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The Editorial on the Research Topic

NK cell-based cancer immunotherapy

Innate and adaptive immunity cooperate to eliminate tumors. However, when infrequent cancer cell 
variants are not destroyed, tumor growth and immunosurveillance enter into a dynamic equilib-
rium until cancer cells evade the immune system, at which point malignancies appear clinically as 
a consequence. Therapies designed to induce potent antitumor responses by harnessing the power 
of the immune system are an appealing strategy to control tumor growth. Natural killer (NK) cells 
are innate lymphocytes that play a pivotal role in host immunity against cancer. The activity of NK 
cells is finely tuned by the balance between the signals that emanate from inhibitory and activating 
receptors. Inhibitory receptors, such as killer-cell immunoglobulin-like receptor (KIR) and CD94/
NK Group 2 member A (NKG2A), recognize human leukocyte (HLA) class I molecules whose 
expression is often altered on tumor cells. NK cells recognize tumor cells by activating receptors, such 
as natural cytotoxicity receptors (NCRs) and NKG2D, which sense the changed expression of their 
ligands on the cancer cell surface. Providing important insights, the past 15 years have witnessed an 
explosion of research into the biology and clinical applications of NK cells. Current NK cell-based 
cancer immunotherapy aims to reverse the tumor-induced NK cell dysfunction that is observed in 
patients with cancer and to increase and sustain NK cell effector functions. Therapies involving NK 
cells may either activate endogenous NK cells or involve transfer of exogenous cells by hematopoietic 
stem cell transplantation (HSCT) or adoptive cell therapy.

In this research topic, we have collected several articles that highlight the exciting potential that 
NK cells exhibit as an effective tool in cancer immunotherapy. We open the research topic with two 
articles that describe NK cell surface receptors involved in the recognition of tumor target cells. 
Chester et al. briefly describe NK-cell–tumor interactions and the three most important mechanisms 
of how NK cells kill target cells, i.e., natural killing, antibody-dependent cell-mediated cytotoxicity 
(ADCC), and death receptor-induced apoptosis, and follow with a description of the best studied 
activating and inhibitory receptors involved in tumor cell recognition, along with the ability of 
agonistic monoclonal antibodies (mAbs) specific for costimulatory molecules, such as CD137 and 
OX40. Horton and Mathew focus their review on NCRs, with a special attention to NKp44 and its 
dual activating and inhibitory function following recognition of different ligands. They suggest that 
NCRs serve as receptors for damage-associated molecular pattern (DAMP) molecules in associa-
tion with HLA class I molecules, heparan sulfate proteoglycans (HSPGs), or other coligands and, 
therefore, regulate NK cell activity. A better understanding of the tumor immunosuppressive micro-
environment is very important to design efficient NK cell-based therapies. Hasmim et al. review the 
cell types within the tumor that are involved in the suppression of NK cells, including M2-polarized 
macrophages, myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and fibroblasts, 
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and how the microenvironmental hypoxia that is characteristic of 
solid tumors inhibit NK cell functions.

Next, there is a group of articles that provide a general vision 
of how to obtain and harness NK cells to fight tumors. Dahlberg 
et al., Domogala et al., Pittari et al., and Rezvani and Rouce have 
reviewed the different cellular sources and methods to isolate, 
differentiate, genetically engineer, expand, and activate ex vivo 
and in  vivo NK cells, including autologous and allogeneic NK 
cells and NK cell lines. In addition to NK cell lines, sources to 
generate NK cell products include NK cells from peripheral blood 
or from cord blood and NK cells differentiated from CD34+ 
hematopoietic precursors or pluripotent stem cells (embryonic 
stem cells or induced pluripotent stem cells). In general, adoptive 
NK cell-based therapy has been more successful in the treatment 
of hematological tumors than in patients with solid tumors, and 
the use of tools aimed to reverse the immunosuppressive tumor 
microenvironment significantly will improve the efficacy of this 
type of therapy. A cell product termed cytokine-induced killer 
(CIK) cells, which possess phenotypic and functional features of 
both NK cells and T cells, is also described by Pittari et al.

Similar to T cells, genetic manipulation of NK cells is emerging 
as a promising tool to increase their antitumor activity. Chimeric 
antigen receptors (CARs) consist of an extracellular domain, 
generally a small chain variable fragment, specific for a tumor 
antigen that is linked with one or more intracellular domains 
able to induce activation signals. In this study, Hermanson and 
Kaufman extensively review the CAR constructs with different 
intracellular activation domains that have been described, to date, 
in NK cells from several sources, suggesting that depending on 
the tumor type and/or target antigen, different CAR constructs 
may be required for optimal activation of NK cells. Carlsten 
and Childs review the advantages and challenges of methods to 
genetically modify NK cells and give an overview of different 
strategies to reprogram NK cells with the objective to improve 
the persistence and expansion of infused cells, to enhance the 
migration to the tumors, and to improve their cytotoxicity. Cell 
lines, such as NK-92, could be an alternative to NK cells from 
patients or allogeneic donors. They could easily be expanded in 
culture, genetically manipulated, and may represent an off-the-
shelf product ready for use. Klingemann et al. review that NK-92 
is the only cell line that has been studied in clinical trials with 
clinically significant responses and minimal adverse reactions.

In contrast to normal cells, many tumor cells express heat-
shock protein 70 (Hsp70) at the cell surface and get released 
into the circulation. Membrane Hsp70 (mHsp70) correlates 
with high aggressiveness of the tumors. In this research topic, 
Gunther et  al. describe that patients with squamous cell and 
adeno non-small cell lung cancer (NSCLC) exhibited high levels 
of serum Hsp70. Furthermore, they found a positive correlation 
between serum levels of Hsp70 with gross tumor volume and 
an inverse correlation with CD69+/CD94+ NK cells in squamous 
NSCLC, suggesting that activated NK cells somehow may be 
involved in the control of tumor growth. The same group has 
previously found in preclinical studies that NK cells activated 
with a naturally occurring Hsp70 peptide (TKD) and IL-2 are 
able of specifically kill mHsp70-expressing tumors, but not 

mHsp70 negative ones. Here, they summarize a Phase I clinical 
trial of TKD/IL-2-stimulated autologous NK cells with NSCLC 
and describe an ongoing Phase II clinical trial of TKD/IL-2-
stimulated NK cells for the treatment of patients with NSCLC, 
following radiochemotherapy (Specht et al.).

The mechanism of action of many therapeutic mAbs for 
cancer treatment involves, at least partially, ADCC through 
FcγRIIIA/CD16a. Many studies have shown that the clinical 
outcome after treatment of patients with mAbs is correlated 
with polymorphisms at the FCGR3A gene, which encodes for 
FcγRIIIA/CD16a, that affect the binding affinity to mAbs. Wang 
et al. review some of the current therapeutic mAbs that are being 
used in the clinic and strategies that increase their ADCC, such 
as modifying the glycosylation patterns of the mAbs, combining 
them with other mAbs, radiation therapy, matrix metalloproteases 
inhibitors or cytokines, and by designing new molecular entities 
such as immunocytokines and bi-specific antibodies. Cetuximab, 
an anti-epidermal growth factor receptor (EGFR) mAb, exerts 
ADCC against EGFR+ target cells. Kloss et al. show that patients 
with head and neck squamous cell carcinomas (HNSCCs) have 
elevated levels of soluble major histocompatibility complex class I 
chain-related peptide A (sMICA) and transforming growth factor 
beta 1 (TGF-β1) in serum, which are responsible for the impaired 
NK cell effector functions and decreased NKG2D expression. 
They show that cetuximab restores the NK cell-mediated killing 
of sMICA-inhibited patient NK cells against HNSCC cells via 
ADCC and enhances tumor infiltration of NK cells in HNSCC 
tumor spheroids.

Autologous hematopoietic stem cell transplantation 
(autoHSCT) is a therapeutic indication for multiple myeloma or 
malignant lymphoma, and it has been shown that the reconstitu-
tion levels of the NK cell pool after autoHSCT has a prognostic 
value. Jacobs et  al. have studied the phenotype and function 
of NK cells after autoHSCT. They found that CD56++ NK cells 
were the major subset 1–2  days after leukocyte regeneration 
(>1000 leukocytes/μl) and that is characterized by a high expres-
sion of CD57 and KIRs, which is age dependent, and that are able 
to degranulate and produce cytokines after tumor interaction. 
On the other hand, preclinical and clinical data have demonstrated 
that, in the context of haploidentical T-cell-depleted HSCT, 
alloreactive NK cells are able to exert a very important antitu-
mor activity, with no increased incidence of GVDH, and that 
mature alloreactive NK cells can be safely infused into patients. 
The KIR–HLA class I mismatch between donor and recipient in 
the graft versus leukemia (GVL) direction has demonstrated to 
enhance the antitumor activity of NK cells. In this research topic, 
two articles by Lim et al. and Ruggeri et al. review the present and 
future of alloreactive NK cells for tumor treatment, mostly acute 
myeloid leukemia (AML), in the context of allogeneic HSCT and 
infusions of alloreactive purified NK cells. These are emerging as 
safe and potent effectors against tumors.

Based on their expressed pattern of cell surface receptors, 
NK cells are divided in subsets that are able to mediate differ-
ent effector functions and are characterized by distinct homing 
properties. Gismondi et al. have reviewed this issue, suggesting 
that, for improved and more efficient NK cell-based therapies, it 
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is necessary to identify, isolate, expand, and administer NK cell 
subsets that exhibit increased effector functions and have the 
adequate homing capabilities to reach the tumors. Chretien et al., 
with an automated procedure using the FLOCK algorithm and 
a panel of three markers (CD56, CD57, and KIRs), define five 
maturation stages of NK cells from human peripheral blood. By 
analyzing a cohort of healthy volunteers and another cohort of 
patients with AML, they found that the latter displayed marked 
differences compared with healthy donors. Moreover, within the 
AML cohort, it was possible to define three distinct groups of 
patients according to their maturation profiles, which might be 
useful for prognostic purposes. Tarazona et al. have reviewed the 
current knowledge about the role of NK cells on the recognition 
and elimination of melanoma cells and the strategies against 
melanoma based on NK cells. In vitro experiments, in vivo data 
from murine models, and observations from melanoma patients 
indicate that NK cells have a role in the immune response against 
melanoma. NK cell-based therapies against melanoma include, 
among others, modulation of NK cell responses by administra-
tion of cytokines, treatment with checkpoint inhibitors and 
bi-specific antibodies, and by adoptive NK cell therapy with 

autologous or allogeneic NK cells and NK cell lines, genetically 
modified or not.

Finally, we want to express our gratitude to all the authors 
who have contributed to this research topic and to the reviewers 
for their magnificent job. We hope that the reader will find this 
research topic motivating and helpful. We invite you to read the 
following articles and immerse yourself in the interesting world 
of NK cell-based cancer immunotherapy.
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Natural Killer Cell 
immunomodulation: Targeting 
Activating, inhibitory, and  
Co-stimulatory Receptor Signaling 
for Cancer immunotherapy
Cariad Chester1,2 , Katherine Fritsch1 and Holbrook E. Kohrt1*

1 Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA, 2 Institute for Immunity, 
Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA

There is compelling clinical and experimental evidence to suggest that natural killer (NK) 
cells play a critical role in the recognition and eradication of tumors. Efforts at using NK 
cells as antitumor agents began over two decades ago, but recent advances in elucidat-
ing NK cell biology have accelerated the development of NK cell-targeting therapeutics. 
NK cell activation and the triggering of effector functions is governed by a complex set 
of activating and inhibitory receptors. In the early phases of cancer immune surveillance, 
NK cells directly identify and lyse cancer cells. Nascent transformed cells elicit NK cell 
activation and are eliminated. However, as tumors progress, cancerous cells develop 
immunosuppressive mechanisms that circumvent NK cell-mediated killing, allowing for 
tumor escape and proliferation. Therapeutic intervention aims to reverse tumor-induced 
NK cell suppression and sustain NK cells’ tumorlytic capacities. Here, we review tumor–
NK cell interactions, discuss the mechanisms by which NK cells generate an antitumor 
immune response, and discuss NK cell-based therapeutic strategies targeting activating, 
inhibitory, and co-stimulatory receptors.
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iNTRODUCTiON

The recent FDA approvals of the programmed cell death protein 1 (PD-1)-targeted checkpoint 
inhibitors pembrolizumab and nivolumab mark the latest successes in the rapidly expanding 
field of cancer immunotherapies. Immunotherapy represents a paradigm shift in cancer treat-
ment; instead of targeting tumor cells, the goal of immunotherapy is to augment and expand the 
immune system’s intrinsic antitumor response. To date, diverse immunotherapeutic modalities 
have been accepted as viable strategies for eliminating cancerous cells. Cytokines, cancer vac-
cines, adoptive cell transfers, and especially checkpoint inhibitors constitute valuable elements 
in the immunotherapeutic armamentarium. However, a class of important immune-modulators 
is conspicuously absent: agents that utilize the power of innate immune cells to eradicate tumors. 
An important class of innate immune cells that play a critical role in mediating the antitumor 
immune response is the natural killer (NK) cell.
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First described in 1975, NK cells were initially identified as 
a distinct sub-population of lymphocytes by their capacity to 
spontaneously lyse tumor cells (1). NK cells are now accepted to 
play an important role in both the adaptive and innate immune 
responses that govern infection, autoimmunity, and tumor 
immunosurveillance (2, 3). Human NK cells are phenotypically 
characterized by the expression of CD56 and the absence of CD3 
and can be further subdivided into a CD56bright population and a 
CD56dim population. The CD56bright population produces immu-
noregulatory cytokines, including interferon-γ (IFN-γ), tumor 
necrosis factor-beta (TNF-B), tumor necrosis factor-α (TNF-α), 
granulocyte macrophage-colony stimulating factor (GMCSF), 
IL-10, and IL-13 (4). The CD56dim subset is the terminally dif-
ferentiated successor of the CD56bright population and is primar-
ily responsible for exerting cytolytic functions (5, 6). However, 
CD56dim NK cells can produce cytokines, specifically IFN-γ, after 
cell triggering via NKp46 of NKp30 activating receptors or after 
stimulation with combinations of IL-2, IL-12, and IL-15 (7).

The defining functional feature of NK cells remains their 
intrinsic ability to conduct “natural killing” of cellular targets 
without prior sensitization. The antitumor effect provided by 
natural killing has been observed in tumors of hematopoietic and 
non-hematopoietic origins and reported in diverse in vivo models 
and clinical series (8). NK cell infiltration into tumor tissue is asso-
ciated with better disease prognosis in colorectal cancer, clear cell 
renal cell carcinoma, and lung carcinomas (9–11). Additionally, 
a 11-year prospective cohort study of Japanese inhabitants linked 
low peripheral-blood NK cell cytotoxicity with increased cancer 
risk (12). The combination of compelling preclinical evidence 
and early clinical success has established NK cell immunotherapy 
as a promising therapeutic strategy in cancer. Here, we review the 
current understanding of the NK cell mechanisms underpinning 
antitumor immunity and discuss immunomodulatory targets for 
augmenting NK cell-mediated tumor clearance.

Natural Killing
The initial hypothesis for the mechanism of NK cell-mediated 
killing postulated that the absence or altered expression of major 
histocompatibility complex (MHC) class I molecules would ren-
der target cells susceptible to NK cell attack (13). The “missing-
self ” hypothesis was the result of observations that NK cells can 
directly reject MHC class I-deficient tumors (14). Later in vivo 
experiments in murine and human systems confirmed that NK 
cytotoxicity was directly related to the absence of MHC class I 
expression on target cells (15, 16). However, the contemporary 
understanding of NK cell activation suggests that the transition 
of the NK cell from quiescence to activation is mediated by a 
network of activating and inhibitory receptors (17). While NK 
cells do express inhibitory receptors that detect the presence 
of MHC Class I molecules, it is the integration of multiple   
activating and inhibitory signals that determines if the NK cell 
becomes cytotoxic.

Natural killer cell cytotoxicity can be demonstrated in several 
related ways. The primary mechanism of cytotoxicity is based on 
granule exocytosis upon formation of an immunological synapse. 
NK cells contain preformed cytoplasmic granules that resemble 

secretory lysosomes and contain perforin and granzymes (18). 
Perforin is a membrane-disrupting protein that perforates the 
target cell membrane, while granzymes are a family of serine 
proteases that trigger cell apoptosis (19, 20). Upon activation, NK 
cells rapidly polarize the granules and reposition the microtubule 
organizing center toward the synapse with the target cell (21). 
The granule membrane then fuses with the plasma membrane, 
externalizes, and releases the cytotoxic granule contents, trigger-
ing target cell apoptosis (22).

NK cells can also contribute to target cell death indirectly 
by secreting pro-inflammatory cytokines. Two of the primary 
cytokines released by activated NK cells are IFN-γ and TNF-α. 
IFN-γ is a type II interferon that plays a critical role in promot-
ing host resistance to microbial infection and protecting against 
tumor development (4). In the tumor microenvironment (TME), 
the IFN-γ released by NK cells stimulates CD4+ T cells to polarize 
toward a Th1 subset and accelerates the development of activated 
macrophages and cytotoxic, tumor-targeting CD8+ T cells (23). 
TNF-α is a multifunctional cytokine that can cause direct tumor 
necrosis by inflicting tumor-associated capillary injury, but also 
generates an adaptive immune response (24). TNF-α can enhance 
B cell proliferation and also promote monocyte and macrophage 
differentiation (25, 26). Together IFN-γ and TNF-α help to 
activate both innate and adaptive immune cells in the TME and 
generate a sustained antitumor immune response.

Antibody-Dependent Cell-Mediated 
Cytotoxicity
Another granule-mediated mechanism of NK cell targeted kill-
ing is antibody-dependent cell-mediated cytotoxicity (ADCC). 
ADCC is thought to play an important role in mediating the 
antitumor effects of many of the monoclonal antibody (mAb) 
therapies used today as standard of care treatments for both solid 
tumors and hematologic malignancies (27). In ADCC, the Fc 
receptor expressed by NK cells (FcγRIII or CD16) binds to the 
Fc portion of the therapeutic antibody, which in turn is bound to 
tumor-associated antigen (TAA) on the tumor surface. The effec-
tiveness of ADCC depends on the FcγRIII ligation on the NK cell. 
Patients with a FcγRIIIa polymorphism, resulting in high-affinity 
binding of FcγRIII to IgG1, demonstrate enhanced clinical benefit. 
This effect has been seen in patients treated with rituximab, trastu-
zumab, and cetuximab (28–30). ADCC was initially described as 
the release of cytotoxic perforin and granzyme by NK cells follow-
ing ligation of FcγRIII by IgG target cells. However, ADCC is now 
recognized as a multi-tiered process that involves a network of 
coordinated immune cells and an adaptive immune response (31). 
For example, FcγR ligation on NK cells can induce the secretion 
of pro-inflammatory cytokines like IFN-γ, which can accelerate 
dendritic cell (DC) maturation (32). Mature DCs enhance antigen 
presentation and train tumor-specific lymphocytes, producing an 
immunological memory response (33).

Death Receptor-induced Apoptosis
Death receptor-induced apoptosis is a perforin-independent 
mechanism by which NK cells lyse target cells (34). This cytotoxic 
pathway relies on target cell expression of tumor necrosis factor 
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(TNF) receptor superfamily members. The two main TNF recep-
tors used in apoptotic induction are Fas (CD95) and TNF-related 
apoptosis-inducing ligand (TRAIL) (35). Fas is expressed on a wide 
variety of tissues, but Fas ligand (FasL) expression is restricted to 
activated NK cells and cytotoxic T lymphocytes (CTLs) (36). Fas 
cross-linking induces nuclear condensation, membrane blebbing, 
and caspase activation (37). The initial optimism surrounding 
the Fas–FasL pathway as a means of tumor control has decreased 
following the observations that Fas is downregulated in a variety 
of cancers during tumor progression (38).

TNF-related apoptosis-inducing ligand-mediated signaling is 
another death receptor-induced mechanism NK cells employ to 
kill target cells. TRAIL is constitutively expressed on some popu-
lations of NK cells and TRAIL-mediated signaling can induce 
spontaneous cytotoxicity against TRAIL-sensitive tumor cells 
(39, 40). Binding of TRAIL to its receptor, TRAILR1 or TRAILR2, 
results in receptor oligomerization on the cell membrane and 
triggering of a pro-apoptotic signal through activation of caspases 
(41). Preclinically, recombinant forms of TRAIL and agonistic 
anti-TRAIL receptor antibodies can have single-agent activity 
against TRAIL-sensitive tumor cells in  vitro and in  vivo (42). 
Recently, artificial nanoparticles coated with bioactive TRAIL 
demonstrated cytotoxicity against primary leukemic cells from 
a patient with acute lymphocytic leukemia (ALL) (43). However, 
despite preclinical successes, clinical trials of TRAIL-based thera-
pies have demonstrated little efficacy and tumors rapidly develop 
resistance mechanisms to TRAIL (44). A better understanding of 
how tumors evade targeting and removal by NK cells is needed 
to overcome immunosuppression in the TME.

NK–Tumor interactions
Despite the diverse repertoire of killing strategies utilized by 
NK cells, the tumor cell often avoids attack by direct and indi-
rect mechanisms (45). Direct mechanisms consist of shedding 
soluble ligands for NK cell-activating receptors, upregulation 
of HLA molecules, and release of inhibitory cytokines. Indirect 
mechanisms consist of activation of inhibitory regulatory T cells 
(Tregs), DC killing, and phagocyte-derived inhibitory cytokines. 
These immunosuppressive mechanisms collectively create a 
TME where NK cell cytotoxic functions are inhibited. By stifling 
NK-mediated tumor eradication, the tumor escapes immunosur-
veillance and is able to grow and develop. Restoring and augment-
ing NK cell cytotoxic functions in the TME is an important step 
in overcoming immunosuppression and eliminating tumor. In an 
attempt to generate potent tumor-lysing NK cells, therapeutics 
are being developed that target NK cell activating, inhibitory, and 
co-stimulatory receptors (Figure 1).

ACTivATiNG ReCePTORS

Activating receptors are a crucial element in regulating NK cell 
function. In the last decade, researchers have identified major 
signaling axes that control NK cell activation and suggested 
novel routes for therapeutic interventions (46). Some of the 
dominant activating receptors on NK cells are NKG2D, signaling 
lymphocytic activation molecule (SLAM) family molecule 2B4 
(CD244), the DNAX accessory molecule (DNAM-1, CD226), 

and the NCRs: NKp30, NKp44, NKp46, and NKp80 (42). Recent 
work suggests that in NK cells, there is not a dominant receptor 
for activation, but instead receptors induce activation through 
combinatorial synergy (17). Only when multiple activating recep-
tors are simultaneously engaged does the resulting signal surpass 
the requisite activation threshold and trigger cytokine secretion 
or direct cellular cytotoxicity. The requirement for activating 
receptor combinations helps prevent unrestrained activation of 
NK cells and provides flexibility in sensing and responding to 
environmental stimuli. What follows is a brief exploration of 
the dominant NK cell-activating receptors and summaries of 
attempts to target their tumorlytic capacity therapeutically.

NCRs
All NK cells express NKp30 and NKp46, whereas NKp44 is only 
expressed on activated NK cells (47, 48). The acquisition of NCR 
during NK cell maturation correlates with the acquisition of 
cytolytic activity against tumor target cells (49). Inversely, down-
regulation of NKp30, NKp44, and NKp46 correlates with low NK 
cytolytic activity (50). NKp80 is expressed by virtually all fresh 
NK cells and mAb-mediated cross-linking of NKp80 resulted in 
induction of cytolytic activity and Ca2+ mobilization (51).

The NKp30 activating receptor has emerged as a promising 
therapeutic target in multiple cancer histologies. Downregulation 
is observed in patients with cervical cancer and high-grade squa-
mous intraepithelial lesions (52). In lymphoma and leukemia 
models, ligation of NKp30 has been shown to activate human 
NK cells, trigger degranulation, and increase cytotoxicity (53). In 
patients with gastrointestinal sarcoma, the NKp30 isoform pre-
dicts the clinical outcome; patients with the immunostimulatory 
NKp30a and NKp30b isoforms have increased survival relative 
to patients with the immunosuppressive NKp30c isoform (54). 
Recently, the expression of distinct forms of NKp30 has been 
linked to 10-year progression free survival in patients with high-
risk neuroblastoma (NB) (55). In NB patients with metastatic 
disease, the percentage of CD3−CD56+ NK cells in the peripheral 
blood and bone marrow was significantly elevated relative to 
patients with localized tumors. Additionally, NKp30 expression 
in the bone marrow of patients with metastatic NB was lower 
than expression in patients with localized NB (55). The ligand 
for NKp30, B7-H6, was highly expressed in neuroblasts, and 
the serum soluble form of B7-H6 correlated with tumor load 
and disease dissemination. The authors conclude that NK cell 
modulating immunotherapeutics offer a promising strategy for 
treating NB patients and that antibodies neutralizing sB7-H6 
serum molecules and antibodies targeting NKp30 are worth 
pursuing in future clinical development.

