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Editorial on the Research Topic

The role of vitamin D in metabolic and cardiovascular health

In the last few decades, interest in vitamin D (VitD) has grown significantly since
numerous studies have suggested that besides its well-established roles in bone metabolism
(1), it could have other important roles in organism, including roles in immunity,
endocrine, cardiovascular, and reproductive system (2–7). Many studies indicated that
VitD status is inversely associated with the incidence of several metabolic diseases and
conditions, including obesity (8, 9), insulin resistance (10–14), metabolic syndrome (15–
17), dyslipidemia (13, 18, 19), diabetes (10, 11, 20–22), non-alcoholic fatty liver disease
(NAFLD) (23–25), and cardiovascular diseases (7, 26–28). However, the findings were often
inconsistent, and the cause/effect relationships particularly remained to be confirmed, as
well as the molecular pathways of these associations. Moreover, the relationship of VitD with
metabolic and cardiovascular disorders seems to be bidirectional: e.g., obesity could worsen
VitD deficiency (8), and vice versa, VitD deficiency could aggravate obesity and related
metabolic and cardiovascular complications (insulin resistance, defects in insulin secretion,
disordered metabolism of lipids, hepatic steatosis, and gut dysbiosis) (7, 9) by multiple
mechanisms, many of which are still undiscovered and unclarified. Additionally, since in the
above-mentioned disorders and diseases there is also chronic inflammation and increased
oxidative stress, the role of VitD as immunomodulator and anti-oxidative agent has been
proposed as one of the mechanisms by which VitD can influence these conditions (29–34).

This Frontiers Research Topic “The role of vitamin D in metabolic and cardiovascular

health” focused on epidemiological research on associations of VitD with metabolic and
cardiovascular health, particularly in specific population groups, and pathophysiological
pathways of these associations, as well as possible confounding factors which modulate
these associations. The Research Topic welcomed also articles on the role of VitD
as one of supporting therapeutics in cardiovascular and metabolic diseases, as well
as immunomodulator.

In this Research Topic there are 13 papers covering the above-mentioned aspects.
Chen Y. C. et al. compared the risk for VitD deficiency across different categories of

metabolically healthy normal weight (MHNW) tometabolically unhealthy overweight/obese
insulin resistant (MUO) subjects, by studding 6,655 Chinese adults. The study confirmed the
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highest risk for VitD deficiency among the MUO subjects, but
also indicated some gender and age- related differences: among
men, the increased risk was noted particularly in MUO men >50
years old, while in younger men, the risk was highest among
metabolically healthy obese (MHO) men. In contrast, among
women, in both age subgroups the highest risk was represented
among MUO women, but the stronger association was noted
among younger women. This study indicated possible gender-
influenced associations of VitD status with obesity and adverse
cardiometabolic and inflammatory profiles.

Similarly, Yin X. et al. analyzed the associations of VitD
status with HOMA-IR (Homeostatic Model Assessment of Insulin
Resistance), as a robust measure of insulin resistance, in 6,079
American adults without diabetes and other chronic diseases, by
using the data from theNational Health andNutrition Examination
Surveys (NHANES). The study also confirmed the negative
associations between serum VitD concentrations and HOMA-IR,
which remained significant after multiple adjustments for many
possible confounders, including age, gender, race/ethnicity, and
body mass index (BMI). Nevertheless, the further stratification
analyses showed some racial/ethical differences: in people with
Non-Hispanic Black origin this inverse association between VitD
and HOMA-IR was not observed, which indicates the need for
further studies focused on ethnic/racial disparities.

Song et al. examined the possible additive effects of obesity
and VitD status on the all-cause, cardiovascular and cancer-
related mortality, by using the data from the NHANES surveys.
In the models adjusted for multiple confounders (including age,
gender, race/ethnicity, smoking, and BMI), an independent effect
of VitD both insufficiency and deficiency on all mortality rates
was confirmed, with deficiency having stronger effect. Interestingly,
the effect of VitD deficiency overcame the effect of obesity on
all mortality rates. The highest risk for overall and cardiovascular
mortality was observed among VitD deficient obese subjects,
while for cancer mortality among VitD deficient normal weight
subjects, indicating different mechanisms of associations of VitD
with mortality in different conditions.

Similarly, Chen X. et al. examined the possible effects of
VitD status on the all-cause, cardiovascular and cancer-related
mortality among subjects with hyperlipidemia, by using the data
from the NHANES surveys. In the models adjusted for multiple
confounders (including age, gender, race/ethnicity, smoking, and
BMI), serum VitD level was identified as an independent factor
for all-cause and cardiovascular mortality, but no association was
found with malignancy-specific mortality among these subjects.
Particularly serum VitD levels <25 ng/ml were associated with a
higher risk for all-cause and cardiovascular mortality, indicating
the need for monitoring of VitD levels and correcting VitD
insufficiency/deficiency among hyperlipidemic subjects.

Zheng et al. using the NHANES data found a significant
negative correlation between serum VitD levels and the risk of
frailty in older people.

Shree et al. performed a meta-analysis on the association of
serum VitD levels and polymorphism in the VitD receptor (VDR)
gene with celiac disease, showing that reduced serum level of
25(OH)D and rs2228570-T polymorphism of Fok1 T-allele of VDR
gene could be implicated in pathophysiology of this autoimmune

disease. Zhou et al. examined the association between serum VitD
levels and plasma myeloperoxidase (MPO) levels, as a marker
of oxidative stress, in 6,414 Chinese women and men. After
adjusting for multiple confounders, the study found that circulating
25(OH)D was negatively associated with MPO levels.

Yin W. J. et al. examined 3,713 pregnant Chinese women
in the second trimester of pregnancy, their serum VitD levels,
biochemical and clinical indicators of cardiovascular risk and
inflammation, and the inflammatory potential of their diet, using
the empirical dietary inflammatory pattern (EDIP) score. The study
revealed that serum VitD levels mediated significant proportion of
the association between the dietary inflammatory potential (i.e.,
EDIP score) and cardiovascular risk in pregnant women. At the
same time, the circulating marker of inflammation, high-sensitivity
C-reactive protein (hs-CRP), mediated significant proportion of
the association between serum VitD levels and cardiovascular
risk, indicating significance of anti-inflammatory effect of VitD
in the prevention of cardiometabolic disturbances related to pro-
inflammatory diets.

Yang et al. performed a meta-analysis on the effects of
VitD supplementation on the circulating lipid levels in subjects
with prediabetes, and found that VitD supplementation might
beneficially affect triglyceride levels in these subjects, while no
significant effects on total cholesterol, HDL-cholesterol and LDL-
cholesterol were found. The study revealed that particularly longer
duration of treatment (more than 1 year), with doses which correct
VitD deficiency/insufficiency, are required to improve triglyceride
levels. However, just a few studies were included, andmore research
on that topic is necessary.

An interesting article by Lee et al. focused on the effect of
VitD supplementation on hypercalciuria/urolithiasis prevention in
140 children with epilepsy undergoing ketogenic dietary therapy
(KDT). It is known that ketogenic diets relate to increased risk
for hypercalciuria/urolithiasis, while the role of VitD on this risk is
less clear. Interestingly, the study showed an inverse association of
serumVitD levels with the urinary calcium/urinary creatinine ratio,
a marker of hypercalciuria. The study also pointed-out that the
serumVitD levels>40 ng/mL and the vitamin D3 supplementation
doses>50 IU/kg are probably needed for preventing hypercalciuria
related to KDT.

Bernardo et al. studied the combined effect of obesity (induced
by a high-fat diet) and VitD dietary depletion on metabolic profile
and progression of kidney damage in an experimental model of
ischemia/reperfusion kidney injury in rats. The study pointed out
both independent and additive effects of obesity and VitD depletion
on exacerbation of multiple metabolic and inflammatory changes,
and progression of functional, hemodynamic, and morphological
kidney alterations.

Gázquez et al. studied the effect of VitD supplementation
during pregnancy in rats by using different VitD metabolites.
The study showed that the monohydroxylated form of VitD,
25(OH)D3, given orally provided better VitD availability compared
to vitamin D3: it doubled 25(OH)D3 concentrations in maternal
and fetal blood. No adverse effects on pregnancy and fetus
were shown. Moreover, 25(OH)D3 had an additional effect
on the expression of VDR, fatty acid translocase (FAT), and
scavenger-receptor class B type-1 (SR-B1) in maternal liver; and
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VDR and glutamate decarboxylase GAD67 in fetal brain, which
requires further investigation.

Finally, Hanel et al. compared the gene-regulatory potential
of three different VitD metabolites: 25(OH)D3, 25(OH)D2, and
1,25(OH)2D3 in human peripheral blood mononuclear cells
(PBMCs), and found that although monohydroxylated metabolites
can have similar effect on expression of 206 common target
genes, their effective concentrations were in the range of supra-
physiological concentrations and were 600-fold higher than
effective concentrations for 1,25(OH)2D3, indicating 600-fold
lower effectiveness.

In summary, the articles in this Research Topic confirm
the independent and additive role of VitD in pathophysiology
of cardiometabolic and autoimmune diseases, and emphasizes
the need for further research in this field. Particularly studies
in different population groups, studies on pathophysiological
mechanisms, and well-controlled randomized trials with VitD as
preventive and therapeutic agent, are needed.
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The fetus depends on the transplacental transfer of vitamin D. Calcifediol (25-OH-D3) is
the vitamin D metabolite that crosses the placenta. Previously, oral 25-OH-D3 improved
serum 25-OH-D3 compared to vitamin D3 in non-pregnant subjects, although no
studies are available in pregnant women. We evaluated the availability of oral 25-OH-D3
compared to vitamin D3 during pregnancy, as well as, their levels in the fetus and effect
on metabolism-related proteins. Twenty female rats per group were fed with 25 µg/kg
of diet of vitamin D3 (1,000 UI vitamin D/kg diet) or with 25 µg/kg diet of 25-OH-D3.
We analyzed 25-OH-D3 levels in maternal and fetal plasma; protein levels of vitamin
D receptor (VDR), fatty acid translocase (FAT), and scavenger-receptor class B type-1
(SR-B1) in both maternal liver and placenta; and protein levels of VDR and Glutamate
decarboxylase (GAD67) in fetal brain. 25-OH-D3 doubled the concentration of 25-OH-
D3 in both maternal and fetal plasma compared to vitamin D3. In addition, maternal liver
VDR, FAT, and SR-BI increased significantly in the 25-OH-D3 group, but no changes
were found in the placenta. Interestingly, 25-OH-D3 decreased GAD67 expression in
the fetal brain and it also tended to decrease VDR (P = 0.086). In conclusion, 25-OH-
D3 provided better vitamin D availability for both mother and fetus when administered
during pregnancy compared to vitamin D3. No adverse effects on pregnancy outcomes
were observed. The effects of 25-OH-D3 on the expression of VDR and GAD67 in fetal
brain require further investigation.

Keywords: availability, calcidiol, calcifediol, pregnancy, vitamin D

Abbreviations: 25-OH-D3, hydroferol; FAT/CD36, fatty acid translocase; GAD, glutamate decarboxylase; GAD67, glutamic
acid decarboxylase 67; PBS-T, phosphate saline buffer with 0.05% Tween-20; SEM, standard error of the mean; SR-B1,
scavenger receptor class B type-1; VDR, vitamin D receptor; Vitamin D3, cholecalciferol.
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INTRODUCTION

Maternal vitamin D insufficiency, during both pregnant and non-
pregnant states, is a common issue and a significant problem in
public global health (1). Supplementation of food with vitamin D
or the use of vitamin D supplements is the most universal strategy
to improve vitamin status. Cholecalciferol (vitamin D3) and
ergocalciferol (vitamin D2) are the most widely used compounds.
While the use of vitamin D3 and vitamin D2 has been supported
by historical data and practicality, calcifediol (25-OH-D3) should
be evaluated as an alternate oral supplement during pregnancy.
Evidence is mounting that it is a more bioavailable form of
vitamin D in the non-pregnant state (2, 3).

Oral supplementation with 25-OH-D3 resulted in a more
rapid increase in serum 25-OH-D3 compared to oral vitamin D3
in non-pregnant subjects (3). This is consistent with a higher
intestinal absorption rate for 25-OH-D3 (4, 5), that may have
important advantages when intestinal absorption capacity is
decreased due to disease. In addition, as oral 25-OH-D3 is more
potent than vitamin D3, lower dosages are needed to achieve
desired therapeutic effects (6). There is still no consensus on the
vitamin D activity (IU units) conversion factor for 25-OH-D3
and much less is known in the pregnant population (2, 3, 6, 7).
Hemodilution may lead to differential responses to vitamin D
supplementation between pregnant women. Since some women
of reproductive age receive 25-OH-D3 supplementation, it is
also important to evaluate the efficiency and risks of such
supplementation during pregnancy.

Clinical research investigating the role of vitamin D in
human health and disease has relied on the measurement
of total 25-OH-D3 in serum or plasma to assess vitamin D
status. However, 25-OH-D3 is an inactive form of vitamin D
that requires further hydroxylation in the kidneys into 1,25-
(OH)2-D3, the active form of vitamin D. However, the active
metabolite 1,25-(OH)2-D3 cannot cross the placenta, but 25-
OH-D3 readily crosses (8, 9). As the placenta expresses the
enzyme 1-α-hydroxylase, it may synthesize 1,25-(OH)2-D3,
which seems to play an immunomodulatory role within fetal
tissue (9).

The activation of vitamin D receptor (VDR) is heavily
dependent on the binding of 1,25-(OH)2-D3 to the receptor
(10). The VDR-1,25-(OH)2-D3 complex then translocates into
the nucleus to activate DNA transcription. Better understanding
of the mechanisms involved in the placental transfer and fetal
availability of key nutrients are essential to provide more solid
dietary advice to pregnant women.

Fatty acid translocase (FAT/CD36) is a fatty acid carrier placed
in the plasma membrane of several tissues, including placenta,
and may transport vitamin D and other lipophilic compounds
(11). In addition, FAT/CD36 is essential for the very low-density
lipoprotein (VLDL) exportation from the liver and its deletion
is related to liver steatosis, obesity and non-alcoholic fatty liver
disease (12–14). By other hand, scavenger receptor-B1 (SR-B1) is
the main receptor of high-density lipoprotein (HDL) in the liver
and is pivotal for the uptake of cholesterol from peripheral tissues
back into the liver and cholesterol reverse transportation to feces
(14). SR-B1 is involved in the cellular uptake of vitamin D (15)

but its role in vitamin D tissue storage and the status of vitamin
D is currently not known.

In this study, we aimed to compare for the first time the
bioavailability of 25-OH-D3 and vitamin D3 administrated
during pregnancy. We explored their effects on serum status
and on several proteins related to vitamin D transport and
metabolism measured in maternal, placenta, and fetal tissues. 25-
OH-D3 supplementation is of major interest because it could
likely be supplemented at a lower dose than vitamin D3 in
order to achieve desirable efficacy in both pregnant women
and their babies.

MATERIALS AND METHODS

Animals and Study Design
All procedures were approved by the Institutional Animal Care
and Use Committee of the University of Murcia (N◦ A13180105)
and conform to the ARRIVE guidelines for animal research
(16). Animals received humane treatment in accordance with the
European Union guidelines for the care and use of laboratory
animals. Female adult Sprague Dawley rats (7 weeks of age) were
supplied by the Animal Laboratory Service of the University of
Murcia. Animals were housed individually with ad libitum access
to food and water in a humidity and temperature-controlled
(22 ± 1◦C) room on a 12 h light/dark cycle.

Forty female rats of 7 weeks of age were fed a modified version
of AIN-93M diet (17) for 10 days. This modified diet provided
by the Abbott Nutrition was deficient in vitamin D, vitamin
E and folic acid to ensure similar vitamin basal status in all
the animals (Modified AIN-93 Vitamin Mix at 10 g/kg of diet
without Vitamin E, Vitamin D, or Folic Acid). Animal weight was
recorded every week. After this nutritional deprivation period,
the female rats were split into two groups (n = 20 each group)
and each group of rats were fed a particular test diet for 4 weeks:
(1) The control group received commercial AIN-93G diet with
25 µg/kg diet of vitamin D3 at 40 UI/g Vitamin D3 (1,000 UI
vitamin D/kg of diet) and (2) the calcifediol experimental group
received the AIN-93G diet but with 25 µg/kg of 25-OH-D3
(Merck, Germany) instead of vitamin D3. The commercial AIN-
93 G diet used in both control and experimental groups contained
vitamin E and folic acid according usual AIN-93G composition.
Subsequently, the female rats were mated (1:1) with male rats.
Once fecundation took place (by sperm presence in vaginal smear
under the microscope), male rats were removed. Female rats
were then allocated to appropriate cages and continued to be
fed with their assigned test diets throughout the pregnancy. At
day 20 of gestation, rats were anesthetized with a mixture of
5 mg ketamine hydrochloride, 0.25 mg chlorobutanol and 1 mg
xylazine per 100 g body weight. Maternal blood was extracted by
heart puncture and fetal blood by decapitation. Maternal liver,
placenta, and fetal brain were also collected (4 placentas and 4
fetal brain were pooled per rat). Additionally, blood samples were
also collected from the tail at different stages of the study: (1) at
the start of the study (a subset of n = 4 animals), (2) after the
nutritional deprivation period (another subset of n = 4 animals)
and (3) after introduction of respective test diets for 4 weeks and
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right before mating (n = 7 controls with Vitamin D3 and n = 7
with 25-OH-D3 diet) (Figure 1). Blood was collected in EDTA-
coated tubes and centrifugated at 1,400 g for 10 min at 4◦C to
obtain plasma. Plasma and tissues were frozen in liquid nitrogen
and stored at −80◦C until analysis.

Plasma Vitamin D Analyses
25-OH-D3 was analyzed in the plasma of the animals by direct
competitive immunoluminometric assay using coated magnetic
microparticles in a LIAISON R© XL automated analyzer (DiaSorin
S.p.A., Saluggia, Italy). The plasma levels of 25-OH-D3 were
analyzed using the tail blood samples collected mentioned above.
The 25-OH-D3 levels of both maternal and fetal plasma collected
at the end the study were also analyzed. Maternal blood was
extracted by heart puncture and fetal blood by decapitation at day
20 of gestation.

Protein Extracts for Western Blotting
Protein extracts were obtained by homogenizing 30 mg of
placental tissue, maternal liver or fetal brain in 0.3 mL ice-
cold lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl,
5 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium
pyrophosphate, 1 mM beta-glycerophosphate, 1 mM Na3VO4,
1 µg/mL leupeptin) from Cell Signaling Technology (MA,
United States). Phenylmethanesulfonyl fluoride solution 1 mM
was added to the lysis buffer before homogenization (18).
Samples were homogenized using a Tissue Lyser LT device
(Qiagen Iberia SL, Madrid, Spain). Protein lysates were obtained
from the supernatant after 15 min centrifugation at 10.000 g 4◦C.
Protein concentration was quantified by Bradford assay (19) and
samples were stored at −80◦C until Western blot analysis.

Western Blot Analysis
The primary antibodies used were: rabbit monoclonal against
FAT/CD36 (Abcam, Cambridge, United Kingdom, Ref: ab17044)
1:250 in maternal liver and 1:200 in placenta; rabbit monoclonal
anti-VDR (Abcam, Cambridge, United Kingdom, Ref: ab109234)
1:500 in maternal liver, 1:200 in placenta and 1:400 in fetal
brain; rabbit monoclonal antibody against SR-B1 (Abcam,
Cambridge, United Kingdom, Ref:ab217318) 1:700; rabbit
monoclonal antibody against glutamic acid decarboxylase 67
(GAD67) (Abcam, Cambridge, United Kingdom, Ref: ab108626)
1:700, and mouse monoclonal anti-β-actin (Sigma-Aldrich, MO,
United States, Ref:A5316). The secondary antibodies used were
anti-mouse (Santa Cruz Biotechnology, TX, United States,
sc 516102), anti- rabbit (Santa Cruz Biotechnology, TX,
United States, sc-2357) and anti-goat (Sigma-Aldrich, MO,
United States, Ref: SAB3700295-1MG) polyclonal antibodies
conjugated with horseradish peroxidase.

The protein extracts (15 µg protein) diluted in sample buffer
were resolved on 10% polyacrylamide gels, and transferred
onto polyvinylidene difluoride membranes (Merck Millipore,
Darmstadt, Germany). Membranes were blocked in phosphate
saline buffer with 0.05% Tween-20 (PBS-T) containing 2%
bovine serum albumin for 1 h at room temperature. Thereafter,
membranes were incubated with primary antibodies overnight at
4◦C. Blots were then washed with PBS-T and probed for 1 h at

room temperature with the correspondent secondary antibodies
conjugated with horseradish peroxidase. Finally, membranes
were stripped with Tris/HCl buffer pH 2.3 containing beta-
mercaptoethanol 0.1 M and re-probed with anti-beta-actin to
perform loading controls. Immunoblot signals were detected
using a chemiluminescence kit according to the manufacture’s
instruction (Pierce ECL 2 Western Blotting Substrate; Thermo
Fisher Scientific, MA, United States) (20). Density of all bands
was determined by densitometry using Image Quant LAS 500
software (GE Healthcare, CA, United States). Relative protein
expression data were normalized against β -actin level.

Statistical Analysis
Shapiro-Wilk normality test was used to check normal
distribution of continuous variables. The results were expressed
as mean ± standard error of the mean (SEM). The two
experimental groups were compared using unpaired t-test
analyses. ANOVA test was also applied for multiple testing
followed by post-hoc Bonferroni in the comparisons of Figure 2.
Pearson correlations were also performed. Chi2 analysis of
qualitative data were also analyzed. The statistical analyses
were evaluated by the SPSS R© 24.0 software package (IBM
Corp., NY, United States). A p-value 0.05 was considered to be
statistically significant.

RESULTS

Maternal, fetal, and placental weights were not significantly
different between the groups fed 25-OH-D3 diet and the control
group that was fed vitamin D3 (Table 1). The number of fetuses
per dam was also similar between both diet groups. In addition,
no differences were found in the abortion rate between both
groups. There was also no difference in fertility rate. In summary,
pregnancy-related outcomes are comparable between the study
groups (Table 1).

The 10-day deprivation period resulted in significant
decreases in plasma levels of 25-OH-D3 compared to the
baseline level detected at the start of the study (Day 0) (Figure 2).
The animals were split into two groups and were fed different
diets for 4 weeks (Day 40). At Day 40, plasma levels of 25-OH-D3
were significantly higher in the 25-OH-D3 group than in the
vitamin D3 control group. Furthermore, the level of 25-OH-D3
in the 25-OH-D3 group was higher than the baseline level
detected at the study entry (Figure 2). In contrast, vitamin D3
group plasma 25-OH-D3 levels were not different from baseline
levels. The data showed that 25-OH-D3 supplementation
resulted in higher levels of 25-OH-D3 in plasma than vitamin D3
supplementation in non-pregnant animals.

At delivery, maternal plasma levels of 25-OH-D3 were
significantly higher in the 25-OH-D3 group compared to those
of the vitamin D3 group (Figure 3A). The maternal plasma
concentration of 25-OH-D3 group was almost two times higher
than that found in the vitamin D3 group. Fetal plasma 25-OH-
D3 levels were also significantly higher in the 25-OH-D3 group
compared to those of the vitamin D3 group (Figure 3B). The
levels of fetal plasma 25-OH-D3 in the 25-OH-D3 group were
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FIGURE 1 | Experimental design. *Blood sample collected at such time of the experiment.

about 1.6× higher than those detected in the vitamin D3 group
(50 ng/mL in experimental group vs. 80 ng/mL in control).
Thus, the results showed that 25-OH-D3 supplementation had
higher potency in raising vitamin D status in both maternal
and fetal plasma during pregnancy compared to vitamin D3
supplementation. There was a significant correlation between the
levels of 25-OH-D3 in maternal and fetal plasma (r = 0.555,
P = 0.005). 25-OH-D3 is the vitamin D metabolite that crosses the
placenta. The ratio of fetal to maternal 25-OH-D3 concentrations
at delivery was similar in all groups (25-OH-D3 fetal/maternal
plasma: 3.51 ± 0.46 in the 25-OH-D3 group vs. 3.56 ± 0.13 in the
vitamin D3 group, p = 0.908).

With regards to vitamin D metabolism, pregnant rat dams
supplemented with 25-OH-D3 had significantly higher VDR
hepatic protein levels compared to the vitamin D3 group
(Figure 4A). The increase in protein levels were also observed
for SR-B1 (p < 0.05) and FAT/CD36 (p = 0.059) (Figure 4A).
The findings showed that the higher vitamin D levels in pregnant
rat dams corresponded with higher expressions of vitamin D
metabolism-related proteins, such as VDR which is a known
receptor for 1,25-(OH)2-D3.

Interestingly, the protein levels for VDR, SR-B1, and
FAT/CD36 in the placentas were similar in the two groups
(Figure 4B). This result suggested that placental transfer of
25-OH-D3 from the mother to the fetus was not affected,
highlighting the importance of achieving an optimal
maternal 25-OH-D3 concentration for increasing fetal serum
vitamin D status.

Due to the remarkable results observed in maternal liver,
we decided to analyze VDR levels in fetal brain. Surprisingly,
maternal 25-OH-D3 supplementation tended to decrease VDR
expression in fetal brain (p = 0.086) although the differences
were not statistically significant.” This is probably due to
a negative feedback mechanism to protect the fetal brain
(Figure 4C). In addition, we also detected lower expression of
GAD67, which is an established marker of GABAergic neurons,
in the fetal brain by maternal 25-OH-D3 supplementation
during pregnancy (Figure 4C). These results suggested that
the impacts caused by the increase in vitamin D status in the
fetuses were systemic.

DISCUSSION

We report for the first time during pregnancy that
supplementation with 25-OH-D3 dramatically increased
plasma 25-OH-D3 in both the dams and fetuses compared to D3
with important perturbations in the levels of vitamin D relevant
proteins in both mother and fetus. For this study, we did not
adjust the diets for vitamin D activity since the conversion rate
for 25-OH-D3 remains uncertain. Vitamin D3 has a recognized
biological activity of 40 IU per microgram. This conversion
factor has been used to achieve 1,000 IU/kg in both the vitamin
D and 25-OH-D3 diets. Nevertheless, it should be noted that
commercial hydroferol (25-OH-D3) has been reported to be
60 IU per microgram. Therefore, there is a possibility that
25-OH-D3 conversion factor should be 60 IU per microgram or
more instead of 40 IU per microgram. This could also explain
the results obtained by this study.

Our study showed that 25-OH-D3 supplementation increased
the level of 25-OH-D3 in both maternal and fetal serum two

FIGURE 2 | Plasma 25-OH-Vitamin D3 levels in non-pregnant animals at
different time points: at study entry (Basal n = 4), after a deficiency diet (n = 4)
and after 4 weeks of feeding with test diets containing 25-OH-D3
(experimental diet n = 7) or vitamin D3 (n = 7) before mating. ANOVA,
P < 0.001. Values not sharing a common superscript letter are significantly
different (P < 0.05).
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TABLE 1 | Animal characteristics and dietary intake.

Experimental
(n = 18)

Control
(n = 16)

P

Maternal weight (g)

At the start of the study 163.99 ± 3.08 169.02 ± 5.14 0.408

After deficiency (day 10) 192.68 ± 3.79 195.74 ± 4.50 0.604

At delivery 346.14 ± 8.13 355.69 ± 6.77 0.384

Dietary intake before pregnancy (g/d) 11.73 ± 0.31 12.12 ± 0.35 0.416

N◦ fetus 11.17 ± 1.01 12.81 ± 0.56 0.177

Fetal weight (g) 3.76 ± 0.19 3.34 ± 0.16 0.097

Placental weight (g) 0.56 ± 0.05 0.50 ± 0.01 0.202

Abortions per rat 0.28 ± 0.14 0.13 ± 0.09 0.361

No pregnant rats (n/%)* 2 (10%) 1 (6%) 0.647

Media ± SEM or n (%). Significance level set at P < 0.05 by t-test.
*Differences evaluated by Chi2.

times more effectively than supplementation with a matching
level of vitamin D. The higher availability in fetal 25-OH-
D3 occurred without differences in VDR, FAT/CD36, or SR-
B1 protein expressions in placental tissue. The results on
the relationship between placental VDR and 25-OH-De are
scarce and contradictory. In mice, placental VDR expression
was significantly up-regulated in vitamin D3-pretreated animals
supporting anti-inflammatory effects against lipopolysaccharide
in the placenta (21). However, in adolescents, placental VDR
expression was inversely associated with neonatal 25(OH)D
(P = 0.012) and maternal 25(OH)D (P = 0.080) while positively
with neonatal 1,25(OH)2D (P = 0.006) (22). In gestational
diabetes, low vitamin D was reported in serum while higher
levels of placental VDR; in fact, low serum levels could even up-
regulate the placenta VDR gene expression via negative feedback
regulation, such that the increase in the bioavailability of vitamin
D might compensates for the deficiency (23). Placenta is a key
organ of transfer for 25-OH-D3 that even expresses the enzyme
1-α-hydroxylase, to synthesize 1,25-(OH)2-D3 and hence to
regulate inflammatory processes. For this reason, the protein
levels of VDR in placenta may differ to those in maternal liver.
In addition, no changes in pregnancy outcomes or fetal weight
were found between the groups in the present study.

Although 25-OH-D3 or calcifediol has been widely used for
dietary supplementation of vitamin D, it is not approved for
use in pregnant women as there is lack of safety data from
randomized controlled trials. An additional problem with the
use of 25-OH-D3 is that vitamin D3 and calcifediol are not
equipotent (6) and there is no consensus on the conversion
factor that should be used for 25-OH-D3 to calculate vitamin
D activity (IU units). Conversion-factor estimates of 1.4 and
5-fold-increase arose in two intervention studies with patients
who required vitamin D treatment (2, 24). A study conducted
in winter in older adults reported that each microgram of
oral 25-OH-D3 was about five times more effective in raising
serum 25-OH-D3 in older adults than an equivalent amount
of vitamin D3 (2); oral supplementation with 25 µg calcifediol
reached 134.6 ± 26 nmol/L 25-OH-D3 in serum compared
to 69.0 ± 8.7 nmol/L using the same dose of vitamin D3

(2). In contrast, Bischoff-Ferrari et al. (7) showed that in
healthy postmenopausal women (n = 10 women per group),
oral supplementation of 25-OH-D3 increased plasma 25-OH-
D3 levels three times more effectively than a matched dose
of vitamin D3. 25-OH-D3 supplementation rapidly and safely
elevated serum 25-OH-D3 concentrations in a dose-dependent
manner to improve vitamin D status in different populations (3);
a daily dose of 10 mg of 25-OH-D3 maintained serum 25-OH-D3
concentrations between 75 and 100 nmol/L (3). However, data
that help to define the conversion factor for 25-OH-D3 during
pregnancy are lacking. The data generated by this study will
provide another piece of information to help define the intake of
vitamin D and circulating level of 25-OH-D3 in pregnant women
that is adequate to improve fetal development and prevent
maternal complications.

In the present study, dietary 25-OH-D3 significantly increased
VDR protein in maternal liver. We also observed 25-OH-D3-
mediated increases in maternal liver levels of the fatty acid
transporter FAT/CD36 and the cholesterol carrier SR-B1. These
findings suggest changes in the transport of lipophilic nutrients
such as vitamin D in this organ. Higher FAT and SR-B1 protein
levels in the maternal liver might result in higher uptake of 25-
OH-D3, which may in turn increase its activity. Since the actions
of vitamin D are mediated by VDR that binds 1,25(OH)2D3,
this could also support higher active form of vitamin D in
the maternal liver. Recently, Kiourtzidis et al. (25) reported in
mice deficient in SR-B1 (Srb1−/−) or in CD36 (Cd36−/−) that
received triple-deuterated vitamin D3 (vitamin D3-d3), they had
significantly lower levels of 25-OH-D3-d3 in serum and tissues
than in wild type animals; this study also confirmed that SR-
B1 is not only crucial for the hepatic uptake of HDL cholesterol
but also for the uptake of vitamin D into the liver to synthesize
25-(OH)-D, the primary biomarker of vitamin D status (25).

Interestingly, low serum levels of 25-(OH)-D have been
observed in patients suffering obesity or non-alcoholic liver
diseases compared to those of healthy subjects (26–28). CD36
levels are increased in several studies of NAFLD where they
correlate with hepatic liver content (29, 30) but not in all
(12). Despite higher SR-B1 or FAT/CD36 could favor higher
vitamin D tissue uptake in these patients, the large amount of
fat stored in tissue might reduce their final levels of 25-OH-
D3 in serum. Whether vitamin D supplementation improves
NAFLD has remained controversial in clinical trials (31–33). In
mice, vitamin D supplementation alleviated NAFLD by activating
VDR, whereas hepatic-specific knockout of VDR abolished the
ameliorative effects of vitamin D on NAFLD (34). The higher
levels on liver VDR by supplementation with 25-OH-D3 vs.
vitamin D3 in the present study could be of major interest.

Placenta is a key organ that mediates nutrient transfer. It
is important to note that 1,25-(OH)-2D does not practically
cross the placental tissue, while its inactive precursor 25-(OH)-
D readily crosses the tissue to the fetal compartment (8, 9).
In the present study, the administration of 25-OH-D3 did not
change the expression of FAT, SR-B1 in the placenta by the
type of supplement. The lipid transport in the placenta and
the cholesterol uptake/efflux is different than in the liver which
could explain the differences between tissues. Nevertheless, this
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FIGURE 3 | Concentration of 25-OH-Vitamin D3 in plasma at delivery in rats
treated during pregnancy with 25-OH-D3 (experimental diet) or vitamin D3
control diet. (A) Concentration of 25-OH-Vitamin D3 in maternal plasma at
delivery (P < 0.001). (B) 25-OH-Vitamin D3 in fetal plasma at delivery
(P = 0.003). (C) Correlation between the levels of 25-OH-D3 in maternal and
fetal plasma. T-test significant differences ∗P < 0.05.

is the first study on the effect of the different types of vitamin D
supplements in these placental carriers.

Vitamin D receptor is the single known regulatory mediator
of hormonal 1,25-(OH)2-D3 in higher vertebrates (10). It acts in
the nucleus of vitamin D target cells to regulate the expression of
genes whose products control diverse cell type-specific biological
functions that includes mineral homeostasis. However, as VDR
expression emerged in other tissues, it became clear that vitamin
D action in many cellular targets was unrelated to mineral
regulation, suggesting additional vitamin D hormone functions
(35). One surprising finding here is the trend of down-regulation
of VDR in the fetal brain (p = 0.086) in the 25-OH-D3 group
when compared to the vitamin D3 control group. Despite

this result, was not statistically significant this down regulation
could be a self-protection mechanism triggered by the high
vitamin D level in the circulation (Figure 3C). In addition, 25-
OH-D3 supplementation reduced the expression of glutamate
decarboxylase GAD67, one of the GABAergic neuronal markers.
Glutamate decarboxylase (GAD) is localized only in presynaptic
terminals of GABAergic inhibitory neurons. There are two
common forms of GAD-GAD65 and GAD67. These isoforms
are encoded by independent genes with different subcellular
localizations. GAD67 is localized in the cell soma of inhibitory
neurons. GAD67 knocked-out mice have reduced GABA levels
throughout the brain, a reduction in GAD activity, and severe
cleft palate which leads to death within 24 h after birth (36). In
this study, we found that the expression of VDR in fetal brain
was positively associated with GAD67 (R = 0.391, P = 0.033). The
relationship between Vitamin D and GABAergic neurons had
been reported previously. GABA-Aα4 (37) and GABA B receptor
1 (38) expression was decreased in vitamin D deficient animals.
However, some other studies have reported no difference in
GABA transmission (39, 40), although the discrepancies between
studies could be due to differences in the brain regions analyzed.
We found changes in fetal vitamin D metabolism, beyond the
serum levels of 25-OH-D3, that should be investigated in the fetus
since it is in active neurodevelopment.

There is consensus that adequate vitamin D is necessary
during pregnancy for maintaining both maternal calcium
homeostasis and fetal bone development. There are also on-
going discussions about the potential effects of vitamin D levels
on pregnancy outcomes, such as preterm birth, gestational
diabetes, preeclampsia risk, and also on children’s long-term
health outcomes such as asthma and neurodevelopment (41–
43). Hajhashime et al. (44) showed that direct sunlight exposure
for 30 min daily (30% of body surface area) for 10 weeks
can provide 25-OH-D3 levels of almost 20 ng/mL (up from
15.09 ng/mL) in the plasma of pregnant women with vitamin
D deficiency. However, the same study also showed that dietary
supplementation of vitamin D3 at 4,000 IU per day for 10 weeks
increased 25-OH-D3 plasma level to 31.27 ng/mL (up from
15.95 ng/mL), which is significantly higher than the level
achieved by sun exposure. On a side note, increase in sun
exposure is associated with increase in cancer risk. Therefore,
dietary supplementation of Vitamin D is a much more feasible
intervention strategy than sun exposure for addressing vitamin D
deficiency issues in pregnant women.

25-OH-D3 supplementation in pregnant women is of major
interest because it could be likely achieve desirable maternal and
fetal blood levels at lower doses than Vitamin D3. In fact, some
endocrinologists are using it in pregnant women even though
it is not approved for use in pregnancy due to the lack of
safety data. Therefore, it is important to study the bioavailability
of the different forms of vitamin D in during pregnancy. It
is not feasible to extrapolate from other study populations
due to the physiological changes and hemodilution that occur
during pregnancy.

In conclusion, 25-OH-D3 is more potent than Vitamin D3 in
raising the vitamin D status in pregnant rats Supplementation
with 25-OH-D3 increased maternal and fetal 25-OH-D3 plasma
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FIGURE 4 | Vitamin D related proteins in several tissues at delivery in rats treated during pregnancy with 25-OH-D3 (experimental diet) or vitamin D3 (control diet).
(A) Maternal liver: vitamin D receptor (VDR), fatty acid translocase (FAT/CD36) (P = 0.059), and Scavenger Receptor 1 (SR-B1); (B) placenta: VDR, FAT/CD36, and
SR-B1; (C) fetal brain at delivery: VDR (P = 0.086) and glutamate decarboxylase (GAD). T-test significant differences ∗P < 0.05.

concentrations by nearly two times compared to vitamin D3. 25-
OH-D3 supplementation also increased VDR levels and some
lipid carriers in maternal liver as SR-B1 and FAT/CD36, but this

increase was not found in the placenta. In contrast, maternal 25-
OH-D3 decreased fetal brain VDR and GAD. Thus, supplemental
25-OH-D3 improved maternal and fetal vitamin D status better
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than vitamin D3. Its effects on fetal tissues should be further
explored in future studies.
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Human peripheral blood mononuclear cells (PBMCs) represent a highly responsive

primary tissue that is composed of innate and adaptive immune cells. In this

study, we compared modulation of the transcriptome of PBMCs by the vitamin D

metabolites 25-hydroxyvitamin D3 (25(OH)D3), 25(OH)D2 and 1α,25-dihydroxyvitamin D3

(1,25(OH)2D3). Saturating concentrations of 1,25(OH)2D3, 25(OH)D3 and 25(OH)D2

resulted after 24 h stimulation in a comparable number and identity of target genes,

but below 250 nM 25(OH)D3 and 25(OH)D2 were largely insufficient to affect the

transcriptome. The average EC50 values of 206 common target genes were 322 nM

for 25(OH)D3 and 295 nM for 25(OH)D2 being some 600-fold higher than 0.48 nM

for 1,25(OH)2D3. The type of target gene, such as primary/secondary, direct/indirect

or up-/down-regulated, had no significant effect on vitamin D metabolite sensitivity,

but individual genes could be classified into high, mid and lower responders. Since

the 1α-hydroxylase CYP27B1 is very low expressed in PBMCs and early (4 and

8 h) transcriptome responses to 25(OH)D3 and 25(OH)D2 were as prominent as to

1,25(OH)2D3, both vitamin D metabolites may directly control gene expression. In

conclusion, at supra-physiological concentrations 25(OH)D3 and 25(OH)D2 are equally

potent in modulating the transcriptome of PBMCs possibly by directly activating the

vitamin D receptor.

Keywords: vitamin D, transcriptome, PBMCs, target genes, 1α,25-dihydroxyvitamin D3, 25-hydroxyvitamin D3,

25-hydroxyvitamin D2

INTRODUCTION

Although humans can produce vitamin D3 endogenously when they expose their skin to UV-B
(1), predominant indoor lifestyle as well as insufficient UV indices in Northern latitudes (above
38◦) at winter times (2), suggest the supplementation of the vitamin for at least a part of the
year (3). Humans and animals use the cholesterol precursor 7-dehydrocholesterol as the substrate
for vitamin D3 synthesis, while fungi and yeast produce vitamin D2 on the basis of the sterol
ergosterol (4). Vitamin D2 and vitamin D3 differ only in the structure of their side chain, but in
human intestine the uptake vitamin D3 seems to be more effective (5). Nevertheless, both forms of
vitamin D are used for food fortification and direct supplementation (6).

Vitamin D2 and vitamin D3 are metabolized in the liver by the CYP (cytochrome P450)
enzymes CYP2R1 and CYP27A1 to 25(OH)D2 and 25(OH)D3, respectively (7). The sum of the
serum concentrations of both metabolites [or sometimes only 25(OH)D3] is traditionally used
as biomarker for the vitamin D status of an individual (8, 9). A vitamin D status below 50 nM
increases the risk for musculoskeletal disorders, such as rickets in children and osteomalacia as
well as fractures in adults (10). Moreover, insufficient 25(OH)D serum levels are associated with
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a number of immune-related diseases, such as rheumatoid
arthritis (11), multiple sclerosis (12), type I diabetes (13)
and inflammatory bowel disease (14). In addition, vitamin D
deficiency raises the risk for severe consequence of microbe
infections in tuberculosis, influenza or COVID-19 (coronavirus
disease) (15–17). Therefore, one should aim for serum 25(OH)D
levels in the range of 75–100 nM, i.e., 30–40 ng/ml (18). In
contrast, a vitamin D status of above 250 nM should be avoided,
in order to prevent deleterious effects of hypercalcemia (19).

The biologically most active form of vitamin D3 and D2 are
1,25(OH)2D3 and 1,25(OH)2D2, respectively, which function
in sub-nanomolar concentrations as nuclear hormones (20).
For endocrine purposes 1,25(OH)2D is synthesized in the
kidneys by the enzyme CYP27B1 using 25(OH)D as a substrate
(21), while for paracrine use 1,25(OH)2D is produced also in
CYP27B1 expressing keratinocytes and immune cells (22). Since
1,25(OH)2D is the natural, high affinity (KD = 0.1 nM) ligand
of the nuclear receptor VDR (vitamin D receptor) (23, 24),
vitamin D affects the activity of hundreds of genes in VDR
expressing tissues (25). Thus, the physiological functions of
vitamin D are associated with changes of the transcriptome of
multiple tissues and cell types by ligand-activated VDR (26).
The vitamin D-triggered transcriptome has been studied in vitro
in a number of cell culture models, such as THP-1 monocytic
leukemia cells (27–29), as well as in PBMCs (30, 31). Primary cells
like PBMCs are a natural mixture of innate and adaptive immune
cells like monocytes, natural killer cells, T and B cells. They are
far closer to the human in vivo situation than cell lines and can be
obtained with minimal harm to the donor (32).

The affinity of VDR for 25(OH)D3 is 100- to 1,000-fold lower
than for 1,25(OH)2D3 (33, 34), which parallels with the fact that
the serum concentration of 25(OH)D3 is some 1,000-fold higher
than that of 1,25(OH)2D3 (0.05–0.15 nM) (35). This relation
raised already earlier the question, whether 25(OH)D3 has the
potential to act as a nuclear hormone that directly activates
the VDR (36). The molecule 1,25(OH)2D3 has three hydroxyl
groups, each of which is specifically contacted by a pair of
polar amino acids within VDR’s ligand-binding pocket (37, 38).
In contrast, 25(OH)D lacks the hydroxyl group at carbon 1
and therefore binds with lower affinity to the receptor, but
takes the same agonistic conformation within the ligand-binding
pocket (39).

In this study, we analyzed the transcriptome-wide effects of
25(OH)D3 and 25(OH)D2 in comparison to that of 1,25(OH)2D3

in freshly isolated human PBMCs. We will demonstrate that
25(OH)D3 and 25(OH)D2 are equally potent in modulating the
transcriptome of PBMCs and cannot exclude the possibility that
both vitamin D metabolites directly activate the VDR.

MATERIALS AND METHODS

Sample Collection
Peripheral blood was collected from a single healthy individual
(male, age 57 years) the vitamin D responsiveness of whom had
already been characterized in the VitDbol trial (NCT02063334)
(32, 40). The ethics committee of the Northern Savo Hospital
District had approved the study protocol (#9/2014). The
individual gave written informed consent to participate in the

study and the experiments were performed in accordance with
relevant guidelines and regulations.

PBMC Isolation and Stimulation
PBMCs were isolated immediately after collecting 100 ml
peripheral blood using Vacutainer CPT Cell Preparation
Tubes with sodium citrate (Becton Dickinson) according to
manufacturer’s instructions. After washing with phosphate-
buffered saline, the cells were grown at a density of 0.5 million/ml
in 5 ml RPMI1640 medium supplemented with 10% charcoal-
depleted fetal calf serum, 2 mM L-glutamine, 0.1 mg/ml
streptomycin and 100 U/ml penicillin at 37 ◦C in a humidified
95% air/5% CO2 incubator and treated for 4, 8 or 24 h
either with 1,25(OH)2D3 (0.1, 1 and 10 nM) 25(OH)D3 (100,
250, 500, 750, and 1,000 nM), 25(OH)D2 (100, 250, 500, 750,
and 1,000 nM) or solvent (0.1% EtOH). All experiments were
performed in three repeats. Deconvolution of RNA-seq data
using the algorithm CIBERSORTx (41) and its LM6 signature
matrix estimated the relative amounts of B cells (7%), CD8+ T
cells (32%), CD4+ T cells (20%), natural killer cells (21%) and
monocytes/macrophages (20%) within the PBMC pool.

RNA-Seq Data Generation and Processing
Total RNA was isolated using the High Pure RNA Isolation Kit
(Roche) according to manufacturer’s instructions. RNA quality
was assessed on an Agilent 2100 Bioanalyzer system (RNA
integrity number ≥ 8). rRNA depletion and cDNA library
preparation were performed using the New England Biolabs
kits NEBNext rRNA Depletion, NEBNext Ultra II Directional
RNA Library Prep for Illumina and NEBNext Multiplex Oligos
for Illumina (Index Primers Sets 1 and 2) according to
manufacturer’s protocols. RNA-seq libraries went through quality
control on an Agilent 2100 Bioanalyzer and were sequenced on
a NextSeq 500 system (Illumina) at 75 bp read length using
standard protocols at the Gene Core facility of the EMBL
(Heidelberg, Germany). The libraries were sequenced as four
batches. Fastq files of the 66 libraries can be found at Gene
Expression Omnibus (GEO, www.ncbi.nlm.nih.gov/geo) with
accession number GSE199273.

Single-end, reverse-stranded cDNA sequence reads were
aligned to the reference genome (version GRCh38) with Ensembl
annotation (version 103) by using default settings of the nf-
core/rnaseq STAR-Salmon pipeline (version 3.0) (http://doi.
org/10.5281/zenodo.4323183) (42). The number of nucleotide
sequence reads are shown in Supplementary Table 1. Ensembl
gene identifiers were annotated with gene symbol, description,
genomic location and biotype by accessing the Ensembl database
(version 104) via the R package BiomaRt (version 2.46.0)
(43). Ensembl gene identifiers missing HGNC gene symbol
annotation, Entrez ID, genomic location information or being
mitochondrially encoded were removed from the datasets. When
a gene name appeared more than once, the entry with the highest
average gene counts was kept.

Transcriptome Data Analysis
Differential gene expression analysis was computed in R
(version 4.1.2) in the Rocky Linux 8.5 operating system using
the tool EdgeR (version 3.36.0) (44). The analysis focused
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on the 19,142 protein-coding genes, in order to reduce
transcriptional noise expected by non-coding genes. Read counts
were normalized for differences in library size to counts per
million (CPM). Genes with very low expression were filtered out
by applying the function FilterByExpr(), in order to mitigate the
multiple testing problem and to not interfere with the statistical
approximations of the EdgeR pipeline. This requirement was
fulfilled by 12,939 genes. After filtering, library sizes were
recomputed and trimmed mean of M-value normalization was
applied. The transcriptome data structure was explored via
the dimensionality reduction method multidimensional scaling
(MDS) (Supplementary Figure 1). MDS was computed via
EdgeR’s function plotMDS(), in which distances approximate
the typical log2 fold change (FC) between the samples. This
distance was calculated as the root mean square deviation
(Euclidean distance) of the largest 500 log2FCs between a given
pair of samples, i.e., for each pair a different set of top genes
was selected. The inspection of the MDS plot showed that (i)
the time-dependent divergence from the native transcriptome
state and (ii) the concentration-dependent modulation by
treatment with 1,25(OH)2D3, 25(OH)D3 or 25(OH)D2 are the
two principal factors driving differences in the gene expression
profiles of PBMCs. The gene-wise statistical test for differential
expression was computed using the generalized linear model
quasi-likelihood pipeline (45). The empirical Bayes shrinkage was
robustified against outlier dispersions as recommended (45). The
glmTreat approach was used to test for differential expression
relative to FC > 1.5 at the early time points (4 and 8 h) and
FC > 2 at 24 h. Taking all treatments together, 553 genes with
a Benjamini-Hochberg corrected p-value [i.e., false discovery
rate (FDR)] < 0.05 and a total trimmed mean of M-value
normalized CPM count > 10 (i.e., the sum of the average
gene expression level of the reference 10 nM 1,25(OH)2D3 and
EtOH-treated samples at each time point) were considered as
vitamin D targets (Supplementary Table 2). Mean-Difference
(MA) plots (Figures 1A, 3A; Supplementary Figure 2) for the
19 different treatment conditions were generated with vizzy
(version 1.0.0, https://github.com/ATpoint/vizzy).

Dose Response Analysis
The effect of vitamin D metabolites on the change in mRNA
levels (absolute log2FC) was modeled with the three-parameter
log-logistic function LL.3 from the R package drc (46) having
lower limit fixed at 0. The estimated relative EC50 values and
their standard errors were retrieved from the curve fits via
the summary() function. The quality of fitting was checked by
manual inspection. EC50 values were reported only for those
206 genes, for which the value could be estimated for all three
vitamin D metabolites. Pairwise comparisons of EC50 values
between different metabolites as well as groups of target genes
were performed using Tukey’s test implemented in the R package
multcomp (version 1.4.18) and family-wise error rate (FWER)-
adjusted p-values retrieved. Comparisons with a FWER < 0.05
were considered as significant. The code of the analysis can be
found at https://github.com/andreahanel/2022_Doseresponse.

RESULTS

Transcriptome-Wide Responses to
1,25(OH)2D3, 25(OH)D3, and 25(OH)D2
In order to obtain maximal responses of the transcriptome,
PBMCs from an healthy individual were treated immediately
after isolation for 24 h with either 10 nM 1,25(OH)2D3,
1,000 nM 25(OH)D3, 1,000 nM 25(OH)D2 or solvent (0.1%
EtOH). In three repeats RNA-seq was performed on the
basis of total RNA. As in comparable studies (31, 47, 48),
strict statistical thresholds of FDR < 0.05 and FC > 2 were
applied. This resulted in 313 genes (75 up-regulated, 238 down-
regulated) responding to 1,25(OH)2D3, 365 target genes of
25(OH)D3 (98 up-regulated, 267 down-regulated) and 385 genes
modulated by 25(OH)D2 (67 up-regulated, 318 down-regulated)
(Figure 1A). For all three vitamin D metabolites the genes
CAMP (cathelicidin antimicrobial peptide), FN1 (fibronectin 1),
LOXHD1 (lipoxygenase homology PLAT domains 1) and
SLC24A4 (solute carrier family 24 member 4) were the top
up-regulated and the genes CXCL10 (C-X-C motif chemokine
ligand 10), STEAP4 (STEAP4 metalloreductase), CXCL9 and
OLFM1 (olfactomedin 1) the most down-regulated.

In addition to saturating ligand concentrations, PBMCs were
treated for 24 h with 0.1 and 1 nM 1,25(OH)2D3, with 100, 250,
500, and 750 nM 25(OH)D3 as well as with 100, 250, 500, and
750 nM 25(OH)D2. This resulted in 7 and 179 target genes for
0.1 and 1 nM 1,25(OH)2D3, no targets for 100 and 250 nM
25(OH)D3, 322 and 392 responding genes for 500 and 750 nM
25(OH)D3, no targets for 100 nM 25(OH)D2 as well as 30, 342,
and 397 genes that reacted on a stimulation with 250, 500, and
750 nM 25(OH)D2 (Supplementary Figure 3A). These in total
526 different genes were filtered with a list of 662 genes, which
were detected by time course analysis of treatment of PBMCs
with 1,25(OH)2D3 (31). This led to 389 confirmed vitamin D
target genes, of which 6, 150, and 254 responded to 0.1, 1
and 10 nM 1,25(OH)2D3, 263, 294, and 293 to 500, 750, and
1,000 nM 25(OH)D3 as well as 25, 278, 307, and 299 to 250,
500, 750, and 1,000 nM 25(OH)D2 (Supplementary Figure 3B).
Venn diagrams indicated that there are 237 common targets of
500, 750, and 1,000 nM 25(OH)D3 as well as 231 common targets
of 500, 750, and 1,000 nM 25(OH)D2 (Figure 1B). From both
lists 206 genes are identical with the 254 targets responding to
10 nM 1,25(OH)2D3.

The 206 common targets represent a stable set of genes
responding to variant concentrations of all three tested vitamin D
metabolites (Figure 1C). Combined box plots and violin plots
monitored the overall change in the expression of these 206 genes
with raising metabolite concentrations. Interestingly, 250 nM of
both 25(OH)D3 and 25(OH)D2 were insufficient for general gene
regulation, while 500 nM of both vitamin D metabolites was
clearly above this threshold.

In summary, both by number as well as by most responsive
target genes the transcriptome-wide responses to saturating
concentrations of 1,25(OH)2D3, 25(OH)D3 and 25(OH)D2 are
very comparable. At concentrations of 250 nM and below,
25(OH)D3 and 25(OH)D2 are largely insufficient to significantly
modulate the expression of vitamin D target genes.
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FIGURE 1 | Gene-regulatory potential of vitamin D metabolites. MA plots display the genome-wide transcriptional response of PBMCs treated for 24 h with 10 nM

1,25(OH)2D3, 1000 nM 25(OH)D3 or 1000 nM 25(OH)D2 in comparison to solvent (0.1% EtOH) (A). For each gene, the change of expression (log2FC) between

(Continued)
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FIGURE 1 | treated and control samples is shown in relation to its mean expression level (log2CPM). Differential expression analysis was performed as a pairwise

comparison per each concentration by using glmTreat test. Significantly (FDR < 0.05) up- and down-regulated genes are highlighted in red and blue, respectively.

Horizonal lines (red) indicate the applied statistical testing threshold (absolute FC > 2). The top 5 responsive genes (up- and down-regulated) are labeled. Venn

diagrams show the overlap of vitamin D target genes per metabolite (B). The relations between all treatments and concentrations (at 24 h) are provided in

Supplementary Figure 3. Box and violin plots summarize the distribution of the magnitude of expression change (absolute log2FC) of the 206 common genes for

each vitamin D metabolite and concentration (C). Solid lines within the boxes indicate medians, while dashed lines mark the mean.

FIGURE 2 | Gene-specific response to vitamin D metabolites. The magnitude of expression change (absolute log2FC) as a function of vitamin D metabolite

concentration is modeled with a three-parameter log-logistic model based on the average of 206 common targets (A) or indicated individual genes (B–D). Genes are

segregated into high-, mid- and low-responding based on their estimated EC50 values in response to 1,25(OH)2D3. Standard errors of the EC50 estimates are

indicated.

Gene-Specific Sensitivity to Vitamin D
Metabolites
Plotting the FC of the 206 common vitamin D target genes
over vitamin D metabolite concentration and using the three-
parameter log-logistic model, determined the EC50 values

0.48 nM for 1,25(OH)2D3, 322 nM for 25(OH)D3 and 295 nM
for 25(OH)D2 (Figure 2A). There is statistically no significant
difference (FWER > 0.05, Tukey’s test) between the potencies
of 25(OH)D3 and 25(OH)D2, but their average EC50 is some
640-fold higher than that of 1,25(OH)2D3.
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FIGURE 3 | Changes in transcriptional profiles over time. MA plots show early gene expression changes in PBMCs treated for 4 h with 10 nM 1,25(OH)2D3, 1000 nM

25(OH)D3 or 1000 nM 25(OH)D2 in comparison to solvent (0.1% EtOH, i.e., time-matched control) (A). For each gene, difference in expression (log2FC) between

(Continued)
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FIGURE 3 | treated and control samples is shown in relation to its mean expression level (log2CPM). Genes were tested for differential expression relative to an

absolute FC > 1.5 using glmTreat method. Horizonal lines (red) indicate the applied statistical testing threshold. The top 5 most responsive up- and down regulated

genes (if any; FDR < 0.05) are highlighted. Venn diagrams show the overlap of vitamin D target genes per time point (B). The relations between all treatments are

provided in Supplementary Figure 5. Box and violin plots summarize the distribution of the magnitude of expression change (absolute log2FC) of the 206 common

genes for each vitamin D metabolite and time point (C). Solid lines within the boxes indicate medians, while dashed lines mark the mean. Please note that the data of

the 24 h time point serve as a reference and are identical to those presented in Figure 1C. A map of the human vitamin D metabolism pathway marks key enzymes

[(D), left]. The mean of 1,25(OH)2D3-treated and untreated mRNA expression of the five indicated genes is displayed in log2-scale as columns for all three time points

[(D), right]. Error bars indicate standard deviation.

Based on the reference dataset (31), the 206 common targets
were subdivided either into 85 primary targets (25 up- and
60 down-regulated) and 121 secondary targets (17 up- and
104 down-regulated) or into 94 direct targets (31 up- and
63 down-regulated) and 112 indirect targets (11 up- and 101
down-regulated). For 1,25(OH)2D3 the EC50-values of the eight
different categories varied from 0.29 to 0.73 nM but did not
differ significantly (FWER > 0.05, Tukey’s test) between each
other (Supplementary Figure 4). Similarly, for 25(OH)D3 the
range was 318 to 389 nM and for 25(OH)D2 192 to 313 nM,
but the difference was not statistically significant (FWER > 0.05,
Tukey’s test).

Since neither gene categories nor up- or down-regulation
allowed a distinction of the sensitivity of vitamin D target
genes to vitamin D metabolites, the dose responses of the
206 genes were investigated on an individual gene level. Manual
inspection of the dose response curves provided for 130 genes
convincing fits for all three vitamin D metabolites. Interestingly,
for 1,25(OH)2D3 the EC50-values ranged from 0.10 nM
[ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2)]
to 2.39 nM [LMNA (lamin A/C)], for 25(OH)D3 from
121 nM [NXPH4 (neurexophilin 4)] to 461 nM [ENTPD7
(ectonucleoside triphosphate diphosphohydrolase 7)] and
for 25(OH)D2 from 132 nM (SLC11A1) to 421 nM [STAB1
(stabilin 1)] (Supplementary Table 2). The wide range
of gene-specific sensitivity to 1,25(OH)2D3 allowed the
categorization of the representative 130 vitamin target genes
into 59 high responders (EC50 value range from 0.10 to
0.39 nM), 59 mid responders (0.41 to 1.06 nM) and 12
low responders (1.20 to 2.39 nM). Representative genes
for the three categories are HBEGF (heparin binding EGF
like growth factor) as high responding gene (Figure 2B),
PPARGC1B (PPARG coactivator 1 beta) as mid responding
gene (Figure 2C) and MYCL (MYCL proto-oncogene, BHLH
transcription factor) as low responding gene (Figure 2D).
Importantly, the far smaller range of the gene-specific
EC50 values for 25(OH)D3 and 25(OH)D2 did not allow a
categorization of the vitamin D target genes by their response to
these metabolites.

Taken together, the average EC50 values of the response
of vitamin D target genes to 25(OH)D3 and 25(OH)D2

are not significantly different and are in the order of
300 nM, i.e., some 600-fold higher as those for 1,25(OH)2D3.
Categorization of the target genes into primary/secondary,
direct/indirect or up-regulated/down-regulated does not allow
any significant distinction in their response to the three
vitamin D metabolites. However, individual target genes

can be classified by their response to 1,25(OH)2D3 (but
not to 25(OH)D3 and 25(OH)D2) as high, mid and low
responding genes.

