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Since the 20th century, cancer has been a growing threat to human health. Cancer is a
malignant tumor with high clinical morbidity and mortality, and there is a high risk of
recurrence after surgery. At the same time, the diagnosis of whether the cancer is in situ
recurrence is crucial for further treatment of cancer patients. According to statistics, about
90% of cancer-related deaths are due to metastasis of primary tumor cells. Therefore, the
study of the location of cancer recurrence and its influencing factors is of great significance
for the clinical diagnosis and treatment of cancer. In this paper, we propose an assisted
diagnosis model for cancer patients based on federated learning. In terms of data, the
influencing factors of cancer recurrence and the special needs of data samples required
by federated learning were comprehensively considered. Six first-level impact indicators
were determined, and the historical case data of cancer patients were further collected.
Based on the federated learning framework combined with convolutional neural network,
various physical examination indicators of patients were taken as input. The recurrence
time and recurrence location of patients were used as output to construct an auxiliary
diagnostic model, and linear regression, support vector regression, Bayesling regression,
gradient ascending tree and multilayer perceptrons neural network algorithm were used
as comparison algorithms. CNN’s federated prediction model based on improved under
the condition of the joint modeling and simulation on the five types of cancer data accuracy
reached more than 90%, the accuracy is better than single modeling machine learning
tree model and linear model and neural network, the results show that auxiliary diagnosis
model based on the study of cancer patients in assisted the doctor in the diagnosis of
patients, As well as effectively provide nutritional programs for patients and have
application value in prolonging the life of patients, it has certain guiding significance in
the field of medical cancer rehabilitation.

Keywords: cancer, machine learning, federated learning, cancer recurrence, diagnostic model
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INTRODUCTION

Since the 20th century, the improvement of information storage
capacity and the continuous improvement of information
processing speed have promoted the rapid development of the
data storage industry and big data information technology, and
at the same time produced a huge thrust for the birth and
development of emerging industries. At present, the amount of
data output in the medical field is increasing exponentially.
Through effective data resource storage and transmission
management technology, combined with big data mining
technology, the utilization efficiency and intelligence of data in
the medical field have been improved (1, 2), giving medicine
rapid development of the field has injected new impetus. This
paper studies the influencing factors of postoperative recurrence
of cancer patients, and proposes a federated learning model
suitable for predicting the auxiliary diagnosis and prediction of
cancer patients. The clinical data of patients is collected and
combined with the prediction model to predict the location of
cancer recurrence in recovered patients. Further Assisting
doctors in diagnosis and improving the survival rate of cancer
patient’s has certain significance in the fields of cancer care,
rehabilitation and clinical diagnosis.

With the continuous improvement of the material living
standard of human society, the living environment and lifestyle
of human beings have also changed correspondingly. The cancer
problem that comes with it has become one of the most serious
problems threatening human health. According to the
International Agency for Research on Cancer According to the
estimated data of “Global Cancer Incidence and Mortality in
2018” (GLOBOCAN2018) (3), there were approximately 18.1
million new cancer cases and 9.6 million cancer deaths
worldwide in 2018. In 1971, the United States first proposed
the concept of “tumor rehabilitation” (4), the main purpose of
which is to help cancer patient’s recover their mental, physical
and physical functions under cancer conditions and limited
treatment. The way of cancer rehabilitation mainly depends on
the nature of the tumor and the stage of development of the
tumor (5). Early detection and rehabilitation of cancer have
greatly improved the survival rate and quality of life of patients.
However, the factors affecting cancer patient’s’ recurrence after
surgery are complex, so it is very challenging to predict the
condition and trend of cancer patient’s after surgery. In this
regard, many scholars have done some work. Based on the
evaluation data of cancer patients, some scholars have
classified and predicted benign or malignant tumors, predicted
postoperative recurrence time, and predicted the type of tumor.
And trend research (6–8), the continuous development of
machine learning and deep learning fields has also played a
huge role in assisting cancer diagnosis and treatment (9, 10).
However, there are two problems in the development of machine
learning technology. On the one hand, data security is difficult to
guarantee, and privacy protection issues are becoming more and
more serious. On the other hand, because data sharing has
become a new trend, and in order to prevent leakage of data
among enterprises, data protection has been strengthened, and
data in the era of big data has been reduced. Sharing, machine
Frontiers in Oncology | www.frontiersin.org 26
learning has encountered obstacles in data sharing training,
resulting in the phenomenon of “data islands” (11). In the
medical environment, the phenomenon of data islands also
exists among hospitals. In order to break the phenomenon of
“data islands”, Google proposed the concept of federated learning
(12) in 2016, which was originally used to solve Android mobile
terminals. The problem of users updating the model locally, the
design goal is to carry out between multiple parties or multiple
computing nodes under the premise of ensuring information
security during big data exchange, protecting terminal data and
personal data privacy, and ensuring legal compliance and
efficient machine learning. Among them, the machine learning
algorithms that can be used in federated learning are not limited
to neural networks, but also include important algorithms such
as random forests. This model effectively solves the problem of
privacy protection during data sharing between various
enterprises. This model not only improves the security of data
sharing between enterprises, on the other hand, because of the
data sharing between enterprises, the accuracy of the training
model also increases. At the same time, diagnosing whether the
cancer is recurring in situ and predicting the time of recurrence
are crucial for the patient’s next rehabilitation treatment.
According to statistics, about 90% of cancer-related deaths are
caused by failure to prepare for cancer recurrence and cancer cell
metastasis. Therefore, research on accurately predicting the
location of cancer recurrence and resetting time under the
premise of ensuring data security is for cancer Clinical
diagnosis and treatment are of great significance.
AUXILIARY DIAGNOSIS MODEL
CONSTRUCTION RELATED WORK

At present, cancer has always been a worldwide medical
problem. With the gradual increase in the incidence of cancer,
traditional cancer rehabilitation forecasts and cancer
rehabilitation programs given by doctors through their own
experience can no longer meet the needs of patients, and
cancer is generally difficult to achieve a complete cure. The
effect of cancer treatment is often limited to improving
symptoms, with the goal of improving the quality of life of
patients during the survival period and prolonging life span.
Although cancer patients cannot be completely cured, more and
more advanced technologies are applied in the medical field. The
current 5-year survival rate of patients with advanced cancer has
increased from 2%~5% decades ago to 16%~23% today. In the
future, the accumulation of cancer patient data and the vigorous
development and application of artificial intelligence will have
more advantages than traditional medical models. In the long
run, the application of artificial intelligence will surely drive the
field of cancer rehabilitation diagnosis to high-end, personalized,
precise, and intelligent. This research will adopt the
convolutional neural network algorithm based on the federated
learning framework to predict the recurrence time and location
of cancer patients. On the one hand, federated learning has
sufficient guarantee for the safety of cancer patient data. On the
March 2022 | Volume 12 | Article 860532
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other hand, cancer patient’s data is predicted under the federated
learning framework, which provides a guarantee for the safety of
patient data among hospitals, greatly increases the amount of
training data, and makes the training model more accurate in the
end, which benefits multiple parties. Finally, the doctor outputs
the results and patient information through the model. Analysis
of the correlation degree, timely intervention in the rehabilitation
process of patients, in order to improve the survival time
of patients.

Federated Learning
In the context of the gradual maturity of machine learning and
the realization of automatic identification and intelligent
decision-making, in order to solve the problem of data privacy
protection, federated learning (13–16) emerged as a
potential solution.

Since the training data is still stored locally in the participants
during the federated learning process, this mechanism can not
only realize the sharing of the training data of each participant,
but also ensure the protection of the privacy of each participant
(17). The basic workflow of federated learning mainly includes:

1. Participants download the initialized global model from the
cloud server, use the local data set to train the model, and
generate the latest local model update (model parameters).

2. The cloud server collects various local update parameters and
updates the global model through the model averaging
algorithm. Because of the unique advantage of federated
Frontiers in Oncology | www.frontiersin.org 37
learning-a unified machine learning model can be trained
from the local data of multiple participants under the premise
of protecting data privacy.

Its main innovation is to provide a distributed machine
learning framework with privacy protection features. Its
working principle is as shown in Figure 1, and it can
cooperate with thousands of participants in a distributed
manner for a specific machine learning model. Iterative
training, an iterative process of federated learning is as follows:

1. The client downloads the global model lt, k+1 from the server.
2. Client k trains local data to obtain local model lt, l
3. Clients of all parties upload local model updates to the central

server.
4. The server performs a weighted aggregation operation after

receiving the data from all parties to obtain the global model
lt.

Among them, represents the local model update of the t-th
round of communication of the k-th client, and represents the
global model update of the t-th round of communication.

It can be seen from the introduction and flow chart that the
federated learning technology has the following characteristics.

1. The original data participating in the federated learning is
kept on the local client, and only the model update
information is interacted with the central server, and there
is no data transmission in plain text.
FIGURE 1 | Federated learning workflow.
March 2022 | Volume 12 | Article 860532
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2. The model jointly trained by the participants of federated
learning will be shared by all parties who contribute training
data.

3. The final model accuracy of federated learning is similar to
that of centralized machine learning, and the accuracy is
stronger.

4. The higher the quality of the training data of the federated
learning participants, the higher the global model accuracy.

Federated learning can be divided into three categories:
Horizontal Federated Learning, Vertical Federated Learning,
Federated Transfer Learning. Horizontal federated learning is
essentially the union of samples. The scope of application is
where there is a large overlap of participant data features and a
small overlap of user data. The data that can be used for joint
modelling training is that part of the data where both parties
have the same data characteristics but the users are not identical.
For the part of the data, the horizontal federated learning
application scenarios are more extensive. For example, between
banks A and B in the same region, their businesses are similar
(features similar), but users are different (different samples).
Another example is the patient data of Hospital A and
Hospital B for a particular case, which is also perfectly suitable
for horizontal federal learning. There is data A in data B. Under
the framework of the federated horizontal learning model, the
server only conducts joint training for the common features of
data A and data B and the parameters are returned to the
participants. For this study, we have a total of three hospitals
participating together. We select the experimental data strictly in
combination with the characteristics of horizontal federated
learning, and finally establish the model under the condition of
ensuring that the data of each hospital is protected.

Localized Differential Privacy Protection
Method
Differential privacy is a privacy definition first proposed by Cynthia
Dwork in 2006 (18), which was developed in a specific scenario of
statistical disclosure control. Differential privacy provides a kind
of information theory security guarantee, so that the output result
of the function is insensitive to any specific record in the data set.
Frontiers in Oncology | www.frontiersin.org 48
Differential privacy can be divided into centralized differential
privacy and localized differential privacy according to the
different ways of data mobile phones. The two are different
from the stages of differential data. Centralized differential
privacy requires a trusted third party to collect data and
perform data differential work in a unified manner. However,
the current problem is that it is difficult to find a trusted third
party in our lives. Therefore, in the context of federated learning,
localized differential privacy can fit well with the encryption
process required by the federated learning framework. The data
is preprocessed using the idea of localized differential privacy,
and then the federated learning framework is used for
subsequent operations to fully improve the data. The safety of
the user and the safety of the user.

Localized differential privacy can transfer the data privacy
processing process to each participant in federated learning, and
the participants will process and protect the data themselves,
which will further improve the security of the data, which is
defined as (19, 20): for any one Localized differential privacy
function f(x), its domain (domain) is Dom(f), range (range) is
Ran(f), for any input x, x′∈ Dom(f), output y∈ Ran(f), we call
function f provides (x) -localized differential privacy protection,
y is the final output, currently only When it meets:

Pr½f (x) = y� ≤ ex Pr½f (x 0 ) = y� (1)

In the above formula, x represents the privacy budget.
The concept of localized differential privacy is similar to the

concept of federated learning. In fact, we have combined the idea
of localized differential privacy in the realization of this research.

Convolutional Neural Network
CNN was proposed in 1998 by Yann LeCun of New York
University (21). CNN is essentially a multilayer perceptron.
The key to its success lies in the way it uses local connections
and shared weights. On the one hand, it reduces the number of
weights and makes the network easy to optimize, and on the
other hand, it reduces overfitting risk (22). CNN is a kind of
neural network. Its weight sharing network structure makes it
more similar to biological neural network, which reduces the
FIGURE 2 | Auxiliary diagnosis CNN structure diagram.
March 2022 | Volume 12 | Article 860532
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complexity of the network model and reduces the number of
weights. The model structure of CNN is shown in Figure 2.

With the continuous increase in the incidence of cancer, the
difficulty in detecting early cancer symptoms, and the various
uncertainties in rehabilitation after cancer surgery, cancer has
become the number one killer of human health today. In
response to this difficulty and uncertainty, the CNN algorithm
is widely used in cancer CT image detection and cancer
postoperative recurrence prediction with its strong recognition
ability and high prediction accuracy. The American artificial
intelligence AI uses deep learning (CNN) to diagnose and treat
cancer (23), and trains a deep convolutional neural network
model to detect cancerous transformation of normal cells by
letting artificial intelligence algorithms learn cancer CT images
that far exceed the number of consultations of human doctors in
a lifetime. The purpose is to achieve the purpose of early
detection and early treatment.

In addition to showing high performance in recognizing
cancer CT images, CNN also shows its powerful side in cancer
prediction. As we all know, prostate cancer is the most common
and the second most deadly cancer among American men. The
classification of prostate cancer based on histological image
Gleason classification is of great significance in patient risk
assessment and treatment planning. In response to this
problem, the regional convolutional neural network model was
used to detect epithelial cells to predict the risk of cancer. After
model training and experimental testing, the accuracy rate
reached 99.8% (24).

In summary, CNN, as one of the deep learning algorithms,
has mature theoretical foundations and experimental cases for
cancer CT image detection and recognition or cancer incidence
prediction, which provides theoretical guidance for the cancer
rehabilitation medical recommendation system designed in
this paper.

CNN is an artificial neural network with high recognition
ability. In CNN, there are multiple neuron connections between
each layer of the network. The convolution kernel is actually a
user-defined size and weight matrix, which acts on the local
perception domains in different regions of the same image, and
extracts each local perception domain. And generate input values
for the next layer of neurons. The convolutional layer convolves
the input features, and the pooling layer reduces the size of the
feature map through spatial invariance averaging or maximum
operation. The activation function we use ReLU (22). The main
advantage of CNNs is that they are easier to train and have fewer
parameters than fully connected networks with the same number
of hidden units. The feature map is shown in formula (2). The
pooling layer performs secondary extraction of input features
through specific pooling rules, and its feature map is shown in
formula (3).

Hi = f (HI−1 ⊗wi + bi) (2)

Hj = f (pooling(HI−1) + bj) (3)

Among them, Hi is the feature map, f(x) is a nonlinear activation
function, “⊗“ is the convolution operation of the convolution
Frontiers in Oncology | www.frontiersin.org 59
kernel and the feature map, w is the weight vector b is the bias,
pooling (x) is a pooling rule, for example Average pooling layer,
maximum pooling layer and random pooling layer.

The structure of the convolutional neural network designed in
this paper takes into account the sample data as 6 indicators. The
size of the convolutional layer is 3×3×128, 3×3×256, 3×3×512,
and the pooling layer is uniformly designed to have a size of 2×2.

(1) Convolutional layer: the j-th feature image of the first layer
is expressed as:

Xj = g(oxi∈Mj
xi ∗ kij + bj) (4)

Among them, the nonlinear activation function g. The set of
feature maps connected between the l-1th layer and the j-th
feature map of the lth layer is denoted asMj, which means the set
of input feature images. The offset is denoted as bj. The
convolution kernel connecting the i-th feature map in the l-1
layer and the j-th map in the l-th layer is denoted as kij

(2) Pooling layer: The pooling layer is denoted as the l-th
layer, and the j-th feature map xj of the lth layer is expressed as:

xj = wjpool(Xj) + bj (5)

Among them, the weight coefficient xj = wj pool(Xj) + bj is
denoted as wj, and the real number is taken in the general
experiment. The bias is denoted as bj, and the pooling function is
denoted as pool(). There are maximum pooling, average pooling,
random pooling, and LP pooling.

(3) Fully connected layer: the output vector xl of the fully
connected layer:

xl = (b l)Tvl−1 + bl (6)

Among them, the vector generated by the feature map of the
pooling layer of the l-1 layer or the output vector of the feature
map of the convolutional layer is denoted as vl–1, the bias is
denoted as bl, and the weight coefficient matrix is denoted as bl.

(As early as 2004, the Stanford University Medical and
Mathematics Interdisciplinary Research of Cancer Patient
Rehabilitation Intelligence Evaluation Model has been
established, and it has shown its huge application prospects in
clinical applications for hundreds of thousands of American
cancer patients. In China, we In conjunction with the Stellite
Cancer Data Analysis Laboratory, Hebei and Shanxi and other
hospitals, it has long-term evaluated and tracked the
rehabilitation process of thousands of cancer patients in China,
analyzed their clinical data and rehabilitation data, and
established Model of the system suitable for Chinese patients)

Federated Learning Model Based on
Convolutional Neural Network
In order to optimize the recurrence time and the accuracy of the
recurrence location of cancer patients in the rehabilitation stage,
and to solve the insufficient amount of data in a single hospital
(25, 26), this question paper proposes a cancer patient-assisted
diagnosis model that combines federated learning and
convolutional neural networks. Use federated learning to
protect user data privacy and expand the amount of data, and
March 2022 | Volume 12 | Article 860532
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at the same time allow participants to collaborate to train a global
model without sharing each other’s private data. For each
participant, the local data needs to be pre-processed, including
digitization, and standardized to convert the original data into a
standard data format, and then the local data is the first step to
protect the local data with local differential privacy.

The iterative process completes the training of parameters
locally for the convolutional neural network model deployed by
the third party, and the parameters include the convolution
kernels and offset terms of each layer. Post-encryption training
on patient data using homomorphic encryption, followed by
uploading of parameters. After receiving the model parameters
uploaded by the client, the server will iterate the model according
to the configuration of the central server, update the parameters
of the current model, and persist it for the next round of training
parameter upload and aggregation before returning it to the
participants. The iterative process of our overall model follows
the basic federated learning iterative process, in which we fuse a
convolutional neural network adapted to cancer patient data
samples and configure the model to form continuous iterations.
According to the data supply characteristics of each participant,
we adopt the rules of horizontal federated learning and unify the
data standards.

In actual training, we consider that each participating hospital
only exchanges encrypted correlation coefficients with the server.
This experiment is based on the case where the data scale of each
Frontiers in Oncology | www.frontiersin.org 610
hospital is equal or the difference is not large. The training model
algorithm is as follows: Algorithm 1 Shown.

Algorithm 1 CNN-FL model based on local differential privacy

1 For Iteration t do
/* Service-Terminal: * /

2 wt =
1
Q o

Q

q=1

wk
t ;

3 Send wt to each participant;
/* participants: * /
4 for Participant q do
5 Do Localized differential privacy
6 wq

t = wt ;
7 For Local epoch e do

8 wq
t = wq

t − h
∂

∂Xq Z℘

9 End
10 End
11 End
Among them, Q represents the participant of Q; wt represents
the global model parameter during iteration t; wk

t represents the
model parameter of the q th participant at iteration t; h
represents the learning rate; Xk represents the training of the
q-th participant data set. It should be noted that differential
privacy protection is added to the user side of the algorithm, and
FIGURE 3 | CNN-FL model structure.
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after a partial differential privacy model is initially formed, it
constitutes a global model for user homogenization upload
parameter training.

As shown in Algorithm 1 above, each participant needs to use
the local data set to train the CNNmodel. The model is shown in
Figure 3 below. In each iteration, each model participant first
uploads the current model correlation coefficient to the server.
The global model is updated by averaging the latest correlation
coefficients of each participant. In the next iteration, each
participant downloads the latest global model parameters and
uses local data to train the CNNmodel. Iterate continuously until
the overall model is optimal.

The current CNN-FL model has 100 participants. After 50
iterations, the global model parameter is w50. At the 51st
iteration, each participant’s initial local model parameter wk

51 =
w50 (the value interval of k is [1, 100]), After 51 iterations, the
global model is updated to w51 =

1
100o

100

k=1

wk
51.
CONSTRUCTION OF REHABILITATION
DATA SAMPLE SET BASED ON
FEDERATED LEARNING

According to the characteristics of federated learning and long-
term medical consensus (27, 28), ASC carcinogenic factor
research report and TIES.IO cancer assessment data, 12 factors
that affect cancer recurrence are comprehensively selected:
gender, age, basic score, tumor score, immune score, basic
Nutrition score, nutritional comparison score, safe intake
score, total nutrition score, microenvironment score,
psychological score, aerobic activity score, collect data from
cancer patients and score, use statistical correlation coefficient
Pearson correlation coefficient, Spearman correlation coefficient
to compare the sample Enter the indicators for correlation
research, and finally determine 6 influencing factors: tumor
score, immune score, basic nutrition score, psychological score,
microenvironment score, aerobic exercise and advanced
homework. The Pearson correlation coefficient is shown in
Table 1. The related items of each index score and their
Frontiers in Oncology | www.frontiersin.org 711
weights are shown in Table 2. The weights are given based on
the experience of doctors and experts (29). The data set in this
article was collected from Shanxi Provincial People’s Hospital
and Hebei Tumor Hospital, etc., a collaborative experiment in
Beijing, China The office is responsible for cancer data evaluation
and data processing, as well as liaison with various hospitals.

It can be seen from Table 2 that each index has a certain
correlation, and we can see that the tumor index and the immune
index are positively correlated, indicating that the stronger the
immune index, the weaker the tumor index. Moreover, there is a
negative correlation between psychological indicators and tumor
indicators. The more ideal these indicators, the longer the patient
will have to relapse.
EXPERIMENTAL SIMULATION AND
RESULT ANALYSIS

Cancer Aided Diagnosis Model
We build a cancer-assisted diagnosis model. Based on the
evaluation criteria of each indication described above, we
trained and tested the machine learning-assisted diagnosis and
treatment model on 500 sets of data (5 groups of 500 different
cancer patient’s), and first established the input and output
vectors, Among which sample input and output: the six major
indicators of immune indication, tumor indication,
microenvironment indication, psychological indication,
nutrition indication, aerobic exercise and advanced homework
as input, the predicted recurrence time and recurrence position
As an output, the experimental results are shown in Figure 4
below. We combined medical knowledge and intelligent
diagnosis and treatment models to set the prediction error
range of cancer recurrence time to ±6 months. During the
experiment, we used the linear model of machine learning, the
tree model, and the neural network of the multi-layer perceptron
(MLP) in deep learning is used to test the cancer-assisted
diagnosis model.

Based on multiple iterative experiments and multiple
experiments, combined with the absolute error of the cancer
recurrence time, the accuracy of the prediction of the recurrence
TABLE 1 | Cancer Patient Index Evaluation Criteria.

Finger syndrome Related terms and Weights

Immune score CD3+CD4+CD8+/CD45+ (4); CD3+CD4+/CD45+ (8); CD4+/CD8+ (10); CD3+CD16+CD56+/CD45+ (6); CD3-CD56+ (5); CD4+CD25+ (1); Exercise
ECG (X ± SD) (2); Sports Leather (X ± SD) (2).

Tumor score Size (10); Placeholder (10); Violate the relationship (10); Angiogenesis (10); Pathological typing (3); CTC value (9); Differentiation (10); Mutation target
(1).

Basic nutrition
score

Total nutrition (6); Balanced nutrition (3); Nutrition safety assessment (5); Cancer cell proliferation (10); Immune cell proliferation (10); Angiogenesis
(8); Amino acid evaluation (5); Proteomics evaluation (10).

Psychological
score

Life event scale (1); Cornell Medical Index (2); Self-rating anxiety scale (5); Self-rating depression scale (5); Baker Anxiety Scale (5); Baker Depression
Questionnaire (5); Pittsburgh sleep Quality index (4); Texas Social Behavior Questionnaire (3); Family function assessment (1); Exercise ECG (X ± SD)
(2); Sports Leather (X ± SD) (2).

Microenvironment
score

O2 (3); PH value (4); Interstitial pressure (2); Inflammatory response (7); Vascular permeability (6); CTC value (9); Proteomic analysis (8).

Exercise and
advanced work

Aerobic exercise (4); Advanced social work (3); Texas Social Behavior Questionnaire (3).
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time of the five types of cancer patient’s is between 65%-85%.
This result proves that the model has practical application value.
The doctor can complete the diagnosis and treatment of the
patient based on the results and refer to the various indicators of
the patient, and this result is only completed in a unilateral
modeling situation with a limited amount of data, and then we
can determine whether the recurrence of the cancer patient has
metastasized to another location, where 1.0 is The original
position, 2.0 is that the cancer cells have metastasized. The test
was performed using the constructed auxiliary diagnosis model.
The test results of the neural network using the multi-layer
perceptron (MLP) are shown in Figure 5.

It can be clearly seen from the figure above that the MLP
network has been trained and tested on 100 sets of samples. The
final performance of the MLP network is 90%, and the algorithm
that predicts the location of cancer recurrence (that is, whether
the cancer cell has metastasized to other parts of the body) can
reach 90%. It was unstable. We subsequently simulated the
patients, and showed excellent application prospects under the
condition of unilateral machine learning modeling and
insufficient data.

From the Table 3, we know whether the cancer cells of the
patient in the sample have metastasized and whether they have
recurred in situ. By predicting simulation and simulation, only
one-way machine learning modeling can achieve very impressive
results. Then, we proposed a method A convolutional neural
network-assisted diagnosis model based on federated learning.
On the one hand, this model protects the data privacy of patients.
On the other hand, through the joint modeling of multiple
hospitals, they can share each other’s data but protect each
other’s privacy.
Convolutional Neural Network
Aided Diagnosis Model Based
on Federated Learning
We analyze the disadvantages of data processing of cancer
patient’s based on machine learning. Among them, machine
learning adopts unilateral modeling, and the data is unprotected.
The amount of data in a single hospital is not sufficient, but it still
Frontiers in Oncology | www.frontiersin.org 812
achieves good results, but diagnosis and treatment based on
machine learning The model is difficult to truly enter the
application level and faces many data security issues.
Therefore, we established a convolutional neural network-
assisted diagnosis model based on federated learning, built the
FL-CNN model based on the federated learning framework, and
used privacy protection methods. The model parameter
transmission updates the model, and after several rounds of
parameter updates, we analyze the cancer recurrence time and
the accuracy rate of the recurrence location in five types of cancer
patients. The data volume used under the federated learning
framework (after differential privacy) is shown in Table 4 below,
based on the federation The experimental results of the learned
convolutional neural network cancer recurrence time simulation
model are shown in Figure 6 below.

From Figure 6 above and Figure 4, it can be clearly seen that
the parameters updated after multiple iterations of each
participant through the federated learning framework based on
the convolutional neural network-based auxiliary diagnosis
model have obvious accuracy under 500 simulated simulation
samples. Under the condition of an absolute error of ±6 months,
although a certain proportion of noise data has been added to the
participants to make each participant achieve homogeneity, the
final experimental results indicate that the model simulates
recurrence in various cancer patient’s The time accuracy can
reach more than 90%. Through the comparison of the two
methods, the federated learning enables the model to be
trained locally on the basis of the patient data privacy and
security, and the updated parameters are returned to update
the overall model, which expands The patient data sample
further improves the accuracy of the model. The intelligent
diagnosis model can assist doctors in diagnosing cancer
patients to a certain extent. It has application prospects and is
of great significance for prolonging the lives of cancer patients. It
also provides a way for doctors to diagnose patients. Effective
reference and Table 5 is a comparison of the above figure with
the recurrence time and the pros and cons of the model. After
that, we conducted corresponding experiments on whether the
cancer cells metastasized when the patient’s cancer recurred, and
used the diagnosis and treatment model to assist doctors in the
TABLE 2 | Correlation analysis table of each index.

Pearson correlation Pearson-cor/Sig. Imm Tum Mic Heart Nut Aer

Imm Pearson-cor 1 0.30* 0.04 0.17 0.21 -0.07
Sig. 0.03 0.79 0.25 0.14 0.64

Tum Pearson-cor 0.30* 1 0.09 -0.38** 0.10 0.03
Sig. 0.03 0.54 0.01 0.48 0.86

Mic Pearson-cor 0.04 0.09 1 0.21 -0.20 -0.003
Sig. 0.79 0.54 0.14 0.18 0.99

Heart Pearson-cor 0.17 -.038** 0.21 1 -0.15 -0.02
Sig. 0.25 0.01 0.14 0.32 0.92

Nut Pearson-cor 0.21 0.10 -0.20 -0.15 1 -0.19
Sig. 0.14 0.48 0.18 0.32 0.19

Aer Pearson-cor -0.07 0.03 -0.003 -0.02 -0.19 1
Sig. 0.64 0.86 0.99 0.92 0.19
March 2022 | Vo
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diagnosis and rehabilitation of cancer patients. With the iteration
and parameter return of the model under the federated learning
framework, the recurrence position gradually stabilized at
Around 90%, we finally learned through the federated learning
model that the recurrence time is also in a different state with the
changes of various indicators. This shows that regulating
Frontiers in Oncology | www.frontiersin.org 913
different indicators can help cancer patients to a certain extent.
The interactive interface is designed to facilitate the doctor’s
understanding, see Figure 7 below.

The auxiliary diagnosis system based on the federated
learning framework has greatly increased the data sample size,
increased the number of data iteration rounds, and guaranteed
A B

C

E

D

FIGURE 4 | The recurrence time model of cancer assisted diagnosis based on machine learning. (A) Liver cancer. (B) Kidney Cancer. (C) Breast cancer. (D)
Stomach cancer. (E) Uterine cancer.
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data security, greatly improving the accuracy of the model, and
we have given an interactive design diagram, In order to facilitate
the application of this model, through the accurate model and
analysis of the correlation between various indications
Frontiers in Oncology | www.frontiersin.org 1014
and cancer recurrence time, doctors can finally use the model
and medical knowledge to intervene in the patient’s
rehabilitation process, affect the patient’s rehabilitation
indications, and improve patient survival rate.
A B

C

E

D

FIGURE 5 | Recurrence location model for cancer assisted diagnosis based on machine learning. (A) Liver cancer. (B) Kidney Cancer. (C) Breast cancer. (D)
Stomach cancer. (E) Uterine cancer.
TABLE 3 | Unilateral modeling and simulation of recurrence location.

MLP neural network Liver cancer Kidney Cancer Breast cancer Stomach cancer Uterine cancer

In-situ (simulation) 60% 77% 61% 91% 86%
Transfer (simulation) 40% 23% 39% 9% 14%
In situ (actual) 62% 80% 60% 89% 76%
Transfer (actual) 38% 20% 40% 11% 24%
March 2022 | Volume 12
 | Article 860532

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ma et al. Federated Learning Assisted Diagnosis Model
CONCLUSION

In the context of the continuous improvement of international
privacy protection laws and regulations, data security gradually
being valued by the public, and the prevalence of “data islands”,
this article combines multiple hospitals with cancer patient data,
Frontiers in Oncology | www.frontiersin.org 1115
and uses federated learning, neural networks, and localized
differential privacy. Based on the homogenization of the center,
a set of federated learning auxiliary diagnosis models for cancer
patients was constructed, and the unilateral modeling machine
learning assisted diagnosis models were compared. The accuracy
and safety of the models have been greatly improved. The
TABLE 4 | Introduction to the data set of participants.

Overall model data information (after localized differential privacy) Hebei A Hospital, China Shanxi B Hospital, China Beijing C Hospital, China

Liver cancer 800-900 (1000) 800-900 (1000) 800-900 (1000)
Kidney Cancer 300-350 (400) 300-350 (400) 300-350 (400)
Breast cancer 300-350 (400) 300-350 (400) 300-350 (400)
Stomach cancer 175-215 (250) 175-215 (250) 175-215 (250)
Uterine cancer 200-250 (300) 200-250 (300) 200-250 (300)
March 2022 |
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FIGURE 6 | Recurrence time model of cancer assisted diagnosis based on federated learning.
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federated learning model effectively expand the training data of
cancer patients, and protect the privacy and security of cancer
patient’s’ data. This study only cooperated with three hospitals
and one biological laboratory. Although the amount of data has
increased significantly, there are still shortcomings for fatal
cancers. It is expected that in the future, the number of
participants will gradually increase. As the model is constantly
updated, the cancer intelligent diagnosis and treatment system
will eventually play its value.

Federated learning is one of the methods that can solve the
current data security sharing problem. Compared with artificial
intelligence methods that are widely used in all walks of life,
such as unilateral machine learning and fuzzy systems,
federated learning shows great advantages such as improving
data privacy protection and expanding data volume. We have
achieved gratifying results by applying it and applying it to the
rehabilitation of cancer patients. It is expected to come, with
continuous exploration and innovation. The phenomenon of
“data islands” between various industries and enterprises will
be broken, and data from all parties will be shared more
reasonably and safely, allowing artificial intelligence to be
applied to all corners of us, and we will continue to work on
assisted diagnosis solutions for cancer patient’s The research,
combined with more advanced mathematical models and
machine learning models, and safer federated learning
privacy protection methods, is to find the best solution for
cancer patients on the premise of protecting patient data
security and expanding cancer patient data.
Frontiers in Oncology | www.frontiersin.org 1216
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Radiotherapy is one of the important treatments for malignant tumors. The precision of
radiotherapy is affected by the respiratory motion of human body, so real-time motion
tracking for thoracoabdominal tumors is of great significance to improve the efficacy of
radiotherapy. This paper aims to establish a highly precise and efficient prediction model,
thus proposing to apply a depth prediction model composed of multi-scale enhanced
convolution neural network and temporal convolutional network based on empirical mode
decomposition (EMD) in respiratory prediction with different delay times. First, to enhance the
precision, the unstable original sequence is decomposed into several intrinsic mode functions
(IMFs) by EMD, and then, a depth prediction model of parallel enhanced convolution
structure and temporal convolutional network with the characteristics specific to IMFs is
built, and finally training on the respiratory motion dataset of 103 patients with malignant
tumors is conducted. The prediction precision and time efficiency of themodel are compared
at different levels with those of the other three depth prediction models so as to evaluate the
performance of the model. The result shows that the respiratory motion prediction model
determined in this paper has superior prediction performance under different lengths of input
data and delay time, and, furthermore, the network update time is shortened by about 60%.
The method proposed in this paper will greatly improve the precision of radiotherapy and
shorten the radiotherapy time, which is of great application value.

Keywords: radiotherapy, respiratory motion prediction, deep learning network, empirical mode decomposition,
temporal convolutional network
1 INTRODUCTION

When a patient with cancer undergoes radiation therapy, the fluctuating movement of chest and
abdomen caused by human respiratory motion makes the tumor unable to rest statically in the
planning target volume (PTV), which causes it impossible to ensure the coverage of tumor by simply
increasing the PTV area. Meanwhile, it is very likely for the organs at risk (OARs) around the tumor
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to be destroyed during radiotherapy, thus causing secondary
injury to the patients (1). Some studies have shown that, during
breathing, some muscles (such as the diaphragm) move 20–130
mm, the lungs move an average of 8–10 mm, and the liver moves
an average of 1–19 mm (2). Therefore, it is of great significance to
reduce the adverse effects of human respiratory movement in the
process of cancer treatment.

To address the problem of respiration-induced tumor
displacement, many clinical initiatives have been proposed,
including breath-holding techniques (3), passive compression
techniques (4), respiratory gating techniques (5), and real-time
tracking techniques (6). Breath-holding technique and passive
compression technique both reduce the impact by actively
controlling human respiration by itself or external equipment,
which is very convenient, but the mandatory control makes the
patient’s tolerance poor and is not suitable for patients with
pulmonary insufficiency. Respiratory gating technology tracks
the location of the tumor by monitoring the patient’s breathing
and adjusting the radiation instrument to match a specific
breathing cycle. Real-time tracking technology is currently one
of the best methods to track tumors and improve treatment
effects. It continuously adjusts the irradiation target area to track
tumors in real time through in vitro marker signals
(respiration laws).

Vedam et al. (7), Ozhasoglu and Murphy (8), and Fayad et al.
(9) verified the correlation between respiration and tumor
movement to varying degrees. CyberKnife, Exactrac, and Vero
system are respiratory motion tracking systems applied in
clinical practice. In the actual treatment, the machine system
establishes the motion relationship between marker signals and
tumor through the prediction model, so as to adjust the
radiotherapy target position. A certain time delay is required
during the adjustment process, which demands the
establishment of prediction delay system through the external
respiratory signal. The accuracy of delay prediction directly
determines the target position in radiotherapy. The CyberKnife
system has a system delay time of about 115 ms from data
acquisition, calculation of tumor location, to adjustment of the
radiation beam. The delay of Vero system is about 50 ms and that
of Varian MLC system is about 420 ms (10, 11). To compensate
for these delays, some prediction algorithm is used to calculate
the future position of the target.

Conventional time series prediction models have been
applied in the field of respiratory prediction, such as extended
Kalman filter algorithm based on Kalman filter (12) combining
with support vector machine (13), wavelet-based multi-scale
regression (14), recursive least squares algorithm (15), and an
autoregressive integrated moving average (ARIMA) model (16).
With the development of deep learning, it has brought new
possibilities to respiratory motion prediction. Deep learning can
effectively mine time series information and semantic
information, independently extract a large number of data
features, and improve the prediction accuracy. To compensate
for the system delay and improve the accuracy of respiratory
motion prediction, this paper proposes a multi-scale enhanced
time series convolution respiratory motion prediction model
Frontiers in Oncology | www.frontiersin.org 219
based on deep learning network. The main contributions are
as follows:

(1) A multi-scale enhanced convolution and temporal
convolution network (TCN) based on squeeze-and-
excitation is proposed to establish a deep convolution
neural network model for respiratory motion prediction.

(2) Aiming at the simplification of respiratory signal features,
EMD algorithm is used to decompose the original complex
sequence into several intrinsic mode functions (IMFs) with
different time scales so as to increase the network fitting
ability and improve the prediction precision.

(3) The underlying features of different receptive fields are
extracted by using a multi-scale convolution kernel, and
attention mechanisms are added to the feature space.

(4) The recurrent neural network (RNN) model is replaced by
the TCN, which has higher precision and time efficiency than
birectional long short-term memory (BiLSTM).
2 RELATED WORK

Deep learning is based on artificial neural network (ANN), which
has stronger adaptability in the case of irregular breathing model
and model. Some studies have shown (17, 18) that the ANN
structure has certain advantages in the prediction of respiratory
motion, especially when the respiratory signal is unstable and
non-linear.

Convolutional neural network (CNN) can deal with data
similar to grid structure through convolution operation and
perform exceedingly well in many fields such as time series
and image data; RNN has some advantages when learning the
non-linear characteristics of sequences. LSTM is one of the
classical algorithms of RNN series because of its introduction
of the gate mechanism to make the network have a certain
memory, so that the network can capture the long-distance
dependence of the sequence and better overcome the
disadvantage of gradient disappearance in RNN. This deep
learning mechanism allows the automatic construction of a
model from a problem or set of rules. When dealing with large
amounts of data, the model can adapt to input new data or
import new knowledge through other models, allowing it to solve
almost any real-world task (19). Wang et al. (20) established
BiLSTM network by composing forward and backward LSTM
and applied it in the experiment respiratory data of 103 patients
with malignant tumors. Through the experiment, they found
that the best prediction effect was obtained when seven-slice
BiLSTM was used, with an average absolute error of 0.074 mm
and a root mean square error (RMSE) of 0.097 mm at a delay
standard of 400 ms, which was three to five times higher than the
prediction precision of ARIMA and multi-layer perceptron
neural network (ADMLP-NN). Compared with traditional
prediction models, the deep learning network with higher
robustness can greatly improve the prediction precision, which
can be applied to data of different patients and reduce the
May 2022 | Volume 12 | Article 884523
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interference of delay time. However, deeper network will lead to
longer update time of prediction, which is not conducive to the
update of prediction model. The Bidirectional Gated Recurrent
Unit (Bi-GRU) rapid breathing prediction model was
constructed by Yu et al. (21) by using a variant of LSTM–
gating cycle unit (GRU), consequently reducing the time
efficiency by about 30% compared with the LSTM model,
which greatly improved the update time of the prediction
network. Therefore, deep learning will be an emerging force
driving progress in the field of respiratory motion prediction.

In general, the prediction accuracy of the model can be greatly
improved by training the model on the clinical data of a limited
number of patients (18, 22). However, when the model is applied
to new patient data, the prediction effect is greatly discounted,
and the generalization ability of the prediction model needs to be
improved. Each patient has different physical conditions and
respiratory states, and it is of great significance to design a
general model to predict the respiratory signals of different
patients (23). The establishment of a general model requires a
large amount of patient data as support, so deep learning has
good applicability, because deep learning has better learning and
analysis capabilities under a large amount of data.
3 MATERIALS AND METHODS

3.1 Respiratory Movement Data
The data used in this paper are a publicly available dataset
derived from the Institute of Robotics and Cognitive Systems,
University of Lubeck, Germany (24). This dataset contains the
respiratory data of 103 patients with horacoabdominal tumors,
with a total of 306 respiratory motion trajectories. Three markers
are installed on the chest and abdomen of each patient, and the
trajectory data of the markers moving along with the respiratory
movement were recorded. An optical tracking sampling
Frontiers in Oncology | www.frontiersin.org 320
instrument with a sampling frequency of 26 Hz is used for
sampling work.

3.2 Research Methods
In this study, we built a respiratory motion prediction model and
used in vitromarker signals to predict tumor motion trajectories.
Figure 1 shows the process of tumor motion and machine
positioning during radiotherapy. First, a tumor motion area in
the lungs that follows the patient’s breathing is determined, and
then, the tumor motion trajectory is further captured in this area.
Considering the problem of mechanical and computer delays,
the respiratory motion prediction model needs to determine the
trajectory of the tumor after a period of delay, and finally
perform radiotherapy to kill tumor cells.

The overall framework of the breathing motion prediction
method based on the deep CNN is shown in Figure 2, which is
mainly divided into two steps (1): data preprocessing and feature
extraction: abnormal detection and correction of respiratory
signals and extraction of features using EMD decomposition
signals (2); respiratory motion prediction model: a deep
respiratory motion prediction model composed of multi-scale
convolution neural network including SEnet attention
mechanism and TCN for the prediction of respiratory position
at different delay times from 200 to 500 ms.

3.2.1 Data Preprocessing
In order to extract more information features and reduce the
influence of interference information on prediction. First, the
integrated model Bagging is used to detect and correct the
abnormal interval, and then, the original series is decomposed into
several IMFs containing different time scales by EMD algorithm, and
finally, the dataset is divided as the input of depth prediction model.

3.2.1.1 Remove Outliers
Because of the long time of data acquisition, tumor patients
sometimes have actions such as coughing, sneezing, or speaking
A

B

FIGURE 1 | Schematic diagram of lung tumor motion tracking, (A) is the process of tumor localization (25). Each of (B) is a 4DCBCT (four-dimensional cone beam CT)
sequence image of tumor tracking at different stages in a respiratory process, obtained by the EELKTA Synergy XVI system in the University of Tokyo Hospital (26).
May 2022 | Volume 12 | Article 884523
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during the acquisition process, which will greatly interfere the
stability of respiratory trajectory, resulting in relatively intensive
abnormal signals of respiratory data at a certain time segment.
Therefore, this paper uses Bagging to deal with abnormal signals.
Bagging mainly samples T sampling sets containing m training
samples, then trains a base learner on the basis of each sampling
set, and finally combines these base learners together (27).
Figure 3 shows a comparison diagram before and after
processing an abnormal signal.

3.2.1.2 Empirical Mode Decomposition
Complex time series data will reduce the prediction precision of
the prediction model, which will be alleviated to some extent by
and the introduction of some decomposition algorithms in the
pre-phase of data procession. Because the respiratory motion
signal is a complex time series with non-linear, non-stationary,
and univariate characteristics, when fitting this type of sequence
Frontiers in Oncology | www.frontiersin.org 421
with deep learning network, there are often problems such as
gradient disappearance or explosion, and it is impossible to
accurately identify the slight change characteristics of a certain
time scale (28). Considering the multi-scale characteristics of
time series, Fourier spectrum analysis and wavelet analysis are
usually used to decompose the data to predict the better learning
characteristics of the model. However, the limitations of these
methods limit the operation of the prediction model to a certain
extent, and empirical mode decomposition (EMD) can
adaptively decompose complex signals. Compared with the
above methods, EMD can more accurately reflect the original
physical characteristics and local performance.

EMD decomposition is based on the following assumptions
(29): the data have at least two extreme values (maximum and
minimum); the local time–domain characteristics of the data are
uniquely determined by the time scale between extreme points; if
the signal is not extreme but contains an inflection point, then it
A B

FIGURE 3 | Schematic diagram of outlier correction and comparison, (A) is a segment of the original respiratory signal, which contains an abnormal state in a
certain time interval, (B) shows the result of the respiratory signal after the outlier correction algorithm. Compared with the original signal, it can be seen that the part
containing outliers has been successfully corrected, and the rest remain unchanged.
FIGURE 2 | The overall framework of respiratory motion. Use EMD to fully extract the features of the respiratory motion signal and learn the features by building a
prediction model based on deep learning, so as to achieve accurate prediction.
May 2022 | Volume 12 | Article 884523
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can be differentiated once or more to obtain the extreme value.
As for the given raw signal, x(t) (t = 1,2…n),the EMD algorithm
decomposition is described as follows:

• Extraction of the maximum and minimum values of x(t): the
upper and lower envelopes Xmax(t),Xmax(t) are formed by
using the cubic spline difference to calculate their mean
values m1:

• Extraction details:

ht  =  m(t) −m1 (1)

• Judgment of whether ht IMF formation conditions: If it meets,
then an IMF will be derived and the remaining volume r(t) = x
(t)-h(t) will be in lieu of (t) ; if not, then ht will be in lieu of x
(t).

• Repetition of the above steps: When the standard deviation
(0.2-0.3) is met the iteration will be ended.

• After the decomposition process, can be replaced by the
following formula:

x tð Þ =  o
n

j=1
hj(t) + rn(t) (2)

In this formula, n is the number of IMF; hj (t) (j = 1.2,…n) are
IMFs; and rn(t) is the final residual error, which indicates the
central trend of x(t).

For the generalization ability of the model, this paper uses the
clinical respiratory data of 103 patients in the database and
randomly selects a continuous signal (the total length of each
Frontiers in Oncology | www.frontiersin.org 522
signal is 10,000, about 7 min) from 306 respiratory trajectories as
the model sample set. As shown in Figure 4, a series of length
10,000 is decomposed into nine IMF components and one
residual (Res), and the physical meaning of each component of
the IMF, whose order is divided according to the frequency from
high to low, represents each frequency component of the raw
signal. Because of the large amount of noise at high frequencies,
the first two high-frequency IMF componets (IMF0,IMF1) are
removed, and the remaining components will input the physical
characteristics of the raw signal and into the prediction model.
Because EMD is an adaptive decomposition, the respiratory data
series of different patients will be decomposed into different
amounts of IMF. Before being input into the network, it is
necessary to supplement the number of IMFs of each original
series in the whole database. The supplemented IMF
components are filled with 0, so as to achieve a unified
number of IMFs of each patient’s respiratory series.

3.2.1.3 Division of Preprocessed Data
The training set, validation set, and test set are partitioned
among the filtered IMF components. As shown in the division
diagram Figure 5, the original sequence P = (p1,p2,…,pi,…,pi+n)
is divided in a ratio of 6:2:2. In addition, the training set is
indicated as Ptrain , Ptrain = [p1,p2,…,pn]

T ; the valiadation set is
denoted as Pvalid , Pvalid = [pj,…, pj+n]

T; and the test set is denoted
as Ptest , Ptest = [pj,…, pj+n]

T. Take Ptrain as an example, form p-1
topn all sequences are isometric sequences, and each sequence
contains the original sequence (X1,X-2,…,Xn) and the delay time
of the predicted value (t1,…,tn).
FIGURE 4 | Schematic diagram of IMFs and Res decomposed by EMD.
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Network model input: After decomposition of the original
sequence X, IMFs correspond to part of Ximfs, Ximfs = [Ximf1,
Ximf2,…, Ximf1, Ximfi+n]

T, which is a stationary sequence
containing multidimensional features. Target prediction value
(label): observation point (w1, w2,…,wn) after delay time t is the
target prediction value, which is sampled from the original
sequence and does not contain IMFs information. According
to the equipment sampling frequency of 26 Hz, the
corresponding delay time at ti = 3,5,10, and 13 is about 100,
200, 400, and 500 ms, respectively.

3.2.2 Respiratory Motion Prediction Model
The deep convolution neural network model proposed in this
paper for respiratory motion prediction includes three major
parts. First, multi-scale convolution layers are used to extract
features in parallel to find the optimal local sparse structure of
the convolution network and obtain timing information fully.
Second, the addition of a SEnet-based attention mechanism to
the convolved feature channel increases the sensitivity of the
model to the channel feature and automatically learns the
importance of the different channel features. Last, TCNs are
used to grasp long-time dependent information and assign each
convolutional feature to a causal relationship, thereby predicting
respiratory motion signals for a future period of time.

3.2.2.1 Squeeze and Exception Module
CNN has the ability of characterization learning, translates
invariant classification of input information according to the
hierarchical structure, and fuses spatial and channel information
in the local receiving domain of each layer of network to
construct local features. A squeeze-and-excitation module is
proposed on the basis of CNN by Hu et al. (30), which
improves the CNN characterization ability by improving the
spatial coding quality at the feature level and clearly establishing
the interdependence between convolutional feature channels.
Frontiers in Oncology | www.frontiersin.org 623
3.2.2.2 Temporal Convolutional Network
The main characteristics of TCN include adopting a one-
dimensional fully convolutional networks (FCNs) (31)
to receive input sequences of any length as inputs and map
them into output sequences of equal length at the same time;
each time is calculated simultaneously, not serially on the time
sequence, to improve the network operation efficiency; causal
convolution is used, so that each convolution layer is causally
related, which means that information “leakage” will not occur
from future to the past. Briefly: TCN = 1D FCN + Causal
convolutions (32).

3.2.2.2.1 Causal Convolutions. If the input sequence is shown
as X = (x1.x2,…,xr), then the prediction yt of the moment t can
only be obtained through x1 to xt-1, which is input before
moment t as what has been shown in the left half of Figure 6A. If
the filter is defined as F = (f1,f2,…,fk) and K is the number of
filters, then the causal convolution at time xt is as follows:

F ∗Xð Þ xtð Þ = o
K

k=1

fkxt−K+k (3)

There is a big defect in causal convolution. If a more distant
xt-n is needed as input to enlarge the receptive field, then a large
number of convolution layers are needed, which increases the
network depth and easily causes problems such as gradient
disappearance and poor fitting effect.

3.2.2.2.2 Dilated Convolutions. Dilated convolution can be
used to solve the above problems; meanwhile, it is also
the convolution used by the TCN network. To obtain larger
receptive field, the dilated convolution (d) introduces the concept
of dilation factor, which allows the input interval adoption
during the convolution. Adding to the dilation factor gives
sequence X dilated convolution at xt at which the expansion
factor is d:
FIGURE 5 | Schematic diagram of training set, verification set, and test set classification. The original data at each end are decomposed by EMD to form multiple
IMFs, and the data of equal length are intercepted as the feature input.
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Fd ∗Xð Þ xtð Þ  =  o
K

k=1

fk xt−(K−k)d (4)

The right half of Figure 6A shows that d = 1 at input is a
common convolution, with d = 2 for the first hidden layer and d = 4
for the second hidden layer, and the expansion factor increases
exponentially by 2 as the network layer increases.

3.2.2.2.3 Residual Connections. The residual connection is
added to the TCN network, which allows the network to transmit
information across layers and solves the problems of gradient
disappearance or explosion of deep network, and learning the
overall transformation of input X changes into learning the
partial modification of input X. In the TCN, residual blocks are
used to replace convolution layers, which include dilated con-
volution with two layers and non-linear mapping. In addition, a
WeightNorm and Droput regularization network is used in each
layer, with a linear rectification function (Relu) as the activation
function as shown in Figure 6B.

3.2.2.3 Network Layer of Respiratory Motion
Prediction Model
The main body of respiratory motion prediction model is
composed of multi-scale enhanced CNNs layer (CNN_SEnet)
and a TCN layer. As shown in Figure 7, first, a multi-scale
convolution channel is composed of a convolution layer
containing different convolution kernels, and the sizes of each
convolution kernel in each channel are 3 × 1, 5 × 3, and 7 × 5,
respectively, with a step size of 1 and a convolution filter of 16.
Setting convolution kernels at different scales allows the model to
learn different local features in the sequence. For example,
smaller convolution kernels can extract local subtle features
and are more sensitive to instantaneous changes in the
sequence; larger convolution kernels mainly extract local trend
features and can control the overall features at a certain time
scale. The input of the prediction model is Ximfs = [Ximf1, Ximf2,
Frontiers in Oncology | www.frontiersin.org 724
…, Ximf1, Ximfi+n]
T, in which the length of Ximfn is the IMFs

containing a certain time length, about 100 to 400, and the width
is the IMFs with different frequency components formed by the
original sequence after EMD decomposition, about 10 to 15. Its
length–width ratio gap is so large that the convolution kernel size
is no longer set as the conventional 3 × 3 or 5 × 5 but set the
convolution kernel of the above size, which can highlight the
time–domain characteristics when the frequency–domain
characteristics are ensured. Each scale channel contains a
convolution layer of three above parameters for adequately
extracting feature information in the sequence.

Second, to enhance the information representation ability of
CNNs layer, SEnet attention mechanism is added after each
CNNs channel, and the weight coefficient of each channel after
convolution is learned, so that the model has more
discrimination ability for the characteristics of each channel.
Its network parameters are detailed in the literature. The
activation function Relu and the maximum pooling layer with
a 2 × 2 window are then performed for extracting important
features and discard irrelevant features.

Then, the output of the three scale channels is combined
through the connecting layer to form a richer information
feature. Afterward, the causal relationship of each feature can
be found out through the TCN layer, and the future information
is predicted through the historical information feature. The
number of filters in this module is set as 32; the convolution
kernel size is 3; the dilation factor grows by 2n; the number of
stacks of residual blocks is 1, and the activation function is Relu.
Last, the predicted target values were obtained through Flatten
layer and full junctional layer.
3.2.3 Evaluation Criteria
In this paper, the mean absolute error (MAE), RMSE, and R2
determination coefficient (R2_score) are used as evaluation
indexes of respiratory prediction algorithm. MAE is the mean
A B

FIGURE 6 | FCN architecture. The left half of (A) is a causal convolution schematic and the right half is a dilated convolution schematic, and (B) is the TCN
residual block.
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of the absolute value of the deviation between all individual
observed value and the arithmetic mean. It is defined as follows:

MAE  =  
1
No

N

i=1
yi − y∗ij j (5)

The RMSE is the square root of the ratio of the square of the
deviation of the predicted value from the true value to the
number of observations n, and it is defined as follows:

RMSE  =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
yi − y∗ið Þ2

s
(6)

R2_score is the overall fit of the regression equation, and the
closer the value of R2 is to 1, the better the fit of the regression
equation to the observed value is, which can be defined as
follows:

RMSE  =  1 −oi yi − y∗ið Þ2

oi �yi − y∗ið Þ2 (7)

In this equation, N is the number of data points; y is the actual
respiratory motion trace; y* is the trajectories of respiratory
motion prediction; andoi(�yi − y∗i )

2 is a benchmark model in the
field of machine learning.
4 RESULTS AND DISCUSSION

4.1 Results
Table 1 and Figure 8, respectively, show the experimental results
of the proposed EMD-SEnet-TCN multi-channel depth
prediction model in this paper; in addition, the prediction
results in this paper are all calculated according to the
following parameters: epochs = 100, batch size = 128,
optimizer = Adam, and learning rate = 0.001. Judging from the
results, although the prediction precision decreases with the
increase of delay time (ti), the prediction accuracy is still
ensured to some extent; when the length of model input data
is increased, the network does not present gradient explosion or
disappearance problems, which indicates that the proposed
algorithm in this paper has the ability to overcome long-
Frontiers in Oncology | www.frontiersin.org 825
distance dependence and can make full use of historical
information to predict the future information.

To verify the higher prediction precision of the model in this
paper, a comparison is made with the Deep BiLSTM model
proposed by Wang et al. (20) with the same dataset. Figure 9
shows the comparison of these two algorithmic models under the
same parameters (Xi = 50, ti = 1.5, and 10). It can be seen from
the figure that the prediction precision of the algorithm proposed
in this paper is better at different delay times under the MAE and
RMSE evaluation indexes.

Because of the limitations of different input samples,
preprocessing operations, and experimental platforms under
different models, to illustrate the superiority of this model
more clearly, a comparison among three depth prediction
models is conducted, including multi-convolution combined
with BiLSTM network (CNN-BiLSTM), multi-channel
convolution combined with TCN model (CNN-TCN), and
multi-channel convolution combined with BiLSTM based on
EMD (EMD-CNN-BiLSTM). Table 2 shows the performance
comparison results of the proposed algorithm (EMD-
SEnetTCN) with the above three models at Xi = 100 and delay
times at 80, 150, 240, 300, 400, 450, and 520 ms (ti = 2, 4, 6, 8, 10,
12, and 14).

As shown in Figure 10, the prediction precision of each
model is high, and there is no significant difference when the
delay time is shorter than 240 ms. The MAE and RMSE are about
0.72% ~ 0.18% and 0.21% ~ 0.28%, respectively. When the delay
time exceeds 240 ms, the better performance of EMD-SEnet-
TCN becomes more and more obvious. To meet the clinical
requirements, 400 ms is used as the standard delay time.
Compared with CNN-TCN, the precision decrease of MAE
and RMSE are by 13.7% and 9.2%, respectively, whereas for
R2_score, the precision increases by 2%. The difference between
TABLE 1 | Results of respiratory prediction algorithm.

Input Length (Xi) Latency (ms) MAE (mm) RMSE (mm) R2 (None)

50 120 (ti = 3) 0.009022 0.022503 0.989431
100 200 (ti = 5) 0.016584 0.031588 0.979483
200 400 (ti = 10) 0.035926 0.053782 0.941398
400 500 (ti = 13) 0.048367 0.068925 0.908258
May 2022 |
 Volume 12 | Art
FIGURE 7 | Network layer of respiratory prediction model.
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these two models is whether EMD is used or not. Judging from
the results, EMD is very effective for improving the precision of
the model. Compared with CNN-BiLSTM, the precision values
of MAE and RMSE decreased by 15% and 18.3%, respectively,
whereas the precision value of R2_score increased by 1.4%;
compared with EMD-CNN-BiLSTM, the precision values of
MAE and RMSE decreased by 8.4% and 9.1%, respectively,
whereas the precision value of R2_score increased by 1%, of
MAE decreased by 8.4%, of RMSE decreased by 9.1%, and of
R2_score increased by 1%. The prediction precision of this
model is very close to that of this paper due to the similar
structure of the two depth models and the difference lies in TCN
and BiLSTM. EMD-SEnet_TCN not only has higher precision
but also improves of prediction update time. The results show
that, compared with other prediction models, the model in this
paper has excellent performance at different delay times, and the
prediction model performance will be further improved with the
increase of delay time.