NKG2D
NKG2D, a homodimeric activating receptor and member of 
the C-type lectin superfamily, is expressed by all NK cells and 
subsets of T cells (56). NKG2D serves as a major recognition 
receptor for detection and elimination of infected and trans-
formed cells (57). Ligands of the human NKG2D receptor are 
the MHC I-related molecules MICA/MICB, and the UL16-
binding proteins (ULBP-1 to ULBP-6) (57). These ligands 
are rarely expressed in healthy tissues but induced by various 
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cellular stresses, such as DNA damage, heat shock, or cellular 
transformation. Primary tumors frequently express NKG2D 
ligands: NK cell killing of both an urothelial tumor cell line and 
a bladder cancer cell appeared to be triggered by NK cell detec-
tion of the NKG2D ligands MICA/MICB (58, 59). However, 
tumors have also developed mechanisms for NK cell evasion 
despite NKG2D ligand expression. One such mechanism is the 
systemic release of NKG2D ligands by tumors in cancer patients 
(60, 61). The secreted NKG2D ligand was believed to cause 
downregulation of NK cell-expressed NKG2D, thus, depriv-
ing the NK cell of an activating signal and facilitating tumor 
escape. Recently, evidence has emerged that demonstrates an 
activating, antitumor role for soluble NKG2D ligands. The high-
affinity MULT1 mouse NKG2D ligand can stimulate NK cells 
and enhance antitumor activity (62). The NKG2D pathway is 
integral to immune surveillance and an active area of immuno-
therapy research.

2B4 and DNAM-1
One of the best-characterized NK cell activation receptors is 2B4, 
a member of the SLAM receptor family. The first data to suggest 
a role for 2B4 in regulating NK cell activation demonstrated 
that ligation of 2B4 by 2B4-specific antibodies induced IFN-y 
production in vitro and triggered NK cell-mediated cytotoxicity 
(63). Following the identification of the natural ligand for 2B4, 
CD48, researchers reported that target cell expression of CD48 

FiGURe 1 | The major NK cell receptors that are potential immunotherapeutic targets. The transition of the NK cell from quiescence to activation is 
mediated by a network of activating and inhibitory receptors; it is the integration of the activating and inhibitory signals that determines if the NK cell becomes 
cytotoxic. Using immunotherapeutic agents to increase activation and decreases inhibitory signaling has the potential to generate NK cells with enhanced tumor lytic 
capacity. MICA/B, MHC class I chain-related proteins A and B; ULBP, UL16-binding protein; BAG, Bcl2-associated athanogene.

augmented NK cell-mediated cytotoxicity (64). Researchers also 
reported significantly greater cytotoxic effects if 2B4 ligation 
was accompanied by ligation of DNAM-1 (65). DNAM-1 is an 
Ig-like family glycoprotein expressed on most human NK cells, 
monocytes, and T lymphocytes (66). Early support for DNAM-1 
controlling NK cell activation was provided by Lanier and col-
leagues using DX11, an anti-DNAM-1 mAb (67). Blockade via 
DX11 inhibited the cytotoxicity of NK cells against an array of 
different tumor cell lines. CD112 and CD155, two nectin family 
proteins regulated by cellular stress, were soon identified as the 
ligands for DNAM-1 (68). CD155 and CD112 are expressed in a 
wide range of both solid and hematologic tumors (69). In patients 
with NB, expression levels of CD155 and CD112 correlate with 
tumor cells susceptibility to NK cell-mediated lysis (70). However, 
tumors have developed mechanisms for downregulating NK cell 
DNAM-1 and effecting NK cell immunosuppression (71). In the 
design of future NK cell-based immunotherapies, mechanisms 
for preserving activation receptor surface expression need to be 
considered. Additionally, combinations of synergistic activating 
receptor pairs, like DNAM-1 and 2B4, need to be taken into 
account.

CHeCKPOiNT BLOCKADe iN NK CeLLS

Immune checkpoint blockade strategies have proven a powerful 
approach to cancer immunotherapy. By blocking the receptors 
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that transmit inhibitory signals to effector immune cells, check-
point blockade aims to reverse immune suppression and generate 
robust antitumor immune responses. The successes of ipilimumab 
(anti-CTLA-4 mAb) and nivolumab and pembrolizumab 
(anti-PD-1 mAbs) demonstrate the potential of this therapeutic 
strategy. Ipilimumab (Yervoy, BMS) was approved in 2011 for the 
treatment of unresectable or metastatic melanoma, and blocks 
the CTLA-4-mediated signaling in T cells (72). CTLA-4 is an 
inhibitory receptor that upon ligation sends a negative regula-
tory signal to the T-cell receptor (TCR), limiting T cell activation 
(73). Nivolumab (Opdivo, BMS) and pembrolizumab (Keytruda, 
Merck) target programmed cell death protein-1 (PD-1). PD-1 is 
upregulated on T cells following activation and ligation of PD-1 
transmits a negative regulatory signal (74). Histologically, diverse 
tumors upregulate the ligands of PD-1, PD-L1, and PD-L2 to 
take advantage of this immunosuppressive signaling pathway 
(75). Analogously to negative regulators of T cell activity, NK 
cells express surface receptors that can be targeted in checkpoint 
blockade strategies.

Killer Cell immunoglobulin-Like Receptor
Within the signaling pathways that govern NK lytic capacity, 
the killer cell immunoglobulin-like receptor (KIR) family is a 
dominant group of negative regulators. KIR receptors bind to 
the self-MHC class I ligands (HLA-A, -B, -C) and upon ligation 
transmit signals that abrogate the effects of activating receptors 
(76). The prevalence of MHC I on healthy cells provides an 
inhibitory signal that prevents NK cells from inducing autoim-
mune responses. However, in acute myeloid leukemia (AML) 
patients following haploidentical stem cell transplantation from 
KIR mismatched donors, the absence of KIR–HLA class I inter-
actions resulted in potent NK cell-mediated antitumor efficacy 
and increased survival (77, 78). The antitumor effect can also be 
obtained without undergoing stem cell transplant; mAb therapy 
provides a viable route for blocking KIR–HLA interactions. 
Preventing HLA ligation to KIRs with an anti-KIR mAb has been 
shown to increase NK cell degranulation, IFN-γ secretion, and 
tumor cell lysis as well as increasing overall survival in murine 
cancer models (79).

The development of a candidate anti-KIR antibody had to 
overcome significant challenges. The KIR gene content varies 
substantially from individual to individual depending on the 
inherited KIR haplotype and the KIR family is composed of 
several structurally different proteins, necessitating an antibody 
that has cross-reactivity between different KIRs (80). Despite 
these challenges, the anti-KIR mAb lirilumab (Innate Pharma) 
has entered clinical trials. The initial phase I safety trial reported 
safety and potential efficacy in patients with AML (81). A second 
phase I trial confirmed the early reports of safety and durable KIR-
blocking ability in patients with multiple myeloma (82). Recently, 
it has been reported that rituximab-mediated ADCC, a potent 
therapeutic mechanism of rituximab therapy, is reduced by KIR 
signaling (83). We have demonstrated that this KIR-mediated 
ADCC suppression can be overcome by combining rituximab 
with anti-KIR mAb therapy (84). Currently, multiple phase I and 
phase II clinical trials are ongoing, testing lirilumab (IPH2102/
BMS-986015), as a monotherapy or in combination with other 

checkpoint inhibitors in patients with hematological and solid 
tumors (NCT01714739) and (NCT01750580).

NKG2A
In addition to KIRs, the CD94/NKG2A heterodimer is another 
target for NK cell checkpoint blockade. The natural ligand of 
CD94/NKG2A is HLA-E, a non-classical HLA class I molecule 
that is expressed on the cell surface of most leukocytes and on 
transformed cells, including virus-infected cells and tumor cells 
(85, 86). Ligation of CD94/NKG2A by HLA-E transmits inhibi-
tory signaling that suppresses the effector functions of NK cells, 
resulting in decreased cytotoxicity and cytokine secretion. HLA-E 
and CD94/NKG2A expression has been reported in multiple 
tumor histologies and is associated with poor prognosis. In colo-
rectal cancer patients, tumor expression of HLA-E is associated 
with shorter disease-free survival time (87). In patients with head 
and neck squamous cell cancers (HNSCC), 78 to 86% of tumors 
express HLA-E (88). In patients with non-small cell lung cancer, 
intratumoral NK cells display higher expression levels of NKG2A 
mRNA relative to non-tumor NK cells (89). In breast cancer 
patients, expression of NKG2A by tumor infiltrating NK cells 
increases with cancer progression and correlates with impaired 
NK cell functions (90). Similarly to blocking KIR-mediated 
interactions, blockade of CD94/NKG2A-mediated signaling has 
the potential to restore and preserve NK cell cytotoxicity, leading 
to antitumor responses. A phase I/II trial testing an anti-NKG2A 
antibody (IPH2201, Innate Pharma) in HNSCC patients is ongo-
ing (NCT02331875).

CO-STiMULATORY SiGNALiNG viA mAbs

Activating co-stimulatory pathways to potentiate antitumor 
immune responses is a promising approach for augmenting 
NK-mediated tumor clearance. Members of the tumor necrosis 
factor receptor superfamily (TNFRsf) include several co-stimu-
latory proteins with key roles in the regulation of the activation, 
proliferation, and apoptosis of lymphocytes, including NK cells.

CD137
First identified in 1989, CD137 (or 4-1BB) is a co-stimulatory 
receptor and member of the TNF receptor superfamily (91). 
CD137 is expressed on T cells and DCs and is upregulated on 
NK cells following FcγRIIIa ligation (92). In a variety of different 
tumor models, agonistic anti-CD137 mAbs have demonstrated 
the capacity to amplify antitumor immune responses and 
eliminate established tumors (93). Despite the broad expression 
of CD137 and its multiple contributions to immune dynamics, 
the therapeutic efficacy of anti-CD137 relies on functional NK 
cells. In preclinical models, the selective depletion of NK cells 
via the anti-AsialoGM1 or anti-NK1.1 antibodies completely 
abrogated the antitumor effect of anti-CD137 mAb therapy (94). 
Simultaneously, anti-CD137 agonistic antibodies increase NK 
cell proliferation, degranulation, and IFN-γ secretion, leading 
to enhanced ADCC of tumor cells (95). Because of the potential 
to enhance ADCC-mediated tumor clearance, anti-CD137 anti-
bodies are being tested in combination treatment strategies with 
FDA-approved mAbs. We have previously demonstrated that 
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antibodies targeting CD137 synergize with rituximab and trastu-
zumab to clear tumors in murine xenograft models of lymphoma 
and breast cancer (27, 96). Recently, we combined cetuximab and 
anti-CD137 antibody therapy to obtain complete tumor resolution 
and prolonged survival in xenograft models of EGFR-expressing 
cancer cells (97). In all three disease models and combination 
treatment regimens, expression of CD137 on NK cells increases 
significantly when NK cells encounter mAbs bound to tumor 
cells. We believe the synergy between anti-CD137 treatment and 
established mAbs demonstrates a promising therapeutic strategy 
and warrants future investigation.

Anti-CD137 mAb therapy has also entered clinical testing. 
The anti-CD137 antibody, urelumab, is currently in clinical 
trials with rituximab for patients with non-Hodgkin’s lym-
phoma (NCT01775631) and with cetuximab in patients with 
colorectal cancer or head and neck cancer (NCT02110082). 
In addition to urelumab, clinical trials of Pfizer’s anti-CD137 
mAb, PF–05082566, are also ongoing (NCT01307267). A recent 
presentation of the preliminary findings reports that 27 patients 
with mixed tumor types have been treated with PF-05082566; 
disease stabilization was the best overall response, observed in 
22% (6/27) patients (98).

OX40
OX40, also known as CD134 or TNFRSF4, is a co-stimulatory 
molecule expressed primarily by activated T cells, but also 
expressed on natural killer T (NKT) cells and NKs (99). In NK 
cells, OX40 ligation appears to induce an activating signal and 
IFN-γ production (100). Engagement of the OX40 receptor in vivo 
in tumor-bearing mice enhanced antitumor immunity, resulting 
in increased survival in four separate murine tumor models of 
diverse histology and immunogenicity (101). The initial phase 
I/II trial of an anti-OX40 mAb demonstrated tolerability and 
regression of at least one metastatic lesion in 12 out of 30 study 
patients (102). Immunologically, treatment with agonistic anti-
OX40 increased the proliferation of NK cells as well as CD4+ T 
cells (103). Additional trials of anti-OX40 are ongoing, includ-
ing combination therapies with rituximab in patients with CLL 
and NHL (NCT01775631), with stereotactic body radiation in 
patients with metastatic breast cancer (NCT01862900), and with 
tremelimumab, an anti-CTLA-4 antibody, in patients with solid 
tumors (NCT02205333).

CD27
In addition to its co-stimulatory role on T cells, the expression 
of CD27, or TNFRSF7, differentiates the NK cell compartment 
into two functionally distinct subsets. Circulating CD27+ NK 
have lower levels of perforin and granzyme B and demonstrate 

lower levels of cytotoxicity relative to CD27- NK cells (104). The 
absence of CD27 expression in combination with the expression 
of CD11b is an indicator of cytolytic effector cells within human 
NK cell subsets. The natural ligand for CD27, CD70, induces 
downregulation of CD27 in a process controlled by the com-
mon γ-chain cytokine IL-15 (105). Signaling via CD27–CD70 
interactions have been shown to accelerate NK-mediated tumor 
clearance while simultaneously stimulating cytokine secretion by 
NK cells that elicits an adaptive immune response (106).

The potential for CD27 ligation to generate an antitumor 
response has been confirmed in preclinical models. In a xenograft 
models of lymphoma, administration of the humanized anti-
CD27 antibody, 1F5, significantly prolonged survival (107). The 
fully human 1F5 cannot bind to mouse CD27, therefore, any 
observed antitumor activity is attributed to effector mechanisms 
such as direct inhibition/apoptosis via CD27 signaling in tumors 
or ADCC. In syngeneic colorectal and lymphoma models with 
little to no expression of CD27, treatment with the 1F5 mAb 
also elicited antitumor activity and increased survival (108). By 
testing an aglycosylated version of the 1F5 mAb, the researchers 
demonstrated that FcR engagement was required for the anti-
tumor effects of 1F5 therapy. An anti-CD27 mAb (Varlilumab 
or CDX-1127, Celldex Therapeutics) is currently being tested 
in a phase I trial in patients with solid tumors and hematologic 
cancers (NCT01460134). Preliminary findings report that of the 
19 treated patients, 3 had stable disease and 1 had a complete 
readmission (109).

CONCLUSiON

In the future, immunotherapeutic agents that directly enhance 
NK cell-mediated tumor eradication will play a leading role in 
cancer treatment strategies. NK cells have novel mechanisms of 
participating in immune defense, making them uniquely appeal-
ing for cancer immunotherapy. Enhancing NK cell tumorlytic 
capacity is also a compelling combinatorial treatment strategy 
and would complement current standard of care treatments 
based on mAb therapy. The potential for NK-targeted agents to 
augment the antitumor effects of T cell checkpoint blockade is 
actively under consideration. As NK cell-based therapies move 
into the clinic, identifying prognostic biomarkers in the treat-
ment populations will be crucial to the rational design of clinical 
studies. Concurrently, a greater effort must be made to profile 
the effects of novel immunotherapeutic agents, like checkpoint 
inhibitors, on NK cell function. The NK cell is now accepted as an 
integral part of the immunologic antitumor response. A number 
of promising NK-targeting therapeutics are in early-phase trials, 
and the results are eagerly awaited.
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Natural killer (NK) cells are a key constituent of the innate immune system, protecting
against bacteria, virally infected cells, and cancer. Recognition and protective function
against such cells are dictated by activating and inhibitory receptors on the surface of the
NK cell, which bind to specific ligands on the surface of target cells. Among the activating
receptors is a small class of specialized receptors termed the natural cytotoxicity recep-
tors (NCRs) comprised of NKp30, NKp46, and NKp44. The NCRs are key receptors in the
recognition and termination of virally infected and tumor cells. Since their discovery over
10 years ago, ligands corresponding to the NCRs have largely remained elusive. Recent
identification of the cellular ligands for NKp44 and NKp30 as exosomal proliferating cell
nuclear antigen (PCNA) and HLA-B-associated transcript 3 (BAT3), respectively, implicate
that NCRs may function as receptors for damage-associated molecular pattern (DAMP)
molecules. In this review, we focus on NKp44, which surprisingly recognizes two distinct
ligands resulting in either activation or inhibition of NK cell effector responses in response
to tumor cells. The inhibitory function of NKp44 requires further study as it may play a
pivotal role in placentation in addition to being exploited by tumors as a mechanism to
escape NK cell killing. Finally, we suggest that the NCRs are a class of pattern recognition
receptors, which recognize signals of genomic instability and cellular stress via interaction
with the c-terminus of DAMP molecules localized to the surface of target cells by various
co-ligands.

Keywords: NK cells, natural cytotoxicity receptors, NKp44, DAMPs, tumor ligands

INTRODUCTION
Natural killer (NK) cells are a fundamental component of the
innate immune system, capable of recognizing and destroying
tumor cells as well as cells infected by viruses or bacteria (1,
2). NK cells also secrete cytokines such as interferon-γ (IFN-γ)
and thus regulate the function of other immune cells. Further-
more, NK cells play an important role in adaptive immunity by
modulating dendritic cell function and recent findings demon-
strate that NK cells have memory (3, 4). The ability of NK cells
to kill target cells and secrete cytokines is regulated by a delicate
balance of activating and inhibitory signals received through dis-
tinct classes of receptors found on their cell surface. The balance
of signals delivered by those receptors governs NK cell activa-
tion, proliferation, and effector functions (5–8). Traditionally,
inhibitory killer cell immunoglobulin like receptors (KIRs) and
killer cell lectin-like receptors (KLRs) bind cell surface human
leukocyte antigen class I (HLA I) molecules expressed by healthy
human cells and signal through immunoreceptor tyrosine-based
inhibitory motifs (ITIMS) (9–11). When HLA I interacts with
inhibitory receptors, dominant inhibitory signaling transmitted
by ITIMS prevents activation and cytotoxic action by the NK cell
against normal, healthy cells of the body. NK cells may also be
inhibited by cytokines released by regulatory cells of the immune
system,such as regulatory T cells and myeloid suppressor cells (12).

Activating receptors, including the natural cytotoxicity recep-
tors (NCRs), NKG2D, and 2B4, bind ligands induced by cellular
stress, infection, or tumor transformation (13–16). Activating
signals are transmitted through immunoreceptor tyrosine-based
activating motifs (ITAMs) located in the cytoplasmic tail of the
receptor or through ITAMs in adaptor molecules, which associate
with activating receptors at the cell surface (8, 17). Therefore, when
a target cell lacks or under expresses HLA I and/or over expresses
activating ligands, NK cells eliminate that target by releasing pre-
formed cytotoxic granzymes and perforin stored as granules or
activate apoptosis pathways in the target cell (8, 18).

NATURAL CYTOTOXICITY RECEPTORS
Among the activating receptors is a specialized group of recep-
tors called the NCRs, which play a key role in recognition and
killing of tumor and virally infected cells. Comprising the NCRs
are the NKp44, NKp30, and NKp46 receptors. Binding of one
or more of these receptors with a specific ligand induces strong
NK cell activation and cytotoxicity (19). For optimal recognition
and elimination of target cells, the NCRs work best as a team
when identifying potential targets (20). This is evident through
increased cytotoxicity when multiple NCRs are triggered versus an
individual receptor, suggesting simultaneous NCR ligand expres-
sion on target cells (20, 21). Several studies have identified and
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characterized NCR ligands. NKp46 recognition of a ligand on
tumor cells has been shown to play a role in prevention of tumor
metastasis (22, 23). NKp30 is known to bind B7-H6, a mem-
ber of the B7 family expressed exclusively on tumor cells (24).
While many NCR ligands remain unidentified, they are believed
not to be expressed by normal cells but induced by cellular stress
or pathological conditions (14).

NKp44
NKp44 is unique and significant for several reasons. First, expres-
sion of the receptor is restricted to activated NK cells capable of
initiating an immediate cytotoxic response (25). Second, NKp44
activating function is implicated in HIV-related T cell decline as
expression of an activating ligand for NKp44 is induced in unin-
fected CD4 T cells by the gp41 envelope protein of HIV (26).
Earlier studies have shown recognition of viral hemagglutinins of
influenza virus by NKp44 enhanced killing of infected cells (27).
Finally, NKp44 expression is responsible for a dramatic increase
in killing of many tumor cell lines and cross linking the recep-
tor results in the release of cytotoxic granules, IFN-γ, and TNF-α
(25, 28–30). While only found on activated NK cells in circu-
lation, NKp44 is constitutively expressed by a specialized subset
of NK cells in the decidua, implicating a role for NKp44 during
placentation (25, 31, 32). NKp44 is also expressed on a subset
of interferon-producing cells located in human tonsils and ILC3
cells in mucosal-associated lymphoid tissues and human decidua
(33–37). Recently, it has been shown that NKp44 is indeed func-
tional in ILC3 and its engagement results in TNF but not in IL-22
production (38).

Crystallographic structure of NKp44 demonstrates a surface
groove made by two facing β hairpin loops extending from the
Ig fold core stabilized by a disulfide bridge between Cystine 37
and Cystine 45 (39). The Ig domain contains an arrangement of
positively charged residues at the groove surface, suggesting that
NKp44 ligands are anionic (39). Also, the groove appears wide
enough to host a sialic acid or an elongated branched ligand.
Interestingly, the cytoplasmic tail of NKp44 contains a tyrosine
sequence resembling an ITIM (25, 40). Contrary to initial reports,
this motif is functional and inhibits the release of cytotoxic agents
and IFN-γ (25, 30, 40). NKp44 surface expression is dependent on
its association with the ITAM containing DAP 12 accessory pro-
tein linked to NKp44 through Lysine 183 in the transmembrane
domain (25). Upon recognition of activating ligands, signaling
transduced through the ITAMs in Dap 12 result in release of
cytotoxic agents, tumor necrosis factor-α, and IFN-γ (29, 40).

While NK cells utilize NKp44 to recognize and kill targets,
tumors may also exploit NKp44 to escape NK cell recognition.
By engaging NKp44, as well as the other NCRs, tumors can induce
NK cell death via up regulation of Fas Ligand in the NK cell, induc-
ing Fas-mediated apoptosis (41). Tumors may also downregulate
NKp44 surface expression by shedding soluble MHC Class I chain-
related molecules or by releasing indoleamine 2,3-dioxygenase and
prostaglandin E2 (42, 43). The latter two molecules are released by
mesenchymal stem cells as well, inhibiting NKp44 expression in
the tumor microenvironment (44). Additionally, tumors can reg-
ulate NKp44 ligand expression to escape NK cell killing, as is the
case with acute myeloid leukemia (45). Finally, tumor cells may

induce expression of exosomal proliferating cell nuclear antigen
(PCNA) when physically contacted by NKp44 expressing NK cells
to inhibit NK cell effector function (30).

In addition to its role in immunity, NKp44 also has roles during
pregnancy. Decidual NK cells (dNK) make up 50–90% of lympho-
cytes in the uterine mucosa during pregnancy and constitutively
express NKp44 (36, 46, 47). Trophoblast cells and maternal stro-
mal cells of the decidua both express unidentified NKp44 ligands
(46). This ligand may be PCNA as the protein is over expressed in
trophoblast cells during the first trimester (48). As an inhibitory
ligand for NKp44, extracellular PCNA expression on trophoblast
cells would help explain the diminished ability of dNK cells to lyse
trophoblasts despite low levels of classical HLA I expression (47).

