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A plant growing under field conditions is not a sim-
ple individual; it is a community. We now know that 
there is a community of microbes associated with all 
parts of the plant, and that the root associated com-
munity is particularly large. This microbial commu-
nity, the phytomicrobiome, is complex, regulated and 
the result of almost half a billion years of evolution. 
Circumstances that benefit the plant generally benefit 
the phytomicrobiome, and vice versa. Members of the 
holobiont modulate each other’s activities, in part, 
through molecular signals, acting as the hormones of 
the holobiont. The plant plus the phytomicrobiome 
constitute the holobiont, the resulting entity that is 
that community. The phytomicrobiome is complex, 
well developed and well-orchestrated, and there is 
considerable potential in managing this system. The 
use of “biologicals” will develop during the 21st cen-
tury and play as large a role as agro-chemistry did 
in the 20th century. Biologicals can be deployed to 
enhance plant pathogen resistance, improve plant 
access to nutrients and improve stress tolerance. 
They can be used to enhance crop productivity, 
to meet the expanding demands for plant mate-

rial as food, fibre and fuel. They can assist crop plants in dealing with the more frequent 
and more extreme episodes of stress that will occur as climate change conditions con-
tinue to develop. The path is clear and we have started down it; there is a considerable  
distance remaining. 
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An elm tree, approximately 200 years 
old, on Cape Breton Island, Nova Scotia. 
This tree is a community hosting an 
extensive phytomicrobiome as well as 
insects, birds and other animals.
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Editorial on the Research Topic

Signaling in the Phytomicrobiome

Over the last decade we have come to appreciate that there are close relationships between all
“higher” organisms and communities of microbes. The human microbiome and its role in human
metabolism and health, is being widely investigated. In a similar way, plant-associated microbial
communities are now coming under scrutiny.

Plants have probably had associated microbes since they colonized the land about 0.5 billion
years ago. The terrestrial environment presented water and nutrient acquisition challenges resulting
in the evolution of sophisticated plant root systems. However, associatedmicrobes also help address
these hurdles, and at lesser energetic costs (Smith et al.). Because most energy enters the terrestrial
biosphere at the green leaves of plants, organisms associated with plants have advantageous access
to reduced carbon from photosynthesis. So, when plants prosper, associated microorganisms
benefit. Microbes are associated with all plant structures, but roots are in constant contact with
generally humid, microbe-laden soil, and so are associated with the greatest number and range
of microbes. The earliest evidence we have of plant-microbe interactions are fossils showing
mycorrhizal relationships from almost 400 million years ago (Smith et al.).

We now realize that a plant growing under field conditions is community, not just an
individual. While the circumstances of associated microbes are improved when the plants are
doing well, the plants must at the same time control their associated microbes, to minimize the
presence of those that are potentially detrimental. The microorganisms that colonize plants are
collectively termed “the phytomicrobiome”. The genomes of the phytomicrobiome expand the
genetic repertoire of the plant. This association has led to the redefinition of Karl August Möbius’
biocenosis (metaorganisms comprising the macroscopic host and its synergistic interdependence
with microbes) concept into the holobiont (an individual host and its microbial community)
concept (Theis et al., 2016). The holobiont collective genome is the hologenome, the evolutionary
unit; the phytomicrobiome is muchmore flexible than the plant genome andmore readily modified
than the hologenome (Nogales et al., 2016).

PLANT-PHYTOMICROBIOME SIGNALING

It is becoming clear that plants exert control over the composition of their phytomicrobiome
(Smith et al.). This is reviewed extensively in the recent Frontiers in Plant Science
Research Topic “Signaling in the Phytomicrobiome.” Some of the regulatory activity by the
plant is through availability of metabolites, but it is also increasingly evident that signals
(exo-hormones or hormones of the holobiont) are being exchanged between the plant
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and members of its phytomicrobiome. Activities within the
phytomicrobiome are also regulated through signaling, for
instance through quorum sensing (Hartmann et al., 2014;
Sitaraman; Smith et al.; Smith et al.), and other less well
characterized signaling systems (e.g., Hagai et al., 2014).

Members of the phytomicrobiome can assist plant growth in
a range of ways (Smith et al.). For instance, establishment of a
specific phytomicrobiome on plants, such as willows, can allow
them to better tolerate soil contamination, and so allow them
to play a more effective role in phytoremediation (Bell et al.,
2015; Yergeau et al., 2015). Some soil nutrients are relatively
immobile (e.g., phosphorus and zinc) and some microbes, such
as arbuscular mycorrhizal fungi (AMF), facilitate uptake of these
nutrients by increasing effective root surface area; other microbes
use chelators and other molecular interventions to help mobilize
plant nutrients. Another key role of the phytomicrobiome is
atmospheric nitrogen fixation. Indeed, nitrogen is the plant
nutrient required in the greatest amounts; it is quite mobile in
soils and it can become rapidly depleted.

The best understood example of signaling between a plant and
elements of the phytomicrobiome occurs between leguminous
plants and associated nitrogen-fixing rhizobia (Lira et al.; Nelson
and Sadowsky; Smith et al.; Tóth and Stacey). Isoflavonoids
secreted by plant roots guide rhizobial cells to the roots and
activate key genes within the rhizobial cells, including the genes
encoding production of lipo-chitooligosaccharides (LCOs) that
signal back to the plant. Each legume species produces its own
characteristic suite of isoflavonoids and it is generally the case
that only the correct rhizobia respond to these. In a similar way,
each type of rhizobia produces distinct LCOs, to which only
the correct legume species responds (Smith et al.). The LCOs
turn on a set of nodulation-related genes within the legume,
initiating nodulation. In a few cases, the correct LCOs induce
formation of completely differentiated nodules, in the absence
of rhizobial cells. The presence of other phytomicrobiome
members can enhance the nodulation process (Maymon et al.),
although the mechanism is not understood. LCOs also serve as
signals in the mycorrhizal relationship, suggesting that this is
an ancient signaling system. However, the plant-to-mycorrhizal
fungi signal is distinct from the plant-to-rhizobia signal, being
strigolactone (Smith et al.), not an LCO and more related
to the homoserine lactone used in quorum sensing among
bacterial populations. Interestingly, rhizobia can also produce
the plant growth promoting compound lumichrome, another
phytomicrobome signal (Dakora et al.).

MANIPULATING THE PHYTOMICROBIOME

A better understanding of plant-microbiome signaling could help
find novel ways to manipulate the microbiome to improve the

plant holobiont’s nutrition and resistance to stress. For instance,

we have learned that the correct isoflavonoids can be added
to rhizobial inoculants, to activate the nodulation genes prior
to application onto plants (Smith et al.). This can overcome
environmental stresses disrupting signal exchange and enhance
the establishment of the nitrogen-fixing symbiosis. We have
also learned that LCOs can stimulate plant growth directly,
particularly under stressful conditions (Smith et al.; Subramanian
et al., 2016a,b). Interestingly, it has been shown that jasmonate,
a plant hormone which regulates plant responses to stressful
conditions, can be excreted from plant roots and can activate
genes that produce LCOs in some rhizobia; this has been shown
to ameliorate plant response to stress (Smith et al.). Commercial
products based on these understandings are now available for
application to a range of crops (Smith et al.).

When one isolates bacteria from plant roots, Bacillus species
are generally present. Recently, a strain of Bacillus which
enhances plant growth under a range of conditions was isolated
(Subramanian and Smith). This microbe was found to produce a
small protein (thuricin 17) that, like the LCOs, stimulates plant
growth at very low concentrations, and particularly when the
plants are stressed. This protein is a bacteriocin that has a dual
action by removing closely related competitors from the niche
space, and promoting plant growth, thus enlarging the niche
space, for the producing strain (Subramanian and Smith).

It is clear that the role of the phytomicrobiome is large, well
developed and well-orchestrated. It is also clear that there is
considerable potential in managing this system (Smith et al.;
Quiza et al.) and that the use of “biologicals” will develop
during the twenty first century and play as large a role as
agro-chemistry did in the twentieth century. Biologicals can be
deployed to enhance plant pathogen resistance (Ravichandran
et al.). They can be used to enhance crop productivity, to meet
the expanding demands for plant material as food, fiber and
fuel. They can assist crop plants in dealing with the more
frequent and more extreme episodes of stress that will occur as
climate change conditions continue to develop. The path is clear
and we have started down it; there is a considerable distance
remaining.

AUTHOR CONTRIBUTIONS

DS was the overall editor of the theme volume. EY and VG were
junior editors of the theme volume and contributed to the writing
of this editorial.

FUNDING

Funding was provided for basic and applied research through the
Natural Sciences and Engineering Research Council of Canada
(grant number RGPIN-2015-06328) and from the Canadian
Networks of Centres of Excellence (grant number G234970).

REFERENCES

Bell, T. H., Cloutier-Hurteau, B., Al-Otaibi, F., Turmel, M.-C., Yergeau, E.,

Courchesne, F., et al. (2015). Early rhizosphere microbiome composition is

related to the growth and Zn uptake of willows introduced to a former landfill.

Environ. Microbiol. 17, 3025–3038. doi: 10.1111/1462-2920.12900

Hagai, E., Dvora, R., Havkin-Blank, T., Zelinger, E., Porat, Z., Schulz, S.,

et al. (2014). Surface-motility induction, attraction and hitchhiking between

Frontiers in Plant Science | www.frontiersin.org April 2017 | Volume 8 | Article 611 | 5

https://doi.org/10.3389/fpls.2015.00787
https://doi.org/10.3389/fpls.2015.00722
https://doi.org/10.3389/fpls.2015.00709
https://doi.org/10.3389/fpls.2015.00709
https://doi.org/10.3389/fmicb.2015.00945
https://doi.org/10.3389/fpls.2015.00491
https://doi.org/10.3389/fpls.2015.00722
https://doi.org/10.3389/fpls.2015.00401
https://doi.org/10.3389/fpls.2015.00722
https://doi.org/10.3389/fpls.2015.00784
https://doi.org/10.3389/fpls.2015.00722
https://doi.org/10.3389/fpls.2015.00700
https://doi.org/10.3389/fpls.2015.00722
https://doi.org/10.3389/fpls.2015.00722
https://doi.org/10.3389/fpls.2015.00722
https://doi.org/10.3389/fpls.2015.00709
https://doi.org/10.3389/fpls.2015.00909
https://doi.org/10.3389/fpls.2015.00909
https://doi.org/10.3389/fpls.2015.00709
https://doi.org/10.3389/fpls.2015.00507
https://doi.org/10.3389/fpls.2015.00568
https://doi.org/10.1111/1462-2920.12900
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Smith et al. Editorial: Signaling in the Phytomicrobiome

bacterial species promote dispersal on solid surfaces. ISME J. 8, 1147–1151.

doi: 10.1038/ismej.2013.218

Hartmann, A., Rothballer, M., Hense, B. A., and Schröder, P. (2014). Bacterial

quorum sensing compounds are important modulators of microbe-plant

interactions. Front. Plant Sci. 5:131. doi: 10.3389/fpls.2014.00131

Nogales, A., Nobre, T., Valadas, V., Ragonezi, C., Döring, M., Polidoros, A., et al.

(2016). Can functional hologenomics aid tackling current challenges in plant

breeding? Brief Funct. Genomics 15, 288–297. doi: 10.1093/bfgp/elv030

Subramanian, S., Ricci, E., Souleimanov, A., and Smith, D. L. (2016b). A

proteomic approach to lipo-chitooligosaccharide and thuricin 17 effects on

soybean germination - Unstressed and salt stress. PLoS ONE 11:e0160660.

doi: 10.1371/journal.pone.0160660

Subramanian, S., Souleimanov, A., and Smith, D. L. (2016a). Proteomic studies

on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed

and salt stressed conditions in Arabidopsis thaliana. Front. Plant Sci. 7:1314.

doi: 10.3389/fpls.2016.01314

Theis, K. R., Dheilly, N. M., Klassen, J. L., Brucker, R. M., Baines, J. F., Bosch,

T. C. G., et al. (2016). Getting the hologenome concept right: an eco-

evolutionary framework for hosts and their microbiomes.mSystems 1, e00028–

16. doi: 10.1128/mSystems.00028-16

Yergeau, E., Bell, T. H., Champagne, J., Maynard, C., Tardif,. S.,

Tremblay, J., et al. (2015). Transplanting soil microbiomes leads

to lasting effects on willow growth, but not on the rhizosphere

microbiome. Front. Microbiol. 6:1436. doi: 10.3389/fmicb.2015.

01436

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Smith, Gravel and Yergeau. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org April 2017 | Volume 8 | Article 611 | 6

https://doi.org/10.1038/ismej.2013.218
https://doi.org/10.3389/fpls.2014.00131
https://doi.org/10.1093/bfgp/elv030
https://doi.org/10.1371/journal.pone.0160660
https://doi.org/10.3389/fpls.2016.01314
https://doi.org/10.1128/mSystems.00028-16
https://doi.org/10.3389/fmicb.2015.01436
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


MINI REVIEW
published: 09 September 2015
doi: 10.3389/fpls.2015.00709

Edited by:
Jean-Michel Ané,

University of Wisconsin – Madison,
USA

Reviewed by:
Sen Subramanian,

South Dakota State University, USA
Muthu Venkateshwaran,

University of Wisconsin-Platteville,
USA

*Correspondence:
Donald L. Smith,

Plant Science Department, McGill
University/Macdonald Campus,

21,111 Lakeshore Road,
Sainte-Anne-de-Bellevue,

QC H9X 3V9, Canada
Donald.Smith@McGill.Ca

Specialty section:
This article was submitted to

Plant Biotic Interactions,
a section of the journal

Frontiers in Plant Science

Received: 20 April 2015
Accepted: 24 August 2015

Published: 09 September 2015

Citation:
Smith DL, Subramanian S, Lamont JR

and Bywater-Ekegärd M (2015)
Signaling in the phytomicrobiome:

breadth and potential.
Front. Plant Sci. 6:709.

doi: 10.3389/fpls.2015.00709

Signaling in the phytomicrobiome:
breadth and potential
Donald L. Smith1*, Sowmyalakshmi Subramanian1, John R. Lamont1 and
Margaret Bywater-Ekegärd2

1 Plant Science Department, McGill University/Macdonald Campus, Sainte-Anne-de-Bellevue, QC, Canada, 2 Inocucor
Technologies Inc., Montréal, QC, Canada

Higher plants have evolved intimate, complex, subtle, and relatively constant
relationships with a suite of microbes, the phytomicrobiome. Over the last few
decades we have learned that plants and microbes can use molecular signals
to communicate. This is well-established for the legume-rhizobia nitrogen-fixing
symbiosis, and reasonably elucidated for mycorrhizal associations. Bacteria within
the phytomircobiome communicate among themselves through quorum sensing and
other mechanisms. Plants also detect materials produced by potential pathogens
and activate pathogen-response systems. This intercommunication dictates aspects
of plant development, architecture, and productivity. Understanding this signaling via
biochemical, genomics, proteomics, and metabolomic studies has added valuable
knowledge regarding development of effective, low-cost, eco-friendly crop inputs
that reduce fossil fuel intense inputs. This knowledge underpins phytomicrobiome
engineering: manipulating the beneficial consortia that manufacture signals/products
that improve the ability of the plant-phytomicrobiome community to deal with various
soil and climatic conditions, leading to enhanced overall crop plant productivity.

Keywords: molecular signals, plant growth promoting rhizobacteria, phytomicrobiome, holobiont, crop

Background

Most energy in the terrestrial biosphere enters it through photosynthesis (Imhoff et al., 2004)
carried out by plant leaves (Luo et al., 2006). Non-photosynthetic organisms with reliable access
to plant energy are in an advantaged situation. Under natural conditions higher plants are always
associated with a complex and relatively constant microflora (Rout and Southworth, 2013; Turner
et al., 2013a). Terrestrial plants release ∼20% of photosynthetically fixed carbon as root exudates,
resulting in an energy rich rhizosphere (Kuzyakov and Domanski, 2000), and a rich, generally
compositionally consistent phytomicrobiome (Bulgarelli et al., 2012; Hirsch and Mauchline, 2012;
Lundberg et al., 2012). These exudates vary among species, specific genotypes within species,
stages of plant development and growing conditions, and influence the composition of the
rhizomicrobiome (Bascom-Slack et al., 2012; Marasco et al., 2012; Badri et al., 2013a,b; Turner
et al., 2013a,b; Chaparro et al., 2014).

Phytomicrobiome associations are analogous to the animal microbiome (Koenig et al., 2011);
microbiome diversity, stability, and resilience play a large role in human health and disease (Cho
and Blaser, 2012). Plants have likely had associated microbes since they colonized the land, almost
half a billion years ago; roots of the first terrestrial plants were almost certainly less sophisticated
than those that followed, making these early plants more in need of microbial assistance
(Knack et al., 2015). Fossil endomycorrhizal associations occur in the early Devonian period,
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demonstrating association of plant roots with fungal elements of
the rhizomicrobiome (Taylor, 1995; Bonfante and Genre, 2008;
Porras-Alfaro and Bayman, 2011). Mycorrhizal relationships
are sophisticated and their presence >400 million years ago
indicates that the phytomicrobiome had already been developing
for some time; it seems likely that bacterial associations have
been present for at least as long. As plants adapted to and
spread through diverse terrestrial environments, evolving to grow
under a range of conditions, it is probable that their associations
with microbes also evolved. This community of microbes is
the phytomicrobiome (Smith and Zhou, 2014), with its root
associated (Hirsch and Mauchline, 2012; Lundberg et al., 2012;
rhizomicrobiome), above ground associated (Rastogi et al., 2012,
2013; Badri et al., 2013b; Kembel et al., 2014; phyllomicrobiome)
and interior (Berg et al., 2014; endosphere) components.
Even “lower plants” such as Sphagnum sp. have complex
phytomicrobiomes, including highly specific associations with
diazotrophs (Bragina et al., 2013).

Hence, a plant growing in nature is not a single organism; it is
a community: a holobiont (Hartmann et al., 2014). While a plant
growing in isolation can be very useful for research purposes, it is
an anomaly. Like the human microbiome, the phytomicrobiome
constitutes an underappreciated biological aspect (physiology,
genome, metabolome, etc.) of plants. Plants and their associated
phytomicrobiome affect each other in various and subtle
ways (Berendsen et al., 2012); a field-grown plant is a meta-
organism (Berg et al., 2013), having a persistent and regulated
relationship with its phytomicrobiome. The composition of
the phytomicrobiome is regulated by numerous biotic and
abiotic factors including the complex matrix of plant–microbe
and microbe–microbe communications. This communication is
carried out through the release of signaling compounds, the
forms and functions of which are currently being elucidated.
This new understanding can be exploited to: (1) develop new
approaches to crop growth promotion, (2) optimize related
fermentation and formulation processess, and (3) develop novel
and more consistent biocontrol mechanisms for field crops (East,
2013).

The Phytomicrobiome and Plant Growth

There has been an upsurge in phytomicrobiome publications; this
community of microbes is now seen as key to the growth and
health of plants (Schmidt et al., 2014); there is still a great deal
to be learned about the composition and nature of interactions
among members of this community, and its interactions with the
host plant.

Microbes associate with the phyllosphere (as both epi-
and endophytes, of leaves and stems), rhizosphere and
reproductive structures such as flowers, fruits and seeds. In
grape, Pseudomonas and Bacillus spp. colonize the epidermis and
xylem of the ovary and ovules, while Bacillus spp. colonize berries
and seed cell walls (Lugtenberg and Kamilova, 2009; Compant
et al., 2010a,b). Nitrogen-fixing plant growth promoting
rhizobacteria (PGPR; Loiret et al., 2004; Quecine et al., 2012; e.g.,
Acetobacter diazotrophicus, Pantoea agglomerans 33.1) associate

with plant roots (Pisa et al., 2011), and stems of sugarcane
(Velázquez et al., 2008), residing in the apoplast in a low-
nitrogen, high-sucrose environment (Dong et al., 1994). Other
nitrogen-fixing bacteria (Azotobacter, Enterobacter, Bacillus,
Klebsiella, Azospirillum, Herbaspirillum, Gluconacetobacter,
Burkholderia, Azoarcus) are found in grasses such as rice
and maize (Von Bulow and Dobereiner, 1975; James, 2000;
Baldani et al., 2002; Boddey et al., 2003; Santi et al., 2013).
Phyllomicrobiome communities influence plant development
and ecosystem function, while the host controls aspects of
phytomicrobiome composition and function. Environmental
factors are known to alter biosynthesis of many metabolites
within plants; specific members of the rhizomicrobiome also
alter plant development, growth, and composition. Treatment of
leaves with specific phyllomicrobiome components suppresses
feeding by insect larvae (Badri et al., 2013b). The distribution
and community composition of microbes in the phyllosphere is
thought to be somewhat random, whereas plants create niches
in the rhizosphere and endosphere to accommodate specific
microbial communities (Lebeis, 2015).

The rhizomicrobiome is comprised of diverse root endophytes
(Gaiero et al., 2013), some of which are PGPRs. Compositionally
the rhizomicrobiome is dynamic in time and space, in
response to environmental conditions, the presence of other
soil organisms, soil physical conditions, plant species and
genotype and interactions between a specific microbe and a
specific plant type. The best characterized microbes in the
rhizomicrobiome are the PGPR. These include bacteria in the
soil near plant roots, on the surface of plant root systems,
in spaces between root cells or inside specialized cells of root
nodules; they stimulate plant growth through a wide range
of mechanisms (Gray and Smith, 2005; Mabood et al., 2014),
such as: (1) nutrient solubilization (particularly phosphorus –
Boddey et al., 2003; Kennedy et al., 2004; Trabelsi and Mhamdi,
2013), (2) production of metal chelating siderophores, (3)
nitrogen fixation (Vessey, 2003; Bhattacharyya and Jha, 2012;
Drogue et al., 2012), (4) production of phytohormones, (5)
production of 1-aminocyclopropane-1-carboxylate deaminase,
(6) production of volatile organic compounds, (7) induction
of systemic resistance [induced systemic resistance (ISR) and
systemic required resistance (SAR) – Jung et al., 2008b, 2011], and
(8) suppression of disease through antibiosis (Bhattacharyya and
Jha, 2012; Spence et al., 2014). It has also been shown that “signal”
compounds produced by bacteria in the phytomicrobiome
stimulate plant growth (Prithiviraj et al., 2003; Mabood et al.,
2006a; Lee et al., 2009), particularly in the presence of abiotic
stress (Wang et al., 2012; Subramanian, 2014; Prudent et al.,
2015). In the broadest sense PGPR include legume-nodulating
rhizobia. PGPR reside outside plant cells (extracellular – ePGPR)
or, like rhizobia, live inside them (intracellular – iPGPR; Gray
and Smith, 2005). Application of PGPR to crops, except for
rhizobia, hasmetwithmixed results in the field, causing increased
growth sometimes and not others (Nelson, 2004). Elements of
the phytomicrobiome also assist plants in dealing with abiotic
stress. The Arabidopsis phytomicrobiome, for instance, can sense
drought stress and help the plant maintain productivity (Zolla
et al., 2013). Further, mycorrhizal associations enhance crop
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salinity tolerance (Porcel et al., 2012; Ruiz-Lozano et al., 2012).
At a time when we are looking to crop plants to provide
biofuels and other bioproducts while still feeding the world’s
growing population, against a background of climate change,
understanding and developing technologies that can increase
overall plant productivity is imperative (Ragauskas et al., 2006;
Babalola, 2010; Dutta and Podile, 2010; Beneduzi et al., 2012;
Orrell and Bennett, 2013).

Newer deployments of PGPR and/or arbuscular mycorrhizal
fungi (AMF) consortia that promote crop productivity by
mimicking, or partially reconstructing, the phytomicrobiome are
being developed. Application of a PGPR consortium (Bacillus
amyloliquefaciens IN937a, Bacillus pumilus T4, AMF Glomus
intraradices) to greenhouse tomato resulted in full yield with
30% less fertilizer (Adesemoye et al., 2009). Co-inoculation of
B. japonicum 532C, RCR3407 and B. subtilis MIB600 increased
biomass for two soybean cultivars (Atieno et al., 2012). Co-
inoculation of B. japonicum E109 and Bacillus amyloliquefaciens
LL2012 improved soybean nodulation efficiency. Phytohormone
production by B. amyloliquefaciens LL2012 improved nodulation
efficiency for B. japonicum E109 (Masciarelli et al., 2014).
A consortium of B. megaterium, Enterobacter sp., B. thuringiensis
and Bacillus sp., plus composted sugar beet residue, on Lavandula
dentata L. helped restore soils by increasing phosphorus
availability, soil nitrogen fixation and foliar NPK content
(Mengual et al., 2014).

Signaling in the Phytomicrobiome

The complex community formed by the plant and its
phytomicrobiome is carefully orchestrated; there is signal
exchange among the various microbes involved, and also
between the host plant and the microbe community (Engelmoer
et al., 2014). These signals regulate aspects of each other’s
activities and the community overall. Microbial chemical
signals can help plants initiate immune responses to harmful
pathogens or allow the entry of beneficial endophytes (Hartmann
et al., 2014). Microbe associated molecular patterns (MAMPs)
play a key role in plant immune response and antibiotic
secretion in microbes. Plant associated Bacillus strains have
been shown to down-regulate MAMP-regulated immune
response including antibiotic secretion in the presence
of plant root exudates to better facilitate root infection
(Lakshmanan et al., 2012). Bacteria can also interfere with
signaling between plants and other microbial strains. LCOs are
similar in structure to chitin and can be cleaved by bacterially
produced chitinases, thus interfering with plant microbe
symbioses (Jung et al., 2008a). Other aspects plant–microbe
symbiosis follow pathways similar to pathogen infection (Barea,
2015).

Signaling compounds produced by plants include a variety
of root exudates such as primary metabolites (carbohydrates,
proteins, organic acids, etc.) and secondary metabolites
(flavonoids, phenol, phytohormones, etc.). Plants often excrete
more of these signaling compounds in response to stress.
PGPR-to-plant signaling compounds include phytohormones,

acyl homoserine lactones, phenols and peptides and can
also act as microbe to microbe signals (Barea, 2015). Root
exudates signal and recruit specific microbial communities.
Secretion of malic acid in Arabidopsis thaliana in response
to foliage pathogen attack stimulates the formation of
beneficial biofilms in the rhizosphere (Rudrappa et al.,
2008).

That plants and microbes use signal compounds to
communicate during establishment of beneficial plant-microbe
interactions (Desbrosses and Stougaard, 2011), is well-described
for the legume-rhizobia nitrogen fixing symbiosis (Oldroyd
et al., 2010; Giles et al., 2011; Oldroyd, 2013), and somewhat
elucidated for mycorrhizal associations (Gough and Cullimore,
2011). In the legume-rhizobia relationship the plant releases
flavonoid signals to rhizobia (Hassan and Mathesius, 2012)
or, in some cases, jasmonate signals (Mabood et al., 2006a,b;
Mabood et al., 2014), followed by rhizobial production of
lipo-chitooligosaccharides (LCOs) as return signals (Oldroyd,
2013). The LCOs are bound by LysM receptors, which have
kinase activity (Antolin-Llovera et al., 2012), changing root
hormone profile (Zamioudis et al., 2013) and triggering
development of root nodules. Plants also communicate with,
or otherwise influence the phytomicrobiome, affecting its
composition and structure (Delaux et al., 2012; Badri et al.,
2013a; Bálint et al., 2013; Peiffer et al., 2013; Turner et al., 2013b;
Venkateshwaran et al., 2013; Chaparro et al., 2014; Evangelisti
et al., 2014). Bacteria also communicate among themselves
(Cretoiu et al., 2013); quorum sensing via N-acyl homoserine
lactone (Teplitski et al., 2000) is well-characterized, and there
are likely other, as of yet unknown, mechanisms (Lv et al.,
2013). Quorum sensing signals can trigger immune responses
and changes in hormone profiles in plants, leading to growth
responses (Hartmann and Schikora, 2012). Quorum sensing
in the phytomicrobiome will be the subject of an upcoming
Frontiers in Plant Science theme volume (Plant responses
to bacterial quorum sensing signal molecules, topic editors
Schikora A, Hartmann A, and Munchen HZ). This sort of
signaling almost certainly occurs in the phytomicrobiome.
Plants also detect materials produced by potential pathogens
and respond by activating response systems (Tena et al., 2011).
Phytomicrobiome intercommunication in the rhizosphere
dictates aspects of above-ground plant architecture and above-
ground symbiotic/pathogenic microbial communities (Segonzac
and Zipfel, 2011; Tena et al., 2011). Similarly, pathogen or
herbivore attacks above ground can effect microbial community
composition in the rhizosphere. Above ground injury has been
shown to stimulate the production of signaling compounds in
plant roots (Lakshmanan et al., 2012). Greater photosynthetic
rates under elevated CO2 conditions have been shown to
change microbial community composition in the rhizosphere
(Berlec, 2012; He et al., 2012). Understanding plant responses
to microbial signals via proteomics (Elmore et al., 2012; Nguyen
et al., 2012; Rose et al., 2012) and metabolomics (Watrous et al.,
2012; Zhang et al., 2012) studies has added valuable knowledge
toward developing effective low-cost and eco-friendly practices
to reduce fossil-fuel dependent crop inputs, leading to interest in
phytomicrobiomes engineered to enhanced plant growth under
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variable soil and climatic conditions, improving global crop
productivity.

Surprisingly, LCOs are also able to stimulate plant growth
directly (Souleimanov et al., 2002; Prithiviraj et al., 2003; Almaraz
et al., 2007; Khan et al., 2008; Wang et al., 2012); confirmed
by Oláh et al. (2005) for root growth in Medicago truncatula,
Chen et al. (2007) for accelerated flowering (a typical response
to stress) and increased yield in tomato, and stimulation of
early somatic embryo development in Norway spruce (Dyachok
et al., 2002). Enhanced germination and seedling growth, along
with the mitogenic nature of LCOs, suggest accelerated meristem
activity. Products based on LCOs are now used to treat seed
sown into several 10s of million ha of crop land each year,
largely corn and soybean. A similar jasmonate product is
now available. The effects of LCOs are much greater when
stress (salt, drought, cold) is present than under optimum
conditions (Smith, 2009, 2010; Subramanian et al., 2009, 2010,
2011; Schwinghamer et al., 2014; Subramanian, 2014; Prudent
et al., 2015). Thuricin 17, a bacteriocin produced by Bacillus
thuringiensisNEB17 isolated from soybean roots, improves plant
growth and resilience to stress (Schwinghamer et al., 2014;
Subramanian, 2014). Inhibition of legume nodulation, and of
overall plant growth, by stressful conditions can be overcome
by LCOs (nodulation – Zhang and Smith, 1995, 2002; plant
growth – Schwinghamer et al., 2014; Prudent et al., 2015);
Estévez et al. (2009) showed that at least one rhizobial strain
produce different LCOs when grown under salt stress, and
that salt stress itself can induce the nod genes of this strain
(Guasch-Vidal et al., 2013).

Future Directions

We now understand that the phytomicrobiome is a complex,
structured and dynamic community with a relatively constant
set of potential members, whose relative abundances can shift
within plant species and their genotypes, and in response
to both abiotic conditions and plant development, leading
to dynamism in the communications among the microbial
community and the host plants. Methods, such as high
throughput genotyping, are allowing us to determine the
taxonomic diversity of the phytomicrobiome (Hirsch and
Mauchline, 2012; Peiffer et al., 2013; Turner et al., 2013b).
A better understanding of plant signaling may also become
a tool for investigating community composition of the
phytomicrobiome. Root exudates play an important role in
the formation of microbial communities in the rhizosphere
and can be useful in predicting community compositions
(Berg et al., 2014). Correlations between phytomicrobiome
bacterial diversity and host growth, mortality, and function
suggest that incorporating information on plant–microbe
associations will improve our ability to understand plant
functional biogeography and drivers of variation in plant and
ecosystem function (Kembel et al., 2014). It has even been
suggested that beneficial effects of the phytomicrobiome could
be enhanced through plant breeding, developing genotypes
that encourage best membership in the phytomicrobiome

(Bakker et al., 2012). More effective methods to study plant
MAMP receptors are being developed (Wittulsky et al.,
2014) and could lead to ways to engineer plant recognition
receptors.

Novel methods of manipulating signaling in the
phytomicrobiome could lead to crop production practices
that are less reliant on non-renewable resources and crops
more resilient in the face of stresses (Marasco et al., 2012),
most crucially, those associated with climate change. Plant
stress response seems to play an important role in the
release of signaling compounds in the rhizosphere but
the specifics of this interaction are still unclear. A better
understanding of the relationship between environmental plant
stress and signaling could help in developing technologies
that utilize plant signaling in crop stress alleviation (Barea,
2015).

Recent developments have shown that temperature
(Schwinghamer et al., 2014) and water stress (Prudent et al., 2015)
can influence plant microbe communication. Environmental
factors likely play an important and underdescribed role in
signaling in the phytomicrobiome. Variable environmental
factors may account for some of the inconsistency observed
in field trials of microbial products that previously yielded
favorable results in laboratory conditions. A more complete
understanding of how plant–microbe communication is
influenced by environmental factors will likely be useful in
achieving more consistent results with agricultural microbial
products.

Despite being at an early stage in understanding these
communities, it is clear that there is considerable potential
for application of coordinated microbial consortia to crop
agriculture and, thus, to enhancing global food security. While
advances in methods and technologies in microbiology used
to investigate non-culturable microbial strains have led to a
stronger focus on a community level approach to plant–microbe
interaction research (Berlec, 2012; Rastogi et al., 2013), isolated,
culturable microbial strains are still required for most plant–
microbe signaling research, particularly if the research is aimed
at developing commercial microbial products. Culturable strains
are needed both to produce a consistent product and to verify
growth promotion through plant growth trials. There are clear
opportunities for development of products for more sustainable
agronomic production systems (Kloepper et al., 2004; De-la-
Peña and Loyola-Vargas, 2014). A range of PGPR have been
identified, and even developed into products utilized in crop
production. Signaling compounds that directly stimulate plant
growth or improve stress tolerance have great potential because
they can be produced by microbes in a controlled bioreactor
rather than in variable field conditions as with inoculants.
The global market for biostimulants has been projected to
reach $2.241 million by 2018 and to have a compounded
annual growth rate of 12.5% from 2013 to 2018 (Calvo et al.,
2014). Products based on multispecies consortia may address
consistency in performance observed in single species inoculants.
Industry is working to harness the knowledge surrounding the
phytomicrobiome, to quickly bring sustainable, consortia-based
products to production agriculture.
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Although signal exchange between legumes and their rhizobia is among the best-known
examples of this biological process, most of the more characterized data comes from
just a few legume species and environmental stresses. Although a relative wealth of
information is available for some model legumes and some of the major pulses such
as soybean, little is known about tropical legumes. This relative disparity in current
knowledge is also apparent in the research on the effects of environmental stress
on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a
relatively large body of research, whereas high-temperature stresses and drought are not
nearly as well understood. Both tropical legumes and their environmental stress-induced
effects are increasingly important due to global population growth (the demand for
protein), climate change (increasing temperatures and more extreme climate behavior),
and urbanization (and thus heavy metals). This knowledge gap for both legumes
and their environmental stresses is compounded because whereas most temperate
legume-rhizobia symbioses are relatively specific and cultivated under relatively stable
environments, the converse is true for tropical legumes, which tend to be promiscuous,
and grow in highly variable conditions. This review will clarify some of this missing
information and highlight fields in which further research would benefit our current
knowledge.

Keywords: tropical legumes, broad spectrum, soil acidity, soil temperature, salinity

Legume-Rhizobia Signal Exchange Importance and General
Information

Biological nitrogen fixation is one of the main biological cycles worldwide (Canfield et al., 2010)
and is estimated to contribute close to half (Herder et al., 2010) of the world’s biologically available
nitrogen. Most of that fixed nitrogen comes from the legume-rhizobia symbiosis, which is based
on a very large and constantly changing group of bacteria generically called rhizobia, including
Allorhizobium, Aminobacter, Azorhizobium, Bradyrhizobium, Devosia, Ensifer (Sinorhizobium),
Mesorhizobium, Methylobacterium, Microvirga, Ochrobactrum, Phyllobacterium, Rhizobium, and
Shinella among the α-Proteobacteria; Burkholderia, Cupriavidus, and Herbaspirillum among the
β-Proteobacteria (Vinuesa, 2015); and at least one Pseudomonas sp. from the γ-Proteobacteria
(Shiraishi et al., 2010). This usage of rhizobia as a catch-all name has been challenged recently
because it was based initially on the Rhizobium genus (then the Rhizobiaceae family), whereas
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we now know that at least three classes of the Proteobacteria
include at least one genus with this capability. In contrast, this
well-recognized term has been used extensively and, as such, is
used throughout this review.

This symbiosis begins with an elaborate signal exchange
process that is among the best studied between bacteria and
plants (Hirsch and Fujishige, 2012). Initially, the legume root
releases exudate compounds such as sugars, amino acids, several
classes of proteins classes (De-la-Peña et al., 2008, 2010; Badri and
Vivanco, 2009; Badri et al., 2009), and flavonoids, and phenolic
compounds (Broughton et al., 2003), such as flavone, flavonones,
isoflavones, and betains (Cooper, 2007). These compounds
induce chemoostatic reactions from the bacteria and act as
nodulation gene inducers (Hirsch and Fujishige, 2012; Ryu et al.,
2012).

These compounds may act as weak or strong inducers,
whereas others are inhibitors or have no effect on nodulation
(Mulligan and Long, 1985; Firmin et al., 1986; Peters et al., 1986;
Redmond et al., 1986; Hartwig et al., 1989, 1990; Hungria et al.,
1992; Bolaños-Vásquez and Werner, 1997; Begum et al., 2001;
Mabood et al., 2006; Subramanian et al., 2007).

Which compounds, or class of compounds, induce nodulation
the strongest varies among symbiotic pairs. For common beans
(Phaseolus vulgaris), the strongest inducers are genistein-3-
O-glucoside, eriodictyol, naringenin, daidzein, genistein, and
coumesterol (Hungria et al., 1991a; Dakora et al., 1993b);
this plant also releases other classes of compounds such as
anthocyanidins, flavonols, isoflavonoids, and flavones (Hungria
et al., 1992). For soybeans (Glycine max), the most effective plant-
to-bacteria signal has been variously found to be an isoflavone
(Subramanian et al., 2006), jasmonic acid and its derivatives
(Mabood and Smith, 2005), or genistein (Zhang and Smith,
1995).

After the nodulation genes are activated, the rhizobia release
nod factors, lipochitooligosaccharides specific to each symbiotic
association that are sufficient to activate nodule organogenesis
at least under some conditions, and these factors may induce
cellular modifications associated with early rhizobial root
infection (Oldroyd and Downie, 2004; Cooper, 2007; Jones
et al., 2007). In addition to the nod factors, several other
bacterial compounds affect several stages of the interaction,
including exopolysaccharides (EPS), lipopolysaccharides,
K-antigen polysaccharides, cyclic β-glucan, high-molecular-
weight neutral polysaccharides (glucomannan), and gel-forming
polysaccharides (Fraysse et al., 2003; Laus et al., 2006; Downie,
2010; Janczarek, 2011).

Signal Exchange Diversity and Legume
Promiscuity

The complex signal exchange between plant and bacterial
partners in symbiosis is also a key component of symbiotic
specificity, which varies from highly specific to highly
promiscuous. For example, although Sinorhizobium sp. NGR234
nodulates 232 legume species from 112 distantly related genera,
with varying efficacy, some strains of Rhizobium leguminosarum

bv. viciae do not nodulate pea (Pisum sativum) cultivars from
different origins (Ovtsyna et al., 1998; Masson-Boivin et al.,
2009).

The lack of effective signal exchange between legumes and
bacteria precludes symbiosis establishment for incompatible
partners, but in some situations, nodules may be formed in which
the rhizobia do not enter, are not liberated from the infection
thread, or do not fix nitrogen (Miller et al., 2007). This lack
of recognition may occur even after the initial signal exchange.
For example, R. leguminosarum bv. trifolii (Rlt) strain ICC105
does not fix nitrogen with white clover (Trifolium repens),
whereas this strain is effective when paired with Caucasian clover
(T. ambiguum). According to Miller et al. (2007), this difference
is due to a region between the nifH gene and the fixA promoter
that is differentially activated when in symbiosis with the two
Trifolium species. It is not clear if this difference is due to positive
or negative regulation by a specific plant signal, nor is it clear how
NifA activity is regulated (Miller et al., 2007).

The combination of a vast range of compounds secreted by
both plants and bacteria is one of the main characteristics of this
symbiotic compatibility. Because the first step is exudation by the
plant, this step may be considered the most important one. These
exudates are continuously secreted into the rhizosphere, but both
the number and concentration of these compounds increases
when compatible bacteria are detected by the plant (Zaat et al.,
1989; Dakora et al., 1993a,b; Hassan and Mathesius, 2012).

These plant-bacteria signals activate three main groups of
nodulation genes in the bacteria: the common nodABC genes
that are present in almost all rhizobia (the exception being some
photosynthetic bradyrhizobia and some Burkholderia, Giraud
et al., 2007) and are required to produce the basic structure of
the nod factors; host-specific nod genes that are linked to specific
modifications of the basic nod factor structure that allows for
symbiotic specificity, such as nodEF, nodG, nodH, nodPQ, and
nodRL; and regulatory genes that are linked to the activation
and transcription of both the common and specific nod genes
(Horvath et al., 1986; Göttfert et al., 1990; Lerouge et al., 1990;
Sanjuan et al., 1994; Moulin et al., 2001; Schlaman et al., 2006).

Nod factor perception is mediated by Nod factor receptors
(NFRs), which are serine/threonine kinases that are located
in the plasma membrane and that contain LysM motifs in
their extracellular domains (Limpens et al., 2003; Madsen
et al., 2003; Radutoiu et al., 2003; Arrighi et al., 2006). These
NFRs correspond to the Nod factor structure and act as host
determinants for symbiotic specificity. This specificity was shown
by the transfer of Lj-NFR1 and Lj-NFR5 to Medicago truncatula,
which enabled nodulation by the Lotus japonicus symbiont
Mesorhizobium loti (Radutoiu et al., 2007); the specificity of two
Lotus species is the function of a single amino acid residue in one
of the LysM domains of Lj-NFR5 (Radutoiu et al., 2007).