Figure 11 shows the prediction update time of different depth
models in seconds per epoch. Although EMD-CNN-BiLSTM is
slightly inferior to the model proposed in this paper in terms of
Frontiers in Oncology | www.frontiersin.org 926
prediction precision, the update time has reached 10 s per epoch,
which is much longer than the update time of EMD-SEnet_TCN
(2 s per epoch), failing to meet the clinical requirements; whereas
the update time of CNN-TCNs is the shortest, only 1 s per epoch,
without meeting the standard of prediction pricision; as for other
prediction models, all perform poorly in terms of precision or
update time. In general, the prediction model proposed in this
paper greatly reduces the average update time with the guarantee
of high prediction precision, so that the network can predict the
target value quickly and accurately.

The input data length of the model affects the prediction
precision to a certain extent. Generally, to lower the prediction
error, the input data segment should be located near the target
prediction value because the farther the distance is, the weaker
the correlation is. In addition, if the data is too long, then there
will be problems such as increased training time of the prediction
model and gradient disappearance or explosion. To study the
effect of different lengths of input data on the prediction results,
the prediction errors of different data with lengths of 50, 100,
200, 400, and 600 at a delay time of 400 ms (ti = 10) are
compared. The results are shown in Figure 12.
FIGURE 8 | Actual breathing trajectory and predicted trajectory. Model delay time is 400 ms.
FIGURE 9 | Model performance comparison.
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With the increase of input data (Xi) the prediction errors of
different models increase, among which the gradient of CNN-
BiLSTM disappears at Xi = 600 and both MAE and RMSE
increase abnormally; EMD-CNN-BiLSTM and CNN-BiLSTM
have better prediction precision when Xi is small, but the
prediction error increases rapidly when Xi is big; CNN-TCN
has a more stable prediction error fluctuation at different Xi

whereas that of MAE and RMSE are big; comparing the above
Frontiers in Oncology | www.frontiersin.org 1027
three models, EMD-SEnet_TCN displays excellent prediction
performance in that it can cope with sequence information of
various lengths and ensure certain prediction precision.

4.2 Discussion
Choosing different optimizer (Op) and learning rate (Lr) will affect
the prediction results of deep prediction model. The optimizer is
used to update and calculate the network parameters affecting the
training and output of model, so that they approximate or reach
the optimal value to minimize (or maximize) the loss function. The
learning rate determines whether the objective function can
converge to the local minimum value and when it can converges
to the minimum value. The appropriate learning rate can make the
target function converge to the local minimum value at appropriate
time. SGD is a relatively commonly used optimizer, in which noise
will be added when the gradient is randomly selected, and the
update weight value does not reach the global optimum, which
makes the accuracy rate decrease; Adagrad adopts an adaptive
learning rate optimization algorithm to update the low-frequency
parameters greatly while update the high-frequency parameters less;
Adadelta is an improvement of Adagrad because it has an
exponential decay average; RMSprop changes the gradient
accumulation of Adagrad into an exponentially weighted moving
average, improving the effect under non-convex settings; Adam
combines the momentum advantages of RMSprop with SGD to
form an optimizer with better performance.

Different optimizers display differently in various tasks, and it
is not necessarily that the more advanced the version is, the
better its results are. To select a better optimizer, the comparison
of different optimizers is performed in Table 3. The learning rate
controls the update speed of model parameters–Lr is too small, it
will greatly reduce the network convergence rate and increase the
training time; if it is too large, then it will lead to parameters
oscillating on both sides of the optimal solution. Table 3 below
shows the prediction model performance results of different sizes
of learning rates (0.1, 0.01, 0.001, and 0.0001).
FIGURE 10 | Model performance comparison under different depths and different evaluation criteria. Under different predictive evaluation indicators, the performance
of this model is compared with the other three models. The blue represents the model of this paper, the solid line represents the MAE indicator, and the dashed line
represents the RMSE indicator.
TABLE 2 | Results comparison of different respiratory prediction models.

Prediction model Latency (ms) MAE (mm) RMSE (mm) R2 (None)

EMD-SEnet-TCN 80 0.008797 0.01814 0.993157
150 0.016442 0.026901 0.985422
240 0.021495 0.033960 0.975841
300 0.028391 0.042698 0.960636
400 0.031789 0.0491499 0.951819
450 0.038560 0.058295 0.928711
520 0.045638 0.064746 0.910043

CNN-BiLSTM 80 0.013164 0.020244 0.994183
150 0.015645 0.021739 0.989963
240 0.026275 0.032612 0.966891
300 0.040191 0.051979 0.939334
400 0.044840 0.060412 0.917064
450 0.051416 0.071154 0.890039
520 0.059593 0.080446 0.857721

CNN-TCN 80 0.007193 0.009572 0.997983
150 0.020939 0.028718 0.985953
240 0.022003 0.031190 0.978862
300 0.029881 0.045487 0.961351
400 0.040356 0.054568 0.932332
450 0.048732 0.070259 0.893678
520 0.054356 0.077895 0.869860

EMD-CNN-BiLSTM 80 0.010331 0.022604 0.989376
150 0.017215 0.025713 0.986681
240 0.0257432 0.038429 0.969060
300 0.029316 0.045936 0.954440
400 0.037918 0.054366 0.937525
450 0.040603 0.060994 0.911850
520 0.048301 0.065581 0.907710
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All the results in Table 3 are based on EMD-Senet-TCN
prediction model with epochs = 100, batch size = 128, Xi = 100,
ti = 10 (400 ms). From Table 3, it can be seen that Op uses Adam.
MAE and RMSE are the smallest and their prediction is the most
accurate. Although Adadelta is an advanced version of Adagrad, it
is not very effective when applied under the prediction model in
Frontiers in Oncology | www.frontiersin.org
)
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this paper. The different learning rate settings were all obtained
under Op = Adam, and the best result was obtained when Lr =
0.001, where when Lr = 0.01, the learning rate is too large to result
in a model that could not converge and the regression coefficient
was negative. It can be seen that the model in this paper uses Op =
Adam and Lr = 0.001 to the best prediction results.
5 CONCLUSION

Respiratory motion brings great difficulties to the treatment of
thoracoabdominal tumors, and respiratory motion prediction
models are extremely important for precision radiotherapy. In
this paper, a depth prediction model (EMD-SEnet-TCN) is
proposed for the application of respiratory motion signals in
radiation therapy for patients with cancer. The method was
validated by using respiratory motion signals from multiple
patients with malignant tumors in the database of the Institute of
FIGURE 12 | Comparison of prediction results of input data with different lengths. Blue represents the model of this article.
FIGURE 11 | Average update time of different prediction models. The number at the top of the bar graph represents time, and the color of wheat represents the
model of this article.
TABLE 3 | Effect of different parameters (Op, Lr) on EMD-SEnet_TCN.

Parameters MAE (mm) RMSE (mm) R2 (None

Op = SGD 0.087130 0.116361 0.702972
Op = Adam 0.035789 0.051499 0.941819
Op = Adagrad 0.049455 0.069139 0.895137
Op = Adadelta 0.166532 0.200430 0.118740
Op = RMSprop 0.039013 0.060148 0.910473
Lr = 0.1 0.308492 0.375175 −2.08768
Lr = 0.01 0.037244 0.053731 0.936662
Lr = 0.001 0.034789 0.049149 0.951819
Lr = 0.0001 0.041593 0.057317 0.927934
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Robotics and Cognitive Systems, University of Lübeck, Germany.
The results of this paper show that (1) the depth prediction model
method proposed in this paper is superior to other benchmark
models in terms of delay prediction precision and time update
efficiency (2); it verifies that the decomposition of complex
respiratory motion signals by using EMD can further improve
the prediction precision of the prediction model (3); the multi-scale
CNN containing attention mechanisms has a better feature
extraction ability for finite IMFs of respiratory motion signals.
This work solves one of the major challenges for precise prediction
of the state of patient respiratory motion signals, and in medical
practice, the proposed method has important practical significance
for precision radiation therapy.

The present study has some limitations. The first one is the
correlation between the external respiratory signal and the internal
tumor motion. In order for our technique to be applied clinically,
another model needs to be designed to realize the correlation
analysis in the future. The second is that whether the prediction
technology in this paper achieves clinical application is the key to
future research. On the basis of complying with legal and ethical
requirements and respecting patient privacy, it is very important
to determine a medical analysis platform that applies the deep
learning framework in the future.
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Magnetic resonance imaging is the most generally utilized imaging methodology that
permits radiologists to look inside the cerebrum using radio waves and magnets for tumor
identification. However, it is tedious and complex to identify the tumorous and
nontumorous regions due to the complexity in the tumorous region. Therefore, reliable
and automatic segmentation and prediction are necessary for the segmentation of brain
tumors. This paper proposes a reliable and efficient neural network variant, i.e., an
attention-based convolutional neural network for brain tumor segmentation. Specifically,
an encoder part of the UNET is a pre-trained VGG19 network followed by the adjacent
decoder parts with an attention gate for segmentation noise induction and a denoising
mechanism for avoiding overfitting. The dataset we are using for segmentation is
BRATS’20, which comprises four different MRI modalities and one target mask file. The
abovementioned algorithm resulted in a dice similarity coefficient of 0.83, 0.86, and 0.90
for enhancing, core, and whole tumors, respectively.

Keywords: VGG19, UNET, attention mechanism, brain tumor segmentation, MRI, BRATS
INTRODUCTION

Glioma is the most common type of tumor that is difficult to detect, with the lowest survival rate of
22% and constituting about 33% of all brain tumors (1–3). Some brain tumors are noncancerous,
called benign, with a high survival rate, and some brain tumors are cancerous, known as malignant,
with a low survival rate. There are also two types of brain tumors based on origin. The first is a
primary brain tumor because it originates in the brain and occurs due to abnormal brain cells; it is
also known as mutations. As cells mutate, they grow to multiply uncontrollably, forming a mass or
tumor. A brain tumor is among the leading cause of death. Conversely, tumors that have spread to
the brain from other locations in the body are known as brain metastasis, or secondary brain tumors
(4). According to a 2019 report from the London Institute of Cancer and World Health
June 2022 | Volume 12 | Article 873268131
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Organization (WHO),1 there are approximately eighteen million
registered cancer cases worldwide. Of these, 286,000 cases are
brain tumors, and the highest cases of brain tumors are reported
in Asia, with 156,000 cases. According to the same report,
approximately 9 million deaths are due to global cancer. Out
of which, 241 deaths are due to a brain tumor, and the highest
mortality rate was observed in Asia with 129 cases.

Brain tumor segmentation aims to detect the extension and
location of tumor regions (5). These regions are necrotic, edema,
and active tissues, usually achieved by identifying abnormal areas
compared to normal tissue. As glioma is the most common type
of brain tumor and is hard to detect manually due to confusing
boundaries, more than one MRI modality for detection was
utilized (6). The different forms of MRI modalities are T1-
weighted images, T2-weighted images, and fluid attenuation
inversion recovery (FLAIR)-weighted images (7). These images
were distinguished based on repetition time (TR) and time to
echo (TE). T1-weighted images are generated using short TR and
TE. T2-weighted images are generated using longer TR and TE
than T1-weighted images, and FLAIR-weighted images are
generated using longer TR and TE than T2-weighted images.

Previous brain tumor segmentation methods used hand-
designed features. Those methods were based on the classical
machine learning approach in which features are first extracted
by applying statistical approaches, and then machine learning
algorithms were applied for brain tumor segmentation (8, 9). In
these techniques, the nature of the features did not affect the
training procedure of the classifier. An alternative approach to
this is automatically extracting the features used for brain tumor
segmentation. This approach is most recently used and is known
as deep learning. Deep learning is the study of deep neural
networks (DNN), and DNN automatically learns the hierarchy
of complex features directly from available data (10). Specifically,
we use a pre-trained Convolutional Neural Network (CNN) (11,
12), i.e., VGG19, for brain tumor segmentation. CNN is the most
widely used DNN for computer vision tasks. Similar to DNN, the
standard CNN comprises the input, hidden, and output layers.
The different hidden layers are convolutional, pooling, and fully
connected. The working of CNN is simple: it compares the image
pixels. These pixels are also known as the features of the image.

To summarize, a pre-trained CNN learned the pixels of the
image by passing through different hidden layers. Therefore, in this
research, we apply CNN to automatically learn feature hierarchy
and utilize it for brain tumor segmentation. Subsequently, the
binary classification of tumors and nontumorous regions are
performed, and their results are utilized to classify all types of
tumors. An overview of the whole sequential research methodology
is presented in Figure 1. Specifically, we will propose a fully
automatic, efficient encoder-decoder architecture by using
BRATS’20 datasets.

The main contributions of this research article are summarized as;

• An attention-based mechanism reduces computational
complexity problems and improves brain tumor segmentation
results. Specifically, an image processing and attention
1https://www.who.int/news-room/fact-sheets/detail/cancer
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mechanism are applied to extract the specified area of the
image, followed by a pre-trained encoder part to extract the
minimumbut valuable features for further improving the results
with efficiency.

• The implementation of the proposed framework in PYTHON
using state-of-the-art libraries. The complete code is available
on the GitHub repository. https://github.com/alinawazT/
Brain-Tumor-Segmentation

• The validation of the proposed method was performed on the
BraTS’20 and improved the Dice Similarity Coefficient (DSC)
of enhancing, whole, and core tumors with 0.83, 0.90, and
0.86, respectively.

The rest of the paper is organized as follows: Section 2 highlights
the previous work related to the brain tumor and addresses the
research gaps. The proposedmethodology is presented in Section 3.
The comparison of the results with the state-of-the-art methods is
presented in Section 4. Finally, Section 5 concludes the research
paper with expected future research.
RELATED WORKS

A brain tumor is hard to detect manually due to nonuniform shapes
and confusing boundaries (13). Therefore, deep learning and image
processing play an essential role in early brain tumor diagnosis.
Different intelligent techniques were proposed for automatic early
diagnosis and segmentation of the tumor region. Among them,
CNN and Ensemble learning are the most widely used techniques.
A short review of some of the prominent and latest techniques is
presented below.

Zeldin et al. (14) apply different pre-trained deep learning
architectures for fully automatic segmentation of brain tumors.
Specifically, different CNN models such as dense convolutional
network (DenseNet), residual neural network (ResNet), and
NASNet were utilized as encoders. Like conventional U-NET,
an encoder is a CNN responsible for feature extraction followed
by separate decoder parts to achieve the semantic probability
map. The evaluation of the proposed method was performed on
BRATS’19 datasets and achieved a DSC of 0.839, 0.837, 0.839,
and 0.835 on Xception, VGGNet, DenseNet, and MobileNet
encoders, respectively.

Pei et al. (13) proposed a context-aware deep neural network
(CANet) framework for brain tumor segmentation. In addition to
U-NET’s encoder and decoder parts, it has a context encoding
module that computes scaling factors of all classes. This scaling
factor learns the global representation of all tumor classes. The
validation of the proposedmethod was performed on the BRATS’19
and BRATS’20 datasets, and the evaluation metric used in the
experimentation was DSC. The DSC on the test set was 0.821, 0.895,
and 0.835 for enhancing tumor (ET), whole tumor (WT), and core
tumor (TC), respectively.

Ghosh et al. (15) proposed a pre-trained deep learning
architecture for brain tumor segmentation. The proposed
architecture is similar to standard UNET except the encoder part
is pre-trained VGG16, which consists of 13 convolutional layers,
five pooling layers, and three fully connected layers; therefore, the
June 2022 | Volume 12 | Article 873268
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decoder also has 13 convolutional layers, five upsampling layers,
and three fully connected layers. The validation of the proposed
method was performed on The Cancer Imaging Archive (TCIA); an
evaluation was performed on different metrics such as accuracy,
DSC, and intersection over union (IoU). The proposed method’s
accuracy, DSC, and intersection over Union (IoU) are 0.998, 0.93,
and 0.83, respectively.

Alqazzaz et al. (16) trained a variant of Segnet for brain tumor
segmentation. Specifically, four different SegNets were trained on
T1, Flair, T1ce, and T2-weighted images. Four SegNets are then
combined, and feature extraction is performed. Finally, a
Decision Tree is applied to the extracted features to generate
the predicted segmentation mask of the tumor region. The
datasets used in the experimentation were BRATS’17, and the
evaluation metrics were precision, recall, and F-measure. They
achieved an F-measure of 0.85, 0.81, and 0.79 on the whole,
enhancing, and core tumors, respectively.

Karak et al. (17) proposed an encoder-decoder deep neural
network for multi-class brain tumor segmentation. The proposed
architecture is called TwoPath U-NET because it learns both
local and global features by using local and global feature
extraction paths in the down-sampling path of the deep neural
network. The validation of the proposed method was performed
on BRATS’19, and DSC was the evaluation metric used in the
experimentation. The DSC of the proposed method was 0.76,
0.64, and 0.58 for the whole, enhancing, and core
tumors, respectively.

Silva et al. (18) presented a deep multicascade fully connected
neural network for brain tumor segmentation. Specifically, the
proposed architecture is composed of three deep layer
aggregation neural networks, i.e., basic convolutional block,
convolutional block, and aggregation block. The proposed
method was evaluated using BRATS’20 datasets, and the
evaluation metrics used in the experimentation were DSC and
Hausdorff distance. The DSC was 0.88, 0.82, and 0.79 for the
whole, enhancing, and core tumors, respectively, while the
Hausdorff distance was 5.32, 22.32, and 20.44 mm for whole,
core, and enhanced tumors, respectively. Murugesan et al. (19)
presented a multidimensional and multiresolution ensemble
Frontiers in Oncology | www.frontiersin.org 333
neural network for brain tumor segmentation and trained a
traditional machine learning model for survival prediction.
Specifically, an ensemble of pre-trained neural networks such
as DenseNET-169, SERESNEXT-101, and SENet-154 was
utilized to segment whole, core, and enhanced tumors. The
segmentation map was then produced by combining the
segmentation of an ensemble of pretrained deep neural
networks. The datasets used in the experimentation were
BRATS’19 and achieved a DSC of 0.89, 0.78, and 0.779 for the
whole, core, and enhancing tumors, respectively, and survival
prediction accuracy was 34%.

Specifically, the proposed architecture extracts the multistake
information by combining the 3D convolutional neural network
information in the residual inception block and utilizing
hyperdense inception 3D UNET. Qamar et al. (20) trained a3D
UNET to classify the whole, enhancing, and core tumor classes.
The validation of the proposed method was performed on
BRATS 2020 datasets and achieved a DSC of 0.79, 0.87, and
0.83 for enhancing, whole, and core tumors, respectively. Zhao
et al. (21) performed integration of a fully connected neural
network (FCNN) and conditional random field (CRF) for brain
tumor segmentation. After basic preprocessing, FCNN was
applied to predict the class label probability of each pixel then
the prediction output was passed to the CRF-RNN for global
optimization and spatial consistency of segmentation results.
The validation of the proposed architecture was performed on
BRATS’13, BRATS’15, and BRATS’16 datasets. The DSC of the
proposed method was between 0.79 and 0.85 for the whole
tumor, 0.65 and 75 for the core tumor, and 0.75 and 0.80 for
the enhancing tumor, respectively.

Zhu et al. (22) presented a holistically nested neural network
for brain tumor segmentation. The multiscale and multilevel
hierarchical features of the brain MRI were learned by the
holistically nested neural network, which is the extension of
CNN to generate the prediction map of test images of brain MRI.
The evaluation of the proposed method was performed on
BRATS’13 datasets, and the evaluation metrics used in the
experimentation were DSC and sensitivity. The results show
that the presented method outperformed the previous method
FIGURE 1 | Overview of the sequential framework.
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with DSC and sensitivity of 0.83 and 0.85, respectively. Cui et al.
(23) proposed a cascaded convolutional neural network for brain
tumor segmentation. The proposed architecture is composed of
two subnetworks. The first network is called the tumor
localization network (TCN), and it is used to detect the tumor
region from an MRI scan. The second network was called as
intratumor classification network (ITCN), which was used to
label the defined tumorous region into subregions. The proposed
architecture was validated on BRATS’15 datasets, and DSC,
sensitivity, and positive predicted value (PPV) are the
evaluation metrics used in the experimentation, achieving a
DSC of 0.89, 077, and 0.80 for the whole, core, and enhancing
tumors, respectively.

Hoseini et al. (24) proposed a Deep Convolutional Neural
Network (DCNN) for brain tumor segmentation. The proposed
architecture is composed of two parts. The architecture part was
used to design the network model and was composed of five
convolutional layers, one fully connected layer, and a softmax
layer, while the second was used to optimize the learning
parameters of the network during the training phase. The
evaluation metric used in the experimentation was DSC and
achieved a DSC of 0.9, 0.85, and 0.84 for the whole, core, and
enhancing tumors on BRATS’16 datasets. Wang et al. (25)
presented a Fully Connected Convolutional Neural Network
for individual segmentation of WT, ET, and TC, respectively.
The first step is the segmentation of WT by proposing
WNet. The segmented output is used to segment ET by
proposing ENet. The output was then used to segment TC by
proposing CNet. The presented methods were validated on
BRATS’17 and achieved a DSC of 0.78, 0.90, and 0.83 on
enhancing, whole, and core tumors, respectively.

Kamnitsas et al. (26) proposed an Ensemble of Multiple Model
and Architecture (EMMA) for efficient brain tumor segmentation
to determine the influence of metaparameters on individual models
while reducing the risk of overfitting. Specifically, the proposed
architecture is the ensemble of two 3D multiscale CNNs called
DeepMedic, Fully Connected Network (FCN), and UNET. The
validation of the proposed architecture was performed on
BRATS’17, consisting of 215 high-grade glioma (HGG) images
and 75 low-grade glioma (LGG) images. The DSC of 72.9, 88.6, and
78.5 were obtained for enhancing, whole, and core tumors,
respectively. Colmeiro et al. (27) proposed a fast and
straightforward 3D UNET method for automatic segmentation of
brain tumors. Specifically, a two-stage 3D Deep Convolutional
Network was proposed. In the first step, the whole tumor was
segmented from the low-resolution volume, and then the second
step was the segmented delicate tissues. The proposed method was
evaluated on BRATS 2017 datasets, and DSC sensitivity, specificity,
and Hausdorff distance were evaluation metrics used in the
experimentation. The maximum DSC, sensitivity, specificity, and
Hausdorff distance mean on unseen datasets were 0.86, 0.997, and
14.0 for the whole, enhanced, and core regions, respectively.
Myronenko et al. (28) proposed an automatic 3D brain tumor
semantic segmentation using encoder–decoder architecture from
MRI. Specifically, a variational autoencoder was used to construct
input images, and a decoder was used to impose constraints on its
layer. The encoder is a pre-trained ResNet, which is followed by the
Frontiers in Oncology | www.frontiersin.org 434
respective decoder. The proposed method was evaluated on BRATS
2018, and the maximum DSC values for the enhancing, whole, and
core tumors were 0.82, 0.91, and 0.86, respectively. Similarly,
Hausdorff distances for the enhancing, whole, and core tumors
were 8.0, 10.0, and 5.9, respectively.

Hamghalam et al. (29, 30) proposed generative techniques for
brain tumor segmentation. Specifically, the proposed technique
uses the Cycle-Gan as an attention mechanism for improving the
contrast of the tumorous region. A model is then applied to the
contrasted image for final segmentation. The performance of
the proposed architecture is validated on BRATS18 datasets and
achieved a DSC of 0.8%, 0.6%, and 0.5%, respectively, on theWT,
TC, and ET.

Most researchers focus on improving the result of segmentation
while ignoring the efficiency of the task. Therefore, the prime thing
in anymachine learning task is to extract the minimum but valuable
features. In order to tackle this problem, we will use an attention-
based mechanism that will extract the useful features from the
whole MRI and further utilize it for segmentation. Similarly, to
reduce the algorithmic and computational complexity of the task,
we will use transfer learning compared to training complete NN
from scratch. This technique helps us improve the performance of
the segmentation while preserving the accuracy of the task.
METHODOLOGY

The framework for the segmentation of brain tumors is
presented in Figure 2. Like the standard UNET (31) system,
the proposed system contains the encoder and decoder parts.
The encoder part is standard VGG19 (32)2 with the
convolutional unit, which is used to extricate features from MR
images, while the decoder part utilizes the output of the encoder
VGG19 with an attention mechanism to segment the image by
upsampling the element maps. The figure likewise shows that
different colors address various hidden layers. The convolutional
layers are represented by the blue color, the pooling layer by the
yellow color, the upsampling layers by the pink color, and lastly,
the SoftMax layer by the red color. Input of size (224 × 224) is
given at the encoder part. In the wake of going through various
hidden layers, a binary segmented image is received as the first
output of the decoder part. Additionally, an attention
mechanism and an overfitting reduction mechanism are
applied to extract the specified segmented image and the final
multiclass segmentation of the tumorous region. At first, there
are 144 million boundaries of VGG19 that are diminished to 36.1
million boundaries by disposing of fully connected layers. Output
is passed to the SoftMax layer to group pixels autonomously into
“K” classes. K is a number of classes and is equivalent to four
since we have classes with (0, 1, 2, 3) marks. 0 for nontumorous,
1 for CT, 2 for WT, and 3 for ET.

The encoder network performs convolution with a filter to
produce feature maps. The rectified linear unit (ReLU) then
transforms the nonlinear output into a linear output. The output
June 2022 | Volume 12 | Article 873268
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is then batch normalized. Also, the max-pooling layer with 22
windows and stride 2 is performed to reduce the dimension of
the image. We discard the FC layer to reduce the parameters
learned from 144 to 36.1 million. The decoder, which
corresponds to the initial encoder (front to the input image),
generates a multichannel feature map. Similarly, the input
feature map is upsampled by the decoder network. The
following process represents the high-dimensional feature at
the output of the last decoder. It is fed to a SoftMax classifier,
which is trainable, and its output is a K channel image of
probabilities. K represents the number of classes.
Transfer Learning
Transfer learning moves the information gained by resolving one
dilemma to another related issue. A model built and trained in
machine learning for one dataset or recognition issue is repeatedly
used as the preliminary step for the following database (33). It is
difficult in practice to train a network from scratch using random
initialization due to data limitations. Therefore, using pre-trained
network weights as initializations or a fixed extractor of features
helps solve most problems. Since pretrained models are
computationally costly, it can also take a couple of days or even
weeks to learn correctly from the beginning, and it also helps
accelerate the training cycle, which helps in solving most of the
problems at hand (25).

VGG19
CNN is a feed-forward ANN and inspired by the human visual
cortex. The neurons of CNN followed a similar connectivity
pattern (2). The visual cortex is the area of the cerebral cortex
that is responsible for processing visual information. Visual
Frontiers in Oncology | www.frontiersin.org 535
input is provided from the eyes and reaches the visual cortex
via the lateral geniculate nucleus in the thalamus. The state-of-
the-art artificial neural network is employed in image processing
and machine vision tasks such as segmentation, classification,
and recognition. The standard CNN comprises input layers,
hidden layers, and output layers. The hidden layers are usually
convolutional, pooling, and fully connected. The working of
CNN is simple by comparing the pixels of the images (34).
The pixels are also called features of the image. So, in short, CNN
works by learning the features of the images, and CNN learns
these features by passing through different hidden layers, and
hidden layers in CNN are usually filters of different sizes. VGG19
is the commonly used CNN, composed of nineteen layers. Out of
these 19 layers, 16 are convolutional layers, 5 are max-pool
layers, 3 are completely connected layers, and 1 is a SoftMax
layer. The architecture of VGG19 (15) is simple and follows a six-
step process;

• First, the image is fed into the architecture as input; usually,
the shape (224, 224, 3) is provided.

• The kernel of size (3, 3) was then applied to discover the
underlying patterns of the image.

• Padding was used to preserve image resolution.
• Pooling was applied to reduce the dimension of the image.
• The output of the layers is usually linear. Therefore, a fully

connected layer was applied to transform the linear output
into the nonlinear output.

• Finally, the SoftMax layer is applied to predict the probability
distribution of the multiple classes.

The training of VGG19 from scratch is a tedious and complex
task; therefore, nowadays, a pre-trained VGG19 is often used. A
FIGURE 2 | Proposed sequential framework for segmentation of brain tumor.
June 2022 | Volume 12 | Article 873268
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pre-trained VGG19 is usually trained on larger datasets, i.e.,
ImageNet; thus, learning new and complex patterns becomes
efficient and straightforward. The architecture of VGG19 is
shown in Figure 3.
Attention Mechanism
The attention mechanism is a model for medical image
examination that naturally figures out how to focus on the
targeted image of changing shapes and sizes (35–40). An
attention mechanism helps the decoder focus on the area of
interest. Subsequently, with the attention mechanism, we will
classify the pixel by the hidden state of the decoder. Hence, we
partition the image into n parts; then, at that point, at the ith area
of the image, we utilize the hidden region of the decoder part.
The hidden region is then utilized as the setting to choose the
interest area of the image. The zi is the output of the attention
mechanism. Models prepared with attention mechanisms
certainly figure out how to smother unessential regions in an
input image while featuring remarkable features helpful for a
particular task, which empowers us to eliminate the need to
utilize express outside tissue/organ localization modules when
using CNN. Table 1 describes the important symbols and
variables used in the equat ion. The mathematical
representation of the attention mechanism with overfitting
reduction is as follows.

Algorithm 1: Pseudocode for the proposed approach.
1. ijt=fA(ot−1,ej)
2. fA = VT

A ∗ tanh(UA ∗ ij +WA ∗ ot)
3. Ct =oT

j=1alphaji ∗ ej such   thatoTx
j=1ajt = 1

4. where aij≧0
5. ot=CNN(st=1.[e(yt=1)·ct])
6. A(x,y)=ot+N(x,y)
7 where N(x,y)  = 1

s
ffiffiffiffi
2p

p e
−(z−)

2█2

8 . s e l e c t t h e p i x e l s w i t h t h e l o w e s t
energy − Etotal(x, y) =oN

i,jxi,j ·xi+1,j +1 − hoN
i,j=1xi,j ·yi,j

2π
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• In the algorithm, ij t represents the location of jth pixel in the
input image

• ot is the is the output of the decoder part
• ej is the current state of the encoder part

For a linear transformation of input, a simple feed-forward
neural network fA is applied and then a nonlinearity (tanh) and
transformation function VT

A (scalar quantity). The fourth line of
the pseudocode shows that, as now, we know the input, we need
to feed the weighted sum combination of input to the decoder. In
the following line,

• e(yt−1) is the previously predicted label of binary classification
• Ct is the context vector, i.e., the weighted sum of the input

After that, noise N(x,y) is combined with the output of
decoder ot where N(x,y) is the Gaussian noise function. Finally,
we apply the MRF by looping over the pixels of image A(x,y) and
computing the energies of the current pixels of A(x,y) by
applying the formula given in the eighth line.
Markov Random Field
The initial outcomes of the proposed models result in overfitting.
Therefore, we introduce noise in the generated image of the
decoder. Specifically, we used the Gaussian noise function to
introduce noise. We add 20% noise to the image. The MRF
algorithm is then applied to denoising the resultant image.
Compared to the Bayesian network, the connection between
nodes in MRF are undirected and cyclic. The MRF is defined in
terms of energy. When pixels of both images match, we say that the
energy of both images is low and high otherwise. The algorithm
moves on to the pixels, either moving through them in some
predetermined order or choosing a random pixel at each step,
running through the set of pixels until their values stop changing.
The equation in line 15 represents the energy of the where h and z
FIGURE 3 | The architecture of VGG19.
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are positive constant, energy of the “output pixels” and here we set
h=15, ð=1.5 .

A reliable and efficient variant of a pre-trained neural
network, i.e., an attention-based recurrent convolutional neural
network for brain tumor segmentation, is proposed in the
proposed framework. Specifically, the encoder part of the
UNET is a pre-trained recurrent VGG19 network followed by
the adjacent recurrent decoder part with an attention gate.

RESULTS

Evaluation Metrics
In this section, the qualitative and quantitative results of the
proposed framework are presented along with evaluation metrics.

Generally, two types of segmentation of brain tumors are
used, i.e., manual segmentation and automatic segmentation.
Firstly, the manual segmentation is performed by MRI experts,
which is a tedious and complex task, but accurate, while the
accurate and straightforward software does automatic
segmentation due to developments in artificial intelligence. It is
also worth mentioning that the MRI experts first label the
datasets used for automatic segmentation (41). The evaluation
metrics used for brain tumor segmentation are DSC, accuracy,
sensitivity, and precision (42). Similarly, true negative (TN)
Frontiers in Oncology | www.frontiersin.org 737
refers to the negative tuple correctly labeled by the classifier.
False negative (FN) refers to the classifier’s tuple to the positive
tuple incorrectly labeled. Similarly, false positive (FP) refers to
the negative tuple incorrectly labeled by the classifier.

DSC is the commonly used evaluation metric for image
segmentation and segmentation of brain tumors. DSC is the
measure of overlapping area between two images (23). For
example, in Figure 4, there are two circle images labeled “A”
and “B.” The DSC of the figure is then illustrated in Equation 1,
which shows that DSC is equal to two times the overlapped area
in the general area of the image element of both images. It can
also be illustrated as two times the true positive (TP) divided by
total TP, FP, and FN as represented in Equation 2.

DSC = 2 A ∩ Bj j= Aj j + Bj jð Þ (1)

DSC = 2TP=2TP + FN + FP (2)

Qualitative Results
For the evaluation of the segmentation task, the BRATS’20 (43)
was used, consisting of 371 image files, and each file is composed
of five subfiles, out of which four files are MRI modalities of the
individual patients, and one file is the target mask of the
individual patient. T1, T2, T2*, and attenuated inversion
recovery (FLAIR)-weighted mages are the most common
modalities of MRI utilized in this dataset. A different clinical
protocol was acquired for each modality, and multiple scanners
from several institutions and each modality have been segmented
manually by one to four raters. All the modalities are available as
NIFTI files with the extension (.nii.gz). A NIFTI file is the most
common file format for neuroimaging. The available datasets are
imbalanced; therefore, in the data preprocessing step, a patch-
wise training procedure is applied (44).
TABLE 1 | Symbols with description.

Serial number Symbol Description

1. fA Feed-forward neural network
2. VT

A
Transformation function

3. WA Attention function
4. Ct Context vector
5. h Learning rate
6. ð Standard deviation
FIGURE 4 | Illustration of Dice Similarity Coefficient (DSC).
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TABLE 2 | Quantitative results of the proposed model.

Metrics Results

Sensitivity 0.98
Specificity 0.981
Precision 0.993

Ali et al. Effective Segmentation of Brain Tumor
Figure 5 shows the segmentation results of the proposed
model on the BRATS’20 dataset. The first column is the tumor
segmentation of all tumor classes, followed by the individual
segmentation of core, whole, and enhancing tumors in columns
fourth, fifth, and sixth, respectively.
Accuracy 0.99
DSC of ET 0.861
DSC of WT 0.90
DSC of TC 0.83
Quantitative Results
The quantitative results of the proposed model are presented in
Table 2 with a sensitivity, specificity, accuracy, and precision of
0.98, 0.981, 0.99, and 0.993, respectively. Similarly, the
comparison of the achieved results with the primary method is
presented in Table 3, which reveals that the proposed framework
outperformed the state-of-the-art methods. The comparison is
performed based on the DSC score of ET, WT, and
TC, respectively.
CONCLUSION

In conclusion, a pre-trained VGG19 neural network with an
attention mechanism and an image processing technique is
Frontiers in Oncology | www.frontiersin.org 838
trained for brain tumor segmentation. Applying the attention
mechanism aims to suppress irrelevant regions in an input image
while highlighting essential features useful for a specific task. The
FIGURE 5 | Qualitative results of the proposed framework.
TABLE 3 | Comparison of results of brain tumor segmentation.

Methods ET WT TC

Ghaffari et al. (45) 0.78 0.90 0.82
Ballester et al. (46) 0.67 0.85 0.78
Colman et al. (27) 0.75 0.86 0.79
Proposed method 0.83 0.90 0.86
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proposed model’s evaluation is carried out on BRATS20, and
evaluation metrics used in the segmentation method are
accuracy, sensitivity, specificity, precision, and DSC. The
obtained results show that the proposed model produces more
accurate and better outputs than the previous method for
enhancing, whole, and core tumors with dice similarity
coefficient scores of 0.83, 0.9, and 0.86, respectively. The
proposed segmentation methods enable the efficient and
effective diagnosis of brain tumors. In the future, an ensemble
attention mechanism will be proposed to extract the more
important features and increase the segmentation results.
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Image segmentation plays an essential role in medical imaging analysis such as tumor
boundary extraction. Recently, deep learning techniques have dramatically improved
performance for image segmentation. However, an important factor preventing deep
neural networks from going further is the information loss during the information
propagation process. In this article, we present AX-Unet, a deep learning framework
incorporating a modified atrous spatial pyramid pooling module to learn the location
information and to extract multi-level contextual information to reduce information loss
during downsampling. We also introduce a special group convolution operation on the
feature map at each level to achieve information decoupling between channels. In
addition, we propose an explicit boundary-aware loss function to tackle the blurry
boundary problem. We evaluate our model on two public Pancreas-CT datasets, NIH
Pancreas-CT dataset, and the pancreas part in medical segmentation decathlon (MSD)
medical dataset. The experimental results validate that our model can outperform the
state-of-the-art methods in pancreas CT image segmentation. By comparing the
extracted feature output of our model, we find that the pancreatic region of normal
people and patients with pancreatic tumors shows significant differences. This could
provide a promising and reliable way to assist physicians for the screening of
pancreatic tumors.

Keywords: atrous spatial pyramid pooling, boundary-aware loss function, pancreas CT, image segmentation,
group convolution
June 2022 | Volume 12 | Article 894970141

https://www.frontiersin.org/articles/10.3389/fonc.2022.894970/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.894970/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.894970/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.894970/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:nihx@lzu.edu.cn
mailto:chengsheng.mao@northwestern.edu
https://doi.org/10.3389/fonc.2022.894970
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.894970
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.894970&domain=pdf&date_stamp=2022-06-02


Yang et al. AX-Unet for Pancreatic Tumor Diagnosis
1 INTRODUCTION

According to the Report on Cancer from National Cancer
Institute in 2021, pancreatic cancer is the third leading cause
of cancer-related death in the United States (1). The
identification and analysis of pancreatic region play an
important role in the diagnosis of pancreatic tumors. As an
important and challenging problem in medical image analysis,
pancreas is one of the most challenging organs for automated
segmentation, which aim to assign semantic class labels to
different tomography image regions in a data-driven learning
fashion. Usually, such a learning problem encounters numerous
difficulties such as severe class imbalance, background clutter
with confusing distractions, and variable location and geometric
features. According to statistical analysis, pancreas occupies less
than 0.5% fraction of entire CT volume (2), which has a visually
blurry inter-class boundary with respect to other tissues.

In this article, we combine the advantages of deepLabV series,
Unet, and Xception networks to present a novel deep learning
framework AX-Unet for pancreas CT image segmentation to assist
physicians for the screening of pancreatic tumors. The whole AX-
Unet still preserves the encoder-decoder structure of Unet. In our
framework, we incorporate a modified atrous spatial pyramid
pooling (ASPP) module to learn the location information. The
modified ASPP can also extract multi-level contextual information
to reduce information loss during downsampling. We also
introduce a special group convolution operation on the feature
map at each level to decouple the information between channels,
achieving more complete information extraction. Finally, we
employ an explicit boundary-aware loss function to tackle the
blurry boundary problem. The experimental results on two public
datasets validated the superiority of the proposed AX-Unet model
to the states-of-the-art methods.

In summary, we propose a novel deep learning framework
AX-Unet for pancreas CT image segmentation. Our framework
has several advantages as follows.

1. In our framework, we introduce a special group convolution,
depth-wise separable convolution, to decouple the two types
of information based on the assumption that inter-channel
and intra-channel information are not correlated. This design
can achieve better performance with even less computation
than the normal convolution.

2. We restructure the ASPP module, and the extraction and
fusion of multi-level global contextual features is achieved by
multi-scale dilate convolution, which enables a better
handling of the large scale variance of the objects without
introducing additional operations. The efficacy of the
restructured ASPP is validated in our ablation studies on
foreground target localization.

3. We propose a loss function that can explicitly perceive the
boundary of the target and combine the focal loss and
generalized dice loss (GDL) to solve the problem of
category imbalance. The weighted sum of the above parts is
used as our final loss function, which can explicitly perceive
the boundary of the target.
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4. We segment a large number of external unlabeled pancreas
images using our trained model. The analysis of the
imagomics features of the pancreatic region shows a
significant difference between patients with pancreatic
tumors and normal people (p ≤ 0.05), which may provide a
promising and reliable way to assist physicians for the
screening of pancreatic tumors.
2 RELATED WORK

We are developing an artificial intelligence (AI) method for
medical application in this paper. In this section, we review some
previous works related to our work. We first make a brief review
of AI methods in medicine. Then, we focus on the research of the
AI task involved in this paper (i.e., image segmentation) and
review the related methods. Finally, most related to our study, we
review a few representative studies that applied AI methods to
medical image segmentation, especially, pancreas segmentation,
and compare them with our methods.
2.1 Artificial Intelligence in Medicine
In recent years, with the popularization of AI technology in
various fields, it has also made great progresses in the medical
field. The development of AI techniques has been promoting the
development of medicine, from the earliest AI methods, such as
expert systems (3, 4), to more advanced statistic machine learning
methods, such as support vector machine (5, 6), non-negative
matrix factorization (7–9), and local classification methods (10–
12). Recently, the deep learning techniques that have achieved
great success in computer vision and natural language processing
played an important role in the development of medicine and got
great development over the past few years. Xu et al. (13) used an
attention-based multilevel co-occurrence graph convolutional
long short-term memory (LSTM) to enhance multilevel feature
learning for action recognition. Fang et al. (14) proposed a dual-
channel neural network to reduce the high noise and disturbance,
which generally resides in the signal collected by wearable devices,
improving the accuracy of action recognition in the process
of surgical assistance and patient monitoring. Mao et al. (15–17)
also employed GCN and deep generative classifiers for disease
identification from chest x-rays and medication recommendation.
The diagnosis of tumors based on morphological features has also
found some applications, applying the morphological operators
get the legion part that is possible for doctors to detect accurately
where the tumor is located. Hu et al. (18) proposed an emotion-
aware cognitive system. A novel undisturbed mental state
assessment prototype was proposed by Giddwani et al. (19). The
recent pre-trained language models are also employed for disease
early prediction (20) and clinical records classification (21).

2.2 Image Segmentation
For the segmentation problem, many breakthroughs have been
made in recent years. He et al. (22) proposed spatial pyramid
pooling (SPP) to solve the fixed input size caused by the fully
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connected layer and proposed the parallel extraction of multi-
level features of SPP layer, which makes different size inputs have
output with fixed dimension. PSPNet (23) applied multi-level
feature extraction to the field of semantic segmentation. In its
design of pyramid pooling module, four different sizes of pooling
are fused and then stitched by a bilinear interpolation and a 1 × 1
convolution. This structure is designed to aggregate contextual
information from different regions, thus improving the ability to
obtain global information. The DeepLabV series (24) proposed
by Google later introduced ASPP in later versions, which used
dilate convolution with different dilate factors to expand the
receptive field without losing resolution and to fuse multi-scale
context information. In addition, a 1×1 convolution and a global
pooling are added in parallel. In the latest deeplabV3+ (25), the
upsampling has been further refined, and better results have been
achieved in boundary segmentation. In addition, in this version,
Xception (26) was introduced as the backbone to perform feature
extraction. This model performs channel-by-channel
convolution by the assumption that the channel correlation is
decoupled. Isensee et al. (27) developed nnUnet, a method that
automatically configures preprocessing, network architecture,
training, and post-processing for any new task, rendering state-
of-the-art segmentation accessible to a broad audience by
requiring neither expert knowledge nor computing resources
beyond standard network training.

2.3 Medical Image Segmentation
Since Unet was proposed in 2015 (28), it has undergone many
versions of evolution, and its performance has been continuously
improved (29). Inspired by the successful application of Unet
architecture and its variants to various medical image
segmentations, Li et al. (30) proposed a novel hybrid densely
connected UNet for liver and tumor segmentation. Yu et al. (31)
used a salience transformation module repeatedly to convert the
segmentation probability map for small organ segmentation. The
above methods mainly use general segmentation approaches for
medical image segmentation, ignoring domain-specific
challenges. In the field of pancreatic segmentation, many
methods have also been proposed. Farag et al. (32) used a
convolutional neural network (CNN) model with dropout to
conduct a classification on pixel level. Cai et al. (33) added a
convolutional LSTM network to the output layer of CNN to
compute the segmentation on two-dimensional (2D) slices of the
pancreas. However, all of these methods merge the information
between 2D slices of CT images for segmentation, which may
miss some spatial information across slices. Man et al. (34)
proposed a coarse-to-fine classifier on image patches and
regions via CNN. Zhang et al. (35) proposed a new efficient
SegNet network, which is composed of basic encoder, slim
decoder, and efficient context block. Although these methods
integrate spatial information to a certain extent, there is still
room for improvement in boundary segmentation decisions.
Ribalta Lorenzo et al. (36) proposed a two-step multi-modal
Unet–based architecture with unsupervised pre-training and
surface loss component for brain tumor segmentation which
allows model to seamlessly benefit from all magnetic resonance
modalities during the delineation. Shi et al. (37) presented a new
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semi-supervised segmentation model CoraNet based on
uncertainty estimation and separate self-training strategy. The
definition of uncertainty directly relies on the classification
output without requiring any predefined boundary-aware
assumption. Different from previous methods, our framework
extracts more complete spatial and channel features, introduces
multi-level and multi-scale feature extraction, and explicitly
evaluates the segmentation loss of boundaries, achieving
excellent results on multiple public datasets.

3 METHODS

In this article, we propose an improved version of Unet-based
backbone network, AX-Unet, incorporating a restructured ASPP
module, depth-wise convolutions, and residual blocks. We also
propose a hybrid loss function that is explicitly aware of
the boundary.

3.1 Architecture
As shown in Figure 1, our model adopts a U-shaped encoder-
decoder structure, which improves the basic Unet architecture in
severalways. First,we replace thenormal convolutions in the encoder
and decoder except the first layer with group convolution, so that in
the encoding process of each level, the inter-channel and intra-
channel correlation information is independently extracted (38, 39).
On the basis of this structure, the overlay of adjacent slices containing
the foreground is used as the input of our model; in this way, we can
independently extract thedetaileddifferencesbetweenadjacent slices,
which is helpful for more accurate segmentation. Therefore, in
essence, the channels should be treated differently; it is better not to
map them together. Second, we have added a residual structure (40)
between adjacent convolution blocks, which can reduce the semantic
information loss in downsampling. Third, after the encoding stage,
we set up a bottleneck layer using ASPP (41), which plays an
important role in extracting multi-level contextual information to
reduce information loss during downsampling. By performing
convolution operations on the feature maps obtained in the
encoding stage in parallel with different dilated rates, the context of
the image is captured at multiple scales to obtain more accurate
foreground position information (42).

Because the pancreas has a small area in computed
tomography images which is flexible and changeable,
traditional methods may fail to find the presence of the
pancreas when receiving a challenging input. The extraction of
multi-level contextual semantic information is important for
small and changeable target. In the decoding phase, we restore
the feature maps to the original resolution of the input image
layer by layer through group deconvolution (43) and reduce the
number of feature maps to 2 through 1×1 convolution.

3.2 Depth-Wise Separable Convolution
We use a special group convolution, depth-wise separable
convolution, instead of the normal convolution in the encoder.
The normal convolution operation is a joint mapping of channel
correlation information and spatial information in the channel
(44). These two kinds of information are coupled, but the two
June 2022 | Volume 12 | Article 894970
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correlations are decoupled in Inception by depth-wise
convolution (45, 46). In the assumption of Inception, the two
correlations are independent (47), mapping them separately can
achieve better results. Because our input is in the form of
numerous of slices, the independent mapping of information
between channels is more reasonable. We use the extreme case of
Inception, i.e., Xception in our framework, that is, the number of
groups in the group convolution is equal to the number of input
channels, which means inter-channel correlation and intra-
channel spatial correlation are completely decoupled. The
input feature map is linearly transformed channel by channel
through a 1×1 convolution; the obtained feature map is fed to a
number of 3×3 convolutions. Because the number of groups in
our grouped convolution is equal to the number of input
channels, all filters in this convolution process have a
convolution kernel of 3×3, i.e., each channel of input feature
map is only convolved by one kernel with size of 3×3×1. The
outputs of these filters are stacked to construct the output
feature map.

In terms of parameter comparison, assuming the number of
input feature map is M, the number of output feature map is N,
and the normal convolution kernel size is 3, the normal
convolution has the number of parameters Nn = 3×3×M×N,
and the depth-wise separable convolution has the number of
parameters from two parts, i.e., Ng = Ndepth−wise + Npoint−wise = 3 ×
Frontiers in Oncology | www.frontiersin.org 444
3× M + 1 × 1 × M × N. Compared the depth-wise separable
convolution with the normal convolution, the amount of
parameters in our framework is reduced (48, 49), and the
expressive ability of the network has been improved. In our
framework, we use double convolutions for dowmsampling, in
every double convolution block, we replace the first normal
convolution with depth-wise separable structure Xception
shown in Figure 1. Therefore, in each downsampling process,
the convolution kernels with the same number of input channels
are used to achieve information decoupling, and then, a normal
convolution is used to double the number of feature maps. After
calculation, if ordinary convolution is used completely, a total of
1,040,768 3×3 convolution kernels are needed in the entire
downsampling process, whereas our improved structure only
needs 700,544 3×3 convolution kernels.

3.3 ASPP Module
The pancreas images usually have blurry boundaries and are easy
to be confused with surrounding soft tissues, especially, it
occupies a relatively small region in a CT image with
complicated background and usually less than 1.5% in a 2D
image. This makes it even hard to decide whether the pancreas
exists in the image. Most existing models cannot extract enough
information about the position of the pancreas, which is largely
related to the global context of the image. In our framework, we
FIGURE 1 | An overview of our framework. When an original image is input, first, it goes through an encoder with four downsampling blocks consisting of a group
convolution (xception) and a max pooling, yielding a small feature map; then the small feature map goes through our modified ASPP module with dilated convolution
to achieve multi-scale feature parallel extraction; and then the multi-scaled feature maps go through a decoder with group decovolution operations to achieve a
feature map with the same shape of the original input image for pixel-wise classification. Finally, in the test process, the output feature map implies a segmentation
for evaluation; in the training process, comparing the output feature map and the original input annotation to calculated the loss by the designed hybrid loss function
for model training.
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use an ASPP module that contains atrous convolution to
improve the information extraction ability. The ASPP module
is inspired by the spatial pyramid and uses multiple parallel
atrous convolution layers with different sampling rates. The
context in the feature map is captured at multiple scales at the
same time. In the scenario where the medical image itself does
not contain complex background, noise and other information,
we believe that the deep and shallow features of the medical
image are all important, so the fusion of different levels of
features can achieve better decision-making.

As illustrated in Figure 1, the ASPP module that we use
mainly includes the following parts:

1. A 1×1 convolutional layer and three 3×3 atrous convolutions.
When the dilated rate is close to the feature map size, filters
will no longer capture the global context and will be
degenerated into a simple 1×1 convolution with only the
filter center working. Hence, here, we scale the dilated ratio of
the original module to (2, 4, 6).

2. A global average pooling layer obtains the image-level
feature, and then sends it to a 1×1 convolution layer
(output with 256 channels); the output is bilinearly
interpolated to be the same shape with the input.

3. The four kinds of feature maps from the above two steps are
concatenated together in the channel dimension and then are
sent to a 1×1 convolution for fusion to obtain a new feature
map with 256 channels.

To a certain extent, the ASPP module solves the defect that
the traditional Unet may have in characterizing information, can
better extract multi-level position information, and has stronger
characterization and learning capabilities to detect and locate the
pancreas. In addition, if the dilate rate is close to or even exceeds
the size of the input feature map, then it will degenerate into 1×1
convolution, and a too large dilate rate will not be conducive to
pixel-level output, so we use a smaller dilate rate of (2, 4, 6).

3.4 Hybird Loss Function
Because the region to be segmented only occupies a small part of
the entire image, this imbalance of foreground and background
will cause sub-optimal performance (50). In addition, the
pancreas as a soft tissue, the shape is variable. On the basis of
the above characteristics, we proposed a hybrid loss function to
update model parameters for the pancreas study tasks where
category imbalance, boundary perception, and shape perception
commonly exist. Our loss function consists of the following
three parts.

• Generalized dice loss:
The use of ordinary dice loss is very unfavorable for small

targets. The model will be overfiting (the output is all
background) because once the small target has a part pixel
prediction errors, it will result in large changes in dice
coefficient, which will lead to dramatic changes in gradients.
Therefore, GDL imposes a weight in each segmented category so
as to balance the contribution of various target areas (including
background) to loss.
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• Focal loss:
Focal loss is designed to solve the serious imbalance in the

proportion of positive and negative samples in target detection.
Focal loss is optimized on the basis of the cross-entropy loss as
Equation (3), where y > 0 reduces the loss of easy-to-classify
samples (ypred!0 or ypred!1) and pays more attention to
difficult, misclassified samples (ypred around 0.5). In addition,
the balance factor a is added to balance the uneven ratio of
positive and negative samples. Here, we go to set a to 0.25, that
is, we think negative samples are easier to distinguish.

Focal Loss

=  
−a 1 − ypred

� �g
log ypred for y  =  1

− 1 − að Þ(ypred)g log  1 − ypred
� �

for y  =  0

( )
(3)

• Counter-aware loss (CAL):
Pixels located at the boundary between background and

foreground are so ambiguous that it is difficult to determine
their labels even for experienced people. From the perspective of
features, these vectors extracted from motley image pixels fall
near the hyperplanes, acting as hard examples. As general
networks only apply pixel-wise binary classification, target
boundaries and interior pixels are processed indiscriminately
using the cross-entropy loss function, so they usually predict
broad outline of target objects, inferior in precision. Here, we
designed a loss function based on a fixed edge extraction filter
operator. The result of each iteration and the label are convolved
separately. After processing, MSSS-IM (Multi-Scale-Structural
Similarity Index), which measures the similarity of the image
structure, is used as a loss function. This kind of explicit
boundary extraction solves the problem of fuzzy boundary
i n f o rma t i on and c an b e t t e r r e t u rn t h e l o s s o f
boundary information.

There are many operators in edge extraction, such as Prewitt
operator, Sobel operator, and Prewitt operator. They have
different emphases and tendencies in boundary extraction. For
example, Sobel operator detects edges according to the
phenomenon of reaching extreme values at edges, which has a
smoothing effect on noise. The effect of Roberts operator in
detecting horizontal and vertical edges is better than that of
oblique edges, and the positioning accuracy is high, but it is
sensitive to noise. We choose to use the Sobel operator, which
contains two sets of 3×3 matrices, which are horizontal and
vertical templates, so that they can do plane convolution with our
original label and segmentation output at the same time, and
June 2022 | Volume 12 | Article 894970
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then, the horizontal and vertical brightness difference
approximations can be obtained, respectively.

The specific two convolution operator parameters are shown
in the following matrix:

Gx  =

−1 0 1

−2 0 2

−1 0 1

2
664

3
775
3�3

Gy =  

1 2 1

1 0 0

−1 −2 −1

2
664

3
775
3�3

Through the calculation of convolution and gradient, we get the
edge of the predicted label and the original label, respectively,
and then calculate loss through the cross-entropy loss function as
part of the previous loss.

Our final loss function is the weighted sum of the above three
loss functions as in Equation (4).w1, w2, and w3 are tuned for
different segmentation tasks. For all the pixels that are truly
located in the pancreas region, we believe that the pixel values at
the border are more indistinguishable, under this scene, we tune
the weights of the three loss functions through grid search in
range [0.2, 0.8] with step 0.2, try different combinations of
weights, and finally find that, when a relatively large weight is
given to CAL, the value of distance decreases significantly and
dice score has also been improved to a certain extent, which
proves the effectiveness of the perceptual boundary method we
designed. However, when too large weight is given to the CAL,
there will be many samples’ target foreground cannot be found.
We think this is caused by the fact that CAL itself cannot handle
the problem of extreme class imbalance of samples, so focal loss
and Dice loss are still required to a certain extent. Finally, we
determined through experiments that GDL, focal loss, and CAL
were given 0.2, 0.2, and 0.6, respectively, based on the validation
performance.

Final Loss 

=  w1 � CAL + w2 � Focal loss + w3 � GDL (4)

where w1, w2, and w3 represent the weights of the three
loss functions.
4 EXPERIMENTS AND RESULTS

4.1 Datasets
Following previous work of pancreas segmentation, two different
abdominal CT datasets are used:

• As one of the largest and most authoritative Open Source
Dataset in pancreas segmentation, the NIH pancreas
segmentation dataset sourced from TCIA (The Cancer
Imaging Archive) provides an easy and fair way for method
Frontiers in Oncology | www.frontiersin.org 646
comparisons (51). The dataset contains 82 contrast-enhanced
abdominal CT volumes. The resolution of each CT scan is 512
× 512 × L, where L have a range of 181 to 466 which is the
number of sampling slices along the long axis of the body. The
dataset contains a total of 19,327 slices from the 82 subjects,
and the slice thickness varies from 0.5 to 1.0 mm. Only the CT
slices containing the pancreas are used as input to the system.
We followed the standard four-fold cross-validation, where
the dataset is split to four folds, each fold contains images of
20 subjects, and the proposed model was trained on 3 folds
and tested on the remaining fold.

• The Medical Segmentation Decathlon (52) is a challenge to
test the generalizability of machine learning algorithms when
applied to 10 different semantic segmentation tasks. In
addition, we use the pancreas part in modality of portal
venous phase CT from Memorial Sloan Kettering Cancer
Center. We used the official training-test splits where 281
subjects are in training set and 139 subjects are in test set.
4.2 Evaluation Metric
The performance of our approach on pancreas segmentation was
evaluated in terms of dice similarity coefficient (DSC)

DSC Z,Yð Þ  =  
2� Z ∩  Yj j
Zj j  +  Yj j (5)

where Z is the predicted segmentation and Y is the ground truth.
We reported the maximum, minimum, and average values of
DSC score over all testing cases in the NIH dataset and MSD
dataset (52).