NKp44 TUMOR LIGANDS
NKp44 is implicated in recognition and killing of numerous types
of cancer: neuralblastoma, choriocarcinoma, pancreatic, breast,
lung adenocarcionma, colon, cervix, hepatocellular carcinoma,
Burkitt lymphoma, diffuse B cell lymphoma, prostate (15, 21, 28).
While most of these ligands have not been identified, they appear
to be cell cycle regulated, with down regulation of expression dur-
ing mitosis (28). Recognition of tumor cells is partially mediated
through charged-based binding of NKp44 with heparan sulfate
proteoglycans (HSPGs) on the surface of tumor cells (49–51). Of
note, recognition of HSPG only evokes IFN-γ release by NK cells,
not cellular cytotoxicity (49). Thus, HSPGs are believed to only
be a co-ligand for NKp44 as well as the other NCRs, potentially
facilitating binding with other cellular ligands.

Proliferating cell nuclear antigen is the inhibitory tumor lig-
and for NKp44 (15, 30). PCNA is a nuclear protein found in all
replicating cells, which encircles DNA and increases processivity
of DNA replication, but is also involved in DNA repair and cell
cycle control (52). NKp44 recognizes PCNA expressed on exo-
somes shuttled to the surface of tumors cells when in contact with
NK cells (15, 30). Recognition of cell surface PCNA colocalizing
with HLA I on the cell surface inhibits NK cell cytotoxicity and
IFN-γ release (15).

A truncated isoform of mixed-lineage leukemia-5 (MLL5) is an
activating cellular ligand for NKp44 (53). This MLL5 isoform con-
tains a specific exon encoding a C-terminus, which interacts with
NKp44 (53). Typically located only in the nucleus, MLL5 is a lysine
methyltransferase implicated in hematopoietic differentiation and
control of the cell cycle (53). Contrary to normal MLL5, the iso-
form recognized by NKp44 is not found in the nucleus but in the
cytoplasm and endoplasmic reticulum, destined to be expressed
at the cell surface (53). While MLL5 is expressed in normal tissue,
the isoform recognized by NKp44 is only present on tumor and
transformed cells (53).

NCR CO-LIGANDS
Heparan sulfate proteoglycans have been identified as co-ligands
involved in the recognition of tumor cells by the NCRs (49, 50,
54). HSPGs are complex glycoproteins found at the cell surface of
mammalian cells or in the extracellular matrix (55, 56). Heparan
sulfate is characterized by chains of disaccharide units of N-
acetyl-d-glucosamine linked to d-glucuronic acid (55, 57). Inter-
estingly, each NCR recognizes distinct forms of heparan sulfate
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epitopes on HSPGs, specifically highly sulfated microdomains
on disaccharide units (58). 2-O-sulfation of iduronic acid and
N -acetylation of glucosamine on HSPGs are important for inter-
action with NKp44 (50). NKp30 and NKp46 recognize HSPGs
with 2-O-sulfation of iduronic acid and either 6-O-sulfation or 6-
N-sulfation of glucosamine (50). Interactions between the NCRs
and HSPGs are charge based as each NCR contains basic amino
acid residues in their binding cleft and HSPGs are heavily charged
molecules.

In addition to HSPGs, HLA I may also serve as a co-ligand for
the NCRs. We have shown that HLA I and the NKp44 inhibitory
ligand, PCNA, associate on the cell surface (15). In our search to
identify a ligand for NKp44, several key pieces of evidence sug-
gested that HLA I plays a role in ligand formation. First, HLA I
has been demonstrated to coimmunoprecipitate with anti-NKp44
antibodies; reciprocally, NKp44 coimmunoprecipitates with anti-
β-2-microglobulin antibodies (59). Additionally, the Nef protein
of HIV prevents surface expression of NKp44 ligand isoform of
MLL5 on CD4-infected T cells, which is also consistent with the
ability of Nef to retain HLA I intracellularly (60, 61). Finally, the
NKp30 ligand, Bat3, colocalizes with HLA I on the extracellular
membrane of tumor cells, activating NK cell effector functions
(62, 63). Interestingly, all 50 alleles of HLA Class A, B, and C mol-
ecules harbor an Asparagine at position 86, close to the residues
on the α1 helix, which determine interactions with human NK
receptors (64). This site allows for attachment of N-linked gly-
can structures, which could enable binding of other proteins (64).
Electron density mapping of the HLA I glycan structure suggests
that it is flexible and could serve as a ligand for other receptors
or block access to HLA I molecules. Additionally, HLA-A and -
B are almost exclusively disialylated, resulting in these molecules
having a negative charge, a characteristic of NKp44 ligands (64).
This negative charge combined with a protruding oligosaccharide
could potentially facilitate interactions with NKp44.

As co-ligands, HSPGs and HLA I most likely facilitate binding
of other proteins, which together form a complex ligand rec-
ognized by the NCRs. The most prevalent interaction between
HSPGs and other proteins is charged based via clusters of posi-
tively charged amino acids on proteins forming ionic bonds with
negatively charged sulfate and carboxyl groups on HSPGs (57).
HSPGs may offer two mechanisms facilitating NCR ligand recog-
nition. First, HSPGs may bind soluble proteins, which as a whole
serve as ligands for the NCRs. Second, HSPGs could bind a soluble
protein and an NCR separately, and then act as scaffolding to bring
the NCRs into contact with a soluble protein. In the same manner,
the protruding oligosaccharide of HLA I, or other regions, may
enable assimilation of small proteins or DAMPs.

DAMPs AND THE C TERMINUS
Immune responses are initiated by pattern recognition recep-
tors, which recognize microbial-derived products called pathogen-
associated molecular pattern molecules (65). In a similar manner,
pattern recognition receptors also recognize molecules released
by dying or damaged cells, termed damage-associated molecu-
lar pattern (DAMP) molecules or alarmins (66, 67). Recogni-
tion of DAMPs contributes to the induction of inflammation,
even in the absence of pathogens (68). Normally residing in the

nucleus, cytoplasm, or exosomes, DAMPs lack secretion signals
but can be actively secreted by non-classical pathways or passively
released by necrotic cells (67). DAMPs thus serve as endogenous
danger signals when improperly released from damaged cells as
well as tumors and activate innate immune cells (67). DAMPs
are most often released after trauma, ischemia, or other tissue
damage and initiate early inflammatory responses (67). By recruit-
ing immune cells and promoting the release of proinflammatory
mediators, DAMPs activate immune responses and initiate path-
ways leading to tissue repair and regeneration (67, 69). Heat shock
proteins, high-mobility group box 1 (HMGB1), S100 proteins,
hyaluronan, and heparan sulfate represent a few DAMPs known
to date (68).

Like PAMPs, DAMPs are also recognized by pattern recognition
receptors. In addition to binding PAMPs, the Toll-like receptors
(TLRs) also recognize HMGB1 and a member of the S100 fam-
ily (67). These two DAMPs are also recognized by the receptor
for advanced glycation end products (RAGE) (67). Like the TLRs,
RAGE is expressed on numerous immune cells and induces NF-
κB-mediated production of cytokines (67). Interestingly, DAMP
molecules such as high-mobility group protein B1 and S100A8/9
have the ability to bind heparin sulfate and HSPGs, which are
known to be co-ligands involved in NCR-dependent recognition
of tumor cells resulting in secretion of IFN-γ but not cytotoxicity
(49, 50, 67).

We postulate that DAMPs may serve as the missing link in NCR-
mediated recognition of tumor cells. The association of DAMPs
with HSPGs, HLA I, or other potential co-ligands may form larger
complex ligands for the members of the NCR family (Figure 1).
Human leukocyte antigen-B-associated transcript 3 (Bat3), also
known as BAG-6, could be considered a DAMP due to its release
from tumor cells (62). Bat3 is typically located in the nucleus where
it plays an essential role in controlling the acetylation of p53 in
response to cellular DNA damage (62). However, upon non-lethal
heat shock, nuclear Bat3 relocates to the cell membrane of tumors
where it serves as a ligand for NKp30 (62, 63). Interestingly, this
study found Bat3 colocalizes with HLA I, suggesting opposition to
previous reports that NCRs do not associate with HLA I molecules
(29, 63, 70).

Like Bat3, PCNA and MLL5 are located in the nucleus and cyto-
plasm. Additionally, all three molecules are intricately involved in
processes regulating the cell cycle and/or DNA repair mechanisms.
Thus, their presence on the cell surface may indicate intracellular
stress related to DNA damage or improper cell cycle control, qual-
ifying these molecules as DAMPs. This suggests that the NCRs
may be pattern recognition receptors, which recognize DAMPs
sequestered to the cell surface. Taken into context with other stud-
ies, the NCRs potentially have the ability to interact with HLA I,
HSPGs, or other cell surface molecules as co-ligands in conjunc-
tion with soluble proteins, such as Bat3, PCNA, MLL5, or other
DAMPs on the cell surface of tumors (62). Therefore, the NCRs
may recognize DAMPs on the cell surface in association with a
docking protein. Furthermore, the NCRs may be directly recog-
nizing the C-terminal ends of DAMPs. NKp30 was recently shown
to recognize the C terminus of Bat3 (71). In a similar manner,
NKp44 also recognizes the C terminus of the MLL5 ligand (53).
The molecular details of interaction between NKp44 and PCNA
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FIGURE 1 | Mechanism by which tumor cells may inhibit natural cytotoxicity through NCR recognition by DAMPs. The association of DAMPs with
HSPGs, HLA I, or other potential co-ligands may form larger complex ligands for the members of the NCR family.

have yet to be determined, but the above precedents suggest that
interaction may occur at the C terminus of PCNA.

Natural cytotoxicity receptors ligands consisting of a DAMP
and a co-ligand may add complexity in understanding how the
NCRs regulate NK cell effector function. The NCRs were origi-
nally believed to be strictly activating NK cell receptors. However,
NKp44 and NKp30 have recently been shown to exhibit both
inhibitory and activating functions. NKp44 recognizes cell sur-
face PCNA in an inhibitory manner while a soluble C-terminal
fragment of Bat3 inhibits NK cell function via NKp30 (15, 71).
However, recognition of MLL5 by NKp44- and NKp30-mediated
recognition of Bat3 sequestered to the cell surface activates NK
cell effector functions (53, 62, 63). Thus, modulation of NK cell
activity via the NCRs could depend on the DAMP molecule, the
co-ligand sequestering the DAMP, or the lack of a coligand and
the soluble nature of the DAMP. NKp44 presents a more special
case since it contains a functional ITIM-like sequence in its cyto-
plasmic tail. Due to the dual nature of NKp44 signaling, it will
be of interest to determine if recognition of the DAMP, either
PCNA or MLL5, the coligand, potentially an HSPG or HLA I,

or the motif as a whole is responsible for inhibition or activa-
tion of NK cytotoxicity. Neither NKp30 nor NKp46 has been
reported to contain an ITIM sequence. However, an immuno-
suppressive isoform of NKp30 resulting from a single-nucleotide
polymorphism in the 3′-untranslatable region has been reported
(72). Whether the divergence of NCR function depends on the
individual DAMP molecule recognized or the binding of DAMP
molecules to a specific coligand remains to be elucidated.

CONCLUDING REMARKS
Recent studies reveal a novel function for DAMP molecules, or
proteins, which are located and function intracellular, but some-
how localize to the extracellular membrane despite lacking a tra-
ditional secretory leader sequence. These proteins are released by
cells, which have become injured in the absence of infection due
to ischemia, hypoxia, transformation, chemotherapy, DNA dam-
age, or other trauma. Analogous to TLRs recognizing pathogen-
associated molecular patterns, the NCRs may represent a class of
NK cell receptors that participate in pattern recognition of DAMP
molecules, whose identities may reflect the intracellular health of a
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cell, particularly in regards to DNA damage or instability, in addi-
tion to the traditional method of HLA I presenting self peptide.
In this manner, HLA I, HSPGs, or other co-ligands may present
DAMP molecules for identification by the NCRs, which would
then regulate NK cell function. Like other NK cell receptors, the
NCRs undoubtedly recognize multiple ligands, which may be cell
surface transmembrane proteins, like the recognition of B7-H6
molecule by NKp30 (73). Knowledge of the identities of NCR lig-
ands and nature of DAMP molecules that bind to HLA I, HSPGs,
or other cell surface molecules to form complex ligands for the
NCRs will shed light on NK cell recognition of target cells under
healthy and disease conditions and offer novel therapeutic targets.
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Blurring the boundary between innate and adaptive immune system, natural killer (NK) 
cells, a key component of the innate immunity, are recognized as potent anticancer 
mediators. Extensive studies have been detailed on how NK cells get activated and 
recognize cancer cells. In contrast, few studies have been focused on how tumor micro-
environment-mediated immunosubversion and immunoselection of tumor-resistant 
variants may impair NK cell function. Accumulating evidences indicate that several cell 
subsets (macrophages, myeloid-derived suppressive cells, T regulatory cells, dendritic 
cells, cancer-associated fibroblasts, and tumor cells), their secreted factors, as well as 
metabolic components (i.e., hypoxia) have immunosuppressive roles in the tumor micro-
environment and are able to condition NK cells to become anergic. In this review, we will 
describe how NK cells react with different stromal cells in the tumor microenvironment. 
This will be followed by a discussion on the role of hypoxic stress in the regulation of 
NK cell functions. The aim of this review is to provide a better understanding of how 
the tumor microenvironment impairs NK cell functions, thereby limiting the use of NK 
cell-based therapy, and we will attempt to suggest more efficient tools to establish a 
more favorable tumor microenvironment to boost NK cell cytotoxicity and control tumor 
progression.

Keywords: HiF, microenvironment, solid tumors, natural killer cells, immune suppression

introduction

Natural killer (NK) cells are lymphoid cells that are considered to be major innate effector cells. They 
are endowed with a natural ability to kill tumor cells and infected cells (1). NK cell lytic functions 
are regulated by a balance of activating and inhibiting signals originating from membrane receptors 
(1). Despite their effective antitumor activity, their contribution in controlling solid tumor progres-
sion remains elusive. The immunosuppressive tumor microenvironment is undoubtedly involved in 
tumor evasion from NK cell-mediated killing through several cellular and metabolic factors. Immune 
and stromal cells as well as the hypoxic stress inside the tumor microenvironment are known to 
be negative regulators of NK cell infiltration into solid tumors and cytotoxicity (1). Tumor cells 
themselves develop several strategies to evade NK cell-mediated killing. In this regard, hypoxic stress 
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through its ability to induce tumor resistance and to regulate the 
differentiation and function of immune-suppressive cells plays a 
determinant role in shaping the NK cell phenotype and function.

In this review, we propose an insight on how tumor microen-
vironment inhibits NK cell functions and how this may impact 
the therapeutic use of NK cells in anticancer treatments.

Cell-Mediated immune Suppression 
Toward NK Cells in the Tumor 
Microenvironment

The tumor microenvironment is a complex network of tumor 
cells, immune cells, stromal cells, and extracellular matrix 
accomplishing proliferation, migration, and dissemination of 
tumor cells. The immune cell subset comprises CD8+ T cells, 
CD4+ T cells, NK cells, and myeloid cells [dendritic cells (DCs), 
M2-macrophages, myeloid-derived suppressor cells (MDSCs)]. 
Despite the recognized role of NK cells in clearing circulating 
tumor cells (leukemia cells, metastatic cells) (2–4), the antitumor 
functions of NK cells in solid tumors are frequently mentioned 
due to the more favorable prognosis associated with higher NK 
cell infiltration in some type of cancers (5), the inverse correlation 
between natural cytotoxic activity and cancer incidence (6), or 
the faster tumor growth in NK cell-depleted mouse models (7–9).

Natural killer cells enter solid tumor site by extravasations 
through tumor vasculature (10). CXCR3 is a major chemokine 
receptor involved in NK cell migration toward tumor following a 
gradient of the tumor-derived chemokine (C-X-C motif) ligands 
CXCL9, 10, and 11 (11, 12). In particular, increased CXCL10 
expression in melanoma tumors results in increased infiltration 
of adoptively transferred CXCR3-positive expanded NK cells, 
reflecting the role of CXCL10-induced chemoattraction (12). 
However, infiltrated NK cells often display a suppressed pheno-
type inside solid tumors. Accumulating evidence indicates that 
tumor-residing cells as well as a series of microenvironmental 
factors are endowed with suppressive properties that affect NK 
cell reactivity and inhibit their functions (Figure 1).

Macrophage Polarization Regulates  
NK Cell-Mediated Cytotoxicity
Within the tumoral tissue, macrophages and other myeloid cells 
constitute a major component of the immune infiltrate (13, 14). 
They differentiate into tumor-associated macrophages (TAM) 
with expression of TAM markers such as CD206 (15). Exposure 
of TAM to tumor-derived cytokines such as IL-4, IL-10, IL-13, 
and M-CSF is able to convert them into polarized type II or 
M2 macrophages with immune-suppressive activities resulting 
in tumor progression (15). M2-polarized macrophages appear 
to contribute to immune suppression through the production 
of immunosuppressive factors such as IL-10 and TGF-β (16). 
Recently, the role of myeloid cells including macrophages in 
immunosuppression of NK cells has been better understood by 
the involvement of A2AR receptors (17). Myeloid-selective dele-
tion of A2ARs significantly activates macrophages by favoring 
M1 polarization, reduces lung metastasis, and increases CD44 
expression on tumor-associated NK cells and T cells as well as 

numbers and activation of NK cells and antigen-specific CD8+ 
T cells in lung infiltrates (17). In a xenografted lung carcinoma 
model, increased expression of surfactant protein-A (SP-A) 
was reported to be associated with reduced tumor growth and 
increased M1-TAM and NK cell recruitment and activation at 
the tumor site (18).

Myeloid-Derived Suppressor Cells Suppress NK 
Cell Activity
Myeloid-derived suppressor cells represent additional myeloid 
subsets involved in tumor-induced immunosuppression (19). 
MDSCs comprise immature macrophages, granulocytes, and 
DCs. Their expansion and immunosuppressive functions are 
well documented in tumor-bearing mice and cancer patients. As 
such, the NK cell activity was found to be inversely correlated 
with MDSC expansion (20, 21). In addition, MDSC-mediated 
inhibition of NK cells was found to be cell contact dependent 
via membrane-bound transforming growth factor-β (TGF-β) on 
MDSC (21) or inhibition of perforin and signal transducer and 
activator of transcription 5 (Stat5) activity in NK cells (20). MDSC 
from patients with hepatocarcinoma also show inhibitory effects 
on autologous NK cells after coculture (22). This inhibition was 
also found to be cell contact dependent and to involve blocking 
of the activating receptor NKp30 on NK cells (22).

CD4+CD25+ T Regulatory Cells inhibit NK Cell 
Cytolytic Functions
T regulatory cells (Treg) are well described for their immunosup-
pressive functions (23). Studies performed by Trzonkowski et al. 
(24) and Xu et al. (25) report direct inhibitory effects of Treg on 
NK cell cytolytic functions and expression of the CD69 activa-
tion marker following in vitro cocultures. These studies indicate 
that the production of TGF-β by Treg is at least one mechanism 
of Treg-mediated NK cell inhibition. In  vivo, Treg depletion 
was shown to increase NK cell proliferation by a mechanism 
involving IL-15Rα expression on DCs (26). In a murine model, 
such depletion was also shown to favor NKG2D-mediated tumor 
rejection (27).

Dendritic Cells Modulate NK Cell Cytotoxicity
The incrimination of TGF-β in the modulation of NK cell cyto-
toxicity is also reported when NK cells are cocultured with DCs. 
Signal transducer and activator of transcription 3 (STAT3) phos-
phorylation in DCs was reported to be associated with increased 
secretion of TGF-β, which inhibited NK cell activity, and inhibi-
tion of TGF-β restored NK cell functions (28). TGF-β production 
by DCs can be induced by coculture of immature DC with lung 
carcinoma cells (29) or by stimulation with LPS (30). Secretion 
of IL-6 and IL-10 by DC has also been incriminated in dendritic 
cell-mediated NK cell inhibition (31). Nevertheless, some reports 
show that DC can also activate NK cell functions. IL-15-stimulated 
DCs acquire the ability to increase surface expression of the NK 
cell-activating receptors NKp30 and NKp46, which is associated 
with an increased tumor target killing (32). This activation is cell 
contact dependent and required membrane-bound IL-15 on DC. 
DCs were also reported to induce NK cell proliferation and to 
activate NKp30 receptor-signaling in NK cells (33).
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Cancer-Associated Fibroblasts Decrease NK 
Cell-Mediated Cytotoxicity
Among the stromal cells, modified/activated fibroblasts, often 
termed cancer-associated fibroblasts (CAFs), are considered 
to play a central role in the complex process of tumor–stroma 
interaction. CAFs, the prominent stromal cell population in most 
types of human carcinomas, are α-SMA (alpha-smooth muscle 
actin) positive, spindle-shaped cells, which closely resemble 
normal myofibroblasts but express specific markers [i.e., FAP 
(fibroblast-associated protein), FSP-1 (fibroblast specific protein 
1), and PDGFR-β (platelet-derived growth factor)] together with 
vimentin (a mesenchymal marker) and the absence of epithelial 
(cytokeratin, E-cadherin) and fully differentiated smooth muscle 
(smoothelin) markers (34–36). CAFs differentiate in the tumor 

FiGURe 1 | interactions between NK and stromal cells within the solid tumor microenvironment. Activating and inhibiting interactions of stromal cells with 
NK cells in the tumor microenvironment. : secretion; ▬ : membrane-bound; (+): activation; (−): inhibition.

microenvironment in a TGF-β-dependent manner from other 
cell types such as resident fibroblasts, mesenchymal stem cells, 
and endothelial and epithelial cells (37, 38). In the tumor stroma, 
CAFs produce and secrete several factors such as extracellular 
matrix proteins (i.e., collagen I, III, IV), matrix metalloproteinases 
(MMPs), proteoglycans (i.e., laminin, fibronectin), chemokines 
(i.e., CXCL1, CXCL2, CXCL8, CXCL6, CXCL12/SDF1, CCL2, 
and CCL5), vascularization promoting factors (i.e., PDGF and 
VEGF), and other proteins that affect tumor cells’ proliferation, 
invasiveness, and survival (i.e., TGF-β, EGF, HGF, and FGF) 
(39). Consequently, CAFs have been involved in tumor growth, 
angiogenesis, tissue invasion, and metastasis (40).

During the past few years, these activated tumor-associated 
fibroblasts have also been involved in the modulation of the 
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antitumor immune response, especially by the secretion of solu-
ble immunosuppressive factors in the tumor microenvironment 
(TGF-β, IL-1β, IL-6, and IL-10) (41). As such, CAFs can poten-
tially affect both innate and adaptive antitumor immune response 
by increasing the recruitment to tumor of myeloid-derived 
suppressive cells (MDSC), by decreasing antigen presentation, 
by increasing the numbers of Tregs, by decreasing T-cell prolif-
eration, cytotoxic T-cell (CTL) function and maturation, or by 
inhibiting B cell activation and differentiation (41, 42). Different 
studies also involved CAFs in the modulation of the NK cell func-
tionality. Indeed, the secretion of TGF-β by CAFs could attenuate 
the expression of NK cell-activating receptors including NKG2D, 
NKp30, and NKp44 (43, 44). More recently, studies involving 
melanoma and hepatocellular and colorectal carcinoma-derived 
fibroblasts have shown that CAFs can decrease NKG2D expres-
sion on NK cells surface through the secretion of prostaglandin 
E2 (PGE2) and/or indoleamine-2,3-dioxygenase (IDO). In 
parallel, perforin and granzyme B expression (involved in NK 
cell-mediated killing of target cells) also seem to be decreased 
by coculture of NK cells with CAFs, affecting their lytic potential 
(45–47). Altogether, these findings highlight the direct and indi-
rect action of CAFs on various levels of the antitumor immune 
response and on NK cells antitumor activity within the tumor 
microenvironment.