Time Course Response of Vitamin D Target
Genes
In order to investigate whether 25(OH)D3 and 25(OH)D2 may
activate vitamin D signaling without enzymatic conversion by
CYP27B1 to 1,25(OH)2D3 and 1,25(OH)2D2, respectively, the
transcriptome-wide response to saturating concentrations of all
three vitamin D metabolites was assessed by RNA-seq at earlier
time points. After 4 h stimulation with 10 nM 1,25(OH)2D3,
16 genes (13 up- and 3 down-regulated) passed the statistical
threshold (FDR < 0.05, FC > 1.5), with 1,000 nM 25(OH)D3

32 genes (27 up- and 5 down-regulated) and with 1,000 nM
25(OH)D2 20 genes (19 up- and 1 down-regulated) (Figure 3A).
Common top up-regulated genes wereHBEGF andG0S2 (G0/G1
switch 2). After filtering with the reference dataset of vitamin D
target genes in PBMCs (Supplementary Figure 5) (31), Venn
diagrams indicated that there are 13 common genes (out of 31
in total) of the three vitamin D metabolites responding already
after 4 h, 93 (out of 159 in total) after 8 h and 229 (out of 337 in
total) after 24 h (Figure 3B). As observed in previous time course
studies (29, 31), at earlier time points there are more up- than
down-regulated genes, since the process of up-regulation is more
straightforward and quicker than that of down-regulation. When
comparing the response of the 206 common target genes to the
three vitamin D metabolites, there was no significant difference
in the response to 10 nM 1,25(OH)2D3, 1,000 nM 25(OH)D3 or
1,000 nM 25(OH)D2 at 4, 8 and 24 h (Figure 3C).

The enzymes DHCR7 (7-dehydrocholesterol reductase),
CYP2R1, CYP27A1, CYP27B1 and CYP24A1 are critical nodes in
the vitamin D metabolism pathway (Figure 3D, left). Therefore,
the relative mRNA expression of the genes encoding for these
enzymes were extracted from the transcriptome datasets and
compared at the time points 4, 8 and 24 h (Figure 3D, right).
DHCR7, CYP2R1 and CYP27A1 show comparable mid-range
expression, while the average expression of CYP27B1 is 10-
to 32-fold lower. In this way, CYP27B1 belongs to the 5%
lowest expressed genes in PBMCs. Since the CYP24A1 gene
is a well-known vitamin D target gene (49), its expression is
even 671-fold higher than that of CYP27B1. For comparison,
the relative expression values of all five genes in PBMCs
of 12 participants of our VitDHiD study (50) are displayed
(Supplementary Figure 6). The individuals were ranked by
increasing CYP27B1 expression, which varied by a factor
of 12.5, but being in average some 200-fold lower as the
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CYP24A1 expression. Thus, in vitamin D-triggered PBMCs
the synthesis of 1,25(OH)2D on the basis of 25(OH)D is
far less prominently covered by enzyme expression as the
degradation of 25(OH)D and 1,25(OH)2D to 24,25(OH)D and
1,24,25(OH)3D, respectively.

In summary, already at early time points (4 and 8 h) the
PBMC transcriptome responds to a stimulation with saturating
concentrations of 25(OH)D3 and 25(OH)D2 as prominently as
to 1,25(OH)2D3. The expression of CYP27B1 protein in PBMCs
is very likely too low for an efficient conversion of 25(OH)D3 and
25(OH)D2 into 1,25(OH)2D3 and 1,25(OH)2D2, respectively, in
particular in the presence of highly expressed CYP24A1 protein.
However, it cannot be excluded that metabolic formation of
1,25(OH)2D is partly contributing to the results obtained.

DISCUSSION

The focus of this study was to compare the gene regulatory
potential of the vitamin Dmetabolites 25(OH)D3 and 25(OH)D2

to each other and in reference to 1,25(OH)2D3. At supra-
physiological concentrations of 10 nM 1,25(OH)2D3 (100-times
the natural serum concentration) and 1,000 nM 25(OH)D
(10-times the recommended serum level) the response of the
PBMC transcriptome is very comparable, i.e., the expression
of some 300 genes is significantly modulated showing after
24 h stimulation some 3-times more down-regulation than
up-regulation. Moreover, the target gene lists of 25(OH)D3,
25(OH)D2 and 1,25(OH)2D3 are to 85% identical, i.e., our
experimental series had relatively low transcriptional noise.
These observations suggest that all three vitamin D metabolites
use identical mechanisms in the modulation of vitamin D
target gene expression. Form a structural point of view this is
obvious, since 25(OH)D will bind in the same agonistic VDR
conformation as 1,25(OH)2D (51).

The 206 common vitamin D target genes, on which we
focus in this study, represent the majority of the vitamin D
sensitive part of the PBMC transcriptome, although (in order
to further reduce transcriptional noise) they had been filtered
by a reference dataset from a recent 1,25(OH)2D3 time course
study in PBMCs (31). The estimation of average EC50 values of
322 nM for 25(OH)D3 and 295 nM for 25(OH)D2 compared to
0.48 nM for 1,25(OH)2D3 is the first report on the sensitivity
of the transcriptome to vitamin D metabolites. These results
provide an additional argument that there is no difference in
the response of the transcriptome to 25(OH)D3 and 25(OH)D2.
Moreover, our findings indicate with the factor of ∼600 a
good estimation of the relative gene regulatory potential of
25(OH)D compared to 1,25(OH)2D. Since serum levels of
25(OH)D are even 1,000-times higher than that of 1,25(OH)2D,
this supports the option that 25(OH)D can directly modulate
the expression of vitamin D target genes. However, 25(OH)D
concentrations in the order of 300 nM are far higher than the
recommended 100 nM. Therefore, irrespective of the mechanism
of action, for persons with a normal vitamin D status the
transcriptome as a whole may not be regulated by 25(OH)D.

However, there are a few very sensitive genes, such as NXPH4,
SLC11A1, ADGR3 (adhesion G protein-coupled receptor G3),
G0S2, HBEGF, and PMEPA1 (prostate transmembrane protein,
androgen induced 1), which showed EC50 values for 25(OH)D
below 150 nM. Thus, in healthy persons with a very high
vitamin D status, a few genes may be directly affected by elevated
25(OH)D serum levels.

In addition to the control of the vitamin D status of
healthy individuals through careful sun exposure and
vitamin D3 or D2 supplementation, there are clinical settings,
where supplementation with higher doses of 25(OH)D3

or 25(OH)D2 are recommended (52). These patients may
reach, at least for a limited time, far higher 25(OH)D serum
levels than healthy individuals. Moreover, 25(OH)D3 is
used as a food supplement in animal farming, e.g., for
accelerating the growth of chicken (53). Also in these
settings elevated 25(OH)D3 serum levels may be reached.
Thus, there are a few scenarios, in which larger parts of
the vitamin D-dependent transcriptome may be affected by
25(OH)D supplementation.

Studying the transcriptome‘s sensitivity to treatments with
vitamin D metabolites led to the interesting observation that
vitamin D target genes can be distinguished in high, mid
and low responders. This suggests that not all vitamin D
target genes respond equally to a stimulation with a given
concentration of a VDR ligand. High responding genes, the
best known of which are HBEGF (54) and G0S2 (55), get
activated at already at 5-times lower levels than the average
of all genes, while low responding genes, such as LMNA (56)
and STAB1 (48), need for their response up to 5-times higher
1,25(OH)2D3 concentrations than the mean. Interestingly,
high responding genes tend to be primary targets that are
directly regulated by activated VDR binding to enhancers in
the vicinity of the gene’s transcription start sites (57), while
low responding genes are preferentially secondary targets that
are regulated by transcription factors encoded by primary
target genes (31). This adds a new characteristic to the
description of vitamin D target genes, the mechanistic basis and
physiological meaning of which needs to be further explored in
the future.

For the main aim of this study, the comparison of the
gene regulatory potential 25(OH)D3 and 25(OH)D2, it does not
matter, if the observed effects on the PBMC transcriptome are
explained either (i) by the enzymatic conversion of 25(OH)D
into 1,25(OH)2D during the 4–24 h duration of stimulation
phase, which then activates the VDR, (ii) by a direct binding
of 25(OH)D to the VDR or (iii) a combination of both. The
very low expression of the CYP27B1 gene, in particular in
relation to CYP24A1 expression, in PBMCs of one person
used in this study is representative for other individuals. This
calls into question, whether there was enough 1α-hydroxylase
activity to convert within 4 h a sufficient amount of 25(OH)D
into 1,25(OH)2D, which then stimulated primary vitamin D
target genes. For example, in order to reach a 1,25(OH)2D
level of 10 nM, 1% of the 1,000 nM 25(OH)D pool need
to be handled within 4 h. However, as it is typical for in
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vitro cell culture stimulation experiments, supra-physiological
concentrations of 1,25(OH)2D3 and 25(OH)D are compared. In
fact, the tight regulation of the 1,25(OH)2D3 level in vivo via
the molecule’s rapid degradation by the enzyme CYP24A1 (58),
indicates that concentrations used in vitromost likely never occur
in vivo.

In conclusion, 25(OH)D3 and 25(OH)D2 are equally potent
in modulating the transcriptome of PBMCs and regulate the
same set of vitamin D target genes as the most potent VDR
ligand, 1,25(OH)2D3. However, in order to observe consequences
of the gene regulatory potential of 25(OH)D, concentrations
of 300 nM or higher need to be available. This is three times
the recommended serum level, i.e., it does not apply to healthy
individuals with a regular vitamin D status.
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Association between metabolic
body composition status and
vitamin D deficiency: A
cross-sectional study

Yi-Chuan Chen1†, Wen-Cheng Li1,2,3†, Pin-Hsuan Ke1,
I-Chun Chen1, Wei Yu3, Hsiung-Ying Huang4,
Xue-Jie Xiong5 and Jau-Yuan Chen1,2*
1Department of Family Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan,
2College of Medicine, Chang-Gung University, Taoyuan, Taiwan, 3Department of Health
Management, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, China, 4Department of
Pulmonary and Critical Care Medicine, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen,
China, 5Department of Oncology, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, China

This study aimed to investigate the risk of vitamin D deficiency in a

relatively healthy Asian population, with (i) metabolically healthy normal

weight (MHNW) (homeostasis model assessment-insulin resistance [HOMA-

IR] < 2. 5 without metabolic syndrome [MS], body mass index [BMI] <

25), (ii) metabolically healthy obesity (MHO) (HOMA-IR < 2.5, without MS,

BMI ≥ 25), (iii) metabolically unhealthy normal weight (MUNW) (HOMA-

IR ≥ 2.5, or with MS, BMI < 25), and (iv) metabolically unhealthy obesity

(MUO) (HOMA-IR ≥ 2.5, or with MS, BMI ≥ 25) stratified by age and sex.

This cross-sectional study involved 6,655 participants aged ≥ 18 years who

underwent health checkups between 2013 and 2016 at the Chang Gung

Memorial Hospital. Cardiometabolic and inflammatory markers including

anthropometric variables, glycemic indices, lipid profiles, high-sensitivity C-

reactive protein (hs-CRP), and serum 25-hydroxy vitamin D levels, were

retrospectively investigated. Compared to the MHNW group, the MHO group

showed a higher odds ratio (OR) [1.35, 95% confidence interval (CI) 1.05–1.73]

for vitamin D deficiency in men aged < 50 years. By contrast, in men aged >

50 years, the risk of vitamin D deficiency was higher in the MUO group (OR

1.44, 95% CI 1.05–1.97). Among women aged < and ≥ 50 years, the MUO

group demonstrated the highest risk for vitamin D deficiency, OR 2.33 vs. 1.54,

respectively. Our study revealed that in women of all ages and men aged >

50 years, MUO is associated with vitamin D deficiency and elevated levels of

metabolic biomarkers. Among men aged < 50 years, MHO had the highest OR

for vitamin D deficiency.

KEYWORDS

metabolic body composition, obesity, vitamin D deficiency, inflammatory marker,

cardiometabolic marker
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Introduction

The prevalence of obesity has been increasing worldwide.
Obesity-related disorders have been widely studied. Research

has focused on visceral fat accumulation, which is recognized

as a cardiometabolic risk factor (1). Adipocyte hypertrophy

results in unbalanced blood flow, local hypoxia, inflammatory

macrophage infiltration, increased synthesis, and release of pro-

inflammatory mediators [such as tumor necrosis factor-alpha

[TNF-α], interleukin [IL]-6, and IL-8], and tissue inflammation

(2, 3). Adipokines such as TNF and IL-6, which are secreted

from visceral fat, may contribute to the development of

atherosclerosis (4, 5). Body mass index (BMI) is a convenient

tool for assessing the extent of overweight and obesity. However,

BMI has limitations in the evaluation of body composition and

metabolic status (6–8).
Some obese individuals appear to be protected from the

development of metabolic disturbances or complications; thus,

they are referred to as metabolically healthy obesity (MHO)

(9). Individuals with MHO have lower visceral fat values

than individuals with a similar body fat percentage (10). In

addition, despite having excessive body weight, individuals with

MHO demonstrate normal blood pressure, lipid profile, insulin

sensitivity, inflammatory markers such as C-reactive protein

(CRP) (11–13), and favorable levels of liver enzymes, which

may reflect lower liver fat content (14) without significantly

increased risks of diabetes and cardiovascular diseases (15,

16). Several mechanisms have been hypothesized to explain

MHO. For example, high mitochondrial transcription and

low inflammation levels in subcutaneous adipose tissue are

associated with lower liver fat and MHO levels (17). In addition,

differences in visceral fat accumulation, birth weight, adipose

cell size, gene expression encoding markers of adipose cell

differentiation (11) and lipolysis (18) were suggestive of MHO

phenotype development.

By contrast, some individuals with normal weight but

metabolic disturbances or complications were defined as

metabolically unhealthy normal weight (MUNW) groups.

Such individuals might be characterized by higher body fat

percentage, visceral fat and insulin levels, increased adipocyte

size, and predisposition to type 2 diabetes mellitus (T2DM),

hyperlipidemia, and cardiovascular diseases compared with

patients with a similar BMI (19–24). Central fat distribution,

lower physical activity energy expenditure, and lower peak

oxygen uptake appeared to be predisposing factors for MUNW.

In addition, a cognitive attitude toward food and lifestyle plays a

role in insulin sensitivity in MUNW (25).

Vitamin D involves in a variety of processes in human body.

In addition to calcium (Ca) homeostasis and bone metabolism,

vitamin D plays an important role in multiple organs and

has many physiological functions (26). Recent studies suggest

that low vitamin D levels are a risk factor not only for

osteoporosis, sarcopenia, and frailty, but also for infection,

autoimmune diseases, and other cardiometabolic diseases, such

as hypertension (27, 28), diabetes (29) and metabolic syndrome

(30–37). Vitamin D is mediated by the vitamin D receptor

(VDR), which regulates the transcription of several target

genes (38). VDR has been identified in a large variety of

cell types, including monocytes, cardiomyocytes, pancreatic

beta cells, vascular endothelial cells, neurons, immune cells,

and osteoblasts (39). Recent studies have demonstrated that

VDR and vitamin D-metabolizing enzymes are expressed in

adipocytes (40).

Evidence has shown that vitamin D inhibits the expression

of adipogenic transcription factor genes, leading to a significant

reduction in lipid accumulation and adipocyte apoptosis (2, 41).

Obese individuals tend to have lower vitamin D levels (42–

46), predisposing them to the development of comorbidities.

Increased sequestration by the white adipose tissue reduces

vitamin D bioavailability (47, 48). Vitamin D deficiency is also

associated with the dysregulation of white adipose tissue and

blood levels of inflammatory factors, including CRP and IL-

10 (2). Several cross-sectional and cohort studies have found a

positive correlation between vitamin D levels, beta cell function

(49), and insulin sensitivity. Patients with low vitamin D

levels appear to have a high risk of insulin resistance. The

potential role of vitamin D deficiency in insulin resistance has

been associated with inherited gene polymorphisms, including

vitamin D-binding protein, vitamin D receptor, and the vitamin

D 1 alpha-hydroxylase gene (30, 50–54).

After a thorough literature search, we found that the

association between vitamin D deficiency and metabolic body

composition status remains controversial. Furthermore, little

has been reported about cardiometabolic markers among the

different metabolic phenotypes with respect to sex and age

(55). Since male and female have different features of adiposity

distribution, which may affect vitamin D bioavailability, coupled

with changes in metabolism due to the loss of protection from

hormones after menopause, we aimed to compare the impact

of metabolic phenotypes on the risk of vitamin D deficiency

stratified by sex and age. We hypothesized that (i) metabolically

unhealthy obesity (MUO) is an independent risk factor for

vitamin D deficiency; (ii) in male participants of all ages and

female participants aged > 50 years, cardiometabolic markers

have incremental trends among the healthy,MHO,MUNW, and

MUO groups.

Materials and methods

Study design and participants

We retrospectively obtained data from adult participants

(age ≥ 18 years) who underwent health checkups between 2013

and 2016 at Chang Gung Memorial Hospital. The exclusion

criteria were as follows: (i) fasting < 12 h; (ii) pregnancy;
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(iii) conditions that may affect the metabolic status, such

as hyperthyroidism or hypothyroidism, malignancy, chronic

hepatitis, liver cirrhosis, hypothalamic disease, pituitary gland,

or adrenal gland diseases; (iv) parathyroid gland disease or

intake of medications that may affect vitamin D level; (v) high

sensitivity (hs)-CRP > 10 mg/L, which may indicate acute

infection status; and (vi) participants with incomplete data and

history. In total, 6,655 participants were included in the analysis.

Informed consent was not obtained because all data were

accessed anonymously in the setting of retrospective records.

Data collection

Trained nurses used a standardized questionnaire to

collect information on patients’ medical and personal

histories. Completion of the questionnaire was followed

by anthropometric measurement, including body weight (kg),

height (centimeter, cm), waist circumference (cm), and blood

pressure (mmHg). Body height and weight were measured

using calibrated meters and scales, according to a standardized

protocol. BMI was calculated as body weight divided by

the square of body height (kg/m2). Waist circumference

was measured midway between the lowest rib and iliac

crest. Blood pressure was measured using an automated

sphygmomanometer three times after the participants were

seated for at least 15 min.

Laboratory data included total cholesterol (TC), low-

density lipoprotein-cholesterol (LDL-C, mmol/L), high-density

lipoprotein-cholesterol (HDL-C, mmol/L), triglyceride (TG,

mmol/L), fasting blood glucose (FBG, mmol/L), hs-CRP

(µg/mL), and insulin, which were determined using enzymatic,

spectrophotometric, or colorimetric methods. Between

2013 and 2014, serum 25(OH)D levels were quantitatively

determined using an electrochemiluminescence assay (ECLIA)

performed on a Roche Cobas E601 immunoassay system

(Roche Diagnostics, Mannheim, Germany); the unit of

measurement was ng/mL. After 2015, it was determined using

a chemiluminescent microparticle immunoassay (CMIA) on

an Abbott I2000SR immunoassay system (Abbott Diagnostics,

Illinois, USA), and the measurement unit was nmol/L. All

the data were entered into an electronic database under strict

quality control.

Participants who fulfilled at least three of the five criteria

described by the Third Adult Treatment Panel (ATP III) of

the National Cholesterol Education Program (NCEP) were

defined as having metabolic syndromes. The five factors are

high blood pressure (systolic blood pressure ≥ 130 mmHg and

diastolic pressure ≥ 85 mmHg), under treatment, or already

diagnosed with hypertension); high serum TG (≥ 1.7 mmol/L

or under treatment); decreased HDL-C (< 1.03 mmol/L for

males and < 1.29 mmol/L for females or under treatment);

hyperglycemia (FBG ≥ 5.6 mmol/L, under treatment, or

previously diagnosed with diabetes mellitus); and abdominal

obesity (waist circumference ≥ 90 cm for males and ≥ 80 cm

for females).

Definition of homeostasis model
assessment-insulin resistance

HOMA-IR index was used to quantify the extent of insulin

resistance. The cutoff value of HOMA-IR as an indicator

of metabolic syndrome was based on two recent studies in

Asian populations (26, 27). The HOMA-IR index formula was

as follows:

fasting insulin (mIU/L)× FBG(mmol/L )
22.5

Phenotypes of metabolic body
composition status

All participants were categorized into four

metabolic phenotypes:

(i) metabolically healthy normal weight (MHNW) (HOMA-

IR < 2.5, without MS, BMI < 25), (ii) MHO (HOMA-IR < 2.5,

without MS, BMI ≥ 25), (iii) MUNW (HOMA-IR ≥ 2.5 or with

MS, BMI < 25), and (iv) MUO (HOMA-IR ≥ 2.5 or with MS,

BMI ≥ 25).

Definition of vitamin D deficiency

A serum vitamin D level< 20 ng/mL is defined as vitamin D

deficiency according to the Endocrine Society Clinical Practice

Guidelines (56).

Statistical analysis

The mean ± standard deviation (SD) was used for

continuous variables and the number (%) was used for

categorical variables. The independent t-test and chi-square tests

were used to compare differences between sexes for continuous

and categorical variables, respectively. Analysis of variance

and chi-square tests were used to compare the differences

among different metabolic states (MHNW, MHO, MUNW, and

MUO) for continuous and categorical variables, respectively.

Additionally, linear contrast in the analysis of variance and

the Cochran-Armitage test were used to determine the linear

trend across metabolic states for continuous and categorical

variables, respectively. Bonferroni post hoc comparisons were

performed for pairwise analyses of the study groups. Multiple

logistic regression models were used to explore the relationship

between the metabolic phenotypes and vitamin D deficiency.
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We chose the mean arterial pressure, TG/HDL-C ratio, and hs-

CRP level as covariates. Sex, age, and HOMA-IR were grouped

variables; thus, they were not adjusted for. Neither were FBG and

insulin levels adjusted for because they were highly correlated

with HOMA-IR. Metabolic body composition was a variable

of interest; therefore, BMI and waist-to-height ratio were not

adjusted for. The LDL-C level was not adjusted for because of

its collinearity with TC. All statistical analyses were conducted

using International Business Machine (IBM) Statistical Product

and Service Solutions Statistics (SPSS, IBM Corp., Armonk, NY,

USA). Statistical significance was set at a P-value < 0.05.

Results

Demographics of the study participants

A total of 6,655 participants were enrolled in this study. The

main characteristics of the study participants, stratified by age (<

50 and≥ 50 years), are shown in Table 1. In the< 50 years group

(n = 2,589), the mean age and BMI of the male participants

were slightly higher than that of the female participants. Mean

arterial pressure (MAP), TC, TG, LDL-C, hs-CRP, insulin, and

HOMA-IR were significantly higher in men than that in women

(P < 0.001). The proportion of MHO and MUO were higher

in men than that in women (30.2% vs. 13.0% and 17.3% vs.

4.0%, respectively). The prevalence of vitamin D deficiency was

significantly higher in women than that inmen (35.5% vs. 31.2%,

P = 0.025; Table 1).

In the ≥ 50 years group (n = 4,066), the mean ± SD age

of the participants was 58.6 ± 6.9 for men and 58.2 ± 6.5 for

women. The mean ± SD BMI was 24.3 ± 3.1 for men and 24.2

± 3.2 for women. No significant difference was observed in the

mean ± SD age or BMI between men and women (Table 1).The

MAP, FBG, TG, and hs-CRP levels were significantly higher

in men than that in women, while TC, LDL-C, and insulin

levels were significantly higher in women. HOMA-IR levels and

vitamin D deficiency were not significantly different between the

sexes. The proportion of MHO and MUO were higher in male

than that in female. Vitamin D deficiency was observed in 22.7%

of men and 24.5% of women, without a significant difference (P

= 0.18).

Characteristics of men according to
metabolic phenotypes

The baseline characteristics of men according to metabolic

phenotypes stratified by age are presented in Table 2. The male

participants were classified into four groups: MHNW, MHO,

MUNW, and MUO.

Among the four metabolic groups of men aged < 50 years,

there were significant incremental trends in TC, TG, insulin,

and HOMA-IR levels. The MHO group had the lowest vitamin

D level (28.2 ng/mL) and the highest prevalence of vitamin D

deficiency (35.8%, Table 2).

Among men aged > 50 years, there was no significant

difference in TC, LDL-C, and hs-CRP levels among the four

groups. Individuals with MUNW had the highest FBG, TG,

and TG/HDL-C levels. Insulin and HOMA-IR levels showed an

incremental trend among the four groups. The percentage of

vitamin D deficiency also showed an increasing trend among the

four groups (P = 0.009, Table 2).

Characteristics of women according to
metabolic phenotypes

Thewomenwere classified into four groups:MHNW,MHO,

MUNW, and MUO. Table 3 shows the characteristics of the

women according to the four metabolic phenotypes stratified

by age.

Among the four metabolic groups of women aged <

50 years, the levels of metabolic biomarkers, including FBG,

TC, TG, LDL-C, insulin, and HOMA-IR, showed significant

incremental trends. The MUO group had the highest MAP

level, lowest vitamin D level (22.8 ng/mL), and the highest

prevalence of vitamin D deficiency (47.4%). However, there was

no significant difference in vitamin D levels and prevalence of

vitamin D deficiency among the four groups (P= 0.085 and P=

0.13, respectively, Table 3).

When considering women aged > 50 years, the MAP,

TG, hs-CRP, insulin, and HOMA-IR levels showed significant

incremental trends. However, TC and LDL-C levels were not

significantly different among the four groups. The MUO group

had the lowest vitamin D level (29.3 ng/mL) and the highest

prevalence of vitamin D deficiency (29.2%). There was no

significant difference in vitamin D levels and prevalence of

vitamin D deficiency among the four groups (P = 0.091 and P

= 0.066, respectively, Table 3).

Association between metabolic
phenotypes and vitamin D deficiency

The associations between the metabolic phenotypes and

vitamin D deficiency are shown in Table 4. Compared with

MHNW, the MHO group showed a higher odds ratio (OR) for

vitamin D deficiency in men aged < 50 years, which remained

statistically significant after adjusting for cardiometabolic

factors, including MAP, TG/HDL-C, and hs-CRP [1.35, 95%

confidence interval (CI) 1.05–1.73]. By contrast, in men aged >

50 years, the risk of vitaminD deficiency was greater in theMUO

group (OR 1.44, 95% CI 1.05–1.97) followed by MUNW (OR

1.53, 95% CI 0.96–2.43, P = 0.076) with borderline significance
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TABLE 1 Main characteristics of the participants by age and sex.

<50 years old ≥ 50 years old

Characteristics Total

(N = 2,589)

Men

(n= 1,629)

Women

(n= 960)

P-value Total

(N = 4,066)

Men

(n= 2,210)

Women

(n= 1,856)

P-value

Age, years 40.9± 6.0 41.0± 5.8 40.7± 6.2 0.232 58.4± 6.7 58.6± 6.9 58.2± 6.5 0.097

BMI (kg/m2) 23.8± 3.5 24.8± 3.4 22.2± 3.0 <0.001 24.2± 3.2 24.3± 3.1 24.2± 3.2 0.496

Waist-to-height ratio 0.50± 0.05 0.51± 0.05 0.48± 0.05 <0.001 0.52± 0.05 0.52± 0.05 0.53± 0.05 <0.001

Mean arterial pressure (mmHg) 86.1± 12.8 89.8± 12.1 79.8± 11.3 <0.001 91.4± 13.3 92.2± 13.0 90.4± 13.5 <0.001

Fasting glucose (mmol/L) 5.4± 1.3 5.5± 1.6 5.11± 0.67 <0.001 5.7± 1.6 5.8± 1.8 5.6± 1.3 <0.001

Total cholesterol (mmol/L) 5.2± 1.0 5.3± 1.0 4.9± 0.9 <0.001 5.4± 1.0 5.3± 1.0 5.5± 1.0 <0.001

TG (mmol/L) 1.5± 1.3 1.9± 1.5 0.95± 0.78 <0.001 1.5± 1.1 1.6± 1.3 1.35± 0.89 <0.001

LDL-C (mmol/L) 3.23± 0.89 3.40± 0.91 2.94± 0.78 <0.001 3.42± 0.88 3.39± 0.88 3.46± 0.87 0.008

HDL-C (mmol/L) 1.27± 0.31 1.17± 0.27 1.44± 0.31 <0.001 1.29± 0.32 1.20± 0.30 1.39± 0.31 <0.001

TG / HDL-C 1.4± 1.6 1.8± 1.8 0.74± 0.93 <0.001 1.3± 1.3 1.5± 1.5 1.09± 0.93 <0.001

hs-CRP (µg/mL) 1.7± 3.9 2.1± 4.5 1.1± 2.6 <0.001 2.4± 6.2 2.6± 6.8 2.1± 5.3 0.019

Insulin (mIU/L) 7.1± 4.0 7.6± 4.4 6.3± 3.0 <0.001 6.6± 4.2 6.4± 4.2 6.9± 4.1 <0.001

HOMA-IR 1.7± 1.2 1.9± 1.4 1.46± 0.79 <0.001 1.7± 1.4 1.7± 1.5 1.7± 1.3 0.578

Metabolic phenotypes <0.001 0.049

MHNW, n (%) 1,543 (59.6) 790 (48.5) 753 (78.4) 2,255 (55.5) 1,219 (55.2) 1,036 (55.8)

MHO, n (%) 617 (23.8) 492 (30.2) 125 (13.0) 1,127 (27.7) 625 (28.3) 502 (27.0)

MUNW, n (%) 109 (4.2) 65 (4.0) 44 (4.6) 215 (5.3) 99 (4.5) 116 (6.3)

MUO, n (%) 320 (12.4) 282 (17.3) 38 (4.0) 469 (11.5) 267 (12.1) 202 (10.9)

25(OH)D (ng/mL) 28.8± 14.7 30.0± 15.5 26.8± 13.1 <0.001 33.9± 16.8 35.9± 18.3 31.5± 14.4 <0.001

Vitamin D deficiency, n (%) 850 (32.8) 509 (31.2) 341 (35.5) 0.025 955 (23.5) 501 (22.7) 454 (24.5) 0.180

BMI, body mass index; TG, Triglycerides; LDL-C, low-density lipoprotein-cholesterol; HDL-C, high-density lipoprotein-cholesterol; hs-CRP, high-sensitivity C-reactive protein; HOMA-IR, Homeostasis Model Assessment-Insulin Resistance; 25(OH)D,

25-OH-Vitamin D; MHNW, Metabolically healthy normal weight; MHO, metabolically healthy obesity; MUNW, metabolically unhealthy normal weight; MUO, metabolically unhealthy obesity.
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TABLE 2 Baseline characteristics of men according to metabolic phenotypes stratified by age.

Characteristics MHNW MHO MUNW MUO P-value P-trend

Men < 50 years old (n = 1,629)

Number 790 492 65 282

Age, years 40.9± 5.9 41.5± 5.6 42.3± 5.4 40.4± 6.2 0.015 0.653

BMI (kg/m2) 22.2± 2.0 27.1± 1.8a 23.3± 1.4a,b 28.4± 2.6a,b,c <0.001 <0.001

Waist-to-height ratio 0.48± 0.04 0.54± 0.03a 0.51± 0.03a,b 0.56± 0.04a,b,c <0.001 <0.001

Mean arterial pressure (mmHg) 85.8± 10.9 92.3± 11.9a 91.4± 12.1a 96.5± 11.7a,b,c <0.001 <0.001

Fasting glucose (mmol/L) 5.3± 1.1 5.2± 0.53 6.9± 3.3a,b 6.5± 2.5a,b <0.001 <0.001

Total cholesterol (mmol/L) 5.22± 0.95 5.31± 1.03 5.47± 1.02 5.54± 1.02a,b <0.001 <0.001

TG (mmol/L) 1.5± 1.0 2.1± 1.7a 2.2± 1.5a 2.6± 1.7a,b <0.001 <0.001

LDL-C (mmol/L) 3.33± 0.85 3.41± 0.92 3.59± 0.99 3.53± 1.02a 0.006 0.001

HDL-C (mmol/L) 1.25± 0.30 1.11± 0.21a 1.13± 0.31a 1.06± 0.20a <0.001 <0.001

TG / HDL-C 1.3± 1.1 2.0± 2.3a 2.2± 1.8a 2.6± 1.9a,b <0.001 <0.001

hs-CRP (µg/mL) 1.6± 3.8 2.3± 4.4a 2.2± 5.6 3.4± 5.8a,b <0.001 <0.001

Insulin (mIU/L) 5.3± 2.03 7.1± 1.96a 12.3± 6.4a,b 13.7± 5.0a,b,c <0.001 <0.001

HOMA-IR 1.23± 0.51 1.64± 0.47a 3.5± 2.1a,b 3.8± 1.8a,b <0.001 <0.001

25(OH)D (ng/mL) 31.4± 16.7 28.2± 14.4a 31.5± 15.2 29.1± 13.6 0.002 0.352

Vitamin D deficiency, n (%) 234 (29.6) 176 (35.8) 20 (30.8) 79 (28.0) 0.071 0.782

Men ≥ 50 years old (n = 2,210)

Number 1,219 625 99 267

Age, years 59.1± 7.1 58.0± 6.5a 57.7± 6.3 58.0± 7.1 0.002 0.034

BMI (kg/m2) 22.2± 2.0 26.9± 1.6a 23.6± 1.2a,b 28.0± 2.4a,b,c <0.001 <0.001

Waist-to-height ratio 0.49± 0.04 0.56± 0.03a 0.52± 0.03a,b 0.57± 0.05a,b,c <0.001 <0.001

Mean arterial pressure (mmHg) 89.4± 12.7 95.2± 12.3a 92.0± 11.8 97.8± 13.4a,b,c <0.001 <0.001

Fasting glucose (mmol/L) 5.5± 1.3 5.6± 1.1 8.4± 3.6a,b 7.1± 2.4a,b,c <0.001 <0.001

Total cholesterol (mmol/L) 5.28± 0.98 5.25± 0.96 5.43± 1.01 5.29± 1.06 0.423 0.366

TG (mmol/L) 1.4± 1.27 1.7± 0.9a 2.3± 2.0a,b 2.0± 1.28a,b <0.001 <0.001

LDL-C (mmol/L) 3.36± 0.87 3.42± 0.86 3.43± 0.94 3.42± 0.96 0.390 0.356

HDL-C (mmol/L) 1.27± 0.32 1.13± 0.24a 1.10± 0.25a 1.07± 0.22a,b <0.001 <0.001

TG / HDL-C 1.3± 1.6 1.6± 1.0a 2.4± 2.5a,b 2.1± 1.7a,b <0.001 <0.001

hs-CRP (µg/mL) 2.6± 8.0 2.2± 3.9 3.2± 4.9 3.1± 6.4 0.207 0.134

Insulin (mIU/L) 4.6± 2.0 6.3± 2.1a 10.8± 4.0a,b 13.4± 6.5a,b,c <0.001 <0.001

HOMA-IR 1.11± 0.51 1.55± 0.52a 3.7± 1.6a,b 4.1± 2.5a,b,c <0.001 <0.001

25(OH)D (ng/mL) 37.0± 19.0 35.3± 17.2 32.9± 16.8 33.4± 18.0a 0.005 0.002

Vitamin D deficiency, n (%) 261 (21.4) 136 (21.8) 28 (28.3) 76 (28.5) 0.040 0.009

BMI, body mass index; TG, Triglycerides; LDL-C, low-density lipoprotein-cholesterol; HDL-C, high-density lipoprotein-cholesterol; hs-CRP, high-sensitivity C-reactive protein; HOMA-

IR, Homeostasis Model Assessment-Insulin Resistance; 25(OH)D, 25-OH-Vitamin D; MHNW, Metabolically healthy normal weight; MHO, metabolically healthy obesity; MUNW,

metabolically unhealthy normal weight; MUO, metabolically unhealthy obesity.
a,b,c significant post-hoc comparisons vs. MHNW, MHO, and MUNW, respectively.

in multivariable analysis compared with that of the MHNW

group (Table 4).

In women aged < 50 years, the MUO group

demonstrated the highest risk for vitamin D deficiency

(OR 2.33, 95% CI 1.13–4.81) compared to the MHNW

group after adjusting for MAP, TG/HDL-C, and hs-CRP

levels. In women aged > 50 years, the MUO group

demonstrated the highest risk for vitamin D deficiency

(OR 1.54, 95% CI 1.08–2.21) followed by MHO (OR

1.28, 95% CI 0.996–1.648, P = 0.053) with borderline

significance compared to that of the MHNW group in

multivariable analysis.

Discussion

Our logistic findings implied that in women of all ages

and men aged > 50 years, MUO was associated with vitamin

D deficiency. Among men aged < 50 years, MHO had the

highest OR for vitamin D deficiency. Subcutaneous adipose
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TABLE 3 Baseline characteristics of women according to metabolic phenotypes stratified by age.

Characteristics MHNW MHO MUNW MUO P-value P-trend

Women < 50 years old (n = 960)

Number 753 125 44 38

Age, years 40.1± 6.3 43.0± 5.2a 42.0± 5.6 44.1± 5.4a <0.001 0.001

BMI (kg/m2) 21.2± 2.1 26.8± 1.8a 22.6± 1.4a,b 27.7± 1.9a,c <0.001 <0.001

Waist-to-height ratio 0.46± 0.041 0.54± 0.044a 0.49± 0.038a,b 0.56± 0.035a,b,c <0.001 <0.001

Mean arterial pressure (mmHg) 78.0± 10.2 85.6± 12.7a 84.3± 9.9a 91.4± 13.4a,b,c <0.001 <0.001

Fasting glucose (mmol/L) 5.0± 0.51 5.2± 0.50a 5.7± 1.0a,b 6.0± 1.6a,b <0.001 <0.001

Total cholesterol (mmol/L) 4.82± 0.85 5.02± 1.10 5.04± 0.99 5.25± 0.88a 0.002 0.005

TG (mmol/L) 0.85± 0.68 1.15± 0.63a 1.29± 0.59a 1.85± 1.90a,b,c <0.001 <0.001

LDL-C (mmol/L) 2.87± 0.74 3.13± 0.86a 3.22± 0.89a 3.26± 0.78a <0.001 0.002

HDL-C (mmol/L) 1.48± 0.30 1.31± 0.27a 1.29± 0.25a 1.22± 0.23a <0.001 <0.001

TG / HDL-C 0.64± 0.83 0.94± 0.67a 1.10± 0.72a 1.7± 2.2a,b,c <0.001 <0.001

hs-CRP (µg/mL) 0.89± 2.4 1.6± 2.4a 1.1± 1.3 3.1± 5.0a,b,c <0.001 <0.001

Insulin (mIU/L) 5.5± 2.1 6.9± 2.1a 11.7± 2.2a,b 14.3± 4.1a,b,c <0.001 <0.001

HOMA-IR 1.24± 0.49 1.60± 0.51a 2.91± 0.52a,b 3.7± 1.2a,b,c <0.001 <0.001

25(OH)D (ng/mL) 26.6± 13.3 28.5± 12.7 28.4± 11.6 22.8± 10.5 0.085 0.099

Vitamin D deficiency, n (%) 273 (36.3) 39 (31.2) 11 (25.0) 18 (47.4) 0.130 0.917

Women ≥ 50 years old (n = 1,856)

Number 1,036 502 116 202

Age, years 57.7± 6.3 58.5± 6.3 59.7± 7.7a 59.6± 7.0a <0.001 <0.001

BMI (kg/m2) 22.1± 1.8 27.0± 1.9a 23.3± 1.3a,b 28.5± 2.6a,b,c <0.001 <0.001

Waist-to-height ratio 0.50± 0.041 0.57± 0.040a 0.53± 0.036a,b 0.59± 0.045a,b,c <0.001 <0.001

Mean arterial pressure (mmHg) 87.2± 13.2 93.2± 12.8a 94.7± 12.7a 97.7± 12.4a,b <0.001 <0.001

Fasting glucose (mmol/L) 5.3± 1.0 5.4± 0.71 7.0± 2.6a,b 6.4± 1.7a,b,c <0.001 <0.001

Total cholesterol (mmol/L) 5.53± 0.99 5.50± 0.99 5.59± 1.11 5.57± 0.98 0.749 0.367

TG (mmol/L) 1.2± 0.73 1.4± 0.79a 1.8± 1.3a,b 1.9± 1.2a,b <0.001 <0.001

LDL-C (mmol/L) 3.42± 0.86 3.50± 0.85 3.54± 1.02 3.53± 0.92 0.137 0.089

HDL-C (mmol/L) 1.46± 0.32 1.35± 0.28a 1.27± 0.25a 1.23± 0.27a,b <0.001 <0.001

TG / HDL-C 0.90± 0.79 1.13± 0.79a 1.58± 1.46a,b 1.65± 1.18a,b,c <0.001 <0.001

hs-CRP (µg/mL) 1.8± 5.7 2.4± 4.2 2.6± 7.8 3.0± 3.9a 0.006 0.005

Insulin (mIU/L) 5.1± 1.97 6.6± 2.0a 12.0± 5.6a,b 13.4± 6.0a,b,c <0.001 <0.001

HOMA-IR 1.2± 0.50 1.6± 0.49a 3.6± 1.91a,b 3.7± 1.87a,b <0.001 <0.001

25(OH)D (ng/mL) 31.9± 14.7 31.1± 14.6 32.5± 13.9 29.3± 12.8 0.091 0.075

Vitamin D deficiency, n (%) 238 (23.0) 135 (26.9) 22 (19.0) 59 (29.2) 0.066 0.124

BMI, body mass index; TG, Triglycerides; LDL-C, low-density lipoprotein-cholesterol; HDL-C, high-density lipoprotein-cholesterol; hs-CRP, high-sensitivity C-reactive protein; HOMA-

IR, Homeostasis Model Assessment-Insulin Resistance; 25(OH)D, 25-OH-Vitamin D; MHNW, Metabolically healthy normal weight; MHO, metabolically healthy obesity; MUNW,

metabolically unhealthy normal weight; MUO, metabolically unhealthy obesity.
a,b,c significant posthoc comparisons vs. MHNW, MHO, and MUNW, respectively.

tissue can store large amounts of fat-soluble vitamin D

(57); thus, leading to less vitamin D entering the blood

circulation. Greater subcutaneous fat in women, which is

related to estrogen, has a greater influence on serum vitamin

D concentration than visceral fat tissue (58). Among men

aged < 50 years, metabolically unhealthy participants tended

to have more visceral fat; the metabolically healthy obese

group tended to have more subcutaneous fat, thus leading to

the current findings. Lifestyle differences may also contribute

to sex and age differences. Younger females generally work

indoors and often intentionally avoid sunshine, whereas older

male and female might take vitamin D supplements and

have more time to engage in outdoor activities (59). To the

best of our knowledge, this is a novel study demonstrating

cardiovascular risk factors and vitamin D deficiency according

to sex, age, and metabolic body composition status in a

large Chinese population. The study results provide physicians

with useful information regarding vitamin D deficiency and
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TABLE 4 Association between metabolic phenotypes and vitamin D deficiency stratified by age and sex.

Number Vitamin D deficiency, n (%) Univariable analysis Multivariable analysis#

OR (95% CI) P-value OR (95% CI) P-value

Men < 50 years old

MHNW 790 234 (29.6) 1 1

MHO 492 176 (35.8) 1.32 (1.04–1.68) 0.022 1.35 (1.05–1.73) 0.019

MUNW 65 20 (30.8) 1.06 (0.61–1.83) 0.846 1.08 (0.62–1.89) 0.778

MUO 282 79 (28.0) 0.92 (0.68–1.25) 0.611 0.95 (0.68–1.31) 0.743

Men ≥ 50 years old

MHNW 1,219 261 (21.4) 1 1

MHO 625 136 (21.8) 1.02 (0.81–1.29) 0.863 0.997 (0.784–1.269) 0.982

MUNW 99 28 (28.3) 1.45 (0.92–2.29) 0.114 1.53 (0.96–2.43) 0.076

MUO 267 76 (28.5) 1.46 (1.08–1.97) 0.013 1.44 (1.05–1.97) 0.022

Women < 50 years old

MHNW 753 273 (36.3) 1 1

MHO 125 39 (31.2) 0.80 (0.53–1.20) 0.275 0.94 (0.61–1.43) 0.757

MUNW 44 11 (25.0) 0.59 (0.29–1.18) 0.134 0.66 (0.33–1.34) 0.253

MUO 38 18 (47.4) 1.58 (0.82–3.04) 0.169 2.33 (1.13–4.81) 0.022

Women ≥ 50 years old

MHNW 1,036 238 (23.0) 1 1

MHO 502 135 (26.9) 1.23 (0.97–1.58) 0.093 1.281 (0.996–1.648) 0.053

MUNW 116 22 (19.0) 0.78 (0.48–1.28) 0.329 0.86 (0.52–1.41) 0.546

MUO 202 59 (29.2) 1.38 (0.99–1.94) 0.058 1.54 (1.08–2.21) 0.018

OR, odds ratio; CI, confidence interval;BMI, body mass index; TG, Triglycerides; HDL-C, high-density lipoprotein-cholesterol; hs-CRP, high-sensitivity C-reactive protein; MHNW,

Metabolically healthy normal weight; MHO, metabolically healthy obesity; MUNW, metabolically unhealthy normal weight; MUO, metabolically unhealthy obesity.
#adjusted for mean arterial pressure+ TG/HDL-C ratio and hs-CRP.

both age- and sex-specific intervention methods to decrease

cardiometabolic risk.

A small population study found that obese individuals had

significantly lower serum 25-hydroxy vitamin D (25[OH]D)

levels than normal-weight participants, regardless of metabolic

phenotypes (60). Patchaya et al. performed a retrospective

chart review of outpatient medical records. Patients aged >

18 years with BMI > 30 kg/m2 were enrolled and divided

into two groups: MHO and MUO. They found no significant

differences in the 25(OH)D levels between individuals with

MHO and MUO. In addition, there was a negative correlation

between 25(OH)D levels and adiposity markers (BMI, body

weight, and waist circumference), but not between 25(OH)D

levels and lipid parameters or HOMA-IR (61). An Iranian

population-based study found that 25(OH)D levels were lower

in patients with MUO than in those with MHO. Reduced

vitamin D concentrations were associated with cardiometabolic

and inflammatory markers in MUO compared with MHO.

This study did not find a correlation between serum 25(OH)D

levels and BMI in obese participants, but it was negatively

correlated with waist circumference. Adipose tissue distribution

has been hypothesized to be associated with the bioavailability

of 25(OH)D (62). Another cross-sectional study recruited 111

healthy adults without diabetes. After adjusting for age, sex,

and body fat percentage, 25(OH)D was no longer associated

with insulin sensitivity, 2 h glucose, or hs-CRP but remained

associated with fasting glucose. The authors interpreted that

the association between vitamin D and cardiometabolic risk

among healthy adults without diabetes is largely mediated by

adiposity (63).

The most commonly mentioned mechanisms explaining

the low vitamin D level in individuals with obesity include

(i) less sun exposure, (ii) negative feedback from an increased

1,25(OH)D concentration, (iii) sequestration of vitamin D

within adipose tissue, and (iv) volumetric dilution resulting in

lower 25(OH)D concentration (64).

We also found that for hs-CRP levels, in both sexes

aged < 50 years, the highest value was observed in the

MUO group, followed by the MHO group, with statistical

significance. However, among men aged > 50 years, the

MUNW group had the highest hs-CRP level, followed by the

MUO group, without statistical significance. Among women

aged > 50 years, the MUO group had the highest hs-

CRP level, followed by the MUNW group (P for trend =

0.005). Hs-CRP, which represents inflammation status, is more

influenced by obesity in the younger population, and it is more
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frequently correlated with metabolically unhealthy status in the

older population.

Vitamin D affects adipogenesis, apoptosis, oxidative stress,

inflammation, and lipid metabolism (65). Hypponen et al.

reviewed the evidence of calcitriol-induced inhibition ofmany of

the adverse effects of obesity. For example, calcitriol suppresses

the secretion of pro-inflammatory cytokines, stimulates the

secretion of anti-inflammatory cytokines from macrophage-

infiltrated adipose tissue, and upregulates insulin growth factor 1

(IGF-1) secretion, which has protective effects against metabolic

syndrome. Calcitriol also promotes insulin secretion from islet

beta cells, suppresses the overactivity of the renin-angiotensin

system in islets, and protects against apoptosis. In obesity-related

dyslipidemia, calcitriol can reduce hepatic TG synthesis (66).

Some studies have demonstrated the effects of vitamin

D supplementation. A 12-week randomized controlled trial

revealed that improvement of vitamin D status in T2DM

patients resulted in the amelioration of systemic inflammatory

markers, such as hs-CRP and IL-6 (67). A recent meta-analysis

demonstrated that vitamin D improves serum levels of TC, TG,

and LDL in patients with T2DM (68). A case-control study that

focused onmenwith spinal cord injury demonstrated that even a

small increase in vitaminD intakemay improve TC independent

of lean mass. Vitamin D adjusted for total dietary intake,

was positively correlated with carbohydrate profile parameters

(69). Another Mendelian randomization study found that a

25 nmol/L higher concentration was associated with a 14%

lower risk of T2DM (70). Wenclewska et al. found that among

patients suffering from metabolic disturbances and T2DM,

supplementation with 2,000 IU vitamin D for 3 months reduced

the level of oxidative deoxyribonucleic acid (DNA) damage,

HOMA-IR, and TG/HDL ratio (71).

Our study focused on a large Asian population, stratified

by age and sex. We evaluated cardiometabolic biomarkers and

the risk of vitamin D deficiency among the four metabolic

phenotypes. We combined both HOMA-IR and metabolic

syndrome criteria to definemetabolic health or unhealthy status,

which makes it more indicative of morbidity and mortality and

provides relatively convincing results.

Nevertheless, this study has several limitations. First, the

cross-sectional study design makes it impractical to establish

causal relationships. Second, we did not record participants’

lifestyles, including physical activity, sun exposure, dietary

habits, and use of vitamin D supplements. Third, our study

participants were relatively healthy or had better health

awareness; therefore, they may not represent the general

population. Further research is warranted to elucidate the

potential protective or anti-inflammatory effects of vitamin D in

different obesity phenotypes.

In conclusion, in a relatively healthy population, our data

revealed that in women of all ages and men aged > 50 years,

the MUO group had the highest OR for vitamin D deficiency.

Among men aged < 50 years, the highest OR for vitamin D

deficiency was observed in the MHO group. The inflammatory

biomarker hs-CRP is more strongly correlated with obesity in

younger adults, and it is more correlated with metabolically

unhealthy status in older individuals.
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Background: Pro-inflammatory diets play an important role in developing

cardiovascular disease (CVD). Vitamin D has been demonstrated to have an

anti-inflammatory effect and promote cardiovascular health (CVH). However,

it is unclear whether adequate vitamin D during pregnancy protects against

poor CVH caused by pro-inflammatory diets.

Objective: To investigate the association of pro-inflammatory diets with

the cardiovascular risk (CVR) among pregnant women and whether such

association was modified by vitamin D status.

Methods: The study was based on a prospective birth cohort that included

3,713 pregnant women between 16 and 23 gestational weeks. In total,

25(OH)D concentrations and high-sensitivity C-reactive protein (hs-CRP)

were measured from the collected blood. The dietary inflammatory potential

was evaluated using the empirical dietary inflammatory pattern (EDIP)

score based on a validated food frequency questionnaire. Gestational CVR

was evaluated using the CVR score based on five “clinical” CVR metrics,

including body mass index, blood pressure, total cholesterol, glucose levels,

and smoking status.

Results: The proportion of women with a CVR score >0 was 54.3%. We

observed a positive association between the EDIP score and CVR score.

Compared with the lowest quartile, the CVR score (β = −0.114, 95% CI, −0.217,

−0.011) and hs-CRP levels (β = −0.280, 95% CI, −0.495, −0.065) were lower

in the highest quartile (P for trend <0.05). Increased CVR connected with

high EDIP score was observed only in women with 25(OH)D concentrations
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<50 nmol/L (RR = 1.85; 95% CI: 1.35, 2.54). Mediation analysis revealed that the

proportion of association between the EDIP score and CVR score mediated by

25(OH)D was 28.7%, and the proportion of the association between 25(OH)D

and the CVR score mediated by hs-CRP was 21.9%.

Conclusion: The higher dietary inflammatory potential was associated with

an increased CVR during pregnancy by promoting inflammation. Adequate

vitamin D could exert anti-inflammatory effects and modify such association.

KEYWORDS

vitamin D, cardiovascular health, pregnant women, dietary inflammatory potential,
nutrients

Introduction

Cardiovascular disease (CVD) accounted for 40% of the
deaths and is the leading cause of death and premature
death in China (1). Pregnancy poses an immense challenge
to women’s metabolic function and cardiometabolic stressors
and is more susceptible to cardiovascular damage (2). Recent
evidence suggests that the mother’s cardiovascular health (CVH)
during pregnancy was significantly associated with the later
cardiometabolic health among women and offspring (3).

Inflammation has been implicated in CVD etiology (4),
and increasing inflammation may lead to a poor gestational
CVH. The higher dietary inflammatory potential that leads
to increased inflammation levels was associated with a higher
risk of CVD (5). A diet intervention study found that
high-inflammation levels moderated the effects of a diet
intervention to control CVD (6, 7). Thus, interventions to
reduce inflammation and thus protect CVH applicable to
pregnant women are required, and vitamin D supplementation
is an attractive target.

Vitamin D can regulate inflammation and is generally
deficient during pregnancy (8). Previous intervention
experiments have demonstrated that daily vitamin D
supplementation will decrease systemic inflammatory markers
such as high-sensitivity C-reactive protein (hs-CRP) (9).
A similar relationship was found in our earlier study of high
serum 25(OH)D concentrations during pregnancy which were
inversely related to hs-CRP levels (10). Moreover, a recent large-
scale population meta-analysis has confirmed that a low vitamin
D level increases CVD risk (11). These studies indicate that
vitamin D may inhibit inflammation and promote gestational
CVH. So far, however, there has been a little discussion about
whether adequate 25(OH)D moderates the relationship between
dietary inflammatory potential and cardiovascular risk (CVR)
during pregnancy.

Therefore, in this study, we tested the relationship between
dietary inflammatory potential and CVR during pregnancy

and whether such a relationship was modified by 25(OH)D
concentrations. It could conceivably be hypothesized that
1) high-dietary inflammatory potential was associated with
increased CVR during pregnancy by promoting inflammation,
and 2) adequate 25(OH)D concentrations may modify such
association by inhibiting inflammation.

Methods

Study participants and design

The data of this study was from a prospective birth cohort
study. In the cohort study, a total of 4,216 pregnant women
aged 18 to 45 years, with gestational ages from 16 to 23
weeks, were recruited in three hospitals (The First Affiliated
Hospital of Anhui Medical University, Anhui Women and Child
Health Care Hospital, and The First People’s Hospital of Hefei
City) from March 2018 and June 2021. The exclusion criteria
included the following: missing blood samples, severe anemia,
abnormal liver, renal, or thyroid function, ongoing infections
(e.g., cervicovaginal infection and periodontal infection), and
incomplete CVR data during pregnancy. In addition, pregnant
women with hs-CRP concentrations >10 mg/L were excluded
(12), as these likely indicate acute inflammatory response.
Given that blood pressure (BP) is a component of gestational
CVR, we did not exclude participants with eclampsia or pre-
eclampsia.

At recruitment, weight and height were measured
by well-trained staff using standardized procedures. The
participants completed a structured questionnaire including
sociodemographic characteristics, lifestyle, and perinatal
health status through face-to-face interviews or medical
records. Each participant completed a validated food frequency
questionnaire (FFQ) at recruitment. Then, study nurses
collected samples of the venous blood. At last, we obtained
3,713 pregnant women’s complete data, including blood samples
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(Supplementary Figure 1). The ethical approval was granted by
the Ethics Committee of Anhui Medical University (20180092),
and informed consent was obtained from each participant.

Dietary assessment

The nutrition information of the participants was assessed
using an FFQ at 16–23 gestational weeks, pregnant women’s
self-reported food intake frequency, and serving size in the
past month. Specified serving sizes are described by using
natural portions (e.g., 1 tomato) or standard weight and volume
measures of the servings commonly consumed (13). With
responses ranging from “never” to “1 time a day or more”,
answers followed: never = 0 times/day; one to two times a
week = 0.2/day; three to six times a week = 0.6/day; more than
once per day = 1/day.

Assessment of the dietary
inflammatory potential

The dietary inflammatory potential was assessed by the
empirical dietary inflammatory pattern (EDIP) score. The
development of the EDIP score was based on the previous
studies (5, 14). It is based on circulating concentrations of
3 systemic inflammatory biomarkers, including interleukin-
6, C-reactive protein (CRP), and tumor necrosis factor-α
receptor 2 (TNFα-R2), to assess the overall subversive potential
of diets. In brief, plasma levels of interleukin 6, TNFα-R2,
and CRP were regressed on 39 pre-defined food groups by
using reduced-rank regressions and stepwise linear regressions,
selecting 18 food groups most predictive of these biomarkers.
The EDIP was calculated as the weighted sum of these 18
food groups with weights (i.e., the contributions of each
food to the overall score) equal to the coefficients from
the stepwise regression. So, the food group with negative
values suggests that these are anti-inflammatory foods. In this
study, pizza was omitted because of the traditional Chinese-
feeding habits. Therefore, dietary intakes of 17 food groups
were used to calculate the EDIP score, including refined
grains, processed meat, red meat, organ meat, other fish,
other vegetables, high-energy beverage, low-energy beverages,
tomatoes, organ meat, green leafy vegetables, fruit juice, beer
wine, tea, coffee, snacks, and dark yellow vegetable. The EDIP
calculation, including the average daily intake of each food
group, was first divided by a specific group of servings (13) to
determine its information; these values were then multiplied
by its particular inflammatory coefficient (15) and compared
to add, the final value is adjusted by dividing by 1,000
(Supplementary Table 1). The EDIP score was represented
as pro-inflammatory diets with a higher score and anti-
inflammatory diets with a lower score.

Assessment of gestational
cardiovascular risk

Gestational CVR was evaluated using the CVR score at
24 to 28 gestational weeks. The CVR score model can be an
effective and straightforward tool for the cardiovascular disease
forecasting and warning. The CVR score model was based on
the five “clinical” CVR metrics (body mass index [BMI], BP, total
cholesterol [TC] level, smoking status, and blood glucose level.
Each CVR metric was classified as ideal (0 points), intermediate
(1 point), or poor (2 points). Increased CVR was defined as
more than 0 points. The detailed classification criteria are as
follows: BMI (kg/m2): ideal: ≤28.4, intermediate: 28.5–32.9,
poor: ≥33. BP (mmHg): ideal: systolic blood pressure (SBP)
<120 and diastolic blood pressure (DBP) <80, intermediate:
SBP 120-139, or DBP 80–89, poor: SBP ≥140 or DBP ≥90. TC
(mg/dL): ideal: <260, intermediate: 260–299, poor: ≥300. Blood
glucose (mg/dl): ideal: non-gestational diabetes mellitus (GDM),
poor: GDM: fasting ≥92, 1-h oral glucose tolerance test (OGTT)
≥180, 2-h OGTT ≥ 153 (3). The results of four “clinical”
CVR metrics (BMI, BP, TC, and blood glucose) were obtained
from the hospitals at 24 to 28 gestational weeks. Thresholds of
gestational BMI at 24 to 28 gestational weeks were defined by
The HAPO cohort (16) accounting for gestational weight gain
and pre-pregnancy BMI. Therefore, thresholds are appropriately
higher than those for the non-pregnant adults. The smoking
status was obtained from the questionnaires.

In addition, we also conducted two new CVR score models
for sensitivity analysis. One was based on the five “clinical”
CVR metrics (BMI, BP, triglyceride [TG] level, smoking status,
and blood glucose level) and the other was based on the other
metrics (pre-pregnancy BMI, BP, TC level, smoking status,
and blood glucose level). The detailed classification criteria of
TG and pre-pregnancy BMI are as follows: TG (mg/dl): ideal:
<220, intermediate: 220–299, poor: ≥300. Pre-pregnancy BMI
(kg/m2): ideal: ≤24.9, intermediate: 25–29.9, poor: ≥30 (17).
The correlation coefficient among CVR score models were
shown in the Supplementary Table 2.