Moreover, we also use Jaccard coefficient, recall, and precision
as auxiliary metric:

Jaccard U ,Vð Þ  =  
U ∩  Vj j
U ∪  Vj j (6)

Where U and V represent the real pancreatic area and the
predicted pancreatic area (pixel level), respectively.

Precision  =  
TP

TP + FP
(7)

Recall  =  
TP

TP + FN
(8)

In addition, for the metric of the segmentation problem,
although Dice and others can well reflect the difference
between the segmentation effect and the actual situation, its
defect is insensitivity to differences in target boundaries, and the
focus is mainly on the inside of the mask, while the Hausdorff
distance (HD) as a measure of shape similarity, can be a good
complement to Dice. In a 2D plane, HD refers to the maximum
of all distances from one set to the nearest point between another
set. Given two finite set of points A = {a1,…ap} and B = {b1,…bp},
the HD between them is defined as follows:
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H A,Bð Þ = max h A,Bð Þ,   h B,Að Þf g (9)

where h(A,B) = max a ∈ Amax b ∈ B ∈ a − b ∈, h(B,A) =
max b ∈ Bmax a ∈ A ∈ b − a ∈, ║ ║ is a distance norm
defined on point set A and point set B. We use the Euclidean
distance representation directly.

4.3 Implementation Details
We implement our approach base on PaddlePaddle platform on
a server equipped with V100 Tesla GPU with 32-GB memory.
We use four-fold cross-validation for training and use min max
normalization to scale the pixel values of the original image to [0,
1] and performed independently on the training and test sets. We
found that RMS optimizer has a faster convergence speed than
the Adam optimizer. Although adaptively reducing the learning
rate, RMS optimizer can still get convergence on a smaller
number of iterations. Thus, we used RMS as our optimizer.
Our complete source code is available at Github https://github.
com/zhangyuhong02/AX-Unet.git. We list our hyperparameters
and system settings in Table 1.

Because the method that we proposed achieves a variety of
improvements in multiple levels of the network structure such as
loss function, deep supervision and the form of deep supervision,
we compare with the state-of-the-art methods in terms of
Frontiers in Oncology | www.frontiersin.org 747
multiple improvement direction control variables and the
combined effects of each improvement structure.

We performed some basic processing on the original image.
We performed 2.2 times contrast enhancement (the best
performance can be obtained through hyperparameter grid
search). Figure 2 shows our comparative data enhancement effect.

4.4 Results
In this section, we compare our proposedmethod with the state-of-
the-art methods for image segmentation. Table 2 shows the
segmentation performance on NIH and MSD datasets in terms
of DSC, Jaccard, precision, and recall. From Table 2, our
framework can outperform the other state-of-the-art methods by
a wide margin in terms of DSC, Jaccard, precision, and recall. The
mean HD between out segmentation and the ground truth is 4.68,
with a standard deviation 1.76. Figure 3 shows three examples of
our segmentation results. We initialized different training
parameters and conducted 15 independent repeated experiments
on the NIH dataset and recorded the dice score for each trained
model. The mean dice score is 87.67, and the standard deviation is
3.8. We compared our results on NIH dataset with state-of-the-art
methods through one sample t test, as shown in Table 3. From
Table 3, our proposed method has statistically significant
improvements (p < 0.0001) compared with other methods.

4.4.1 Ablation Experiment
To demonstrate the effectiveness of our group convolution and
other structures, we conducted an ablation experiment to
evaluate the effects of each part in our framework, residual
structure, depth-separable convolution module, and ASPP
module on the segmentation results. We conduct experiments
using separate additional structures or different combinations of
the proposed structures and perform the four-fold cross-
validation on the same NIH dataset, and we repeated the
experiments with different initializations for 10 times. The
results are shown in Figure 4 and Table 4.

It can be seen that the depth-wise separable convolution
achieves the greatest performance improvement when using
TABLE 1 | Hyperparameters and device parameters.

Parameter Value

Initial learning rate 0.001
Batch size 32
Epochs 150
Optimizer RMS
Learning rate decay fixed size
convolution kernel size 3×3
PaddlePaddle 2.1.2+cu101
CUDA 10.1
python 3.7
GPU TeslaV100 × 4
RAM 128GB
FIGURE 2 | Original image and contrast-enhanced image.
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only a single part, which validates the effectiveness depth-wise on
the two correlation decoupling operations. Although the
introduction of ASPP module alone did not achieve better
Frontiers in Oncology | www.frontiersin.org 848
results, the combination with depth-wise separable convolution
achieved very good results. Combining all the proposed modules
can achieve the best performance.

4.4.2 3D Rebuilding
To better demonstrate our segmentation effect, besides the
segmentation results in Figure 3, we also show an example of
the 3D rebuilding results based on our segmentation in Figure 5.
From Figure 5, the rebuilding results based on our segmentation
are similar with that from the ground truth, which validates the
efficacy of our model.
TABLE 2 | The average four-fold performance on two public dataset (the performance of our method is described by mean ± std).

Method DSC (%) Jaccard (%) Recall (%) Precision (%)

NIH dataset
Bottom-up (32) 70.7 57.9 71.6 74.4
Fixed-point (53) 82.4 – – –

3D Coarse-to-Fine (54) 84.6 – – –

Holistically nested (55) 81.3 68.9 – –

RSTN (31) 84.5 – – –

Recurrent Contextual Learning (39) 83.3 71.8 84.5 82.8
Vnet (56) 80.1 – – –

Attention Unet (57) 83.1 – – –

DenseASPP (40) 85.4 – – –

(46) 84.10 72.86 85.3 83.6
Cascaded FCN (23) 85.9 75.7 85.2 87.6
AX-Unet (Ours) 87.7 ± 3.8 78.2 ± 5.3 90.9 ± 2.2 92.9 ± 6.1
MSD dataset
Unet-64 70.7 – – –

Unet-16 67.1 – – –

Attention Unet (57) 66.0 – – –

MoNet (58) 74.0 68.9 – –

nn-Unet (27) 80.0 – – –

AX-Unet (Ours) 85.9 ± 5.1 77.9 ± 3.4 86.3 ± 5.1 93.1 ± 6.9
June 2022 | Volume 12 |
FIGURE 3 | Comparison of segmentation for three examples by the baseline model (Unet) and the AX-Unet, along with the original image and ground truth. In each
row, from left to right, the images correspond to the original image, ground-truth segmentation, the baseline segmentation by Unet, and segmentation by our AX-
Unet model, respectively. It can be clearly observed that the proposed model has better segmentation effect of the boundary than the baseline.
TABLE 3 | t-value and p-value for our method by one sample t-test.

Methods t-value p-value

RSTN (31) 9.2338 4.02 × 10-7

3D Coarse-to-Fine (54) 8.9403 8.92 × 10-7

DenseASPP (40) 6.5921 1.28 × 10-5

Cascaded FCN (23) 5.1245 0.0001
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4.5 Activation Map
Besides giving the segmentation results, the network can also
output the activation maps of each layer, which could show a
clear decision making process and give a clear medical evidence.
Analyzing the activation map in the forward propagation process
of the neural network can help to understand the decision making
process of the model, thereby helping clinicians to achieve
procedural diagnosis and more accurate treatment selection.

We extract the feature maps after each pooling in the
downsampling process, take the average and maximum values
Frontiers in Oncology | www.frontiersin.org 949
of the feature maps in different levels in the channel dimension,
and convert them into activation maps for visualization.

As shown in Figure 6, we extract the activate map after the
pooling operations in two ways. The first row represents the
activate map obtained by averaging the corresponding pixel
values of each channel of the feature map of the specified level.
The second row represents the activate map obtained by taking
the maximum value of the corresponding pixel value of each
channel. It can be clearly seen that the high-level feature maps
have low resolution but strong semantics during downsampling,
whereas the low-level feature maps have high resolution and rich
details. This illustrates the necessity of our fusion of feature maps
at different levels.
5 PATHOLOGICAL ANALYSIS OF
PANCREATIC TUMORS WITH OUR MODEL

As we introduced before, the diagnosis of tumors based on
morphological features has been used in brain tumors and
other fields. To test the segmentation performance of our
model in more complex scenarios and broaden its application
scenarios, we use the proposed model to extract imagomics
FIGURE 4 | Ablation experiment on different group of module proposed in our paper.
TABLE 4 | Results of ablation studies with different components.

Method Jaccard (%)

Residual block 69.7 ± 8.9**
ASPP module (2,4,6) 76.5 ± 4.9**
Resuidual+ASPP(2,4,6) 76.8 ± 6.4**
depth-separable conv 77.4 ± 4.3*
Residual block+Depth-separable conv 76.7 ± 6.2*
Depth-separable conv+ASPP(2,4,6) 77.8 ± 3.2*
all 78.2 ± 5.3
The performance of different substructures is described by mean ± std; the t-test was
used for significance analysis, in which the all group containing all structures was the
control group; ** indicated extremely significant difference (p < 0.01);* indicated significant
difference (p < 0.05).
FIGURE 5 | The results of 3D rebuilding. The left picture is the reconstruction of ground truth, and the right picture is the reconstruction of the segmentation output
of our model.
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features for analysis. To further explore the relationship between
pancreatic tumors and imagomics features and to verify the
robustness of our model, we collected a large number of
unlabeled data and used our pre-trained model for few-shot
learning to identify pancreatic regions, followed by imagomics
feature extraction and significant difference analysis.

5.1 Data Collection and
Processing Methods
We collected pancreas image data from 49 patients from The First
Hospital of Lanzhou University, which contains 31 pancreatic
tumor patients and 13 normal subjects. The ages ranged from 18
to 76 years with a mean (std) of 46.8 (16.7). The CT scans have
resolutions of 512 × 512 with pixels. The slice thickness is between
1.5 and 2.5 mm. The CT imaging was created using Somatom
Sensation scanner with the following parameters: craniocaudal
abdominal scan (120-kVp tube voltage). We manually annotated
pancreas images of five individuals for the fine-tuned task and
used the best performing model on the NIH Dataset as our pre-
trained model. A medical student manually performed slice-by-
slice segmentation of the pancreas as ground truth, and these were
verified by an experienced radiologist.

5.2 Ethical Approval
Institutional Review Board (IRB) approval was obtained prior to
the collection of the dataset. The institutional review board of the
first hospital of Lanzhou university approved this study and
waived the need for informed consent.

5.3 Transfer Learning and
Feature Extraction
Through transfer learning, we fine-tuned the model trained on
the public dataset on a small number of labeled samples from our
dataset dataset. Then, we segmented the unlabeled data and
extract 10 representative texture features from the segmentation
results for pathological analysis of tumors. The features we
extract are entropy (10), energy (11), homogeneity of the gray
Frontiers in Oncology | www.frontiersin.org 1050
level co-occurrence matrix (glcm) (12), glcm dissimilarity (13),
edge sharpness (Acu) (14), contrast (15), gray mean (59), glcm
contrast (GC), glcm mean, and glcm std (60).

Contrast reflects the definition of graphics and the depth of
texture, which can measure the distribution of pixel values and the
amount of local changes in the image. Energy is a measure of the
stability of image texture gray changes, which reflects the
uniformity of image gray distribution and texture thickness.
Entropy is used to measure the randomness (i.e., intensity
distribution) of image texture and characterize the complexity of
the image. In addition, other features are calculated based on the
gray level co-occurrence matrix, which can reflect the
comprehensive information of image gray level about direction,
adjacent interval, change amplitude, etc. The local model of the
image and the arrangement rules of the pixels are used for analysis.

In Equations (10) to (15), S, E, GH, GD, Acu, and C represent
entropy, energy, homogeneity and dissimilarity of gray-level co-
occurrence matrix, sharpness of image edges, entropy, and contrast,
respectively, and Pij stands for the position of the current pixel.

Then, we checked the correlation of the extracted features
themselves and screened out the irrelevant features with
comparison differences. After comparative analysis, we
eliminated the energy and glcm dissimilarity that were highly
correlated with other features. As shown in Figure 7, we use the
Pearson correlation coefficient to measure the correlation
between variables and find that energy and glcm dissimilarity
are highly correlated with other features.

S   =  o
N−1

i,j=0
Pi,j −lnPi,j

� �
(10)

E  =   −o
i
 o

i
P2
i,j (11)

GH  =  o
N−1

i,j=0
 

Pi,j
1 +  i − jð Þ2 (12)
FIGURE 6 | Activation maps transformed from feature maps of different levels. The upper row is the average activation maps over channels, and the lower row is
the max activated maps over channels. From left to right, the activation maps are from the output of the first to the fourth downsampling block, respectively.
June 2022 | Volume 12 | Article 894970

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. AX-Unet for Pancreatic Tumor Diagnosis
GD =  o
N−1

i,j=0
Pi,j  i − jj j (13)

Acu  =  o
i
o
j

Pi,j − m
� �2 (14)

C  =  o
N−1

i,j=0
Pi,j  i − jð Þ2 (15)
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5.4 Results and Discussion
In this study, we have 31 pancreatic tumor patients and 13
normal subjects. After the features are extracted, we use the
Shapiro–Wilk test to check how likely the extracted features
follow a normal distribution. Feature distribution visualization
and the results of the Shapiro–Wilk test are shown in Figure 8.
Although most of the distributions have a p-value of the
Shapiro–Wilk test more than 0.05, it can be found that most of
the features’ distribution is skewed to some extent, and it is safe
to use a non-parametric test for significant difference analysis.
We performed a Mann–Whitney U rank test to test whether a
certain characteristic is significantly different between pancreatic
FIGURE 7 | Correlation matrix with Pearson correlation coefficient of the 10 features. E, entropy; GC, gray-level co-occurrence matrix contrast; GD, gray-level co-
occurrence matrix dissimilarity; GH, gray-level co-occurrence matrix homogeneity; S, entropy; GM, gray mean; GS, gray standard deviation; C, contrast; Acu,
sharpness of image edges.
FIGURE 8 | Feature distribution visualization. N represents the group of normal subjects, and T represents the group of pancreatic tumor patients. p value is the
results of Shapiro–Wilk test.
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tumor patients and normal subjects. After our calculation, it was
found that the entropy extracted from the segmented images was
significantly different between pancreatic tumor patients and
normal people (P ≤ 0.05). The box plot of entropy, energy, and
dissimilarity is shown in Figure 9. We believe that the feature
entropy extracted from the output segmentation of the model is
helpful for pancreas tumor diagnosis.

Entropy represents the feature of increased cellular
heterogeneity during the differentiation of normal tissue into
tumor tissue, which not only can reflect the difference in entropy
between the two tissues on CT images but also can predict tumor
recurrence and metastasis. For example, entropy can predict the
pathological grade in pancreatic neuroendocrine tumors; while
the entropy increases, the possibility of high-grade will increase.
In addition, in related studies (61), image features of peritumoral
tissue vary differently from pancreatic tumor, which may
demonstrate the possibility of entropy for predicting
recurrence of pancreas tumor and metastasis of small tumor
from other organs.

By constructing such an interdisciplinary pancreas
segmentation model, it can be applied to multiple topics in
clinical research. It may be applied to the detection of small
tumors and the relationship between pancreatic margins and
pancreatic fibrosis and to explore the relationship between tumor
or pancreatic tissue margins and important blood vessels, so as to
make more reasonable treatment choices, implement the concept
of precision surgery.
6 CONCLUSION

This paper proposes a novel deep learning framework AX-Unet
for image segmentation for pancreas CT images. Facing the
Frontiers in Oncology | www.frontiersin.org 1252
challenging scene of pancreatic segmentation, we analyzed the
defects of the existing mainstream segmentation framework for
medical images and proposed a more sophisticated network
structure based on the encoder-decoder structure. We combine
the ASPP module with multi-scale feature extraction capabilities
and group convolutions that can decouple information. It can
show excellent results when facing small targets that are blurred by
the boundary of the pancreas and are easy to confuse the
surrounding tissues. Finally, we used the proposed segmentation
model to extract and analyze the radiomics features and found that
there were significant differences in entropy between normal and
pancreatic tumor patients, providing a promising and reliable way
to assist physicians for the screening of pancreatic tumors.
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Lung cancer is the cellular fission of abnormal cells inside the lungs that leads to 72% of
total deaths worldwide. Lung cancer are also recognized to be one of the leading causes
of mortality, with a chance of survival of only 19%. Tumors can be diagnosed using a
variety of procedures, including X-rays, CT scans, biopsies, and PET-CT scans. From the
above techniques, Computer Tomography (CT) scan technique is considered to be one of
the most powerful tools for an early diagnosis of lung cancers. Recently, machine and
deep learning algorithms have picked up peak energy, and this aids in building a strong
diagnosis and prediction system using CT scan images. But achieving the best
performances in diagnosis still remains on the darker side of the research. To solve this
problem, this paper proposes novel saliency-based capsule networks for better
segmentation and employs the optimized pre-trained transfer learning for the better
prediction of lung cancers from the input CT images. The integration of capsule-based
saliency segmentation leads to the reduction and eventually reduces the risk of
computational complexity and overfitting problem. Additionally, hyperparameters of
pretrained networks are tuned by the whale optimization algorithm to improve the
prediction accuracy by sacrificing the complexity. The extensive experimentation carried
out using the LUNA-16 and LIDC Lung Image datasets and various performance metrics
such as accuracy, precision, recall, specificity, and F1-score are evaluated and analyzed.
Experimental results demonstrate that the proposed framework has achieved the peak
performance of 98.5% accuracy, 99.0% precision, 98.8% recall, and 99.1% F1-score and
outperformed the DenseNet, AlexNet, Resnets-50, Resnets-100, VGG-16, and
Inception models.

Keywords: computer tomography (CT) scan images, saliency segmentation, pre-trained models, whale
optimization, DenseNet, VGG-16, inception models
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1 INTRODUCTION

Lung tumor (LT) is the most lethal cancer on the planet. As a
result, numerous countries are working on early detection
measures for lung disease. The NLST experiment (1) found
that screening high-risk participants three times a year with
low-dose computed tomography (CT) reduces death rates
significantly (2). As a result of these procedures, a radiologist
will have to examine a large number of CT scan images. Because
lesions are difficult to identify, even for qualified clinicians, the
strain on radiologists grows exponentially as the quantity of CT
scans to review grows.

Lung cancer is the second most prevalent cause of cancer
death in people. Cancers of the bladder, breast, colon, cervix and,
prostate have 5-year survival rates of over 80%. Thus, early
identification of lung cancer is critical to reducing mortality or
facilitating full care. Due to their thin cell layers (0.2-1mm) and
lack of symptoms, early lung malignancies and precancers such
as dysplasia and carcinoma in situ (CIS) are difficult to identify
visually using traditional diagnostic procedures such as medical
imaging. In clinical practice, roughly 80% of cases are advanced
when initially diagnosed and verified, losing the best chance for
surgical therapy. Clearly, early detection of lung cancer is
clinically significant.

With the predicted rise in the number of preventive/early-
detection measures, scientists are developing automated
solutions to assist doctors in decreasing their workload,
improving diagnostic precision by minimizing subjectivity,
speeding up analysis, and lowering medical costs. Specific traits
must be detected and assessed to identify the cancerous cells in
the lung region. Cancer risk can be determined by the observed
features and their combination. Even for an experienced medical
expert, this work is challenging because nodule existence and a
positive cancer diagnosis are not easily linked. Volume, shape,
subtlety, firmness, spiculation, sphericity, and other previously
described properties are used in common computer-assisted
diagnostic (CAD) techniques.

Machine learning (ML) techniques like Support Vector
Machine (SVM) are utilized to identify the nodules as benign
or cancerous. Despite the fact that numerous works employ
Frontiers in Oncology | www.frontiersin.org 256
comparable machine learning frameworks (3–10), the limitation
of this technique is that in order for the system to function
properly, different variables must be customized, making it
difficult to repeat results. Furthermore, the lack of uniformity
among CT scans and screening parameters makes these systems
vulnerable. The development of deep training in CAD systems
might do end-to-end identification by acquiring the most
essential factors during training. The network is resistant to
variations since it gathers tumor features in multiple CT scans
with repeated modes. By adopting a training set that is rich in
variability, the system may be able to learn invariant properties
from malignant nodules intrinsically and enable higher
performances (11, 12). Since no characteristics are generated,
the system may be able to understand the relationship between
traits and disease using the data provided on its own. Once
trained, the network should be able to generalize its training and
recognize cancerous lesions (or malignancy at the clinical
bedside) on cases reported that have never been observed
before (13, 14). Figure 1 shows the normal and abnormal CT
lung images. Early classification and classification of lung cancers
play a critical role in designing an intelligent and accurate
diagnosis system (15). With the advent of machine and deep
learning algorithms, the design of early diagnosis systems has
reached new heights. Machine learning algorithms such as
artificial neural networks (ANN), Support Vector Machines
(SVM), Naïve Bayes Classifiers (NB), and Ensemble classifiers
(EC) are primarily used for an early diagnosis of lung cancers
(16). Also, deep learning is considered to be the most promising
field which can enhance the performance of various medical
imaging and diagnosis systems (17).

However, handling the images with different imaging
protocols remains a real challenge to train the learning modes
for greater performance. To compensate for the above drawback
of learning models, this paper proposes the novel hybrid
intelligent diagnosis framework Deep Fused Features Based
Reliable Optimized Networks (DFF-RON), which fuses the
saliency maps and convolutional layers for better segmentation
and feature extraction that are used to train the ant-lion
optimized single feedforward networks. To the best of our
knowledge, this is the first work that has integrated the fused
A B

FIGURE 1 | (A) Normal CT Lung Image (B) Abnormal CT Lung Image (Cancer Image).
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features and optimized learning networks to design an efficient
and high-performance CT-based lung cancer diagnosis system.

1.1 Contribution of the Research Work

1. A novel hybrid deep learning based model is proposed for the
early detection of lung cancer using CT scan images. The
proposed architecture has been trained with LIDC datasets
and performance metrics have been calculated and compared
with other existing models.

2. The proposed architecture introduces the capsule network’s
better segmentation and transfer learning for feature
extraction. Also, the proposed fusion algorithm can
increase the high diagnosis rate.

3. The whale optimization algorithm is proposed for training
the features obtained from the hybrid fusion of saliency maps
and capsule networks. The feed-forward layers are designed
based on the principle of Extreme Learning Machines (ELM).

The rest of the paper is organized as follows: Section-II
presents the related works proposed by more than one author.
The working mechanism of the saliency maps, CNN layers, ant
lion optimization, and feedforward networks are presented in
Section-III. The dataset descriptions, experimentations, results,
findings, and analysis are presented in Section-IV. Finally, the
paper is concluded in Section-V with future enhancements.
2 RELATED WORKS

In De Bruijne (18), the presented framework looked at the most
up-to-date lung cancer detection and diagnosis methods. Using
standardized databases LIDC-IDRI, LUNA 16, and Super Bowl
Dataset 2016, the newest lesion detection, identification, and
detectors are acquainted with labeled models. According to the
author Jindal et al. (19), these are the most common and typical
threshold CT data considered for diagnosing. The authors in
Nalepa and Kawulok (20) developed the modified-CNN in order
to recognize the tumor cells in the lung regions with the
segmented images. The ACM method has been used for
segregating the tumor region initially and identifying cancer or
normal cells.

The label-free techniques do not injure cells or cause effects on
cell structure or intrinsic features. To enhance cell identification
using recorded optical profiles, this study combined advancements
in optical coherence tomography with Pronymethods. In Ganesan
et al. (21), the framework finds signature genes by improving
Tobacco Exposure Pattern (TEP) Prediction model and revealing
their interaction connections at many biological levels. TTZ
Kasinathan et al. (22) is a new way to extract core features and
use them as an input variable in the TEP classification model.
With two distinct LUAD datasets used to train and evaluate the
TEP classification model, 34 genes were identified as nicotine-
associated mutation signature genes, with an accuracy of 94.65%
for training data and 91.85% for validation data.

The researcher examined tissue samples and devised a
categorization method to discriminate between five types of
Frontiers in Oncology | www.frontiersin.org 357
pulmonary and colorectal tissues (two benign and three
malignant). According to the observations, the suggested
approach can detect tumor cells up to 96.33% of the time (23).
The framework presented in Suzuki (24) described how to use
computer-assisted diagnostics to assess EGFR mutation status,
including gathering, evaluating, and merging multi-type
interdependence characteristics. This research uses a new hybrid
network model based on CNN-RNN architecture. CNN is used to
extract image quantitative properties, and the link between
different types of features is modeled. Their study indicate that
multi-type dependency-based feature representations beat single-
type feature representations (accuracy = 75%, AUC = 0.78) when
compared to conventional features extracted.

The 3D_Alex Net unsupervised learning model (25) was
introduced for lung cancer detection. The 3D CNN is a highly
predictive architecture with an improved steepest descent input
signal that increases the appearance of tumor tissues. The LUNA
database is used to assess the proposed Alex Net detection
technique to an existing 2D CNN training classifier. Due to a
lack of testing data, the proposed model is unsuccessful, with just
10% of the training database being utilized.

Tajbakhsh and Suzuki (26) examined the performance of
CNNs and MTANNs for detecting and classifying lung nodules.
Achieving 100% sensitivity and 2.7 false positives per patient,
MTANN exceeds the top performing CNN (AlexNet) in their
testing. The MTANNs achieved an accuracy of 0.88 in classifying
nodules as benign or malignant.

Gu et al. (27) suggested a unique 3D-CNN CAD system for lung
nodule detection. They used a multiscale technique to improve the
system’s detection of nodules of varying sizes. The suggested CAD
system considers preprocessing, which is common in standalone
CAD systems. It uses volume segmentation to create ROI cubes for
3D-CNN classification. After categorization, DBSCAN was used to
blend adjacent regions that could be from the same nodule. Larger
scale cubes have lesser sensitivity (88%) but an average of one false
positive per patient, according to the LUNA16 dataset.

The multi-section CNN model suggested by Sahu et al. (28)
uses multiple view sampling to classify nodules and estimate
malignancy. Their proposed model is faster than the widely
utilized 3D-CNNs. To develop their system, they employed pre-
trained MobileNet networks and sample slices extracted in various
directions. On the LUNA2016 dataset, the suggested model had a
sensitivity of 96% and an AUC of 98%. They estimate the class
likelihood of malignancy using a logistic regression model. It
estimated malignancy with 93.79% accuracy. Because it is so
light, it can be used on smaller devices like phones and tablets.

Deep3DSCan was proposed by Bansal et al. (29). To do so, they
applied a deep 3D segmentation technique on CTs. The ResNet-
based model was trained using a combination of deep fine-tuned
residual network and morphological features. The LUNA16 dataset
was utilized for training and testing. The proposed architecture
achieved an F1 score of 0.88 in segmentation and classification tasks.

In Jothi et al. (30), the framework designed a controlled CNN
classifier for patients with lung cancer to detect potential
adenocarcinoma (ADC) and squamous cell carcinoma (SCC).
CNN has already been verified using authentic Non-SCLC patient
information from preliminary phase afflicted subjects collected at
June 2022 | Volume 12 | Article 886739
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Massachusetts General Hospital (31). In the record, there are 311
data phases that have been collected. The created CNN, which is a
VGG system training predictor, only had a 71% AUC predictive
performance, which was insufficient. The VGG CNN model’s flaw
is that it hasn’t been preprocessed for background subtraction or
image reconstruction fragmentation, which increases the predictive
accuracy. In Kasinathan and Jayakumar (32), the new cloud-based
tumor recognition model was developed. The author analyzed
various standard dataset “CT-scans and PET-scans” for
segmenting the ROC and for recognizing the tumor. In
Jakimovski and Davcev (33), the framework proposes a novel
deep learning method based on binary particle swarm
optimization with a decision tree (BPSO-DT) and CNN to
identify the malignant or normal cells in the lung region using
the genetic features (34).
3 PROPOSED METHODOLOGY

3.1 System Overview
Figure 2 shows the complete architecture for the proposed
framework. The working mechanism of the proposed deep
learning-based diagnosis and classification system is subdivided
into three important phases. Image preprocessing and
augmentation process, capsule based saliency segmentation,
accurate feature extraction using the pretrained transfer
learning, and finally trained by the whale optimized extreme
learning networks.

3.2 Data Preprocessing and Augmentation
As the first step, CT scans are differentiated by using the
Histogram Equalization (HOE) process. This pre-processing
step is applied for adjusting the image intensities and contrast.
The mathematical expression of HOE applied for image
preprocessing is given by

I = T ∗N=P (1)

Where T*N – Number of Pixels in N levels where N=0, 1, 2,
3………………255

P - Total Number of Pixels.
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After preprocessing, an adaptive median filter (AMF) is
applied over the images for effective denoising. AMF is a
category of bilateral images which renders “clean, crisp, and
artifact-free edges,” and improves the overall appearance.

In the second stage, the image augmentation process is used
in the suggested architecture. Deep Neural Network (DNN) (35,
36) leads to overfitting problems where a limited quantity of
labeled data is available. The most proficient and efficient
method to tackle this problem is data augmentation. During
the data augmentation phase, each image undergoes a series of
transformations, producing a huge amount of newly corrected
training image samples. As discussed in Pei and Hsiao (37), an
affine transformation is employed for efficient data
augmentation. The offline transformation techniques, such as
conversion, ascending, and spins are used. Inputs are correlated
with the augmentation step which is extracted before the training
phase and the correlated values are utilized to avoid the over-
fitting issue. Figure 3 shows the different lung images obtained
after applying the offline transformations.

3.3 Capsule Saliency Segmentation
Segmentation is a technique of partitioning the images with
different magnitudes of patterns and pixels. For segregating the
images, various techniques have been established. Capsule
saliency maps are a structured technique that has been
presented here. It subdivides the images into compacted and
diverse parts. There will be a reduction in the number of
unnecessary elements in the images.

To build the saliency models (38), color difference and spatial
difference is applied in a pixel-based processing in which each
pixel is represented as a block. To achieve this, pixels ‘X’ of
images and then disintegrated into non-overlapping blocks with
size nxn where n=8 and 16, respectively. Hence the saliency
maps S(k) are calculated by using the mathematical expressions
given by

S kð Þ = o
n=8,16

X nð Þ*S ` kð Þ (2)

Since the location, dimensions, and shape of cancer cells are
the same in their adjacent slices, the finishing saliency maps are
FIGURE 2 | Overall Working Flow Diagram for the Proposed Architectures.
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calculated as the biased sum of the authentic (S(m), preceding (S
(m1) and next blocks(S(m2)) color and spatial saliency as
mentioned in Banerjee et al. (38)

S mð Þ = w1 ∗ S m1ð Þ + w2 ∗ S mð Þ + w ∗ S m2ð Þ (3)

After calculating the saliency maps, post-processing
techniques need to be adopted for refinement of segmentation
images. Active contour methods [28] are used for the recognition
of cancer cells in the most consecutive twin blocks. Also, accurate
separation of cancer cells from the other parts of CT scan images
is badly needed to give a precise output. Moreover, active
contours are based on image intensity, which probably fails in
differentiating the cancer cells. Additionally, these contour
methods require higher computation time, which is considered
to be a serious problem in handling larger datasets.

Motivated by this drawback, this paper introduces capsule
networks with pretrained optimized models to obtain high
performance and accurate detection of CT lung cancer images.
Its main disadvantage seems to be that, in order to get such high
standard findings, these techniques necessitate substantial fine-
tuning and optimization that is clearly not feasible with massive
datasets and has an impact on the recognition rates. But in this
proposed system, training effort take reduced time and increase
the efficiency and performance of the system.
Frontiers in Oncology | www.frontiersin.org 559
3.4 Capsule Networks – An Overview
Capsule network (39) is the new and upcoming network that is
replacing the prevailing models. The capsule network contains
four layers: 1) convolutional layer, 2) hidden layer, 3) PrimaryCaps
layer, and 4) DigitCaps layer. Figure 4 shows the entire working
structure for the given training model. The capsule networks
provide more advantages in categorizing the distinct saliency
maps in the images. The input preprocessed visual image is
given as the input to the proposed capsule networks. Capsules
are groupings of cells that encrypt the location data as well as the
likelihood of an object being present in an image. In capsules
networking, there is a shell for every object in an image that gives:

1. Probability of existence in entities
2. Entities’ instantiation parameters

The combination of the matrices of the input variables with
the weight matrix is computed to represent the essential spatial
correlation between poor and large-scale features within the
image.

Y i, jð Þ = Wi,jU i, jð Þ ∗ Sj (4)

Equation (5) estimates the total weight which is calculated to
determine the updating of the current capsule values and the
same id feedforward into the next level of capsule determination.
FIGURE 3 | Sample CT-Lung Images after Augmentation Process.
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S jð Þ =o
j
Y i, jð Þ ∗D jð Þ (5)

At last, the squash task is used to apply non-linearity. The
squashing utility translates a vector to an extreme length of one
and the least length of zero while keeping its orientation.

G jð Þ = squash S jð Þð Þ (6)

3.5 Segmentation Process
Figure 4 shows the capsule architecture employed for the
saliency segmentation. The preprocessed images are encoded
using the equation (2) which involves the convolutional layers and
capsule layers. The convolutional operations are first performed
over the preprocessed images from conv layers to the capsules of the
first capsule layers often followed by the higher capsule layers. The
data transformations between the one capsule to other capsule
layers are formulated by mathematical equations (3) and (4).
Finally, the last layer produces the saliency segmented
information which are used toward the categorization.

3.6 Transfer Learning for Feature Extractor
In this process, the transfer learning technique is adopted for
better feature extraction and classification. Transfer learning
approaches are considered as the pretrained convolutional
neural networks that can be repurposed to solve different image
classification problems. In this research, the Inception V3 module
has been implemented due to its high accuracy and high flexibility.
The custom Inception-V3 weights are pre-trained using ImageNet
and it considers the reshaped size of 150×150×3 for all images.

3.7 Classification Layers
After the segmentation process, features extracted are then fed for
training the networks. In the proposed architecture, traditional
training networks are replaced with feedforward networks that are
based on the principle of ELM. ELM is a category of neural
network proposed by G.B. Huang (40). This kind of neural
network utilizes the single hidden layers in which the hidden
layers don’t require the tuning mandatorily. Compared with the
other learning algorithms such as “support vector machine (SVM)
and Random Forest (RF), ELM exhibits the better performance,”
high speed, and less computational overhead.
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The working procedure of single-layer network is illustrated
with the mathematical formulation which is given below. Generally,
the ML classifiers or predictors follow the feature extraction,
weights formulation, and identifying the final score for the given
problem. The algorithm itself generates the weights and bias factors
for identifying the best final score without any backpropagation or
stochastic gradient approach which minimizes the computation
complexity. This is a major benefit of ELM compared to other
networks (41). Due to this, ELM reduces the training error that
achieves better results. Most of the categorization problem utilizes
this single-layer network and many applications adopt this network
for low-level data availability.

In the below statistical estimation, the extracted features are
represented as “p” points with their objective function (i.e.,
sigmoid) where the final score is denoted as a linear graph. The
concealed layer may include N-number of nodes which is not
tuned mandatorily. The concealed layer’s weights are assigned at
random (counting the biàs loads). Nodes are not irrelevant;
however, they do not need to be calibrated, and the concealed
synapse characteristics might be created arbitrarily even in advance.
That is, before dealing with the data from the training set. The
system yield for a single-hidden layer ELM is given by equation (7)

ws pð Þ =o
s

i=1
aiabi pð Þ = ab pð Þm (7)

where, p! input
“L” denotes the output weight vector and it is denoted as

m = m1,m2, :::::::,ms½ �T (8)

ab pð Þ = ab1 pð Þ, ab2 pð Þ, :::::::::, abs pð Þ½ � (9)

ab =

ab p1ð Þ
ab p2ð Þ

:

:

:

ab psð Þ

2
666666666664

3
777777777775

(10)
FIGURE 4 | Capsule Architecture for the Saliency Based Segmentation.
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The minimal non-linear least square method is used to denote
the basic calculation of ELM that is represented by the below
equation.

ab ` = ab*L = abT (ab ∗ abT )−1L (11)

Where ab* ! inverse of “ab”: Moore-Penrose generalized
inverse.

ab ` = abT (
1
D
ab ∗ abT )−1L (12)

Hence the output function can be found by using the above
equation

ws pð Þ = ab pð Þa = ab pð ÞabT ( 1
D
ab ∗ abT )−1L (13)

Though extreme learning principle-based feedforward
networks produce the best performance, non-optimal tuning of
hyperparameters such as input weights, hidden neurons, and
learning rate affects the accuracy of classification. Hence,
optimization is required for tuning the hyperparameters for
achieving the best performance. The next section discusses the
proposed algorithm used for optimization of the extreme
learning networks.
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3.8 Optimized Extreme Learning Models
This section discusses whale optimization algorithm (WOA) and
proposed optimized extreme classification layers.

3.8.1 Whale Optimization Algorithms
WOA, first proposed in Mukherjee et al. (42), has sparked renewed
interest in recent years. This stochastic search technique is
computed by the following simulation of humpback whale
behavior and movements in their search for food and supplies.
WOA was inspired by the bubble-net attacking method, in which
whales target fish by forming tailspin bubbles surrounding them
down to 12 meters below the surface, subsequently swimming back
up to trap and grab their prey, as shown in Figure 5. The search
phase in this method is characterized by a randomized hunt for food
based on the spatial location of whales, which can be statistically
interpreted by automatically updating responses rather than picking
the appropriate ones by selecting random solutions.

In addition to this intriguing behavior, WOA differs from other
optimization algorithms in that it only requires the adjustment of
two parameters. These variables allow for a smooth transition
between the exploitation and exploration phases.

Encircling prey: The search process initiated from starting
point and circles the food around the nearby region in order to
update their process to the best target. The working process is
detailed with statistical formulations.
FIGURE 5 | WOA Basic Structure.
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If (c < 0.5 and mod(k) < 1)

V = modu k :V − V : qð Þf g (14)

V q + 1ð Þ = V sð Þ − c : qf g½ � (15)

where c=0.1 (constant), “V(q+1)” represent the best solution and
other attributes are estimated as per the below formulations.

M = mod 2 ∗ c ∗ k − cf g (16)

Xp = 2 ∗ k (17)

Where k denotes the arbitrary value within the range of {0 - 2}
Prey Searching: In the food searching process, the input “V”

is denoted with “Vrandom” which is estimated using the below
equation.

V = mod O :Vrand − V qð Þf g (18)

V q + 1ð Þ = Vrand qð Þ − P :Rf g½ � (19)

During the search phase of theWOA approach, the target was
encircled and spiral upgrade was performed. Equation (19)
represents the quantitative phrase for updating a new position.

V q + 1ð Þ = R1 ∗ exs1 − cos  (2pp) + V* qð Þ (20)

“R” denotes the distance among the initial and updated
position after each iteration and “s1” denotes the constant 0-1
3.8.2 Proposed Model
As discussed, the WOA model is utilized to enhance the weights of
ELM networks. In this case, the whale’s criteria for searching and
fixing the prey are used as the main term to optimize the weights of
ELM networks. Typically, the ELM channels are fed a randomized
weight matrix and biased. The performance index is defined as the
highest precision. The numerical simulations (14), (15), and (16) are
used to determine input bias and weights for each repetition. These
parameters are then fed into the ELM system, which generates the
exponential function utilizing equations (9). If the output function
equals the fitness value, the repetition will either come to a halt or
continue. Whale adaptation has a slower convergence time than
other meta-heuristic methods, but it takes less time to refine and
improve response time. The whale optimized ELM is now used as
the classification of lung cancer images. Table 1 presents the
optimized parameters used for training the network.
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4 PROPOSED FRAMEWORK VALIDATION

4.1 Datasets Descriptions
The experiments are carried out using lung CT images which are
obtained from the cancer imaging archives (https://wiki.
cancerimagingarchive.net/display/Public/LIDC-IDRI). The
collection contains 1018 lung CT scans from the National
Cancer Institute, which were connected with proteomics and
genetic experimental data. All trained radiographs are sorted into
normal and cancerous tumors in this article. A benign lesion
with a grade of less than 3 is called a normal nodule, while a
malignancy lesion with a score of more than 3 is known as a
malignant lesion. To eliminate ambiguity in lesion specimens,
bronchial lesions with a value of 3 in malignancy are deleted.
Separate software NBIA retriever is used for the conversion of
tcia format data to DICOM image data which can be used for
further processing. The detailed description of the datasets used
for testing is presented in the tcia website (43).

4.2 Experiment Details
The whole experiment is carried out in the Intel I7CPU with 2GB
NVIDIA GeForce K+10 GPU, 16GB RAM, 3.0 GHZ with 2TB
HDD. The proposed architecture is implemented using
Tensorflow 1.8 with Keras API. All the programs are
implemented in the anaconda environment with python
3.8 programming.

4.3 Performance Metrics and Evaluation
The proposed architecture implements the six CNN layers for
the better classification of cancer cells in lung images. Table 2
depicts the partitioned datasets used for preparation and analysis
the network.

Various metrics such as accuracy, sensitivity, specificity,
recall, and f1-score are calculated. The following are the
mathematical expressions for calculating the metrics used for
evaluating the proposed architecture.

Accuracy   =  
True  Positive   +  True  Negative

True   Positive   +  True  Negative   +   False   Positive   +   False  Negative
 

(21)

Sensitivity   or  Recall   =  
True   Positive

True   Positive   +   False  Negative
  ∗ 100

(22)

Specificity   =  
True  Negative

True  Negative   +   False  Positive
(23)

Precision =
True  Negative

True   Positive   +   False   Positive
(24)
TABLE 1 | Optimized Parameters for Whale Optimized Extreme Learning

Networks.

Sl.no Parameters Optimized Parameters

1 No. of Epochs 100
2 Learning Rate 100%
3 No. of batches 20
4 Optimization Iterations 19
5 No. of hidden nodes 78
TABLE 2 | Total Number of Datasets (After Augmentation).

Sl.no Total Number of Images Training Data (%) Testing Data (%)

1 78090 80 20
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A B

C

FIGURE 6 | ROC curves for the proposed architecture in detecting (A) normal (B) benign and (C) malignant images.
FIGURE 7 | Confusion matrix for the proposed architecture using 900 random tested images.
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F1 − Score = 2 ∗
Precision   ∗  Recall
Precision   +  Recall

(25)

4.4 Results and Discussion
This section highlights the validation results obtained through
proposed tumor predictor along with other depth networks. The
validation testing data have been segregated into four distinct
folds (i) confusion matrix and (ii) ROC for the first iteration. In
the next fold, the projected design is compared with the other
prevailing transfer learning models such as convolutional neural
network (CNN), Resnets-100, Resnets-150, InceptionV3,
Google-Net, Mobile-Net, and Densenet-169 by computing the
diverse performance metrics as mentioned in Table 4. The
proposed algorithm is tested with the random 900Lung CT
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(50% benign, 50% normal, and 50% malignant) scan images in
order to overcome the imbalance problems.

The ROC curve (Figure 6) and the confusion matrix (Figure 7)
of the proposed framework in detecting the categories of CT scan
lung Images. Tables 3–5 highlight the performance obtained
through presented framework that is associated with other
prevailing algorithms. From Table 3, it is found that the suggested
algorithm has shown the accuracy of 98.95%with 98.85% sensitivity,
98.76% precision, and high f1score of 98.85% in detecting the
normal, benign, and malignant CT images. A similar performance
is found in Table 4 in detecting images of malignancy. Tables 3–5
show that fusion of saliency with capsule and optimized transfer
learning optimized has shown the better detection ratio using the
presented network than the traditional methods. Figures 8–10
TABLE 3 | Different deep learning architectures’ performance such as accuracy, sensitivity, specificity, precision, and recall in predicting normal tissue in lung
CT images.

Algorithm Details Performance Metrics

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%)

CNN 80.2 78.5 0.0224 78.4 78.3
Resnets-100 81.5 80.5 0.0020 81.3 81.2
Resnets-150 86,2 86.0 0.0142 85.7 85
Inception V3 88.78 87.67 0.013 84.3 83.5
Mobile Nets 86.5 85.6 0.0015 85.2 85.0
Densenet-169 85.54 84.67 0.00167 84.5 84.6
SegCaps 91.0 90.8 0.0010 90.6 90.7
Proposed Framework 98.95 98.85 0.0010 98.75 98.85
June 2022 | Volume 12 |
TABLE 4 | Different deep learning architectures’ performance such as accuracy, sensitivity, specificity, precision, and recall in predicting benign tissue in lung
CT images.

Algorithm Details Performance Metrics

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%)

CNN 78 77.6 0.0224 77 76.5
Resnets-100 81.44 81.45 0.0019 80.8 81.2
Resnets-150 86.21 85.0 0.0150 86.9 86.3
Inception V3 89.28 88.623 0.0127 88.4 87.9
Mobile Nets 85.32 84.5 0.00156 85.9 84.75
Google nets 86.57 85.8 0.00145 86.9 84.89
SegCaps 91.2 91.8 0.0090 91.3 90.67
Proposed Framework 98.95 98.85 0.0015 98.9 98.89
TABLE 5 | Different deep learning architectures’ performance such as accuracy, sensitivity, specificity, precision, and recall in predicting malignant cancer in lung
CT images.

Algorithm Details Performance Metrics

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%)

CNN 80 78 0.0224 77.7 78.2
Resnets-100 81.5 80.5 0.0020 81.3 81.3
Resnets-150 86.32 86.0 0.0142 85.7 85
Inception V3 88.78 87.67 0.013 84.3 83.5
Mobile Nets 86.5 85.6 0.0015 85.2 85.0
Google nets 83.784 82.9 0.0018 81.9 81.2
SegCaps 92.0 92.83 0.0080 91.0 91.6
Proposed Framework 98.95 98.85 0.0010 98.75 98.85
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FIGURE 9 | Performance analysis in predicting benign tissue in lung CT images.
FIGURE 8 | Performance analysis in predicting normal tissue in lung CT images.
FIGURE 10 | Performance analysis in predicting malignant cancer in lung CT images.
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represent the performance analysis in predicting the normal, benign,
and malignant cancer in lung CT images.
5 CONCLUSION

This research goal is to detect and classify malignant and benign
cancer cells using CT scan lung images. To detect the location of
cancer cells, this work uses the capsule-based saliency
segmentation and transfer learning-based feature extraction.
Furthermore, the proposed architecture employs the whale-
based classification layers to achieve better accuracy.
Tensorflow 1.8 tool with Keras API has been used to evaluate
the presented tumor detection approach, and various
performance metrics such as accuracy, precision, recall,
specificity, and f1-score are calculated and analyzed. The
experimental results show that the proposed architecture has
achieved the best results associated with other standard
architectures and obtained the best peak results. In the future,
more vigorous testing is required using larger real-time clinical
datasets. Additionally, the proposed algorithm needs
improvisation in terms of computational complexity which will
Frontiers in Oncology | www.frontiersin.org 1266
play a significant role in the analysis and identification of tumor
cells as per radiologists’ perspective more accurately in future.
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Chengdu, China, 2 Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital,
Zhejiang University School of Stomatology, Hangzhou, China

It is important to diagnose the grade of oral squamous cell carcinoma (OSCC), but the
current evaluation of the biopsy slide still mainly depends on the manual operation of
pathologists. The workload of manual evaluation is large, and the results are greatly
affected by the subjectivity of the pathologists. In recent years, with the development and
application of deep learning, automatic evaluation of biopsy slides is gradually being
applied to medical diagnoses, and it has shown good results. Therefore, a new OSCC
auxiliary diagnostic system was proposed to automatically and accurately evaluate the
patients’ tissue slides. This is the first study that compared the effects of different
resolutions on the results. The OSCC tissue slides from The Cancer Genome Atlas
(TCGA, n=697) and our independent datasets (n=337) were used for model training and
verification. In the test dataset of tiles, the accuracy was 93.1% at 20x resolution
(n=306,134), which was higher than that at 10x (n=154,148, accuracy=90.9%) and at
40x (n=890,681, accuracy=89.3%). The accuracy of the new system based on
EfficientNet, which was used to evaluate the tumor grade of the biopsy slide, reached
98.1% [95% confidence interval (CI): 97.1% to 99.1%], and the area under the receiver
operating characteristic curve (AUROC) reached 0.998 (95%CI: 0.995 to 1.000) in the
TCGA dataset. When verifying the model on the independent image dataset, the accuracy
still reached 91.4% (95% CI: 88.4% to 94.4%, at 20x) and the AUROC reached 0.992
(95%CI: 0.982 to 1.000). It may benefit oral pathologists by reducing certain repetitive and
time-consuming tasks, improving the efficiency of diagnosis, and facilitating the further
development of computational histopathology.

Keywords: oral squamous cell carcinoma, computational histopathology, deep learning, EfficientNet,
auxiliary diagnosis
INTRODUCTION

Oral squamous cell carcinoma (OSCC) accounted for more than 377,713 new cancers and 177,757
deaths in 2020. The 5-year survival rate of patients in the earlier stage is about 55%–60%, while that
of patients in advanced stages drops to 30%–40% (1, 2). The histological ‘grade’ of a malignant
tumor is an index to describe its malignant degree. The current WHO classification of head and
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neck tumors is based on the simple grading system of the Broders
standard (3), which is divided into three types: well-
differentiated, moderately-differentiated, and poorly-
differentiated. Later, more complex grading systems were
suggested by Jakobsson et al. (4) and Anneroth et al. (5). The
current way of diagnosing grades is still relying on the manual
reading of slides by pathologists, which is a heavy workload, and
the subjectivity of the pathologists greatly affects the diagnosis
results, so it is valuable to develop an automatic auxiliary
diagnosis system (6, 7).

Deep learning (DL) refers to the class of machine learning
methods. It allows computers to learn complex concepts through
relatively simple concepts (8). Since DL performs well in image
interpretation and classification problems (9, 10), it has been
widely used in medical image analysis tasks, especially in survival
prediction and computational histopathology (11, 12), as well as
classification of histological phenotypes (13).

Meanwhile, there have been several studies about the
application of deep learning on the diagnosis of OSCC (10).
For example, one study could judge whether the tissue is
malignant (14, 15), but it could not determine the severity of
the tumor tissue. Das et al. used only the images of the epithelial
part to judge the grade of the tissue while the accuracy was not
high enough (16). These studies have confirmed the application
of deep learning in the field of OSCC, but there are still some
imperfections, such as the lack of accuracy. Therefore, we carried
out an automatic OSCC auxiliary diagnosis system, which was
called EfficientNet-based Computational Histopathology of
OSCC (ECHO). In this study, The Cancer Genome Atlas
Program (TCGA) dataset was used to train and test the model
(17). By comparing the performance of different convolutional
neural networks (CNNs), the best performing one was be
selected, and the performance was verified by using our
independent dataset.
MATERIALS AND METHODS

The workflow of this study is shown in Figure 1. First the slides
were cut into tiles for training and testing (18), then the dataset
was balanced by decomposing a multiclass imbalanced dataset
into a binary problem (19), and the tiles with a blank area more
than 50% were removed to ensure that each tile contains valid
information. Then the preprocessed dataset was divided into
training set, validation set, and test set.

Secondly, three CNNs, EfficientNet b0 (20), ShuffleNetV2
(21), and ResNeXt_18 (22), were trained at different resolutions,
and the most accurate CNN with the best performing resolution
was selected for the further analysis.

Finally, we tested the performance of ECHO on the external
dataset, the OSCC tissue microarrays (TMA). There are
differences in the image forms between TCGA and TMA, but
both contain valid information, so we used TMA for external
validation to prove that the model has high accuracy when
dealing with various types of images.

The complete and detailed workflow is described below:
Frontiers in Oncology | www.frontiersin.org 269
Data Resource and Data Preprocessing
The image datasets include the TCGA OSCC image dataset and
our independent TMA images dataset. We downloaded 757
whole-slide images of OSCC from the official website of TCGA
in 2019 as the original dataset of TCGA. The TCGA dataset was
used for model training and testing, and the TMA dataset was
used for external verification. TCGA classifies OSCC into grade I
(G1, well-differentiated), grade II (G2, moderately
differentiated), grade III (G3, poorly differentiated), and grade
IV (G4, undifferentiated or anaplastic) (23).

For the TCGA dataset, considering that the number of G4
slides was too small, and the imbalance of the dataset would
seriously affect the training result, the G1 and G2 were combined
as the well-differentiated group; G3 and G4 were combined as the
poorly-differentiated group. There are 757 slides in the TCGA
dataset, 568 slides in the G1-G2 group, and 189 slides in the G3-
G4 group. These slides were cut into 224*224 pixel tiles (18, 20)
at 10x, 20x, and 40x resolution, respectively, and the tiles with a
blank area more than 50% were removed. The number of slides
in the G3-G4 group and the G1-G2 group was quite different,
which would adversely affect the results (19). We used the
number of slides of the minimum class as the standard
number, N0. Then calculated the ratio of N0 to the number of
slides of each other class Nk. The ratio, Rk, was used to balance
the tiles dataset. The tiles set of each class was multiplied by a
coefficient Rk, as the final number of tiles for each class. The tiles
of major classes were randomly removed until the numbers of
FIGURE 1 | Process of model training. The training process was divided into
three steps: preprocessing the datasets, model training, and model testing.
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tiles reached the final number. Then they were used as the
preprocessed TCGA dataset.

The preprocessed data set was divided into three datasets:
training set, validation set, and test set, which account for 60%,
20%, and 20% (24). These datasets were used for training and
testing CNNs, and each CNN had two outputs: the possibility of
G1-G2 and the possibility of G3-G4.

Additionally, we collected the TMAs dataset from the West
China Hospital of Stomatology (Chengdu, China) and this
study was approved by the ethics committee of the West
China Hospital of Stomatology. The TMAs included 337
available slides of patients recruited from 2004 to 2014 who
had received informed consent in this study. In the TMA
dataset, according to the degree of tumor differentiation, the
histological grades were divided into 1 (high differentiation), 2
(moderate differentiation), and 3 (low differentiation). Grades 1
and 2 were combined as the well-differentiated group
(corresponding to G1-G2), and grade 3 was considered as the
poorly-differentiated group (corresponding to G3-G4). The
TMAs dataset was used for the external verification of the
best performing CNN model chosen by above training steps.
Moreover, they were used to verify the generalizability of
the model.

CNNs and Resolutions
For the consideration of training speed, training accuracy, and
estimated time, we used three CNNs: EfficientNet b0,
ShuffleNetV2, and ResNeXt_18. The performance of
EfficientNet has shown great advantages since its inception,
The accuracy and operation speed of EfficientNet is much
faster than other networks (20), and it is often used as a
comparison standard by the newly proposed CNNs (25, 26).
ResNet is a classic neural network that is widely used in many
fields and has good performance (22), so we chose ResNet as a
benchmark to compare other CNNs. ShuffleNet is lightweight
and computationally can be used on mobile devices (21). The
reasons for choosing three models for this study was not only to
select a better performing CNN, but also to try out the
practicality of lightweight models.

These CNNs were trained on three different resolutions, and
we selected the best CNN by comparing their accuracy and AUC
on the tiles in test sets. In order to compare the effects of different
resolutions on model training time and model accuracy, we
decided to use 10x, 20x, and 40x resolution to train the three
models separately. Finally, the model was used to evaluate the
slides at the corresponding resolution. The resolution with better
performance was selected.
Frontiers in Oncology | www.frontiersin.org 370
Model Training and Selection
In order to compare and select the best model more efficiently, all
slides were cut into tiles which were used to train and test
models. The label of a tile was determined by the slide which it
came from. When the training was completed, the accuracy and
AUC of the model on the tile dataset was used to evaluate the
performance of the model, and in this way, the best model for the
next study was selected.

Three networks were trained on the 10x resolution (154,148
tiles in all, 74,977 in G1-G2 group, 78,171 in G3-G4 group), 20x
resolution (306,134 tiles in all, 149,826 in G1-G2 group, 156,308
in G3-G4 group), and 40x resolution (890,681 tiles in all, 469,751
in G1-G2 group, 420,930 in G3-G4 group). Table 1 shows the
information of the datasets used for training and testing.

During the training process, we observed the accuracy of each
model at each epoch and drew an epoch-accuracy curve. When the
epoch was low, the accuracy would also be low due to insufficient
image feature extraction; when the epoch was high, the accuracy of
the model would decrease due to over-fitting. When the epoch was
around 60-70, the accuracy of the model would be high and stable
(27). An epoch of about 60-70 would make the accuracy of the
model high and stable, so the epoch was set to 80 and the accuracy
of models was compared at each epoch.

Other hyperparameters are as follows: batch size: 80, learning
rate: 0.0005, optimization algorithm: Adam, activation
function: Swish.

The Construction of ECHO
The best model and resolution selected in the above process was
used to construct ECHO. Different from the above test process,
the dataset here was composed of all slides. The accuracy on the
slide dataset was used to evaluate the application value of ECHO.

The purpose of ECHO is to give the differentiation level of the
input slide. The workflow mainly included two steps. First,
ECHO cut the input slide into 224*224-pixel tiles and used the
best model to give each tile a label of G1-G2 or G3-G4. In the
second step, ECHO counted the tags of all tiles and used tags that
account for more than 50% as the result of the slide. If the results
given were consistent with the actual clinical labels, then ECHO’s
prediction was considered accurate. The accuracy of ECHO’s
predictions on all slides was used to evaluate the performance
and application value of ECHO.

Five-Classes Expansion of ECHO
Based on the best CNN selected by the above research and the
most suitable resolution, we developed a five-class model of
ECHO, which can assist the results of binary classification. The
TABLE 1 | Datasets used for training and testing.

Dataset G1-G2 G3-G4

10x 20x 40x 10x 20x 40x

Training 44,987 89,896 281,851 46,903 93,784 252,558
Validation 14,995 29,965 93,950 15,634 31,262 84,186
Test 14,995 29,965 93,950 15,634 31,262 84,186
July 2
022 | Volume 12 | Article
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five classes are as follows: normal organization, G1, G2, G3, and
G4. The data preprocessing and training process was the same as
before. The effect of this model was evaluated by the confusion
matrix and accuracy.

Hardware and Software
Four NVIDIA Tesla K80 graphics cards were used, which
contained a total of eight graphics processing units (GPUs).
Each model was trained on a single GPU. The construction and
training of the model was based on TensorFlow 2.1, and the
programming language was Python 3.6.8.