Tumor Cells May Develop Strategies to evade 
NK Cell-Mediated Lysis
In many cancers, tumor cells down-regulate surface expression 
of MHC-I molecules in order to evade CD8-dependent T-cell 
killing, making them more susceptible to NK cell-dependent 
killing. Cancer cells can also up-regulate NKG2D ligands fol-
lowing activation of NFκB or Sp transcription factors (48). 
However, tumor cells also develop various strategies to inhibit 
NK cell-mediated cytotoxicity. Indeed, NK cells from multiple 
myeloma patients were shown to constitutively express the 
inhibitory receptor PD-1, as compared to NK cells from healthy 
donors, which contributes to NK cell inhibition by multiple 
myeloma cells (49). When the authors inhibit the PD-1/PD-L1 
axis using lenalidomide or a blocking antibody, they restored 
NK cell lytic functions against tumor cells. In addition, tumor 
cells secrete a number of immunosuppressive cytokines such as  
TGF-β. In this regard, neuroblastoma cell-derived TGF-β has 
been reported to down-regulate the activating receptor NKp30 
(50). Melanoma cells are also able to inhibit the expression of 
activating NK cell receptors including NKp30, NKp44, and 
NKG2D, resulting in impairment of NK cell-mediated cytotox-
icity (51). This inhibitory effect is mediated via the production 
of IDO and PGE2 by melanoma cells. Tumor cells may release 
soluble NKG2D ligands through proteolytic cleavage, resulting 
in down-regulation of NKG2D and impairment of NK cell lytic 
functions (52, 53). The inhibitory consequences of releasing 
soluble NK cell receptor ligands may not be systematic. Indeed, 
NKp30 activation by tumor-released vesicles containing HLA-B-
associated transcript 3 (BAT3), a ligand for NKp30, was reported 
(54). Very recently, Deng et  al. demonstrated that shedding of 
the NKG2D ligand MULT1 results in NK cell activation and 
increased surface expression of NKG2D (55). As suggested by 

the authors, the differential affinity of MULT1 (high-affinity 
NKG2D ligand) and MICA/B (low-affinity NKG2D ligand) for 
NKG2D may explain this discrepancy. Recently, Nanbakhsh et al. 
reported that the induction of c-myc in leukemic cells resistant 
to cytarabine resulted in up-regulation of NKG2D ligands (56). 
Since deregulated expression of c-myc is associated with many 
cancers in human, it raises the question of the expression of 
NK cell-activating ligands on c-myc-altered solid tumors. We 
and others have also provided evidence indicating a role of HIF 
factors in tumor resistance to NK cell-mediated lysis, which is 
further detailed in Section “Consequences of Hypoxia-Induced 
HIF Stabilization on NK Cell Functions.”

Consequences of Hypoxia-induced HiF 
Stabilization on NK Cell Functions

Microenvironmental hypoxia is a prominent feature of solid 
tumors and is involved in fostering the neoplastic process and in 
the modulation of immune reactivity (57). It results from inad-
equacies between the tumor microcirculation and the oxygen 
demands of the growing tumor mass, which leads to a lowering of 
oxygen partial pressure and a metabolic switch toward glycolysis 
(58). Tumor hypoxia is a negative prognostic and predictive factor 
due to many effects on the selection of hypoxia-surviving clones 
(59), activation of the expression of genes involved in apoptosis 
inhibition (60), angiogenesis (61), invasiveness and metastasis 
(62), epithelial-to-mesenchymal transition (63), and loss of 
genomic stability (64). Accumulating evidences indicate that 
tumor hypoxia is also involved in the loss of immune reactivity 
either by decreasing tumor cell sensitivity to cytotoxic effectors or 
by promoting immunosuppressive mechanisms (57).

Cellular Adaptation to Hypoxia Through 
Hypoxia-inducible Factors
Cells adapt to hypoxic microenvironment by regulation of 
hypoxia-inducible family of transcription factors (HIFs). This 
family comprises three members: HIF-1, HIF-2, and HIF-3. HIF-1 
is a heterodimeric protein composed of a constitutively expressed 
β-subunit and an O2-regulated α-subunit. In the presence of 
O2, HIF-1α is hydroxylated on proline residue 402 and/or 564 
by prolylhydroxylase domain protein 2 (PHD2), resulting in its 
interaction with the von Hippel-Lindau (VHL) tumor suppressor 
protein, which recruits an E3 ubiquitin-protein ligase that even-
tually catalyzes poly-ubiquitination of HIF-1α, thereby targeting 
it for proteasomal degradation (1). Under hypoxic conditions, 
hydroxylation is inhibited and HIF-1α rapidly accumulates, 
dimerizes with HIF-β, binds to the core DNA-binding sequence 
50-RCGTG-30 [R being a purine base (adenine or guanine)] in the 
promoter region of target genes, recruits coactivators, and activates 
transcription (65). In addition, oxygen-dependent hydroxylation 
of asparagine-803 by factor inhibiting HIF-1 (FIH-1) blocks the 
interaction of HIF-1α with the coactivators P300/CBP under nor-
moxic conditions, resulting in suppression of HIF transcriptional 
activity (66–68). Similar to HIF-1α, HIF-2α is also regulated by 
oxygen-dependent hydroxylation. HIF-1α and HIF-2α are struc-
turally similar in their DNA-binding regions and dimerization 
domains but differ in their transactivation domains. Consistently, 
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they share many target genes, but each one also regulates a unique 
set of genes (69). HIF-3α lacks the transactivation domain and 
may function as an inhibitor of HIF-1α and HIF-2α (70).

Hypoxic and Pseudo-Hypoxic Tumor Cells Are 
Resistant to NK Cell-Mediated Killing
It is now well established that the hypoxic tumor microenviron-
ment favors the emergence of tumor variants with increased 
metastatic and invasive potential and alters immune reactivity 
as well (57).

Fink and colleagues reported the inhibition of NK cell cyto-
toxicity toward liver tumor cell lines under hypoxic conditions, 
suggesting for the first time that hypoxia is able to confer tumor 
resistance to NK cell-mediated cytotoxicity (71). Another study 
demonstrated that hypoxia decreased the expression of MICA (a 
NKG2D ligand) on osteosarcoma cell surface with a consistent 
decrease in the susceptibility of these cells to NK cell-mediated 
cytotoxicity (72). Consistently, HIF-1α knockdown using small 
interfering RNA increased the expression of cell surface MICA and 
concomitantly increased the level of soluble MICA. HIF-1α was 
also found to be inversely correlated with MIC gene expression, 
indicating that hypoxia was involved in the inhibition of NK cell 
reactivity toward tumor cells. Recently, we showed that hypoxia-
induced autophagy in tumor cells mediated resistance to CTL (73). 
In this context, Baginska et al. demonstrated that hypoxia-induced 
autophagy in tumor cells was also involved in tumor resistance 
to NK cells via granzyme B degradation in autophagosomes (74).

In the particular context of renal cancer, hypoxic signaling 
is frequently constitutively active owing to the majority of renal 
cancers presenting with clear cell carcinoma (ccRCC) histology 
(75), which is usually associated with mutational or functional 
inactivation of the VHL gene (76). The VHL pathway targets the 
hypoxia-inducible factors (HIFs) family of transcription factors, 
in particular HIF-1α and HIF-2α, for ubiquitin-mediated degra-
dation via the proteasome (77). Consequently, VHL inactivation 
leads to constitutive stabilization of HIFs, a process known as 
pseudo-hypoxia, and increased expression of HIF target genes. 
Our group has recently shown that, in VHL-mutated ccRCC 
cells, HIF-2 stabilization caused by mutated VHL induces up-
regulation of ITPR1 which is involved in ccRCC resistance to NK 
cells (78). NK cells were found to induce a contact-dependent 
autophagy in ccRCC cells that was dependent on ITPR1 expres-
sion in tumor cells. Blocking ITPR1 expression in ccRCC cells 
inhibited NK cell-induced autophagy and suppressed ccRCC 
resistance to NK cells.

On the contrary, in non-tumoral cells, Luo and colleagues 
demonstrated that HIF-1α overexpression in HK-2 cells 
induces MICA expression and enhances NK cell cytotoxicity 
toward target cells as well as IFNγ secretion by NK cells (79). 
Antibody blocking experiments using anti-MICA mAb were 
able to down-regulate NK cell-mediated killing and IFNγ secre-
tion toward HIF-1α-overexpressing HK-2 cells confirming the 
involvement of MICA in the increased NK cell reactivity.

Hypoxia inhibits NK Cell Functions via HiFs
The specific role of hypoxia and HIFs on NK cells is not well 
studied.

Balsamo and colleagues showed that NK cells adapt to a 
hypoxic environment by up-regulating HIF-1α. They demon-
strated that, under hypoxia, NK cells lose their ability to up-
regulate the surface expression of the major activating NK-cell 
receptors (NKp46, NKp30, NKp44, and NKG2D) in response to 
IL-2 or other activating cytokines (including IL-15, IL-12, and 
IL-21). These altered phenotypic features correlated with reduced 
responses to activating signals, resulting in impaired capability of 
killing infected or tumor target cells. However, hypoxia does not 
significantly alter the surface density and the triggering function 
of the Fc-γ receptor CD16, thus allowing NK cells to maintain 
their capability of killing target cells via antibody-dependent 
cellular cytotoxicity (80).

Hypoxic primary tumors were shown to provide cytokines 
and growth factors capable of creating a pre-metastatic niche 
and a reduction of the cytotoxic functions of NK cells. In fact, 
Sceneay et al. reported that injection of mice with hypoxic mam-
mary tumor cells resulted in increased CD11b+/Ly6Cmed/Ly6G+ 
myeloid and CD3−/NK1.1+ immune cell lineages infiltration 
into the lung and led to increased metastatic burden in mam-
mary and melanoma experimental metastasis models (81). The 
cytotoxicity of NK cells was significantly decreased, resulting in 
a reduced antitumor response that allowed metastasis formation 
in secondary organs to an extent similar to that observed fol-
lowing depletion of NK cells. Sarkar and colleagues confirmed 
that hypoxia reduced NK cell killing of multiple myeloma cell 
lines (82). They showed that hypoxia significantly decreased 
expression of the activating receptor NKG2D by NK cells and of 
intracellular granzyme B and perforin. Whether HIF factors were 
able to directly regulate the expression of granzymes genes is not 
documented, but perforin has been reported not to be a direct 
target gene of HIF-1 (83).

Despite detailed description of the detrimental effects 
of hypoxia on NK-cell responses, the underlying molecular 
mechanisms remain unclear. In particular, whether HIF or other 
hypoxia-related factors are able to directly control NK cell recep-
tor expression remain to be clarified.

indirect Consequences of Hypoxic Stress on  
NK Cell Cytotoxic Functions
Despite the direct consequences of hypoxic stress on NK cells, 
intratumoral hypoxia is also involved in increased tumor infiltra-
tion by Treg and MDSC and in M2-polarization (57), which are 
cellular subsets that negatively regulate NK cell lytic functions 
(see Cell-Mediated Immune Suppression Toward NK Cells in 
the Tumor Microenvironment). Hypoxic stress is also involved 
in increased expression and secretion by tumor cells of NK 
cell-inhibiting cytokines such as TGF-β (84, 85). Of note, NK 
cell adhesion on hypoxic endothelial cells was reported to be not 
altered (86), but NK cell infiltration into hypoxic tumors has not 
been extensively studied.

NK Cell: A Role in Tumor immunoediting

The major focus of immunotherapy approaches has been enhanc-
ing the effectiveness of host antitumor immunity. However, while 
accumulating evidences indicate that tumor microenvironment 
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might evade the innate host immune response to ensure tumor 
development and survival (58, 87), NK cells have also been 
reported to play a role in the selection of tumor-resistant and 
tumor-tolerant cells and therefore to shape tumor microenvi-
ronment (88). While the mechanisms of CTL-induced tumor 
editing are well known (89), only limited knowledge on how 
NK cells induce tumor editing is available. In this regard, the 
involvement of NK cells in immune editing has been studied in 
relation to NKG2D and DNAM1 (90, 91). Guillerey and Smyth 
have elegantly demonstrated the NK cell activity in the cancer 
immune editing process with particular emphasis on the elimi-
nation and escape phases (92). NK cells have been also shown to 
kill immature DC because of their low amount of surface human 
leukocyte antigen (HLA) class I molecules (33) and therefore 
impact the quality of adaptive immune response. In this regard, 
Ghadially et al. have reported data indicating that in the absence 
of NKp46, graft-versus-host disease (GVHD) is greatly exacer-
bated, resulting in rapid mortality of the transplanted animals 
(93). Furthermore, these authors have demonstrated that the 
exacerbated GVHD is the result of an altered ability of immune 
cells to respond to stimulation by immature DCs (94). Buchser 
et al. have shown that classic cytolytic cells, including NK cells, 
can often promote survival and autophagy in target cells (95). 
These authors provided evidence indicating that NK cells are 
a primary mediator of autophagy in tumor target cells by a 
mechanism involving cytokines (IL-10, IL-2, IFNγ) and that 
cell-to-cell contact strongly enhanced lymphocyte-mediated 
autophagy. The authors suggested that the NK cell-mediated 
autophagy promotes cancer cell survival and may represent an 
important target for development of novel therapies.

NK Cell-Based immunotherapies in the 
Context of Tumor Microenvironment 
Complexity and Heterogeneity

Natural killer cell-based immunotherapies have the advantage 
of circumventing antigen recognition restriction since NK cells 
do not need antigen recognition to kill tumor targets. In this 
context, NK cell infusion has been useful in leukemic patients, 
probably due to their primary location being the blood. Indeed, 
most of hematological malignancies display an autologous NK 
cell deficiency specifically in myeloid diseases. Autologous NK 
cells do not control acute myeloid leukemia (AML) blasts and 
several mechanisms have been hypothesized: down-regulation 
of the ligands for NK-cell activating receptors or up-regulation 
of NK cell inhibitory receptors (96). Allogeneic NK cells do not 
bear this deficiency and have demonstrated their ability to kill 
AML blasts targets. In this context, the killer Ig-like receptor 
(KIR)-ligand mismatch is considered fundamental for their anti-
tumor effects (97, 98, 99). Modulating the immune reconstitution 
following allogeneic transplantation with NK cells is a potential 
powerful tool to increase the graft versus leukemia (GvL) effect 
against AML blasts and tumor cells (100). NK cells do recover 
early following allogeneic transplantation and exert cytotoxicity 
through MHC unrestricted killing. High numbers of allogeneic 
circulating NK cells improved remission duration in patients with 

leukemia and consolidate engraftment following haploidentical 
transplants (101).

On the other hand, the therapeutic potential of NK cells 
in solid tumors is not yet clearly established. However, pre-
clinical studies support the antitumor activity of NK cells 
against solid tumors (102). Phase I and phase II clinical trials 
based on adoptive transfer of irradiated NK cell lines or allo-
geneic NK cells have been made in breast, ovarian, melanoma, 
and renal cancer patients (98, 103). These trials revealed mild 
and transient toxicities following NK-92 infusion and some 
severe syndromes following allogeneic NK cell administration. 
Further studies are still needed to increase NK cell persistence 
and expansion.

Moreover, producing sufficient amounts of allogeneic NK 
cells for clinical applications remain a technical challenge in 
cell therapy programs despite their useful and safe infusion 
10 years ago (104). Dampening negative regulators of NK cell 
lytic functions should also be explored, in particular in the 
context of solid tumors. Strategies aimed at inhibiting NK cell 
suppressors such as TGF-β, expansion of immunosuppressive 
cells, and expression of inhibitory checkpoints should be con-
sidered. In particular, targeting HIF-1α by antisense plasmid 
in xenografted mice led to NK cell-dependent tumor rejection 
(105). Various anticancer drugs have been shown to inhibit 
HIFs (106, 107). We believe that pharmacologic manipula-
tion of hypoxic signaling will result in increased target killing 
by effector cells and in general improving of antitumoral 
immunotherapy. Whether the suppression of hypoxia may be 
a promising strategy that is selective for facilitating immuno-
therapeutic efficacy in cancer patients is at present investigated. 
Nevertheless, a better understanding of functionally distinct 
KIR or NK cell receptor subsets within NK cell population is 
still needed for designing optimal immunotherapy based on 
NK cell administration or reactivation.

Conclusion

During the last few years, cancer immunotherapy has emerged 
as a safe and effective alternative to cancers that do not respond 
to classical treatments including those types with high aggres-
siveness. New immune modulators like cytokines, blockers of 
CTLA4/CD28 and PD-1/PD-L1 interactions, or adoptive cell 
therapy have been developed and approved to treat solid tumors 
and hematological malignant diseases. In these scenarios, cyto-
toxic lymphocytes mainly CTLs and NK cells are the ultimate 
responsible for killing the cancer cells and eradicating the tumor. 
Many mechanisms have been proposed for the functional 
inactivation of tumor-associated NK cells. Thus, the definition 
of tumor microenvironment-related immunosuppressive factors, 
along with the identification of new classes of tissue-residing NK 
cell-like innate lymphoid cells, represents key issues to design 
effective NK-cell-based therapies for solid tumors.
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Natural killer (NK) cells were discovered 40  years ago, by their ability to recognize 
and kill tumor cells without the requirement of prior antigen exposure. Since then, NK 
cells have been seen as promising agents for cell-based cancer therapies. However, 
NK cells represent only a minor fraction of the human lymphocyte population. Their 
skewed phenotype and impaired functionality during cancer progression necessitates 
the development of clinical protocols to activate and expand to high numbers ex vivo 
to be able to infuse sufficient numbers of functional NK cells to the cancer patients. 
Initial NK cell-based clinical trials suggested that NK cell-infusion is safe and feasible 
with almost no NK cell-related toxicity, including graft-versus-host disease. Complete 
remission and increased disease-free survival is shown in a small number of patients 
with hematological malignances. Furthermore, successful adoptive NK cell-based ther-
apies from haploidentical donors have been demonstrated. Disappointingly, only limited 
anti-tumor effects have been demonstrated following NK cell infusion in patients with 
solid tumors. While NK cells have great potential in targeting tumor cells, the efficiency 
of NK cell functions in the tumor microenvironment is yet unclear. The failure of immune 
surveillance may in part be due to sustained immunological pressure on tumor cells 
resulting in the development of tumor escape variants that are invisible to the immune 
system. Alternatively, this could be due to the complex network of immune-suppressive 
compartments in the tumor microenvironment, including myeloid-derived suppressor 
cells, tumor-associated macrophages, and regulatory T cells. Although the negative 
effect of the tumor microenvironment on NK cells can be transiently reverted by ex vivo 
expansion and long-term activation, the aforementioned NK cell/tumor microenviron-
ment interactions upon reinfusion are not fully elucidated. Within this context, genetic 
modification of NK cells may provide new possibilities for developing effective cancer 
immunotherapies by improving NK cell responses and making them less susceptible to 
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iNTRODUCTiON

Natural killer (NK) cells are lymphocytes of the innate immune 
system. They are cytokine producing and have cytotoxic ability to 
kill both viral infected and tumor cells. Tumor-killing lympho-
cytes were first reported in 1968 by Hellström et al. (1). Kiessling 
and colleagues, in parallel with Ronald Herberman’s research 
laboratory, defined a novel lymphocyte population named NK 
cells that are able to target tumor cells in 1975 (2–5). Unlike T 
cells and B cells, NK cell recognition is not governed by high-
resolution antigen specificity. Target cell recognition is mediated 
by the signals delivered through several activating and inhibitory 
receptors. The balance between activating and inhibitory signals 
decides the response of NK cells. When there is a mismatch 
between an inhibitory subgroup of killer immunoglobulin-like 
receptors (KIRs) on NK cells and self-human leukocyte antigen 
(HLA) class I proteins on the surface of target cells the NK cells 
can get activated due to lack of inhibitory signals leading to 
lysis of the host cell. This mismatch mediates alloreactivity and 
is the strategy behind the missing-self concept (6). KIRs can be 
divided into two haplotypes; the A haplotype with predominantly 
inhibitory KIRs plus only one activating KIR and the B haplotype 
containing inhibitory and activating receptors (7). During NK 
cell education, KIRs go through a random sequential acquisi-
tion process where they get functionally competent after they 
encounter self-MHC class I molecules. Consequently, mature NK 
cell function is inhibited by self-MHC class I and KIR interaction 
(8). When a NK cell confronts a target cell without expression of 
self-MHC class I molecules, the inhibitory signals are not active 
and the NK cell gets activated.

The majority of NK cells, as well as certain T cell subpopulations, 
may express the receptor family NKG2. One of the ligands for 
most NKG2 receptors is HLA-E, which is expressed on all nucle-
ated cells. NKG2-family consists of seven members: NKG2A, B, 
C, D, E, F, and H in which NKG2A and B are inhibitory receptors. 
NK cells also express activation receptors on the surface, such 
as natural cytotoxicity receptors (NCRs), DNAM-1, and receptor 
members of the 2B4 family. NCRs, including NKp30, NKp44, 
and NKp46, are one of the main and initial groups of NK cell-
activating receptors identified and they recognize viral ligands, 
heat shock-associated proteins, or tumor antigens (9). NK cells 
can also get activated by crosslinking of Fc receptor CD16 to 
target cell leading to antibody-dependent cellular cytotoxicity 
(ADCC) and lysis of the target cell (10, 11).

Natural killer cells perform their cytotoxic activity through 
granzyme B- and perforin-mediated apoptosis or by expression 
of death receptor ligands such as FasL and TNF-related apoptosis-
inducing ligand (TRAIL). While the release of cytolytic granules 

is one of the essential cytotoxic responses, perforin deficient NK 
cells can still kill tumor cells through Fas-mediated apoptosis 
(12). Moreover, TRAIL-TRAILR mediated cytotoxicity also plays 
an important role in eliminating the target cells. Various tumor 
cells express TRAIL death receptors, which could be upregulated 
by proteasome inhibitors such as bortezomib (13). Additionally, 
immunomodulatory drugs (IMiDs) such as lenalidomide upregu-
lates TRAIL expression on NK cells that potentially enhance the 
TRAIL-mediated elimination of tumor cells (14, 15).

Natural killer cells are derived from hematopoietic stem cells 
(HSC) in the bone marrow. The differentiation from HSC can be 
divided into five stages based on surface markers [detailed review 
in Ref. (16)]. The stages can be identified by the following surface 
markers, CD34, CD117, CD94, and CD16 among the Lin− events, 
where stage 1 is CD34+CD117−CD94−CD16−. First at stage 2, the 
cells are able to respond to IL-15, which is necessary for NK cell 
development (17, 18). In the transition between stage 2 and 3, they 
lose their CD34 expression. At stage 4, the NK cells are CD56bright, 
produce IFNγ, and are capable of cytotoxic killing of K562 cells 
in vitro (19). NK cells in stage 5 are CD56dim and express CD16.

The majority of human NK cells are CD14−CD19−CD3
−CD56+. While most of the CD56+ cells express lower levels of 
CD56 (~90% CD56dim), they are potent cytotoxic killers of target 
cells and secrete cytokines such as IFNγ. Approximately 10% of 
peripheral NK cells express high levels of CD56 (CD56bright), have 
low cytolytic activity, and have the capacity to produce high titers 
of immunoregulatory cytokines. The cell surface phenotypes of 
these two subpopulations also differ in respect to the receptors 
they express: the CD56bright population expresses the inhibitory 
receptor NKG2A that could also be expressed on CD56dim NK 
cells. While the CD56dim population expresses FcγRIIIa (CD16a) 
as well as the inhibitory receptors KIRs (20).

NK CeLLS iN CANCeR

Natural killer cells recognize tumor cells by the activating recep-
tors like NCRs, which detect the altered expression of their ligands 
on the tumor cell surface. Additionally, downregulation or lack of 
MHC class I molecules on the cell surface of tumor cells can trig-
ger NK cell activation since it diminishes the inhibitory signals 
transduced through KIR-MHC interactions. Moreover, since NK 
cells’ target recognition and activation are mainly through NCRs 
and missing-self, this engagement could induce upregulation of 
FasL on the NK cell surface leading to an alternative pathway 
inducing apoptosis in tumor cells. Nevertheless, both IL-2 stimu-
lation and NK cell activation through NCRs also upregulate Fas 
on NK cells that may initiate regulation of the NK cell activation 
and expansion (21, 22).

the tumor microenvironment. Within this review, we will discuss clinical trials using NK 
cells with a specific reflection on novel potential strategies, such as genetic modification 
of NK cells and complementary therapies aimed at improving the clinical outcome of NK 
cell-based immune therapies.

Keywords: natural killer cells, adoptive cell therapy, immunotherapy, cancer, clinical trials, expansion, tumor 
microenvironment, genetic modifications
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Many tumors have gained methods to evade the surveillance 
by NK cells and other members of the immune system. For 
example, 16 of 18 patients with acute myeloid leukemia (AML) 
had reduced NCR surface expression compared to healthy donor 
NK cells, resulting in reduced cytotoxic capacity against target 
cells (23). Another way for tumor cells to escape recognition 
by NK cells is upregulation of the non-classical MHC class I 
molecule HLA-G, which dampens NK cell responses (24, 25). In 
numerous malignancies, there are also abnormalities found in the 
NK cell population. Examples of this include defective expres-
sion of activating receptors found in hepatocellular carcinoma 
(26), metastatic melanoma (27), AML (23), chronic lymphocytic 
leukemia (CLL) (28), and multiple myeloma (29, 30) or defective 
NK cell proliferation in metastatic renal cell carcinoma (31) and 
chronic myelogenous leukemia (CML) (32).

