level is advanced, and the intensity of resource and energy consumption is reduced. SSP3 sees a rapidly growing population, with relatively slow economic development focused on ensuring regional energy and food security. The inequality between regions is more pronounced. SSP4 has the smallest population, with a large gap between the rich and poor. The achievement of sustainable development depends largely on the actions of relevant departments and institutions. Finally, SSP5 sees a significant increase in population mobility, with a large amount of funds, technologies, and fossil fuels being invested in the pursuit of economic growth. As a result, environmental protection may receive less attention.

Moreover, according to Chen Y. et al. (2020) and Jiang et al. (2018), the total population of the Yangtze River Delta coastal zone first increased and then decreased under different SSPs paths from 2020 to 2050. The population peak is predicted to appear around 2030, and the corresponding total GDP to continue to grow.




3.2.2 Land use simulation based on FLUS model

The FLUS model is a highly accurate and adaptable tool for simulating a wide range of land-use and land-cover change (LUCC) spatial trajectories on global and regional scales, as demonstrated by Chen G. et al. (2020). To predict urban land demand in 2050 under five scenarios, He et al. (2016) constructed a multiple regression model of urban land-use demand, which was based on per capita urban land area, per capita GDP, and urban population panel data from 1990 to 2020. To obtain the land-use demand data required for the FLUS model, Dong et al. (2018) scaled the areas of the remaining land-use types accordingly. The model operates through three specific processes: ① establishment of driving factors (as provided in Supplementary Table 6), ② calculation of suitability probability and conversion matrix (as provided in Supplementary Tables 7, 8), and ③ validation of accuracy and output of results. The kappa coefficient and Figure-of-Merit from the accuracy validation results were 0.81 and 19.96%, respectively, which are comparable to other studies (Chen Y. et al., 2020; Liu X. et al., 2020). Thus, the simulation accuracy of the FLUS model was deemed acceptable. Overall, the FLUS model is a valuable tool for predicting LUCC spatial trajectories, and its accuracy has been validated by multiple studies.

Under the SSPs scenarios, the land use simulation results for different years correlated heavily. Urban land expanded significantly, and the proliferation of small- and medium-sized cities near large cities was also observed. Cultivated land and ecological land shrank, while changes to wetlands were relatively small (Table 4). This phenomenon was most significant in SSP5.


Table 4 | Area change of land use types under different scenarios from 2020 to 2050.






3.2.3 Simulation and spatial-temporal variation of CRECC under different SSPs scenarios from 2020 to 2050

Based on the SSP spatial and panel data and the results of the land use simulation, we calculated the simulation results, spatial and temporal distribution, and change characteristics of the pressure index, support index, and CRECC from 2020 to 2050.

In the pressure dimension (Table 5), the average pressure index predicted for 2050 is 0.131 ~ 0.135 (SSP1 > SSP5 > SSP2 > SSP4 > SSP3), and the predicted change rate is -0.31 ~ -0.20%/a compared with 2020. Among them, the average pressure indexes of agricultural food demand, construction space demand, water resource demand, and carbon emission show a decreasing trend, while carbon emission has the fastest rate of change, reaching -1.99~ -1.96%/a. Air pollutant emissions and habitat risk have an increasing trend of 0.92 ~ 1.24%/a and 0.20 ~ 0.61%/a, respectively. From a city perspective, the pressure indices of Lianyungang and Ningbo have decreased, by 0.46 ~ 0.53%/a and 0.10 ~ 0.41%/a, respectively. The pressure index of other cities showed a decreasing trend, and the rate of change in Shanghai was the fastest, ranging from -0.93 to -0.60%/a. The trends of the six pressure indices were consistent with those of the study area, with Jiaxing and Ningbo showing the highest rates of decrease in agricultural food demand, construction space demand, water resource demand, and carbon emissions. For air pollutant emissions and habitat risk, the increasing trend was relatively evident in Shanghai and cities to the north, such as Nantong and Lianyungang.


Table 5 | Pressure index change in 2020-2050 (%/a).