Statistical Analysis
We first got the accuracy and area under the receiver operating
characteristic (ROC) curve (AUC) with 95% confidence interval
(CI) in test datasets, then assessed the performance of networks.
The 95% CI was calculated using the bootstrap method (28). The
bootstrap method uses sampling with replacement, a sample size
equal to the original sample size, and computes the required
statistics. This process was repeated 100 times, and confidence
intervals were estimated based on the statistics calculated for
these 100 times. In our study, when calculating the accuracy, the
original sample refers to whether the class of each whole-slide
image (WSI) was judged correctly. When calculating AUC, the
raw sample was the ratio of the actual label of each WSI to each
class computed by the machine. The accuracy and AUC in test
dataset were primary criteria for evaluation. All the statistical
analysis was also performed with Python 3.6.8.
RESULT

Model Comparison
TCGA dataset was used to train and compare the performance of
different CNNs and resolutions, then the best performing CNN
and resolution were selected.

We first determined the epoch to be selected. In general, the
accuracy of each model increases as the epoch grows. When the
epoch reaches 50-60, the accuracy of the model has increased
very little, and the difference was small. Therefore, the maximum
value of the epoch was set to 80 and the accuracy of models was
compared at each epoch. Table 2 shows the epoch value of
different models at three resolutions, and Table 3 shows the
accuracy and AUC at corresponding epoch values.
Frontiers in Oncology | www.frontiersin.org 471
Then we evaluated and selected the CNN and the resolution.
Figures 2A–C shows the ROC of the three models at their best
performance at three resolutions. Except for the 10x ResNet, the
AUC of other models are all above 0.95, which maintained a high
level. The highest among them was the EfficientNet at 20x.
Figure 2D shows the accuracy of each CNN at different
resolutions with 95% CI. The CNN with the highest accuracy
was the EfficientNet at 20x, which accuracy reached 0.931 (95%
CI: 0.920 to 0.942).

Because EfficientNet has better performance at 20x resolution
both in accuracy and AUC, our next research will be based on
this model, which is called ECHO.

We also compared the calculation speed of different models.
Figure 3 shows the evaluation time and evaluation results of the
three models for random whole-slide images. ResNet had the
fastest computing speed. ShuffleNet took about 1.5 times that of
ResNet, and EfficientNet took about 2 times that of ResNet. For
larger slides, the time difference between the fastest and slowest
models could be more than 60s, but the difference was acceptable
in clinical practice.

Test on the Whole-Slide Images
The ECHO was used to test on whole-slide image datasets of the
TCGA dataset. If the proportion of G3-G4 tiles is more than 50%,
the machine will judge the slide as G3-G4. If not, the slide will be
classified as G1-G2. We tested a total of 697 slides, the sensitivity
reached 98.3% (176/179) and the specificity reached 98.0% (508/
518). The total accuracy reached 98.1% (95%CI: 97.1% to 99.1%),
and the AUC reached 0.998 (95%CI: 0.995 to 1.000, Figure 4A). It
proves that the ECHO has very high accuracy on the internal test
set. The processing and classification time of a single WSI is about
30-60s (based on the size of the WSI, shown in Figure 3B)

Verification on the External Dataset
The TMAs image dataset was used to verify the performance and
external use of the ECHO. The TMAs dataset has a total of 337
slides. The slide dyeing method of TMA was different from that
of TCGA, so the color characteristics of the image are different.
Meanwhile, due to the different sources of patients, the
histological structure of the tumor may also be slightly
different. Both TCGA and TMA have the tissue which contains
sufficient content for pathological diagnosis, and the processing
methods are also consistent, so we used TMA to validate the
mode to prove that the model has high accuracy when dealing
with various types of images. Due to the differences between the
TMAs dataset and the TCGA dataset, it was appropriate to use
the TMAs dataset to verify the performance and external
applicability of ECHO.

The accuracy reached 91.4% (95% CI: 88.4% to 94.4%), and
the AUC was 0.992 (95%CI: 0.982 to 1.000). The ROC curve is
shown in Figure 4B. This proves that the ECHO still has a good
effect when faced with test subjects whose sources are quite
different and have good applicability.

Visualization of ECHO
When the prediction of each block was finished, the systemmade
a restored slide picture according to the prediction result and the
TABLE 2 | The epoch value when the three models have the highest test
accuracy in the three resolutions.

Model Resolution

10x 20x 40x

EfficientNet 70 70 70
ShuffleNet 72 54 72
Resnet 76 78 64
We choose the epoch value with the highest accuracy as the parameter of the
corresponding model. In the next test, we use the corresponding model to evaluate the
effect.
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possibility of each block. If the predicted tile result was G1-G2, a
black layer was added to the tile. We randomly selected two
slides, which belong to G1-G2 and G3-G4. The result was stored
through visualization, and the result is shown in Figure 5.
Figure 5C shows the classification results of the five classes
ECHO program. The right area shows the visualized heatmap,
each tile was added color with transparency. Normal tissues, G1-
G4 correspond to colorless, green, blue, yellow, and red,
respectively. The detailed stored image can be seen in
Figure 1, 2.

Evaluation of Five Classes ECHO
We used the TCGA dataset to test the five classes ECHO. The
five classes ECHO accepts a WSI as input and gives the
Frontiers in Oncology | www.frontiersin.org 572
probability of each class. In the test of 447 WSIs, 347 of them
were correctly classified. We used the bootstrap method to
sample 100 times to calculate the confidence interval, and the
final accuracy was 77.63% (95CI: 77.25-78.01). Figure 6 shows
the confusion matrix according to the classification results. The
results showed that the classification performance of different
classes was different. The classification sensitivity of normal
tissues, G1, and G4 were higher, reaching 92.85%, 98.27%, and
100%. The sensitivity of G3 and G2 was poor, 82.88% and
70.48%. In terms of specificity, the classification results of
normal tissue and G2 were better, reaching 100% and 94.09%,
G4, G3, and G1 are worse, being 77.78%, 71.31%, and 52.29%,
respectively. The results show that the five classes ECHO can be
used as a reference to complete some auxiliary tasks.
DISCUSSION

The visual inspection of tumor tissue under the light microscope
by pathologists is the gold standard for OSCC grading This
evaluation is mainly based on the pathologists’ clinical pathology
knowledge and skills (29). The workload is heavy, and the results
are affected by subjectivity. However, the application of DL in the
histopathological diagnosis would help the pathologists (12, 30).
Recently, there were several studies on OSCC automatic
detection. For example, to judge whether OSCC is benign or
A B

DC

FIGURE 2 | Ninety-five percent confidence interval when testing on a validation set of 10,000 tiles. The test set was resampled and tested one hundred times using
the bootstrap method, and the ROC and 95% confidence interval were calculated. A–C show the ROC curves of three CNNs tested at 10x, 20x, and 40x resolution.
Except for the 10x ResNet, the ROC of other models were all greater than 0.95. D shows the accuracy of each model. Except for 10x ResNet, the accuracy of each
model was similar, while the accuracy of 20x EfficientNet is slightly higher.
TABLE 3 | Accuracy and AUC of different CNNs and corresponding resolutions.

Model Resolution

10x 20x 40x

EfficientNet 90.9 (0.97) 93.1 (0.98) 89.3 (0.96)
ShuffleNet 88.9 (0.96) 91.2 (0.96) 90.1 (0.97)
Resnet 76.1 (0.89) 90.8 (0.96) 89.8 (0.96)
Based on the best epoch value selected in Table 2, we tested the accuracy of different
models and corresponding resolutions. The table shows the accuracy, with AUC values in
parentheses. This result shows that EfficientNet at 20x resolution has the best
performance.
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malignant (14), CNNs were used to classify OSCC epithelial cells
(16). However, these studies still have some imperfections, such
as the methods used are relatively old, the data resources and
evaluation indicators are single, and the accuracy is not high
enough. In our study, these problems were basically solved. The
ECHO achieved very high accuracy and verified the possibility of
external application.

Firstly, we compared the performance of the three CNNs:
EfficientNet, ShuffleNet, and ResNet. ShuffleNet is designed for
mobile terminals (21), so the model has the smallest amount of
parameters and the smallest size, which can be applied to lighter
devices. As shown in Figure 3, its computing speed is at a
medium level, and the highest accuracy reached 91.2% (95%CI:
89.9% to 92.5%, 20x resolution). The calculation speed of
EfficientNet is the slowest in our study, but it was still faster
than many CNNs (20). The accuracy of EfficientNet is the
highest, which reached 93.1% (95%CI: 92.0% to 94.2%, 20x
resolution). ResNet was a classic CNN that greatly alleviated
the problem of overfitting (22). It has the fastest computing
speed and has an accuracy of 90.8% (95CI: 89.5% to 92.1%,
20x resolution).
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Secondly, we evaluated the impact of different resolutions on
the experimental results. The higher resolution is helpful to
improve the model’s recognition and extraction of image
features, but it may affect the final result due to local
overfitting (31). The reason may be that the cut tiles are too
small and that the important features are at the edges, so that the
key information cannot be extracted. Higher resolution will also
greatly increase the workload of model training and the time of
slide analysis. Lower resolution can effectively improve the
training and recognition speed, but it may cause a potential
decrease in accuracy. Because the resolution is too small, the
details of the features are not clear, resulting in poor training
results. Twenty times resolution also has faster application speed
and accuracy, so this resolution was chosen to apply.

In this study, we took two measures to deal with imbalanced
datasets. Since the number of slides in the G4 phase was too
small, less than one-tenth of that in the G2 phase or G3 phase, we
chose to combine G1 and G2 as well-differentiated, and G3 and
G4 as poorly-differentiated. After the merger, the imbalance
problem was alleviated. In the second step, we processed the
dataset by undersampling the majority of class examples.
A B

FIGURE 4 | The ROC of the predicted results of ECHO. A shows the ROC tested and calculated by ECHO on the test set of TCGA. It can be seen that the area
under the curve is as high as 0.998, with an accuracy of 98.1% (684/697). B shows the ROC tested and calculated by ECHO on TMA. The test accuracy rate is
0.914 (308/337), and the area under the curve is 0.992.
A B C

FIGURE 3 | The result on the whole-slide-image. The WSIs was cut into tiles then classified, and the proportion of the correctly classified tiles was used as the
accuracy to make Figure 3. The horizontal axis is the classification time (slide cutting time is omitted), and the vertical axis is the proportion of the correct
classification. A is the result under 10x, B is the result under 20x, and C is the result under 40x. EfficientNet requires a longer time but has higher accuracy. ResNet
has a very powerful speed and a good performance in accuracy. The speed of ShuffleNet is between the two, and the accuracy is not stable.
July 2022 | Volume 12 | Article 894978
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To ensure that the information of each WSI can be utilized, we
first cut all WSIs into tiles, and then undersampled the
imbalanced tile set. The preprocessing measures we took may
not be optimal, which leads to a loss of information (32). The
undersampling process has produced good results, but in the
next research, we will further explore better preprocessing
measures (33).

There have been many studies on the machine learning
application of OSCC. Mermod et al., 2020, used Random Forest
(RF), linear Support VectorMachine (SVM), to judge the metastasis
of squamous cell carcinoma of lymph nodes, with an accuracy of
90% (34). Romeo et al., 2020, used Naïve Bayes (NB), Bagging of
NB, and K-Nearest Neighbors (KNN) to determine tumor grade
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with an accuracy of 92.9% (35). These researchers use more
traditional machine learning methods, and there was still much
room for improvement in accuracy. Ariji et al., 2019, who used deep
learning methods, used CNN to evaluate lymph node metastasis,
but the accuracy was only 78.1% (36). Jeyaraj & Samuel Nadar,
2019, used CNN to judge benign and malignant tumors with an
accuracy of 91.4% (37). Our research is also based on CNN, which
has two classification systems and five classification systems. The
two-class classification system can accurately determine the tumor
differentiation (high or low), and the accuracy has reached an
astonishing 98.1%. The five-class classification system can judge the
specific differentiation grade of the tumor and can also judge
whether the tumor is malignant. The accuracy of judging whether
A B

C

FIGURE 5 | A slide image made in reverse according to the classification result. Most of the area in A is covered by black shadows, so this slide belongs to G1-G2.
Picture B has almost no area covered by shadows, it belongs to G3-G4. C shows the classification results of the five classes ECHO program. The left area shows
the input WSI preview, the middle area shows the probabilities of each category, and the right area shows the heatmap, each tile was added a color with
transparency. Normal tissues, G1-G4 correspond to colorless, green, blue, yellow, and red, respectively.
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it is benign ormalignant has reached 92.86% (39/42). Therefore, our
study is valuable and far surpasses other current studies in accuracy.

However, our research also needs improvement. Due to the
limitation of the number of samples in the dataset, that is, the
number of samples of G1, G2, G3, and G4 is too imbalanced, we
had to group them to balance the amount of data. In future
research, we will obtain more datasets to refine the model and
train the system for five classes: normal, G1, G2, G3, and G4. In
addition, in the division of G1-G2 and G3-G4, the machine
determines whether a slide belongs to G1-G2 or G3-G4
according to the ratio of tiles. When the proportion of G3-G4
tiles is higher than 50%, the machine will classify this slide as
‘G3-G4’, so 50% is the threshold for machine judgment. It has
been reported that when the threshold is 50%, the sensitivity is
high and the specificity is low (38). When the threshold is
changed, the effect of the model will be different, and this
could be further discussed in the future.
CONCLUSION

Oral squamous cell carcinoma is one of the most common head
and neck tumors. It is important to determine the grade of tumor
differentiation, which has a guiding role in tumor treatment and
prognosis prediction. We developed two and five class systems
based on CNN. The two classes system can judge whether the
tumor is well differentiated or poorly differentiated. The test
accuracy on the TCGA dataset reached 98.1% (n=697). The five
classes system can judge whether the tissue belongs to normal
tissue, G1, G2, G3, or G4. The accuracy reached 77.63%.
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We’ve also built visualization programs that can help doctors
deal with some controversial slides. The system we developed can
effectively reduce the workload of the pathologist and increase
the efficiency and speed of the diagnostic process.
DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://portal.gdc.cancer.gov.
ETHICS STATEMENT

This study was approved by the ethics committee of the West
China Hospital of Stomatology. The TMAs included 337
available slides of patients recruited from 2004 to 2014 who
had received informed consent in this study.
AUTHOR CONTRIBUTIONS

HX, QC, ZX, and JP contributed to conception and design of the
study. HX, ZX, XZ, and QC organized the database. ZX, JP, and
HX performed the statistical analysis. ZX and JP wrote the first
draft of the manuscript, JP, XZ, QC, and HX wrote sections of
the manuscript. All authors contributed to manuscript revision,
read, and approved the submitted version.
FUNDING

This study was supported by grants from the National Natural
Science Foundation of China (82001059).
ACKNOWLEDGMENTS

The results shown here are based partly on data generated by the
TCGA Research Network. The authors would like to thank the
oral pathology department of West China School of Stomatology,
where all of the slide crafting tasks and diagnostic tasks
were completed.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fonc.2022.894978/
full#supplementary-material

Supplementary Figure 1 | Another WSI visualization. The differentiation grade of
this tissue is G2.

Supplementary Figure 2 | A high-resolution image of the visualization results. G1
tiles are colored green, G2 tiles are colored blue, G3 tiles are colored yellow, and G4
tiles are colored red. Due to the influence of H&E staining, the actual color displayed
by the G2 tile is purple.
FIGURE 6 | The confusion matrix of five classes ECHO. The correct
prediction results are located on a diagonal line from the upper left corner to
the lower right corner of the matrix. We used the bootstrap method to sample
100 times to calculate the confidence interval, and the final accuracy was
77.63% (95CI: 77.25-78.01).
July 2022 | Volume 12 | Article 894978

https://portal.gdc.cancer.gov
https://www.frontiersin.org/articles/10.3389/fonc.2022.894978/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.894978/full#supplementary-material
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. High-Accuracy OSCC Auxiliary Diagnosis System
REFERENCES
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.

Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA-Cancer J Clin
(2021) 71(3):209–49. doi: 10.3322/caac.21660

2. Bejnordi BE, Veta M, van Diest PJ, van Ginneken B, Karssemeijer N, Litjens
G, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of
Lymph Node Metastases in Women With Breast Cancer. JAMA-J Am Med
Assoc (2017) 318(22):2199–210. doi: 10.1001/jama.2017.14585

3. El-Naggar AK, Chan JK, Grandis JR, Takata T, Slootweg PJ. WHO
Classification of Head and Neck Tumours. Lyon: International Agency for
Research on Cancer (IARC (2017).

4. Jakobsson P, Eneroth C, Killander D, Moberger G, Mårtensson B. Histologic
Classification and Grading of Malignancy in Carcinoma of the Larynx. Acta
Radiologica: Therapy Physics Biol (1973) 12(1):1–8.

5. Anneroth G, Batsakis J, Luna M. Review of the Literature and a
Recommended System of Malignancy Grading in Oral Squamous Cell
Carcinomas. Eur J Oral Sci (1987) 95(3):229–49. doi: 10.1111/j.1600-
0722.1987.tb01836.x

6. Diao S, Hou J, Yu H, Zhao X, Sun Y, Lambo RL, et al. Computer-Aided
Pathologic Diagnosis of Nasopharyngeal Carcinoma Based on Deep
Learning. Am J Pathol (2020) 190(8):1691–700. doi: 10.1016/
j.ajpath.2020.04.008

7. Zhang Z, Chen P, McGough M, Xing F, Wang C, Bui M, et al. Pathologist-
Level Interpretable Whole-Slide Cancer Diagnosis With Deep Learning. Nat
Mach Intelligence (2019) 1(5):236–45. doi: 10.1038/s42256-019-0052-1

8. Schmidhuber J. Deep Learning in Neural Networks: An Overview. Neural
Networks (2015) 61:85–117. doi: 10.1016/j.neunet.2014.09.003

9. Clymer D, Kostadinov S, Catov J, Skvarca L, Pantanowitz L, Cagan J, et al.
Decidual Vasculopathy Identification in Whole Slide Images Using
Multiresolution Hierarchical Convolutional Neural Networks. Am J Pathol
(2020) 190(10):2111–22. doi: 10.1016/j.ajpath.2020.06.014

10. Alabi RO, Youssef O, Pirinen M, Elmusrati M, Mäkitie AA, Leivo I, et al.
Machine Learning in Oral Squamous Cell Carcinoma: Current Status, Clinical
Concerns and Prospects for Future-A Systematic Review. Artif Intell Med
(2021) 115:102060. doi: 10.1016/j.artmed.2021.102060

11. Courtiol P, Maussion C, Moarii M, Pronier E, Pilcer S, Sefta M, et al. Deep
Learning-Based Classification of Mesothelioma Improves Prediction of
Patient Outcome. Nat Med (2019) 25(10):1519–25. doi: 10.1038/s41591-
019-0583-3

12. Ocampo P, Moreira A, Coudray N, Sakellaropoulos T, Narula N, Snuderl M,
et al. Classification and Mutation Prediction From Non-Small Cell Lung
Cancer Histopathology Images Using Deep Learning. J Thorac Oncol (2018)
13(10):S562–2. doi: 10.1016/j.jtho.2018.08.808

13. Sheehan S, Mawe S, Cianciolo RE, Korstanje R, Mahoney JM. Detection and
Classification of Novel Renal Histologic Phenotypes Using Deep Neural
Networks. Am J Pathol (2019) 189(9) :1786–96. doi : 10.1016/
j.ajpath.2019.05.019

14. Rahman TY, Mahanta LB, Chakraborty C, Das AK, Sarma JD. Textural
Pattern Classification for Oral Squamous Cell Carcinoma. J Microsc-Oxford
(2018) 269(1):85–93. doi: 10.1111/jmi.12611

15. Rahman TY, Mahanta LB, Das AK, Sarma JD. Automated Oral Squamous
Cell Carcinoma Identification Using Shape, Texture and Color Features of
Whole Image Strips. Tissue Cell (2020) 63:101322. doi: 10.1016/
j.tice.2019.101322

16. Das N, Hussain E, Mahanta LB. Automated Classification of Cells Into
Multiple Classes in Epithelial Tissue of Oral Squamous Cell Carcinoma
Using Transfer Learning and Convolutional Neural Network. Neural
Networks (2020) 128:47–60. doi: 10.1016/j.neunet.2020.05.003

17. Khosravi P, Kazemi E, Imielinski M, Elemento O, Hajirasouliha I. Deep
Convolutional Neural Networks Enable Discrimination of Heterogeneous
Digital Pathology Images. EBioMedicine (2018) 27:317–28. doi: 10.1016/
j.ebiom.2017.12.026

18. Wang S, Yang DM, Rong R, Zhan X, Xiao G. Pathology Image Analysis Using
Segmentation Deep Learning Algorithms. Am J Pathol (2019) 189(9):1686–98.

19. Japkowicz N. Learning From Imbalanced Data Sets: A Comparison of Various
Strategies. Menlo Park CA: AAAI Press (2000) p. 10–5.
Frontiers in Oncology | www.frontiersin.org 976
20. TanM, Le Q. Efficientnet: Rethinking Model Scaling for Convolutional Neural
Networks. Proceedings of the 36th International Conference on Machine
Learning; 2019 Jun 9-15;California: PMLR (2019). p. 6105–14.

21. Zhang X, Zhou XY, Lin MX, Sun R. ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile Devices. Proc Cvpr Ieee (2018)
2018:6848–56. doi: 10.1109/Cvpr.2018.00716

22. He KM, Zhang XY, Ren SQ, Sun J. Deep Residual Learning for Image
Recognition, in: 2016 Ieee Conference on Computer Vision and Pattern
Recognition (Cvpr) Las Vegas: IEEE (2016). pp. 770–8.

23. Network CGA. Comprehensive Genomic Characterization of Head and Neck
Squamous Cell Carcinomas. Nature (2015) 517(7536):576. doi: 10.1038/
nature14129

24. Deo RC. Machine Learning in Medicine. Circulation (2015) 132(20):1920–30.
doi: 10.1161/Circulationaha.115.001593

25. Lin M, Chen H, Sun X, Qian Q, Li H, Jin R. Neural Architecture Design for
Gpu-Efficient Networks. arXiv [Preprint] (2020). Available at: https://arxiv.
org/abs/2006.14090 (Accessed Aug 11, 2020).

26. Radosavovic I, Kosaraju RP, Girshick R, He K, Dollár P. Designing Network
Design Spaces. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition; 2016 Jun 13-19; Seattle: IEEE (2020). p. 10428–36.

27. Poggio T, Kawaguchi K, Liao Q, Miranda B, Rosasco L, Boix X, et al. Theory of
Deep Learning Iii: The non-Overfitting Puzzle. arXiv [Preprint] (2017).
Available at: https://arxiv.org/abs/1801.00173 (Accessed Dec 30, 2017).

28. Ling CX, Huang J, Zhang H. AUC: A Better Measure Than Accuracy in
Comparing Learning Algorithms. Conference of the Canadian society for
computational studies of intelligence; 2003 Jun 11-13; Berlin, Heidelberg:
Springer (2003) p. 329–41.

29. Ball CS. The early history of the compound microscope. Bios (1966) 2:51–60.
30. Liu Y, Gadepalli K, Norouzi M, Dahl GE, Kohlberger T, Boyko A, et al.

Detecting Cancer Metastases on Gigapixel Pathology Images. arXiv [Preprint]
(2017). Available at: https://arxiv.org/abs/1703.02442 (Accessed Mar 3, 2017).

31. Sabottke CF, Spieler BM. The Effect of Image Resolution on Deep Learning in
Radiography. Radiol: Artif Intelligence (2020) 2(1):e190015. doi: 10.1148/
ryai.2019190015

32. Nalepa J, Kawulok M. Selecting Training Sets for Support Vector Machines: A
Review. Artif Intell Rev (2019) 52(2):857–900. doi: 10.1007/s10462-017-9611-1

33. Krawczyk B. Learning From Imbalanced Data: Open Challenges and Future
Directions. Prog Artif Intelligence (2016) 5(4):221–32. doi: 10.1007/s13748-
016-0094-0

34. Mermod M, Jourdan EF, Gupta R, Bongiovanni M, Tolstonog G, Simon C,
et al. Development and Validation of a Multivariable Prediction Model for the
Identification of Occult Lymph Node Metastasis in Oral Squamous Cell
Carcinoma. Head Neck (2020) 42(8):1811–20. doi: 10.1002/hed.26105

35. Romeo V, Cuocolo R, Ricciardi C, Ugga L, Cocozza S, Verde F, et al.
Prediction of Tumor Grade and Nodal Status in Oropharyngeal and Oral
Cavity Squamous-Cell Carcinoma Using a Radiomic Approach. Anticancer
Res (2020) 40(1):271–80. doi: 10.21873/anticanres.13949

36. Ariji Y, Fukuda M, Kise Y, Nozawa M, Yanashita Y, Fujita H, et al. Contrast-
Enhanced Computed Tomography Image Assessment of Cervical Lymph
Node Metastasis in Patients With Oral Cancer by Using a Deep Learning
System of Artificial Intelligence. Oral Surgery Oral Med Oral Pathol Oral
Radiol (2019) 127(5):458–63. doi: 10.1016/j.oooo.2018.10.002

37. Jeyaraj PR, Samuel Nadar ER. Computer-Assisted Medical Image
Classification for Early Diagnosis of Oral Cancer Employing Deep Learning
Algorithm. J Cancer Res Clin Oncol (2019) 145(4):829–37. doi: 10.1007/
s00432-018-02834-7

38. Pham HHN, Futakuchi M, Bychkov A, Furukawa T, Kuroda K, Fukuoka J.
Detection of Lung Cancer Lymph Node Metastases From Whole-Slide
Histopathologic Images Using a Two-Step Deep Learning Approach. Am J
Pathol (2019) 189(12):2428–39. doi: 10.1016/j.ajpath.2019.08.014

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
July 2022 | Volume 12 | Article 894978

https://doi.org/10.3322/caac.21660
https://doi.org/10.1001/jama.2017.14585
https://doi.org/10.1111/j.1600-0722.1987.tb01836.x
https://doi.org/10.1111/j.1600-0722.1987.tb01836.x
https://doi.org/10.1016/j.ajpath.2020.04.008
https://doi.org/10.1016/j.ajpath.2020.04.008
https://doi.org/10.1038/s42256-019-0052-1
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.ajpath.2020.06.014
https://doi.org/10.1016/j.artmed.2021.102060
https://doi.org/10.1038/s41591-019-0583-3
https://doi.org/10.1038/s41591-019-0583-3
https://doi.org/10.1016/j.jtho.2018.08.808
https://doi.org/10.1016/j.ajpath.2019.05.019
https://doi.org/10.1016/j.ajpath.2019.05.019
https://doi.org/10.1111/jmi.12611
https://doi.org/10.1016/j.tice.2019.101322
https://doi.org/10.1016/j.tice.2019.101322
https://doi.org/10.1016/j.neunet.2020.05.003
https://doi.org/10.1016/j.ebiom.2017.12.026
https://doi.org/10.1016/j.ebiom.2017.12.026
https://doi.org/10.1109/Cvpr.2018.00716
https://doi.org/10.1038/nature14129
https://doi.org/10.1038/nature14129
https://doi.org/10.1161/Circulationaha.115.001593
https://arxiv.org/abs/2006.14090
https://arxiv.org/abs/2006.14090
https://arxiv.org/abs/1801.00173
https://arxiv.org/abs/1703.02442
https://doi.org/10.1148/ryai.2019190015
https://doi.org/10.1148/ryai.2019190015
https://doi.org/10.1007/s10462-017-9611-1
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1002/hed.26105
https://doi.org/10.21873/anticanres.13949
https://doi.org/10.1016/j.oooo.2018.10.002
https://doi.org/10.1007/s00432-018-02834-7
https://doi.org/10.1007/s00432-018-02834-7
https://doi.org/10.1016/j.ajpath.2019.08.014
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. High-Accuracy OSCC Auxiliary Diagnosis System
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Xu, Peng, Zeng, Xu and Chen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
Frontiers in Oncology | www.frontiersin.org 1077
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.
July 2022 | Volume 12 | Article 894978

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Wei Wei,

Xi’an University of Technology, China

Reviewed by:
Tsung-Ying Ho,

Chang Gung Memorial Hospital,
Taiwan

Vetri Sudar Jayaprakasam,
Memorial Sloan Kettering Cancer

Center, United States

*Correspondence:
Liang-xing Wang

wangliangxing@wzhospital.cn
Kun Tang

kuntang007@163.com
Xiao-ying Huang

huangxiaoying@wzhospital.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 08 April 2022
Accepted: 07 June 2022
Published: 07 July 2022

Citation:
Ouyang M-l, Zheng R-x,

Wang Y-r, Zuo Z-y, Gu L-d,
Tian Y-q, Wei Y-g, Huang X-y,

Tang K and Wang L-x (2022) Deep
Learning Analysis Using 18F-FDG PET/

CT to Predict Occult Lymph Node
Metastasis in Patients With Clinical

N0 Lung Adenocarcinoma.
Front. Oncol. 12:915871.

doi: 10.3389/fonc.2022.915871

ORIGINAL RESEARCH
published: 07 July 2022

doi: 10.3389/fonc.2022.915871
Deep Learning Analysis Using 18F-
FDG PET/CT to Predict Occult Lymph
Node Metastasis in Patients With
Clinical N0 Lung Adenocarcinoma
Ming-li Ouyang1†, Rui-xuan Zheng1†, Yi-ran Wang2, Zi-yi Zuo1, Liu-dan Gu1,
Yu-qian Tian1, Yu-guo Wei3, Xiao-ying Huang1*, Kun Tang4* and Liang-xing Wang1*

1 Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical
University, Wenzhou, China, 2 Department of Medical Engineering, The First Affiliated Hospital of Wenzhou Medical University,
Wenzhou, China, 3 Precision Health Institution, General Electric (GE) Healthcare, Hangzhou, China, 4 Department of Nuclear
Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Introduction: The aim of this work was to determine the feasibility of using a deep
learning approach to predict occult lymph node metastasis (OLM) based on preoperative
FDG-PET/CT images in patients with clinical node-negative (cN0) lung adenocarcinoma.

Materials and Methods: Dataset 1 (for training and internal validation) included 376
consecutive patients with cN0 lung adenocarcinoma from our hospital between May 2012
and May 2021. Dataset 2 (for prospective test) used 58 consecutive patients with cN0
lung adenocarcinoma from June 2021 to February 2022 at the same center. Three deep
learning models: PET alone, CT alone, and combined model, were developed for the
prediction of OLM. The performance of the models was evaluated on internal validation
and prospective test in terms of accuracy, sensitivity, specificity, and areas under the
receiver operating characteristic curve (AUCs).

Results: The combined model incorporating PET and CT showed the best performance,
achieved an AUC of 0.81 [95% confidence interval (CI): 0.61, 1.00] in the prediction of
OLM in internal validation set (n = 60) and an AUC of 0.87 (95% CI: 0.75, 0.99) in the
prospective test set (n = 58). The model achieved 87.50% sensitivity, 80.00% specificity,
and 81.00% accuracy in the internal validation set and achieved 75.00% sensitivity,
88.46% specificity, and 86.60% accuracy in the prospective test set.

Conclusion: This study presented a deep learning approach to enable the prediction of
occult nodal involvement based on the PET/CT images before surgery in cN0 lung
adenocarcinoma, which would help clinicians select patients who would be suitable for
sublobar resection.

Keywords: positron emission tomography/computed tomography (PET/CT), convolutional neural network, lung
adenocarcinoma, sublobar resection, lymph node status
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INTRODUCTION

Lung cancer is one of the most common malignancies and the
leading cause of death from cancer worldwide (1). Lung
adenocarcinoma (LUAD) is the most common histologic
subtype of lung cancer (2). Currently, lobectomy with systemic
nodal dissection is the standard treatment for patients with early-
stage non–small cell lung cancer (NSCLC) (3), and recently,
limited surgery (wedge resection or segmentectomy) has also
been performed to preserve healthy lung tissue (4–6). Accurate
staging to confirm node-negative (N0) status is required for
limited surgery. If N0 status is unreliable, then lobectomy with
systemic nodal dissection rather than limited surgery is
mandatory. 18F-fluorodeoxyglucose positron emission
tomography/computed tomography (18F-FDG PET/CT) is a
valuable imaging modality for evaluation of lymph node (LN)
or distant metastasis of lung cancers. Although PET/CT is more
sensitive to assess LN status than traditional examinations, occult
LNmetastasis (OLM) still occurs at a high rate (14%–21%) (7–9).
The definition for OLM was that clinical N0 (cN0) staged by
PET/CT was pathologically confirmed LN metastasis (LNM)
after surgery. Thus, there is a strong need to develop reliable
non-invasive methods to identify patients with OLM from cN0
patients staged by PET/CT.

In recent years, radiomics has received increasing attention,
and it is a technique for high-throughput extraction of
quantitative features from medical images (10, 11). Indeed,
many studies have exhibited that quantitative radiomic image
features of the primary tumor could be used as non-invasive
biomarkers to predict LNM and were good predictive
performance (12–14). For OLM of LUAD, Zhong et al. (15)
reported that the radiomics signature of the primary tumor based
on CT scans had a significant predictive value. Our previous
research (16) found that a PET-based radiomics model had
achieved success in the prediction of OLM in patients with
LUAD. However, traditional radiomic methods are based on
four time-consuming and complex steps (tumor segmentation,
feature extraction, feature selection, and modeling). Moreover,
observer-dependent differences may cause poor repeatability in
case of manual segmentation.

Deep learning is a new and especially promising approach
that automatically learns powerful feature representations from
images, text, or sound and has been shown to sometimes surpass
human-level performance in task-specific applications (17–19).
Compared with the conventional radiomic methods, the deep
learning method simplifies the analysis process and avoids
subjective bias because it does not require VOI definition or
segmentation. More recently, the deep learning method using
convolutional neural network (CNN) has been widely applied to
analyze medical images and has been effective in diseases
detection and classification (20–22). For classifying LN, Zhao
et al. (23) developed a cross-modal deep learning system based
on CT images to accurately predict LN metastasis in stage T1
LUADs. Tau et al. (24) reported that using a CNN to analyze
PET images can yield a reasonably good prediction of nodal
metastasis in patients with NSCLC. In view of the fact that
previous studies predicted LN metastasis using deep learning, we
Frontiers in Oncology | www.frontiersin.org 279
hypothesized that deep learning based on PET/CT images might
play an important role in predicting OLM.

Hence, the purpose of this study was to evaluate the capability
of deep learning analysis based on a two-dimensional (2D) CNN
architecture for the prediction of OLM through the use of
preoperative FDG-PET/CT images of cN0 LUAD.
MATERIALS AND METHODS

Patients
A total of 434 patients (193 men and 241 women) with cN0
LUAD who had pretreatment FDG PET/CT and underwent
surgical resection with the systematic LN dissection from May
2012 to February 2022 were enrolled in this study at The First
Affiliated Hospital of Wenzhou Medical University. Among
these patients, 343 (79.0%) were pN0 after surgery and
pathological examination. In other words, the prevalence of
OLM with PET/CT was 21.0% in LUAD, which is basically
consistent with previous studies (7–9). The criteria for cN0 on
PET/CT was all LNs’ short-axis diameter of less than 10 mm
without FDG uptake higher than the surrounding background
(25). The interval between PET/CT scan and surgery was shorter
than 3 weeks in all patients. The exclusion criteria for patients
were as follows: (I) history of other malignancy; (II) distant
metastasis ; (III) multiple lesions; (IV) neoadjuvant
chemotherapy/radiotherapy; (V) images with poor quality due
to the leakage of 18F-FDG at the injection site, low signal-to-
noise ratio, respiratory artifacts, and other movement artifacts.
Staging was performed according to the eighth edition of the
Union for International Cancer Control TNM classification.

Dataset 1 included 376 consecutive patients from our
Hospital between May 2012 and May 2021. Dataset 2 used 58
consecutive patients from June 2021 to February 2022 at the
same center. Sixty patients from dataset 1 were randomly
allocated to the internal validation dataset, and the remaining
316 patients were assigned to the training set. Dataset 2 was
taken as an independent set for the prospective test. The
prospective test is a more powerful method for evaluating the
model performance than random splitting of a single set or
cross-validation because it allows for non-random variation
between sets (26). A flowchart of patient selection is shown
in Figure 1.

This study was approved by the Institutional Review Board of
our hospital. Informed consent from the retrospective patients
was waived, and written informed consent was provided for
patients in prospective test set.
PET/CT Acquisition
An integrated PET/CT scanner (GEMINI TF 64; Philips, The
Netherlands) was used for all patients. At least 6-h fasting and
serum glucose levels below 110 ml/dl were required before being
injected with 18F-FDG (3.7 MBq/kg). Sixty minutes after
intravenous injection, the body was scanned in the supine
position. A low-dose unenhanced CT scan from skull base to
the middle thighs was obtained with the following parameters:
July 2022 | Volume 12 | Article 915871
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120 kV, 80 mA, pitch of 0.829, and reconstruction thickness and
interval of 5.0 mm. After CT completion, PET images were
acquired by using the 3D model with the following parameters:
field of view of 576 mm, a matrix of 144 × 144, slice thickness and
interval of 5.0 mm, and an emission scan time of each bed
position of 1.5 min. PET images were iteratively reconstructed by
the ordered subset expectation maximization algorithm, using
CT image for attenuation correction.

Image Selection and Processing
FDG uptake at the primary tumor site was identified on PET
images with reference to the CT part of PET-CT. Reconstruction
in the sagittal and coronal planes was done from the axial images.
Slices with the largest tumor area were selected in axial, coronal,
and sagittal planes of PET and CT images. To reduce the
computational expense and improve model’s accuracy, all
selected images were cropped to contain only the entire chest
as much as possible. Then, the images were converted from the
Digital Imaging and Communications in Medicine to Joint
Photographic Experts Group format pictures. Subsequently, we
resized the images to 299 × 299 pixels and normalized the pixel
values to a range of 0 to 1.

There was a higher frequency of OLM negative (OLMN). To
overcome the imbalance problem between the two groups
(positive or negative), we applied three times oversampling for
positive samples and two times oversampling for negative
samples to ensure the ratio of the two groups near 1:1.
Furthermore, image augmentation, including image rotation
and flipping for total of four times, was performed on the
training dataset.

CNN Model Architecture
Respective model (PET or CT): The deep CNN model used was
the Inception V3 architecture in this study (27). Transfer
learning was applied using weights pretrained on the ImageNet
dataset. We arranged three channels (299 × 299 × 3 pixels) in the
input layer. Three 2D slices (axial, coronal, and sagittal) were
used as input to the CNN network rather than 3D volume data
Frontiers in Oncology | www.frontiersin.org 380
because 2D-based analysis enabled us to reduce GPU memory
usage and limit the overfitting. The generated features from the
Inception V3 were flattened into a 1D feature vector after the
average pooling layer. In the end, six fully connected layers and a
sigmoid layer were connected to enable the classification of
OLMN and OLM positive (OLMP). To avoid overfitting,
dropouts were used. The architecture of the CNN is shown
in Figure 2A.

Combined model (PET + CT): For the construction of
complex model, PET and CT were first respectively run to the
last full connect layer, then combined them together, and finally
connected a sigmoid layer (1 nodes) for classification. Schematic
overview of the combined model is shown in Figure 2B.

All the above analyses were implemented in the Keras library
in Python, using TensorFlow as backend (Python 2.7, Keras
2.6.0, TensorFlow 2.6.0). Adam with a learning rate of 0.000012
and a batch size of 32 was used for parameters optimization. The
number of epochs of training was set to 100.

Model Performance
For assessing the performance of prediction models, the receiver
operating characteristic (ROC) curves were displayed in the
training, internal validation, and prospective test sets,
respectively. The performance metrics such as accuracy,
sensitivity, specificity, and the area under the curve (AUC)
were calculated. Fivefold cross-validation was used to verify the
generalization ability.

Statistical Analysis
The statistical analyses were implemented by using IBM SPSS
(version 25.0) and Python (version 2.7). Categorical data were
analyzed with the chi-square test and the Fisher’s exact test.
Numerical data were analyzed with the unpaired t-test, Mann–
Whitney U-test, ANOVA, and Kruskal–Wallis test. For missing
data, mode imputation was used for categorical variables, and
mean imputation was used for continuous variables. P-values
less than 0.05 indicated a statistically significant difference.
FIGURE 1 | The flowchart of the patient selection.
July 2022 | Volume 12 | Article 915871
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RESULTS

Baseline Information
The baseline patient characteristics are shown in Table 1. The
sample sizes of the training, internal validation, and prospective
test sets were 316, 60, and 58, respectively. No statistical
differences, including age (p = 0.663), gender (p =0.820),
smoking history (p = 0.418), tumor location (p = 0.522),
radiologic lesion type (p= 0.244), tumor SUVmax (p = 0.261),
carcinoembryonic antigen (CEA) (p = 0.250), and predominant
subtype (p = 0.088), among the three sets were observed except
for pathologic tumor size (p = 0.011) in Table 1.

Comparison of Clinicopathologic Data
Between OLMN and OLMP Groups
A comparison of clinicopathologic data between OLMN and
OLMP groups in the three sets is presented in Table 2. OLMP
was identified in 91 of all 434 patients (20.9%). The training set of
316 patients included 75 OLMP (23.7%) and 241 OLMN
(76.3%). The internal validation set of 60 patients included 8
OLMP (13.3%) and 52 OLMN (86.7%). The prospective test set
of 58 patients included 8 OLMP (13.8%) and 50 OLMN (86.2%).
Detailed information about the distribution of N stages for
OLMP cases of three datasets is shown in Table 2. In addition,
similar tendencies were observed for pathologic tumor size, CEA,
and tumor SUVmax, respectively, in the three sets, although not
always statistically significant.

Performance of Deep Learning Models
The deep learning models demonstrated good predictive
performance for OLM with the use of the primary lung cancer
images of internal validation set, with AUCs of 0.74 [95%
Frontiers in Oncology | www.frontiersin.org 481
confidence interval (CI): 0.58, 0.90) for the PET model, 0.79 (95%
CI: 0.58, 1.00) for the CT model, and 0.81 (95% CI: 0.61, 1.00) for
the complex model. For prospective test set, the AUCs were 0.73
(95% CI: 0.51, 0.95) for the PETmodel, 0.79 (95% CI: 0.59, 0.98) for
the CT model, and 0.87 (95% CI: 0.75, 0.99) for the complex model
(Figure 3). The discriminatory ability of the complex model
displayed the highest in the validation and test sets.

For internal validation set, the sensitivities of PET, CT, and
combined models were 75.00%, 75.00%, and 87.50%,
respectively; the specificities of PET, CT, and combined models
were 63.46%, 88.46%, and 80.00%, respectively; and the
accuracies of PET, CT, and combined models were 65.00%,
86.67%, and 81.00%, respectively (Table 3).

For prospective test set, the sensitivities of PET, CT, and
combined models were 87.50%, 75.00%, and 75.00%,
respectively; the specificities of PET, CT, and combined models
were 62.00%, 80.00% and 88.46%, respectively; and the
accuracies of PET, CT, and combined models were
65.52%,79.31% and 86.60%, respectively (Table 3).

The training curves of PET and CT are provided in Figure 4.
The validation losses of PET and CT basically reached the
minimum at 40~45 epochs, and then losses of training set and
validation set estranged after 40 epochs. Therefore, we stopped
training at the 40th epoch because no further improvement can be
gained in the validation loss. The slowly decrease of validation losses
suggests that the models have no overfitting before 45 epochs.
DISCUSSION

Recently, the therapeutic effect of limited surgery in patients with
early-stage NSCLC without LNM has been proved to be
A

B

FIGURE 2 | The architecture of the CNN (A). Schematic overview of the combined model (PET + CT) (B). Avg pooling, average pooling; FC layer, fully connected
layer; OLMN, occult lymph node metastasis negative; OLMP, occult lymph node metastasis positive.
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significant, and limited surgery has more available lung tissue
and lower perioperative mortality than standard treatment (28–
30). Hence, there is an increasing need for accurately predicting
OLM of cN0 LUAD before surgery in a non-invasive way.

Deep learning, which takes raw image pixels and
corresponding class labels from image data as inputs and
automatically learns representative information, has recently
attracted much attention due to its excellent performance in
image recognition tasks (17). In this study, we developed three
deep learning models based on FDG PET/CT images for
preoperative prediction of OLM in patients with cN0 LUAD.
Our results presented that the complex model combining 18F-
FDG PET and low-dose CT showed better diagnostic
performances in distinguishing patients with OLMN and
OLMP than either PET or CT alone.

Some studies demonstrated that CNN-based image analysis
has been effectively applied in predicting LN status of lung
cancer. For example, Zhong et al. (31) showed that a deep
learning signature based on CT images could accurately
predict occult N2 disease in patients with clinical stage I
NSCLC. However, it is already known that PET/CT is more
accurate than CT for direct assessment of LN status. Thus,
confirming N0 status by CT is not enough. Tau et al. (32)
demonstrated that using a CNN to analyze segmented primary
tumors with PET in patients with pretreatment NSCLC can yield
moderately high accuracy for designation of N category, but the
use of segmented tumors as input data for the CNN was time-
consuming and might affect the results. Moreover, most recent
Frontiers in Oncology | www.frontiersin.org 582
studies using deep learning (including the two studies discussed
above) only performed single-modality analyses because
integrating multimodal data is vulnerable to overfitting and
poor generalization (22, 33). Wang et al. (34) mixed image
patches of both modalities (PET and CT) into the same
network, and the result showed that the performance of CNN
was not significantly different from the best classical methods
and human doctors for the classification of mediastinal LNM in
patients with NSCLC. Such mixed setting may affect the final
result because two different patches contained different types of
diagnostic information. In this study, we processed the PET and
CT patches with respective subnetworks and combined the
results of the two different subnetworks at the output layers.
For the internal validation set, the AUCs of the CNN in
predicting nodal metastasis were as follows: 18F-FDG PET
alone, 0.74; CT alone, 0.79; and 18F-FDG PET/CT, 0.81. For
the prospective test set, the AUCs were as follows: 18F-FDG PET
alone, 0.73; CT alone, 0.79; and 18F-FDG PET/CT, 0.87. Our
results showed that the combined method, which makes full use
of PET functional information and CT anatomic information,
showed significantly great diagnostic performances in predicting
OLM of LUAD.

A 2D CNN to discriminate between OLMN and OLMP in
cN0 LUAD was successfully trained, validated, and tested in this
study. Previous studies proposed that 3D CNN–based CT image
analysis was used for classification in patients with lung cancer
(23, 35). However, the increased complexity comes at a high
computational cost. Another factor to consider is whether adding
TABLE 1 | Baseline characteristics of datasets.

Characteristics Training Set Internal Validation Set Prospective Test Set P-Value
(n = 316) (n = 60) (n = 58)

Age (years) * 62.29 ± 9.73 63.17 ± 9.44 63.36 ± 11.83 0.663
Sex 0.820
Female 178 (56.3) 33 (55.0) 30 (51.7)
Male 138 (43.7) 27 (45.0) 28 (48.3)
Smoking history 0.418
Ever smoker 78 (24.7) 16 (26.7) 10 (17.2)
Never smoker 238 (75.3) 44 (73.3) 48 (82.8)
Tumor location 0.522
RUL 97 (30.7) 14 (23.4) 19 (32.8)
RML 20 (6.3) 6 (10.0) 8 (13.8)
RLL 70 (22.2) 11 (18.3) 10 (17.2)
LUL 81 (25.6) 18 (30.0) 14 (24.1)
LLL 48 (15.2) 11 (18.3) 7 (12.1)
Radiologic lesion type 0.244
Pure solid 288 (91.1) 53 (88.3) 49 (84.5)
Subsolid 28 (8.9) 7 (11.7) 9 (15.5)
Tumor SUVmax* 5.62 ± 3.59 4.63 ± 2.43 5.70 ± 4.34 0.261
CEA, ng/ml* 7.76 ± 33.89 4.06 ± 2.73 6.75 ± 11.82 0.25
Pathologic tumor size* 23.31 ± 10.36 19.87 ± 8.83 23.64 ± 9.93 0.011
Predominant subtype 0.088
Acinar 232 (73.4) 41 (68.3) 42 (72.4)
Papillary 34 (10.8) 6 (10.0) 9 (15.6)
Lepidic 25 (7.9) 4 (6.7) 0 (0)
Solid 13 (4.1) 4 (6.7) 6 (10.3)
Micropapillary 1 (0.3) 1 (1.6) 0 (0)
Colloid 11 (3.5) 4 (6.7) 1 (1.7)
July 2022 | Volume 12 | Articl
RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; CEA, carcinoembryonic antigen.
*Data are means ± standard deviations.
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these interslice features would improve classification
performance. Lee et al. (36) reported that a 2D CNN slice-
based approach had better performance than 3D-CNN case-
based approach for detecting intrapelvic tumor recurrence and
Frontiers in Oncology | www.frontiersin.org 683
metastases. The study of Vries et al. (21) also showed that the
sagittal 2D CNN already performed with very high accuracy for
discriminating between Aß-negative and -positive PET scans in
patients with subjective cognitive decline. Therefore, we
July 2022 | Volume 12 | Article 915871
TABLE 2 | Comparison of clinical features between OLMN and OLMP groups in the three sets.

Characteristics Training Set Internal Validation Set Prospective Test Set

(OLMN = 241; OLMP = 75) (OLMN = 52; OLMP = 8) (OLMN = 50; OLMP = 8)

OLMN OLMP P OLMN OLMP P OLMN OLMP P

Age (years) * 63.03 ± 9.46 59.91 ± 10.24 0.015 63.29 ± 9.44 62.38 ± 10.01 0.801 63.22 ± 11.70 64.25 ± 13.48 0.822
Sex 0.125 0.939 0.299
Female 130 (53.9) 48 (64.0) 28 (53.8) 5 (62.5) 24 (48.0) 6 (75.0)
Male 111 (46.1) 27 (36.0) 24 (46.2) 3 (37.5) 26 (52.0) 2 (25.0)
Smoking history 0.004 1 0.375
Ever smoker 69 (28.6) 9 (12.0) 14 (26.9) 2 (25.0) 10 (20.0) 0 (0)
Never smoker 172 (71.4) 66 (88.0) 38 (73.1) 6 (75.0) 40 (80.0) 8 (100)
Tumor location 0.650 0.736 0.597
RUL 76 (31.5) 21 (28.0) 13 (25.0) 1 (12.5) 16 (32.0) 3 (37.5)
RML 14 (5.8) 6 (8.0) 6 (11.5) 0 (0) 8 (16.0) 0 (0)
RLL 52 (21.6) 18 (24.0) 10 (19.2) 1 (12.5) 8 (16.0) 2 (25.0)
LUL 65 (27.0) 16 (21.3) 14 (26.9) 4 (50.0) 11 (22.0) 3 (37.5)
LLL 34 (14.1) 14 (18.7) 9 (17.4) 2 (25.0) 7 (14.0) 0 (0)
Radiologic lesion type 0.031 0.608 0.436
Pure solid 215 (89.2) 73 (97.3) 45 (86.5) 8 (100) 41 (82.0) 8 (100)
Subsolid 26 (10.8) 2 (2.7) 7 (13.5) 0 (0) 9 (18.0) 0 (0)
Tumor SUVmax* 4.96 ± 3.24 7.74 ± 3.85 < 0.001 4.45 ± 2.40 5.82 ± 2.42 0.064 5.22 ± 4.36 8.64 ± 2.95 0.002
CEA, ng/mL* 5.62 ± 9.15 15.24 ± 67.42 0.029 3.11 ± 2.19 4.5 ± 2.46 0.046 4.64 ± 2.88 19.18 ± 29.52 0.311
Pathologic tumor size* 22.18 ± 9.62 26.93 ± 11.78 < 0.001 19.23 ± 8.82 24.00 ± 8.25 0.056 21.24 ± 7.19 38.63 ± 11.94 < 0.001
Predominant subtype 0.318 0.399 0.629
Acinar 171 (71.0) 61 (81.3) 36 (69.2) 5 (62.5) 37 (74.0) 5 (62.5)
Papillary 26 (10.8) 8 (10.7) 5 (9.6) 1 (12.5) 7 (14.0) 2 (25.0)
Lepidic 23 (9.5) 2 (2.6) 4 (7.7) 0 (0) 0 (0) 0 (0)
Solid 10 (4.1) 3 (4.0) 2 (3.9) 2 (25.0) 5 (10.0) 1 (12.5)
Micropapillary 1 (0.4) 0 (0) 1 (1.9) 0 (0) 0 (0) 0 (0)
Colloid 10 (4.2) 1 (1.4) 4 (7.7) 0 (0) 1 (2.0) 0 (0)
pN (8th ed.)
N1a (single N1) 31 (41.3) 3 (37.5) 3 (37.5)
N1b (multiple N1) 6 (8.0) 0 (0) 0 (0)
N2a (single N2) 17 (22.7) 2 (25.0) 0 (0)
N2b (multiple N2) 21 (28.0) 3 (37.5) 5 (62.5)
OLMN, occult lymph node metastasis negative; OLMP, occult lymph node metastasis positive; RUL, right upper lobe; RML,
right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; CEA, carcinoembryonic antigen.
*Data are means ± standard deviations.
A B

FIGURE 3 | Receiver operating characteristic (ROC) curves of three deep learning models in the (A) internal validation set and the (B) prospective test set.
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hypothesized that patients without a very large number of cases
may be more applicable to 2D CNN architectures.

For clinical features, statistical analysis showed a significant
difference in pathologic tumor size, CEA, and tumor SUVmax in
the training set, which is consistent with our previous findings
(16, 37). However, these clinical features were not all statistically
significant in our validation and test sets, which may imply that
the clinical utility of these features is limited.

There are several limitations to our current study. First, this
was a single-center study with a relatively small sample size.
Further improvement with multicenter and large-sample studies
must be achieved before clinical use. Second, patients with
multiple lesions were excluded because it is difficult to
determine which lesion would cause OLM and should be input
in the model. Therefore, predicting OLM of multifocal lung
cancer needs to be further verified. Third, although statistical
analysis of clinical data was performed, we did not integrate these
Frontiers in Oncology | www.frontiersin.org 784
clinical features into the deep learning model. Therefore, clinical
parameters as another modality combined DL model should be
studied in the future. Fourth, we did not use PET/CT fusion
images because PET scan is difficult to rigidly match with CT
scan in spatial location due to cardiac and respiratory motion
artifacts. Last, limitation also obviously includes the opaque
black box nature of the deep learning technology.
CONCLUSIONS

We constructed a deep learning model that can successfully
incorporate PET and CT images into a 2D CNN architecture to
accurately predict OLM in patients with cN0 LUAD. Moreover,
the deep learning model demonstrated a good predictive
performance. This model may help to determine the patients
who are eligible for limited resection.
DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following
licenses/restrictions: The medical images are not publicly
available due to the ethical considerations. The analysis code
used in this study can be obtained by the corresponding author
upon reasonable request. Requests to access these datasets should
be directed to M-LO, 1427738937@qq.com.
ETHICS STATEMENT

Informed consent from the retrospective patients was waived,
and written informed consent was provided for patients in
prospective test set.
AUTHOR CONTRIBUTIONS

R-XZ, Y-RW, L-DG, Y-QT, and M-LO collected the clinical
information and the imaging data. R-XZ, Z-YZ, Y-GW, and
M-LO were responsible for writing code and data analysis.
FUNDING

This study was supported by Zhejiang Public Welfare
Techno logy Appl i ca t ion Research Pro je c t , Ch ina
(LGF21H010009) and Wenzhou Science and Technology
Program (no. Y20210222).
TABLE 3 | Performance of the three deep learning models.

PET CT Combined

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Internal Validation
Set

75.00% 63.46% 65.00% 75.00% 88.46% 86.67% 87.50% 80.00% 81.00%

Prospective Test
Set

87.50% 62.00% 65.52% 75.00% 80.00% 79.31% 75.00% 88.46% 86.60%
July 2022
 | Volume 12 |
FIGURE 4 | Training curves of PET and CT models. We stopped training at
the 40th epoch because no further improvement can be gained in the
validation loss.
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Background: Lung cancer is the leading cause of cancer-related mortality, and accurate
prediction of patient survival can aid treatment planning and potentially improve
outcomes. In this study, we proposed an automated system capable of lung
segmentation and survival prediction using graph convolution neural network (GCN)
with CT data in non-small cell lung cancer (NSCLC) patients.

Methods: In this retrospective study, we segmented 10 parts of the lung CT images and
built individual lung graphs as inputs to train a GCN model to predict 5-year overall
survival. A Cox proportional-hazard model, a set of machine learning (ML) models, a
convolutional neural network based on tumor (Tumor-CNN), and the current TNM staging
system were used as comparison.

Findings: A total of 1,705 patients (main cohort) and 125 patients (external validation cohort)
with lung cancer (stages I and II) were included. The GCNmodel was significantly predictive of
5-year overall survival with an AUC of 0.732 (p < 0.0001). The model stratified patients into
low- and high-risk groups, which were associated with overall survival (HR = 5.41; 95% CI:,
2.32–10.14; p < 0.0001). On external validation dataset, our GCN model achieved the AUC
score of 0.678 (95% CI: 0.564–0.792; p < 0.0001).

Interpretation: The proposed GCN model outperformed all ML, Tumor-CNN, and TNM
staging models. This study demonstrated the value of utilizing medical imaging graph
structure data, resulting in a robust and effective model for the prediction of survival in
early-stage lung cancer.

Keywords: lung cancer, graph convolutional networks, cox proportional-hazards, survival prediction, lung
graph model
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INTRODUCTION

Lung cancer is the leading cause of cancer-related mortality
around the world, accounting for more than 1.80 million deaths
in 2020 (1). It is commonly accepted that early detection and
treatment improve patients’ outcomes (2). Although medical
imaging technologies such as computed tomography (CT) scan
have made significant advances in recent years, accurate
diagnosis, particularly of early lung cancer on CT images, and
corresponding individual survival prediction remains a
challenge. In recent years, using machine learning and deep
learning approaches have recently become a promising tool for
helping radiologists and physicians improve detection and
prognostication (3, 4).