Laboratory analyses

The venous blood was collected from pregnant women
at 16–23 gestational weeks. The blood samples were used
to measure hypersensitive C-reactive protein, and 25(OH)D
concentrations. The blood samples were centrifuged at 4◦C
and 2,056 × g for 5 min, quickly refrigerated at 4◦C within
1 h, and then transferred to −80◦C refrigerators within 8 h for
long-term storage. The 25(OH)D and hs-CRP concentrations
were determined using commercial chemiluminescence
immunoassay kits (DiaSorin Stillwater, MN, United States)
and turbidimetric inhibition immunoassay kits (Leadman
biochemistry, Beijing, China) by well-trained researchers. The
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coefficient of variation (CV) between and within classes is less
than 10%. Serum 25(OH)D concentrations were divided into
two groups (<50 nmol/L and ≥50 nmol/L) (18).

Statistical analysis

Demographic characteristics and clinic data were compared
between different EDIP scores groups using the ANOVA for
continuous variables and Chi-square analysis for the categorical
variables. Variables were represented by the percentage or means
(standard deviations, SDs).

Based on the restricted cubic spline hazard model, the
association between EDIP score and increased CVR was shown.
Based on the cubic curve-fitting models, the association of EDIP
score with CVR score and hs-CRP or between hs-CRP and CVR
score was shown.

Stratified analyses were used to estimate the association of
EDIP scores with increased CVR according to serum 25(OH)D
concentrations. We also conducted post hoc sensitivity analyses
for the association between EDIP and gestational CVR based
on the other CVR score models (included TG instead of TC or
included pre-pregnancy instead of BMI at 24 to 28 gestational
weeks). The analyses were performed using SPSS version 26.0
software (IBM Corp, Armonk, NY, United States). With a two-
tailed P-value of <0.05 is considered significant.

Results

Attrition analyses showed that the distributions of the
sociodemographic characteristics, perinatal health status, and
pregnancy lifestyle factors in nonparticipants did not differ from
the participants. At the baseline, the average participant age was
29.1 (SD = 4.2) years, and the mean pre-pregnancy BMI was
21.5 (SD = 2.9) kg/m2. The proportion of women with increased
CVR was 54.3%. Table 1 shows the baseline characteristics of the
study participants according to the EDIP score. The education
and sedentary time differed across 3 groups divided by the EDIP
score (P < 0.05).

In a cubic curve-fitting model fully adjusted for potential
confounders, CVR score increased significantly with the
increasing EDIP score in low and intermediate EDIP groups
(Figure 1A). There was a significant positive association
between the EDIP score and increased CVR (Figure 1B) or
hs-CRP levels (Figure 1C). In addition, there was a significant
positive association between hs-CRP levels and the CVR
score (Figure 1D).

In multiple linear regression models, the β (95% CI) of
CVR score and hs-CRP levels were −0.114 (−0.217, −0.011)
and −0.280 (−0.495, −0.065) in the highest quartile compared

with the lowest quartile of 25(OH)D (P for trend of <0.05),
respectively (Figure 2).

Table 2 compares the difference in 25(OH)D and hs-CRP
levels and found that 25(OH)D concentrations were the lowest
and hs-CRP levels were the highest in the high EDIP group
(P for trend <0.05). The further stratified analysis found that
25(OH)D concentrations were the lowest and hs-CRP levels
were the highest in the high EDIP group when 25(OH)D
concentrations were <50 nmol/L. Increased CVR connected
with high EDIP scores was observed only in women with
25(OH)D concentrations <50 nmol/L (RR = 1.85; 95% CI:
1.35∼2.54) (Table 2). Sensitivity analyses produced similar
results (Supplementary Table 3).

The role of hs-CRP and 25(OH)D in the association between
EDIP score and CVR score were evaluated by the structural
equation models. As shown in Figure 3, mediation analysis
revealed that the proportion of association between the EDIP
score and CVR score mediated by 25(OH)D was 28.7%. The
proportion of the association between 25(OH)D concentrations
and the CVR score mediated by hs-CRP was 21.9%. In addition,
the proportion of the association between the EDIP score and
the CVR score mediated by hs-CRP was 13.6%.

Discussion

To our knowledge, this is the first study to evaluate the
role of vitamin D status in the association between dietary
inflammatory potential and gestational CVH. We observed that
the EDIP score was positively associated with the CVR score in
a dose-response fashion, independent of traditional risk factors.
We also found that the association was significantly modified
by serum 25(OH)D concentrations, while the association
between high EDIP scores and increased CVR appeared to
be attenuated among the participants with sufficient serum
25(OH)D concentrations.

The relationship between dietary inflammation and CVH
has been gradually recognized in recent years. An anti-
inflammatory diet, rich in fiber, antioxidants, and long-chain-
3 polyunsaturated fatty acids, may positively impact CVH
(19, 20). A randomized controlled trial also showed that
adherence to a Mediterranean diet (MeDiet) could reduce the
incidence of cardiovascular disease by 30%, compared with
the control diet (21). Conversely, a prospective study did
not support the protective effect of high-dietary antioxidant
levels on CVH (22). Another multicenter randomized study
trial also found that the MeDiet in pregnancy did not reduce
CVD risk (23). Conclusions based on these investigations were
inconsistent, the leading cause may be the dietary indices
such as Alternate Mediterranean Diet, Dietary Approaches to
Stop Hypertension (DASH), and Alternative Healthy Eating
Index, which generally assessed the whole dietary quality rather
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TABLE 1 Characteristics of the study population.

Characteristics All (n = 3713) EDIP score1 P value2

Low (n = 929) Intermediate (n = 1858) High (n = 926)

CVR

Ideal BMI, n (%) 3412(91.9) 858(92.4) 1720(92.6) 834(90.2) 0.062

Ideal blood pressure, n (%) 3042(81.9) 781(84.1) 1521 (81.9) 740(79.9) 0.067

Ideal total cholesterol level, n (%) 2886(77.7) 730(78.6) 1449(77.9) 707(76.3) 0.478

Ideal glucose level, n (%) 3080(83.0) 787(84.7) 1544(83.1) 749(81.0) 0.088

Non-smokers, n (%) 3686(99.3) 922(99.2) 1847(99.4) 917(99.0) 0.536

CVR score, M ± SD 1.0 ± 1.1 0.9 ± 1.1 1.0 ± 1.1 1.0 ± 1.2 0.033

25(OH)D concentration, M ± SD, nmol/L 38.54 ± 16.31 39.45 ± 17.00 38.42 ± 16.41 37.90 ± 15.36 0.110

Hs-CRP concentration, M ± SD, mg/L 3.23 ± 2.34 3.02 ± 2.15 3.24 ± 2.36 3.44 ± 2.49 0.001

Sociodemographic characteristics

Age, M ± SD, years 29.1 ± 4.2 29.1 ± 4.4 29.2 ± 4.1 29.1 ± 4.3 0.748

Urban residence, n (%) 3442(92.7) 861(92.7) 1727(92.9) 854(92.2) 0.786

Bachelor’s degree and above, n (%) 928(25.0) 192(20.7) 501(27.0) 235(25.4) 0.001

Household income >8000 yuan/m, n (%) 873(23.5) 231(24.9) 431(23.2) 211(22.8) 0.517

Perinatal health status

Pre-pregnancy BMI, M ± SD, kg/m2 21.5 ± 2.9 21.5 ± 3.0 21.4 ± 2.8 21.6 ± 3.0 0.092

Primipara, n (%) 1380(37.2) 337(36.3) 685(36.9) 358(38.7) 0.529

Excessive GWG3 , n (%) 1865(50.2) 481(51.8) 913(49.1) 471(50.9) 0.383

Family history of diabetes4 , n (%) 336(9.1) 75(8.1) 180(9.7) 81(8.8) 0.350

Family history of hypertension4 , n (%) 1241(33.4) 305(32.8) 628(33.8) 308(33.3) 0.871

Pregnancy lifestyle factors, n (%)

Physical activity ( ≥ 3 days/week) 1683(45.3) 395(42.5) 861(46.3) 427(46.1) 0.138

Outdoor time (≥ 60 min/day)5 1155(31.1) 286(30.8) 588(31.6) 281(30.3) 0.760

Sedentary time (≥ 4 h/day) 2507(67.5) 597(64.3) 1254(67.5) 656(70.8) 0.010

Vitamin D supplementation≥ 3 days/week 2011(54.2) 501(53.9) 1018(54.8) 492(53.1) 0.701

BMI, Body Mass Index; EDIP, Empirical dietary inflammation pattern. GDM, gestational diabetes mellitus; GWG, gestational weight gain, CVR, cardiovascular risk.
1EDIP: Low, ( < P25); Intermediate, (P25-P75); High, (≥ P75).
2P-value was from the analysis of variance (for means) or chi-square (for proportions).
3Excessive GWG: GWG > P50
4A family history of hypertension or diabetes was defined as either parent having hypertension or diabetes.
5Outdoor time means time spent outdoors in the daytime.

than dietary inflammatory potential. Notably, we used a diet
index EDIP, which strengthened the evaluation of dietary
inflammatory potential. EDIP shares only a few foods with other
dietary indexes (thus explaining its moderate correlation) and
emphasizes unique inflammation-related foods. In addition, our
findings are consistent with the Nurses’ Health Study (NHS)
cohort that a higher dietary inflammatory potential, as revealed
by the higher EDIP scores, was associated with an increased
risk of CVD (5). Our findings also found that a systemic
inflammatory marker (hs-CRP) played a mediating role in such
association. In a study of diet interventions to prevent CVD,
high-inflammation marker levels moderated the effects of the
DASH (7). Accordingly, decreased inflammation may lead to
consequently improved gestational CVH. Thus, interventions to
reduce inflammation and thus protect CVH applicable to the
pregnant women are needed, and vitamin D supplements are an
attractive target.

Vitamin D is an everyday nutritional supplement during
pregnancy and may exhibit several anti-inflammatory effects
(24, 25). In this study, our findings showed adequate
25(OH)D concentrations were associated with lower hs-
CRP levels. In addition, we found that adequate 25(OH)D
concentrations may modify gestational CVH by influencing
hs-CRP levels. We also found that the inverse association
between 25(OH)D concentrations and the CVR score
could be mediated by hs-CRP levels. Recent evidence
shows that serum 25(OH)D concentrations are negatively
correlated with systemic inflammatory markers such as
CRP (25). The previous study also found that high-serum
25(OH)D concentrations may reduce CVD risk through
modulation of inflammatory processes, which was similar
to our study (26). In the present study, we also found that
there was no significant association between high EDIP
and increased CVR among participants with sufficient
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FIGURE 1

The association among EDIP scores, CVH, and hs-CRP. (A) A cubic curve-fitting model of the curvilinear association between EDIP and CVR
score. (B) A restricted cubic spline hazard of the curvilinear association between EDIP and Increased CVR. (C) A cubic curve-fitting model of the
curvilinear association between EDIP and hs-CRP. (D) A cubic curve-fitting model of the curvilinear association between hs-CRP and CVR
score. All models were adjusted for age, residence, education, income, pre-pregnancy BMI, parity, gestational weight gain, family history of
diabetes and hypertension, physical activity, outdoor time, sedentary time, and vitamin D supplementation frequency. Increased CVR, CVR score
>0 points. CVR, cardiovascular risk, EDIP, Empirical dietary inflammation pattern.

serum 25(OH)D concentrations. On the one hand, this
modification may be through the anti-inflammatory effects
of vitamin D. On the other hand, 25(OH)D concentrations
may also directly mediate the association between high-
EDIP scores and increased gestational CVR, which is also
confirmed by our results.

In addition, this study found that vitamin D deficiency
is common during pregnancy, and 78.4% of women had
25(OH)D concentrations <50 nmol/L. However, the majority
of developing nations, including China, do not offer vitamin
D deficiency screening during pregnancy, and most pregnant
women also do not follow the recommendation regarding
vitamin D supplementation. Our study suggests that vitamin D
supplementation during pregnancy may have potential benefits
on the gestational CVH.

The mechanisms underlying the vitamin D effect on the
association between inflammatory dietary patterns and CVD
risk remain unclear. Several potential mechanisms may explain
the relations. For example, 25(OH)D3 as an anti-inflammatory
compound can inhibit nuclear factor kappa beta (NF–κB)
activation through increased vitamin D receptor (VDR)
expression. So, vitamin D deficiency can induce inflammation of
the blood vessel walls and promote atherosclerosis by enhancing
NF–κB activation (27). In addition, vitamin D deficiency
can increase inflammation, enhance inflammatory cytokines
expression, and inhibit VDR expression and activity. This
may lead to enhanced signaling of downstream inflammatory
signaling cascades resulting in various CVD (28).A previous
study suggests that high 25(OH)D concentrations may reduce
CVD risk by modulating immune function and inflammatory
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FIGURE 2

The association of 25(OH)D concentrations with CVR scores and hs-CRP levels. 25(OH)D concentrations were divided into four groups by the
quartile (Q1\Q2\Q3\Q4). All models were based on the multiple linear regression and adjusted for age, residence, education, income,
pre-pregnancy BMI, parity, gestational weight gain, family history of diabetes and hypertension, physical activity, outdoor time, sedentary time,
and vitamin D supplementation frequency. CVR, cardiovascular risk.

TABLE 2 The association between EDIP and increased CVR stratified by vitamin D status.1

Groups n (%) 25(OH)D2, nmol/L
M ± SD

Hs-CRP3, mg/L
M ± SD

Increased CVR4

n (%) RR1 (95% CI)

Overall

Low EDIP 929 (25.0) 39.45 ± 17.00 3.02 ± 2.15 465 (50.1) 1.00

Intermediate EDIP 1858(50.0) 38.42 ± 16.41 3.24 ± 2.36 1025(55.2) 1.23 (1.05, 1.44)

High EDIP 926 (25.0) 37.90 ± 15.36 3.44 ± 2.49 525 (56.7) 1.31 (1.09, 1.58)

25(OH)D ≥ 50 nmol/L

Low EDIP 200 (25.0) 64.78 ± 15.16 2.64 ± 1.96 87 (43.5) 1.00

Intermediate EDIP 400(49.9) 62.44 ± 13.59 3.16 ± 2.28 203 (50.7) 1.33 (0.94, 1.88)

High EDIP 201 (25.1) 60.64 ± 8.44 3.31 ± 2.21 101 (50.2) 1.33 (0.90, 1.98)

25(OH)D < 50 nmol/L

Low EDIP 733 (25.2) 32.50 ± 9.19 3.12 ± 2.20 380 (51.8) 1.41 (1.03, 1.94)

Intermediate EDIP 1458(50.1) 31.83 ± 9.53 3.27 ± 2.38 822 (56.4) 1.70 (1.26, 2.29)

High EDIP 721 (24.7) 31.57 ± 9.72 3.49 ± 2.51 422 (58.5) 1.85 (1.35, 2.54)

CVR, cardiovascular risk, EDIP, Empirical dietary inflammation pattern.
1These models were adjusted for age, residence, education, income, pre-pregnancy BMI, parity, gestational weight gain, family history of diabetes and hypertension, physical activity,
outdoor time, sedentary time, and vitamin D supplementation frequency.
2P for trend across 3 groups (EDIP) was 0.041, P for trend across 6 groups [EDIP ∗ 25(OH)D concentrations] was <0.001.
3P for trend across 3 groups (EDIP) was < 0.001, P for trend across 6 groups [EDIP ∗ 25(OH)D concentrations] was <0.001.
Increased CVR, (cardiovascular risk score >0 point).
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FIGURE 3

Mediation analysis among EDIP score, CVR score, and hs-CRP. All models adjusted for age, residence, education, income, pre-pregnancy BMI,
parity, gestational weight gain, family history of diabetes and hypertension, physical activity, outdoor time, sedentary time, and vitamin D
supplementation frequency. CVR, cardiovascular risk, EDIP, Empirical dietary inflammation pattern.

processes (26). In addition, laboratory and animal study
data indicated that 25(OH)D inhibits vascular smooth muscle
cell proliferation and vascular calcification, controls volume
homeostasis and blood pressure via regulation of the renin-
angiotensin-aldosterone system and exerts anti-inflammatory
effects (29–31). These findings indicate that vitamin D regulates
blood pressure by acting on the endothelial and smooth muscle
cells and thus plays an essential anti-inflammatory role in
CVH. These anti-inflammatory effects of vitamin D may modify
the association between a high EDIP score and increased
gestational CVR.

This is the first study examining the moderating effect of
vitamin D on the relationship between a pro-inflammatory
diet and gestational CVH. In addition, the EDIP, a validated,
empirically developed, food-based tool, was used to strongly
assess the dietary inflammation potential. Although a single
inflammation biomarker was measured in this study, the
significant correlation between hs-CRP levels and the EDIP
score supports the validity of EDIP evaluation. To sum up, we
adjusted for broad sociodemographic characteristics; the sample
size was relatively large and reduced residual confounding.

Study limitations

First, our research cannot draw causality, and it takes longer
to verify cardiovascular events. In addition, our findings need
to be confirmed in the randomized clinical trials. Second,
self-reported FFQ diet data of the pregnant women may
have measurement errors, which usually weakens the actual
connection. Third, we did not consider the effect of the
participants’ salt intake on CVH. Furthermore, the data on

CVR was not collected at the baseline, and we are not able
to assess the CVR status at the baseline of the included
individuals. Hence, the temporality and the causality between
diet and CVR are compromised in this study. In addition,
only hs-CRP was measured for inflammation biomarkers.
Hence, inflammatory status of individuals cannot be evaluated
comprehensively. Moreover, a caution should be taken when
interpreting this study results, since previous studies (32–
37) have shown that components of the CVR score in this
study (BMI, blood pressure, total cholesterol, glucose levels,
and smoking status, and also triglyceride levels) are in inverse
association with vitamin D levels, and therefore, a higher
CVR score should be automatically associated with lower
vitamin D levels in our study. To sum, our research was
conducted only on the pregnant Chinese women. Therefore, our
research results may need to be extended to other populations
for verification.

Conclusion

In sum, our research indicates that the regulation of chronic
inflammation may be a potential mechanism linking dietary
patterns and gestational CVR, and vitamin D may have anti-
inflammatory effects to reduce cardiovascular risk caused by the
pro-inflammatory foods. Reducing the inflammation potential
of the diet among pregnant women may provide an effective
strategy for promoting CVH. Future studies need to verify
the potential protective effects of vitamin D supplementation
during pregnancy on cardiovascular health induced by a pro-
inflammatory diet.
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Background: Several studies have found a strong association between

cardiovascular diseases and myeloperoxidase (MPO) as a marker of oxidative

stress. Although the anti-inflammatory effects of vitamin D in adults have

been validated, evidence about the relationship between MPO and 25(OH)D

is lacking. This study aimed to investigate the relationship between MPO and

25(OH)D in the general Chinese population.

Methods: From November 2018 to August 2019, a total of 6414 subjects

were enrolled in a tertiary referral hospital in China, which included 3,122

women and 3,292 men. The dependent and independent variables were MPO

and 25(OH)D, respectively. The confounders included age, sex, body mass

index, waist-hip ratio, smoking status, alcohol drinking status, calcium, and

parathyroid hormone concentration.

Results: In the fully adjusted model, we found that MPO decreased by 0.12

(95% CI −0.16, −0.08), ng/mL for each unit (1 nmol/L) increase in 25(OH)D.

When 25(OH) D was divided into quartiles, compared with Q1 (< 41.4 nmol/L),

the adjusted beta coefficients (β) of MPO in Q2–Q4 were−2.29 (95% CI,−4.31

to−0.27),−4.76 (95% CI,−6.83 to−2.69), and−6.07 (95% CI,−8.23 to−3.92),

respectively (P for the trend < 0.0001). When 25(OH) D was divided according

to clinical severity, compared with the severely deficient (< 30 nmol/L) group,

the adjusted beta coefficients (β) of MPO in the insufficient (≥ 30, < 50 nmol/L)

and sufficient groups (≥ 50 nmol/L) were −2.59 (95% CI, −5.87 to 0.69) and

−5.87 (95% CI, −9.17 to −2.57), respectively (P for the trend < 0.0001).

Conclusion: After adjusting for age, sex, BMI, waist-hip ratio, smoking

status, alcohol status, calcium, and PTH, circulating 25(OH)D was negatively

associated with MPO.

KEYWORDS

myeloperoxidase, association, cross-sectional study, cardiovascular diseases, 25-
dihydroxyvitamin D
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Introduction

The mortality rate of cardiovascular disease remains high
in the world. In 2020, Cardiovascular Diseases (CVDs) were
responsible for approximately 19.1 million deaths (1). In
China, CVDs became the leading cause of all-age disability-
adjusted life-years in 2017 (2). Given the heavy burden of
CVDs, exploring risk factors and understanding the underlying
mechanisms involved in CVDs are crucial to their prevention
and potential therapeutic targets.

Previous studies have found that inflammation and
oxidative stress contribute to major components of
cardiovascular risk (3, 4). Myeloperoxidase (MPO), a member
of the heme peroxidases superfamily that stored in leukocytes
and macrophages, is a 146 kDa glycosylated homodimer
protein that consists of two monomers (5). Upon leukocyte
activation, the main function of MPO released from the cells
is to produce reactive oxidants, such as hypochlorous acid and
hypothiocyanous acid, to exert innate immune, and antibacterial
effects (5, 6). Although MPO has an important physiological
function, its maladjustment involved in oxidative stress and
inflammation can cause severe tissue damage in several diseases
(7). Several studies have found a strong association between
MPO and CVDs; that is, elevated MPO is a biomarker for
the occurrence and progression of atherosclerosis, coronary
heart disease, hypertension, heart failure, and stroke (8–11).
Additionally, given the inspiring results against CVDs through
inhibition of MPO in animal models (12), we may anticipate
new therapeutic targets for the prevention and treatment
of CVDs. Although knockout/knockdown of MPO gene
expression and the use of some pharmacological treatment
targeting MPO can exert cardiovascular protection in vitro
and in vivo, more strategies for regulating MPO are needed,
especially in the general population (12).

Vitamin D is a fat-soluble steroid hormone that can be
synthesized by sunlight or supplemented through diet. In
clinical practice, 25(OH)D (circulating 25-dihydroxyvitamin
D) is commonly used to assess vitamin D status in an
individual (13). There is substantial evidence that a low
25(OH)D status significantly increases the risk of cardiovascular
disease (14, 15). Moreover, 25(OH)D significantly correlates
negatively with some systemic inflammatory parameters (for
example, neutrophil-lymphocyte ratio, monocyte-lymphocyte
ratio and C-reactive protein) in patients undergoing coronary
angiography (16). More importantly, vitamin D acts as an
antioxidant against oxidative stress and inflammation (17).
Although some studies on the cardiovascular benefits of
vitamin D are controversial, evidence suggests that vitamin
D supplementation improves left ventricular function and
inflammation in patients with heart failure (18, 19).

As far as we know, although a previous study found a
link between vitamin D status and MPO in 66 obese children
(20), there has been no exploration of the relationship between

MPO and 25(OH)D despite vitamin D’s anti-inflammatory
benefits in adults. There is a need to further elucidate the
relationship between vitamin D status and MPO in the general
population. Therefore, we conducted a cross-sectional study
in general populations (6,414 subjects) without cardiovascular
events in China, assuming a negative relationship between
25(OH)D and MPO levels.

Materials and methods

Study design and participants

This is a population-based cross-sectional study among
subjects undergoing routine health examinations at our
hospital’s health management center from November 2018 to
August 2019. The West China Hospital, a tertiary hospital
with three subcenters in Sichuan, provides over 60,000 routine
physical examinations annually (21, 22). Participants were
enrolled into the study if they fulfilled the following inclusion
criteria: voluntarily go to the Health Management Center
of West China Hospital of Sichuan University for health
examination between November 2018 and August 2019; aged
over 18 years; willing to sign an informed consent form. The
following criteria demanded their exclusion: (1) incapability
to provide informed consent; (2) missing circulating 25(OH)D
and MPO measurements; (3) history of hypertension, diabetes,
hyperuricemia, chronic heart disease, and hyperlipidemia; and
(4) history of use of blood sugar, blood pressure and serum lipid
lowering agents. Finally, of the 19,920 consecutive individuals,
we excluded those without 25(OH)D and MPO measurements
(n = 12,676) and those with high-risk factor for cardiovascular
diseases (n = 830). The study enrolled 6,414 participants in
total (Figure 1). The study protocol was approved by the local
Ethics Committee of West China Hospital, Sichuan University
(No. 2018-303) and informed consent was obtained from
all participants. The study was conducted according to the
guidelines of the Declaration of Helsinki.

Demographic data

Demographic and lifestyle information on participants was
collected by a trained interviewer through standard procedures
as previously reported (21). Specifically, never smoking was
defined as self-reported smoking fewer than 100 cigarettes,
current smoking was defined as smoking in the past 30 days,
and former smoking was defined as not smoking in the past
30 days. Current drinking was defined as one alcohol-unit at
least once a week for more than 6 months, former drinking was
defined as abstinence from drinking for at least half a year, and
never drinking was defined as drinking monthly or less. Self-
reported family history of cardiovascular disease was defined as
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FIGURE 1

Flow chart of study participants.

a coronary heart disease, stroke, or peripheral vascular disease
in a first-degree relative. Sex, age, smoking, drinking status, self-
reported family history of cardiovascular disease, and medical
history can be obtained from medical records.

Anthropometric measurements

Height, weight, waist circumference, and hip circumference
were obtained by trained nurses. We measured waist and
hip circumference with a flexible and inextensible tape to the
nearest 0.1 cm by trained nurses. The waist circumference was
measured midway between the anterior superior iliac crest and
the 12th costal margin and the hip circumference was measured
horizontal around the maximum gluteal circumference in a
standing position (23). The body mass index (BMI) was
obtained by formula BMI = (weight in kilograms)/(height (in
meters)2). In accordance with the World Health Organization
(WHO), central obesity for the Asian population is defined as a
waist-to-hip ratio of more than 0.9 for men and more than 0.8
for women (24).

Determination of laboratory
measurements

After overnight fasting, blood samples were collected into
10 mL EDTA tubes from cubital vein by trained nurses (21).
All blood samples were analyzed in strict accordance with
standard laboratory test methods in the clinical laboratory

of the West China Hospital certified by the China National
Accreditation Board.

Serum parathyroid hormone (PTH) concentrations were
measured using electrochemiluminescence immunoassays
(Cobas R©8000-e602 modular analyzer, Roche Diagnostics Ltd.,
Rotkreuz, Switzerland). Serum calcium concentrations were
measured on the Cobas 8000-c701 clinical chemistry analyzer.
Serum CRP concentrations were measured on a IMMAGE800
analyzer (Beckman Coulter, Inc., United States).

To measure serum 25(OH)D, an enzyme-linked
immunosorbent assay (ELISA) was used (Immunodiagnostic
Systems, IDS Ltd., London, United Kingdom) as per the
manufacturer’s instructions (25). Using a commercial enzyme-
linked immunosorbent assay kit (EACHY, Suzhou, China),
myeloperoxidase concentrations were determined in plasma
samples using standard methods (Supplementary Methods).

Statistical analysis

Normality of continuous variables was checked by
Kolmogorov–Smirnov (KS) test and normal Q-Q plots. For
normally distributed continuous variables, the mean ± SD
is shown; the median and interquartile range (IQR) for
non-normally distributed continuous variables are shown.
When analyzing normally distributed continuous variables,
one-way analysis of variance (ANOVA) with appropriate
parametric representation was used. Categorical variables
expressed as percentages were compared using the chi-square
test. When analyzing non-normally distributed data, Wilcoxon
signed ranking was used. As long as variables were categories,
McNemar and Yates’s correction tests were performed.

Using an unadjusted and a multivariate-adjusted linear and
logistic model, regression coefficient and corresponding 95%
confidence intervals (CI) were reported by using unadjusted
(crude model), minimally adjusted (adjusted model I), and fully
adjusted analysis (adjusted model II) according to STROBE
guidelines (26). Specifically, the unadjusted model did not
correct for any variables. Model I correct for age (years) and
sex. In Model II, age, sex, BMI (kg/m2), waist-hip ratio, smoking
status, alcohol status, calcium (mmol/L) and PTH (pg/dL)
were controlled. To better understand the relationship between
MPO and vitamin D, 25(OH)D concentrations were categorized
into a categorical variable by quartile and the predefined
categories as follows: sufficient (≥ 50 nmol/L), insufficient
(30–50 nmol/L), and severely deficient (<30 nmol/L) (27).
Furthermore, the non-linear association between 25(OH)D and
MPO was explored using a generalized additive model (GAM)
model and smooth curve fitting. A sensitivity analysis was
conducted by subgroup and interaction analysis to explore the
effects of possible modifiers on the 25(OH)D-MPO relationship.
When exploring elevated MPO and vitamin D deficiency
and insufficiency, we assessed unmeasured confounding by
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calculating E value (28). The E-value quantifies the required
magnitude of an unmeasured confounder that could negate the
observed association between MPO and vitamin D deficiency
and insufficiency.

Multiple imputation was implemented by chained equations
(MICE) to generate five datasets with complete data for missing
covariates. Using the standard multiple imputation Rubin’s
rules, multivariable and GAM analyses were performed on the
combined imputed datasets.

Two-tailed P-value < 0.05 was considered statistically
significant unless otherwise stated. Statistical analysis was
performed using R version 4.0.1

Results

A total of 6,414 subjects were included in the cross-
sectional study, which included 3,122 women and 3,292 men.
The characteristics of the study participants were grouped into
four quantiles, Q1–Q4, depending on the levels of 25(OH)D,
as described in Table 1. Between all quintiles of 25(OH)D

1 http://www.r-project.org/

groups, significant differences were observed in age, sex, BMI,
waist-hip ratio, smoking status, alcohol status, calcium, PTH,
and MPO. Higher serum 25(OH) D levels were more common
in subjects who were older, male, current smokers and drinkers,
and had higher serum calcium, lower PTH, and MPO levels. The
characteristics of those individuals excluded due to exclusion
criteria in the final analysis did not differ substantially from
those included (Supplementary Table 1).

As vitamin D deficiency improved (from severely deficient
to insufficient and sufficient 25(OH)D groups), MPO showed a
decreasing trend in both men and women (P for trend < 0.0001)
(Figure 2). The non-linear dose–response curve conducted by
GAM demonstrated that the association between 25(OH)D and
MPO was linear after adjusting for the confounding variables
(Figure 3). Then, the association between 25(OH)D and MPO
was observed by univariate and multivariate models, as reported
in Table 2. In the crude model, we found that MPO decreased
by 0.11 ng/mL for each unit (1 nmol/L) increase in 25(OH)D;
the same trend was seen in Model I and Model II after
adjusting for other confounding variables. Based on statistical
and clinical practice, we then transformed the 25(OH)D level
into categorical variables for multivariable analysis as stated in
the Methods. There was a strong negative correlation between
serum 25(OH) D levels and MPO after controlling for age, sex,

TABLE 1 Characteristics of the study participants according to serum 25(OH)D concentrations.

25(OH)D, nmol/L

Q1 Q2 Q3 Q4

Total (< 41.4) (41.41 < 52.0) (52.0 < 64.6) (≥ 64.6) P-value

No. of participants 6,414 1,652 1,610 1,583 1,569

Age (years) 46.45± 10.55 44.12± 10.46 45.25± 10.18 47.05± 10.45 49.54± 10.31 <0.001

Sex <0.001

Women 3,122 (48.67%) 1,081 (65.44%) 816 (50.68%) 675 (42.64%) 550 (35.05%)

Men 3,292 (51.33%) 571 (34.56%) 794 (49.32%) 908 (57.36%) 1,019 (64.95%)

BMI, kg/m2 23.56± 3.23 23.29± 3.46 23.70± 3.30 23.77± 3.11 23.47± 2.99 <0.001

Waist-hip ratio 0.85± 0.07 0.83± 0.08 0.85± 0.08 0.86± 0.07 0.86± 0.07 <0.001

Smoking status, N (%) <0.001

Never 4,613 (71.92%) 1,296 (78.45%) 1,177 (73.11%) 1,096 (69.24%) 1,044 (66.54%)

Former 279 (4.35%) 40 (2.42%) 48 (2.98%) 76 (4.80%) 115 (7.33%)

Current 1,522 (23.73%) 316 (19.13%) 385 (23.91%) 411 (25.96%) 410 (26.13%)

Alcohol status, N (%) <0.001

Never 3,567 (55.61%) 1,092 (66.10%) 908 (56.40%) 803 (50.73%) 764 (48.69%)

Former 52 (0.81%) 7 (0.42%) 14 (0.87%) 12 (0.76%) 19 (1.21%)

Current 2,795 (43.58%) 553 (33.47%) 688 (42.73%) 768 (48.52%) 786 (50.10%)

Family history of cardiovascular disease, N (%) 285 (4.44%) 77 (4.66%) 63 (3.91%) 71 (4.49%) 74 (4.72%) 0.675

Calcium (mmol/L) 2.33± 0.09 2.31± 0.09 2.32± 0.08 2.33± 0.09 2.34± 0.08 <0.001

Parathyroid hormone (pg/dL) 6.28± 2.07 6.88± 2.41 6.40± 2.01 6.05± 1.84 5.75± 1.77 <0.001

CRP (mg/L) 1.91 (1.36–2.89) 1.86 (1.29–2.95) 1.94 (1.38–2.93) 1.91 (1.40–2.82) 1.92 (1.38–2.85) 0.197

25(OH)D, nmol/L 54.42± 18.34 34.16± 5.66 47.01± 3.06 58.35± 3.59 79.38± 13.82 <0.001

MPO, ng/ml 25.68 (19.06–35.31) 27.37 (21.44–37.21) 26.35 (19.43–36.78) 24.82 (17.48–34.34) 23.77 (17.30–32.76) <0.001
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FIGURE 2

Violin and boxplot representing relative MPO levels between the sufficient, insufficient, and severely deficient 25(OH)D groups. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001.

BMI, waist-hip ratio, smoking status, alcohol status, calcium and
PTH. When 25(OH) D was divided into quartiles, compared
with Q1 (< 41.4 nmol/L), the adjusted beta coefficients (β) of
MPO in Q2–Q4 were −2.29 (95% CI, −4.31 to −0.27), −4.76
(95% CI,−6.83 to−2.69), and−6.07 (95% CI,−8.23 to−3.92),
respectively, with P for the trend < 0.0001. When 25(OH)
D was divided according to clinical severity, compared with
the severely deficient (<30 nmol/L) group, the adjusted beta
coefficients (β) of MPO in the insufficient (≥ 30, < 50 nmol/L)
and sufficient groups (≥ 50 nmol/L) were−2.59 (95% CI,−5.87
to 0.69) and −5.87 (95% CI, −9.17 to −2.57), respectively, with
P for the trend < 0.0001.

Further assessment of possible moderating factors on the
association between 25(OH)D and MPO was achieved through
subgroup and interaction analyses. None of the variables,
including age (< 60 vs. ≥ 60 years; P for interaction = 0.8706),
sex (P for interaction = 0.2848), smoking status (Past/Current
vs. Never; P for interaction = 0.331), drinking status
(Past/Current vs. Never; P for interaction= 0.4406), BMI (< 24
vs. ≥ 24 kg/m2; P for interaction = 0.2997), or central obesity
(yes vs. no; P for interaction = 0.6745), significantly modified
the 25(OH)D-MPO relationship (Table 3 and Figure 4).

To exclude the potential biased effect of missing data,
we further performed sensitivity analysis using multiple
imputation. As shown in Supplementary Table 2, no significant
difference was observed between the created complete
data and preimputation data. The relationship between
MPO and 25(OH)D was still linear in the pro-imputation
data (Supplementary Figure 1). After combining the pro-
imputation, we still found a significant negative trend between
25(OH)D and MPO (Supplementary Table 3). After excluding

those with thyroid-related diseases (n = 31), family history
of cardiovascular disease (n = 285) and the those with lowest
1% or 2.5% of 25(OH)D levels respectively, the association
between 25(OH)D and MPO did not change (Supplementary
Tables 4, 5, 7). When MPO was divided into quartiles,
Supplementary Table 6 showed that compared with Q1
(<18.35 ng/ml), the adjusted odds ratio (OR) for vitamin
D deficiency and insufficiency (25(OH)D < 50 nmol/L) in
Q2-Q4 were 1.48 (95% CI, 1.26–1.73), 1.78 (95% CI, 1.52–
2.09), and 1.77 (95% CI, 1.51–2.08), respectively, with P for
the trend < 0.0001. To assess unmeasured confounding by
calculating E value, we found that confounders having a relative
risk association = 2.94 with both elevated MPO and vitamin
D deficiency and insufficiency to deviate our conclusions
(Supplementary Figure 2).

Discussion

Our aim was to investigate whether circulating 25(OH)D
was independently associated with MPO. Since the increase
in MPO can promote the occurrence and development of
cardiovascular diseases and vitamin D is a well-documented
protective factor of cardiovascular risk, it is very important to
explore the relationship between the two indicators. To our
knowledge, the present study is the first population-based report
of an independent relationship between 25(OH)D and MPO
after adjustment for confounders in Chinese adults.

Numerous studies have linked vitamin D deficiency to
metabolic disorders, such as increased levels of inflammation,
oxidative stress, reactive oxygen species (ROS) production,
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FIGURE 3

The smooth curve fitting presented linear associations between serum 25(OH)D concentrations and MPO among participants. Adjustment for:
age (years), sex, BMI, waist-hip ratio, smoking status, alcohol status, calcium (mmol/L) and parathyroid hormone (pg/dL).

TABLE 2 Effect of 25(OH)D concentrations on MPO.

Variables N Crude model Adjusted model I* Adjusted model II**
β (95% CI) P-value Adjusted β (95% CI) P-value Adjusted β (95% CI) P-value

25(OH)D, nmol/L

Continuous 6,414 −0.11 (−0.14,−0.07) < 0.0001 −0.10 (−0.14,−0.06) < 0.0001 −0.12 (−0.16,−0.08) < 0.0001

Categories

< 30 370 Ref Ref Ref

≥ 30, < 50 2,533 −1.66 (−4.60, 1.27) 0.2669 −1.63 (−4.57, 1.32) 0.2791 −2.59 (−5.87, 0.69) 0.1215

≥ 50 3,511 −4.80 (−7.68,−1.91) 0.0011 −4.56 (−7.49,−1.62) 0.0023 −5.87 (−9.17,−2.57) 0.0005

P for trend <0.0001 <0.0001 <0.0001

Quartiles

Q1 (< 41.4) 1,652 Ref Ref Ref

Q2 (≥ 41.41, < 52.0) 1,610 −1.67 (−3.51, 0.18) 0.0771 −1.75 (−3.61, 0.10) 0.0641 −2.29 (−4.31,−0.27) 0.0262

Q3 (≥ 52.0, < 64.6) 1,583 −4.01 (−5.86,−2.15) < 0.0001 −4.01 (−5.90,−2.13) < 0.0001 −4.76 (−6.83,−2.69) < 0.0001

Q4 (≥ 64.6) 1,569 −5.28 (−7.14,−3.42) < 0.0001 −5.11 (−7.04,−3.17) < 0.0001 −6.07 (−8.23,−3.92) < 0.0001

P for trend <0.0001 <0.0001 <0.0001

Adjust I model adjust for: Age (years), sex.
Adjust II model adjust for: Age (years), sex, BMI, Waist-hip ratio, Smoking status, Alcohol status, Calcium (mmol/L) and Parathyroid hormone (pg/dL). The β-values indicate
unstandardized regression coefficients. 95% CI indicates 95% confidence interval.
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TABLE 3 Effect size of 25(OH)D on MPO in prespecified and exploratory subgroups.

No of participants Median (Q1–Q3) Adjusted β (95% CI) P for interaction

Sex 0.2848

Male 3,042 25.2 (18.4–35.3) −0.10 (−0.15,−0.04)

Female 2,848 25.5 (18.6–35.4) −0.14 (−0.20,−0.08)

Age 0.8706

< 60 5,248 25.4 (18.5–35.7) −0.14 (−0.18,−0.09)

≥ 60 642 25.0 (18.4–33.9) −0.12 (−0.23,−0.01)

Smoke 0.331

Never 4,198 25.4 (18.6–35.2) −0.11 (−0.16,−0.06)

Past/Current 1,692 25.1 (18.4–35.7) −0.15 (−0.22,−0.08)

Alcohol 0.4406

Never 3,248 25.6 (18.9–35.7) −0.10 (−0.16,−0.05)

Past/Current 2,642 25.0 (18.1–35.0) −0.14 (−0.20,−0.08)

BMI 0.2997

< 24 3,367 25.2 (18.4–35.3) −0.10 (−0.16,−0.05)

≥ 24 2,523 25.5 (18.7–35.3) −0.15 (−0.21,−0.08)

Central obesity 0.6745

No 3,169 25.5 (18.5–36.6) −0.11 (−0.17,−0.06)

Yes 2,721 25.1 (18.5–34.3) −0.13 (−0.19,−0.07)

The β-values indicate unstandardized regression coefficients. 95% CI indicates 95% confidence interval.

insulin resistance, endothelial dysfunction, and disruption of
blood sugar and lipids, which contribute to an increased risk
of cardiovascular disease (29–31). Recently, Cãtoi et al. (32)
conducted a cross-sectional study to investigate the association
between 25(OH)D and markers of oxidative stress in 47 patients
with type 2 diabetes. They found that compared to those with
serum 25(OH)D greater than 20 ng/mL, interleukin 6, total
oxidant status and oxidative stress index were significantly
higher in the 25(OH)D less than 10 ng/mL and 25(OH)D
between 10 and 20 ng/ml group. Codoñer-Franch et al. (20)
designed a pioneering observational study to explore the
relationship between vitamin D status and MPO in 66 obese
Caucasian children from 7 to 14 years old. Consistent with
our results, they also found that the MPO in the 25(OH)D
insufficient group (<20 ng/m) was higher than that in the
25(OH)D (≥ 20 ng/mL) sufficient group among children.
However, the above studies also discussed the relationship
between 25(OH)D and other oxidative stress and inflammation
indexes. In addition, the small sample size prevented them
from formulating a confound-correcting model to satisfy these
oxidative stress indicators and 25(OH)D. Specifically, they only
adjusted for age, sex and sexual maturity status, but other factors
that affect vitamin D metabolism, such as BMI, PTH, lipid levels
and calcium levels, should also be considered. However, due to
different research focuses, Codoñer-Franch and associates did
not discuss the above issues in depth.

Several factors influence the relationship between oxidative
stress and vitamin D. According to STROBE guidelines,
subgroup and interaction analyses are helpful to reveal the

underlying truths (26). Smoking and alcohol consumption have
previously been reported to cause oxidative stress through
the production of ROS and reactive nitrogen species (RNS)
(33, 34). In addition, obesity is associated not only with
systemic inflammation and oxidative stress but also with vitamin
D deficiency (35–37). A previous study reported significant
interactions between acute symptoms and oxidative stress status
in patients undergoing coronary angiography (16). In our study,
however, we did not find that smoking, alcohol consumption, or
obesity affected the MPO-25(OH)D correlation. The reason may
be that the population we included was the general population
without hypertension, diabetes and hyperlipidemia, in which the
risk factors for cardiovascular disease could not be synergistic
with oxidative stress.

MPO, a pro-oxidant enzyme, may be a promising target
for cardiovascular diseases. Previous studies have shown
that MPO-catalyzed nitrification and chlorination can target
apolipoprotein A-I (APOA-I), a major component of high-
density lipoprotein (HDL) (38). Oxidation of HDL and
APOA-I inhibits cholesterol efflux in macrophages, as well
as proliferation and migration of vascular smooth muscle
cells, resulting in atherosclerotic plaque instability (39, 40). In
addition, the activation of MPO can lead to the production
of metalloproteinases and the transformation of fibroblasts
into myofibroblasts, ultimately contributing to the synthesis,
and degradation of collagen (41). It is well established that
vitamin D acts as an antioxidant by removing excess ROS.
In our study, we found significant inverse correlation between
25(OH)D and MPO, which partly reflects the importance of
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FIGURE 4

Subgroup analyses of the effect of 25(OH)D concentrations on MPO. Adjustment for: age (years), sex, BMI, waist-hip ratio, smoking status,
alcohol status, calcium (mmol/L), and parathyroid hormone (pg/dL) except the stratification variable in each case.

improvement for vitamin D status. The possible mechanism is
that 1,25-dihydroxy vitamin D3 binds to vitamin D receptors
to form nuclear receptor-ligand complexes, functioning as
transcription factors to regulate the expression of more than
200 genes, including many oxidative stress-related enzymes (42,
43). Consistently, previous studies have also found that vitamin
D supplementation significantly increases catalase activity, a
hemoprotein evaluation of antioxidant status (44).

Continuing controversy surrounds the range and
recommendations for blood concentrations of 25(OH)D.
The guidelines from The Institute of Medicine of The National
Academies recommend that serum 25(OH)D concentrations
greater than 50 nmol/L meet the needs of most people; when the
concentration exceeds 125 nmol/L, attention should be given
(45). In contrast, according to the Endocrine Society Practice
Guidelines, the adequate reference range of sufficient 25(OH)D
is 50–250 nmol/L (46). Indeed, in most studies, the upper limit
of the safe range for vitamin D is usually defined as 250 nmol/L
(47). In our study, 25(OH)D above 125 nmol/L was detected in
only 20 individuals. However, 45.2% of the included individuals
had 25(OH)D below 50 nmol/L, which shows the importance of
vitamin D supplementation in the general population.

Previous meta-analyses have demonstrated that long-term
vitamin D supplementation can reduce levels of inflammation
and oxidative stress, thereby contributing to cardiovascular

protection (48, 49). In a mouse model of periprosthetic joint
infection, Hegde et al. (50) found that higher MPO was
exhibited in mice fed a vitamin D-deficient diet than in those
fed an adequate vitamin D diet. Interestingly, when mice fed
a vitamin D-deficient diet were given an adequate vitamin
D diet again after surgery, their MPO levels recovered to
levels comparable to those of mice on a normal vitamin D
diet. Another in vitro study indicated that adding vitamin
D to the human neutrophil culture medium reduced MPO
release by 22% (51). Another interesting observation on the
efficacy of vitamin D supplementation on MPO in patients
with type 2 diabetes was conducted by Cojic et al. (44).
They found that compared with metformin group, vitamin D
supplementation plus metformin group resulted in a significant
decrease in MPO and a significant increase in antioxidative
enzyme activity after 6 months. Therefore, there is reason to
believe vitamin D supplementation can lower MPO levels and
thus play a cardiovascular protective role in general population.
Nevertheless, the mechanisms by which vitamin D affects MPO
require further research.

To enhance the level of vitamin D in serum, several
exogenous supplementation regimens and lifestyles are
recommended for general population. First, since over 90%
production of the vitamin D derived from sunshine, it requires
short, regular exposures to sunlight without sunscreen (52,
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53). However, individuals with darker skin, older age and who
live in areas with less sun exposure should consider taking
exogenous vitamin D supplementation. Due to the limited
supply of vitamin D-fortified foods in most parts of the world,
cholecalciferol of 1,000–2,000 IU per day or Ergocalciferol
of 50,000 IU per month is recommended for general adults
(54, 55).

The strengths of our research are mainly in the following
aspects. First, large sample sizes and standardized survey and
measurement procedures improve the accuracy and validity
of the results. Second, since we focused on exploring the
relationship between MPO and vitamin D status, we adopted
a more rational strategy for dealing with confounding factors.
Third, the GAM model was applied to explore the non-linear
relationship in our study. Fourth, subgroup and interaction
analyses were performed to further analyze potential factors
influencing the relationship between MPO and vitamin D status.
Finally, we use multiple imputation to address the impact of
missing variables on the results. The above mentioned provides
a basis for understanding the mechanism by which vitamin
D exerts its protection against oxidative stress from another
perspective and for the design of future intervention trials to
prevent cardiovascular diseases.

However, our study has some limitations. First, a causal
relationship between MPO and vitamin D status cannot be
established due to the nature of the cross-sectional study;
further long-term follow-up and intervention studies will
help provide evidence regarding the effect of vitamin D
on MPO. Second, although we corrected for some major
confounding factors, bias due to unmeasured confounders was
not excluded. We used sensitivity analysis excluding those with
thyroid-related diseases, family history of cardiovascular disease
and the those with lowest 1% or 2.5% of 25(OH)D levels,
respectively, and found that the results of sensitivity analysis
did not change primary result (Supplementary Tables 4, 5, 7).
Besides, in a sensitivity analysis exploring elevated MPO
and vitamin D deficiency and insufficiency, we assessed
unmeasured confounding by calculating E value. The results
showed that it is unlikely that any unmeasured confounders
could explain the association between elevated MPO and
vitamin D deficiency/insufficiency (Supplementary Table 6 and
Supplementary Figure 2). Third, because we did not include
individuals with hypertension, diabetes, hyperlipidemia and
cardiovascular diseases, our conclusions cannot be extrapolated
to the above-mentioned population. Fourth, in addition to
MPO, future studies need to investigate the relationship between
vitamin D status and other inflammatory and oxidative stress
markers in a large sample of the general population to provide
a complete and an overall association and correlation picture.
Fifth, the information concerning regular administration of
vitamin D supplementation by the participants was not
obtained. However, a previous cross-sectional epidemiological
survey showed low consumption of vitamin D-related foods

(only 18.44% of women consumed more than 250 g of milk)
and about 5% women reported taking a vitamin supplement in
Sichuan, which reflects low intake of vitamin D supplements
(55). In addition, if someone took vitamin D supplementation,
there would be fewer cases of vitamin D deficiency/insufficiency,
making it more difficult to identify the association between
increased MPO and vitamin D deficiency/insufficiency, thus
biasing the results toward the null. Of note, the potential
resulting from vitamin D supplementation would bias toward to
the null and thus result in an underestimation of the association
between MPO and vitamin D deficiency/insufficiency.

Conclusion

Our data have demonstrated that after adjusting for age, sex,
BMI, waist-hip ratio, smoking status, alcohol status, calcium
and PTH, circulating 25(OH)D is negatively associated with
MPO. Further prospective studies and clinical trials are needed
to confirm the potential causal relationships.
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Background: Ketogenic dietary therapy (KDT) is used as an effective treatment

for epilepsy. However, KDT carries the risk of bone health deterioration;

therefore, vitamin D supplementation is required. Vitamin D replacement

therapy in KDT has not been established because it may be related to

hypercalciuria/urolithiasis, which are common adverse effects of KDT. Hence,

this study aimed to evaluate the dose-dependent association between vitamin

D3 and hypercalciuria/urolithiasis in patients undergoing KDT and dose

optimization for renal complications.

Materials and methods: Overall, 140 patients with intractable childhood

epilepsy started 3:1 KDT (lipid to non-lipid ratio) at the Severance Children’s

Hospital from January 2016 to December 2019. Regular visits were

recommended after KDT initiation. Participants were assessed for height,

weight, serum 25-hydroxyvitamin D (25-OH-D3) level, parathyroid hormone

level, and ratio of urinary excretion of calcium and creatinine (Uca/Ucr). Kidney

sonography was conducted annually. Patients who already had urolithiasis

and were taking hydrochlorothiazide before KDT, failed to maintain KDT for

3 months, did not visit the pediatric endocrine department regularly, did not

take prescribed calcium and vitamin D3 properly, or needed hospitalization

for > 1◦month because of serious medical illness were excluded. Data from

patients who started diuretic agents, e.g., hydrochlorothiazide, were excluded

from that point because the excretion of calcium in the urine may be altered

in these patients.

Result: In total, 49 patients were included in this study. Uca/Ucr ratio

significantly decreased with increasing levels of 25-OH-D3 (p = 0.027). The

odds ratio for hypercalciuria was 0.945 (95% confidence interval, 0.912–0.979;

p = 0.002) per 1.0 ng/mL increment in 25-OH-D3 level. Based on findings
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of receiver operating characteristic curve analysis and Youden’s J statistic,

the cut-off 25-OH-D3 level for preventing hypercalciuria was > 39.1 ng/mL

at 6 months. Furthermore, the vitamin D3 supplementation dose cut-off

was > 49.5 IU/kg for hypercalciuria prevention.

Conclusion: An inverse relationship between Uca/Ucr ratio and 25-OH-D3

level was noted, which means that vitamin D supplementation is helpful for

preventing hypercalciuria related to KDT. We suggest that the recommended

25-OH-D3 level is > 40 ng/mL for hypercalciuria prevention and that KDT

for children with epilepsy can be optimized by vitamin D3 supplementation at

50 IU/kg.

KEYWORDS

vitamin D, vitamin D deficiency, ketogenic diet, hypercalciuria, urolithiasis

Introduction

Since 1921, ketogenic dietary therapy (KDT) has been
considered a well-known non-pharmacologic anti-convulsant
treatment for both children and adults with multi-drug resistant
epilepsy (1). KDT is based on the fact that lipophilic compounds
known as ketone bodies, such as acetoacetate, acetone, and beta-
hydroxybutyrate, can cross the blood–brain barrier and act as
direct anticonvulsants (2). It is also known that intermediate
chain triglycerides, such as decanoic acid, can directly inhibit α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors, and that KDT increases adenosine level and inhibits
DNA methylation, which are the known key mechanisms of
KDT for treating epilepsy (3). However, KDT without careful
management may accompany various side effects such as
gastrointestinal symptoms, hepatic dysfunction, dyslipidemia,
growth retardation, urolithiasis, pancreatitis, and cardiac
abnormalities, especially when it is used together with high-dose
anti-epileptic drugs (AEDs) (1).

Bone health deterioration is one of the most common
clinical issues in patients undergoing KDT. Patients with
intractable epilepsy usually have prolonged exposure to high-
dose AEDs and are at risk of vitamin D deficiency (4).
Furthermore, KDT is a diet prone to being deficient in essential
nutrients, including calcium, phosphorus, magnesium, vitamin
K, and vitamin D. Additionally, ketone bodies produced by KDT
also induce acidification, which converts active vitamin D into
an inactive form (1). Therefore, KDT can lead to calcium and
vitamin D deficiencies and worsen bone vulnerability, causing
osteoporosis; hence, calcium and vitamin D supplementation
are needed. Given the possible risks and complications of KDT,
patients on KDT are advised to visit an endocrinologist regularly
to ensure adequate calcium and vitamin D supplementation.

Meanwhile, hypercalciuria and urolithiasis are also
common complications of KDT, which are caused by increased

bone demineralization due to acidosis. Acidosis induces
hypocitraturia, which in turn increases free calcium, and
increases the less soluble uric acid levels (5). As calcium is the
most frequent component of urinary calculi and the major
constituent of approximately 75% of the stones, an increase
in the urinary excretion of calcium is the most common
risk factor for urolithiasis (6, 7). Low urine volume and
hypercalciuria increase Randall’s plaque formation, which is
specific to calcium oxalate stone formation (8, 9). Consequently,
urolithiasis may develop in children undergoing KDT (10,
11). Although hypercalciuria and urolithiasis are not absolute
contraindications for KDT or indications for cessation of
KDT (1), they may cause poor compliance and treatment
failure, as the presence of kidney stones may lead to severe
abdominal pain or dysuria, which may reduce the patient’s
quality of life.

Calcium intake and vitamin D supplementation have
been thought to be risk factors for hypercalciuria because
they can increase intestinal absorption of calcium and cause
hypercalcemia, even without KDT (12). However, as mentioned
above, calcium and vitamin D supplementation are required
for patients undergoing KDT. In addition, as vitamin D levels
in patients with urolithiasis are lower than those in the
normal population, vitamin D deficiency is thought to increase
the occurrence of kidney stone formation (13). Therefore,
whether calcium intake and vitamin D supplementation worsen
hypercalciuria and promote kidney stone formation as well as
the optimal level of 25-hydroxyvitamin D (25-OH-D3) and
appropriate use of vitamin D supplementation in patients with
KDT remain controversial.

Considering the above-mentioned arguments, in this study,
we aimed to establish the correlation between vitamin D3 dose
and the occurrence of hypercalciuria/urolithiasis in patients
undergoing KDT. In addition, we evaluated the optimal dose to
minimize renal complications.
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Materials and methods

Participants

Overall, 140 patients with intractable childhood epilepsy
were started on KDT at a 3:1 lipid to non-lipid ratio in
the pediatric neurology department of Severance Children’s
Hospital, Seoul, South Korea from January 2016 to December
2019. All patients were referred to the pediatric endocrine
department for monitoring the endocrinologic adverse effects
of KDT, such as growth retardation, dyslipidemia, multivitamin
deficiency, and hypothyroidism. Among these patients, those
who maintained KDT for > 3 months and regularly visited the
pediatric endocrine department for monitoring were included in
this study. Regular outpatient visits were recommended at 1, 3,
6, and 12 months, unless there were medical issues. Patients who
already had urolithiasis and received hydrochlorothiazide before
KDT, failed to maintain KDT for 3 months, did not take the
prescribed calcium and vitamin D3 supplementation properly,
or did not undergo endocrinological follow-up studies including
biochemical laboratory tests, were excluded. Additionally, we
excluded patients requiring prolonged hospitalization due to
serious illness after KDT initiation, since the changes in
their systemic condition and changes in treatment such as
AEDs and KDT could significantly alter their clinical aspects.
Further, data from patients who started diuretic agents, such as
hydrochlorothiazide, were eliminated from that point in time
because the excretion of calcium in the urine may be altered in
these patients. Finally, 49 patients were included in this study.
Among those who continued KDT, 6-month data were obtained
from 38 patients and 1-year data were obtained from 22 patients.

The type and dosage of AEDs were not changed significantly
during KDT, and the formulations were modified to contain
as little carbohydrates as possible. Patients on KDT were
supplemented with multivitamins, L-carnitine, calcium, and
vitamin D3 (cholecalciferol). We used a combination tablet
containing 100 mg of calcium and 1,000 IU of vitamin D3 per
pill for calcium and vitamin D supplementation. Daily doses of
calcium and vitamin D3 were approximated based on weight: 0.5
tablets (elemental 50 mg of calcium and 500 IU of vitamin D3)
for a bodyweight up to 10 kg, 1.0 tablet (100 mg of elemental
calcium and 1,000 IU of vitamin D3) for a bodyweight of 10–
20 kg, 1.5 tablets (150 mg of elemental calcium and 1,500 IU
of vitamin D3) for a bodyweight of 20–40 kg, and 2 tablets
(200 mg of elemental calcium and 2,000 IU of vitamin D3) for
a bodyweight of > 40 kg. If the serum 25-OH-D3 level was < 20
ng/mL or > 50 ng/mL, the doses of the calcium and vitamin D3

complex were increased or decreased by 0.25 tablets (25 mg of
elemental calcium and 250 IU of vitamin D3).

The Institutional Review Board of Severance Hospital
Clinical Trial Center (subject no. 4-2020-0549) approved this
study. Because this was a retrospective study that analyzed
only the results obtained during the general course of medical

treatment, the need for informed consent was waived. We
complied with the Declaration of Helsinki to protect participant
rights and personal information.

Data collection

Patients’ heights and weights were measured at each visit.
Further, levels of serum calcium (mg/dL), phosphorus (mg/dL),
alkaline phosphatase (mg/dL), 25-OH-D3 (ng/mL), parathyroid
hormone (PTH, pg/mL), urinary excretion of calcium (Uca,
mg/dL), and creatinine (Ucr, mg/dL) in spot urine samples,
and urine osmolality were assessed at each visit to identify
whether hypercalciuria or any side effects of vitamin D3

supplementation had occurred. Serum calcium, phosphate,
and alkaline phosphatase levels were measured using Hitachi
chemistry autoanalyzer 7600-110 (Hitachi Ltd., Tokyo, Japan)
at the central laboratory of Severance Hospital. Serum 25-OH-
D3 level was determined using a radioimmunoassay (DiaSorin,
Inc., Stillwater, MN, United States; intraassay CV < 4.1%,
inter-assay CV < 7.0%). The serum PTH concentration
was measured at our hospital using a second-generation
PTH assay (Elecsys PTH; Roche Diagnostics, Mannheim,
Germany) on the Cobas e801 immunoassay analyzer (Roche
Diagnostics). Serum osteocalcin level was measured using
an electrochemiluminescence immunoassay (Elecsys N-MID
Osteocalcin; Roche Diagnostics; intraassay CV < 1.8%, inter-
assay CV < 3.3%), and the urinary N-terminal telopeptide
was calculated by competitive immunoassay (VitrosTM NTx
reagent pack; Ortho-clinical Diagnostics, Inc., Rochester, NY,
United States). Urinary calcium excretion (calculated as the
ratio of urine calcium level to creatinine level) of the patients
was measured by random urine tests using an automated
urine chemistry analyzer AU5800 (Beckman Coulter, Fullerton,
CA, United States) and LIAISON system (DiaSorin, Saluggia,
Italy) at every admission before the initiation of each cycle.
The criteria for hypercalciuria were applied differently by age
according to the Uca/Ucr ratio (≥ 0.86 for up to 7 months
old, ≥ 0.60 for 7–18 months old, ≥ 0.42 for 19 months to
6 years old, and ≥ 0.20 for > 6 years old) (14). The status of the
serum 25-OH-D3 level was classified as deficient (< 20 ng/mL),
insufficient (20–30 ng/mL), and sufficient (> 30 ng/mL) (15).