In the support dimension (Table 6), the average support index in 2050 is 0.244 ~ 0.262 (SSP3 > SSP4 > SSP2 > SSP1 > SSP5), with a change rate of -1.14 ~ -0.98%/a compared to 2020. All other indicators showed a decreasing trend, among which total water resources, carbon storage, and habitat quality were the highest, with rates of change of -0.81 ~ -0.78%/a, -0.39 ~ -0.31%/a, and -0.39 ~ -0.24%/a, respectively. The support indexes of all eight cities decreased, with Jiaxing, Taizhou, and Wenzhou having the highest rates of -1.55 ~ -1.31%/a, -1.25 ~ -1.10%/a, and -1.23 ~ -1.00%/a, respectively. Nantong and Shanghai were more prominent in the changes in agricultural food production, carbon storage, air pollutants storage, and habitat quality. Taizhou and Wenzhou showed the highest rates of change in total construction space and total water resources.


Table 6 | Support index change in 2020-2050 (%/a).



The CRECC simulation and statistical results revealed that the predicted CRECC values for 2050 are 0.606 ~ 0.701 (SSP5 > SSP1 > SSP2 > SSP3 > SSP4), which shows an increasing trend of 0.027 ~ 0.123 compared to 2020. Among the eight cities, only Shanghai had a CRECC greater than 1, and the stress index was always higher than the support index. Spatial classification was based on the natural point method in ArcGIS. Figure 4 indicates that the spatial distributions of SSP1, SSP2, and SSP3 were relatively similar, with five, four, and five cities showing an increasing trend in CRECC, respectively, with Shanghai and Lianyungang at the maximum level. The decreasing trend of CRECC in Jiaxing was most significant in the SSP1 and SSP2 scenarios, whereas it was replaced by Nantong and Wenzhou in the SSP3 scenario. In the SSP4 scenario, only three cities displayed an increasing trend in CRECC, with Shanghai at the maximum level and Yancheng showing the most significant decrease in CRECC. The number of cities with an increasing trend in CRECC under the SSP5 scenario reached six, with Shanghai and Jiaxing being the most prominent, and Yancheng remaining as the city with the most significant decrease in CRECC.




Figure 4 | Trends of CRECC under different SSPs scenarios in the Yangtze River Delta coastal zone from 2020 to 2050.



Overall, the decrease in the support index was approximately triple that in the pressure index between 2020 and 2050, which was the principle reason for the increase in CRECC. This indicates that the resource and environmental carrying capacity is not expected to improve in the coming decades. While there are clear spatial differences in the CRECC trends under the different scenarios, Shanghai remains the most prominent case of a significant decrease in carrying capacity. The performance of neighbouring cities varied greatly under different scenarios, whereas the trends of several cities in northern Jiangsu and southern Zhejiang were more stable under different scenarios.





3.3 CRECC change in the shoreline area

Based on remote sensing data from China’s eastern coastline (Liu et al., 2019), a 10 km buffer zone was generated in the landward direction, and the heterogeneity of the carrying capacity within this buffer zone and the study area was investigated. The results show that the predicted pressure index and CRECC of the shoreline area in 2050 will be higher than the average values for the study area, and the support index is slightly lower for most cities under the five SSP scenarios.

Between 2020 and 2050, the pressure index of shoreline areas is predicted to increase from 0.155 to 0.157 ~ 0.162, and the support index to decrease from 0.259 to 0.212 ~ 0.240. The CRECC changed from 0.653 to 0.759 ~ 0.893 (SSP5 > SSP3 > SSP1 > SSP4 > SSP2), with an increase of 16.30 ~ 36.80%. This value was 3.82 ~ 15.54 percentage points higher than the mean value for the study area during the same period (Figure 5). The carrying capacity of the ecological environment and natural resources in the shoreline area was more severe than that in the study area.




Figure 5 | Changes of pressure index (A), support index (B) and CRECC (C) of 8 cities along the shoreline from 2020 to 2050.