For example, Jin et al. (5) used the convolution neural network
(CNN) as a classifier in their computer-aided diagnosis method to
detect lung pulmonary nodules on CT images, achieving an
accuracy of 84.6% and sensitivity of 82.5% on the Lung Image
Database Consortium image collection (LIDC-IDRI). Sangamithraa
et al. (6) applied a K-mean learning algorithm for clustering-based
segmentation and a back propagation network for classification to
achieve an accuracy of 90.7% on their own dataset. Besides, She et al.
(7) applied deep learning models with radiomic features as input
and achieved a C-index of 0.7 for survival prediction after surgery.
While the approaches described above achieved a good level of
prediction performance for nodule detection and prognosis, their
models have the following limitations. First, the majority of studies
used small patient numbers, which resulted in the respective models
only performing well on specific datasets, thus limiting
generalizability. Second, most of the previous research used strict
criteria for their input images; for example, some pre-trained
models performed well only on contrast-enhanced CT, although
there was a considerable amount of non-contrast CT being used in
practice. Additionally, a substantial number of current machine
learning models with radiomic features required expert radiologists
to manually segment tumors (8–11), which is time consuming, and
the relevant findings heavily relied on radiologists’ experience.
Moreover, the majority of the models was constructed using
pixels that focused exclusively on the tumor, without reference to
surrounding structures or patient-specific clinical data, despite the
fact that they may also contain disease-related information. In
clinical practice, clinicians use that additional information to
make treatment decisions and risk stratify patients for more
accurate treatment and prognosis (12). In essence, these
additional features are analogous to “domain knowledge,” which
has been underutilized in prior research.

Graph convolutional neural network (GCN) (13) is an
emerging technique used to tackle data with graph structures,
owing to its effectiveness to model relationships across different
factors. In graph, nodes are regarded as different entities, while
edges present the relationship between each pair of nodes. This
approach is unique in that it is able to elegantly incorporate
connections from various features. In recent years, graph
presentation has been widely used, for instance, social network
analysis, language translation, and point cloud, also in the
medical field such as vascular segmentation (14) and airway
segmentation (15) due to the fact that some organs and systems
Frontiers in Oncology | www.frontiersin.org 288
within the human body are inherently based on graph or
network structures (e.g., vascular structures such as retinal
vessels) (16, 17). Lungs also inherently have graph structures
(18) if we regard every lung lobe as nodes connected by the
airway which can be regarded as edges. In theory, the
relationship between different parts of the lungs can be
modeled and GCN can be applied on lung CT images to tackle
clinical problems.

In this study, we developed a graph representation to
summarize information of stage I and II lung cancer patients
and to forecast their 5-year overall survival rates using CT and
clinical data. This study demonstrated the utility of applying
medical domain knowledge to create graph structure data and
making predictions with state-of-the-art graph convolutional
neural network models, which provided a robust and effective
model for early stage lung cancer survival prediction.
MATERIALS AND METHODS

Data Description
The Institutional Review Board of Shanghai Pulmonary Hospital
has approved this retrospective study protocol and waived the
requirement for informed consent for all included patients. The
main cohort of the study included consecutive patients who
underwent surgery for early stage non-small cell lung cancer
(NSCLC) from January 2011 to December 2013. The inclusion
criteria were as follows: (I) pathologically confirmed stage (I) and
(II) NSCLC, (II) availability of preoperative thin-section CT image
data, and (III) complete follow-up of survival data. Patients
receiving neoadjuvant therapy were excluded. An external
validation set of 125 patients who met our criteria were also
retrieved from the NSCLC Radiogenomics (19) dataset (please
refer to original reference for related data information). We only
used the one single CT image when patient was diagnosed as
NSCLC. Both contract and non-contrast CT were included.

Scanning Parameters
The CT scans were performed using Somatom Definition AS+
(Siemens Medical Systems, Germany) and iCT256 (Philips
Medical Systems, Netherlands). Detailed scanning parameters
can be found in Supplementary Material I. Intravenous contrast
was given according to institutional clinical practice. Relevant
clinical data were manually extracted from medical records. The
follow-up data were acquired from outpatient records and
telephone interviews. Overall survival (OS) was defined as the
time interval between the date of surgery and the date of
mortality or the last follow-up. Recurrence-free survival (RFS)
was measured from the time of surgery to the date of recurrence
or death or last follow-up (more details can be found at
Supplementary Material II).

Lung CT images Segmentation
Lung CT segmentation is a necessary first step in analyzing the
pulmonary structures, and it has been regarded as a necessary
prerequisite for accurate CT image analysis tasks (20). Before
segmentation, every CT data were preprocessed with slice
July 2022 | Volume 12 | Article 868186
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thickness of 1 mm and matrix of 512×512 mm, following
normalization. Several image segmentation approaches were
adopted in this project to ensure accurate preparation for the
graph modeling and analysis. The 3D airways were segmented
using an adaptation of the region-growing method (21), where we
randomly picked a seed point from non-background region in the
CT image, and neighbor pixels were examined until the borders.
The generated airway segments was then skeletonized with a
skeleton algorithm (22) to obtain the main structure of the
airways. We then applied a searching algorithm to find the four
most important points, namely, the root point, the center point, the
left point, and the right point (see SupplementaryMaterial III), and
segmented a bounding box of 64×64×64 from the original CT to
represent themainpropertiesof the correspondingareaof the tissue
around the airway. Furthermore, for each patient, a public pre-
trained UNet (23) model called lung mask (24) was adapted to
segment the five lung lobes. In the last step, tumor image was
cropped with the bounding box from CT by using the
corresponding annotation information provided by radiologists.
For each patient, this resulted in images for 10 separate lung
structures, namely, five lung lobes, four airway landmarks, and
one tumor segment (Figure 1).

Graph Building and Graph Convolutional
Neural Network Architecture
The very first step in this study is to buildmeaningful structure of the
lung graphs, particularly defining the vertices and their connections.
Touse thenatural structureof the lung,weconsidered the fourairway
landmarks andfive lung lobe segments asnodes in eachgraph, andall
nodes were connected in their natural ways. To emphasize the
Frontiers in Oncology | www.frontiersin.org 389
significance of the tumor, we added a tumor node to each patient’s
lung graph, and the tumor node was connected to their
corresponding lobes in which the tumor was located. For example,
if the tumor was detected on the left upper lobe, the tumor node will
be connected to the left upper lobe node. EachCTweremodeled as a
10-node graph for further analysis.

For each patient node, a feature vector should be defined to
represent the corresponding properties. In this study, we used
the pre-trained MedicalNet (25) to get the relevant image
features, followed by an average pooling layer to reduce the
dimension space to one dimension (1D). The MedicalNet is a
collection of ResNet (26) models that have been pre-trained on a
variety of large medical datasets and have demonstrated
exceptional performance on medical deep learning tasks such
as organ segmentation and nodule detection. To keep the feature
vectors simpler and more representative, a linear ridge transform
method was used to lower the dimension of each node’s feature
vector from 1,024 to 96 as the final feature vectors on patients’
lung graphs (Figure 2).

The goal of GCN is to learn the graph or node embedding using
the node’s neighborhood information with a neural network.
Recently, an inductive framework called GraphSage (27), which
allows updating node features by sampling and aggregating
information from the neighboring nodes, achieved promising
performance among various graph neural network topologies on
networks. Thisnetworkwasdeemedhighly suitable forour study, as
our lung CT graph was designed to emphasize the interaction
within different parts of a patient’s lung structure. Therefore, we
designed a survival prediction graph neural network predictor
composed of SageConv blocks, a mean-readout layer, and a fully
A B D EC

FIGURE 1 | Examples of airway and lung lobes segmentation. (A) Patient raw CT scan; (B) Airway segments produced by region-growing algorithm; (C) lung lobes
segments, 3D; (D) Lung lobes segments, x-axial 2D; (E) Lung lobes segments, z-axial 2D.
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connected layer. This model will output a survival label for each
patient graph. In detail, the SageConv block consists of aGraphSage
Convolution layer with a long short-term memory (LSTM)
aggregator, a ReLu activation layer, a dropout layer, and a layer
normalization function, which are all efficiently extracting the
diagnosis knowledge from the patient graph. The entire model
was trained on two GPU nodes in parallel, with a total training
epoch of 100. We set a reduced learning rate method to find the
optimal training with an initialization value of 0.01 and a minimal
value of 0.00001 in order to train the model effectively. In addition,
to avoid overfitting when training the model, a weight decay
function with value of 0.00005 was added. In order to get the
best-performed graph structure, we tested the number of layers of
SageConv blocks from 1 to 4, and only the best-performed model
was reported.

Experiment Design and Statistical Analysis
To demonstrate the performance of the GCN model on lung
cancer survival prediction, a set of experiments were
implemented on our dataset. The whole patient cohort was
randomly split as training, validation, and testing sets with a
ratio of 75% (1278), 12.5% (213), and 12.5% (214) stratified for
survival, keeping the survival rate almost equal when splitting the
dataset, and there was no significant difference in age and sex
among each subset (Table 1). We evaluated the performance of
the lung graph model by using the area under the receiver
operating characteristics (AUC) score, sensitivity, specificity,
and precision scores. In order to put emphasis on the model
and not to miss the true positive cases, we also added F2 score
(28) as one of the metrics. All relevant results can be found in
Supplementary Table S1. Wilcoxon rank sums tests were
performed to compare performance with baseline model.

In order to see the performance of this graph presentation
method with both current clinical assessment and novel deep
learning methods, we selected the standard clinical model (TNM
staging), commonly used clinical Cox proportional-hazard
model, traditional machine learning methods, along with a
state-of-the-art deep learning model to make comparison:
Frontiers in Oncology | www.frontiersin.org 490
1) TNM staging model: using T, N, and M information to
make prediction (baseline model I);

2) a Cox proportional-hazard model: using the clinical
features (patient sex, age, tumors size, tumors staging, and
histology information) as input (baseline model II);

3) a set of machine learning (ML) models: using 103 tumors
radiomic features as input (baseline model III), with only the best
performer used as the baseline model to be compared;

(4) Tumor-CNN: using individual’s tumor segments as input
for a ResNet-50 deep neural network.

All models were trained and tested on the same dataset to
predict an individual patient’s 5-year overall survival, and the
best results were reported in comparison to GCN model. We
further implemented the survival analysis with Kaplan–Meier
estimates for low- and high-risk patients based on the scores
predicted by the best three performing models on the testing set,
along with a log-rank test. Hazard ratio of our GCN biomarker
was calculated by a Cox proportional-hazard model. Finally, a
subanalysis was implemented to evaluate the GCN model’s
performance for predicting overall survival and relapse-free
survival on stage I and II patients dataset separately.

All experiments were performed using Python 3.7. The statistics
analysis was implemented with the package of Pandas (version
1.3.0) and statistics (version 3.4). Radiomic features were calculated
with the PyRadimics package (version 3.0.1). Themachine learning
models were implemented with the library of Scikit-Learn (version
0.24). Both the Cox regression and the Kaplan–Meier curve were
calculated by using the Lifelines package (version 0.26.03). The
whole GCN structure was implemented using Deep Graph Library
(version 0.6.1) and PyTorch (version 1.8.0).
RESULTS

Patient Information Statistics
A total of 1,705 NSCLC patients were included in the main
cohort. There were 1,010 men (59.2%) and 695 women (40.8%)
with a median age of 61 years (range: 55–66 years). The median
FIGURE 2 | The pipeline of building patients’ lung graph building.
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follow-up time is 70.9 months. Of these, 145 patients (8.5%)
received sub-total lobectomy, 1,472 patients (86.3%) underwent
lobectomy, 66 patients (3.9%) received bi-lobectomy, 21 patients
(1.2%) underwent pneumonectomy, and one patient received
sub-total lobectomy of one lobe plus total lobectomy of another
lobe. Tumors were most commonly located in the upper lobe
[419 left upper lobe (LUL), 24.6%, and 565 right upper lobe
(RUL), 33.1%]. A total of 1,235 tumors (72.4%) were diagnosed
as adenocarcinoma, and 391 tumors (22.9%) were squamous cell
carcinoma. The distribution of pathological stages was as follows:
stage IA in 791 patients (46.4%), stage IB in 607 patients (35.6%),
stage IIA in 133 patients (7.8%), and stage IIB in 174 patients
(10.2%). In the whole main cohort, the 3-year OS and RFS were
98.4% and 81.1%, respectively, and the 5-year OS and RFS were
78.2% and 74.2%, respectively.

There were 33 (26.4%) female and 92 (73.6%) male patients in
the external validation dataset, with a median age of 69 (range,
43–87 years). Tumors in the upper lobe were also the most
common [41 at right upper lobe (RUL), 32.8%, and 32 at left
upper lobe (LUL), 25.6%]. There were 97 patients with
adenocarcinoma and 26 with squamous cell carcinoma among
them. The pathological stages were distributed as follows: stage
IA in 40 patients (32.0%), stage IB in 23 patients (18.4%), stage
IIA in 45 patients (36.0%), and stage IIB in 17 patients (13.6%).
The RFS was 74.4%, while the 5-year OS was 63.2%. Table 1
provides the rest of the patient’s detailed information.

Model Evaluation
As shown in Table 2, the Cox modeling and ML radiomic feature
baseline models showed poor performance on the testing set. The
best performing ML radiomic model was from the decision tree
Frontiers in Oncology | www.frontiersin.org 591
(DT) model, while other ML models such as SVM, linear
classification, K-means, LASSO, and KNN methods had worse
performance than the DT predictor. The Tumor-CNN model
had a significantly improved performance (AUC=0.614; 95% CI:
0.519–0.710; p < 0.05) compared with the two baseline models,
although the TNM method performed better (AUC=0.633; 95%
CI: 0.539–0.728; p < 0.005). The GCN model achieved the
highest AUC score of 0.732 (95% CI: 0.643–0.821; p < 0.0001)
among all models in survival prediction for early-stage lung
cancer. On external validation dataset, our GCN model achieved
the AUC score of 0.678 (95% CI: 0.564–0.792; p < 0.0001).

For survival analysis, both GCN the cancer staging system
and Tumor-CNN shared a similar trend and, based on Kaplan–
Meir analysis, were able to demonstrate significant separation of
high- and low-risk groups (Figure 3), while the p-value of the log
rank sums test suggested that GCN has a stronger separation
ability compared with the others. Comparable results were found
in the prediction of 5-year survival outcomes with the hazard
ratios, respectively, for GCN (HR = 5.41; 95% CI: 2.32–10.14;
p=0.000014), and TNM (HR = 3.85; 95% CI: 1.91–
7.02; p=0.00015).

For the stage I dataset (n=179) analysis, as per Figure 4, our
GCN model achieved a clear separation of low- and high-risk
groups in 5-year overall survival prediction (p < 0.0001) and
relapse-free survival prediction (p < 0.0001), with AUC of 0.728
(CI: 0.618–0.839) and 0.660 (CI: 0.555–0.757) separately.
Referencing stage II (n=55), the model showed slightly weaker
performance of separation for 5-year overall survival (AUC =
0.647, CI: 0.461–0.834, p = 0.132) comparing with stage I dataset,
while better performance for relapse-free survival prediction
(AUC = 0.702, CI: 0.532–0.877, p < 0.01) was achieved.
TABLE 1 | Feature distribution in the total patient cohorts, training and validation cohorts, and the test cohorts.

Patients Characteristics
(n = 1,705)

TRAIN and VAL
(n = 1,492)

Test (n = 213) EXTERNAL (n= 125)

Feature Content Mean, SD, 95% CI/Count and percentage (%)

Age Age 60.6, 8.8,
(CI: 60.2- 61.0)

60.6, 8.7,
(CI: 60.1- 61.0)

60.7, 9.5,
(CI: 59.4- 62.0)

69.0, 8.90,
(CI: 67.4- 70.5)

Sex Female No. (%);
Male No. (%)

695 (33.3);
1010 (66.7)

602 (33.3);
890 (66.7)

93 (33.3);
120 (66.7)

33 (26.4);
92 (73.6)

Resection Sublobar Resection No. (%);
Lobectomy No. (%);
Bilobectomy No. (%);
Pneumonectomy No. (%)

146 (8.6);
1472 (86.3);
66 (3.9);
21 (1.2)

123 (8.2);
1,292 (86.6);
59 (3.95);
18 (1.2)

23 (10.8);
180 (84.5);
7 (3.3);
3 (1.4)

/

Histology Adenocarcinoma No. (%);
Squamous Cell Carcinoma No. (%);
Others No. (%)

1,235 (72.4);
391 (22.9);
79 (4.6)

1,072 (71.4);
351 (23.5);
69 (4.6)

163 (76.5);
40 (18.8);
10 (4.7)

97 (77.6);
26 (20.8);
2 (1.6)

Tumor Size Tumor Size 2.66, 1.37,
(CI: 2.60- 2.73)

2.68, 1.38,
(CI: 2.61- 2.75)

2.55, 1.25,
(CI: 2.38-2.71)

/

pTNM stage Stage I No. (%);
Stage II No. (%)

1,398 (82.0);
306 (18.0)

1,219 (81.7);
273 (18.3)

179 (84.0);
34 (16.0)

63 (50.4);
62 (49.6)

RFS Status RFS No. (survival %) 1,243 (72.9) 1,089 (73.0) 154 (72.3) 93 (74.4)
RFS Month RFS Month 57.6, 24,4,

(CI: 56.4- 58.7)
57.5, 24.5,

(CI: 56.2- 58.7)
58.4, 23.4,

(CI: 55.2- 61.5)
/

OS Status OS No. (survival %) 1,333 (78.2) 1,166 (78.2) 167 (78.4) 79 (63.2)
OS Month OS Month 62.5, 19.8,

(CI: 61.6- 63.5)
62.4, 19.9,

(CI: 61.4- 63.4)
63.4, 18.4,

(CI: 60.9- 65.9)
/
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DISCUSSION

Prediction of survival of early-stage lung cancer patients remains a
challenging task. In this paper, we proposed a graph-basedmethod
to represent a patient’s lungCT images andapplied the state-of-the-
art graph convolutional neural network to improve 5-year survival
predictions for individual patients. In previous studies, especially
for some small size cohorts, the radiomic feature methods (our
baseline models) were commonly used. The results in this study
showed that when applied to a large patient cohort in which CTs
were collected from multiple data sources, this radiomic feature
method demonstrated poor performance, which may be due to the
heterogeneity in image acquisition, reconstruction methods, or
effects of post-processing.

Deep learning approaches have demonstrated impressive
performance in recent years in medical fields such as
automatic segmentation and diagnostic task such as lung
nodule detection. Due to the fact that deep learning models are
generally robust and can be applied to a wide variety of scenarios
once properly trained with enough data, it has been previously
applied to the task of survival prediction. In this project, we
applied a ResNet-50 deep neural network, which took tumor
Frontiers in Oncology | www.frontiersin.org 692
segments (Tumor-CNN model) as input resulting in an AUC
score of 0.6144. When analyzing the Tumor-CNN model’s
performance from the medical perspective, we demonstrated
that tumors contained the majority of prognostic information,
yet adjacent non-tumor regions and their interactions with each
other may have an effect on an individual patient’s survival. This
hypothesis was based on our intuition that tumors spread from
the primary sites via lymphatic drainage, hematogenous (via the
vascular supply) or directly to the surrounding lungs (29). We
therefore reasoned that such regional information can potentially
be mapped via a graph representation method to represent the
entire lung as input with an emphasis on the tumors as an
additional node on an individual patient’s basis. Moreover, the
best performance achieved by our GCN model demonstrated
that using a relational data representation method can help
improve the performance when compared to traditional deep
learning models. To this end, our model demonstrated best
accuracy in identifying high-risk patients, particularly on stage
I patient group, demonstrating that features generated by GCN
can find the survival-relevant information from early-stage
patients’ CT image. The RFS Kaplan–Meier analysis revealed
that the GCN approach also contained information that related
FIGURE 3 | Performance of GCN, TNM and Tumor-CNN models on testing dataset.
TABLE 2 | Performance for each model based on AUC scores and the Wilcoxon rank-sum tests.

ML models AUC scores (95% CI) p-values

CPH Model 0.549
(0.454–0.645)

.45

DT-radiomics 0.572
(0.476–0.668)

.33

Tumor-CNN 0.614
(0.519–0.710)

.02

TNM 0.633
(0.539–0.728)

.002

GCN 0.732
(0.643–0.821)

< 0.0001
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to disease relapse, and combining that information from both of
the above two aspects to analyze individual’s survival result likely
contributes to improve performance.

On reviewing the whole process of our graph survival
predictor formulation, all the steps were fully automated and
could be easily applied to prospective patients in the future.
Unlike radiomic approach, there was no need to specifically
segment the tumors with our proposed method. By including
regional information in graph structures likely contributes to
improved prediction performance.

The results from our study have the following strengths. First,
our dataset is large and has incorporated images from one large
volume center with a standardized acquisition method, including
contrast and non-contrast CT scans. Our model was found to be
more generalizable as a result of training based on this large
dataset with reasonable performance on external validation set.
Second, our model’s whole procedure was fully automated. For
example, segmenting the lung and airway took only a few
seconds to obtain accurate results, which would allow ease of
clinical translation. Finally, we conducted a series of experiments
comparing our graph model to traditional model, widely used
radiomic approaches and the most cutting-edge deep learning
models, which supported our conclusion that the GCN models
can outperform other conventional methods. We acknowledge,
however, that due to differences in input features between these
Frontiers in Oncology | www.frontiersin.org 793
different models, comparison of performance may not be a
fair one.

There are a few limitations in our study. First, while we
achieved the best performance with the graph neural network, we
did not investigate the model’s ability to discover new features,
but it was apparent from our results that graph models have
greater potential for future development due to their input of
relational graph structures. Second, we used only CT images as
input in this experiment because we have yet to develop a
method for incorporating imaging data with demographic data
such as age and gender information, which may improve the
model’s performance. Some future work is being planned to
improve the performance of our models. More anatomically
relevant information could be incorporated into the graphs. For
example, one could consider edge weight based on the location of
the tumors for individual patients and create some other lung
graph structures to better represent patients’ survival
information. Furthermore, we intend to combine whole-slide
imaging data from lung patients with CT data to better represent
disease information in the future.

In this study, we presented a graph presentation model for
describing CT data from early stage lung cancer patients and
predicting their 5-year overall survival. Numerous experiments
were conducted to compare our GCN model to traditional
clinical model based on TNM staging, commonly used
B

A

FIGURE 4 | (A). Stage I Analysis: Performances of GCN models on OS prediction and RFS prediction separately; (B). Stage II Analysis: Performances of GCN
models on OS prediction and RFS prediction separately.
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radiomic feature approaches, and state-of-the-art deep learning
methods. We demonstrated that our graph methods performed
significantly better compared with other existing models.
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The optimization of drug properties in the process of cancer drug development

is very important to save research and development time and cost. In order to

make the anti-breast cancer drug candidates with good biological activity, this

paper collected 1974 compounds, firstly, the top 20 molecular descriptors that

have the most influence on biological activity were screened by using

XGBoost-based data feature selection; secondly, on this basis, take pIC50

values as feature data and use a variety of machine learning algorithms to

compare, soas to select a most suitable algorithm to predict the IC50 and

pIC50 values. It is preliminarily found that the effects of Random Forest,

XGBoost and Gradient-enhanced algorithms are good and have little

difference, and the Support vector machine is the worst. Then, using the

Semi-automatic parameter adjustment method to adjust the parameters of

Random Forest, XGBoost and Gradient-enhanced algorithms to find the

optimal parameters. It is found that the Random Forest algorithm has high

accuracy and excellent anti over fitting, and the algorithm is stable. Its

prediction accuracy is 0.745. Finally, the accuracy of the results is verified by

training the model with the preliminarily selected data, which provides an

innovative solution for the optimization of the properties of anti- breast cancer

drugs, and can provide better support for the early research and development

of anti-breast cancer drugs.
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1 Introduction

At the present, stroke, ischemic heart disease and other

cardiovascular diseases, as well as malignant tumors

represented by breast cancer have become the main cause of

premature death in our population, seriously threatening

human health. Global incidence rate and mortality associated

with breast cancer have been increasing (1), and breast cancer

has officially replaced lung cancer as the number one cancer

worldwide (2), and its incidence rate among women’s cancers

worldwide is as high as 24.2%, becoming one of the most

common cancers in women (3–5), which seriously affects

women’s health (6). Estrogen receptor is a hormone receptor

and an effective nonstandard RNA binding protein. It is a

biomarker of breast cancer and affects the choice of endocrine

therapy for breast cancer. It has a very important role in the

process of breast development. It is considered as an important

target for the treatment of breast cancer and plays an important

role in the treatment of breast cancer. Therefore, compounds

that can antagonize the activity of ERamay be drug candidates

for the treatment of breast cancer.

Active compounds are compounds that can have an effect on

disease sites in the human body, or compounds with more

pronounced pharmacological effects and clear structures,

which are widely used in research fields such as cancer, stem

cells and immunity. Molecular descriptors refer to the

measurement of the properties of molecules in a certain

aspect, which can be either the physical and chemical

properties of molecules or the numerical indicators derived

from various algorithms according to the molecular structure.

The target is a kind of biological macromolecule which has

pharmacodynamic function and can be acted by drugs. The

biological activity of a compound refers to its ability to bind,

inhibit or activate the target. The higher the biological activity,

the stronger the ability of the compound. Quantitative Structure-

Activity Relationship aims to establish the quantitative

relationship between the physiological activities or some

properties of a series of compounds and their physical and

chemical property parameters or structural parameters through

reasonable mathematical statistical methods.

Currently, in the research and development of cancer drugs,

the process of screening and developing new drugs through

experiments is very slow and requires a lot of manpower and

material resources, how to effectively and quickly select drugs to

treat breast cancer and improve the therapeutic effect has

become an important topic in the research of cancer drugs. In

order to save time and cost, the method of establishing

compound activity prediction models are usually used to

screen potentially active compounds. The specific method is as

follows: for a target related to disease, collect a series of

compounds acting on the target and their biological activity

data, and then take a series of analytical structural descriptors as
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independent variables and the biological activity value of

compound as dependent variables to build a Quantitative

Structure-Activity Relationship (QSAR) model of the

compound. Then using the model to predict new molecules

with better bioactivity, or to guide the structural optimization of

existing active compounds.

This paper presents a four-part study on the optimization of

anti-breast cancer drug properties. (1) In section 1, this paper

analyzes the research that has been completed in related fields,

the application of artificial intelligence algorithm and describes

the research content of this paper. (2) In section 2, the theoretical

basis of the used algorithm is described. (3) In section 3, the data

set, preprocessing of the data as well as the analysis of the results

are presented, including the XGBoost-based data feature

selection results and prediction results of Quantitative

Structure-Activity Relationship (QSAR) model. (4) In section

4, a summary of the work done throughout the text is presented.
2 Related work

B Zhao (7) considered the independence, coupling and

correlation of bioactivity descriptors to screen the most

potentially valuable bioactivity descriptors, and then used an

optimized back propagation neural network pair to make

predictions, and used a gradient boosting algorithm to verify

the pharmacokinetics and safety of the screened bioactivity

descriptors, and the results showed that the bioactivity

descriptors screened by this method not only fit the non-

linear relationship of activity well, but also accurately

predicted their pharmacokinetic characteristics and safety.

The results showed that the screened bioactivity descriptors

could not only fit the nonlinear relationship of activity, but also

accurately predict the pharmacokinetic characteristics and

safety, with an average accuracy of 89.92 ~ 94.80%. S Leya, P

N Kumar (8) established a deep learning based cancer drug

screening model to predict the activity in the GDB13 data set

after confirming the importance of synergy between an

effective mimetic drug or compound and its target, and

achieved good results in identifying anti-cancer drugs with

improved performance metrics. B Xu (9) constructed a QSAR

model based on three traditional neural network models (BP

neural network, Elman neural network and wavelet neural

network) and a neural network model improved by

optimization algorithm (SSA-BP neural network), and the

results showed that the BP neural network can predict the

biological activity of compounds more accurately, and the

optimized model can further improve the predictive

performance of the BP neural network, which can help to

better screen efficient compound molecules and guide the

structural optimization of existing active compounds and the

development of quality breast cancer drugs. X Liu, W Zhang,
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W Zheng, et al. (10) considered that the low content of

traditional drug screening platforms limits the process of

drug evaluation, so it proposed a micropatterned co-culture-

based high content (μCHC) platform to study neuronal cancer

cell interactions and drug screening, and finally obtained a

high efficiency and fidelity of clinical cancer treatment by

screening drug candidates or drug combinations through the

μCHC system. Y Zhu, T Brettin, Y A Evrard, et al. (11)

extended the classical transfer learning framework by

integration and demonstrated its general utility with a

gradient advancement model and two deep neural networks

for three representative prediction algorithms, and finally

tested the integrated transfer learning framework on an in

vitro drug screening benchmark dataset, and the results

showed that the established framework extensively improved

the prediction algorithms in prediction applications prediction

performance. Z Xiong, D Wang, X Liu, et al. (12) used a new

graph neural network structure (Attentive FP), which uses a

graph attention mechanism to achieve learning from relevant

drugs in a data set, and experimental results showed that

At tent ive FP achieved s tate -of - the-ar t predic t ion

performance in various datasets. P Wongyikul, N Thongyot,

P Tantrakoolcharoen, et al (13) developed an had screening

protocol using Gradient Boosting Classifier machine learning

model and screening parameters to identify HAD prescription

error events from drug prescriptions. The experimental results

show that machine learning plays an important role in

screening and reducing HAD prescription errors and has

potential benefits. D FernándezLlaneza, S Ulander, D

Gogishvili, et al. (14) proposed a Siamese recurrent neural

network model (SiameseCHEM) based on bidirectional long-

term and short-term memory structure with self attention

mechanism, which can automatically learn the discriminant

features from the SMILES representation of small molecules.

Then it is trained with random SMILES strings, which proves

that it is robust to binary or classification tasks of biological

activity. M Kumari, N Subbarao (15) proposed a new deep

learning based approach to implement virtual screening with

convolutional neural network architecture as a way to predict

the inhibitory activity of 3CLpro against unknown compounds

during SARS-CoV virtual screening. Experimental results

show that their proposed convolutional neural network

model can prove useful for the development of novel target-

specific anti-SARS-CoV compounds. A Abdo, M Pupin (16)

proposed a turbine prediction model using nearest neighbor

structure to improve prediction accuracy in order to study how

to use learning data to enhance prediction model. The

experimental results show that Turbo prediction can

improve the prediction quality of the traditional prediction

model. For heterogeneous data sets, it can predict with

minimal computational cost without additional efforts of

users. A Gupta, H Zhou (17) accelerated the screening of

drugs by opening a machine-learning driven large-scale virtual
Frontiers in Oncology 03
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screening pipeline in order to handle the growing library of

drug-like compounds and to separate true positives from false

positives. K Carpenter, A Pilozzi, X Huang (18) created a

virtual screener for protein kinase inhibitors and achieved

prediction of IC50 values for target compounds by

transforming and feeding the data as input into two

majority-invariant recurrent neural networks (RNN).

With the progress of science and technology, the

development of artificial intelligence technology is changing

with each passing day. Its application fields are very wide, and

it can be effectively applied to all fields of production and life.

Of course, the application advantages of artificial intelligence

are very obvious. More and more enterprises are committed to

the R&D and application of artificial intelligence. With the

deepening of research, the application rate and popularity of

artificial intelligence technology are also gradually increasing.

For example, artificial intelligence can be applied to online

learning. By applying artificial intelligence technology and

educational psychology theory, personalized online learning

resource recommendation schemes can be designed to improve

students’ learning outcomes (19). Artificial intelligence can

also be applied to multi-objective optimization. For example, in

order to improve the existing technology of proton exchange

membrane fuel cell (PEMFC), multi-objective optimization

based on artificial intelligence can be adopted to facilitate the

design and application of PEMFC (20). To address the issue of

geographic emergency evacuation of vulnerable population

groups, multi-objective planning can be used to improve the

safety of evacuees during the natural disaster preparation phase

and to ensure timely evacuation from areas expected to be

affected by major natural disasters (21). Artificial intelligence

can also be applied to the field of transportation. With highly

interconnected road networks placing higher demands on road

safety and efficiency, intelligent transportation systems have

received widespread attention. Artificial intelligence

technology can provide various support for road routing and

traffic congestion management, and can effectively support

intelligent transportation systems (22). Artificial intelligence

can also be applied to several fields in the medical field, such as

neural disease prediction and modeling, bioinformatics,

surgery, physical rehabilitation, medical robot and hospital

clinical data management (23). The most basic is the grass-

roots medical institutions, which are the first line of defense for

the health of grass-roots residents. Its informatization

construction is an important means to realize the

modernization of medical services. Artificial intelligence

technology can promote the informatization of grass-roots

medical institutions, so as to optimize the process of medical

treatment, improve the service capacity of high-quality medical

resources and reduce costs (24). Artificial intelligence

technology can be applied to the financial field. With the

continuous expansion of the scale, quantity and scope of

international trade and the increase of trade complexity and
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uncertainty, artificial intelligence technology can predict and

select international trade and play an important role in the

healthy development of international trade (25). The Financial

Stability Board (FSB) also released the development of artificial

intelligence and machine learning in the financial service

market and their impact on financial stability. Artificial

intelligence and machine learning can certainly strengthen

financial supervision (26). Artificial intelligence techniques

can also be applied in industry, for example, the surface

roughness induced by grinding operations can affect the

corrosion resistance, wear resistance, and contact stiffness of

ground parts, which can be predicted using artificial

intelligence algorithms, helping to provide real-time feedback

control of grinding parameters for the purpose of reducing

production costs (27). Artificial intelligence techniques can

also protect the network from data transmission, for example,

P Rani, Kavita, S Verma, et al. (28) proposed a new update

routing protocol combining the advantages of artificial bee

colony, artificial neural network and support vector machine

techniques as a way to protect the network from black hole

attacks. Artificial intelligence techniques can also be applied in

the field of scheduling, for example, to solve the scheduling

problem of CDT trucks, M Dulebenets (29) proposed a new

adaptive multiplicative modal algorithm, which can assist in

the correct planning of CDT jobs. Artificial intelligence

techniques can also improve algorithms; for example, to

address the problem of Gaussian noise impeding the

unbiased aggregation capability of GNN models, W Dong, M

Wozniak, J Wu, et al., (30) proposed a method that uses

principal component analysis to retain the aggregated true

signal from adjacent features and simultaneously removes

filtered Gaussian noise to achieve a more advantageous

denoising capability.

The main contributions of this paper are as follows:

XGBoost is used for data feature selection so as to select the

20 molecular descriptors with the most significant impact, and

then the 20 molecular descriptors screened are used as input

variables and the pIC50 value as output variables from the

perspective of the compound molecular descriptors, and four

machine learning algorithms, namely Gradient-enhanced

regression, XGBoost regression, Support vector machine, and

Random Forest regression are used for comparison. The results

of Random Forest regression, XGBoost regression and Gradient-

enhanced regression are preliminarily screened out to be good.

Then the Semi-automatic parameter adjustment method is used

to adjust the parameters of the three algorithms, and

subsequently the most appropriate algorithms is selected to

determine the core algorithm of the prediction model as a way

to predict the IC50 and pIC50 values. The highest accuracy rate

of 74.5% is finally obtained for Random Forest regression, and

the Random Forest algorithm is considered to be the

core algorithm.
Frontiers in Oncology 04
99
3 Theoretical foundation

3.1 XGBoost-based data feature selection

Feature selection refers to the selection of some effective

features from the original features to reduce the dimensionality

of the data set (31). XGBoost is an integrated learning model that

can fit the residuals of the previous tree by generating a new tree

in successive iterations and its accuracy increases with the

number of iterations (32), which can be effectively used for

classification and regression (33).

XGBoost is an improvement of the Gradient boosting

algorithm by using Newton’s method when solving the

extrema of the loss function, Taylor expansion of the loss

function to the second order, and additionally a regularization

term is added to the loss function. The objective function at

training time consists of two parts, the first part is the Gradient

boosting algorithm loss and the second part is the regularization

term. The loss function is defined as:

L ∅ð Þ =o
n

i=1
y
0
i , yi

� �
+o

k

W f kð Þ

Where n is the number of training function samples, l is the

loss for a single sample, which is assumed to be a convex

function, y
0
i is the predicted value of the model for the training

samples, and yi is the true label value of the training samples.

The regularization term defines the complexity of the model:

W fð Þ = g T +
1
2
l ‖w ‖2

Where l and l are manually set parameters, w is a vector

formed by the values of all leaf nodes of the Decision tree, and T

is the number of leaf nodes.
3.2 Random forest

Random Forest is a supervised learning algorithm which

tends to find the best grouping features recursively (34). The

“forest” it builds is an integration of Decision tree, which is

mostly trained using Bagging methods. The Bagging method

uses randomly selected training data with playback and then

constructs a classifier, and finally combines the learned models

to increase the overall effect.

The growth of the tree in the Random Forest algorithm

introduces additional randomness to the model. Unlike Decision

tree where each node is partitioned into the best features that

minimize the error, in a Random Forest we randomly select

features to construct the best partition. Thus, when you are in a

Random Forest, consider only the random subset used to

segment the nodes, or even make the tree more random by

using a random threshold on each feature instead of searching
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for the best threshold as in a normal Decision tree. This process

yields a wide range of diversity and usually leads to better

models, and the Random Forest algorithm proceeds as follows:

The input is the sample set D={ (x1,y1),(x2,y2),⋯,(xm,ym) }

and the number of weak classifier iterations T.

The output is the final strong classifier f(x).

1) For t=1,2,⋯,T: divided into two steps. a) The training set

is randomly sampled for the tth time, and a total of m times are

taken to obtain the sampling set Dt containing m samples. b)

Train the first t Decision tree model Gt(x) with the sample set Dt.

When training the nodes of the Decision tree model, select a part

of the sample features among all the sample features on the

nodes, and choose an optimal feature among these randomly

selected part of the sample features to do the left and right

subtree partitioning of the Decision tree.

2) In case of classification algorithm prediction, the category

or one of the categories with the most votes cast by T weak

learners is the final category. In case of regression algorithms, the

value obtained by arithmetic averaging of the regression results

obtained by T weak learners is the final model output.
3.3 Gradient-enhanced regression tree

Grad i en t - enhanced reg re s s ion t r ee (GBR) i s a

nonparametric machine learning method based on

propulsion strategies and Decision trees (35), whose basic

idea is to use regression trees as weak learners and replace a

single strong learner with a superposition of multiple weak

learners. We train multiple layers of weak classifiers for the

same training set, and each layer uses the training set to train a

weak classification model, from which we obtain the prediction

results. We then determine the weights that should be

reassigned to each sample based on whether the samples in

the training set are correctly classified and the accuracy of the

overall classification, and train a classifier for the next layer

with the new data set after the modified weights. This training

is continued until there are few misclassified samples, and

finally the classifiers of each layer with weight assignments are

fused together so that the final decision classifier is

composed down.
3.4 Support vector machine

Support vector machine (SVM) is a supervised machine

learning that can deal with classification and regression

problems (36), the basic idea is to find the optimal

classification hyperplane that completely separates the two

classes of samples in the original space in the linearly

divisible case and to use kernel methods in the nonlinear

case to solve problems that are nonlinear in low-dimensional

space as linearly integrable problems in high-dimensional
Frontiers in Oncology 05
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space (37). Delineating the hyperplane can be defined as a

linear equation:

wTx + b = 0

Where w={ w1,⋯,wd } is a normal vector that determines the

direction of the hyperplane, d is the number of eigenvalues, x is

the sample to be trained, and b is the displacement term that

determines the distance between the hyperplane and the origin.

Suppose P(x1,⋯,xn) is a point in the training sample, where

xi denotes the ith feature variable of that sample. Then the

formula for the distance from the point to the hyperplane is:

d =
w1 ∗ x1 + w2 ∗ x2 +⋯+wn ∗ xn + bj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
1 + w2

2 +⋯+w2
n

p =
WT ∗X + b
�� ��

‖W ‖

Where ‖W‖ is the parametrization of the hyperplane and

the constant b is the intercept in the linear equation.

In the case that the hyperplane is determined, the full

support vector can be found and then the hyperplane interval

can be calculated. The next step is to determine w and b so that

the interval is maximum. This is an optimization problem whose

objective function can be written as:

arg max min y wT + b
� �� �

∗
1

‖W ‖

� 	

Where y denotes the label of the training sample point and

its value is -1 or 1, and y(wT+b) denotes the distance. If the

training sample points are in the positive direction of the

hyperplane, then y(wT+b) is a positive number, and the

opposite is a negative number. This is an optimization

problem with constraints and can usually be solved by the

Lagrange multiplier method.

L w, b, að Þ = 1
2
� ‖w ‖ −o

n

i=1
ai yi w ∗ x + bð Þ − 1ð Þ

This optimization algorithm gives us a*, and then we can

solve for w and b according to a*. The purpose of the

classification is to find the hyperplane, i.e., the “decision plane”.
3.5 Semi-automatic parameter
adjustment

Semi-automatic parameter adjustment is a parameter

adjustment method combining manual parameter adjustment

and grid search. For different algorithms, it has different

sequence of parameter adjustment steps. Taking XGBoost

parameter adjustment as an example, the process is as follows:

1) First grid search n_ estimators parameter, other

parameters take fixed values;

2) Take the optimization result in (1) and add it to the

parameter setting, and grid search min_child_ weight and max_

depth two parameters;
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3) Take the optimization result in (1)(2) and add it to the

parameter setting, and grid search gamma parameter;

4) Take the optimization result in (1)~(3) and add it to the

parameter sett ing, and grid search subsample and

colsample_bytree two parameters;

5) Take the optimization result in (1)~(4) and add it to the

parameter setting, and grid search reg_alpha and reg_lambda

two parameters;

6) Take the optimization result in (1)~(5) and add it to the

parameter setting, and grid search learning_rate parameter.
4. Experiment

4.1 Data import

The data set collected in this paper contains biological

activity values IC50 and pIC50 of compounds ERa ,
information on 729 molecular descriptors, interpretation of

molecular descriptor meanings.
4.2 Data pre-processing

In this data set, IC50 is the biological activity value of the

compound against ERa, which is an experimental measurement,

where a smaller value represents greater biological activity and

more effective in inhibiting ERa activity. The pIC50 is obtained

by converting the IC50 value (i.e., the negative logarithm of the

IC50 value), which usually has a positive correlation with

biological activity, i.e., a higher pIC50 value indicates higher

biological activity. In practical QSAR modeling, pIC50 is
Frontiers in Oncology 06
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generally used to represent the bioactivity value. Variable

selection is first performed for 729 molecular descriptors of

1974 compounds, and the top 20 molecular descriptors (i.e.,

variables) with the most significant effect on biological activity

are selected by using a XGBoost-based data feature selection

method to rank the variables according to their importance on

biological activity.
4.3 XGBoost-based data
feature selection

The data of 729 molecular descriptors of 1974 compounds

are initially analyzed. We find that the data are of a certain scale

and the influence factors obtained by adopting simple

correlation analysis are not representative, so we adopt a more

rigorous XGBoost-based data feature selection to calculate all

729 feature weights, as shown in Figure 1.

As seen in Figure 1, the feature weights of the 729 molecular

descriptors varies greatly overall, with the maximum weight

exceeding 0.12 and the minimum weight close to 0. It is thus

clear that the degree of influence of different molecular

descriptors on biological activity varies greatly. Therefore, all

the calculated molecular descriptor feature weights are output in

descending order, and the top 20 molecular descriptors are

intercepted as the most significant variables affecting biological

activity, as shown in Figure 2.

The top 20 feature weights of 729 molecular descriptors of

1974 compounds are summarized according to Figure 2, which

are ranked and summarized to finally obtain the top 20

molecular descriptors affecting biological activity, as shown

in Table 1.
FIGURE 1

Molecular descriptor feature weights.
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4.4 Quantitative structure-activity
relationship model

Based on the 20 molecular descriptors screened previously,

we build the model according to the known data types by the

four algorithms that have been selected. A total of 1974 sets of

data exist in the data set, so we randomly select 50 compounds as

the test set for IC50 values and corresponding pIC50 values

prediction, and the remaining 1924 sets of data as the

prediction set.

Firstly, we eliminate the selected 50 compounds, and the

remaining 1924 sets of compound data with the filtered 20

molecular descriptors as input and pIC50 values as output, use

the cross validation method to segment the data with 0.35 as the

sample ratio, so as to obtain the training set and test set, and then

use the training set to train the Gradient-enhanced regression,

XGBoost regression, Support vector machine and Random
Frontiers in Oncology 07
102
Forest regression models respectively, and the training process

is shown in Figure 3.

As seen in Figure 3, the training results of Support vector

machine are the worst, and the training results of Gradient-

enhanced regression, XGBoost regression, and Random Forest

regression models are better and do not differ much from each

other. Therefore, we perform Semi-automatic parameter

adjustment combining manual parameter adjustment and grid

parameter adjustment on the three algorithm models of

Gradient-enhanced regression, XGBoost regression and

Random Forest regression to find the core algorithm.

After that, we optimize the parameters of the three

algorithms, and consider obtaining the model that is closest to

the actual accuracy through the optimal parameters. Among

them, in the Random Forest algorithm model, we optimize the

number of trees, the maximum depth of trees, the maximum

number of features, and the minimum number of samples
FIGURE 2

Top 20 ranking chart of feature weights.
TABLE 1 Range of molecular descriptor values found by the optimization search model.

Molecular descriptors Weighting value Molecular descriptors Weighting value

C1SP2 0.121828 VC-5 0.013187

nC 0.106756 minHBint5 0.011962

MDEC-23 0.089470 TopoPSA 0.010527

LipoaffinityIndex 0.065367 MDEO-12 0.009671

minHsOH 0.036505 C3SP2 0.009461

nHBAcc 0.036146 SHBint8 0.009285

SdsN 0.029560 maxHBint8 0.008846

maxss0 0.024947 ndssC 0.008720

minss0 0.024412 MDEC-34 0.007981

minsOH 0.022663 BCUTc-11 0.007961
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allowed to split nodes. In the XGBoost algorithm model, we

optimize the number of learners, the depth of the tree, the

minimum weight of the subset, L1 regularization, L2

regularization and the learning rate. In the Gradient-enhanced

algorithm model, we optimize the parameters of the maximum

number of weak learners, the maximum depth of learners, the

maximum number of features of learners, the minimum number

of samples required by leaf nodes and the minimum number of

samples divided into internal nodes. The process is shown

in Figure 4.

By adjusting the parameters of the three algorithm models,

we finally determine the optimal parameter combination of the

Random Forest algorithm as: n_estimators=500, max_depth=90,

max_features=0.1, min_samples_split=2; the optimal parameter

combination of the XGBoost algorithm as: n_estimators=20,

max_depth=7 , min_ch i ld_we ight=5 , reg_a lpha=1 ,
Frontiers in Oncology 09
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reg_lambda=0.1, learning_rate=0.3; the optimal parameter

combination of the Gradient-enhanced algorithm as:

n_estimators=300, max_depth=4, max_features=0.3,

min_samples_leaf=8,min_samples_split=9; and use the test set

to test the algorithms before and after parameter adjustment.

The test accuracy of the three algorithms is shown in Table 2.

In order to determine the core algorithm more accurately,

we use the training data set and the test data set to train the

above three parameter adjusted models, combined with a variety

of regression model training error analysis methods to

determine the algorithm with the best training effect. Among

them, the regression model training error analysis methods we

selected Mean Square Error (MSE), Mean Absolute Error

(MAE), Root Mean Square Error (RMSE), Mean Absolute

Percentage Error (MAPE), absolute coefficient (R-Square), and

Explained Variance score (EV).
A B

C

FIGURE 4

Semi-automatic parameter adjustment process. (A) Optimization process of Random Forest (B) Optimization process of XGBoost (C)
Optimization process of GBR.
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The model evaluation error analysis table, model testing

error analysis table, and cross-validation results are shown in

Tables 3, 4.

After adjusting the error analysis of the model, it can be

concluded that the Random Forest has the best accuracy and

excellent anti over fitting, and the stability of the algorithm

is high.

Then, in order to verify that Random Forest is the best

algorithm, we use three training and parameter adjusted

algorithms: Random Forest, Gradient-enhanced and XGBoost

to predict the IC50 value and the corresponding pIC50 value of

the selected 50 groups of compound data, and the experimental

results are shown in Figure 5.

We experimentally compare the three regression algorithm

models after tuning the parameters on 50 sets of test set data as

in Figure 6.

We finally give the accuracy rates, as in Table 5.

As can be seen from the table, Random Forest regression has

the highest accuracy rate of 76.685%, so it can be considered

reasonable for the Random Forest algorithm to be the

core algorithm.
5 Conclusion

With the development of computer technology, in the early

stage of anti-breast cancer drug research and development, using

computer models to predict the biological activity of compounds

is conducive to reducing the failure rate of drug research and

development and saving a lot of research and development time
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and cost for research and development institutions. Therefore, in

order to solve the problem of bioactivity prediction during the

early development of anti-breast cancer candidate drugs, this

paper has carried out relevant work and obtained the

following conclusions.

(1) In this paper, we investigate compounds capable of

antagonizing ERa activity by facilitating XGBoost-based data

feature selection thereby screening the top 20 molecular

descriptors with the most significant impact on biological activity.

(2) Then, from the perspective of molecular descriptors, with

20 molecular descriptors selected based on XGBoost feature as

input and pIC50 value as output, multiple regression prediction

models of Random Forest, Gradient-enhanced, XGBoost and

SVM are constructed to predict ER biological activity. According

to the degree of fitting between the predicted value and the real

value, the Random Forest, Gradient-enhanced and XGBoost are

preliminarily selected with good results. In order to select the

best algorithm from the three algorithms, the Semi-automatic

parameter adjustment method is used to adjust the parameters

of the three algorithms. The Random Forest has the highest

accuracy, the best accuracy and excellent anti over fitting, and

the algorithm has high stability.

(3) Finally, by training the initial randomly selected data, it is

verified that the Random Forest with Semi-automatic parameter

adjustment has the best effect. It can be seen that using the Semi-

automatic parameter adjusted Random Forest model to predict

the bioactivity of compounds against breast cancer drugs can

provide a good reference, and can play a certain role in

promoting the optimization of drug properties in the process

of cancer drug development.
TABLE 3 Model evaluation error analysis.

Evaluation Metrics MSE MAE EV R²

Random Forest 0.077646 0.203693 0.961473 0.961529

GBR 0.135665 0.268423 0.932684 0.932684

XGBoost 0.152522 0.290378 0.924355 0.924319
frontie
TABLE 4 Model test error analysis.

Evaluation Metrics MAE RMSE MAPE EV

Random Forest 0.544467 0.135665 0.089044 0.715558

GBR 0.557161 0.135665 0.090808 0.701300

XGBoost 0.567658 0.135665 0.091912 0.687493
TABLE 2 Comparison of accuracy before and after parameter adjustment.

Algorithm Random Forest regression XGBoost regression GBR

Accuracy before parameter adjustment 0.707829 0.678772 0.676599

Accuracy after parameter adjustment 0.745329 0.724967 0.730603
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FIGURE 5

Algorithm model regression test results. (A) GBR (B) XGBoost regression (C) Random Forest regression
FIGURE 6

Algorithm model test results.
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The model proposed in this paper can provide better support

for the early development of anti- breast cancer drugs, and the

model can also be extended to other areas of prediction.

However, the test accuracy of the model did not reach a

particularly high level, so the subsequent optimization of drug

properties for the problem will provide more solutions using

artificial intelligence technology.
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Using deep learning to
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computed tomography images
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1Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of
Nanjing University, Nanjing, China, 2School of Electronic Science and Engineering, Nanjing
University, Nanjing, China, 3Department of Oral and Maxillofacial Surgery, Nanjing Stomatological
Hospital, Medical School of Nanjing University, Nanjing, China
Objectives: Evaluating the diagnostic efficiency of deep-learning models to

distinguish malignant from benign parotid tumors on plain computed

tomography (CT) images.

Materials and methods: The CT images of 283 patients with parotid tumors

were enrolled and analyzed retrospectively. Of them, 150 were benign and 133

weremalignant according to pathology results. A total of 917 regions of interest

of parotid tumors were cropped (456 benign and 461 malignant). Three deep-

learning networks (ResNet50, VGG16_bn, and DenseNet169) were used for

diagnosis (approximately 3:1 for training and testing). The diagnostic

efficiencies (accuracy, sensitivity, specificity, and area under the curve [AUC])

of three networks were calculated and compared based on the 917 images. To

simulate the process of human diagnosis, a voting model was developed at the

end of the networks and the 283 tumors were classified as benign or malignant.

Meanwhile, 917 tumor images were classified by two radiologists (A and B) and

original CT images were classified by radiologist B. The diagnostic efficiencies

of the three deep-learning network models (after voting) and the two

radiologists were calculated.

Results: For the 917 CT images, ResNet50 presented high accuracy and

sensitivity for diagnosing malignant parotid tumors; the accuracy, sensitivity,

specificity, and AUC were 90.8%, 91.3%, 90.4%, and 0.96, respectively. For the

283 tumors, the accuracy, sensitivity, and specificity of ResNet50 (after voting)

were 92.3%, 93.5% and 91.2%, respectively.

Conclusion: ResNet50 presented high sensitivity in distinguishing malignant

from benign parotid tumors on plain CT images; this made it a promising

auxiliary diagnostic method to screen malignant parotid tumors.

KEYWORDS

deep learning, convolutional neural network, residual neural network, parotid tumor,
computed tomography
frontiersin.org01
109

https://www.frontiersin.org/articles/10.3389/fonc.2022.919088/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.919088/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.919088/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.919088/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.919088&domain=pdf&date_stamp=2022-08-01
mailto:linzitong_710@163.com
mailto:yingchen@nju.edu.cn
mailto:yangxd66@163.com
https://doi.org/10.3389/fonc.2022.919088
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.919088
https://www.frontiersin.org/journals/oncology


Hu et al. 10.3389/fonc.2022.919088
Introduction

Parotid tumor is themost common type of salivary gland tumor.

The acinar, ductal, and myoepithelial cells that comprise parotid

tissues can give rise to a variety of benign andmalignant neoplasms.

Pre-operative recognition of malignancy in parotid tumors is useful

in that it may alert the surgeon to more stringent attention to the

operative margin and hence better tumor clearance (1).

From the clinical aspect, although there are some clues of

malignancy-rapid growth, skin fixation, ulceration, facial nerve

palsy, pain, or cervical node metastasis, but only 30% malignant

parotid tumors present with these features (1, 2). Fine-needle

biopsy is helpful in differentiating malignancy; however, it is

invasive and more dependent on technical skill and experience

to obtain adequate specimens, and the few tissues obtained

always could not represent the whole tumor (3–5). Computed

tomography (CT), as a commonly used imaging technique, is

useful to identify the location and size of parotid tumors.

However, benign and malignant parotid tumors always have

similar CT features; the sensitivity of CT in identifying

malignant tumors is unsatisfactory (6–8).

Recently, deep learning methods, especially convolutional

neural network (CNN), have demonstrated effectiveness in

image recognition tasks. CNN-based tumor segmentation and

classification have been widely used in breast cancer (9), lung

cancer (10), liver tumor (11, 12), and nasopharyngeal carcinoma

(13). For parotid tumors, Xia et al. and Chang et al. had utilized

neural network to differentiating benign and malignant parotid

tumors on magnetic resonance imaging (MRI) (14, 15). To date,

there were no CNN models based on plain CT images to

differentiate benign and malignant parotid tumors. Because of

the fatty nature of parotid gland (16), the plain CT images

usually could visualize the tumors in parotid gland well and

provides abundant texture information of parotid tumors (17).

So, in this study, we explored using CNN to diagnose parotid

tumors on plain CT images.

Residual neural network (ResNet) is a CNN network proposed

in 2015. The framework reformulates the layers as learning residual

functions with reference to the layer inputs to obtain deeper

networks with higher accuracy (18). The ResNet model could

employ the entire image and is capable of retaining image

information more completely than many CNN networks. It

exhibits high diagnostic efficiency for liver fibrosis staging and

lungnodule segmentation (19–22). In this study, the applicabilityof

using ResNet to classify benign and malignant parotid tumor on

plain CT images was investigated, and the diagnostic efficiency of it

was compared with other two networks and oral radiologists.
Abbreviations: CT, Computed tomography, CNN, convolutional neural

network, ResNet, residual neural network, SGD, random gradient descent,

CAM, class activation map, PPV, positive predictive value, NPV, negative

predictive value, ROC, receiver operating characteristic, AUC, area under

the curve.
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Methods and materials

Data acquisition

An oral radiologist collected the CT images of patients with

parotid tumors in our hospital from 2008 to 2020. The inclusion

criteria were as follows: (1) primary parotid tumor; (2) definite

pathological diagnosis was available after surgery. (3) The CT

images were of good quality, without motion artifacts and foreign

body artifacts. The approval from the Ethics Committee of our

University was obtained prior to performing this study (NJSH-

2022NL-069).

The plain CT images of 283 patients (113 males and 170

females; mean age, 50.5 ± 15.6 years; range, 18–73 years) with

parotid tumors were included. Of them, 150 were benign (55

males and 95 females; mean age, 51.7 ± 16.3 years) and 133 were

malignant (58 males and 75 females; mean age, 50.3 ± 15.2

years). No statistical difference of age and gender was found

between benign and malignant tumor group. The pathological

classification of the 283 tumors was showed in Table 1.

All patients were performed CT examination before surgery;

the parameters of CT were as follows: tube potential: 130 kVp,

tube current 56 mA, slice thickness: 3 mm, matrix: 512 × 512,

window width: 200 Hounsfield units (Hu), window level: 40 Hu.
Image processing

Two radiologists manually selected the region of interest; axial

CT images with lesions were randomly selected and then the

regions of interest were obtained by square cropping the CT

images (Figure 1). For each patient, three or five axial CT images

including tumors were selected and cropped. It was confirmed by

another radiologist, and if there was any doubt about the area of
TABLE 1 The pathological classification of the 283 tumors included.

Benign

Pleomorphic adenoma 76

Warthin tumor 46

Basal cell adenoma 20

Other 8

Malignant

Adenocarcinoma

Mucoepidermoid carcinoma 32

Pleomorphic adenocarcinoma 19

Acinar cell carcinoma 15

Adenoid cystic carcinoma 11

Other 13

Lymphoma 15

Squamous cell carcinoma 11

Other 17
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interest, the two radiologists would work together to re-crop the CT

image. Neither of them knew the patients’ pathological diagnosis.

As the resolution of images cropped was not equal, the resolution of

image was adjusted to a uniform size of 317 × 317 pixels.

A total of 917-cropped CT images were finally obtained

(Figure 2). The subjects in dataset were divided into two

subcategories: training and testing. The training set

(approximately 75% of the database [687 images for 213

patients] was used to train variant versions of the model with

different initialization conditions and hyper parameters. Once

the models have been trained, their performance was evaluated

using test set (approximately 25% of the database [230 images

for 70 patients]). When building the CNN model, a series of

methods were performed on the input images in order to reduce

over-fitting of the model. These data argument methods

included random horizontal and vertical flipping, random

image rotation within 90°.
Network structure and voting

The CNN models were implemented on hardware with

following specification: Intel processor i7, 64 GB RAM with

NVIDIA Tesla V100 GPU, 1 TB hard disk for implementing.