Statistical analysis

All statistical analyses were performed using SAS version 9.4
(SAS Inc., Cary, NC, United States) and R package version 3.6.3.1

Continuous variables are presented as means and standard
deviation (SD). Linear regression analysis was performed to
investigate the factors that affect the Uca/Ucr ratio at each

1 http://www.R-project.org
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visit. To consider the longitudinal structure of data (i.e.,
four assessment time points), linear mixed-effect models were
used to investigate the factors affecting the Uca/Ucr ratio. An
autoregressive model (1) correlation structure was assumed
among repeated measures of all longitudinal analyses. A logistic
regression model was used to investigate factors affecting the
occurrence of hypercalciuria at each visit. Moreover, since the
occurrence of hypercalciuria was measured at each visit, data
were analyzed using the generalized estimating equation model
to identify factors affecting the occurrence of hypercalciuria
throughout the study period. The results are indicated by odds
ratios and confidence intervals. The analysis results of the entire
period were adjusted by time effect. To obtain the cut-off value,
receiver operating characteristic curve analysis and Youden’s J
statistic were used. Statistical significance was set at p < 0.05.

Results

Of the 49 participants enrolled in this study, 31 (63.3%) were
boys. All participants were diagnosed with intractable epilepsy,
and their seizures began at a mean age of 2.1 ± 2.4 years
(range, 0.0–11.7 years). At KDT initiation, the mean age was
4.3 ± 3.2 years (range, 0.3–14.1 years), which was an average
of 2.2 ± 2.1 years (0.1–9.5 years) after the onset of seizures
(Table 1). The participants received an average of 2.4 ± 1.1
AEDs (range, 0–5 AEDs). The average level of 25-OH-D3 was
22.4 ng/mL, with 21 (42.9%) patients being deficient in 25-
OH-D3, whereas 19 (38.8%) had insufficient levels, and nine
(18.4%) had sufficient levels before KDT initiation. One patient
had hyperparathyroidism and 25-OH-D3 deficiency, and among
five patients with hypoparathyroidism, four had insufficient 25-
OH-D3 levels and one had deficient levels. Although 11 (22.4%)
patients already met the definition of hypercalciuria before KDT
initiation, they were enrolled in this study because none of
them had taken hydrochlorothiazide in accordance with the
judgment of the pediatric nephrologists. The patients took an
average of 49.9 IU/kg (range, 19.6–102.6 IU/kg) vitamin D3

supplementation (Table 1).
Three months after KDT initiation with an average vitamin

D3 supplementation of 50.8 IU/kg, only one patient had
hypercalcemia (serum calcium, 11.4 mg/dL; normal range, 8.5–
10.5 mg/dL). The patient was administered 55.6 IU/kg of
vitamin D3 and 100 mg of elemental calcium, and their 25-
OH-D3 level increased from 30.84 to 46.7 ng/mL and PTH
level was low at 7.8◦pg/mL. In addition, he had hypercalciuria,
with a Uca/Ucr ratio of 2.56. Therefore, we reduced the
supplemental doses of vitamin D3 and calcium by half (vitamin
D3, 27.8 IU/kg; elemental calcium, 50 mg/kg). Although
his 25-OH-D3 level remained similar (43.4 ng/mL) during
the follow-up observation, hypercalcemia, and hypercalciuria
resolved (Uca/Ucr ratio = 0.19) without any medication.
Hyperparathyroidism was not observed in any patient, whereas

hypoparathyroidism was identified in 17 (34.7%) patients;
however, there was no association between PTH level and
Uca/Ucr ratio (Table 2). Hypercalciuria was observed in 27
(55.5%) patients; however, no factors affected Uca/Ucr ratio
(Table 2). Moreover, the risk of hypercalciuria decreased as
the dose of vitamin D3 supplementation increased (odds
ratio = 0.950; p = 0.014) (Table 3).

Six months after KDT initiation with an average vitamin D3

supplementation dose of 44.5 IU/kg, calcium and phosphorus
levels of all participants were within the normal range. There
were 13 (34.0%) patients with hypoparathyroidism and none
with hyperparathyroidism. Hypercalciuria was observed in 19
(50.0%) patients. Age at KDT initiation, height, weight, and
25-OH-D3 levels were negatively associated with Uca/Ucr ratio
(Figure 1 and Table 2). Additionally, an increased dose of
vitamin D3 supplementation (odds ratio = 0.956; p = 0.028)
and a sufficient 25-OH-D3 level (odds ratio = 0.888; p = 0.010)
decreased the risk of hypercalciuria (Figure 2 and Table 3). The
optimal level of 25-OH-D3, which minimizes the occurrence
of hypercalciuria with maximum sensitivity and specificity, was
39.14 ng/mL (Figure 3A), and the optimal dose of vitamin D3

supplementation was 49.47 IU/kg (Figure 3B).
One year after KDT initiation with an average vitamin D3

supplementation dose of 35.3 IU/kg, calcium and phosphorus
levels of all participants were within the normal range, and
six (27.3%) patients had hypoparathyroidism. Further, nine
patients (40.9%) had hypercalciuria. The dose of vitamin
D3 supplementation and 25-OH-D3 levels did not affect the
Uca/Ucr ratio, whereas height and 25-OH-D3 levels were
negatively associated with Uca/Ucr ratio (Table 2). However,
none of these factors increased the risk of hypercalciuria
occurrence (Table 3).

In the analysis of the overall follow-up period in which
the time variable was corrected through the linear mixed
model, the increased dose of vitamin D3 supplementation (odds
ratio = 0.976; p = 0.043) and increased 25-OH-D3 level (odds
ratio = 0.945; p = 0.002) decreased the risk of hypercalciuria,
consistent with the trend shown at 3 and 6 months.

Urolithiasis developed in three patients (6.1%): two boys
and one girl. Patient 1 was a 3-month-old boy for whom
vitamin D3 (60.98 IU/kg) was prescribed and discontinued
6 months after KDT initiation because of kidney stone
formation. Patient 2 was a 7-year-old girl for whom 45.66 IU/kg
of vitamin D3 was prescribed. She was diagnosed as having
urolithiasis 6 months after KDT initiation; however, vitamin D3

supplementation was continued. This was because (1) her 25-
OH-D3 level was only 21.39 ng/mL, which was only slightly
higher than the lower recommended limit of vitamin D3, and
(2) up to 40–60% of kidney stones in children are reported
to be non-calcium-based; considering the lower vitamin D
levels, it was unlikely that her urolithiasis was calcium-based
(14). Patient 3 was a 19-month-old boy who was diagnosed
with urolithiasis 9 months after KDT initiation and vitamin
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TABLE 1 Characteristics of children with intractable epilepsy at ketogenic dietary therapy initiation.

Baseline (N = 49) At 3 months (N = 47) At 6 months (N = 38) At 12 months (N = 21)

Sex M: F (n) 31:18 30:17 25:13 14:7

Age (years) 4.3 ± 3.2 (0.3–14.1) 4.6 ± 3.2 (0.6–14.4) 4.7 ± 3.3 (0.8–14.6) 4.4 ± 2.4 (1.3–10.4)

Current AED (n) 2.4 ± 1.1 (0.0–5.0)

Age at first seizure (year) 2.1 ± 2.4 (0.0–11.7) 2.1 ± 2.4 (0.0–11.7) 2.1 ± 2.5 (0.0–11.7) 1.7 ± 2.0 (0.0–7.5)

Duration of seizure (year) 2.2 ± 2.1 (0.1–9.5) 2.2 ± 2.1 (0.1–9.5) 2.6 ± 2.1 (0.6–10.0) 2.7 ± 1.5 (1.1–7.5)

Height (cm) 100.9 ± 22.2 (64.0–170.1) 103.1 ± 21.9 (65.7–170.0) 105.8 ± 21.7 (71.0–171.0) 103.3 ± 16.8 (78.5–142.5)

Height SDS −0.03 ± 1.15 (−3.15–1.98) −0.32 ± 0.91 (−2.44–1.46) −0.24 ± 0.96 (−1.98–1.66) −0.42 ± 0.97 (−2.43–1.51)

Weight (kg) 17.5 ± 9.2 (7.1–51.0) 18.2 ± 9.4 (6.9–57.8) 18.9 ± 10.3 (8.7–61.2) 16.8 ± 5.8 (9.0–33.5)

Weight SDS −0.09 ± 1.31 (−3.20–2.95) −0.27 ± 1.31 (−3.15–3.47) −0.36 ± 1.22 (−2.63–2.09) −0.14 ± 1.02 (−1.90–2.32)

BMI 16.4 ± 2.3 (12.3–24.2) 16.4 ± 2.4 (12.3–22.9) 16.0 ± 2.0 (13.3–20.9) 16.3 ± 1.7 (12.6–20.0)

Serum variables

Calcium (mg/dL) 9.7 ± 0.5 (8.9–10.5) 9.6 ± 0.6 (8.3–11.4) 9.6 ± 0.5 (8.8–10.6) 9.5 ± 0.5 (8.8–10.4)

Phosphorus (mg/dL) 5.3 ± 0.6 (4.1–6.8) 4.7 ± 0.5 (3.1–6.1) 4.8 ± 0.5 (3.8–6.0) 4.8 ± 0.6 (3.7–5.8)

ALP (mg/dL) 231.7 ± 89.2 (68.0–499.0) 186.6 ± 57.6 (66.0–321.0) 196.7 ± 80.6 (52.0–441.0) 205.2 ± 85.4 (97.0–433.0)

PTH (pg/mL) 26.4 ± 12.0 (8.0–75.7) 17.8 ± 7.0 (6.8–33.6) 20.1 ± 8.8 (6.1–42.2) 19.6 ± 5.3 (9.0–28.1)

25-OH-D3 (ng/mL) 22.4 ± 9.0 (9.8–49.1) 35.5 ± 9.9 (10.1–58.8) 33.9 ± 9.9 (11.8–55.0) 29.9 ± 8.5 (12.3–48.8)

Deficiency, n (%) 21 (42.9%) 3 (6.1%) 2 (5.4%) 1 (4.5%)

Insufficiency, n (%) 19 (38.8%) 8 (16.3%) 12 (32.4%) 10 (45.5%)

Sufficiency, n (%) 9 (18.4%) 38 (77.6%) 23 (62.2%) 9 (50.0%)

Not checked 1 1

Urinary excretion

Calcium 8.9 ± 9.2 (0.0–39.8) 31.1 ± 22.8 (2.2–95.6) 25.3 ± 21.1 (3.3–83.4) 26.3 ± 17.4 (0.5–59.5)

Creatinine 57.8 ± 38.3 (3.6–178.9) 72.0 ± 52.8 (3.6–264.5) 79.5 ± 69.6 (3.8–399.0) 83.5 ± 57.7 (12.2–244.0)

Uca/Ucr 0.26 ± 0.38 (0.00–1.63) 0.6 ± 0.6 (0.0–2.8) 0.5 ± 0.4 (0.0–2.1) 0.4 ± 0.3 (0.0–1.4)

Hypercalciuria (n, %) 11, 22.4% 27, 57.4% 19, 50.0% 9, 42.9%

Vitamin D3 supplementation (IU/kg) 50.8 ± 18.3 (15.4–102.6) 44.5 ± 20.4 (0.0–81.3) 35.1 ± 17.4 (0.0–66.1)

25-OH-D3 , 25-hydroxyvitamin D; AED, anti-epileptic drugs; ALP, alkaline phosphatase; BMI, body mass index; BSA, body surface area; PTH, parathyroid hormone; SDS, standard
deviation score; Uca/Ucr, urinary excretion of calcium/urinary excretion of creatinine ratio.

TABLE 2 Factors affecting the ratio of urinary excretion of calcium (Uca) to urinary excretion of creatinine ratio (Ucr) using longitudinal
mixed-effect models.

Month 3 Month 6 Month 12 Overall

β SE P-value β SE P-value β SE P-value β SE P-value

Sex (ref = M) 0.088 0.188 0.640 0.159 0.100 0.118 0.291 0.140 0.045 −0.119 0.167 0.487

Age at KDT initiation −0.038 0.028 0.180 −0.034 0.014 0.024 −0.036 0.021 0.086 −0.029 0.030 0.349

Seizure onset age −0.036 0.037 0.333 −0.039 0.020 0.053 −0.035 0.028 0.219 −0.021 0.038 0.589

Height (cm) −0.006 0.004 0.142 −0.006 0.002 0.009 −0.006 0.003 0.049 −0.006 0.004 0.159

Weight (kg) −0.015 0.009 0.128 −0.012 0.005 0.017 −0.013 0.007 0.096 −0.014 0.012 0.254

Vitamin D (IU/kg) −0.002 0.005 0.655 −0.002 0.002 0.352 −0.006 0.003 0.076 −0.002 0.004 0.622

25-OH-D3 (ng/mL) −0.007 0.010 0.486 −0.011 0.005 0.027 −0.015 0.007 0.028 −0.016 0.009 0.093

PTH −0.020 0.011 0.0778 −0.004 0.007 0.5772 −0.010 0.009 0.2499 −0.008 0.005 0.1153

Osteocalcin −0.0006 0.0015 0.7057 −0.0003 0.0005 0.6081 −0.0004 0.0003 0.2393 −0.0003 0.0004 0.4157

NTx 0.0003 0.0002 0.1123 0.00004 0.0002 0.8660 −0.0004 0.0003 0.2856 0.0003 0.0001 0.0080

25-OH-D3 , 25-hydroxyvitamin D; β, beta coefficient; KDT, ketogenic dietary therapy; SE, standard error; PTH, parathyroid hormone; NTx, N-telopeptide; Uca, urinary excretion of
calcium; Ucr, urinary excretion of creatinine; ref, reference; M, male.
Statistically meaningful data are shown in bold.
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TABLE 3 Odds ratio of factors related to the occurrence of hypercalciuria.

Month 3 Month 6 Month 12 Overall

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Sex (ref = M) 1.008 (0.299, 3.403) 0.989 1.745 (0.437, 6.972) 0.431 0.429 (0.057, 3.223) 0.410 1.213 (0.515, 2.857) 0.658

Age at beginning KDT 1.047 (0.869, 1.261) 0.629 0.896 (0.727, 1.105) 0.303 1.187 (0.814, 1.733) 0.374 1.030 (0.869, 1.221) 0.733

Seizure onset age 1.072 (0.831, 1.382) 0.594 0.861 (0.645, 1.148) 0.307 1.318 (0.800, 2.172) 0.279 1.028 (0.814, 1.300) 0.814

Height (cm) 1.012 (0.985, 1.041) 0.379 0.980 (0.950, 1.011) 0.208 1.010 (0.962, 1.060) 0.691 1.004 (0.981, 1.027) 0.756

Weight (kg) 1.009 (0.947, 1.076) 0.779 0.953 (0.878, 1.034) 0.249 1.042 (0.898, 1.209) 0.587 0.998 (0.942, 1.058) 0.952

Vitamin D (IU/kg) 0.950 (0.911, 0.990) 0.014 0.956 (0.918, 0.995) 0.028 1.005 (0.956, 1.056) 0.857 0.976 (0.954, 0.999) 0.043

25-OH-D3 (ng/mL) 0.963 (0.901, 1.029) 0.267 0.888 (0.812, 0.971) 0.010 0.955 (0.851, 1.072) 0.436 0.945 (0.912, 0.979) 0.002

25-OH-D3 , 25-hydroxyvitamin D; KDT, ketogenic dietary therapy; OR, odds ratio; CI, confidence interval; ref, reference; M, male.
Statistically meaningful data are shown in bold.

FIGURE 1

Scatter plot between the urinary excretion of calcium (Uca) to urinary excretion of creatinine (Ucr) ratio and serum vitamin D level (ng/mL). Uca,
urinary excretion of calcium; Ucr, urinary excretion of creatinine.

D3 supplementation (51.02 IU/kg), even though he did not
develop hypercalciuria during the follow-up period. Before
KDT initiation, these three patients had neither hypercalciuria
nor urolithiasis, and all children with documented stones
were first managed medically with increased fluids and urine
alkalization using oral potassium citrate to yield a urine pH
of 6.5. All three patients reached remission within 2 years
with the aid of medical treatment and did not require
lithotripsy for their kidney stones. For patients 2 and 3,
vitamin D3 supplementation was continued for the remission
of urolithiasis.

Discussion

To our best knowledge, this is the first study to assess
the relationship between several clinical variables, including
vitamin D3 dose, serum 25-OH-D3 level, and occurrence of
hypercalciuria/urolithiasis in pediatric KDT patients. We found
that serum 25-OH-D3 level and hypercalciuria have an inverse
correlation, and as 25-OH-D3 level rises by 1.0 ng/mL, Uca/Ucr
ratio decreases by 0.011. The optimal serum 25-OH-D3 level for
preventing hypercalciuria was > 39.1 ng/mL, and the cut-off
vitamin D3 supplementation dose was > 49.5 IU/kg.
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FIGURE 2

Scatter plot between the urinary excretion of calcium (Uca) to urinary excretion of creatinine (Ucr) ratio and dose of vitamin D3

supplementation at 6 months after ketogenic dietary therapy initiation.

FIGURE 3

(A) Receiver operating characteristic plot [6 months, 25-OH-D3 level (ng/mL)]. Cut point: ≤ 39.14, > 39.14. Area under the curve (AUC): 0.7796
(0.6179, 0.9413). (B) Receiver operating characteristic plot [6 months, vitamin D3 supplementation dose (IU/kg)]. Cut point: ≤ 49.47, > 49.47.
Area under the curve (AUC): 0.7121 (0.5399, 0.8843).

Kidney stone formation is a complex process, which
includes urine supersaturation and nucleation, growth,
aggregation, and retention of crystals in the kidney (13).
KDT can cause kidney stone formation, and the incidence of
urolithiasis in children undergoing KDT is 1.4–7% (5, 10, 16).
This might be due to hyperuricemia, which increases calcium
excretion related to metabolic acidosis, or urine acidification,
which results in uric acid supersaturation and decreased
urinary citrate concentration (5). According to the “free-particle

theory” and “fixed-particle theory,” supersaturated urine is the
key process involved in kidney stone formation because the
formation and growth of crystals occurs within highly saturated
urine (11, 17).

It is unclear whether vitamin D supplementation or high
serum 25-OH-D3 level increases the risk of hypercalciuria
or kidney stone formation. Many physicians are hesitant to
treat vitamin D deficiency in patients with kidney stones
because of concerns that vitamin D3 supplementation increases
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urinary calcium excretion. This hesitation might be because
the most prevalent type of kidney stone is calcium based, and
vitamin D increases intestinal calcium absorption and then
urinary calcium excretion (18). Calcitriol binds to vitamin
D receptors in enterocytes and increases calcium absorption
(19). In addition, intestinal calcium absorption is increased in
absorptive hypercalciuria (20), and calcitriol serum levels are
also correlated with urinary calcium excretion (21). According
to a systematic review and meta-analysis, increased circulating
calcitriol was associated with kidney stones, and among patients
with urolithiasis, circulating 25-OH-D3 levels were markedly
higher in hypercalciuria than in normocalciuria (22). Therefore,
vitamin D is often cited as a risk factor for hypercalciuria and
kidney stones (19).

However, several studies have shown that vitamin D
supplementation is not associated with urolithiasis. In a
prospective study, despite supplementation with high-dose
vitamin D3 (mean daily dose, 3,440 IU) in healthy controls to
maintain 25-OH-D3 levels within 30–88 ng/mL for 6 months,
no hypercalcemia or hypercalciuria was noted (23). Another
study on patients with urolithiasis showed that hypercalciuria or
significant changes in urinary calcium excretion did not occur
when 50,000 IU of vitamin D3 was administered each week,
and there was no relation between 25-OH-D3 level change and
urinary calcium excretion (24). A large systematic review and
meta-analysis study found that vitamin D supplementation may
increase the risk of hypercalcemia and hypercalciuria, but did
not increase the risk of kidney stone formation, regardless of the
duration of supplementation, dosage, co-supplementation with
calcium, and baseline 25-OH-D3 level (12). In a large cohort
study, there was also no association found between vitamin D3

intake and incidence of kidney stones (25).
Furthermore, despite being controversial, vitamin D

deficiency may be a predisposing factor for kidney stone
formation. Several studies have shown that vitamin D deficiency
is more prevalent in patients with kidney stone formation
than in those without (26, 27). There are several hypotheses,
as follows: first, secondary hyperparathyroidism caused by
vitamin D deficiency can lead to urolithiasis. Second, there are
several risk factors shared between vitamin D deficiency and
urolithiasis, including obesity and decreased dietary calcium
intake. Third, vitamin D deficiency might be responsible for
inducing oxidative stress and inflammation in the kidney, which
can cause urolithiasis (13).

Vitamin D deficiency causes a decrease in the absorption
of dietary calcium, resulting in secondary hyperparathyroidism,
which attempts to maintain serum calcium by mobilizing
calcium from the bones by increasing osteoclastic activity.
These processes decrease bone mineral density. Moreover,
hyperparathyroidism increases phosphorus wasting in the
kidneys, which results in a low normal or low serum
phosphorus level. This results in an inadequate calcium-
phosphorus product, causing a mineralization defect in the

bones. Consequently, vitamin D deficiency results in osteopenia
and osteoporosis (15).

In addition to bone health, vitamin D has various health
benefits, as vitamin D receptors exist in most tissues and
cells and active vitamin D influences the expression levels
of more than 200 genes (28). Vitamin D deficiency causes
muscle weakness, whereas increased 25-OH-D3 level markedly
improves performance speed and proximal muscle strength
(29). Further, vitamin D has recently been found to be a key
factor in the immune system, as (1) it induces the production of
antimicrobial peptides and cytokines, (2) it simulates autophagy
for controlling intracellular infections, and (3) vitamin D
signaling promotes innate immune response. Thus, vitamin D
deficiency is associated with susceptibility toward infections
(30). In addition, active vitamin D has biological actions,
including angiogenesis, renin production, insulin stimulation,
macrophage cathelicidin production, and cellular proliferation
inhibition (31). In chronic inflammatory diseases, such as
type 2 diabetes and autoimmune diseases, vitamin D is
supposed to play an important role in gene regulation (32),
and supraphysiological doses of the active form of vitamin D
may reduce excessive cell proliferation, even in cancer (31).
Furthermore, vitamin D supplementation has been suggested
to be potentially preventative against cardiovascular diseases
through several mechanisms including upregulation of the
renin-angiotensin-aldosterone system, blood pressure increase,
and ventricular musculo-hypertrophy (33). In a meta-analysis
of eight prospective cohort study, the group with the lower
20% of serum vitamin D levels was associated with increased
cardiovascular mortality and all-cause mortality (34). Vitamin
D deficiency is also correlated with dyslipidemia (35) and is
thought to be more influential in high-fat diets such as KDT.

Given the known benefits of vitamin D in maintaining bone
health and its potential benefits for cardiovascular, autoimmune,
and neoplastic diseases, and given findings suggesting its
safety, active vitamin D supplementation is required in patients
undergoing KDT. In addition, we found out that maintaining
adequate levels of vitamin D is helpful for hypercalciuria and
urolithiasis. Serum 25-OH-D3 level and Uca/Ucr ratio showed
an inverse correlation during KDT, and although not statistically
significant, Uca/Ucr ratio decreased with an increase in the
dose of vitamin D3 supplementation per weight. In addition,
results at 6 months of KDT showed that 25-OH-D3 level
of < 39.1 ng/mL and inadequate vitamin D supplementation
of < 49.5 IU/kg could also increase the risk of hypercalciuria.
Therefore, it might be helpful to maintain sufficient serum levels
of vitamin D (almost 40 ng/mL) and implement vitamin D
supplementation (50 IU/kg) to prevent hypercalciuria.

Although there is no consensus on the optimal serum levels
of 25-OH-D3, vitamin D deficiency is defined with a 25-OH-D3

level of < 20 ng/mL, relative insufficiency with levels between
20 and 29 ng/mL, and sufficient level is ≥ 30 ng/mL. Further,
vitamin D poisoning is defined by 25-OH-D3 level > 150 ng/mL
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(15, 28). In a study involving adults, the maximum bone
mineral density was achieved when the 25-OH-D3 level
reached ≥ 40 ng/mL (29). The recommended dose of vitamin
D supplementation in children is approximately 400–1,000 IU
per day to avoid deficiency and maintain the proper range
and 1,000–2,000 IU per day with calcium supplementation
for the treatment of vitamin D deficiency (15). According to
our findings, the optimal 25-OH-D3 level and supplemental
doses are similar to those previously recommended by experts.
Therefore, although it is necessary to adjust the vitamin D
supplementation dose according to the patient’s condition, it is
better to actively supplement vitamin D than to hesitate due to
concerns about hypercalciuria and urolithiasis.

This study has several limitations. First, it was a retrospective
study conducted only with patients who received KDT of 3:1
ratio. Moreover, regular visits were difficult for candidates of
this study due to severe neurological disorders and a higher
risk of complication compared with normal children. For these
reasons, a follow-up duration of > 6 months was difficult for
many patients, which was thought to be the reason for the
absence of clear statistical association over the entire follow-
up period. Statistically significant results were obtained only
from data within 6 months of the optimal 25-OH-D3 level
and appropriate dose of vitamin D supplementation. Second,
this study was conducted only on consecutive patients who
were referred to the pediatric endocrine department of a single
institute, suggesting a distortion in our conclusion owing to
the inevitable selection bias. Third, we failed to consider the
effects of the anticonvulsants and the supplemental nutrients
used by the subjects. AEDs like carbonic anhydrase inhibitors
may affect urinary calcium excretion. Herein, nine and seven
patients were taking zonisamide and topiramate, respectively,
during KDT. However, as these medications are often prescribed
for intractable epilepsy, several other patients also used those
medications before KDT. As we could not determine the effects
of those medications, we did not exclude patients taking them.
Though there were no prescription of important supplemental
nutrients except multivitamins, personal checks for all the
purchased supplements were not possible; hence, we were
unable to consider the effects of other supplements.

Nevertheless, this study was meaningful because it gave
suggestions for vitamin D supplementation to children on
KDT, who are at risk of poor bone health and secondary
osteoporosis. Some of the study results showed that contrary
to the traditional belief, vitamin D supplementation can help
reduce the risk of hypercalciuria during KDT. In addition, we
believe that this study can provide a new perspective on the
kidney-related side effects that are generally of concern when
vitamin D supplementation is implemented. Hypercalciuria
and urolithiasis are associated with dietary factors such as
intake of fewer fruits and vegetables and more red meat
and salt (13, 36), making it difficult to control the variables
in a normal population. In this regard, our study has the

advantage that it was conducted under the same, controlled
dietary conditions. In addition, the results will be applicable to
children undergoing KDT.

In conclusion, we recommend that all children on KDT
receive 50 IU/kg of daily vitamin D supplementation and
maintain a serum 25-OH-D3 level of 40 ng/mL to minimize the
incidence of hypercalciuria. Further studies with larger numbers
of multicenter patients over a longer period of follow-up are
required for more evidence and better recommendations.
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Background: Frailty is recognized as a cornerstone of geriatric medicine.

Accurately screening and identifying frailty can promote better quality and

personalized medical services for the elderly. Previous studies have shown

that the association between vitamin D and frailty in the elderly population is

still controversial. More research is needed to explore the association between

them.

Materials andmethods: We used three waves of data from the National Health

and Nutrition Examination Survey (NHANES). Based on the widely accepted

AAH FRAIL Scale, we measured and evaluated the participants’ frailty from

five aspects: fatigue, resistance, ambulation, illness, and loss of weight. All

possible relevant variables are included. Machine learning XGboost algorithm,

the Least Absolute Shrinkage Selection Operator (LASSO) regression and

univariate logistic regression were used to screen variables, and multivariate

logistic regression and generalized additive model (GAM) were used to build

the model. Finally, subgroup analysis and interaction test were performed to

further confirm the association.

Results: In our study, XGboost machine learning algorithm explored

the relative importance of all included variables, which confirmed the

close association between vitamin D and frailty. After adjusting for all

significant covariates, the result indicated that for each additional unit

of 25-hydroxyvitamin D3, the risk of frailty was reduced by 1.3% with a

statisticaldifference. A smooth curve was constructed based on the GAM.
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It was found that there was a significant negative correlation between 25-

hydroxyvitamin D3 and the risk of frailty.

Conclusion: There may be a negative correlation between 25-hydroxyvitamin

D3 and the risk of frailty. However, more well-designed studies are needed to

verify this relationship.

KEYWORDS

disability, endocrinology, vitamin D, 25-hydroxyvitamin D3, frailty

Introduction

In the past few decades, with the rapid progress of
medicine, life expectancy has increased significantly worldwide
(1). As a result, the number of the elderly has increased,
and it is expected that the population over the age of 60
will double in the next 30 years (2). However, because of
the heterogeneity of human beings and the complexity of
social economy and environment (3, 4), human aging is often
heterogeneous (5). Therefore, scientists introduced the concept
of frailty to better understand the heterogeneity of human
aging (6).

Frailty is an age-related clinical condition, which is
characterized by the reduction of individual homeostasis reserve
and excessive vulnerability to endogenous and exogenous
stressors (7, 8). This negative health condition between health
and disability will lead to a disproportionate increase in
adverse medical risk events relative to risk exposure factors
(9). Frailty is favored by researchers because its contribution to
the improvement of the traditional health care system largely
conforms to the medical needs of the rapidly aging society (10).
It is worth noting that frailty can be reversed (11). Accurately
screening and identifying frail people or people who may
develop into frailty is one of the key factors to provide them with
high-quality medical treatment and care (12).

Frailty has a higher incidence rate in the elderly, and is more
directly related to long-term nutritional status (13). The frailty
of young people is often caused by major diseases and trauma,
which is less related to nutrition (8, 14). Previous studies have
shown that the prevalence of frailty among the elderly over
65 years old in the community is 10–20%, while the prevalence
of frailty among the elderly over 85 years old in the community
has risen to 30–45% (15).

In the past 30 years, the criteria for screening and identifying
frailty have not been agreed. In several recent studies, it has been
confirmed that there is no significant difference in prediction
accuracy between frailty measurement tools such as Fried
Phenotype, Edmonton FRAIL Scale and AAH Frailty Index (16).
AAH FRAIL Scale, which has been widely proved to be efficient,
was selected as the measure of frailty in our study (17).

Vitamin D has many functions, such as promoting the
absorption of calcium and phosphorus, cell growth and
differentiation, and regulating immune function (18, 19). 25-
hydroxyvitamin D3 is the main circulating form of vitamin D,
and because of its stable nature and long half-life, it is regarded
as the is the best indicator of vitamin D level in the body
(20). The activated form of vitamin D, 1,25-dihydroxyvitamin
D3, has been shown to induce monocytes to differentiate into
macrophages and reduce the release of inflammatory cells and
chemokines (19). The differentiation and aging of cells, the level
of immunity and inflammation in the body will affect the health
status of the human body and the individual internal balance
ability reserve to varying degrees.

Driven by the rapid development of computer processing
power, memory and storage, machine learning algorithms are
trained to efficiently obtain the required information from
massive data (21). XGboost is an efficient implementation of
the Gradient Boosting Decision Tree (GBDT) algorithm (22),
which further improves the accuracy of intelligent prediction,
avoids overfitting, improves the generalization of the algorithm,
and further enhances the interpretability (23), thus becoming a
widely accepted algorithm in machine learning and data mining
(24). For the establishment of XGboost model and LASSO
regression algorithms (25), we use the 10-fold cross validation
method to obtain the model performance of the entire dataset
(26). For cross validation, the dataset was divided into 10 folds,
of which onefold was used as the test set and the rest as the
training set; All the results of the 10 repetitions were taken as
the average of the overall performance (27). According to the
results, the optimal machine learning coefficients are selected.

Materials and methods

Data source

The present study analyzed respondent data from the
National Health and Nutrition Examination Survey (NHANES),
which was collected in three cycles (2007–2008, 2009–2010, and
2013–2014) by the Centers for Disease Control and Prevention
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(CDC), National Center for Health Statistics (NCHS) in the
USA.

Ethical considerations

All patient information in the database is anonymous,
and all participants are aware of and consent to the data
collection activities. The NHANES program ethical approval
and informed consent signed by participants were obtained
before NHANES collected data. No further ethical approval and
informed consent are required for this study.

Study population

The data of NHANES database from the three cycles was
selected. A total of 30,861 participants took the survey. Protocols
used in the NHANES were approved by US National Center
for Health Statistics Research Ethics Review Board, and written
informed consent was provided by all participants.

According to the definition of the elderly by the United
Nations and World Health Organization,1,2 we included
participants older than 65 years old.

The inclusion and exclusion criteria were as follows: (1)
No lack of relevant data of all the indicators of the previously
validated FRAIL Scale (Appendix 1). FRAIL Scale items in
AAH) (2) No lack of data of relevant biochemical indexes such
as serum vitamin D3 levels and all other biochemical covariates
(see below). (3) No lack of data of general demographic
characteristics of the participants, including race, age, income,
use of alcohol and tobacco. (4) According to the standards of
the World Health Organization and United Nations, people over
65 years old are defined as the elderly. Finally, a total of 527
participants were included in the study.

Study variables

The variables of each case were included in the study: (1)
Patient demographics: gender, age, race, income, education
level (2) Variables related to the FRAIL Scale index, including
relevant questionnaire data related to fatigue, resistance,
ambulation, illness, loss of weight (3) Relevant laboratory
examination indicators: including urine albumin, urine
creatinine, serum albumin, alanine aminotransferase (ALT),
aspartate aminotransferase (AST), alkaline phosphatase
(ALP), blood urea nitrogen (BUN), total calcium, cholesterol,

1 https://previous.iiasa.ac.at/web/home/about/news/190227-aging.
html

2 https://previous.iiasa.ac.at/web/home/research/researchPrograms/
WorldPopulation/Meetings/181105-UNDESA.html

serum creatinine, gamma glutamyl transferase (GGT), serum
glucose, refrigerated serum iron, lactate dehydrogenase
(LDH), phosphorus, total bilirubin, total protein, uric acid,
sodium, potassium, chloride, globulin, high-density lipoprotein
(HDL), low-density lipoprotein (LDL), triglyceride and 25-
hydroxyvitamin D3. (4)The participants’ body mass index
(BMI), defined as the weight divided by the square of height
(kg/m2)(28). Finally, we included a total of 57 variables.

Evaluation criterion

Frailty
All included subjects were categorized into robust (scored

0), pre-frail (scored 1–2) and frail (scored 3–5) clusters
according to the previously validated FRAIL Scale. A complete
description of the FRAIL Scale items scoring criteria, and
baseline prevalence are provided in Appendix 1 (29).

Hypertension
The average value of three blood pressure measurements

was calculated, and the mean blood pressure was used to
assess whether the participants are hypertensive. The diagnostic
criteria of hypertension are systolic pressure ≥ 140 mmHg
and/or diastolic pressure ≥ 90 mmHg.

Drinking
We examined the classification of alcohol consumption in

previous studies, which was finally divided into two levels.
An alcoholic is defined as a person who drinks more than 12
drinks per year.

Vitamin D

Serum 25-hydroxyvitamin D3 concentrations were
measured at the National Center for Environmental Health,
CDC, Atlanta, GA using the DiaSorin RIA kit (Stillwater
MN). Serum 25-hydroxyvitamin D3 status was classified
into three levels: Participants with serum 25-hydroxyvitamin
D3 < 30 nmol/L were defined as deficiency; Participants
with concentrations > 30 but < 50 nmol/L were defined as
insufficiency; Participants with concentrations > 50 nmol/L
were considered as normal vitamin D status (30).

Statistical analysis

T-test, Mann–Whitney U test and weighted linear
regression were used for continuous variables and Chi-square
tests were used for categorical variables. LASSO regression
was employed to screen variables, and multivariate logistic
regression model was developed to analyze the significance of
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variables. The generalized additive model (GAM) can better
fit the association between vitamin D3 and frailty and avoid
the possibility of overfitting and underfitting (31, 32). Finally,
we performed subgroup analysis in the presence of interaction
effects for further exploration.

In addition, the XGboost algorithm is used to calculate, rank
and output the most relevant and significant variables of the
state of frailty of the participants, so as to verify the stability and
reliability of our conclusions. We tested the collinearity in the
regression model by calculating variance inflation factors (VIF)
and excluded independent variables with VIF > 10.

All analyses were completed by using STATA version 15
(StataCorp LP, College Station, TX, USA) and R statistical
software (R4.0.2).

Result

Characteristics of study population

In this study, 30,861 participants were obtained from the
NHANES database. After excluding 23,344 participants with
deficiency data, there were 7,517 participants including all the
data items we needed. The 6,163 participants with missing
data of any relevant items in the questionnaires (“Medical
Conditions,” “Physical Functioning,” “Osteoporosis,” “Mental
Health-Depression Screener,” “Alcohol Use,” “Smoking and
Weight History” questionnaires) and the 296 participants with
missing laboratory test results were excluded. Because this
study focused on the health management of the elderly, 531
participants under the age of 65 were excluded according to the
definition of the elderly by WHO, and 527 participants were
finally included in this trial (Figure 1).

The age, education level and income of the participants in
the robust, pre-frail and frail groups were found to be different
(Table 1). The average age of the frail patients was significantly
higher than the average age of the patients in the pre-frail group
(p < 0.001), and was significantly higher than the average age of
the participants in the robust group (p < 0.001). There was no
significant difference in gender and race among the three groups
according to the Chi-square test (Table 1).

In addition, it was observed that there were significant
differences in BMI, urinary albumin, ALP, BUN, serum
creatinine, serum glucose, phosphorus, total protein, serum
albumin, serum globulin and 25-hydroxyvitamin D3 levels
among the three groups according to the weighted linear
regression model. The average BMI of the pre-frail participants
was significantly higher than that of the robust participants
(p = 0.001), but participants with frailty were no different
from other two groups in terms of BMI. However, the urinary
albumin, BUN and serum creatinine in the frail group were
significantly higher than those in the pre-frail group and the
robust group. This demonstrated that the frailty of the elderly

is closely related to renal function, and the inclusion and
adjustment of serum biomarkers related to chronic kidney
disease will greatly optimize our analysis. In addition, there
were also significant differences in biomarkers related to
systemic nutritional status and liver disease among the three
groups. Serum albumin in the frail group was lower and
globulin was higher than that in the pre-frail group and
the robust group. There was no significant difference in the
concentration triglycerides, LDL-cholesterol, HDL-Cholesterol
and aminotransferases among the three groups (Table 1).

Single factor analysis: Univariate
logistic regression

In order to further explore the relationship between 25
hydroxyvitamin D3 level and the occurrence of frailty, we
included the robust group and the pre-frailty group into the
non-frailty group, which corresponds to the frailty group.

Univariate logistic regression was performed to analyze the
significance of associations between the occurrence of frailty
and the serum levels of 25-hydroxyvitamin D3, other laboratory
indicators, gender, age, race, education level, income level,
and BMI. The serum levels of 25-hydroxyvitamin D3, iron,
HDL cholesterol, LDL cholesterol and total cholesterol were
negatively correlated with the occurrence of frailty, while the
serum levels of GGT, serum creatinine, triglycerides and BMI
were positively correlated with the occurrence of frailty. In
addition, probability of frailty was higher in the low-income
population and smoking population (Table 2).

Multivariate analysis: Least Absolute
Shrinkage Selection Operator
regression

As is shown in Supplementary Table 1, we tested the
collinearity in the regression model and excluded three
variables: cholesterol, total bilirubin, and total protein.

Figure 2 depicted the results of selection of variables by
using LASSO regression. In Figure 2B, the red dots indicate the
tuning parameter (Lambda) and the two dotted lines represent
the two special Lambda (log) values selected in the LASSO
model using 10-fold cross-validation, namely, value of lambda
(log) that gives minimum mean cross validated error [Lambda.
min (log)] and large value of lambda (log) such that error is
within 1 standard error of the minimum [Lambda.1se (log)].
The variables selected by these two lambda values are the
variables included in the corresponding optimization model.
The Lambda min (log) was 0.0129 (-4.3513). The AUC value
of Receiver Operating Characteristic (ROC) curves of the
prediction model based on the variables screened by the Lambda
values are 0.729 (Figure 2C), indicating that LASSO regression
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FIGURE 1

The work flow diagram.
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can effectively screened out the variables with strong correlation
with frailty.

According to the Lambda min (log) of 10-fold cross-
validation, the selected variables are urine albumin, AST,

BUN, total calcium, serum creatinine, GGT, refrigerated serum
iron, chloride, triglyceride, LDL-cholesterol, serum globulin,
sodium, age, race, income, smoking, alcohol use, BMI and
25-hydroxyvitamin D3 (Supplementary Table 2).

TABLE 1 Candidate variables and baseline characteristics of the participants.

Variables Total Robust Pre-frail Frail P-value P-value* P-value** P-value***
Sex 0.152 0.935 0.063 0.060

Male 338 (64.1%) 170 (65.1%) 148 (65.5%) 20 (50.0%)

Female 189 (35.9%) 91 (34.9%) 78 (34.5%) 20 (50.0%)

Age 72.2 ± 5.0 71.8 ± 4.7 72.1 ± 5.1 75.2 ± 5.3 < 0.001 0.452 < 0.001 < 0.001

Race 0.508 0.228 0.536 0.211

Mexican American 46 (8.7%) 23 (8.8%) 22 (9.7%) 1 (2.5%)

Non-Hispanic Black 36 (6.8%) 14 (5.4%) 20 (8.8%) 2 (5.0%)

Non-Hispanic White 356 (67.6%) 177 (67.8%) 149 (65.9%) 30 (75.0%)

Other Hispanic 73 (13.9%) 37 (14.2%) 29 (12.8%) 7 (17.5%)

Other race 16 (3.0%) 10 (3.8%) 6 (2.7%) 0 (0.0%)

Education 0.152 0.217 0.042 0.175

Non-received higher education 312 (59.2%) 170 (65.1%) 148 (65.5%) 20 (50.0%)

Received higher education 215 (40.8%) 91 (34.9%) 78 (34.5%) 20 (50.0%)

Income 0.049 0.131 0.024 0.153

Earning less than $1000,000 485 (92.0%) 234 (89.7%) 211 (93.4%) 40 (100.0%)

Earning more than or equal to $1000,000 42 (8.0%) 27 (10.3%) 15 (6.6%) 0 (0.0%)

Smoking < 0.001 0.001 < 0.001 0.082

Every day 74 (14.0%) 20 (7.7%) 43 (19.0%) 11 (27.5%)

Some days 11 (2.1%) 6 (2.3%) 3 (1.3%) 2 (5.0%)

Not at all 442 (83.9%) 235 (90.0%) 180 (79.6%) 27 (67.5%)

Alcohol use 0.532 0.394 0.359 0.648

Yes 431 (81.8%) 218 (83.5%) 182 (80.5%) 31 (77.5%)

No 96 (18.2%) 43 (16.5%) 44 (19.5%) 9 (22.5%)

BMI (kg/M2) 28.0 ± 5.3 27.2 ± 4.5 28.8 ± 5.6 28.3 ± 6.7 0.002 0.001 0.209 0.550

Albumin, urine (µg/mL) 75.4 ± 445.8 42.5 ± 172.2 65.9 ± 240.1 343.5 ± 1438.2 < 0.001 0.559 < 0.001 < 0.001

Creatinine, urine (mg/dL) 113.1 ± 65.2 110.9 ± 64.2 114.5 ± 66.0 120.2 ± 67.2 0.647 0.543 0.403 0.614

ALT (U/L) 22.2 ± 18.9 21.3 ± 11.1 23.6 ± 26.1 20.4 ± 8.9 0.332 0.179 0.785 0.326

AST (U/L) 25.4 ± 15.3 24.6 ± 8.1 26.8 ± 21.5 23.1 ± 7.3 0.172 0.111 0.569 0.160

GGT (U/L) 27.3 ± 26.5 24.5 ± 22.8 29.7 ± 28.7 32.0 ± 33.7 0.047 0.029 0.092 0.608

LDH (U/L) 136.6 ± 27.4 136.0 ± 25.2 136.4 ± 30.1 141.0 ± 26.3 0.556 0.864 0.281 0.328

ALP (U/L) 70.3 ± 24.0 69.0 ± 24.8 70.2 ± 21.5 79.5 ± 29.8 0.034 0.557 0.009 0.024

BUN (mmol/L) 5.8 ± 2.5 5.6 ± 2.0 5.7 ± 2.4 7.4 ± 4.4 < 0.001 0.545 < 0.001 < 0.001

Total calcium (mmol/L) 2.4 ± 0.1 2.4 ± 0.1 2.4 ± 0.1 2.4 ± 0.1 0.693 0.590 0.437 0.628

Creatinine, serum (µmol/L) 90.0 ± 42.5 86.3 ± 23.3 88.7 ± 27.6 121.9 ± 123.2 < 0.001 0.525 < 0.001 < 0.001

Glucose, serum (mmol/L) 6.1 ± 1.9 6.0 ± 1.8 6.1 ± 1.9 6.7 ± 2.1 0.149 0.595 0.051 0.099

Chloride (mmol/L) 103.5 ± 3.3 103.7 ± 3.2 103.4 ± 3.1 103.4 ± 4.2 0.682 0.395 0.684 0.962

Iron, refrigerated (µmol/L) 15.9 ± 5.5 16.5 ± 5.5 15.7 ± 4.8 13.2 ± 8.0 0.001 0.092 < 0.001 0.007

Phosphorus (mmol/L) 1.2 ± 0.2 1.2 ± 0.2 1.2 ± 0.2 1.2 ± 0.2 0.046 0.951 0.015 0.018

Uric acid (µmol/L) 352.0 ± 86.3 347.0 ± 83.8 355.7 ± 83.6 363.7 ± 113.7 0.364 0.269 0.254 0.587

Sodium (mmol/L) 139.6 ± 2.5 139.6 ± 2.6 139.6 ± 2.5 139.9 ± 1.9 0.681 0.767 0.383 0.480

Potassium (mmol/L) 4.1 ± 0.4 4.1 ± 0.4 4.1 ± 0.4 4.2 ± 0.5 0.596 0.554 0.512 0.336

Albumin, serum (g/L) 139.6 ± 2.5 41.9 ± 2.7 41.8 ± 2.8 40.8 ± 3.6 0.057 0.549 0.017 0.040

Globulin, serum (g/L) 29.2 ± 4.9 29.1 ± 4.7 29.2 ± 4.8 30.1 ± 5.8 0.426 0.828 0.193 0.241

HDL-Cholesterol (mmol/L) 1.4 ± 0.4 1.5 ± 0.4 1.4 ± 0.4 1.4 ± 0.3 0.142 0.057 0.321 0.980

Triglyceride (mmol/L) 1.4 ± 0.7 1.3 ± 0.6 1.5 ± 0.8 1.4 ± 0.7 0.071 0.022 0.588 0.495

LDL-cholesterol (mmol/L) 2.8 ± 1.0 2.9 ± 1.0 2.7 ± 1.0 2.4 ± 0.9 0.007 0.045 0.004 0.078

25-hydroxyvitamin D3 (nmol/L) 65.7 ± 28.0 70.0 ± 27.9 62.2 ± 27.5 57.1 ± 27.1 0.001 0.002 0.006 0.284

% for: Sex Race Education Income Smoking Alcohol-use. P-value was calculated by Chi-square test. Mean ± SD for: Age BMI (kg/m2) Albumin, urine (µg/mL); Creatinine, urine (mg/dL);
ALT (U/L); AST (U/L); ALP (U/L); BUN (mmol/L); Total calcium (mmol/L); Creatinine, serum (µmol/L) GGT (U/L); Glucose, serum (mmol/L); Iron, refrigerated (µmol/L) LDH
(U/L); Phosphorus (mmol/L); Uric acid (µmol/L); Potassium (mmol/L) Chloride (mmol/L); Globulin, serum (g/L); HDL-Cholesterol (mmol/L); Triglyceride (mmol/L); LDL-cholesterol
(mmol/L) Albumin, serum (g/L) Sodium (mmol/L); 25-hydroxyvitamin D3 (nmol/L). P-value was calculated by weighted linear regression model. P-value*: P-value for Robust-Pre-frail
based on Fisher’s Least Significant Difference (LSD) post hoc test. P-value**: P-value for Robust-Frail based on Fisher’s Least Significant Difference (LSD) post hoc test. P-value***: P-value
for Pre-frail-Frail based on Fisher’s Least Significant Difference (LSD) post hoc test. BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline
phosphatase; BUN, blood urea nitrogen; GGT, gamma glutamyl transferase; LDH, lactate dehydrogenase; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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The variables screened by LASSO regression were included
into the multivariate logistic regression. In the fully adjusted
model, it was found that the risk of frailty will be reduced by
1.3% for each additional unit of 25-hydroxyvitamin D3.

TABLE 2 Univariate analysis for frailty.

Univariate logistic regression

Variables OR (95% CI) P-value

Sex
Male 1
Female 1.090 (0.763, 1.556) 0.636
Age 1.033 (0.998, 1.069) 0.066
Race
Mexican American 1
Non-Hispanic White 1.571 (0.649, 3.807) 0.316
Non-Hispanic Black 1.011 (0.547, 1.869) 0.971
Other Hispanic 0.973 (0.465, 2.035) 0.941
Other race 0.600 (0.187, 1.925) 0.390
Education
Non-received higher education 1
Received higher education 0.741 (0.523, 1.050) 0.091
Income
Earning less than $1000,000 1
Earning more than or equal to $1000,000 0.518 (0.269, 0.998) 0.049
Smoking
Every day 1
Some days 0.309 (0.085, 1.125) 0.074
Not at all 0.326 (0.189, 0.563) < 0.001
Alcohol use
Yes 1
No 1.261 (0.809, 1.967) 0.306
BMI (kg/m2) 1.060 (1.025, 1.097) < 0.001
Albumin, urine (µg/mL) 1.001 (1.000, 1.002) 0.107
Creatinine, urine (mg/dL) 1.001 (0.998, 1.004) 0.432
ALT (U/L) 1.007 (0.993, 1.020) 0.319
AST (U/L) 1.009 (0.993, 1.026) 0.258
GGT (U/L) 1.010 (1.001, 1.018) 0.024
LDH (U/L) 1.001 (0.995, 1.008) 0.639
ALP (U/L) 1.005 (0.997, 1.012) 0.203
BUN (mmol/L) 1.067 (0.994, 1.145) 0.074
Total calcium (mmol/L) 2.000 (0.293, 13.660) 0.479
Creatinine, serum (µmol/L) 1.006 (1.000, 1.013) 0.048
Glucose, serum (mmol/L) 1.051 (0.957, 1.153) 0.299
Chloride (mmol/L) 0.977 (0.927, 1.029) 0.381
Iron, refrigerated (µmol/L) 0.960 (0.930, 0.991) 0.012
Phosphorus (mmol/L) 1.522 (0.518, 4.473) 0.445
Uric acid (µmol/L) 1.001 (0.999, 1.003) 0.188
Sodium (mmol/L) 1.018 (0.951, 1.090) 0.603
Potassium (mmol/L) 0.928 (0.598, 1.440) 0.739
Total protein (g/L) 0.998 (0.965, 1.031) 0.887
Globulin, serum (g/L) 1.010 (0.975, 1.047) 0.565
Albumin, serum (g/L) 0.963 (0.907, 1.023) 0.218
HDL-Cholesterol (mmol/L) 0.658 (0.433, 0.999) 0.049
Triglyceride (mmol/L) 1.326 (1.029, 1.710) 0.029
LDL-cholesterol (mmol/L) 0.791 (0.661, 0.945) 0.009
Total Cholesterol (mmol/L) 0.836 (0.718, 0.973) 0.020
Bilirubin, total (µmol/L) 0.996 (0.960, 1.033) 0.816
25-hydroxyvitamin D3 (nmol/L) 0.989 (0.983, 0.995) < 0.001

BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase;
ALP, alkaline phosphatase; BUN, blood urea nitrogen; GGT, gamma glutamyl
transferase; LDH, lactate dehydrogenase; HDL, high-density lipoprotein; LDL, low-
density lipoprotein.

For sensitivity analysis, we transformed 25-hydroxyvitamin
D3 from continuous variable to classified variables—sufficiency,
insufficiency, and deficiency. The P-value of 25-hydroxyvitamin
D3 trend in the two model is consistent with the result when
25-hydroxyvitamin D3 is a continuous variable. The risk for
frailty was 1.5 and 2.2 times higher in vitamin D insufficient
and deficient group, respectively, compared with vitamin D
sufficient group (Table 3).

Generalized additive model

According to our sensitivity test, the correlation between
vitamin D3 as a categorical variable and frailty is not completely
consistent with the correlation between vitamin D3 as a
continuous variable. Linear regression better describes the
association between two continuous variables while controlling
for other confounders, compared with logistic regression, but
in case there in non-linear association, GAM is more applicable
(33). GAM is a statistical model that fits data with a higher
degree of freedom (34). Before modeling, it is not necessary
to analyze the relationship between response variables and
explanatory variables. Instead, the response variables and each
explanatory variable are modeled separately and added to obtain
GAM (35). After adjusting the statistically significant variables
screened by LASSO regression in GAM, it was found that
the level of 25-hydroxyvitamin D3 was significantly negatively
correlated with the risk of frailty (Figure 2D).

Subgroup analysis

In order to better explain this result, we conducted subgroup
analysis and interaction test (36). This study, stratified by
gender, race, education level, income, BMI and alcohol use,
verified whether the conclusion of the relationship between
25-hydroxyvitamin D3 level and the risk of frailty based on
the overall population was still applicable to each subgroup.
The results showed that except for the interaction between 25-
hydroxyvitamin D3 and the risk of frailty in the sex subgroup
of model 1, there was no interaction in other subgroups. Our
conclusion is stable and reliable (Figure 3).

Machine learning using the XGBoost
algorithm model

In the development and validation phase of the research,
we input all the variables into the XGboost machine learning
algorithm based on 10-fold cross validation method for
the three classifications of states of frailty. These variables
include sociodemographic data of participants and all relevant
laboratory data. According to the relative importance of
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FIGURE 2

Selection of Variables using LASSO regression. (A) Lasso coefficient of 31 variables in model 1; (B) the optimal penalty coefficient [Lambda
(log) = 0.0129] in the Lasso regression was identified with the minimum criterion; (C) Receiver operating characteristic (ROC) curves according
to LASSO Regression; (D) The relationship between Vitamin D3 and Frailty. Solid rad line represents the smooth curve fit between variables
according to GAM. Blue bands represent the 95% of confidence interval from the fit.

variables attached by XGboost algorithm, BMI, age, 25-
hydroxyvitamin D3, cholesterol and urine albumin are the five
most significant variables in the dataset (Figure 4).

Discussion

With the development of population aging, more and more
elderly people are in a state defined as frailty due to the
impairment of their physical and psychological functions, which
has brought a heavy burden to individuals, families and society
(5, 37). The frailty of the elderly is due to the cumulative decline
of physiological function and the increase of physical and mental
vulnerability related to aging, which reduces the ability of the

elderly to effectively cope with diseases or trauma, and will
lead to more adverse consequences: falls, delirium, incontinence,
etc. (38).

The relationship between vitamin D and health has
been a long-discussed topic (39, 40). In recent years, the
relationship between vitamin D and frailty in the elderly
has gradually attracted researchers’ attention (41). Through
in-depth analysis of the data of the U.S. National Health
and Nutrition Examination Survey, this study shows that
25-hydroxyvitamin D3 is an important protective factor
for the frailty of the elderly. Vitamin D can affect the body
function through several mechanisms. Firstly, it can affect the
body function through the potential mechanism of indirectly
regulating calcium and phosphorus metabolism. Secondly,
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TABLE 3 The association between VitD3 and Frailty in the multiple
regression model.

Multivariate analysis

Variables OR (95% CI) P-value

Model 1 0.989 (0.983, 0.995) < 0.001

Model 2 0.989 (0.982, 0.996) 0.002

Model 3 0.987 (0.979, 0.995) < 0.001

25-hydroxyvitamin D3 status

Sufficiency Reference

Insufficiency 1.506 (0.920, 2.466)

Deficiency 2.244 (1.119, 4.497)

P for trend 0.011

Model 1: No adjustments have been made; Model 2: Adjustments were made for gender,
age, race, smoking, alcohol use, income, and education level; Model 3: Adjustments
were made for age, race, income, smoking, alcohol use, BMI, urine albumin, AST,
BUN, serum creatinine, refrigerated iron, chloride, sodium, globulin, triglyceride, and
LDL-cholesterol according to LASSO regression. BMI, body mass index; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; BUN,
blood urea nitrogen; GGT, gamma glutamyl transferase; LDH, lactate dehydrogenase;
HDL, high-density lipoprotein; LDL, low-density lipoprotein.

it can directly regulate the transcription of genes related
to calcium channels (42) and skeletal muscle proliferation
and differentiation at the genome level by combining
with vitamin D receptor (VDR) on skeletal muscle cells
(43, 44).

Frailty also has a great impact on the perioperative
period (45). In many clinical trials, it has been found that
preoperative frailty and low serum 25 hydroxyvitamin D3
can directly increase the probability of postoperative mortality
and serious complications, predicting a worse prognosis
(46–48). In addition, Jim Bartley has shown that vitamin
D can reduce the probability of postoperative pulmonary
infection through anti-inflammatory effect (49). The above
findings prove that it is beneficial to supplement appropriate
amount of vitamin D during perioperative period. The
identification and mitigation of patients’ frailty is of great
reference value to anesthesiology and surgery (50, 51). Our
results confirmed that the level of 25-hydroxyvitamin D3 was
negatively correlated with the occurrence of frailty, which
can be used in clinical practice to improve the prognosis of
patients with frailty.

The subgroup and interaction analysis confirmed that our
conclusion is robust and reliable. Subgroup analysis showed
that women were more likely to become frail than men, non-
Hispanic Whites, people with higher education and low-income
groups were more likely to be frail. Gender may affect the
expression of aging related genes and the epigenetic changes
of aging (52), including mitochondrial dysfunction in aging
(53). According to the research of Therri Usher et al. the
difference of frailty between races cannot be explained by
obesity, chronic disease burden or low-income people (54).

FIGURE 3

Subgroup analysis and interaction test.
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More research on racial frailty needs to be carried out to
implement targeted interventions. High-income groups may
reduce the probability of frailty because of better lifestyle and
better medical conditions (55, 56). In addition, it was found
that the risk of frailty increased with the increase of BMI.
However, according to previous meta-analysis (57), frailty is
positively associated with both underweight and obesity. This
may be because our analysis is based on the sample from the
United States. As a developed economy, the United States has
a high obesity rate (58), and there is also a certain interaction
between BMI and household income level (59). It may be
difficult for lower income people to maintain healthier living
habits, which leads to weakness to a certain extent. In addition,
our sample of people with lower BMI is also small, which may
also lead to some bias.

Compared with previous studies, our study has certain
advantages and innovation. Firstly, our study was based on
the real-world population study in the United States, and
527 elderly people over 65 years old are included, forming
a cross-sectional study with a large sample size. Secondly,
we adopted XGboost algorithm and LASSO regression which
have been proved to be extremely robust and efficient to
screen and verify variables. Additionally, to avoid overfitting
and underfitting, we built the GAM to fit the results, which
demonstrated the non-linear negative correlation between the
possibility of frailty and 25-hydroxyvitamin D3 levels. Finally,
we performed subgroup analysis and interaction test to verify
the reliability of the conclusions and extend the application
scope of our conclusion.

In addition, our research has certain limitations; (1) It
is difficult to distinguish causal relationship through cross-
sectional study, and we will further apply prospective cohort
study to deepen the conclusion in the future; (2) The sample
of this study is based on the population survey data of the
United States, so whether the conclusions of this paper can
be extended to the population in other countries and regions
needs further research and investigation; (3) The elderly often
have chronic diseases, including chronic heart disease, chronic
kidney disease, etc. Our study has included and adjusted
biomarkers related to chronic kidney disease, chronic liver
disease and other chronic diseases to a certain extent, but there
are still some biomarkers of diseases that may lead to frailty
have not been included and adjusted. (4) It is worth noting
that the assessment of frailty in this paper is based on the
AHH Frailty Scale, which may lead to some bias. Among a
variety of frailty screening tools, frailty scale and frailty index
have been proved to have the strongest predictive validity for
disability and mortality (60), and their test efficiency has been
confirmed in a variety of populations, including middle-aged
women (61), African American people, and Mexican adults
(62). However, a number of comparative studies and cohort
studies have shown that although there is moderate consistency
and strong positive correlation between a variety of frailty

FIGURE 4

Relative importance of the selected variables using XGBoost and
the corresponding variable importance score. X-axis indicates
the importance score, which is the relative number of a variable
that is used to distribute the data, Y-axis indicates the selected
variable.

screening tools (60, 61, 63), there are still some differences in
the frailty incidence rate, and these differences will affect our
results to a certain extent. In the future, we will apply multiple
frailty screening tools based on NHANES database, including
Fried Frailty Phenotype, Frailty Index, FRAIL Scale, Clinical
Frailty Scale, Time Up-and-Go Test, Tilburg Frailty Indicator,
Groningen Frailty Indicator and Edmonton Frailty Scale, to
conduct comparative research to comprehensively demonstrate
the consistency, correlation, and bias among the multiple frailty
screening tools for predicting the frailty of the elderly.