In addition to Nod factors, some rhizobia secrete proteins that
are involved in nodulation via a type III secretion system (T3SS;
Fauvart and Michiels, 2008; Deakin and Broughton, 2009). These
proteins, called nodulation outer proteins (Nops), are believed
to contribute to legume immune response suppression or to
modulate root cell cytoskeletal rearrangement during nodule
development (Bartsev et al., 2004; Skorpil et al., 2005; Soto et al.,
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2009). The nopP and nopL genes are found in Rhizobium sp.
NGR234, Sinorhizobium fredii and Bradyrhizobium japonicum
and are absent in pathogenic bacteria (Deakin and Broughton,
2009). In Rhizobium sp. NGR234, these genes are required for
the nodulation of the tropical legumes Tephrosia vogelii and
Flemingia congesta (Marie et al., 2003; Skorpil et al., 2005).
Moreover, the nodulation of Vigna unguiculata by S. fredii is also
affected by Nop proteins injected by S. fredii in a T3SS-dependent
fashion (Schechter et al., 2010), but further studies on their effects
on host specificity are still necessary.

Exopolysaccharides, bacterial cellular wall constituents, are
also known to have important effects on symbiosis. For example,
a defect on the EPS surface may induce failures both in the early
and late stages of symbiosis, such as those observed in strains
of S. meliloti presenting normal nodules in some ecotypes of
M. truncatula but defective nodules in others, and this pattern
may be transferred by a change in the EPS biosynthesis locus
(Simsek et al., 2007). Because M. loti EPS mutants result in
nonfunctional nodules in L. leucocephala but functional ones
in L. pedunculatus, the EPS surface has also been linked to
specificity in the nitrogen fixing phase (Hotter and Scott, 1991),
as demonstrated by a B. japonicum exoB mutant fixing nitrogen
in G. max but not in G. soja (Parniske et al., 1994) or some
R. leguminosarum LPS mutants fixing nitrogen in peas (Pisum
sativum), whereas other mutants do not (Kannenberg et al.,
1992).

One point that deserves attention is the almost complete
lack of literature on this signal exchange in tropical legumes,
which are typically more promiscuous than temperate ones.
Because of this knowledge gap, it is not known how the degree
of promiscuity of a legume affects the signal exchange process
because with the exception of Phaseolus, the best-studied legumes
are all generally considered to nodulate with a few species or
genera at the most (Michiels et al., 1998; Martínez-Romero, 2003;
Rodríguez-Navarro et al., 2011; Rufini et al., 2013). A synthesis
of a large portion of the literature identifying seed or root
exudate compounds with known nod-gene activating properties
(Table 1) indicates that more promiscuous (or less-selective)
legumes may exhibit a broader range of these compounds, as
per a comparison between P. vulgaris and G. max, which are
less and more selective, respectively, for the rhizobial partner
of the symbiosis. In contrast, the only paper we could find on
V. unguiculata identifies only three compounds, although it has
a very broad range of rhizobial partners. One further puzzle is
that genistein is a known inducer for G. max, P. vulgaris, and
V. unguiculata, although the rhizobia of these three species are
not identical.

A lack of depth in the literature on this topic leads to
ambiguity in how to relate legume promiscuity (or specificity)
with the signal exchange process, although this relationship is
expected to exist due to the specific nature of this exchange.
Thus, this relationship might be an interesting line of future
research; a better understanding of this relationship may
lead to biotechnological approaches to enhance or reduce the
compatibility profile of a given legume similarly, to soybean
breeding for broad bacterial compatibility in Africa (Gwata et al.,
2005).

TABLE 1 | Seed and root exudate compounds with known nod
gene-activating factors, from legumes with broad or narrow ranges of
symbiotic compatibility.

Species Source nod gene-
activating factors

Source

Glycine
max

Root exudates Daidzein, genistein,
coumestrol,
isoliquiritigenin

Kape et al. (1992),
Pueppke et al. (1998)

G. max Seeds Daidzein, genistein Pueppke et al. (1998)

Medicago
sativa

Seeds Chryoseriol, luteolin,
liquiritigenin

Maxwell et al. (1989),
Hartwig et al. (1990)

M. sativa Root exudates 4,7-dihydroxyflavone
formononetinin

Maxwell et al. (1989)

Phaseolus
vulgaris

Root exudates Genistein, eriodictyol,
naringenin, daidzein,
coumesterol

Davis and Johnston
(1990), Hungria et al.
(1991b), Dakora et al.
(1993b)

P. vulgaris Seeds Unidentified
isoflavone,
delphinidin, petunidin,
malvidin, myricetin,
quercetin, kaempferol

Hungria et al. (1991a)

Vigna
unguiculata

Root exudates Daidzein, genistein,
and glycitein

Dakora (2000)

Environmental Effects on Signal
Exchange

Although the interaction between environmental stresses and
legume-rhizobia signal exchange has been investigated, as will be
discussed, these studies have also centered on temperate climate
pulses, and their stresses.Much work is still needed to understand
how the signal exchange process of other legumes is affected by
their more typical stresses.

Temperature
Much research has examined low root zone temperatures and
their effects on signal exchange and nodulation, particularly in
soybeans, but little is known about the effects of high root zone
temperatures.

Low root zone temperatures inhibit the synthesis and
secretion of plant-to-bacteria signals, as shown in G. max, in
which the root exudation of genistein is strongly reduced below
17.5◦C (Zhang and Smith, 1994, 1996a; Zhang et al., 1995; Pan
and Smith, 1998). Low root zone temperatures also reduce
nod factor synthesis and/or excretion in R. leguminosarum
bv. trifolii (McKay and Djordjevic, 1993) and B. japonicum
(Zhang et al., 2002). The molecular basis of this effect
indicates that the T3SS gene cluster was progressively
activated as temperatures increased, whereas the nod genes
were rapidly induced at 15◦C (Wei et al., 2010). Genistein
has been proposed to induce this gene cluster through a
regulatory cascade involving NodD1 and NodW (Krause et al.,
2002).

These signal exchange effects combine to delay nodulation
onset (Pan and Smith, 1998) and reduce the nodule growth
rate, leading to smaller nodules (Lira Junior et al., 2005).
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Further confirmation that these stresses are directly linked to
signal exchange is that the exogenous application of genistein is
sufficient to mitigate a delay in nodulation under environmental
conditions in which the root system temperature is below
this threshold and the shoot is above it (Zhang and Smith,
1995, 1997; Pan et al., 1997). This mitigation is stronger for
lower soil temperatures or stronger stresses (Zhang and Smith,
1996b).

Salinity
Although salinity is known to affect Nod factor production by
R. tropici CIAT 899 in the presence of apigenin (Estévez et al.,
2009), there are indications that high salt concentrations may
induce nod genes even in the absence of flavonoid inducers
(Guasch-Vidal et al., 2012).

However, increased salinity reduces Nod factor production by
S. arboris, which nodulates Acacia and Prosopis, both of which
are legume trees tolerant to salt stresses (Penttinen et al., 2013).
Similar effects were found for R. tropici andR. etli, which nodulate
P. vulgaris (Dardanelli et al., 2012).

Similarly, to what is observed at low soil temperatures, as
previously described, some of the salinity effects may be reduced
if the bacteria are pre-incubated with their respective legume
signals, such as genistein for B. japonicum (Miransari and Smith,
2009) or hesperetin and apigenin for R. tibeticum (Abd-Alla et al.,
2013).

Soil pH
Soil pH affects symbiosis in several ways, including signal
exchange (Hungria and Vargas, 2000). For example, both G. max
and P. vulgaris isoflavonoid exudation from roots were reduced
when the pH was lowered from 5.8 to 4.5 (Hungria and
Stacey, 1997), and some nodulation genes, including nodA, are
inactivated by reducing the pH in R. leguminosarum bv. trifolii
(Richardson et al., 1988a,b). The production and excretion of
Nod factors were also reduced in acidic soils (McKay and
Djordjevic, 1993).

Another effect is a change in the profile of the Nod factors
secreted by R. tropici CIAT 899, which is tolerant to acid
conditions. A total of 52 differentmolecules were produced under
an acidic pH and 29 at a neutral pH; only 15 are common to
both conditions (Moron et al., 2005). This phenomenon might
be linked to the reduction in nodC expression by the Arachis
hypogaea bacterial symbionts under acidic conditions (Angelini
et al., 2003).

In contrast to what is observed for low soil temperatures and
salinity, the addition of flavonoids did not reduce the effects of
low pH on acid-sensitive or acid-tolerant A. hypogaea (Angelini
et al., 2003), which was apparently due to increased flavonoid
uptake and toxicity.

Low pH also activates a systemic, shoot-controlled, and
GmNARK-dependent (Nodulation Autoregulation Receptor
Kinase) mechanism that negatively regulates initial nodule
development in soybeans (Lin et al., 2012), as confirmed by the
reduced expression of the GmENOD40b, GmNIN-2b, GmRIC1,
GmRabA2, and cytochrome P450 genes, which are critical to early
nodulation stages.

Iron and Phosphorus Deficiency
The legume-rhizobia symbiosis demands high levels of iron
due to its inclusion in the compositions of leghemoglobin,
nitrogenase, and cytochromes (Brear et al., 2013). Iron deficiency
effects vary between legume species and may include altered
nodule initiation, as seen in Lupinus angustifolius L. (Tang et al.,
1990), or late development, as seen in peanuts (A. hypogaea),
common beans (P. vulgaris), and soybeans (O’Hara et al., 1988;
Soerensen et al., 1988; Slatni et al., 2011).

Iron absorption regulation by rhizobia in culture media has
been extensively researched, and iron-responsive transcription
regulators such as IrrA and RirA and the genes they control under
iron deficiency and sufficiency have been determined (Viguier
et al., 2005; Todd et al., 2006). Several of these genes encode
siderophore production, heme biosynthesis, and transporters,
such as the ferric siderophore ATP-binding cassette (ABC)-
related genes.

Under iron-limiting conditions, free-living rhizobia express
TonB-dependent receptors after activation by an iron regulator
(Small et al., 2009), although bacteriod active siderophore
transport is not necessary for symbiosis (Chang et al., 2007; Small
et al., 2009). Mutations in ABC transporters, TonB-dependent
receptors and TonB do not affect symbiosis establishment (Lynch
et al., 2001; Nienaber et al., 2001), suggesting that bacteriods
do not require a high affinity for siderophore absorption to
obtain iron during symbiosis (Brear et al., 2013), although
S. meliloti strains deficient in the siderophore absorption system
exhibited lower nodule occupation rates under iron-deficient
conditions than the corresponding wild types (Battistoni et al.,
2002).

N2 fixation has a high energy cost, and P deficiency is
an important restriction for legume production, particularly in
the low-P soils of most tropical regions (Sulieman and Tran,
2015). Organic phosphates are the main source to sustain nodule
symbiotic activities (Li et al., 2012), and several genes involved in
recycling P are up-regulated under low-P conditions (Hernandez
et al., 2009), particularly those encoding acid phosphatases
(Maougal et al., 2014; Zhang et al., 2014).

Generally, the specific activity of acid phosphatases in nodules
strongly increases when P supply is reduced in the growth
medium but is stable when P supply is high (Araujo et al.,
2008). The expression of several genes of the purple acid
phosphatase GmPAP family was highly induced in soybean
nodules under low-P availability (Li et al., 2012); the expression
of phytate and phosphoenol pyruvate phosphatase was also
increased in nodules under these conditions (Araujo et al.,
2008; Bargaz et al., 2012). Acid phosphatases may have multiple
functions, such as carbon metabolism, nodule permeability for
O2 diffusion, and oxidative stress attenuation (Sulieman and
Tran, 2015), which makes their study both more challenging and
necessary.

Drought and Flood
The current literature lacks information on the effects
of either drought or flooding on legume-rhizobia signal
exchange, although both situations are well known to reduce
nodulation and nitrogen fixation (Arayangkoon et al., 1990;
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Marcar et al., 1991; Purwantari et al., 1995; Hatimi, 1999). Thus,
further research is necessary on this topic. Nodule formation
ceases completely under sufficiently long or severe drought
conditions, and nitrogenase and nodule respiratory activities
are also strongly diminished in soybeans and common beans
(Gerosa-Ramos et al., 2003). In alfalfa, such nitrogenase activity
reduction has been linked to diminished bacteriod metabolic
capability and oxidative damage to nodule cell components (Naya
et al., 2007).

At the other extreme, several legumes are highly sensitive to
water-logged conditions, with nodule development and function
being more impaired than infection. Some of these effects,
including nitrogenase activity, may be even stronger than
observed for drought conditions. This phenomenon appears
to be mostly linked to reduced O2 availability (Andres et al.,
2012).

Heavy Metals and Pesticides
Although the literature contains little information on the effects
of pesticides and heavy metals on signal exchange, some in
vitro work with 30 different pesticides and environmental
contaminants showed that S. melilotiNodDwas affected, delaying
nodulation, and reducing biological nitrogen fixation byM. sativa
(Fox et al., 2001, 2004). M. sativa and G. max fungicide-treated
seeds also exhibited reduced nod gene activity for their respective
partners (Andrés et al., 1998).

More recently, it has been shown that R. alamii, an EPS
producer, modulates its metabolism in response to cadmium
(Schue et al., 2011) through the activation of biofilm formation,

both in the wild type and in EPS-deficient mutants, which may
reduce the effects of this heavy metal.

Overall Synthesis

Although signal exchange between legumes and their bacterial
symbionts is a well-studied process, much still needs to be
clarified, particularly in relation to tropical legumes, which have
been barely studied, and environmental effects other than low soil
temperature.

Under at least some conditions, a delay in nodulation onset
and, therefore, biological nitrogen fixation may be reduced by
the exogenous supply of the appropriate legume signal. Because
current predictions indicate a probable reduction in global
agricultural season lengths, this phenomenon should receive
increased attention.

Another field that deserves more attention is the study
of signal exchange with non-traditional rhizobia, such as
Burkholderia and Cupriavidus, and its effects on the plant host,
for which no literature was found.
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The Phytomicrobiome in Context

As is the case with other multicellular eukaryotes, plants are colonized by large numbers
of unicellular microorganisms. They may be free-living commensals, epiphytes, symbionts
(endophytes), or obligate parasites. The plant holobiont is in effect an ecosystem, and it is
of interest to know how this assemblage is established and maintained, and reacts to both
biotic and abiotic cues. The current view, initially elaborated in the context of coral-dwelling
microbial communites, is that the multicellular organism is more inclusively described by the term
“holobiont” that includes associated microbiota, and is a valid unit of natural selection (Rosenberg
et al., 2007). The holobiont then, is often dependent on its microbiota for crucial functions,
drastic imbalances in which, termed dysbiosis, are thought to lead to compromised or deficient
functioning.

The association of plants with microbes is phylogenetically ancient, going back to the
macroalgae (Marshall et al., 2006). The role of the microbiota of plants, collectively termed the

“phytomicrobiome,” in their overall life cycle is now under investigation, close on the heels of
more extensive studies on animal, especially human, microbiota. The development of Arabidopsis
thaliana (thale cress) and Brachypodium distachyon (purple false brome) as model systems
for dicotyledonous and monocotyledonous plants respectively, and the availability of genome
databases for Pseudomonads (Winsor et al., 2011) and plants (Duvick et al., 2008) indicate that
the potential for both hypothesis-based and discovery science are indeed great.

The assembly, development and maintenance of the plant holobiont is not possible without an
exchange and sensing of, and responses to, biomolecular cues between its constituents. Within this
overall theme, we focus on a few recently discovered, novel inter- and intra-species interactions of
some Pseudomonas spp., indicating their utility as model systems, and highlighting some previously
unforeseen mechanisms that could have a bearing on plant-phytomicrobiome interactions. Note
that, for purposes of this article, we use the word “signaling” to refer generically to the sensing and
response of organisms to environmental cues of both biotic and abiotic origins.

Some Aspects of the Social Biology of Pseudomonas spp.

The genus Pseudomonas is the most numerous among the cataloged genera of Gram-negative
bacteria (Gomila et al., 2015). The ubiquity and metabolic versatility of this genus allows it to
colonize a wide range of natural habitats and adopt a variety of lifestyles. Pseudomonas spp. have
been isolated from each of the ecological niches within a plant as stated earlier (for a compilation,
see Table 1 of Mercado-Blanco and Bakker, 2007). Their known ability to interact with and
influence other bacteria, fungi, and multicellular organisms in a variety of biological contexts, and
the availability of experimental tools for their genetic manipulation, should greatly facilitate the
translation of knowledge for a wide range of practical applications.
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At the outset, it is worth recalling that strains of P.
putida and P. aeruginosa were the first living, genetically
modified organisms to be patented for a specific application
(biodegradation of petrochemicals—camphor, octane, salicylate,
and naphthalene)—truly heralding the modern era of
genetically modified organisms (Chakrabarty, 1981). The
genus Pseudomonas is behaviorally very versatile, with free-living
as well as parasitic forms capable of colonizing a wide variety of
host organisms and ecological niches within hosts. For example,
P. aeruginosa (PA) is a free-living soil bacterium that is also an
opportunistic pathogen of both plants and animals, P. syringiae
(PS) is an opportunistic plant pathogen, P. putida (PP) has been
extensively used in bioremediation for its ability to utilize a wide
range of hydrocarbons as carbon sources, and both P. putida
and P. fluorescens (PF) are promising growth-promoting and
biocontrol agents.

In order to understand the role of the bacterial component of
the phytomicrobiome in plant physiology, the functional analysis
of bacteria colonizing multiple ecological niches provided by the
plant—the roots (rhizosphere), leaves (phyllosphere), surfaces
(ectosphere), and tissues (endosphere)—needs to be undertaken,
ideally in situ and over the several developmental stages of the
plant. This is an understandably formidable task, and the utility
of a model bacterium in this context is apparent. From a bacterial
viewpoint, it has to sense the presence of, and stimuli from,
potential hosts as well as competitors (of the same or different
species), strategize in a manner that allows it to reach the host,
survive competition, and colonize, gain access to resources, and
persist for a reasonable length of time in the face of perturbations.
The establishment and resilience of the plant-microbe interaction
is therefore dependent on the exchange and sensing of a variety
of signals by both types of partners, often simultaneously, and
combinatorially.

Bacterial Quorum Sensing and Inter-species
Competition
Pseudomonas spp. possess quorum-sensing (QS) systems that
synthesize and sense hormone-like messages of diverse origins
in their immediate environment. QS systems are often linked
with other regulons, leading to different phenotypes (for a review,
see Venturi, 2006). For example, PP produces cyclic lipopeptide
surfactants putisolvin I and II, that are under the control of
QS and disrupt biofilms (Kuiper et al., 2004; Dubern et al.,
2006). Interestingly, this can happen not only at the stationary
phase, but also stochastically in the early stages of growth
resulting in swarming motility (Cárcamo-Oyarce et al., 2015),
promoting colonization of fresh surfaces. Other putisolvin-like
lipopeptides of PP have been found to exhibit lytic activity
against the zoospores of the fungal pathogen Phytophthora capsici
zoospores in vitro, inhibit growth of the fungal pathogens Botrytis
cinerea and Rhizoctonia solani in addition to being involved in
swarming motility (Kruijt et al., 2009). In more general terms
such interactions could contribute to the overall composition of
the phytomicrobiome by modifying its diversity, and contribute
to its resilience to perturbation by invaders.

Plant growth promotion effects of Pseudomonas spp. may
also be under QS control, as was demonstrated in the case of

QS-controlled production of an N-acyl-L-homoserine lactone
(AHL), cyclic dipeptides and their derivative diketopiperazines
(DKPs) by PA. Exposure of A. thaliana seedlings to 3-oxo-
C12-AHL produced by the LasI AHL synthase causes growth
inhibition of the primary root, while DKP stimulated the growth
of lateral roots (Ortiz-Castro et al., 2011). The presence of orphan
AHL transcriptional regulators such as QscR in PA that lack a
cognate AHL synthase and bind with relaxed specificity to both
endogenously and exogenously produced AHLs adds another
layer of complexity to plant-phytomicrobiota interactions (for
a recent and detailed review, see Chugani and Greenberg,
2014). Likewise, pseudomonads as well as other plant-associated
bacteria have been found to encode a unique family of orphan (or
solo) AHL transcriptional regulators that are uniquely responsive
to unknown plant and/or bacterial signal molecules (Patel et al.,
2013).

That one component of the microbiota may influence another
indirectly by modulating host signals and responses has been
dramatically demonstrated recently in both plant and animal
contexts. PS pathovar tomato (PSt) infection of Arabidoposis
thaliana leaves induces the plant enzyme phospholipase Db1
(PLDb1) that is a negative regulator of the salicylic acid-
dependent resistance to PS, but is a positive regulator of the
jasmonic acid-dependent resistance to the fungal pathogen
Botrytis cinerea. Even more interestingly, infection with an
avirulent PSt strain that expresses the effector AvrRpt2 secreted
by the type III secretion system can also lead to resistance
against virulent Pst that does not express AvrRpt2 (Zhao et al.,
2013). Thus, indirect microbial modulation of the host can cause
subtle, even strain-level, shifts in the composition of microbiota,
depending on the temporal sequence of host colonization. In
what may well be a case of convergent survival strategies, PA
infection of airways in human patients of cystic fibrosis induces
airway cells of the airway epithelium to produce secretory
phosopholipase A2, which is bactericidal for Gram-positive
bacteria such as Staphylococcus aureus but relatively less so for
PA (Pernet et al., 2014). This effectively allows PA to proliferate
at the expense of S. aureus.

Identification of Putative Type VI Effectors in
Plant-associated Pseudomonas spp.
The ability of PA to infect both plant and animal hosts, and
the identification of a common set of virulence determinants
during plant and animal infections (Rahme et al., 1997, 2000),
along with genome sequence information can be exploited to
identify potential effectors and predict putative mechanisms
of interaction with the host plant in the context of other
Pseudomonas spp. Recent, extensive analyses of the A. thaliana-
associated microbiota indicate that Pseudomonas spp. are
preferentially enriched in the endophytic compartment of the
plant, as compared to the rhizosphere (Bulgarelli et al., 2012;
Lundberg et al., 2012). Therefore, the identification of conserved
effectors within the pseudomonad lineage can be used as a
starting point to probe plant-microbe interactions. The type VI
secretion systems (T6SS) merit special attention in this regard
as they are widespread among diverse Gram-negative bacteria,
both pathogenic and non-pathogenic including Pseudomonas
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TABLE 1 | A representative list of putative effectors potentially targeting plant cells and encoded by T6SS in plant-associated Pseudomonas spp.

Effector molecule(s)

of P. aeruginosa

Locus tag/Strain

of PA

Known function and context in PA Reference(s) for

known functions

Plant-associated

Pseudomonas spp.

Ortholog locus tag

Phospholipase D (PldB) PA5089/PAO1 Encoded by the H3-T6SS. Elimination

of compteting bacteria. Promoting PA

internalization by host (human)

epithelial cells

Jiang et al., 2014 Pseudomonas sp. UW4 PputUW4_03278

P. syringae pv. Phaseolicola

1448A (pathogen)

PSPPH_0117

P. syringae pv. Syringae

B728a (pathogen)

Psyr_4970

Valine-glycine repeat

protein (VgrG2b)

PA0262/PAO1 Encoded by the H2-T6SS. Delivered

into host (human) epithelial cells,

promotes microtubule-mediated PA

internalization by direct interaction

with microtubules

Sana et al., 2015 P. syringae pv. syringae

B728a

Psyr_4080

Pseudomonas sp. UW4 PputUW4_03083

P. putida F1 (orthologs also

present in strains HB3267,

KT2440, H8234, ND6,

GB-1, NBRC 14164, W619

and DOT-T1E)

Pput_2117

These have been identified based on two T6SS effectors in P. aeruginosa, PldB and VgrG2b, that are known to target eukaryotic host cells. Orthologs

were identified by searching the Pseudomonas database (http://beta.pseudomonas.com); (Winsor et al., 2011) and the Pseudomonas ortholog database

(http://pseudoluge.pseudomonas.com/pseudoluge/named/list/search?field=locus_tag&value=PCHL3084_RS00035); (Whiteside et al., 2013).

spp. (Barret et al., 2011), and can potentially deploy effectors
targeting both prokaryotic and eukaryotic cells (Jiang et al.,
2014). Two effectors secreted by T6SS in PA that are known to
target host cells, and their orthologs identified in plant-associated
Pseudomonas spp. are listed in Table 1. The functionality
of these effectors on plant cells, if verified, can provide
important information about the assembly and disruption of
bacterial communities, as well as their interaction with the host
plant.

Conclusions and Future Directions

The foregoing account suggests new lines of inquiry into
the signals that drive the formation and maintenance of the
plant microbiota. Can systemic effects on the host and/or
microbiota be mediated by diffusible signals produced in
one part of the plant? If so, over what distances do these
effects extend, and how are they mediated? What is the
role of conserved and functional T6SS effectors in diverse
plant-bacteria associations that range from commensalism to
symbiosis? In the effort to understand the relative contribution
of different components of the microbiota to the plant
holobiont, it may be remembered that abundance alone may
not truly reflect the relative importance of the species/strain
in question. Numerically less abundant species could be key
players within the microbiota, assuming the role of “keystone”
species, as has been suggested earlier (Saraswati and Sitaraman,
2014).

A potential limitation in reliance on Gram-negative
pseudomonads as model systems is that their relative importance
may depend on environmental conditions. For example,

Pseudomonas spp. may be an important disease-suppressive
agent in a moist and temperate environment in the Netherlands
(Mendes et al., 2011), whereas the Gram-positive Bacillus spp.
contribute to disease suppression in Egypt, a more arid zone
(Köberl et al., 2011). Over reliance on Pseudomonas spp. as
models could therefore potentially overlook unique interactions
and mechanisms operative over large geographical areas and
ecological zones. Also to be remembered is that most studies of
microbiota (plant or animal) focus on the bacterial component
alone, and the role of fungi and archaea is less studied and
understood.

The microbiota of multicellular organisms, whether plant or
animal, present a case wherein simultaneous and combinatorial
interactions have to be identified, and their relative importance
determined. To this end, the identification of effectors and
the delineation of mechanisms of interaction are required.
The predictive and inferential value of Pseudomonas spp.-based
models that can be probed with conventional as well as high-
throughput methods is therefore undeniable, and insights so
gained have immense potential to inform and refine our efforts
to dissect the mechanistic bases of interactions taking place in the
plant holobiont.
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Plants possess an exceedingly complex innate immune system to defend against

most pathogens. However, a relative proportion of the pathogens overcome host’s

innate immunity and impair plant growth and productivity. We previously showed

that mutation in purple acid phosphatase (PAP5) lead to enhanced susceptibility of

Arabidopsis to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000

(Pst DC3000). Here, we report that an optimal level of PAP5 is crucial for mounting

complete basal resistance. Overexpression of PAP5 impaired ICS1, PR1 expression and

salicylic acid (SA) accumulation similar to pap5 knockout mutant plants. Moreover, plant

overexpressing PAP5 was impaired in H2O2 accumulation in response to Pst DC3000.

PAP5 is localized in to peroxisomes, a known site of generation of reactive oxygen

species for activation of defense responses. Taken together, our results demonstrate

that optimal levels of PAP5 is required for mounting resistance against Pst DC3000 as

both knockout and overexpression of PAP5 lead to compromised basal resistance.

Keywords: purple acid phosphatase5 (PAP5), Pseudomonas syringae pv. tomato DC3000, disease resistance,

Arabidopsis, reactive oxygen species (ROS)

Introduction

Plants are constantly exposed to a diverse array of microbial pathogens. In nature, plants have
evolved mechanism(s) to restrict most pathogens (non-host disease resistance) and also reduce
pathogen ingress (basal resistance or PAMP-triggered immunity) (Bittel and Robatzek, 2007).
Activation of defense response begins with the recognition of conserved molecular signatures or
PAMP (Pathogen-Associated Molecular Pattern) by pattern recognition receptors (PRRs) localized
on the plasma membrane and in the cytoplasm (Chisholm et al., 2006; Jones and Dangl, 2006).
PAMPs are microbial molecular signatures (e.g., flagellin, bacterial lipopolysaccharides, elongation
factor, chitin, and β-glucan) that are absent in the host (Boller and Felix, 2009; Schwessinger and
Ronald, 2012). Following PAMP perception, the PRRs initiate complex signaling networks that
are associated with rapid synthesis of reactive oxygen species, activation MAP kinase signaling and
pathogenesis related (PR) genes leading to PAMP triggered immunity (PTI) (Chisholm et al., 2006).
However, well-adapted microbial pathogens have evolved the means to subvert defense signaling
and breach PTI.
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Plants are exposed to pathogens that have diverse infection
strategies and therefore activation of appropriate, pathogen
specific defense responses is vital for plant growth and
productivity (Glazebrook, 2005). Structural alteration in cell
wall including waxy cuticle layer, deposition of callose, suberin,
and lignifications of cell wall provide protection contributing
to non-host disease resistance (Dangl and Jones, 2001). Upon
pathogen recognition, immediate early response genes including
glutathione S transferase 6 (GST) and immediate early induced
glucosyltransferase (IEGT) detoxify and protect cells from
oxidative stress (Uquillas et al., 2004 and references therein).
Salicylic acid (SA) dependent defense marker gene such as PR1
is induced later during pathogenesis involving the key signal
transducer NPR1 (non-expressor of pathogenesis related genes
1) (Schenk et al., 2000). Specific response to pathogens is also
mediated by gene-for-gene recognition leading to the activation
of resistance (R) genes or recently termed effector-triggered
immunity (ETI) in host (Nimchuk et al., 2003; Chisholm et al.,
2006). Activation of R gene is usually accompanied by production
of reactive oxygen species (ROS) leading to hypersensitive
responses (HR) to restrict the spread of pathogen (Glazebrook,
2005). The localized cell death triggers systemic acquired
resistance (SAR) to confer resistance throughout the plant (Baker
et al., 1997). Hypersensitive response is also associated with
induction of diverse group of defense related and pathogenesis
related (PR) genes.

Plants defense responses are primarily associated with salicylic
acid (SA), jasmonic acid (JA), and ethylene (ET) (Vlot et al.,
2009). SA regulates the activation of defense responses against
most biotrophic, hemi-biotrophic pathogens (Durner et al.,
1997) and also mediates the establishment of systemic acquired
resistance (SAR) (Grant and Lamb, 2006). By contrast, JA
and ET operate synergistically to confer resistance against
necrotrophic pathogens and herbivorous insects. JA is also
associated with induced systemic resistance (ISR) elicited by
rhizobacterial strains that promote plant growth and enhances
resistance to various bacterial and fungal pathogens (Ton
et al., 2002). In recent years, the role of other phytohormones
including abscisic acid (ABA), auxins, gibberellins (GA),
cytokines (CK), and brassinosteriods (BR) have started to
emerge (Mutka et al., 2013) reviewed by Bari and Jones (2009).
Apart from plant hormones, class of secondary metabolites
including phenyl proponoid, glucosinolates, terpenoids, and
phytoalexins aid in the protection of plant against most
biotic stress (Kliebenstein, 2004). Synthesis and secretion
of anti-microbial compounds confer selective advantage to
curb pathogen invasion. Over 100,000 low-molecular-mass
compounds derived from isoprenoid, polypropanoid, polyketide
pathways are known to enhance defense against microbial
infections (Dixon, 2001).

Purple acid phosphatases (PAPs) belong to a family of
binuclear metalloenzymes and have been identified and
characterized in numerous plants, animals, and a limited number
of microorganisms (Mitic et al., 2006; Schenk et al., 2008).
All PAPs contain dinuclear metal ions and a characteristic set
of seven invariant residues, which coordinate the metal ions
within the active site (reviewed by Mitic et al., 2006; Schenk

et al., 2008). PAPs have been implicated in an array of biological
functions. Most PAPs have been classified as non-specific
acid phosphatases that catalyze the hydrolysis of inorganic
phosphate (Pi) from various monoesters and anhydrides
substrates (Olczak and Watorek, 2003). The physiological role
of plant PAPs is predominantly associated with the regulation
of Pi uptake and recycling (Li et al., 2002; Veljanovski et al.,
2006). However, previous studies have also revealed roles for
plant PAPs in other biological functions, including peroxidation
(Del Pozo et al., 1999), ascorbate recycling (Zhang et al.,
2008), mediation of salt tolerance (Liao et al., 2003), and
regulation of cell wall carbohydrate biosynthesis (Kaida et al.,
2009).

Recently, we demonstrated that the loss of purple acid
phosphatase5 (PAP5) in Arabidopsis leads to enhanced
susceptibility to virulent Pseudomonas syringae pv. tomato
DC3000 (Pst DC3000). Arabidopsis plants carrying a mutation
in PAP5 exhibited a defect in the expression of pathogenesis
related (PR) genes including Pathogenesis Related gene 1
(PR1), Isochorismate synthase1 (ICS1) and plant defensin1.2
(PDF1.2). This study also revealed that pap5 plants failed
to accumulate H2O2 in response to Pst DC3000 infection
compared to wild-type plants (Ravichandran et al., 2013). One
of the earliest responses to pathogen infection is generation
of reactive oxygen intermediates ROIs (O−

2 and H2O2).
Although, ROIs such as hydroxyl radical (.OH), superoxide
radical (O−

2 ) and hydrogen peroxide (H2O2) are produced
under normal metabolic processes. The rapid accumulation
of ROS (also known as oxidative burst) cause oxidative cross
linking of cell wall, activation of cellular signaling (protein
phosphorylation) and induction of pathogenesis related
(PR) genes (Alvarez et al., 1998). It is widely assumed that
ROS production after pathogen recognition is associated
with membrane bound NADPH oxidase in the apoplast
(Lamb and Dixon, 1997). H2O2 generated in response to
pathogen recognition induces salicylic acid (SA) and PR protein
accumulation (Chamnongpol et al., 1998). A number of studies
have indicated that ROS produced in response to pathogen
recognition is located in the apoplast (reviewed by Torres et al.,
2002). It is also evident that plants can produce ROS in other
inter-cellular organelles including chloroplast, mitochondria
and peroxisomes. However, the cellular homeostasis and
concentration of ROS is highly regulated by enzymes such
catalase, peroxidase and superoxide dismutase (Foyer and
Noctor, 2003).

Having demonstrated that the loss of PAP5 impaired plants
innate immune responses (Ravichandran et al., 2013), we wanted
to determine if overexpression of PAP5 results in enhanced
disease resistance. Further, in silico predictions failed to detect
signal peptides on PAP5, hence we wanted to experimentally
verify the prediction by tagging PAP5 with a fluorescent label.
Here, we report that the level of PAP5 is crucial for mounting
complete resistance against Pst DC3000. Optimal levels of PAP5
are required for induction of PR genes and SA accumulation.
Further, PAP5 was found to be peroxisomal localized and aid the
generation of reactive oxygen species for activation of defense
responses.
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Results

Optimal Level of PAP5 Is Required for Complete
Resistance to Pst DC3000
Previously, we reported that loss of PAP5 resulted in enhanced
susceptibility of Arabidopsis to the virulent Pst DC3000
(Ravichandran et al., 2013). Having demonstrated that the
loss of PAP5 lead to enhanced susceptibility, we tested if
overexpression of PAP5 will result in enhanced resistance. We
generated transgenic plants overexpressing PAP5 under the
control of constitutive cauliflower mosaic virus (CaMV) 35S
promoter. Plants exhibiting Basta resistance were chosen and
plants were picked randomly to verify the abundance of PAP5
transcripts. Among the transgenic lines tested, two independent
overexpressor lines 35S:PAP5-A and 35S:PAP5-B were chosen for
further studies. Overexpressor lines 35S:PAP5-A and 35S:PAP5-B
showed ∼8 and 62-fold increase in PAP5 transcripts respectively
compared to wild-type (Col-0) plants (Figure 1A). There was
no difference in the growth and development of both the
overexpressing lines compared to wild-type plants.

For pathogenicity assay, plants were sprayed with suspension
of Pst DC3000 as described in the methods. Interestingly, the
overexpressor lines exhibited extensive chlorosis and increased
susceptibility to Pst DC3000 compared to wild-type plants.
Assessment of Pst DC3000 growth in plant apoplast revealed that
both overexpressor lines had higher bacterial titers compared to
wild-type plants (Figure 1B). Both overexpressor lines exhibited
comparable levels of chlorosis and bacterial titers suggesting that
the enhanced susceptibility is not due to the positional effects
on insertion of the transgene. Although the overexpressor line
35S:PAP5-B constitutively expressed higher levels (∼62 fold) of
PAP5 compared to 35S:PAP5-A plants (Figure 1A) we did not
observe any significant difference in susceptibility to Pst DC3000
(Figure 1B).

Overexpression of PAP5 Impairs Pathogenesis
Related (PR) Gene Expression and Alters H2O2

and Salicylic Acid Accumulation
In contrast to our expectation, overexpression of PAP5 did not
result in enhanced resistance. Therefore, we tested if expression
of defense related genes are impaired in the overexpressor
lines (35:PAP5-A and 35S:PAP5-B). The overexpressor lines
and wild-type plants were spray inoculated with suspension of
Pst DC3000 (108 c.f.u ml−l) and leaf tissues were harvested
for gene expression analysis. The expression of pathogenesis
related protein gene1 (PR1), a commonly used marker gene
associated with Pst DC3000 infection and SA-mediated defense
responses was observed. There was no significant difference in
the transcript abundance of PR1 between the mock infected
overexpressor lines and the wild-type plants. However, PR1 was
strongly induced in infected wild-type plants 24 h.p.i., whereas
it was not induced in OE lines (Figure 2A). Although the
expression of PR1was slightly higher in both overexpression lines
at 48 h.p.i., the levels of PR1 was significantly lower compared
to infected wild-type plants (Figure 2A). We also tested the
expression of isocorismate synthase1 (ICS1), which is responsible
for ∼90% of pathogen induced SA production (Wildermuth

FIGURE 1 | Transgenic plants overexpressing PAP5 exhibit enhanced

disease susceptibility. (A) Transcript levels of PAP5 in transgenic plants.

Total RNA was extracted from wild-type and transgenic plants as described in

materials and methods. Transcript levels of PAP5 was normalized to the

expression of GAPDH in the same samples and expressed relative to the

normalized transcript levels of wild-type plants. The bars represent the mean

and standard deviation from two independent experiments. Significant

differences (P < 0.05) are indicated by different letters. (B) Growth of Pst

DC3000 in wild type and transgenic plants. Plants were inoculated with Pst

DC3000 (10-8 c.f.u ml−l ) and bacterial growth in plant apoplast was

determined as described in the materials and methods. The bars represent the

mean and standard deviation from values of three separate trials with six to

eight replicates each trial. An asterisk indicates a significance increase in Pst

DC3000 growth compared to wild-type plants (Student’s t-test; P < 0.05).

et al., 2002). As shown in Figure 2B, accumulation of ICS1
was ∼4 fold higher in infected wild-type plants, whereas the
expression of ICS1was strongly suppressed in both the OE1, OE2
overexpressor lines. However, the expression of ICS1 in infected
wild-type plants was similar to mock infected wild-type plants
at 48 h.p.i. Moreover, the expression of ICS1 correlated with the
expression of PR1.

To determine whether the decrease in the expression of ICS1
altered the concentration of salicylic acid (SA), we quantified the
SA in the infected leaf tissue. We quantified SA in wild-type,
overexpressor lines (35:PAP5-A and 35S:PAP5-B) and knockout
line pap5-1 following Pst DC3000 infection. The concentration
of SA increased in all Pst DC3000 infected plants. However,
the SA levels in both the overexpressor lines and pap5-1
plants were only ∼60% of the wild-type plants (Figure 3A). In

Frontiers in Plant Science | www.frontiersin.org August 2015 | Volume 6 | Article 568 | 30

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Ravichandran et al. PAP5 is crucial for disease resistance

FIGURE 2 | Expression of ICS1 and PR1 is impaired in transgenic

plants (35S:PAP5-A and 35S:PAP5-B). Plants were spray inoculated with

Pst DC3000 (108 c.f.u ml−l ) and RNA was extracted from leaf tissues sampled

24 and 48 h.p.i. Transcript levels were normalized to the expression of GAPDH

in the same samples. The transcript levels were expressed relative to the

normalized transcript levels of mock infected wild-type plants. The bars

represent the mean and standard deviation from two independent

experiments. Transcript levels of ICS1 (A) and PR1 (B) in mock and Pst

DC3000 infected plants. Significant differences (P < 0.05) are indicated by

different letters (Student’s t-test; P < 0.05).

addition, accumulation of hydrogen peroxide (H2O2) generated
in response Pst DC3000 was suppressed in both overexpressor
lines (Figure 3B). These results suggest that the over expression
of PAP5 impaired the transcription of ICS1, PR1, and SA
accumulation subsequently similar to that of the loss-of-function
pap5 mutant. Taken together, it is evident that optimal level
of PAP5 is required for expression of ICS1 and PR1 and for
accumulation of H2O2 and SA after Pst DC3000 infection.
Further, these results suggest that the enhanced growth of Pst
DC3000 in 35S:PAP5-A and 35S:PAP5-B is dependent on SA
accumulation and SA-mediated defense responses.

Sub-cellular Localization of PAP5
To identify the sub-cellular localization of PAP5, a
comprehensive in silico prediction was performed. Most in
silico prediction revealed that PAP5 could be localized to the
nucleus, cytosol, extracellular, endoplasmic reticulum, golgi
bodies and to the extracellular space (http://suba.plantenergy.
uwa.edu.au/). However, a search on http://www.cbs.dtu.dk/

FIGURE 3 | Both loss and overexpression of PAP5 affect salicylic acid

(SA) and H2O2 accumulation in Pst DC3000 infected plants. (A)

Quantification of SA in pap5-1 and 35S:PAP5 plants following Pst DC3000

infection. Plants were spray inoculated with Pst DC3000 (108 c.f.u ml−l ) and

leaf tissues were excised 48 h.p.i. The bars represent the mean and standard

deviation from three replicates. Significant differences (P < 0.05) are indicated

by different letters (Student’s t-test; P < 0.05). (B) Quantification of H2O2

following Pst DC3000 infection. The bars represent mean and SD of H2O2

accumulation. A significant difference (P < 0.05) in H2O2 production are

indicated by different letters (Student’s t-test; P < 0.05).

services/SignalP/ revealed that PAP5 does not carry a signal
peptide. To verify this contradictory in silico prediction, the
coding region of PAP5 was fused to the YFP reporter gene
under the control of CaMV 35S promoter. Confocal microscopy
reveled YFP-PAP5 as rapidly moving punctate structures within
the cytoplasm and faintly in the nucleus (Figure 4). To identify
the cellular compartment, the agrobacterium strains carrying
organelle specific markers (Nelson et al., 2007) were coinfiltered
with YFP-PAP5 and leaf tissues were harvested at different
time points for confocal microscopy. As shown in Figure 4,
YFP-PAP5 showed a strong colocalization with peroxisomal
specific marker (peroxisomal targeting signal 1; PTS1-CFP).
Agrobacterium strains carrying YFP-PAP5 was also cofiltered
with golgi (GmMan1 cytoplasmic tail and transmembrane) and
plastid (rubisco targeting sequence) specific markers. In contrast
to in silico predictions, YFP-PAP5 did not localize to golgi or
plastid organelle specific markers (Figure S1).