Six of the eight cities, with Taizhou and Wenzhou being the exceptions, had pressure indices above the average stress index of the study area under the five SSP scenarios. Only three cities (Taizhou, Wenzhou, and Ningbo) had high support indices. This resulted in five cities (Lianyungang, Yancheng, Nantong, Shanghai, and Jiaxing) with higher CRECC, indicating a lower carrying capacity. It is significant that the shoreline areas are currently approaching a state of overload, and exhibit an increasing trend for the pressure index, by 2050. Moreover, it is important to acknowledge that the decreasing trend in the support index is moderate.




3.4 Obstacle factors analysis

Through obstacle-degree diagnosis, factors influencing CRECC in each region can be determined and analyzed. Table 7 shows that the most frequent obstacles in 2020 were P3 (water resource demand), S2 (construction space demand), and S5 (air pollutant emissions), which were seven, five, and four times higher, respectively. Under the five SSP scenarios for 2050, the main obstacle indicators for each province are the same. The obstacles with the highest frequencies were S3 (total water resources), S2 (total water resources), and S5 (air pollutant storage), which are 7 times, respectively, 5 and 3 times. This shows that the obstacle factors are mainly supporting indicators, and water resources, land resources, and the atmospheric environment are the main factors affecting the resource and environmental carrying capacity in the Yangtze River Delta coastal zone.


Table 7 | Main obstacle factors of CRECC in Yangtze River Delta coastal zone.







4 Discussion



4.1 Expansion of urban land has important implications for future trends in CRECC

The predicted decrease in the pressure index between 2020 and 2050 is considered to be due to a reduction in resource demand, owing to the continued decrease in population size after 2030. The decrease in the support dimension index can be attributed to changes in future land use patterns. Land has important functions, such as the production of agricultural commodities, water conservation, and the maintenance of stable habitat quality. Changes in the spatial structure of land use and the intensity of development and utilization may change the distribution of the main regional functions and cause fluctuations in the effectiveness of regional resource use and ecological sustainability.

Many studies have shown that changes in urban land use are the principle causes of local ecosystem degradation and loss (McDonald et al., 2008; He et al., 2014). This study overlaid the spatial distribution maps of land use in 2020 and for 2050 under various SSPs scenarios. The results showed that the change in CRECC in the area not affected by the spatial expansion of urban land was negative, whereas the change in CRECC in the area where urban land occupied cultivated land, ecological land, and other construction land was positive. The urban expansion areas accounted for 7.12% ~ 8.48% of the total area between 2020 and 2050, and the CRECC increased by 0.023 ~ 0.052. This indicates that the more the land use pattern is affected by urban expansion, the more obvious the decreasing trend in carrying capacity (Table 8; Supplementary Figure 1). Cultivated land is the main land use type for food production, while ecological land and wetlands are important biological habitats. In the context of global development, urban expansion is an inevitable trend in economic growth, resulting in a reduction in the area of cultivated and ecological land. This trend could exacerbate regional food security problems and deteriorate habitat quality. This finding is supported by similar findings in previous studies (Soesbergen et al., 2017; Zhang et al., 2020).


Table 8 | Effects of major land-use changes on CRECC changes under different SSPs scenarios from 2020 to 2050.






4.2 The pressure on resources and environment in the shoreline area is higher than the overall situation of the Yangtze River Delta coastal zone

The natural resource endowment and environmental management regimes of the Yangtze River Delta coastal zone differ, and their CRECC change processes exhibit clear spatial differences. The shoreline area is influenced by both land and sea economies, while also being constrained by the ecological environment, particularly the marine environment. It had a particularly low carrying capacity over the entire study area. This may have been due to the rapid development of coastal cities and marine economies. China’s coastal cities were the pioneers in the market economy stage, with Lianyungang, Nantong, Shanghai, Ningbo, and Wenzhou among the first open coastal cities in 1984. This was followed by the establishment of new coastal and economic zones in Shanghai and other places. A series of coastal development policies have accelerated population movement along the coast. Seaward activities and integration of land and sea transportation have developed rapidly. Coastal industries and port terminal construction have become increasingly active. The most significant impact was the artificialization of the coastline, with the length of the coastline growing by nearly 20% between 1990 and 2015 (Hou et al., 2016). These changes have resulted in the replacement of coastal habitats with artificially constructed surfaces. Biodiversity in some coastal zone areas has significantly declined due to the loss of biological shorelines, such as mangroves and coral reefs, as well as intertidal silty mudflats. This leads to the loss of ecological functions, which is an important cause of the low comprehensive carrying capacity.