Conclusion

In conclusion, the results of this cross-sectional study
based on the data of the U.S. National Health and Nutrition
Examination Survey database show that there is a significant
negative correlation between serum vitamin D3 levels and frailty
in the elderly population. The confirmation and revelation of
the negative correlation will be of great guiding significance to
clinical work including perioperative management.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Frontiers in Nutrition 10 frontiersin.org

80

https://doi.org/10.3389/fnut.2022.980908
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-980908 September 21, 2022 Time: 19:27 # 11

Zheng et al. 10.3389/fnut.2022.980908

Ethics statement

The studies involving human participants were reviewed
and approved by the Protocols used in the NHANES
were approved by US National Center for Health Statistics
Research Ethics Review Board, and written informed
consent was provided by all participants information on
this is available on the official NHANES site: https://
wwwn.cdc.gov/Nchs/Nhanes/ (https://www.cdc.gov/nchs/
nhanes/irba98.htm). And the data for the explored
NHANES surveys are publicly available for exploration
(https://www.cdc.gov/nchs/data_access/restrictions.htm). The
patients/participants provided their written informed consent
to participate in this study.

Author contributions

QX: project administration, validation data curation, and
supervision. ZZ: conceptualization, methodology, data curation,
formal analysis, and writing – original draft. WX, YQ, and
FW: methodology and writing – review and editing. All
authors contributed to the article and approved the submitted
version.

Funding

This study was supported by Non-profit Central Research
Institute Fund of Beijing Hospital (BJ-2018-088).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fnut.2022.980908/full#supplementary-material

SUPPLEMENTARY TABLE 1

Stepwise screening of collinearity of independent variables.

SUPPLEMENTARY TABLE 2

Coefficients assigned to variables according to LASSO regression.

SUPPLEMENTARY TABLE 3

Relative importance of the selected variables using XGBoost and the
corresponding importance score of each variable.

References

1. Lozano R, Naghavi M, Foreman K. Global and regional mortality from 235
causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the
global burden of disease study 2010. Lancet. (2012) 380:2095–128. doi: 10.1016/
s0140-6736(12)61728-0

2. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people.
Lancet. (2013) 381:752–62. doi: 10.1016/s0140-6736(12)62167-9

3. Nguyen QD, Moodie EM, Forget MF, Desmarais P, Keezer MR, Wolfson C.
Health heterogeneity in older adults: exploration in the canadian longitudinal study
on aging. J Am Geriatr Soc. (2021) 69:678–87. doi: 10.1111/jgs.16919

4. Zhu ZQ, Liu CJ, Wu JL, Xu J, Liu B. The influence of human heterogeneity
to information spreading. J Statist Phys. (2014) 154:1569–77. doi: 10.1007/s10955-
014-0924-z

5. Rockwood K, Mitnitski A. Frailty in relation to the accumulation of deficits. J
Gerontol Seri Biol Sci Med Sci. (2007) 62:722–7. doi: 10.1093/gerona/62.7.722

6. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the
concepts of disability, frailty, and comorbidity: implications for improved targeting
and care. J Gerontol Seri Biol Sci Med Sci. (2004) 59:255–63. doi: 10.1093/gerona/
59.3.m255

7. Xue QL. The frailty syndrome: definition and natural history. Clin Geriatr
Med. (2011) 27:1–9. doi: 10.1016/j.cger.2010.08.009

8. Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuno R, Walston JD.
Management of frailty: opportunities, challenges, and future directions. Lancet.
(2019) 394:1376–86. doi: 10.1016/s0140-6736(19)31785-4

9. Jarrett PG, Rockwood K, Carver D, Stolee P, Cosway S. Illness presentation in
elderly patients. Arch Intern Med. (1995) 155:1060–4. doi: 10.1001/archinte.155.10.
1060

10. Cesari M, Marzetti E, Thiem U. The geriatric management of frailty as
paradigm of “the end of the disease era”. Eur J Intern Med. (2016) 31:11–4. doi:
10.1016/j.ejim.2016.03.005

11. Binder EF, Schechtman KB, Ehsani AA. Effects of exercise training on frailty
in community-dwelling older adults: results of a randomized, controlled trial. J Am
Geriatr Soc. (2002) 50:1921–8. doi: 10.1046/j.1532-5415.2002.50601.x

12. Partridge JSL, Harari D, Dhesi JK. Frailty in the older surgical patient: a
review. Age Ageing. (2012) 41:142–7. doi: 10.1093/ageing/afr182

13. Cruz-Jentoft AJ, Woo J. Nutritional interventions to prevent and treat frailty.
Curr Opin Clin Nutr Metab Care. (2019) 22:191–5.

14. Jiao J, Wang Y, Zhu C. Prevalence and associated factors for frailty among
elder patients in China: a multicentre cross-sectional study. BMC Geriatr. (2020)
20:100. doi: 10.1186/s12877-020-1496-1

15. Hernández Morante JJ, Gómez Martínez C, Morillas-Ruiz JM. Dietary
factors associated with frailty in old adults: a review of nutritional interventions
to prevent frailty development. Nutrients. (2019) 11:10102. doi: 10.3390/nu1101
0102

16. Gilardi F, Capanna A, Ferraro M. Frailty screening and assessment tools: a
review of characteristics and use in public health. Ann Di Igiene Med Prevent E Di
Comunita. (2018) 30:128–39. doi: 10.7416/ai.2018.2204

Frontiers in Nutrition 11 frontiersin.org

81

https://doi.org/10.3389/fnut.2022.980908
https://wwwn.cdc.gov/Nchs/Nhanes/
https://wwwn.cdc.gov/Nchs/Nhanes/
https://www.cdc.gov/nchs/nhanes/irba98.htm
https://www.cdc.gov/nchs/nhanes/irba98.htm
https://www.cdc.gov/nchs/data_access/restrictions.htm
https://www.frontiersin.org/articles/10.3389/fnut.2022.980908/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnut.2022.980908/full#supplementary-material
https://doi.org/10.1016/s0140-6736(12)61728-0
https://doi.org/10.1016/s0140-6736(12)61728-0
https://doi.org/10.1016/s0140-6736(12)62167-9
https://doi.org/10.1111/jgs.16919
https://doi.org/10.1007/s10955-014-0924-z
https://doi.org/10.1007/s10955-014-0924-z
https://doi.org/10.1093/gerona/62.7.722
https://doi.org/10.1093/gerona/59.3.m255
https://doi.org/10.1093/gerona/59.3.m255
https://doi.org/10.1016/j.cger.2010.08.009
https://doi.org/10.1016/s0140-6736(19)31785-4
https://doi.org/10.1001/archinte.155.10.1060
https://doi.org/10.1001/archinte.155.10.1060
https://doi.org/10.1016/j.ejim.2016.03.005
https://doi.org/10.1016/j.ejim.2016.03.005
https://doi.org/10.1046/j.1532-5415.2002.50601.x
https://doi.org/10.1093/ageing/afr182
https://doi.org/10.1186/s12877-020-1496-1
https://doi.org/10.3390/nu11010102
https://doi.org/10.3390/nu11010102
https://doi.org/10.7416/ai.2018.2204
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-980908 September 21, 2022 Time: 19:27 # 12

Zheng et al. 10.3389/fnut.2022.980908

17. Dent E, Kowal P, Hoogendijk EO. Frailty measurement in research and
clinical practice: a review. Eur J Intern Med. (2016) 31:3–10. doi: 10.1016/j.ejim.
2016.03.007

18. Holick MF. Sunlight and vitamin D for bone health and prevention of
autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. (2004)
80:1678S–88S. doi: 10.1093/ajcn/80.6.1678S

19. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol.
(2005) 289:F8–28. doi: 10.1152/ajprenal.00336.2004

20. Holick MF, Binkley NC, Bischoff-Ferrari HA. Evaluation, treatment, and
prevention of vitamin d deficiency: an endocrine society clinical practice guideline.
J Clin Endocrinol Metab. (2011) 96:1911–30. doi: 10.1210/jc.2011-0385

21. Deo RC. Machine learning in medicine. Circulation. (2015) 132:1920–30.
doi: 10.1161/circulationaha.115.001593

22. Lundberg SM, Erion G, Chen H. From local explanations to global
understanding with explainable AI for trees. Nat Mach Intellig. (2020) 2:56–67.
doi: 10.1038/s42256-019-0138-9

23. Jiang YQ, Cao SE, Cao SL. Preoperative identification of microvascular
invasion in hepatocellular carcinoma by XGBoost and deep learning. J Cancer Res
Clin Oncol. (2021) 147:821–33. doi: 10.1007/s00432-020-03366-9

24. Wang K, Zuo PY, Liu YW. Clinical and laboratory predictors of in-hospital
mortality in patients with coronavirus disease-2019: a cohort study in wuhan.
China. Clin Infect Dis. (2020) 71:2079–88. doi: 10.1093/cid/ciaa538

25. Tibshirani R. Regression shrinkage and selection via the lasso. J R Statist Soc
Seri Methodol. (1996) 58:267–88. doi: 10.1111/j.2517-6161.1996.tb02080.x

26. Dietterich TG. Approximate statistical tests for comparing supervised
classification learning algorithms. Neural Comput. (1998) 10:1895–923. doi: 10.
1162/089976698300017197

27. Al’Arefilb SJ, Maliakal G, Singh G. Machine learning of clinical variables
and coronary artery calcium scoring for the prediction of obstructive coronary
artery disease on coronary computed tomography angiography: analysis from the
CONFIRM registry. Eur Heart J. (2020) 41:359–67. doi: 10.1093/eurheartj/ehz565

28. Li W, Shi D, Song W. A novel U-shaped relationship between BMI and
risk of generalized aggressive periodontitis in Chinese: a cross-sectional study. J
Periodontol. (2019) 90:82–9. doi: 10.1002/jper.18-0064

29. Morley JE, Malmstrom TK, Miller DK. A simple frailty questionnaire
(FRAIL) predicts outcomes in middle aged African Americans. J Nutr Health Aging.
(2012) 16:601–8. doi: 10.1007/s12603-012-0084-2

30. Whiting SJ, Bonjour JP, Payen FD, Rousseau B. Moderate amounts of vitamin
D3 in supplements are effective in raising serum 25-hydroxyvitamin D from low
baseline levels in adults: a systematic review. Nutrients. (2015) 7:2311–23. doi:
10.3390/nu7042311

31. Chu E, Keshavarz A, Boyd S. A distributed algorithm for fitting generalized
additive models. Optimiz Eng. (2013) 14:213–24. doi: 10.1007/s11081-013-9215-9

32. Wood SN. Fast stable direct fitting and smoothness selection for generalized
additive models. J R Statist Soc Seri Statist Methodol. (2008) 70:495–518. doi: 10.
1111/j.1467-9868.2007.00646.x

33. Ikawa F, Ichihara N, Uno M. Visualisation of the non-linear correlation
between age and poor outcome in patients with aneurysmal subarachnoid
haemorrhage. J Neurol Neurosurg Psychiatry. (2021) 92:1173–80. doi: 10.1136/
jnnp-2020-325306

34. Wood SN. Stable and efficient multiple smoothing parameter estimation for
generalized additive models. J Am Statist Assoc. (2004) 99:673–86. doi: 10.1198/
016214504000000980

35. Stasinopoulos DM, Rigby RA. Generalized additive models for location scale
and shape (GAMLSS) in R. J Statist Soft. (2007) 23:7.

36. Brookes ST, Whitely E, Egger M, Smith GD, Mulheran PA, Peters TJ.
Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power
and sample size for the interaction test. J Clin Epidemiol. (2004) 57:229–36. doi:
10.1016/j.jclinepi.2003.08.009

37. Fried LP, Tangen CM, Walston J. Frailty in older adults: evidence for a
phenotype. J Gerontol Seri Biol Sci Med Sci. (2001) 56:M146–56. doi: 10.1093/
gerona/56.3.M146

38. Sacha J, Sacha M, Sobon J, Borysiuk Z, Feusette P. Is it time to begin a public
campaign concerning frailty and pre-frailty? A review article. Front Physiol. (2017)
2017:8484. doi: 10.3389/fphys.2017.00484

39. Ross AC, Manson JE, Abrams SA. The 2011 report on dietary reference
intakes for calcium and Vitamin D from the institute of medicine: what clinicians
need to know. J Clin Endocrinol Metab. (2011) 96:53–8. doi: 10.1210/jc.2010-2704

40. Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system:
Vitamins A and D take centre stage. Nat Rev Immunol. (2008) 8:685–98. doi:
10.1038/nri2378

41. Krams T, Cesari M, Guyonnet S. Is the 25-hydroxy-vitamin d serum
concentration a good marker of frailty? J Nutr Health Aging. (2016) 20:1034–9.
doi: 10.1007/s12603-016-0714-1

42. Bronner F. Recent developments in intestinal calcium absorption. Nutr Rev.
(2009) 67:109–13. doi: 10.1111/j.1753-4887.2008.00147.x

43. Nangia AK, Hill O, Waterman MD, Schwender CEB, Memoli V. Testicular
maturation arrest to testis cancer: spectrum of expression of the Vitamin D receptor
and Vitamin D treatment in vitro. J Urol. (2007) 178:1092–6. doi: 10.1016/j.juro.
2007.05.009

44. Pojednic RM, Ceglia L. The emerging biomolecular role of Vitamin D
in skeletal muscle. Exerc Sport Sci Rev. (2014) 42:76–81. doi: 10.1249/jes.
0000000000000013

45. Signori C, Zalesin KC, Franklin B, Miller WL, McCullough PA. Effect of
gastric bypass on Vitamin D and secondary hyperparathyroidism.Obes Surg. (2010)
20:949–52. doi: 10.1007/s11695-010-0178-z

46. Gondal AB, Hsu CH, Zeeshan M, Hamidi M, Joseph B, Ghaderi I. A frailty
index and the impact of frailty on postoperative outcomes in older patients after
bariatric surgery. Surg Obes Relat Dis. (2019) 15:1582–8. doi: 10.1016/j.soard.2019.
06.028

47. Iglar PJ, Hogan KJ. Vitamin D status and surgical outcomes: a systematic
review. Patient Saf Surg. (2015) 2015:14. doi: 10.1186/s13037-015-0060-y

48. Kwon YE, Kim H, Oh HJ. Vitamin D deficiency is an independent risk
factor for urinary tract infections after renal transplants. Medicine. (2015) 94:e594.
doi: 10.1097/md.0000000000000594

49. Bartley J. Vitamin D: emerging roles in infection and immunity. Exp Rev Anti
Infect Ther. (2010) 8:1359–69. doi: 10.1586/eri.10.102

50. Alvarez-Nebreda ML, Bentov N, Urman RD. Recommendations for
preoperative management of frailty from the society for perioperative assessment
and quality improvement (SPAQI). J Clin Anesth. (2018) 47:33–42. doi: 10.1016/j.
jclinane.2018.02.011

51. Stoicea N, Baddigam R, Wajahn J. The gap between clinical research and
standard of care: a review of frailty assessment scales in perioperative surgical
settings. Front Public Health. (2016) 4150:150. doi: 10.3389/fpubh.2016.00150

52. Seligman BJ, Berry SD, Lipsitz LA, Travison TG, Kiel DP. . Epigenetic age
acceleration and change in frailty in MOBILIZE boston. J Gerontol Seri Biol Sci
Med Sci. (2022) 77:1760–5. doi: 10.1093/gerona/glac019

53. Zhang Q, Guo HY, Gu HF, Zhao XH. Gender-associated factors for frailty
and their impact on hospitalization and mortality among community dwelling
older adults: a cross-sectional population-based study. PeerJ. (2018) 6:e4326. doi:
10.7717/peerj.4326

54. Usher T, Buta B, Thorpe RJ. Dissecting the racial/ethnic disparity in frailty
in a nationally representative cohort study with respect to health, income, and
measurement. J Gerontol Seri Biol Sci Med Sci. (2021) 76:69–76. doi: 10.1093/
gerona/glaa061

55. Kim HJ, Park S, Park SH. The significance of frailty in the relationship
between socioeconomic status and health-related quality of life in the Korean
community-dwelling elderly population: mediation analysis with bootstrapping.
Qual Life Res. (2017) 26:3323–30. doi: 10.1007/s11136-017-1672-8

56. Zimmer Z, Saito Y, Theou O, Haviva C, Rockwood K. Education, wealth,
and duration of life expected in various degrees of frailty. Eur J Ageing. (2021)
18:393–404. doi: 10.1007/s10433-020-00587-2

57. Yuan L, Chang M, Wang J. Abdominal obesity, body mass index and
the risk of frailty in community-dwelling older adults: a systematic review and
meta-analysis. Age Ageing. (2021) 50:1118–28. doi: 10.1093/ageing/afab039

58. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and
economic burden of the projected obesity trends in the USA and the UK. Lancet.
(2011) 378:815–25. doi: 10.1016/s0140-6736(11)60814-3

59. Ogden CL, Fakhouri TH, Carroll MD. Prevalence of obesity among
adults, by household income and education - united states, 2011-2014.
MMWR Morb Mortal Wkly Rep. (2017) 66:1369–73. doi: 10.15585/mmwr.mm6
650a1

60. Aprahamian I, Cezar NOC, Izbicki R. Screening for frailty with the FRAIL
scale: a comparison with the phenotype criteria. J Am Med Dir Assoc. (2017)
18:592–6. doi: 10.1016/j.jamda.2017.01.009

61. Moreno-Ariño M, Torrente Jiménez I, Cartanyà Gutiérrez A, Oliva Morera
JC, Comet R. Assessing the strengths and weaknesses of the clinical frailty scale

Frontiers in Nutrition 12 frontiersin.org

82

https://doi.org/10.3389/fnut.2022.980908
https://doi.org/10.1016/j.ejim.2016.03.007
https://doi.org/10.1016/j.ejim.2016.03.007
https://doi.org/10.1093/ajcn/80.6.1678S
https://doi.org/10.1152/ajprenal.00336.2004
https://doi.org/10.1210/jc.2011-0385
https://doi.org/10.1161/circulationaha.115.001593
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1007/s00432-020-03366-9
https://doi.org/10.1093/cid/ciaa538
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1162/089976698300017197
https://doi.org/10.1162/089976698300017197
https://doi.org/10.1093/eurheartj/ehz565
https://doi.org/10.1002/jper.18-0064
https://doi.org/10.1007/s12603-012-0084-2
https://doi.org/10.3390/nu7042311
https://doi.org/10.3390/nu7042311
https://doi.org/10.1007/s11081-013-9215-9
https://doi.org/10.1111/j.1467-9868.2007.00646.x
https://doi.org/10.1111/j.1467-9868.2007.00646.x
https://doi.org/10.1136/jnnp-2020-325306
https://doi.org/10.1136/jnnp-2020-325306
https://doi.org/10.1198/016214504000000980
https://doi.org/10.1198/016214504000000980
https://doi.org/10.1016/j.jclinepi.2003.08.009
https://doi.org/10.1016/j.jclinepi.2003.08.009
https://doi.org/10.1093/gerona/56.3.M146
https://doi.org/10.1093/gerona/56.3.M146
https://doi.org/10.3389/fphys.2017.00484
https://doi.org/10.1210/jc.2010-2704
https://doi.org/10.1038/nri2378
https://doi.org/10.1038/nri2378
https://doi.org/10.1007/s12603-016-0714-1
https://doi.org/10.1111/j.1753-4887.2008.00147.x
https://doi.org/10.1016/j.juro.2007.05.009
https://doi.org/10.1016/j.juro.2007.05.009
https://doi.org/10.1249/jes.0000000000000013
https://doi.org/10.1249/jes.0000000000000013
https://doi.org/10.1007/s11695-010-0178-z
https://doi.org/10.1016/j.soard.2019.06.028
https://doi.org/10.1016/j.soard.2019.06.028
https://doi.org/10.1186/s13037-015-0060-y
https://doi.org/10.1097/md.0000000000000594
https://doi.org/10.1586/eri.10.102
https://doi.org/10.1016/j.jclinane.2018.02.011
https://doi.org/10.1016/j.jclinane.2018.02.011
https://doi.org/10.3389/fpubh.2016.00150
https://doi.org/10.1093/gerona/glac019
https://doi.org/10.7717/peerj.4326
https://doi.org/10.7717/peerj.4326
https://doi.org/10.1093/gerona/glaa061
https://doi.org/10.1093/gerona/glaa061
https://doi.org/10.1007/s11136-017-1672-8
https://doi.org/10.1007/s10433-020-00587-2
https://doi.org/10.1093/ageing/afab039
https://doi.org/10.1016/s0140-6736(11)60814-3
https://doi.org/10.15585/mmwr.mm6650a1
https://doi.org/10.15585/mmwr.mm6650a1
https://doi.org/10.1016/j.jamda.2017.01.009
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-980908 September 21, 2022 Time: 19:27 # 13

Zheng et al. 10.3389/fnut.2022.980908

through correlation with a frailty index. Aging Clin Exp Res. (2020) 32:2225–32.
doi: 10.1007/s40520-019-01450-w

62. Rosas-Carrasco O, Cruz-Arenas E, Parra-Rodríguez L, García-
González AI, Contreras-González LH, Szlejf C. Cross-cultural adaptation
and validation of the FRAIL scale to assess frailty in mexican adults.

J Am Med Dir Assoc. (2016) 17:1094–8. doi: 10.1016/j.jamda.2016.
07.008

63. O’Caoimh R, Gao Y, Svendrovski A. Screening for markers of frailty and
perceived risk of adverse outcomes using the risk instrument for screening in the
community (RISC). BMC Geriatr. (2014) 14:104. doi: 10.1186/1471-2318-14-104

Frontiers in Nutrition 13 frontiersin.org

83

https://doi.org/10.3389/fnut.2022.980908
https://doi.org/10.1007/s40520-019-01450-w
https://doi.org/10.1016/j.jamda.2016.07.008
https://doi.org/10.1016/j.jamda.2016.07.008
https://doi.org/10.1186/1471-2318-14-104
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-980908 September 21, 2022 Time: 19:27 # 14

Zheng et al. 10.3389/fnut.2022.980908

Appendix 1

FRAIL scale items in AAH
Fatigue: “How much of the time during the past 4 weeks did you feel tired?” 1 = All of the time, 2 = Most of the time, 3 = Some of the

time, 4 = A little of the time, 5 = None of the time. Responses of “1” or “2” are scored as 1 and all others as 0. Baseline prevalence = 20.1%.
Resistance: “By yourself and not using aids, do you have any difficulty walking up 10 steps without resting?” 1 = Yes, 0 = No.

Baseline prevalence = 25.5%.
Ambulation: “By yourself and not using aids, do you have any difficulty walking several hundred yards?” 1 = Yes, 0 = No. Baseline

prevalence = 27.7%.
Illness: For 11 illnesses, participants are asked, “Did a doctor ever tell you that you have [illness]?” 1 = Yes, 0 = No. The total

illnesses (0–11) are recoded as 0–4 = 0 and 5–11 = 1. The illnesses include hypertension, diabetes, cancer (other than a minor skin
cancer), chronic lung disease, heart attack, congestive heart failure, angina, asthma, arthritis, stroke, and kidney disease. Baseline
prevalence = 2.1%.

Loss of weight: “How much do you weigh with your clothes on but without shoes? [current weight]” “One year ago in (MO, YR),
how much did you weigh without your shoes and with your clothes on? [weight 1 year ago]” Percent weight change is computed as:
[(weight 1 year ago – current weight]/weight 1 year ago)] × 100. Percent change > 5 (representing a 5% loss of weight) is scored as 1
and < 5 as 0. Baseline prevalence = 21.0%.
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Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of
Laboratory Medicine, Guangzhou Medical University, Guangzhou, China

Insulin resistance, a pathological response to insulin hormone in

insulin-dependent cells, is characterized by the presence of high glucose

and insulin concentrations. The homeostasis model of insulin resistance

(HOMA-IR) is one of the most used indexes to estimate insulin resistance by

assessing the fasting glucose and insulin levels. An association was observed

between vitamin D levels and insulin resistance, which varied in di�erent

ethnic groups, and there is some evidence that vitamin D supplementation

could contribute to the improvement of insulin resistance. This study assessed

the association between 25-hydroxyvitamin D (25[OH]D) concentration and

HOMA-IR in American adults aged 20 years and older, without diabetes and

other chronic diseases that can influence insulin resistance. The data from

the National Health and Nutrition Examination Survey (NHANES) 2007–2014

were used by exploiting the free and publicly-accessible web datasets. Linear

regression models were performed to evaluate the association between

serum 25(OH)D concentration and HOMA-IR, and a negative association was

observed, which remained significant following the adjustment for age, gender,

race/ethnicity, education, body mass index (BMI), physical activity, the season

of examination, current smoking, hypertension, the use of drugs which can

influence insulin resistance, serumbicarbonates, triglycerides, and calcium and
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phosphorus levels. Only in non-Hispanic Blacks was this inverse association

between vitamin D and HOMA-IR not observed in the fully adjusted model.

Further studies are needed to explain the mechanisms of the observed

ethnic/racial di�erences in the association of vitamin D levels with HOMA-IR.

KEYWORDS

vitamin D, 25-hydroxyvitamin D, insulin resistance, NHANES, cross-sectional

Introduction

Insulin resistance is identified as an underlying and partly

modifiable pathogenic factor of type 2 diabetes mellitus

(T2DM) and many related conditions (1). Even though

hyperinsulinemic-euglycemic clamp is a gold standard for

estimating insulin resistance, it is a quite expensive, invasive,

and time-consuming method, which requires trained staff, and

therefore, the homeostasis model of insulin resistance (HOMA-

IR) presents one of the most simple and suitable substitutes

to estimate IR, by assessing the fasting glucose and insulin

levels (2).

Vitamin D is the collective name for vitamin D3

(cholecalciferol) and vitamin D2 (ergocalciferol) (3). Surveys

from across the globe have shown that vitamin D deficiency

was a global health problem that affects people of various

ages and nationalities (4, 5). Numerous illnesses, including

T2DM (6), obesity (7–9), metabolic syndrome (9, 10), chronic

kidney disease (CKD) (11), infective diseases (including

COVID-19) (12), autoimmune disorders (13), and infertility

(14, 15), have been associated with insufficient vitamin D levels.

Many cross-sectional surveys and meta-analyses indicated

vitamin D deficiency to be inversely related to HOMA-IR

(8, 16), and some meta-analyses (but not all) have shown that

supplementation with vitamin D may help control glycemic

response and can improve insulin resistance in patients with

T2DM (17–19). Additionally, vitamin D receptor (VDR)

polymorphisms are associated with insulin resistance and

abnormal glucose metabolism, particularly in some ethnic

groups (20, 21). Furthermore, a cross-sectional study in the

USA, which was performed based on the National Health and

Nutrition Examination Survey (NHANES) 2001–2006, found

that Non-Hispanic Black people were at a greater risk for insulin

Abbreviations: AA, associate of arts; ANOVA, analysis of variance; BMI,

body mass index; CKD, chronic kidney disease; GED, general educational

development; HOMA-IR, homeostasis model of insulin resistance; IQR,

interquartile range; NHANES, National Health and Nutrition Examination

Survey; PAL, physical activity level; PTH, parathyroid hormone; ROS,

reactive oxygen species; SD, standard deviation; T2DM, type 2 diabetes

mellitus; VDR, vitamin D receptor; VIF, variance inflation factor; 25(OH)D,

25-hydroxyvitamin D.

resistance compared to White people (22), which may be due to

lower serum vitamin D levels.

In this study, we aimed to examine the associations between

25-hydroxyvitamin D (25[OH]D) and HOMA-IR in American

adults without diabetes and explore the factors that impact

insulin resistance in particular ethnics, using the available

data from NHANES 2007–2014, a large-scale and nationally

representative cross-sectional surveys of theU.S. population.We

hypothesized that the association between insulin resistance and

vitamin D would differ across the ethnic groups.

Materials and methods

Data source

The National Health and Nutrition Examination Survey is

an ongoing, health-related survey that assesses the nutritional

and health status of the American population. Survey

participants were recruited by a stratified multistage probability

sampling method to ensure the sample was nationally

representative (23).

The original study protocol was available on the website of

the ethics review board of the national center for health statistics

research (https://www.cdc.gov/nchs/nhanes/irba98.htm), which

was further approved by the ethical review committee (protocol

# 2005–06; protocol # 2011–17). The current study was based on

the existing data retrieved from NHANES, and the details were

extracted from the official website (24).

Study population

This study used public data retrieved from four cycles

of NHANES (2007–2008, 2009–2010, 2011–2012, and 2013–

2014). Adult patients aged 20 or older with available data for

HOMA-IR and vitamin D were included. The exclusion criteria

were the presence of Type 1 diabetes mellitus (T1DM) and

T2DM (since in patients with diabetes, HOMA-IR may not be a

representative indicator of insulin resistance due to diminished

insulin secretion) (25), CKD, and the use of drugs that can

influence insulin sensitivity, including antidiabetic drugs,

glucose elevating agents, antineoplastics and anti-retroviral

agents, adrenal cortical steroids, selective estrogen receptor
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modulators, parathyroid hormone and analogs, antiandrogens,

aromatase inhibitors, calcimimetics, antipsychotics, other

metabolic agents, bone resorption inhibitors (bisphosphonates,

etc.), and niacin. Although some anti-hypertensive drugs, sex

hormones (including contraceptives), and statins can influence

insulin sensitivity, the subjects who used those medications were

not excluded from the study, because a substantial number of

the subjects were using these agents (N= 1,081, N= 269, and N

= 561, respectively). Nevertheless, to account for their potential

influence on insulin sensitivity, the usage of these drugs was

included in covariates in our regression analyses. Participants

with any covariates missing were excluded.

Type 2 diabetes mellitus is diagnosed based on plasma

glucose levels, including either the fasting plasma glucose value

or the 2-h plasma glucose value during a 75 g oral glucose

tolerance test or the glycosylated hemoglobin A1c criteria (26).

However, either doctor-diagnosed or self-reported diabetes is

included for certain. The participants with impaired glucose

tolerance or impaired fasting glucose, in case they were not

using antidiabetic drugs, were included. CKD was diagnosed

based on an increased albumin/creatinine ratio (≥30 mg/g)

and a decreased estimated glomerular filtration rate (<60

ml/min/1.73m2) (27). The data on the prescription medications

were inquired and collected by trained interviewers.

Measurement

Plasma and serum samples for fasting plasma glucose, serum

insulin, 25(OH)D, bicarbonates, total calcium, phosphorus,

and triglycerides were obtained and stored in the Mobile

Examination Center until shipped to the Centers for Disease

Control and Prevention Environmental Health Laboratory

(Atlanta, Georgia). The HOMA-IR model was used to

evaluate insulin resistance, calculated using the following

formula: fasting serum insulin (µU/L) × fasting plasma

glucose (mmol/L)/22.5 (28). Concentrations of 25(OH)D3 and

25(OH)D2 in the serum samples were analyzed using super

high-ultra performance liquid chromatography-tandem mass

spectrometry. Total 25(OH)D (or vitamin D) was defined

as the sum of 25(OH)D3 and 25(OH)D2. In terms of the

serum total vitamin D levels, the participants were classified

as deficient (<50 nmol/L), suboptimal (50–75 nmol/L), and

sufficient (>75 nmol/L), as recommended by the American

Endocrine Society (29).

Covariates

We tested all covariates if they were associated with HOMA-

IR or vitamin D levels, and the significantly associated covariates

were included in the adjusted linear regression models.

The eligible covariates included age, gender, race/ethnicity,

education, body mass index (BMI), physical activity level (PAL),

the season of examination, current smoking, hypertension,

the usage of antihypertensive drugs, sex hormones (30, 31),

statins (32, 33), serum bicarbonates (34, 35), triglycerides

(36, 37), and calcium and phosphorus levels (38–40). The

race/ethnicity was divided into five groups: Mexican Americans,

Other Hispanics, Non-Hispanic Whites, Non-Hispanic Blacks,

and Other races/ethnicities (including Asians and mixes).

Education levels were categorized as <9th grade, 9th−11th

grade (including 12th grade with no diploma), high school

graduate/general educational development (GED) or equivalent,

college/associate of arts (AA) degree, college graduate or

above, refused, and unknown. The season of examinations was

classified into November to April and May to October. The

current smokers were separated from the former and never

smokers. Participants who reported smoking either some days

or every day at the time of the interview were considered

current smokers. Participants who smoked more than 100

cigarettes during their lifetime but did not smoke currently were

former smokers. Body mass index (BMI, kg/m2) was defined as

body weight in kilograms divided by squared body height in

meters. Physical activity level (PAL) scores were calculated to

assess physical activity based on the different levels of activity,

including vigorous (2 points) ormoderate (1 point) work-related

activity, vigorous (2 points) or moderate (1 point) leisure-time

physical activity, and walking or bicycling for transportation (1

point). The minimum PAL score was 0, and the maximum PAL

score was 5. Hypertension was defined as having systolic blood

pressure ≥ 130 mmHg or diastolic blood pressure ≥ 80 mmHg,

which were measured on more than or equal to two occasions to

acquire an average (41).

Statistical analysis

Median and interquartile range (IQR) were used to describe

a non-normal distribution. The mean and standard deviation

(SD) were used to describe a normal distribution. To compare

the differences between various vitamin D status categories,

the χ
2 test (for nominal data), the one-way analysis of

variance (ANOVA) (for continuous variables with normal

distribution), and the Kruskal-Wallis’s test (for continuous

variables with non-normal distribution) were used. In linear

correlation analyses, any continuous variable that was not

normally distributed underwent log 10 transformation to ensure

its normal distribution (HOMA-IR, triglycerides). Pearson

correlation coefficient (r) was used for normally distributed

continuous variables, while Spearman correlation coefficient (rs)

was used for non-normally distributed continuous variables

or ordered categorical variables. The Point-biserial correlation

coefficient (rpb) was used for dichotomous variables.

The association between total vitamin D and HOMA-IR

was evaluated by employing the enter-type linear regression
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FIGURE 1

Flowchart of participants’ disposition.
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models. Standardized beta was utilized to compare the

relative predictive strength of different covariates in the

regression models. The variance inflation factor (VIF) was

used to assess the multicollinearity of all covariates in the

regression model. In linear regression analyses, HOMA-IR

and triglycerides underwent log 10 transformation. Stratified

regression analyses were used to account for differences

between races. Two-tail p < 0.05 were considered statistically

significant. All analyses were performed using Empower

stats (http://www.empowerstats.net/cn/) and SPSS software

Version 21.0.

Results

Baseline characteristics of participants

Following the exclusions, this study included a total of

6,079 participants aged 20 years or older (Figure 1). Baseline

characteristics of the selected participants were classified

according to varying serum vitamin D status categories as

provided in Table 1.

The proportion of vitamin D deficiency did not differ

between men and women; however, a higher proportion of

vitamin D suboptimal and a lower proportion of vitamin D

sufficient was found among men. The highest proportion of

vitamin D deficiency was among the Non-Hispanic Blacks

(63.25%), followed by Mexican Americans, other races-

ethnicities (including Asians and mixes), other Hispanics, and

finally, the Non-Hispanic Whites (15.25%). Meanwhile, the

highest proportion of vitamin D sufficiency was observed among

the non-Hispanic Whites (45.56%), while the lowest was among

the non-Hispanic Blacks (11.62%).

As expected, a higher prevalence of vitamin D deficiency

was observed in samples collected during the winter period

(from November to April). With the exception of those who

refused to answer or were left unknown about their education

levels, the group with the most vitamin D deficiency belonged

to the education groups of 9th−11th grade, whereas the

group with the most vitamin D sufficiency was the group of

college graduates or above. In the present study population,

patients with hypertension and current smokers were more

vitamin D deficient. Compared with the vitamin D sufficient

subgroup, participants in the deficient subgroup were at the

highest HOMA-IR.

Serum vitamin D levels were related to age, sex, race,

educational level, BMI, PAL score, the season of examination,

smoking status, usage of antihypertensive drugs, sex hormones,

and statins, serum fasting insulin, triglycerides, bicarbonates,

and calcium levels, as well as HOMA-IR. There was no

association found between serum vitamin D levels and plasma

fasting glucose, serum phosphorus, and hypertension (Table 1).

Relationship between serum 25(OH)D
and HOMA-IR

Table 2 shows that all covariates, except age and serum

calcium, were linearly related to HOMA-IR. Regarding the

stratified racial analysis, insulin resistance was found to be

different among various races: Mexican Americans and other

Hispanics weremore prone to higher HOMA-IR, while the Non-

Hispanic Whites and other races/ethnicities (including Asiatic)

were less susceptible, while the Non-Hispanic Blacks were in the

middle (Table 2).

Linear regression analysis (Table 3) revealed that HOMA-

IR was inversely associated with vitamin D levels prior to the

adjustments for covariates (Model 1). The unadjusted model

described only a small variance in HOMA-IR by using only

vitamin D levels (2.8%). Following the adjustments of covariates

that included age, gender, specific race/ethnicity, education,

BMI, physical activity, the season of examination, current

smoking, hypertension, the usage of antihypertensive drugs, sex

hormones, and statins, as well as serum bicarbonates, calcium,

and phosphorus levels (Model 2), this inverse association

between vitamin D and HOMA-IR remained significant,

although it decreased. This model explained a much higher

variance in HOMA-IR (36.1%). The association of vitamin D

with HOMA-IR in the fully adjusted model with added log-

transformed triglycerides was even more significant since the

standardized regression coefficient for vitamin D increased

(Model 3). This model explained the highest percentage of

variance in HOMA-IR (41.3%).

In stratified regression analyses (Table 4), only in the Non-

Hispanic Blacks, there was no significant inverse association

between vitamin D and insulin resistance in the fully adjusted

model with serum triglycerides included (Model 3).

In the general population or ethnic subgroups,

BMI contributed the most to HOMA-IR, as shown in

Supplementary Tables S1, S2. The influence of vitamin D on

HOMA-IR was the strongest among other races/ethnicities

(including Asiatic) compared to Mexicans and other Hispanics

and the Non-Hispanic Whites, while the association was not

observed in the Non-Hispanic Blacks (Supplementary Table S2).

Discussion

The present study confirmed the inverse association between

vitamin D and insulin resistance in accordance with many

studies in different countries (42–45). However, the direct effect

of vitamin D on insulin sensitivity is still controversial, since

some meta-analyses indicated that vitamin D supplementation

did not have the expected beneficial effects, which could

be attributed to suboptimal dosing and short duration of

follow-up (46, 47).
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TABLE 1 Baseline characteristics of participants and distribution across di�erent vitamin D categories.

Total

(N = 6,079)

Baseline serum vitamin D, nmol/L ANOVA,

Kruskal-Wallis’s test

or χ
2 test

<50 50-75 >75 P value

(N = 1,968) (N = 2,335) (N = 1,776)

Age, Median (IQR) 43.00 (31.00–56.00) 38.00 (29.00–51.00) 42.00 (31.00–55.00) 48.00 (35.00–60.00) <0.001

Serum vitamin D (nmol/L), Mean± SD 63.08± 25.88 36.43± 9.18 62.27± 6.93 93.68± 20.29 <0.001

HOMA-IR, Median (IQR) 2.22 (1.40–3.66) 2.57 (1.56–4.23) 2.25 (1.44–3.66) 1.87 (1.20–3.01) <0.001

Plasma fasting glucose (mmol/L), Mean± SD 5.42± 0.54 5.42± 0.54 5.43± 0.53 5.39± 0.54 0.105

Serum fasting insulin (µU/L), Median (IQR) 9.28 (6.04–14.80) 10.78 (6.66–17.27) 9.45 (6.20–14.66) 7.88 (5.16–12.32) <0.001

Serum triglycerides (mmol/L), Median (IQR) 1.08 (0.76–1.59) 1.02 (0.71–1.53) 1.14 (0.79–1.65) 1.07 (0.78–1.59) <0.001

Serum bicarbonates (mmol/L), Mean± SD 25.21± 2.10 25.02± 2.07 25.23± 2.06 25.39± 2.18 <0.001

Serum calcium (mmol/L), Mean± SD 2.34± 0.08 2.33± 0.08 2.34± 0.08 2.36± 0.08 <0.001

Serum phosphorus (mmol/L), Mean± SD 1.19± 0.17 1.19± 0.17 1.19± 0.17 1.19± 0.17 0.290

BMI (kg/m2), Mean± SD 28.10± 6.33 29.30± 7.32 28.18± 5.83 26.66± 5.41 <0.001

PAL score, Mean± SD 1.74± 1.30 1.60± 1.31 1.76± 1.29 1.88± 1.29 <0.001

Gender (N, %) <0.001

Men 3,037 (49.96) 962 (31.68) 1,285 (42.31) 790 (26.01)

Women 3,042 (50.04) 1,006 (33.07) 1,050 (34.52) 986 (32.41)

Race/Ethnicity (N, %) <0.001

Mexican American 947 (15.58) 394 (41.61) 416 (43.93) 137 (14.47)

Other Hispanics 667 (10.97) 193 (28.94) 349 (52.32) 125 (18.74)

Non-Hispanic Whites 2,702 (44.45) 412 (15.25) 1,059 (39.19) 1,231 (45.56)

Non-Hispanic Blacks 1,102 (18.13) 697 (63.25) 277 (25.14) 128 (11.62)

Other races 661 (10.87) 272 (41.15) 234 (35.40) 155 (23.45)

Season of examination (N, %) <0.001

November to April 2,828 (46.52) 1,174 (41.51) 1,061 (37.52) 593 (20.97)

May to October 3,251 (53.48) 794 (24.42) 1,274 (39.19) 1,183 (36.39)

Education (N, %) <0.001

<9th grade 514 (8.46) 180 (35.02) 236 (45.91) 98 (19.07)

9–11th grade 878 (14.44) 328 (37.36) 338 (38.50) 212 (24.15)

High school graduate/GED or equivalent 1,309 (21.53) 466 (35.60) 485 (37.05) 358 (27.35)

College/AA degree 1,782 (29.31) 597 (33.50) 664 (37.26) 521 (29.24)

College graduate or above 1,589 (26.14) 393 (24.73) 610 (38.39) 586 (36.88)

Refused or unknown 7 (1.12) 4 (57.14) 2 (28.57) 1 (14.29)

Hypertension (N, %) 0.262

Yes 1,592 (26.19) 541 (33.98) 602 (37.81) 449 (28.20)

No 4,487 (73.81) 1,427 (31.80) 1,733 (38.62) 1,327 (29.57)

Current smoking (N, %) <0.001

Yes 1,328 (21.85) 490 (36.90) 487 (36.67) 351 (26.43)

No 4,751 (78.15) 1,478 (31.11) 1,848 (38.90) 1,425 (29.99)

Sex hormones (N, %) <0.001

Yes 269 (4.43) 41 (15.24) 69 (25.65) 159 (59.11)

No 5,810 (95.57) 1,927 (34.92) 2,266 (40.07) 1,617 (29.30)

Statins (N, %) <0.001

Yes 561 (9.23) 103 (18.36) 203 (36.19) 255 (45.45)

No 5,518 (90.77) 1,856 (33.64) 2,128 (38.56) 1,534 (27.80)

Antihypertensive drugs (N, %) <0.001

Yes 1,081 (17.78) 275 (25.44) 398 (36.82) 408 (37.74)

No 4,998 (82.22) 1,684 (33.69) 1,933 (38.68) 1,381 (27.63)

AA, associate of arts; ANOVA, analysis of variance; BMI, Body Mass Index; GED, general educational development; HOMA-IR, the homeostasis model of insulin resistance; IQR, inter

quartile range; N, number of participants; PAL, physical activity level; SD, standard deviation.
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TABLE 2 Screening of covariates based on statistically significant

association with log-transformed HOMA-IR.

Age#b 0.016 BMI#a 0.562**

Gender#c
−0.033* PAL score#b

−0.132**

Race/Ethnicity Season of examination#c
−0.052**

Mexican American#c 0.121** Current smoking#c 0.047**

Other Hispanic#c 0.028* Hypertension#c
−0.113**

Non-Hispanic White#c
−0.074** Antihypertensive

drugs#c

−0.138**

Non-Hispanic Black#c 0.014 Sex hormones#c 0.047**

Other races#c
−0.069** Statins#c

−0.073**

Education#b −0.104** Serum bicarbonate#a
−0.116**

Less than 9th grade#c 0.046** Serum triglycerides

(log–transformed)#a

0.372**

9-11th grade#c 0.030* Serum calcium#a
−0.016

High school

graduate/GED or

equivalent#c

0.029* Serum phosphorus#a
−0.091**

College/AA degree#c 0.017

College graduate or

above#c

−0.100**

**P < 0.01.

*P < 0.05.
#aPearson’s r.
#bSpearman’s rs .
#cPoint-Biserial’s rpb .

AA, associate of arts; BMI, Body Mass Index; GED, general educational development;

HOMA-IR, the homeostasis model of insulin resistance; PAL, physical activity level.

The mechanisms by which vitamin D can influence insulin

sensitivity are various, and some of them are still unknown.

Some studies showed that vitamin D by interacting with VDR

in insulin-responsive tissues increased the transcription and

number of insulin receptors (48, 49). Also, vitamin D can

influence the extracellular calcium concentration and influx

through the insulin-responsive cell, subsequently activating the

glucose transporters, thus enhancing the response to insulin

(50, 51). In addition, vitamin D could block the effect of

inflammatory cytokines on insulin signaling by modulating the

innate immune system and decreasing inflammatory cytokine

secretion (52, 53). It is known that reactive oxygen species

(ROS) can trigger insulin resistance (54), while vitamin D

accelerates ROS catabolism by enhancing the synthesis of

antioxidants and anti-inflammatory cytokines (55). Vitamin D

can also modulate insulin sensitivity by activating peroxisome

proliferator-activated receptors-δ, which reduces free fatty acid-

induced insulin resistance (56, 57). Parathyroid hormone (PTH)

can mediate insulin resistance by inhibiting insulin signaling

and reducing glucose uptake, while vitamin D could exert

an insulin-improving effect by reducing PTH levels (58).

Moreover, higher PTH and vitaminD insufficiency can be jointly

associated with higher HOMA-IR: the effect of PTH on insulin

TABLE 3 Linear regression relationship for serum vitamin D and

log-transformed HOMA-IR in models.

Adjusted

R2

Standardized

β

Non-

standardized β

(95% CI)

Vitamin D Model 1a 0.028 −0.168 −0.002

(−0.002,−0.002)**

Model 2b 0.361 −0.054 −0.001

(−0.001, 0.000)**

Model 3c 0.413 −0.056 −0.001

(−0.001, 0.000)**

**P < 0.01.
aModel 1 is not adjusted.
bModel 2 adjusted for age, gender, specific race/ethnicity, education, BMI, physical

activity, the season of examination, current smoking, hypertension, the usage of

antihypertensive drugs, sex hormones, statins, serum bicarbonates, calcium, and

phosphorus levels.
cModel 3 adjusted for age, gender, specific race/ethnicity, education, BMI, physical

activity, the season of examination, current smoking, hypertension, the usage of

antihypertensive drugs, sex hormones, statins, serum bicarbonates, log-transformed

triglycerides, calcium, and phosphorus levels.

β, beta (regression coefficients); BMI, BodyMass Index; CI, confidence intervals; HOMA-

IR, the homeostasis model of insulin resistance.

release from islets depends on vitamin D-related calcium and

phosphorus (59, 60).

Regarding racial/ethnic differences in the association of

vitamin D with HOMA-IR, one population-based investigation

showed that the association between circulating 25(OH)D

concentrations and insulin resistance did not differ within race

(16). Conversely, other studies demonstrated that vitamin D was

inversely associated with fasting insulin and insulin resistance in

the Non-Hispanic Whites and Mexican Americans, but not in

the Non-Hispanic Blacks (61, 62).

The reason for the lack of this association among the Non-

Hispanic Blacks is still not clear. Black people have lower

levels of vitamin D and higher levels of PTH compared to

White people, so the negative association between vitamin D

and insulin resistance should be stronger. However, in the

Non-Hispanic Blacks, a decreased sensitivity to the effects of

decreased vitamin D and elevated PTH was hypothesized (61,

63). Regarding 25(OH)D clearance, Black people had higher

25(OH)D clearance and lower 25(OH)D levels compared to

White people, probably owing to lower levels of vitamin D

binding protein (22, 62, 64, 65). The threshold for a sufficient

25(OH)D levels is the lowest among the Non-Hispanic Blacks

(44), and the inverse association between 25(OH)D and PTH

levels were only observed below a much lower cutoff point for

vitamin D in Black people (66–68). As a result, the combined

effect of PTH and vitamin D lacks in Black people.

In addition, in one study, it was observed that African

Americans had significantly lower triglyceride levels for

any given level of insulin sensitivity, compared with other
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TABLE 4 Linear regression relationship for serum vitamin D and log-transformed HOMA-IR in stratification analysis of race/ethnicity.

Non-standardized β (95% CI)

Model 1a Model 2b Model 3c

Mexican American −0.003 (−0.004,−0.002)** −0.001 (−0.002, 0.000)** −0.001 (−0.002, 0.000)**

Other Hispanics −0.002 (−0.004,−0.001)** −0.001 (−0.002, 0.000) −0.001 (−0.002, 0.000) U

Non-Hispanic Whites −0.002 (−0.003,−0.002)** −0.000 (−0.001, 0.000)* −0.000 (−0.001, 0.000)*

Non-Hispanic Blacks −0.001 (−0.002, 0.000)* −0.000 (−0.001, 0.000) −0.000 (−0.001, 0.000)

Other races −0.002 (−0.003,−0.001)** −0.001 (−0.002, 0.000)** −0.001 (−0.002,−0.001)**

**P < 0.01.

*P <0.05.
UP = 0.051.
aModel 1 is not adjusted.
bModel 2 adjusted for age, gender, education, BMI, physical activity, season of examination, current smoking, hypertension, the usage of antihypertensive drugs, sex hormones, statins, as

well as serum bicarbonates, calcium, and phosphorus levels.
cModel 3 adjusted for age, gender, education, BMI, physical activity, season of examination, current smoking, hypertension, the usage of antihypertensive drugs, sex hormones, statins, as

well as serum bicarbonates, log-transformed triglycerides, calcium, and phosphorus levels.

β, beta (regression coefficients); BMI, Body Mass Index; CI, confidence intervals; HOMA-IR, the homeostasis model of insulin resistance.

races/ethnicities (69, 70), and in another study, it was observed

that low levels of triglyceride could slightly modify the

association of 25(OH)D with insulin resistance (71), which

probably could explain why there was no significant association

between HOMA-IR and vitamin D in the Non-Hispanic Blacks.

Nonetheless, even though adding the triglyceride levels in the

regression model slightly increased the association between

vitamin D and HOMA-IR (as assessed by standardized beta

coefficients) in the whole studied sample, adding triglyceride

levels in the model still did not make this association

significant in the Non-Hispanic Blacks. Therefore, other

factors can contribute more to the observed disparities in

the Non-Hispanic Blacks. Various types of VDR genotypes

and their related variants were related to the development of

insulin resistance, which may potentially affect the individual

response to vitamin D supplements (72, 73), and there

probably could be racial disparities in the VDR polymorphism

responsible for the lower association of vitamin D levels

with HOMA-IR (21, 74–77). In addition, HOMA-IR mainly

reflects hepatic insulin resistance, whereas vitamin D is more

associated with insulin-mediated peripheral glucose uptake (78).

Similarly, as for lower levels of serum triglycerides, intrahepatic

fat, and intraperitoneal fat (70), it was shown that Black

people have lower hepatic glucose production compared with

other races/ethnicities, despite decreased whole-body insulin

sensitivity and decreased peripheral (glucose disposal) and

hepatic (suppression of glucose production) insulin sensitivity,

compared with White people with the same body composition

(79). Additionally, they have lower hepatic insulin clearance

and increased insulin production, which probably could lead

to increased insulin resistance, since chronic hyperinsulinemia

can lead to insulin receptor desensitization (80, 81). Therefore,

studies that include hyperinsulinemic-euglycemic clamp in the

Non-Hispanic Blacks are needed to test if they will reveal

different results compared with our study.

This study also found that Mexican Americans were more

prone to be resistant to insulin, while non-Hispanic Whites

were less susceptible. Mexican Americans have higher blood

glucose levels and a greater family history of obesity, diabetes,

and insulin resistance compared with the Non-Hispanic Whites

(82). Mexican Americans with higher insulin levels were more

likely to develop T2DM about 3–5 times more than the non-

Hispanic Whites (82). A study about the genetics of variation in

Mexican Americans demonstrated the importance of identifying

HOMA-IR linkage on chromosome 12q24, as this region

contained multiple candidate genes associated with obesity and

diabetes (83).

This study has some potential limitations. The inherent

properties of cross-sectional designs did not allow for verifying

the causal relationships between vitamin D and insulin

resistance. The study was limited to the non-diabetic population

in the US, and the results cannot be extrapolated to the

world; hence, larger multicenter analyses included would be

more universally applicable. Additionally, HOMA-IR is only a

substitute for a gold standard–a hyperinsulinemic-euglycemic

clamp. The strengths are that we controlled for possible

confounders and that we used a large scale and representative

sample with precise super high-ultra performance liquid

chromatography-tandem mass spectrometry for measurements

of vitamin D serum levels.

In conclusion, race/ethnicity affected the negative

association of vitamin D with insulin resistance assessed

by HOMA-IR among the USA non-diabetic adults, as the

negative association was not seen among the Non-Hispanic

Blacks. While additional studies are required to verify the results

of this study and explain the racial disparities, monitoring
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serum 25(OH)D may be useful in detecting those with vitamin

D deficiency, starting with timely and adequate supplementation

to prevent possible negative metabolic consequences.
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Background: Vitamin D (VD) plays an important role in decreasing the risk

of adverse events for various metabolic diseases. However, for patients with

hyperlipidemia, the relationship between the main VD storage within the

body known as serum 25-hydroxy-VD [25(OH)VD] and the risk of all-cause,

cardiovascular and malignancies-specific mortality is still unclear.

Materials and methods: A total of 6740 participants above the age of 20 years

with hyperlipidemia who completed the National Health and Nutrition

Examination Survey (NHANES) between 2007 and 2016 and were followed

up until 2019 were included in the study. The weighted Cox proportional

hazards regression model and weighted competing risk regression model

were used to evaluate the risk for all-cause, cardiovascular and malignancy-

related mortality in relation to the serum 25(OH)VD. The model was adjusted

according to age, gender, race, body mass index, lipids status, medication

usage, the Charlson comorbidity index and healthy eating index. The last

restricted cubic spline (RCS) method was used to present the relationship

between hazard ratios (HR) associated with diverse cause-specified modalities

and the serum 25(OH)VD levels.

Results: Serum 25(OH)VD was identified as an independent factor for

mortality. Lower serum 25(OH)VD under the threshold of 25.6 and 25.2 ng/ml

were significantly associated with a higher risk for all-cause and cardiovascular

mortalities, respectively. However, no association was found between

malignancy-specific mortality and serum 25(OH)VD.

Conclusion: Serum 25(OH)VD were identified as an independent factor

associated with risks of all-cause and cardiovascular mortalities in patient with

hyperlipidemia. Moreover, lower serum 25(OH)VD than 25.6 and 25.2 ng/mL
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were, respectively, associated with a gradual increase in a risk for all-cause and

cardiovascular mortality in patients with hyperlipidemia, and therefore regular

monitoring of VD levels and correction of VD deficiency is recommended

in those patients.

KEYWORDS

vitamin D, hyperlipidemia, NHANES, cardiovascular mortality, all cause mortality

Introduction

Hyperlipidemia (HL) is a common metabolic
disease characterized by dysregulation of low-
density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), triacylglycerol (TG),
and cholesterol (CHL). Over 100 million people
were diagnosed with hypercholesterolemia (total CHL
levels > 240 mg/dL) in 2017, and another 31 million
adults were diagnosed with elevated LDL-C levels in
the United States (1). HL can reduce the patients’
quality of life and increases their risk of developing
cardiovascular disease by 2 to 3 times (2). Therefore,
there is a need to develop treatment strategies to
control blood lipid levels in patients with HL to
improve their survival.

Studies have shown that several nutrients, such as
vitamin D (VD), may have an important role in lowering
lipid levels and in reducing the risk of mortality (3),
especially in patients with hypertension (4) and type-
2 diabetes (5). Therefore, VD supplements are often
prescribed to patients with metabolic diseases suffering
from VD deficiency. VD is stored in the body as 25-
hydroxy-vitamin D [25(OH)VD], which encompasses
both 25(OH)VD3 and 25(OH)VD2 forms (6). Because
of its stable nature and long half-life, serum 25(OH)VD
could be used as an optimal indicator for monitoring
of VD levels. However, it is still debatable whether
the administration of VD supplements could improve
hypertension (7), insulin sensitivity (8), or lipid parameters
(9). Therefore, the benefit of VD supplements on metabolic
disorders is still unclear. In addition, relatively few studies
evaluated the relationship between serum 25(OH)VD
and the risk of mortality in patients with HL and VD
deficiency. Furthermore, numerous factors can affect the
normal VD levels, including age, diet, nutritional status,
and underlying comorbidities. However, these factors
have not been totally taken into account in current risk
survival models.

Therefore, this study aimed to analyze the association
between serum 25(OH)VD and the risk of all-cause and disease-
specific (cardiovascular and malignancy) mortality in patients

with HL in the United States (US) to guide the use of VD
supplements in patients with HL.

Materials and methods

Data collection

The data was obtained from the National Health and
Nutrition Examination database (NHANES). The NHANES
was a national survey conducted by the National Center
for Health Statistics to assess the health and nutritional
status of adults and children in the US. The survey
collected data on participants’ demographics, socioeconomic
status, diet, general health, medical examinations, and
laboratory tests.

Participants above the age of 20 years with HL who
completed the National Health and Nutrition Examination
Survey (NHANES) between 2007 and 2016 and were
followed up until 2019 were included in the study. HL
was defined as a low-density lipoprotein-cholesterol (LDL-
C) ≥ 130mg/dL (3.37 mmol/L), triglyceride (TG) ≥ 150mg/dL
(1.7 mmol/L), total cholesterol (TC) ≥ 200 mg/dL
(5.18mmol/L) or high-density lipoprotein-cholesterol
(HDL-C) < 40mg/dL (1.04mmol/L) in males and
50 mg/dL (1.30mmol/L) in females (10). The participants’
demographic information, including age at participating
in the survey, ethnicity, gender, and body mass index
(BMI), were extracted from the survey. Moreover, serum
25(OH)VD level, daily VD intake, comorbidities, and
medication usage (in the past 30 days) were also extracted.
The Charlson comorbidity index (CCI) were calculated
according to questionnaire survey and examination, the
healthy eating index (HEI) were calculated according
to the HEI-2015 guidelines (11). Daily VD intake and
dietary nutrients intake were calculated the average
values using the data obtained from two 24h dietary
recall interviews.

The follow-up survival data were obtained
from the National Center for Health Statistics. The
International Classification of Diseases version 10
(ICD-10) was used to classify the causes of death into
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FIGURE 1

Flowchart of participants enrollment.

cardiovascular disease (ICD CODES I00-I09, I11, I13,
I20-I51, and I60-I69) and malignancy-related (ICD
coded C00-C97). Collection of data was shown in
Figure 1.

Measurement methods of blood
indicators

The serum 25(OH)VD was defined as the sum of
serum 25(OH)D2, 25(OH)D3, and epi-25(OH)D3. All the
measurements were acquired using ultra-high-performance
liquid chromatography-tandem mass spectrometry (UHPLC-
MS/MS). The serum levels of HDL-C, TC, and TG were
tested using the Roche Modular P Chemistry Analyzer
for enzymatic assays (12). LDL-C is calculated from
measured values of TC, TG, and HDL-C according to
the Friedewald calculation: [LDL-C] = [TC] – [HDL-C] –
[TG/5] (13), where all values are expressed in mg/dL.
The calculation is valid for TG levels less than or equal
to 400 mg/dL, so only for subjects with TG levels lower
of 400 mg/dl, were the data for LDL-C provided in the
NHANES datasets.