ResNet 50-layer structure was shown in Figure 3 with pre-

trained model on the ImageNet database. The input data were

grayscale image with a resolution of 317 × 317. The input data
Frontiers in Oncology 03
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were gradually processed by ResNet50 through five blocks. In the

first block, the image was converted into a 159 × 159 × 64 tensor.

Between the second and fifth stages, a residual block structure
FIGURE 1

Example of computed tomography (CT) images (A1, B1) and the extracted region of interests (A2, B2). (A1, A2) Showed a benign parotid tumor
with a well-defined and smooth border and homogeneous appearance (yellow arrow). (B1, B2) Showed a malignant parotid tumor with a poor-
defined border and heterogeneous appearance (yellow arrow).
FIGURE 2

A flowchart of plain computed tomography (CT) image inclusion
and exclusion.
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was introduced to overcome the problems of vanishing and

exploding gradients. After five blocks, the input was converted

into a 10 × 10 × 2,048 tensor. Both the height and width were

greatly reduced, and the number of dimensions was increased

from three to 2,048, which indicated that the extracted

information was much more than the original RGB pixel

information. According to the 2,048 features extracted by

ResNet50, the tensor was fattened into 2,048 vector elements.

The model loss function was the cross-entropy loss function and

the Random gradient descent (SGD) model optimization

method was used. The initial learning rate was 5e−3. The

batch size of the model training was 16; the final model

selected for the test group was the model with the smallest loss

function value for the test group. Fivefold cross-validation was

used to establish the ResNet model. The proportion of patients

corresponding to benign and malignant parotid tumor was equal

for the training and test groups. The final result was the average

of the fivefold cross-validation for the test group.

In order to simulate the process of human diagnosis and take

the spatial information into account, a voting model was added

at the end of Resnet. The input was classified as 0 or 1 (0 and 1

represent benign and malignant parotid tumor, respectively).

For each parotid lesion (three or five CT images), the most

classification was counted as the final result of the parotid lesion.

Generated activation maps by class activation map (CAM) on

test dataset were applied to evaluate the region of interest for

further clinical review.
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Other two neural networks (VGG16_bn and DenseNet169)

were used to classify the benign and malignant parotid tumors;

the voting model was also added at the end of these networks

and the diagnostic efficiency of them was compared with

ResNet50. These two networks were also models pre-trained

using the ImageNet database (23–25).
Manual classification of parotid tumor on
plain computed tomography images

After development of the CNN models were complete, the

283 parotid tumors were classified into benign or malignant ones

by two radiologists (A with 3 and B with 12 years of experience,

respectively), using the same CT images. These two observers

did not take part in the model training process and were blinded

to lesion selection. The observers were also unaware of patient

names, laboratory results, other imaging findings, or final

diagnosis. After 3 months, observer B re-classified the 283

tumors into malignant or benign; this time, all the original CT

images without cropping of the 283 patients were used. The

following characteristics were used for classification: tumor

location, number of tumors (single or multiple), the size of the

tumor (the size based on the selected CT images), tumor shape

(regular, e.g., round or oval, irregular, e.g., polycyclic, lobular),

tumor density (uniform, uneven), and tumor margins (well

defined, poorly defined).
FIGURE 3

The structure of Residual neural network (ResNet) 50-layer model. The input data are the cropped plain computed tomography (CT) images
with a resolution of 317 × 317. It propagated by ResNet through five convolutional phases. Through the five convolutional phases, the data were
then processed with three fully connected layers. This ResNet model was structured to output two values; the bigger one indicating the
classification of label 0 or label 1 for each CT images is output1. The results of output1 of each CT images are used to perform the final voting.
The most labels of output1 for a parotid lesion are output2. Batch Norm is the batch normalization; Conv is the Convolutional layer; FC is the
fully connected layer; ReLU is the rectified linear unit function.
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Statistics

The diagnostic accuracy, sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV) of the

three CNN networks was calculated on the 917 CT images. The

receiveroperatingcharacteristic (ROC)curves and theareaunder the

curve (AUC) of the three networks were constructed and calculated.

The diagnostic accuracy, sensitivity, specificity, PPV, and NPV; the

three deep-learning network models (after voting); and the two

radiologists were also calculated for the 283 tumors. The diagnostic

accuracy, sensitivity, and specificity of onefold were compared, and

the statistical significance was calculated between VGG19_BN,

DenseNet169, radiologist A, radiologist B, and radiologist B

(second time) with ResNet50 (after voting) using McNemar’s test.

The statistical analyses were conducted using SPSS 23.0 software

(IBMSPSSStatistics Base IntegratedEdition 23,Armonk,NY,USA).

Results

Diagnostic performance of three
convolutional neural network
models and radiologists

The classification performance of three networkswas shown in

Table 2. The accuracy of ResNet50, VGG16_bn, andDenseNet169

was 90.8%, 90.0%, and 87.3%, respectively (Figure 4). The ROC

curves of the three networks were shown in Figure 5. The AUC of

Resnet50,VGG16_bn, andDenseNet169 todifferentiatemalignant

from benign tumors was 0.96, 0.96, and 0.95, respectively.

The attention heatmap was generated by CAM and then the

heatmap was super-imposed on the original CT image, so that the

location of parotid tumor and the region highlighted by ResNet

could be compared. As showed in Figure 6, the attention heatmap

highlighted important sub-regions for further clinical review. This

showed that the abnormal characteristics of malignant parotid

tumors had been learned by Resnet and used as the basis for its

classification of benign and malignant tumors.

Diagnostic performance of different
convolutional neural network models
after voting

The accuracy, sensitivity and specificity, PPV, and NPV of

the three networks after voting and the two radiologists were

shown in Table 3. Statistical significance between VGG19_BN,
Frontiers in Oncology 05
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DenseNet169, radiologists, and ResNet50 of onefold was shown

in Table 4.

Discussion

The pre-operative diagnosis of benign and malignant tumors

of the parotid gland is of great clinical significance and can have

an important impact on surgical planning. Because of the

important function of facial nerve, to preserve facial nerve

function is a general and important principle in parotid

tumors treatments. For benign lesions, local excision or partial

parotidectomy is sufficient and every attempt to preserve facial

nerve function should be made during surgery; however, for

malignant tumors, a total parotidectomy with sacrifice of any

part of the nerves overtly involved in tumor is desirable (26). For

surgeons, pre-operatively recognition, the malignancy of parotid

tumors is urgently hoped to be resolved, since this is helpful for

more adequate pre-operative preparation, more appropriate

operation (balance between preserving facial nerve function

and avoiding recurrence).

Fine-needle aspiration cytology is used for the pre-operative

diagnosis, and high specificity was showed by Piccioni et al.’s

study and Dhanani et al.’s study (27, 28). However, due to the

difficulty of sampling and the heterogeneity of the tumor, the

sensitivity of recognition malignancy was not quite satisfactory

(sensitivity: 73%–97%, specificity: 83%–97.9%) (5, 27, 28). In a

meta-analysis by Schmidt et al., the sensitivity and specificity

were 79% and 96% for malignancy (4). The relatively low

sensitivity was due to few tissues obtained for diagnosis, so

some malignant tumors would be misdiagnosed (false negative).

Ultrasound-guided core needle biopsy could obtain an adequate

tissue sample for histological evaluation, which allows

classification of malignant and benign tumors and tumor

grading. The sensitivity and specificity of it was much higher

than fine-needle aspiration (29). However, compared with

imaging technique, these two pre-operative techniques are

invasive and has a risk of infection (15). A summary of the

diagnosis results of fine-needle aspiration cytology and core

needle biopsy was showed in Table 5.

In clinic, ultrasound, CT, andMRI are widely used in parotid

tumors diagnosis (Table 5). The CT technique has high spatial

resolution and rapid acquisition (34). CT images are useful in

defining the anatomic localization, the extent, the density, the

border, and delineation of tumors, and they are useful for

detecting metastases and lymph nodes. However, it was not
TABLE 2 The diagnostic performance of the three convolutional neural network (CNN) models.

Accuracy Sensitivity Specificity PPV NPV

ResNet50 90.8% 91.3% 90.4% 90.5% 91.2%

VGG19_BN 90.0% 85.2% 94.7% 94.2% 86.4%

DenseNet169 87.3% 86.1% 88.6% 88.4% 86.3%
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A

B C

FIGURE 5

The receiver operating characteristic (ROC) curves of Resnet50, VGG16_bn, and DenseNet169. The horizontal axis represents the false positive
rate and vertical axis represents the true positive rate. (A) Is the ROC curve of Resnet50 (AUC = 0.96 for malignant tumor), (B) Is the ROC curve
of VGG16_bn (AUC = 0.96 for malignant tumor), and (C) Is the ROC curve of DenseNet169 (AUC = 0.95 for malignant tumor).
FIGURE 4

The diagnostic accuracy of Resnet50, VGG16_bn, and DenseNet169 in test set. The horizontal axis represents the training epochs, and vertical
axis represents diagnostic accuracy. The best accuracy of ResNet50 is higher than VGG16_bn and DenseNet169.
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reliable in differentiating benign and malignant parotid tumors.

Generally speaking, benign lesions reveal a well-defined and

smooth border and have a homogeneous appearance (35–37).

However, malignant parotid tumors could also display as a

homogeneous density mass with well-defined border (6, 38).

Recently, CNNs present high efficiency in image processing and

classification tasks in many medical fields. Because of textures of

parotid tumors differ depending on the underlying

histopathological composition, neural network with pixel level

of receptive field could extract more detailed image feature than

human (39, 40). This supply a non-invasive pre-surgery

malignancy identification of parotid tumors based on various

images. By providing accurate, consistent, and instant results for

the same input image, it could also increase the accuracy of

diagnosis and reduce rote manual tasks, helping to simplify

clinical workflow integration for radiologist.
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In this study, the sensitivity and specificity of ResNet50 in

distinguishing malignant from benign tumors were 91.3% and

90.4%, and the sensitivity and specificity reached 93.5% and

91.2% after voting. VGG16_bn presented a sensitivity of 87.1%,

and Densenet169 presented a sensitivity of 90.3% after voting.

All the three CNN networks presented high sensitivity, and the

ResNet50 presented the relatively higher sensitivity. Meanwhile,

the two radiologists had a sensitivity of 32.9% and 49.7%, and a

specificity of 83.2% and 86.6%. And radiologist B had a

sensitivity of 74.2% and a specificity of 79.7% using the whole

original CT images without cropping. There were significant

differences between radiologists with ResNet50 for diagnostic

accuracy and sensitivity (P < 0.05). Because radiologist B (second

time) had a diagnosis using all the original CT images without

cropping, the diagnosis of accuracy and sensitivity increased.

Our manual classification results were also similar with previous
A B

DC

FIGURE 6

The images at the left side are the original computed tomography (CT) images; the images at the right side are the heatmaps drawn by class
activation map (CAM). The red color shows where the network is focused to differentiate benign and malignant parotid tumor. (A) Is a benign
tumor with homogeneous density and well-defined margin, network mainly focused on the texture and margin of tumor. (B) Is a malignant
tumor with heterogeneous density and poor-defined margin, network mainly focused on the texture of tumor. (C) Is a benign tumor with intra-
tumoral cystic component and well-defined margin, whereas network mainly focused on the upper part of the tumor and the margin of the
tumor but not the intra-tumoral cystic component. (D) Is a malignant tumor with homogeneous density and relative well-defined margin,
network mainly focused on texture of the left part of tumor but not the margin of tumor. All these tumors are correctly recognized by the
neural network.
TABLE 3 The diagnostic performance of three convolutional neural network (CNN) models after voting and two radiologists.

Accuracy Sensitivity Specificity PPV NPV

ResNet50 92.3% 93.5% 91.2% 90.6% 93.9%

VGG19_BN 92.3% 87.1% 97.1% 96.4% 89.2%

Densenet169 90.8% 90.3% 91.2% 90.3% 91.2%

Radiologist A 58.6% 32.9% 83.2% 65.3% 53.7%

Radiologist B 68.5% 49.7% 86.6% 78.0% 64.2%

Radiologist B
(second time)

77.1% 74.2% 79.7% 76.6% 77.6%
frontiers
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study (6–8). The inconsistency of manual classification also

reflects the instability of manual diagnosis, and manual

classification is more dependent on experience of radiologist.

Because approximately 80% of parotid tumors are benign (26),

this priori experience will make the radiologist more inclined to

diagnose parotid tumors as benign. Considering the relatively

low sensitivity of fine-needle aspiration cytology and manual

classification, we think that the high sensitivity of our ResNet50

could be an important auxiliary diagnosis. For the CNN highly

suspected malignant tumors, if the diagnosis of fine needle

aspiration cytology is benign, maybe re-sampling, re-

evaluation, or consultation of experienced cytologist is needed.

Recently, Chang et al. and Xia et al. also utilized neural

network to differentiate benign and malignant parotid tumors

on MRI images. In Chang et al.’s study, U-Net model based on

MRI images of 85 parotid tumors (60 benign tumors and 25

malignant tumors) was used, and the diagnostic accuracy,

sensitivity, and specificity were 71%, 33%, and 87% for

malignant tumors. In Xia et al.’s study, a modified ResNet

model was developed based on MRI images of 233 parotid

tumors (153 benign tumors and 80 adenocarcinoma), and the

accuracy, sensitivity, and specificity were 88.2%, 94.6%, and 81.7%

for differentiating benign from malignant parotid lesions. And

studies using CNN networks based on portal phase CT images

(contrast-enhanced CT) and ultrasound images were also

published recently (32, 33). In our study, 283 parotid tumors

(150 benign tumors and 133 malignant tumors) were used for

training and testing. More malignant parotid tumors were

included in our database, and a high sensitivity of differentiating

malignant from benign parotid lesions was presented. Compared

with these CNN studies (Table 5), our study had a relatively large

sample size, more balanced benign and malignant parotid tumors

and relatively high sensitivity of differentiating malignant from

benign parotid tumors. We speculate that maybe more malignant

parotid samples trained are the reason for high sensitivity of

recognition malignant ones in this study.

In this study, in order to simulate the process of human

diagnosis, a voting model was built at the end of the three deep-

learning network models, and the accuracy, sensitivity, and

specificity of the three CNN models were calculated for the

283 tumors. After voting, the three CNN models all showed

higher diagnostic efficiency than the models without voting. The
Frontiers in Oncology 08
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pathology diagnosis was a microscopic diagnosis, so the tumors

will be diagnosed as malignant if there are malignant cells.

However, imaging reflects the macroscopic morphology, so

imaging diagnosis is a probabilistic diagnosis and it needs

comprehensive analysis. Zhao et al. recently reported a hybrid

algorithm, a Bayesian network branch performing probabilistic

causal relationship reasoning and a graph convolutional network

branch performing more generic relational modeling and

reasoning using a feature representation (41). And their hybrid

algorithm achieves a much more robust performance than pure

neural network architecture.

In this study, we re-analyzed the mis-diagnosed parotid

tumors of CNNs. And we found that the accuracy for

lymphoma diagnosis was 73.3% (11/15), for ResNet50 (after

voting), this was much lower than the whole database. The

lymphomas usually appear as homogeneous and sharply

demarcated nodes, just like benign tumors; this maybe the

reasons of misdiagnosis. Moreover, most mis-diagnosed

malignant parotid tumors were small ones; they were

homogeneous and well-defined, and similar with benign

tumors. So, lymphoma and small tumors are more likely be

mis-diagnosed even for CNNs. Furthermore, using the attention

heatmap, we can infer which part of the input image is focused on

by the neural network. For some tumors, the highlighted areas

were on the margins, and for others, the highlighted areas were

intra-tumoral, which means that the neural network focused on
TABLE 5 The diagnostic sensitivity and specificity of different
diagnostic methods.

Diagnostic method Sensitivity Specificity

Fine-needle biopsy (4) 79% 96%

Core-needle biopsy (29) 98% 94%

Conventional MRI (30) 76% 91%

Plain CT (6–8) 10-50% 85-95%

Ultrasound (elastography) (31) 67% 64%

CT enhanced scan (DL) (32) 96.7% (first group)
76.7% (second group)

98.9% (first group)
78.8% (second group)

Ultrasound (DL) (33) 77% 81%

MRI (DL) (15) 33%-81.7% 87%-94.6%
DL, deep learning.
TABLE 4 Statistical significance between VGG19_BN, DenseNet169, radiologists, and ResNet50 of onefold.

Accuracy (P-value) Sensitivity (P-value) Specificity (P-value)

VGG19_BN vs. ResNet50 1.00 0.51 1.00

DenseNet169 vs. ResNet50 1.00 1.00 1.00

Radiologist A vs. ResNet50 0.00 0.00 0.06

Radiologist B vs. ResNet50 0.00 0.00 0.07

Radiologist B (second time) vs. ResNet50 0.04 0.03 0.04
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the texture of images of these tumors (Figure 6). Interpretability is

increased through the attention heatmap generated. It may

provide new ways of thinking in the diagnosis of parotid tumor.

This study still has several limitations. First, the tumor data

included need to be further expanded to get a stable result for

neural network. Although most of the parotid tumor is included

in this study, some types of tumor are still limited for clinical

application. Second, there is no auto-segment or automated

detection (R-CNN or Yolo) built in the neural networks. A

neural network with auto-segmentation or automated detection

need to be explored in further study. And networks using a

voxel-based domain and the whole CT images without cropping,

combining the radiological with clinical findings are also needed

to be explored in the future. Third, this study was based on a

single center; an external validation study is needed to validate

its diagnostic performance and generalizability. Prospective and

multi-institutional datasets are also needed in future studies.
Conclusion

ResNet50 presented high sensitivity in distinguishing

malignant from benign parotid tumors on plain CT images,

and this made it a promising auxiliary diagnostic method to

screen malignant parotid tumors.
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Purpose: Preoperative evaluation of lymph node metastasis (LNM) is the basis

of personalized treatment of locally advanced gastric cancer (LAGC). We aim to

develop and evaluate CT-based model using deep learning features to

preoperatively predict LNM in LAGC.

Methods: A combined size of 523 patients who had pathologically confirmed

LAGC were retrospectively collected between August 2012 and July 2019 from

our hospital. Five pre-trained convolutional neural networks were exploited to

extract deep learning features from pretreatment CT images. And the support

vector machine (SVM) was employed as the classifier. We assessed the

performance using the area under the receiver operating characteristics

curve (AUC) and selected an optimal model, which was compared with a

radiomics model developed from the training cohort. A clinical model was built

with clinical factors only for baseline comparison.

Results: The optimal model with features extracted from ResNet yielded better

performance with AUC of 0.796 [95% confidence interval (95% CI), 0.715-

0.865] and accuracy of 75.2% (95% CI, 67.2%-81.5%) in the testing cohort,

compared with 0.704 (0.625-0.783) and 61.8% (54.5%-69.9%) for the radiomics

model. The predictive performance of all the radiological models were

significantly better than the clinical model.

Conclusion: The novel and noninvasive deep learning approach could provide

efficient and accurate prediction of lymph node metastasis in LAGC, and

benefit clinical decision making of therapeutic strategy.

KEYWORDS

deep learning, locally advanced gastric cancer, lymph node metastasis, radiomics,
computed tomography
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Introduction

Gastric cancer (GC) is one of the most common cancers and

the third leading cause of death from cancer worldwide (1). The

incidence rate of gastric cancer is relatively high in Asia, South

American and Europe (2–4). Locally advanced gastric cancer

refers to the wall invasion deeper than the submucosa, with a

high rate of lymph node metastasis (LNM) and poor clinical

prognosis (5–7). Accurate evaluation on lymphatic metastasis

based on preoperative computed tomography (CT) images is

crucial for individual treatment of LAGC (8–10). Preoperative

knowledges of LNM have important clinical significance for

selecting the optimal surgical procedure (endoscopic procedures

or gastrectomy plus lymph node dissection) and the need for

adjuvant therapy (11–13). The National Comprehensive Cancer

Network recommended CT as a first-line imaging technique for

detecting LNM, but the overall accuracy is 50%-70%, which is

unsatisfactory (14).

The advances in deep learning techniques provides a new

field for CT imaging analysis, which could convert medical

images to mineable data and generate thousands of

quantitative features (15). Convolutional neural networks

(CNNs) have been proved to be an effective method for

improving the diagnostic accuracy of medical imaging (16–

18). Due to the lack of enough annotated cases, training a

CNN model from scratch for one specific clinical problem

often is infeasible. An effective approach is to adopt the

transfer learning technique using pre-training CNNs, which

ran additional steps of pre-training on specific medical domain

from the existing checkpoint. It is frequently used to alleviate the

limitations of small datasets and expensive annotation (19, 20).

Part of natural imaging descriptors developed for object

detection have been used for lesion segmentation in medical

imaging analysis (21). Another option is to use a pretrained

CNNs models as the feature extractor and traditional machine

learning methods as classifier, which may also have satisfactory

performance in terms of prediction accuracy and computational

cost (22). Handcrafted radiomics have been studied extensively

for radiological diagnosis and prediction (8, 23, 24). However,

the application of transfer learning to prediction of LNM in

gastric cancer has not been explored.

In this study, we hypothesize that CT-based transfer learning

techniques are feasible to extract deep learning features for

preoperatively predicting LNM risk. To this end, our study

aims to build a noninvasive measurement based on pre-

trained deep learning models for the preoperatively prediction

of LNM in patients with gastric cancer, making comparison with

the handcrafted radiomics method. Additionally, we further

explored the application value of deep learning features in

predicting LNM and making treatment decisions.
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Materials and methods

Patients

This retrospective study was approved by the institutional

review board of our hospital, and the requirement for informed

consent was waived. A total of 523 consecutive patients with

gastric cancer who was treated between August 2012 and July

2019 were enrolled. The patients were enrolled based on

following inclusion criteria: (a) pathologically diagnosed as

local advance gastric cancer (pT2-4aNxM0); (b) all patients

with gastrectomy plus lymph node dissection and CT imaging

data were complete; (c) without any systematic or local

treatment before CT imaging study or surgery; (d) the lesion

covers at least 3 slices on CT cross section. The patients were

excluded based on the following criteria: (a) invisible lesion on

CT images; (b) insufficient stomach distension; (c) poor image

quality for post-processing due to artifacts. The flowchart of

patient selection was shown in Figure 1. We adopted computer-

generated random numbers to split the training cohort (n=367,

74.40% males; mean age, 59.75 ± 10.38; range, 22-82 years) and

the testing cohort (n=156, 73.98% males; mean age, 59.36 ± 9.94;

range, 22-81 years). The tumor location information was got

from the medical or endoscopic reports, and the clinical

information was got by reviewing the medical reports.
Image process and tumor segmentation

All patients underwent contrast-enhanced CT scan and

informed consent forms were signed before inspection. The

CT scans were acquired with breath-hold with the patient

head first supine in all of the phases for covering the whole

abdomen. The details on CT acquisition parameters were

described in Supplemental Material.

Tumor regions of interest (ROIs) were manually segmented CT

images by two experienced radiologists using ITK-SNAP software

(version 3.6.0; http://www.itksnap.org). In order to make a fair

comparison with different features, we only chosen one slice with

the maximum cross-sectional area of the tumor lesion by the

radiologists. We randomly chosen 30 patients from training

cohorts to assess the interobserver reproducibility for ROI-based

radiomics features in a blinded manner. After one month,

segmentation procedure was repeated to assess the intraobserver

reproducibility. The features with intra-class correlation coefficient

(ICC) greater than 0.75 were selected for further analysis. For deep

learning features extraction, the 3 axial slices containing the

delineated tumor were resized to 224× 224mm (the size for the

input layer of the pretrained CNN models) with the use of a

bounding box covering the radiologist contoured tumor area.
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Deep learning features

We employed five commonly convolutional neural networks

(ResNet (25), VGG16 (26), VGG19 (26), Xception (27) and

InceptionV3 (28)) as base models to extract deep learning

features automatically. These five CNNs models were pre-

trained on the large-scale lightweight well-annotated

biomedical image database (29). We removed the last fully

connected layer at top of the network, and applied global max

pooling strategies to efficiently capture the maximum values of

each layer of the feature maps. Finally, we converted the feature

maps to the raw values. The extracted deep features were used to

construct the machine learning model. Due to the complexity of

deep learning model structure, the potential mechanisms of

predictive value were unclear. Additional details of deep

features extraction in this study are listed in Supplementary

Material. Furthermore, Gradient-weighted Class Activation

Mapping technique (Grad-CAM) could generate visual

explanations for any CNN-based model (30). We use this

visualization technique to investigate which regions of the ROI

were most important in the deep features.
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Radiomics features

Image standardization was implemented before feature

extraction: bi-cubic spline interpolation was used to resample

the image scale in the slice to reduce the heterogeneity

results from different scanners, resulting in a voxel size of

1mm×1mm×1mm (31, 32). The radiomics features were

automatically extracted from each radiologist’s ROIs using the

Python package Pyradiomics (http://pyradiomics.readthedocs.

io) (33). The radiomics features were standardized by referring

to the Image Biomarker Standardization Initiative (IBSI) (34).

The study was based on the reporting guidelines of IBSI. The

hand-crafted radiomics features were divided into three different

groups of features: shape features, histogram statistics, second

order features: Gray Level Co-occurrence Matrix (GLCM), Gray

Level Dependence Matrix (GLDM), Gray Level Run Length

Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),

Neighboring Gray Tone Difference Matrix (NGTDM). Most

features mentioned above were delineated according to the

IBSI, and the detailed introduction of the features were

described in Supplementary Material.
FIGURE 1

Flow chart of patient selection.
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Harmonization

Radiomics extracts features from medical images more

precisely than general visual evaluation. However, radiomics

features are affected by the acquisition protocol and

reconstruction methods, thus obscuring underlying biologically

important texture features. In practical clinical retrospective

studies, it is impractical to standardize the parameters of

different devices in advance. In order to reduce the batch

effect, ComBat harmonization technique had been successfully

applied to properly correct radiomic feature values from

different scanner or protocol effect (35). We exploited the

ComBat to pool and harmonize radiomics and deep learning

features after extraction.
Feature selection and
model construction

Based on the training set, we performed deep learning or

radiomics feature selection and constructed model for predicting

lymph node metastasis. Firstly, the z-score normalization was

used for standardization. In addition, we selected top 20% best

features by univariate analysis. Then, we used an embedded

feature selection approach based on the least absolute shrinkage

and selection operator (LASSO) algorithm to select the most

predictive features. Classification model was constructed by the

SVM (36). We also built a clinical model based on the clinical

characteristics. The code for model construction is available on

Github (https://github.com/cmingwhu/DL-LNM).
Statistical analysis

P values for differences in the clinical characteristics between

cohorts were assessed by Fisher’s exact test or Chi-square test for

categorical variables, and the Mann-Whitney U test or independent

t-test for numeric variables. Receiver operating characteristic curve

(ROC) was adopted to determine the predictive performance of the

relatedmodels, while the DeLong’s test was adopted for comparison

of AUC between each model. The AUC and 95% confidence

interval (CI) were calculated. Accuracy, specificity and sensitivity

were calculated to assess the diagnostic performance. The

calibration of the model was evaluated by the calibration curves

using the Hosmer-Lemeshow test. To assess the reproducibility of

our results, we randomly divided the patients into training or testing

set ten times. Subsequently, the model was reconstructed and

validated repeatedly. P value < 0.05 was considered statistically

significant. We used Python version 3.6 (https://www.python.org/)

and R version 4.0.3 (https://www.r-project.org) to perform

statistical analysis and graphic production. The packages used in

this study are shown in Supplementary Material.
Frontiers in Oncology 04
122
Results

Clinical characteristics

Figure 2 depicts the workflow processes. Of the 523 patients

(mean age: 59.64 ± 10.24 years; male: 74.40%) with locally

advance gastric cancer for this study, 367 patients were

assigned to the training cohort, and 156 patients was assigned

for testing cohort. Clinical characteristics in two cohorts are

shown in Table 1. No significant difference was identified in

terms of sex, age, tumor location, tumor thickness between the

two cohorts (Tables 1, S1). Tumor diameter, clinical T stage, and

CT-reported LN differed significantly between LNM-negative

and positive group in two cohorts (p <0.05). Finally, a clinical

model was established (incorporating tumor diameter, CT-

reported LN and clinical T stage) for predicting LNM, yielding

an AUC of 0.683 and 0.756 for testing and training cohorts,

respectively, as shown in Tables 2, S2.
Handcrafted radiomics
model construction

851 handcrafted radiomics features were extracted, where

107 were from the original images and 744 were from the

wavelet filtered images. After ComBat harmonization (35).

Forty-eight features were selected, including three and forty-

five from original and wavelet filtered images (Table S3). The

handcrafted radiomics model get an AUC of 0.704, C-index of

0.704, accuracy of 61.8%, sensitivity of 56.5%, specificity of

73.5%, positive predictive value (PPV) of 82.4%, and negative

predictive value (NPV) of 43.4% in the testing cohort, and an

AUC of 0.779, C-index of 0.779, accuracy of 74.0%, sensitivity of

77.5%, specificity of 66.4%, positive predictive value (PPV) of

83.2%, and negative predictive value (NPV) of 57.9% in the

training cohort in Tables 2, S2.
Deep learning model construction

For predicting LNM based on deep learning features, we

compared five CNNs models which were adopted to extract

deep features to optimize the prediction performance. The

AUC ranged from 0.578 to 0.796 for testing cohort, and 0.804

to 0.897 for training cohort, as shown in Table 2, S2. The

ResNet-SVM model containing 116 deep learning features

could get the best classification performance among the five

CNNs models and was superior to the radiomics model, and

yielding an AUC of 0.796, C-index of 0.796, accuracy of

75.2%, sensitivity of 80.2%, specificity of 64.7%, PPV of

82.5%, NPV of 61.1% in the testing cohort in Figures 3A, B.

The calibration and favorable clinical benefit could also get
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FIGURE 2

Analysis flowchart. (A, B) Features extraction from the deep learning method and handcrafted radiomics method. (C) Machine learning methods
were employed in model construction. (D) Model evaluation. CNN, convolutional neural network; LASSO, the least absolute shrinkage and
selection operator; SVM, support vector machine; AUC, area under the receiver operating characteristic curve; DCA, decision curve analysis.
TABLE 1 The clinical characteristics of patients in the training and testing cohorts.

Characteristics Training cohort (120: 247) Testing cohort (47: 109)

LNM (-) LNM (+) P value LNM (-) LNM (+) P value

Age (mean ± SD, years) 59.98 ± 10.53 59.83 ± 10.40 0.834 60.98 ± 10.91 58.66 ± 9.46 0.182

Sex

Female 28 (23.3) 66 (26.7) 0.569 16 (13.04) 24 (22.0) 0.168

Male 92 (76.7) 181 (73.3) 31 (86.96) 85 (78.0)

Location

Cardia/fundus 67 130 0.453 26 52 0.655

Body 23 51 11 26

Antrum 29 57 10 29

More than two-thirds of stomach 1 9 0 2

Tumor thickness ± SD (mm) 22.65 ± 8.58 23.43 ± 7.70 0.383 21.71 ± 7.67 21.93 ± 7.46 0.865

Tumor diameter ± SD (mm) 82.60 ± 41.59 94.22 ± 51.70 0.032* 70.29 ± 30.46 90.36 ± 51.69 0.014*

Clinical T stage

T2 13 21 0.005* 9 13 0.006*

T3 81 130 33 57

T4a 26 96 5 39

CT-reported LN

Negative 90 76 <0.001* 39 37 <0.001*

Positive 30 181 8 72
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LNM, lymph node metastasis; (-), negative; (+), positive; *p < 0.05.
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good performance in Figures 3C, D. The number of features

were adopted in model of different CNNs are listed in Table

S4. Features maps from the ResNet model could indicate the

locations that were important in generating the output. With

the segmentation of the tumor region delineated, the

informative slices (one slice with the maximum tumor area)

were cropped to 224 × 224 mm using a bounding box

covering the whole tumor area. The cropped images were

used to generate the features from ResNet and the

visualization of feature heatmaps were generated based on

the Guided Grad-CAM, as shown in Figure 4. The tumoral

lesion and perifocal areas in images were of great valuable for

the feature pattern extraction. Then, we further analyzed the

performance generated by features extracted from different

layers to see whether the last layer was the most suitable to

extract features. The current features extraction strategy is the

best for ResNet in Table S5.

Different classifiers and features selection methods could

greatly affect the prediction performance. For the features

extracted from different CNNs, we compared the cross

combination of multiple classifiers and feature selection

methods. We find that the performances of different

combinations are different, the results shown that the current

combination method of classifier and extraction (ResNet-SVM)

demonstrated the best discrimination ability with an AUC of

0.796 (95% CI, 0.715-0.865) for our dataset, as shown in Figure

S1 and Table S6, but further generalization tests on other

datasets are required. The DeLong test showed that there were

significant improvements in contrast to the radiomics model and

the clinical signature (p < 0.05), which yielded AUCs of 0.704

(95% CI, 0.625–0.783) and 0.683 (95% CI, 0.632–

0.721), respectively.
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Radiomics-deep learning
combined model

We further integrated the radiomics and deep learning features

to explore whether the predictive capability could be improved.

After combination with radiomics and deep features, the prediction

performance had not been improved, with a comparable AUC of

0.787 in the testing cohort in Figure S2. In addition, we further

evaluated the addition of clinical factors to radiomics or deep

learning features for potential improvement of prediction

performance. The combination of deep and/or radiomics features

with clinical features were incorporated into the model

construction, the experimental results showed that combination

of clinical factors could not increase the prediction performance in

the testing cohort in Figures S3, S4.
Discussion

In this retrospective study, we applied deep transfer learning

techniques to build a CT imaging-based prediction model for

LNM prediction in gastric cancer. Our previous studies shown

that the noninvasive deep learning CT image-based radiomics

model was effective for LNM prediction and prognosis in GC

(37). Hereby, we adopted transfer learning technique and extract

deep learning features from five different pre-trained CNNs.

Finally, the ResNet-SVM model could achieve better

performance than the handcrafted radiomics and clinical

models. In addition, different gastric cancers have different

potentials for lymph node metastasis due to the heterogeneity

and complexity of primary tumors. Previous studies clarified

that the tumor size were independent risk factors for LNM. Our
TABLE 2 Predictive performance of radiological or clinical models in the testing cohort.

AUC Accuracy Sensitivity Specificity PPV NPV

InceptionResNetV2 0. 707 65.6 67.9 60.8 78.3 47.7

(0.653, 0.771) (60.1, 72.7) (55.9, 72.2) (56.2, 73.3) (73.0, 85.3) (31.7, 53.8)

VGG16 0.661 61.8 65.2 58.0 63.2 60.0

(0.540, 0.745) (55.7, 70.6) (60.6, 69.9) (51.8, 65.8) (55.5, 70.0) (53.7, 69.4)

VGG19 0.578 49.6 40.6 68.6 72.9 35.7

(0.507, 0.661) (41.7, 55.1) (40.6, 51.9) (63.0, 75.6) (66.0, 80.6) (30.6, 47.9)

ResNet50 0.796 75.2 80.2 64.7 82.5 61.1

(0.715-0.865) (67.2, 81.5) (75.4, 84.2) (58.2, 71.6) (74.9, 87.3) (55.5, 69.3)

Xception 0.660 62.4 65.1 56.9 75.8 43.9

(0.607, 0.759) (56.2, 71.6) (52.2, 69.0) (49.8, 68.7) (70.9, 81.1) (40.9, 51.6)

Radiomics 0.704 61.8 56.5 73.5 82.4 43.4

(0.625, 0.783) (54.5, 69.9) (50.8,62.3) (68.8, 79.8) (75.8,87.3) (40.8, 52.1)

Clinical signature 0.683 68.2 67.6 67.7 70.7 53.6

(0.632, 0.721) (65.3, 72.1) (63.5,70.1) (63.1, 71.6) (67.5, 75.2) (50.7, 61.9)
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tiersin.org

https://doi.org/10.3389/fonc.2022.969707
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.969707
FIGURE 4

Grad-CAM visualizations for the feature heatmaps of representative patients generated from the ResNet. The right color bar indicates the scaled
weights of deep features.
A B
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FIGURE 3

Evaluation of predictive performances for ResNet-SVM model and radiomics model. (A) The ROC curves showing the predictive performances
of the ResNet and the radiomics model in testing cohorts. (B) The ROC curves showing the predictive performances of the ResNet and the
radiomics model in training cohorts. (C, D) Curves of calibration analysis and the decision curve analysis for the ResNet and radiomics model.
AUC, area under the receiver operating characteristic curve; LNM, lymph node metastasis.
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results are consistent with the above studies, and it is reasonable

that GCs with greater tumor size tend to have a higher risk of

lymph node metastasis.

As an emerging image quantification approach, radiomics

has been widely used in diagnosis and prognosis of cancer

patients based on medical images (5, 38, 39). Previous studies

mainly focused on the characteristic manifestations of CT

imaging to develop radiomic model, and did not use the

transfer learning technology in the field of radiological

prediction of LNM in gastric cancer. We established a CT-

based model using the novel deep learning technique. Deep

learning features extraction only needs to set a fixed size

bounding box to tumor area, which not only improves the

efficiency, but also reduces the subjectivity of manual

segmentation in the radiomics procedure.

Deep learning technology has been widely used in the field

of medical image processing. However, training a deep learning

model from scratch is often not feasible because of various

reasons: (1) the lack of a number of annotated images for one

specific clinical problem. (2) reaching convergence could take

too long for experiments to be worth. In the medical domain,

using pre-trained CNNs as feature extractors is an effective way

to alleviate these issues (19, 39–41). Transfer learning can

transfer prior knowledge of image features and apply it to

medical imaging with better generalization and ease of

replication and testing. Our research shows that deep

learning features extracted by transfer learning approach

generalized well in medical tasks and achieved fairly good

results. Moreover, the combination of radiomics and deep

learning features did not improve the prediction performance

in our study (Figures S2), which is similar to the results

published by (40, 41). The reason is that the imaging features

calculated from different frameworks might have different

high-level dimensional characteristics, which are not suitable

for feature combination.

Our study has some limitations that are worth noting. First,

tumor regions of interest were manually delineated on CT

images, which is high cost and laborious task. Semi-automatic

or automatic segmentation method may be better. Second,

although our experimental results showed good prediction

performance, indicating that transfer learning could alleviate

the domain difference, heterogeneity existed between various

dataset. The main obstacle of this research is the lack of sufficient

annotated medical images to further train the deep learning

models. Such dataset could further extract more valuable

features to improvement prediction performance. Third, we

followed the IBSI benchmarks to filter the images after

resampling, which may lead to the failure of estimating how

much this would affect wavelet features to some extent. Last, this

study is a single-center which is lack of external validation for

the developed model, but we further randomly divided the
Frontiers in Oncology 08
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patients into training or testing set and reconstructed and

tested repeatedly ten times to evaluate the results. And, we are

working to further access our model in a bigger dataset that may

come from multiple centers.
Conclusion

In conclusion, our study adopted a noninvasive deep

learning technique to perform prediction of LNM in GC.

Compared to the handcrafted radiomics methods, the ResNet-

SVM model could get better performance, and the

implementation is simple and efficient without drawing

the tumor contour manually. This study represented that the

transfer learning strategy might also achieve good performance

in medical imaging tasks without sufficient annotated

medical images.
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Automatic volumetric diagnosis
of hepatocellular carcinoma
based on four-phase CT scans
with minimum extra information

Yating Ling1, Shihong Ying2, Lei Xu3, Zhiyi Peng2,
Xiongwei Mao4, Zhang Chen5, Jing Ni2, Qian Liu1,
Shaolin Gong2 and Dexing Kong1*

1School of Mathematical Sciences, Zhejiang University, Hangzhou, China, 2Department of
Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,
3Computational Imaging and Digital Medicine, Zhejiang Qiushi Institute of Mathematical Medicine,
Hangzhou, China, 4Department of Radiology, The Hospital of Zhejiang University, Hangzhou,
China, 5Department of Radiology, Jiangcun Community Health Service Center, Hangzhou, China
Summary: We built a deep-learning based model for diagnosis of HCC with

typical images from four-phase CT and MEI, demonstrating high performance

and excellent efficiency.

Objectives: The aim of this study was to develop a deep-learning-based model

for the diagnosis of hepatocellular carcinoma.

Materials and methods: This clinical retrospective study uses CT scans of liver

tumors over four phases (non-enhanced phase, arterial phase, portal venous

phase, and delayed phase). Tumors were diagnosed as hepatocellular

carcinoma (HCC) and non-hepatocellular carcinoma (non-HCC) including

cyst, hemangioma (HA), and intrahepatic cholangiocarcinoma (ICC). A total

of 601 liver lesions from 479 patients (56 years ± 11 [standard deviation]; 350

men) are evaluated between 2014 and 2017 for a total of 315 HCCs and 286

non-HCCs including 64 cysts, 178 HAs, and 44 ICCs. A total of 481 liver lesions

were randomly assigned to the training set, and the remaining 120 liver lesions

constituted the validation set. A deep learning model using 3D convolutional

neural network (CNN) and multilayer perceptron is trained based on CT scans

and minimum extra information (MEI) including text input of patient age and

gender as well as automatically extracted lesion location and size from image

data. Fivefold cross-validations were performed using randomly split datasets.

Diagnosis accuracy and efficiency of the trained model were compared with

that of the radiologists using a validation set on which the model showed

matched performance to the fivefold average. Student’s t-test (T-test) of

accuracy between the model and the two radiologists was performed.

Results: The accuracy for diagnosing HCCs of the proposed model was 94.17%

(113 of 120), significantly higher than those of the radiologists, being 90.83%

(109 of 120, p-value = 0.018) and 83.33% (100 of 120, p-value = 0.002). The

average time analyzing each lesion by our proposed model on one Graphics
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Processing Unit was 0.13 s, which was about 250 times faster than that of the

two radiologists who needed, on average, 30 s and 37.5 s instead.

Conclusion: The proposed model trained on a few hundred samples with MEI

demonstrates a diagnostic accuracy significantly higher than the two

radiologists with a classification runtime about 250 times faster than that of

the two radiologists and therefore could be easily incorporated into the clinical

workflow to dramatically reduce the workload of radiologists.
KEYWORDS

computed tomography, diagnosis, hepatocellular carcinoma, deep learning,
arificial intelligence
Highlights
1. The accuracy for diagnosing hepatocellular carcinomas of

the proposed model and two radiologists was 94.17%

(113 of 120), 90.83% (109 of 120, p = 0.018), and 83.33%

(100 of 120, p = 0.002), showing significant differences.

2. The average time analyzing each lesion by our proposed

model was 0.13 s, which was hundred times faster than

the two radiologists.

3. The proposed model can serve as a quick and reliable

“second opinion” for radiologists.
Introduction

Hepatocellular carcinoma (HCC) is the third most common

malignancy worldwide, with incidence rates continuing to rise

(1). CT slices often serve as an important assistive diagnostic tool

for HCCs (2). According to the American Association for the

Study of Liver Disease (AASLD) and the Liver Imaging

Reporting and Data System (LI-RADS) reported by the

American College of Radiology, the hallmark diagnostic

characteristics of HCC on multi-phasic CT slices are arterial

phase hyper-enhancement followed by washout appearance in

the portal-venous and/or delayed phases (3, 4). Four-phase CT

slices that contain non-enhanced, arterial, portal-venous, and

delayed phases are recommended as the clinical standard.
, hemangioma; ICC,

nal neural network;

fused with minimum

EI, minimum extra
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However, ensuring the diagnosis performance of a computer-

aided system equivalent to that of radiologists with minimum

extra information (MEI) about the patients for instance

including only basic data about age and gender on a relatively

small dataset based on four-phase CT images is still challenging

in order to relieve the radiologists’ workload as well as to

improve the diagnosis throughout (5).

Machine learning algorithms have been widely applied in the

radiological classification of various diseases and may potentially

address this challenge (6–8). Recently, among different machine

learnings, deep learning with convolutional neural network

(CNN) have achieved state-of-the-art performances with

respect to pattern recognition of images for various organs

and tissues (9–15). It has been verified that CNN-based

methods show high diagnostic performance in differentiation

of tumors (16–20), but with most of them being limited to 2D

slices, which needs manual selection. Meanwhile, it does not take

advantage of 3D information that can potentially improve the

diagnostic performances (21–25). Moreover, previous works (16,

17, 19, 25) for liver tumor diagnosis use three-phase CT slices,

namely, non-enhanced phase, arterial phase, and transitional

phase, which is between the portal-venous phase and the delay

phase. However, hypointensity in the transitional phase does not

qualify as “washout”, which is considered a strong predictor and

major criterion of HCC (3, 4). Therefore, in this study, we

propose a 3D residual network (ResNet) as our basis network to

explore the 3D structural information with four-phase CT

images for tumor diagnosis (26).

Typically, high-performing CNN requires training on large

datasets, which unfortunately are difficult to obtain especially in

the medical field. As an alternative to large datasets, highly

complicated clinical data collected from multi-modalities are

incorporated to the CNNmodels (27, 28). Numerous works have

discussed the auxiliary role of clinical data for HCC diagnosis,

including, for example, alpha fetoprotein as a serological marker

for HCCs since the 1960s (29), hepatitis B virus infection (30),
frontiersin.org
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and medical record of having non-alcoholic fatty liver diseases

(31). However, those clinical data often require additional

examinations. Therefore, it would be better if one only needs

the patient’s basic information, such as age and gender, which is

crucial for liver tumor diagnosis (32–34) and makes full use of

the spatial morphological information of local lesions that may

be lost or downplayed in image processing.

In summary, our study aims to develop a fast-processing

deep learning algorithm that exploits 3D structural with

dynamic contrast information from four-phase CT scans and

requires minimum patient information, i.e., age and gender, as

well as automatically extracted lesion location and size from

image data based on a relatively small dataset. We name the

algorithm as the MExPaLe model (Model Fused with Minimum

Extra Information about Patient and Lesion). The main

contributions of this work are as follows:
Fron
• We propose a 3D model that feeds volumetric data as

input instead of 2D CT slices to improve the diagnosis

performance.

• We evaluate the diagnosis results of the basic model,

which only uses non-enhanced phase CT images as

input and enhanced model, which adds contrast-

enhanced phase images as additional inputs. We

experimentally confirm the necessity of using

enhanced contrast agents in clinical workflow.

• The MExPaLe model fuses CNN and multilayer

perceptron to incorporate two different modalities:

image data and text data. The text data contain only

information of patient gender and age, appended with

the spatial morphological information of local lesions.

• The MExPaLe model demonstrates high performance

and excellent efficiency. The accuracy and time

efficiency for liver diagnosis of the proposed model are

significantly higher than the two radiologists.
This paper is organized into four sections. In Section 2, we

first describe the data collected in our paper, then introduce

three models in this study, and finally the evaluation metrics

have been presented. Section 3 presents the results of our models

and the comparison with other models and two radiologists. The

discussion is provided in Section 4.
Materials and methods

This retrospective clinical study was approved by the review

board, and the requirement for written informed consent was

waived. Patients diagnosed as benign and HA through 1-year

follow-up in 2018 while diagnosed as HCC and ICC after surgery

or biopsy were enrolled between 2014 and 2017. Individuals

without four-phase CT images were excluded, shown in Figure 1.
tiers in Oncology 03
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Ultimately, a total of 601 lesions (315 HCCs) from 479 patients

were selected. The details are presented in Table 1.
Data preprocessing

All CT slices were obtained with PHILIPS Brilliance iCT 256

scanner (Philips Healthcare, Netherlands). Contrast

enhancement materials (Ultravist 300-3440, Bayer Schering

Pharma AG, Germany) were injected. These four-phase CT

images, stored as DICOM files, have a size of 512×512, and

the thickness of each slice is 3 or 5 mm. The target lesions were

manually labeled with 3D bounding boxes by a radiologist with

10 years of experience (XM) using software designed by Peng

et al. (35) and revised if needed by a radiologist with 38 years of

experience (ZY). The images were further processed by code

written in the programming language Python 3.6 (https://www.

python.org). We first reshaped the four-phase images to 1×1×1

mm using the cubic spline interpolation method and extracted

the lesions and the surrounding 5-mm pixels by the bounding

boxes. Then, the cropped 3D images were resized to a resolution

of 64×64×64 voxels. The images were finally randomly selected

to comprise the test data using fivefold cross-validation with the

remaining images being the training data. Table 2 summarizes

the distribution of each experiment.

The gender and age of the patients are the basic information

recorded in the clinical system. Their contributions to HCC and

non-HCC including benign, HA, and ICC diagnosis were

evaluated in this study. In addition, the location and size of

the lesions are inevitably lost during the common data

preprocessing procedure. Therefore, we recorded the

maximum normalized size and the relative location of the

bounding box as our spatial morphological information during

the data preprocessing. We also evaluated the contribution of

spatial morphological information for HCC diagnosis.
Models

The model was built using Keras 2.2.4 (https://keras.io/) with

a Tensorflow backend 1.5.0 (https://www.tensorflow.org/). For a

baseline, we built a deep learning model based on the structure of

3D ResNet with 14 layers (13 convolutional layers and 1 global

average pooling layer). Filter size of the first convolution layer is

5×5×5, and the following filter sizes are 3×3×3. The filter size of

the global average pooling layer is 2×2×2. The basic model only

uses non-enhanced phase CT images as input while the

enhanced model adds contrast-enhanced phase images as

additional input. For the basic and enhanced model, a fully

connected layer is added following the 3D ResNet structure,

whose output value represents the probability belonging to the

corresponding class. The MExPaLe model contains two
frontiersin.org
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FIGURE 1

Flowchart of our study. Participant selection, model training, model testing and reader study are included in our study.
TABLE 1 Patient characteristics and demographics.

Patient characteristics HCC Cyst HA ICC Total

Number of patients 312 37 107 41 479

Number of lesions 315 64 178 44 601

Age at imaging (mean ± std) 58 ± 11 58 ± 7 50 ± 10 59 ± 10 56 ± 11

Gender

Male 268 28 41 29 350

Female 44 9 66 12 129
Frontiers in Oncology
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HCC, hepatocellular carcinoma; HA, hemangioma; ICC, intrahepatic cholangiocarcinoma; std, standard deviation.
TABLE 2 Distribution of the fivefold cross-validation dataset.

Experiment E1 E2 E3 E4 E5

Training data 480 481 481 481 481

HCC 252 252 252 252 252

Non-HCC 228 229 229 229 229

Test data 121 120 120 120 120

HCC 63 63 63 63 63

Non-HCC 58 57 57 57 57

Total 601 601 601 601 601
rsin.
HCC, hepatocellular carcinoma; E1–E5 denote five sets of experiments.
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pathways: the CT pathway and the MEI pathway. The CT

pathway has the same design as the aforementioned 3D

ResNet structure but with the final classification layer

removed. The MEI contains the patient age and gender

exacted from the DICOM files and the relative size and

location of lesions exacted from the CT pathway. MEI is text

information; thus, we used a multilayer perceptron model

containing two fully connected layers for this pathway. In our

model, after the high-level features are flattened, image features

and the text features are concatenated together. Finally, the

concatenated feature vector is connected to a fully connected

layer for final classification. The overview of the proposed

method is shown in Figure 2.

All models use rectified linear units to help models learn

non-linear features. These are used in conjunction with batch

normalization and dropout to reduce overfitting. Each model

was trained with a stochastic gradient descent optimizer using

minibatches of eight samples. Each model was trained for 80

epochs. The training rate was initially set to 0.01, and it was

reduced by half every 10 epochs.

The performance of the MExPaLe model was compared

with two certified radiologists. The two radiologists (HY, with

21 years of imaging experience, and HC, with 16 years of

imaging experience) did not take part in the data annotation

process and were blinded to the lesion selection. For fair

comparison and to simultaneously mimic the real working

scenario as closely as possible, we provided four-phase CT

DICOM data and the corresponding lesion 3D bounding
Frontiers in Oncology 05
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boxes to both the MExPaLe model and radiologists. The test

set for the reader study consisted of 120 randomly selected

lesions in total (63 HCCs), while the remaining lesions were

assigned to the training set. The time for the model from

reading CT phases until classification of the lesion

was recorded.
Statistics

Receiver operating characteristic (ROC) analyses were

performed to calculate the area under curve (AUC) for

evaluating model performance. The average accuracy,

sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (NPV) for diagnosing each category

were calculated. Student’s t-test (T-test) using IBM SPSS

Statistics 26.0 was also performed to evaluate the statistical

significance of differences in comparative studies.
Results

Figure 1 shows the flowchart of our study, including

participant selection, model training, model testing, and reader

study. A total of 479 participants (350 men and 129 women)

were enrolled in our study. The mean age ± standard deviation at

enrollment was 56 years ± 11. Summaries of included

participants are described in Table 1.
FIGURE 2

Overview of the proposed method. The upper part is MEI pathway and the lower part is the CT pathway. The 3D ResNet in CT pathway contains
14 layers (13 convolution layers, and 1 global average pooling layer). Filter size of the first convolution layer is 5×5×5, and the following filter
sizes are 3×3×3. Filter size of the global average pooling layer is 2×2×2. The basic model and enhanced model only have the CT pathway.
The size of image input in basic model is 64×64×64×1 while the others are 64×64×64×4. MEI, Minimum Extra Information.
frontiersin.org
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Basic model and enhanced model

The diagnosis performances of the basic model and the

enhanced model are shown in Table 3. Compared with the basic

model, the enhanced model shows higher accuracy (17.30%

higher in average, 91.68% vs. 74.38%, p < 0.001), AUC

(18.47% higher in average, 95.79% vs. 77.32%, p < 0.001),

sensitivity (12.06% higher in average, 94.60% vs. 82.54%, p =

0.029), specificity (23.03% higher in average, 88.45% vs. 65.42%,

p = 0.001), PPV (17.34% higher in average, 90.03% vs. 72.69%,

p < 0.001), and NPV (15.45% higher in average, 93.77% vs.

78.32%, p = 0.008).

The ROC curves of the basic and enhanced models with the

corresponding AUC values are shown in Figure 3. The liver

masses misdiagnosed by the basic model or enhanced model are

shown in Figure 4. We present four-phase images of a 62-year-

old man with a hemangioma and a 54-year-old man with an
Frontiers in Oncology 06
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HCC. The major criterion of HCC such as “wash out” cannot be

extracted by the model without the contrast-enhanced CT slices,

which leads to the poor performance of the basic model.
MExPaLe model

In order to further improve the diagnosis, we first extracted

the spatial morphological information of the local tumor

during the data preprocessing process. Then, we added the

patient ’s age and gender information, which were

automatically recorded in the medical system. We finally

compared the average diagnosis accuracy of models with

different extra information, as shown in Figure 5. The

average accuracy of the MExPaLe model was 94.18%, which

was higher than that of the enhanced model (91.68%), the

enhanced model with spatial morphological information
FIGURE 3

ROC curves of basic model and enhanced model. The lines reflect the average performances of the models, and the light-colored area reflects
the fluctuation of the models represented by the corresponding standard deviations.
TABLE 3 Performance of basic model and enhanced model.

Parameter (%) Basic model Enhanced model p-value*

Accuracy 74.38 (70.25–80.00) 91.68 (86.67–95.87) < 0.001

AUC 77.32 (69.08–83.65) 95.79 (92.93–98.09) < 0.001

Sensitivity 82.54 (69.84–95.24) 94.60 (90.47–100.00) 0.029

Specificity 65.42 (53.45–95.24) 88.45 (82.46–91.38) 0.001

PPV 72.69 (66.67–76.92) 90.03 (85.07–92.64) < 0.001

NPV 78.32 (68.85–92.31) 93.77 (88.67–100.00) 0.008
fron
AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value. Data are median values in brackets and range in parentheses.
*p-value for differences between basic model and enhanced model, calculated with Student’s t-test.
The bold values show the significant differences between basic model and enhanced model.
tiersin.org
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(92.34%), the enhanced model with spatial morphological

information and age (92.68%), and the enhanced model with

spatial morphological information and sex (92.84%).

The diagnostic performance of the MExPaLe model

compared with other authors is shown in Table 4. The

MExPaLe model achieved an average accuracy of 94.18%,

which was 4.99% higher than 2D CNN, 3.34% higher than 3D
Frontiers in Oncology 07
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CNN, and 2.50% higher than 3D ResNet. Particularly, the

MExPaLe model showed good performance in terms of

specificity and NPV. The ROC curves of models are described

in Figure 6A, and the confusion matrix of the MExPaLe model is

described in Figure 6B. The MExPaLe model achieved an

average AUC of 96.31%, which was 1.53% higher than 2D

CNN, 0.31% higher than 3D CNN, and 0.52% higher than 3D
FIGURE 5

The average accuracy and standard deviations of different models. Model 1, Enhanced model; Model 2, Enhanced model with spatial
morphological information; Model 3, Enhanced model with spatial morphological information and age; Model 4, Enhanced model with
morphological information and gender; Model 5, MExPale model.
A

B

FIGURE 4

The liver masses misdiagnosed by models. (A) shows four phase images of a 62-year-old man with a hemangioma (arrow) that was diagnosed
through one-year follow-up in 2018. The mass was correctly diagnosed as non-HCC by using enhanced model and our MExPale model. It was
misdiagnosed as HCC by using basic model. (B) shows four phase images of 54-year-old man with a HCC (arrow) that was diagnosed after
surgery. The mass was correctly diagnosed as HCC by using our MExPale model. It was misdiagnosed as HCC by using basic model and
enhanced model.
frontiersin.org
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ResNet. The average ratio of true positive was 98.10%, and the

average ratio of true negative was 89.85%.
Reader study

In the reader study, classification of 120 randomly selected

lesions by the MExPaLe model achieved an accuracy of 94.17%

(113/120). Diagnosis accuracies by radiologists from the First

Affiliated Hospital of Zhejiang University (radiologist 1) and

from the community primary hospital (radiologist 2) on the

same lesions were 90.83% (109/120) and 83.33% (100/120),

respectively (Table 5). We then randomly divided the lesions

into five equal parts using T-test for statistical comparisons

between the radiologists and our proposed MExPaLe model.