Since the in silico prediction showed that PAP5 lack signal
peptides, we wanted to determine if removal of specific stretch
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FIGURE 4 | Subcellular localization of PAP5 in N. benthamiana leaves.

Agrobacterium strains carrying the recombinant plasmids (35S:YFP-PAP5) and

peroxisomal specific marker (PTS1:CFP) was transiently expressed in tobacco

leaves. Left plane shows a single optical section of CFP fluorescence images,

the middle plane show single optical section of YFP fluorescence and right

planes shows transmitted light images with merged CFP and YFP fluorescence.

Bar = 25µm.

of amino acids from C- or N-terminals affect the peroxisomal
localization of PAP5. PAP5 constructs lacking a stretch of N-
terminal amino acids (MSLETFPPPA), referred as YFP:+30PAP5
failed to localize to peroxisomes (Figure 5). However, removal of
amino acids RYYLPEEETI from the C-terminal (referred as YFP:
-30PAP5) of PAP5 did not prevent the localization of PAP5 to
peroxisomes. These results suggest that N-terminal amino acids
MSLETFPPPA are required for subcellular localization of PAP5.

Discussion

In this study, we showed that an optimal level of PAP5 is
critical for mounting appropriate defense responses. Previous
studies have revealed several molecular cues that regulate
plant defense responses. Often, genes identified as positive
regulator of defense responses are overexpressed to generate
disease tolerant crops (Zhang et al., 2014). Interestingly,
in some instances, both reduced and overexpression of a
gene could result in the same phenotype. For example,
OXI1 (Oxidative Signal-Inducible1), encoding a serine/threonine
kinase has been shown to be required for complete activation of
mitogen-activated protein kinase (MAPKs). oxi-1 null mutants
showed enhanced susceptibility to virulent Hyaloperonospora
arabidopsidis (formerly Paranospora parasitica) (Menke et al.,
2004). Interestingly, transgenic plants overexpressing OXI1
(35S::OXI1) displayed enhanced susceptibility to both virulent
Hyaloperonospora arabidopsidis and Pst DC3000 (Petersen et al.,

FIGURE 5 | Subcellular localization of PAP5 in N. benthamiana leaves.

Agrobacterium strains carrying the recombinant plasmids (+30PAP5:YFP or

+30PAP5:YFP) and peroxisomal specific marker (PTS1-CFP) was transiently

expressed in tobacco leaves. Left plane shows a single optical section of CFP

fluorescence images, middle planes show a single optical section of YFP

fluorescence and right planes shows transmitted light images with merged

CFP and YFP fluorescence. +30PAP5:YFP lacks a stretch of N-terminal amino

acids MSLETFPPPA. −30PAP5:YFP lack N-terminal amino acids

MSLETFPPPA. Bar = 10µm.

2009). Since both reduced and overexpression of PAP5 lead to
enhanced susceptibility to Pst DC3000, we hypothesize that PAP5
could exist in complex with other proteins. Thus, constitutive
expression of PAP5 (35S:PAP5) alone may not be sufficient
for complete resistance. It is also possible that the prolonged
expression of PAP5 could negatively affect basal resistance against
Pst DC3000. Previously, we identified that PAP5 is not expressed
under normal growth conditions and are selectively induced only
during prolonged Pi starvation and early stage of PstDC3000 (6 h
post inoculation) (Ravichandran et al., 2013). Hence, constitutive
overexpression of PAP5 is not optimal and may perturb and
impair its function following Pst DC3000. Previous studies
have also shown that both overexpression and partial loss of
FIP1 [FIN (Far-red insensitive) 219 Interacting Protein] resulted
in hyposensitive hypocotyl phenotype under continuous Far
Red (FR) light (Chen et al., 2007). FIP1 was also shown to
exhibit glutathione S-transferse activity which lead to delayed
flowering phenotype under long-day conditions. Similarly, loss
and overexpression of EBS (Early Bolting in Short Days) showed
early flowering, a dwarf phenotype and reduced fertility (Pineiro
et al., 2003). EBS encodes a nuclear protein with homeodomain
Zn finger that regulate chromatin remodeling and repress the
initiation of flowering in short days.

Pathogen recognition triggers generation of reactive oxygen
intermediates (ROIs), which is required for activation of defense
responses (Torres et al., 2002). It is also evident that the
generation of ROI occurs within hours of pathogen infection
(Alvarez et al., 1998). Since PAP5 is induced only during
the earlier stages (6 h.p.i) of Pst DC3000 infection and the
localization of PAP5 in peroxisome (Figure 4) suggests that
PAP5 may act as a component of ROI generation. Hence we
hypothesized that PAP5 might exist in complex with other
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proteins, a comprehensive in silico prediction was performed
to identify proteins that may potentially interact with PAP5.
Most in silico prediction searches on Bio-Analytic Resource
for Plant Biology (BAR), Biological General Repository for
Interaction Datasets (BioGRID) and GeneMANIA failed to
detect any physical interaction. Moreover, most subcellular tools
including SUBA, TargetP, and WoLF PSORT failed to identify
the peroxisomal targeting sequences of PAP5. Previous studies
have also shown that most in silico prediction programs fail to
identify signature peroxisomal targeting sequences (Nelson et al.,
2007). Few in silico prediction showed that PAP5 is targeted to the
extracellular space (http://suba.plantenergy.uwa.edu.au/; http://
wolfpsort.org/).

In mammals, the high expression of PAPs in macrophages
and increased ROS production that mediates microbial killing
has been demonstrated (Kaija et al., 2002). Although ROS are
produced under normal metabolic processes, the role of ROS
in signaling is largely dependent on the rate of synthesis and
is controlled by antioxidative enzymes such as catalase and
peoxidases in peroxisomes (Nyathi and Baker, 2006). Previously,
catalase deficient plants have been shown to display marked
perturbation of intracellular redox and cellular homeostasis
(Vandenabeele et al., 2004). Such perturbation is associated with
accumulation of salicylic acid (SA) and induction of pathogenesis
related (PR) genes (Chamnongpol et al., 1998). Similarly, catalase
deficient Arabidopsis (cat2) plants showed increased peroxisomal
H2O2 (Chaouch et al., 2010). Peroxisomal β-oxidation is also
attributed to the degradation of various straight and branched
chain fatty acids (Baker et al., 1997). Derivatives of β-oxidation
such as cyclic oxylipins also play a significant role in the synthesis
of plant hormones jasmonic acid (JA) and salicylic acid (SA)
which are important signaling molecules (Theodoulou et al.,
2005). Following Pst DC3000, infection the SA levels in both
overexpressor lines and pap5-1 plants were ∼60% of the wild-
type plants. These results also suggest that SA accumulation is not
completely abolished in both transgenic (35S:PAP5) and pap5-1
plants.

It is well recognized that majority of the eukaryotic proteins
undergo reversible phosphorylation via protein kinase (PK)
and phosphatase (PP) to control major cellular processes. A
large family of protein kinases has been characterized and
their function in various cellular processes has been well
established (País et al., 2009). However, the physiological role
of its counter partner protein phosphates has been poorly
understood. Activation of sucrose phosphate synthase (SPS)
and nitrate reduction (NR) has been associated with decrease
in phosphorylation status of SPE and NR (Huber and Huber,
1996). Interestingly, phosphorylation of Ser158 is sufficientfor
inactivation of spinach SPS in vitro (Huber and Huber, 1992).
Similarly, PAP5 may be required for complete activation of
vital enzymes such as glycolate oxidase in peroxisomes that
modulate H2O2 generation (Figure 6). Since ROS is generated
under normal metabolic processes, a highly regulatedmechanism
must exist to control ROS generation on pathogen recognition.

Several PAPs (SAP1, SAP2, AtPAP17, and AtPAP26) induced
under Pi starvation are secreted to the extracellular space to
hydrolyze Pi containing substrates and also exhibit peroxidase

FIGURE 6 | Model for role of PAP5 during Pst DC3000 infection. When

plants are infected with virulent Pst DC3000 1. Peroxisomal localized PAP5

may be required for activation of glycolate oxidase, which modulate H2O2

generation. 2. ROS induces several defense responsive genes including PR1

and ICS1. 3. ROS secreted to the apoplast may directly affect Pst DC3000.

Recognition of Pst DC3000, induce expression of PAP5 only during the early

stages of infection (6 h) and triggers ROS synthesis which subsequently

activates other defense related signals down stream for complete resistance.

activity (Del Pozo et al., 1999; Bozzo et al., 2002; Hurley
et al., 2010). However, the role of PAPs and its peroxidase
activity in the extracellular space is not clear. Previously, PAPs
exhibiting peroxidase activity has been speculated to function
in ROS production similar to the oxidative burst that occurs
in response to pathogen recognition (Bozzo et al., 2002; Hurley
et al., 2010). Bacterial pathogens including Pst DC3000 reaches
the apoplastic region to acquire nutrients (Alfano and Collmer,
1996). It is possible that the PAPs secreted to the extracellular
space have dual functions, i.e., the hydrolytic activity under Pi
starvation and microbial killing during pathogenesis. Hence,

H2O2 generated in response to Pst DC3000 infection is necessary
for activation of basal defense responses. Further, H2O2 secreted
to the extracellular space and apoplast may restrict Pst DC3000
growth directly. Taken together, these evidences suggest that
peroxisomal localized PAP5 plays a vital role in basal defense
response. Moreover, an optimal level of PAP5 is critical for
maintaining complete basal resistance during pathogenesis. It is
evident that the isoform of PAP have evolved to attribute various
biological functions in plants.

Materials and Methods

Biological Materials and Growth Conditions
Arabidopsis thaliana (L.) Heynh, ecotype Columbia (Col-0) seeds
were purchased from Lehle seeds (Round Rock, TX, USA)
and pap5 T-DNA insertion mutant line was obtained from
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Arabidopsis Biological Resource Center (Columbus, OH, USA).
Stratified seeds were planted on Jiffy peat pellets (Halifax seeds,
Canada) and seedling were grown at 22± 2◦Cwith a photoperiod
of 16 h light at 125µmol m−2s−1 and 8 h dark cycle. Virulent
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) was
a kind gift from Dr. Diane Cuppels, Agriculture and Agri
Food Canada (AAFC), ON, Canada. Pst DC3000 strains was
maintained on King’s medium B supplemented with rifampicin
(50µg ml−l).

Pathogen Inoculation
For pathogenicity assay, 4–5 week old plants were spray
inoculation with bacterial suspension of virulent Pst DC3000.
Plant inoculation and bacterial growth in plant apoplast was
determined as described earlier (Ravichandran et al., 2013). In
brief, strains of Pst DC3000 was cultured in King’s medium
B supplemented with rifampicin (50µg ml−l) at 28◦C until
OD600 of 0.8. Bacterial cells were collected by centrifugation
and resuspended in water containing 0.02% Silwet L-77 (Lehle
seeds, USA) to a final concentration of 108 c.f.u ml−l. Plants
were spray inoculated and kept under high humidity for disease
development. Leaves were excised (8-10 replicates) from different
infected plants and were surface sterilized with ethanol (75% v/v).
Four to five samples were made by pooling 2 leaf discs (0.5 cm2)
and the samples were ground in sterile water with microfuge tube
pestle. The ground tissues were serially diluted and plated on
King’s B medium containing rifampicin (50µg/ml). The plates
were incubated at 28◦C and colonies were counter after 48 h.
For Pst DC3000 induced gene expression, plants were spray
inoculated with bacterial suspension (108 c.f.u ml−l) and leaf
tissues were frozen in liquid nitrogen at the time points indicated.

RNA Extraction and Quantitative Real-time PCR
Total RNA was extracted from frozen leaf tissues (3 plants
per replicate) for two biological replicates using a monophasic
extraction method (Chomczynski and Sacchi, 1987). Total
RNA was treated with DNase (Promega, WI, USA) and
Reverse Transcription was performed with 1µg of total RNA
using High-Capacity cDNA Reverse Transcription kit (Applied
Biosystems, ON, Canada). Relative transcript levels were assayed
by Real-Time PCR using gene specific primers (Table 1) on
a StepOnePlus Real-Time PCR system (Applied Biosystems,
ON, Canada), using SYBR Green reagent (Applied Biosystems,
ON, Canada). To determine relative expression levels, the
amount of target gene (three technical replicates/sample) was
normalized over the abundance of constitutive GAPDH as
endogenous controls. Primers were generated spanning an intron
if possible using Primer3Plus (http://www.bioinformatics.nl/cgi-
bin/primer3plus/primer3plus.cgi/).

Quantification of Salicylic Acid (SA) and
Hydrogen Peroxide (H2O2)
For SA and JA quantification 4–5 week plants were spray
inoculated with Pst DC3000 (108 c.f.u ml−l). Leaves were excised
(five plants per sample) in triplicates at 48 h.p.i and were snap
frozen in liquid nitrogen. Leaf tissues (250mg) were ground
with liquid nitrogen and extracted with 5–10ml of MeOH-
H2O-HOAc (90:9:1). After 15min the samples were centrifuged

TABLE 1 | List of primer sequences used in RT-qPCR.

Gene Locus Primer sequences (5′–3′)

GAPDH At1g13440 TTGGTGACAACAGGTCAAGCA

AAACTTGTCGCTCAATGCAATC

ICS1 At1g74710 GCGTCGTTCGGTTACAGG

ACAGCGAGGCTGAATATCAT

PAP5 At1g52940 AACAGGTCGCTCCACTAGACA

TGGTTAGAGGCATATGTTTGTCC

PR1 At2g14610 TGATCCTCGTGGGAATTATGT

TGCATGATCACATCATTACTTCAT

at 12,000 g for 10min and the supernatant was collected. The
extraction procedure was repeated twice. The pooled supernatant
was dried under steam of N2 and suspended in 5ml of 0.05%
HOAc in H2O-MeCN (85:15). The samples were then filtered
through 0.4 5µm filter and meanwhile the SampliQ SAX
(Aligent technologies, USA) cartridge was conditioned with 2ml
of MeOH. The cartridge was then equilibrated with 5ml of
water. The filtered samples were loaded on to SampliQ SAX
cartridge and were washed with 5ml of 50mM sodium acetate
in 5% methanol. The interphase (IP) was removed with 5ml of
methanol. SA and JA were eluted with 5ml of 2% formic acid in
methanol and dried under N2.

After optimization of the liquid chromatography conditions
and the tuning of the Orbitrap mass spec for negative mode
ionization, a dilution series of salicylic acid (SA) were injected.
The detection was performed in negative mode monitoring for
the exact mass of the pseudomolecular ion [M-H]− at 137 amu.
The samples (500µg/ml) were analyzed with the same optimized
LC/MS method using a Agilent analytical C18 (3.5µm, 2.1 ×

100mm) with a gradient elution from 5% ACN in water to 100%
ACN using 0.1% formic acid in both solvents.

For H2O2 quantification, leaf tissues were harvested (4–5
plants per replicate) for 4 biological replicate and was frozen and
ground in liquid nitrogen. To 50mg of ground frozen tissue,
500µl of phosphate buffer (50mM, sodium phosphate, pH-
7.4) was added. The samples were centrifuged and 50µl of the
aliquot was used for H2O2 quantification, using an Amplex red
hydrogen peroxide/peroxidase assay kit (Molecular Probes, Life
Technologies, Canada).

Cloning and Plant Transformation
The clone of interest was obtained from ABRC and cloned
to gateway compatible expression vectors (Earley et al., 2006)
using LR Clonase II Gateway Technology (Invitrogen, ON,
Canada). Briefly, the clone DQ459170, containing full length
PAP5 (At1g52940) cDNA was obtained from ABRC. The
full length cDNA was amplified without the stop codon
via polymerase chain reaction (PCR) using TaKaRA Ex
Taq R© Polymerase (Clontech, USA). The PCR primers were
designed to contain attB sites to enable Gateway R© technology
compatible cloning (Gateway R© Technology, Life Technologies,
Canada). Shine-Dalgarno and Kozak consensus sequences
were included between the attB1 site and the start codon to
allow protein expression in E. coli and mammalian cells. The
fusion constructs lacking either N/C-terminal of PAP5 was

Frontiers in Plant Science | www.frontiersin.org August 2015 | Volume 6 | Article 568 | 34

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Ravichandran et al. PAP5 is crucial for disease resistance

generated via PCR. The PAP5 gene lacking N-terminal amino
acids MSLETFPPPA (YFP:+30PAP5) was generated using
primers 5′-GGTTATAACGCTCCTGAACAAGTT-3′ (forward)
and 5′-GGTTATAACGCTCCTGAACAAGTT-3′ (reverse).
PAP5 gene lacking C-terminal amino acids RYYLPEEETI
was amplified using primers (-30PAP5:YFP) using primers
5′-ATGTCACTCGAAACATTTCCTC-3′ (forward) and 5′-
ATTTTTCAACCAAATAGAGTCTGCA-3′. The PCR product
was purified and introduced to pDONR™ 221 vector as per
manufactures instruction to generate entry clones (Gateway R©

Technology, Life Technologies, Canada). The recombinant
plasmids were sequenced using the M13 sequencing primers to
confirm the insert position and orientation.

The entry clone containing the full length PAP5 or was
introduced to the expression vector pEarleyGate 104 (Earley
et al., 2006) and pMDC32 (Curtis and Grossniklaus, 2003)
using LR clonase (Gateway R© Technology, Life Technologies)
to generate 35S:YFP-PAP5 and 35S:PAP5 fusion constructs,
respectively. Similarly, the fusion constructs lacking either N/C-
terminal of PAP5 was introduced to the expression vector
pEarleyGate 104. The recombinant plasmids were introduced
in to Agrobacterium strain GV310 (pMB90) using the freeze
thawmethod (Weigel and Glazebrook, 2005). TheAgrobacterium
strain carrying the fusion construct was used to transform
Arabidopsis plants by floral dip method (Clough and Bent, 1998)
or infiltrated in to tobacco plants for subcellular localization
studies (Sparkes et al., 2006). The floral dip inoculation medium
contained 0.5XMurashige and Skoog medium with 5.0% sucrose
and 0.05% Silwet (Lehle seeds, TX, USA). Plants were selected for
Hygromycin and Basta resistance for pMDC and pEarley vectors,
respectively.

Transient Protein Expression and Subcellular
Localization
For subcellular localization 6 week old Nicotiana benthamiana
(tobacco) plants were used. Tobacco plants were grown at 22
± 2◦C with a photoperiod of 16 h light at 125µmol m−2s−1

and 8 h dark cycle. Plant organelle specific markers were
obtained from ABRC (Nelson et al., 2007) and the plasmids
were transformed to Agrobacterium strain GV310 (pMB90)
using the freeze thaw method (Weigel and Glazebrook, 2005).
Agrobacterium strains carrying the recombinant plasmids were

grown in liquid Luria-Bertani (LB) media supplemented with
appropriate antibiotics. Cells were harvested by centrifugation
(5500 g for 10min) and resuspended in infiltration medium
to OD600 of 0.8. The infiltration medium contained 0.5%
glucose, 50mM MES, 2mM Na3PO4, 0.1mM acetosyringone
(Sparkes et al., 2006). For co-expression of different constructs
Agrobacterium suspension was mixed in equal proportion and
the Agrobacterium suspension mixtures were infiltrated to the
tobacco leaves using a needleless syringe. The leaf samples were
excised 48 h after infiltration and mounted on a microscope
slide in water. The images were obtained (single optical sections
and Z-stack) using a Zeiss LSM 510 META inverted confocal
laser scanning microscope (Carl Zeiss MicroImaging GmbH).
For CFP fluorescence, excitation wavelength of 458 nm was
used and emissions were collected between 475, 471 and
525 nm. For YFP fluorescence, an excitation wavelength of
514 nm was used and emissions were 472 collected between
530 and 600 nm. The fluorescence images were processed
using Zeiss LSM Image Browser (Carl Zeiss MicroImaging
GmbH).
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Figure S1 | Subcellular localization of PAP5 in N. benthamiana leaves.

Agrobacterium strains carrying the recombinant plasmids (35S:YFP-PAP5) and

Golgi or plastid specific markers were transiently expressed in tobacco leaves.

Left plane shows a single optical section of CFP fluorescence images, middle

planes show a single optical section of YFP fluorescence and right planes shows

transmitted light images with merged CFP and YFP fluorescence. Bar = 25µm.
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Lumichrome and riboflavin are novel molecules from rhizobial exudates that stimulate
plant growth. Reported studies have revealed major developmental changes elicited
by lumichrome at very low nanomolar concentrations (5 nM) in plants, which include
early initiation of trifoliate leaves, expansion of unifoliate and trifoliate leaves, increased
stem elongation and leaf area, and consequently greater biomass accumulation in
monocots and dicots. But higher lumichrome concentration (50 nM) depressed root
development and reduced growth of unifoliate and second trifoliate leaves. While the
mechanisms remain unknown, it is possible that lumichrome released by rhizobia induced
the biosynthesis of classical phytohormones that caused the observed developmental
changes in plants. We also showed in earlier studies that applying either 10 nM
lumichrome, 10 nM ABA, or 10 ml of infective rhizobial cells (0.2 OD600) to roots of
monocots and dicots for 44 h produced identical effects, which included decreased
stomatal conductance and leaf transpiration in Bambara groundnut, soybean, and maize,
increased stomatal conductance and transpiration in cowpea and lupin, and elevated
root respiration in maize (19% by rhizobia and 20% by lumichrome). Greater extracellular
exudation of lumichrome, riboflavin and indole acetic acid by N2-fixing rhizobia over
non-fixing bacteria is perceived to be an indication of their role as symbiotic signals.
This is evidenced by the increased concentration of lumichrome and riboflavin in the
xylem sap of cowpea and soybean plants inoculated with infective rhizobia. In fact,
greater xylem concentration of lumichrome in soybean and its correspondingly increased
accumulation in leaves was found to result in dramatic developmental changes than in
cowpea. Furthermore, lumichrome and riboflavin secreted by soil rhizobia are also known
to function as (i) ecological cues for sensing environmental stress, (ii) growth factors for
microbes, plants, and humans, (iii) signals for stomatal functioning in land plants, and
(iv) protectants/elicitors of plant defense. The fact that exogenous application of ABA to
plant roots caused the same effect as lumichrome on leaf stomatal functioning suggests
molecular cross-talk in plant response to environmental stimuli.

Keywords: plant growth promoting molecules, IAA, ABA, rhizosphere, rhizobial exudates
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Introduction

In nature, plants and soil microbes seem to have co-evolved
to overcome environmental stress in their habitats. Outside
pathogenesis and allelopathy, many plant–plant or plant–bacterial
interactions have tended to be facilitative in providing benefits
to both partners (He et al., 2013). Thus, the rhizosphere is
generally regarded as the hotspot of interactive events between
soil microbes and plants, which occur through perception of
signals released in the form of simple chemical molecules. In
nutrient-poor soils, a typical rhizosphere consists of mixtures of
molecules secreted by both plants and microbes for promoting
nutrient mobilization and increased mineral uptake (Marschner,
1995; Dakora and Phillips, 2002). Under Fe-limiting conditions,
bacterial species can secrete specialized compounds such as
siderophores to enhance Fe acquisition (Jurkevitch et al., 1986).
In times of abiotic stress such as drought, soil microbes, including
rhizobia and other diazotrophs, produce chemical molecules in
their exudates that effect changes in plant development. In an
exhaustive review, Mehboob et al. (2009) found that applying 29
different rhizobial species/strains to 11 non-legume crops led to
an increase in plant growth, plant height and plant biomass, as
well as greater tissue concentration of N, P, K, Ca, Mg, Na, Fe,
Zn, and Cu in plant organs. The growth-promoting molecules
released by the test rhizobia included indole acetic acid (IAA)
by 13 strains, gibberellins by four strains, exopolysaccharides by
three strains, followed by lipopolysaccharides, hydrocyanic acid,
abscisic acid (ABA), phenolics and lumichromeby one strain each.
This review assesses lumichrome and riboflavin, and to some
extent IAA, as rhizobial signals influencing plant growth, and
discusses their roles in the rhizosphere of monocots (cereals) and
dicots (legumes) in relation to plant growth andmineral nutrition.

Molecular Signals From Rhizobial Exudates
and Their Effects on Plant Growth

Species and strains of rhizobia are reported to synthesize
various metabolites for bacterial cell growth. These include the
vitamins thiamine, niacin, biotin, ascorbic acid, and pantothenic
acid, as well as the amino acids glutamate, lysine, arginine,
tryptophan, and methionine purified from culture filtrates of
Sinorhizobium meliloti, Rhizobium leguminosarum bv. viceae,
Azospirillum brasilense, Azotobacter vinelandii, and Pseudomonas
fluorescens (Rodelas et al., 1993; Sierra et al., 1999; Yang et al.,
2002). In addition to IAA, simple nitrogenous molecules such as
cytokinins, gibberellins, lumichrome, and riboflavin (Figure 1)
have also been purified from bacterial culture filtrates and proven
to be active signals controlling plant development. Gibberellins
and cytokinins isolated from symbiotic rhizobia (Phillips and
Torrey, 1970, 1972; Dart, 1974; Lynch and Clark, 1984) are known
to promote bacterial cell growth, as well as stimulate root hair
production in plants for increased uptake of water and mineral
nutrients (Yanni et al., 2001).

In addition to traditional bacterial hormones such as
gibberellins, cytokinins and IAA, lipo-chitooligosaccharide
molecules (Figure 1) represent a new group of biologically-
active compounds that stimulate cell growth and induce nodule

organogenesis (De Jong et al., 1993; Dyachok et al., 2000).
In the absence of rhizobial cells, purified Nod factors can
morphogenically elicit nodule formation in legumes (Dénarié
et al., 1996). Furthermore, exogenously applied rhizobial Nod
factors have been reported to stimulate seed germination (Zhang
and Smith, 2002) and promote seedling development in both
monocots and dicots (Smith et al., 2002). Applying Nod factors
(10−7 M or 10−9 M) to soybean plants increased root mass
by 7–16%, and root length by 34–44% (Smith et al., 2002).
Similarly, spraying sub-micromolar concentrations (10−6, 10−8,
or 10−10 M) of Nod factors on leaves of soybean, common
bean, maize, rice, canola, apple, and grape plants increased
photosynthetic rates by 10–20%, and caused a 40% increase
in grain yield of field-grown soybean (Smith et al., 2002). But
more importantly, Nod factors also induce the expression of
genes involved in the phenylpropanoid pathway (Savouré et al.,
1994; Spaink and Lugtenberg, 1994), and in so doing increase
phytoalexin biosynthesis, which has the potential to protect the
host plant against pathogens (Dakora and Phillips, 1996). It has
also been shown that, even at low concentrations (10−7 nM),
Nod factors can promote AM colonization of both nodulating
and non-nodulating plants (Xie et al., 1995), suggesting a role
for this rhizobial metabolite in the establishment of mycorrhizal
symbiosis (Parniske, 2008). In fact, it has now been shown that
after the initial Nod factor and Myc factor perception, both
nodulation and mychorrhization processes share a common
symbiotic pathway (Parniske, 2008; Maillet et al., 2011).

Although lumichrome is considered a novel molecule that
stimulates plant development (Phillips et al., 1999; Matiru and
Dakora, 2005a), the discovery that rhizobia are capable of
synthesizing riboflavin (a precursor of lumichrome biosynthesis)
and thiamine for cell growth occurred almost 80 years ago (West
andWilson, 1938). Carpenter (1943) later isolated riboflavin from
field soil and showed its uptake by plant roots and translocation
to shoots. However, the role of this molecule in plant growth
stimulation was only reported thirty five years later (Rao, 1973).
Today, the findings of new studies have shown that lumichrome
and riboflavin purified from rhizobial exudates can promote plant
growth and alter stomatal function (Phillips et al., 1999; Matiru
and Dakora, 2005a,b). What was however unclear is whether the
exudation of lumichrome and riboflavin is unique to N2-fixing
rhizobia.

Lumichrome and Riboflavin are Symbiotic
Signals Involved in Plant Development

Lumichrome is a molecule commonly synthesized by both
microbes and plants, but is also a known degradation product
of the vitamin riboflavin (Phillips et al., 1999). As a result,
the role of lumichrome is often linked with riboflavin as the
latter is easily converted enzymatically or photochemically into
lumichrome (Yanagita and Foster, 1956; Yagi, 1962). Applying
purified lumichrome from S. meliloti exudates to roots of alfalfa
seedlings increased root respiration by 11–30%, and promoted
plant growth by 8–18% (Phillips et al., 1999). The enhanced plant
growth was attributed to increased net C assimilation, possibly
via PEP carboxylase activity (Phillips et al., 1999). Later studies

Frontiers in Plant Science | www.frontiersin.org September 2015 | Volume 6 | Article 700 | 39

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Dakora et al. Lumichrome and riboflavin as rhizobial symbiotic signals

FIGURE 1 | Structures of selected rhizobial molecules functioning as plant growth promoters. (A) Riboflavin, (B) Lumichrome, (C) Indole acetic acid, (D)
Gibberelline, (E) Cytokinins, (F) Nod factors, and (G) Abscisic acid.
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FIGURE 2 | A model describing the effect of root-to-shoot signaling by rhizobial molecules on (A) shoot developmental changes, and (B)
symbiosis-induced mineral uptake in the rhizosphere.

have shown that plants exhibit a mixed response to lumichrome
and riboflavin application (see Figure 2A). While this molecule
significantly increased root respiration in maize plants (Phillips
et al., 1999; Matiru and Dakora, 2005b), it decreased it in lupin,
and had no affect on cowpea, soybean, Bambara groundnut,

pea, and sorghum (Matiru and Dakora, 2005b). Inoculating the
roots of these monocots and dicots with ineffective rhizobial
cells produced the same results as obtained with lumichrome
application, in that, maize showed significantly increased rate
of root respiration, and lupin a decreased rate, while cowpea,
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soybean, Bambara groundnut, pea, and sorghum were unaffected
in their root respiration (Matiru and Dakora, 2005b). These
responses by both monocots and dicots to rhizobia and purified
lumichrome clearly indicate that the observed changes in root
respiration with bacterial inoculation were caused by lumichrome
released by the applied rhizobia. Other studies have similarly
found increased root respiration and dry matter accumulation
following lumichrome supply to lotus and tomato (Gouws et al.,
2012). Furthermore, both lumichrome and riboflavin have been
implicated as quorum-sensing molecules in rhizobial bacteria
(Rajamani et al., 2008). But the independent role of riboflavin as
a signal molecule was underscored by the finding that S. meliloti
strains carrying extra copies of the riboflavin biosynthesis gene
ribBA could release 15% more riboflavin than wild-type, and
were 55% more efficient in alfalfa root colonization for nodule
formation (Yang et al., 2002).

Physiologically, lumichrome has been shown to influence plant
growth, but with differing effects depending on the plant species
and metabolite concentration. Treating the roots of cowpea,
Bambara groundnut, soybean, pea, lupin, sorghum, and maize
plants with 10 nM purified lumichrome and 10 mL of infective
rhizobial cells (0.2 OD600) for 44 h in growth chambers, increased
stomatal conductance and leaf transpiration rates in cowpea, but
decreased both parameters in Bambara groundnut, soybean, and
maize, and had no effect on them in pea and sorghum (Matiru and
Dakora, 2005b). In that study, the effect of bacterial inoculation
closely mirrored that of 10 nM lumichrome application, again
indicating that rhizobial effects on these physiological changes
including stomatal functioning (whether in nature or under
experimental conditions) were more likely due to the lumichrome
molecule released by symbiotic rhizobia in the rhizosphere. Thus,
the finding that rhizobial inoculation in the field alleviated the
effects of water stress in symbiotic legumes (Figueiredo et al.,
1999) could be attributed to strain secretion of lumichrome that
decreased stomatal conductance and reduced plant water loss.
More studies are needed to explore matching superior N2-fixing
ability in inoculant rhizobia with high lumichrome production
as insurance for increased water-use efficiency and drought
tolerance in food legumes.

Developmentally, the supply of 5 nM lumichrome to roots of
cowpea and soybean seedlings elicited early initiation of trifoliate
leaf development, expansion in unifoliate and trifoliate leaves,
and increased stem elongation, which together caused an increase
in shoot and plant total biomass relative to the control (Matiru
and Dakora, 2005a). Even with monocots such as maize and
sorghum, lumichrome application at 5 nM also induced leaf
area expansion, and thus increased shoot and total biomass, but
had no effect on the leaf area of some cereals. Similar plant
growth data were also obtained with lumichrome supply to lotus
and tomato (Gouws et al., 2012). Other developmental changes
observed included an increase in root growth in sorghum, millet,
lotus and tomato caused by the supply of 5 nM lumichrome to
seedlings of these species (Matiru and Dakora, 2005a; Gouws
et al., 2012). Higher doses of lumichrome at 50 nM however
depressed the development of unifoliate leaves in soybean, the
second trifoliate leaf in cowpea, and shoot biomass in soybean.
Furthermore, the 50 nMconcentration also consistently decreased

root development in cowpea and millet, but had no effect on the
other species (Matiru and Dakora, 2005a). These findings also
showed that the developmental effect of lumichrome on plant
species was not age-specific as growth of both 11- and 37-day-
old sorghum, 23- and 37-day-old soybean, 23- and 37-day-old
millet, as well as 11- and 37-day-old cowpea were significantly
increased by lumichrome supply at 5 nM concentrations. Unlike
the legumes, however, the supply of 5 nM lumichrome markedly
increased (P < 0.05) root growth in cereals such as sorghum
and millet (Matiru and Dakora, 2005a). From these results,
lumichrome is no doubt a rhizosphere signal molecule that affects
seedling development in both monocots and dicots. It is likely
that, in nature, lumichrome released by symbiotic rhizobia into
the rhizosphere dictate the developmental path of plant species
than is currently known, with potential for greater plant growth
from increased water/mineral uptake and/or drought tolerance.

At the metabolic level, shoot and root application of
lumichrome increased starch accumulation in roots of both
lotus and tomato, which suggests a role for lumichrome in
carbon partitioning and modulation of carbon fluxes in infected
symbiotic plant cells (Gouws et al., 2012). This argument is
re-inforced by the fact that lotus-treated roots showed a reduction
in carbonaceous and nitrogenous solutes such as organic acids
and amino acids. Root treatment with lumichrome also increased
ethylene evolution rates in lotus, but not in tomato (Gouws
et al., 2012). Taken together, these findings show that bacteria
are capable of producing various simple organic molecules that
serve as environmental cues in altering plant development. With
the discovery of more active novel bacterial metabolites, it has
become clear that besides the classical phytohormones such
as auxins, cytokinins, gibberellins and abscisic acid, additional
signal molecules exist that influence plant development. Although
Phillips et al. (1999) attributed the enhanced plant growth from
lumichrome application to increased net C assimilation via
PEP carboxylase activity, the marked developmental changes
(dramatic expansion in unifoliate and trifoliate leaves, and
the increased stem elongation) observed with lumichrome
application to cowpea and soybean would seem to suggest that
this molecule stimulates plant growth via cell division and cell
expansion, as happens with classical phytohormones (Mansfield,
1978; Ross et al., 2001; Campanoni et al., 2003; van der Graaff
et al., 2003). In fact, it is our view that both lumichrome and
riboflavin caused the developmental changes in plants by
inducing the synthesis of classical phytohormones, which then
modulate plant growth. However, experimental data are needed
to support this claim.

Agronomic Benefits of Lumichrome and
Riboflavin

The increase in stem elongation, early initiation and rapid
expansion of trifoliate leaves with the provision of 5 nM
lumichrome to cowpea and soybean plants resulted in a twofold
accumulation of dry matter in trifoliate leaves relative to 0-
lumichrome control (Matiru and Dakora, 2005a). Lumichrome
could also stimulate seedling development in monocots such as
millet, sorghum and maize, in addition to legumes. As a result,
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whole-plant drymatter yield of these cereal species receiving 5 nM
lumichromewas greater compared to control (Matiru andDakora,
2005a). Root growth was also much greater in cereals (especially
millet and sorghum) than legumes, suggesting that in the former,
lumichrome application altered assimilate partitioning in favor of
root development. Gouws et al. (2012) also observed an increase
in dry matter accumulation following lumichrome application
to lotus and tomato. The observed promotion in plant growth
by lumichrome in both monocots and dicots suggests that,
in addition to tapping symbiotic N contributed in cropping
systems, cereals can also benefit from growth stimulation by
lumichrome released by N2-fixing rhizobia in the soil. Its growth-
promoting effect on both monocots and dicots further suggests
that lumichrome is capable of influencing plant rhizospheres in
both natural and agricultural ecosystems.

Foliar application of lumichrome at 10−6 M concentration
significantly increased shoot and total dry matter yield of
field-grown soybean plants (Khan et al., 2008). The increased
accumulation of dry matter was partly due to a marked increase
in leaf area with lumichrome supply (Khan et al., 2008). As found
with cowpea and soybean, the observed increase in plant growth
(Matiru and Dakora, 2005b) and Fe uptake (Matiru and Dakora,
2004) following sorghum inoculation with infective rhizobia
could be attributed to lumichrome secreted by the introduced
bacterial cells. As an agronomic practice, lumichrome supply with
rhizobial inoculants therefore has the potential to increase crop
yields in agricultural systems.

Effect of N and P Nutrition on Rhizobial
Exudation of Lumichrome, Riboflavin and
IAA

There are a number of factors affecting the production and
release of metabolites by soil bacteria. For example, the synthesis
and extracellular release of lumichrome, riboflavin and IAA by
rhizobia was found to differ between and among bacterial species
and strains (Kanu et al., 2007). In some studies, therewas generally
greater production of lumichrome, riboflavin and IAA by N2-
fixing bacteria than those unable to nodulate legumes such as
Psoralea pinnata and sirato (Shokri and Emtiazi, 2010; Kanu and
Dakora, 2012), a finding consistent with their role in symbiotic
N2 fixation (Phillips et al., 1999; Lambrecht et al., 2000; Matiru
and Dakora, 2005a,b; Gouws et al., 2012). In fact, Kanu and
Dakora (2012) found that strain TUT57pp, which was effective
in N2 fixation, produced 2.2-fold and 3.2-fold more IAA than the
non-nodulating isolates TUT65prp and TUT33pap, respectively.
Furthermore, studies on the effect of lumichrome on N and
P nutrition in rhizobial isolates showed that N2-fixing strain
TUT57pp consistently produced significantly more lumichrome,
riboflavin and IAA than its non-nodulating counterpart TUT61pp
(Kanu and Dakora, 2009, 2012). These results provide further
evidence that the three molecules (lumichrome, riboflavin and
IAA) are indeed rhizobial symbiotic signals.

Althoughwe know the effect ofN andP nutrition onNod factor
production in symbiotic rhizobia (McKay and Djordjevic, 1993),
little information currently exists on the effects of these mineral

nutrients on the biosynthesis of other symbiotically-important
metabolites such as lumichrome, riboflavin and IAA. There are
reports of marked variation in the secretion of lumichrome,
riboflavin and IAA by symbiotic rhizobia compared to their
non-nodulating bacterial counterparts (Shokri and Emtiazi, 2010;
Kanu and Dakora, 2012). Kanu and Dakora (2012) measured
much greater concentrations of lumichrome and riboflavin in
the culture filtrate of five N2-fixing and 11 non-nodulating
bacterial strains grown at high P (5.7 mM) than at low P
(1.4 mM). The five N2-fixing isolates also differed in their
levels of extracellular secretion of lumichrome, with TUT23prt
releasing the most lumichrome at both low P and high P, and
TUT18pac the least. Strain TUT23prt would therefore seem to
be more adaptable to environments with a wide range of P
concentrations, a trait very useful for selecting food legumes
for P tolerance. The subtle differences in strain adaptation
found between TUT23prt and TUT18pac point to why some
legume/rhizobial symbioses perform well across environments
with varying nutrient regimes, and hence in the case of P,
the commonly encountered low-P tolerant and low-P sensitive
symbioses.

Ammonium nutrition (whether at 28.1 mM or 112.0 mM
NH4

+) had no effect on the biosynthesis and release of riboflavin
by rhizobia (Kanu and Dakora, 2012), a finding consistent
with the reported lack of response of Nod factor secretion to
ammonium supply (McKay and Djordjevic, 1993). However,
lumichrome production was markedly affected by ammonium
nutrition (Kanu and Dakora, 2012). While some strains produced
more, or less, lumichrome with ammonium supply, strains
TUT23prt and TUT33pap produced significantly large amounts
of lumichrome at both low and high ammonium concentrations
(Kanu and Dakora, 2012), a trait that could contribute to the
strains’ tolerance of high soil N. The level of lumichrome and
riboflavin production by the test isolates from Psoralea species
also differed with nitrate nutrition. Feeding these strains with
59.3 mM nitrate resulted in significantly decreased concentration
of lumichrome and riboflavin in bacterial exudates (Kanu and
Dakora, 2012), indicating an inhibitory effect of nitrate on the
biosynthesis and extracellular release of the two metabolites by
rhizobial bacteria. In fact, the levels of lumichrome in culture
filtrate were decreased by high nitrate concentration for all the
isolates. A similar decrease inNod factor productionwas observed
by McKay and Djordjevic (1993), following nitrate supply to
Rhizobium leguminosarum bv. trifolii. It was interesting to note
that, in the study by Kanu and Dakora (2012), the isolates
which showed the least production of riboflavin at high nitrate
(e.g., TUT10pm and TUT13pac), were also among the least
in lumichrome production at high nitrate. More importantly,
however, the observed inhibition of lumichrome and riboflavin
biosynthesis and release by nitrate is in addition to its known
depressive effect on nodulation and N2 fixation in symbiotic
legumes (Streeter and Wong, 1988; Ayisi et al., 2000). In nature,
soil nitrate at high concentrations is therefore likely to inhibit
nodulation in legumes via its repressive effect on the synthesis and
secretion of lumichrome and riboflavin by rhizobia, given the fact
that the former was found to increase nodulation in lotus plants
(Gouws et al., 2012).
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Effect of Rhizobial Strain, Temperature,
Salinity, and pH on Bacterial Secretion of
Lumichrome and Riboflavin

Metabolic adaptation plays a major role in the survival of legumes
and their microsymbionts in harsh environments such as the
nutrient-poor, acidic, dry and water-deficient soils of the Cape
fynbos in South Africa. Kanu and Dakora (2009) found that
bacterial isolates from Psoralea nodules collected from the fynbos
differed in their levels of secretion of lumichrome, riboflavin
and IAA, as well as in their exudation response to pH, salinity
and temperature. For example, while isolate AS2 from Psoralea
nodules could produce greater amounts of lumichrome at both
pH 5.1 and 8.1, strains RT1 and P1 secreted more lumichrome
per cell at only pH 8.1. Strains AP1 and RP2 were also found to
produce more riboflavin at pH 8.1 than pH 5.1, while strain RT1
produced greater amounts of riboflavin at pH 8.1 than pH 5.1.
Taken together, the estimated levels of lumichrome and riboflavin
secreted by Psoralea bacterial isolates ranged from 0.1 to 15 nM
(Kanu and Dakora, 2012). These variations in the concentration
of lumichrome and riboflavin released by Psoralea isolates is
consistent with the findings of earlier studies which showed
significantly greater production of riboflavin by Bradyrhizobium
japonicum Tal 110, S. meliloti RAKI and Sinorhizobium fredii
6217 relative to eleven other standard laboratory strains (Kanu
et al., 2007). In contrast, Rhizobium leguminosarum bv. viceae
30, Bradyrhizobium CB756, and Sinorhizobium arboris lma 14919
exhibited the lowest production of lumichrome in culture filtrate
when compared to the other test strains (Kanu et al., 2007).