In renal cell carcinoma, infiltrating NK cells have, compared to 
peripheral blood NK cells, increased expression of NKG2A recep-
tor contributing to decreased NK cell activity (33). NKG2D is a 
well-studied activating receptor on NK cells. Membrane-bound 
NKG2D ligand has a stimulatory effect on immunity, while solu-
ble NKG2D ligands have the opposite effect on immune system 
leading to metastatic cancer progression (34). Patients with colo-
rectal cancer have increased serum titers of the soluble NKG2D 
ligand, MHC class I chain-related protein A (sMICA), compared 
to healthy controls, leading to downmodulation of activating and 
cytokine receptors on the NK cells (35). A potential way to reduce 
the risk of soluble NKG2D ligand is to give the patients neutral-
izing antibody treatment. Clinical observations demonstrate that 
patients treated with cytotoxic T lymphocyte-associated antigen 
4 (CTLA-4) antibody blockade have reduced sMICA in a close 
correlation with increased titers of autoantibodies against MICA 
(36). Interestingly, a new report from Deng et al. shows that the 
soluble high-affinity ligand MUL1 causes NK cell activation and 
stimulates tumor rejection in mice, instead of inhibition of NK 
cells as earlier reported (37).

The potential benefits of NK cell-based cancer immunotherapy 
products have led to the design of in  vitro methods aiming to 
cultivate NK cells in cGMP conditions. Some of these methods 
have already been tested in clinical trials, which will be discussed 
later in this review.

CLiNiCAL-GRADe NK CeLL PRODUCTS

It is possible to activate NK cells and increase their anti-tumor 
activity through short-term cytokine exposure in vitro prior to 
adoptive transfer (38). However, to achieve clinically relevant 
numbers of NK cells, there also needs to be development of long-
term NK cell expansion protocols (Table 1; Figure 1) (39–47). 
Yet, there are concerns when expanding NK cells in vitro, such as 
potential phenotypic changes, selective expansion, and reduced 
cytotoxic killing. When expanded in vitro with IL-2, there is a 
chance of CD3+ cell expansion as well (48, 49). Thus, there is still 
room for improvement to achieve optimum clinically relevant NK 
cell numbers, in vivo NK cell persistence and survival, and most 
importantly, anti-tumor activity. There are numerous parameters 
affecting the clinical-grade NK cell manufacturing such as source 
of the NK cells, cytokine stimulation, cell culture medium, and 

expansion platform. Here, in this section, we will address these 
parameters.

Source of the NK Cells
The majority of clinical NK cell products or pre-clinical research 
on efficient NK cell manufacturing platforms are making use 
of peripheral blood mononuclear cells (PBMC), umbilical cord 
blood (UCB), cell lines, and human embryonic stem cells (hESC), 
as well as induced pluripotent stem cells (iPSC) as a source of 
start material.

Peripheral Blood Mononuclear Cells
The majority of NK cell products are generated through utiliza-
tion of PBMCs either by apheresis or ficoll separation under 
cGMP conditions. An advantage of using PBMCs is the ability to 
collect cells in a closed aseptic system. Although PBMC consists 
of 5–20% NK cells, it is not possible to achieve sufficient numbers 
of potent NK cells. Thus, various techniques to expand NK cells 
ex vivo have been developed. For example, we have designed a 
feeder-free NK cell expansion system where it is possible to 
expand and activate tumor-reactive NK cells in a clinically 
compatible manner (45). These cells have a high cytotoxic effect 
specifically against autologous and allogeneic tumors in  vitro 
and in  vivo (42, 45). We have also completed a first-in-man 
clinical trial using donor-derived ex vivo expanded NK cells in 
terminal cancer patients that had CLL, kidney cancer, colorectal 
cancer, and hepatocellular carcinoma with promising results 
(43). Having optimized the procedure for NK cell expansion 
in a closed-automated bioreactor using clinical-grade GMP-
compliant components, we have initiated a first-in-man phase I/
II clinical trial to expand and restore the function of patients’ own 
NK cells (45, 62). To our knowledge, this is the first advanced 
therapy investigational medicinal product trial performed using 
autologous NK cells in Sweden.

Sakamoto et al. have established another similar approach that 
generates large numbers of activated NK cells from peripheral 
blood without prior purification of the cells. The PBMCs are 
cultured with autologous plasma, IL-2, OK-432, and γ-irradiated 
autologous FN-CH296 stimulated T cells, reaching up to a 
median purity of 90.96% of NK cells at day 21 or 22. Many of 
the NK expansion protocols are based on enrichment of NK cells 
either prior to NK cell activation and expansion through cell 
selection or sorting in order to achieve pure cell therapy product 
and avoid unwanted side effects stemming from T cells especially 
in allogeneic NK cell transfusions.

One of the main methods of enriching the purity and the 
number of initial NK cells is the clinical-grade immuno-magnetic 
depletion of other lymphocyte subsets such as T cells and/or B 
cells as well as myeloid cells (60). Depletion of CD3+ cells followed 
by CD56+ cell enrichment can lead to highly pure NK cells which 
could be supplemented by CD19+ cell depletion before infusion 
in order to prevent passenger lymphocyte syndrome in allogeneic 
transplantation (63). Nguyen et  al. have shown that a partial 
depletion of T cells could get a more beneficial clinical outcome 
compared to a complete T cell depletion after hematopoietic stem 
cell transplantation, suggesting that T cells may have a positive 
role in in vivo NK cell function (64).
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TABLe 1 | Clinical-grade NK cell products.

Cell source Medium Serum Feeder cell Other System Time 
(days)

Purity (% 
NK cells)

UCB CD34+  
cells (46)

GBGM 10% HS – High-dose cytokine cocktail (SCF, Flt3L, TPO, IL-7), 
low-dose cytokine cocktail (GM-CSF, G-CSF, IL-6), 
IL-15, low molecular weight heparin, high-dose 
cytokine cocktail (IL-7, SCF, IL-15, IL-2)

Vuelife bags 42 >90
Wave bioreactor 
system
Biostat CultiBag 
system

UCB CD34+ cells 
(50)

GBGM 2% HS – 250 pg/mL G-CSF, 10 pg/mL GM-CSF, 50 pg/mL 
IL-6, high-dose cytokine cocktail (20 ng/mL IL-7, 
SCF, IL-15), 1000 U/mL IL-2, 200 pg/mL IL-12

Vuelife bags 21–28 >80
SCGM

NK-92 cell line (51) X-Vivo 10, 
15, 20

HS – 450 IU/mL IL-2, 0.2 mM I-inositol, 2 mM 
L-glutamine, 20 mM folic acid, 10−4 M 
2-mercaptoethanole

Flaske 15–17 –

Aim VR Human HP Vuelife bags
TCM
QBSF-56 HSA X-Fold culture 

bags

NK-92 cell line (52) X-Vivo 10 2.5% HP – 500 U/mL IL-2, 0.6 mM l-asparagine, 3 mM 
l-glutamine, 1.8 mM l-serine 

Vuelife culture 
bags 

15–17 –

Total PBMC (48, 53) CellGro SCGM 5% HS – 500 U/mL IL-2, 10 ng/mL OKT3 Flasks 21 55–74

Total PBMC (54) CellGro SCGM 
or RPMI-1640

10% FBS K562-mb15-
41BBL

10 U/mL IL-2 Flasks 7–14 96.8
Teflon bags 83.1

Total PBMC (55) RHAMα 5%AP HFWT 100 U/mL IL-2 24-well plates 6–7 86

Total PBMC (42) CellGro SCGM 5% HS – 500 U/mL IL-2, 10 ng/mL OKT3 Flasks 20 65%

Total PBMC (45) CellGro SCGM 5% HS – 500 U/mL IL-2, 10 ng/mL OKT3 Wave bioreactor 
system

20 Relative: 
64%

Flasks 74%
Vuelife bags 47%

Total PBMC (47) GT-T510 1% HP Autologous 
FN-CH296 
induced T cells

IL-2, OK-432 CultiLife bag 20–21 90%

CD56 enriched 
PBMC (49)

X-VIVO 10 10% HS – 500 U/mL IL-2, 10 ng/mL IL-15, 200 mM 
l-glutamine

NR 14 NR

CD5 and CD8 
depleted PBMC 
(56)

RPMI-1640 10% HS – 1000 U/mL IL-2, 2 mM l-glutamine, 1000 U/mL 
penicillin, 100 U/mL streptomycin

Polystyrene Cell 
Factories

21 88

Teflon bags
Polyolefin bags

CD5 and CD8 
depleted PBMC 
(41)

2:1 
DMEM:Ham’s 
F12-based NK 
medium

10% HS – 1000 U/mL IL-2, 20 μM 2-mercaptoethanole, 
50 μM ethanolamine, 20 mg/mL l-ascorbic acid, 
5 μg/L sodium selenite, 100 U/mL penicillin, and 
streptomycin

Stirred-tank 
bioreactor

33 95–96

Spinner flasks
24-well plates

Non-adherent 
PBMC (57)

RPMI-1640 10% FBS RPMI 8866 50 U/mL IL-2 24-well plates 10–12 80

Non-adherent 
PBMC (58)

RPMI-1640 10% FBS RPMI 8866 50 U/mL IL-2 24-well plates 10–12 90

CD3 depleted non-
adherent PBMC 
(39, 59)

DMEM 8% HS LAZ 388 200 U/mL IL-2, 2 mM l-glutamine, 1 mM sodium 
pyruvate, 0.2% NaOH, 100 U/mL penicillin, 0.1 mg/
mL streptomycin

V-bottom 
microplates

13–21 >90

Purified NK cells 
(60)

X-VIVO 20 – Allogeneic 
mononuclear 
cells

100 U/mL IL-2, 10 U/mL IL-15, 100 μg/mL PHA, 
1 μmol/mL ionomycin

Teflon bags 14–21 92

Purified NK  
cells (61)

X-VIVO 20 10% HS EBV-TM-LCL 500 U/mL IL-2, 2 mM GlutaMAX-1 at 6.5% CO2 Flasks or Baxter 
bags

28 99

Adherent activated 
NK cells (40)

RPMI-1640 10% HS Allogeneic 
mononuclear 
cells

6000 U/mL IL-2 Flasks 14–18 85

PBMC, peripheral blood mononuclear cells; HS, human serum; FBS, fetal bovine serum; HP, human plasma; HAS, human serum albumin.
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Additionally, direct enrichment of CD56+ NK cells through 
immuno-magnetic selection is an option to achieve high purity 
initial NK cell product. Nevertheless, NK cells might require 
physical and cytokine-dependent communication with other 
cells such as monocytes (65) in order to activate and expand. 
Thus, it is essential to fine-tune the enrichment of NK cells by 
making use of feeder cells and/or optimizing the cytokine cocktail 
used in ex vivo NK cell expansion protocols.

Furthermore, using feeder cells and cell lines is another 
approach in expanding NK cells ex vivo since feeder cells can 
provide essential stimulatory signals for NK cells proliferation. 
Monocytes, irradiated PBMC, feeder cell lines, and engineered 
feeder cell lines are the most commonly used sources for 
stimulation of NK cell expansion through humoral signals 
and cell-to-cell contact. Example of feeder cells that have been 
used in clinical trials are irradiated autologous PBMCs (60, 66), 
irradiated Epstein–Barr virus-transformed lymphoblastoid cells 
(61), and K562 engineered cells expressing 4-1BB ligand (67) or 
membrane-bound IL-21 (68, 69) on cell surface.

Stem Cells
While PBMC is one of the major sources for achieving clinically 
relevant doses of tumor-reactive NK cells, HSC and potentially 
hESC as well as iPSC are likewise essential sources for achieving 
clinically relevant doses of NK cells.

One of the potential sources to accomplish clinically relevant 
doses of tumor-reactive NK cells is making use of HSC (CD34+) 
through differentiation and expansion of CD34+ cells isolated 
from bone marrow, peripheral blood, or UCB into functional NK 
cells. It was recently demonstrated that it is possible to expand 
activated, tumor cytotoxic and pure NK cells by differentiating 
UCB CD34+ HSC under cGMP condition (46). Furthermore, 
NK cells derived from CD34+ UCB cells lack expression of KIRs 
such as KIR2DL1 (CD158a), KIR2DL2/DL3 (CD158b), and 
NKB1, as well as diminished CD16 expression in the CD56dim 
population (70). Even though NK cells derived from UCB have 
reduced cytotoxicity, this could be restored by ex vivo cytokine 
stimulation such as IL-2, IL-12, and IL-15 (50, 71–73). Infusion 

of UCB-derived NK cells supplemented with IL-15 has shown 
to inhibit growth of human bone marrow resident leukemia 
cells in vivo (74). Recently, it was demonstrated that frozen UCB 
CD34+ cells differentiate into NK cells with better expansion than 
freshly isolated UCB CD34+ cells, and more importantly, UCB 
CD34+ cells gave more NK cell product than peripheral blood 
HSC without jeopardizing NK cell functionality (75). Thus, UCB 
CD34+ cells are one of the essential sources for manufacturing 
NK cell therapy protocols, providing an option to create NK cell 
biobanks.

Another potential source of NK cells is hESC and iPSC, with 
the advantage of potential usage of iPSCs in autologous set-
tings with reduced risk of immune rejection. The first step is to 
generate CD34+ hematopoietic precursor cells from the hESCs 
and iPSCs and then differentiate these cells into NK cells, which 
could be efficiently achieved through growing hESCs and iPSCs 
on murine stromal cells (76, 77). Yet, the involvement of xeno-
geneic cells could limit the potential clinical usage of hESCs and 
iPSCs. Addressing this potential problem, Knorr et al. developed 
a two-stage culture method where hESCs and iPSCs are first dif-
ferentiated to CD34+ hematopoietic cells by spin-EB system in 
xeno-free and serum-free conditions followed by stroma-free NK 
cell differentiation, which enables generation of cytotoxic NK cells 
without involvement of xenogeneic cells taking a step forward 
toward clinical-scale production (78). Since IL-2-activated NK 
cells are potent killers of both allogeneic and autologous iPSCs 
(79), it is possible to manufacture a pure NK cell therapy product. 
This sticks out as one of the advantages of using in vitro NK cell 
differentiation from iPSCs.

Cell Lines
Cell lines derived from NK cells with similar biological functions 
(NK-92, NKL, KYHG-1, and NKG) are potential candidates 
for NK cell-based products enabling design and development 
of off-the-shelf anti-cancer cell therapy products. Furthermore, 
it is more feasible to generate genetically modified NK cell 
lines expressing intracellular IL-2 for activation or cell surface 
molecules such as CD16, NCRs, and chimeric antigen recep-
tors (CARs). To our knowledge, the NK-92 cell line is the most 
clinically studied one. The IL-2-dependent NK-92 cell line is 
cytotoxic to a wide range of malignant cells (80–83). It has also 
been used as a source of NK cells for cGMP-grade cellular therapy 
products (51) as well as in clinical trials (52, 84). The NK-92 cell 
line expresses several activating receptors but lacks most of the 
inhibitory KIRs, NKp44, and CD16 (80, 85). NK-92 cells require 
irradiation to prevent proliferation prior to being used effectively 
in immunotherapeutic approaches without compromising 
hematopoietic cell function. For example, recently, clinical-grade 
NK-92 cells have been manufactured and were safely used as 
anti-tumor therapy for patients with a variety of tumors (84) 
with promising results (52). As of today’s date, two phase I clinical 
trials (NCT00900809 and NCT00990717) are recruiting patients 
with hematological malignancies for treatment with NK-92 cells. 
The first clinical phase II study (NCT02465957) with NK-92 cells 
has recently been initiated.

KHYG-1 is the first NK cell line derived from NK leukemia 
and has higher cytotoxicity than NK-92 cell line (86). Likewise 
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NK-92 cells, these cells can also be irradiated to inhibit prolifera-
tion and can still efficiently kill tumor targets. Furthermore, NKL 
cell line, which is the most biologically and functionally similar 
to primary NK cells, is more cytotoxic to certain tumor cells 
than NK-92 cell line and, additionally, it has the ADCC capacity 
whereas NK-92 cells lack CD16 expression. Thus, both KHYG-1 
and NKL cell lines have the potential to be used as anti-cancer 
NK cell products.

Additionally, one of the advantages of using such master 
cell bank is an appealing opportunity in the manufacture 
of cellular therapy products since it is possible to establish a 
comprehensive standardization and characterization of the cell 
source. It is also possible to genetically modify these cell lines 
to exert more tumor specificity and cytotoxicity. For example, 
NK-92 cell lines are dependent on external IL-2 stimulation, 
which increases manufacturing costs as well as potentially 
reducing the long-term cytotoxic capacity of these cells unless 
they are supported by IL-2 infusions. Thus, constitutive expres-
sion of IL-2 in NK-92 cells through genetic modification leads 
to auto-activated and -proliferating cells, which reduces the 
manufacturing costs as well as potentially increases the in vivo 
tumor reactivity (87, 88).

Cytokines
Ex vivo manufacturing of NK cell-based products is dependent 
on extensive use of cytokines to stimulate, differentiate, activate, 
and expand NK cells in order to get clinically relevant doses and 
enhanced anti-tumor reactivity. Historically, one of the most 
popular cytokines in NK cell research is IL-2 since it was the first 
cytokine to be injected to patients to treat metastatic melanoma 
(89). Thirty years ago, Rosenberg et al. published the first report 
where they treated 25 metastatic cancer patients, who did not 
respond to standard therapy, with autologous lymphokine-
activated killer (LAK) cells together with recombinant-derived 
IL-2. LAK cells are generated from mononuclear cells collected 
from IL-2 injected patients. In 11 patients, the cancer regression 
was observed with >50% of tumor volume (90). This adoptive 
immunotherapy was followed by a larger scale study, where 157 
patients with advanced metastatic cancer were treated with suc-
cessful results (91). In the same year, it was shown that it was 
the NK cells that mediated the cytotoxic activity in response 
to systemic administered recombinant IL-2 (92). These reports 
were followed by many years of IL-2 and NK cell research. In a 
dose-dependent manner, IL-2 is important for NK cell infiltration 
and killing of the tumor. For example, in the bone marrow, there 
are hypoxic regions leading to reduced NK cell killing of plasma 
cells in multiple myeloma. IL-2-activated NK cells ex vivo have 
increased NKG2D expression resulting in increased targeting of 
multiple myeloma upon infusion (93). Cytokine-activated NK 
cells in vitro are dependent on constant stimulation both in vitro 
and in vivo. Basse et al. reported that when no exogenous IL-2 is 
present the amount of injected NK cells found in tumors were 
very low (94). The half-life of IL-2 in serum is not more than 
10 min, which makes the administration of IL-2-dependent cells 
difficult (95). By transducing NK cells to produce IL-2 prior to 
transplantation, the activated NK cells would have a constant 
source of IL-2 in vivo (87, 96). One of the disadvantages of using 

IL-2 to activate NK cell in vivo is the competition over IL-2 by 
regulatory T cells, which express high levels of the high-affinity 
receptor for IL-2, IL-2Rα (CD25). By treating patients with 
lympho-depleting agents (fludarabine and cyclophosphamide) 
followed by NK cell infusion and IL-2 fused with diphtheria 
toxin (IL-2DT), CD25+ cells are selectively depleted, leading to 
increased NK cell expansion and complete remission rate for 
patients with AML compared to regular IL-2 treatment (97). 
Overall, the majority of cGMP-grade NK cell therapy protocols 
include IL-2 as a main cytokine to stimulate NK cell activation 
and proliferation.

Another important cytokine is IL-15 which is required for both 
NK cell maturation and survival (98). IL-2 and IL-15 share the 
same receptor components: IL-2/15Rβ and common γ chain (also 
shared with IL-4, IL-7, IL-9, and IL-21). Recent advances in the 
production of cGMP quality cytokines enabled further optimiza-
tion of cytokine supplementation during NK cell expansion. For 
example, use of IL-15 in combination with IL-2 has a synergetic 
effect on product viability and NK cell proliferation (66). This 
highlights the necessity of other cytokines to achieve NK cell 
product potency especially when it comes to the NK cell expan-
sion protocols that are not using feeder cell support. Additionally, 
IL-21, primarily described in 2000 (99), has significant homology 
with IL-2 and IL-15. Compared to IL-2 and IL-15, IL-21 promotes 
maturation and survival but does not promote proliferation of 
NK cells alone. However, IL-21 does have synergetic effects with 
IL-2 and IL-15 (100). Interestingly, it has been suggested that 
IL-21 does not drive proliferation of regulatory T cells in  vivo 
and might be a good candidate to substitute for IL-2 in CLL (101).

Other Factors
Besides NK cell source, feeder support, and cytokine stimulation, 
other parameters such as expansion platform, cell culture media, 
and serum supplementation are also very important in achieving 
clinically relevant cell numbers, viability, and tumor cytotoxicity. 
More specifically, we have recently investigated the importance 
of the culture vessels on the quality and efficacy of the NK cell 
product. Briefly, PBMCs from healthy donors and myeloma 
patients were cultured for 21 days using flasks, cell culture bags, 
and bioreactors. Even though we have achieved high yield in 
NK cell expansions in all systems, NK cells expanded in the 
bioreactor displayed significantly higher cytotoxic capacity. These 
results demonstrate that highly active NK cells can be produced 
in a closed, automated, large-scale bioreactor under feeder-free 
current GMP conditions facilitating adoptive immunotherapy 
clinical trials (45).

Additionally, cell culture media is another important factor 
to consider in the manufacturing of cellular therapy products. 
There are very few cGMP quality medias that work optimally 
for ex vivo NK cell expansion protocols. The most commonly 
preferred media in the generation of NK cell products are 
stem cell growth medium (SCGM; CellGenix, Freiburg, 
Germany), X-VIVO serum-free media (BioWhittaker, 
Verviers, Belgium), or AIM V (Life Technologies, Grand 
Island, NY, USA) (49, 102, 103). Generally, medium is sup-
plemented by human AB serum or fetal bovine serum from 
certified sources.
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TABLe 2 | Clinical trials with infusion of autologous NK cells.

Malignancy n NK cell 
source

Depletion Product Ex vivo 
handling

Purity Dose Outcome

Colorectal 
carcinoma/
NSCLC (105)

11/1 PBMC – IL-2 + Hsp70 peptide 4 days Mean: 14% 
(range: 
8–20%)

Range: 
0.1–1.5 × 109 NK 
cells

Cytotoxic activity of NK cells. No 
significant tumor response

Colon 
carcinoma 
(107)

1 PBMC – IL-2 + Hsp70 peptide 4 days Mean: 22.4% 
(range: 
16–25%)

Mean: 1.48 × 109 
NK cells (range: 
0.9–1.9 × 109)

Anti-tumor activity by NK cells

Glioma (55) 9 PBMC – Irradiated feeder cell line 
(HFWT) + autologous 
plasma + IL-2

14 days 82.2 ± 10.5% i.c. 0.4–2.3 × 109 
cells

3 partial responses, 2 minimal 
responses

i.v. 0.2–6.5 × 109 
cells

RCC (39) 10 PBMC CD3+ 
depletion or 
Immunorosette 
depletion

Cultured on LAZ388 
with allogeneic 
irradiated PBMNC as 
feeder cells + IL-2 

13–
21 days

>90% except 
1 patient 
(33%)

Mean: 5.8 × 109 
total cells (range: 
1.8–15.1 × 109)

All patients improved, 4 
complete response, 2 partial 
response

Melanoma/
RCC (103)

7/1 PBMC CD3+ 
depletion

Autologous irradiated 
PBMNC as feeder 
cells + IL-2 and OKT3

21 days 96% ± 2% Range: 4.7 × 1010 
(±2.1 × 1010) NK 
cells

No tumor lysis by NK cells. No 
tumor response

Rectal/
esophageal/
gastric/colon 
cancer (47)

4/4/3/3 PBMC – Autologous FN-CH296 
stimulated T 
cells + autologous 
plasma + IL-2 and 
OK-432

21–
22 days

Median: 
90.96% 
(range: 65.94 
−99.45%)

0.5–2.0 × 109 cells No tumor response

Lymphoma/
breast cancer 
(104)

20/14 In vivo IL-2 
activated NK 
cell

– IL-2 Over 
night

Not reported Range: 
0.33–2.09 × 108 
cells/kg

No improvement of survival

Breast cancer 
(108)

5 In vivo IL-2 
activated NK 
cell

Monocyte 
depletion

Allogeneic irradiated 
PBMNC as feeder 
cells + IL-2 

14 days Mean: 83.2% 
(range: 
67–93%)

Mean: 3.97 × 109 
total cells (range: 
1.55–9.1 × 109)

1 complete response, 1 partial 
response, 2 had stable disease, 
1 disease progression

Lymphoma/
breast cancer 
(40)

10/1 In vivo IL-2 
activated 
NK cell 
progenitors

Monocyte 
depletion

Allogeneic irradiated 
PBMNC as feeder 
cells + IL-2 

14–
18 days

Mean: 85% 
(range: 
64–98%)

Range: 6.8 × 108–
4 × 1010 total cells

Increased NK cell numbers and 
activity in 4 patients 

NSCLC, non-small cell lung cancer; PBMC, peripheral blood mononuclear cell; RCC, renal cell carcinoma.
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Finally, there are numerous variables that may impact quality 
and quantity of NK cell products. Future pre-clinical research and 
results from more clinical trials will evaluate the contribution of 
each factor to the product purity, potency, and safety, as well as 
assist in acquiring NK cell products that can be manufactured 
reproducibly with the optimal safety and anti-tumor responses.