4.3 Impact of major obstacle factors

According to obstacle factor analysis, water resources, land resources, and the atmospheric environment were the main factors. Support indicators exhibit a greater degree of influence than pressure indicators. This indicates that whether the carrying capacity of the Yangtze River Delta coastal zone can be improved in the future, it is necessary to focus on improving the capacity of natural resource supply, enhancing ecological environment management, and implementing rational construction land planning. In contrast to the findings of this study, Yang et al. (2022) concluded that the level of economic development is the primary obstacle to the comprehensive resource and environmental carrying capacity of Hainan Island, China. As the level of economic development in Hainan Island is comparatively lower than that of the coastal cities in the Yangtze River Delta, the development disparities between them are considerable. The coastal cities of the Yangtze River Delta have a high degree of economic development, and the natural resources and ecological environment-carrying capacity have become the main obstacles. Zheng et al. (2017) concluded that the obstacle degrees of energy consumption, investment in urban environmental infrastructure, and environmental protection have the greatest impact on Fujian’s comprehensive carrying capacity. These results indicate that Fujian and the Yangtze River Delta coastal provinces and cities share a high degree of similarity in terms of their comprehensive carrying capacity and development patterns.





5 Conclusion

Studying the current situation and future development trends of resource and environmental carrying capacities is of great significance for enhancing sustainable development and promoting further optimization of management strategies in coastal areas. This study proposes an evaluation framework for coastal resources and environmental carrying capacity (CRECC). We conducted an evaluation to explore the applicability of the scenario simulation method based on shared socioeconomic pathways, and to identify the main resource and environmental limiting factors of the Yangtze River Delta coastal zone. It provides ideas for the exploration of research on resource- and environment-carrying capacities in time and space predictions.

The main conclusions are as follows: (1) CRECC increased, and the carrying capacity decreased between 2000 and 2020. The increasing trend of the support index was lower than that of the pressure index. Shanghai had the lowest carrying capacity, and the carrying capacity of cities south of Shanghai was higher than that of the other cities. (2) During 2020–2050, the carrying capacities in all five predicted SSP scenarios decreased, with the SSP1 and SSP5 scenarios being the most obvious. This is because the decrease in the support index was much higher than that in the pressure index. The overall resource and environmental carrying capacity will not improve in the coming decades. Among these, the mismatch between natural ecological conditions and the intensity of human activities in the shoreline area is more prominent. (3) Support indicators had a more significant impact than pressure indicators. Among these, the supply capacity of water and land resources and the atmospheric quality were the main limiting factors for sustainable economic and ecological development.

We have long been committed to researching the resources and carrying capacities of coastal zones. In our previous research (Liu R. et al., 2020), the coastal resource–environmental carrying capacity index (CRECC) was evaluated based on three dimensions: resource, ecological, and socioeconomic systems. Within this, twenty indicators were selected, and the change characteristics of the CRECC for the Jiangsu coastal zone between 2000 and 2015, and the interaction relationship within the subsystem, were calculated using the entropy weight method, hierarchical analysis, and least squares method. On this basis, this paper presents obvious developments and breakthroughs in theoretical elaboration, model construction, and simulation prediction of coastal resource and environmental carrying capacity. However, this study has the following limitations: i) The uncertainty of the model has not been determined; ii) The number and interaction mechanisms of the influencing factors of resources and environmental carrying capacity were insufficiently explored. Consequently, we concur that future research should aim to enrich the data, continue to improve the model, enhance mathematical and statistical analyses, and evaluate the impact of the flow of resources and environmental factors in the regional space from an open system perspective.
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