As a further evidence of metabolic adaptation, two P. repens
strains (RP1 and RP2) isolated from a very saline environment
close to the Atlantic Ocean secreted large amounts of lumichrome
and riboflavin at both low and high salinity levels (Kanu and
Dakora, 2009). Although the concentration of IAA produced by
Psoralea isolates was greater at high acidity and high temperatures,
lumichrome production was more elevated at lower (10°C)
than higher (30°C) temperature (Kanu and Dakora, 2009). The
greater production of lumichrome at 10°C than 30°C was not
surprising as Nod factors produced by Bradyrhizobium aspalati
(now Burkholderia tuberum) isolated from Aspalathus canosa in
the Cape fynbos was also greater at 12°C than 28°C (Boone et al.,
1999). This can be explained by the fact that legume nodulation
in the Mediterranean Cape region of South Africa occurs during
the winter rains when temperatures are low, around 10–15°C.
Thus, the biosynthesis and release of symbiotic signals such as
Nod factors by rhizobia and flavonoid nod gene-inducers by the
Cape legumes are likely to be metabolically more adapted to the
lower (10°C) than higher (30°C) rhizosphere temperatures. As
found with the biosynthetic response of lumichrome to salinity
in the salt-tolerant P. repens from the Western Cape, legumes and
their microsymbionts are generally metabolically-adapted to the
environmental factors of their niches.

The observed variation in the secretion of lumichrome,
riboflavin and IAAby bacterial isolates fromPsoralea root nodules
exposed to different pH, salinity and temperature regimes, or fed
different levels of N (nitrate and ammonium) and P, was due
to alteration in the number of bacterial cells. For example, the

number of rhizobia measured as colony forming units (CFU)
ranged from 0.91 to 121.48 × 107 cfu mL−1 at pH 5.1 and from
0.69 to 214.05× 107 cfu mL−1 at pH 8.1 (Kanu and Dakora, 2009,
2012). This suggests that the genes encoding these metabolites
are regulated differently by the imposed environmental factors.
Furthermore, our findings indicate that natural changes in
pH, salinity and/or temperature in plant rhizospheres could
potentially elevate the concentrations of lumichrome, riboflavin
and IAA in soils, with consequences for ecosystem functioning
as both lumichrome and riboflavin (being vitamins) act as
growth factors and developmental signals in plants, microbes and
humans.

Riboflavin as a Defense Molecule in Plants

Besides riboflavin and lumichrome, bacteria and plants produce
other vitamins such as thiamine, biotin, niacin and ascorbic acid
for their growth and cellular functioning. Recent studies have
however revealed a new role for these vitamins in plant–microbe
interactions, one being protection against pathogens (Mehboob
et al., 2009; Palacios et al., 2014). It has been shown, for example,
that spraying riboflavin (0.1 up to 10 mM concentration) on
tobacco or Arabidopsis leaves caused resistance to Peronospora
parasitica, Pseudomonas syringae pv. Tomato, Tobacco mosaic
virus (TMV), and Alternaria alternata (Dong and Beer, 2000).
In that study, riboflavin was found to induce expression
of pathogenesis-related genes, leading to systemic acquired
resistance to pathogens without the involvement of salicylic acid
(Dong and Beer, 2000; Zhang et al., 2009; Liu et al., 2011).

In addition to its requirement as a growth factor for microbes,
plants and humans, thiamine (vitamin B1) has also been reported
to function as a defense molecule in inducing systemic acquired
resistance in the plant kingdom (Ahn et al., 2005). This discovery
that vitamins protect plants from pathogens has led to the
suggestion that most root-colonizing, non-pathogenic, biocontrol
bacteria probably elicit systemic acquired resistance in plants
that is independent of the salicylic acid signaling pathway (Van
Wees et al., 1997). Clearly, vitamins (especially riboflavin and
its degradation product lumichrome) produced by microbes in
the rhizosphere are probably the major elicitors of plant defense
against soil-borne pathogens in the real world.

For example, rhizosphere microbes such as the fungus Ashbya
gossypii, which overproduces riboflavin (Lim et al., 2001)
probably provides a blanket protection to plants from its copious
production and release of this molecule into the rhizosphere.
But given the commonly known role of isoflavonoid phytoalexins
and phytoanticipins in plant defense (Dakora and Phillips, 1996),
it is likely that the overall health of a legume is dependent
on molecular cross-talk involving the total defense appertoire
of isoflavones, anthocyanins, riboflavin, thiamine and other yet
unknown molecules. Whatever the case, we now know that
vitamins such as riboflavin produced by rhizobia and other
microbes have multiple functions, which include serving as (i)
growth factors for microbes, plants and humans, (ii) signals for
stomatal functioning in land plants, and (iii) protectants/elicitors
in plant defense. So far, however, no study has found a role for
lumichrome in plant defense.
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Is Mineral Nutrition in Nodulated Legumes
Controlled by Multiple Symbiotic Signals
via Molecular Cross-Talk?

One major finding from rhizobial interaction with monocot
and dicot plant species is the effect of lumichrome on stomatal
functioning. Matiru and Dakora (2005b) showed that applying
10 nM purified lumichrome, 10 nM ABA, or 10 ml of infective
rhizobial cells at 0.2OD600 to cowpea and lupin increased stomatal
conductance and transpiration rates, but decreased them in
soybean, Bambara groundnut and maize, and showed no effect
in pea and sorghum. The decrease in stomatal conductance
and transpiration with lumichrome supply to maize, soybean
and Bambara groundnut closely mirrors the reduced stomatal
conductance and leaf transpiration rates caused by elevated CO2
in C3 plant species (40.5 and 3.6%, respectively, in soybean; see
Madhu and Hatfield, 2014). In one study, the decrease in stomatal
conductance and transpiration rates with elevated CO2 led to
reduced mineral 15N uptake (Kanemoto et al., 2009), just as the
reduced stomatal conductance, and hence lower transpirational
pull in test legumes exposed to elevated CO2 also resulted in
significantly decreased uptake of Mg, Fe, Cu, and B (Duval
et al., 2012). In contrast, where there was an increase in stomatal
conductance and leaf transpiration, mineral nutrient uptake was
also increased in roots. For example, Tani and Barrington (2005)
reported an increase in the uptake of Cu and Zn by wheat from
high transpiration rates, following irrigation, while Novák and
Vidovic (2003) also found a direct relationship between N, P,
and K uptake and leaf transpiration rates. Taken together, those
findings indicate that soil mineral acquisition by plant roots is
directly linked to leaf transpiration rates, stomatal conductance,
and the water status of the rhizosphere. The parallel drawn here
between the effect of elevated CO2 and lumichrome on stomatal
functioning is that a decrease in stomatal conductance from
elevated CO2 causes reduced transpiration rates and decreased
nutrient uptake, while an increase in stomatal conductance from
lumichrome supply elevates the transpirational pull and promotes
mineral uptake and transport in the xylem stream. These findings
clearly suggest that the uptake of mineral nutrients and their
accumulation in plants is controlled by stomatal functioning, and
hence by the factors that modulate stomatal opening and closure.

Plant water and nutrient relations are thus intimately linked to
stomatal functioning, such that leaves close their stomata when
the roots sense soil water deficit via organic molecules. Stomatal
closure in response to water stress (be it drought or waterlogging)
is signaled by simple metabolites such as lumichrome, riboflavin
and ABA, which are produced more abundantly by symbiotic
rhizobia than other bacterial endophytes (Kanu andDakora, 2009,
2012). Because its accumulation in leaves has been associated with
stomatal closure during waterlogging or drought (Jackson and
Hall, 1987), ABA is perceived as the major molecule regulating
stomatal function, a role confirmed in several experiments using
ABA-deficient mutants and their wild types (Jackson and Hall,
1987).

However, recent studies have identified new players in
stomatal functioning of symbiotic legumes. For example, applying
lumichrome and infective rhizobial cells to plant roots increased

stomatal conductance and transpiration rates in cowpea and lupin,
which was similar to the ABA control treatment, but decreased
them in soybean, Bambara groundnut and maize, as also found
with ABA (Matiru and Dakora, 2005b). Stomatal functioning in
pea and sorghum was however not affected by lumichrome and
rhizobial application, or by ABA (Matiru and Dakora, 2005b).
These changes in stomatal functioning in response to lumichrome,
ABA, and infective rhizobial cells were so similar in all test plant
species that lumichrome and ABA appeared to play an identical
role in stomatal functioning. It therefore seems that lumichrome
and ABA can act separately or collectively to achieve the same
desired outcome in stomatal functioning, be it aperture closure or
opening.

The identical effects of lumichrome and ABA on stomatal
functioning therefore suggest molecular cross-talk by the two
compounds in controlling stomatal closure and opening. As
shown in Figure 2B, the transmission of root-to-shoot signals
such as lumichrome, riboflavin, ABA, and possibly Nod factors,
can individually or collectively cause an increase in stomatal
conductance and greater transpirational pull, leading to enhanced
water absorption and increased mineral uptake. Except for Nod
factors, the presence of the other signals (lumichrome, riboflavin
and ABA) in the xylem stream en route to photosynthetic leaves
has already been confirmed in legumes (Jackson and Hall, 1987;
Phillips et al., 1999; Matiru and Dakora, 2005b), and their
accumulation in leaves of cowpea and soybean also established
(Matiru and Dakora, 2005b). So far, however, no study has shown
the presence of rhizobial Nod factors in the xylem sap of symbiotic
legumes.

A recent report has revealed increased mineral accumulation
in high N2-fixing cowpea genotypes than their low-fixing
counterparts (Belane et al., 2014). The concentration of P in leaves
of high N2-fixers was two-fold greater than the low-fixers. This
increase in mineral accumulation could be attributed to a range
of factors, which include (i) rhizobial exudation of metabolites
(e.g., siderophores, IAA, ABA, and organic acids), (ii) host–plant
secretion of root exudates that solubilize unavailable minerals
(Dakora and Phillips, 2002), and (iii) plant/rhizobial release of
growth-promoting molecules (Dakora, 2003) that increase root
hair production and nutrient absorption. However, the increase
in stomatal aperture induced by lumichrome, riboflavin and ABA
followed by the concomitant increase in transpiration rates, which
promoted mineral uptake (Novák and Vidovic, 2003; Tani and
Barrington, 2005) suggests a direct role of these metabolites in
the accumulation of nutrient elements by high N2-fixing cowpea
varieties.

As a working model, we propose that lumichrome, riboflavin,
ABA and possibly Nod factors secreted by symbiotic rhizobia
in the rhizosphere get taken up by plant roots and translocated
to shoots (Carpenter, 1943; Jackson and Hall, 1987; Matiru
and Dakora, 2005b) where they elicit stomatal opening via
molecular cross-talk (Figure 2B) in a concentration-dependent
manner. That way, water and mineral uptake is enhanced.
However, because the N2-fixing efficacy of rhizobial strains
is directly linked to the quality and quantity of the secreted
symbiotic signals, their molecular effect on stomatal functioning
is also linked to the strains’ symbiotic efficiency. In fact, we
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have shown elsewhere that N2-fixing efficacy of rhizobia is
correlated to leaf stomatal conductance of the host plant, and
hence mineral accumulation in the legume. This relationship
between strain symbiotic efficiency and stomatal functioning
of the host plant is believed to control the symbiosis-induced
accumulation of mineral nutrients in nodulated legumes (Belane
et al., 2014).

A recent study has shown increased accumulation of ABA and
IAA in lotus plants treated to lumichrome (Gouws et al., 2012).
While such an increase in the formation of phytohormones in
lumichrome-fed plants could help to explain the developmental
changes associated with lumichrome application to plant roots,
it could however also imply that these molecules cross-talk in
their regulation of stomatal functioning, which leads to increased
water and mineral uptake by roots. It is therefore our view
that the symbiosis-induced accumulation of mineral nutrients
in legumes (Belane et al., 2014) is due to the rhizosphere effect
of lumichrome, riboflavin, IAA, ABA, and possibly Nod factors
secreted by rhizobial bacteria (Figure 2B). The stomata in plants
consist of specialized guard cells that regulate photosynthetic CO2
uptake and leaf transpiration (Chen et al., 2012; Hills et al., 2012;
Liu et al., 2014). The guard cell slow anion channel (SLAC) gene
is apparently the “master switch” for stomatal closure (Maierhofer
et al., 2014; Zheng et al., 2014). But how lumichrome, riboflavin
and ABA work together to induce stomatal opening or closure,
and hence increase or decrease mineral uptake, is still unclear.
However, the greater root proliferation caused by the application
of lumichrome (5 nM) to sorghumandmillet (Matiru andDakora,
2005a), or to lotus and tomato (Gouws et al., 2012), can also
increase nutrient uptake in plant species. Rhizobia and other
rhizosphere diazotrophs probably play a much greater role in the
mineral nutrition of legumes and non-legumes than previously
imagined.

Rhizosphere Ecology of Lumichrome,
Riboflavin, and IAA Secreted by Rhizobia

In both natural and agricultural ecosystems, low or high
production of lumichrome, riboflavin and IAAcanhave ecological
consequences in ecosystem functioning. For example, an increase
in root respiration induced by lumichrome and riboflavin from
root-colonizing rhizobia can lead to an elevated concentration
of rhizosphere CO2, which is needed for growth of rhizobial
populations in soil (Lowe and Evans, 1962). Furthermore, the
increase in rhizosphere CO2 concentration from lumichrome
and riboflavin can also stimulate growth of vesicular-arbuscular
fungi (Bécard and Piché, 1989; Bécard et al., 1992) and therefore
promote the incidence of mycorrhizal symbiosis. These indirect
benefits of lumichrome and riboflavin to legume symbioses via
their effects on the plant are essential for enhancing N and P
nutrition.

Furthermore, rhizobia and nodule endophytes isolated from
eight Psoralea species (namely, Psoralea pinnata, P. aphylla,
P. aculeata, P. monophylla, P. repens, P. laxa, P. asarina, and
P. restioides) growing naturally in different locations within
the Cape fynbos of South Africa exhibited large variations in
their exudation of lumichrome, riboflavin and IAA (Kanu and

Dakora, 2009, 2012), possibly due to bacterial adaptation to
the localities where they were sampled. For example, two P.
repens strains isolated close to the Atlantic Ocean secreted large
amounts of lumichrome and riboflavin at both low and high
salinity (Kanu and Dakora, 2009). Similarly, Psoralea isolates
adapted to the acidic soils of the Cape fynbos also produced
greater amounts of IAA even under very low pH conditions
(Kanu and Dakora, 2009). The ability of native rhizobia to
secrete symbiotic signals such as lumichrome, riboflavin and
IAA under harsh environmental conditions implies that, even
with climate change, indigenous legumes and their associated
microsymbionts are unlikely to be affected in their symbiotic
functioning.

Additionally, while most root-colonizing bacteria produce
and release lumichrome and riboflavin (Phillips et al., 1999),
others can synthesize and release eight times more extracellular
riboflavin relative to their internal cellular concentration (Yang
et al., 2002). These findings suggest that the two molecules have
evolved directly or indirectly as rhizosphere signals influencing
the outcomes of plant–bacterial interactions. It is clear from these
studies that natural changes in pH, salinity and temperature
within plant rhizospheres can elevate the concentrations of
lumichrome, riboflavin and IAA in soils, with consequences
for ecosystem functioning. For example, the high lumichrome
production at 10°C than 30°C temperature (Kanu and Dakora,
2009) can alter nodulation and N2 fixation of legumes in the
Mediterranean fynbos habitat, where winter rainfall supports
plant growth, nodulation and N2 fixation.

Conclusion

Bacterial exudation of the rhizosphere signals lumichrome,
riboflavin and IAA can vary with rhizobial strain, salinity, soil
temperature and pH. Lumichrome taken up by plant roots
and transported to the shoots probably elicits the formation of
morphogenic molecules that cause cell division, cell expansion
and cell extensibility, leading to an increase in leaf expansion, and
stem elongation. Rhizobial inoculation as well as lumichrome and
ABA supply to plant roots induced identical effects on stomatal
functioning in both monocots and dicots. The three treatments
consistently increased, or decreased, stomatal conductance and
transpiration rates depending on the plant species. Plant roots
therefore seem capable of collecting environmental signals from
soil in the form of simple organic molecules released by microbes,
and using them to adapt to their niches. An increase in
the concentration of ABA and IAA in organs of lotus plants
supplied with lumichrome (Gouws et al., 2012) could suggest
that the observed developmental changes caused by lumichrome
application to roots of monocots and dicots (Matiru and Dakora,
2005a) was probably due to increased levels of phytohormones
elicited by the applied lumichrome. This however remains
speculative in the absence of any genetic studies on the molecular
basis for plant responses to lumichrome and riboflavin. Future
studies need to addressmany unanswered questions. For example,
what are the mechanisms underlying plant growth stimulation by
lumichrome and riboflavin? Will rhizobial inoculation elicit same
response in both legume and non-legume species as observed
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with lumichrome application to roots of monocots and dicots?
Future experiments should quantify classical phytohormones
such as ABA, IAA, cytokinins and gibberellins in lumichrome
and riboflavin-treated plants in order to unravel the mechanisms
underlying plant response to these bacterial metabolites, and in
so doing, add to our current understanding of the functioning
of bacterial metabolites in plant rhizospheres. The relationship
between rhizobial inoculation, leaf stomatal functioning, and
mineral accumulation also need to be further explored.
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The formation of symbiotic nitrogen-fixing nodules on the roots and/or stem of
leguminous plants involves a complex signal exchange between both partners. Since
many microorganisms are present in the soil, legumes and rhizobia must recognize
and initiate communication with each other to establish symbioses. This results in the
formation of nodules. Rhizobia within nodules exchange fixed nitrogen for carbon from
the legume. Symbiotic relationships can become non-beneficial if one partner ceases
to provide support to the other. As a result, complex signal exchange mechanisms
have evolved to ensure continued, beneficial symbioses. Proper recognition and signal
exchange is also the basis for host specificity. Nodule formation always provides a fitness
benefit to rhizobia, but does not always provide a fitness benefit to legumes. Therefore,
legumes have evolved a mechanism to regulate the number of nodules that are formed,
this is called autoregulation of nodulation. Sequencing of many different rhizobia have
revealed the presence of several secretion systems - and the Type III, Type IV, and Type
VI secretion systems are known to be used by pathogens to transport effector proteins.
These secretion systems are also known to have an effect on host specificity and are
a determinant of overall nodule number on legumes. This review focuses on signal
exchange between rhizobia and legumes, particularly focusing on the role of secretion
systems involved in nodule formation and host specificity.

Keywords: rhizobia, nodulation, symbiosis, signal exchange, type III secretion system, type IV secretion system,
type VI secretion system, effector proteins

Introduction

Plants interact with many different types of microbes, and these associations can be pathogenic,
mutualistic, or commensal in nature. The type of relationship between a specific microbe and plant
can vary based on external factors, such as changes in environment, or due to intrinsic factors of
both organisms. Both pathogenic and mutualistic interactions are dependent on communication
between host and microbe and are primarily based on signal exchange (Tseng et al., 2009). The
symbiotic relationship between rhizobia and legumes has long been a focus of study because of the
nitrogen fixation that occurs during the symbiosis. This symbiosis requires the rhizobia to be in
close physical proximity to the legume to allow for exchange of nutrients. Nitrogen is essential for
all agricultural crops, but only legumes can access nitrogen from the atmosphere through symbiosis
with rhizobia. Signal exchange between rhizobia and legumes has been studied as a potential
process regulating symbiosis on non-legume plants and amechanism by which to increase nitrogen
fixation in legumes.
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The symbiosis between legumes and rhizobia has evolved
to incorporate many different levels of signal exchange, from
initial contact to senescence. Two primary reasons for this signal
exchange are to distinguish between symbionts and pathogens
and to ensure mutualism through the exchange of carbon and
fixed nitrogen. The line between symbiont and pathogen is not
always clear, as both partners can have a fitness benefit to alter the
relationship to their advantage. Symbiotic associations may shift
from mutually beneficial to pathogenic or vice versa, such as in
the case of the plant pathogen Argobacterium, having a common
ancestral history with rhizobia. It has been suggested that rhizobia
can be viewed as refined pathogens (Deakin and Broughton,
2009). The symbiotic relationship between rhizobia and legumes
can easily turn pathogenic if the plants loses the ability to regulate
the total number of nodules formed or the rhizobia form nodules
that do not fix nitrogen – with the plant experiencing decreased
fitness by providing too much carbon to the rhizobia (Herridge
and Rose, 2000; Kiers et al., 2003). Co-evolution between rhizobia
and legumes is more complex because of rhizobia selection can
oscillate between pathogen and symbiont.

The evolutionary arms race between pathogens and plants has
long been studied (Jones and Dangl, 2006). Pathogens develop
new strategies for creating infections, such as evolving secretion
systems to alter the host cell. In response, plants develop new
strategies for detecting pathogens, such as microbe-associated
molecular patterns (MAMPs), and R genes (Dodds and Rathjen,
2010). Sequencing of various rhizobial strains has shown the
presence of secretion systems similar to those used by pathogens
to transfer proteins into the hosts’ cytosol. These secretion
systems include the Type III (T3SS), Type IV (T4SS), and
Type VI secretion systems (T6SS; Fauvart and Michiels, 2008).
The evolutionary presence of these secretion systems suggests
that while rhizobia and legumes co-evolved a system allowing
establishment and maintenance of a symbiosis, a relationship
similar to a pathogen/plant interaction also co-evolved. This
review focuses on legume–rhizobia signal exchange that occurs
during nodule formation, plant mechanisms for limiting nodule
number, and potential strategies used by rhizobia to overcome
the plants ability to limit nodule number using the T3SS, T4SS,
or T6SS.

Signaling Exchange During Nodule
Formation

Rhizobia are free-living, soil saprophytes, prior to symbiosis with
plants in the family Leguminosae. Rhizobia, once inoculated
into soil, can persist at low levels in the absence of a suitable
host (Howieson, 1995). The plant initiates symbiosis by secreting
flavonoids, which are detected by the rhizobia. Flavonoids vary
by plant species and are only recognized by certain, yet specific,
rhizobial species, offering the first level of symbiosis specificity
(Hassan and Mathesius, 2012). The flavonoids diffuse across the
membrane of the rhizobia and induce synthesis of the NodD
protein to activate transcription of other genes involved in
nodulation including nod factor (NF) production (Wang et al.,
2012). NFs are a primary signal molecule produced by bacteria

and detected by the plant to induce nodule organogenesis.
Structurally NFs are lipochitooligosaccharides (LCOs) with a
chitin oligomer backbone (Oldroyd and Downie, 2008). The
nodABC genes encode for the proteins required to make the core
NF structure and are conserved across all rhizobia species, except
two Aeschynomene-infective species (Perret et al., 2000; Giraud
et al., 2007). The NF core is then modified by species-specific
proteins resulting in various substitutions on both the reducing
and non-reducing end, including glycosylation and sulfation
(Long, 1996). These substitutions are specific for each host
legume and offer another level of symbiosis specificity (Dénarié
et al., 1996; Long, 1996). Many surface polysaccharides are also
involved in symbiosis specificity including lipopolysaccharides
(LPSs), extracellular polysaccharides (EPSs), and capsular
poylsaccharides (KPSs; Deakin and Broughton, 2009). The
specific structure of LCOs is known to be important for
recognition by host nod factor receptors (NFRs), which are
receptor kinases containing lysin motifs (LysM; Radutoiu et al.,
2007). Leucine rich repeat receptor-like kinases (LRR-RLKs) are
also involved in NF perception and signaling, which results in
nodule formation (Endre et al., 2002).

Root hair curling and crack entry are the two infection
mechanisms used by rhizobia. Crack entry involves rhizobia
entering through cracks at the lateral root bases or stems
(Goormachtig et al., 2004). Root hair curling involves recognition
of NFs, this recognition results in both calcium spiking and
the curling of the root hair (Esseling et al., 2003). This is
thought to involve a change in the plant cells’ polarity, resulting
in a new growing direction of the root hair tip (Gage, 2004).
The infection chamber enlarges and changes into a globular
apoplastic space. Next, root tip growth in switched from radial
to polar tip elongation (Fournier et al., 2015). The continued
growth of the infection thread is dependent on NF specificity
as well as EPS (Jones et al., 2007). Both the epidermis and
the cortex recognize NFs, the epidermis regulates rhizobia
infection and the root cortex is responsible for nodule formation
(Oldroyd and Downie, 2008). Cortical cells develop into a nodule
primordium. When the infection thread reaches the nodule
primordium, the rhizobia enter into the inner cells and become
encapsulated within a peri-bacteroid membrane (Oldroyd and
Downie, 2008).

There are two main types of nodules, indeterminate and
determinate, and this is determined by the legumes. For
indeterminate nodules, cell division typically begins in the inner
cortex (Ferguson et al., 2010). Indeterminate nodules maintain a
persistent meristem and form distinct zones, including rhizobia
invasion, active nitrogen fixation and senescence (Udvardi
and Poole, 2013). These zones contain rhizobia in various
developmental states with the proximal zone losing the ability
to reproduce (Mergaert et al., 2006). Legumes belonging to the
inverted repeat-lacking clade manipulate bacterial differentiation
through secretion of cysteine-rich peptides, which induce
membrane permeabilization, endoreduplication, and loss of
independent viability (Mergaert et al., 2006; Van de Velde et al.,
2010; Oldroyd et al., 2011). In contrast, cell division begins in
the outer cortex for determinate nodules (Ferguson et al., 2010).
Determinate nodules do not have a persistent meristem and form
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a homogenous group of rhizobia with full viability (Saeki, 2011).
In mature nodules, plants exchange small carbon molecules
for ammonia with the rhizobia. Another important aspect of
symbiosis regulation is amino acid exchange and cycling between
the plant and the rhizobia. During symbiosis some plants secrete
branched chained amino acids, into the peribacteroid space,
and in return the rhizobia secrete aspartate and, in some cases,
alanine. Rhizobial biosynthesis of branched chained amino acids
is shut down during symbiosis, preventing the use of ammonium
by rhizobia and allowing the plant to incorporate ammonium
into aspartate to produce asparagine (Lodwig et al., 2006; Prell
et al., 2009).

After many weeks of plant growth, nodules begin to
senescence, with a maximum lifespan well-short of that of
the host plant (Puppo et al., 2005). Dark stress, water stress,
defoliation, or addition of nitrate can initiate premature nodule
senescence (González et al., 1998; Matamoros et al., 1999;
Hernández-Jiménez et al., 2002). This suggest that the plant
controls the duration of the symbiosis by being able to induce
nodule senescence. These external factors are thought to lead
to an increase in reactive oxygen species, which initiates
senescence (Puppo et al., 2005). During nodule senescence,
the host plant initiates plant cell death and some rhizobia
not in the symbiosome survive this process and return to
a saprotrophic state in the soil (Hernández-Jiménez et al.,
2002).

Plant Signaling Limits Nodule Number

The symbiotic relationship between rhizobia and legumes has the
potential to become pathogenic if the plant loses the ability to
regulate the total number of nodules or perceives the rhizobia
as a pathogen. Rhizobia will generally initiate nodule formation
because a symbiotic relationship always has a fitness benefit for
the rhizobia. However, if the plant forms too many nodules
then there is a negative effect on vegetative growth and yield
(Herridge and Rose, 2000; Takahashi et al., 2003; Matsunami
et al., 2004). Legumes use a process called autoregulation of
nodulation (AON) to control nodule number by preventing
new nodule formation (Mortier et al., 2012). The AON is
thought to involve a root-derived signal being transported to the
shoot, which induces a shoot-derived signal to be transported
to the root – this inhibits nodule formation (Suzaki et al.,
2015).

After nodule formation, the plant cell begins to produce
CLV3/ESR-related (CLE) peptides. CLE peptides are thought
to be the signal molecule transported from the roots to the
shoot as part of the signaling pathway involved in AON
(Reid et al., 2011, 2013). The CLE-RS2 is a post-translationally
arabinosylated glycopeptide derived from the CLE domain, and if
externally added CLE-RS2 sufficient to inhibit nodule formation
(Okamoto et al., 2013). The CLE-peptides are recognized by
LRR-RLKs (Krusell et al., 2002; Nishimura et al., 2002; Sasaki
et al., 2014). These receptors then cause a signal cascade which
results in cytokinins being transported from the shoot to the
root, which could act as the shoot-derived signal to suppress

nodule formation (Sasaki et al., 2014). In the Lotus japonicas
tml mutant, shoot-applied cytokinin does not suppress nodule
formation (Sasaki et al., 2014). This implies that TML acts
downstream of cytokinins, and may act directly in the root cells
to suppress nodulation. TML encodes a Klech repeat-containing
F-box protein and has been hypothesized to target a protein
for degradation which has a positive role in nodule formation
(Takahara et al., 2013; Suzaki et al., 2015).

Autoregulation of nodulation signaling is a complex process
involving numerous steps, some of which are still unknown.
Disruption of AON at many different steps has been shown to
results in a hyper-nodulation phenotype. This suggests that the
AON signaling process could be potential targets for rhizobia
to disrupt, in order to increase nodule formation. Inhibition of
AON, could result in the symbiotic relationship between rhizobia
and legumes becoming a pathogenic one (Herridge and Rose,
2000).

Bacterial Secretion Systems

Bacteria use a wide variety of secretion systems to export
proteins and other compounds across their membranes and
cell walls. Interaction with the external environment is vital to
bacterial survival, and many different transmembrane channels
have evolved independently to fulfill this need (Wooldridge,
2009). There have been reports of up to many different
secretion systems, but only the first seven have been significantly
investigated (Tseng et al., 2009). These secretion systems
have evolved independently, each containing a different set
of core proteins. Each secretion system itself diverged into
unique subfamilies based on different functions. The T1SS,
T2SS, and T5SSs are thought to simply transport proteins
and compounds outside of the cell. The T3SS, T4SS, and
T6SSs contain subfamilies with the ability to transport effector
proteins into the cytosol of eukaryotic cells (Wooldridge,
2009). This is important because it allows for the direct
communication with, andmodification of, the eukaryotic cytosol.
These three secretion systems are well-understood for their role
in pathogenesis as key factors in virulence and, in some cases,
symbiosis.

Rhizobia Secretion Systems

As discussed above, rhizobia enter into unique symbioses
with eukaryotic cells, through the formation of relationship
with legumes. Sequencing of rhizobia strains has shown that
they typically contain multiple secretion systems. However, the
presence of these systems in the bacterial genome does not mean
they have a role in symbiosis. Rhizobia surface polysaccharides
(LPS) have been known to suppress plant immune responses,
but the T3SS and T4SS have also been speculated to have a role
in suppressing the plant immune system (Masson-Boivin et al.,
2009).

The T3SS and T4SS are each sub-divided into seven families
based on function and protein homology (Wooldridge, 2009;
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Sugawara et al., 2013). The T3SS, T4SS, and T6SSs have been
identified throughout various rhizobial genera and sequence
homology shows similarity between known secretion systems
used by bacterial pathogens. Specifically, sequence analysis of
Sinorhizobium has shown that they can contain either the T3SS,
T4SS or the T6SS, but typically only have one involved in
symbiosis per strain (Sugawara et al., 2013). The T3SS, T4SS,
and T6SS have all been shown to be involved in symbiosis and
translocate effector proteins during symbiosis. These effector
proteins could potentially have a function by promoting nodule
formation, disrupting AON, or suppressing the plant’s immune
response during invasion. In plant pathogens, the T3SS effectors
have been shown to target and suppress the plant immune
response (Macho and Zipfel, 2015). Deletion of a specific sub-
family of the T3SS or the T4SS has been shown to reduce nodule
number and affect host range specificity (Sugawara et al., 2013;
Tampakaki, 2014). However, their role in symbiosis is still not
very well-understood.

Type III Secretion System

The T3SS is a structure composed of 20–27 different proteins, and
this transporter is responsible for secretion of type III effector
proteins (T3Es; Ghosh, 2004; Tampakaki, 2014). Approximately
50% of proteins involved in secretion system channel formation

are conserved in most T3SSs (Ghosh, 2004). These proteins are
generally found clustered in a 22–50 kb pathogenicity island
(Tampakaki, 2014). The T3SS complex spans the bacterial inner
and outer membrane as well as the hosts’ membranes and
allows protein transport into the host. Regions flanking the
pathogenicity island can contain genes that encode for effector
proteins, but most effector genes are scattered throughout the
genome (Lindeberg et al., 2008).

Many different variations of T3SS, with varying functions, are
found throughout the kingdom of bacteria. In the literature, the
T3SS is first grouped by species, and then grouped by homology.
The genes encoding the rhizobial T3SSs are called rhc (Rhizobium
conserved). The rhc are further subdivided into four families
based on phylogenetic analyses, Rhc-1 to Rhc-4 (Gazi et al.,
2012). Of these four families, only Rhc-I has been showed to be
involved in symbiosis (Tampakaki, 2014). The functions of the
other families are still unknown. The T3SS is among the best
studied secretion systems in rhizobia due to the wide species
distribution of Rhc-1 and its role in symbiosis.

T3SS – Rhc-I Effect on Symbiosis
Early studies of the T3SS – Rhc-1 focused on knocking out
the entire system through deletions or disruption of core genes.
A diverse range of rhizobial species are known to contain a
functional T3SS – Rhc-1 and are listed inTable 1. The influence of

TABLE 1 | Symbiotic effect of the T3SS – Rch-1 in rhizobia.

Strain of rhizobia
with T3SS – Rch-1

Secreted
proteins

Positive effect on symbiosis Negative effect on
symbiosis

Reference

Rhizobium etli
CNPAF512

2 Phaseolus vulgaris Unknown Michiels et al. (1995), Fauvart and
Michiels (2008)

Bradyrhizobium elkanii
USDA61

8 Macroptilium atropurpureum, Glycine
max ev. Clark, G. max cv. Enrei

Vigna radiata cv. KPS1, G. max
cv. Hill

Okazaki et al. (2009), Okazaki et al.
(2013)

Mesorhizobium loti
MAFF303099

8 Lotus glaber, Lotus japonicus, Lotus
corniculatus subsp. frondsus, Lotus
filicaulis

Leucaena leucocephala, Lotus
halophilus, Lotus peregrinus
var. carmeli, Lotus subbiflorus

Hubber et al. (2004), Sánchez et al.
(2009), Sánchez et al. (2012), Okazaki
et al. (2010)

Sinorhizobium fredii
NGR234

15 Tephrosia vogelii, Flemingia congesta,
Lablab purpureus

L. leucocoephala, Pachyrhizus
tuberosus, Crotalaria juncea

Viprey et al. (1998), Skorpil et al. (2005),
Kambara et al. (2009), Kimbrel et al.
(2013)

S. fredii HH103 8 G. max cv. Peking, Heinong 33,
Kochi, and Williams, Glycyrrhiza
uralensis

Erythrina variegata Rodrigues et al. (2007), López-Baena
et al. (2008)

S. fredii USDA207 13 Unknown Unknown Kimbrel et al. (2013)

S. fredii USDA257 13 G. max cv. Peking and Williams,
M. atropurpeum

G. max cv. McCall, E. variegata Krishnan et al. (2003), De Lyra et al.
(2006), Kimbrel et al. (2013)

Bradyrhizobium
japonicum USDA6

33 Unknown Unknown Kimbrel et al. (2013)

B. japonicum USDA110 36 M. atropurpureum G. max cv.
Williams

V. radiata cv. KPS2 Krause et al. (2002), Wenzel et al.
(2010), Kimbrel et al. (2013)

B. japonicum USDA122 31 Unknown Unknown Kimbrel et al. (2013)

B. japonicum USDA123 32 Unknown Unknown Kimbrel et al. (2013)

B. japonicum USDA124 33 Unknown Unknown Kimbrel et al. (2013)

Cupriavidus
taiwanensis LMG19424

Unknown Unknown L. leucocephala Saad et al. (2012)

∗Only strains with functional T3SS – Rch-1 with a known effect on symbiosis are listed. More strains have been sequenced that contain the T3SS – Rch-1, but these
have not been experimentally tested for function (de Souza et al., 2012). The number of secreted proteins includes proteins identified through analysis of proteins found
externally after induction of the T3SS, and proteins shown to be transported into the cytosol of Arabidopsis.
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T3SSs on nodulation can vary from positive, in which nodulation
is increased, to negative, in which nodulation is reduced. In
Sinorhizobium fredii strain NGR234, the T3SS has both a positive
and negative affect on multiple different legume species, but may
also have a neutral phenotype, where nodulation is not affected,
for example on Vigna unguiculata (Viprey et al., 1998; Skorpil
et al., 2005; Kambara et al., 2009). Similarly, rhizobia with the
T3SS – Rch-1 show host-dependent phenotypes in regard to
nodulation efficiency. This could explain why the T3SS – Rch-1
is found in many genera of rhizobia, but is not ubiquitous at the
strain level.

The horizontal transfer of the T3SS could be an important
evolutionary driver toward symbiosis or pathogenesis between
bacteria and plants. The pathogen Ralstonia solanacearum was
shown to be unable to nodulate Mimosa pudica when the
symbiotic plasmid of Cupriavidus taiwanensiswas added, but was
able to nodulateM. pudica if the T3SS was also deleted (Marchetti
et al., 2010). This shows that the T3SS can prevent symbiosis.
However, deleting the T3SS effector protein GALA7 prevented
pathogenic infection of Medicago truncatula (Angot et al., 2006).
This shows that the T3SS in R. solanacearum is required for
pathogensis. In addition, C. taiwanensis was able to nodulate
Leucaena leucocephala when the T3SS in C. taiwanensis was
deleted (Saad et al., 2012). These examples show how the presence
of the T3SS can restrict host range by preventing symbiosis, and
could have a role in bacteria transitioning from a symbiont to a
pathogen.

Regulation of the T3SS – Rhc-1
Expression of the T3SS is induced by plant flavonoid recognition
through production of the transcriptional activator TtsI (Viprey
et al., 1998; Krause et al., 2002; Kobayashi et al., 2004). TtsI
initiates transcription of the T3SS genes and effector proteins
by binding to specific cis-elements, known as tts boxes (Wassem
et al., 2008). The number and location of tts boxes varies between
species and Bradyrhizobium japonicum USDA110 is known to
have 52 different tts boxes. Proteins secreted by the T3SS are
found downstream of tts boxes.

There is not a consensus motif for proteins secreted through
the T3SS. However, the signal sequence is typically found in
the first ∼15 amino acids, on the N-terminus, of translocated
proteins (Ghosh, 2004). In addition not all gene transcription
activated by tts boxes, are effector proteins translocated through
the T3SS; some can have other roles in symbiosis such as the
production of rhamnose-rich polysaccharides (Marie et al., 2004).
These rhamnose-rich polysaccharides were shown to be surface
LPSs, important in nodule formation, independent of the T3SS
(Broughton et al., 2006). This suggests an interesting link between
secretion systems and surface polysaccharides involved in nodule
formation specificity.

Proteins Secreted by the T3SS – Rhc-1
Early studies to identify proteins secreted through the T3SS
focused on using flavonoids to induce expression in culture and
compared the external proteins to those found in a T3SS mutant.
However, these experiments did not show translocation into the
host cytosol. This led to uncertainty as to whether an identified

protein was an effector protein, acting inside the plant cell.
A new, high-throughput technique was used to properly identify
proteins that translocate through the T3SS as well as to identify
effector proteins (Kimbrel et al., 2013). However, this technique
did not test for effector translocation into legumes, but rather the
proxy of translocation through Pseudomonas syringae pv. tomato
DC3000 into Arabidopsis Col-O. The T3E candidates are fused
to �79AvrRpt2, which induces a hypersensitive response (HR)
in Arabidopsis. Using this technique on three different strains of
S. fredii and B. japonicum, between 13 and 36 T3Es per strain
were identified (Kimbrel et al., 2013). The T3Es can vary between
species and strains, but members of the same species tend to use
very similar effector proteins.

Proteins secreted by the T3SS can be separated into two
categories – pilus forming and effectors. Proteins involved in
pilus formation are secreted through the channel to assist in
forming a channel through the plants cell wall or plasma
membrane. NopA, NopB, and NopX are thought to be involved
in the terminal formation of the T3SS, forming a pilus that
penetrates the plant’s cell wall and plasma membrane (Lorio
et al., 2004; Deakin et al., 2005; Saad et al., 2005, 2008). The
other secreted proteins are thought to be effector proteins,
but few of these proteins have a predicted function in planta
(Table 2).

As shown in Table 1, deleting the T3SS can have a positive
or negative effect on symbiosis. The T3SS is simply the means
of transport for effector proteins. Deleting the T3SS prevents
effector protein transport. These effector proteins play key roles
in symbiosis. Despite having a known effect on symbiosis,
none of these effector proteins has been expressed in legumes.
Only the effectors NopL, NopT, and NopM have all been
expressed in eukaryotic cells. NopL was first shown to be
phosphorylated by plant kinases (Bartsev et al., 2003). Next,
NopL was shown to interfere with mitogen-activated protein
kinase (MAPK) signaling inNicotiana tabacum. MAPK signaling
is involved pathogen recognition in both basal plant defense
and R-mediated resistance (Pedley and Martin, 2005). Part of
the plant defensive response is the induction of HR. The plant
pathogen P. syringae uses effector proteins AvrPto and AvrPtoB
to interrupt MAPK signaling by degrading the plant protein
FLS2 (Göhre et al., 2008; Shan et al., 2008). Overexpression
of MAPK signaling in plants induces HR to prevent pathogen
infections. NopL was shown to suppress cell death induced by
the overexpression of MAPK signaling (Zhang et al., 2011).
NopT when expressed in N. tabacum or Arabidopsis thaliana
elicited a strong HR response and necrotic symptoms. The
authors did suggest that it could function as a protease and had
similarity to the effector family YopT – AvrPphB (Dai et al.,
2008). AvrPphB is an effector in P. syringae and functions as
an autoprotease, cleaving itself to expose a myristolation site
(Puri et al., 1997; Shao et al., 2002). The addition of myristoyl
groups after cleavage, target AvrPphB to the cell membrane
(Nimchuk et al., 2000). NopT has been shown to have cysteine
protease activity and may use autoproteolysis for target to
cell membranes, but its role is still uncertain (Fotiadis et al.,
2012). NopM was shown to possess E3 ubiquitin ligase activity.
Furthermore, when this ability was lost through a point mutation,
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TABLE 2 | Predicted functions of T3SS secreted proteins.