Statistical analysis

Vitamin D status was defined as “deficient” [serum
25(OH)VD < 20 ng/ml], “insufficient” [serum 25(OH)VD = 20–
30 ng/ml] and “sufficient” [serum 25(OH)VD > 30 ng/ml]

(14). The serum 25(OH)VD levels were divided into five
groups by the quintile values. The participants’ age, race,
gender, BMI, CCI, HEI, lipid status, the length of follow-up
and medication usage were treated as covariates. Moreover,
BMI was categorized into 3 groups: <25 (normal), 25–
29.9 (overweight) and ≥30.0 (obesity) (15); HEI was
categorized into 3 groups: <50.0 (poor dietary), 50.0–
79.9 (need to improve) and ≥80.0 (healthy dietary) (16);
VD intake was also categorized into 3 groups: <10 µg/d
(less than the US Estimated Average Requirement, EAR),
10–15 µg/d and >15 µg/d (above the US Recommended
Dietary Allowance, RDA) (17, 18). The continuous data
were evaluated for normality. The association between
continuous variables was calculated using the analysis of
variance (ANOVA), and the Chi-square test was used to
compare the categorical variables. The Pearson’s correlation
coefficient was used to calculate the correlation between the
normally distributed continuous variables and the Spearman’s
correlation coefficient was used to calculate the correlation
between the categorical variables and non-normally distributed
continuous variables.

The risk for all cause-specific mortality in relation to the
serum 25(OH)VD was estimated by the Cox proportional
hazard (COXPH) model. For the malignancy/cardiovascular-
specific mortalities, the competing risk regression (CRR) model
was used to estimate the hazard ratios (HRs) and their 95%
confidence intervals (95% CI). The sample weight was taken
into account in the above models. The time dependent receiver
operation curves (ROC) were calculated, then area under curve
(AUC) of ROC by each time point were depicted for examining
discriminative abilities of models, a bigger AUC curve indicated
higher discriminative ability (19). Moreover, calibration curves
were also depicted for tested models, the curves more closed
to diagonal suggested the better calibration of models. Finally,
the restricted cubic splines (RCS) with the unweighted Cox
proportional hazard models were depicted to directly present
the dose-response associations between serum 25(OH)VD
and HRs of all cause and malignancy/cardiovascular-specific
mortalities. Apart from including the length of follow-up,
the models were adjusted for mortality covariates, including
age, gender, race, the HEI and CCI scores, lipid status
and medication usage. Since mortality in our study was a
rare event, the Poisson’s regression model was also used
to estimate the incidence-rate mortality ratio. A two-sided
p-value below 0.05 was considered statistically significant. The
data were analyzed using the R software (version:4.2.1). The
COX PHM was performed using the “rms” R package, and
the Poisson’s regression model was performed by the “lms”
R package. The time-AUC of ROC and calibration curves
were calculated using the “riskRegression” R package, The
RCS model was built using the “survminer” R package, and
the Pearson’s correlation coefficient map was plotted via the
“corrplot” R package.
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Results

Characteristics of the participants

A total of 6740 participants were included in the study.
The characteristics of the participants are summarized in
Table 1. The included participants were 20-80 years old. Both
genders were quite equally represented, and majority of the
participants were non-Hispanic whites (46.8%). Almost 4/5 of
the included participants were overweight or obese (77.1%).
Almost half of the participants had a CCI score of 0 (45.2%),
while based on the HEI scores, only small percentage of the
participants (3.4%) were classified as healthy with an HEI
score above 80. Only less than a third of the participants
(29.8%) have received hypolipidemic medication treatment,
such as statins (91.7%), fenofibrate (2.0%) and gemfibrozil
(1.8%). The mean serum 25(OH)VD in the whole sample
was 26.7 ng/mL, while the serum 25(OH)VD quintile levels
were at 17.3, 23.2, 28.3, and 35.0 ng/mL. Only about 1/3
of the participants (34.7%) had VD sufficient status, while
VD insufficiency and deficiency were detected in 36.6% and
28.6% of the participants, respectively. The non-Hispanic whites
had the highest VD levels, while non-Hispanic Blacks and
Mexican Americans had the lowest levels, with mean values
of 30.6 ± 0.6, 21.1 ± 0.5 and 22.8 ± 0.4 ng/mL, respectively
(p < 0.01). Obese people had the lowest vitamin D levels,
compared with normal weight and overweight with mean values
of 24.6 ± 0.4, 29.6 ± 0.4, and 27.4 ± 0.4 ng/mL, respectively
(p < 0.01). The mean and median values of participants’
daily VD intake were 4.7 ± 1.0 and 3.6 µg/d, respectively.
The daily VD intake was less than the EAR (10 µg/d) in
most of the participants (91.2%), while only 3.1% of the
participants had intake above the RDA (15 µg/d). Participants
with highest VD levels (higher quintiles) had higher HDL-
C and lower TG levels. In general, with increase of serum
25(OH)VD, there was a trend for increased HDL-C and
TC, and decreased TG and LDL-C levels; there was also a
trend for increased HEI score, VD intake, and decreased BMI
(p < 0.01). During the 51372 person-years of follow-up, 752
deaths were recorded (overall, in 11.2% of participants), of
which 41.9% were due to cardiovascular disease, 31.3% were
caused by malignancies, and 26.9% were attributed to other
factors.

Correlations between variables in the
present study

The results of the Pearson’s and Spearman’s inter-
correlations between the included variables are summarized in
Table 2. In summary, serum 25(OH)VD positively correlated
with age, Non-Hispanic White race, CCI score, HEI score,
HDL-C levels, TC levels, hypolipidemic drugs usage, while

negatively correlated with male sex, other races except
Non-Hispanic White, BMI, LDL-C and TG levels with
statistical significance (Table 2). In regression models, the
variance inflation factors between these variables were also
calculated, and were less than 3 for all variables included:
serum 25(OH)VD (1.28), gender (1.53), age (1.43), Non-
Hispanic White (2.74), Non-Hispanic Black (2.55), other
races (2.03) BMI (1.13), CCI (1.33), HEI (1.10), medication
usage (1.15), HDL-C (1.81), LDL-C (1.87), TG (1.15), TC
(2.04) and the length of follow-up (1.02), respectively.
These findings suggest that the variables in the present
study were independent, so multicollinearity was not an
issue.

Association between serum
25-hydroxy-vitamin D with mortality
risk for patients with hyperlipidemia

As shown in Table 3, serum 25(OH)VD levels were
significantly associated with all-cause and cardiovascular-
specific mortality in participants with HL. After fully adjusting
the COXPH and CRR models for the potential confounders,
the risk for all-cause mortality significantly increased with
25(OH)D levels below 23.1 ng/mL (model 2), while the
risk for cardiovascular mortality significantly increased with
25(OH)D levels below 17.3 ng/mL (model 3). The risk for
overall mortality increased in the first 2 quintiles, with gradual
change, and then stabilized, while the risk for cardiovascular
mortality significantly increased only in the first quintile.
However, no significant association was noted between serum
25(OH)VD and the risk of malignancies-related mortality.
The results were still robust after multivariable- adjusted
estimation by different regression models. All models were
tested their discriminative and calibration abilities, and the fully
adjusted COXPH and CRR models presented better predictive
performance (Figure 2).

Non-linear association between serum
25-hydroxy-vitamin D mortality hazard
ratios

Restricted cubic spline (RCS) showed an “L-shape”
association between the serum 25(OH)VD levels and all
causes-specific and cardiovascular-specific mortality rates. The
HRs for all causes and the cardiovascular-specific mortality
significantly increased as serum 25(OH)VD decreased, at
thresholds of 25.6 and 25.2 ng/mL, respectively. Above
those thresholds, the HRs remained relatively stable for
all mortalities. The similar association was noted between
the malignancies-specific mortality HRs and serum
25(OH)VD, with the threshold below 25.6 ng/mL, but that
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TABLE 1 The baseline of participants with hyperlipidemia according to serum 25(OH)VD.

Serum 25(OH)VD (ng/mL)

Total <17.3 17.3–23.1 23.2–28.2 28.3–35.0 >35.0 p-value

Number of cases 6740 1343 (19.9) 1353 (20.0) 1352 (20.1) 1344 (19.9) 1348 (20.0)

Age 53.1 (0.2) 48.3 (0.4) 49.5 (0.4) 52.4 (0.4) 55.0 (0.4) 60.6 (0.4)

20–40 1787 (26.5) 481 (35.8) 463 (34.2) 362 (26.8) 299 (22.3) 182 (13.5) <0.01

41–60 2482 (36.8) 513 (38.2) 515 (38.1) 517 (38.2) 507 (37.7) 430 (31.9)

> 61 2471 (36.7) 349 (26.0) 375 (27.7) 473 (35.0) 538 (40.0) 736 (54.6)

Gender

Female 3994 (53.0) 808 (53.8) 772 (51.3) 729 (48.1) 756 (50.2) 929 (61.8) <0.01

Male 3539 (47.0) 695 (46.2) 732 (48.7) 788 (51.9) 749 (49.8) 575 (38.2)

Race/ethnicity

Non-Hispanic White 3119 (46.3) 296 (22.0) 453 (33.5) 623 (46.1) 817 (60.8) 930 (69.0) <0.01

Non-Hispanic Black 1192 (17.7) 504 (37.5) 257 (19.0) 189 (14.0) 121 (9.0) 121 (9.0)

Mexican American 1017 (15.1) 279 (20.8) 280 (28.2) 233 (17.2) 146 (10.9) 79 (5.9)

Others1 1412 (21.0) 264 (19.7) 363 (26.8) 307 (22.7) 260 (19.4) 218 (16.2)

BMI 30.0 (0.2) 32.1 (0.3) 30.9 (0.2) 29.7 (0.2) 29.3 (0.2) 28.1 (0.2)

<25.0 1544 (22.9) 234 (17.4) 220 (16.3) 307 (22.7) 344 (25.6) 439 (32.6) <0.01

25.0–29.9 2297 (34.1) 373 (27.8) 478 (35.3) 461 (34.1) 488 (36.3) 497 (36.9)

=30.0 2899 (43.0) 736 (54.8) 655 (48.4) 584 (43.2) 512 (38.1) 412 (30.6)

CCI 1.2 (1.4) 1.1 (1.4) 1.2 (1.3) 1.3 (1.3) 1.6 (1.1) 1.3 (1.3)

0 3046 (45.2) 685 (51.0) 684 (50.5) 630 (46.6) 591 (44.0) 456 (33.8) <0.01

1 1465 (21.7) 258 (19.2) 309 (22.8) 284 (21.0) 288 (21.4) 326 (24.2)

2 909 (13.5) 172 (12.8) 159 (11.8) 189 (14.0) 182 (13.5) 207 (15.4)

=3 1320 (19.6) 228 (17.0) 201 (14.9) 249 (18.4) 283 (21.1) 359 (26.6)

HDL (mg/dL) 52.4 (0.2) 50.1 (0.4) 49.3 (0.4) 50.6 (0.4) 53.6 (0.5) 58.4 (0.5) <0.01

LDL (mg/dL) 121.8 (0.5) 123.6 (1.0) 123.0 (1.0) 121.9 (1.0) 121.3 (1.0) 119.2 (1.0) <0.01

TG (mg/dL) 133.1 (0.8) 133.1 (1.9) 134.3 (1.9) 135.7 (1.8) 133.5 (1.8) 129.1 (1.7) <0.01

TC (mg/dL) 200.8 (0.5) 200.2 (1.2) 199.3 (1.2) 199.6 (1.2) 201.6 (1.2) 203.4 (1.2) <0.01

Healthy eatig index 54.5 (0.2) 50.9 (0.3) 53.4 (0.2) 54.8 (0.2) 55.7 (0.2) 57.6 (0.2)

<50.0 2613 (38.8) 659 (49.1) 557 (41.2) 510 (37.7) 484 (36.0) 403 (29.9) <0.01

50.0–79.9 3899 (57.9) 661 (49.2) 759 (56.1) 794 (58.7) 811 (60.3) 874 (64.8)

=80.0 228 (3.4) 23 (1.7) 37 (2.7) 48 (3.6) 49 (3.7) 71 (5.3)

Vitamin D intake (µg/d) 4.7 (1.0) 3.6 (0.9) 4.5 (1.0) 5.1 (0.9) 5.2 (1.0) 5.0 (0.9)

Median 3.6 2.7 3.4 4.0 4.0 3.8

<10 6146 (91.2) 1289 (96.0) 1246 (92.1) 1203 (89.0) 1193 (88.8) 1215 (90.1) <0.01

10–15 384 (5.7) 34 (2.5) 71 (5.3) 98 (7.3) 102 (7.6) 79 (5.9)

>15 210 (3.1) 20 (1.5) 36 (2.7) 51 (3.8) 49 (3.7) 54 (4.0)

Medication usage <0.01

No 2378 (35.3) 633 (47.1) 589 (43.5) 512 (37.9) 398 (29.6) 246 (18.3)

hypolipidemic medications 2010 (29.8) 291 (21.7) 310 (22.9) 383 (28.3) 449 (33.4) 577 (42.8)

Others2 2352 (34.9) 419 (31.2) 454 (33.6) 457 (33.8) 497 (37.0) 525 (39.0)

Outcomes <0.01

Alive 5988 (88.8) 1189 (88.5) 1226 (90.6) 1201 (88.8) 1200 (89.3) 1172 (86.9)

Cardiovascular mortality 315 (4.7) 68 (5.1) 62 (4.6) 71 (5.3) 52 (3.9) 62 (4.6)

Malignancies-specified mortality 235 (3.5) 53 (4.0) 32 (2.4) 48 (3.6) 48 (3.6) 54 (4.0)

Other causes 202 (3.0) 33 (2.5) 33 (2.4) 32 (2.4) 44 (3.3) 60 (4.5)

Length of follow-up <0.01

7–12 years 4206 (62.4) 872 (64.9) 867 (64.1) 882 (65.2) 840 (62.5) 745 (17.7)

3–6 years 2534 (37.6) 471 (35.1) 486 (35.9) 470 (34.8) 504 (37.5) 603 (23.8)

Measurement data were as recorded means (SE) and count data were numbers (percentage); 1, Other races indicated Multi-Racial population and Hispanics; 2, indicated drugs except
hypolipidemic medications. CCI, Charlson Comorbidity Index; HEI, healthy eating index; BMI, body mass index; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein-
cholesterol; LDL-C, low-density lipoprotein-cholesterol.
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TABLE 2 The correlation coefficients between variables in the present study.

Serum 25
(OH)VD

Male Age Non-
Hispanic

White

Non-
Hispanic

Black

Mexican
American

Other
races1

CCI BMI hypolipidemic
medication

usage

HEI HDL-C LDL-C TG TC Length of
follow-up

Serum 25(OH)VD 1.000 −0.046 0.259 0.353 −0.263 −0.156 −0.049 0.114 −0.203 0.153 0.137 0.212 −0.033 −0.027 0.045 0.065

Male −0.046 1.000 −0.001 0.023 −0.035 −0.003 0.007 0.009 −0.077 −0.127 −0.099 −0.290 −0.030 0.109 −0.103 −0.007

Age 0.259 −0.001 1.000 0.187 −0.038 −0.128 −0.081 0.431 −0.072 0.265 0.179 0.189 −0.129 −0.031 −0.049 0.031

Non-Hispanic White 0.353 0.023 0.187 1.000 −0.430 −0.391 −0.478 0.137 −0.041 0.159 −0.060 0.020 −0.052 0.041 −0.024 −0.042

Non-Hispanic Black −0.263 −0.035 −0.038 −0.430 1.000 −0.195 −0.239 −0.027 0.141 0.023 −0.030 0.079 0.031 −0.187 −0.002 0.014

Mexican American −0.156 −0.003 −0.128 −0.391 −0.195 1.000 −0.217 −0.076 0.049 −0.139 −0.005 −0.080 0.009 0.091 0.005 −0.029

Other races1
−0.049 0.007 −0.081 −0.478 −0.239 −0.217 1.000 −0.076 −0.124 −0.093 0.106 −0.028 0.028 0.045 0.027 0.064

CCI 0.114 0.009 0.431 0.137 −0.027 −0.076 −0.076 1.000 0.118 0.276 0.008 −0.030 −0.175 0.062 −0.143 0.036

BMI −0.203 −0.077 −0.072 −0.041 0.141 0.049 −0.124 0.118 1.000 0.064 −0.112 −0.257 −0.042 0.127 −0.095 0.028

hypolipidemic
medication usage

0.153 −0.127 0.265 0.159 0.023 −0.139 −0.093 0.276 0.064 1.000 0.035 0.079 −0.009 0.033 0.033 0.004

HEI 0.137 −0.099 0.179 −0.060 −0.030 −0.005 0.106 0.008 −0.112 0.035 1.000 0.141 −0.023 −0.061 0.015 −0.027

HDL-C 0.212 −0.290 0.189 0.020 0.079 −0.080 −0.028 −0.030 −0.257 0.079 0.141 1.000 0.113 −0.394 0.358 0.012

LDL-C −0.033 −0.030 −0.129 −0.052 0.031 0.009 0.028 −0.175 −0.042 −0.009 −0.023 0.113 1.000 0.046 0.923 −0.043

TG −0.027 0.109 −0.031 0.041 −0.187 0.091 0.045 0.062 0.127 0.033 −0.061 −0.394 0.046 1.000 0.205 −0.106

TC 0.045 −0.103 −0.049 −0.024 −0.002 0.005 0.027 −0.143 −0.095 0.033 0.015 0.358 0.923 0.205 1.000 −0.054

Length of follow-up 0.065 −0.007 0.031 −0.042 0.014 −0.029 0.064 0.036 0.028 0.004 −0.027 0.012 −0.043 −0.106 −0.054 1.000

The correlations among continuous variables were calculated the Pearson correlation coefficients and categorical variables were calculated the Spearman correlation coefficients; 1, other races indicated Multi-Racial population and Hispanics; Bold font
means p < 0.05. CCI, Charlson Comorbidity Index; HEI, healthy eating index; BMI, body mass index; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol.
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TABLE 3 Association between different levels of 25(OH)VD with risk of all-causes, cardiovascular diseases, and malignancy related mortalities in
patients with HL.

Serum 25(OH)VD (ng/mL)

>35.0 <17.3 17.3–23.1 23.2–28.2 28.3–35.0

All-cause mortality

Model 1 1.00 2.18 (1.62–2.95) 1.70 (1.28–2.25) 1.25 (0.96–1.63) 0.98 (0.75–1.28)

Model 2 1.00 2.06 (1.51–2.82) 1.65 (1.22–2.22) 1.19 (0.91–1.56) 0.95 (0.72–1.25)

Cardiovascular mortality

Model 1 1.00 2.92 (1.77–4.84) 1.26 (0.72–2.22) 1.43 (0.91–2.25) 1.14 (0.72–1.81)

Model 2 1.00 2.52 (1.49–4.26) 1.18 (0.67–2.10) 1.31 (0.82–2.10) 1.07 (0.67–1.71)

Model 3 1.00 2.54 (1.50–4.24) 1.09 (0.61–1.94) 1.32 (0.82–2.12) 1.11 (0.69–1.78)

Malignancies-specific mortality

Model 1 1.00 1.28 (0.71–2.29) 1.16 (0.65–1.91) 0.69 (0.39–1.22) 0.91 (0.57–1.45)

Model 2 1.00 1.23 (0.64–2.38) 1.09 (0.62–1.94) 0.66 (0.36–1.19) 0.84 (0.53–1.36)

Model 3 1.00 1.16 (0.61–2.25) 1.02 (0.58–1.80) 0.63 (0.35–1.15) 0.86 (0.53–1.38)

Model 1: adjusted for age, race, gender and the length of follow-up by weighted COXPH model; Model 2: further adjusted from model 1 for BMI, CCI, HEI, medication usage, HDL-C,
LDL-C, TG and TC status by weighted COXPH; Model 3: further adjusted from model 1 for BMI, CCI, HEI, medication usage, HDL-C, LDL-C, TG and TC status by weighted CRR model
for cardiovascular/malignancies-specific mortality; Bold font means p < 0.05. CCI, Charlson Comorbidity Index; HEI, healthy eating index; BMI, body mass index; TC, total cholesterol;
TG, triglyceride; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; COXPH, Cox proportional hazard; CRR, competing risk regression.

association only approached statistical significance (p = 0.068)
(Figure 3).

Discussion

Vitamin D (VD) plays an important role in pathophysiology
of metabolic diseases, including diabetes, hyperuricemia,
HL, obesity and metabolic syndrome (20–22). However, the
relationship between serum 25(OH)VD and mortality of
patients with HL are still unknown and may vary depending
on the patients’ clinical (23, 24), demographic (25), and lifestyle
characteristics (26). To address this issue, we performed a large-
scale cohort analysis of a representative adult population in
the United States. Our findings indicate the serum 25(OH)VD
status as an independent risk factor associated with all-
cause and cardiovascular mortality in patients with HL. The
findings were adjusted for known covariables, including the
participants’ demographics, dietary style, as well as clinical
features such as BMI, lipids status, medication usage, and
comorbidities. Moreover, our study also indicated non-linear
relationships between serum 25(OH)VD and the HRs of all-
cause and cardiovascular mortality in patients with HL, showing
a threshold in serum 25(OH)VD below which the risk for
mortality exponentially increases.

Several studies have shown that higher vitamin D level was
associated with decreased mortality in patients with metabolic
diseases, such as type II diabetes (5) and hypertension (27).
However, it is still debatable whether VD supplementation could
reduce the risk of mortality in patients with cardiometabolic
diseases (28–30). Some studies have shown that low VD levels
are associated with worse clinical presentations in several

diseases, including asthma (31), COVID-19 infection (32),
and hyperuricemia (33), and that VD supplementation can
improve the clinical outcomes. However, many studies also
highlighted that the benefits of VD may be overestimated
(17, 34). Hence, these studies suggest that VD does not have
an impact on the disease itself, but the elimination of VD
deficiency is what actually improves survival. Our findings
also supported this view. Serum 25(OH)VD levels below 25.6
and 25.2 ng/mL had a strong impact on the increased HRs
for all-cause and cardiovascular mortalities, respectively. These
findings were consistent with those reported by Wan (5),
Zhao (4), and Al-khalidi (35). Moreover, Jani et al. (36)
performed a meta-analysis, which showed that the lower level
of circulating 25(OH)VD was dose-dependently associated with
the higher risks of fatal, non-fatal and recurrent cardiovascular
disease, while the thresholds varied for different outcomes.
Heath et al. (37) made another meta-analysis that showed an
inverse relationship between circulating 25(OH)VD status and
cancer-specific mortality with moderate evidence, while for
cardiovascular mortality, there was weak evidence showing its
association with 25(OH)VD.

As for cancer mortality, in the present study we observed
also an inverse association between lower serum 25(OH)VD
(below 25.6 ng/mL) and cancer mortality, but this association
only approached statistical significance, which might be due
to the limited cases. Additionally, although several studies
have shown that lower serum 25(OH)VD were related to
increased cancer mortality, not all studies confirmed that, and
the associations varied depending on the type of malignancy,
race, sex, season/latitude and present co-morbidities (38–43).
Furthermore, the U-shaped association between VD levels and
overall and cancer-mortality have been shown in some studies
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FIGURE 2

The discrimination and calibration curves of predict models. (A,B) All-cause mortality; (C,D) cardiovascular mortality; (E,F) malignancies-specific
mortality. The ribbons indicate the 95% CIs of AUC.

FIGURE 3

The RCS between 25(OH)VD and the mortality HRs for all-cause (A), cardiovascular (B), and malignancies-specific mortality (C). The brown
ribbon indicates the 95% CIs.

(44). In conclusion, more studies including different cancer
types are needed to investigate the associations between serum
25(OH)VD and cancer-specific mortality.

A deficiency of VD is common in various populations
due to inadequate dietary styles and lack of sunshine (45).
The established cut-off values for deficiency, insufficiency,
normal values, excess, and intoxication in sunny countries
are <20, 20–32, 54–90, >100, and >150 ng/mL, respectively
(46). However, these cut-off points are still debatable and
may vary in different populations due to variations in
exposure to sunshine, dietary styles, and disease incidence
(47). Even though there is a general consensus is that
serum 25(OH)VD below 20 ng/mL is classified as VD
deficiency (48), more studies are needed to establish the

optimal serum 25(OH)VD levels for individuals with various
health conditions.

Considering the association between serum levels of lipid
profiles and vitamin D, it is still debatable whether higher level
of VD is related to decreased serum levels of LDL-C, TC, and
TG and increased level of HDL-C. In the present study, elevated
serum 25(OH)VD were associated with an increased level of
HDL-C and TC, and lower serum 25(OH)VD were associated
with higher TG and LDL-C levels. Many researchers have also
reported similar results as our study (49, 50). However, elevated
serum 25(OH)VD were also associated with higher level of TC
in our study, which might be owing to the participants in our
study were diagnosed with different types of HL, which could
lead to a selection bias, since the relationship between VD levels
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and serum levels of lipid profiles might be different according to
various individual clinical statuses (5, 51, 52). Further research
is needed for investigating these relationships.

The main strength of this study is that the large population
was included. The data obtained from the NHANES survey
allowed us to adjust the models for various variables,
including the participants’ baseline characteristics, dietary
condition, comorbidities, and medication usage. However, the
study has several limitations that have to be acknowledged.
Although serum 25(OH)VD is a good biomarker and typically
represents the VD status for nearly 2 months (46), these
measurements may vary over time. However, in our study,
the serum 25(OH)VD were only acquired at a single point
in time. Moreover, we have not adjusted for season/altitude.
Furthermore, the dietary style and sunshine exposure vary
around the world, and therefore our findings cannot be
generalized to other populations, and further studies are
therefore recommended.

Conclusion

The serum 25(OH)VD were identified as an independent
risk factor for all-cause and cardiovascular mortalities
in patients with HL in the present study. Lower serum
25(OH)VD levels were associated with a significantly
higher risk for all-cause and cardiovascular mortality, at
the threshold of levels lower than 25.6 and 25.2 ng/ml,
respectively. However, no significant associations were
found between malignancy-specific mortality and serum
25(OH)VD, even the similar trend was noted under the
threshold of 25.6 ng/mL.
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Obesity and vitamin D deficiency are both considered risk factors for mortality,

but the potential additive effects of vitamin D status and obesity on mortality

has not been well-studied. We aimed to examine the possible additive effects

of obesity and vitamin D status on all-cause and cause-specific mortality.

The data from the NHANES III (1988–1994) and NHANES 2001–2014 surveys

were used, and multivariate Cox regression models were performed to assess

the additive effects of vitamin D status and overweight/obesity/abdominal

obesity on the all-cause, cardiovascular and cancer mortality, by stratifying

Cox Hazard Ratios (HRs) across different categories of vitamin D status and

body mass index (BMI) and waist circumference (WC) categories. The models

were adjusted for age, race/ethnicity, gender, educational level, family income

to poverty ratio, leisure-time physical activity, smoking, and drinking. Across

all BMI/WC categories, there was an additive effect of the vitamin D both

insufficiency and deficiency on all mortality rates, with deficiency having

much stronger effect than insufficiency. Interestingly, the effect of vitamin D

deficiency overcame the effect of obesity on all mortality rates. The highest

HRs for overall and cardiovascular mortality were observed among vitamin

D deficient obese/abdominally obese subjects, while for cancer mortality

among vitamin D deficient normal weight/non-abdominally obese subjects.

In stratified analyses, regarding all-cause mortality, there was an additive

effect of the vitamin D both insufficiency and deficiency in all BMI/WC

categories. Regarding cardiovascular mortality, there was an additive effect

of vitamin D deficiency in all BMI/WC categories, but the additive effect of

vitamin D insufficiency reached significance only in normal weight subjects.

Regarding cancer mortality, the effect did not reach significance among

obese subjects for vitamin D deficiency, while for insufficiency, significance

was reached only among non-abdominally obese subjects. Interestingly,

vitamin D surplus was associated with increased risk for cancer mortality

in obese subjects, but there was an inadequate number of subjects in this

category to make proper judgment. In conclusion, vitamin D insufficiency and
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deficiency gradually increase risk for mortality across all BMI/WC categories.

In our analyses, vitamin D deficiency overcame the effect of obesity on

mortality rates.

KEYWORDS

vitamin D, abdominal obesity, obesity, mortality, all-cause, cancer, cardiovascular

Introduction

Vitamin D, as an essential micronutrient, has pleiotropic
skeletal and non-skeletal actions, including its anti-
inflammatory, anti-proliferative, anti-oxidative, and
immunomodulatory effects (1). An increasing number of
studies have shown that vitamin D deficiency is associated
with obesity and metabolic disorders related to obesity (2–4).
Compared with normal weight subjects, obese subjects are
more likely to have vitamin D deficiency, most probably due to
volumetric dilution, even though other mechanisms also could
have a role (5, 6). Currently, hypovitaminosis D is observed at
high rates, most probably because of the modern lifestyle, but
some argue that this may be also due to the high global obesity
prevalence (5, 7).

Obesity and vitamin D deficiency are now considered
major public health problems worldwide (2). Recent meta-
analyses and systematic review studies proposed that vitamin
D deficiency may be associated with mortality, including all-
cause mortality and cause-specific mortality (8–10). According
to previous studies, vitamin D deficiency may be more
significantly associated with cardiovascular diseases (CVD)
and was also closely related to some carcinoma types
(11–13). Low levels of circulating 25-hydroxy-vitamin D
[25(OH)D] may be associated with an increased risk of
CVD, especially recurrent CVD events and CVD mortality
(14). Meanwhile, the global prevalence of obesity is also
rising, and CVD is one of the main causes of death
among the obese (15). Additionally, obesity or serum vitamin
D level may affect the severity or mortality of some
diseases. For example, some research results showed that
the incidence and mortality of novel coronavirus disease
2019 (COVID-19) were higher in several European countries
with high latitude or high obesity prevalence (16). In
some specific populations, such as menopausal women, it
has been shown that the relationship between vitamin D
levels and mortality may differ among participants with
different body mass index (BMI) or waist circumference
(WC), but there was no similar conclusion in the general
population (17, 18). These studies all implied that vitamin
D or obesity not only independently have an effect on
mortality, but also there may be a potential additive effect
between them. However, the potential additive effect of

serum vitamin D status and obesity on mortality has not
been well-studied.

We aimed to examine in detail the possible additive effect
of obesity and vitamin D status [assessed through serum
25(OH)D concentration] with regard to all-cause and cause-
specific mortality, using the data from National Health and
Nutrition Examination Surveys (NHANES), large scale surveys
conducted in the United States (19).

Materials and methods

The National Health and Nutrition Examination
Survey (NHANES) is a nationally representative survey
administered by the National Center for Health Statistics
division of the Centers for Disease Control and Prevention
and US Department of Agriculture. The NHANES
utilizes a multistage, stratified area probability sampling
design to select participants representative of the US
population, and combines in-person interviews and
physical examinations via a mobile examination center
to collect data (20). NHANES was approved by the
institutional review board of the National Center of
Health Statistics. All participants provided written
informed consent.

Data were analyzed from NHANES III (1988–1994)
and NHANES 2001–2014. The average follow-up time was
11.9 years. Considering age-related reductions in lean muscle
mass and subclinical disorders which may affect body weight,
the analysis samples were limited to participants aged 20–
79 years, without pregnancy and with complete data on BMI,
WC, serum 25(OH)D concentrations and survival during
follow-up (21).

Body measurements

In the current study, we classified participants as
underweight (BMI < 18.5 kg/m2), normal weight (BMI = 18.5–
24.9 kg/m2), overweight (BMI = 25.0–29.9 kg/m2), and obese
(BMI ≥ 30 kg/m2) groups according to BMI (22). Abdominal
obesity was defined as WC ≥ 102 cm for men and WC ≥ 88 cm
for women (23).
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Serum 25(OH)D concentration

Serum 25(OH)D concentrations are considered to be the
most reliable index of vitamin D status. Serum 25(OH)D
concentrations were measured by DiaSorin radioimmunoassay
kit (Stillwater, MN) in the NHANES III (1988–1994)
and NHANES 2001–2006, and then were determined
by a standardized liquid chromatography–tandem mass
spectrometry (LC-MS/MS) method (24). Serum [25(OH)D]
data from NHANES III (1988–1994) and NHANES 2001–2006
have been converted by using regression to equivalent 25(OH)D
measurements from a standardized LC-MS/MS method and
we used the LC-MS/MS-equivalent data for all analyses
as recommended by analytical guidelines (24). According
to serum25(OH)D concentrations and the US Institute of
Medicine (IOM) guidelines from 2011, the vitamin D status was
categorized into deficiency (<12.0 ng/mL), insufficiency (12.0–
19.9 ng/mL), sufficiency (20.0–50 ng/mL) and possibly harmful
(>50 ng/ml) (25). Nevertheless, according to the Endocrine
Society guidelines form 2011, vitamin D deficiency was defined
as serum levels of 25(OH)D < 20 ng/mL, insufficiency as levels
20–30 ng/mL, while levels ≥ 30 ng/ml were characterized as the
normal range (26). In our study we used the more strict IOM
definitions (27).

Outcomes

Mortality related information for all causes and specific
diseases was obtained by linking to the National Death Index as
at December 31, 2015. Outcomes were classified using ICD-10
codes. CVD mortality codes include: ICD-10 codes I00–I09, I11,
I13, I20–I51, or I60–I69, and cancer mortality codes include:
ICD-10 codes C00–C97. Because the deaths due to CVD were
not available on US National Death Index matched mortality
dataset after December 31, 2011, we only included participants
from NHANES III and NHANES 2001–2010 for CVD mortality.

Covariates

In the surveys, the self-reported data were collected on age,
race/ethnicity, gender, educational level, ratio of family income
to poverty, leisure-time physical activity, smoking, and drinking
(3). Leisure-time physical activity was divided into three groups:
inactive group (no leisure time physical activity), moderately
active group (leisure time moderate physical activity 1–5 times
per week or leisure-time vigorous physical activity 1–3 times
per week), active group: more moderate or vigorous leisure
time physical activity than above (28). The smoking status was
categorized into “never,” “former,” or “current smoker.” Never
smoker was defined as smoking never or less than 100 cigarettes
in life. Former smoker was defined as smoking more than
100 cigarettes in life but no smoking temporally, while current

smokers were those who reported temporally smoking cigarettes
“every day” or “some days” (29). Diet and alcohol consumption
related data were from 24-h dietary recalls (only day 1 recall
was included). Drinking was grouped according to the dietary
guidelines for American residents (30).

Statistical analysis

For continuous and categorical variables, respectively,
the analysis of variance and Pearson χ2 test were performed.
In addition, the Bonferroni method post-hoc tests were
made in analysis of variance, and P-value was corrected
for multiple comparisons by the Bonferroni method.
A post-hoc power analysis was also performed in our
study and the result was satisfactory (power > 0.9). We
used multiple imputation based on chained equations
(MICE) to impute the missing data of covariates, but
we also performed analyses with excluded all subjects
who miss any of the main covariates (data presented in
Supplementary material).

In our study, Cox proportional hazard regression models
were used to estimate the hazard ratios (HR) and 95%
confidence intervals (95% CI) for outcomes. Due to the
rare number of underweight participants, we only performed
descriptive statistics for them. The models were adjusted
age, race/ethnicity, gender, educational level, family income
to poverty ratio, leisure-time physical activity, smoking and
drinking. To see the additive effects on mortality, we
stratified Cox Hazard Ratios (HRs) across different categories
of BMI/WC and vitamin D status. Reference groups were
vitamin D sufficient, normal weight and not abdominally
obese. Additionally, in supplementary multivariate models
in Supplementary Table 4 (Supplementary Models 1–3)
we also included as covariates dietary supplement use,
polyunsaturated fatty acid intake, calcium and magnesium
intake (Supplementary Table 4 in Supplementary Model 1),
healthy eating index (HEI) (Supplementary Table 4 in
Supplementary Model 2) or specific foods intake in HEI scores
(Supplementary Table 4 in Supplementary Model 3) (HEI-
1995 for NHANES 1988–1994 and HEI-2015 for NHANES
2001–2014), since those dietary factors have been shown to
interact with associations of vitamin D status with mortality
(31–34). Considering that vitamin D status is associated with
renal function, we also further adjusted our main model for
kidney function, estimated by the glomerular filtration rate
(Supplementary Table 4 in Supplementary Model 4) (35). We
also repeated the main analyses after excluding the participants
with missing data on any of the main covariates (age, gender,
race, educational level, ratio of family income to poverty, leisure-
time physical activity, smoking, and drinking). All analyses were
performed using Stata software (version 16). Gpower software
(version 3.1) was used for power analysis. Two-sided P < 0.05
was considered for statistical significance.
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Results

Population characteristics

The baseline characteristics of the participants form
NHANES III and NHANES 2001–2014 were shown in Table 1.
The average follow-up time was 11.9 years. We included 40058
participants aged 20–79 who were not pregnant and had no
missing data on BMI, WC, serum 25(OH)D concentrations
and survival. The flow chart and the comparison of baseline
characteristics between excluded and included participants
can be seen in Supplementary Figure 1 and Supplementary
Table 1, respectively.

Among the 40,058 participants, just 1.6% were underweight,
while other BMI categories were quite equally represented.
However, there were significant gender differences regarding
obesity and overweight prevalence: among females, the majority
were obese (37.2%), and among males, the majority were
overweight (39.9%). The highest proportion of obese was
among non-Hispanic Blacks (40.2%), then Mexican American
(33.8%), while the highest proportion of overweight was among
Mexican American (39.2%), then non-Hispanic Whites (34.0%).
In total, both Mexican Americans and non-Hispanic Blacks
had the highest proportion of subjects with overweight/obesity.
Interestingly, regarding education and family income-poverty
ratio, there was no huge difference, but regarding leisure
time physical activity, smoking and alcohol consumption,
the lowest proportion of obese was among physically active,
current smokers and those who consumed more that 14 g
alcohol per day.

Abdominal obesity was present in half of the overweight
subjects and in almost all of the obese subjects (95.7%).

In total, vitamin D deficiency [serum 25(OH)D < 12 ng/mL]
was present in 6.0% of subjects, while insufficiency [serum
25(OH)D 12.0–19.9 ng/mL] was present in 22.9% of subjects.
Among vitamin D deficient and insufficient subjects, there
was the highest proportion of obese subjects (44.7 and
39.2%, respectively), then overweight subjects (27.3 and 33.4%,
respectively), which means that among vitamin D deficient and
insufficient subjects, respectively, 72.0 and 72.6% were with
BMI ≥ 25 kg/m2. Interestingly, in both obese and underweight
subjects, the proportion of vitamin D deficiency or insufficiency
was higher than in normal weight or overweight group.

Multivariate analysis of association
between vitamin D status and all-cause
and cause-specific mortality among
different BMI/WC groups

First, we analyzed the association of obesity levels or vitamin
D status with mortality in the total sample (Tables 2, 3). The
results indicated that obesity, abdominal obesity, vitamin D

insufficiency and vitamin D deficiency were associated with
increased risk for all-cause mortality and CVD mortality.
Interestingly and unexpectedly, all-cause and CVD mortality
HRs for vitamin D deficiency/insufficiency were higher than
HRs for obesity/abdominal obesity. Vitamin D deficiency
was associated with the highest risk for all-cause and CVD
mortality. Interestingly, overweight had a protective effect on
all-cause mortality. Regarding cancer-mortality, only vitamin D
insufficiency and deficiency were associated with the increased
risk. We also provide the HRs of all included covariates for
all-cause and cause-specific mortality in the models which
included both vitamin D status and BMI or WC categories
(Supplementary Tables 2, 3). Results were very similar, with
again much higher HRs for vitamin D status vs. obesity
status regarding all-cause and CVD mortality, with vitamin
D deficiency bringing the highest risk. For cancer-mortality,
only vitamin D status was a significant predictor, with both
insufficiency and deficiency contributing to the higher risk
(but deficiency contributed more). Adjusting for obesity level
negligibly changed significance for vitamin D status HRs.
Regarding other covariates, only leisure-time physical activity
was not associated with mortality rates. Smoking brought
the highest risk for all three mortalities (Supplementary
Tables 2, 3).

Next, we performed analyses to see the additive effects
of vitamin D status and obesity levels, by comparing with
the risk in “normal weight, vitamin D sufficient” subjects. In
the whole sample analyses, there was the highest risk of all-
cause and CVD mortality in participants with both obesity and
vitamin D deficiency (Table 4). It is observable that through
all BMI/WC categories, with deterioration of the vitamin D
status, the risk for all-cause and CVD mortality gradually
increases. The highest impact of joint vitamin D deficiency and
obesity/abdominal obesity was on CVD mortality. Interestingly,
the impact of vitamin D deficiency much overcame the effect
of obesity for all-cause and CVD mortality. Actually, for all-
cause mortality, among vitamin D sufficient subjects the effect
of obesity was not significant, while overweight even had a
protective effect. Regarding cancer mortality, only vitamin D
status was associated with the increased risk, and on the highest
risk were vitamin D deficient normal weight/not-abdominally
obese subjects, then vitamin D deficient overweight subjects.

We further stratified the association between vitamin D
status and mortality by different BMI/WC categories, with
adjustments for age, race, gender, educational level, family
income to poverty ratio, leisure-time physical activity, smoking,
and drinking, to see in which BMI/WC category the effect
of vitamin D deficiency/insufficiency will be the highest
(Tables 5, 6 and Figure 1).

In all BMI- and WC-categories, both insufficiency and
deficiency of vitamin D were additional risk factors for all-
cause mortality. The participants with vitamin D deficiency
had the most increased risk of all-cause mortality compared
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TABLE 1 Baseline characteristics of participants from US National Health and Nutrition Examination Survey (US NHANES) III and 2001–2014.

Characteristics Total Underweight Normal weight Overweight Obese
N = 40058 N = 648 (1.6) N = 12309 (30.7) N = 13731 (34.3) N = 13370 (33.4)

Mean age in years* 46.9 (46.8–47.1) 41.2 (39.8–42.6) 43.5 (43.2–43.8) 48.6 (48.3–48.9) 48.7 (48.4–48.9)

Gender*

Male 19586 (48.9/100) 226 (34.9/1.2) 5794 (47.1/29.6) 7810 (56.9/39.9) 5756 (43.1/29.4)

Female 20472 (51.1/100) 422 (65.1/2.1) 6515 (52.9/31.8) 5921 (43.1/28.9) 7614 (57.0/37.2)

Race/ethnicity*

Non-Hispanic white 17770 (44.4/100) 325 (74.0/1.8) 5883 (75.8/33.1) 6035 (73.5/34.0) 5527 (69.0/31.1)

Non-Hispanic black 9255 (23.1/100) 170 (11.4/1.8) 2514 (8.4/27.2) 2855 (9.6/30.9) 3716 (14.6/40.2)

Mexican American 8526 (21.3/100) 68 (2.9/0.8) 2240 (5.1/26.3) 3338 (7.8/39.4) 2880 (8.3/33.8)

Other 4507 (11.3/100) 85 (11.7/1.9) 1672 (10.7/37.1) 1503 (9.1/33.4) 1247 (8.2/27.7)

Education*

Less than high school 13610 (34.0/100) 216 (33.3/1.6) 3724 (30.3/27.4) 4966 (36.2/36.5) 4704 (35.2/34.6)

High school or equivalent 12068 (30.1/100) 200 (30.9/1.7) 3758 (30.6/31.1) 4045 (29.5/33.5) 4065 (30.4/33.7)

College or above 14365 (35.9/100) 232 (35.8/1.6) 4821 (39.2/33.6) 4717 (34.4/32.8) 4595 (34.4/32.0)

Family income-poverty ratio*

≤1.0 8916 (23.3/100) 192 (31.4/2.2) 2717 (22.9/30.5) 2914 (22.2/32.7) 3093 (24.3/34.7)

1.0–3.0 15707 (41.0/100) 259 (42.4/1.7) 4678 (39.4/29.8) 5330 (40.6/33.9) 5440 (42.6/34.6)

>3.0 13721 (35.8/100) 160 (26.2/1.2) 4468 (37.7/32.6) 4868 (37.1/35.5) 4225 (33.1/30.8)

Leisure-time physical activity*

Inactive 16972 (47.0/100) 304 (50.1/1.8) 4790 (42.4/28.2) 5576 (45.1/32.9) 6302 (53.1/37.1)

Moderately active 12184 (33.8/100) 163 (28.0/1.3) 3902 (34.6/32.0) 4271 (34.5/35.1) 3848 (32.4/31.6)

Active 6945 (19.2/100) 116 (19.9/1.7) 2595 (23.0/37.4) 2518 (20.4/36.3) 1716 (14.5/24.7)

Smoking*

Never 20630 (51.5/100) 287 (46.5/1.4) 6250 (49.0/30.3) 6890 (48.9/33.4) 7203 (50.9/34.9)

Former 9758 (24.4/100) 68 (10.3/0.7) 2402 (20.8/24.6) 3731 (27.9/38.2) 3557 (28.0/36.5)

Current 9657 (24.1/100) 293 (43.2/3.0) 3654 (30.2/37.8) 3107 (23.2/32.2) 2603 (21.2/27.0)

Alcohol, g/d*

<14 32159 (81.3/100) 495 (76.6/1.5) 9473 (75.9/29.5) 10840 (76.7/33.7) 11351 (84.4/35.3)

14–28 2745 (6.9/100) 61 (10.8/2.2) 962 (8.3/35.1) 999 (8.2/36.4) 723 (5.9/26.3)

≥ 28 4670 (11.8/100) 83 (12.6/1.8) 1717 (15.8/36.8) 1734 (15.1/37.1) 1136 (9.7/24.3)

BMI, kg/m2* 28.4 (28.3–28.5) 17.5 (17.4–17.6) 22.4 (22.4–22.5) 27.4 (27.3–27.4) 35.5 (35.4–35.6)

Waist circumference, cm* 96.9 (96.7–97.1) 70.5 (70.1–70.9) 82.4 (82.2–82.5) 95.8 (95.7–96.0) 112.7 (112.4–112.9)

Abdominal obesity*

Not abdominally obese 19511 (48.7/100) 646 (99.7/3.3) 11354 (92.2/58.2) 6939 (50.5/35.6) 572 (4.3/2.9)

Abdominally obese 20547 (51.3/100) 2 (0.3/0.0) 955 (7.8/4.7) 6792 (49.5/33.1) 12798 (95.7/62.3)

Vitamin D status, ng/mL* 23.6 (23.5–23.7) 24.3 (23.4–25.2) 25.3 (25.1–25.4) 24.0 (23.9–24.2) 21.7 (21.5–21.8)

Vitamin D status*

Sufficiency 24111 (60.2/100) 381 (67.4/1.6)a, b 8074 (75.5/33.5)a, c 8651 (71.8/35.9)b, d 7005 (60.4/29.1)c, d

Insufficiency 11662 (29.1/100) 161 (20.3/1.4) a 3040 (17.8/26.1)b, c 3895 (22.1/33.4)b, d 4566 (30.1/39.2)a, c, d

Deficiency 3807 (9.5/100) 90 (9.6/2.4)a, b 976 (4.7/25.6)a, c, d 1041 (4.7/27.3)c, e 1700 (8.7/44.7)b, d, e

Possibly harmful 478 (1.2/100) 16 (2.7/3.4)a, b 219 (2.0/45.8)c, d 144 (1.3/30.1)a, c, e 99 (0.8/20.7)b, d, e

Death

All-cause mortality* 6617 (16.5/100) 133 (20.5/2.0)a, b 1949 (15.8/29.5)a, c 2395 (17.4/36.2)c, d 2140 (16.0/32.3)b, d

CVD mortality 1320 (3.3/100) 17 (2.6/1.3) 365 (3.0/27.7) 476 (3.5/36.1) 462 (3.5/35.0)

Cancer mortality 1614 (4.0/100) 34 (5.3/2.1) 491 (4.0/30.4) 589 (4.3/36.5) 500 (3.7/31.0)

Data are N (% by column/% by row) or mean (95% CI). *There were statistical differences among different BMI categories (P < 0.001). P-values were calculated using analysis of variance
with post-hoc Bonferroni test and χ2 test for continuous and categorical variables, respectively. The same superscript indicates statistically significant difference between the two groups
(P < 0.05). P-values have been corrected by the Bonferroni method. CVD, cardiovascular disease; BMI, body mass index.

Frontiers in Nutrition 05 frontiersin.org

111

https://doi.org/10.3389/fnut.2022.999489
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-999489 October 18, 2022 Time: 7:31 # 6

Song et al. 10.3389/fnut.2022.999489

TABLE 2 The associations of different obesity levels with all-cause and cause-specific mortality in NHANES III and NHANES 2001–2014: HRs (95%
CIs) for different BMI categories.

Death HR (95% CI) P-values

All-cause mortality

Normal weight Reference

Overweight 0.91 (0.86–0.97)* 0.003

Obesity 1.08 (1.01–1.15)* 0.017

Non-abdominal obesity Reference

Abdominal obesity 1.09 (1.03–1.15)* 0.001

CVD mortality

Normal weight Reference

Overweight 0.93 (0.81–1.07) 0.291

Obesity 1.25 (1.09–1.44)* 0.002

Non-abdominal obesity Reference

Abdominal obesity 1.28 (1.14–1.44)* <0.001

Cancer mortality

Normal weight Reference

Overweight 0.92 (0.81–1.04) 0.162

Obesity 1.02 (0.90–1.16) 0.779

Non-abdominal obesity Reference

Abdominal obesity 0.97 (0.88–1.08) 0.623

All models were adjusted for age, gender, race/ethnicity, educational level, family income to poverty ratio, leisure-time physical activity, smoking, and drinking. *P < 0.05. HR, hazard
ratio; CI, confidence interval; BMI, body mass index; CVD, cardiovascular disease.

TABLE 3 The associations of serum vitamin D status with all-cause and cause-specific mortality in NHANES III and NHANES 2001–2014: HRs (95%
CIs) for different vitamin D status categories.

Death HR (95% CI) P-values

All-cause mortality

Sufficiency Reference

Insufficiency 1.18 (1.12–1.25)* <0.001

Deficiency 1.48 (1.36–1.62)* <0.001

Possibly harmful 1.00 (0.65–1.54) 1.000

CVD mortality

Sufficiency Reference

Insufficiency 1.25 (1.10–1.42)* 0.001

Deficiency 1.65 (1.35–2.00)* <0.001

Possibly harmful – –

Cancer mortality

Sufficiency Reference

Insufficiency 1.18 (1.05–1.32)* 0.005

Deficiency 1.42 (1.19–1.69)* <0.001

Possibly harmful 1.56 (0.80–3.01) 0.189

All models were adjusted for age, gender, race/ethnicity, educational level, family income to poverty ratio, leisure-time physical activity, smoking, and drinking. *P < 0.05. HR, hazard
ratio; CI, confidence interval; CVD, cardiovascular disease.

with those with vitamin D sufficiency, across all categories of
BMI and WC. The participants with vitamin D insufficiency
had also the significantly higher risk of all-cause mortality
compared with vitamin D sufficiency, but the risk was lower
compared with vitamin D deficiency (Tables 5, 6). Across all
BMI/WC categories, the risk vitamin D insufficiency/deficiency

quite equally increased, but seems that highest effect was among
normal weight and not abdominally obese subjects (Figure 1).

For CVD mortality, our data showed that the insufficient
vitamin D status was an additional risk factor only in the normal
weight and non-abdominally obese subjects, while in obese
and abdominally obese subjects it only approached statistical
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TABLE 4 The interaction effect of serum vitamin D status and obesity levels on all-cause and cause-specific mortality in NHANES III and NHANES
2001–2014: HRs (95% CIs) across different vitamin D status and obesity sub-categories.

Vitamin D sufficiency Vitamin D insufficiency Vitamin D deficiency Possibly harmful
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

All-cause mortality

BMI

Normal weight Reference 1.19 (1.08–1.32)* 1.51 (1.30–1.76)* 0.80 (0.38–1.68)

Overweight 0.91 (0.84–0.99)* 1.08 (0.99–1.19) 1.33 (1.14–1.54)* 1.07 (0.51–2.25)

Obesity 1.08 (0.99–1.17) 1.24 (1.13–1.36)* 1.53 (1.33–1.75)* 1.25 (0.56–2.79)

WC

Non-Abdominal obesity Reference 1.22 (1.12–1.33)* 1.55 (1.36–1.77)* 0.95 (0.49–1.82)

Abdominal obesity 1.10 (1.03–1.18)* 1.26 (1.17–1.36)* 1.57 (1.41–1.76)* 1.16 (0.66–2.05)

CVD mortality

BMI

Normal weight Reference 1.38 (1.10–1.74)* 1.59 (1.11–2.28)* –

Overweight 0.98 (0.82–1.17) 1.08 (0.87–1.35) 1.70 (1.22–2.37)* –

Obesity 1.25 (1.04–1.52)* 1.56 (1.27–1.92)* 2.07 (1.53–2.80)* –

WC

Non-Abdominal obesity Reference 1.30 (1.07–1.58)* 1.78 (1.31–2.42)* –

Abdominal obesity 1.31 (1.13–1.53)* 1.56 (1.31–1.85)* 2.00 (1.56–2.58)* –

Cancer mortality

BMI

Normal weight Reference 1.26 (1.03–1.54)* 1.60 (1.19–2.14)* 1.22 (0.39–3.83)

Overweight 0.94 (0.80–1.10) 1.09 (0.90–1.31) 1.49 (1.12–1.99)* 1.15 (0.29–4.62)

Obesity 1.06 (0.89–1.26) 1.22 (1.01–1.48)* 1.24 (0.93–1.66) 3.11 (1.16–8.37)*

WC

Non-Abdominal obesity Reference 1.25 (1.06–1.47)* 1.50 (1.16–1.93)* 1.07 (0.34–3.35)

Abdominal obesity 1.00 (0.87–1.14) 1.13 (0.96–1.31) 1.37 (1.09–1.72)* 1.94 (0.77–4.89)

All models adjusted for age, gender, race/ethnicity, educational level, family income to poverty ratio, leisure-time physical activity, smoking, and drinking. *P < 0.05. HR, hazard ratio; CI,
confidence interval; BMI, body mass index; WC, waist circumference; CVD, cardiovascular disease.

significance. In contrast, vitamin D deficiency was an additional
risk factor for CVD mortality in all BMI and WC-subgroups
(Tables 5, 6 and Figure 1).

Regarding cancer mortality, the additive effect of vitamin D
deficiency was seen in all BMI/WC categories, except in obese
subjects, while the additive effect of vitamin D insufficiency
was seen only in non-abdominally obese subjects. Interestingly,
there was an additive effect of vitamin D surplus (levels above
50 ng/ml) and obesity on the risk for cancer mortality (Table 4).
Actually, only in obese subjects the vitamin D surplus was
associated with the increased risk for cancer mortality (Table 5).
This observation is interesting and requires further exploration,
but due to particularly small number of subjects in that category
(only 4), it is not possible to draw proper concussion.

The results of our supplementary models were consistent
with the results of the presented main models (Supplementary
Table 4), with difference that the effect of vitamin D
insufficiency on was also observed in obese and abdominally
obese subjects. We also repeated analyses in the main models
after excluding the participants with missing any of the main
covariates, and the results were very similar, with only difference

that the effect of vitamin D deficiency was no more seen in
obese and abdominally-obese subjects for CVD mortality, nor
was seen the effect of vitamin D surplus on cancer mortality
(Supplementary Tables 5–8).

Discussion

Overall mortality

Our study, based on a large prospective cohort, indicated
that lower levels of serum vitamin D were significantly
associated with higher all-cause mortality. This was consistent
with some data from previous research (36, 37). Additionally,
there was an additive effect of the vitamin D both insufficiency
and deficiency on all-cause mortality in all BMI/WC categories.
It is well-known that obesity is one of the main risk factors
for pre-mature death, and among examined 87 risk factors for
pre-mature death, high BMI was on the fifth place, according
to the Global burden of disease study report from 1990–
2019 (38). Therefore, we expected that obesity will have much
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TABLE 5 Stratified HRs (95% CIs) across different BMI categories and additive effect of serum 25(OH)D status on all-cause and cause-specific
mortality in NHANES III and NHANES 2001–2014.

Vitamin D status BMI
Hazard ratio (95% CIs)

Normal weight Overweight Obese

All-cause mortality n P n P n P

Number of deaths 1,949 2,395 2,140

Sufficiency 1,160 1 (Reference) 1,403 1 (Reference) 1,037 1 (Reference)

Insufficiency 577 1.19 (1.07–1.33)* 0.001 777 1.17 (1.07–1.29)* 0.001 817 1.15 (1.05–1.27)* 0.004

Deficiency 205 1.50 (1.28–1.76)* <0.001 208 1.43 (1.22–1.67)* <0.001 280 1.42 (1.23–1.65)* <0.001

Possibly harmful 7 1.15 (0.38–3.54) 0.800 7 1.16 (0.55–2.45) 0.693 6 1.26 (0.56–2.82) 0.573

CVD mortality

Number of deaths 362 468 450

Sufficiency 210 1 (Reference) 286 1 (Reference) 219 1 (Reference)

Insufficiency 116 1.42 (1.11–1.81)* 0.005 138 1.08 (0.87–1.34) 0.500 173 1.24 (1.00–1.53) 0.050

Deficiency 36 1.58 (1.09–2.30)* 0.017 44 1.68 (1.19–2.37)* 0.003 58 1.62 (1.17–2.23)* 0.003

Possibly harmful 0 – 0 – 0 –

Cancer mortality

Number of deaths 491 589 500

Sufficiency 281 1 (Reference) 340 1 (Reference) 243 1 (Reference)

Insufficiency 151 1.17 (0.95–1.45) 0.150 188 1.17 (0.97–1.41) 0.100 195 1.19 (0.98–1.45) 0.086

Deficiency 56 1.42 (1.04–1.93)* 0.027 59 1.63 (1.21–2.19)* 0.001 58 1.26 (0.93–1.73) 0.141

Possibly harmful 3 1.16 (0.37–3.64) 0.800 2 1.22 (0.30–4.90) 0.784 4 3.18 (1.18–8.61)* 0.023

All models were adjusted for age, race, gender, educational level, ratio of family income to poverty, leisure-time physical activity, smoking, and drinking. *P < 0.05. HR, hazard ratio; CI,
confidence interval; BMI, body mass index; CVD, cardiovascular disease.

more significant impact on overall mortality, compared with
vitamin D status. Nevertheless, the results from this study
have shown quite the opposite: the impact of vitamin D
status overcome the impact of overweight and obesity, since
in our Cox regression models for overall mortality, HRs for
vitamin D both insufficiency and deficiency were much higher,
compared with HRs for overweight and obesity, which was an
expected finding (actually, overweight had a protective effect).
The explanations for the additive effects of obesity and vitamin
D deficiency on overall mortality are not clear. Since CVD
mortality was even more connected with additive effect of
vitamin D status and obesity, it could be projected the effect
on overall mortality was mostly conveyed through the effect
on CVD mortality. In our study, CVD mortality represented
only about one fifth of total mortality, but we did not include
all surveys for assessing CVD mortality, and proportion of
this mortality must be higher. Additionally, mortality of many
other diseases and conditions can be associated with vitamin
D status and obesity, e.g., mortality from respiratory diseases,
infective diseases or some other chronic diseases, including
endocrine (diabetes), neurological, kidney diseases, rheumatoid
diseases, etc. (37). The mechanisms of the association between
vitamin D and obesity can be multiple. Not only is there
a simple dilution of vitamin D by increased fat deposits
and plasma volume, but also some studies have indicated

that in obesity the rate of uptake up vitamin D in adipose
tissue may be increased, together with the increased rate
of its inactivation/catabolism and elimination, and decreased
rate of synthesis and absorption (6, 39, 40). Therefore, obese
participants may need more vitamin D in order to maintain
adequate status of serum vitamin D (5, 41, 42). With higher
sequestration of vitamin D in adipose tissue, there will be much
lower bioavailability of vitamin D for many other tissues, and
it is known that vitamin D has numerous physiological effects
(apart from the effect on calcium and phosphorus metabolism
in bones and risk for fractures), including hormonal, metabolic,
anti-oxidative, anti-proliferative, anti-infective, and immuno-
modulatory actions. All these mechanisms may explain the
higher risk for overall mortality in participants with both obesity
and vitamin D deficiency.