CLiNiCAL USe OF NK CeLL-BASeD 
ANTiCANCeR PRODUCTS

Autologous NK Cells
Several clinical studies have been performed with adoptive 
autologous NK cells in an attempt to target tumors, such as breast 
cancer, lymphoma, glioma renal cell carcinoma, non-small cell 
lung cancer, and adenocarcinoma (Table 2) (39, 40, 55, 103–107). 
In general, autologous NK cell trials are safe with no toxic side 
effects (39, 40, 55, 105). For example, ex vivo activated autologous 
peripheral blood lymphocytes get enhanced cytolytic activity 
against heat shock protein 70 (Hsp70) membrane-positive 
tumors in vivo if pre-incubated with Hsp70 peptide and IL-2 (105, 

107). However, some clinical trials with autologous NK cells have 
only partial effect on tumors, such as glioma (55). While other 
tumors, such as metastatic carcinoma or relapsed lymphoma, do 
not demonstrate any improvement (103, 104, 108). Moreover, a 
recent clinical trial used ex vivo FN-CH296 stimulated T cells and 
OK-432 expanded, autologous NK cells with enrolled patients 
diagnosed with rectal, esophageal, gastric, or colon cancer that 
was either recurrent or at metastatic disease stage. The NK cell 
therapy in these patients was well tolerated with no severe adverse 
events and the cytotoxicity of peripheral blood was elevated 
approximately twofold up to 4 weeks post the last transfer (47).

Allogeneic NK Cells
Allogeneic NK cell products have been used in the treatment of 
a range of malignancies, such as leukemia, renal cell carcinoma, 
leukemia, colorectal cancer, hepatocellular cancer, lymphoma, 
and melanoma (Table  3) (38, 109–113). The major risk with 
allogeneic NK cell transplantation is the development of graft-
versus-host disease (GvHD). Several precautions can be taken 
to reduce the risk of GvHD, for example, immunosuppression, 
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TABLe 3 | Clinical trials with infusion of allogeneic NK cells.

Malignancy n NK cell source Depletion Product Ex vivo handling Purity Dose Outcome

Cell line

RCC/MM (52) 11/1 NK-92 – IL-2 3 weeks Clonal cell line 1 × 108–3 × 109 cells/kg 1 mixed response, 
4 stable disease, 6 
progressive disease

Solid tumor/CLL/B-
NHL (84)

13/1/1 NK-92 – IL-2 2–2.5 weeks Clonal cell line 1 × 109, 3 × 109, 1 × 1010 
cells/m2

2 mixed response, 
1 stable disease, 12 
progressive disease

Progenitor cells

AML/ALL/high-grade 
MDS (114)

11/1/2 Related CD34+ 
progenitors

CD34+ selection IL-15, IL-21+ 
hydrocortisone

42 days Not reported Mean: 3.49 × 108 
NK cells/kg (range: 
1.8–6.3 × 108)

2 with active leukemia 
had no response

Adult cells

AML/CML (110) 4/1 Haploidentical 
PBMC

CD3+ depleted, 
CD56+ enrichment

– Overnight storage in 
+4°C

Median: 97.35% 
(range: 77.9–98.9%)

Median: 0.93 × 107 
cells/kg (range: 
0.21–1.41 × 107)

3 donor chimerism, 1 
relapse

AML (112) 10 Haploidentical 
PBMC

CD3+ depleted, 
CD56+ enrichment

– Overnight storage Not stated Mean: 29 × 106 NK cells/
kg (range: 5–81 × 106)

In vivo expansion of NK 
cells. 2 years event-free 
remission in 100%

AML (113) 13 Haploidentical 
PBMC

CD3+ depleted, 
CD56+ enrichment

– – Median: 93.5% (range: 
66.4–99.2%)

Median: 2.74 × 106 cells/
kg (range: 1.11–5 × 106) 

3 disease-free. 4 
complete remissions, 5 
with active disease had 
no clinical benefit

AML (116) 1 Haploidentical 
PBMC

CD3+ depleted – – Not stated 3 × 107 NK cells/kg Complete response, 
relapse on day 80

Melanoma/RCC/HD/
AML (38)

10/13/1/19 Haploidentical 
PBMC

CD3+ depleted IL-2 Over night Mean: 40% (range: 
18–68%)

1 × 105–2 × 107 cells/kg In vivo expansion of 
NK cells. 5 complete 
remission (AML)

Breast/ovarian 
carcinoma (115)

6/14 Haploidentical 
PBMC

CD3+ depleted IL-2 Overnight 25.0 ± 0.3% Mean: 2.15 × 107 NK 
cells/kg

4 partial responses, 
12 and 3 stable or 
progressive diseases, 
respectively

8.33 × 106–3.94 × 107 
cells

Neurobalstoma/AML/
ALL/RMS/HD (117)

4/5/5/1/1 Haploidentical 
PBMC

CD3+ depleted, 
CD56+ enrichment

Group 1: – 9–14 days Median: 95% (range: 
84.4–98.6%)

Range Group 1: 3.2–
38.3 × 106 cells/kg, Range 
Group 2: 6–45.1 × 106 
cells/kg

Group 1: 3 complete 
remissions (1 NB, 2 ALL)

Group 2: IL-2 Group 2: 2 complete 
remissions (NB)

ALL/AML (109) 2/1 Haploidentical 
PBMC

CD3+ depleted, 
CD56+ enrichment

IL-2 14 days Mean: 95% Mean: 11.9 × 106 cells/kg 
(range: 3.3–29.5 × 106)

3 complete remissions, 
AML patient got early 
relapse

Neuroblastoma (118) 2 Haploidentical 
PBMC

CD3+ depleted, 
CD56+ enrichment

IL-2 14 days >95% 7.8–45.1 × 106 cells/kg Initially enhanced NK cells 
cytotoxicity

(Continued)
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infusion of CD3 depleted high purity NK cells and if available, 
selecting the donor that matches the host HLA (44, 114, 115).

In the first phase I clinical trial using the feeder-free ex vivo 
expansion platform, adoptive transfer of NK cells from HLA 
identical siblings into patients with leukemia or carcinoma was 
well tolerated and safe alongside in vivo NK cell expansion, with 
only some infusion-related complications (43).

If no HLA identical donor is available, host cells from a recep-
tor–ligand-mismatched donor can be used. If the donor is HLA 
matched, it is preferentially better if the donor cells are KIR B 
haplotype. Also, to further improve the outcome, T cell depletion 
is performed (120). In haploidentical transplantation, at least one 
KIR ligand is not expressed on the host cells leading to reduced 
inhibition of donor NK cells. Less inhibited NK cells could lead 
to better prognosis and might be the best treatment for a good 
clinical outcome if GvHD can be avoided (38, 121). When hap-
loidentical transplantation is performed, it is strictly necessary to 
make extensive T cell depletion to avoid GvHD. In most clinical 
trials, NK cells are collected from leukapheresis followed by a 
two-step purification procedure, with depletion of CD3+ T cells 
followed by enrichment of CD56+ cell (109, 110, 117, 118).

Completed clinical trials with haploidentical donors are safe 
with only a few reports of infusion-related complications such 
as dyspnea, nausea, hypertension, stroke, febrile reaction, and 
vomiting (38, 115). So far, allogeneic NK cell transplantations 
derived from PBMCs or CD34+ cells have shown promising 
results with engraftment, in vivo expansion of NK cells, complete 
remission, and a 100% 2-year event-free survival in one clinical 
trial by Rubnitz et al. (109, 112–114, 116).

iMMUNe SUPPReSSiON OF NK CeLLS iN 
THe TUMOR MiCROeNviRONMeNT

Natural killer cells can recognize and kill tumor cells in  vitro. 
However, their efficiency in targeting solid tumors has not yet 
been fully acknowledged in the clinical setting even though 
endogenous and adoptively transferred activated NK cells can be 
detected in various tumors (122, 123). Nevertheless, not all tumors 
are equally well infiltrated by NK cells, and many of the infiltrating 
cells are dysfunctional (124–127). The failure of immune surveil-
lance may in part be due to sustained immunological selection 
pressure on tumor cells resulting in the development of tumor 
escape variants that are in fact invisible to the immune system 
(Figure  2). In addition, cytotoxic function of immune effector 
cells is also largely suppressed in the tumor microenvironment 
(128), which could be explained by suppressive tumor-secreted 
factors as well as suppressive immune compartments, such as 
myeloid-derived suppressor cells (MDSCs), tumor-associated 
macrophages (TAM), and regulatory T cells (Figure 2). One of 
the most studied immune-suppressive cell types associated with 
tumor progression is regulatory T cells (Treg), characterized 
by their expression of CD4, high CD25 (CD4+CD25+CD127low/

neg) as well as the transcription factor forkhead box P3 (FoxP3) 
(129). The expansion of Treg population is promoted in different 
cancers and their accumulation correlates with impaired immune 
cell function and poor prognosis (130–135). In  vitro, NK cells 
are suppressed by Treg cells in a cell contact-dependent manner 
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through TGF-β-dependent mechanism (155). In patients with 
hepatocellular carcinoma, NK cells were shown to be suppressed 
by monocytic MDSC in a cell contact-dependent manner, but did 
not rely on the arginase activity of MDSCs, which is a hallmark 
function of these cells; however, MDSC-mediated inhibition of 
NK cell function was revealed to be mainly dependent on the 
NKp30 on NK cells (146). Moreover, a negative correlation 
between increased CD33+-MDSC accumulation and functional 
loss of NK cells has been demonstrated in patients with myelod-
ysplastic syndromes (156).

Macrophages are the dominant myeloid-derived population 
that is found in the tumor microenvironment. TAM has been 
identified as regulators of solid tumor development based on 
their capacity to enhance angiogenic, invasive, and metastatic 
programing of neoplastic tissue (157–160). TAMs could be found 
in several types of human cancer correlating with poor clinical 
outcome (161, 162). The immune-suppressive mechanisms 
applied by TAMs on NK cells in the tumor microenvironment 
can be different, such as recruitment of Treg, prostaglandin 
E2-mediated inactivation, and production of IL-10 (163–165). 
Furthermore, tumors are able to escape NK cells by releasing 
indoleamine 2,3-dioxygenase and prostaglandin E2, which inhibit 
the expression of activating receptors of NCRs and NKG2D 
(166). These molecules are also released by mesenchymal stem 
cells to inhibit NK cell function in the tumor microenvironment 
(167). There is a direct association between the surface density of 
NCRs (NKp46) and the intensity of anti-tumor cytolytic activity 
of the NK cells (168).

As mentioned earlier, the tumor microenvironment plays a 
significant role in suppressing NK cell responses against cancer. 
Therefore, therapies aim to target immunosuppressive cell 

where membrane-bound TGF-β is utilized to attenuate their 
cytotoxicity (136). In line with this, inverse correlation between 
NK cell activity and Treg cell expansion has been observed in 
patients with gastrointestinal stromal tumor (GIST) (136) as well 
as in hepatocellular carcinoma patients (137). Treg cells express 
the high-affinity IL-2 receptor alpha (CD25, IL-2Rα) and need 
IL-2 for their full function. Recent studies have indicated that NK 
cell proliferation, accumulation, and activation can be limited by 
Treg cells through hampering the availability of IL-2 released by 
activated CD4+ T cells (138, 139). Consequently, inadequate IL-2 
levels in the tumor microenvironment limits the extent of NK 
cell-mediated tumor rejection.

Another group of immunosuppressive cells in the tumor is the 
MDSCs. MDSCs are heterogeneous precursors of the myeloid 
cells, granulocytes, macrophages, and immature dendritic cells 
with immunosuppressive activity (140). Recently, MDSCs have 
been proposed as a key immunoregulator in various solid and 
hematologic malignancies (141, 142). MDSCs are divided into 
two groups that can originate from granulocytic (grMDSCs) 
and monocytic precursors (moMDSCs) (143). In human beings, 
distinct phenotypes of MDSCs are associated with different types 
of cancers (144–148). Their suppressive function is mediated by 
a few different mechanisms such as production of suppressive 
cytokines including IL-10 and TGF-β, depletion of arginine in 
the tumor or production of reactive oxygen species (ROS) (144, 
149–151). Additionally, recent studies investigated the induction 
mechanism of MDSCs and how they suppress T cells in  vitro 
(152–154). Furthermore, several studies have characterized 
cytokines that can induce MDSCs from healthy human PBMCs. 
We found that prostaglandin E2 treated healthy monocytes resem-
ble patient-derived moMDSCs and suppress NK cell responses 
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populations are emerging (169–174). In the next section, some of 
the alternative ways aiming to enhance tumor-specific targeting 
and NK cell survival in order to overcome immunosuppressive 
effect of the tumor microenvironment on NK cells and to improve 
intra-tumoral NK cell responses will be discussed.

FUTURe PeRSPeCTiveS

Genetically Modified NK Cells
In the last decade, several NK cell based anti-cancer products 
have been taken to clinical trial stage with promising clinical 
outcomes. However, in order to manufacture more efficient NK 
cell therapy products, it is essential to develop novel potential 
strategies such as genetic modification of NK cells (Figure  3). 
Although NK cells are inherently resistant to retroviral infections 
(96, 175–177), our group has significantly enhanced retroviral 
and lentiviral gene delivery to NK cells through enhanced pro-
liferation and targeting intracellular viral defense mechanism by 
small molecule inhibitors (96). Therefore, it is easier to design 
genetically modified NK cells expressing cytokine transgenes, 
silenced inhibitory receptors, overexpressing activating recep-
tors, or retargeting NK cells by expression of CARs on the cell 
surface. By genetically modifying NK cells to produce cytokines 
such as IL-2 or IL-15, their survival capacity and proliferation 
increase and their activation and anti-tumor activity in vivo are 
enhanced (83, 87, 88, 178, 179). To enhance the specificity for 
the target cells, NK cells can be modified to recognize antigens 
specifically expressed on the tumor cells.

Furthermore, another approach aiming to enhance tumor 
specificity is to make use of ADCC. The constant region of the 
tumor-specific monoclonal antibodies (mAbs) targeting the 
tumor cells can engage to the FcγRIIIa receptor (CD16a) on the 
NK cell, activating the NK cell. However, NK-92 cell line cannot 
perform ADCC since they lack CD16a expression (80, 85). This 
defect on NK-92 cells can be reverted by the introduction of 
CD16a through genetic modification so that they are able to per-
form ADCC in antibody combination treatments (180). Finally, 
CAR-modified NK cell lines can also function as tumor-specific 
standardized and characterized NK cell-based therapy products. 
Most of the NK cell lines require further in vivo characterization 
with a potential to become standard NK cell-based products for 
certain tumors.

Monoclonal Antibodies
When the antigen-binding fraction (Fab) of the antibody binds 
to the tumor target cell and the constant region (Fc) of the anti-
body binds to CD16 on the NK cells, NK cells get activated and 
ADCC is triggered. Several different mAbs have been developed 
for targeting specific tumor antigens, such as anti-CD20 (retuxi-
mab), anti-Her2 (trastuzumab), anti-CD52 (alemtuzumab), 
anti-EGFR (certuximab), and anti-CD38 (daratumumab) (181). 
Daratumumab treatment of patients with relapsed myeloma has 
mild infusion-related reactivity, complete or very good partial 
responses with reduced bone marrow plasma cell levels (182). 
mAbs bind to the target tumor cell plus engaging CD16 on NK 
cells and other cell types resulting in killing of tumor cell by 
ADCC both in vivo and in vitro [reviewed in Ref. (183)]. New 
generations of mAbs have been developed to increase ADCC 
and complement-dependent cytotoxicity. Second-generation 
anti-CD20 mAbs, such as veltuzumab (hA20) (184, 185) and 
ofatumumab (HuMax-CD20) (186–193), have the advantage 
of being humanized or of fully human origin. Both veltuzumab 
and ofatumumab had promising preliminary outcomes in 
various studies (184, 186, 187, 189, 190, 193). The benefit of 
third-generation anti-CD20 mAbs, ublituximab (TG-1101), 
ocaratuzumab (AME-133) (194, 195), and obinutuzumab (GA-
101) (196–200), is that they are both humanized and that their 
Fc regions have been modified for increased binding affinity to 
CD16a. So far, the most studied third-generation anti-CD20 
mAbs is obinutuzumab. The overall response rate for obinutu-
zumab is 44.6%, which is higher than the overall response rate 
for rituximab treatment which is 33.7% (200). In the same study, 
the progression-free survival did not promote obinutuzumab 
over rituximab. By increased affinity between CD16a and mAb 
better NK cell cytolysis can be induced by ADCC. Ublituximab, 
ocaratuzumab, or obinutuzumab-treated NK cells from CLL 
patients or healthy donors have more efficient ADCC compared 
to same cells treated with first- or second-generation anti-CD20 
mAb in vitro (201–203).

Monoclonal antibody therapies in combination with already 
existing treatments can potentially enhance NK cell activity 
in anti-tumor therapy. The completely human IgG4 anti-KIR 
antibody, IPH-2102, has been tested in several clinical trials for 
hematological diseases both as single treatment and as combina-
tion (204, 205). Some clinical trials for combination treatment of 
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advanced solid tumors with anti-KIR antibodies are done as well, 
for example, in combination with anti-CTLA antibody or anti-
PD1 antibody (NCT01750580 and NCT01714739, respectively). 
Thus, use of mAbs enhancing ADCC and stimulation of NK cells 
as well as blocking NK cell inhibition could potentially improve 
outcome of clinical anti-cancer NK cell products (Figure 3).

Bi- and Trispecific Antibodies
Likewise designing CARs through tumor-specific mAbs can be 
used to engineer bi- and trispecific antibodies crosslinking CD16 
with tumor-specific mAbs in order to enhance NK cell tumor 
reactivity (Figure  3). Briefly, the design of bi- and trispecific 
antibodies, fusing the Fab region of the antibody targeting the 
tumor cell antigen, such as CD19, CD20, and CD33, in combina-
tion with another Fab region recognizing CD16 on NK cell leads 
to stimulation of the NK cells followed by tumor cell killing. This 
technology makes it possible to select the amount of NK cells that 
should be activated as well as it is possible to add more Fab regions 
targeting other tumor-associated antigens. These Fab regions can 
be exchanged to other tumor-associated antigen-recognizing 
antibody parts, as long as the part crosslinking CD16 on the NK 
cell is present (206, 207).

Chimeric Antigen Receptors (CARs)
Design of CARs using antigen-specific variable part of these 
tumor antigen antibodies fused with intracellular lymphocyte 
stimulatory molecules (CD3ξ, CD28, 4-1BB) enables high-
affinity specific recognition of tumor antigens and tumors. CAR 
modifications of T cells have been studied extensively and have 
led to several phase I and phase II clinical trials (208–211). NK 
cells are less explored and so far only two clinical trials using CAR 
NK cells have been approved. The first study (NCT00995137) at 
St. Jude Children’s Research Hospital is completed and was a 
phase I clinical trial with 14 relapsed or refractory B-lineage ALL 
patients below 18 years. Haploidentical NK cells were expanded 
by co-culture with irradiated K562 cell line expressing IL-15 and 
4-1BB ligand on the surface to be transduced with a signaling 
receptor binding CD19 (anti-CD19 CAR). The second study 
(NCT01974479) is a phase II pilot study, which is still recruit-
ing refractory B-lineage ALL patients in all ages. NK cells are 
expanded by co-culture with K562 cells as the previous trial, 
together with IL-2 before transduction with the same construct. 
The patients will also receive IL-2 after NK cell administration to 
support NK cell viability and expansion. Although CAR T cell 
studies have been extremely promising, CARs designed for T cell 
therapies are still suboptimal for NK cells. Thus, it is essential to 
further optimize the construct design, especially the intracellular 
stimulatory adapter molecules, in order to trigger most efficient 
NK cell responses.

immunomodulatory Drugs (iMiDs)
Immunomodulatory drugs (IMiDs) such as thalidomide, 
lenalidomide, and pomalidomide, can stimulate both NK cells 
and T cells,  potentially resulting in better targeting cancer 
cells (212). Lenalidomide upregulates TRAIL molecules on NK 
cells and enhances anti-tumor activity (14, 15). So far, several 

different malignancies, both solid and hematological, have been 
treated with IMiDs. A large part of the nearly 100 clinical trials 
with IMiDs that has been reported with results to clinicaltrials.
gov is treatment of myeloma, lymphoma, and leukemia. IMiDs 
can be used as combination treatment, such as lenalidomide 
in combination with IPH-2102, anti-inhibitory KIR antibody 
therapy (205). Lenalidomide expands and activates the NK cells, 
while anti-inhibitory KIR antibody (IPH2101) promotes NK cell 
recognition and lysis of tumor cells. This combination could give 
a better therapeutic outcome.

Combination Treatments
It is possible that NK cell products cannot fully eliminate 
tumor cells due to several immunosuppressive effects of tumor 
microenvironment as well as reduced in  vivo expansion and 
cytotoxicity. These obstacles could be overcome by combina-
tion treatments using NK cell therapy products together with 
other drugs either directly targeting tumor cells or modulating 
cytotoxic activity of NK cells. As mentioned earlier, use of 
mAbs and IMiDs together with appropriate NK cell products 
could enhance tumor targeting and elimination. Another way 
to enhance NK cell-mediated killing is to combine drug therapy 
with NK cell stimulating cytokines such as IL-2, IL-12, IL-15, 
and IL-21 (213).

Furthermore, chemotherapy in combination with NK cell 
infusions is an alternative way to overcome tumor-induced dys-
functions. NK cells from haploidentical donor require combina-
tion treatments with the intense chemotherapy drugs high-dose 
fludarabin and cyclophosphamide (Hi-Cy/Flu) plus daily infusion 
of IL-2 to be able to expand in vivo (38). Total body irradiation 
could help to create immunological space for expanding NK cells 
in addition to chemotherapy after short-term ex vivo activation 
of NK cells (214).

CONCLUSiON

In this review, we have summarized current NK cell-based 
therapy strategies as well as some of the challenges that need to 
be addressed. Even though NK cell-based therapies represent 
one of the most promising strategies to combat cancer, to our 
knowledge, no clinical trial has clearly demonstrated a significant 
benefit in patients with malignancies. This is in part due to the 
lack of prospective large-scale clinical trials and partly due to a 
lack of consensus in which NK cell product preparation would 
show the best effect. Further comparative clinical studies are 
definitely warranted; however, the design of such clinical trials 
is challenging due to the advanced therapy regulations in major 
countries such as European Union member states and the United 
States of America. Although cell therapy clinical trials are reach-
ing a log-linear expansion, the number of NK cell-based therapies 
is not aligned with this increase. Nevertheless, there is a lot of 
promise in early clinical and pre-clinical data that cannot be omit-
ted. In the near future, different NK cell-based products will reach 
multicenter clinical trial stage and we will start to see efficacy data.

Separately, NK cell-based therapies are in theory comple-
mentary to many different upfront, maintenance, and late-line 
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therapies. Further studies clarifying the complementary efficacies 
and synergies have to be initiated to conclusively state if there 
is any place for these intriguing cells in search for an effective 
treatment of cancer.
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The potential of natural killer (NK) cells to target numerous malignancies in vitro has been
well documented; however, only limited success has been seen in the clinic. Although
NK cells prove non-toxic and safe regardless of the cell numbers injected, there is
often little persistence and expansion observed in a patient, which is vital for mounting
an effective cellular response. NK cells can be isolated directly from peripheral blood,
umbilical cord blood, or bone marrow, expanded in vitro using cytokines or differentiated
in vitro from hematopoietic stem cells. Drugs that support NK cell function such as
lenalidomide and bortezomib have also been studied in the clinic, however, the optimum
combination, which can vary among different malignancies, is yet to be identified. NK
cell proliferation, persistence, and function can further be improved by various activation
techniques such as priming and cytokine addition though whether stimulation pre- or
post-injection is more favorable is another obstacle to be tackled. Here, we review
the various methods of obtaining and activating NK cells for use in the clinic while
considering the ideal product and drug complement for the most successful cellular
therapy.