The p-values comparing the MExPaLe model and radiologists 1

and 2 were 0.018 and 0.002, respectively, suggesting significant

differences. The average runtime analyzing each lesion was 0.13

s for the MExPaLe model on one Graphics Processing Unit,

while for the radiologists, on average 30 s and 37.5 s were

needed. ROC curves of our MExPaLe model and two
Frontiers in Oncology 08
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radiologists are shown in Figure 7. The misdiagnosed cases

of the model and radiologists are described in Table 6. The

coincidence degree between the MExPaLe model and

radiologist 1 was 16.67% for HCC masses and 10.00% for

non-HCC masses, while with radiologist 2, the coincidence

degree was 25.00% for HCC masses and 22.22% for non-HCC

masses. Our model showed a lower misdiagnosis rate for HCC

masses compared with the two radiologists. Moreover, the

performance of our model was more stable than those of the

radiologists, with radiologist 1 showing high misdiagnosis for

HCC masses and radiologist 2 showing high misdiagnosis for

non-HCC masses. Some representative masses with varying

diagnostic results from the MExPaLe model and the two

radiologists are shown in Figure 8. As shown in Figure 8B,

71.43% (5/7) of the misdiagnosed cases by the model were ICC

masses being misdiagnosed as HCC masses. This also

constitutes the majority of misdiagnoses by the radiologists

since it is hard to differentiate HCC from ICC especially owing

to the low incidence rate of ICC. Therefore, by increasing the

cases of ICC to balance the dataset, the model performance can

be improved in the future.
A B

FIGURE 6

Performance of models. (A) ROC curves of models, (B) The confusion matrix of our MExPale model. HCC, hepatocellular carcinoma.
TABLE 4 Performance of models.

Parameter (%) Accuracy AUC Sensitivity Specificity PPV NPV

2D CNN (16) 89.19 94.78 89.21 89.17 90.11 88.30

3D CNN (16) 90.84 96.00 91.75 89.84 90.90 91.06

3D ResNet (25) 91.68 95.79 94.60 88.45 90.03 93.77

MExPaLe model 94.18 96.31 98.10 89.85 91.45 97.70
frontiers
AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value. The 3D CNN is generated from 2D CNN in (16).
The bold values show the best performance of models.
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Discussion

In this work, we built a deep learning-based model, MExPaLe,

for the diagnosis of liver tumor with typical images from four-

phase CT and MEI, demonstrating high performance and

excellent efficiency. The accuracy for diagnosing liver tumors of

the proposed model and the two radiologists were 94.17% (113 of

120), 90.83% (109 of 120, p = 0.018), and 83.33% (100 of 120, p =

0.002), showing significant differences. The average time analyzing

each lesion by our proposed MExPaLe model was 0.13 s, which

was close to 250 times faster than that of both radiologists.

We used volumetric 3D CT patches as inputs. The 3D model

can provide more relevant information to lesion classification,

minimizing model variability, and it was not dependent on

manual slice selection. Concerns for using the 3D model may

involve possible expensive computational cost and time

consumption. However, by focusing on local liver lesions and

a relatively shallow model structure, we achieved sub-second

runtime per case, taking four-phase CT volumetric scans as

input, and therefore, it no longer becomes a practical obstacle.

In real clinical conditions, critical diagnostic features, such as

hyper-enhancement and washout, are the main features used by
Frontiers in Oncology 09
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radiologists. These features are obtained through the

comparison of multi-phase CT images, necessitating the use of

enhanced contrast agents to improve the diagnosis accuracy.

This is also verified by our results obtained from the basic model

and enhanced model, which had a median accuracy of 74.38%

(range, 70.25%–80.00%) and 91.69% (range, 86.67%–95.87%),

respectively, and by the statistical test.

Many works have confirmed that clinical data about the

patients can improve the performance of diagnosis. However,

the clinical data used in those works are often too complicated to

obtain, and their processing requires additional manpower and

material resources. More importantly, some clinical data can be

inaccurate at the time of collection, such as family genetic

history. Instead, our experiment requires only the basic

information of the patient, i.e., age and gender, and minimal

spatial morphological information lost during image

preprocessing, which does not increase the clinical workload;

therefore, it is of high practical value to be used in the clinics.

The proposed MExPaLe model showed a median accuracy of

94.18% (range, 91.67%–96.67%) and a median AUC of 96.31%

(range, 93.34%–98.22%). The MExPaLe model showed high

specificity and NPV, attributed to the usefulness of the MEI in
FIGURE 7

ROC curves of our MExPale model and two radiologists. Radiologist 1 comes from the First Affiliated Hospital of Zhejiang University, and
Radiologist 2 comes from a community primary hospital.
TABLE 5 Overall accuracy and times for model and radiologists’ classification.

Parameter MExPaLe model Radiologist 1 p-value* Radiologist 2 p-value*

Accuracy (%) 94.17 (113/120) 90.83 (109/120) 0.018 83.33 (100/120) 0.002

Time 0.13 s 30 s – 37.5 s –
fron
Radiologist 1 comes from the First Affiliated Hospital of Zhejiang University, and Radiologist 2 comes from a community primary hospital.
*p-value for differences between the MExPaLe model and radiologists, calculated with Student’s t-test.
The bold values show the best performance in terms of accuracy and time.
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predicting liver tumor, which made the MExPaLe model more

effective than others.

Furthermore, theMExPaLemodeldiffers frompreviousworks in

that it does not require complex-shaped ROI tracing boundaries of

tumors.The locationandsizeof a3Dboundingboxaround the target

lesion are enough in our work. We included 5-mm extra pixels

surrounding the lesions to learn more peri-tumoral information,

which is necessary for enhancing tumordifferentiation.Additionally,

it can reduce the possible subjective bias in the image capture process

and maintain tumor size information to a certain extent.

Thedirect comparisonbetween theMExPaLemodel and the two

radiologists suggests that the MExPaLe model can serve as a reliable

and quick “second opinion” for radiologists. In the diagnosis of

HCCs, the accuracy of the MExPaLe model was higher than that of

the chief radiologist at afirst-tier researchhospital and the radiologist

from a community primary hospital, both with statistical

significances. Furthermore, the runtime of the MExPaLe model per
Frontiers in Oncology 10
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case for liver tumor diagnosis was close to 250 times faster compared

with the radiologists, suggesting that the use of the MExPaLe model

can greatly improve the diagnosis throughput in the clinics.

While these results are promising, several limitations should

be acknowledged regarding this study. Because of the limited

number of imaging studies, we were restricted to a cross-

validation experimental design. It would be better if we can

incorporate an additional test dataset, and ideally an external

dataset to consolidate the usefulness of our model in the clinical

diagnosis of HCCs. Another limitation is that only four typical

primary liver cancer types were available with the exclusion of

other relevant cancers types including metastatic liver cancers.

In conclusion, we proposed a model for the diagnosis of liver

tumor. The MExPaLe model, which has incorporated four-phase

CT volumes and the MEI, achieves the highest prediction accuracy

of 94.18% (range, 91.67%–96.67%) and an AUC of 96.31% (range,

93.34%–98.22%). It is superior to both the basic model and the
A

B

FIGURE 8

The liver masses misdiagnosed by model and two radiologists. (A) shows four phase images of a 59-year-old man with a HCC (arrow) that was
diagnosed after surgery. The mass was misdiagnosed diagnosed as non-HCC by and our MExPale model and both two radiologists. (B) shows
four images of a 64-year-old man with a ICC (arrow) that was diagnosed after surgery. The mass was misdiagnosed diagnosed as HCC by our
MExPale model and both two radiologists.
TABLE 6 Misdiagnosed images for model and radiologists’ classification.

Parameter MExPaLe model Radiologist 1 Radiologist 2

Misdiagnoses

HCC 1 6 4

Non-HCC 6 5 16

Coincidence degree

HCC - 16.67% (1/6) 25.00% (1/4)

Non-HCC – 10.00% (1/10) 22.22% (4/6)
Radiologist 1 comes from the First Affiliated Hospital of Zhejiang University, and Radiologist 2 comes from a community primary hospital. HCC, hepatocellular carcinoma.
The bold values mean the number of misdiagnosed masses for our model classification.
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enhanced model. It is about 250 times more time-efficient

compared with the radiologists for liver tumor diagnosis, taking

only 0.13 s. The architectural design of theMExPaLemodel may be

applicable to more multi-phase CT-based diagnosis projects to

provide high-quality patient care in a time-efficient manner.
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Guolin Ma3, Pengyu Wang4*, Dingrong Zhong2* and Jie Liu1*

1School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China,
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Engineering, East China University of Science and Technology, Shanghai, China
Objectives: Accurate histological typing plays an important role in diagnosing

thymoma or thymic carcinoma (TC) and predicting the corresponding

prognosis. In this paper, we develop and validate a deep learning-based

thymoma typing method for hematoxylin & eosin (H&E)-stained whole slide

images (WSIs), which provides useful histopathology information from patients

to assist doctors for better diagnosing thymoma or TC.

Methods: We propose a multi-path cross-scale vision transformer (MC-ViT),

which first uses the cross attentive scale-aware transformer (CAST) to classify

the pathological information related to thymoma, and then uses such

pathological information priors to assist the WSIs transformer (WT) for

thymoma typing. To make full use of the multi-scale (10×, 20×, and 40×)

information inherent in a WSI, CAST not only employs parallel multi-path to

capture different receptive field features from multi-scale WSI inputs, but also

introduces the cross-correlation attention module (CAM) to aggregate multi-

scale features to achieve cross-scale spatial information complementarity.

After that, WT can effectively convert full-scale WSIs into 1D feature matrices

with pathological information labels to improve the efficiency and accuracy

of thymoma typing.

Results: We construct a large-scale thymoma histopathology WSI (THW)

dataset and annotate corresponding pathological information and thymoma

typing labels. The proposed MC-ViT achieves the Top-1 accuracy of 0.939 and

0.951 in pathological information classification and thymoma typing,

respectively. Moreover, the quantitative and statistical experiments on the

THW dataset also demonstrate that our pipeline performs favorably against

the existing classical convolutional neural networks, vision transformers, and

deep learning-based medical image classification methods.

Conclusion: This paper demonstrates that comprehensively utilizing the

pathological information contained in multi-scale WSIs is feasible for

thymoma typing and achieves clinically acceptable performance. Specifically,
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the proposed MC-ViT can well predict pathological information classes as well

as thymoma types, which show the application potential to the diagnosis of

thymoma and TC and may assist doctors in improving diagnosis efficiency and

accuracy.
KEYWORDS

thymoma typing, histopathology whole slide image, vision transformer, cross-
correlation attention, multi-scale feature fusion
Introduction

Thymic epithelial tumors (i.e., thymomas) are uncommon

and primary anterior mediastinum neoplasms derived from the

thymic epithelium. According to the histological classification

standard, the World Health Organization (WHO) distinguishes

thymomas (types A, AB, B1, B1+B2, B2, B2+B3, and B3) from

thymic carcinoma (TC) (1, 2). Considering that thymoma may

gradually develop into TC, thymoma typing is crucial to assist

doctors in diagnosis and prognosis (3). The morphological

diagnosis of thymoma has traditionally posed difficulties for

histopathologists since thymoma has great histological

variability and intratumoral heterogeneity (4, 5), and it is

difficult to conceptualize a cogent and easily reproducible

morphological classification standard. Currently, based on the

schema of WHO, the morphological classification of thymic

epithelial neoplasms is described as follows: Type A thymoma

usually consists of the spindle or ovoid-shaped cells with bland

nuclei, scattered chromatin, and inconspicuous nucleoli

arranged in solid sheets with few or no lymphocytes in the

tumor. By comparison, type B thymoma may display coarse

lobulation delineated by fibrous septa. Type B1 thymoma

contains dense lymphocyte neoplastic with scant neoplastic

epithelial cells, which are composed of oval cells with pale

round nuclei and small nucleoli. In type B2 thymoma, the

neoplastic thymic epithelial cells are increased in number and

appear as scattered plump cells among equivalent mixed

lymphocytes. The epithelial cells are large and polygonal,

which have obvious vesicular nuclei and central prominent

nucleoli, and show a tendency to palisade around vessels and

fibrous septa. Here, dilated perivascular spaces are commonly

existed. Type B3 thymoma corresponds to the lobular growth

pattern of a smoothly contoured tumor composed

predominantly of epithelial cells having a round or polygonal

shape and clear cytoplasm. Note that perivascular spaces with

epithelial palisading are prominent, and lymphocytes are almost

always interspersed among the tumor cells. In addition, type AB

thymoma has features of type A thymoma that are admixed with

foci showing features of type B thymoma. TC exhibits clear-cut
02
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cytological atypia and a set of cytoarchitectural features no

longer specific to the thymus (6).

At present, the diagnosis of thymoma and TC basically relies

on the visual observation of WSIs by histopathologists. With the

rapid development of deep learning technology, we aim to

develop a computer-assisted diagnosis (CAD) system to

provide doctors with more histopathological information to

assist the diagnosis and prognosis. More specifically, we can

achieve the initial screening of WSIs through an efficient CAD

system (7–10) to assist doctors in obtaining the detailed

thymoma pathological information and the accurate thymoma

typing results. Over the past few years, convolutional neural

networks (CNNs) have shown excellent performance in most

computer vision tasks including medical image processing.

However, many studies (11–13) have gradually discovered

some inherent limitations of CNNs, such as the difficulty in

modeling long-range dependencies and the local receptive field.

To better modeling global feature relations, some scholars

extend the transformer from the natural language processing

field to the computer vision field, and then propose high-

performance vision transformers (ViTs) including Swin-T

(12), PVT (13), LeViT (14), TNT (15), T2T-ViT (16), IPT

(17), and Uformer (18) to serve various high-level and low-

level vision tasks. In addition, there are also some ViT variants

developed to achieve medical image processing, such as GasHis-

ViT (19) for histopathology image normal and abnormal

classification, and Swin-Unet (20) and AFTer-Unet (21) for

multi-organ CT image segmentation. However, in digital

pathology workflow, existing ViTs are difficult to effectively

utilize for thymoma histopathology WSI typing due to the

following two problems (1): Affected by the implementation

mechanism of multi-head self-attention (MSA), current ViTs

usually have large computational costs; thus, it is unsuitable to

directly process the full-scale WSI with millions of resolutions

(2). Although many existing ViTs can effectively model global

and local feature relations, most of them fail to employ the

complementary between multi-scale or multi-resolution

features. Considering that thymoma histopathology WSIs have

the inherent multi-scale information, for example, a WSI
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includes three magnification versions in terms of 10 × , 20 × ,

and 40 × . Moreover, the local pathological information of a WSI

has close correspondences with the thymoma type. Therefore,

we can address such problems by comprehensively employing

the above-mentioned two types of information to design ViT.

In this paper, we propose a multi-path cross-scale vision

transformer (MC-ViT) to achieve thymoma histopathology WSI

typing. MC-ViT contains two core components, the first one

named cross attentive scale-aware transformer (CAST), which

takes the multi-scale patches from the same WSI as inputs and

then predicts corresponding pathological information classes

(spindle thymic epithelial cells, B1 thymic epithelial cells, B2

thymic epithelial cells, B3 thymic epithelial cells, fibrous septa,

erythrocyte, lymphocyte, perivascular space, medullary

differentiated areas, and tumor) to serve thymoma typing.

Unlike the standard ViT (11), the proposed CAST constructs

multiple paths to separately process 10 × , 20 ×, and 40 × WSI

patches for capturing potential pathological information in

different receptive field features. In general, 10 × WSI patches

contain more information about the medullary differentiated

areas and fibrous septa, 20 × WSI patches are mainly related to

the perivascular space and lymphocyte, and 40 × WSI patches

can better reflect the properties of the erythrocyte and thymic

epithelial cells. To comprehensively utilize such pathological

information, we also propose a cross-correlation attention

module (CAM) to fuse multi-scale features in the main path of

CAST. The second component is the WSIs transformer (WT),

which is designed to classify the thymoma type of WSIs. Here,
Frontiers in Oncology 03
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we propose to use the fixed number of multi-scale WSI patches

to represent a full-scale WSI, and introduce the pathological

information labels of these WSI patches as priors to improve the

interpretability and accuracy of thymoma typing. Specifically, we

concatenate the low-level features of multi-scale WSI patches

and corresponding pathological information labels to form a 1D

feature matrix as the input, and then predict the thymoma type

(A, AB, B1, B1+B2, B2, B2+B3, B3, or C) by WT. Based on this

design, we achieve 95.1% thymoma typing accuracy using a

lightweight model with only a three-stage transformer encoder.

Finally, this paper constructs a large-scale thymoma

histopathology WSI (THW) dataset, which contains 129

hematoxylin & eosin (H&E)-stained WSIs with the

pathological information and thymoma typing annotations.

The thymoma diagnosis workflow is illustrated in Figure 1,

and the main contributions can be summarized as follows:
• We propose an MC-ViT, which is the first transformer

architecture designed for thymoma histopathology WSI

typing.

• We develop a CAST with a cross-correlation attention

mechanism, which can fully leverage the multi-scale

information inherent in WSIs to achieve pathological

information classification.

• We achieve the end-to-end thymoma histopathology

WSI typing. The proposed WSIs transformer takes

pathological information labels as priors to convert a

WSI into a 1D feature matrix as the network input,
FIGURE 1

Illustration of the thymoma diagnosis workflow. Firstly, we collect the clinical data from the China–Japan Friendship Hospital to construct the
thymoma histopathology WSI (THW) dataset. Then, histopathologists are invited to manually label the WSIs of the THW dataset as eight
thymoma types with 10 classes of local pathological information. Next, we propose the cross attentive scale-aware transformer (CAST) for
pathological information classification, which can guide the WSI transformer (WT) to achieve accurate thymoma histopathology WSI typing.
Finally, according to the predicted results of the network, doctors can more efficiently and accurately diagnose thymoma and TC.
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which solves the computing complexity problem caused

by full-scale WSI.

• We publish a large-scale thymoma histopathology WSI

dataset with 323 H&E-stained WSIs from 129 patients

and annotate the pathological information classes and

thymoma types.
Related works

Vision transformers

Starting with AlexNet (22), deep CNNs serve as the

mainstream backbone networks in computer vision for many

years. However, many studies (11–13) point out that CNNs are

unsuitable to model long-range dependencies in the data.

Recently, with the development of the non-local self-attention,

the transformer (23) and its variants (12–15, 17, 18) show

excellent performance on many computer vision tasks and the

potential to replace CNNs. For example, ViT (11) adopts the

classical transformer architecture [23] to achieve image

classification; it first splits an image into non-overlapping

patches and then regards these patches as input tokens for

network training. To reduce the model complexity of the

vision transformer, Swin-T (12) proposes an efficient shifted-

window-based self-attention, and adopts two successive Swin

transformer blocks to model non-local feature relations. For

achieving dense prediction tasks (e.g, instance segmentation and

object detection), Wang et al. (13) design the Pyramid Vision

Transformer (PVT) and the Spatial-Reduction Attention (SRA)

to effectively reduce resource consumption and computational

costs of using transformer. Moreover, in high-level vision tasks,

LeViT (14) develops an alternately residual block and employs

the attention bias to replace traditional absolute position

embeddings for achieving competitive performance. After that,

transformer in transformer (TNT) (15) combines the patch-level

and pixel-level transformer blocks; thus, this architecture can

effectively represent the feature relations between and within

regions. In low-level vision tasks, Chen et al. (17) not only

construct a large-scale benchmark based on the ImageNet

dataset, but also design an image processing transformer (IPT)

to serve various image restoration tasks including image super-

resolution, denoising, and deraining. Then, Uformer (18)

presents a hierarchical U-shaped transformer architecture with

skip connections like U-Net (24). By combining the depth-wise

convolution in basic transformer blocks, Uformer can capture

long-range and short-range dependencies (global and local

information) simultaneously. However, the above vision

transformers fail to comprehensively consider the multi-scale

information of an image. In this paper, we further propose an

MC-ViT, which can effectively extract and employ multi-scale

features to improve network performance.
tiers in Oncology 04
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Attention mechanism

In deep learning-based methods, the attention mechanism

can enhance important features as well as suppress redundant

features, thereby improving the network performance on various

computer vision tasks. In general, attention mechanisms are

mainly divided into three classes according to different modes of

action (1): channel attention, (2) spatial attention, and (3) self-

attention. In addition to the self-attention mechanism

mentioned above, it is worth noting that the Squeeze-and-

Excitation (SE) module (25) is the first plug-and-play channel

attention mechanism, which can model the cross-channel

interdependence to enhance the useful channels of features.

Motivated by the SE module, selective kernel network (SKNet)

(26) presents to use the multi-scale information with different

receptive fields to adjust the weights of the channel attention.

Subsequently, Woo et al. (27) design a convolutional block

attention module, which not only proposes spatial attention to

enhance important feature locations by aggregating

neighborhood information, but also combines spatial attention

and the channel attention for achieving attention

complementarity. The similar spatial attention is also used in

the Attention-UNet (28). In addition, triplet attention (29) and

tensor element self-attention (30) can establish the cross-

dimension feature interactions for achieving multi-view spatial

attention. More recently, to model the attention across multi-

scale features, cross-MPI (31) presents to use the batch-wise

multiplication to explicitly correlate input features and

corresponding multi-depth planes. Different from the above

methods, we develop an efficient cross-correlation attention

module in CAST; this attention mechanism can model the

spatial-level multi-scale feature relations and then enhance the

multi-scale fusion features at each transformer block. Extensive

experiments also demonstrate that the proposed CAM is

effective to improve the network performance on the thymoma

typing task.
Materials and methods

Patients and dataset

In this study, all content, including the informed consent of

patients, received approval from the Institutional Ethics Review

Committee of the China–Japan Friendship Hospital. Specifically,

we collected 323 H&E-stained whole slides from 129 thymoma

and TC patients, and show the clinical information of such

patients in Table 1. Afterwards, we produced corresponding

thymoma histopathology WSIs by scanning these slides through

the high-throughput digital scanner Shenzhen Shengqiang

Technol. Co. Ltd (Slide Scan SystemSQS-600P). Each WSI has

three magnification scales in terms of 10×, 20× and 40× with
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resolutions of 0.57 mm/pixel , 0.29 mm/pixel , and 0.14 mm/pixel ,

respectively. To obtain accurate thymoma typing annotations,

we invited experienced pathologists to label such WSIs as eight

thymoma types, as shown in Figure 2, namely, type A, type AB,

type B1, type B1+B2, type B2, type B2+B3, type B3, and TC.

Considering the morphological continuum characteristic of

thymomas, it remains a challenge to effectively distinguish the

types B1, B2, and B3 thymomas. At present, the manual

annotation of thymomas is mainly dependent on the

experience and subjective judgment of pathologists, so there is

usually a certain difference between the annotation results of

different pathologists. To improve the annotation quality of the

training set, the invited pathologists use the collective discussion

to determine the type of each patient, and during the annotation,

they check the corresponding immunohistochemistry (IHC)-

stained WSI of each H&E-stained WSI to define a more accurate

thymoma type. In addition, different pathological information

related to thymoma typing is also labeled on WSIs, including

spindle thymic epithelial cells, B1 thymic epithelial cells, B2

thymic epithelial cells, B3 thymic epithelial cells, fibrous septa,

erythrocyte, lymphocyte, perivascular space, medullary

differentiated areas, and tumor. For some indistinguishable

classes like thymic epithelial cells (B1, B2, and B3), we provide

the corresponding IHC-stained WSIs, which can help us locate

thymic epithelial cells and calculate the ratio between epithelial

cells and lymphocytes in local WSI regions. Concretely, the

number of lymphocytes is more than that of epithelial cells in B1

thymoma WSIs, the number of lymphocytes is close to that of
Frontiers in Oncology 05
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epithelial cells in B2 thymoma WSIs, and the number of

lymphocytes is lower than that of epithelial cells in B3

thymoma WSIs. Furthermore, there are still slight differences

in the nuclear heterogeneity, cell size, and chromatin for thymic

epithelial cells (B1, B2, and B3). The above properties can also

assist pathologists in distinguishing the thymoma type of a WSI.

In this way, we consider the epithelial cells in B1, B2, or B3

thymomaWSIs as B1, B2, or B3 thymic epithelial cells. As shown

in Figure 2, a total of 10 classes of pathological information can

be used to train the proposed MC-ViT for improving the

accuracy of thymoma typing. After that, we denote these

labeled data as the thymoma histopathology WSI dataset,

where 243 WSIs are selected to train the proposed pipeline

and 80 other WSIs are used as the test set. Among them, each

WSI is divided into 3,000 non-overlapping patches with three

resolutions (64×64, 128×128, and 256×256) for network

training. By constructing this large-scale dataset, we can

effectively achieve the thymoma histopathology WSI typing to

further assist doctors in diagnosing thymoma or TC.
Overall architecture

Thymoma typing is a complex and challenging digital

pathology workflow. As shown in Figure 2, doctors usually

need to comprehensively consider different local pathological

information from mult i-sca le (10×, 20×, and 40×

magnifications) WSIs to confirm the thymoma type.
FIGURE 2

The pathological information against the thymoma types. Concretely, there are 10 pathological information classes (spindle thymic epithelial
cells, B1 thymic epithelial cells, B2 thymic epithelial cells, B3 thymic epithelial cells, fibrous septa, erythrocyte, lymphocyte, perivascular space,
medullary differentiated areas, and tumor) and eight types (A, AB, B1, B1+B2, B2, B2+B3, B3 and TC).
TABLE 1 Clinical information of patients.

Basic information of patients Thymoma typing information of patients

Male Female Age A AB B1 B1+B2 B2 B2+B3 B3 TC

61 68 17–81 12 30 15 18 20 9 19 6
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Therefore, taking local pathological information as priors can

effectively achieve the deep learning-based thymoma

histopathology WSI typing. In this paper, we propose an MC-

ViT and show its overall architecture in Figure 3. Concretely, the

proposed MC-ViT consists of two sub-networks: (1) the CAST

for pathological information classification, and (2) the WSIs

transformer for thymoma typing.

In the concrete implementation, each WSI is firstly split into

10×, 20× and 40× magnification WSI patches with sizes of H/

2×W/2×3 , H×W×3, and 2H×2W×3 , respectively, where multi-

scale WSI patches at the same position on a WSI can form a

group of network inputs, and H and W represent the height and

width of WSI patches. The first sub-network CAST is designed

as a three-branch structure, where the local-guided branch

(LGB) and the global-guided branch (GGB) can extract the

local and global receptive field features from 40× and 10× WSI

patches, respectively, and the feature aggregation branch (FAB)

takes 20× WSI patches as inputs. In the above branches, we first

use a patch splitting layer to split and flatten input WSI patches

into non-overlapping 1D features, and then adopt a linear

embedding layer to project these 1D features to the expected

dimensions, like Swin-T (12), where each group of 1D features

can be regarded as a “token”. After that, we utilize three well-

established transformer architectures including Swin-T (12),

PVT (13), and ViT (11) to construct LGB, FAB, and GGB,

respectively, for adapting multi-scale input features. Concretely,

each branch is built as a hierarchical structure with three stages,

LGB, FAB, and GGB, which respectively use the window-based

multi-head self-attention (W-MSA), the spatial reduction

attention (SRA), and the multi-head self-attention (MSA) to
Frontiers in Oncology 06
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build basic transformer blocks as shown in Figure 4, and adopt

the patch splitting layer with 4×4 kernel size to achieve two

times down-sampling for token sequences to produce

hierarchical representations. The configurations of each

network branch are illustrated in Table 2. Different from LGB

and GGB, to effectively predict pathological information classes

of input WSI patches, the FAB fuses multi-scale (multiple

receptive fields) features from different branches at each

transformer block. Here, we carefully design a cross-

correlation attention module, which can establish the spatial-

level relations between multi-scale features with potential

pathological information, thereby promoting the multi-scale

feature fusion in the transformer.

The second sub-network WT is a simple but effective three-

stage transformer encoder. For aWSI, we randomly select a fixed

number of WSI patches, and then through the CAST to produce

the multi-scale embeddings and the pathological information

labels of these WSI patches. Specifically, we first concatenate the

multi-scale embeddings of each WSI patch with the

corresponding pathological information label at the channel

dimension, and then connect the concatenated features of WSI

patches at the node dimension. To this end, each WSI can be

encoded into a feature matrix M∈Rm×769 with pathological

information priors to train the proposed WT, where M

indicates that each WSI is divided into M small patches. In the

WT, we use classical transformer blocks (11) with absolute

position encodings to process the input feature matrices for

thymoma typing. In addition, converting a 2D full-scale WSI to a

1D feature matrix can significantly reduce the computational

costs of the transformer.
FIGURE 3

The architecture of the proposed multi-path cross-scale vision transformer (MC-ViT), which consists of the cross attentive scale-aware
transformer (CAST) for pathological information classification and the WSIs transformer (WT) for thymoma typing.
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Cross attentive scale-aware transformer

Unlike general natural and medical images (32, 33), a WSI

usually has three magnification scales in terms of 10 × , 20 ×, and

40 × . To effectively utilize different scale WSIs for modeling

multi-scale feature relations, we propose a CAST consisting of

three kinds of basic transformer blocks, namely, the global

transformer block, the CAST block, and the local transformer

block. As shown in Figure 4, the proposed CAST is also different

from existing advanced multi-scale U-Net architectures. For

examples, Su et al. (34) design MSU-Net that uses scale-

specific convolutions (1×1, 3×3, and 7×7) to capture multi-

scale features (see Figure 4D). Kushnure et al. (35) construct MS-

UNet to process the split feature channels to produce multi-scale
Frontiers in Oncology 07
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representations (see Figure 4E). However, locally connected

convolutions are not enough to extract sufficient global

information, which limits the receptive fields of both MSU-

Net and MS-UNet. In contrast, the proposed CAST can capture

richer global information by three different non-local self-

attention mechanisms, and fully leverage multi-scale WSIs

(10×, 20× and 40×) rather than only the multi-scale features

from a scale-specific WSI. Then, considering that the above

transformer blocks have different receptive fields, the clinical

observation process for thymoma histopathology WSIs can be

effectively simulated in the proposed CAST. Concretely, in GGB,

the global transformer block has similar configurations to that of

the classical transformer block (11), which contains an MSA, a

multi-layer perception (MLP), and two layer normalizations
B

C

D E

A

FIGURE 4

The architectures of self-attention and multi-scale convolution. (A) Window-based multi-head self-attention (W-MSA), (B) spatial reduction
attention (SRA), (C) multi-head self-attention (MSA), (D) multi-scale convolution of MSU-Net, and (E) multi-scale convolution of MS-UNet.
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(LNs) before MSA and MLP with the GELU non-linear layers

(23). The calculation process in the global transformer block is

~Ai = MSA LNðAi−1ð ÞÞ + Ai−1, (1)

Ai = MLP LNð~Ai

� �Þ + ~Ai, (2)

where Ai−1 and Ai are the input and output features of the i

th global transformer block, and ~Ai denotes the output of

intermediate features by the MSA.

Then, in LGB, the local transformer block continues the

advantages of Swin-T (12), which replaces the MSA with the

window-based multi-head self-attention, and employs two

successive Swin transformer blocks to achieve cross-window

connections. The concrete configurations are shown in

Figure 3; compared with MSA, W-MSA focuses more on

modeling the feature relations in non-overlapping local

windows, which not only effectively promotes the extraction of

local information, but also significantly reduces the
Frontiers in Oncology 08
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computations of transformer blocks. The local transformer

block can be computed as

~Bi = W −MSA LNðBi−1ð ÞÞ + Bi−1, (3)

B̂ i = MLP LNð~Bi)
� �

+ ~Bi, (4)

�Bi = SW −MSA LNðB̂ i)
� �

+ B̂ i, (5)

Bi = MLP LN �Bið Þð Þ + �Bi, (6)

Where Bi−1 and Bi are the input and output features of the i

th local transformer block, SW-MSA is the multi-head self-

attention with the shifted windowing configuration, and ~Bi, B̂ i,

and �Bi represent the intermediate features output by MSA, the

first MLP, and SW-MSA, respectively. Referring to Swin-T (12),

we adopt the relative position bias to compute W-MSA and SW-

MSA, which can be expressed as
TABLE 2 The network configurations of the proposed MC-ViT, where P, C, N, and E indicate the patch size, the channel number of the output,
the head number of transformer block, and the expansion ratio of MLP, respectively.

Stage Branch Input size Patch merging Transformer encoder Output size

MC-ViT CAST Stage 1 LGB (40×) 2562×3 P = 8, C = 128
½
N = 2

E = 8
� � 2

322×128

FAB (20 ×) 1282×3 P = 4, C = 128
½
N = 2

E = 8
� � 2

322×128

GGB (10 ×) 642×3 P = 2, C = 128
½
N = 2

E = 8
� � 2

322×128

Stage 2 LGB (40 ×) 322×128 P = 2, C = 256
½
N = 4

E = 4
� � 2

162×256

FAB (20 ×) 322×128 P = 2, C = 256
½
N = 4

E = 4
� � 2

162×256

GGB (10 ×) 322×128 P = 2, C = 256
½
N = 4

E = 4
� � 2

162×256

Stage 3 LGB (40 ×) 162×256 P = 2, C = 512
½
N = 8

E = 4
� � 2

82×512

FAB (20 ×) 162×256 P = 2, C = 512
½
N = 8

E = 4
� � 2

82×512

GGB (10 ×) 162×256 P = 2, C = 512
½
N = 8

E = 4
� � 2

82×512

WT Stage 1 − 512×769 −
½
N = 12

E = 4
� � 2

512×769

Stage 2 − 512×769 −
½
N = 12

E = 4
� � 2

512×769

Stage 3 − 512×769 −
½
N = 12

E = 4
� � 2

512×769
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Self − attentionðQ,K ,V) = SoftmaxðQKT=
ffiffiffi
d

p
+ R)V , (7)

where Q , K, and V are the query, key, and value

matrices, respectively.

Finally, in FAB, we propose the cross-correlation attention

module to combine with the spatial-reduction attention (13) to

construct the cross attentive scale-aware (CAS) transformer

block. Specifically, each CAS transformer block is composed of

a CAM, an SRA, an MLP, and two LNs. Different from the global

and local transformer blocks, we first adopt a CAM to aggregate

and enhance the multi-scale features Ai , Bi, and Ci from different

branches. With this design, the spatial-level feature relations can

be supplemented and the representation of potential

pathological information can be boosted effectively. Then,

MLP can update the multi-scale fusion features captured by

SRA accompanied with LNs for stable training and rapid

convergence. The CAS transformer block can be formulated as

~Ci = SRA LN CAM ½Ai−1,Bi−1,Ci−1�ð Þð Þð Þ + Ci−1, (8)

Ci = MLP LNð~Ci)
� �

+ ~Ci, (9)

Where Ci−1 and Ci are the input and output features of the i

th CAS transformer block, and ~Ci denotes the intermediate

features output by the SRA.

In addition, after the last transformer block of each stage, we

use a 4 × 4 patch splitting (unfolding) layer PS(·) to down-

sample the reshaped features, and a linear embedding layer FC(·)

to project the down-sampled features to the expected dimension

for producing hierarchical representations

Ai=Bi=Ci = FC PS(reshape(Ai=Bi=Ci))ð Þ : (10)

In the proposed CAST, after fusing and updating each stage’s

multi-scale features, we use the last fully connected layer with

softmax of FAB to predict the pathological information classes of

input WSI patches. During the test process, the predicted

pathological information labels and the extracted multi-scale

embeddings from the same WSI are connected as an input

feature matrix to feed the subsequent WT.
WSI transformer

Benefiting from the prediction for pathological information

labels and the encoding for multi-scale embeddings by the first

sub-network CAST, we can construct an efficient WT with a

three-stage transformer encoder to further achieve thymoma

histopathology WSI typing. As shown in Figure 3, after

concatenating the pathological information labels and multi-

scale embeddings to convert a full-scale WSI to a simple input

feature matrix, the computations of WT are significantly

reduced. Specifically, each stage contains two classical

transformer blocks (11); the head number N of MSA and the

expansion ratio E of MLP in each transformer block are set as 12
Frontiers in Oncology 09
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and 4, respectively. In addition, we not only introduce absolute

position encodings, but also replace class tokens with a global

average pooling layer and a fully connected layer (36) to improve

the accuracy of thymoma typing. The network configurations of

the proposed CAST and WT are shown in Table 2.
Cross-correlation attention module

Converting an image into a sequence of tokens will result in

the spatial information loss, and most existing vision transformers

(12, 13, 15, 16, 31) fail to consider the spatial-level relations

between features. To address this issue, we propose a cross-

correlation attention module to effectively establish the spatial-

level relations between multi-scale features as well as achieving the

multi-scale feature fusion. As shown in Figure 5, CAM can

comprehensively consider different receptive field features with

global and local information, and enhance the multi-scale fusion

features through a spatial attention map generated by the cross-

correlation attention mechanism. Considering that multi-scale

features completely contain potential pathological information,

the proposed CAM can further improve the accuracy of potential

pathological classification. Specifically, CAM first concatenates the

features Ai∈Rc×hw , Bi∈Rc×hw , and Ci∈Rc×hw from GGB, LGB,

and FAB, respectively, to generate the features G∈R3×c×hw , and

then reshapes its size to 3×c×h×w . After a 1 × 1 convolution, we

can get the spatial-level features f1∈R3×c×h×w . Moreover, we

reshape the features Ci∈Rc×hw as another spatial-level features

f2∈Rc×1×h×w and cross-correlate features f1∈R3×c×h×w and

f2∈c×1×h×w by a batch-wise multiplication to establish the

relations between multi-scale features for producing the

attention map Att

Att = s conv1 reshape ½Ai,Bi,Ci�ð Þð Þ⊗ reshapeðCi)ð Þ, (11)

Where s(·) indicates the Sigmoid activation function, conv1
(·) is the 1 × 1 convolution, [·, ·, ·] and reshape(·) denote the

feature concatenation and reshape operations, and ⊗ is the

batch-wise matrix multiplication.

After that, we split the attention map Att∈R3×h×w into three

individual attention maps AttA∈R1×h×w , AttB∈R1×h×w , and

AttC∈R1×h×w to enhance corresponding spatial-level features

fA∈Rc×h×w , fB∈Rc×h×w, and fC∈Rc×h×w by the element-wise

multiplication. Here, the features fA , fB , and fC related to

different receptive field information are split from the spatial-

level features G∈R3×c×h×w . Then, we re-aggregate the enhanced

spatial-level features by a 3 × 3 convolution to generate the

features f3∈Rc×h×w . The final output F∈Rc×hw of CAM can be

obtained by a reshape operation, and the above process is

expressed as

F = reshape conv3 ½AttA o ̇ fA,AttB o ̇ fB,AttC ȯ fC�ð Þð Þ, (12)

where ȯ denotes the element-wise multiplication.
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Loss functions

The first sub-network CAST can classify input WSI patches

into 10 pathological information classes, including spindle

thymic epithelial cells, B1 thymic epithelial cells, B2 thymic

epithelial cells, B3 thymic epithelial cells, fibrous septa,

erythrocyte, lymphocyte, perivascular space, medullary

differentiated areas, and tumor. Specifically, we use the cross-

entropy loss (22) to train the proposed CAST, which can

minimize the distance between predicted probabilities and

corresponding ground truths by the following expression
Frontiers in Oncology 10
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LCAST = −o
K

k=1

yk log  (pk), (13)

where K is the number of pathological information classes,

pk represents the predicted probability that an input WSI patch

belongs to the k th pathological information class, and yk is its

ground truth.

After that, the second sub-network WT can predict the

thymoma type of the input feature matrix for achieving

thymoma typing. Concretely, there are eight thymoma types

(A, AB, B1, B1+B2, B2, B2+B3, B3, and C) in our task. Similarly,
B CA

FIGURE 5

The architecture of the proposed cross-correlation attention module (CAM), which can model the spatial-level relationship between multi-scale
features (A–C) from the global-guided, the local-guided, and the feature aggregation branches for achieving the multi-scale feature fusion.
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we also adopt the cross-entropy loss to optimize this multi-

classification task as

LWT = −o
T

t=1
Yt log  (Pt), (14)

where T is the number of thymoma types, Pt represents the

predicted probability that a input feature matrix belongs to the t

th thymoma type, and Yt is its ground truth.
Experimental results and analysis

Implementation details

The proposed MC-ViT is programmed by PyTorch 1.9.0 and

all experiments are conducted on a server with Intel (R) Core

(TM) i9-10850K CPU (5.0 GHz) and NVIDIA GeForce RTX

3090 GPU (24GB). In our concrete implementation, the Adam

optimizer with momentums �eta1 = 0:9 and b2=0.999 is used to

optimize both CAST and WT. For the proposed CAST, there are

160 epochs in network training with batch size 64 and the initial

learning rate 2e -3. Moreover, the proposed WT is trained in 160

epochs using batch size 8 and the initial learning rate 1e -3. In

Figure 6, we report the training loss and accuracy against

training epochs to show the effectiveness and convergence of

the proposed CAST and WT.
Evaluation metrics

To comprehensively evaluate the performance of the

proposed CAST for pathological information classification and

the performance of the proposed WT for thymus typing, we

introduce eight well-established metrics, namely, recall (37)

(Rec), Top-1 accuracy (Top-1 Acc), mean accuracy (38)
Frontiers in Oncology 11
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(MAcc), precision (37) (Pre), F-measure (38) (F1), receiver

operating characteristic (ROC) curve, area under the curve

(AUC), and confusion matrix (CM), and three statistical

metrics, namely, sensitivity and specificity with the 95%

confidence interval (CI) and the two-sided McNemar’s tests

(39) (test statistic and asymptotic Sig.). For the first five metrics,

the larger values indicate a classification method has better

performance. The AUC is defined as the area surrounded by

the coordinate axis and the ROC curve, where a large AUC value

denotes a high classification accuracy.
Evaluation for pathological
information classification

This subsection first compares the proposed CAST with four

well-known vision transformers, ViT (11), TNT (15), LeViT

(14), and CrossViT (40); two classical CNNs, ResNet-101 (41)

and DenseNet-121 (42); and four state-of-the-art medical image

classification methods, GuSA-Net (43), ROPsNet (44), CPWA-

Net (45), and IL-MCAM (46). The quantitative results on the

proposed THW dataset are shown in Table 3; compared with

existing advanced classification methods, the proposed CAST

achieves 0.016, 0.012, 0.015, and 0.007 improvements in terms of

Rec, Top-1 Acc, Macc, and F1, respectively. In general, some

classical transformer-based and CNN-based methods, such as

ViT, TNT, LeViT, and ResNet-101, fail to achieve satisfactory

classification results, which could be attributed to the fact that

these methods ignore capturing and utilizing the inherent multi-

scale information in WSIs. In contrast, state-of-the-art IL-

MCAM and CrossViT achieve better classification accuracy

since both of them are built as the multi-scale network

architecture. It is noteworthy that GuSA-Net is the

improvement of DenseNet; thus, its classification performance

is slightly better than that of DenseNet. Currently, in most
BA

FIGURE 6

(A) The training loss against training epochs and (B) the training accuracy against training epochs on the THW dataset.
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clinical cases, doctors need to comprehensively observe the

multi-scale (10 × , 20 ×, and 40 × ) local patches of a WSI to

determine its pathological information classes, and then

diagnose the corresponding thymoma type. The proposed

CAST effectively simulates the above process by taking multi-

scale WSI patches as inputs and fusing multi-scale features in

each stage. As a result, we successfully achieve an improvement

of 0.015 on MAcc compared with the state-of-the-art IL-

MCAM, and about 0.023 average improvement on other

evaluation metrics.

To further verify the effectiveness of the proposed CAST, we

illustrate the ROC curve and AUC of each pathological

information class in the left part of Figure 7. It can be seen

that the proposed CAST performs well on six classes, namely,

erythrocyte, lymphocyte, spindle thymic epithelial cells, B1
Frontiers in Oncology 12
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thymic epithelial cells, B2 thymic epithelial cells, and B3

thymic epithelial cells. For the other three pathological

information classes, where fibrous septa and perivascular space

can be distinguished on H&E-stained WSIs according to the

color and position information of existing cells (like fibroblasts

and erythrocytes), medullary differentiated areas are usually

distinguishable on IHC-stained WSIs. Compared with the

above five pathological information classes, our pipeline

achieves slightly poor but still competitive classification results

for fibrous septa, perivascular space, and medullary

differentiated areas. In summary, the proposed CAST

effectively distinguishes each pathological information class

using only H&E-stained WSIs. Since the classification results

of pathological information are closely related to thymoma

types, CAST can assist the subsequent WT for thymoma typing.
BA

FIGURE 7

The ROC curve and AUC on the THW dataset. (A) Pathological information classification and (B) thymoma typing.
TABLE 3 Quantitative comparisons (Rec, Top-1 Acc, MAcc, Pre, and F1) for pathological information classification on the THW dataset.

Pathological Information Classification

Methods Rec Top-1 Acc Macc Pre F1

(ICLR’2021) ViT (11) 0.813 0.834 0.804 0.810 0.811

(NIPS’2021) TNT (15) 0.814 0.828 0.813 0.817 0.815

(ICCV’2021) LeViT (14) 0.821 0.857 0.833 0.827 0.824

(ICCV’2021) CrossViT (40) 0.897 0.886 0.860 0.867 0.882

(CVPR’2016) ResNet-101 (41) 0.819 0.836 0.802 0.808 0.813

(CVPR’2017) DenseNet-121 (42) 0.873 0.848 0.834 0.860 0.867

(TMI’2020) GuSA-Net (43) 0.918 0.927 0.909 0.925 0.921

(TMI’2021) ROPsNet (44) 0.874 0.892 0.886 0.882 0.878

(JBHI’2021) CPWA-Net (45) 0.817 0.832 0.821 0.813 0.815

(CBM’2022) IL-MCAM (46) 0.906 0.918 0.912 0.903 0.904

CAST (Ours) 0.934 0.939 0.927 0.922 0.928
frontiers
Red and blue contents represent the best and suboptimal results, respectively.
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Thymoma typing evaluation

Clinically, the thymoma type of a WSI is reflected by

multiple pathological information; hence, theoretically, the

high-precision classification results for pathological

information are helpful to improve the accuracy of thymoma

typing. To demonstrate the above content, we respectively use

the classification methods ViT, TNT, LeViT, CrossViT, ResNet-

101, DenseNet-121, GuSA-Net, and IL-MCAM to predict the

pathological information labels and the uniform size

embeddings of each WSI. By concatenating these labels and

embeddings to produce input feature matrices to train WT, we

can denote corresponding comparison methods as ViT+WT,

TNT+WT, LeViT+WT, CrossViT+WT, ResNet-101+WT,

DenseNet-121+WT, GuSA-Net+WT, ROPsNet+WT, CPWA-

Net+WT, and IL-MCAM+WT. Their predicted results are

shown in Table 4; we can observe that the proposed MC-ViT

(CAST+WT) achieves the best classification accuracy, especially

on Top-1 Acc (about 0.017 improvement) and F1 (about 0.016
Frontiers in Oncology 13
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improvement). The ROC curve and AUC of each thymoma type

are also shown in the right part of Figure 7, which further proves

that the proposed MC-ViT is effective to classify various

thymoma types. Based on the above quantitative analysis, we

can conclude that the pathological information labels provided

by CAST help to achieve thymoma histopathology WSI typing,

and the quality of such labels and embeddings determines the

typing accuracy.

In addition, we statistically analyze the performance of these

comparison methods and our MC-ViT by computing the

sensitivity and specificity with 95% CI, and the two-sided

McNemar’s tests (test statistic and asymptotic Sig.). As can be

seen from Table 5, the proposed MC-ViT achieves completely

correct typing results (sensitivity) for types AB, B1, B2, and C,

and the competitive average 0.875 sensitivity (95% CI: 0.528–

0.970) and 0.982 specificity (95% CI: 0.911–0.992) for the

thymoma typing task. Moreover, the two-sided McNemar’s

tests (average 1.810 test statistic and 0.42996 asymptotic Sig.)

further show the statistical significance of our predicted results,
TABLE 4 Quantitative comparisons (Rec, Top-1 Acc, Macc, Pre, and F1) for thymoma typing on the THW dataset.

Methods Thymoma Typing

Rec Top-1 Acc MAcc Pre F1

(ICLR’2021) ViT (11)+WT 0.832 0.839 0.820 0.824 0.828

(NIPS’2021) TNT (15)+WT 0.825 0.861 0.836 0.839 0.852

(ICCV’2021) LeViT (14)+WT 0.844 0.868 0.843 0.849 0.846

(ICCV’2021) CrossViT (40)+WT 0.903 0.899 0.875 0.879 0.891

(CVPR’2016) ResNet-101 (41)+WT 0.841 0.831 0.819 0.825 0.833

(CVPR’2017) DenseNet-121 (42)+WT 0.902 0.863 0.842 0.865 0.883

(TMI’2020) GuSA-Net (43)+WT 0.931 0.937 0.916 0.934 0.923

(TMI’2021) ROPsNet (44)+WT 0.881 0.898 0.890 0.896 0.888

(JBHI’2021) CPWA-Net (45)+WT 0.848 0.856 0.843 0.846 0.847

(CBM’2022) IL-MCAM (46)+WT 0.921 0.928 0.915 0.908 0.914

CAST+WT (Ours) 0.948 0.951 0.942 0.931 0.939
frontiersin.or
Red and blue contents represent the best and suboptimal results, respectively.
TABLE 5 Quantitative comparisons (sensitivity and specificity with 95% CI, test statistic, and asymptotic Sig.) for thymoma typing on the THW
dataset.

Types Sensitivity (95% CI) Specificity (95% CI) Test Statistic Asymptotic Sig.

A 0.800 (0.442–0.965) 1.000 (0.935–1.000) 0.500 0.47950

AB 1.000 (0.655–1.000) 1.000 (0.935–1.000) − −

B1 1.000 (0.655–1.000) 0.986 (0.912–0.999) 0.000 1.00000

B1+B2 0.800 (0.442–0.965) 1.000 (0.935–1.000) 0.500 0.47950

B2 1.000 (0.655–1.000) 0.871 (0.765–0.936) 7.111 0.00766

B2+B3 0.800 (0.442–0.965) 1.000 (0.935–1.000) 0.500 0.47950

B3 0.600 (0.274–0.863) 1.000 (0.935–1.000) 2.250 0.13361

TC 1.000 (0.655–1.000) 1.000 (0.935–1.000) − −

Average 0.875 (0.528–0.970) 0.982 (0.911–0.992) 1.810 0.42996
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which have slight differences from the expert-annotated

ground truths.
Discussion

In this section, we discuss the effectiveness of the proposed

multi-scale (multi-path) transformer architecture and the cross-

correlation attention mechanism. Concretely, we define eight

ablation models: (1) Single-branch Swin-T Transformer (SSwT):

SSwTonly has LGB for processing 40 × WSIs; (2) Single-branch

Pyramid Vision Transformer (SPVT): SPVT only has FAB for

processing 20 × WSIs; (3) Single-branch Vision Transformer

(SViT): SViT only has GGB for processing 10 × WSIs; (4) CAST

without (w/o) GGB: this model has LGB and FAB for processing

40 × and 20 ×WSIs; (5) CAST w/o FAB: this model has LGB and

GGB for processing 40 × and 10 ×WSIs; (6) CAST w/o LGB: this

model has FAB and GGB for processing 20 × and 10 × WSIs; (7)

CAST w/o CAM: this model contains three paths but without

CAM; and (8) the proposed CAST. For fair comparisons, the

training dataset and implementation details remain unchanged,

and corresponding experimental results are exhibited in the

following subsections.
Ablation study for multiple paths
of transformer

Firstly, we evaluate the effectiveness of multiple paths in the

proposed CAST, where LGB, FAB, and GGB are ablated and

adopted respectively to demonstrate their contributions. The

quantitative results of seven ablation models, SSwT, SPVT, SViT,

CAST w/o GGB, CAST w/o FAB, CAST w/o LGB, and CAST,

are listed in Table 6. It can be seen that ablating GGB reduces the

accuracy to classify the medullary differentiated areas and

fibrous septa, ablating LGB weakens the performance to
Frontiers in Oncology 14
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distinguish different thymic epithelial cells, and ablating FAB

causes unsatisfactory results to recognize the perivascular space

and lymphocyte. In summary, simultaneously adopting three

paths in CAST to process multi-scale WSIs can achieve more

excellent performance compared with using a single path or dual

paths, and FAB brings the largest improvement to pathological

information classification.
Ablation study for multi-scale
transformer architecture

Next, we compare CAST w/o CAM and SPVT to verify the

effectiveness of the proposed multi-scale transformer

architecture. Specifically, CAST w/o CAM adopts three

transformer branches to process 10×, 20× and 40× WSI

patches, respectively, while replacing the proposed CAM by

the traditional feature concatenation to achieve multi-scale

feature fusion. SPVT only uses a single branch with the SRA-

based transformer blocks to train 20 × WSI patches. The

quantitative comparisons (Top-1Acc, Macc, and F1) on the

THW dataset are reported in Figure 8A, and it can be seen

that using the multi-scale transformer architecture brings

significant performance improvements for pathological

information classification. In addition, Figure 9 shows their

confusion matrices, which further demonstrate that

comprehensively considering the multi-scale information

in WSIs can reduce the confusion between similar

thymoma types.
Ablation study for cross-correlation
attention mechanism

Finally, we evaluate the contribution of the proposed CAM

to show its effectiveness on pathological information
TABLE 6 Ablation study (Acc and MAcc) for multiple paths in the proposed CAST on the THW dataset.

Acc of Each Class SSwT SPVT SViT CAST
w/o GGB

CAST
w/o FAB

CAST
w/o LGB

CAST

Spindle Thymic Epithelial Cells 0.859 0.871 0.844 0.866 0.918 0.897 0.923

B1 Thymic Epithelial Cells 0.887 0.876 0.854 0.895 0.886 0.905 0.915

B2 Thymic Epithelial Cells 0.893 0.881 0.861 0.903 0.892 0.911 0.920

B3 Thymic Epithelial Cells 0.890 0.879 0.858 0.898 0.887 0.909 0.916

Fibrous Septa 0.859 0.877 0.896 0.915 0.919 0.902 0.924

Erythrocyte 0.912 0.918 0.904 0.925 0.926 0.933 0.941

Lymphocyte 0.861 0.896 0.849 0.902 0.924 0.927 0.938

Perivascular Space 0.865 0.894 0.842 0.898 0.917 0.929 0.936

Medullary Differentiated Areas 0.857 0.883 0.905 0.918 0.921 0.905 0.927

Tumor 0.887 0.886 0.882 0.897 0.905 0.908 0.929

MAcc 0.877 0.886 0.870 0.902 0.910 0.913 0.927
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classification and thymoma typing. Corresponding quantitative

results are shown in Figure 8, and from the overall integration of

evaluation metrics Top-1 Acc, Macc, and F1, we can observe that

adopting CAM to aggregate multi-scale features significantly

improves the precision for pathological information

classification and thymus typing. On the other hand, the

confusion matrices about thymoma typing are reported in
Frontiers in Oncology 15
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Figure 9; although CAST w/o CAM+WT outperforms SPVT

+WT, some highly similar thymoma types are still difficult to

distinguish, such as B1, B1+B2, and B2 types. By comparison, the

proposed MC-ViT (CAST+WT) achieves better thymoma

typing results. Overall, these ablation studies show that the

accurate pathological information labels are beneficial

for boosting thymoma typing accuracy, and the proposed
BA

FIGURE 8

Ablation study (Top-1 Acc, MAcc, and F1) on the THW dataset, where w/o represents without such component. (A) Pathological information
classification and (B) thymoma typing.
B

C

A

FIGURE 9

Ablation study (confusion matrix) for thymoma typing on the THW dataset; subfigures (A–C) are SPVT+WT, CAST w/o CAM+WT, and CAST+WT,
where w/o represents without such component.
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CAM is effective to improve pathological information

classification results.
Unsupervised method for
thymoma typing

In CAD, unsupervised methods are mainly used for

processing unlabeled or incompletely labeled data, and they

can automatically determine the total class of input data and

then achieve the classification task. Traditional unsupervised

methods include clustering and dimensionality reduction, and

deep learning-based unsupervised methods include domain

adaptation and contrastive learning. Compared with

traditional methods, most deep learning-based methods have

superior performance but require minor annotation information

to assist network training, which means they fail to achieve full

unsupervised classification. For example, domain adaptation

methods require a small labeled dataset as the source domain

to achieve the unsupervised classification of the target domain.