Cardiovascular diseases mortality

With respect to CVD mortality, our results showed again
that there was a strong additive effect of vitamin D deficiency
and obesity, since participants with both obesity and vitamin
D deficiency had the highest risk for CVD mortality, compared
with other categories: almost 2.1 times higher than in vitamin
D sufficient normal weight subjects. In contrast, obesity alone,
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TABLE 6 Stratified HRs (95% CIs) across different WC categories and additive effect of serum 25(OH)D status on all-cause and cause-specific
mortality in NHANES III and NHANES 2001–2014.

Vitamin D status WC
Hazard ratio (95% CIs)

Not abdominally obese Abdominally obese

All-cause mortality n P n P

Number of deaths 2,848 3,769

Sufficiency 1,679 1 (Reference) 1,985 1 (Reference)

Insufficiency 885 1.22 (1.11–1.33)* <0.001 1,330 1.14 (1.06–1.23)* 0.001

Deficiency 275 1.53 (1.33–1.75)* <0.001 442 1.42 (1.27–1.59)* 0.001

Possibly harmful 9 0.86 (0.45–1.66) 0.660 12 1.13 (0.64–1.99) 0.683

CVD mortality

Number of deaths 509 788

Sufficiency 298 1 (Reference) 426 1 (Reference)

Insufficiency 160 1.32 (1.07–1.61)* 0.009 275 1.17 (1.00–1.37) 0.058

Deficiency 51 1.80 (1.31–2.48)* <0.001 87 1.49 (1.16–1.92)* 0.002

Possibly harmful 0 – 0 –

Cancer mortality

Number of deaths 746 868

Sufficiency 430 1 (Reference) 454 1 (Reference)

Insufficiency 239 1.20 (1.01–1.42)* 0.033 304 1.15 (0.99–1.34) 0.075

Deficiency 74 1.41 (1.08–1.83)* 0.011 104 1.42 (1.12–1.79)* 0.003

Possibly harmful 3 1.01 (0.32–3.17) 0.980 6 2.10 (0.93–4.73) 0.072

All models were adjusted for age, race, gender, educational level, ratio of family income to poverty, leisure-time physical activity, smoking, and drinking. *P < 0.05. HR, hazard ratio; CI,
confidence interval; CVD, cardiovascular disease; WC, waist circumference.

or vitamin D deficiency alone, had only 1.3 and 1.6 times
increased risk, respectively. Interestingly and unexpectedly,
the effect of overweight alone on CVD mortality was not
observed. In stratified analyses, in all BMI/WC categories
there was the additive effect of vitamin D deficiency, but for
vitamin D insufficiency, the significant additive effect was only
seen in normal weight and non-abdominally obese subjects.
The possible reasons are that the effect of overweight/obesity
and abdominal obesity overcomes the effect of vitamin D
insufficiency on CVD mortality. Moreover, for CVD mortality
we only included participants from NHANES III and NHANES
2001–2010, so the smaller number of participants probably
did not allow to reach significance, even though the additive
effect was still present. Additionally, there can be a cut-off
level in vitamin D levels, under which an additive effect of
vitamin D insufficiency on the risk for CVD mortality can be
observed (37). Similarly, as for the all-cause mortality, with
higher sequestration of vitamin D in adipose tissue, there will be
much lower bioavailability of vitamin D for other tissues, which
may have adverse effects on cardiovascular system, since vitamin
D was shown as potent regulator of its components, despite
some controversy on the particular mechanisms and outcomes
(43–46). Our results on the effect of vitamin D status on CVD
mortality are in accordance with the data from the recent
systematic review by Heat et al. (47), which showed the evidence

for the association in observational studies. However, the data
from intervention studies did not show a significant effect,
which indicates a probable confounding effect in observational
studies (47).

Cancer mortality

It is worth noting that in our study, we observed the effect
of vitamin D both deficiency and insufficiency on increased risk
for cancer mortality, but the effect of obesity was not observed.
In the whole sample, the highest increased risk was seen
among vitamin D deficient normal weight/not-abdominally
obese participants, then overweight participants. In the stratified
analyses, the effect of vitamin D insufficiency/deficiency did
not reach statistical significance in some weight categories,
probably due to small numbers included. Interestingly, there
was an additive effect of vitamin D surplus on the increased
risk for cancer mortality among obese participants, both in
whole sample and stratified analyses. However, because of small
number of these participants (only 4), there could not be
reliable conclusions and additional studies are needed. Our
data are in accordance with the results from other studies,
which show that vitamin D both deficiency and surplus may
be associated with the increased risk for cancer mortality (37,
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FIGURE 1

Association between 25(OH)D concentration and mortality by BMI/WC. All models adjusted for age, race, gender, educational level, ratio of
family income to poverty, leisure-time physical activity, smoking, and drinking. ∗P < 0.05. HR, hazard ratio; CI, confidence interval; CVD,
cardiovascular disease.
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48–52). Better vitamin D status was associated with reduced
mortality for breast cancer, colorectal cancer, prostate cancer,
pancreatic cancer and hematological malignancies (37). Trials
with vitamin D3 supplementation also show potential effect
on reduced cancer mortality (53, 54). Interestingly, data show
that vitamin D status was not associated with the increased
risk for cancer incidence, indicating that vitamin D status
might be more involved in cancer progression than initial
cancerogenesis (37).

Study limitation

The main limitation of this study is that BMI, WC, and
vitamin D concentrations were assessed only at one time point,
at the baseline of quite long follow-up, so both vitamin D
and obesity status could change in the meantime and we do
not have insight into their dynamics, making reliability of our
associations questionable. This is a common limitation of the
long-term cohort prospective studies having only one time point
measurement of the examined modifiable risk factors. Second,
vitamin D levels may vary with season (55), and our data did not
include the season of vitamin D measurement, as very important
covariate, since relevant data were not available in NHANES III
(3). Moreover, we also did not include data on sunlight exposure
or latitude/altitude in the analyses, but surveys indicate that
despite relatively sufficient sunshine, the prevalence of vitamin
D deficiency is still high in Africa, India, Australia, Asia, South
America, and even the Middle East (5). Additionally, work
time physical activity and physical activity when commuting to
work were not included when assessing physical activity level,
because the related data was only available in NHANES 2001–
2014. We used only one 24 h dietary recall to obtain data
on dietary and alcohol intakes, which is probably not enough
to adequately assese usual intakes. Even though we included
multiple covariates, probably some other covariates could be
also considered (e.g., existence of certain chronic diseases at
baseline, medication usage, level of stress, professional, and
environmental risk factors, etc.). Although we had a quite large
number of included participants, for CVD mortality we had
only data from NHANES III and NHANES 2001–2010, because
data on CVD mortality were not available in the US National
Death Index matched mortality datasets after December 31,
2011. Additionally, we used multiple imputation to deal with
the missing covariates data, which may also affect the results. To
avoid this issue, we repeated our analyses with omitting subjects
with missing data, and results showed just a small difference,
particularly in obesity subgroups. This may be because most of
the excluded participants were obese, and smaller number of
the participants remaining for analyses did not allow to reach
statistical significance for some analyses. Finally, the data refer
to average US population aged 20–79 years, the findings may not
be generalizable to other populations and beyond this age range.

Conclusion

Our results showed that there was an additive effect of
the vitamin D insufficiency/deficiency on the increased risk for
all-cause and CVD mortality across all BMI/WC categories,
with deficiency having much stronger effect than insufficiency.
Regarding cancer mortality, vitamin D deficiency significantly
increased the risk in all BMI/WC categories, except among obese
subjects. The highest risk for all-cause and CVD mortality was
observed among vitamin D deficient and obese/abdominally
obese subjects, while for cancer mortality among vitamin D
deficient and normal weight/non-abdominally obese subjects.
Importantly, in our study the effect of vitamin D insufficiency
overcame the effect of obesity/abdominal obesity on mortality.
Maintaining sufficient serum vitamin D levels may help reduce
mortality, particularly in populations at high risk. More long-
term and large-scale prospective cohort studies and randomized
controlled trials are required to test our findings.
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The association between
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ischemia/reperfusion injury
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Acute kidney injury (AKI) alters renal hemodynamics, leading to tubular injury,

activating pathways of inflammation, proliferation, and cell death. The initial

damage caused to renal tissue after an ischemia/reperfusion (I/R) injury

exerts an important role in the pathogenesis of the course of AKI, as well

as in the predisposition to chronic kidney disease. Vitamin D deficiency

has been considered a risk factor for kidney disease and it is associated

with tubulointerstitial damage, contributing to the progression of kidney

disease. Obesity is directly related to diabetes mellitus and hypertension,

the main metabolic disorders responsible for the progression of kidney

disease. Furthermore, the expansion of adipose tissue is described as an

important factor for increased secretion of pro-inflammatory cytokines and

their respective influence on the progression of kidney disease. We aimed

to investigate the influence of vitamin D deficiency and obesity on the

progression of renal disease in a murine model of renal I/R. Male Wistar rats

underwent renal I/R surgery on day 45 and followed until day 90 of the

protocol. We allocated the animals to four groups according to each diet

received: standard (SD), vitamin D-depleted (VDD), high fat (HFD), or high

fat vitamin D-depleted (HFDV). At the end of 90 days, we observed almost

undetectable levels of vitamin D in the VDD and HFDV groups. In addition, HFD

and HFDV groups presented alterations in the anthropometric and metabolic

profile. The combination of vitamin D deficiency and obesity contributed

to alterations of functional and hemodynamic parameters observed in

the HFDV group. Moreover, this combination favored the exacerbation of

the inflammatory process and the renal expression of extracellular matrix

proteins and phenotypic alteration markers, resulting in an enlargement

of the tubulointerstitial compartment. All these changes were associated

with an increased renal expression of transforming growth factor β and
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reduced expression of the vitamin D receptor. Our results show that the

synergistic effect of obesity and vitamin D deficiency exacerbated the

hemodynamic and morphological changes present in the evolution of renal

disease induced by I/R.

KEYWORDS

chronic kidney disease, acute kidney injury, obesity, adipose tissue, vitamin D
deficiency, inflammation, renal fibrosis

Introduction

Over the last few decades, there has been a growing interest
in risk factors related to the progression of kidney disease. This
fact is due to the high prevalence of chronic kidney disease
(CKD) and its high costs, as well as the risk of progression
to end-stage renal disease (1–3). In addition to advanced age,
gender, and family history, there are other traditional and
common risk factors related to the progression of kidney
disease, including diabetes mellitus (DM), hypertension, obesity,
and cardiovascular diseases (CVD) (3–5). Furthermore, non-
traditional risk factors such as hypovitaminosis D has been
considered as an aggravating feature regarding the evolution of
kidney disease (2, 6–9). It is well known that kidney diseases
are accompanied by decreased levels of vitamin D (9, 10),
which impair the crucial role of the kidney in vitamin D
metabolism. As a consequence, hypovitaminosis D disarranges
the regulation of numerous physiological activities, including
the renoprotection performed by that hormone (9, 10).

An increasing number of studies have been demonstrating a
relation between hypovitaminosis D and anthropometric status
(11–15). In 2015, a meta-analysis showed that the prevalence
of vitamin D deficiency in obese and overweight individuals
was, respectively, 35 and 24% higher when compared to lean
subjects (16). This association between body mass index (BMI)
and hypovitaminosis D is also described in sunny countries.
Unger et al. observed a high prevalence of hypovitaminosis D
in healthy Brazilian adults and showed a negative association
between serum levels of vitamin D and BMI (17). Corroborating
those data, Bolland et al. suggested a possible link involving
the sequestration and deposition of vitamin D in the adipose
tissue and the lower sun exposure by choice and lifestyle (17,
18). Moreover, it has been described that hypovitaminosis D in
obesity occurs independently of factors, such as age, ethnicity,
gender, and sun exposure (16, 19). In the 1970s, Rosenstreich
et al. experimentally showed that adipose tissue had a greater
storage capacity for the different forms of vitamin D compared
to other organs and tissues (20). In 2000, Wortsman et al.
demonstrated a lower bioavailability of vitamin D in obese
patients compared to eutrophic individuals after acute ingestion
of ergocalciferol or phototherapy session (21).

It is acknowledged that adipose tissue is not just a fat
reservoir, but a dynamic tissue involved in the production of
adipokines, including leptin, adiponectin, tumor necrosis factor
α (TNF-α), chemotactic protein for monocytes 1 (MCP-1),
transforming growth factor β (TGF-β), angiotensin II (Ang II),
and endothelin-1 (22, 23). This endocrine action of adipose
tissue generates oxidative stress, activates the renin-angiotensin-
aldosterone system (RAAS), and promotes insulin resistance
with subsequent abnormal production/accumulation of lipids
(23–25). In addition, obesity has been linked to inflammation
and is considered a risk factor for a decline in renal function
(25, 26). Based on the information regarding the low levels of
vitamin D in the course of renal diseases and the impaired
bioavailability of this hormone in obese individuals, we aimed
to study the influence of vitamin D deficiency and obesity in rats
submitted to renal ischemia-reperfusion injury (IRI).

Materials and methods

Animals

Male Wistar rats (Rattus novergicus), weighing 180–200 g,
were provided by the animal facility from the Institute of
Biomedical Sciences–University of São Paulo. During the 90-
day protocol, we kept our animals at a controlled temperature
(23 ± 1◦C) with a light/dark cycle of 12/12 h. All the
experiments followed our institutional guidelines and were
approved by the local Research Ethics Committee (CEUA,
registration 1438/2020).

Diets

We used four different types of diet in this experimental
protocol: (1) standard diet (20% protein, 70% carbohydrates,
and 10% lipids); (2) standard diet depleted in vitamin D (20%
protein, 70% carbohydrates, 10% lipids, and vitamin D-free);
(3) high-fat diet (20% protein, 35% carbohydrates and 45%
lipids); and (4) high-fat diet depleted in vitamin D (20% protein,
35% carbohydrates, 45% lipids, and vitamin D-free)—purchased
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from PragSoluções Biociências (Jaú, São Paulo, Brazil). The
animals were placed in cages according to their diet, with free
access to water.

Experimental protocol

We allocated the rats to four groups according to each type
of diet: Standard (SD, n = 8), fed the standard diet for 90 days;
Vitamin D deficient (VDD, n = 9), fed the vitamin D-free diet
for 90 days; High-fat (HFD, n = 10), fed the high-fat diet for
90 days; and High-fat vitamin D deficient (HFDV, n = 10), fed
the high-fat vitamin D-free diet for 90 days. On day 45, all the
rats were anesthetized with 2,2,2-tribromoethanol [250 mg/Kg
body weight (BW)]. Subsequently, a suprapubic incision was
made for induction of renal IRI by clamping both renal arteries
for 45 min, followed by reperfusion.

Analysis of urine samples

Before the clearance studies, all the rats were placed in
individual metabolic cages, on a 12/12-h light/dark cycle, with
free access to drinking water. We collected 24-h urine to assess
urinary output and then centrifuged the samples to remove
suspended material. We evaluated urinary protein excretion by
colorimetric assay (Labtest Diagnóstica, Minas Gerais, Brazil).

Anthropometry

On day 90, we evaluated anthropometric measurements in
the animals under anesthesia just before the inulin clearance
experiment. We used a sterile non-extensible measuring tape to
assess: body length (cm), from the nostrils to the beginning of
the tail (nose-to-anus); abdominal circumference (cm), taking
the largest zone of the abdomen as the reference; and thoracic
circumference (cm), immediately behind the foreleg (27, 28).
We determined the BMI by dividing the body weight (g) by the
body length squared (cm2) (29).

Inulin clearance and hemodynamic
studies

On day 90, we anesthetized the animals with sodium
thiopental (50 mg/Kg BW) and then we cannulated the trachea
with a PE-240 catheter for spontaneous breathing. The jugular
vein was cannulated with a PE-60 catheter for infusion of inulin
and fluids. To monitor mean arterial pressure (MAP) and collect
blood samples, the right femoral artery was catheterized with
a PE-50 catheter. We assessed MAP with a data acquisition
system (MP100; Biopac Systems, Santa Barbara, CA). To collect

urine samples, we cannulated the bladder with a PE-240
catheter by suprapubic incision. After the surgical procedure,
a loading dose of inulin (100 mg/Kg BW diluted in 1 mL
of 0.9% saline) was administered through the jugular vein.
A constant infusion of inulin (10 mg/Kg BW) was started and
continued at 0.04 mL/min throughout the whole experiment.
We collected three urine samples at 30-min intervals. Blood
samples were obtained at the beginning and at the end of
the experiment. Inulin clearance values represent the mean
of three periods. Plasma and urinary inulin were determined
by the anthrone method, and the glomerular filtration rate
(GFR) data were expressed as mL/min/100 g BW. To measure
renal blood flow (RBF), we made a median incision and
dissected the left renal pedicle for isolating the renal artery.
An ultrasonic flow probe was placed around the exposed renal
artery, and RBF was measured (mL/min) with an ultrasonic flow
meter (T402; Transonic Systems, Bethesda, MD). We divided
blood pressure by RBF to calculate renal vascular resistance
(RVR, mmHg/mL/min).

Biochemical parameters

We collected blood samples after the clearance studies
to assess plasma levels of 25-hydroxyvitamin D [25(OH)D],
parathormone (PTH), aldosterone, Ang II, total cholesterol
(cholesterol), triglycerides, glucose, leptin, phosphate (PP), and
calcium (PCa). We assessed 25(OH)D, PTH, aldosterone, Ang
II, and leptin by enzyme-linked immunosorbent assay (ELISA)
using commercial kits: 25-hydroxyvitamin D (ALPCO, Salem,
NH, USA); Rat Intact PTH (Immutopics, Inc., San Clemente,
CA, USA); Aldosterone (Enzo Life Sciences, Farmingdale,
NY, USA); Rat angiotensin II (Elabscience, Houston, TX,
USA); Leptin (EMD Millipore, St. Louis, MO, USA). We
measured PCa, PP, and glucose by colorimetric assay (Labtest
Diagnóstica, Minas Gerais, Brazil). Plasma levels of cholesterol
and triglycerides were determined by specific electrodes
(ABL800Flex—Radiometer, Brønshøj, Denmark).

Tissue samples preparation

After the blood samples collection, we perfused the kidneys
with a phosphate-buffered solution (PBS, pH 7.4). We froze the
right kidneys in liquid nitrogen and stored them at –80◦C for
western blotting, ELISA, and real-time quantitative polymerase
chain reaction (qPCR). The left kidneys were removed and a
fragment of the renal tissue was fixed in methacarn solution
(60% methanol, 30% chloroform, 10% glacial acetic acid) for
24 h and replaced by 70% alcohol thereafter. The kidney blocks
were embedded in paraffin and cut into 4-µm sections for
histological and immunohistochemical (IHC) studies.
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Total protein isolation

Kidney samples were homogenized in ice-cold isolation
solution (200 mM mannitol, 80 mM HEPES, and 41 mM
KOH, pH 7.5) containing a protease inhibitor cocktail (Sigma
Chemical Company, St. Louis, MO, USA) with a homogenizer
(Tissue Master TM125, Omni International, Kennesaw, GA,
USA). Homogenates were centrifuged at 4,000 × rpm for 30 min
at 4◦C to remove nuclei and cell debris. Supernatants were
isolated, and protein was quantified by Bradford assay (Bio-Rad
Laboratories, Hercules, CA, USA).

Western blot assay

For western blot analysis, 100 µg of total kidney protein was
separated on SDS-polyacrylamide minigels by electrophoresis
(30). After a transfer by electroelution to PVDF membranes
(GE Healthcare Limited, Little Chalfont, UK), blots were
blocked for 1 h with 5% non-fat milk in a Tris-buffered saline
solution. Blots were then incubated overnight with a primary
antibody for anti-VDR (1:500; Santa Cruz Biotechnology,
Santa Cruz, CA, USA). The labeling was visualized with a
horseradish peroxidase-conjugated secondary antibody (anti-
mouse, 1:2,000; Sigma Chemical, St. Louis, MO, USA)
and enhanced chemiluminescence detection (GE Healthcare
Limited, Little Chalfont, UK). Kidney protein levels were further
analyzed with a gel documentation system (Alliance 4.2; Uvitec,
Cambridge, UK) and the software Image J for Windows (Image
J-NIH Image). We used densitometry to quantitatively analyze
the protein levels, normalizing the bands to β-actin expression
(anti-β-actin, Sigma Chemical, St. Louis, MO, USA).

Enzyme-linked immunosorbent assay
in renal tissue

We assessed collagen type 3 (Col-3), Ang II, and
MCP-1 in renal tissue by ELISA using commercial kits
(Elabscience, Houston, TX, USA). The detection system and
the quantification followed the protocols described by the
manufacturer. The absorbances were obtained using the
Epoch/2 device (Biotek Instruments, Winooski, VE, USA).

Light microscopy

Four-µm histological sections of kidney tissue were stained
with Masson’s trichrome and examined under light microscopy.
We quantified the fractional interstitial area (FIA) by analyzing
tubulointerstitial involvement and glomerular tuft area as well.
For histomorphometry, the images obtained using microscopy
were captured on a computer screen via an image analyzer

software (ZEN, Carl Zeiss, Munich, Germany). For FIA
evaluation, we analyzed 30–40 grid fields (0.09 mm2 each) per
kidney cortex. The interstitial areas were manually demarcated,
and the proportion of the field was determined after excluding
the glomeruli. For the glomerular area, we calculated the
arithmetic mean after analyzing approximately 80 glomeruli per
kidney section. The glomerular tuft area (µm2) was manually
circulated and automatically calculated by the software. We
minimized bias during the morphometric analysis by keeping
the observer blinded to the treatment groups.

Immunohistochemical analysis

Immunohistochemistry was performed on 4-µm-thick
paraffinized kidney sections mounted on 2% silane-coated glass
slides. We used the following antibodies: mouse monoclonal
to CD68 (ED1, 1:100; BioRad, Hercules, CA, USA); rabbit
polyclonal to mannose receptor (CD206, 1:2,000; Abcam,
Cambridge, MA, USA); mouse monoclonal to CD3 (1:50; Dako,
Glostrup, Denmark); mouse monoclonal to α-smooth muscle
actin (α-SMA, 1:200; Millipore, Billerica, MA, USA); rabbit
monoclonal to fibronectin (1:400; Abcam, Cambridge, MA,
USA); mouse monoclonal to vimentin (1:100; Dako, Glostrup,
Denmark); rabbit polyclonal to TGF-β1 (1:100; Santa Cruz
Biotechnology, Santa Cruz, CA, USA); mouse monoclonal to
proliferating nuclear cell antigen (PCNA, 1:50; Dako, Glostrup,
Denmark); and mouse monoclonal to JG12, direct against
to aminopeptidase P (1:100; Santa Cruz Biotechnology, Santa
Cruz, CA, USA). We subjected the kidney tissue sections to IHC
reaction according to the protocol for each primary antibody.
Reaction products were detected by anti-rabbit or mouse
EnVision+ SystemTM and the color reaction was developed
in 3,3-diaminobenzidine (Dako North America, Carpinteria,
CA, USA). Counterstaining was with Harris’ hematoxylin. We
analyzed 30–40 renal cortex fields (0.09 mm2) to evaluate the
immunoreactions. The volume ratios of positive areas of renal
tissue (%), determined by the color limit, were obtained by ZEN
image analyzer software (Carl Zeiss, Munich, Germany) on a
computer coupled to a microscope (Carl Zeiss Axioskop 40)
and a digital camera (2, 31). To minimize bias during the IHC
analysis, the observer was blinded to the treatment groups.

Gene expression

We performed real-time qPCR in frozen adipose tissue
assessing VDR gene (Rn00690616_m1). Firstly, we extracted
and prepared total RNA by centrifugation technique using
the commercial kit SV Total RNA Isolation System (Promega
Corporation, Madison, WI, USA). Next, we determined the
quantity and quality of RNA by NanodropTM. We used 1 ul
of RNA to prepare the cDNA following the manufacturer’s
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instructions of the GoScript Reverse Transcription System
(Promega Corporation, Madison, WI, USA) and quantified
again by NanodropTM. We performed real-time PCR in 2 µl of
cDNA (50 ng) using GoTaq Probe qPCR Master Mix (Promega
Corporation, Madison, WI, USA) and TaqMan on Step One Plus
(both from Applied Biosystems, Foster City, CA, USA). We
evaluated relative gene expression with the 2−11Ct method (32)
using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as
the housekeeping gene (Rn01775763_g1).

Statistical analysis

All data were expressed as mean ± SEM (standard error
of the mean). Differences among groups were analyzed with
GraphPad Prism 5.0 software (GraphPad Software, La Jolla,
CA) by one-way analysis of variance followed by the Student–
Newman–Keuls test. Values of p < 0.05 were considered
statistically significant.

Results

Anthropometric parameters

We evaluated anthropometric data on day 90 of the
experimental protocol. As expected, we observed a significant
difference (p < 0.001) regarding the body weight of rats fed
high-fat diets (HFD and HFDV) when compared to rats fed a
standard diet (SD) or vitamin D-free diet (VDD) (Table 1). In
addition, the body weight gain profile from HFD and HFDV
groups reflected on the differences observed concerning the
assessment of BMI (g/cm2), AC (cm), and TC (cm), as shown
in Table 1. These results demonstrate that high-fat diets were
effective in the experimental development of obesity. We did
not find any difference in the length (cm) of the animals,
characterizing a homogeneous and adequate growth in relation
to the age and period studied (Table 1).

TABLE 1 Anthropometric parameters evaluated after the 90-day
protocol in rats submitted to renal ischemia-reperfusion insult on day
45 treated with standard diet (SD), vitamin D-free diet (VDD), high-fat
diet (HFD), or high-fat vitamin D-free diet (HFDV).

SD VDD HFD HFDV

Body weight (g) 425 ± 8 437 ± 10 531 ± 12ad 538 ± 16ad

BMI (g/cm2) 0.61 ± 0.01 0.61 ± 0.01 0.72 ± 0.02ad 0.72 ± 0.01ad

AC (cm) 17.4 ± 0.2 17.4 ± 0.3 21.5 ± 0.4ad 21.1 ± 0.4ad

TC (cm) 14.1 ± 0.3 13.9 ± 0.2 15.4 ± 0.2ad 15.4 ± 0.1ad

Length (cm) 26.4 ± 0.1 26.4 ± 0.1 26.8 ± 0.2 26.9 ± 0.1

BMI, body mass index; AC, abdominal circumference; TC, thoracic circumference.
Values are mean ± SEM. ap < 0.001 vs. SD; dp < 0.001 vs. VDD.

Vitamin D, parathormone, and
metabolic profile

We evaluated plasma concentration of 25(OH)D at 45 and
90 days of the protocol. We observed significantly lower levels
(p < 0.001) of that hormone on day 45 in the animals that
received vitamin D-depleted diets (VDD and HFDV) when
compared to SD and HFD animals. These results confirm that
those animals were deficient in vitamin D at the time they
were submitted to renal IRI. As expected, we found almost
undetectable levels of vitamin D in VDD and HFDV groups on
day 90 (Figure 1). In addition, we noted that the HFD group
presented sufficient but lower levels of vitamin D compared
to the SD group (Figure 1). Although without significant
differences among the groups, we observed an evident upward
tendency in plasma levels of PTH (pg/mL) on day 90 in the
vitamin D deficient groups (VDD and HFDV) in relation
to SD and HFD groups (Table 2). We did not find any
difference regarding plasma phosphate and calcium levels (data
not shown).

The analysis regarding lipid profile allowed us to observe
isolated and synergistic actions of both high-fat and vitamin
D-free diets on cholesterol and triglyceride levels. The
evaluation of cholesterol levels (mg/dL) on day 90 showed a
slight upward tendency in the VDD group in relation to the
SD group. However, HFD group presented a significant increase
concerning cholesterol levels compared to SD (p < 0.001)
and VDD (p < 0.05) groups (Figure 2A). Furthermore, our
results show that the vitamin D-free diet promoted a significant
increase (p < 0.05) in triglyceride levels (mg/dL) in the VDD
group compared to the SD group. We also observed higher and
more significant triglyceride levels in the HFD group compared
to the SD (p < 0.001) and VDD (p < 0.01) groups. Of note,
the HFDV group presented higher levels of cholesterol and

FIGURE 1

Plasma 25(OH)D levels evaluated at 45 and 90 days of protocol
in rats submitted to renal ischemia-reperfusion insult on day 45
treated with standard diet (SD), vitamin D-free diet (VDD),
high-fat diet (HFD), or high-fat vitamin D-free diet (HFDV). Data
are mean ± SEM. ap < 0.001 vs. SD; dp < 0.001 vs. VDD;
gp < 0.001 vs. HFD.
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TABLE 2 Renal function, biochemical parameters, and glomerular tuft
area evaluated after the 90-day protocol in rats submitted to renal
ischemia-reperfusion insult on day 45 treated with standard diet (SD),
vitamin D-free diet (VDD), high-fat diet (HFD), or high-fat vitamin
D-free diet (HFDV).

SD VDD HFD HFDV

PPTH (pg/mL) 464 ± 73 933 ± 187 552 ± 52 964 ± 176

Cin (mL/min/
100 gBW)

0.64 ± 0.11 0.41 ± 0.05c 0.58 ± 0.02f 0.36 ± 0.02bi

UF (mL/24 h) 25 ± 2 16 ± 2c 18 ± 3c 15 ± 2c

Proteinuria
(mg/24 h)

8.51 ± 0.50 9.65 ± 0.41 8.18 ± 0.71 10.83 ± 0.77i

RBF (mL/min) 6.06 ± 0.15 6.59 ± 0.15 5.20 ± 0.30ce 4.82 ± 0.22bd

RVR (mmHg/mL/
min)

21.26 ± 1.20 21.80 ± 0.95 23.67 ± 1.43 26.68 ± 0.88cf

GTA (µm2) 8934 ± 215 8927 ± 128 9230 ± 210 8670 ± 166

PPTH , plasma parathormone concentration; Cin , inulin clearance; UF, urinary flow; RBF,
renal blood flow; RVR, renal vascular resistance; GTA, glomerular tuft area. Data are
mean ± SEM. bp < 0.01 and cp < 0.05 vs. SD; dp < 0.001, ep < 0.01 and fp < 0.05 vs.
VDD; ip < 0.05 vs. HFD.

triglycerides in relation to all the other groups, demonstrating
an evident imbalance of the lipid profile in vitamin D deficiency
associated with obesity (Figure 2B). In addition, the results of
fasting blood glucose (mg/dL) showed an upward tendency for
this parameter in the VDD and HFD groups in relation to the SD
group (Figure 2C). The animals from the HFDV group showed
a noteworthy and significant increase in fasting blood glucose
compared to all the other groups (Figure 2C). As expected, we
observed a significant increase (p< 0.001) in plasma leptin levels
(ng/mL) in the HFD and HFDV groups when compared to the
SD and VDD groups (Figure 2D). This alteration was even more
remarkable in the HFDV group, with a significant increase in
comparison to all the other groups.

Renal function and hemodynamic
analysis

Our inulin clearance studies showed that the vitamin D-free
diet associated or not with the high-fat diet modified the
renal function. We observed a lower GFR (mL/min/100 g BW)
in the VDD group (p < 0.05) compared to the SD group.
This alteration was more evident in the HFDV group, which
presented a lower GFR in comparison to the SD (p < 0.01)
and HFD (p < 0.05) groups (Table 2). Regarding the urinary
flow (mL/24 h), we found a lower urinary output (p < 0.05) in
the VDD, HFD, and HFDV groups compared to the SD group
(Table 2). In addition, we observed a slight upward tendency in
proteinuria from VDD group in relation to SD and HFD groups
and a significant increase (p < 0.05) of this parameter in the
HFDV group compared to the HFD group (Table 2).

Our VDD, HFD and HFDV groups presented a higher MAP
(mmHg) than the SD group. Supporting this data, we noticed a
similar profile regarding plasma Ang II and aldosterone levels

observed in the VDD, HFD, and HFDV groups in comparison
to the SD group. Corroborating those findings, our results
regarding the evaluation of renal expression of Ang II (pg/µg)
showed an upward tendency in the amount of this polypeptide
in the VDD, HFD, and HFDV groups in relation to the SD
group. It is important to highlight that those alterations were
more evident in the HFDV group (Figure 3).

We also observed the influence of high-fat diets regarding
RBF and RVR. HFD and HFDV groups presented a lower RBF
(mL/min) than SD and VDD groups (Table 2). In addition,
the HFD group showed a slight upward tendency in the
RVR (mmHg/mL/min), while the HFDV group presented a
significant increase (p < 0.05) of this parameter in relation to
SD and VDD groups (Table 2).

Vitamin D receptor expression and
inflammation

We evaluated VDR protein expression in kidney tissue and
VDR gene expression in the adipose tissue at the end of the
90-day protocol. The renal protein expression of VDR (%) was
lower (p < 0.001) in the groups of animals that received the
vitamin D-free diets (VDD and HFDV) when compared to
the SD group (Figures 4A,B). Even with vitamin D deficiency,
we observed a higher renal expression (p < 0.01) of VDR
in the HFDV group than in the VDD group (Figures 4A,B).
In addition, our results regarding real-time qPCR showed a
downward tendency in VDR gene expression (11Ct) in the
adipose tissue from HFD and HFDV groups in relation to the
SD group. Also, we noticed a significantly lower (p< 0.001) gene
expression of VDR in the VDD group when compared to the SD
group (Figure 4C).

It is well known that vitamin D and adipose tissue are
closely related to inflammation status. Based on that, we firstly
evaluated the renal amount of MCP-1 (ng/µg protein) by
ELISA and the renal expression of CD3+ and CD68+ cells
(T cells and macrophages, respectively) by IHC studies (%).
As shown in Figure 5A, we found a higher MCP-1 amount
(p < 0.001) in the renal tissue from VDD and HFD compared
to the SD group. This alteration was more evident in the
HFDV group, which showed a significant increase in the
renal amount of MCP-1 when compared to all the other
groups (Figure 5A). Similarly, Figures 5B,C show a higher
renal expression of CD3+ cells (p < 0.001) in the HFDV
compared to all the other groups. Our next step was focused
on the macrophage infiltration in the renal cortex. By using
an anti-CD68 antibody we immunolocalized the M1 and M2
macrophages, also known to express the glycoprotein ED1 on
their lysosomal membrane (33). As illustrated in Figures 6A,D,
we observed a higher expression of CD68+ cells (p < 0.05) in
the renal cortex from the VDD, HFD, and HFDV groups when
compared to the SD group. Furthermore, for knowledge and
differentiation between the macrophage subtypes, we evaluated
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FIGURE 2

Plasma concentrations of (A) total cholesterol, (B) triglycerides, (C) glucose, and (D) leptin evaluated after the 90-day protocol in rats submitted
to renal ischemia-reperfusion insult on day 45 treated with standard diet (SD), vitamin D-free diet (VDD), high-fat diet (HFD), or high-fat vitamin
D-free diet (HFDV). Data are mean ± SEM. ap < 0.001 and cp < 0.05 vs. SD; dp < 0.001, ep < 0.01 and fp < 0.05 vs. VDD; gp < 0.001, hp < 0.01
and ip < 0.05 vs. HFD.

the proportion of CD206+ cells (M2 macrophages) in relation
to the whole amount of macrophages stained with CD68
(M1+M2 macrophages, Figure 6C). CD206 is also known
as mannose receptor, which is an exclusive marker for M2
macrophages (1, 34). Although without significance among the
groups, we observed a downward tendency in the expression of
CD206+ cells in the VDD, HFD, and HFDV groups in relation
to the SD group (Figures 6B,E), reinforcing the role of vitamin
D and adipose tissue on the modulation of renal inflammation.

Synergistic effect of vitamin D
deficiency and adipose tissue on the
renal expression of transforming
growth factor β1 and extracellular
matrix proteins

High-fat diets and hypovitaminosis D seem to be associated
with the susceptibility to renal fibrosis formation (RFF) through
an increased expression of TGF-β and extracellular matrix
(ECM) components (1, 2, 35–37). In this study, we could
observe the isolated influence of vitamin D deficiency and
obesity, which contributed to a higher renal expression of TGF-
β1 (%) in the VDD and HFD groups than in the SD group
(p < 0.01). Simultaneously, we noticed a synergistic influence
of both risk factors, which promoted a significant increase

(p < 0.001) in the expression of TGF-β1 in the HFDV group
compared to all the other groups (Figure 7).

To assess the production and secretion of ECM components
generated from fibroblast activation, we investigated the
renal expression of two ECM proteins, including Col-3 and
fibronectin. First, our results showed a slight upward tendency
in the renal amount of Col-3 (ng/µg) and a higher expression of
fibronectin (%) in the VDD group in relation to the SD group.
Meanwhile, the HFD group presented a higher renal expression
of Col-3 and fibronectin than the SD group. Of note, those
alterations were even more pronounced in the HFDV group.
This group not only presented a higher amount of Col-3 in
relation to SD and VDD groups, but also a significant increase
in fibronectin expression compared to SD and HFD groups
(Figure 8).

Obesity and vitamin D deficiency
increase the phenotypic change of
renal cells

We studied the presence of markers of phenotypic change
which included the renal expression of α-smooth muscle actin
(α-SMA) and vimentin. We observed a mild upward tendency
in the renal expression of α-SMA and a significant increase
(p < 0.05) in vimentin expression in the VDD group in
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FIGURE 3

(A) Mean arterial pressure (MAP), (B) plasma angiotensin II concentration, (C) quantitative amount of angiotensin II in renal tissue, and (D) plasma
aldosterone concentration evaluated after the 90-day protocol in rats submitted to renal ischemia-reperfusion insult on day 45 treated with
standard diet (SD), vitamin D-free diet (VDD), high-fat diet (HFD), or high-fat vitamin D-free diet (HFDV). Data are mean ± SEM. ap < 0.001 and
cp < 0.05 vs. SD; fp < 0.05 vs. VDD; ip < 0.05 vs. HFD.

relation to the SD group. Simultaneously, we noticed a higher
α-SMA expression (p < 0.05) and a slight upward tendency in
vimentin expression in the HFD group compared to the SD
group. Regarding the HFDV group, we found a higher vimentin
expression than the SD group and a significant increase in
renal expression of α-SMA compared to all the other groups
(Figures 9, 10). Based on our results, it is plausible to suggest
that the synergistic effect of vitamin D deficiency and obesity
increased the phenotypical change of renal cells.

Adipose tissue and vitamin D roles on
the cell proliferation, glomerular
vascular endothelium, and
tubulointerstitial alterations

The process of epithelial–mesenchymal transition (EMT)
promotes greater cell division, allows cells to acquire a secretory
phenotype, and contributes to greater deposition of ECM
components. After our studies regarding ECM proteins and
markers of phenotypical alterations, we proposed to investigate
the proliferation of renal cells as well as the integrity of the
glomerular vascular endothelium. Initially, we assessed the cell

proliferation by evaluating the immunostaining for PCNA in the
renal cortex. We verified a higher renal expression of PCNA (%)
in the HFDV group (p < 0.05) compared to all the other groups
(Figure 11). As a marker of glomerular vascular endothelium,
we performed IHC studies using an antibody against JG12. Our
data revealed a lower JG12 staining (p < 0.001) per glomerular
tuft area (%) in the VDD and HFD groups compared to the
SD group. This alteration was even more evident in the HFDV
group, which showed a remarkable reduction in the expression
of JG12 in comparison to all the other groups (Figure 12).
We found no differences among the groups concerning the
glomerular tuft area used to correct the expression of JG12
(Table 2).

Finally, we evaluated the tubulointerstitial involvement
based on our dataset which included the results obtained from
the experiments regarding the inflammatory infiltrate, RFF, and
consequent interstitial expansion. By histomorphometry, we
evaluated the FIA in the renal cortex. The histomorphometric
studies revealed an upward tendency regarding FIA in the VDD
group in relation to the SD group. In addition, we observed a
larger FIA (p < 0.05) in the HFD group than in the SD group.
Of note, the HFDV group showed a more evident increase
(p < 0.001) in the FIA compared to all the other groups
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FIGURE 4

Semiquantitative immunoblotting for renal vitamin D receptor (VDR) protein expression and RT qPCR for adipose tissue VDR gene expression
evaluated after the 90-day protocol in rats submitted to renal ischemia-reperfusion insult on day 45 treated with standard diet (SD), vitamin
D-free diet (VDD), high-fat diet (HFD), or high-fat vitamin D-free diet (HFDV). (A) Densitometric analysis of samples from an SD, VDD, HFD, and
HFDV rat. (B) Representative immunoblots reacted with anti-VDR revealing a 51 kDa band. (C) Bar graph of VDR gene expression values. Data
are mean ± SEM. ap < 0.001 vs. SD; dp < 0.001, ep < 0.01 and fp < 0.05 vs. VDD; hp < 0.01 vs. HFD.

(Figure 13), which indicates a synergistic role of vitamin D
and adipose tissue on the alterations of the tubulointerstitial
compartment.

Discussion

Our results show that the animals fed a high-fat vitamin
D-free diet and submitted to renal IRI presented almost
undetectable levels of vitamin D and changes in the
anthropometric and metabolic profile. The combination
of vitamin D deficiency and obesity modified functional
and hemodynamic parameters. Furthermore, we observed
an increase in proteinuria, renal expression of MCP-
1, infiltration of inflammatory cells, ECM proteins, and
phenotypical markers in the HFDV. This group also presented

a greater cell proliferation, impairment of the glomerular
vascular endothelium, and expansion of the tubulointerstitial
compartment. All those alterations were associated with a
higher expression of TGF-β1 and a lower expression of VDR in
the renal tissue from the HFDV group.

Plasma levels of vitamin D represent the sum of biological
production from diet and sun exposure (38). It is important
to state that our animals were kept without sun exposure
and received diets depleted or not in vitamin D. The vitamin
D-free diet groups (VDD and HFDV) had almost undetectable
plasma levels of vitamin D at the end of the 90-day protocol,
confirming the efficiency of the experimental model of vitamin
D deficiency (2, 6, 8). Plasma levels of vitamin D have been
inversely associated with obesity, insulin resistance, and type
2 diabetes (12, 15, 39). In addition to the HFDV rats, we
observed lower plasma levels of vitamin D as well as a downward
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FIGURE 5

Quantitative amount of monocyte chemotactic protein 1 (MCP-1)—ELISA and immunohistochemical analysis for CD3+ cells (T cells) expression
in renal tissue evaluated after the 90-day protocol in rats submitted to renal ischemia-reperfusion insult on day 45 treated with standard diet
(SD), vitamin D-free diet (VDD), high-fat diet (HFD), or high-fat vitamin D-free diet (HFDV). (A) Bar graphs of MCP-1 quantification and (B) CD3+
cells expression values. (C) Representative photomicrographs of immunostaining for CD3+ cells in the renal cortex from an SD, VDD, HFD, and
HFDV rat (×400). Data are mean ± SEM. ap < 0.001 vs. SD; dp < 0.001 vs. VDD; gp < 0.001 and hp < 0.01 vs. HFD.

tendency regarding the renal expression of VDR in the HFD
rats. Our results are consistent with the hypothesis of a lower
and inadequate bioavailability of vitamin D in obesity (12,
15, 39).

Usually considered a storage organ for vitamin D, adipose
tissue also seems to influence endocrine and paracrine actions,
modulating the expression of enzymes responsible for the
formation, activation, and degradation of vitamin D (12, 40,
41). Besides the renal protein expression, we evaluated VDR
gene expression in the adipose tissue. Our VDD group showed

a lower VDR gene expression, which primarily followed the
deficient plasma levels of vitamin D. In 2015, Nguyen et al.
described the association between plasma vitamin D levels and
VDR gene expression in adipose tissue (39). However, we did
not observe this relationship in our HFDV rats. Even receiving
a vitamin D-depleted diet, HFDV rats showed a higher renal
expression of VDR and a marked gene expression of this
receptor in adipose tissue compared to VDD rats. In addition,
our groups that received the high-fat diets (HFD and HFDV)
showed a downward tendency in the VDR gene expression
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FIGURE 6

Immunohistochemical analysis for CD68+ cells (M1 + M2 macrophages) and CD206+ cells (M2 macrophages) expression in the renal cortex
evaluated after the 90-day protocol in rats submitted to renal ischemia-reperfusion insult on day 45 treated with standard diet (SD), vitamin
D-free diet (VDD), high-fat diet (HFD), or high-fat vitamin D-free diet (HFDV). (A) Bar graph of CD68+ cells expression values. (B) Bar graph of
CD206+ cells expression values. (C) Bar graph regarding the proportion of CD206+ cells in relation to the amount of CD68+ cells.
Representative photomicrographs of immunostaining for CD68+ (D) and CD206+ (E) cells in the renal cortex from an SD, VDD, HFD, and HFDV
rat (×400). Data are mean ± SEM. cp < 0.05 vs. SD.
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FIGURE 7

Immunohistochemical analysis for transforming growth factor β1 (TGF-β1) expression in the renal cortex evaluated after the 90-day protocol in
rats submitted to renal ischemia-reperfusion insult on day 45 treated with standard diet (SD), vitamin D-free diet (VDD), high-fat diet (HFD) or
high-fat vitamin D-free diet (HFDV). (A) Bar graph of TGF-β1 expression values. (B) Representative photomicrographs of immunostaining for
TGF-β1 in the renal cortex from an SD, VDD, HFD, and HFDV rat (×400). Data are mean ± SEM. ap < 0.001 and bp < 0.01 vs. SD; dp < 0.001 vs.
VDD; gp < 0.001 vs. HFD.

in adipose tissue in relation to the SD group. Wamberg
et al. also observed a reduced VDR gene expression in the
subcutaneous adipose tissue of obese women in comparison to
lean individuals. On the other hand, these authors demonstrated
that there was a 33% higher expression of VDR in the visceral
adipose tissue of obese women compared to lean women (41).
Nevertheless, our results are not enough to understand the
physiological actions of vitamin D on adipose tissue associated

with the degree of obesity and future studies are needed to
explain this relationship.

Hypercaloric and high-fat diets are described in the
literature as being effective for the experimental induction
of obesity in rodents (42–44). As a confirmation of the
effectiveness of our experimental model, the anthropometric
measurements used as markers of obesity demonstrated that
HFD and HFDV rats presented higher body weight and
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FIGURE 8

Quantitative amount of collagen 3—ELISA and immunohistochemical analysis for fibronectin expression in the kidney tissue evaluated after the
90-day protocol in rats submitted to renal ischemia-reperfusion insult on day 45 treated with standard diet (SD), vitamin D-free diet (VDD),
high-fat diet (HFD), or high-fat vitamin D-free diet (HFDV). Bar graphs of (A) collagen 3 and (B) fibronectin expression values. (C) Representative
photomicrographs of immunostaining for fibronectin in the renal cortex from an SD, VDD, HFD, and HFDV rat (400×). Data are mean ± SEM.
ap < 0.001, bp < 0.01 and cp < 0.05 vs. SD; ep < 0.01 vs. VDD; ip < 0.05 vs. HFD.

BMI as well as a significant increase in their abdominal and
thoracic circumferences.

Hyperlipidemia is commonly related to a high intake of diets
rich in fatty acids and obesity (45, 46). It is described that the
abnormal deposition of fat in adipose tissue and in other organs,
such as the liver and kidneys, can be considered an important
risk in the follow-up of pathologies, including CKD (45, 47, 48).
The presence of dyslipidemia is reported in all stages of CKD,

with impairment of the glomerular filtration barrier, tubular
damage, and proteinuria (47). Our HFD and HFDV rats showed
higher plasma levels of cholesterol and triglycerides than SD
and VDD rats. Bhandari et al. also showed the adverse effects
of obesity induced by a high-fat diet. Corroborating our data,
these authors demonstrated alterations in the lipid profile of
rodents, such as the presence of high levels of total cholesterol,
triglycerides, and LDL, followed by low levels of HDL (43).
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FIGURE 9

Immunohistochemical analysis for α-smooth muscle actin (α-SMA) expression in the renal cortex evaluated after the 90-day protocol in rats
submitted to renal ischemia-reperfusion insult on day 45 treated with standard diet (SD), vitamin D-free diet (VDD), high-fat diet (HFD) or
high-fat vitamin D-free diet (HFDV). (A) Bar graph of α-SMA expression values. (B) Representative photomicrographs of immunostaining for
α-SMA in the renal cortex from an SD, VDD, HFD, and HFDV rat (400×). Data are mean ± SEM. ap < 0.001 and cp < 0.05 vs. SD; dp < 0.001 and
fp < 0.05 vs. VDD; ip < 0.05 vs. HFD.

The relationship between lipid profile and vitamin D is also
demonstrated in the literature (6, 49, 50). It has been reported
that vitamin D and cholesterol share the same biosynthesis
pathway, as they have 7-dehydroxycholesterol as a common
precursor (46). In the present study, the vitamin D-deficient
rats, particularly HFDV rats, had higher levels of cholesterol
associated with remarkable triglyceride levels compared to SD

animals. Vitamin D plays important roles in the regulation and
absorption of calcium, thus reducing the absorption of fatty
acids and exerting an influence on plasma cholesterol levels
(51). In addition, low levels of vitamin D promote plasma PTH
elevation. High levels of PTH increase lipogenesis, and bone
remodeling, and reduce lipolytic activity, thus influencing lipid
metabolism (46, 48, 51). As expected, our VDD and HFDV
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FIGURE 10

Immunohistochemical analysis for vimentin expression in the renal cortex evaluated after the 90-day protocol in rats submitted to renal
ischemia-reperfusion insult on day 45 treated with standard diet (SD), vitamin D-free diet (VDD), high-fat diet (HFD) or high-fat vitamin D-free
diet (HFDV). (A) Bar graph of vimentin expression values. (B) Representative photomicrographs of immunostaining for vimentin in the renal
cortex from an SD, VDD, HFD, and HFDV rat (400×). Data are mean ± SEM. cp < 0.05 vs. SD.

groups presented elevated PTH levels in relation to SD and
HFD groups, demonstrating the negative feedback caused by
vitamin D deficiency.

Hyperglycemia is a typical sign of both reduced
gluconeogenesis in the liver and reduced glucose uptake
in skeletal muscle, liver, and adipose tissue, which feature the
onset of insulin resistance (50, 52). In addition to overweight,
increased visceral adipose tissue represents an important
association with insulin resistance and changes in adipose
tissue functionality (53). Vitamin D deficiency is also related
to inadequate insulin secretion, altered blood glucose levels,
and type 2 diabetes (54–57). One of the mechanisms by which

hypovitaminosis D contributes to the installation of insulin
resistance is via the regulation of intracellular calcium in
pancreatic β-cells (50, 58). In the present study, we found
an upward tendency in fasting plasma glucose in VDD and
HDF groups. Simultaneously, the association between obesity
and vitamin D deficiency promoted a higher glycemia in the
HFDV group in comparison to all the other groups. Thereby
our dataset regarding the metabolic parameters (cholesterol,
triglycerides, and fasting blood glucose) allowed us to observe
the influence of obesity and vitamin D deficiency, alone or
in association, on the installation of metabolic syndrome,
especially in the HFDV animals.
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FIGURE 11

Immunohistochemical analysis for proliferating cell nuclear antigen (PCNA) expression in the renal cortex evaluated after the 90-day protocol in
rats submitted to renal ischemia-reperfusion insult on day 45 treated with standard diet (SD), vitamin D-free diet (VDD), high-fat diet (HFD), or
high-fat vitamin D-free diet (HFDV). (A) Bar graph of PCNA expression values. (B) Representative photomicrographs of immunostaining for
PCNA in the renal cortex from an SD, VDD, HFD, and HFDV rat (×400). Data are mean ± SEM. cp < 0.05 vs. SD; fp < 0.05 vs. VDD; ip < 0.05 vs.
HFD.

Adipose tissue is not only recognized for its capacity for
energy storage and lipid mobilization, but also as an adipokine-
secreting endocrine organ (22, 53). It is known that adipocytes,
one of the main cell types of the adipose tissue, secrete a variety
of factors and hormones, such as TNF-α, IL-6, PAI-1, MCP-
1, adiponectin, resistin, and leptin (22, 23, 59). Physiologically,
leptin plays an important role in the control of energy
homeostasis and maintenance of body weight, with circulating
levels proportional to food intake and body energy reserve from

the suppression or activation of specific neurotransmitters (60,
61). The condition called hyperleptinemia in obesity induces
leptin resistance, which is similar to insulin resistance in type
2 diabetes (61). In the present study, our HFD and HFDV
groups showed higher plasma leptin levels than the SD group.
Corroborating our results, previous studies also showed an
increase in serum leptin levels in experimental models of obesity
induced by high-fat diets (62–64). In addition to being directly
related to the amount of adipose tissue, leptin concentration
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FIGURE 12

Immunohistochemical analysis for aminopeptidase P (JG12) expression by glomerular tuft area in the renal tissue evaluated after the 90-day
protocol in rats submitted to renal ischemia-reperfusion insult on day 45 treated with standard diet (SD), vitamin D-free diet (VDD), high-fat diet
(HFD) or high-fat vitamin D-free diet (HFDV). (A) Bar graph of JG12 expression values. (B) Representative photomicrographs of immunostaining
for JG12 in the renal cortex from an SD, VDD, HFD, and HFDV rat (×400). Data are mean ± SEM. ap < 0.001 vs. SD; fp < 0.05 vs. VDD; ip < 0.05
vs. HFD.

seems to be also regulated by serum vitamin D levels (65, 66).
Conversely, leptin appears to have an inhibitory effect on the
conversion of 25(OH)D to 1,25(OH)2D3, by inhibiting 1-α-
hydroxylase in renal and adipose tissue (66, 67). Those findings
are in agreement with our data regarding the notorious high
plasma leptin levels observed in the HFDV rats. Thus, our
results allow us to infer that the synergistic effect of vitamin D
deficiency and obesity could explain the significant increase in
plasma leptin levels observed in the HFDV group.

It is well known that CKD, even in the early stages, is
accompanied by a progressive decline in GFR and low levels
of vitamin D (1, 7, 8, 10, 68). In 2011, de Boer et al. suggested
that vitamin D deficiency may be a risk factor for the decline in
GFR, especially when associated with diabetes and hypertension
(69). Our VDD rats presented a lower GFR compared to SD and
HFD rats, confirming previous results from our group regarding
the role of vitamin D deficiency on the impairment of the renal
function (1, 7, 8). In addition, obesity and dyslipidemia are
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FIGURE 13

Fractional interstitial area (FIA) of the renal cortex evaluated after the 90-day protocol in rats submitted to renal ischemia-reperfusion insult on
day 45 treated with standard diet (SD), vitamin D-free diet (VDD), high-fat diet (HFD) or high-fat vitamin D-free diet (HFDV). (A) Bar graph of FIA
values. (B) Masson’s trichrome representative photomicrographs of renal histological changes from an SD, VDD, HFD, and HFDV rat (×400).
Data are mean ± SEM. ap < 0.001 and cp < 0.05 vs. SD; dp < 0.001 vs. VDD; gp < 0.001 vs. HFD.

described as aggravating factors in the progression of kidney
disease, promoting damage to the glomerular filtration barrier
and the subsequent presence of proteinuria (25, 47, 70, 71).
Although not significant, the HFDV group presented a decrease
of ∼13% in GFR in relation to VDD group and a greater
proteinuria than the HFD group. Associated with these results,
the HFDV group also presented a lower glomerular expression

of JG12 compared to all the other groups. Corroborating these
results, previous studies from our laboratory demonstrated a
decreased renal JG12 expression in vitamin D-deficient rats in
renal IRI and 5/6 nephrectomy model (7, 8). Since JG12 is an
aminopeptidase responsible for anchoring the cells in the cell
membrane, it is plausible to infer that the lower expression
of this protein might have contributed to the impaired renal
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function observed in the HFDV group. Taken together, those
results suggest that either isolated or combined effects of obesity
and vitamin D deficiency may impair renal function.

It is common knowledge that the RAAS is responsible
for maintaining vascular resistance and extracellular fluid
homeostasis (72). The negative endocrine regulation of the
RAAS by vitamin D is demonstrated in the literature mainly
by an inverse relation of this hormone levels and the
expression of renin (72, 73). This impairment of systemic
blood pressure control generated by hypovitaminosis D has
also been demonstrated in previous studies from our group,
which associated changes in the activation of the RAAS with
alterations in endothelium and renal vasculature (1, 2, 7, 72–
74). Furthermore, the association between obesity and increased
MAP has been suggested as an important link in kidney injury
(5). In the present study, we found a higher MAP as well as
increased plasma levels of Ang II and aldosterone in the VDD,
HFD, and HFDV groups, suggesting a greater activation of the
RAAS. The main mechanisms involved in the elevation of MAP
levels in the course of obesity are described as: (1) activation of
the sympathetic nervous system by increasing intra-abdominal
pressure and higher levels of leptin; (2) RAAS activation due to
increased secretion of inflammatory cytokines such as TNF-α,
IL-6, resistin, and leptin by adipocytes; (3) increased aldosterone
levels by leptin stimulation to the adrenal gland, increasing
Na+ retention and plasma volume expansion; and (4) reduced
adiponectin expression, which appears to be one of the causes
of increased inflammation in obesity (5, 26, 75, 76). Our data
showed that the association between obesity and vitamin D
deficiency potentiated hemodynamic impairment. Collectively,
changes in MAP and plasma levels of Ang II/aldosterone as
well as in RBF and RVR support the hemodynamic disturbance
observed in the HFDV group.

Inflammatory cells including macrophages and T cells
play a key role in tissue homeostasis and immune responses,
especially in the course of kidney diseases (7, 77). Moreover,
an exacerbated inflammatory response is usually associated with
a growing RFF (7, 77). This process involves several steps,
including the stimulation of cell division and the production
of chemokines to recruit cells to the site of injury (78). In
addition to a higher renal expression of MCP-1 and CD68+ cells,
our HFD group presented an upward tendency regarding the
expression of CD3+ cells in relation to the SD group, which
demonstrates a possible influence of adipose tissue on the
inflammatory response. Corroborating our results, Decleves
et al. also observed increased renal and urinary expression of
MCP-1 in mice fed a high-fat diet (35). In the present study, we
also observed similar results concerning the renal expression of
MCP-1, CD3+, and CD68+ cells in the VDD group, reinforcing
the immunomodulatory effect of vitamin D (1, 7, 77). Of note,
we found a higher renal expression of MCP-1, CD3+, and
CD68+ cells in the HFDV group compared to all the other

groups, demonstrating a synergistic effect of adipose tissue and
vitamin D deficiency regarding the inflammatory process.

Macrophage activation and function are heterogeneous
and regulated by the microenvironment and stage of tissue
injury, reflecting in different phenotypes (1, 77, 79). In
general, macrophages are classified into two subtypes: (a)
M1 macrophages, classically activated and considered pro-
inflammatory due to their ability to produce and release pro-
inflammatory cytokines, such as IL-1, IL-6, IL-12, IL- 23, and
TNF-α; and (b) M2 macrophages, which are known to have anti-
inflammatory and immunomodulatory functions (79, 80). In the
present study, we observed a higher renal expression of CD68+
cells (M1+M2 macrophages) in the VDD, HFD, and HFDV
groups compared to the SD group. In addition, we noted an
upward tendency concerning the expression of those cells in the
HFDV group. Although not significant, we noticed a lower renal
expression of CD206+ cells (M2 macrophages) in relation to the
total amount of CD68+ cells in the HFDV group. It is reported
that the balance between M1/M2 macrophages is related to the
renal microenvironment and may influence the progression of
renal disease (1, 77, 80). In previous studies, we demonstrated
that vitamin D deficiency contributed to the extension of the
active state of inflammation, reinforcing the role of vitamin D in
the modulation of inflammatory cells (1, 7, 77). Concurrently,
macrophage infiltration is correlated with the degree of
obesity, mainly with the M1 phenotype (79). The inflammatory
cytokines produced by M1 macrophages neutralize the insulin-
sensitizing actions of the hormones adiponectin and leptin,
which eventually lead to insulin resistance (79). In contrast,
macrophages in lean subjects express high levels of M2-specific
genes, such as IL-10 and Arg-1 (79). Thus, our results show
that the association between obesity and vitamin D deficiency
contributed to an exacerbation of the inflammatory process
observed in the HFDV group, which had higher expression of
MCP-1 and CD3+ cells and a lower proportion of CD206+ cells
in relation to the CD68+ cells.