Keywords: natural killer cells, cancer, immunotherapy, activation, proliferation, persistence

Introduction

Natural killer (NK) cells are unique lymphocytes, distinct from B and T cells, which bridge the
innate and adaptive immune systems. They have the unique capacity to exert immunoregula-
tory and cytotoxic functions against transformed and infected cells without prior sensitization.
NK cells are characterized by the expression of CD56 and absence of CD3 and can be fur-
ther subdivided into a CD56bright population, which is predominantly cytokine producing and a
CD56dim population, which is cytolytic and provides antibody-dependent cell-mediated cytotoxicity
via CD16 (1). NK cells operate by detecting information, which is missing on the target. This
phenomenon is known as the “missing self hypothesis” and postulates that NK cell cytotoxicity
inversely correlates with the target expression of major histocompatibility complex class I (MHC-
I) (2, 3). In addition, NK cell activity is further regulated by a complex array of inhibitory and
activating receptors such as killer cell immunoglobulin-like receptors (KIR), natural cytotoxicity
receptors (NKp44, NKp30, and NKp46), and C-type lectins (CD94/NKG2A/NKG2C/NKG2D).
These properties equip NK cells with the tools to actively eliminate susceptible targets (4). Tak-
ing into account, the cytotoxic potential of these cells numerous attempts have been made to
transfer NK cell immunotherapy into the clinic. Here, we review which methods to consider for
obtaining cells for therapy, drug complements, and pre-infusion activation techniques. We also
summarize current clinical trials and outcomes and postulate where success in NK immunotherapy
may lie.
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NK Cells and Cancer

Natural killer cells were first implicated as playing a role in cancer
immunosurveillance when one large epidemiologic study found
that low NK cell cytotoxicity forecasted an increased risk in
developing cancer (5). There have since been numerous studies,
which demonstrate that NK cells can target human tumors in vivo
making themadesirable candidate for therapeutic use (6). Clinical
trials using autologousNK cells have shown the therapy to be non-
toxic, however, they fail to prove efficacy (7), which could be the
result of inhibition by self-MHC-I. Allogeneic treatment therefore
has potential to offer an alternative therapy with improved effect.
The direct involvement of allo-reactive NK cells in inducing anti-
tumor effect in hematopoietic transplants was first demonstrated
in 2002 (8). NK cells showed to enhance engraftment; providing
graft vs. leukemia (GvL) effect while suppressing graft vs. host
disease (GvHD) particularly when a KIR ligand mismatch in
the donor to host direction was observed. Reduced GvHD was
hypothesized to be attributed to the lysis of the recipient’s antigen
presenting cells (APCs) reducing the incidence of GvHD while
maintaining GvL effect. This was later successfully translated into
an in vivo model using acute myeloid leukemia (AML)-engrafted
NOD/SCIDmice infusedwith allo-reactiveNKcells. Tumor clear-
ance was achieved implicating NK cells in preserving the GvL
effect (9).

Miller and colleagues later translatedNK cell therapy alone into
the clinic where allogeneic NK cells were infused into patients
with advanced cancer alongside IL-2 administration. This demon-
strated that NK cell infusions were feasible and safe and led to
complete remission in 5/19 patients with poor prognosis AML
(10). Additionally, the efficacy of haploidentical NK cell therapy
in the refractory disease was further improved by depleting host
regulatory T cells with IL-2 diphtheria toxin preventing their
immunosuppressive effect (11). NK cell allo-reactivity could also
be utilized in other scenarios besides hematopoietic stem cell
transplantation (HSCT) with studies in malignant glioma and
neuroblastoma patients demonstrating that NK cell infusions are
safe and partially effective (12, 13). Numerous types of cancer
could therefore benefit from NK cell immunotherapy and current
clinical trials include pancreas, lungs, head/neck, breast, and renal
cell carcinomas.

Clinical Conditioning

Not only chemotherapy and/or radiotherapy are required for
the success of HSCT but also cellular immunotherapy. Such
treatments are necessary to reduce tumor burden and suppress
the immune system of the patient to prevent rejection of the
cellular therapy. Defining the correct conditioning regimen is
therefore critical. In a transplantation setting, common regimens
are referred to as myeloablative, non-myeloablative, and reduced
intensity and their use will depend on patient age and disease
severity; however, any decrease of leukemia recurrence is often at
the expense of an increase in toxicity (14).

The use of new conditioning agents termed as “novel agents”
have become increasing popular in cancer immunotherapy as a
result of their immunomodulatory and direct tumor targeting

mechanisms. In combination with cellular therapy, they offer the
potential for amore personalized and less toxic treatment regimen
as these specialized drugs have been shown to not only reduce
tumor burden but also enhance the function of cellular therapies.
Although chemotherapy has revolutionized the treatment of can-
cer, its side effects include the development of refractory disease
and severe toxicity. Novel agents provide an alternative option of
harnessing the immune system to tackle malignancies.

Thalidomide was one of the first novel agents to be well
studied; it is a synthetic glutamic acid derivative that is capable
of immunomodulatory, anti-inflammatory, and anti-angiogenic
effects. Although proven successful in targetingmultiplemyeloma
the exact mechanism of action of thalidomide is yet to be elu-
cidated although anti-inflammatory effects have been attributed
to inhibition of TNF-α production by monocytes and anti-
proliferative capabilities to disruption of the bone marrow (BM)
microenvironment preventing multiple myeloma cellular devel-
opment (15). Although extended anti-angiogenic characteris-
tics make a desirable option in limiting tumor development its
immunomodulatory properties have not been so well defined.
Lenalidomide is an immunomodulatory compound with a dual
mechanism of action. It is capable of targeting the tumor directly
through stromal support disruption, induction of tumor sup-
pressor genes, and activation of caspases (16). It is also able to
stimulate the cytotoxic functions of NK cells and T lymphocytes
while limiting the immunosuppressive impact of regulatory T cells
(17). Additionally, bortezomib is a proteasome inhibitor proven
popular by up-regulating expression of TRAIL death receptors
and altering caspase-8 activity rendering tumors susceptible toNK
cell lysis. However, intriguingly these tumors became resistance
to T cell cytotoxicity (18). The specific mechanisms by which
novel agent function offer a promising future for the treatment
of a variety of malignancies as these agents target not only the
tumor themselves but also offer potential to enhance the immune
system. This provides the possibility of coupling cellular therapy
with novel agents to provide personalized treatment regimens to
target an individual’s condition.

NK Cell Sources

It is considered that the success of NK cell immunotherapy is
dependent on obtaining high numbers of functional NK cells that
have the potential to survive in vivo. Numerous attempts have
therefore been made to obtain high levels of NK cells from a
variety of sources. One option is to isolate cells directly from
peripheral blood (PB) or cord blood (CB), however, as NK cells
make up only 10% of circulating lymphocytes in PB and 20%
in CB the number of cells obtained can be limited and could
potentially prevent the option for multiple infusions. Doses of
1–2× 107 cells/kg have been identified as safe (19); however,
higher doses of 2× 108/kg have been shown to be well toler-
ated and non-toxic (20). Several techniques have therefore been
explored to increase cell numbers. This includes expanding iso-
lated cells in vitro using different combinations of cytokines with
orwithout feeder layers, the use ofNK cell lines and differentiating
NK cells from hematopoietic stem cells (HSCs).
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NK Cell Expansion

Numerous methods of expanding mature NK cells in vitro
have been explored and have been reviewed previously (21);
however, these products seem to produce limited clinical success.
This may be because of wide variations in expansion rate and
distribution of NK cell subpopulations (22) or expanding mature
cells produces effectors with a more finite lifespan unable
to proliferate with lower cytotoxicity post infusion (23). NK
cell expansion using aAPCs particularly the GMP-compatible
genetically modified form of the K562 myeloid leukemia cell
line engineered to express membrane-bound interleukin 15 and
the ligand for the co-stimulatory molecule 4-1BBL has been
rising in popularity due to the potential to rapidly expand an
NK cell product with an up-regulation of activating receptors
and improved killing capacity (24). However, a first-in-human
trial carried out by Shah and colleagues in 2014 performing
the adoptive transfer of donor-derived IL-15/4-1BBL activated
NK cells showed interesting results. Surprisingly, 5/9 patients
experienced acute GvHD and as the T cell content of the infusion
was well below the specified threshold for GvHD development
the group concluded that the aNK-DLI contributed to the effect
by stimulating underlying T cell allo-reactivity (25). This is the
first time in a clinical setting NK cells have been implicated in the
role of induction or aggravation of GvHD, which could be a result
of lack of immunosuppressive drugs post transplant or infusion
of IL-2, which expands immunoregulatory populations. This
coupled with the infusion of an expanded NK cell population
with such a high up-regulation of activating receptors could be
the reason for such unfavorable results.

NK Cell Lines

The use of NK cell lines have been seen as an attractive option
due to the availability of a clinical grade frozen stock and their
homologous nature. The most prominent NK cell line currently
in focus is NK-92, which was established from a patient with
non-Hodgkin’s lymphoma and has demonstrated the capability of
lysing leukemia, lymphoma, and myeloma in vitro (26). Current
clinical trials have proven non-toxic; however, they have shown
limited success in demonstrating efficacy (27, 28). This could be
a result of the necessity to irradiate a cell line prior to infusion
for safety requirements, the cells could therefore be incapable
of proliferation in vivo severely limiting their persistence and
potential to target the tumor.

Differentiation of NK Cells

DifferentiatingNKcells in vitro fromHSCs or induced pluripotent
stem (iPS) cells are alternative options for obtaining high numbers
of functional cells. Different sources of cryopreserved HSCs have
been used to differentiate NK cells in vitro including human
embryonic stem cells (hESC), BM, mobilized peripheral blood
stem cells (mPBSC), and cord blood stem cells (CBSC). hESC are a
controversial source due to the ethical dilemma posed by obtain-
ing cells from a 5- to 7-day-old embryo. However, the H9 hESC
cell line has been used to produce NK cells that express activating
and inhibitory receptors, including KIRs, and are able to produce

cytokines and mediate cytotoxicity in vitro and in vivo (29). The
invasive collection procedure limits the use of BM and has there-
fore mainly been used to study NK cell development (30, 31). Dif-
ferentiating NK cells from induced pluripotent cells offers poten-
tial due to the ready availability of a donor and the non-invasive
cell harvestingmethods. A recent study identified amethod of dif-
ferentiating mature and functional NK cells using a combination
of embryoid body formation and membrane-bound interleukin
21-expressing aAPCs (32) and a thorough review of the potential
uses of such cells in the clinic was published last year (33). The
possibility of reprograming cells is a promising one; however,
there is the possible limitation that the differentiated NK cells
will be suppressed by self-MHC and therefore have little cytotoxic
effect. The use of NK cells differentiated fromCD34+ progenitors
was first shown to be feasible in the clinic by Yoon and colleagues
in 2010 (34). This led to interest in the use of umbilical cord blood
CD34+ cells as a source of NK cells with the focus being on gener-
ating a readily available, non-invasive, off the shelf cellular product
(35). Our groupmodified a published protocol (36) and compared
the use ofmPBSC, fresh CBSC, and frozen CBSC at differentiating
NK cells in vitro (37). This work demonstrated frozen CB CD34+

cells to be the best source of NK cells over fresh CB CD34+ and
frozen mPBSCs. This was due to higher fold expansion and there-
fore higher NK cell numbers generated without compromising
on phenotype, cytokine production, or cytotoxicity. Additionally,
the cells are capable of further proliferation in vitro and more
importantly could persist for longer and in higher numbers in vivo.
Considering that proliferation and persistence of NK cells in vivo
is fundamental for the development of a clinically relevant cellular
product this makes the differentiation of NK cells from CB HSCs
in vitro an attractive candidate for NK cell immunotherapy.

NK Cell Activation

As reviewed in Table 1, there have been many studies that well
document the expansion ofNK cells in vitro, however, we are yet to
obtain a clinically successful product, which proliferates and per-
sists in vivo inducing consistent efficacy. This could be because we
are yet to identify the optimumactivationmethod and status of the
cells before infusion. As seen in Figure 1, whether the cells should
be incubated with cytokines, genetically engineered, differenti-
ated into a “memory-like” phenotype, or primed using NK non-
susceptible cell lines are all options that need to be considered.

Cytokine activation has always been a popular method of stim-
ulating NK cells as it is a well-documented pathway of activation
in vivo and different cytokines can give rise to the same signaling
patterns while differing in their effects on development, activa-
tion, and proliferation. IL-2 stimulates cellular proliferation and
enhances cytotoxicity, however, it has been noted that this only
affects a small sub-population for an extended period (55). IL-15
significantly improves NK cell survival although it only stimulates
minimal expansion (56). Furthermore, the toxic effects of the
in vivo administration of cytokines cannot be ignored, IL-2 risks
vascular leak syndrome caused by the stimulation of endothelial
cells through the IL-2 receptor (57) and preferentially expands T
regulatory cells, which mediate immune suppression (58). Studies
with IL-15 in non-human primates have only shown transient
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TABLE 1 | NK cells in the clinic: trials so far.

Initial
population

Feeder
cells

Fold expansion
in vitro (purity)

In vitro
cytokine
admin

Condition Treatment and
in vivo cytokine

admin

Dose In vivo
expansion

Clinical
outcome

Reference

AUTOLOGOUS
CD3
depleted
PBMCs

LCL cell line
(LAZ388)

43±26 in
13–21days (90%)

IL-2 MRC High dose IL-2+ LANAK
following initial PR to IL-2
alone

N/A N/D Induced clinical response
15–30% patients

(38)

PBMCs None No expansion IL-2 Advanced CRC and
NSCLC

Multiple infusions of NK
cells+ IL-2+Hsp70
peptide TKD

1–7.5×
106/kg

Multi-infusion trial Well tolerated and safe, no
significant tumor response

(39)

PBMCs Wilms tumor cell
line (HFWT)

113 in 14 days
(96%)

IL-2 Malignant glioma Multiple infusions+ IFN-β N/A Multi-infusion trial Well tolerated, no toxicity, 3
PR, 2 MR, 4 NC, and 7 PD

(12)

PBMCs αGalCer-pulsed
autologous
PBMCs

101–103 21days
(70% viability)

IL-2 Recurrent or
advanced NSCLC

Infusion of ex vivo
expanded Vα24NKT cells

5×107/m2 Reduced function in
some patients

Well tolerated, no toxicity (40)

CD3−/CD56+

PBMCs
EBV-LCL
(TM-LCL)

53–683 in 14 days
(99.7%)

IL-2 CLL and metastatic
tumors

Infusion of NKs+ IL-2
after PEN/BOR

1×108/kg Multi-infusion trial Well tolerated and some
pre-clinical evidence of
anti-tumor response

(41)

CD3−

PBMCs
Auto PBMCs 278–1097 in

21–26days
(91–97%)

IL-2 Metastatic melanoma
and RCC

Infusion of activated
NKs+ IL-2 after CY/FLU
regimen

1.88–7.6×
1010/kg

NK persistence
7days post infusion

No toxicity or clinical response (42)

AUTOLOGOUS/ALLOGENEIC
CD56+/CD3−

PBMCs
4-1BBL+ IL-
15Rα+

aAPCs

12–160 in
7–9 days
(68–99%)

IL-2 MM Infusion of NKs+ IL-2
after BOR/CY/FLU

2×107–2×
108/kg

Significant in vivo
expansion fresh
product

Well tolerated, no toxicity (43)

ALLOGENEIC
CD3−/CD56+

PBMCs
N/A No expansion None High risk myeloid

malignancies
Infusion of NKs post
haplo-HSCT

0.21–1.41×
107/kg

N/D Well tolerated, increased donor
chimerism in 2/5 patients

(19)

CD3−/CD56+

PBMCs
None 5 in 12 days (95%) IL-2 Multiple relapse ALL

and AML
Repeat infusions of
activated NKs post-HSCT

8.9–29.5×
106/kg

N/D Well tolerated, no toxicity (44)

CD3−

PBMCs
None No expansion None Metastatic

melanoma, RCC,
refractory Hodgkin’s,
and AML

Infusion of NKs+ IL-2
after Lo-CY/mPred, FLU,
or Hi-CY/FLU

1×105–2×
107/kg

In vivo NK expansion
in Hi-Cy/Flu patients

CR in 5/19 poor prognosis
patients

(10)

CD3−

PBMCs
None No expansion IL-2 Myeloma Infusion of activated

NKs+ IL-2 after FLU/MEL
regimen and auto-PBSCT

1.7×106/kg Donor cells persisted
and lost by day 9–14

CR in 50% patients (45)

PBMCs None 1036 in 19 days
(88% viability)

OKT3
and IL-2

CRC, carcinoma and
B-CLL

Infusion of activated
NKs+ IL-2 after
haplo-HSCT

8.1–40.3×
106/kg

Multi-infusion trial Minor response in 2 patients (46)

CD3−/CD56+

PBMCs
None No expansion None AML Infusion of NKs+ IL-2

after CY/FLU regimen
0.5–8.1×
107/kg

Significant in vivo
expansion observed
at day 14 (5800/mL)

100% EFS at 2 years (47)

CD3−

PBMCs
None No expansion

(43±11%)
None Lymphoma Infusion of NKs+ IL-2

after RTX/CY/FLU
0.2–40×
107/kg

NK cells not detected
7days post infusion

2 CR/2PR (48)

(Continued)

Frontiers
in
Im
m
unology

|w
w
w
.frontiersin.org

June
2015

|Volum
e
6
|A

rticle
264

54

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


D
om

ogala
etal.

N
K
cellim

m
unotherapy

TABLE 1 | Continued

Initial
population

Feeder
cells

Fold expansion
in vitro (purity)

In vitro
cytokine
admin

Condition Treatment and
in vivo cytokine

admin

Dose In vivo
expansion

Clinical
outcome

Reference

CD3−/CD56+

PBMCs
None 32–131.3 in

20–23days
(82.7–99.6%)

HC and
IL-15

Advanced NSCLC Infusion of pre-activated
NKs

0.2–29×
106/kg

Multi-infusion trial PR in 2 patients best response
with most infusions

(49)

CD56+

selected
PBMCs

None No expansion None AML Infusion of NKs+ IL-2
after CY/FLU regimen

1.11–5.0×
106/kg

Donor NKs detected
up to 17days post
first infusion

CR 6/13 patient (50)

CD3−/CD56+

PBMCs
None No expansion IL-2 for

half of
patients

AML, ALL,
neuroblastoma, and
RMS

Multiple infusions of
pre-activated and resting
NKs after haplo-HSCT

6–45.1×
106/kg

NK cells detected at
24 h

Two patients with
neuroblastoma alive at 2 years

(51)

CD3−

PBMCs
None No expansion

(70% viability)
IL-2 Breast and ovarian

carcinoma
Infusion of pre-activated
NKs+ IL-2 after CY/FLU
with/without TBI

8.33×
106–3.94×
107/kg

No eligible patients
met predefined
criterion for
successful in vivo
expansion

TBI improved longevity of NK
engraftment

(52)

CD56+/
CD3−

PBMCs

None No expansion None Leukemia and
malignant solid
tumors

Multiple NK infusions after
ATG/OKT3 and
hapol-HSCT

0.3–3.8×
107/kg

N/D No significant clinical response (53)

CD56+/CD3/
CD19−

PBMCs

None No expansion
(53%)

IL-2 Relapsed/primary
AML

Infusion pre-activated NKs
after IL-2DT

2.6±1.5×
107/kg

In vivo expansion
enhanced with
T-REG depletion

Well tolerated, no toxicity (11)

CD56+CD3−

PBMCs
4-1BBL+ IL-
15Rα+

aAPCs

9–11days
(>90%)

IL-15 EWS, DSRCT, and
RMS

CY/FLU/MEL/G-CSF 1×105/kg Multi-infusion trial 5/9 patients experienced acute
GVHD

(25)

CELL LINES
NK92 cell
line

None >200 in
15–17days

IL-2 RCC and malignant
melanoma

Infusion of ex vivo
expanded NK-92 cells

Up to
3×109/m2

Multi-infusion trial Well-tolerated possible
response in 2 patients

(27)

NK92 cell
line

None 2 in 32 h IL-2 Solid tumors,
sarcomas,
leukemias, and
lymphoma

Infusion of ex vivo
expanded NK-92 cells

Up to
1×1010/m2

Persist in circulation
up to 48 h

Well-tolerated possible
response in lung cancer
patients

(28)

CD56+CD3−

PBMCs
None 5 in 14 days

(>95%)
IL-2 Multiple relapsed

neuroblastoma
Infusion pre-activated NK
cells

7.8–45.1×
106/kg

No clear expansion No toxicity observed (54)

ALL, acute lymphoblastic lymphoma; AML, acute myeloid leukemia; ATG, anti-thymocyte globulin; B-CLL, B cell chronic lymphocyte leukemia; BOR, bortezomib; CLL, chronic lymphocyte leukemia; CR, complete response; CRC, colorectal
carcinoma; CY, cyclophosphamide; DSRCT, desmoplastic small round cell tumor; EWS, Ewing sarcoma; FLU, fludarabine; G-CSF, granulocyte colony stimulating factor; HC, hydrocortisone; MEL, melphalan; MM, multiple myeloma; mPred,
methylprednisolone; MRC, metastatic renal carcinoma; N/D, not determined; NSCLC, non-small cell lung carcinoma; PEN, pentostatin; PR, partial response; RCC, renal cell carcinoma; RMS, rhabdomyosarcoma; RTX, rituximab; TBI, total
body irradiation.
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FIGURE 1 | Summary of NK activation mechanisms. (A) CAR NK cells.
Expression of chimeric antigen receptor (CAR) specific for tumor-associated
cell surface antigens redirects NK cells to malignant cells and facilitates
cytotoxic activity. (B) Primed NK cells. Engagement of CD2 within CD15 of
CTV-1 ligand leads to granule polarization and NK cell function is triggered
by the engagement of at least one more activating receptor from a tumor

cell. (C) Cytokine activated NK cells. IL-2 and IL-15 activation leads to
activation of JAK/STAT, PI3K, MAPK, and NF-κB pathways. (D) CIML NK
cells. IL-12, IL-15, and IL-18 induces a rapid and prolonged expression of
CD25, resulting in a highly functional high-affinity IL-2 receptor. The receptor
responds to picomolar concentrations of IL-2 leading to STAT5
phosphorylation and release of IFN-γ.

toxicity; however, its reduced half life may suggest the need for
more frequent dosing in therapeutic applications (59).

A method to avoid such life threatening conditions through
in vivo administration of cytokines is expanding or stimulating
the cells in vitro. NK cells have always been considered a member
of the innate immune system incapable of producing memory.
However, in 2006, it was first observed thatNK cells couldmediate
a long-lived antigen-specific adaptive response independently of
other lymphocytes (60). Sun and colleagues (61) later identified an
immunological memory in NK cells from MCMV infected mice
and it was demonstrated that NK cells pre-activated with IL-12
and IL-18 infused into a naïve host and later re-stimulated showed
enhanced IFN-y production (62). Thismodel was later transferred
to an in vitro model stimulating human cells showing the same
results (63). This improvement in cytokine production offers the
potential for enhancedGvL effect and a clinical trial is currently in
progress targeting relapsed and refractory AML (NCT01898793).

It has been reported that resting NK cells require a two-stage
activation process known as “priming” and “triggering” (64). This
states that tumors resistant to NK cell killing evade lysis by failing

to prime the cell; however, Mark Lowdells group were able to
identify a cell line, which could prime the cell without triggering
cytokine production or cytolytic activity. This led to the devel-
opment of an NK cell priming technique that readied the cells
for killing, which was still maintained post cryopreservation (65).
Primed NK cells from patients with multiple myeloma have also
been proven to kill NK cell resistant malignant plasma cells (66).
Preliminary data from an ongoing transitional phase I/II clinical
trial showed that without cytokine administration primed NK
cells from HLA haploidentical-related donors can persist in vivo
with no toxic effects (67).