T3SS – Rch-1
secreted proteins

Strains containing homolog Predicted function Reference

NopA B. japonicum USDA110, M. loti
MAFF303099, S. fredii NGR234, S. fredii
HH103, S. fredii USDA257

Part of the T3SS extracellular pilus which spans
the plants cell wall

Deakin et al. (2005), Saad et al. (2008)

NopB B. japonicum USDA110, M. loti
MAFF303099, S. fredii NGR234, S. fredii
HH103, S. fredii USDA257

Part of the T3SS extracellular pilus which spans
the plants cell wall

Saad et al. (2005), Saad et al. (2008)

NopD S. fredii HH103 Homology to a predicted C48 cysteine peptidase Hubber et al. (2004), Rodrigues et al. (2007)

NopL B. japonicum USDA110, S. fredii NGR234,
S. fredii HH103, S. fredii USDA257

Suppresses cell death induced by
mitogen-activated protein kinase (MAPK)

Zhang et al. (2011)

NopM B. japonicum USDA110, S. fredii
NGR234, S. fredii HH103

E3 ubiquitin ligase, thought to be involved in
protein–protein interactions

Rodrigues et al. (2007), Xin et al. (2012)

NopP S. fredii NGR234, R. etli CNPAF512,
S. fredii HH103, S. fredii USDA257

Phosphorylated by plant kinases Skorpil et al. (2005)

NopT S. fredii NGR234 Cysteine protease Fotiadis et al. (2012)

NopX M. loti MAFF303099, S. fredii NGR234,
S. fredii HH103, S. fredii USDA257

Terminal part of the T3SS extracellular pilus which
spans the plants cell wall

Saad et al. (2008)

Mlr6361 M. loti MAFF303099 Shikimate kinase Sánchez et al. (2009)

∗Subset of known proteins secreted by the T3SS – Rch-1. Only proteins with a predicted function or that have been experimentally tested are listed. None of the proteins
have been tested in legumes, but some have been tested in planta in Nicotiana tabacum.

the positive effects on nodule formation were also lost (Xin et al.,
2012).

Even though the function of many specific proteins has not
been determined, the accumulated effect of the T3SS effector
proteins can be determined through deletion of the entire
secretion system. Bradyrhizobium elkanii, containing the T3SS,
but not the T3SS mutant, was shown to increase the transcription
of two genes in the roots of a soybean line deficient in NF
recognition (Okazaki et al., 2013). These genes, ENOD40 and
NIN, are involved in early nodulation regulation. This suggests
that the T3SS effector proteins may be involved in up-regulating
host genes involved in nodule formation. Further research is
needed to more completely understand how these individual
effectors are functioning in planta.

Type IV Secretion System

The T4SS-b is functionally similar to the T3SS-Rch-1 and is also
involved in protein translocation, but has a separate evolutionary
origin. The T4SS is generally sub-divided into three families
based on function, including conjugation, DNA uptake and
release, and protein translocation (Cascales and Christie, 2003).
These three families can use similar core proteins to form
the main channel and may share sequence similarity. Properly
identifying which sub-family is present in a specific strain is
key. In rhizobia, the T4SS-b shares strong homology to the
VirB/VirD4 subunits found in Agrobacterium. The core structure
consists of 12 proteins, VirB1-B11 and VirD4. The T4SS-b, in
Agrobacterium tumefaciens, is used for translocation of both
T-DNA and effector proteins (Kuldau et al., 1990; Zupan and
Zambryski, 1995). The function of the T4SS-b is well-understood
because of its role in plant transformation. Agrobacterium and
rhizobia are closely related, and understanding of the T4SS-b

in Agrobacterium has been leveraged to better understand the
T4SS-b in rhizobia.

T4SS-b Effect on Symbiosis
Unlike the T3SS, there is a paucity of information regarding the
role of the T4SS in symbiosis. A functional T4SS-b has only
been identified in three different species (Table 3). Similar to
the T3SS, the T4SS-b can have both a positive or negative effect
on symbiosis. In Mesorhizobium loti R7A, nodulation on Lotus
corniculatus reduced, but not completely lost, when the T4SS-b
was partially deleted. This same deletion allowed M. loti R7A to
gain the ability to form nodules on L. leucocephala (Hubber et al.,
2004). Deleting the T4SS-b in Sinorhizobium meliloti KH46c
resulted in approximately a 50% decrease in nodule number
on M. truncatula A17, but did not have a significant effect on
M. truncatula F83005-5 (Sugawara et al., 2013). This dual positive
and negative selection could explain why only 9 of 33 S. meliloti
and 11 of 13 S. medicae strains were found to contain the T4SS-b
(Sugawara et al., 2013).

Regulation of the T4SS-b
Transcription of the T4SS is controlled by a two-component
response regulator VirA/VirG (Stachel and Zambryski, 1986).
VirA is a membrane bound kinase that phosphorylates VirG in
response to external factors (Hansen et al., 1994). In contrast,
VirG is a transcriptional activator that binds to vir boxes.
In Rhizobium these regulators are induced by flavonoids that
activate VirG (Hubber et al., 2007). Unlike the T3SS effectors,
which can be present throughout the genome, T4SS tend to be
near VirG (Vergunst et al., 2000; Tampakaki, 2014). Research in
A. tumefaciens has identified a sequence motif, a positive charged
C-terminus, present on effector proteins needed for translocation
(Vergunst et al., 2005). This same sequence motif is also present
on the only two effector proteins identified, Msi059 and Msi061,
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TABLE 3 | Symbiotic effect of the T4SS-b.

Strain of rhizobia with T4SS – B Secreted proteins Positive effect on symbiosis Negative effect on symbiosis Reference

M. loti R7A 2 L. corniculatus L. leucocephala Hubber et al. (2007)

S. meliloti KH35c Unknown M. truncatula A17, M. tricycla Unknown Sugawara et al. (2013)

S. medicae M2 Unknown M. truncatula A17 Unknown Sugawara et al. (2013)

∗Only strains with a functional T4SS-b are listed. More strains containing a T4SS-b have been sequenced, but not experimentally tested for function (Sugawara et al.,
2013). Both secreted proteins in M. loti R7A, have been shown to be translocated into Arabidopsis (Hubber et al., 2004).

both inM. loti R7A (Hubber et al., 2004). VirD4 interacts with the
positive charge signal sequence to transport the protein through
the channel (Vergunst et al., 2005). VirD4, and the requirement
of a more specific signal sequence, could result in more specificity
in protein transport.

Proteins Secreted by the T4SS-b
Thus far, only two proteins have been shown to transport through
the T4SS-b, Msi059, and Msi061 in M. loti R7A. The Msi059
showed partial protein sequence similarity to a C48 cysteine
peptidase. Interestingly, the NopD T3E in S. fredii HH103 also
was a predicted C48 cysteine peptidase (Rodrigues et al., 2007).
The C48 cysteine peptidase family contains the protein XopD, a
T3E from the plant pathogen Xanthomonas campestris (Hotson
et al., 2003). XopD encodes an active cysteine protease, and
functions in planta to target SUMO-conjugated proteins (Hotson
et al., 2003). This interferes with the plant’s ability to regulate
the expression of specific proteins. Msi061 has shared protein
similarity with A. tumefaciens effector VirF. The VirF interacts
with the host Skp1 to facilitate protein degradation of effector
proteins VirE2 and Vip1 to unbind the T-DNA after into the
host cell (Schrammeijer et al., 2001; Tzfira et al., 2004). Skp1
is a core component of the E3 ubiquitin ligase, which mediates
protein degradation (Schrammeijer et al., 2001). The precise
activity of Msi059 and Msi061 are still unknown, but current
evidence suggests a role in changing protein expression levels in
planta.

Type VI Secretion System

The T6SS is among the least researched secretion system involved
in protein translocation. The T6SS is known to contain different
subfamilies, but the sub-families and their functions have yet
to be clearly defined. The number of proteins involved in
forming the core structure seem to vary and there is no known
secretion signal for protein transport (Bingle et al., 2008).
Additionally, how T6SS expression is regulated is unknown. Still,
the T6SS is thought to play an important role in the virulence
of multiple pathogens, like Burkholderia mallei (Schell et al.,
2007).

T6SS Effect on Symbiosis
The sequence for the T6SS has been found in five different
species of rhizobia, R. leguminosarum, B. japonicum, M. loti, S.
saheli, and S. fredii (Bladergroen et al., 2003; Bingle et al., 2008;
Sugawara et al., 2013). However, a functional T6SS, with an effect
on symbiosis, has only been shown in R. leguminosarum. In this

bacterium a negative effect on symbiosis was observed, where
the T6SS prevented nodulation on Pisum sativum cv. Rondo
(Bladergroen et al., 2003). A single protein was identified that
is secreted through the T6SS. Sequencing of the first 50 amino
acids suggested a role in ribose transport (Bladergroen et al.,
2003). The effect that ribose transport has on symbiosis is unclear.
More strains containing the T6SS have been identified, but not
experimentally tested for function (Bingle et al., 2008; Sugawara
et al., 2013).

Example of Effector Involvement in
Symbiosis

Most studies have focused on deleting specific genes in the
core structure, instead of the effector proteins, and observing
the overall phenotypic change. This is likely due to the fact
that the core genes, unlike effectors, do not vary between
species. Additionally, the phenotypic effect(s) of a single effector
knockout might be small, again with some strains containing
36 different T3Es. One of the most well-characterized examples
of the how the T3SS functions is in S. fredii strain USDA257.
In this case S. fredii USDA257 is both a pathogen and a
symbiont.

Legumes limit nodule number, and one mechanism used is
to abort nodule formation, through a process similar to HR
(Vasse et al., 1993). The S. fredii USDA257 strain contains
NopL, which suppresses cell death through preventing MAPK
signaling from inducing HR and cell death (Bartsev et al., 2004;
Zhang et al., 2011). This would, in theory, increase the total
number of nodules formed. Soybeans have evolved an R gene,
Rfg1, capable of detecting T3Es from S. fredii USDA257 (Yang
et al., 2010). Rfg1 encodes a TIR-NBS-LRR disease resistance
protein, which are known to recognize pathogen effectors to
induce disease resistant (Belkhadir et al., 2004). In soybean
lines expressing Rfg1, the plant prevents nodulation by S. fredii
USDA257, but not in the T3SS knockout mutant (Trese, 1995;
Yang et al., 2010). In addition S. fredii USDA257 formed almost
twice as many nodules on the soybean lines without the Rfg1
and the recessive rj2 genes as did the T3SS knockout mutant,
on three different soybean lines (Yang et al., 2010). Taken
together, the T3SS, including NopL, can increase nodulation in
soybean. Recognition of the T3Es, by Rfg1, results in complete
prevention of nodulation. NopL restricts the plant’s ability to
prevent infection and nodule formation, and rhizobia become
partially pathogenic through using this strategy. The specific
protein which is recognized by Rfg1, either directly or indirectly,
is still not known. Though this is just one example, it is consistent
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with observations from other studies showing both the positive
and negative effects of the T3SS as listed in Table 1. This dual
selection also explains why the T3SS is not found in all strains of
Rhizobia.

Proposed Model

Most of these studies were done by deleting the entire secretion
system, versus knocking out only specific effector proteins.
Secretion systems are not found in all strains for any species
of rhizobia. Typically, if the T3SS or T4SS has a positive effect
on nodulation, then deletion of the T3SS results in ∼40–60%
reduction in nodule number. This shows that secretion systems
are not essential for effective nodulation. If the T3SS has a
negative effect on nodulation, then knocking out the T3SS
or T4SS results in a gain of function phenotype, where the
strain is now able for form nodules on a host genotype that it
was previously unable to nodulate effectively. This shows that
secretion systems restrict host range. Taken together, the evidence
suggests that effector proteins may act in a pathogenic manner.
The function of most effector proteins are not known. Many are
predicted tomodify in planta protein levels, andNopLwas shown
to suppress defense responses. This suggest that rhizobial effector
proteins act in a pathogenic manner, similar to the function
of other known bacterial effector proteins (Shames and Finlay,
2012).

The model we propose here (Figure 1), is to demonstrate
three points regarding effector proteins: (1) the role of effector
proteins is strictly pathogenic, and not involved in symbiosis
communication between the rhizobia and host; (2) the role
of effector proteins may lead to an increase nodule number.
AON is the plants system for regulating nodule number.
The mechanism of action for individual effector proteins
will differ, but the unifying aspect is the increase in nodule
number. This increase could be achieved through forming
additional nodules or the prevention of nodule senescence;
and (3) plants use R genes to recognize effector proteins. This
recognition results in host defense responses, which can prevent
nodulation. This serves to establish a host range for rhizobial
strains possessing effector proteins which are recognized by the
host.

Conclusion

The T3SS, T4SS, and T6SS all play an important role in nodule
formation in the symbiosis between rhizobia and legumes. Many
studies have shown that these secretion systems have an effect
on host range. NFs and surface polysaccharides are also known
to effect symbiotic host range. These factors are important
for host recognition of a symbiont versus a pathogen and
facilitate infection for nodule formation. However, pathogens
use effector proteins during invasion to promote virulence, and
these effectors have an effect on the pathogens host range. Thus,
other factors besides host range have to be used to determine the

FIGURE 1 | Proposed model for the role of effector proteins in
symbiosis. Rhizobia secrete nod factors, which are lipochitooligosaccharides
(LCOs), and are important for nodule formation and host specificity. Surface
polysaccharides are also known to be involved in determining specificity for
nodule formation. These include, extracellular polysaccharides (EPSs),
capsular polysaccharides (KPSs), and lipopolysaccharides (LPSs). Legumes
limit the total number of nodules formed using autoregulation of nodulation
(AON). Rhizobia use effector proteins, similar to pathogens, to alter plant cells
to facilitate increased nodule formation. Effectors alter the symbiotic state
toward pathogenesis. In response, plants can develop R genes capable of
recognizing the presence of these effector protein, either directly or indirectly.
Effector recognition results in the plant initiating a defense response and
preventing nodule formation.

role of secretion systems in rhizobia/plant interaction. The T3SS,
T4SS, and T6SS are all known to transport effector proteins. The
predicted function of these proteins in planta, plus identifying
R genes which respond to the T3SS or its effectors, strongly
suggest that these secretion systems are acting in a pathogenic
manner.

These secretion systems function to transport proteins from
rhizobia into the plant cytosol. Once in the cytosol, they act
to either increase nodulation or result in decreased nodulation
through plant defense recognition. Specific changes in planta
are not yet known. Identifying how rhizobia use effector protein
could have an important agricultural application. Rhizobia may
be using these proteins to suppress or prevent AON, and
manipulation of this regulation may lead to the development
of new strategies for increasing nodule formation. These
effector proteins still have not been expressed in planta, in
legumes, and thus their functions remain unclear. Although
several hypotheses have been postulated, the role of T3SS
and T4SS are still not fully understood and warrant further
research.
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Plants are exposed to many different microbes in their habitats. These microbes may
be benign or pathogenic, but in some cases they are beneficial for the host. The
rhizosphere provides an especially rich palette for colonization by beneficial (associative
and symbiotic) microorganisms, which raises the question as to how roots can
distinguish such ‘friends’ from possible ‘foes’ (i.e., pathogens). Plants possess an innate
immune system that can recognize pathogens, through an arsenal of protein receptors,
including receptor-like kinases (RLKs) and receptor-like proteins (RLPs) located at the
plasma membrane. In addition, the plant host has intracellular receptors (so called
NBS-LRR proteins or R proteins) that directly or indirectly recognize molecules released
by microbes into the plant cell. A successful cooperation between legume plants and
rhizobia leads to beneficial symbiotic interaction. The key rhizobial, symbiotic signaling
molecules [lipo-chitooligosaccharide Nod factors (NF)] are perceived by the host legume
plant using lysin motif-domain containing RLKs. Perception of the symbiotic NFs trigger
signaling cascades leading to bacterial infection and accommodation of the symbiont
in a newly formed root organ, the nodule, resulting in a nitrogen-fixing root nodule
symbiosis. The net result of this symbiosis is the intracellular colonization of the plant
with thousands of bacteria; a process that seems to occur in spite of the immune ability
of plants to prevent pathogen infection. In this review, we discuss the potential of the
invading rhizobial symbiont to actively avoid this innate immune response, as well as
specific examples of where the plant immune response may modulate rhizobial infection
and host range.

Keywords: legume, root nodule symbiosis, plant immunity, receptor-like kinase, nod factor, lipo-polysaccharides

Introduction

The root nodule symbiosis (RNS) is one of the most fascinating, yet not completely
understood beneficial host–microbe interactions. RNS is limited to the FaFaCuRo (Fabales,
Fagales, Cucurbitales, and Rosales) clade that belongs to Eurosid I plants (Kistner and
Parniske, 2002). Under nitrogen limiting conditions, many legume plants are infected by
nitrogen-fixing soil bacteria, termed rhizobia. Subsequent to an initial signal exchange
between host and symbiont, the bacteria enter the host root usually through epidermal
root hair cells. An infection thread (IT) of plant origin is formed that extends and
eventually delivers the rhizobia into newly dividing cortical cells. These cells give rise
to a nodule primordium that develops into the nodule, a new root organ. In the
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nodule, bacteria differentiate into bacteroids, the nitrogen-fixing
form of rhizobia, which reduces atmospheric dinitrogen into
ammonia that is used by the host plant. In exchange, the bacteria
receive a steady carbon source provided by plant photosynthesis.

Although the first observation of legume nodulation was
reported a few 100 years ago, we still do not fully understand
the underlying mechanisms that maintain a perfect balance
between host and symbiont to allow such an intimate symbiosis
to develop. Among the exciting new findings is a growing
recognition that the plant immune system is active during RNS.
In this review, we will point out recent observations to indicate
when and how the host plant immune system acts to control
nodule formation and host range.

Rhizobia are Part of a Diverse and Active
Rhizosphere Microbiota
In the soil, there is an extremely large population of
microorganisms that keep the soil ecosystem functioning.
For instance, a metagenomics study of the Arabidopsis thaliana
rhizosphere revealed 43 bacterial phyla and divisions (Bulgarelli
et al., 2012). Microorganisms of the rhizosphere (part of the
soil directly surrounding and impacted by the root) interact
with the roots, providing nutrients and protection against biotic
and abiotic stress. Specific rhizosphere microbes also have the
ability to enter the root and become inter- or intracellular
inhabitants, sometimes contributing to plant growth and
development (Bulgarelli et al., 2012; Lundberg et al., 2012). Given
the diversity of rhizosphere microbes and the potential threat
for the plant, it is not surprising that plants have the ability to
distinguish threatening intruders (i.e., pathogens) from beneficial
microbiota.

Hundreds of different microorganisms are attached to the
surface of a root. Leguminous plants under nitrogen limiting
conditions secrete secondary metabolites (e.g., flavonoids) that
can signal to and recruit compatible, symbiotic rhizobia (Oldroyd
et al., 2011). Specific flavonoids act as inducers of the rhizobial
nodulation genes, which encode the enzymes needed for
synthesis of the lipo-chitooligosaccharide (LCO) nodulation
factor [Nod factors (NF)], the key rhizobial signaling molecule
that elicits the first plant responses in establishing RNS (Fisher
and Long, 1992).

Parallels between Symbiont- and
Pathogen-Triggered Responses
The term ‘microbe-associated molecular pattern’ (MAMP) is
used for specific recognition signatures found in conserved
molecules [e.g., bacterial flagellin, cell wall components like
lipopolysaccharide, chitin and peptidoglycan (PGN)] derived
from microbes, usually pathogens that infect both plants and
animals (Ausubel, 2005). MAMPs are characterized by their
ability to induce an innate immune response in the host.
Therefore, NF is usually not considered a MAMP since it induces
nodule formation on the host, as opposed to inducing immunity.
However, NF can induce some responses that are normally
associated with plant innate immunity (Day et al., 2001; Ramu
et al., 2002; Pauly et al., 2006). This is perhaps not surprising since
longer chain chitin oligomers (degree of polymerization > 6) are

strong inducers of plant innate immunity (Liang et al., 2014).
Unlike simple chitin, NF is a LCO molecule comprised of an
N-acetylglucosamine backbone with site-specific decorations and
an N-acyl chain (D’Haeze and Holsters, 2002). The addition of
very low concentrations of NF (<10 nM) was shown to induce
a variety of responses on the compatible legume hosts. These
include plasma membrane depolarization, perinuclear calcium
spiking, cytoskeletal changes, root hair deformation, induction
and repression of gene expression and, in a few plant species,
induction of nodule primordia (D’Haeze and Holsters, 2002;
Oldroyd and Downie, 2008).

Responses elicited by MAMP perception have been well-
studied in many plants (De Coninck et al., 2015). These
include generation of reactive oxygen species (ROS), cytosolic
Ca2+ elevations, activation of mitogen-activated protein kinase
(MAPK) and calcium-dependent kinases, callose deposition
and defense-related gene expression (Boller and Felix, 2009;
Greeff et al., 2012). However, in comparison with leaves,
less attention has been paid to MAMP responses in roots
even though many pathogens do invade via roots. MAMP-
triggered immune signaling in Arabidopsis roots occurs in
a similar fashion to leaves (Millet et al., 2010; De Coninck
et al., 2015). Roots of seedlings responded by callose deposition
to MAMPs like flg22 (a peptide molecule originating from
bacterial flagellin), PGN and chitin. Callose deposition was
observed in the root elongation zone in response to flg22
and PGN, while chitin elicited callose deposition in the root
maturation zone (Millet et al., 2010), indicating the ability
of different root tissues to distinguish between these MAMPs
(De Coninck et al., 2015).

Receptor-Like Kinases Involved in Symbiotic
and/or Immune Signaling
Microbe-associated molecular patterns are recognized by pattern
recognition receptors (PRRs) localized at the cell surface,
including receptor-like kinases (RLK) and receptor-like proteins
(Zipfel, 2014). The extracellular region of RLKs can be composed
of lysin motif (LysM)-domains (LysM-RLK) and/or leucine-
rich repeats (LRR-RLK), both of which are involved in microbe
detection (Greeff et al., 2012).

NF is perceived by RLKs with an extracellular domain of 2–
3 LysM domains, a single membrane-spanning region and an
active or inactive intracellular kinase domain. These LysM-RLKs
were identified in model legume species such as LjNFR1/LjNFR5
(NF Receptor 1 and 5) in Lotus japonicus, GmNFR1/GmNFR5
in soybean (Glycine max), and LYK3/NFP [Lysin motif receptor-
like kinase 3 and NF Perception (NFP)] in Medicago truncatula
(Amor et al., 2003; Limpens et al., 2003; Madsen et al., 2003;
Radutoiu et al., 2003; Indrasumunar et al., 2010, 2011). Mutations
in these genes significantly alter nodulation capability of the
legume host.

The data suggest that the NF receptor is composed of a
heterodimer or, perhaps, heterotetramer. LjNFR5 binds NF with
higher affinity than LjNFR1 (Broghammer et al., 2012). However,
LjNFR5 or MtNFP lack kinase activity (Arrighi et al., 2006;
Madsen et al., 2011) and, therefore, likely signal by activation of
the NFR1 or LYK3, respectively, kinase domain. Co-expression
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of LjNFR1 and LjNFR5, as well as MtNFP and MtLYK3,
in a heterologous in planta tobacco system induced strong
defense responses in the absence of NF (Madsen et al., 2011;
Pietraszewska-Bogiel et al., 2013). These responses were similar
to those elicited by over-expression of CERK1 in Arabidopsis,
another LysM-RLK. AtCERK1 has an active intracellular kinase
domain and functions as a heterotetramer with AtLYK5, which
lacks a functional kinase domain, to recognize long-chain
chitooligosaccharides (dp> 6) to induce plant immune responses
(Cao et al., 2014; Liang et al., 2014).

Recently, it was shown that the rice MAMP receptor
OsCERK1, is also required for establishment of symbiosis
with mycorrhizal fungi (Miyata et al., 2014; Zhang et al.,
2015). Similar to rhizobia, establishment of this symbiosis also
involves a LCO signal, called Myc factor, as well as short-
chain chitooligosaccharides (dp < 6; Maillet et al., 2011; Genre
et al., 2013). OsCERK1 displays the highest homology with
LjNFR1. Therefore, a possible role of LjNFR1 and MtLYK3 in
mycorrhization was tested with the results implicating both in
the establishment of this symbiosis (Zhang et al., 2015). In
M. truncatula, MtNFP was shown to be involved in the response
to root oomycete pathogen Aphanomyces euteiches, nfp mutant
plants were more susceptible to the oomycete than wild type
plants (Rey et al., 2013). Indeed, recently, mutations in a number
of M. truncatula symbiotic genes were shown to affect the ability
of Phytophtora palmivora to infect roots; again emphasizing the
overlap between symbiont and pathogen response (Rey et al.,
2015).

Taken together, the data support the hypothesis that chitin
and LCO reception are functionally related with the latter
likely evolving from the more wide-spread and ancient chitin
recognition system (Liang et al., 2014). The fact that, in some
species, CERK1 and its orthologs function both in pathogen and
symbiont recognition argue that this step may not be involved
in discerning the beneficial or detrimental nature of the infecting
microbe. This is a rather heretical view given the dogma from
earlier studies that argued that LCO reception plays a key role in
host range determination (Oldroyd et al., 2011).

Do Rhizobia Suppress the Plant Immune
System?
The question whether the plant immune system might be
involved in RNS is an obvious one considering the intimacy of
the RNS (Fisher and Long, 1992). Unfortunately, this question
has not received a great deal of direct, experimental examination.
However, there are a number of observations that are consistent
with a rapid, defense-like response occurring in legumes when
infected by rhizobia (Figure 1). For instance, strong production
of ROS was observed on alfalfa roots in response to the
compatible symbiont Sinorhizobium meliloti (Santos et al., 2001).
Transient and rapidly elevated ROS levels were observed on
common bean Phaseolus vulgaris root hairs upon NF addition
at physiological concentration (10−9M; Cardenas et al., 2008).
Silencing of NADPH oxidase, required for ROS production,
resulted in aborted IT formation and reduced nodule numbers
on common bean roots (Montiel et al., 2012). The results suggest

that ROS production is necessary for infection initiation but
prolonged, elevated levels could be detrimental to nodulation.

A hypersensitive, cell death response was also reported on
alfalfa roots in response to S. meliloti (Vasse et al., 1993).
These results are consistent with recent large-scale transcriptomic
and phosphoproteomic studies, performed on soybean and
M. truncatula in response to their symbiotic rhizobia or purified
NF, that revealed rapid induction of defense-related gene
expression, as well as phosphorylation of proteins known to be
involved in plant immune responses (Libault et al., 2010; Nguyen
et al., 2012; Rose et al., 2012).

The levels of salicylic acid (SA), a key secondary signal
involved in plant innate immunity (An and Mou, 2011), were
found to increase in alfalfa roots upon inoculation with NF-
defective (nodC mutant) rhizobia (Martínez-Abarca et al., 1998).
Indeed, transgenic roots in which SA levels were reduced by
expression of NahG, showed increased rhizobial infection (Stacey
et al., 2006). Similarly, a number of other phytohormones, also
involved in plant innate immunity, can affect the RNS (e.g.,
jasmonic acid; Ding and Oldroyd, 2009).

If the plant does mount a defense response to invading
rhizobia, then, by analogy to bacterial pathogens, it is possible
that rhizobia also have the ability to actively suppress this
response. Indeed, suppression of immune responses, such as
ROS production and SA accumulation, was demonstrated
in M. truncatula and M. sativa roots upon addition of
NF (Martínez-Abarca et al., 1998; Shaw and Long, 2003).
In addition, down-regulation of a PR2 (pathogenesis-related
protein) homolog in M. truncatula was reported in response
to S. meliloti inoculation, while a S. meliloti mutant defective
in NF synthesis failed to induce the same response (Mitra
and Long, 2004). Surprisingly, NF application can suppress
defense responses not only in legumes but also non-legumes,
such as Arabidopsis, tomato, and corn. For example, Arabidopsis
leaves pre-treated with flg22 elicit a strong innate immune
response that was suppressed by addition of NF (Liang et al.,
2013). These findings suggest that LCO/NF might have a
dual role in actively inducing RNS development while also
actively suppressing plant immunity, which could inhibit RNS
(Figure 1).

Nodulation without Nod Factor Signaling
Reveals a Key Role for Plant Innate Immunity
in RNS
The dogma that existed for many years in the field of RNS
research is that nodulation cannot occur in the absence of NF
signaling. Thus, it was quite surprising when some rhizobia were
found to nodulate specific Aeschynomene species in the complete
absence of the nodulation genes, required for NF synthesis
(Giraud et al., 2007). More recently, Okazaki et al. (2013) showed
that a nodulation defective, nfr1 mutant of the soybean cultivar
Enrei could be nodulated by a Bradyrhizobium elkanii mutant
unable to produce NF. Even more surprising was the finding
that nodulation by this mutant was dependent on an active
type III secretion system (T3SS). Microarray analysis revealed
that symbiosis marker genes such as ENOD40 and NIN were
induced in the nfr1 mutant suggesting T3SS-induced signaling
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FIGURE 1 | Schematic illustration of elicitation and suppression of
immune responses by Rhizobia during root nodule symbiosis (RNS)
formation. As discussed in the manuscript, during the early events of
initiation of the legume-rhizobia symbiosis, a plant immune response is
induced (illustrated by orange). In addition to acting as a signal to induce
RNS development the Nod factor signal also acts to suppress this

immune response. Bacterial effector proteins (e.g., delivered through a
T3SS) can act to either negatively or positively modulate RNS. Strictly for
the purposes of illustration, these events are shown as acting on a single
root hair. However, clearly the situation is much more complex and it is
likely that the plant immune response can impact RNS at various steps
during its development.

(Okazaki et al., 2013). In plant pathogens, the T3SS secretes
effector proteins directly into the plant cell that can enhance
infection or, when the appropriate R protein is present, induce
effector-triggered immunity (ETI; Boller and Felix, 2009).

Effectors are directly or indirectly perceived by nucleotide-
binding site-LRR (NBS-LRR) receptors encoded by R
(resistance)-genes (Boller and Felix, 2009). In soybean, Rj2
and Rfg1 alleles were found to restrict nodulation in a strain-
specific manner; that is, while Rj2 prevents nodulation with
certain B. japonicum strains, Rfg1 restricts the symbiosis with at
least one S. fredii strain (i.e., USDA257; Yang et al., 2010). Tsukui
et al. (2013) showed that the incompatibility of B. japonicum
(USDA122) with Rj2 soybean genotypes is mediated by the T3SS.
This type of strain-specificity seems very analogous to the race-
specificity of plant pathogens that is known to be determined by
ETI. Kimbrel et al. (2013) examined Type III effector genes in
S. fredii and B. japonicum and found that these genes exhibit a
high degree of conservation in comparison to those secreted by
pathogens.

The results of Okazaki et al. (2013) stand out since, for the first
time, they suggest that the T3SS and associated effector proteins
play a central role in RNS establishment. However, it remains
to be determined which of the various B. elkanii effectors are
required for nodule formation on soybean cv. Enrei. There is

a wealth of earlier literature that supports a role for rhizobial
effectors in modulating host range. Much of this work was done
usingRhizobium sp. NGR234, which exhibits a very extended host
range providing a variety of host species on which to examine
nodulation (Perret et al., 2000). For example, the effector NopL
from Rhizobium sp NGR234, when expressed in tobacco and
L. japonicus was shown to suppress pathogen induction of PR
protein expression and to interfere withMAPK signaling (Bartsev
et al., 2004; Zhang et al., 2011). The dominant Rj4 allele in
soybean encodes a PR protein that was found to restrict soybean
nodulation with certain B. elkanii and B. japonicum strains. These
strains were restricted in infection of the epidermal cell layers of
wild soybean (G. soja) roots (Hayashi et al., 2014; Tang et al.,
2014). Perhaps relevant to the work on soybean, the S. fredii
effector NopP and the B. japonicum effectors NopE1 and NopE2
were shown to be directly transported into the host plant cells
of Vigna roots (Schechter et al., 2010; Wenzel et al., 2010). Both
NopE and NopT exhibit protease activity. B. japonicum effector
NopT1 triggered cell death response when expressed in tobacco,
while the NopT2 did not induce the same response (Dai et al.,
2008; Kambara et al., 2009; Fotiadis et al., 2012). As mentioned
earlier, strong ROS production was observed in response to
NF application (Cardenas et al., 2008). NGR234 NopM (an E3
ubiquitin ligase) effector expressed in tobacco inhibited ROS
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production, while inducing defense-related gene expression (Xin
et al., 2012).

Published data suggest that the need for an active effector
secretion system (e.g., T3SS) is widespread in legumes. For
example, wild type M. loti (MAFF303099) is not able to infect
Leucaena leucocephala (a mimosoid tree), while the T3SS mutant
was able to efficiently nodulate this same species (Hubber et al.,
2004; Sánchez et al., 2009). Not all rhizobia possess a T3SS but in
these cases other systems may operate. For example,M. loti strain
R7A, S. meliloti and R. etli possess a type IV secretion system
(T4SS; Soto et al., 2006). Deletion of T4SS in M. loti strain R7A
extended the nodulation host range to include L. leucocephala,
which is not nodulated by the wild type strain (Hubber et al.,
2004). On the other hand, mutation of the T4SS in S. meliloti did
not seem to impact formation of a functional symbiosis on alfalfa
roots (Jones et al., 2007).

Conclusion and Future Perspectives
Some 29 years ago, our laboratory published a review that sought
to compare and contrast rhizobium, agrobacterium and pathogen
infection of plants (Halverson and Stacey, 1986). Therefore, it is
satisfying to now see how many interesting parallels have been
documented between rhizobial–plant, mycorrhizal–plant, and
pathogen–plant interactions. For example, MAMP signaling and
the associated receptors are clearly relevant to these associations.
It is nowwell accepted that LCOand chitin signaling share similar
receptors, reflecting an evolutionary connection. Indeed, in some
cases, the chitin receptor plays a dual role in recognizing plant
fungal pathogens, while also promoting symbiotic development.

When well established dogma in any field gets overturned, it
means that research progress is being made. An example in the
rhizobial field is the realization that nodulation does not sensu
stricto require NF production. In the case of soybean, nodulation

can occur without NF but this requires an active T3SS. Although
unidentified, the assumption is that rhizobial effector proteins are
exported to the soybean host that is allowing nodulation to occur
(Figure 1). The parallels to plant–pathogen interactions are clear,
where effectors can either promote virulence or resistance. R
proteins are clearly important in the rhizobial symbiosis, at least
in modulating host range. At this point, the role of effectors and
R proteins in RNS cannot be refuted. However, perhaps the more
interesting question is whether these components are necessary,
perhaps essential, for nodule formation either mediated by NF or
not. The case in soybean cv. Enrei clearly argues for an essential
role but could the research focus on NF signaling be hiding a
general, essential role in RNS in other plant species?

Regardless of what form it may take, the available data clearly
point to the need for more research that directly addresses the
possibility of an important role for plant innate immunity in
RNS. This aspect has been understudied for some time and
sufficient evidence has now accumulated to strongly suggest
that important information would come from such research.
Using plant pathogen–host research as an example, one would
expect that knowledge would emerge that could enhance the use
of RNS in agriculture. For example: efforts to avoid inoculant
competition with indigenous soil rhizobia that currently limits
effectiveness or information that would increase nodulation
under stressful environments or allow greater levels of biological
nitrogen fixation.
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Inter-organismal signaling and
management of the
phytomicrobiome
Donald L. Smith*, Dana Praslickova and Gayathri Ilangumaran

Plant Science Department, McGill University/Macdonald Campus, Sainte Anne de Bellevue, QC, Canada

The organisms of the phytomicrobiome use signal compounds to regulate aspects
of each other’s behavior. Legumes use signals (flavonoids) to regulate rhizobial nod
gene expression during establishment of the legume-rhizobia N2-fixation symbiosis.
Lipochitooligosaccharides (LCOs) produced by rhizobia act as return signals to the
host plant and are recognized by specific lysine motif receptor like kinases, which
triggers a signal cascade leading to nodulation of legume roots. LCOs also enhance
plant growth, particularly when plants are stressed. Chitooligosaccharides activate plant
immune responses, providing enhanced resistance against diseases. Co-inoculation of
rhizobia with other plant growth promoting rhizobacteria (PGPR) can improve nodulation
and crop growth. PGPR also alleviate plant stress by secreting signal compounds
including phytohormones and antibiotics. Thuricin 17, a small bacteriocin produced by
a phytomicrobiome member promotes plant growth. Lumichrome synthesized by soil
rhizobacteria function as stress-sensing cues. Inter-organismal signaling can be used to
manage/engineer the phytomicrobiome to enhance crop productivity, particularly in the
face of stress. Stressful conditions are likely to become more frequent and more severe
because of climate change.

Keywords: inter-organismal signals, phytomicrobiome, plant agriculture, crop productivity, plant stress

Background

The perspectives provided in this theme volume illustrate that members of the phytomicrobiome
utilize inter-organismal signal compounds to affect the behavior of the plants they associate with,
and signal compounds from the plants regulate the behavior of the phytomicrobiome. Presumably,
one organism alters the behavior of another for its own benefit, but often to the benefit of the other
organism as well, leading to mutualistic symbiosis. An example of this is improved stress tolerance
in a plant by a signal compound from an associated microbe, where the resulting enhanced plant
growth means expanded niche space and more reduced carbon for the specific phytomicrobiome
member.

Signaling in the Legume-rhizobia Symbiosis

Plants must allow beneficial microorganisms to colonize near them or in their tissues in order
to establish mutualistic relationships. This kind of close association (for example, the legume-
rhizobia symbiosis, where rhizobia reside inside the legume roots) necessitates a filtering system
in the plants, disallowing unsuitable microorganisms, perhaps pathogens that could harm their
tissues. On the other side, a microbe entering a disadvantageous plant would risk being recognized
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as unacceptable and killed. Signal/recognition compounds
facilitate communication between mutually beneficial organisms
and ensure continuum of their relationship until senescence.
Flavonoids (examples: luteolin, 7,4′ dihydroxyflavone, quercetin,
kaempferol, myricetin, genistin, etc.,) in the rhizosphere are
constituents of root exudates and well studied for their function
as legume-to-rhizobia signal compounds (Nelson and Sadowsky,
2015). Their structural diversity and substitutions in the carbon
skeleton determines their characteristic function (Weston and
Mathesius, 2013). The release of specific flavonoids (or mixtures)
from a legume host is only recognized by certain rhizobial species,
which partially determines the host-symbiont specificity. The
flavonoids diffuse through the rhizobial membrane and bind to
NodD proteins in rhizobia, which then activate transcription
of Nod genes involved in synthesis of nodulation factors (NF;
Hassan and Mathesius, 2012). Altered flavonoid profiles at
different symbiosis stages regulate Nod factor synthesis (Dakora
et al., 1993). Flavonoids also cause auxin accumulation in
root tissues that initiates nodule formation and differentiation
(Hassan and Mathesius, 2012). Flavonoids regulate development
of nodules and phytoalexin resistance in rhizobia (Cooper,
2004). Thus, these signal compounds regulate the behavior of
appropriate partner organisms down to the gene expression level.

A range of very diverse non-flavonoid compounds present
in the root exudates also induces Nod genes in some rhizobia
(Mabood et al., 2014): betaines (stachydrine and trigonelline;
Cooper, 2007), aldonic acids (erythronic and tetronic acids), and
jasmonates (jasmonate and methyl jasmonate; Mabood et al.,
2006). The jasmonates have been commercialized and products
are now available (http://agproducts.basf.us/products/vault-hp-
plus-integral-for-soybeans-inoculant.html).

Activated rhizobial Nod-genes secrete signals (Nod factors)
back to the plant: lipochitooligosaccharides (LCOs) and
exopolysaccharides (EPS). LCOs are conserved at the core but
are diverse due to degree of saturation and the substitutions
(glycosylation or sulfation) in the N-Acetyl chain at both
reducing ends and vary widely between different rhizobial
species, which are essential for host plant specificity (Oldroyd,
2013). Genes at the loci of Nod factors perception encode receptor
like kinases with N-Acetyl glucosamine binding lysine motifs
(LsyM RLK), which include Nod factor receptors (NFR1), NFR5,
LysM receptor kinase 3 (LYK3), Nod factor perception (NFP).
NFR/NFP binds to NF and are essential in determining NF
specificity of rhizobial symbionts and activation of nodulation
signaling (Oldroyd, 2013). Signaling from the receptor complex
generates calcium oscillations in the nucleus of cortical cells,
which activate a localized protein, calcium and calmodulin
(CaM) dependent serine/threonine protein kinase (CCamK),
and phosphorylates CYCLOPS, which is required for rhizobial
colonization and nodule development (Oldroyd, 2013). The
rhizobial specific gene expression is regulated by the Nodulation
signaling pathway (NSP1 and NSP2) and encodes GRAS domain
transcription factors involved in nodulation specific functions.
They are associated with promoters of Nodulation inception
genes (NIN) and early nodulation genes (ENOD) and ensure that
nodulation is stimulated under appropriate circumstances (Kalo
et al., 2005; Smit et al., 2005).

In some rhizobia-legume systems (for example,
Bradyrhizobium, and Glycine soja) application of correct
Nod factors (LCOs isolated from B. elkanii) trigger formation
of complete and anatomically precise, albeit, empty nodules
(Stokkermans and Peters, 1994). It is impressive that the
external application of a signal compound can lead to complete
organogenesis.