Contrastive learning methods need to define the similarity

between samples through pretext tasks, and then classify these

data in a self-supervised (unsupervised) way. In general,

supervised methods perform favorably against ful l

unsupervised methods. In this work, we introduce a classical

full unsupervised method (47) for thymoma typing, which is the

combination of CNN and k -means clustering. We find that this

method cannot successfully distinguish types B1, B1+B2, B2, B2

+B3, and B3; however, it still shows high potential when only

classifying three types A, B, and TC (0.659 Top-1 Acc). Hence,

we think that full unsupervised methods are more suitable for a

simple classification of unlabeled data; they can provide certain

diagnosis information for doctors while effectively reducing the

time consumed by manual annotation. By comparison,

supervised methods can better achieve precise thymoma

typing when having sufficient labeled data.
Conclusions

In this paper, we propose an MC-ViT for achieving

thymoma histopathology WSI typing. Aiming at full-scale

WSIs that are difficult to train by deep learning-based

methods, the proposed MC-ViT is designed as a twofold

transformer architecture to separately predict the pathological

information labels of WSI patches and the thymoma type of a

WSI, where the former effectively fuses complementary multi-

scale information to produce accurate pathological information

priors, and the latter successfully converts the full-scale WSI to

the low-cost feature matrix to achieve efficient network training

by introducing such priors. In addition, we propose a cross-
Frontiers in Oncology 16
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correlation attention mechanism to enhance and fuse multi-

scale features with global and local receptive fields. Considering

that CAM well establishes the spatial-level feature relations in

the transformer, our thymoma typing results achieve further

improvements. Extensive experiments also show that our MC-

ViT outperforms most existing advanced transformer-based and

CNN-based methods on the proposed THW dataset with 323

WSIs. In future works, we look forward to incorporating CT

images and histopathology WSIs for achieving the multi-modal

information fusion-based thymoma typing, which may further

assist doctors to improve the efficiency and accuracy of

thymoma and TC diagnosis. In addition, we will make the

network outputs the soft labels (the probability of a WSI

belongs to types B1, B2, and B3) instead of the hard labels (the

class of a WSI belongs to type B1, B2, or B3) for thymoma WSIs

with B1, B2, and B3 types, thereby providing more reasonable

diagnosis information for doctors.
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38. Naylor P, Laé M, Reyal F, Walter T. Segmentation of nuclei in
histopathology images by deep regression of the distance map. IEEE Trans Med
Imag (2018) 38:448–59. doi: 10.1109/TMI.2018.2865709

39. Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, et al.
Deep neural networks are superior to dermatologists in melanoma image
classification. Eur J Cancer (2019) 119:11–7. doi: 10.1016/j.ejca.2019.05.023

40. Chen CFR, Fan Q, Panda R. (2021). CrossViT: Cross-attention multi-scale
vision transformer for image classification, in: Proc. IEEE Int. Conf. Comput. Vis.
Frontiers in Oncology 18
158
(ICCV) , .(Montreal, QC, Canada: IEEE) pp. 357–66. doi: 10.1109/
ICCV48922.2021.00041

41. He K, Zhang X, Ren S, Sun J. (2016). Deep residual learning for image
recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), (Las
Vegas, NV, USA: IEEE). pp. 770–8. doi: 10.1109/CVPR.2016.90

42. Huang G, Liu Z, van der Maaten L, Weinberger KQ. (2017). Densely
connected convolutional networks, in: Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), (Honolulu, HI, USA: IEEE). pp. 4700–8. doi: 10.1109/
CVPR.2017.243

43. Yang H, Kim JY, Kim H, Adhikari SP. Guided soft attention network for
classification of breast cancer histopathology images. IEEE Trans Med Imag (2020)
39:1306–15. doi: 10.1109/TMI.2019.2948026

44. Peng Y, ZhuW, Chen Z,WangM, Geng L, Yu K, et al. Automatic staging for
retinopathy of prematurity with deep feature fusion and ordinal classification
strategy. IEEE Trans Med Imag (2021) 40:1750–62. doi: 10.1109/TMI.2021.3065753

45. Feng R, Liu X, Chen J, Chen DZ, Gao H, Wu J. A deep learning approach for
colonoscopy pathology WSI analysis: accurate segmentation and classification.
IEEE J Biomed Health Informat (2021) 25:3700–8. doi: 10.1109/JBHI.2020.3040269

46. Chen H, Li C, Li X, Rahaman MM, Hu W, Li Y, et al. IL-MCAM: An
interactive learning and multi-channel attention mechanism-based weakly
supervised colorectal histopathology image classification approach. Comput Biol
Med (2022) 143:105265. doi: 10.1016/j.compbiomed.2022.105265

47. Caron M, Bojanowski P, Joulin A, Douze M. (2018). Deep clustering for
unsupervised learning of visual features, in: Proc. European Conf. Comput. Vis.
(ECCV), (Munich, Germany: Springer). pp. 132–49. doi: 10.1007/978-3-030-
01264-9_9
frontiersin.org

https://doi.org/10.1109/CVPR42600.2020.00837
https://doi.org/10.3389/fgene.2021.639930
https://doi.org/10.3389/fgene.2021.639930
https://doi.org/10.1016/j.compmedimag.2021.101885
https://doi.org/10.1016/j.compmedimag.2021.101885
https://doi.org/10.48550/arXiv.2102.10882
https://doi.org/10.1109/ACCESS.2020.2999816
https://doi.org/10.1109/ACCESS.2020.2999816
https://doi.org/10.1109/TMI.2018.2865709
https://doi.org/10.1016/j.ejca.2019.05.023
https://doi.org/10.1109/ICCV48922.2021.00041
https://doi.org/10.1109/ICCV48922.2021.00041
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/TMI.2019.2948026
https://doi.org/10.1109/TMI.2021.3065753
https://doi.org/10.1109/JBHI.2020.3040269
https://doi.org/10.1016/j.compbiomed.2022.105265
https://doi.org/10.1007/978-3-030-01264-9_9
https://doi.org/10.1007/978-3-030-01264-9_9
https://doi.org/10.3389/fonc.2022.925903
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Shahid Mumtaz,
Instituto de Telecomunicações,
Portugal

REVIEWED BY

Chong-Ke Zhao,
Fudan University, China
Abdul Rehman Javed,
Air University, Pakistan
Thippa Reddy Gadekallu,
VIT University, India

*CORRESPONDENCE

Chengliang Yin
chengliangyin@163.com
Wei Kang
kanve822@hotmail.com
Wenle Li
drlee0910@163.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Imaging and
Image-directed Interventions,
a section of the journal
Frontiers in Oncology

RECEIVED 14 June 2022

ACCEPTED 21 October 2022
PUBLISHED 08 December 2022

CITATION

Li W, Hong T, Fang J, Liu W, Liu Y,
He C, Li X, Xu C, Wang B, Chen Y,
Sun C, Li W, Kang W and Yin C (2022)
Incorporation of a machine learning
pathological diagnosis algorithm into
the thyroid ultrasound imaging data
improves the diagnosis risk of
malignant thyroid nodules.
Front. Oncol. 12:968784.
doi: 10.3389/fonc.2022.968784

COPYRIGHT

© 2022 Li, Hong, Fang, Liu, Liu, He, Li,
Xu, Wang, Chen, Sun, Li, Kang and Yin.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 08 December 2022

DOI 10.3389/fonc.2022.968784
Incorporation of a machine
learning pathological diagnosis
algorithm into the thyroid
ultrasound imaging data
improves the diagnosis risk of
malignant thyroid nodules

Wanying Li1, Tao Hong2†, Jianqiang Fang3,4†, Wencai Liu5†,
Yuwen Liu6†, Cunyu He4, Xinxin Li4, Chan Xu4, Bing Wang4,
Yuanyuan Chen7, Chenyu Sun8, Wenle Li9*, Wei Kang10*

and Chengliang Yin11*

1Center for Management and Follow-up of Chronic Diseases, Xianyang Central Hospital,
Xianyang, China, 2Pediatric Surgery Ward, Fuwai Hospital Chinese Academy of Medical Sciences,
Shenzhen, China, 3Ultrasound Interventional Department, Xianyang Central Hospital, Xianyang, China,
4Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China, 5Department of
Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China,
6Department of Chronic Disease and Endemic Disease Control Branch, Xiamen Municipal Center for
Disease Control and Prevention, Xiamen, China, 7School of Statistics, RENMIN University of China,
Beijing, China, 8AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States, 9State Key
Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging
and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China, 10Department
of Mathematics, Physics and Interdisciplinary Studies, Guangzhou Laboratory, Guangzhou,
Guangdong, China, 11Faculty of Medicine, Macau University of Science and Technology, Macao,
Macao SAR, China
Objective: This study aimed at establishing a new model to predict malignant

thyroid nodules using machine learning algorithms.

Methods: A retrospective study was performed on 274 patients with thyroid

nodules who underwent fine-needle aspiration (FNA) cytology or surgery from

October 2018 to 2020 in Xianyang Central Hospital. The least absolute

shrinkage and selection operator (lasso) regression analysis and logistic

analysis were applied to screen and identified variables. Six machine learning

algorithms, including Decision Tree (DT), Extreme Gradient Boosting

(XGBoost), Gradient Boosting Machine (GBM), Naive Bayes Classifier (NBC),

Random Forest (RF), and Logistic Regression (LR), were employed and

compared in constructing the predictive model, coupled with preoperative

clinical characteristics and ultrasound features. Internal validation was

performed by using 10-fold cross-validation. The performance of the model

was measured by the area under the receiver operating characteristic curve

(AUC), accuracy, precision, recall, F1 score, Shapley additive explanations

(SHAP) plot, feature importance, and correlation of features. The best cutoff
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value for risk stratification was identified by probability density function (PDF)

and clinical utility curve (CUC).

Results: The malignant rate of thyroid nodules in the study cohort was 53.2%.

The predictive models are constructed by age, margin, shape, echogenic foci,

echogenicity, and lymph nodes. The XGBoost model was significantly superior

to any one of the machine learning models, with an AUC value of 0.829.

According to the PDF and CUC, we recommended that 51% probability be used

as a threshold for determining the risk stratification of malignant nodules,

where about 85.6% of patients with malignant nodules could be detected.

Meanwhile, approximately 89.8% of unnecessary biopsy procedures would be

saved. Finally, an online web risk calculator has been built to estimate the

personal likelihood of malignant thyroid nodules based on the best-performing

ML-ed model of XGBoost.

Conclusions: Combining clinical characteristics and features of ultrasound

images, ML algorithms can achieve reliable prediction of malignant thyroid

nodules. The online web risk calculator based on the XGBoost model can easily

identify in real-time the probability of malignant thyroid nodules, which can

assist clinicians to formulate individualized management strategies for patients.
KEYWORDS

thyroid nodules, malignant, machine learning, predictive model, web calculator
Introduction

The incidence of sonographically detected thyroid nodules is

increasing in individuals; approximately 50% to 68% can be

detected in healthy individuals. Most of these nodules are benign

and asymptomatic (1–3), and only about 8% to 16% are

malignant nodules (4–6). Due to the complexity and diversity

of thyroid nodules, it is challenging for doctors to distinguish

which nodules harbor clinically relevant malignancies (7). For

more than 30 years, ultrasound and fine-needle aspiration

(FNA) cytology were the traditional diagnostic methods as the

cornerstones in the clinical management of patients with thyroid

nodules (8).

FNA provides the most effective and practical diagnostic

information for evaluating whether a nodule is malignant to

reach a definitive diagnosis, which has traditionally been used to

meet this purpose (9, 10). However, approximately 50% of all

biopsied nodules proved to be benign and grew indolent with

non-aggressive behavior (6, 11, 12). Moreover, biopsies in one

out of seven thyroid nodules may not yield final cytological

results and usually require repeated biopsies or additional

evaluation (13). Obviously, it is not cost-effective to submit all

these lesions to FNA.

As a non-invasive, low-cost, and convenient technique for

thyroid nodule detection, ultrasound is widely accepted as the
02
160
preferred imaging method for the diagnosis and monitoring of

thyroid nodules. Therefore, ultrasonography has been considered

as having a greater role in determining the need for FNA and

follow-up planning (2, 7). In order to improve the accuracy of

ultrasound-based diagnosis, various available ultrasound-based

risk stratification systems have already been proposed by many

national and international thyroid associations, such as the ACR

TIRADS, the French TIRADS, the Korea-TIRADS, and the EU-

TIRADS (14). The most commonly used thyroid nodule

classification system is the Thyroid Imaging Reporting and Data

System(TIRADS) developed by theAmericanCollegeofRadiology

(ACR). However, the limitations of these systems include that

subjective assessment of nodules (15) is inferior to the personal

judgment by experts (8) and that different classification systems for

the same thyroid nodules may yield varying results (16), which

cannot be ignored. There is an urgent need to develop an improved

and reliablediagnosticmethod todistinguishbenignandmalignant

thyroid nodules, which could help reduce the number of

unnecessary biopsies or diagnostic surgery without jeopardizing

the detection of clinically relevant malignant thyroid nodules.

A predictive model based on machine learning (ML)

algorithms, designed to “learn” from clinical and sonographic

datasets and predict the nature of thyroid nodules, is in some

cases more robust than human experts (17), and as a result, ML

algorithms have been widely used to classify thyroid nodules
frontiersin.org
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objectively (18–20). However, previous studies have classified

thyroid nodules by analyzing thyroid ultrasound images. The

purpose of the present study was to develop ML-ed models for

predicting malignant lumps based on the database of clinical

characteristics and ultrasound features of thyroid nodules

confirmed by pathological examination in Chinese

populations. Compared with using only image analysis, our

ML-ed predictive models not only integrated ultrasound

features but also included clinical features of patients with

thyroid nodules, which may be more comprehensive and

convenient, especially for clinicians and patients. It can carry

out individualized treatment and management based on the

received ultrasound reports. The new model obtained could be

used to predict the malignant risk of thyroid nodules in

individuals online via a web calculator.
Materials and methods

The retrospective study followed the tenets of the

Declaration of Helsinki and was approved by the Ethics

Committee of Xianyang Central Hospital (No. 2022-IRB-68).

All the study participants provided written informed consent,

which waived the requirement for informed patient consent

because data for all subjects were anonymized.
Collection of patients

A total of 9,999 consecutive patients with thyroid nodules

who underwent FNA cytology or surgical procedure at Xianyang

Central Hospital from the year 2000 to 2020 were included in

our study. All included participants met the following inclusion

criteria: 1) a single thyroid nodule with a diameter of 5–50 mm,

2) complete clinical and ultrasonic data, and 3) all nodules with

definite pathological confirmation. The exclusion criteria were 1)

undistinguishable coalescent thyroid lesions and 2) pathology

provided ambiguous diagnostic findings for their nodules. Please

see Figure S1.
Collection of ultrasound data

Ultrasound images of thyroid glands and the surrounding

areas were acquired by ultrasound machine with a linear array

probe at Xianyang Central Hospital. The ultrasound images were

performed independently by two ultrasonologists, with a senior

ultrasonologist making the final decision on controversial

patients. The following features of each nodule, including the

size, shape, composition, echogenicity, margin, echogenicity,

and cervical lymph node status, were carefully measured and

recorded. Images of the thyroid are obtained according to ACR

accreditation standards. Ultrasound features were divided
Frontiers in Oncology 03
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according to the ACR TIRADS (3), and each feature had a

corresponding score. The higher the score, the greater the

malignant tendency. In the processing of statistical analysis,

the ultrasound characteristics of each nodule were replaced with

the corresponding scores in the ACR TIRADS. For example,

taller-than-wide will be assigned 3 points, so we wrote the Arabic

numeral 3 instead of taller-than-wide in Table 1.

The benign and malignant pathology of all thyroid nodules

in all participants was confirmed by FNA or surgery. All

pathological results were examined blindly and separately

by two pathologists, with a final decision made by a

senior pathologist.
Analysis strategy

In order to maximize the predictive performance and

ultimately reduce overfitting, we used the least absolute

shrinkage and selection operator (lasso) regression analysis to

screen variables, followed by logistic analysis to identify

independent risk factors for malignant nodules.

A total of six ML algorithms were developed in this study,

including Decision Tree (DT), Extreme Gradient Boosting

(XGBoost), Gradient Boosting Machine (GBM), Naive Bayes

Classifier (NBC), Random Forest (RF), and Logistic Regression

(LR), to predict malignant thyroid nodules based on the

variables with multivariable logistic regression p-value less

than 0.05. Models have been validated internally by using 10-

fold cross-validation. Subsequently, the area under the receiver

operating characteristic curve (AUC) values, accuracy, precision,

recall, and F1 score have been calculated to measure and

compare the performance of each model.

Because many machine learning algorithms are considered

functional black boxes, their internal processes are not well

understood. Given this issue, various interpretability methods

have been proposed to assess the influence of variables on the

predicted results (21, 22). For instance, the relative importance

of variables, the Shapley additive explanations (SHAP) method,

and the heat map of the correlation of features were employed to

further visualize the interpretation of ML-ed models at the

feature level. An optimal cutoff value for clinical application

was determined by probability density functions (PDFs).

Clinical utility curves (CUCs) were plotted to compare the net

benefits of different thresholds.

The demographic and clinical characteristics of all included

patients were analyzed by t-test and chi-square test via SPSS

Statistics software (version 26.0, SPSS Inc., Chicago, IL, USA).

Continuous and categorical variables are expressed as mean ±

SD and frequency in this study. p-Values <0.05 were considered

statistically significant with 95% confidence intervals (CIs)

applied for all analyses. R software was applied for developing

predictive models via the “rms” package and establishing a web

risk calculator via the “shiny” package.
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Results

Clinical and ultrasound characteristics

Of all 9,999 participants with thyroid nodules, 500 (50%)

harbored malignant nodules, while 500 (50%) had benign

disease based on the pathological diagnosis. We collected

clinical features (age and gender) and recorded image features

(thyroid nodule location, size, shape, composition, echogenicity,

margin, echogenicity, and cervical lymph node status).
Selection of features

Eight of 15 variables were screened by lasso analysis into

logistic regression analysis, and all statistically significant factors

in the univariate logistic regression analysis were included in the
Frontiers in Oncology 04
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multivariate logistic regression analysis. Finally, age, margin,

shape, echogenic foci, echogenicity, and lymph nodes were

identified as independent predictors of thyroid cancer. There

was no significant statistical difference in the nodule location

(laterality) and composition in the differentiation of benign and

malignant thyroid nodules. The results of the univariate and

multivariate analyses are demonstrated in Table 1.
Demographic baseline

A cohort of patients from Xianyang Central Hospital in

China was enrolled in this study. Results of the t-test and the chi-

square test indicated there was no statistically significant

difference between the training and the validation cohorts at a

0.05 significance level.
TABLE 1 The results of univariate and multivariable logistic regression.

Characteristics Univariate logistic regression Multivariable logistic regression

OR CI p OR CI p

Age 0.97 0.95–0.99 0.002 0.97 0.95–1 0.027

Composition

1 Ref Ref Ref Ref Ref Ref

2 4.8 1–23.03 0.05 NA NA NA

Echogenic.Foci

0 Ref Ref Ref Ref Ref Ref

1 1.21 0.54–2.67 0.644 0.75 0.28–1.97 0.557

2 1.48 0.09–24.16 0.781 1.35 0.06–30.07 0.848

3 7.54 3.85–14.76 <0.001 4.12 1.87–9.05 <0.001

Echogenicity

1 Ref Ref Ref Ref Ref Ref

2 9.21 3.95–21.49 <0.001 4.72 1.76–12.68 0.002

3 3.81 0.54–27.08 0.181 3.89 0.47–32.19 0.208

Laterality

Left Ref Ref Ref Ref Ref Ref

Right 0.91 0.56–1.48 0.7 NA NA NA

Middle 3.53 0.95–13.2 0.061 NA NA NA

Lymph.Nodes

No Ref Ref Ref Ref Ref Ref

Yes 6.9 2.8–16.98 <0.001 5.48 1.97–15.27 0.001

Margin

0 Ref Ref Ref Ref Ref Ref

2 6.83 3.31–14.08 <0.001 3.87 1.71–8.77 0.001

3 8.71 3.46–21.91 <0.001 4.61 1.64–12.95 0.004

Shape

0 Ref Ref Ref Ref Ref Ref

3 3.83 2.08–7.06 <0.001 2.86 1.38–5.93 0.005
fro
Composition (1, mixed cystic and solid; 2, solid or almost completely solid). Echogenic.Foci (0, none or large comet-tail artifacts; 1, macrocalcifications; 2, peripheral (rim) calcifications; 3,
punctate echogenic foci). Echogenicity (1, hyperechoic or isoechoic; 2, hypoechoic; 3, very hypoechoic). Margin (0, smooth or ill-defined; 2, lobulated or irregular; 3, extra-thyroidal
extension). Shape (0, wider-than-tall; 3, taller-than-wide). NA, Not Available.
ntiersin.org

https://doi.org/10.3389/fonc.2022.968784
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.968784
Development and validation of
ML-ed models

The six predictors identified in the differentiation of

malignant and benign thyroid nodules were used to construct

ML-ed models, including LR, NBC, DT, RF, GBM, and

XGBoost, respectively, for predicting malignant thyroid

nodules. The predictive performance of the six ML-ed models

is shown in Figure 1. The whole cohort used 10-fold cross-

validation in this study. All models had shown good

performance in predicting malignant nodules. Their AUC

values of XGBoost, LR, NBC, DT, RF, and GBM were 0.829,

0.821, 0.825, 0.759, 0.821, and 0.822, respectively, in the 10-fold

cross-validation. The XGBoost model indicated the best

performance than any of the others. Meanwhile, the XGBoost

model also achieved the highest accuracy of 0.65 and precision of

0.63, as shown in Figure 2. Thus, the XGBoost was identified as

our final predictive model in this study.
Explanation of model

To further illustrate the models at the feature level, a SHAP

summary diagram was plotted to demonstrate how these

features affect the presence of malignant thyroid nodules. The

SHAP values for each feature plotted for each sample are shown

in Figure 3. We concluded that margin, shape, echogenic foci,

echogenicity, and lymph nodes exerted negative effects on

predicting the risk of malignant thyroid nodules, whereas the

risk of malignancy increases with age.

Additionally, we ranked the importance of features in

Figure 4 in order to explore the extent to which each

independent risk factor contributed to the model. Although

there were slight differences in the importance of each variable
Frontiers in Oncology 05
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across models, the margin contributed most to the prediction of

malignant nodules in most models. In the XGBoost model, the

relative importance of variables decreased in the following order:

margin, echogenic foci, lymph nodes, age, shape, and

echogenicity. The correlation heat map indicated there was no

linear correlation between the variables, and they harbor

independent predictive power in clinical practice (Figure 5).
Application of model

As illustrated in Figure 6, we recommend a threshold

probability of 51% as the optimum cutoff value for the

probability of malignant nodules. In this situation, we could

detect 85.6% (red area under the blue line) of malignant nodules,

while the number of biopsy procedures for benign nodules

would be reduced by 89.8% (yellow area under the red line) in

Figure 7. Finally, in order to facilitate the practical application of

the model in clinical work, we embedded the best predictive

model into a web risk calculator (Figure 8) that can easily derive

the probability and risk stratification of patients with malignant

nodules in real time. Figure S1 shows the flow chart of our

current study.
Discussion

As a highly prevalent disease, the incidence of thyroid

nodules in China is 20%–35% (23), of which 7%–15% are

malignant (1). It is a challenge for clinicians to distinguish

malignant from benign nodules. Hence, we propose to develop

a predictive model based on machine learning for assessing the

malignancy risk of thyroid nodules in the Chinese population.

To our knowledge, this is the first ML-ed predictive model to
BA

FIGURE 1

The results of the least absolute shrinkage and selection operator (lasso) regression analysis. The coefficients of all variables are reduced to 0
from instability to stability in (A) and obtain the model coefficient of l value that minimizes the model deviation by cross-validation curve in (B).
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FIGURE 2

The results of 10-fold cross-validation in the six models of LR, NBC, DT, RF, GBM, and XGBoost. The average AUC of XGBoost model is the
highest one. LR, Logistic Regression; NBC, Naive Bayes Classifier; DT, Decision Tree; RF, Random Forest; GBM, Gradient Boosting Machine;
XGBoost, Extreme Gradient Boosting; AUC, area under the receiver operating characteristic curve.
FIGURE 3

Circular bar plot. The performance of six models has been evaluated by five criteria of AUC, accuracy, precision, recall, and F1. AUC, area under
the receiver operating characteristic curve.
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predict malignant thyroid nodules by integrating clinical and

ultrasound features. Our model was constructed using six

variables, including clinical characteristics (age) and

ultrasound features (margin, shape, echogenic foci ,

echogenicity, and lymph nodes). Our findings indicated that
Frontiers in Oncology 07
165
the proposed model could detect malignant thyroid nodules

accurately and reduce unnecessary biopsies by estimating risk

stratification. Finally, through a convenient and practical web

application, our model can assist doctors and patients to carry

out precise and individualized management of thyroid nodules.
B C

D E F

A

FIGURE 5

Importance of the selected features. Importance of each feature had been demonstrated and compared in the six models of LR, NBC, DT, RF,
GBM, and XGBoost. LR, Logistic Regression; (A) NBC, Naive Bayes Classifier; (B) DT, Decision Tree; (C) RF, Random Forest; (D) GBM, Gradient
Boosting Machine; (E) XGBoost, Extreme Gradient Boosting (F).
FIGURE 4

SHAP values of the selected features. The higher the SHAP value of each variable, the more impact and contribution to the model. SHAP,
Shapley additive explanations.
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We found that age played an adverse role in the risk of

malignancy as a predictive parameter in our model. This finding

was consistent with that of Chen et al., where there was no

increased risk of malignancy in those aged 28–63 in the same

population of a Chinese cohort (24). In addition, a similar

finding was revealed in a US cohort of 196 patients with

malignant FNA cytology, and the incidence of malignant

thyroid nodules in patients under 45 years old was twice that

in those over 45 years old (8.1% vs. 4.0%, p < 0.001) (25).

Similarly, Italian scholars have reported that cytology suspicious

or indicative of papillary thyroid cancer is associated with

younger age (26). However, our result was contrary to what

Belfifiore et al. reported that thyroid cancer is more common in

elderly patients (27). Different views on the association between

age and the incidence of malignant thyroid nodules deserve

further exploration.

Previous findings unveiled that the abnormal cervical lymph

nodes may indicate malignant nodule metastasis (28), which is

consistent with our study. It is reported that 30%–80% of

patients with thyroid cancer have cervical lymph node

metastasis (29). Cervical lymph nodes are usually not palpable

because of their deep location and small size. Ultrasound has

demonstrated its high sensitivity and specificity for the

assessment of non-palpable lymph nodes (30). Cervical lymph

nodes may enlarge as a result of a benign process, such as

reactive hyperplasia due to inflammation in submandibular and

upper cervical nodes (29). However, most investigators agree on

the sonographic features of metastatic lymph nodes in thyroid
Frontiers in Oncology 08
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cancer, including cystic degeneration, a rounded shape, loss of

echogenic hilum, hypoechoic or hyperechoic mass, and

calcification (31–33). The cervical lymph node is the first

metastatic site of malignant nodules. Thyroid nodules should

be highly suspected as malignant when abnormal lymph nodes

are observed.

Meanwhile, margin ranked first in the importance of features

and contributed the most to our model. We found that lobulated

or irregular margins and extensive extrathyroidal extension

detected by ultrasound increased the risk of malignancy risk in

nodules. A lobulated or irregular margin is defined as a

spiculated or jagged edge. Some studies have revealed that an

irregular or microlobulated margin suggests malignancy (34,

35). Extensive extrathyroidal extension refers to a frank invasion

of adjacent soft tissue or vascular, which is a highly reliable

characteristic of malignancy and also has a negative effect on

prognosis (36).

Furthermore, another feature we found that increased the

risk of malignant nodules was the shape of the nodules. As first

observed by Kim et al. and subsequently confirmed in a series of

studies (35, 37–40), a lump with a shape taller-than-wide is

another useful predictor of malignancy. These results may be

associated with the growth pattern. It is found that the growth of

benign nodules remains within normal tissue planes, so the

shape of benign nodules can be ovoid to round, whereas

malignant nodules grow centrifugally through the normal

tissue plane (38, 39). In the ACR TIRADS, taller-than-wide

was assigned 3 points in the TIRADS, and our results have
FIGURE 6

The heat map of correlation of the selected features, including age, echogenicity, shape, margin, echogenic foci, and lymph nodes.
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confirmed the high-risk role of shape in the malignancy of

thyroid nodules.

Notwithstanding, echogenic foci, and echogenicity were

regarded as predictive variables in both our predictive model

and the ACR TIRADS; there were different opinions on

assessing thyroid nodules on some features. Our results

showed the presence of macrocalcifications and peripheral

(rim) calcifications had no statistical difference between

malignant and benign nodules. However, macrocalcifications

and peripheral (rim) calcifications could be assigned 1 and 2

points in the TIRADS, respectively. Macrocalcifications refer to

coarse echogenic foci accompanied by acoustic shadowing.

Evidence in published data describing their correlation with an

increased malignancy risk is weak (41); additionally, the
Frontiers in Oncology 09
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relationship between macrocalcifications and nodules lacking

other malignant characteristics is also mixed (42, 43). Peripheral

(rim) calcifications lie along all or part of the nodule’s margin.

Compared with macrocalcifications, they are more strongly

correlated with malignancy (41), but several studies suggested

that their correlation with malignancy is variable (43).

The statistical results of logistic regression showed that

patients with punctate echogenic foci had a higher tendency to

develop malignant nodules. Punctate echogenic foci are smaller

in size and less shadowed than macrocalcifications and may

correspond to the psammomatous calcifications associated with

papillary cancers in the solid components of thyroid nodules.

Histologically, punctate echogenic foci are smaller and less

shadowed than macrocalcifications, which are considered
B

A

FIGURE 7

Probability density functions (A) and clinical utility curves (B) of the predictive model (0, benign modules group; 1, malignant nodules group). It is
85.6% (red area under the blue line) of malignant nodules, and the number of biopsy procedures for benign nodules was reduced by 89.8%
(yellow area under the red line).
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highly positive associations with malignancy, especially in

combination with other suspicious features (3, 5).

Echogenicity refers to a nodule’s reflectivity relative to

adjacent tissue. Except for the thyroid parenchyma, which is

usually used as reference tissue, the neck strap muscles with

very low echogenicity are also used as the basis for comparison.

Previously, several studies investigated that a higher degree of

hypoechogenicity was highly suggestive of malignancy, with a

specificity of 92%–94% (37, 44). Interestingly, a higher degree of

hypoechogenicity harbors no statistical significance for predicting

malignant nodules based on our results of multivariable logistic

regression. These results need more evidence to verify.

Another important finding of our paper was composition,

which was not an independent predictor of malignant nodules.

Thyroid nodules that are cystic or almost completely cystic have

no score in the ACR TIRADS because they are highly correlated

with benign cytology, and only 13%–26% of thyroid cancers

harbor a cystic component (29, 44–46). Spongiform, composed

predominantly (>50%) of small cystic spaces, is considered a

sign of benignity with high specificity (44). In our study, we

found that no patient had cystic or almost completely cystic or

spongiform ultrasound features. Additionally, according to ACR

TIRADS, mixed cystic and solid, and solid or almost completely

solid are the risk factors for malignant nodules, with scores of 1

and 2, respectively (3). Solid nodules with an eccentric

configuration and acute angle are suspected to be malignant

(47), whereas these conclusions were not observed in our study.

The differences between our study and the risk stratification

system also illustrate the inadequacy of the classification system

to evaluate thyroid nodules, such as interobserver variation/a

subjective assessment of the nodules (8, 48). Therefore, it is
Frontiers in Oncology 10
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necessary to add clinical data to further improve the accuracy

and objectivity of the predictive model. As Chen et al. described

in their literature, the predictive power of the new model was

superior to that of ACR TIRADS when age is included.

Furthermore, our study cohort enrolled retrospectively

Chinese patients from a single medical center; these differences

therefore may be due to demographic differences and healthcare

disparities between patients in the USA and China.

Therefore, these differences may be due to the mismatch

between the classification system and the current medical

situation in China. It is more rational to apply a risk

stratification system according to the population. Accordingly,

Zhou et al. formulated Chinese guidelines for ultrasound

malignancy risk stratification of thyroid nodules (C-TIRADS)

that are specific to China’s national and medical conditions (23).

We offered clinicians and patients an online web application

for estimating the risk of a malignant thyroid nodule using the

XGBoost model, which combined six variables including age,

lymph nodes, margin, shape, echogenic foci, and echogenicity.

By inputting the corresponding personalized parameters of

patients, visitors can quickly obtain the corresponding

malignancy risk. The link is as follows: https://share.streamlit.

io/liuwencai6/thyroid_final/main/thyroid_final.py.

Depending on the cutoff value in the PDF and CUC, we

recommended 51% as the threshold probability of the next

management strategy and risk stratification. In that case, about

85.6% of patients with malignant thyroid nodules can be

detected, FNA was recommended, and careful follow-up and

possibly early surgery should be considered. Moreover, we could

also save approximately 89.8% of unnecessary biopsy procedures

in low-risk populations (malignant risk ≤51%). This result is
FIGURE 8

The application of the web risk calculator for patients with malignant nodules.
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consistent with the main goal of all currently available

sonographic risk stratification systems, that is, to eliminate

unnecessary thyroid biopsies without endangering the

diagnosis of clinically malignant nodules (15). We believe that

the incorporation of our predictive model into clinical practice

will improve the diagnostic accuracy of malignant thyroid

nodules and minimize the number of unnecessary FNA in

low-risk patients with thyroid nodules. Compared with

existing models (49, 50), the performances are good but

various due to differences in population and dataset.

There are several limitations of this existing study. First, the

retrospective nature of this study may have resulted in potential

bias. Second, the ultrasound features were read and provided by

sonographers rather than captured directly from the ultrasonic

images, which may cause bias in data quality due to extraction and

interpretation.We strongly recommend that the machine learning

model be used to extract the features from ultrasonic images

directly and from several types of machines in future studies. In

addition, all patients and ultrasound assessments are derived from

a single medical center, which may restrict the accuracy; large-

scale multicenter cohorts and external validation would be more

forceful. Finally, we classified the features of nodules by ACR

TIRADS, rather than the Chinese-TIRADS proposed by the

Chinese professional society, to evaluate ultrasound parameters

(23). We will expand our cohort and dataset in a further study to

optimize our model and algorithm in the future.
Conclusion

In conclusion, our study yielded a machine learning-based

model combining age with ultrasound parameters, including

shape, margin, echogenic foci, echogenicity, and lymph nodes, to

predict the presence of malignant thyroid nodules. Our model

showed good performance and was embodied in a web risk

calculator to estimate the risk of malignant thyroid nodules.
Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.
Frontiers in Oncology 11
169
Ethics statement

This study has been approved by the Ethics Committee of

Xianyang Central Hospital, Ethics No. 2022-IRB-68.

Author contributions

CLY, WK, and WLL designed the article. YWL, CX, and BW

collected and evaluated the data. WYL and WLL wrote the first

draft of the manuscript. All authors reviewed the manuscript. All

authors contributed to the interpretation of the results. WYL,

JQF and WCL wrote the final draft of the manuscript. YWL

CYH and YYC read and approved the final version of the

manuscript. All authors contributed to the article and

approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.968784/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Flow Chart.
References
1. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE,
et al. 2015 American thyroid association management guidelines for adult patients
with thyroid nodules and differentiated thyroid cancer: The American thyroid
association guidelines task force on thyroid nodules and differentiated thyroid
cancer. Thyroid (2016) 26(1):1–133. doi: 10.1089/thy.2015.0020

2. Gharib H, Papini E, Garber JR, Face D, Face R, Hegedus L, et al. American
Association of clinical endocrinologists, American college of endocrinology, and
associazione Medici endocrinologi medical guidelines for clinical practice for the
diagnosis and management of thyroid nodules–2016 update. Endocr Pract (2016)
22(5):622–39. doi: 10.4158/EP161208.GL

3. Tessler FN, Middleton WD, Grant EG, William D, Grant Edward G. ACR
thyroid imaging, reporting and data system (TI-RADS): White paper of the ACR
TI-RADS committee. J Am Coll Radiol (2017) 14(5):587–95. doi: 10.1016/
j.jacr.2017.01.046

4. Burman KD, Wartofsky L. CLINICAL PRACTICE. thyroid nodules. N Engl J
Med (2015) 373(24):2347–56. doi: 10.1056/NEJMcp1415786
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.968784/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.968784/full#supplementary-material
https://doi.org/10.1089/thy.2015.0020
https://doi.org/10.4158/EP161208.GL
https://doi.org/10.1016/j.jacr.2017.01.046
https://doi.org/10.1016/j.jacr.2017.01.046
https://doi.org/10.1056/NEJMcp1415786
https://doi.org/10.3389/fonc.2022.968784
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.968784
5. Rago T, Vitti P. Risk stratification of thyroid nodules: From ultrasound
features to TIRADS. Cancers (Basel) (2022) 14(3):717. doi: 10.3390/
cancers14030717

6. Smith-Bindman R, Lebda P, Feldstein VA, Sellami D, Goldstein RB, Brasic
N, et al. Risk of thyroid cancer based on thyroid ultrasound imaging
characteristics: results of a population-based study. JAMA Intern Med (2013)
173(19):1788–96. doi: 10.1001/jamainternmed.2013.9245

7. Lamartina L, Deandreis D, Durante C, Filetti S. ENDOCRINE TUMOURS-
imaging in the follow-up of differentiated thyroid cancer- current evidence and
future perspectives for a risk-adapted approach. Eur J Endocrinol (2016) 175(5):
R185–202. doi: 10.1530/EJE-16-0088

8. Solymosi T, Hegedus L, Bonnema SJ, Frasoldati A, Jambor L, Kovacs GL,
et al. Ultrasound-based indications for thyroid fine-needle aspiration: Outcome of a
TIRADS-based approach versus operators' expertise. Eur Thyroid J (2021) 10
(5):416–24. doi: 10.1159/000511183

9. Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedüs L, et al.
American Association of clinical endocrinologists, associazione Medici
endocrinologi, and EuropeanThyroid association medical guidelines for clinical
practice for the diagnosis and management of thyroid nodules. Endocr Pract (2010)
16 Suppl 1:1–43. doi: 10.4158/EP.16.3.468

10. Singh Ospina N, Brito JP, Maraka S, Espinosa de Ycaza AE, Rodriguez-
Gutierrez R, Gionfriddo MR, et al. Diagnostic accuracy of ultrasound-guided fine
needle aspiration biopsy for thyroid malignancy: systematic review and meta-
analysis. Endocrine (2016) 53(3):651–61. doi: 10.1007/s12020-016-0921-x

11. Davies L, Welch HG. Current thyroid cancer trends in the united states. JAMA
Otolaryngol Head Neck Surg (2014) 140(4):317–22. doi: 10.1001/jamaoto.2014.1

12. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The
Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol
(2012) 56(4):333–9. doi: 10.1159/000339959

13. Ali SZ, Siperstein A, Sadow PM, Golding AC, Kennedy GC, Kloos RT, et al.
Extending expressed RNA genomics from surgical decision making for
cytologically indeterminate thyroid nodules to targeting therapies for metastatic
thyroid cancer. Cancer Cytopathol (2019) 127(6):362–9. doi: 10.1002/cncy.22132

14. Swan KZ, Thomas J, Nielsen VE, Jespersen ML, Bonnema SJ. External
validation of AIBx, an artificial intelligence model for risk stratification, in thyroid
nodules. Eur Thyroid J (2022) 11(2):e210129. doi: 10.1530/ETJ-21-0129

15. Grani G, Lamartina L, Ascoli V, Bosco D, Biffoni M, Giacomelli L, et al.
Reducing the number of unnecessary thyroid biopsies while improving diagnostic
accuracy: Toward the "Right" TIRADS. J Clin Endocrinol Metab (2019) 104(1):95–
102. doi: 10.1210/jc.2018-01674

16. Huang BL, Ebner SA, Makkar JS, Bentley-Hibbert S, McConnell RJ, Lee JA ,
et al. A multidisciplinary head-to-Head comparison of American college of
radiology thyroid imaging and reporting data system and American thyroid
association ultrasound risk stratification systems. Oncologist (2020) 25(5):398–
403. doi: 10.1634/theoncologist.2019-0362

17. Oberije C, Nalbantov G, Dekker A, Boersma L, Borger J, Reymen B, et al. A
prospective study comparing the predictions of doctors versus models for
treatment outcome of lung cancer patients: a step toward individualized care and
shared decision making. Radiother Oncol (2014) 112(1):37–43. doi: 10.1016/
j.radonc.2014.04.012

18. Buda M, Wildman-Tobriner B, Hoang JK, Thayer D, Tessler FN, Middleton
WD, et al. Management of thyroid nodules seen on US images: Deep learning may
match performance of radiologists. Radiology (2019) 292(3):695–701. doi: 10.1148/
radiol.2019181343

19. Thomas J, Haertling T. AIBx, artificial intelligence model to risk stratify
thyroid nodules. Thyroid (2020) 30(6):878–84. doi: 10.1089/thy.2019.0752

20. Guan Q, Wang Y, Du J, Qin Y, Lu H, Xiang J, et al. Deep learning based
classification of ultrasound images for thyroid nodules: a large scale of pilot study.
Ann Transl Med (2019) 7(7):137. doi: 10.21037/atm.2019.04.34

21. Souza LR, Colonna JG, Comodaro JM, Naveca FG. Using amino acids co-
occurrence matrices and explainability model to investigate patterns in dengue
virus proteins. BMC Bioinf (2022) 23(1):80. doi: 10.1186/s12859-022-04597-y

22. Lundberg S, Lee SI. A unifed approach to interpreting model predictions.
Adv Neural Inf Process Syst (2017) 30:4765–74. doi: 10.5555/3295222.3295230

23. Zhou J, Yin L, Wei X, Zhang S, Song Y, Luo B, et al. Chinese Guidelines for
ultrasound malignancy risk stratification of thyroid nodules: the c-TIRADS.
Endocrine (2020) 70(2):256–79. doi: 10.1007/s12020-020-02441-y

24. Chen L, Zhang J, Meng L, Lai Y, HuangW. A new ultrasound nomogram for
differentiating benign and malignant thyroid nodules. Clin Endocrinol (Oxf) (2019)
90(2):351–9. doi: 10.1111/cen.13898

25. Bessey LJ, Lai NB, Coorough NE, Chen H, Sippel RS. The incidence of
thyroid cancer by fine needle aspiration varies by age and gender. J Surg Res (2013)
184(2):761–5. doi: 10.1016/j.jss.2013.03.086
Frontiers in Oncology 12
170
26. Rago T, Fiore E, Scutari M, Santini F, Di Coscio G, Romani R, et al. Male
Sex, single nodularity, and young age are associated with the risk of finding a
papillary thyroid cancer on fine-needle aspiration cytology in a large series of
patients with nodular thyroid disease. Eur J Endocrinol (2010) 162(4):763–70. doi:
10.1530/EJE-09-0895

27. Belfiore A, La Rosa GL, La Porta GA, Giuffrida D, Milazzo G, Lupo L, et al.
Cancer risk in patients with cold thyroid nodules: relevance of iodine uptake, sex,
age, and multinodularity. Am J Med (1992) 93:363–9. doi: 10.1016/0002-9343(92)
90164-7

28. AIUM practice parameter for the performance of a thyroid and parathyroid
ultrasound examination. J Ultrasound Med (2016) 35:1–11. doi: 10.7863/
ultra.35.9.1-c

29. Patel NU, McKinney K, Kreidler SM, Bieker TM, Russ P, Roberts K, et al.
Ultrasound-based clinical prediction rule model for detecting papillary thyroid
cancer in cervical lymph nodes: A pilot study. J Clin Ultrasound (2016) 44(3):143–
51. doi: 10.1002/jcu.22309

30. Snozek CL, Chambers EP, Reading CC, Sebo TJ, Sistrunk JW, Singh RJ, et al.
Serum thyroglobulin, high-resolution ultrasound, and lymph node thyroglobulin
in diagnosis of differentiated thyroid carcinoma nodal metastases. J Clin Endocrinol
Metab (2007) 92(11):4278–81. doi: 10.1210/jc.2007-1075

31. Sohn YM, Kwak JY, Kim EK, Moon HJ, Kim SJ, Kim MJ. Diagnostic
approach for evaluation of lymph node metastasis from thyroid cancer using
ultrasound and fine-needle aspiration biopsy. AJR Am J Roentgenol (2010) 194
(1):38–43. doi: 10.2214/AJR.09.3128

32. Langer JE, Mandel SJ. Sonographic imaging of cervical lymph nodes in
patients with thyroid cancer. Neuroimaging Clin N Am (2008) 18(3):479–489, vii-
viii. doi: 10.1016/j.nic.2008.03.007

33. Kamaya A, Gross M, Akatsu H, Jeffrey RB. Recurrence in the thyroidectomy
bed: sonographic findings. AJR Am J Roentgenol (2011) 196(1):66–70. doi: 10.2214/
AJR.10.4474

34. Papini E, Guglielmi R, Bianchini A, Crescenzi A, Taccogna S, Nardi F, et al.
Risk of malignancy in nonpalpable thyroid nodules: Predictive value of ultrasound
and color-Doppler features. J Clin EndocrinolMetab (2002) 87:941–1946.
doi: 10.1210/jcem.87.5.8504

35. Kim EK, Park CS, Chung WY, Oh KK, Kim DI, Lee JT, et al. New
sonographic criteria for recommending fine-needle aspiration biopsy of
nonpalpable solid nodules of the thyroid. AJR Am J Roentgenol (2002) 178
(3):687–91. doi: 10.2214/ajr.178.3.1780687

36. Hoang JK, Lee WK, Lee M, Johnson D, Farrell S. US Features of thyroid
malignancy: pearls and pitfalls. Radiographics (2007) 27:847–60. doi: 10.1148/
rg.273065038

37. Moon WJ, Jung SL, Lee JH, Na DG, Baek JH, Lee YH, et al. Thyroid study
group, Korean society of neuro- and head and neck radiology. benign and
malignant thyroid nodules: US differentiation–multicenter retrospective study.
Radiology (2008) 247(3):762–70. doi: 10.1148/radiol.2473070944

38. Cappelli C, Castellano M, Pirola I, Gandossi E, De Martino E, Cumetti D,
et al. Thyroid nodule shape suggests malignancy. Eur J Endocrinol (2006) 155
(1):27–31. doi: 10.1530/eje.1.02177

39. Alexander EK, Marqusee E, Orcutt J, Benson CB, Frates MC, Doubilet PM,
et al. Thyroid nodule shape and prediction of malignancy. Thyroid (2004) 14
(11):953–8. doi: 10.1089/thy.2004.14.953

40. Na DG, Baek JH, Sung JY, Kim JH, Kim JK, Choi YJ, et al. Thyroid imaging
reporting and data system risk stratification of thyroid nodules: Categorization
based on solidity and echogenicity. Thyroid (2016) 26(4):562–72. doi: 10.1089/
thy.2015.0460

41. Arpaci D, Ozdemir D, Cuhaci N, Dirikoc A, Kilicyazgan A, Guler G, et al.
Evaluation of cytopathological findings in thyroid nodules with macrocalcification:
macrocalcification is not innocent as it seems. Arq Bras Endocrinol Metabol (2014)
58(9):939–45. doi: 10.1590/0004-2730000003602

42. Na DG, Kim DS, Kim SJ, Ryoo JW, Jung SL. Thyroid nodules with isolated
macrocalcification: malignancy risk and diagnostic efficacy offine-needle aspiration
and core needle biopsy. Ultrasonography (2016) 35(3):212–9. doi: 10.14366/
usg.15074

43. Kim MJ, Kim EK, Kwak JY, Park CS, Chung WY, Nam KH, et al.
Differentiation of thyroid nodules with macrocalcifications: role of suspicious
sonographic findings. J Ultrasound Med (2008) 27(8):1179–84. doi: 10.7863/
jum.2008.27.8.1179

44. Bonavita JA, Mayo J, Babb J, Bennett G, Oweity T, Macari M, et al.
Pattern recognition of benign nodules at ultrasound of the thyroid: which
nodules can be left alone? AJR Am J Roentgenol (2009) 193(1):207–13. doi:
10.2214/AJR.08.1820

45. Chan BK, Desser TS, McDougall IR, Weigel RJ, Jeffrey RBJr. Common and
uncommon sonographic features of papillary thyroid carcinoma. J Ultrasound Med
(2003) 22:1083–90. doi: 10.7863/jum.2003.22.10.1083
frontiersin.org

https://doi.org/10.3390/cancers14030717
https://doi.org/10.3390/cancers14030717
https://doi.org/10.1001/jamainternmed.2013.9245
https://doi.org/10.1530/EJE-16-0088
https://doi.org/10.1159/000511183
https://doi.org/10.4158/EP.16.3.468
https://doi.org/10.1007/s12020-016-0921-x
https://doi.org/10.1001/jamaoto.2014.1
https://doi.org/10.1159/000339959
https://doi.org/10.1002/cncy.22132
https://doi.org/10.1530/ETJ-21-0129
https://doi.org/10.1210/jc.2018-01674
https://doi.org/10.1634/theoncologist.2019-0362
https://doi.org/10.1016/j.radonc.2014.04.012
https://doi.org/10.1016/j.radonc.2014.04.012
https://doi.org/10.1148/radiol.2019181343
https://doi.org/10.1148/radiol.2019181343
https://doi.org/10.1089/thy.2019.0752
https://doi.org/10.21037/atm.2019.04.34
https://doi.org/10.1186/s12859-022-04597-y
https://doi.org/10.5555/3295222.3295230
https://doi.org/10.1007/s12020-020-02441-y
https://doi.org/10.1111/cen.13898
https://doi.org/10.1016/j.jss.2013.03.086
https://doi.org/10.1530/EJE-09-0895
https://doi.org/10.1016/0002-9343(92)90164-7
https://doi.org/10.1016/0002-9343(92)90164-7
https://doi.org/10.7863/ultra.35.9.1-c
https://doi.org/10.7863/ultra.35.9.1-c
https://doi.org/10.1002/jcu.22309
https://doi.org/10.1210/jc.2007-1075
https://doi.org/10.2214/AJR.09.3128
https://doi.org/10.1016/j.nic.2008.03.007
https://doi.org/10.2214/AJR.10.4474
https://doi.org/10.2214/AJR.10.4474
https://doi.org/10.1210/jcem.87.5.8504
https://doi.org/10.2214/ajr.178.3.1780687
https://doi.org/10.1148/rg.273065038
https://doi.org/10.1148/rg.273065038
https://doi.org/10.1148/radiol.2473070944
https://doi.org/10.1530/eje.1.02177
https://doi.org/10.1089/thy.2004.14.953
https://doi.org/10.1089/thy.2015.0460
https://doi.org/10.1089/thy.2015.0460
https://doi.org/10.1590/0004-2730000003602
https://doi.org/10.14366/usg.15074
https://doi.org/10.14366/usg.15074
https://doi.org/10.7863/jum.2008.27.8.1179
https://doi.org/10.7863/jum.2008.27.8.1179
https://doi.org/10.2214/AJR.08.1820
https://doi.org/10.7863/jum.2003.22.10.1083
https://doi.org/10.3389/fonc.2022.968784
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.968784
46. Russ G. Risk stratification of thyroid nodules on ultrasonography with the
French TI-RADS: description and reflections. Ultrasonography (2016) 35(1):25–38.
doi: 10.14366/usg.15027

47. Kim DW, Park JS, In HS, Choo HJ, Ryu JH, Jung SJ. Ultrasound-based
diagnostic classification for solid and partially cystic thyroid nodules. AJNR Am J
Neuroradiol (2012) 33(6):1144–9. doi: 10.3174/ajnr.A2923

48. Persichetti A, Di Stasio E, Coccaro C, Graziano F, Bianchini A, Di
Donna V, et al. Inter- and intraobserver agreement in the assessment of
thyroid nodule ultrasound features and classification systems: A blinded
Frontiers in Oncology 13
171
multicenter study. Thyroid (2020) 30(2):237–42. doi: 10.1089/thy.2019.
0360

49. Zhao CK, Ren TT, Yin YF, Shi H, Wang HX, Zhou BY, et al. A comparative
analysis of two machine learning-based diagnostic patterns with thyroid imaging
reporting and data system for thyroid nodules: diagnostic performance and
unnecessary biopsy rate. Thyroid (2021) 31(3):470–81. doi: 10.1089/thy.2020.0305

50. Zhang B, Tian J, Pei S, Chen Y, He X, Dong Y, et al. Machine learning–
assisted system for thyroid nodule diagnosis. Thyroid (2019) 29(6):858–67. doi:
10.1089/thy.2018.0380
frontiersin.org

https://doi.org/10.14366/usg.15027
https://doi.org/10.3174/ajnr.A2923
https://doi.org/10.1089/thy.2019.0360
https://doi.org/10.1089/thy.2019.0360
https://doi.org/10.1089/thy.2020.0305
https://doi.org/10.1089/thy.2018.0380
https://doi.org/10.3389/fonc.2022.968784
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Advances knowledge of carcinogenesis and 

tumor progression for better treatment and 

management

The third most-cited oncology journal, which 

highlights research in carcinogenesis and tumor 

progression, bridging the gap between basic 

research and applications to imrpove diagnosis, 

therapeutics and management strategies.

Discover the latest 
Research Topics

See more 

Frontiers in
Oncology

https://www.frontiersin.org/journals/Oncology/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Deep learning approaches inimage-guided diagnosis fortumors
	Table of contents
	An Assisted Diagnosis Model for Cancer Patients Based on Federated Learning
	Introduction
	Auxiliary Diagnosis Model Construction Related Work
	Federated Learning
	Localized Differential Privacy Protection Method
	Convolutional Neural Network
	Federated Learning Model Based on Convolutional Neural Network

	Construction of Rehabilitation Data Sample Set Based on Federated Learning
	Experimental Simulation and Result Analysis
	Cancer Aided Diagnosis Model
	Convolutional Neural Network Aided Diagnosis Model Based on Federated Learning

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Respiratory Prediction Based on Multi-Scale Temporal Convolutional Network for Tracking Thoracic Tumor Movement
	1 Introduction
	2 Related Work
	3 Materials And Methods
	3.1 Respiratory Movement Data
	3.2 Research Methods
	3.2.1 Data Preprocessing
	3.2.1.1 Remove Outliers
	3.2.1.2 Empirical Mode Decomposition
	3.2.1.3 Division of Preprocessed Data

	3.2.2 Respiratory Motion Prediction Model
	3.2.2.1 Squeeze and Exception Module
	3.2.2.2 Temporal Convolutional Network
	3.2.2.2.1 Causal Convolutions
	3.2.2.2.2 Dilated Convolutions
	3.2.2.2.3 Residual Connections

	3.2.2.3 Network Layer of Respiratory Motion Prediction Model

	3.2.3 Evaluation Criteria


	4 Results And Discussion
	4.1 Results
	4.2 Discussion

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	A Sequential Machine Learning-cum-Attention Mechanism for Effective Segmentation of Brain Tumor
	Introduction
	Related Works
	Methodology
	Transfer Learning
	VGG19
	Attention Mechanism
	Markov Random Field

	Results
	Evaluation Metrics
	Qualitative Results
	Quantitative Results

	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

	AX-Unet: A Deep Learning Framework for Image Segmentation to Assist Pancreatic Tumor Diagnosis
	1 Introduction
	2 Related Work
	2.1 Artificial Intelligence in Medicine
	2.2 Image Segmentation
	2.3 Medical Image Segmentation

	3 Methods
	3.1 Architecture
	3.2 Depth-Wise Separable Convolution
	3.3 ASPP Module
	3.4 Hybird Loss Function

	4 Experiments and Results
	4.1 Datasets
	4.2 Evaluation Metric
	4.3 Implementation Details
	4.4 Results
	4.4.1 Ablation Experiment
	4.4.2 3D Rebuilding

	4.5 Activation Map

	5 Pathological Analysis of Pancreatic Tumors With our Model
	5.1 Data Collection and Processing Methods
	5.2 Ethical Approval
	5.3 Transfer Learning and Feature Extraction
	5.4 Results and Discussion

	6 Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Early Prediction of Lung Cancers Using Deep Saliency Capsule and Pre-Trained Deep Learning Frameworks
	1 Introduction
	1.1 Contribution of the Research Work

	2 Related Works
	3 Proposed Methodology
	3.1 System Overview
	3.2 Data Preprocessing and Augmentation
	3.3 Capsule Saliency Segmentation
	3.4 Capsule Networks – An Overview
	3.5 Segmentation Process
	3.6 Transfer Learning for Feature Extractor
	3.7 Classification Layers
	3.8 Optimized Extreme Learning Models
	3.8.1 Whale Optimization Algorithms
	3.8.2 Proposed Model


	4 Proposed Framework Validation
	4.1 Datasets Descriptions
	4.2 Experiment Details
	4.3 Performance Metrics and Evaluation
	4.4 Results and Discussion

	5 Conclusion
	Data Availability Statement
	Author Contributions
	SUPPLEMENTARY MATERIAL 

	References

	High-Accuracy Oral Squamous Cell Carcinoma Auxiliary Diagnosis System Based on EfficientNet
	Introduction
	Materials and Methods
	Data Resource and Data Preprocessing
	CNNs and Resolutions
	Model Training and Selection
	The Construction of ECHO
	Five-Classes Expansion of ECHO
	Hardware and Software
	Statistical Analysis

	Result
	Model Comparison
	Test on the Whole-Slide Images
	Verification on the External Dataset
	Visualization of ECHO
	Evaluation of Five Classes ECHO

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Deep Learning Analysis Using 18F-FDG PET/CT to Predict Occult Lymph Node Metastasis in Patients With Clinical N0 Lung Adenocarcinoma
	Introduction
	Materials and Methods
	Patients
	PET/CT Acquisition
	Image Selection and Processing
	CNN Model Architecture
	Model Performance
	Statistical Analysis

	Results
	Baseline Information
	Comparison of Clinicopathologic Data Between OLMN and OLMP Groups
	Performance of Deep Learning Models

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Imaging-Based Deep Graph Neural Networks for Survival Analysis in Early Stage Lung Cancer Using CT: A Multicenter Study
	Introduction
	Materials and methods
	Data Description
	Scanning Parameters
	Lung CT images Segmentation
	Graph Building and Graph Convolutional Neural Network Architecture
	Experiment Design and Statistical Analysis

	Results
	Patient Information Statistics
	Model Evaluation

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Application of random forest based on semi-automatic parameter adjustment for optimization of anti-breast cancer drugs
	1 Introduction
	2 Related work
	3 Theoretical foundation
	3.1 XGBoost-based data feature selection
	3.2 Random forest
	3.3 Gradient-enhanced regression tree
	3.4 Support vector machine
	3.5 Semi-automatic parameter adjustment

	4. Experiment
	4.1 Data import
	4.2 Data pre-processing
	4.3 XGBoost-based data feature selection
	4.4 Quantitative structure-activity relationship model

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	References

	Using deep learning to distinguish malignant from benign parotid tumors on&nbsp;plain computed tomography images
	Introduction
	Methods and materials
	Data acquisition
	Image processing
	Network structure and voting
	Manual classification of parotid tumor on plain computed tomography images
	Statistics

	Results
	Diagnostic performance of three convolutional neural network models and radiologists
	Diagnostic performance of different convolutional neural network models after voting

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	References

	Computed tomography-based deep-learning prediction of lymph node metastasis risk in locally advanced gastric cancer
	Introduction
	Materials and methods
	Patients
	Image process and tumor segmentation
	Deep learning features
	Radiomics features
	Harmonization
	Feature selection and model construction
	Statistical analysis

	Results
	Clinical characteristics
	Handcrafted radiomics model construction
	Deep learning model construction
	Radiomics-deep learning combined model

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	Automatic volumetric diagnosis of hepatocellular carcinoma based on four-phase CT scans with minimum extra information
	Highlights
	Introduction
	Materials and methods
	Data preprocessing
	Models
	Statistics

	Results
	Basic model and enhanced model
	MExPaLe model
	Reader study

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	References

	MC-ViT: Multi-path cross-scale vision transformer for thymoma histopathology whole slide image typing
	Introduction
	Related works
	Vision transformers
	Attention mechanism

	Materials and methods
	Patients and dataset
	Overall architecture
	Cross attentive scale-aware transformer
	WSI transformer
	Cross-correlation attention module
	Loss functions

	Experimental results and analysis
	Implementation details
	Evaluation metrics
	Evaluation for pathological information classification
	Thymoma typing evaluation

	Discussion
	Ablation study for multiple paths of transformer
	Ablation study for multi-scale transformer architecture
	Ablation study for cross-correlation attention mechanism
	Unsupervised method for thymoma typing

	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	References

	Incorporation of a machine learning pathological diagnosis algorithm into the thyroid ultrasound imaging data improves the diagnosis risk of malignant thyroid nodules
	Introduction
	Materials and methods
	Collection of patients
	Collection of ultrasound data
	Analysis strategy

	Results
	Clinical and ultrasound characteristics
	Selection of features
	Demographic baseline
	Development and validation of ML-ed models
	Explanation of model
	Application of model

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Supplementary material
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