As previously reported, AKI can result in incomplete tissue
repair, persistent tubulointerstitial inflammation, fibroblast
proliferation, and excessive deposition of ECM components
(81). Furthermore, in response to kidney injury, cells that
are normally stably differentiated to promote homeostasis
can dedifferentiate into a new phenotype and redirect tissue
repair in a process known as EMT (78). High-fat diets
seem to be associated with susceptibility to RFF through
increased expression of TGF-β and ECM components (36, 82).
Furthermore, studies have shown that vitamin D can suppress
the expression of TGF-β and its respective receptor and inhibit
the EMT process, cell proliferation, and apoptosis as well (1,
2, 37). Corroborating those findings, we observed a higher
renal expression of TGF-β1 in the VDD and HFD groups
compared to the SD group. Importantly, the HFDV group
presented a higher expression of TGF-β1 than all the other
groups, which was associated with higher amounts of Col-3
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and fibronectin in the renal tissue. These results suggest the
interaction between obesity and vitamin D deficiency on the
renal TGF-β1 expression and ECM production.

As aforementioned, EMT process promotes greater cell
division, allows cells to acquire a secretory phenotype, and
contributes to greater deposition of ECM components (78,
83). In 2012, Xiong et al. reported that the low expression of
VDR in CKD would be involved in the relationship between
inflammation and EMT (84). In the present study, we observed
a higher renal expression of PCNA, α-SMA, and vimentin in the
renal cortex from the HFDV group. Previous studies from our
laboratory demonstrated the influence of vitamin D deficiency
on increased phenotypic change (2) and cell proliferation (8).
Corroborating our results regarding obesity, Coimbra et al. also
observed a higher expression of vimentin in the renal tissue of
obese Zucker rats (85). Furthermore, Amaral et al. showed a
higher PCNA expression in the renal cortex of ovariectomized
rats in obesity induced by a high-fat diet (86). Thus, similar
to our data regarding ECM markers, our results suggest that
the synergistic effect of obesity and vitamin D deficiency
exacerbated cell proliferation and phenotype alteration of renal
tubule cells in the HFDV group.

Fibrosis and inflammation are hallmarks in the course
of kidney disease, in which unresolved kidney inflammation
becomes an important driving force for the RFF (1, 87, 88).
Some studies have been demonstrating that sufficient levels of
vitamin D exert a protective effect in preserving cell integrity.
Moreover, those reports show that a close relationship among
vitamin D levels, VDR expression, and TGF-β could be involved
in inflammation and EMT process (2, 37, 84). Previous data
from our group showed that vitamin D deficiency caused a lower
renal VDR expression and a higher renal TGF-β1 expression in
rats submitted to renal IRI (2) and 5/6 nephrectomy (7, 77).
Concomitantly, adipose tissue is recognized as an endocrine
organ involved in the production and action of adipokines,
including leptin, TNF-α, MCP-1, and TGF-β (23, 70, 89).
In the present study, along with the increased expression of
TGF-β1 and leptin as well as the decreased expression of the
VDR, the HFDV group presented an exacerbated inflammatory
infiltrate, greater cell proliferation, and phenotypic alteration
of renal tubular cells. Taken together, these changes reflected a
significant enlargement of the FIA in the HFDV group. Those
results demonstrated a plausible synergistic effect of increased
production and secretion of adipokines by adipose tissue and
an impaired renoprotective action attributed to hypovitaminosis
D. Hence, our data demonstrated that obesity associated with
vitamin D deficiency led to a potentiation of the expression
of inflammatory and pro-fibrotic factors in the progression
following AKI induced by renal IRI.

Our results allow us to conclude that the association
between vitamin D deficiency and obesity in the
renal ischemia/reperfusion model modified functional,
hemodynamic, and metabolic parameters and contributed to

a greater expression of inflammatory and pro-fibrotic factors
related to the progression of renal disease.
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Purpose: As an immune-modulator, vitamin D is known to regulate immune

response and is implicated in disease pathogenesis. Celiac disease (CD) is

a systemic autoimmune disease and susceptibility conferred by vitamin D

metabolism is under investigation. Studies on the association of vitamin

D metabolism and genetic polymorphisms are expected to explain CD

pathogenesis. We performed a systematic review–based meta-analysis to

investigate the 25(OH)D serum levels and susceptibility conferred by the

genetic variants of VDR in CD.

Methods: Systematic review was conducted through a web-based

literature search following stringent study inclusion–exclusion criteria.

The Newcastle–Ottawa Scale and GRADE tools were used to assess the

quality of evidence in studies and the study outcome. Cohen’s κ value was

estimated to access the reviewer’s agreement. RevMan 5.4.1 was used to

perform the meta-analyses. Weighted mean di�erence and Meta p-value was

assessed for 25(OH)D serum levels. Meta-odds ratio and Z-test p-value were

evaluated to estimate the allelic susceptibility of VDR variants.

Results: A total of 8 out of 12 studies were evaluated for “25(OH)D” serum

level, while four studies were found eligible for SNPs (Bsm1, Apa1, Fok1, and

Taq1) of VDR. Significantly higher levels [WMD= 5.49, p< 0.00001] of 25(OH)D

were observed in healthy controls than in patients with CD. rs2228570-T (Fok1)

[Meta-OR = 1.52, p = 0.02] was confirmed to be predisposing allele for CD.

Conclusion: Reduced serum level of 25(OH)D and association of Fok1 T-allele

of VDR confirmed in this study plays a critical role in immunomodulation and

maintaining barrier integrity, which is majorly implicated in CD.

KEYWORDS

celiac disease, vitamin D deficiency, vitamin D receptor, Fok1 polymorphism,

meta-analysis, autoimmunity
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1. Introduction

Celiac disease (CD) is an immune-mediated gluten

enteropathy affecting almost 1% of the population

worldwide in individuals carrying HLA DQ2/8 susceptibility

alleles, which are encoded by DQA1∗0501-DQB1∗02 and

DQA1∗0301-DQB1∗0302 (1, 2). Almost 94.94% of the CD

subjects are positive for this specific HLA-DQB1∗02 allele

(2). Though the etiology of CD is not well understood but

is marked by the presence of inflammatory cytokines IL18,

IL17, TNF-α, IL12, IL21, and IL15 (3). Vitamin D was found

to be associated with reducing the effects of inflammatory

molecules (4). Components of the immune system, such

as B-lymphocytes, T-lymphocytes, and dendritic cells, are

influenced by the regulatory effects of vitamin D and expressed

vitamin D receptor (VDR), which is involved in the biological

activity of 1,25(OH)2D3, and these cells also have the capability

of locally synthesizing active 1,25(OH)2D3 (5). This active

form of vitamin D exerts its effects by binding to the nuclear

receptor VDR. The 1,25(OH)2D3-VDR complex dimerizes with

the retinoid X receptor (RXR), and the 1,25(OH)2D3-VDR-

RXR heterodimer translocates to the nucleus where it binds

Vitamin D Response Element (VDRE) in the promoter regions

of vitamin D responsive genes and induces the expression

of vitamin D responsive genes (6). Some of the remarkable

effects of vitamin D in immune system regulation were the

suppression of Th1/Th17 CD4+ T cell proliferation and

subsequent alteration of the cytokine responses (5). Thus, it is

worth studying the association between vitamin D metabolism

and various immune-mediated disorders.

Duodenal epithelial damage in CD is caused by the cytokines

released by the activated T-cells upon exposure to gliadin

peptides, and vitamin D is reported to suppress the proliferation

of T-cells (7, 8). In vitro study performed on Caco-2 cell layers

reported the protective role of 1,25(OH)2D3 on the damage

of tight junction, which was induced by the pepsin–trypsin

digested gliadin (PT–G). Vitamin Dwas observed to increase the

expression of the tight junction–associated proteins and was also

able to minimize epithelial permeability (9). Notably, vitamin D

deficiency increases the risk of severe intestinal damage, which

is a prominent symptom of CD (10). During the early infant

stage, 25(OH)D concentrations between <30 and >75 nmol/L

were associated with an increased risk of developing CD in

genetically predisposed children. The non-linear relationship

raises the need for more studies on the possible role of 25(OH)D

in the onset of CD (11). In vivo studies have shown a positive

response to vitamin D supplementation in the celiac mice

model (12).

In the association study in the Spanish Basque

population, four polymorphisms of VDR (Bsm1-rs1544410,

Apa1-rs7975232, Taq1-rs731236, and Fok1-rs2228570) were

genotyped. Fok1 was reported to be a risk genotype in 25.64%

of CD cases as compared to 9.89% of controls (p = 0.01, OR

= 3.45) (13). Another association study on the Norwegian

cohort did not find any association with the VDR marker

(Bsm1) or serum vitamin D level (14). Two significant SNPs,

Fok1 and Bsm1, were reported in the Russian Tomsk group,

p = 0.009 and p = 0.001, respectively (15). A total of 92

Viennese CD patients and controls were genotyped for Apa1

and Taq1 SNPs of the VDR gene; however, no significant risk

association was observed (16). A recent meta-analysis study by

Lu et al. (17) did not find any association with VDR genotype

but reported lower levels of 25(OH)D in CD patients than

in controls.

In this systematic review and meta-analysis, we intended

to assess an association of serum level of 25(OH)D and

VDR gene polymorphism with CD. Four SNPs (Bsm1-

rs1544410, G>A; Apa1-rs7975232, C>A; Taq1-rs731236, T>C;

and Fok1-rs2228570, C>T) of VDR were evaluated.

2. Methods

2.1. Search strategy

For the search and retrieval of relevant published literature,

various web search engines for scientific databases such

as Google scholar, NCBI (PubMed/MEDLINE), SCOPUS,

EMBASE, and Web of Science were used. All the published

literature until May 2022 on the association of vitamin D

serum concentration and VDR gene polymorphism with celiac

disease was searched. For this literature search, keywords

were used as follows: “Celiac disease” AND “serum vitamin

D concentration” OR “serum 25(OH)D concentration”. For

the genotype association study, the key terms used were

as follows: “Celiac disease” AND “VDR polymorphism” OR

“VDR genotype” OR “VDR variants” OR “Bsm1 polymorphism”

OR “Apa1 polymorphism” OR “Fok1 polymorphism” OR

“Taq1 polymorphism”.

2.2. Inclusion and exclusion criteria

To limit the screening to relevant articles, the inclusion

and exclusion criteria were defined. Articles were considered

eligible for the study if they met the following inclusion

criteria: (i) published full-text original research article,

(ii) case–control study design, (iii) mean serum 25(OH)D

concentration can be obtained, (iv) VDR gene polymorphism

association study with celiac disease and healthy controls,

and (v) Only articles written in the English language.

Our study was not restricted to any specific population or

ethnicity, and all the relevant articles available till May 2022

were considered.

The exclusion criteria for the study were as follows: (i)

studies other than case–control, (ii) if the CD patients were
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on a gluten-free diet or vitamin D supplementation, and (iii)

review articles. Apart from this, duplicate publications were

also excluded.

2.3. Data extraction and evaluation of
confined studies

Two researchers independently performed a literature

search checked the eligibility criteria, and extracted data from

the shortlisted literature. From all the studies which we

considered eligible according to our inclusion and exclusion

criteria, relevant data for serum vitamin D concentration and

VDR genotype in patients with CD and healthy controls were

retrieved along with the name of the author and the year of

publication. For the concentration of vitamin D, the serum levels

of 25(OH)D [mean ± standard deviation (SD)] in patients with

CD and healthy controls were extracted from every eligible

article, and for the vitaminD concentration, the units considered

were in ng/ml, data obtained in other units (such as nmol/L)

were converted to ng/ml (1 ng/ml = 2.5 nmol/L). Few other

information about the study population such as the mean age of

the patients with CD and healthy controls and the male:female

ratio in the study were also obtained.

For the VDR genotype association studies, VDR SNPs

data of CD cases and controls were obtained. Four SNPs

of the VDR gene: Bsm1-rs1544410, Apa1-rs7975232, Fok1-

rs2228570, and Taq1-rs731236 were analyzed, and the genotype

frequencies in CD cases and controls were obtained. After

data extraction, to carry out a systematic review, standard

checklists were used to analyze methodological quality and

strength of association, which also included the risk of bias

evaluation in observational studies as recommended by the

Cochrane handbook (https://training.cochrane.org/handbook).

The Preferred Reporting Items for Systematic Reviews and

Meta-analysis (PRISMA) statement was followed for reporting

the findings (http://www.prisma-statement.org/) (18). The

PRISMA statement is provided in Supplementary Table 1.

2.4. Quality assessment

Cohen’s kappa (κ) value was calculated in order to

estimate the extent of concordance between two reviewers,

who performed a literature search, and checked eligibility and

data extraction (19). Based on the percentage of agreement

and Cohen’s κ score, values were classified as poor, slight, fair,

moderate, substantial, or almost perfect. Sensitivity analysis was

FIGURE 1

Flow chart exhibiting the inclusion of eligible studies for meta-analysis.
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TABLE 1 Summary table of the alleles included in the meta-analysis and the quality of evidences as graded by the GRADE tool.

Gene Marker
(Allele)

Overall study comparison Assessment of quality of evidence(GRADE Tool)

N Total
CD

cases

Total
Healthy
Controls

Ref Allele
Meta-OR
(95% CI)

I2 (%)
p-value

Study
design

Risk of
bias

Inconsistency Indirectness Imprecision Publication
bias

Quality
of

evidence

Importance

VDR Bsm1
rs1544410

3 964 1468 0.98[0.83,1.16] 37%
(p= 0.84)

Non-
randomized
observational
case-control

Not
serious

Not serious Not serious Not serious None Low Important

Apa1
rs7975232

2 262 398 1.21[0.61,2.38] 76%
(p= 0.58)

Non-
randomized
observational
case-control

Not
serious

Not serious Not serious Not serious None Low Important

Fok1
rs2228570

2 176 402 1.52[1.06,2.18] 0%
(p= 0.02)

Non-
randomized
observational
case-control

Not
serious

Not serious Not serious Not serious None Low Important

Taq1
rs731236

2 262 404 0.78[0.46,1.32] 57%
(p= 0.35)

Non-
randomized
observational
case-control

Not
serious

Not serious Not serious Not serious None Low Important

#, Quality of evidence was accessed using six parameters. QoE was downgraded (by 1 or 2 depending on the severity) for the following: study design- randomized controlled trials are preferred over non-randomized/observational/case-control studies;

risk of bias-downgraded for weak study design, short follow-up, and not matched case controls; inconsistency-downgraded for considerable heterogeneity, direction of effect, and lack of replication; indirectness-downgraded when population and

diagnostic criteria varies; imprecision-wide confidence of interval and optimal information size; publication bias-observation from funnel plots.

High quality, Further research unlikely change the study findings and effect estimates; Moderate quality, Further research is likely to change the study findings or the effect estimates; Low quality, Further research is very likely to have an impact on the

confidence and effect estimates; Very low quality, Uncertain estimates; #, Primarily influenced by the study design alone; ∗, Beside study design, one or two factors are implicated.
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used to evaluate the impact of each study on the meta-analysis

result by removing one study at a time from the combined

dataset. Funnel plots were analyzed in order to detect any study

biasness. If any of the studies fell outside the funnel plot or

gave rise to an asymmetric funnel plot, then that study was

considered to be biased. Irrelevant studies were ruled out after

a thorough analysis. The Newcastle–Ottawa Scale (NOS) tool

was used to assess the quality of the eligible studies (i.e., study

participant selection, comparability, and outcome) (20). Studies

were graded on a scale of 0 (lowest) to 9 (highest), with low (stars

7–9), moderate (stars 4–6), and high (stars 0–3) risk of bias. The

analysis was limited to studies with low risk.

GRADEpro.v.3.6 was used to assess the quality of evidence

(QoE) for each of the outcomes using The Grades of Research,

Assessment, Development, and Evaluation (GRADE) tool (21).

Based on the proposed criteria, the included study design, risk

of bias, inconsistency, indirectness, imprecision, and publication

bias, and evidence were grouped into four main categories: high,

moderate, low, and very low.

2.5. Statistical analysis

For the meta-analysis of the serum 25(OH)D level, the mean

difference was used to analyze the pooled continuous data of

serum 25(OH)D concentration which was obtained as mean

± standard deviation (SD). To evaluate the combined MD,

mean differences (MD)with 95% confidence intervals (CIs) were

presented for all relevant studies on a forest plot. A collective

study was carried out without dividing the study based on age

group due to very few studies were obtained with relevant data

in the adult age group. The dichotomous data of the alleles

of the four SNPs of the VDR gene were utilized to calculate

Meta-OR using Mantel–Haenszel (M–H) method with 95% CI).

The statistical analysis for this study was carried out using the

RevMan (version 5.4.1, The Cochrane Collaboration) software.

For this meta-analysis, the assessment of study heterogeneity

was done by chi-square p-value and I2 value. The meta-analysis

was carried out using the DerSimonian and Laird random effect

model for I2 > 50% and p< 0.05, and for I2 < 50% and p> 0.05,

the fixed effect model was used.

3. Results

3.1. Features of enclosed studies

After employing all the above-described literature retrieval

strategies, we got a total of 17,656 studies. Overall, 17,196 studies

were excluded based on the inclusion and exclusion criteria

because of irrelevant titles or because they were review articles

or were not in the English language. After screening the rest of

the articles, 444 articles were excluded from our study because of T
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duplicate publications, irrelevant abstracts (in silico, in vitro, in

vivo studies, case studies), and articles without full text. Initially,

a total of 16 studies were considered for this study but due to

the lack of relevant data, four articles were excluded. Finally,

12 studies that satisfied our inclusion and exclusion criteria

and had the data of serum 25(OH)D level and VDR genotype

in CD cases and control were included in this meta-analysis

as shown in Figure 1. All these data of mean serum 25(OH)D

concentration and the genotype of VDR SNPs Bsm1 rs1544410,

Apa1 rs7975232, Fok1 rs2228570, Taq1 rs731236, and their

summary statistics are provided in Tables 1, 2.

3.2. Publication bias evaluation and
sensitivity analysis

In order to detect any study biasness in this meta-

analysis, the funnel plots of all the studies were analyzed.

Upon this analysis, the exclusion of any study was not

done as study biasness was not detected. When it came

to the inclusion and exclusion of relevant and irrelevant

articles from this systematic review, reviewers were almost

unanimous (Cohen’s κ = 0.96; % agreement 98.28). All the

12 eligible studies included in this meta-analysis are given in

Supplementary Figure 1.

3.3. Quality of the studies included and
risk of biasness

Based on the evaluation of the quality of evidence,

all 12 studies were identified to have a low risk of bias

(NOS = 7–8) (Supplementary Table 2). Because of concise

criteria for evaluation and homogeneous populations,

GRADE’s approach observation indicated that none of

the 12 studies increased the possibility of bias, and the

indirectness of the findings was not a concern. The

evidence quality was insufficient to rule out any of

the studies that were included. As a result, the entire

study was deemed important and rated as low risk in

Supplementary Table 2.

3.4. Concentration of 25(OH)D in CD
patients and control

A total of eight studies were evaluated in this meta-analysis

with mean serum 25(OH)D concentration of patients with CD

and controls, the list of same is given in Supplementary Table 3

(22–29). It constitutes 592 patients with CD and 754 controls.

This meta-analysis was carried out using the Random effect

model. Significant associations were defined as Z-test p-values

(i.e., Meta-p-values) of <0.05. The mean difference was

evaluated for all the studies included, and a forest plot was

plotted using the mean differences with 95% CI, of each

of these studies to estimate the combined mean difference

(Figure 2). The outcome of this meta-analysis exhibited that

the mean 25(OH)D concentration in the healthy controls was

5.49 ng/ml higher than that of CD patients (WMD = 5.49, 95%

CI = 3.22–7.76). The observed meta-p-value was significant (p

< 0.00001) (Figure 2).

3.5. VDR allele association with CD
patients and controls

For this meta-analysis of allelic association, four studies

were included in which the allelic frequencies for the four

VDR SNPs (Bsm1 rs1544410, Apa1 rs7975232, Fok1 rs2228570,

and Taq1 rs731236) were given for patients with CD and

healthy controls, basic information of which is provided in

Supplementary Table 4. The meta-analysis for the SNPs Bsm1

rs1544410 and Fok1 rs2228570 was performed using the fixed

effect model for insignificant heterogeneity (I2 < 50% and p

FIGURE 2

Forest plot to show meta-analysis of vitamin D serum concentration in CD patients and control.
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FIGURE 3

Forest plots to show meta-analysis of VDR SNPs [(A) Bsm1 rs1544410, (B) Apa1 rs7975232, (C) Fok1 rs2228570, and (D) Taq1 rs731236].

> 0.05), whereas for Apa1 rs7975232 and Taq1 rs731236, the

random effect model was used because of a high degree of data

heterogeneity. Significant associations were defined as Z-test

p-values (i.e., Meta-p-values) <0.05. The Meta-OR was used to

predict risk.

3.5.1. Bsm1
Three studies were evaluated (13–15). The G allele of this

marker rs1544410 was found to be protective for CD [Meta-OR

= 0.98 (0.83–1.16), p = 0.20]. The meta p-value was declared

insignificant (Figure 3A).

3.5.2. Apa1
Two studies were considered for this VDR marker (13, 16).

The C allele of this marker rs7975232 was found to confer

risk for CD [Meta-OR = 1.21 (0.61–2.38), p = 0.58] but with

insignificant p-value (Figure 3B).

3.5.3. Fok1
Two eligible studies were included for this marker (13, 14).

The T allele of rs2228570 was identified to be significantly

predisposing for the disease [Meta-OR = 1.52 (1.06–2.18), p =

0.02] (Figure 3C).
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FIGURE 4

Schematic representation of the role of vitamin D in immune regulation in CD. Upon binding of vitamin D3 with VDR, RXR is recruited and results
in the formation of a heterodimer known as VDR-RXR complex, whose translated product (formed by binding of the heterodimer with VDRE)
exerts immune modulation by inhibiting di�erentiation and proliferation of B-cell, T-cell, and dendritic cells and also inhibits immunoglobulin
secretion.

3.5.4. Taq1
Two studies were evaluated for this meta-analysis (13, 16). T

allele of rs731236 was found to be protective [Meta-OR = 0.78

(0.46–1.32), p = 0.13]. But no significant association was found

(Figure 3D).

4. Discussion

Multisystem CD is characterized by circulating innate

lymphoid cells and increased levels of IL-18, IFN-γ, and innate

lymphoid cell precursors were noted (3). A reduced vitamin

D level has been reported to be correlated with higher IFN-γ

and innate lymphoid cell precursor (4). Vitamin D deficiency

is shown to induce T-cell-mediated pro-inflammatory immune

responses that are pivotal in CD (30, 31). This gave an insight

into dietary supplementation of vitamin D as a therapeutic

approach to inhibit cytokine IFN-γ production (4). Several

cross-section studies concluded the association of vitamin D

deficiency with immune-related diseases (32–34). In vitro and

in vivo studies on induced CD-like conditions reported vitamin

D supplementation rescue from cellular and tissue damage,

which directly indicated the protective role of vitamin D in CD

(8, 35, 36).
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This meta-analysis suggests the association of the reduced

serum level of 25(OH)D [MD = 5.49; P < 0.00001] and

rs2228570-T (Fok1) [Meta-OR = 1.52, p = 0.02] with CD. All

the studies were performed in the last decade and on a modest

sample size (Figure 2). Cross-section studies with case-control

study design, which was included in this meta-analysis, are

however unable to comment on the cause-effect relationship

between VDD and CD. Nevertheless, this finding suggests

vitamin D supplements to subjects with CD to restore the

normal duodenal mucosal barrier and suppress inflammatory

immune responses as illustrated in Figure 4. 25(OH)D is the

most stable form of vitamin D, and its transport and stability

are determined by the availability of vitamin D binding protein

(VDBP) in the serum. To date, no reports are available on the

association of serum VDBP with CD.

The extra-calcium role of vitamin D and its involvement in

immune modulation suggested that in genetically predisposed

individuals, vitamin D deficiency can be an underlying cause for

the onset of CD in children. Moreover, vitamin D deficiency

can lead to dysregulated immune responses that result in

abnormal intestinal mucosa and a greater risk of developing

acute gastrointestinal infection (37). Several reports are available

to suggest significant improvements in subjects with CD

following vitamin D supplementation alongside gluten-free diet

(GFD) (38).

Very limited genetic association studies were performed on

CD to determine the contribution of vitamin D metabolism

to the disease. Only four research articles were available on

VDR, and all the studies were performed in populations

with European ancestry (Supplementary Table 4). Four

polymorphisms namely, Bsm1 (rs154441, G>A), Apa1

(rs7975232, C>A), Fok1 (rs2228570, C>T) and Taq1 (rs731236,

T>C) were considered where at two studies were available for

the meta-analysis. The association of the Fok1-T allele with CD

(OR= 1.52, p= 0.02) suggested the putative role of this gene in

the disease pathogenesis (Figure 3C).

The Fok1 polymorphism of VDR is associated with several

other immune-mediated disorders such as type 2 diabetes

(T2DM) (39). The Fok1 polymorphism also known as the

start codon polymorphism (SCP), in exon 2 of the VDR

has been shown to alter the structure of the VDR. The

change in C > T also represented as F > f leads to a

threonine to methionine substitution and provides two possible

sites for the initiation of translation (40). The shorter VDR

form, that is, 424 amino acid protein (encoded by the

common allele C) in the FF genotype appears to be more

effective in binding 1,25(OH)2D3 and has a higher binding

capacity (41), while rs2228570-T (in ff genotype) leads to

the production of 427 amino acid protein product, which

is comparatively 1.7 times less efficient at the binding of

1,25(OH)2D3. Reduced binding efficiency with 1,25(OH)2D3

thus restricts VDR activation, and therefore, may limit

regulating the expression of specific genes that are implicated in

immune regulation.

5. Conclusion

In this meta-analysis, lower levels of serum 25(OH)D were

observed in patients with CD, which indicates that deficiency of

vitamin D may play a significant role in the pathogenesis of CD.

The SNPs of the VDR gene (Bsm1-rs1544410, Apa1-rs7975232,

and Taq1-rs731236) did not show any significant association

with CD, but Fok1 (rs2228570-T) was identified to be providing

significant risk for CD. However, due to limitations in the

number of studies performed on the association of VDR

gene polymorphism and CD, strong evidence to support this

association is still lacking.
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E�ects of vitamin D
supplementation on the
regulation of blood lipid levels in
prediabetic subjects: A
meta-analysis

Yixue Yang1, Shoumeng Yan2, Nan Yao1, Yinpei Guo1, Han Wang1,
Mengzi Sun1, Wenyu Hu1, Xiaotong Li1, Ling Wang1 and Bo Li1*
1Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun,
China, 2School of Nursing, Jilin University, Changchun, Jilin, China

This meta-analysis aimed to systematically investigate whether vitamin D
supplementation reduces blood lipid—total cholesterol (TC), LDL cholesterol
(LDL-C), HDL cholesterol (HDL-C), and triglyceride (TG)—levels in prediabetic
individuals. Pubmed, Web of Science, Cochrane Library, Embase, CNKI, and
WANFANG databases were searched for studies published before 13 February
2022 (including 13 February 2022). Five articles were included. The results showed
that vitamin D intervention led to a significant reduction in TG compared with
control or placebo treatment (−0.42 [−0.59, −0.25], P < 0.001). Subgroup
analyses showed that this e�ect was particularly significant among the studies
that included obese subjects (−0.46 [−0.65, −0.28], P < 0.001), the studies that
also included men (not only women) (−0.56 [−0.78, −0.34], P < 0.001), and
the studies with intervention durations longer than 1 year (−0.46 [−0.65, −0.28],
P < 0.001). Both relatively low doses of 2,857 IU/day (−0.65 [−0.92, −0.38],
P < 0.001) and relatively high doses of 8,571 IU/day (−0.28 [−0.54, −0.02] P
= 0.04) of vitamin D supplementation reduced TG levels, and the e�ect was
observed both in Northern Europe (−0.65 [−0.92, −0.38], P < 0.001) and Asian
(−0.25 [−0.48, −0.03], P = 0.03) country subgroups. No significant e�ects on
TC, HDL-C, and LDL-C were shown. In conclusion, vitamin D supplementation
might beneficially a�ect TG levels in individuals with prediabetes. Particularly
longer durations of treatment, more than 1 year, with doses that correct vitamin
deficiency/insu�ciency, can have a beneficial e�ect. This meta-analysis was
registered at www.crd.york.ac.uk/prospero (CRD42020160780).

KEYWORDS

vitamin D, meta-analysis, prediabetes, cholesterol, LDL cholesterol, HDL cholesterol,

triglycerides

1. Introduction

The global burden of diabetes mellitus cannot be ignored. In the last several decades,
the prevalence of diabetes mellitus has extensively increased worldwide (1). It has been
estimated that in 2011, there were approximately 366 million patients with diabetes and that
the number is expected to reach 552 million by 2030 (2). Additionally, diabetes is associated
with a high risk of cardiovascular diseases, mortality, and high economic costs related to the
treatment and associated working disability (3, 4).
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Diabetes can be preceded by prediabetes, and timely
intervention during the prediabetic state is important for
preventing the progression of diabetes (1, 5, 6). Prediabetes is
defined as a state with a blood glucose level beyond the normal
value but not reaching the diagnostic criteria for diabetes, including
impaired fasting glucose (IFG, defined as fasting plasma glucose of
6.1–6.9 mmol/L or 5.6–6.9 mmol/L), impaired glucose tolerance
(IGT, defined as 2h OGTT plasma glucose of 7.8–11.1 mmol/L),
or glycated hemoglobin A1c (HbA1c) levels between 39 and
47 mmol/mol (7). Dyslipidemia is an important characteristic
of both prediabetes and diabetes and may aggravate diabetic
complications (8–11).

Vitamin D deficiency is another growing health concern
in many parts of the world, affecting more than 50% of the
general population worldwide (12). At the same time, it has
been observed that people with lower 25(OH)D levels tend to
have higher blood glucose (9), insulin resistance (10), and a
higher risk of type 2 diabetes mellitus (T2DM) (11). In addition,
some studies have shown that vitamin D supplementation may
ameliorate dyslipidemia in subjects with T2DM (13, 14). Potential
mechanisms included reduced intestinal cholesterol absorption,
decreased low-density lipoprotein deposition in macrophages and
foam cell formation, increased lipoprotein lipase gene expression
in muscles and adipose tissue, etc. (15–17). However, there is still
controversy over whether vitamin D supplementation can improve
lipid levels in subjects with prediabetes since such studies are rare
and more equivocal.

Therefore, we performed a meta-analysis evaluating the effect
of vitamin D supplementation on blood lipid levels in subjects
with prediabetes.

2. Materials and methods

2.1. Data sources and searches

We comprehensively searched the PubMed, Web of Science,
Cochrane Library, Embase, CNKI, and WANFANG databases
for all studies with human subjects in any language published
before 13 February 2022 (including 13 February 2022) (Figure 1).
We explored changes in serum total cholesterol (TC), low-
density lipoprotein cholesterol (LDL-C), high-density lipoprotein
cholesterol (HDL-C), and triglyceride (TG) levels before and after
intervention with vitamin D supplementation in comparison with
changes in blood lipids on a control treatment without vitamin

Abbreviations: HDL-C, high-density lipoprotein cholesterol; TG, triglyceride;

TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; SMD,

standardized mean di�erence; CI, confidence interval; BMI, body mass

index; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; FEM,

fixed e�ect model; REM, random e�ect model; SD, standard deviation;

PPARγ, peroxisome proliferator-activated receptor-gamma; C/EBPα, CCAAT

enhancer binding protein-alpha; IDF, International Diabetes Federation;

ADA, American Diabetes Association; WHO, World Health Organization;

HbA1c, glycated hemoglobin A1c; T2DM, type 2 diabetes mellitus;

PTH, parathyroid hormone; RAAS, renin-angiotensin-aldosterone system;

SREBP1c, sterol regulatory element-binding protein 1c; LPL, lipoprotein

lipase; AP2, adipocyte-binding protein 2.

D supplementation. The control treatment was defined as no
supplementation, placebo supplementation, or another treatment
without vitamin D supplementation that was also present in
the vitamin D supplementation group (e.g., lifestyle intervention,
calcium carbonate supplementation, and omega-3 fatty acid
supplementation). Two investigators independently reviewed the
literature, discussed the inconsistencies, and worked independently
during the selection process, data collection process, and study risk
of bias assessment (Figure 2).

2.2. Inclusion and exclusion criteria

The included studies met the following criteria. Subjects should
meet the diagnostic criteria for prediabetes (International Diabetes
Federation (IDF)/World Health Organization (WHO) from 2006:
fasting plasma glucose value in the range of 6.1–6.9mmol/L or 110–
125mg/dl, or 2h oral glucose tolerance test (OGTT) plasma glucose
value in the range of 7.8–11.0 mmol/L or 140–200 mg/dl (18) and
American Diabetes Association (ADA) from 2004: fasting plasma
glucose value in the range of 5.6–6.9 mmol/L or 100–125 mg/dl, or
2h OGTT plasma glucose value in the range of 7.8–11.0 mmol/L
or 140–200 mg/dl; or HbA1c in the range of 39–47 mmol/mol
or 5.7–6.4% (19). We restricted included studies to prospective
intervention studies; studies included at least one vitamin D
intervention group and one control group receiving no vitamin D
supplementation, with the only difference between the intervention
group and control group being vitamin D intervention; studies
included at least one of the blood lipid indicators (TC, LDL-C,
HDL-C, or TG); studies provided quantitative data before and after
vitamin D intervention or quantitative changes after vitamin D
intervention compared with baseline data of blood lipid indicators.

Duplicate articles in databases, studies that did not meet the
above inclusion criteria, animal experiments, in vitro studies,
reviews, and conference papers were excluded.

2.3. Data extraction

We read all included articles and then abstracted the following
data: primary authors, nationality, and publication year; average
age, gender, BMI, region, and the number of participants in each
group; vitaminD supplement dose and time; criteria for prediabetes
definition; TC, LDL-C, HDL-C, and TG alterations in intervention
groups and control groups. If the included original article hadmore
than one intervention group or control group, we chose the most
suitable group for further analysis.

2.4. Quality assessment

Two investigators independently assessed the risk of bias using
RevMan 5.3, including selection bias, performance bias, detection
bias, attrition bias, reporting bias, and other bias, which were
classified into three levels as high, low, or unclear, along with
discussion and negotiation with respect to inconsistency. The
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FIGURE 1

Flow diagram of the literature search and selection. TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density
lipoprotein cholesterol; TG, triglyceride.

judgment standards were established fromCochrane Handbook for
Systematic Reviews of Interventions (20).

2.5. Statistical analysis

In this study, the RevMan 5.3 and Stata 12.0 software were
used for statistical analysis. The average differences between the
intervention group and the control group were calculated by the

average changes in blood TC, LDL-C, HDL-C, and TG levels
compared to baseline values (mean± SD) (SD: standard deviation).
When the original studies did not provide changes in SD, the
formula in the Cochrane handbook was used to calculate (20).

SDchange =

√

SD2
baseline + SD2

end − (2× R× SDbaseline × SDend)

The correlation coefficient R of the equation was estimated
using the baseline value, endpoint, and change values of blood
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FIGURE 2

Risk of bias.

lipids from other studies with vitamin D supplementation.
Finally, the estimated R-value of this study was 0.84. The 95%
confidence interval (CI), interquartile range (IQR), and 5th and
95th percentiles could also be transformed into SD (20) (1–0.95/2=
0.025, then the value x was found using the formula= tinv(1–0.95,
N-1) in Excel, where N means the population of this group).

SD = [
√
N× (95%CIUpper limit − 95%CILower limit)]÷ 2x

SD = IQR÷ 1.35 = (95th percentiles− 5th percentiles)÷ 3.29

The mean and SD of serum TC, LDL-C, HDL-C, and TG
concentrations changes in the intervention group and the control
group were compared by standardized mean difference (SMD).
Cochran’s Q-statistics and I2-statistics were used to evaluate the
statistical heterogeneity in the meta-analysis. In a meta-analysis,
the random effect model (REM) was used when data were
heterogeneous, and the fixed effect model (FEM) was used when
data were not heterogeneous (20), but model-using in subgroup
analyses of TC, LDL-C, HDL-C, and TG remained consistent with

the total meta-analysis of TC, LDL-C, HDL-C, and TG separately.
In this study, SMD and 95% CI of TC and HDL-C changes were
measured by REM; SMD and 95% CI of LDL-C and TG changes
were measured by FEM; and data were compared between the
vitamin D group and the control group.

In theQ-test, a p-value of<0.05 was indicative of heterogeneity,
and the I2-value was used to evaluate the degree of heterogeneity.
Influence analysis and Egger’s test were performed using the
Stata software to determine the stability and possible sources
of heterogeneity. Combining the opinions of two investigators,
the RevMan software was used for risk assessment. In addition,
subgroup analysis was conducted according to BMI [overweight
defined as 23–24.9, obesity as 25 or over 25 in Indian studies
(21); overweight defined as 25–29.9, obesity as 30 or over 30 in
other studies (22)], region (Northern Europe and Asia), vitamin D
supplement dose (relatively low dose, relatively medium dose, and
relatively high dose; according to included studies, we have found
that doses of included studies were 2,857 IU/day, 3,571 IU/day, and
8,571 IU/day, therefore, we defined 2,857 IU/day as relatively low
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TABLE 1 Basic information of included studies.

References Region Intervention
Dose (IU/D)

Intervention
Duration
(Day)

Study
participants

Total
(intervention
/control)

Sex
[Female N (%)/Male N (%)]

Baseline BMI (kg/m2) Baseline age

Intervention Control Intervention Control Intervention Control

(A)

Bhatt et al. (21) India 8571 or 200a 546 121 (61/60) 61 (100.0)/0 (0.0) 60 (100.0)/0 (0.0) 31.10± 6.20 28.80± 3.90 20-60 20-60

Dutta et al. (5) India
8571b 56

104 (55/49) 33 (60.0)/22 (40.0) 26 (53.1)/23 (46.9) 26.32± 4.52 26.83± 4.63 48.37± 10.47 47.40± 11.51
2000b ≥309

Jorde et al. (23) Norway 2857 365-1825 227 (116/111) 43 (37.1)/73 (62.9) 39 (35.1)/72 (64.9) 30.10± 4.10 29.80± 4.40 62.30± 8.10 61.90± 9.20

Rajabi-Naeeni et al.
(30)

Iran 3571 56 84 (42/42) 42 (100.0)/0 (0.0) 42 (100.0)/0 (0.0) 27.01± 2.91 27.28± 2.74 39.92± 6.04 41.85± 7.48

Misra et al. (31) India 8571 or 200a 720 65 (37/28) 37 (100.0)/0 (0.0) 28 (100.0)/0 (0.0) – – 48.10± 6.70 46.10± 8.10

BMI data are shown as mean± SD; age data are shown as mean± SD or age range; original doses were converted into doses per day and were rounded if they were not integers; 1 month was converted into 30 days. –Data were unavailable or could not be calculated.
aIntervention dose: gave 60 000 IU/week for the first 8 weeks, adjusted doses every 24 weeks according to blood 25(OH)D levels, gave 60,000 IU/week for 8 weeks to subjects with vitamin D deficient, gave 200 IU/day to subjects with normal blood 25(OH)D level.
bIntervention dose: 60,000 U/W for the first 8 weeks, then 60,000 U/M, subjects were followed up for at least 12 months. BMI, body mass index; SD, standard deviation.

References TC change (mmol/L) LDL-C change (mmol/L) HDL-C change (mmol/L) TG change (mmol/L)

Intervention Control Intervention Control Intervention Control Intervention Control

(B)

Bhatt et al. (21) −0.18± 0.60 0.26± 0.61 0.12± 0.49 0.07± 0.44 0.08± 0.16 0.03± 0.17 −0.10± 0.48 −0.01± 0.37

Dutta et al. (5) – – −0.25± 0.46 −0.18± 0.36 −0.12± 0.15 −0.03± 0.16 −0.06± 0.40 0.09± 0.41

Jorde et al. (23) −0.41± 0.59 −0.50± 0.59 −0.14± 0.52 −0.18± 0.52 0.09± 0.21 0.04± 0.21 −0.20± 0.43 0.10± 0.49

Rajabi-Naeeni
et al. (30)

−0.27± 0.53 −0.11± 0.49 −0.27± 0.46 −0.11± 0.44 0.01± 0.16 −0.01± 0.13 0.04± 0.49 0.12± 0.39

Misra et al. (31) −0.85± 0.66 −0.86± 0.87 – – – – – –

Data are shown as mean± SD. – Data were unavailable or could not be calculated. HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation.
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dose, 3,571 IU/day as relatively medium dose, and 8,571 IU/day
as a relatively high dose in this meta-analysis), intervention time
[short term defined as <365 days and long term defined as ≥365
days according to some articles (6, 23–29)], sex (only female or
and male), and criteria for prediabetes definition (according to
IDF/WHO or ADA criteria).

3. Results

3.1. Literature search

A total of 14,734 citations were retrieved, and only 5 papers
fully met the inclusion criteria (5, 21, 23, 30, 31). These five
articles included a sample of 601 subjects, with 311 in the
vitamin D intervention group and 290 in the control group. Basic
characteristics and details are shown in Table 1. The duration
of treatment in the included studies ranged ≥56 days, and
the dose of vitamin D ranged from 200 to 8,571 IU/day. In
two studies, the control treatment involved only a placebo (23,
30); in the other two studies, placebo plus calcium carbonate
supplementation (21, 31); and in one study, placebo plus calcium
carbonate supplementation and lifestyle intervention (5) (note: also
in the vitamin D intervention group, the same control treatments
were applied).

As shown in Table 1, four studies were conducted in Asia
and one in Northern Europe; one study excluded obese subjects
(i.e., only normal weight and overweight subjects were included),
three studies included obese subjects, and one did not provide
BMI information. The experimental group in one study was
supplemented with relatively low-dose vitamin D, one was
supplemented with relatively medium-dose vitamin D, and three
were supplemented with relatively high-dose vitamin D; one study
carried out short-term interventions, and four carried out long-
term interventions; three studies only had female subjects, and two
had both male and female subjects; Four studies used ADA criteria
for prediabetes; one used IDF/WHO criteria.

3.2. Risk of bias assessment

The risk of bias is shown in Figures 2A, B. Systematically
speaking of this meta-analysis, the risks of random sequence
generation bias and reporting bias in the included studies were very
low; the risks of allocation concealment bias, attrition bias, and
other biases were low; the risk of detection bias was relatively low;
and the risk of performance bias was relatively high.

3.3. Meta-analysis

The differences in TG change (P < 0.001; Figure 3D, Table 2)
between the intervention group and the control group were
statistically significant. Compared to the control group, TG in the
blood in the intervention group decreased more after vitamin D
supplementation. But there were no significant differences in blood
TC change (P = 0.33; Figure 3A, Table 2), blood LDL-C change
(P = 0.73; Figure 3B, Table 2), or blood HDL-C change (P =

0.86; Figure 3C, Table 2) between the intervention group and the
control group.

3.4. Subgroup analysis results

Only in the subgroup of studies that included obese
subjects (not only normal weight and overweight), vitamin D
supplementation led to more reductions in TG levels compared
to the control treatments (P < 0.001; Figure 4). The effect of
vitamin D supplementation on TG levels was observed both in the
subgroup of Asian countries (P= 0.03; Figure 5) and the subgroup
of Northern European counties (P < 0.001; Figure 5), and both in
the relatively high-dose subgroup (P = 0.04; Figure 6) and in the
relatively low-dose subgroup (P < 0.001; Figure 6). Only in the
long-term intervention subgroup (more than 1 year of vitamin D
supplementation) (P < 0.001; Figure 7) and only in the subgroup
with both female and male subjects included (not only females) (P
< 0.001; Figure 8), the effect of vitamin D supplementation on TG
levels was observed. Both in the IDF/WHO subgroup (P < 0.001;
Figure 9) and the ADA subgroup (P = 0.03; Figure 9), vitamin D
supplementation led to more reductions in TG levels compared to
the control treatments. It was noteworthy to emphasize that studies
with obese subjects included were all long-term interventions
(more than 1 year of vitamin D supplementation), while the only
study (30) with non-obese subjects included was at the same time a
short-term intervention (only 56 days), and the vitamin D levels in
that study were not corrected at the end of the study (they remained
insufficient). Additionally, this short-term intervention study was
the only study with a relatively medium dose included, where the
effect was not observed (P= 0.41; Figures 4, 6, 7).

The effects on TC in obese, relatively high-dose, and long-
time subgroups and on HDL-C in obese, relatively high-dose,
Asian, long-time, female and male, and ADA subgroups showed
heterogeneity (Table 3).

3.5. Influence analysis and Egger’s test

The impact of every single article on heterogeneity was
observed in Figure 10. The study by Jorde et al. (23) seemed
different from the others in this meta-analysis of TC. In addition,
according to Egger’s test, there was no significant publication bias in
any of the included articles for TC (P= 0.540), LDL-C (P= 0.213),
HDL-C (P= 0.529), or TG (P= 0.096).

4. Discussion

The results of our meta-analysis showed that vitamin D
supplementation could decrease circulating TG levels in subjects
with prediabetes, especially in certain situations, but failed to
confirm the effects on TC, HDL-C, and LDL-C levels.

Many studies have shown that low serum 25(OH)D
concentration was associated with adverse lipid status (32),
and some studies indicated that vitamin D supplementation could
improve serum TC, TG, and LDL-C levels also in patients with
T2DM (13, 14) and in subjects with metabolic syndrome (33).
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FIGURE 3

Forest map of lipid changes between two groups. (A) TC, (B) LDL–C, (C) HDL–C, and (D) TG. TC, total cholesterol; LDL-C, low-density lipoprotein
cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride.

TABLE 2 Results of meta-analysis in five included articles.

Index Number of Studies SMD [95%CI] I
2

TC 4 −0.21 [−0.64,0.21] 81%‡

LDL-C 4 −0.03[−0.20, 0.14] 22%

HDL-C 4 0.03 [−0.34, 0.41] 78%‡

TG 4 −0.42 [−0.59, −0.25]† 45%

†P < 0.05 of the test for overall effect; ‡P < 0.05 of the test for heterogeneity. SMD,

standardized mean difference; CI, confidence interval.

The effect of vitamin D supplementation on TG levels can
be mediated through (1) increased calcium levels; (2) suppression
of parathyroid hormone (PTH) secretion; (3) inhibition of
lipolysis; (4) suppression of inflammation; (5) suppression
of renin-angiotensin-aldosterone system (RAAS) activity; (6)
its interaction with glucocorticoids and sex hormones; (7)
upregulation of adiponectin; (8) improvement in insulin resistance
and insulin levels; (9) its direct inhibition of the expression
of nuclear factor sterol regulatory element-binding protein 1c
(SREBP1c) involved in hepatic TG synthesis; (10) increased TG
clearance by upregulation of lipoprotein lipase (LPL), neutral
sphingomyelinases, PPARγ, and adipocyte-binding protein 2
(AP2); or by (11) upregulation of mitochondrial oxidation (34–41).

Since adipose tissue can sequestrate and metabolize vitamin
D and consequently lower its circulating and bioavailable levels
for other metabolically active tissues involved in lipid metabolism
(including muscle, liver, and pancreas) (42–45), we conducted an
additional stratified analysis according to BMI categories. Our
stratified analysis has shown that, particularly in the studies (5,
21, 23) that included obese subjects with prediabetes (not only
normal weight and overweight subjects), the effect on TG levels was
more marked compared with the study that excluded obese subjects
(30). This result might be affected by the fact that in some of the
studies that included obese subjects, men were also included (not
only women). Our sex-subgroup analysis showed that the effect
on TG was more marked in the mixed-sex studies (5, 23) than in
the studies that included only women (21, 30) where the effect was
not significant. Additionally, the durations of interventions in the
studies (5, 21, 23) that also included obese subjects were over 1
year, while the duration of the treatment in the study that excluded

obese subjects (30) was 8 weeks. Those factors can be significant
confounders, which need to be taken into consideration when
making conclusions. Nevertheless, there might be a more direct
association. For example, obese subjects can have much higher TG
levels compared with non-obese subjects, and therefore the effect
can be more observable, especially during prolonged treatment. An
additional explanation could be that obese subjects are more prone
to vitamin D deficiency, while improvements in insulin resistance
and related metabolic features can be observed after its correction.
However, the later explanation failed to be confirmed in this study.
In the study by Rajabi-Naeeni et al. (30) (where the effect on TGwas
not shown), the included normal weight and overweight subjects
were with vitamin D insufficient status, in the study by Bhatt et al.
(21) (where the effect was also not shown) the included overweight
and obese subjects were with vitamin D deficient status, while in
the studies by Dutta et al. (5) and Jorde et al. (23) (the ones which
have found the significant effect on TG), they were with vitamin
D insufficient status and no BMI restrictions. Therefore, the effect
was neither associated with the baseline vitamin D status nor the
BMI status, which is in agreement with a recent pooled meta-
analysis (46). However, it is important to say that in the study by
Bhatt et al. (21), the BMI-cut off for obesity was set at a much
lower level (>25 kg/m2) according to Indian references, whereas
in the other studies, it was set at the BMI-cut off for overweight.
Finally, the effect cannot be explained by the rationale that vitamin
D supplementation could affect body weight since not enough
evidence exists on the effect of vitamin D on body weight reduction
(42, 43, 47, 48), and no significant reductions in BMI were shown in
the analyzed studies by vitamin D supplementation in comparison
with the control treatments (5, 21, 23). Therefore, the finding
of the more pronounced effect on TG in the studies which also
included obese subjects was probably confounded by the influence
of duration of treatment and/or possible gender differences in the
response to supplementation (49).

As there are huge ethical/regional differences in vitamin
D levels and responses to supplementation (50–56), we also
conducted a region-subgroup analysis. The results showed that the
effect on TG was not region-specific and was observed in both
region-subgroups (Asia and Northern Europe). However, since this
meta-analysis only included studies from India (three studies), Iran
(one study), and Norway (one study), the results probably cannot
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FIGURE 4

Subgroup analysis by BMI. (A) TC, (B) LDL–C, (C) HDL–C, and (D) TG. BMI, body mass index; TC, total cholesterol; LDL-C, low-density lipoprotein
cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride.

FIGURE 5

Subgroup analysis by region. (A) TC, (B) LDL–C, (C) HDL–C, and (D) TG. TG. TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C,
high-density lipoprotein cholesterol; TG, triglyceride.

be extrapolated to other regions or ethnicity subgroups, and relative
trials in more regions are needed.

We conducted a subgroup analysis of intervention dose and
time according to some studies with the idea that insufficient
vitamin D dose and intervention time might affect the research
results (24). The results showed that in our relatively low-dose
(2,857 IU/day) and relatively high-dose (8,571 IU/day) subgroups,
vitamin D intervention provided significantly larger reductions
in TG, but such an effect was not observed in the relatively

medium-dose subgroup. However, the relatively medium-dose
group only included one study by Rajabi-Naeeni et al. (30), which
was at the same time the only study in the short-duration group.
Changes in glucose tolerance and blood lipid levels are usually
a slow and gradual process, and previous research suggests that
interventions lasting only a few months may be a too short time
frame to evaluate the benefits of vitamin D, implying that even 1
year is not enough for a long-term intervention (6, 24, 25, 33).
In our analysis, significantly larger reductions in TG levels in the
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FIGURE 6

Subgroup analysis by intervention dose. (A) TC, (B) LDL-C, (C) HDL-C, and (D) TG. TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol;
HDL-C, high-density lipoprotein cholesterol; TG, triglyceride.

FIGURE 7

Subgroup analysis by intervention duration. (A) TC, (B) LDL-C, (C) HDL-C, and (D) TG. TC, total cholesterol; LDL-C, low-density lipoprotein
cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride.

intervention group had been observed only in the long-duration
subgroup but not in the short-duration subgroup. Additionally,
the vitamin D levels in the short-duration subgroup of the study
(30) did not change to achieve vitamin D sufficiency after only 8
weeks of treatment. This implied that the relatively medium-dose
group in our analysis was probably affected by the short duration

of the study by Rajabi-Naeeni et al. (30). This is in agreement
with a recent meta-analysis in subjects with metabolic syndrome,
where the effects on TG levels were not shown in studies lasting
<1 year (33). More short-term interventions are needed for further
verification. Additionally, lower vitamin D doses than 2,857 IU/day
or higher doses than 8,571 IU/day need to be tested in the future.
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FIGURE 8

Subgroup analysis by sex. (A) TC, (B) LDL-C, (C), HDL-C, and (D) TG. TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C,
high-density lipoprotein cholesterol; TG, triglyceride.

FIGURE 9

Subgroup analysis by criteria for prediabetes definition. (A) TC, (B) LDL-C, (C) HDL-C, and (D) TG. TC, total cholesterol; LDL-C, low-density
lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; IDF, International Diabetes Federation; ADA, American Diabetes
Association; WHO, World Health Organization; Criteria of IDF/ WHO from 2006: fasting plasma glucose value in the range of 6.1–6.9 mmol/L or
110–125 mg/dl, or 2h oral glucose tolerance test (OGTT) plasma glucose value in the range of 7.8–11.0 mmol/L or 140–200 mg/dl; Criteria of ADA
from 2004: fasting plasma glucose value in the range of 5.6–6.9 mmol/L or 100–125 mg/dl, or 2 h OGTT plasma glucose value in the range of
7.8–11.0 mmol/L or 140–200 mg/dl; or HbA1c in the range of 39–47 mmol/mol or 5.7–6.4%.

We have also conducted subgroup analyses of the criteria
for prediabetes. The results showed that the effect on TG was
probably not affected by different criteria for prediabetes since it
was observed in both criteria subgroups (IDF/WHO and ADA).

Our heterogeneity might come from studies with different
study designs (different control interventions, doses, durations,

different inclusion criteria, baseline vitamin D status and
corrections achieved, BMI, sex, and ethnicity of the subjects
included). On the one hand, the significant heterogeneity
disappeared after region, sex, and criteria for prediabetes subgroup
analysis of TC, showing that region, gender, or criteria for
prediabetes could affect the heterogeneity of our meta-analysis
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TABLE 3 Results of subgroup meta-analysis.

Index BMI Subgroup Dose Subgroup Region Subgroup

Exclude Obese Include Obese Low Dose Medium Dose High Dose Northern Europe Asia

(A)

Number of Studies TC 1 2 1 1 2 1 3

LDL-C 1 3 1 1 2 1 3

HDL-C 1 3 1 1 2 1 3

TG 1 3 1 1 2 1 3

SMD TC −0.31 [−0.74, 0.12] −0.28 [−1.13, 0.58] 0.15 [−0.11, 0.41] −0.31 [−0.74, 0.12] −0.37 [−1.09, 0.35] 0.15 [−0.11, 0.41] −0.36 [−0.79, 0.06]

[95%CI] LDL–C −0.35 [−0.78, 0.08] 0.03 [−0.16, 0.21] 0.08 [−0.18, 0.34] −0.35 [−0.78, 0.08] −0.02 [−0.28, 0.24] 0.08 [−0.18, 0.34] −0.11 [−0.33, 0.11]

HDL–C 0.14 [−0.29, 0.56] 0.00 [−0.50, 0.50] 0.24 [−0.02, 0.50] 0.14 [−0.29, 0.56] −0.13 [−0.99, 0.73] 0.24 [−0.02, 0.50] −0.05 [−0.58, 0.49]

TG −0.18 [−0.61, 0.25] −0.46 [−0.65, −0.28]† −0.65 [−0.92, −0.38]† −0.18 [−0.61, 0.25] −0.28 [−0.54, −0.02]† −0.65 [−0.92, −0.38]† −0.25 [−0.48, −0.03]†

I2 TC – 93%‡ – – 82%‡ – 66%

LDL-C – 0% – – 4% – 26%

HDL-C – 85%‡ – – 90%‡ – 82%‡

TG – 51% – – 0% – 0%

Index Duration subgroup Sex subgroup Prediabetes criteria subgroup

Short Long Only female Female and male IDF/WHO ADA

(B)

Number of Studies TC 1 3 3 1 1 3

LDL-C 1 3 2 2 1 3

HDL-C 1 3 2 2 1 3

TG 1 3 2 2 1 3

SMD TC −0.31 [−0.74, 0.12] −0.18 [−0.76, 0.39] −0.36 [−0.79, 0.06] 0.15 [−0.11, 0.41] 0.15 [−0.11, 0.41] −0.36 [−0.79, 0.06]

[95%CI] LDL-C −0.35 [−0.78, 0.08] 0.03 [−0.16, 0.21] −0.08 [−0.35, 0.20] 0.00 [−0.22, 0.22] 0.08 [−0.18, 0.34] −0.11 [−0.33, 0.11]

HDL-C 0.14 [−0.29, 0.56] 0.00 [−0.50, 0.50] 0.23 [−0.04, 0.51] −0.16 [−0.95, 0.64] 0.24 [−0.02, 0.50] −0.05 [−0.58, 0.49]

TG −0.18 [−0.61, 0.25] −0.46 [−0.65, −0.28]† −0.20 [−0.47, 0.08] −0.56 [−0.78, −0.34]† −0.65 [−0.92, −0.38]† −0.25 [−0.48, −0.03]†

I2 TC – 86%‡ 66% – – 66%

LDL-C – 0% 61% 5% – 26%

HDL-C – 85%‡ 0% 91%‡ – 82%‡

TG – 51% 0% 27% – 0%

†P < 0.05 of the test for overall effect; ‡P < 0.05 of the test for heterogeneity. BMI, body mass index; SMD, standardized mean difference; CI, confidence interval. BMI definition: in Indian studies, overweight = 23–24.9, obesity≥25; in other studies, overweight =

25–29.9, obesity≥30. Dose definition: relatively low-dose= 2,857 IU/day; relatively medium dose= 3,571 IU/day; relatively high dose= 8,571 IU/day. Duration definition: short-term <365 days; long-term≥365 days. Bold values: P < 0.05.
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FIGURE 10

Influence analysis. (A) TC, (B) LDL-C, (C), and HDL-C, and (D) TG. TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C,
high-density lipoprotein cholesterol; TG, triglyceride.

of TC. On the other hand, Figure 10 shows that the included
article of Jorde et al. (23) was quite different from the others in
this meta-analysis of TC. In the present study, in the subgroups
with a North European population and relatively low dose and
IDF/WHO prediabetic inclusion criteria, only the study of Jorde
et al. (23) was included while regarding sex subgroups, only this
study had a higher percentage of male participants. This suggested
that the heterogeneity of this meta-analysis might come from
the region, intervention dose, criteria of prediabetes, and sex of
participants in the article by Jorde et al. (23). Besides, although it
was not observed in Figure 10, the article by Rajabi-Naeeni et al.
(30) was exceptional as well, with a relatively medium dose, a
short duration, and the exclusion of obese subjects. Therefore,
significant heterogeneity might also come from BMI, intervention
dose, and intervention duration of the article by Rajabi-Naeeni
et al. (30).

To make our analysis an all-around study as far as possible, we
restricted our selection to prospective intervention trials based on
the Cochrane Handbook for Systematic Reviews of Interventions
and relative references (20, 57). Limitations of this meta-analysis
were that there were not many studies (especially with normal
BMI, more other regions, lower vitamin D doses than 2,857
IU/day and higher doses than 8,571 IU/day, and a low intervention

duration of vitamin D supplementation) that could be included
in this meta-analysis. More studies are needed in the future.
Several included studies did not state clearly if they collected
blood lipid data when participants were fasting, and only few of
the included studies controlled for the usage of lipid lowering
medications in the study by Bhatt et al. (21), no information on
lipid-lowering drugs usage was provided; in the study by Dutta et al.
(5), participants using metformin, fever/active oral hypoglycaemic
agents, oral contraceptive pills, steroids, and anti-epileptics were
excluded; in the study by Jorde et al. (23), participants with use
of statins were included, but there was no significant difference
in use of statins between groups and those who changed their
use of statins during the course of study, were excluded; in
the study by Misra et al. (31), participants on medications
within last 1 month which could potentially influence insulin
secretion, insulin sensitivity, vitamin D, or calcium metabolism,
including metformin, thiazolidinediones, steroids, and calcitonin
were excluded; and in the study by Rajabi-Naeeni et al. (30),
participants using herbal or chemical medications affecting lipids
were excluded). Besides, there was significant heterogeneity in
the studies included, related to different durations and doses of
treatment, different BMI and gender of the subjects included,
different regions and ethnic populations, different criteria for
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prediabetes, different control interventions, baseline vitamin D
status, and corrections achieved.

However, despite all these limitations, our results may provide
a basis for the implementation of regular assessment of vitamin
D status among patients with prediabetes and consecutive
supplementation in vitamin D deficient/insufficient patients to
prevent an increase in blood lipids.

5. Conclusion

Vitamin D supplementation might beneficially affect TG levels
in individuals with prediabetes. Particularly longer durations of
treatment, more than 1 year, with doses that correct vitamin
deficiency/insufficiency, can have a beneficial effect. Considering
that there were not many studies that could be included in this
meta-analysis, more studies are needed in the future.
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