Although many parallels are observed in the signaling
mechanisms, plants exhibit subtle regulatory pathways to establish
mutualistic associations and protect from pathogenesis (Toth
and Stacey, 2015). During rhizobial infection, legume defense
responses are elicited in the early stages but suppressed soon after
(Libault et al., 2010). Increased activation of mitogen activated
protein kinase (MAPK) and production of reactive oxygen species
were observed in legumes when inoculated with rhizobia (Jamet
et al., 2007; Lopez-Gomez et al., 2012). Chitooligosaccharides,
chitosan, lipopolysaccharides, and peptidoglycan associated with
fungal and bacterial pathogens are recognized as microbe-
associated molecular patterns (MAMPs) by pattern recognition
receptors (PRRs) in the plant cell membrane (Dangl and Jones,
2001; Zipfel, 2014). Recognition of MAMPs is crucial for the
activation of MAMP triggered immunity (MTI) in plants, which
triggers expression of defense related genes, leading to structural
hardening (callose formation) of plant tissues, accumulation of
phytoalexins and antimicrobial peptides (Ahuja et al., 2012).
NF remain active even after nodulation, suggesting a role in
suppression of MTI (Liang et al., 2013). Exopolysaccharide of
rhizobia (example succinoglycan from Sinorhizobium meliloti)
is known to supress plant immunity (Aslam et al., 2008). LCO
recognition has been evolved from a pathogenic role to symbiosis.
Even though LCOs are structurally similar to chitin oligomers
(MAMPs) and their recognition is mediated by LysM RLK,
modifications in amino acid sequences of LysM RLK which
confer specificity to recognition of LCO or chitin oligosaccharides
(Nakagawa et al., 2011). For example, chimeric proteins in the
ectodomain of chitin elicitor receptor kinase (CERK1) for chitin
perception are replaced with ectodomain of NFR involved in NF
recognition (Zhang et al., 2007).

Effector proteins secreted by pathogens trigger effector
mediated immunity (ETI) in plants due to activation of resistance
(R) genes encoding nucleotide-binding site—leucine rich repeat
proteins (Jones and Dangl, 2006). Leucine rich repeats receptor
like kinases (LRR—RLK) are involved in NF perception and
nodule formation (Endre et al., 2002). Effectors are transported
and injected into the host cytoplasm through type III (T3SS) and
type IV (T4SS) secretion systems. Effector proteins of rhizobia
(NopM of S. fredii NGR234, NopL from S. fredii USDA247)
have been shown to facilitate colonization of rhizobia in roots,
prevent MAPK signaling, supress the plant immune system,
affect formation of nitrogen-fixing nodules, timing of nodule
establishment and final number of nodules formed (Zhang et al.,
2011). Interestingly, rhizobial NF, T3SS and T4SS depend on
a common regulator activated by legume secreted flavonoids
(Gourion et al., 2015).

Bacteroid differentiation inside the nodule is regulated by
antimicrobial peptides (nodule cysteine rich peptides), which
functions similar to plant defensins (de Velde et al., 2010).
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The bacteroids are separated from the host by a symbiosome
membrane and immune activity is modulated inside the nodules
and the expression of defense related genes is relatively low
(Limpens et al., 2013). The plant controls the duration of
symbiosis and regulates the senescence of nodules and the
suppression of plant immunity reverses during nodule senescence
(Puppo et al., 2005). The number of nodules is controlled by
the legumes through a process called autoregulation of nodules
(AON; Mortier et al., 2012). Shoot derived signals involve
production of cytokinins and downstream signaling to the roots
regulates AON (Sasaki et al., 2014).

Rhizobia signaling and associations can be affected by other
members of the phytomicrobiome, this is because they function
together as a consortia exerting synergism, playing a vital role
in plant growth, nutrient uptake, alleviation of abiotic stress,
and protecting from disease. The more frequently studied co-
inoculation partners of rhizobia are Bacillus species. Inoculation
of Rhizobium with Bacillus strains improved root structure and
nodule formation in bean, pigeon pea and soybean (Halverson
and Handelsman, 1991; Petersen et al., 1996; Srinivasan et al.,
1997; Rajendran et al., 2008). Inoculation of pea with Bacillus
simplex 30N-5 and Rhizobium leguminosarum bv. viciae 128C53
increased root nodulation and plant growth (Schwartz et al.,
2013). When pea plants carrying DR5::GUS promoter are co-
inoculated with B. simplex 30N-5 and R. leguminosarum bv.
viciae expression of GUS was higher in nodule meristems
and young vascular bundles of developing nodules (Schwartz
et al., 2013). Azospirillum brasilense co-inoculated with R. tropici
on bean relieved negative effects of salt stress on nod genes
transcription (Dardanelli et al., 2008). Co-inoculation of rhizobia
and arbuscular mycorrhizal fungi (AMF) promoted growth
of soybean under low phosphorous and nitrogen conditions,
indicated by increase in shoot dry weight (Wang et al., 2011).

The legume-rhizobia symbiotic relationship tends to be
less specific in tropical agriculture, involving much wider sets
of rhizobial partners, while it is often quite specific in the
temperate zones (Dakora, 2000).Awider rangeof rhizobia forming
relationshipswithanygiven legume,andthemorediversesignaling
involved, may alter the effect of environmental conditions on the
nitrogen-fixing symbiosis for that particular legume species.
Exploitation of the rhizobia-legume symbiosis has occurred
for over a century yet, there is considerable scope for improved
understanding of this complex relationship in tropical zones.

Other Phytomicrobiome Signaling Systems

While the legume-Rhizobium symbiosis is well understood of
signaling interactions, given its significance of biological nitrogen
fixation, extensive research in other phytomicrobiome signaling
systems has been conducted. Mycorrhizal symbiosis uses a
signaling system similar to that of the legume-rhizobia symbiosis
(Harrison, 2005; Oldroyd, 2013) and it plays a critical role in
solubilisation of minerals and plant protection. In this association
plants emit strigolactones, triggering production of Myc factors
including LCOs by the fungus and stimulate hyphal branching
(Bonfante and Requena, 2011). AMF have a broad host range
and hence they produce diverse array of LCOs for recognition by

the host plants. LysM RLK are also associated with mycorrhizal
colonization (Young et al., 2011). It would be interesting to study
themechanisms employed by the plants to differentially recognize
mycorrhizal and rhizobial LCOs.

Nitrogen fixing symbiotic association occurs between Frankia
and actinorhizal plants. Frankia sp. colonizes roots of actinorhizal
plants and induces root hair curling and nodule formation
similar to those observed in legumes suggesting common
symbiotic mechanisms but with important structural differences,
particularly the signaling compounds produced by Frankia differ
from rhizobia (Pawlowski and Bisseling, 1996; Gherbi et al., 2008).

Many plant growth promoting rhizobacteria (PGPR; example,
Bacillus, Pseudomonas, Serratia, Azospirillum, Acetobacter,
etc.,) secrete phytohormones, such as cytokinins, gibberellins,
auxin, and ACC deaminase and influence plant growth and
functions (Vessey, 2003). They are also capable of alleviating
drought stress by promoting root growth and hampering
stomatal conductance (Vessey, 2003; Gray and Smith, 2005).
The phytomicrobiome also improves the uptake of nutrients
by forming siderophores or solubilizing phosphates and other
minerals (Vessey, 2003). Phytomicrobiome members synthesize
and excrete a range of inter-organismal signal compounds that
defend their host plant against pathogens and abiotic stresses:
broad-spectrum antibiotics, lytic enzymes, organic acids and
other metabolites, proteinaceous exotoxins and antimicrobial
peptides (bacteriocins).

Several products of PGPR have been commercialized as
biofertilizers and biocontrol agents owing to their diverse
modes of action. There is considerable scope for application of
phytomicrobiome signals in agriculture. For instance, Bacillus
thuringiensis NEB17 produces the bacteriocin thuricin 17.
Intriguingly, this peptide is also a bacteria-to-plant signal that
stimulates the growth ofmany plants (Lee et al., 2009). Thuricin 17
(10−9 to 10−11 M) changes the hormone levels of Arabidopsis and
soybean (increased IAA and SA) and causes profound alterations
in the proteome (major increases in energy related proteins;
Subramanian, 2014). Thuricin 17 almost completely overcomes
the negative plant growth effects of salt stress (250 mM NaCl).
For the producer bacterium B. thuringiensis NEB 17, thuricin
17 is a dual function peptide, acting both as a bacteriocin that
reduces competition from closely related bacteria, and to enlarge
the available niche space by promoting plant growth. Bacillus
subtilis OKB105 contains genes (yecA, speB, ACO1) involved in
synthesis of spermidine, a plant growth stimulating polyamine
(Xie et al., 2014).

Bacterially produced lumichrome (breakdown product
of riboflavin) accelerates leaf production, onset of stem
elongation, and leaf area development (at a concentration
of 5 × 10−9 M), leading to greater production of biomass in
many plants (maize, sorghum, tomato, lotus), related to enhanced
starch and ethylene metabolism. Adversely, 10-fold greater
concentrations can retard plant growth and development (Matiru
and Dakora, 2005; Gouws et al., 2012). Similar effects were
observed in legumes (soybean, cowpea) in response to the signal
compounds (lipopolysaccharides and lumichrome), suggesting
their role in the nitrogen-fixing symbiosis. Lumichrome
promotes nodulation and mycorrhizal establishment in legumes
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(Dakora and Phillips, 2002). Lumichrome also helps plants deal
with drought and salinity stress (Kanu and Dakora, 2009).

Quorum sensing signals including those of beneficial bacterial
such as rhizobia (Zarkani et al., 2013) can elicit immune
responses (Schenk et al., 2012; Hartmann et al., 2014), and
change hormone profiles in plants, inducing those regulating
growth responses and disease resistance (Hartmann and Schikora,
2012). Quorum sensing regulates mobility, virulence and biofilm
formation in bacteria. Biofilm formation (bacteria embedded
in a thick matrix of EPS, proteins and water) enables bacteria
to adhere to host tissues. Biofilm improves plant growth, root
proliferation (Azospirillum inwheat) and function in as biocontrol
(B. subtilis, Farrar et al., 2014). In the case of N-acyl-homoserine
lactones (AHL), the length of the lipid side chain dictates
characteristics of the signal compound’s activity (Schikora et al.,
2011). Quorum sensing in the phytomicrobiome will be the
subject of an upcoming Frontiers in Plant Science theme volume
(Plant responses to bacterial quorum sensing signal molecules,
topic editors Schikora A and Hartmann A).

Engineering the Phytomicrobiome

Given our intense reliance on higher plants for food and other
resources, our expanding understanding of the phytomicrobiome
associated with these plants, advances in genetic engineering
and synthetic biology, it seems reasonable to consider
“engineering” the phytomicrobiome to improve crop productivity,
including enhancement of photosynthesis and growth, nutrient
assimilation, disease and insect resistance and improved ability
to resist increases in abiotic stresses likely to be associated with
environmental disturbances, or even mitigating the impact of
climate change through CO2 sequestration. The host plant with
its phytomicrobiome constitutes a holobiont (Hartmann et al.,
2014), a collective community with broader genomic, proteomic,
metabolomics and physiologic capacity, making it better able
to adjust to environmental (biotic and abiotic) challenges. The
potential to alter the composition of the microbial consortia
residing near, on or in plant tissues has been explored through
inoculation processes to some extent. The inoculation strategy
to manipulate the microbiome focuses on co-inoculation of
several strains of PGPR, arbuscular mycorrhizal fungi and other
endosymbionts. Increase in the abundance of beneficial microbes
in the rhizosphere (for example biofertilizers) has resulted in less
disease incidence and high levels of microbial activity (Bunemann
et al., 2006).

Understanding plant microbe interactions requires a holistic
approach to analyze this complex and dynamic system.

However, the difficulty to readily culture many members of
phytomicrobiome (for example, obligate endosymbionts) in the
laboratory can be overcome by culture independent techniques
such as metagenomics, metaproteomics, and metabolomics
and usage of next generation sequencing tools to understand
the complexity of the phytomicrobiome (Bulgarelli et al.,
2012; Quiza et al., 2015). Our ability to implement large-
scale manipulations of the microbial populations is currently
limited. Plant microbiome engineering facilitates modulation
of nutrient cycling, synthesis of phytohormones, production
of antibiotics (biocontrol agents), leading to improved plant
growth and resistance to disease, insects, drought, salinity stress,
etc. (Quiza et al., 2015). Introducing recombinant strains in
the rhizosphere could improve the persistence of endogenous
microbial population by horizontal gene transfer (Taghavi et al.,
2005) and community level microbiome engineering could result
in higher resilience across disruptive environments (Loreau et al.,
2001). The ability to engineer the phytomicrobiome will be
pivotal in furthering long-term sustainability of agricultural crop
production and affecting related issues such as climate change,
human health and global food security (Quiza et al., 2015).
While we are progressing in our understanding of mechanisms
involved in the interspecies interactions, nature of the complex
relationships within the phytomicrobiome, role of the host plants
and its microbiome as a holobiont (Lakshmanan et al., 2014),
engineering the whole metaorganism is a promising strategy that
finds application in nitrogen fixation, disease control, nutrient
cycling and phytoremediation (Bakker et al., 2013; Bell et al.,
2014).

It is clear that members of the phytomicrobiome exchange
signal compounds that are effective at hormonal concentrations,
so that inter-organismal, indeed, inter-kingdom exohormones
are now understood to play a crucial role in controlling the
growth, composition and development of plants, including the
crop plants that we depend on as food sources. The commercial
deployment of LCOs in non-legume crop plants (Souleimanov
and Prithiviraj, 2002; Prithiviraj et al., 2003) indicates that there
is enormous scope for application of these compounds, to help
crop plants be more productive, and to remain productive under
themore challenging environmental conditions of climate change.
Indeed, many of the positive effects of phytomicrobiome signals
on plant growth seem to involve activation of stress response
systems. Understanding the mechanisms and consequences of
signal interactions occurring between the phytomicrobiome and
host plants and development of methods to manipulate these
interactions for increased plant growth, is an important challenge
for this century.
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In previous work, we showed that coinoculating Rhizobium leguminosarum bv. viciae

128C53 and Bacillus simplex 30N-5 onto Pisum sativum L. roots resulted in better

nodulation and increased plant growth. We now expand this research to include another

alpha-rhizobial species as well as a beta-rhizobium, Burkholderia tuberum STM678.

We first determined whether the rhizobia were compatible with B. simplex 30N-5 by

cross-streaking experiments, and then Medicago truncatula and Melilotus alba were

coinoculated with B. simplex 30N-5 and Sinorhizobium (Ensifer) meliloti to determine

the effects on plant growth. Similarly, B. simplex 30N-5 and Bu. tuberum STM678

were coinoculated onto Macroptilium atropurpureum. The exact mechanisms whereby

coinoculation results in increased plant growth are incompletely understood, but the

synthesis of phytohormones and siderophores, the improved solubilization of inorganic

nutrients, and the production of antimicrobial compounds are likely possibilities. Because

B. simplex 30N-5 is not widely recognized as a Plant Growth Promoting Bacterial (PGPB)

species, after sequencing its genome, we searched for genes proposed to promote

plant growth, and then compared these sequences with those from several well studied

PGPB species. In addition to genes involved in phytohormone synthesis, we detected

genes important for the production of volatiles, polyamines, and antimicrobial peptides

as well as genes for such plant growth-promoting traits as phosphate solubilization and

siderophore production. Experimental evidence is presented to show that some of these

traits, such as polyamine synthesis, are functional in B. simplex 30N-5, whereas others,

e.g., auxin production, are not.
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Introduction

Rhizosphere bacteria function as a consortium, synergistically
protecting plants from disease (Kloepper et al., 2004), providing
plants with essential nutrients (Pradhan and Sukla, 2005;
Martínez-Hidalgo et al., 2014), and stimulating plant growth
by producing growth-promoting factors (El-Tarabily et al.,
2008; Merzaeva and Shirokikh, 2010). Rhizosphere bacteria are
analogous to gut bacteria in mammals, which perform similar
functions, and like gut bacteria, the microbes that live on
and within plant tissues are indispensable for plant survival.
Although the microbial composition of the root microbiomes
for many plants is known (Schlaeppi et al., 2014), defining
the mechanisms driving the microbe/plant synergism in the
soil is challenging. This is because soil is complex and the
experiments are difficult to perform. Thus, simpler models have
been employed, such as using microcosms or rhizotrons and
also limiting the number of plant and microbial species to be
studied. This is especially true for specific interactions such
as those involved in nitrogen fixation, where investigations of
the interactions between nitrogen-fixing bacteria and other soil
bacteria or fungi consist of coinoculating a legume plant with a
rhizobium and a single plant growth promoting bacterial (PGPB)
species. Such interactions usually result in an enhancement of
plant growth over inoculation solely with rhizobia (see references
in Schwartz et al., 2013).

The most frequent bacterial partners in coinoculation studies
involving rhizobia are Bacillus species, including among others,
B. subtilis, B. amyloliquefaciens, B. licheniformis, and B. pumilus.
Earlier, we showed that coinoculating Pisum sativum L. with
Rhizobium leguminosarum bv. viciae 128C53 and B. simplex 30N-
5 resulted in better nodulation and an overall increase in plant
dry weight (Schwartz et al., 2013). B. simplex 30N-5 is a relatively
new player in the panoply of bacteria that positively influence
plant growth. This species is mainly known for its phenotypic
adaptations with respect to growing on the sun compared to
shade walls of “Evolution Canyon” in Israel (Koeppel et al.,
2008). However, a number of publications, including our own,
have reported that B. simplex also functions as a PGPB species
(Ertruk et al., 2010; Hassen and Labuschagne, 2010). Recently, the

sequenced genomes of several B. simplex strains became available
and allowed prediction of possible molecular mechanisms for the
observed interactions. The essential extension of such genome
comparisons include the identification of the expressed proteins,
and perhaps most importantly, the identification of the small
molecule products of their activity.

In this study, we coinoculated B. simplex 30N-5 with
either Sinorhizobium (Ensifer) meliloti 1021 (alpha-rhizobium)
or Burkholderia tuberum STM678 (beta-rhizobium), on their
respective hosts. To our knowledge, Bu. tuberum STM678
(Moulin et al., 2001; Vandamme et al., 2002) has not been
previously employed in coinoculation studies. To obtain a better
understanding of the traits that are important for the plant
responses in the coinoculation experiments, we analyzed the
B. simplex 30N-5 genome for genes known to encode PGPB
traits. To do this, we compared B. simplex 30N-5 with the well-
established PGP Bacillus strains, namely B. subtilis GB03, B.

amyloliquefaciens subsp. plantarum FZB42, and others. In this
report, we also demonstrate that several of these PGPB traits are
functional in B. simplex 30N-5.

Materials and Methods

Phylogenetic Analysis
Nucleotide sequences were obtained from the Joint Genome
Institute (IMG/ER) database for microbial genomes (Markowitz
et al., 2012). Five housekeeping genes atpD, urvA, rpoB, lepA,
and recA were used to construct concatenated sequences (Table
S1). The concatenated gene sequences were aligned with Clustal
X (Thompson, 1997), and phylogenetic distances were calculated
according to the Kimura two-parameter model (Kimura, 1980).
The phylogenetic tree topology was inferred from the maximum-
likelihood method employing MEGA5 (Tamura et al., 2011).
Confidence levels on each node are the product of 1000 bootstrap
replicates.

Growth of Bacteria
Bacillus strains were grown on LB (Luria-Bertani; Miller, 1972),
Tryptic Soy Agar (TSA; Difco R©, Becton Dickenson) or Tryptone
Yeast Extract (TY; Beringer, 1974) medium at 30◦C or 37◦C.
Rhizobial strains were cultured at 30◦C on either Yeast Mannitol
Agar (YMA; Somasegaran and Hoben, 1994) or on TY medium
with or without 10µg/mL tetracycline. Bu. tuberum STM678
was grown on LB minus salt or on BSE medium (Caballero-
Mellado et al., 2007) with or without antibiotics. Cell density was
determined from the OD600 nm of the cultures. The bacterial
strains studied in this report are listed in Table 1.

To introduce fluorescentmarkers into Sinorhizobium (Ensifer)
meliloti 1021, the plasmid pHC60 (Cheng and Walker, 1998)
carrying a green fluorescent protein (GFP) construct was
mobilized into S. meliloti using a triparental mating procedure
(Figurski andHelinski, 1979) as adapted by Schwartz et al. (2013).
The Bu. tuberum STM678 GFP+ strain was a gift fromDr. J. Peter
Young (University of York).

The Voges-Proskauer test (Voges and Proskauer, 1898) was
performed as modified by Werkman (1930) and Barritt (1936).
Each strain was tested three times.

Chemical Analysis
Cell pellets (1.8 × 109 cells/sample) from B. simplex 30N-5
were lysed in 5ml of either methanol or aqueous trifluoroacetic
acid (TFA, 10%) or aqueous trichloroacetic acid (TCA, 8.3%).
The homogenates were centrifuged (16,000 × g, 5min, room
temperature) and the supernatants were taken to dryness
in a vacuum centrifuge. The dried residue was resuspended
in water (500µL), centrifuged (16,000 × g, 5min, room
temperature) and the supernatant transferred to LC injector
vials. For the polyamines, aliquots of the supernatant were
injected (8µl) onto a reverse phase HPLC column (Phenomenex
Kinetex C18 100 × 2.1mm, 1.7µ particle size and 100 Å)
equilibrated in 80% solvent A (0.1mM perfluoro-octanoic acid
in water) and 20% solvent B (0.1mM perfluoro-octanoic acid
in methanol), and eluted (100µL/min) with an increasing
concentration of solvent B (min/%B; 0/20, 5/20, 15/75, 20/75,
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TABLE 1 | Strains and plasmids used in this study.

Strain number Species name and relevant

characteristics

Source or reference

30N-5 Bacillus simplex Schwartz et al., 2013

237 Bacillus simplex Kaplan et al., 2013

11 Bacillus simplex Kaplan et al., 2013

FZB42 Bacillus amyloliquefaciens

subsp. plantarum

Bacillus Stock Center

DSM13

Goettingen/ATCC

14580

Bacillus licheniformis Bacillus Stock Center

GB03 Bacillus subtilis Bacillus Stock Center

NRRL B-4317 Paenibacillus polymyxa Bacillus Stock Center

60b4 Bacillus subtilis Flora Pule-Meulenberg

26a1 Bacillus cereus Flora Pule-Meulenberg

HB101 E. coli Cathy C. Webb

Rm1021 Wild-type Sinorhizobium meliloti Lab strain

Rm1021/pHC60 GFP+, Tetr derivative of wild-type

S. meliloti

This study

STM678 Wild-type Burkholderia tuberum Moulin et al., 2001;

Vandamme et al., 2002

STM678/TnGFP Tetr derivative of wild-type Bu.

tuberum

Elliott et al., 2007

Plasmids Relevant characteristics Source or Reference

pHC60 GFP plasmid, Tetr Cheng and Walker,

1998

22/20, 30/20). The effluent from the column was directed to
an electrospray ion source connected to a triple quadrupole
mass spectrometer (Agilent 6460) operating in the positive
ion tandem mass spectrometric (MS/MS) mode, and the time-
dependent intensity of multiple reaction monitoring (MRM)
transitions were recorded at previously optimized settings
[spermine, m/z (MH+) 203 129, 112, 84, fragmentor 55,
collision energy 16; spermidine, m/z (MH+) 146 129, 112,
and 72, fragmentor 55, collision energy 12; putrescine, m/z
(MH+) 89 72, fragmentor 40, collision energy 4]. Peak areas
for each compound at the corresponding retention times
(spermine, spermidine, and putrescine at 16.4, 16.0, and 15.6min,
respectively) were computed with instrument manufacturer-
supplied software (Agilent MassHunter). A standard curve was
prepared with each experiment from samples containing known
concentrations of all three compounds using the signals for the
most intense MRM transitions (203 112, 146 112, and 89 72
for spermine, spermidine, and putrescine, respectively), and the
amount of each amine in each biological sample was calculated
by interpolation from the standard curves. Under the prescribed
conditions, the limit of detection for the amines was about 1 pmol
injected for spermine and spermidine and 10 pmol injected for
putrescine.

For indole acetic acid (IAA, auxin), aliquots of
the supernatants were injected (8µl) onto a mixed
cationic/anionic/reverse phase HPLC column (Imtakt Scherzo
SS-C18, 100 × 2mm, 3µ particle size and 130 Å pore size)

equilibrated in 40% solvent C (water/acetonitrile/formic acid,
97/3/0.1, all by vol) and 60% solvent D (45mM aqueous
ammonium formate/acetonitrile, 65/35, v/v), and eluted
(200µL/min) with an increasing concentration of solvent D
(min/%D; 0/60, 5/60, 20/100, 22/60, 30/60). The effluent from
the column was directed to the same ESI mass spectrometer as
described above, and the time-dependent intensity of the IAA
MRM transition was recorded at previously optimized settings
[m/z (MH+) 176 130, fragmentor 45, collision energy 12].
Peak areas for the transition response at the corresponding
retention time (10.1min) were computed as described above.
A standard curve was prepared with each experiment from
samples containing known concentrations of IAA. Under
the prescribed conditions, the limit of detection (LOD) for
IAA was about 5 pmol injected, which was about four-fold
lower than what could be achieved in the negative ion mode
also under previously optimized conditions by monitoring
the transition of the (M-H)− ion at m/z 174 130. Also, the
LOD using combined liquid chromatography-MS/MS-MRM
(LC/MS/MS-MRM) in either the positive or negative ion mode
was significantly lower than what could be achieved by combined
gas chromatography/mass spectrometry (GC/MS) in the selected
ion-monitoring (SIM) mode (Waters GCT) of the trimethylsilyl
derivative.

Cross-streaking Experiments
Fresh samples of each bacterial strain were taken from frozen
cultures and grown on either LB minus NaCl, LB, or TY agar
for cross streaking (Lertcanawanichakul and Sawangnop, 2008).
A single colony from one strain was first streaked vertically
down the middle of the plate and 24 h later the second strain
was streaked perpendicularly to the first. The order of microbes
was changed in each experiment, which was repeated 4 times
with 3 or 4 biological replicates. Qualitative data were obtained
by photographing the plates daily for 7 days. For the pairs of
S. meliloti and B. simplex, we also performed parallel streaking
and overlapping streaking experiments. As before, the order of
microbes was changed in each experiment, and the plates were
followed for 10 days.

Plant Coinoculation Experiments
Macroptilium atropurpureum (siratro),Medicago truncatulaA17,
and Melilotus alba L. U389 (white sweetclover) seeds were
planted in black polyethylene boxes (Really Useful Boxes R©) or
Magenta R© jars (Magenta Corp.). The substrate used for the
black boxes was Seramis R© (Mars GmbH) and perlite, and for
the Magenta jars, a 2:1 mixture of vermiculite and perlite. The
substrates were autoclaved and then watered with 1/4 strength
Hoagland’s medium minus nitrogen (Machlis and Torrey, 1956).
Prior to planting seeds were scarified for 1min, soaked in 95%
ethanol for 5min, and then in full-strength commercial bleach
for 30–45min. The conditions for siratro seed sterilization and
inoculation with Bu. tuberum are detailed in Angus et al. (2013).
The imbibed seeds were transferred to the boxes or Magenta
jars using sterile tools, and inoculated singly with Bu. tuberum
(siratro) or S. meliloti (Medicago and Melilotus) and B. simplex
30N-5, together and alone. The bacteria were diluted with
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sterile water to a final OD600 nm of 0.1–0.2. The siratro seeds
were coinoculated with a 1:1 mixture of Bu. tuberum and B.
simplex 30N-5 whereas the Melilotus and Medicago seeds were
coinoculated with a 1:1 mixture of S. meliloti 1021 and B. simplex
30N-5. Each Magenta jar or black box was inoculated with 4mL
of the inoculum. Controls were included for all experiments
and were used as a phenotypic reference for −N, +N, and
no nutrient conditions (water). The control sample size was
smaller than the experimental due to space limitation, but the
controls consistently gave the same phenotype (see Angus et al.,
2013, 2014). The siratro plants were grown in a temperature
controlled Conviron growth chamber at 24◦C and the S. meliloti
hosts in a Percival growth cabinet at 21◦C. The Medicago and
Melilotus species were harvested 5 weeks after inoculation and
the siratro plants 5–6 weeks after inoculation. Each experiment
was repeated three times. The plants were photographed, their
shoot height and nodule numbers were recorded, and they were
then dried (48 h, 65◦C) before dry weight measurements were
made. Statistical significance of the data was validated using
One-way ANOVA with Tukey’s post hoc test (Figure 3A) and
multiple comparison procedure. Jittered boxplot and family-wise
error rates (Figure 3B and Supplementary Figure 2) were used
for assessment (Herberich et al., 2010).

Genome Analysis
Selection of Strains
Draft and finished genome sequences of several PGPB from
the Joint Genome Institute IMG/ER (Markowitz et al., 2012)
or from NCBI (http://www.ncbi.nlm.nih.gov) were queried
by BLAST (Altschul et al., 1990) using sequences of genes

encoding known PGPB traits. Thirteen bona fide PGP Bacillus
and two Paenibacillus strains were chosen for comparison
against B. simplex 30N-5 (Figure 1). The JGI genomes queried
included B. simplex 30N-5 (permanent draft), B. simplex
II3b11 (permanent draft), B. firmus DS1 (permanent draft), B.
licheniformis DSM 13T/ATCC 14580 (finished), B. kribbensis
DSM 17871 (permanent draft), B. megaterium DSM 319
(finished), B. amyloliquefaciens subsp. plantarum FZB42T

(finished), B. subtilis GB03 (permanent draft), B. subtilis subtilis
168 (finished), B. cereus JM-Mgvxx-63 (permanent draft), B.
thuringiensis sv. israelensis (permanent draft), Paenibacillus
polymyxa ATCC 12321 (permanent draft), Paenibacillus pini
JCM16418 (permanent draft), Pseudomonas fluorescens strains
A506 and CHAO (finished), and Azospirillum brasilense FP2
(permanent draft) and Azospirillum sp. B510 (permanent draft).
B. simplex 30N-5 was isolated from the Mildred E. Mathias
Botanical Garden at UCLA and strain II3b11 belongs to the
Putative Ecotype 9 (Koeppel et al., 2008). It originates from the
south facing, hot or “African savannah-like” slope of “Evolution
Canyon II” in Nahal Keziv, Israel (Sikorski and Nevo, 2005). In
addition, the genome of B. simplex strains P558 (Croce et al.,
2014) and BA2H3 (Khayi et al., 2015), both from NCBI, were
queried when a gene from one or both IMG/ER B. simplex
strains was missing. Details of the Bacillus strains studied for the
genomic analysis are found in Table 2.

Homologous Gene Identification
A curated set of more than 50 PGP genes (47 are displayed
in Figure 1), all manually annotated in the B. simplex 30N-5
genome, were selected for use as the reference query genes for

FIGURE 1 | Homologs of reference set of Plant Growth Promoting (PGP) genes identified in Bacillus and Paenibacillus. Top row, IMG gene ID number;

second row, general categories of PGP genes; third row, PGP genes identified in each Bacillus (or Paenibacillus) strain (left column) following comparison with the B.

simplex 30N-5 gene (always 100%) and clustered using the K-means algorithm. The highest sequence identity alignment from blastp searches (% values in cells),

sequence identities passing the 50% cutoff (cells highlighted in purple) show 3 clusters: cluster 1 (blue), cluster 2 (orange), and cluster 3 (purple). Genes not detected

(nd). *Gene names from B. megaterium, B. licheniformis, and B. amyloliquefaciens (see text).
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TABLE 2 | Genomic features of the B. simplex 30N-5 genome and comparison with the genomes of other Bacillus spp.
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Genome size (bp) 5459036 5582948 5643051 3692073 5054217 4971242 3918589 4222645 3849547 5097447

G+C content (mol%) 40.43 40.27 35.18 41.26 42.93 41.46 46.4 46.19 46.55 38.13

Protein-coding sequences 5288 4841 5349 3786 4914 4922 3693 4196 3705 5100

% of coding region 81.54 70.30 81.27 88.92 81.66 85.02 88.0 88.13 89.61 83.04

blastp homolog searches. The genes represented a wide variety
of PGP functions. Because several of the genomes investigated
have permanent draft status, our analyses of gene homologies
occasionally found no matching gene; these “missing” genes are
indicated by “n.d.”. We used conservative criteria to compare the
protein sequences. The blastp searches were filtered to include
alignments with an e < 10−5, and with a sequence identity
of ≥50%, although homologs having smaller percentages and
greater e-values were present in the other Bacillus genomes. B.
simplex 30N-5 was the reference genome for the comparisons and
the value of its gene identities for the comparison was set at 100%.
Although both Gram-negative and Gram-positive bacteria were
initially screened for PGP traits, the values for the Gram-negative
bacteria as well as for the more distantly related Gram-positive
species were generally low and hence deleted from the final
data set.

We also used BAGEL3 (http://bagel2.molgenrug.nl/) to query
the B. simplex 30N-5 genome for bacteriocins, and a stand-alone
version of ANTIsmash (http://antismash.secondarymetabolites.
org/) to search for non-ribosomal peptide synthetases (NRPSs).

K-means Clustering
The sequence identity matrix (Figure 1) contains 13 Bacillus
strains and 2 Paenibacillus strains (rows) with the highest
detected sequence identity for each reference PGP gene displayed
in columns. Despite the 50% cutoff sequence identity limit,
some sequence identity scores under 50% were also recorded
because blastp sequence alignments with low sequence identity
may still exhibit homology or contain conserved functional
domains. This scheme enabled clustering, using the K-means
clustering algorithm, to place Bacillus strains into groups that had
overall similar profiles of PGP genes either as present or absent.
The algorithm was implemented with an objective function to
minimize the within-cluster Euclidean distance of the sequence
identity vectors (rows) from their assigned clusters.

Our implementation of the K-means algorithm used a two-
step iterative algorithm (Lloyd, 1982; Slonim et al., 2013).
In the assignment step, the sequence identity vectors (rows)
were assigned to the nearest cluster (measured by Euclidean
distance between each sequence identity vector and centroid
corresponding to each cluster). In the update step, the
coordinates of each centroid were updated to the mean of the

respectively assigned sequence identity vectors. The maximum
number of iterations permitted was 10,000. Initial centroids were
randomly assigned to the sequence identity vectors, and 100
random centroid initializations were run. Of the 100 K-means
runs, the cluster arrangement minimizing the total Euclidean
distance of the sequence identity vectors (rows) from their
assigned clusters was retained for visualization (Figure 1).

Results

Phylogenies
A concatenated gene Maximum Likelihood phylogeny of the
selected strains is shown in Figure 2. The housekeeping genes
used for the tree are representative of the differences between
the genomes of the species tested, as the most closely related
species to B. simplex are also those with most similarities
found in the PGPB genes studied (see colors in Figure 1).
Although the topology within the clade was supported by high
bootstrap values, the two subclades in the top part of Figure 2
were supported by a low bootstrap value (52%). One subclade
contained B. amyloliquefaciens subsp. plantarum FZB42, B.
subtilis GB03, B. subtilis subtilis 168, B. licheniformis DSM13
Goettingen (ATCC 14580), and B. pumilus S-1, whereas the
second subclade included the two B. simplex strains, and B.
firmus DS1 and B. kribbensis DSM 17871. In this tree, B. subtilis
GB03 and B. amyloliquefaciens subsp. plantarum FZB42 clustered
together. A not-as-strongly supported branch of the top clade
(54% bootstrap support) included B. megaterium DSM 319. The
clade (bottom part of Figure 2) brought together with strong
support, B. panaciterrae DSM 19096, B. cereus JM-Mgvxx-63,
and B. thuringiensis sv. israelensis. P. pini JCM 16418 was the
outgroup.

Pre-coinoculation (Cross-Streaking) Assays
Earlier we reported positive effects on pea growth when B.
simplex 30N-5 was coinoculated with R. leguminosarum bv. viciae
128C53 (Schwartz et al., 2013). Before setting up coinoculation
experiments with a different set of bacteria, cross-streaking assays
were used to detect incompatibility or interference between the
nodulating strains, S. meliloti 1021 (data not shown) and Bu.
tuberum STM678 (Supplementary Figure 1A), to be used in
the coinoculation study with B. simplex 30N-5. No inhibition
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FIGURE 2 | Phylogenetic tree. Maximum-likelihood phylogenetic tree based on concatenated gene sequences of five housekeeping genes (atpD, urvA, rpoB, lepA,

and recA). Paenibacillus pini JCM 16418 was used as the outgroup. Numbers at branch points indicate bootstrap values (based on 1000 replicates); only those above

50% are indicated. Bar, 0.05 substitutions per nucleotide position.

of growth was found. An additional Bacillus strain previously
isolated and studied (Schwartz et al., 2013), B. subtilis 30VD-1,
was also tested in these experiments. B. subtilis 30VD-1 inhibited
B. simplex 30N-5 growth and vice versa, suggesting that one
or both synthesized bacteriocins or other antimicrobial agents
(Supplementary Figure 1A and see later section).

For S. meliloti, the results from the initial cross-streak
experiments were less clear because although the S. meliloti streak
was not touching the B. simplex one, it was closer to it than the
distance observed for the B. subtilis and B. simplex cross-streaks
(Supplementary Figure 1A). When we repeated the experiments
by either doing a side-by-side streak or inoculating one strain
over the other in a cross pattern, we observed no incompatibility
between the two strains (data not shown).

Coinoculation Studies
Because B. simplex 30N-5 demonstrated a positive effect on
both plant growth and rhizobial nodulation on pea (Schwartz
et al., 2013), we tested whether or not this was a general
phenomenon by coinoculating B. simplex 30N-5 and S. meliloti
Rm1021 onto roots of M. truncatula and M. alba. In contrast
to our previous results with pea, M. alba exhibited no
significant growth enhancement when inoculated with B. simplex
alone over the uninoculated control (Figure 3A). Although
shoot height and nodule number were measured for all the
conditions examined, no statistical significance was observed
when the experimental treatments were compared with their
respected controls (data not shown). Moreover, when single
inoculations with S. meliloti and coinoculations with both
strains were compared, the treatments (measured as dry weight
increase) did not differ from each other although both were
statistically different from the uninoculated and B. simplex

alone-inoculated plants (Figure 3A). M. truncatula exhibited a
similar response (data not shown). Overall, we found that dry
weight increases were a more reliable measurement of plant
biomass accumulation than any other parameters (see next
section).

Siratro plants were coinoculated with B. simplex and Bu.
tuberum; the latter nodulates siratro effectively (Angus et al.,
2013). In contrast to the S. meliloti host plants, simultaneous
coinoculation with B. simplex and Bu. tuberum, or coinoculation
with B. simplex first and then Bu. tuberum 5 days later resulted
in significant changes over the controls and were comparable
to or better than the +N control. The siratro plants inoculated
with B. simplex alone also exhibited an increase in dry weight
over the −N control and were comparable to the +N control
(Figure 3B, Supplementary Figure 2).

Nutrient Acquisition
Although B. simplex was isolated on a solidified N-free medium,
it is not a diazotroph because it lacks nifH, a structural gene
essential for nitrogenase function (Schwartz et al., 2013). In an
N-free liquid medium, B. simplex 30N-5 ceased growing unless
the medium was supplemented with 1-aminocyclopropane-1-
carboxylate (ACC), which is broken down into 2-oxobutanoate
and ammonia; the latter sustained bacterial growth for a short
time. This finding suggested that B. simplex had acdS activity (see
later section).

Phosphate Solubilization
B. simplex 30N-5 effectively solubilized mineralized phosphate
as measured by activity on PVK plates (Schwartz et al., 2013).
Although we detected a gene encoding a soluble quinoprotein
glucose/sorbosone dehydrogenase, which is important for
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FIGURE 3 | Biomass measurements of Melilotus alba and Macroptilium atropurpureum 35 days post inoculation. (A) Melilotus alba plants were singly or

coinoculated with Bacilus simplex (B.s.) and Sinorhizobium meliloti (S.m.); Different letters represent values that differ significantly, p < 0.01. (B) Jittered boxplot.

Macroptilium atropurpureum plants were singly or coinoculated with Bacillus simplex (B.s.) and Burkholderia tuberum (B.t). The first coinoculation (1) introduced both

bacteria species at the same time, whereas the second (2) was inoculated with B.s. first followed by B.t. inoculation 5 days later. Harvesting was performed as

described in Methods. Boxes indicate minimum, maximum, 1st and 3rd quartiles and the median value.

gluconic acid production (de Werra et al., 2009) (Figure 1,
column 1), no additional genes involved in the breakdown of
either inorganic or organic phosphates were found. However,
the putative B. simplex (gcd) gene was not overly similar
to the comparable genes in either B. licheniformis (51%) or
B. firmus (58%) (Figure 1). We were unable to detect an
equivalent gene in the other PGPB strains. Species of B.
amyloliquefaciens (Kim et al., 1998), B. licheniformis (Tye
et al., 2002), and B. subtilis (Kerovuo et al., 1998) have
been reported to produce phytase (myo-inositol-hexaphosphate
3-phosphohydrolase), which degrades organic phosphates. A
phytase gene was not detected in the B. simplex strains.

Siderophores
Siderophores secreted by bacteria also support the development
and growth of plants by helping them sequester iron from

the environment. Previously, we showed that B. simplex 30N-5
exhibited a positive reaction in a CAS assay, which detects
siderophore activity (Schwartz et al., 2013). We identified
several siderophore operons in B. simplex 30N-5 (Figure 1).
The iron-dicitrate transporter genes were similar to yfmCDEF
of B. megaterium and several other bacilli, whereas the iron-
compound transport system had genes conserved with yfiZ and
yfiY of B. licheniformis as well as with B. amyloliquefaciens genes.

Production of Volatiles
Many PGPB emit volatiles that positively enhance growth, e.g., B.
amyloliquefaciens subsp. plantarum FZB42 and B. subtilis GB03.
The latter was reported to acidify the rhizosphere of Arabidopsis
in response to volatiles (Zhang et al., 2007), which may help in
phosphate solubilization. The most commonly studied volatiles
are acetoin (Xiao and Xu, 2007), and 2,3-butanediol, which is
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known to be involved in Arabidopsis defense induction (Ryu
et al., 2003). The Voges-Proskauer test was used to demonstrate
acetoin synthesis as well as the potential for production of 2,3-
butanediol (Xiao and Xu, 2007) by means of a colorimetric
reaction. We used this test on a number of Bacillus strains known
to produce volatiles and included B. simplex 30N-5 along with
two additional strains of B. simplex (Kaplan et al., 2013) for
the analysis. Escherichia coli was the negative control. Although
the known PGPB strains tested positive for acetoin, including
P. polymyxa NRRL B-4317, the three B. simplex strains were
negative even after a long incubation period (Table 3).

Genes from B. amyloliquefaciens subsp. plantarum FZB42
were used to search for sequences in the B. simplex genome
that could encode proteins for acetoin synthesis. We detected
five genes, several aco genes, as well as one encoding alsS,
which is important for acetolactate synthesis (Xiao and Xu,
2007). However, no gene for alsD, which encodes an alpha-
acetolactate decarboxylase, was detected although it was present
in the reference PGPB genomes. Also, a butA/budC gene was
detected in the aco operon and showed greater than 95% identity
to the other B. simplex strain (II3b11) (Figure 1). The butA/budC
gene encodes meso-butanediol dehydrogenase.

Root Colonization and Growth Promotion Factors
Motility
In response to root exudates, many bacteria migrate toward
root surfaces and colonize roots. In B. amyloliquefaciens subsp.
plantarum FZB42 and other Bacillus species, a number of genes
are expressed (Chen et al., 2007), including flagellar genes (De
Weger et al., 1987; Croes et al., 1993). In the B. simplex genome,
flagellar and chemotaxis genes are located in two apparently
unlinked areas (Figure 4). A similar arrangement exists for other
PGPB Bacillus strains, such as B. firmus DS1, B. kribbensis
DSM 17871, B. megaterium DSM 319 (Supplementary Figure
2), and the two Paenibacillus species included in our analysis
(data not shown). However, a major difference in arrangement
was observed in B. cereus, which contains strains that can be
either beneficial or pathogenic (Bottone, 2010). For example,
five chemotaxis-associated genes (cheABCD and W) within the
flagellar gene operon are conserved among B. simplex and related

TABLE 3 | Voges-Proskauer test results for selected strains.

Strain 30′ 1 h

E. coli HB101* − −

B. amyloliquefaciens plantarum FZB42 + +

B. cereus 26a1 − −

B. licheniformis DSM 13/ATCC 14580 + +

B. simplex 237 − −

B. simplex 11 − −

B. simplex 30N-5 − −

B. subtilis GB03 + +

B. subtilis 60b4** + +

P. polymyxa NRRL B-4317 + +

*Negative control **Positive control.

Measurements were taken 30min and 1 h after the addition of the colorimetric reagents.

PGP strains (Figure 4, Supplementary Figure 3). However, the
chemotaxis genes, cheB and cheD, were not detected within the
flagellar gene region of B. cereus JM-Mgvxx-63, which differs in
organization (Figure 4). In addition, the flagellar genes are not
highly related. For example, the flhF genes of B. simplex 30N-5
and B. cereus JM-Mgvxx-63 are 36% identical, but only 24%DNA
identity is observed when the two fliS genes were compared.

Many PGPB, e.g., alpha-rhizobia (Amaya-Gómez et al., 2015)
and Bacillus spp. (Dietel et al., 2013), swarm as well as swim
prior to colonization. B. simplex 30N-5 cells swarm on 0.8% agar
suggesting that genes for this behavior are present and expressed.
The swrC gene shares 100% identity among the B. simplex
strains. Although originally annotated as a cation/multidrug
efflux pump, it is orthologous and 61 and 57% identical to genes
annotated as swrC in B. thuringiensis and B. amyloliquefaciens,
respectively.

Plant Growth-promoting Traits: Hormones
One of the most prominent features of PGPB is their ability to
produce compounds that directly influence plant growth, e.g., the
phytohormones. PGPB also synthesize gene products that affect
plant growth in a more indirect way.

Auxin
Many bacteria are known to synthesize auxin (involved in lateral
root proliferation), and at least five tryptophan-dependent or
tryptophan-independent biosynthetic pathways are employed by
bacteria to synthesize auxin (Patten and Glick, 1996; Spaepen and
Vanderleyden, 2011). Because we obtained positive results with
the Salkowski test following the addition of tryptophan (Schwartz
et al., 2013), we hypothesized that the genes for auxin synthesis
might be present in the genome of this species.

One of the most studied of the auxin biosynthetic pathways
includes the genes encoding IAA monooxygenase (iaaM) and
indole acetamide hydrolyase (iaaH), found in the gall-forming
Agrobacterium tumefaciens and Pseudomonas savastonoi, but
these genes were not detected in the B. simplex 30N-5 genome.
However, putative ipdC genes were identified in the B. simplex
strains with greater than 97% DNA identity among them,
following a query with an indole pyruvate carboxylase gene from
Enterobacter cloacae (Koga, 1995). Although<50%DNA identity
to ipdC from several other PGPB was observed (Figure 1), ipdC
genes in B. kribbensis and P. pini were 62 and 66% identical
in DNA sequence, respectively, and orthologous to the B.
simplex gene. A gene encoding a putative indole-3-acetaldehyde
dehydrogenase, which is involved in tryptophan-dependent IAA
synthesis and is the last step in the pathway, was also detected in
B. simplex 30N-5. The gene is ca. 75% identical to dhaS of several
bacilli, and has >84% identity to genes in B. firmus DS1 and B.
kribbensis DSM 17,871.

Other auxin-related genes were also found in B. simplex 30N-
5. A gene orthologous to aofH, which codes for an indole-3-acetic
oxidase [suggesting that tryptamine, rather than tryptophan,
is converted to indole-3-acetaldehyde (IAAld)], was uncovered
using AZL.b03560 from Azospirillum sp. B510 (Wisniewski-
Dyé et al., 2011) to query the B. simplex genome. Although
the different B. simplex strains have almost identical aofH gene
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FIGURE 4 | Comparison of flagellar open reading frame (ORF) clusters. The top cluster is from B. simplex 30N-5, which consists of two unlinked regions. The

bottom cluster is from B. cereus JM-Mgvxx-63 where most of the genes related to B. simplex are within a single region on the chromosome.

sequences, this gene is not well conserved with genes from
other bacilli with the exception of B. firmus DS1 (71% identity)
(Figure 1). Lastly, a B. simplex gene with 79% DNA identity
and orthologous to a predicted nitrilase, the yhcX gene in B.
amyloliquefaciens, was detected in the B. simplex 30N-5 genome.
A similar gene identity was observed for many of the other PGP
bacilli (Figure 1).

The lack of a complete pathway and the low identity for
ipdC made us question whether IAA is actually synthesized by
B. simplex. To address this question, we performed a chemical
analysis. No signals for IAA were found in the LC/MS/MS-MRM
assay for this compound. With a limit of detection of about 5
pmol injected, it is concluded the concentration of this hormone,
if present, is less than 174 pmol/109 cells.

Phenylacetic Acid
In Azospirillum brasilense, IpdC is also involved in the
production of phenylacetic acid (PAA), which has weak auxin
activity and is also antimicrobial against both bacteria and fungi
(Somers et al., 2005). As in Azospirillum, the B. simplex genome
has the paa operon (data not shown), which is important for the
degradation of PAA.

Cytokinin
Many PGP bacilli have been reported to produce cytokinins,
but few cytokinin biosynthetic genes have been detected (see
Vacheron et al., 2013). Querying various Bacillus genomes with
tzs (trans-zeatin synthase) from A. tumefaciens, where it is
required for tumor formation, yielded no hits. On the other
hand, miaA, which encodes tRNA dimethylallyltransferase that
removes a zeatin precursor from tRNA, is common among the
PGP bacilli, including B. simplex.

Polyamines
Many bacteria produce polyamines such as spermine,
spermidine, and putrescine, which in B. subtilis OKB105
have PGP properties (Xie et al., 2014). A number of genes
involved in polyamine synthesis (Sekowska et al., 1998) were
detected in the B. simplex 30N-5 genome including speA, which

results in agmatine synthesis; speB, putrescine synthesis; and
speE and speD, which encode the stages for spermidine synthesis.
Also, metK, responsible for the conversion of methionine to
S-adenosyl-methionine, was detected (data not shown). Many
of these were ≤80% identical to genes in the PGP bacilli
(speD), whereas others, e.g., speE, are less similar (<50%) albeit
orthologous. Genes for various binding proteins, permeases, and
transporters for polyamines are also present in the genome of B.
simplex 30N-5.

Clear strong signals were obtained for cell lysates prepared
in either TCA or TFA showing the presence of significant
quantities of spermine, spermidine, and putrescine in all samples
examined (Figure 5). Verification of the assignments was made
with co-chromatography experiments in which known amounts
of authentic standards were added to cell lysate samples prior to
LC/MS/MS-MRM. In these experiments, single peaks for each
amine were obtained for the spiked samples, with appropriate
area and intensity enhancement of the signals. The signals were
slightlymore intense for spermine and spermidine when TFAwas
used compared to TCA during cell homogenization (1.6- and 1.2-
fold, respectively), and slightly more intense for putrescine when
TCA compared to TFA was used (2.8-fold) (Table 4). The MRM
chromatograms from methanol extracts were less clear with
peaks at other retention times and significantly less intense peaks
for the polyamines. Quantitation based on external standards
shows spermine, spermidine and putrescine concentrations in
the range of 333, 222, and 2.2 nmol/109 cells, respectively,
although for more precise measurements, the work requires
repeating using an internal standard to correct for losses during
extraction. To this end, it was noted that the cell extracts did not
contain any detectable amount of hexamethylediamine (MRM
transition (MH+) m/z 117 100) that could be used for this
purpose.

AcdS
Ethylene is inhibitory to root development and also induces
plant defense response pathways. We detected a sequence in
B. simplex 30N-5 that is similar to genes annotated as acdS in
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FIGURE 5 | LC/MS/MS-MRM traces for the TCA extract of B. simplex

30N-5. Peaks for spermine (top), spermidine (middle) and putrescine (bottom)

are shown. Samples were prepared and analyzed as described in Methods.

Co-chromatography experiments in which the authentic compounds were

added to the bacterial extract showed single peaks for each trace with

appropriate augmentation of the peak areas. A quantitative summary of the

results is presented in Table 4.

TABLE 4 | The concentrations of spermine, spermidine, and putrescine in

methanol, TFA, and TCA extracts of B. simplex 30N-5 measured by

LC/MS/MS-MRM using external standards.

Sample nmol/sample nmol/sample nmol/sample

30N-5 methanol extract 1 0.92 1.46 1.09

30N-5 methanol extract 2 1.03 5.38 1.18

30N-5 TFA extract 1 613.75 355.15 2.02

30N-5 TFA extract 2 622.45 462.71 1.18

30N-5 TCA extract 1 400.68 388.64 5.28

30N-5 TCA extract 2 380.60 312.82 3.53

B. thuringiensis and in B. cereus JM-Mgvxx-63 (80%) and as
D-cysteine desulfhydrase in B. panaciterrae DSM 19096 (88%)
(Figure 1). The comparable genes for the two additional B.
simplex strains available at NCBI were annotated as a cytochrome
C biogenesis protein/D-cysteine desulfhydrase. These proteins
are part of the PLP-dependent ACC family. However, genes
homologous to this sequence were not detected in the typical
PGPB group (blue group; Figure 1).

Antibiotics and Related Compounds
Bacteria synthesize a number of compounds that contribute to
their survival in the rhizosphere. B. subtilis has been a paradigm

for studying these antimicrobial compounds, which fall into two
major classes: those synthesized on ribosomes (e.g., bacteriocins
and lantibiotics) and post-translationally modified and those
produced on large multienzymes known as Nonribosomal
Peptide Synthetases (NRPSs), e.g., iturin and fengycin (Stein,
2005).

Bacteriocins
Many nonpathogenic bacteria produce bacteriocins, molecules
used to compete with closely related bacteria, and many classes
of these antimicrobial peptides are known. We scanned the B.
simplex genome for genes potentially encoding bacteriocins and
found three candidates, but genes comparable to those in B.
simplex were not detected (n.d.) in any of the other PGP bacilli
(Figure 1). The highest DNA sequence identity of genes encoding
proteins for bacteriocin synthesis (Figure 1) was to the sequences
found in B. panaciterrae. The highest DNA sequence identity of
the bacteriocin biosynthesis gene, based on amino acid sequence,
was 79% (Figure 1). These same gene sequences were picked
up using the BAGEL3 website and a gene map is depicted in
Supplementary Figure 1B.

Another protein with 99 and 100% identity to the two B.
simplex strains in NCBI (B. simplex P558, CEG34010.l; B. simplex
BA243, WP 034090.1, respectively) was also found. It matched to
a protein described as a colicin V production protein. Although
the gene neighborhoods were well conserved among the Bacillus
species in Figure 2, the percentage DNA identity was 70% or
lower (data not shown).

Additional Secondary Metabolites
Many PGPB synthesize diverse secondary metabolites, which
have antibiotic activity, including lantibiotics, nonribosomally
synthesized peptides, and polyketides. For example, subtilin is
a 32-amino acid pentacyclic lantibiotic produced by B. subtilis
(Stein, 2005). Although several subtilisin-like serine protease
(AprE-like) genes are present in the B. simplex genome as well
as proteins involved in subtilin processing (WprA and Vpr-like),
no evidence was found in the B. simplex genome for the presence
of genes similar to spaS and spaBTC, the subtilin structural genes
and the genes promoting subtilin expression, respectively, nor to
the genes spaIFEG, which confer immunity. Similarly, we saw
no matches to genes encoding lantibiotic-like peptides such as
sublanchin or subtilisin A produced by B. subtilis.

We looked for, but did not find, genes for the synthesis of
nonribosomally synthesized peptide antibiotics in B. simplex,
such as surfactin (see next section), iturin, or bacillomycin or
for antimicrobial polyketides such as macrolactin, bacillaene, or
difficidin, which are found in many PGPB Bacillus strains.

Other Nonribosomal Peptide Synthetase (NRPS)

Products
Genes were found for the synthesis of koranimine, a cyclic
imine. The genes involved are: korA, korB, korC, korD, as well
as genes encoding a phosphopantetheinyl transferase (kfp) and
a type II thioesterase (korTE) (Supplementary Figure 4). These
genes had been detected earlier in an environmental Bacillus
strain (NK2003) using a proteomics-based approach (Evans
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et al., 2011). We found them using a B. amyloliquefaciens subsp.
plantarum FZB42 gene sequence (srfAA) in a blastp search, and
although only 34% sequence identity was found between korA
and srfAA, their amino acid adenylation domains were highly
conserved (89.7%). Genome analysis led to the discovery of an
orthologous gene in Bacillus sp. NK2003, which was annotated as
a nonribosomal peptide synthetase. Koranimine synthetic genes
were also found in the B. simplex II3b11 genome, each gene
having greater than 95% DNA sequence identity to the kor genes
of B. simplex 30N-5. An amino acid adenylation domain sequence
that lines up with the middle part of korC was found in another
part of the B. simplex genome (data not shown).

Although we utilized a gene encoding a surfactin to uncover
the kor genes, we could not find any genes for surfactin
production itself or any other NRPS-produced metabolites in B.
simplex. Moreover, using amodification of a published procedure
of the drop-collapsing assay (Kuiper et al., 2004) to determine
surfactant activity, we found none of the three B. simplex strains
tested exhibited a change in the diameter of the drops due to
decrease in surface tension of the droplet (data not shown),
suggesting that B. simplex 30N-5 lacks surfactant activity.

We also detected the polyketides described above using the
ANTIsmash webserver. In addition, evidence for a gene encoding
squalene synthetase and highly conserved with the genes of
other B. simplex strains, but not found in the PGPB bacilli. An
orthologous gene with 60 and 57.5% DNA identity was detected
in B. panaciterrae and B. megaterium, respectively (data not
shown). Similarly, a gene encoding chalcone synthase that is
orthologous and 63–61% identical to genes in B. kribbensis and
B. firmus, respectively, was found using ANTIsmash. The genes
of the PGPB bacilli are orthologous and 51% identical to the B.
simplex gene (data not shown).

Other Pathways
Vitamins
More than one-third of the bacteria that have been sequenced
possess genes for cobalamin (vitamin B12) synthesis (Raux
et al., 2000), including B. simplex 30N-5. The B. simplex
30N-5 and the other B. simplex genomes also contain genes
for riboflavin (vitamin B2) synthesis as previously described
for B. subtilis (Stahmann et al., 2000). Riboflavin subunit
alpha (ribF) was also found in all genomes. Similarly, the
menaquinone (vitamin K2) pathway genes found in B. subtilis
(Sato et al., 2001) were detected in the genomes of the B.
simplex strains (chorismate synthase, isochorismate synthase,
demethylmenaquinone methyltransferase, and 2-heptaprenyl-
1,4-naphthoquinone methyltransferase).

Protein Secretion Systems
Gram-positive bacteria secrete proteins usually by translocation
across the single membrane by the Sec pathway or via the two-
arginine (Tat) pathway. B. simplex also possesses the genes, with
a 99% identity, tatA, tatC and a third gene from the same family.
In addition, a specialized secretion system, which is responsible
for protein translocation across both the membrane and the cell
wall, called a type VII secretion system (Tseng et al., 2009), was
detected in the B. simplex 30N-5 genome.

Discussion

B. simplex has been shown in a number of reports to be an
effective PGPB (Ertruk et al., 2010; Hassen and Labuschagne,
2010; Schwartz et al., 2013). In this report, we show that
B. simplex strains 30N-5 and II3b11 are phylogenetically and
genetically different from the known PGPB bacilli. Based on
an analysis of 5 different housekeeping genes, they cluster in a
separate subclade from most PGPB bacilli and their PGP-related
genes. We thus placed them into a group separate from other
PGPB (purple, Figure 1). Because interest in this species as a
PGPB species and producer of novel enzymes has been increasing
(Velivelli et al., 2015; Venkatachalam et al., 2015), we undertook
a detailed investigation of the potential of B. simplex 30N-5 to act
as a PGPB.

A survey of the three legume hosts used in the coinoculation
studies suggests that B. simplex may behave differently among
plant species. In our study on pea, we observed that simultaneous
inoculation of B. simplex and R. leguminosarum bv. viciae
resulted in an enhancement of nodulation and plant dry weights
(Schwartz et al., 2013). In contrast, coinoculation of S. meliloti
Rm1021 and B. simplex did not produce a significantly different
dry weight measurement for either Melilotus alba or Medicago
truncatula compared to the single inoculation. Moreover, B.
simplex alone did not enhance the growth of the S. meliloti hosts
compared to pea (Figure 3A).

In contrast, siratro responded positively to single inoculation
with B. simplex and showed an increase in dry weight, as we had
observed for pea (Schwartz et al., 2013). Whether or not this
difference between the S. meliloti hosts and siratro and pea in
response is a consequence of having smaller seeds vs. larger seeds
is not known. The larger-seeded legumes contain more stored N,
which results in a protracted growth response under N-deficient
conditions. In addition, some PGPB strains appear to exhibit
host specificity toward different plants (Kloepper, 1996). We are
investigating these possibilities further.

Flagella are important for root colonization via cell motility,

swarming, and biofilm formation. We found that B. simplex
and the PGPB bacilli of the blue group (Figure 1) have an

identical flagellar gene arrangement (Figure 4, Supplementary
Figure 3). In contrast, members of the orange group (Figure 1), B.
thuringiensis and B. cereus, have a different flagellar arrangement
(Figure 4). It is not known if this difference is significant. In

our previous studies of plant-associated Burkholderia species,
the arrangement of the flagella genes between the plant-
associated Burkholderia species and the mammalian and
opportunistic pathogens was also dissimilar (Angus et al., 2014).
In Burkholderia, the flagellar genes were linked together on a
chromosome in the plant-associated species whereas they were
located in different parts of the genome in the pathogen-clade.
Flagella from pathogenic species are well known for triggering
induced systemic resistance (ISR) in numerous plant species,
but information about whether flagella from beneficial bacteria,
especially from PGPB Bacillus spp., affect host responses is not
available.

Volatiles are also important for inducing a systemic response.
Although several genes associated with the acetoin pathway
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are present in B. simplex 30N-5, this strain did not produce
detectable quantities of acetoin based on the Voges-Proskauer
test. We observed that none of the B. simplex genomes that have
been sequenced contain the alsD gene, whereas the genomes
of the typical PGPB bacilli do. Because AlsD is missing, alpha-
acetolactate, which is unstable following synthesis by AlsS
via the condensation of two pyruvate molecules, cannot be
converted to 3-hydroxy-2-butanone (acetoin), the precursor of
2,3-butanediol (Xiao and Xu, 2007). B. simplex M3-4, which
has a positive effect on potato tuber yields, was also found to
be negative for the Voges-Proskauer test (Velivelli et al., 2015).
Nonetheless, this strain produces volatiles, such as 2-hexen-
1-ol, 2,5-dimethylpyrazine, and several others, which inhibit
Rhizoctonia solani growth. Thus, B. simplex strains are effective
PGPB even though they do not emit 2,3-butanediol (this work;
Velivelli et al., 2015). Future studies will investigate whether B.
simplex 30N-5 produces similar volatiles.

Plant growth promotion frequently results from the action
of hormones, and auxin synthesis is a common trait that is
associated with PGPB bacilli. In it, tryptophan is converted
to IPA by L-tryptophan aminotransferase (Patten and Glick,
1996). Although several aminotransferases were detected in the
B. simplex genome, none could be specifically designated as this
enzyme or as tryptophan transferase. In addition, even though
genes were found for ipdC (indole pyruvic acid carboxylase),
dhaS (indole-3-acetaldehyde dehydrogenase), aofH (indole-3-
acetaldehyde oxidase), and yhcX (a nitrilase) based on similarities
to other Bacillus spp., the gene identities were low except for dhaS
and yhx (Figure 1). Using a sensitive and specific LC/MS/MS-
MRMassay, we could not detect IAA in cell culture homogenates,
further supporting the absence of an active biosynthetic pathway
for this hormone in B. simplex 30N-5. These results lead us to
propose that the commonly used Salkowski test is not definitive
for the synthesis of auxin by bacteria.

Polyamines are also PGP compounds. Studies by Xie et al.
(2014) showed that mutations in yecA (a permease) and speB
(encoding one of the first steps in the conversion of agmatine to
putrescine and then spermidine) eliminated the PGP activities
of B. subtilis OKB105, e.g., root elongation. Reverse phase
HPLC with UV detection of chemically-derivatized samples
detected spermidine in the OKB105 culture filtrate (Xie et al.,
2014). Our data using a more specific and sensitive assay
show that all three polyamines are present in the culture
medium of B. simplex 30N-5, and indeed based on the genome
information, the entire pathway for polyamine production is
present.

The enzyme acdS is thought to improve plant growth
by interfering with ethylene formation. It does this by
deaminating 1-aminocyclopropane-1-carboxylic acid (ACC), a
direct precursor to ethylene production. Previously, we cloned
a potential ACC deaminase gene from B. simplex 30N-5 by
using acdS primers and found a sequence that was closely
related to a gene encoding a pyridoxal phosphate-dependent
enzyme. Experimental evidence will be needed to determine if
this gene product has AcdS activity, but based on the fact that
ACC deaminase is a member of the above protein family, it
might be acdS. Nevertheless, because this gene in the B. simplex

genomes (P558 and BA2H3) available at NCBI was annotated
as a cytochrome C biogenesis protein/cysteine desulfhydrase, we
cannot be completely certain that it encodes AcdS. However,
ethylene synthesis is inhibited in plant root cells in response
to B. subtilis OKB105 in response to polyamine synthesis (Xie
et al., 2014), suggesting that polyamines may be an additional
or alternative mechanism used by certain bacilli for reducing
ethylene content in plants.

Genes encoding surfactin or related polyketides were
not detected in B. simplex 30N-5, but the entire pathway
for the synthesis of koranimine, a newly identified NRPS-
synthesized peptide (Evans et al., 2011) was found. Although
the function of this compound is unknown, cyclic imines are
well known marine-based bacterial compounds that accumulate
in crustaceans and fish possibly for defense purposes because
of their toxicity to predators when ingested (Otero et al.,
2011). Hence, the possibility exists that koranimine may play
an antibiotic role in its interactions with other microbes
and in protecting the plant. Again, additional studies are
needed.

In summary, B. simplex 30N-5 exhibits potentially novel
PGPB properties that are shared, but also dissimilar from some
of the more commonly studied PGP bacilli. To be certain that
this microbe has no deleterious effects on plants, we are testing
it and related strains on both legumes and nonlegumes as well
as on Caenorhabditis elegans to determine its lack of virulence.
Published data showed that B. simplex 237 did not have a
detrimental effect on C. elegans (Angus et al., 2014), and our
preliminary results with B. simplex 30N-5 demonstrate no toxic
effects on nematodes or onions (M. Arrabit and A.M. Hirsch,
unpubl.). Also, based on our investigations of the genome, no
obvious virulence genes are observed. Thus, B. simplex 30N-
5 may be an excellent candidate to be added to the group
of beneficial bacilli that help plants grow and survive under
sustainable agriculture conditions.
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The goal of microbiome engineering is to manipulate the microbiome toward a certain
type of community that will optimize plant functions of interest. For instance, in crop
production the goal is to reduce disease susceptibility, increase nutrient availability
increase abiotic stress tolerance and increase crop yields. Various approaches can
be devised to engineer the plant–microbiome, but one particularly promising approach
is to take advantage of naturally evolved plant–microbiome communication channels.
This is, however, very challenging as the understanding of the plant–microbiome
communication is still mostly rudimentary and plant–microbiome interactions varies
between crops species (and even cultivars), between individual members of the
microbiome and with environmental conditions. In each individual case, many aspects
of the plant–microorganisms relationship should be thoroughly scrutinized. In this article
we summarize some of the existing plant–microbiome engineering studies and point out
potential avenues for further research.
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Introduction

Virtually every plant part is colonized by microorganisms, including bacteria, archaea, fungi,
collectively designated as the plant–microbiome or phytomicrobiome. Depending on the plant
part it colonizes, the phytomicrobiome is often referred to as endophytic (inside plant parts),
epiphytic (on aboveground plant parts), or rhizospheric (in the soil closely associated to the
roots) (Kowalchuk et al., 2010; Lakshmanan et al., 2014). Microorganisms are a key component
of the plant, often inextricable from their host and the plant–microbiome is thought to function
as a metaorganism or holobiont (Bosch and McFall-Ngai, 2011; Vandenkoornhuyse et al., 2015).
The biomass and composition of the microbiome strongly affects the interactions between plants
and their environments (Ryan et al., 2009). The rhizosphere harbors a largely increased bacterial
abundance and activity, not only as compared to other plant compartments (Smalla et al., 2001;
Kowalchuk et al., 2002), but also when compared to bulk soil. However, bacterial diversity in the
rhizosphere is generally lower than in the bulk soil (Marilley and Aragno, 1999) and microbial
community composition is very different (Smalla et al., 2001; Kowalchuk et al., 2002; Griffiths et al.,
2006; Kielak et al., 2008; Bulgarelli et al., 2012; Peiffer et al., 2013), suggesting a strongly selective
environment. As the microbial density, diversity, and activity in the endosphere (the microbial
habitat inside both above- and belowground plant organs) and phyllosphere (the aboveground
plant surfaces) are generally lower than in the rhizosphere, the focus of this contribution will be
mainly on the rhizosphere.
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There is ample evidence that shows that the plant–microbe
relationship is critical to health, productivity and the overall
condition of the plant (Baudoin et al., 2003; Chaparro et al.,
2012, 2014; Marasco et al., 2012; Adesemoye and Egamberdieva,
2013; Ziegler et al., 2013; Glick, 2014). There are different
kinds of interactions between plants and microbes, spanning
the whole spectrum from beneficial to pathogenic, and the
outcome of the interaction between a plant and a microbe can
vary among this spectrum depending on plant species, nutrient
conditions, etc. (Figure 1). The goal of plant–microbiome
engineering is to push this interaction toward enhanced beneficial
outcomes for the plant. Many microbially mediated functions
are important to enhance beneficial outcome, including nutrient
cycling, mineralization of soil organic matter, induction of disease
resistance and response to abiotic stresses such as drought and
salinity (Marasco et al., 2012; Zolla et al., 2013). The plant–
microbiome interactions are complex and often depend on plant
species/cultivar, soil type and environmental conditions such
as biotic/abiotic stress, climatic conditions, and anthropogenic
effects. Different soils as well as different environmental
stresses (e.g., nutrient deficiencies, metal toxicity, pathogen
attack, etc.) have been shown to trigger plant-species-dependent
physiological responses and consequently different exudation
patterns (Bais et al., 2006; Oburger et al., 2013). Microbes
in the rhizosphere can also influence the plant exudation, as
for example, when antimicrobial-resistant Pseudomonas block
the production of plant antimicrobial compounds (Hartmann
et al., 2009). One interesting avenue for rhizosphere microbiome
engineering is to harness these variations in exudation patterns to
enhance the beneficial rhizosphere microbiome.

Signaling in the Rhizosphere

A variety of direct and indirect interactions take place in
the rhizosphere such as plant–plant, microbe–microbe, and

plant–microbe, as well as the interaction with the other
eukaryotic micro-, meso-, and macro-soil inhabitants (Tarkka
et al., 2008; De-la-Peña et al., 2012). In view of the complexity
of these interactions, knowledge of the chemical communication
between all members is essential to unravel how microbial
populations coordinate their behavior and interact with the
plant roots. Numerous literature reviews have addressed the
many different molecules and mechanisms that coordinates
the establishment of specific symbiotic interactions in the
rhizosphere with the potential to enhance plant growth and
productivity (Mabood et al., 2008; Pieterse et al., 2009; Berendsen
et al., 2012; Miller and Oldroyd, 2012; Sugiyama and Yazaki,
2012; Bakker et al., 2013; Morel and Castro-Sowinski, 2013;
Oldroyd, 2013). However, the understanding of the interactions
between the plants and the microbiome as a whole is still
rudimentary as the diversity of organisms, molecules, and
mechanisms of interaction involved is staggering. Nevertheless,
the signaling compounds that make part of this complex
rhizosphere interaction have the potential to improve plant
functions of interest if understood and harnessed.

Plants have been found to release 5–20% of net
photosynthetically fixed C into the rhizosphere (Marschner,
1995). These rhizodeposits include inorganic (CO2 from cell
respiration and H+ efflux) and a variety of complex organic
compounds like sloughed-off cells and tissue, intact root border
cells, mucilage (polysaccharides) and proteins, all of them
classified as high molecular weight compounds. Also, part of the
rhizodeposits are the insoluble and soluble low molecular weight
(LMW) organic compounds, collectively known as root exudates,
which are actively or passively released by growing roots. Root
exudates can be classified in different classes such as sugars,
amino acids, and amides, organic acids, as well as aromatic
and phenolic acids (Bais et al., 2006, 2008; De-la-Peña et al.,
2012; Oburger et al., 2013; Zhang et al., 2015). This complex
cocktail of root-secreted molecules mediate the interactions
occurring in the rhizosphere (Bakker et al., 2012; Berendsen

FIGURE 1 | The different interactions taking place within the plant–microbiome meta-organism. A vast spectrum of microorganisms are involved in these
interactions: ectomycorrhiza (ECM), arbuscular mycorrhizal fungi (AMF), plant growth promoting rhizobacteria (PGPR), phosphate-solubilizing organisms (PSOs),
endophytes, epiphytes, and microfaunal organisms.
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et al., 2012; Lakshmanan et al., 2014; Qiu et al., 2014) and
acts as chemical attractants and repellants to shape the root
microbiome (Walker et al., 2003; Berendsen et al., 2012; Ellouze
et al., 2012). From the plant point of view, the goal of shaping
the rhizosphere microbiome is to attract preferred partners like
plant growth promoting microorganisms through the exudation
of specific carbon compounds that can be used as feed and to
deter pathogens or unwanted competitors for nutrients through
the exudation of antimicrobial compounds such as volatiles or
proteins (Bais et al., 2006; Lioussanne et al., 2008; Badri et al.,
2009; Hartmann et al., 2009; De-la-Peña et al., 2012; Dangl et al.,
2013). Plant exudates are also involved in coping with herbivores,
encouraging beneficial symbioses, changing the chemical and
physical properties of the soil, and inhibiting the growth of
competing plant species (Ping and Boland, 2004; Badri et al.,
2009; Morel and Castro-Sowinski, 2013).

The quality and amount of root exudates are highly dynamic
in time and space and they depend on the plant species/cultivars,
the physiological stage of the plant (Chaparro et al., 2013,
2014), presence or absence of neighbors, plant nutritional status,
mechanical impedance (Bengough and Mullins, 1990), sorption
characteristics of the soil, and the microbial activity in the
rhizosphere (De-la-Peña et al., 2012; Oburger et al., 2013). Plant
productivity, nutrient allocation, and tissue chemistry can also
vary significantly depending on the identity of neighboring
individuals, suggesting that the effects of a given plant host
on the soil microbiome may be substantially mediated by
the community context of that host (Bakker et al., 2012,
2013). Although very complex and still not well understood,
exudation has therefore the potential to highly influence plant
performance, health, and competiveness. Some studies have
started analyzing the composition of plant root exudates (Phillips
et al., 2008; Oburger et al., 2013; Ziegler et al., 2013), but
the diversity of the compounds involved and the complexity
of the soil matrix makes comprehensive analysis difficult to
perform.

Many microorganisms also secrete signaling compounds in
the rhizosphere. According to their functions and characteristics,
these compounds have been categorized into: phytohormones,
extracellular enzymes, organic acids, surface factors [compounds
recognized by the host plant that activate an immune response
via high-affinity cell surface pattern-recognition receptors (PRR),
e.g., flagellins and lipopolysaccharides in Pseudomonas (Ping and
Boland, 2004; Dangl et al., 2013)], antibiotics and volatile signals.
Plant-associated bacteria produce and utilize diffusible quorum
sensing (QS)molecules (e.g.,N-acyl-homoserine lactones, AHLs)
to signal to each other and to regulate their gene expression
(Berendsen et al., 2012). Bacterially produced AHLs have
been shown to affect root development of Arabidopsis (Ortiz-
Castro et al., 2008) and have been suggested to elicit a
phenomenon known as induced systemic resistance (ISR) which
allows the plants to endure pathogen attacks that could be
lethal without the presence of these bacterial factors. The
effect of this mechanism is systemic, e.g., root inoculation
with many different plant growth promoting rhizobacteria
(PGPR) such as Pseudomonas, Burkholderia, and Bacillus sp.
results in the entire plant being non-susceptible to pathogens

(Schuhegger et al., 2006; Choudhary et al., 2007; Tarkka
et al., 2008), further highlighting the importance of AHLs
in cross-kingdom signaling in the rhizosphere. Plant can also
exploit this microbial communication system to manipulate
gene expression in their associated microbial communities.
For instance, some plant-associated bacteria have LuxR-like
proteins that are stimulated by plant signals (Soto et al., 2006;
Ferluga and Venturi, 2009). Certain bacteria have the capacity
to quench signals by degrading various plant- and microbial-
produced compounds in the rhizosphere such as quorum
sensing signals (Tarkka et al., 2008) and other compounds, like
ethylene, that might have negatively affected plants (Bais et al.,
2006).

Many of the plant response implicate the intervention of
the plant immune (system systemic acquired resistance or
SAR) consisting of two interconnected levels of receptors, one
outside and one inside the plant cell, that govern recognition
of microbes and response to infections. The first level of the
plant immune system is governed by extracellular surface PRRs
that are activated by recognition of evolutionarily conserved
pathogen or microbial-associated molecular patterns (PAMPs or
MAMPs). Activation of PRRs leads to intracellular signaling,
transcriptional reprogramming, and biosynthesis of a complex
output response. This response limits microbial colonization
(Dangl et al., 2013) and shapes the soil microbial community in
the rhizosphere by selective feeding of beneficial microorganisms
and by excreting substances with antimicrobial potential such
as root volatiles or root proteins which acts as the primer
barriers of plant defense (Bais et al., 2006; Badri et al., 2009;
Hartmann et al., 2009; De-la-Peña et al., 2012; Dangl et al.,
2013).

How Can we Engineer the Rhizosphere
Microbiome?

The efforts to elucidate rhizosphere interactions have often
been directed to the potential of single plant root exudates
to affect single bacteria or fungi. The clear limitation of this
type of approach is the removal of the organism from any
context that would give relevance to interspecies interactions.
The high diversity of the root- and microbe-secreted molecules
involved in rhizosphere interactions suggests that studying the
direct influence of a single compound on the microbiome might
be impossible or not realistic in nature (Ziegler et al., 2013).
Rhizosphere engineering in the environment is still a major
challenge even though some studies showed some promising
results (Tables 1–3). A vast diversity of approaches based on
inter-kingdom communication has been utilized in laboratory,
greenhouse, and field experiments in order to favor beneficial
services to the plants while minimizing inputs requirements.
Three potential routes are suggested below in Table 1, the
microbiome approach, Table 2, the plant approach, and Table 3,
the meta-organism approach. In these tables, we review more
generally rhizosphere engineering efforts, but below we will more
specifically focus on rhizosphere microbiome engineering studies
that took advantage of signalisation channels.
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TABLE 1 | Selected microbiome-based methods used to engineer the rhizosphere microbiome.

Method Mechanisms/examples Advantages Disadvantages Reference

Application of microbial
inoculants (biofertilizers).

Plant growth promoting
rhizobacteria (PGPR), Nitrogen
fixing Rhizobia
Arbuscular Mycorrhizal Fungi
(AMF), Ectomycorrhiza (ECM)
Endophytes

Enhance plant disease control and
plant performance.
Phytohormone production.
Increase plant immunity inducing
defense mechanisms system
systemic acquired resistance –
induced systemic resistance (SAR –
ISR) in the plant.
Improve soil fertility by granting
access to nutrients.
Promote nodulation and nitrogen
fixation.
Fill empty niche spaces increasing
community evenness.
Induction of suppressive soils.

Establishment of very high
population densities
immediately after inoculation,
but densities decline over time
and distance from the inoculum
source.
Potential risks associated with
the release into the
environment.
Unknown effect over native
microbial communities.

Bünemann et al.
(2006), Mabood et al.
(2008), Ryan et al.
(2009), Taghavi et al.
(2009), Friesen et al.
(2011), Bakker et al.
(2012), Chaparro et al.
(2012), Morel and
Castro-Sowinski (2013)

Recombinant strains. Transfer of specific genes by
horizontal gene transfer (HGT)
inducing the expression of
beneficial functions.
Adaptation and competence
development (resistance, resilience,
stability).

Loss of the gene of interest
within the time.
Potential risks associated with
the release into the environment
(recombinant strains).
Unpredictable or undesired
results related to the HGT.

Lynch et al. (2004),
Mercier et al. (2006),
Ryan et al. (2009)

Disruption of microbial
communities to facilitate
introduction of beneficial
microorganisms

Imposition of mechanical or
chemical disturbances: tillage,
fungicides, antibiotics, etc.

Easier to establish exogenous
communities.

Induce soil vulnerability. O’Connell et al. (1996),
Brussaard et al. (2007),
Bakker et al. (2012)

The Microbiome Route
Many of the bacteria in the rhizosphere are currently unable
to grow in the laboratory and culture-based methods are
often inadequate for qualitative analysis of the rhizosphere
microbiome. As a consequence, culture-independent approaches
such as metagenomics, metatranscriptomics, metaproteomics,
and metabolomics have been the approaches of choice when
investigating the rhizosphere microbiome (De-la-Peña et al.,
2012; Bell et al., 2014a,b; Yergeau et al., 2014; Zhang et al.,
2015). However, many rhizosphere microbiome engineering
approaches require having microbial isolates at hand, and further
efforts to increase the cultivability of rhizosphere microorganisms
will be needed. Even though cultured microorganisms show
certain functional capacity of their own, it is not clear
yet how they behave once they are introduced in a new
environmental niche as in some cases they have been shown
to be out-competed by the indigenous microbial population
(Ryan et al., 2009). The persistence and functionality of these
isolates after inoculation need to be further assessed in order
to ascertain positive impacts when used as a strategy to
manipulate the rhizosphere microbiome (Stefani et al., 2015).
Colonization and dominance of specific microbial species in
the rhizosphere is critical for both pathogenic and beneficial
soil microbes and will have an impact on disease incidence.
Although a general increase in the abundance of microbes is
always noted in the rhizosphere as compared to bulk soil, the
community structure and functional consequences associated
to this increase are poorly understood (Bais et al., 2006;
Bakker et al., 2012). An increase in the abundance, activity,
or diversity of soil organisms is generally viewed as positive

(Bünemann et al., 2006), maximizing overall microbial activity
or niche saturation which results in competitive exclusion
of pathogens, higher levels of nutrient cycling and increased
community stability (Figure 2). In that regard, the main
microbial strategy to enhance the rhizosphere microbiome
include the direct inoculation of microorganisms, focussing
on co-inoculation with several strains or mixed cultures of
arbuscular mycorrhizal fungi (AMF), ectomycorrhizal fungi
(ECM), PGPR and endophytes, enabling combined niche
exploitation, cross-feeding, enhancement of one organism’s
colonization ability, modulating plant growth, achieving niche
saturation and competitive exclusion of pathogens (Ping and
Boland, 2004; Bünemann et al., 2006; Ryan et al., 2009). Equally
important as the recruitment of the adequate microbiome for
the plant, is the activation of its specific functions. Quorum
sensing (QS) is the mechanism used to regulate distinct microbial
activities (biofilm formation, virulence, symbiosis, antibiotic
production, conjugation) and is essential for within-species
communication as well as for the crosstalk between species which
defines if the relationship with the host plant is synergic or
antagonist (Soto et al., 2006; Hartmann et al., 2009; Straight and
Kolter, 2009).

Enhancing the rhizosphere and root endosphere microbiome
often leads to an improvement of beneficial plant functional
traits as the microbes are able to expand the plant biochemical
capabilities or alter existing pathways (Table 1). For instance,
PGPR promote plant growth by acting as biofertilizer and
entering in symbiosis with their host plants, endosymbiotic
rhizobia (Bradirhizobium, Mesorhizobium, Rhizobium,
Sinorhizobium, etc) and free-living diazotrophs (Azospirillum,
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TABLE 2 | Selected plant based methods used to engineer the rhizosphere microbiome.

Method Mechanisms/examples Advantages Disadvantages Reference

Plant breeding and cultivar
selection.

Enhancing exudates production
of stimulatory or inhibitory
factors.

Influence microbial populations by
inhibiting or enhancing the growth
of selected microbial members of
the rhizosphere community.
It does not require change in
infrastructure or management in the
field.

Need for deeper knowledge on the
impact of diversity, quantity, and
consistency of exudation shaping
the microbiome.
There is no control over the
variability across environments, soil
types, and microbial communities.
There is no breeding program that
evaluates plant lines for interactions
with the soil microbiome.

Lemanceau et al.
(1995), Hartmann et al.
(2009), Ryan et al.
(2009), An et al. (2011),
Bakker et al. (2012)

Alteration of plant resistance to
disease and environmental
factors.

Improved ability to resist to adverse
environmental conditions (climatic,
edaphic, and biological).

May produce unexpected or
undesirable outcomes.

O’Connell et al. (1996),
Lynch et al. (2004)

Selection of mutants with
enhanced capacity to form
mutual symbiosis

Improved access to nutrient Could be deleterious under high
nutrient conditions
Higher percentage of carbon
allocated to symbionts

Solaiman et al. (2000)

Genetic modification:
change in the amount
and/or quality of the
organic exudates, signal
molecules, and residues
entering the soil.

Engineering plants to produce
exudates to favor specific
diversity or beneficial services.

Plant induction of microbiome
beneficial functional traits such as
nodulation, siderophore,
anti-microbial, anti-fungal, or
biological control compounds.
Improve resistance to adverse
environments.
Use in bioremediation of toxic
compounds.

Inter-species plant-microbe gene
transfers.
When a desired trait has been
engineered successfully into a
plant, the compounds might be
rapidly degraded, inactivated in the
soil, or the rate of exudation might
be too small to influence the
rhizosphere as predicted.

Truchet et al. (1991),
Downie (1994),
O’Connell et al. (1996),
Zupan et al. (2000),
Brussaard et al. (2007),
Broeckling et al. (2008),
Bakker et al. (2012),
Sharma et al. (2013)

Engineering plants to produce
exudates to modify soil
properties (acidic pH, anion
efflux from roots).

Improve plant growth at low pH,
salinity resistance, and water deficit.
Enhance plant Al3+ resistance.
Improve ability to acquire insoluble
P.
Larger roots, longer root hairs, and
greater shoot biomass.

Enzyme activities do not necessarily
lead to anion accumulation and
enhanced efflux, and suggest that
metabolic or environmental factors
can influence the effectiveness of
this approach.
The gene TaALMT1 (malate release
in the rhizosphere) needs to be
activated by Al3+.

Koyama et al. (1999),
Koyama et al. (2000),
Tesfaye et al. (2001),
Anoop et al. (2003),
Li et al. (2005),
Brussaard et al. (2007),
Delhaize et al. (2007),
Gévaudant et al.
(2007), Yang et al.
(2007), Ryan et al.
(2009)

Generation of transgenic plants
producing quorum sensing
signal molecules
N-acyl-homoserine lactone
(AHL).

May lead to an increase in plant
disease resistance by blocking
communication among members of
the plant-associated bacterial
community.

Blocking communication among
members of the beneficial plant
associated bacterial community.

Teplitski et al. (2000),
Savka et al. (2002),
Bakker et al. (2012)

Engineering plants to produce
an enzyme responsible for
degradation of the quorum
sensing signal (lactonases,
acylases).

Prevention of bacterial infection. Rhizosphere populations would be
able to capture and stably integrate
transgenic plant DNA, in particular
antibiotic resistance genes used in
the selection of successful
transgenic plants.

Dong et al. (2001),
Braeken et al. (2008),
Zhang et al. (2015)

Acetobacter, Herbaspirillum, Azoarcus, and Azotobacter, etc) fix
atmospheric nitrogen, mycorrhiza recover N from NH4 and
NO3 (Toussaint et al., 2004; Adesemoye et al., 2008; Mabood
et al., 2008; Ryan et al., 2009), and phosphate solubilizing
bacteria, AMF, ECM, and siderophore producers increase
availability of many nutrients such as phosphorous (P), iron
(Fe), cooper (Cu), Cadmiun (Cd), and zinc (Zn) (Savka
et al., 2002; Mabood et al., 2008). Rhizobacteria also act as
biocontrol agents, for instance, Pseudomonads, Bacillus, and
Streptomyces produce antibiotics (DAPG, phenazine, hydrogene
cyanide, oligomycin, etc), bacteriocines (Nisin) and antifungal

compounds (pyoluteorin, phenazines, and phoroglucinols; Ping
and Boland, 2004; Mabood et al., 2008; Paulin et al., 2009; Ryan
et al., 2009).

Another strategy is to induce plant metabolic activities
by modulating phytohormone synthesis by microbes
(phytostimulation). As we mention before, microorganisms
are capable of altering plant physiological pathways since
they are able to produce all plant hormone identified to
date (Friesen et al., 2011) or synthetize compounds that can
mimic their actions (Table 1). Using microbes to exploit
the plant hormonal system could improve plant growth and
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TABLE 3 | Selected meta-organism-based methods and other complementary methods used to engineer the rhizosphere microbiome.

Method Mechanisms/examples Advantages Disadvantages Reference

Meta-organism-based

Selecting and managing
complementary plants and
microbiomes

Crop Rotation Induction of suppressive soils by
managing soil diversity.
Higher level of nutrients cycling and
increase of organic carbon.
Improvement of physico-chemical
soil characteristics.

Mechanisms are not fully
understood

Mazzola (2002, 2007),
Ryan et al. (2009)

Engineering plants to
produce one or more
compounds and
engineering the inoculated
bacteria to degrade these
compounds.

Opine producing plants
co-inoculated with opine
utilizing bacteria

Establishing a direct trophic link
between the two partners of the
interaction.

Savka and Farrand
(1997), Dessaux et al.
(1998), Savka et al.
(2002)

Other methods

Agricultural Inputs Mineral fertilizers: urea,
ammonium nitrate, sulfates,
and phosphates.

Indirectly enhance soil biological
activity via increases in system
productivity, crop residue return,
and soil organic matter.

N fertilization generates soil
acidification and P fertilization affect
root colonization of AMF.

Savka et al. (2002),
Bünemann et al.
(2006), Mazzola (2007)

Organic fertilizers: animal
manures, composts, and
biosolids.

Increase in soil organic matter
increase soil biological activity
(organic fertilizers).

Biosolids: possible presence of
toxic substances for the soil
microflora.
Inability to predictably reproduce
compost composition.

FIGURE 2 | Different approaches to rhizosphere microbiome engineering used to bring the microbiome from a low diversity and vulnerable state,
with limited functions and productivity to a diverse and resilient state with high functional redundancy and consistent functioning across variable
environments and increased resistance to pathogen invasion.

root development, leading to higher yields. Phytohormones
produced by microorganisms such as auxins (indole-3-acetic
acid), gibberelins and citokinins mirror the action of jasmonic
acid (JA) which is critical for plant defense against herbivory,
plant responses to poor environmental conditions (abiotic
and biotic stress tolerance), regulation of signals exchange and
nodulation (Hause and Schaarschmidt, 2009) and is involved

in the signaling pathway against necrotrophic pathogens (Stein
et al., 2008). Crosstalk mediated by salicylic acid, JA and
ethylene activate plant SAR and induce systemic resistance (ISR)
reducing phytotoxic microbial communities (Ping and Boland,
2004; van Loon et al., 2006; Mabood et al., 2008). Production
of 1-aminocyclopropane-1-carboxylate (ACC) deaminase by
rhizosphere microorganism is another characteristic that can
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have a high impact on plant health as this enzyme degrades
the ethylene precursor ACC, thereby reducing ethylene levels
in the plant. When present in high concentrations ethylene
can lead to plant growth inhibition or even death, but in
lower amounts ethylene can also help the plant respond to a
wide range of environmental stresses (Ryan et al., 2009; Glick,
2014).

Inoculation of recombinant strains is another strategy
to enhance plant performance. In some cases, recombinant
strains can resolve problems related to rapid decrease in
population density and short persistence (Ryan et al., 2009),
and as reported by Taghavi et al. (2005), could result in the
enhancement of many members of the endogenous population
by the transmission of genetic information via horizontal gene
transfer (HGT). Even though very promising, the release of
recombinant strains to the environment needs to be thoroughly
assessed in order to evaluate the potential risks associated.
To maximize the effects of inoculations, the disruption of
existing microbial communities by fungicide application, crop
rotation or tilling can be used to favor the selection of the
appropriate microbiome for specific crops in order to establish
biological functions in the rhizosphere (O’Connell et al., 1996;
Savka et al., 2002; Bakker et al., 2012; Table 1). It is also
essential to understand the evolution, organization, and structure
of the rhizosphere microbial community throughout plant
developmental stages and the way they naturally manipulate
the composition of the rhizosphere microbiome, promoting,
for instance, suppressive soils (Baker and Cook, 1974; Ryan
et al., 2009; Mendes et al., 2011) or particular microbial
functions in the rhizosphere like nutrient cycling or resistance
to abiotic stress. In addition to specific microbial taxa or
functions, community-wide characteristics can also be the target
of microbiome engineering efforts as rhizosphere microbiome
richness and evenness is linked to higher resilience to disruption,
stress, and diseases. Increased microbial richness often results
in greater community-level trait diversity and/or functional
redundancy, which leads to more consistent functioning across
variable environments (Loreau et al., 2001) Because rare
members of the microbiome may be unable to effectively
perform important functions, high evenness of the microbiome
is also very important (Figure 2; Bünemann et al., 2006;
Badri and Vivanco, 2009; Bakker et al., 2012; Qiu et al.,
2014).

The Plant Route
Plant-based strategies to improve plant productivity through
the selection of a more adapted microbiome include the
manipulation of plants characteristics of interest mainly by
two different approaches: plant breeding (cultivar selection)
and specific genetic modifications (Table 2). Using plant
breeding to select for a specific microbiome is an interesting
avenue, as the technique has mainly focused on improving
yields, plant resistance to pests/diseases and other plant
physiological traits (Ryan et al., 2009). When microbiome
selection was included in plant breeding programs, very
specific functions or taxa were targeted. For example, Neal
et al. (1970, 1973) used chromosomal substitution between

two lines of wheat to improve resistance to root-rot while
preserving beneficial populations of rhizosphere bacteria, and
Mazzola (2002) compared wheat cultivars for their capacity
to stimulate disease suppression by enhancing populations
of specific antagonist (Pseudomonads) against Rhizoctonia
solani.

Choosing a naturally occurring plant species or cultivar
with a high capacity to recruit a beneficial microbiome or to
promote the “suppressiveness” of soils is an alternative option
that has been explored (Neal et al., 1973; Mazzola, 2002;
Bakker et al., 2012). For instance, in the rhizosphere of plants
growing in contaminated soils, the host plant exudes specialized
antimicrobials and signaling molecules (i.e., flavonoids, salicylic
acid, and phytoalexins), carbon and nitrogen compounds that
promotes the expression of hydrocarbon degradation genes
such as the genes coding for alkane hydroxylases (responsible
for the aerobic degradation of aliphatic hydrocarbons) and
several genes coding for enzymes implicated in the metabolism
of aromatic compounds (Yergeau et al., 2014; Pagé et al.,
2015). This recruitment was shown to be cultivar-specific, with
native cultivar having an increased capacity to recruit beneficial
ECM when growing in highly contaminated soils (Bell et al.,
2014a), suggesting that native cultivars can better communicate
with indigenous soil microorganisms. Accumulating evidence
supports the feasibility of creating biotic soil environments
that promote root health using selected plant genotypes.
Ellouze et al. (2013) showed in the semiarid grasslands
of North America, certain chickpea cultivars can select a
more beneficial microbiome for the subsequent wheat plants
and were associated with the antagonist species Penicillium
canescens.

Using plants as selective agents to enrich beneficial microbial
functions in soil implies the inclusion of other variables such
as soil type and properties: different soil types not only shape
the microbial communities, but also impact plant physiology,
which in turn could alter interactions with soil microbes.
The creation of genetically modified plants with enhanced
ability to harbor particular exudation patterns to change soil
properties have already been investigated (Table 2). Li et al.
(2005); Gévaudant et al. (2007), and Yang et al. (2007) have
worked to manipulate rhizosphere pH using transgenic lines
of Nicotiana tabacum and Arabidopsis plants, transformed
to over express a modified H+ATP-ase protein (PMA4 in
tobacco and AVP1 pyrophosphatase in Arabidopsis) generating
phenotypes such as increased H+-efflux from roots, more
acidic rhizosphere, improved growth at low pH, improved
salinity resistance (tobacco lines), plant mineral nutrition (P
mineralization), and exhibiting enhanced resistance to water
deficits (AVP1).

Plants can also be genetically modified to alter soil organic
anion efflux and transportation from roots by (1) engineering
plants with a greater capacity to synthesize organic anions
or (2) engineering plants with a greater capacity to transport
organic anions out of the cell. The organic anions malate
and citrate have been studied as they are commonly release
in response to nutrient deficiency and mineral stress. Koyama
et al. (1999) and Koyama et al. (2000) reported that transgenic
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plants with higher ability to excrete citrate from the roots
grew better on P-limited soil than the wild type, suggesting
crop plants with an enhanced ability to use Al-phosphate
and therefore an enhanced ability to grow in acid soils and
superior Al tolerance. In order to address the toxicity of the
Al3+ in acidic soils, a very common problem in agriculture,
Tesfaye et al. (2001), Anoop et al. (2003), and Delhaize et al.
(2007) have also reported the use of transgenic plants (Medicago
sativa, Brassica napus, and Hordeum vulgare) expressing genes
coding for ALMT (Al3+-activatedmalate transporter) andMATE
(multi-drug and toxin extrusion) membrane proteins, a strategy
to improve the P efficiency of plants and Al3+ resistance
(Table 2).

Quorum sensing has been targeted by creating transgenic
plants that would be able to mimic or interrupt bacterial QS
signals by producing enzymes responsible for their degradation
(acylases and lactonases). These modifications allowed these
plants to defend themselves more efficiently against some
pathogenic bacteria (Savka et al., 2002; Braeken et al., 2008;
Ryan et al., 2009; Bakker et al., 2012). Many other studies
have focused on the genetic manipulation of plants in order to
modify the key exudates to favor the establishment of the desired
plant–microbiome (Table 2). Genetic engineering provides
unique opportunities to modulate plant–microbe signaling, to
diversify exudation, to encourage diverse microbiomes or to
stimulate beneficial microbial functions in the rhizosphere.
However, despite these efforts, large-scale breeding/genetic
improvement programs rarely take into account the plant–
microbiome signaling channels during the development of new
plant lines.

The Meta-Organism Route
The microbiome and the plant are highly dependent on each
other as the microbiome contribute a significant portion of
the secondary genome of the host plant, highlighting that the
plant an its microbiome might function as a meta-organism
or holobiont (Lakshmanan et al., 2014). Taking into account
the meta-organism and trying to optimize the whole system
instead of each of the part separately is a promising avenue
for rhizosphere microbiome engineering. This is the case
of the “opine concept” that combined engineering plants to
produce specific exudates together with the inoculation of
engineered microbes that are able to degrade this substrate,
resulting in the colonization of the rhizosphere by a specific
population (Table 3). It was also observed that opine production
by transgenic plants led, in the long term, to the selection
of bacterial populations adapted to the rhizosphere that
can maintain themselves at high concentrations, even after
removal of the transgenic plants (O’Connell et al., 1996;
Savka et al., 2002; Ryan et al., 2009). These strategies (using
specific metabolic resources) are highly specific, focusing on
interactions between, for example, opine-producing plants,
and members of the microbiome responsible for functions
such as nodulation and N-fixation. However, this “opine”
approach does not take into account others species that could
have important functions or fill niche to reduce pathogen
vulnerability.

In order to amplify the spectrum of diversity and ecological
services to the crops, another strategy to shift rhizosphere
microbiome is crop rotation. This strategy could be optimized by
taking into account the whole plant–microbiome metaorganism.
Indeed, plants are cultured in turns bringing their associated
microbiome and generating beneficial allopathy. Crop
history and cultivar selection stimulate specific rhizobacterial
populations that complements each other developing a beneficial
synergy between the cultures. Sturz et al. (1998) reported
evidence for the role of bacterial endophytes resulting from the
intercrop alternation of red clover and potato promoting plant
growth and yield in the potato crops. Mazzola (2007) stated that
most common and effective scheme to modify the rhizosphere
has been the use of crop rotation. As increased plant diversity can
enhance microbial community biomass, mixed cropping systems
will generate a more diverse microbial community and thus
should be more resilient to pathogen invasion. Disease control
is achieved as the plant host for certain pathogen is absent
resulting in the diminished viability of this pathogen. Some
other advantages of these rhizosphere microbiome engineering
approaches are an increase of soil organic carbon, a higher level
of nutrients cycling and an improvement of physico-chemical
soil characteristics (O’Connell et al., 1996; Sturz et al., 1998;
Bakker et al., 2012).

Phytoremediation is another application where harnessing
the plant–microbiome holobiont could significantly improve
processes (Bell et al., 2014b). In the rhizosphere of contaminated
soils, microbes increase the recycling and dissolving of mineral
nutrients and the synthesis of amino acids, vitamins, auxins, and
gibberellins that stimulate plant growth. These highly competitive
populations seem to be selected by the host plant via exudation
of specialized antimicrobials and signaling molecules (e.g.,
flavonoids, salicylic acid, and phytoalexins), carbon and nitrogen
compounds, resulting in the degradation or transformation of
contaminants due to both increased microbial activity and plant
intervention (Marihal and Jagadeesh, 2013; Yergeau et al., 2014).
Microorganisms also facilitate the uptake of contaminants and
plant resistance to pollutant stress (Taghavi et al., 2005; Nadeem
et al., 2013; Bell et al., 2015).

Finally, we should briefly mention organic agricultural inputs
as a complementary strategy not included in the abovementioned
categories (microbe, plant, or meta-organisms), but that also
results in the modification of the rhizosphere microbiome.
Organic agriculture aims at limiting or preventing the exposure
of plants, microbes, and humans to unnecessary hazards such
as pesticides, herbicides, insecticides, and fungicides. Organic
fertilizer such as animal manure, biosolids, and compost has been
proposed as a resource to amend crops but some disadvantage
should be taken into account, namely, increase salinity, presence
of active therapeutic agents (manure and sludge waste), heavy
metals such as zinc, cooper, and cadmium (industrial biosolids)
and residues of synthetic molecules like pesticides, herbicides
etc, (green wastes or compost; Table 3). An important aspect to
consider when applying any agricultural inputs is to target the
increase in the levels of soil organic matter that in turn, will also
increase soil biological activity (Savka et al., 2002; Bünemann
et al., 2006; Mazzola, 2007).
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Conclusion and Outlook

The microbiome is emerging as a fundamental plant trait,
resulting in beneficial or detrimental effects on plant growth,
health, productivity, and functions. This delicate balance is
controlled by complex chemical signals interplay between
the plant and its microbiome. Further research aiming at
understanding this interplay at the community level is needed to
fully understand the factors controlling microbiome assemblage
and its feedback to the plant host. New ‘omics tools will

undoubtedly help attaining that goal, but at the same time
further efforts to cultivate the rhizosphere microbiome will also
be needed to reach a deeper mechanistic understanding of it.
Based on the engineering efforts detailed in this contribution,
further research will hopefully result in methods to purposefully,
reliably, and sustainably engineer plant–microbiomes. A full
optimization of the plant–microbiome meta-organism should
result, among others, in a more sustainable agriculture,
reduced greenhouse gas emissions, and increased rates of soil
decontamination.
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Bacteria produce and excrete a versatile and dynamic suit of compounds to
defend against microbial competitors and mediate local population dynamics. These
include a wide range of broad-spectrum non-ribosomally synthesized antibiotics, lytic
enzymes, metabolic by-products, proteinaceous exotoxins, and ribosomally produced
antimicrobial peptides (bacteriocins). Most bacteria produce at least one bacteriocin.
Bacteriocins are of interest in the food industry as natural preservatives and in
the probiotics industry, leading to extensive studies on lactic acid bacteria (colicin
produced by Escherichia coli is a model bacteriocin). Recent studies have projected
use of bacteriocins in veterinary medicine and in agriculture, as biostimulants of
plant growth and development and as biocontrol agents. For example, bacteriocins
such as Cerein 8A, Bac-GM17, putidacin, Bac 14B, amylocyclicin have been studied
for their mechanisms of anti-microbial activity. Bac IH7 promotes tomato and musk
melon plant growth. Thuricin 17 (Th17) is the only bacteriocin studied extensively
for plant growth promotion, including at the molecular level. Th17 functions as a
bacterial signal compound, promoting plant growth in legumes and non-legumes.
In Arabidopsis thaliana and Glycine max Th17 increased phytohormones IAA and
SA at 24 h post treatment. At the proteome level Th17 treatment of 3-week-
old A. thaliana rosettes led to >2-fold changes in activation of the carbon and
energy metabolism pathway proteins, 24 h post treatment. At 250 mM NaCl stress,
the control plants under osmotic-shock shut down most of carbon-metabolism
and activated energy-metabolism and antioxidant pathways. Th17 treated plants,
at 250 mM NaCl, retained meaningful levels of the light harvesting complex,
photosystems I and II proteins and energy and antioxidant pathways were activated,
so that rosettes could better withstand the salt stress. In Glycine max, Th17
helped seeds germinate in the presence of NaCl stress, and was most effective
at 100 mM NaCl. The 48 h post germination proteome suggested efficient and
speedier partitioning of storage proteins, activation of carbon, nitrogen and energy
metabolisms in Th17 treated seeds both under optimal and 100 mM NaCl. This
review focuses on the bacteriocins produced by plant-rhizosphere colonizers and
plant-pathogenic bacteria, that might have uses in agriculture, veterinary, and human
medicine.
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INTRODUCTION TO BACTERIOCINS

Microbial population dynamics are primarily controlled by the
products bacteria produce and excrete into their environs. This
versatile and a dynamic suit of compounds order the defense
mechanisms, rightly described as “a never ending arms race”
(Riley, 1998) against microbial competitors and also as signaling
compounds for plant colonization in a given soil. The excreted
bacterial compounds we recognize now include a wide range
of broad-spectrum non-ribosomally synthesized antibiotics, lytic
enzymes (lysozymes), metabolic by-products such as organic
acids, proteinaceous exotoxins, and chromosomally and/or
ribosomally produced antimicrobial peptides, referred to as
bacteriocins that are of particular importance in bacterial
defense. It is supposed that most bacteria produce at least one
bacteriocin.

Bacteriocins are extracellular substances produced by bacteria
having distinctive morphological and biochemical characteristics,
ranging from a very low to high molecular weight complexes,
wherein the activity is predominantly associated with a protein.
They are mostly synthesized from plasmids, but many are of
chromosomal origin as well and are synthesized at various stages
of bacterial growth and under various environmental conditions
(Daw and Falkiner, 1996); they affect the growth of related
bacterial species. Bacteriocins are grouped into four distinct
classes based on peptide characteristics such as post translational
modifications, side chains, heat stability, N-terminal sequence
homology, and molecular weight (Klaenhammer, 1993). Bacillus
species were first reported to produce bacteriocins in 1976 and
the diversity of these is well described in the review by Abriouel
et al. (2011). The low-molecular-weight bacteriocins of the
Gram-positive bacteria were reported to demonstrate bactericidal
activity, mainly against certain other Gram-positive bacteria
(Tagg et al., 1976). The most studied bacteriocin is colicin of
the Enterobacteriaceae (Pugsley, 1984). Due to their commercial
importance as natural preservatives, and as therapeutic agents
against pathogenic bacteria, these antimicrobial peptides have
been a major area of scientific research (Tagg et al., 1976; Jack
et al., 1995; de la Fuente-Salcido et al., 2013). Nisin, synthesized
by Lactococcus lactis, is the only bacteriocin generally regarded as
safe for human consumption (GRAS) but has limited usage since
it is ineffective against Gram-negative bacteria (Olasupo et al.,
2003) necessitating exploration of newer bacteriocins. Hence, this
review is an update regarding the bacteriocins produced by plant-
rhizosphere colonizers and those from plant-pathogenic bacteria
that might have uses in agriculture and veterinary or human
medicine.

BACTERIOCINS FROM RHIZOSPHERE
BACTERIA

The bacteriocin cerein7, from Bacillus cereus with a mass
of 3.94 kDa was the first to be isolated from this species
(Oscáriz et al., 1999) although other bacillus species such as
B. thuringiensis, B. subtilis, B. stearothermophilus, B. licheniformis,
B. megaterium, and B. cereus were reported earlier to produce

bacteriocin like products, of which subtilin from B. subtilis has
been studied widely. The earliest studies of bacteriocin mode of
action focused on Rhizobium lupini isolated from root nodules
of lupines that harbor two strains of the species 16-2 and 16-3,
the latter of which produces a bacteriocin to inhibit the growth
of its closely associated 16-2 strain (Lotz and Mayer, 1972).
A comparison of these two strains revealed that bacteriocin
activity of one bacteria can be neutralized by lipopolysaccharides
of other associated bacteria, by micellar modulation of LPS for
bacteriocin adsorption. This bacteriocin neutralizing activity,
as seen in bacteriocin sensitive R. lupini 16-2 (Pfister and
Lodderstaedt, 1977), leads one to wonder why certain bacteria
are able to adapt and colonize plant roots more effectively,
despite their sensitivity to bacteriocins. Now we are aware that
bacteriocin resistance can be innate or acquired and this varies
across strains of the same bacterial species. In general changes
to the bacterial cell wall resulting in loss of bacteriocin insertion
or binding regions, sequestration of bacteriocins, export or
degradation of bacteriocins have been adopted by Gram-positive
bacteria (de Freire Bastos et al., 2015).

Cerein 8A isolated from B. cereus 8A, interferes with cell
membrane integrity and causes cell wall damage (Bizani et al.,
2005), which is seen to be the mode of action of many
bacteriocins. (Please refer to Table 1 for bacteriocins from
B. thuringiensis and examples of other bacteria). Bacteriocin
Bac-GM17 from the rhizosphere bacteria Bacillus clausii strain
GM17 of Ononis angustissima Lam. is a 5.158 kDa monomer
protein with a unique sequence and having bactericidal effect
on Agrobacterium tumefaciens C58 and fungistatic effect on
Candida tropicalis R2 CIP203 (Mouloud et al., 2013). The
bacteriocin putidacin, produced by Pseudomonas putida strain
BW11M1, isolated from banana root, is very similar to mannose-
binding plant lectins (Parret et al., 2003). Amylocyclicin, a
6.381 kDa peptide from Bacillus amyloliquefaciens FZB42, is
a novel circular, ribosomally synthesized bacteriocin with high
antibacterial activity to closely related Gram-positive bacteria
(Scholz et al., 2014). B. subtilis strain 14B produces Bac 14B, a
21 kDa bacteriocin that is effective against crown gall disease
caused by A. tumefaciens (Hammami et al., 2009). B. subtilis
strain IH7 produces a bacteriocin Bac IH7 which is reported to
be a plant growth promotor. Tomato and muskmelon treated
with Bac IH7 showed enhanced germination percentage and
increased shoot weight and height and root lengths; it also
served as a biocontrol for Alternaria solani and other seed borne
pathogens (Hammami et al., 2011). A 25–35 kDa bacteriocin
from Lysinibacillus jx416856, a bacteria isolated from fruit and
vegetable waste, was observed to inhibit food borne pathogens
such as Staphylococcus aureus, Staphylococcus epidermidis, and
B. cereus (Ahmad et al., 2014).

Some plant pathogens have also been found to produce
bacteriocins. Phytopathogenic strain Erwinia carotovora NA4,
isolated from diseased fruits and vegetables, produces the
bacteriocin erwiniocin NA4 and Agrobacterium radiobacter NA5
(pepper rhizosphere isolate) produces agrocin NA5 (Jabeen
et al., 2004). Tomato pathogen Clavibacter michiganensis ssp.
michiganensis produces a bacteriocin michiganin A, which
inhibits the growth of another pathogen C. michiganensis subsp.
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sepedonicus, which causes ring rot of potatoes. This bacteriocin
also has similarity to a type B lantibiotic produced by the
actinomycete Actinoplanes liguriae (Holtsmark et al., 2006).
Pseudomonas syringae pv. syringae produces S-type pyocins (Feil
et al., 2005), which are also produced by the opportunistic
human pathogen Pseudomonas aeruginosa. Carocin S1, is a
55 kDa bacteriocin from Pectobacterium carotovorum (previously
known as E. carotovora ssp. carotovora; Holtsmark et al.,
2008).

Bacillus thuringiensis is the most studied Bacillus species due
to its interesting array of excreted proteins. B. thuringiensis
is a Gram-positive spore-forming bacterium characterized and
distinguished from closely related Bacillus species by its ability
to synthesize characteristic endotoxins that are active against
diptera, coleoptera, and Lepidoptera larvae (Schnepf et al.,
1998; Palma et al., 2014). Widely used as a bioinsecticide,
it also accounts for about 90% of the commercially available
biopesticides produced (Chattopadhyay et al., 2004), apart from
the Bt genes incorporation in several commercial crops, the
proteomics and genomics of which is well known (Ibrahim
et al., 2010; de la Fuente-Salcido et al., 2013). B. thuringiensis
was discovered as early as 1901 in Japan by bacteriologist S.
Ishiwata as an isolate from diseased Bombyx mori (L.) larvae
and was named Sottokin meaning “Sudden death bacillus”.
A similar study by Ernst Berliner, described B. thuringiensis
as the causal organism of insect death isolated from Anagasta
kuehniella (Zeller) larvae from Thuringia, Germany in 1915
[Beegle and Yamamoto, 1992 (a very good review for the history
of B. thuringiensis)].

Bacillus thuringiensis strains have been found to produce
bacteriocins such as thuricin (>950 kDa; Favret and Yousten,
1989), tochicin (10.5 kDa; Paik et al., 1997), thuricin 7 (11.6 kDa;
Cherif et al., 2001), thuricin 439A and thuricin 439B (2.9 and
2.8 kDa, respectively; Ahern et al., 2003), entomocin 9 (Cherif
et al., 2003), bacthuricin F4 (3.160 kDa; Kamoun et al., 2005),
thuricin 17 (3.162 kDa; Gray et al., 2006b), etc. A comprehensive
list of known bacteriocins is provided in Table 1. New
bacteriocins are being discovered regularly. Raddadi et al., (2009)
evaluated 16 strains of B. thuringiensis for their capability to
protect plants from phytopathogens. Among them, Bt HD868
tochigiensis and Bt HD9 entomocidus strains were observed to
be the least cytotoxic, and hence potentially acceptable for the
food industry and field crop application for protection against
deleterious bacteria. This compatibility was based on the levels
of autolysins, bacteriocins and AHL-lactonases, and antibiotic
Zwittermicin A activities. Further these strains were also active
against fungal diseases caused by Aspergillus niger, Aspergillus
fumigatus, Aspergillus flavus, Cryphonectria parasitica, Fusarium
oxysporum, Monilia sitophila, Monilia hiemalis, Penicillium
digitatum, and Rhizopus sp. (Raddadi et al., 2009). While many
B. thuringiensis strains have been identified and bacteriocins were
isolated and characterized to an extent, none of these bacteriocins
have been studied for plant growth promotion as extensively as
thuricin 17 from B. thuringiensisNEB17.

Bacillus thuringiensis NEB17 was isolated from soybean root
nodules as putative endophytic bacteria in 1998 in Prof. Donald
Smith’s laboratory at McGill University. When co-inoculated

TABLE 1 | Bacteriocins identified from Bacillus thuringiensis and
examples of other bacteriocin producers.

Bacillus
thuringiensis
strain

Name of
Bacteriocin
identified

Molecular
weight

Reference

HD-2 Thuricin >950 Da Favret and Yousten,
1989

ssp. tochigiensis
HD868

Tochicin 10.5 kDa Paik et al., 1997

BMG1.7 Thuricin 7 11.6 kDa Cherif et al., 2001

B439 Thuricin 439 3 kDa Ahern et al., 2003

ssp. entomocidus
HD9

Entomocin 9 12.4 kDa Cherif et al., 2003

BUPM4 Bacthuricin F4 3.1 kDa Kamoun et al.,
2005

NEB17 Thuricin 17 3.16 kDa Gray et al., 2006b

ssp. entomocidus
HD110

Entomocin 110 4.8 kDa Cherif et al., 2008

ssp. entomocidus
HD198

Thuricin S 3.1 kDa Chehimi et al.,
2007

ssp. morrisoni
(LBIT 269

Morricin 269 10 kDa Barboza-Corona
et al., 2007; de la
Fuente-Salcido
et al., 2008

ssp. kurstaki (LBIT
287)

Kurstacin 287 10 kDa Barboza-Corona
et al., 2007; de la
Fuente-Salcido
et al., 2008

ssp. kenyae (LBIT
404)

Kenyacin 404 10 kDa Barboza-Corona
et al., 2007; de la
Fuente-Salcido
et al., 2008

ssp. entomocidus
(LBIT 420)

Entomocin 420 10 kDa Barboza-Corona
et al., 2007; de la
Fuente-Salcido
et al., 2008

ssp. tolworthi (LBIT
524)

Tolworthcin 524 10 kDa Barboza-Corona
et al., 2007; de la
Fuente-Salcido
et al., 2008

SF361 [isolated
from honey]

Thuricin H 3.1 kDa Lee et al., 2009a

DPC6431 Thuricin CD 2.763/
2.861 kDa

Rea et al., 2010

BUPM103 Bacthuricin F103 11 kDa Kamoun et al.,
2011

ssp. kurstaki Bn1
[isolated from a
Hazel nut pest]

Bn1 3.193 kDa Ugras et al., 2013

Examples from Bacillus and other bacterial species

Bacillus cereus Cerein 7 3.94 kDa Oscáriz et al., 1999

Pseudomonas
putida BW11M1

Putidacin Parret et al., 2003

Bacillus cereus 8A Cerein 8A Bizani et al., 2005

Clavibacter
michiganensis ssp.
michiganensis

Michiganin A Holtsmark et al.,
2006

Bacillus
licheniformis

BL8 1.4 kDa Smitha and Bhat,
2012

Bacillus clausii Bac GM17 5.158 kDa Mouloud et al.,
2013
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with Bradyrhizobium japonicum under nitrogen free conditions,
this bacterium promoted soybean growth, nodulation, and grain
yield (Bai et al., 2002b, 2003). Subsequently, the causative agent
of plant growth promotion, a bacteriocin, was isolated from
B. thuringiensis NEB17, and is now referred to as thuricin 17
(Gray et al., 2006b). Initially, its partial sequence was determined
(Gray et al., 2006a), and its full sequence has since reported (Lee
et al., 2009b). Thuricin 17 is a low molecular weight peptide
of 3.162 kDa, stable across a pH range of 1.0–9.25, highly
heat resistant and is inactivated by treatment with proteolytic
enzymes. Based on its N-terminal sequence homology of Th17
and that of bacthuricin F4, a new class of bacteriocins, class IId
was proposed (Gray et al., 2006b). The bacteriocins produced
by B. thuringiensis strain NEB17 (Th17) and B. thuringiensis
ssp. kurstaki BUPM4 (bacthuricin F4 – 3160.05 Da) have been
reported to show functional similarities and anti-microbial
activities (Jung et al., 2008a).

In addition, Th17, applied as leaf spray and root drench,
has positive effects on soybean and corn and stimulated plant
growth. The leaves of 2-week-old soybean leaves sprayed with
Th17 showed increased activities of lignification-related and
antioxidative enzymes and their isoforms (Jung et al., 2008a;
Lee et al., 2009b); this constituted the first report of plant
growth stimulation by a bacteriocin. Recent research on Th17
has highlighted its plant growth promotion and abiotic stress
alleviation properties. It was found that at 24 h after exposure
to Th17, Arabidopsis thaliana Col-0 rosettes showed decreased
levels of cytokinins, gibberellins, JA, and ABA; and an increase
in IAA (85.39%) and SA (42.21%) as compared to untreated
control plants. A. thaliana responded positively to treatment
with Th17 in the presence of salt stress (up to 250 mM NaCl).
Shotgun proteomics of unstressed and 250 mM NaCl stressed
A. thaliana rosettes (7 days post stress) in combination with
Th17 revealed carbon and energy metabolic pathways being
affected under both unstressed and salt stressed conditions.
Chloroplast proteins and proteins of photosystem I and II that
are generally strongly and negatively affected by salt stress and
PEP carboxylase, Rubisco-oxygenase large subunit, and pyruvate
kinase, were some of the noteworthy proteins enhanced (>2-fold
changes in the activation of the carbon and energy metabolism
pathway) by Th17 application, along with other stress related
proteins. These findings suggest that the proteome of A. thaliana
rosettes is altered by the bacterial signal, and more so under salt
stress, thereby imparting a positive effect on plant growth under
high salt stress (Subramanian, 2014).

Application of Th17, under water stress conditions, to
1 month-old soybean plants increased plant biomass by 17%,
root biomass by 37% and root nodule biomass by 55%, and also
the amount of abscisic acid in soybean roots by 30% (Prudent
et al., 2014). Application of Th17 to soybean seeds (variety
Absolute RR) caused accelerated seed germination under salt
stress of up to 150 mM NaCl, with the best response seen at
100 mM NaCl. Shotgun proteomics of unstressed and 100 mM
NaCl stressed seeds (48 h) in combination with Th17 revealed
that carbon, nitrogen and energy metabolic pathways were
affected under both unstressed and salt stressed conditions. PEP
carboxylase, Rubisco oxygenase large subunit, pyruvate kinase,

alcohol dehydrogenase, and isocitrate lyase were some of the
noteworthy proteins enhanced (>2-fold changes), by the signal,
along with antioxidant glutathione-S-transferase and other stress
related proteins. The up-regulation of PEP carboxylase and a
marked down-regulation of α- and β-subunits of conglycinin,
glycinin, as compared to the control treatment, is indicative
of efficient storage protein utilization in conjunction with
thioredoxin. These findings suggest that the germinating seeds
alter their proteome based on bacterial signals and on stress
level; the specificity of this response plays a crucial role in
organ maturation and transition from one stage to another in a
plant’s life cycle; understanding this response is of fundamental
importance in agriculture and, as a result, global food security
(Subramanian, 2014). As observed in our experiments, the
effective concentration of bacteriocin for enhanced plant growth
and production is in the order of nanomolar (10−9 M), which
makes it economically viable as method to decrease the use of
energy based fertilizers and chemicals used in agricultural crop
production systems.

BACTERIOCINS IN THE VETERINARY
INDUSTRY AND HUMAN MEDICINE

Bacteriocins from B. thuringiensis also have proven to be of
importance in veterinary medicine. S. aureus causes clinical
and subclinical bovine mastitis, which is difficult to treat due
to increased frequency of resistance to antimicrobial agents.
S. aureus isolates recovered from milk composite samples
of Holstein lactating cows in Mexico were evaluated for
susceptibility of the isolates to 12 antibiotics and five bacteriocins
from B. thuringiensis. S. aureus isolates were resistant to
penicillin (92%), dicloxacillin (86%), ampicillin (74%), and
erythromycin (74%) and susceptible to gentamicin (92%),
trimethoprim (88%) and tetracycline (72%). S. aureus isolates
also showed susceptibility to the five bacteriocins synthesized
by B. thuringiensis, morricin 269 and kurstacin 287 followed by
kenyacin 404, entomocin 420 and tolworthcin 524 suggesting an
alternate method of controlling bovine mastitis (Barboza-Corona
et al., 2009).

Mexican strains of B. thuringiensis, B. thuringiensis ssp.
morrisoni (LBIT 269), B. thuringiensis ssp. kurstaki (LBIT 287),
B. thuringiensis ssp. kenyae (LBIT 404), B. thuringiensis ssp.
entomocidus (LBIT 420) and B. thuringiensis ssp. tolworthi
(LBIT 524) produce proteinaceous Bt-BLIS bactericidal activities
against B. cereus and Vibrio cholera (Barboza-Corona et al.,
2007) but had no effect against Gram-negative bacteria such
as Escherichia coli, Shigella species, and P. aeruginosa, all of
which are human pathogens. Entomocin 9 was found to be
bactericidal to Listeria monocytogenes, pathogenic P. aeruginosa
and several fungi causing cell lysis of growing cells and non-
toxic to Vero cells (Cherif et al., 2003). Thuricin 439, however,
is a narrow spectrum bacteriocin capable of affecting growth of
B. cereus (Ahern et al., 2003), while thuricin S is anti-Listeria
(Chehimi et al., 2007) and a pore-forming bacteriocin (Chehimi
et al., 2010). B. cereus cells protect themselves from Enterocin
AS-48 produced by Enterococcus faecalis S48 by up-regulating the
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BC4207 membrane protein for probable membrane structure
modulation (Burgos et al., 2009). While pyocins produced by
P. aeruginosa strains have proven to be toxic by degrading
DNA in sensitive bacterial cells (Parret and De Mot, 2002).
B. subtilis strain LFB112 from Chinese herbs produces a 6.3 kDa
bacteriocin that is effective against E. coli, Salmonella pullorum,
P. aeruginosa, Pasteurella multocida, Clostridium perfringens,
Micrococcus luteus, Streptococcus bovis, and S. aureus IVDC
C56005, all of which are common domestic animal related
pathogens (Xie et al., 2009).

Optimizing medium composition, incubation and agitation
speed can result in enhancement of the production of some
bacteriocins. For example, B. thuringiensis subsp. kurstaki strain,
producing the bacteriocin Bacthuricin F4 when grown in TSB
medium with an optimal carbon–nitrogen ratio of 9 increases
the bacteriocin production fourfold (Kamoun et al., 2009).
Bacteriocin Bacillus sp. YAS 1 could be increased 1.6-fold by this
method. This bacteriocin had a wide pH range (1–13) as well
as temperature (45–80◦C) with antimicrobial activity to human
pathogens such as Clostridium, Staphylococcus, Enterococcus, and
Salmonella, and plant pathogens such as E. amylovora, and
showing no effect on lactic acid bacteria (Embaby et al., 2014).

BACTERIOCINS FROM OTHER
INTERESTING BACTERIAL SOURCES

While most bacteriocins we know today have been isolated
from the rhizosphere bacteria, bacteria producing bacteriocins
are wide spread. A B. subtilis strain isolated from a Chinese
fermented seasoning produces a 3.4 kDa bacteriocin that is
active against B. cereus and L. monocytogenes (Zheng and Slavik,
1999). Maari, an alkaline fermented food condiment made from
baobab tree seeds, is comprised of several strains of B. subtilis,
all of which are necessary for enhancing the flavor and texture
of the product. Three B. subtilis strains (B3, B122, and B222)
isolated from maari produced bacteriocins that had antibacterial
activities against B. cereus NVH391-98, a common opportunist

human pathogen that contaminates maari (Kaboré et al., 2013).
People in Burkina Faso and neighboring countries consume
a fermented product called bilakga, derived from the seeds
of Hibiscus sabdariffa. The fermentation concoction is largely
comprised of B. subtilis subsp. subtilis and Bacillus licheniformis
isolates. PCR detection of genes coding for surfactins and
plipastatins (fengycins) suggested the production of subtilosin,
subtilin and lipopeptide, while a protein (a probable bacteriocin)
with a mass of 3.347 kDa was also isolated (Compaoré et al.,
2013). B. thuringiensis ssp. kurstaki Bn1 isolated from hazel nut
pest Balaninus nucum L. produces a bacteriocin Bt-Bn1, the
first of its kind of insect origin. Like its potential commercial
counterparts, this bacteriocin has antibacterial activity against
B. cereus, P. syringae, and P. lemoignei, and other B. thuringiensis
strains (Ugras et al., 2013).

CONCLUSION

Excessive use of fertilizers and other chemicals in agriculture
and multi-drug resistant microbes are two major challenges
for scientists worldwide. Bacteriocins evaluated as plant growth
promotors and those with disease suppression mechanisms are
a viable option for efficient use in agriculture, to reduce the
use of fertilizers and chemical inputs such as fungicides and
insecticides. With respect to multi-drug resistance, bacteriocins
can be interesting in commercial utilization as target proteins for
replacing ineffective antibiotics or for combinatorial drug therapy
both in veterinary and human medicine, apart from their use in
food preservation.
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