Genetic Engineering

Although currently restricted to pre-clinical models the use of
chimeric antigen receptor (CAR)-expressing NK cells has the
potential to offer enhanced effector cell function of increased
specificity. Anti-CD19 CAR T cells have effectively demonstrated
their ability to induce long-term remission in patients with B
cell malignancies (68). However, concern associated with CAR
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T cell therapy extends to GvHD, on target/off tumor effects, and
tumor lysis syndrome. By contrast, allogeneic CAR-engineered
NK cells are expected to induce anti-tumor effects and dissipate
after a few days (23). As previously reviewed by Glienke et al. in
2015, current work in the field has focused mainly on targeting
CD19 and CD20, however, CARs, which target CS1 and CD138
for multiple myeloma, GD2 and CD244 for neuroblastoma, HER-
2 for epithelial carcinomas, and GPA7 for melanoma, are also
beginning to indicate promising results.

Immune Escape Mechanisms

Not all tumors are susceptible to NK cell mediated killing, as some
cancer cells have developed the ability to escape detection by the
immune system. Mechanisms that regulate the evasion of tumor
cells by NK cells extends to the down-regulation of activating
receptor ligands forNKG2D (69), the production of soluble stress-
induced ligands, such as MICA, which degrades NKG2D leading
to NK cell inhibition (70) and the release of suppressive cytokines
such as IL-10 and TGF-β (71). Some success has been seen by
NK cell immunotherapy targeting hematological malignancies;
however, this has not been transferred to solid tumors. This could
be a result of the increased concentration of immunosuppressive
cytokines and ligands around a tumor mass, method to overcome
such escape mechanisms could provide further potential for NK
cells to not only target hematological malignancies but also solid
tumors.

Concluding Remarks

Natural killer cell immunotherapy has been a promising option for
providing specialized and target specific treatment for a therapy

in its own right and as a supportive one in infection or transplan-
tation. Although some mechanisms of NK cell biology are yet to
be elucidated as we make progress in the field an effective clinical
NK cell immunotherapy will becomemore achievable. A standard
clinical regimen is still to be elucidated and obstacles such as cell
dose, activation status, method of expansion, drug complement,
and source are still to be determined.

It has always been thought that high numbers of NK cells are
necessary for a successful clinical product. However, numerous
groups have managed to successfully generate high numbers of
functional NK cells in vitro although the lack of clinical effect
and significant cost implications cannot be ignored. The high-
cell number requirement is likely to be the result of a “success
in numbers” approach with there being a significant loss of cells
through in vivo targeting and just a small sub-population of
effector cells that will target the tumor. Perhaps work should
therefore be refocused on the infusion of a small population of
cells with optimum pre-activation status that will traffic to the
tumor site and would not be suppressed by tumor evasion mecha-
nisms. This is a significant goal to achieve considering the variety
of NK cell populations occurring naturally in the body. How-
ever, the absence of a labor-intensive long-term culture system
would mean this method would pose significantly reduced cost
implications. Once techniques have been optimized and stream-
lined there would therefore be a greater possibility of NK cell
immunotherapy being routinely adopted as a clinical therapy in
the future.
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Natural killer (NK) cells belong to innate immunity and exhibit cytolytic activity against
infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that
transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors,
NK Group 2 member D (NKG2D), NKG2A/CD94, NKp46, and others, and recognize
both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into
NK-cell developmental intermediates have translated into a more accurate definition of
culture conditions for the in vitro generation and propagation of human NK cells. In this
respect, interleukin (IL)-15 and IL-21 are instrumental in driving NK-cell differentiation and
maturation, and hold great promise for the design of optimal NK-cell culture protocols.
Cytokine-induced killer (CIK) cells possess phenotypic and functional hallmarks of both
T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture,
while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer
some advantages over other cell therapy products, including ease of in vitro propagation
and no need for exogenous administration of IL-2 for in vivo priming. NK cells and CIK
cells can be expanded using a variety of clinical-grade approaches, before their infusion
into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and
expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials
of adoptive transfer to patients with hematological malignancies.

Keywords: natural killer cell, cytokine-induced killer cell, interleukin-2, interleukin-15, good manufacturing
practice, leukemia, immunotherapy

Biological Features of NK, LAK, and CIK Cells

Natural killer (NK) cells comprise 5–25% of peripheral blood (PB) lymphocytes and were initially
recognized for their ability to kill cancer cells without prior sensitization. The reader is referred
to previously published papers for a thorough review of NK development and function (1–3).
Briefly, NK cells originate from bone marrow (BM) CD34+ hematopoietic stem cells and can
also be differentiated in vitro from highly immature CD34− umbilical cord blood (UCB) cells
(4). NK cells acquire function (killing or cytokine production) after encountering and recognizing
self-human leukocyte antigen (HLA) molecules during a process termed “licensing” or NK-cell
education. However, 10–20% of NK cells remain unlicensed, as they lack receptors for self-major
histocompatibility complex (MHC) and are functionally hyporesponsive. Importantly, unlicensed
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NK cells can become alloreactive upon encounter with cytokines
in a recipient environment, e.g., after adoptive transfer into
hematopoietic stem cell transplantation (HSCT) recipients.

The function of NK cells is governed by a set of germline-
encoded activating or inhibitory receptors referred to as killer
immunoglobulin-like receptors (KIRs). The extracellular domain
determines which HLA class I molecule NK cells recognize,
whereas the intracytoplasmic domain transmits either an activat-
ing or an inhibitory signal. KIRs are monomeric receptors with
either 2 (KIR2D) or 3 (KIR3D) immunoglobulin-like domains,
and are further subdivided into those with long (L) cytoplas-
mic tails (KIR2DL and KIR3DL) and short (S) cytoplasmic
tails (KIR2DS and KIR3DS) (5–7). Long-tail KIRs generate an
inhibitory signal through the recruitment of the SH2-domain-
containing tyrosine phosphatase 1 protein (SHP1) (8–11). Short-
tail KIRs possess truncated portions that transduce activating
signals via tyrosine phosphorylation of DAP12 and other pro-
teins (12–14).

Natural killer cells also express other activating receptors that
recognize “stress ligands” on virally infected or malignant cells.
For instance, NKG2D, a C-type lectin receptor that belongs
to the NK group 2 (NKG2) of receptors as member D (15),
is constitutively expressed on NK cells and recognizes MHC
class I chain-related genes A and B (MICA and MICB) (16),
as well as unique long 16 (UL16) binding protein family mem-
bers (ULBPs) (17). Other activating molecules include natural
cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46 (18,
19). It has been shown that killing of tumors of non-epithelial
origin, including leukemia cell lines, involves synergism between
NCRs and NKG2D (20). Activating KIRs, such as KIR2DS1, are
likely involved in the anti-leukemia effect of NK cells (21, 22). In
2002, investigators from Perugia demonstrated superior disease-
free survival (DFS) in patients with acute myeloid leukemia
(AML) receiving BM grafts from HLA-haploidentical donors
who expressed KIR binding to MHC class I molecules absent
in the host (i.e., KIR-ligand mismatch in the GVH direction)
(23, 24). The most notable inhibitory receptors recognize HLA
class I proteins (including groups of HLA-A, HLA-B, and HLA-
C) and differ in both their transmembrane and intracytoplasmic
domains (25–29).

Human leukocyte antigen-C is the predominant class I isotype
involved in the inhibitory and activating regulation of human
NK cells (1, 22). Individuals may have up to 15 KIR genes that
reside in a single complex on chromosome 19p13.4. KIR genes
can be divided into A or B haplotypes. The A haplotype consists
of five inhibitory KIRs and a single activating KIR, KIR2DS4. By
contrast, the B haplotype contains both inhibitory and several
activating KIRs that are further subdivided into two separate
regions, centromeric and telomeric. In the “missing self ” model
(30), donorNK cells express inhibitoryKIRs forwhichHLA class I
molecules are missing in the recipient. Donors with KIR B vs. KIR
A haplotypes improve the clinical outcome for patients with AML
by reducing the incidence of leukemia relapse and prolonging
DFS (31). The centromeric KIR B genes were dominant over the
telomeric ones, and included the genes encoding inhibitory KIRs
that are specific for the C1 and C2 epitopes of HLA-C. When
the authors examined a cohort of 1,532 T-cell-replete HSCT,

relapse protection associated with donor KIR B was enhanced in
recipients with one or twoC1-bearingHLA-C allotypes compared
with homozygous recipients. This implies that a deeper under-
standing of the interaction between donor KIRs and recipient
HLA class I will allow the selection of the “best donor” to improve
outcomes of unrelated HSCT and adoptive NK infusion for AML.
Intriguingly, KIR B haplotype donors were recently shown to con-
fer a reduced risk for relapse after haploidenticalHSCT in children
with ALL (32), an effect that is not seen in adult ALL (33). In
allogeneicHSCT, particularly fromHLA-mismatched donors, NK
cells reportedly influence clinical outcome by exerting anti-tumor
effects without inducing graft-versus-host disease (GVHD) (34).
However, NK cells reconstituting after allogeneic HSCT may be
dysfunctional, likely as a result of low IL-2 levels (35). Some groups
are attempting to improve NK-cell reconstitution followingHSCT
by depleting the graft of αβ+ T cells and CD19+ B cells, but
leaving NK progenitors untouched (36). Using this approach, very
high numbers of haploidentical NK cells and NK-like (CD56+) T
cells can be infused into patients with malignant disorders (37).

Another family of human NK receptors is composed of a
common subunit (CD94), covalently linked to a distinct chain
encoded by a C-type lectin NKG2 family gene. Among the C-
type lectin NK receptors, CD94/NKG2A is inhibitory, whereas
other heterodimers are activating receptors. CD94/NKG2A binds
the non-classical class I molecule HLA-E (38). The binding of a
unique peptide/HLA-E complex to the activating CD94/NKG2C
receptor is of higher affinity than the binding to the inhibitory
CD94/NKG2A ensuring the predominance of inhibitory signals
when the same NK cells express both activating and inhibitory
receptors recognizing HLA molecules (39).

In 1980, Rosenberg and co-workers demonstrated that incu-
bation of heterogeneous lymphocyte populations with high-dose
(800-1,000U/ml) interleukin-2 (IL-2) generates lymphokine-
activated killer (LAK) cells with prompt in vitro cytotoxicity to
syngeneic and autologous fresh tumors (40–42). NK cells were
identified as precursors of LAK cells, and LAK activity was found
to be mainly, albeit not uniquely, mediated by activated NK
cells (43, 44). LAK cells comprise CD3−CD56+ NK cells, MHC-
unrestricted cytotoxic CD3+CD56+ T cells, and CD3+CD56− T
cells. However, LAK cells had limited expansion in vitro and low
cytolytic activity in vivo. Furthermore, LAK therapy required high
doses of IL-2 in vivo and was associated with relevant toxicity.
Modifications in culture conditions, i.e., provision of agonistic
αCD3 (OKT3) monoclonal antibodies (mAbs), IL-2 and inter-
feron (IFN)-γ, translated into>1,000-fold expansion of peripheral
blood mononuclear cells (PBMCs) with potent cytokine-induced
killer (CIK) activity. CIK cells share phenotypic and functional
properties of both T cells and NK cells, as they co-express CD3
and CD56, and are rapidly expandable in culture like T cells, while
not necessitating functional priming for in vivo activity, analogous
to NK cells. Interestingly, CIK cells do not recognize target cells
through the T-cell receptor (TCR) and do not require the presence
of MHC molecules on target cells, as suggested by the observation
that cytotoxicity is not affected by antibodymasking of the TCR or
MHC class I or class II molecules. CIK cells also express activating
NK receptors, including NKG2D, DNAX accessory molecule-1
(DNAM), and NKp30 (45, 46).
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Evidence for an in vivo activity of CIK cells derives from studies
in a murine severe combined immune deficiency (SCID)/human
lymphoma model, where co-administration of CIK cells with
B-lymphoma cells had favorable effects on mice survival, with
a 1.5–2.0-log cell kill and only marginal toxicity against nor-
mal hematopoietic precursors (47). CIK cells reportedly protect
against syngeneic and allogeneic tumors also in other experimen-
tal models, including nude mice xenografted with human cervical
carcinoma cells (48–50). CIK cells are detected in the lungs 30min
after injection, followed by distribution to other sites, such as the
liver and spleen and, by 72 h, the tumor site, where CIK cells may
remain for more than 9 days (51).

Current NK-Cell Manufacturing Practices

A direct comparison of NK manufacturing techniques is
hampered by differences in starting materials, technologies, and
manipulation strategies (52, 53). Classically, GMP-compliant
NK-cell products have been generated from PBMCs collected
by apheresis (Table 1). It has been shown that NK cells obtained
from granulocyte colony-stimulating factor (G-CSF)-mobilized
leukapheresis products have reduced functional capacity (54).
Conceivably, non-mobilized blood may be preferable over G-CSF
mobilized blood as a source of NK cells for immunotherapy trials.
A variety of cellular media have been used to culture NK cells,
including X-VIVO serum-free medium, AIM V, or stem cell
growth medium (SCGM), typically supplemented with 5–10%
human AB serum to enhance NK function. Because the limited
number of NK cells in leukapheresis products restricts clinical
applicability, in vitro methods to expand NK cells are intensely
being developed. In this respect, IL-15 promotes NK-cell prolifer-
ation and survival, and has been variably used inGMP-grade labo-
ratory protocols, as further detailed below. Alternativemethods of
expansion rely on human feeder cells, including artificial antigen
presenting cells (APCs) that are modified with costimulatory
molecules, such as CD137 ligand, and membrane-bound (mb)
IL-15 or IL-21. However, expanded NK cells undergo exhaustion,
as shown by telomere shortening and replicative senescence.

In 2001, Carlens and co-workers described a cytokine-based
technique for in vitro enrichment of human NK cells from bulk
PBMCs of healthy individuals (79). PBMCs were incubated in
SCGM containing 5% human serum and varying concentrations
of IL-2. In addition, stimulation with OKT3 at 10 ng/ml was pro-
vided during the first 5 days of the culture. Supplementation with
500U/ml IL-2 yielded amedian 193-fold cell expansion in 21 days.
Fifty-five percent of the expanded cells had a CD3−CD56+ phe-
notype, and prolongation of the culture beyond 3weeks did not
allow further NK-cell enrichment. Moreover, expansion of the
NK-cell compartment was comparable in cultures containing IL-
2 concentrations ranging from 100 to 1,000U/ml. Expanded cells
could efficiently kill the NK-susceptible K562 line. This protocol
was subsequently applied to PBMCs from patients with multi-
ple myeloma (MM), an incurable plasma cell malignancy with
a unique ability to subvert anti-tumor immune responses (80).
Following an initial non-proliferative phase of 5 days, patient-
derived NK cells expanded 1,625-fold on average after 20 days
of culture (71). NK cells from MM patients displayed increased
expression ofmultiple activating receptors, including 2B4,NKp46,

NKp44,NKp30,NKG2D, andDNAM-1, andwere efficiently cyto-
toxic to K562 cells and primary autologous MM cells, but not
to autologous CD34+ cells (71). Mobilized PBMCs from patients
with MM have also been used to expand NK cells (81). After a
7-day culture with serum-free AIM V media, IL-2 and OKT3,
polyclonal populations of cytotoxic lymphocytes were detected,
including CD4+ T cells, CD8+ T cells, CD8+CD56+ T cells,
and CD56+ NK cells. Culture bags provided a two- to threefold
expansion of immune effectors that retained their cytotoxicity
after cryopreservation and thawing.

Notably, ex vivo expansion of NK cells from PBMCs incubated
with IL-2 was also pursued under GMP-compliant conditions.
Using an automated bioreactor system, bulk PBMCs from healthy
donors and MM patients could expand 77-fold on average, and
acquired enhanced cytotoxicity that positively correlated with
the up-regulation of the NKp44 activating receptor. However,
the expanded culture contained a significant proportion of T
cells, necessitating further T-cell depletion prior to clinical use
(61). Furthermore, purified CD56+ populations were positively
selected fromPBMCs of healthy individuals using CD56magnetic
microbeads, and cultured in X-VIVO 10 medium containing
10% human AB serum and 500U/ml IL-2± 10 ng/ml IL-15 for
2weeks. Appreciable proliferation occurred 5–7 days from the
start of the culture, although with remarkable donor-to-donor
variability. Expansion of CD3+CD56+ NK-like T cells was two
to three times greater than that of CD3−CD56+ NK cells and
was not affected by IL-15. Compared with the NK-92 cell line, ex
vivo expanded CD56+ cells had lower lytic activity against both
K562 and Raji target cells (66).

The natural nicotinamide adenine dinucleotide (NAD)+ pre-
cursor and NAD+-dependent enzyme inhibitor nicotinamide
(NAM) has been recently shown to induce a 60- to 80-foldNK-cell
expansion when added to feeder-free cultures containing IL-2 and
IL-15 (82). In this study, NAM also affected NK cell anti-tumor
capabilities and trafficking properties by modulating expression
of CD200R and PD1, two immune regulatory receptors that
transmit inhibitory signals upon interaction with cognate ligands
on cancer cells. In addition, NAM promoted surface expression
of L-selectin, an adhesion molecule mediating interactions with
vascular endothelium and lymph nodes.

CD3+ T-Cell Depletion with or without CD56
Enrichment
The CE-approved, partially automated Clini-MACS® instrument
from Miltenyi allows the enrichment of NK cells under GMP-
compliant conditions (58). After a single step of magnetic CD3+

T-cell depletion, PBMCs are stimulated and expanded with irradi-
ated autologous cells in the presence of OKT3 and IL-2, resulting
in a highly pure population of functional CD3−CD16+CD56+

NK cells that lack cytotoxicity against allogeneic non-tumor cells
(83) (Table 1). Immunomagnetic CD3+ T-cell depletion with
either the 2.1 or the 3.1 programs can be combined with CD56-
cell enrichment (84).WhenCD56+ cells aremagnetically isolated,
the expansion of CD3+CD56+ cells in culture may outweigh that
of CD3−CD56+ cells, since CD3+ cells are not depleted upfront
(66). Furthermore, CD56 expansion in cultures supplemented
with IL-2, either alone or in combination with IL-15, shows
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TABLE 1 | Current GMP-compliant NK-cell manufacturing methods are detailed.

Reference(s) Cells Manufacturing process Feeder cells Characteristics Purity

(55) UCB CD34 immunoselection; expansion in a
bioreactor (SCF, Flt3-L, TPO or IL-15, IL-7,
G-CSF, GM-CSF, and IL-6 from d0 to d14;
same as above +IL-2 from d14 onward)

Not used ≈2,100-fold expansion;
1.6–3.7×109 NK cells;
undetectable T and B cells

90–95% NK cells

(56) UCB IL-15, IL-2, OKT3, and heparin, with or
without tacrolimus

Not used 1,700-fold expansion;
≈40×106 NK cells from
1.0×106 UCB cells

>70% NK cells

(57) PBMCs; LK CD3 depletion; overnight incubation
with IL-2

Not used <5×106 residual T cells;
>70% viability

>18% NK cells

(58) PBMCs; LK CD3 depletion (protocol I); CD56
enrichment (protocol II); overnight
incubation with IL-2

Not used 686.7×106 and 253.2×106

NK cells with protocols I and
II, respectively

38% (I) and 90% NK
cells (II)

(59) PBMCs; LK CD3 depletion; CD56 enrichment; no
exposure to IL-2 or other cytokines

Not used Median of 29×106 NK
cells/kg infused

0.097×106/kg
contaminating B cells;
1×103/kg T cells in 1
product

(60) PBMCs; LK CD3 depletion; CD56 enrichment Not used 1.1–8.8×108 NK cells <0.01% T cells

(61) PBMCs; LK IL-2+ anti-OKT3 in various flasks, culture
bags, and bioreactors for 20 d

Not used 530 to 1,100-fold NK-cell
expansion

31–51% NK cells

(62) PBMCs; LK CD3/CD19/CD4/CD33 depletion;
incubation with IL-2 and IL-15 for 7–21 d

Irradiated
autologous
PBMCs

100-fold NK-cell expansion at
16 d

91% CD56+ cells

(63) NK-92 cells from a
master cell bank

IL-2 Not used 2.0–42.4×109 (starting from
5×107)

N.A.

(64) NK-92 cells from a
master cell bank

IL-2 for 15–17d Not used >200-fold NK-cell expansion 1.5×109 cells/L

(65) PBMCs; LK CD3 depletion; CD56 enrichment;
overnight incubation with IL-2, OKT3, with
or without IL-15

Irradiated
autologous
PBMCs

62.7-fold NK-cell expansion

(66) PBMCs; LK CD56 enrichment; overnight incubation
with IL-2, with or without IL-15, for 14 d

Not used 67% NK cells

(67) PBMCs; LK CD3 depletion; IL-2 for 7 d K562–mb15–41BBL 73% NK cells with
<14% T cells

(68) Autologous
PBMCs; LK

CD3 depletion; IL-2 and OKT3 for 21 d Irradiated
autologous
PBMCs

1.88–7.6×1010 NK cells >93% purity

(69) Autologous
PBMCs; LK

CD3 depletion; CD56 enrichment; IL-2
for 28 d

Irradiated
EBV-TM-LCLs

>96% NK cells, with no
CD3+ T cells

(70) PBMCs; LK (1-h) CD56 selection (Clini-MACS®;
research-grade); CD3 depletion (Dyna
Beads®; research-grade); partially
automated separation procedure,
clean-room conditions (“class A in B”)

Not used 160×106 NK cells (<0.01%
remaining CD3+ T cells)

98.6% purity

(71) Autologous PBMCs
from patients with MM

SCGM with IL-2 and OKT3 Not used 1,625-fold NK-cell expansion
on d20

65% NK cells

(72) PBMCs; LK CD34 selection (Clini-MACS®); culture with
research-grade SCF, Flt3-L, IL-7, and
hydrocortisone for 21 d and with
research-grade IL-15, IL-21, and
hydrocortisone for additional 21d

Not used 9.28×106/kg NK cells from
2.2×106/kg CD34+ cells

64% NK cells with 1%
CD3+ T cells

(73) PBMCs; LK CD3 depletion; CD56 selection Not used 12.1×106/kg NK cells 0.03×105 median
T-cell dose

(74) PBMCs; LK CD3 depletion; overnight IL-2 in four
procedures, IL-2 during exposure to CD3
beads in six procedures

Not used >1.0×106/kg NK cells <1.0×105/kg T cells

(Continued)
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TABLE 1 | Continued

Reference(s) Cells Manufacturing process Feeder cells Characteristics Purity

(75) PBMCs; LK CD3 depletion; CD56 selection Not used 5.0×106/kg NK cells in 77%
of patients

93.5% purity

(76) PBMCs; LK CD3 depletion; IL-2 for 8–16 h Not used 21.0×106/kg NK cells 43% purity

(77) PBMCs; LK NK-cell priming with CNDO-109 lysate
(derived from a leukemia cell line, CTV-1)

Not used <104 residual T cells

(78) PBMCs; LK CD3 depletion; 1,000U/ml IL-2 Not used Median 26% haploidentical
NK cells; three dose levels

Median viability >95%

PBMC, peripheral blood mononuclear cells; LK, leukapheresis; d, day; UCB, umbilical cord blood; SCGM, stem cell growth medium; MM, multiple myeloma.

substantial inter-donor variability. Each of the above programs
translates into differences in depletion efficiency and recovery
of NK cells, with NK purification being improved after sequen-
tial processing with the Clini-MACS T-cell depletion programs
D2.1 and D3.1. Not unexpectedly, absolute NK-cell numbers
after manipulation may correlate with the pre-harvest NK-cell
content of the PB (85), implying that donors with high NK-cell
counts are likely to provide NK-cell products with the highest
cell numbers. A clinical-scale procedure to isolate NK cells for
infusion in pediatric patients was developed under clean-room
conditions (70). One-hour leukapheresis collections fromunstim-
ulated healthy donors were used to positively select CD56+ cells
and negatively deplete T cells, ultimately leading to cell therapy
products enriched in NK cells and containing only 0.09% remain-
ing T cells. A similar procedure consisting of two rounds of CD3
depletion and one round of CD56 selection has been used to
obtain clinically applicable numbers of NK cells for immunother-
apy (86). In that study, NK cells were expanded with IL-2 for
10–14 days to achieve the desired cell dose for potential clinical
application in three children with relapsed or refractory leukemia
after haploidentical HSCT.

Natural killer cells can also be expanded with irradiated autol-
ogous feeder cells, IL-2, IL-15, and anti-CD3 antibodies. Using
these systems, NK cells acquire a CD56intCD16int phenotype and
increase an average of 117-fold in 3weeks (65). IL-2 and IL-15
mediate betterNK expansion and viability comparedwith cultures
nurtured with IL-2 only. Importantly, the number of residual con-
taminating T cells may be significantly lower after NK-cell expo-
sure to IL-2 and IL-15 compared with IL-2 alone. NK cells acti-
vated with IL-2 and IL-15 may display higher cytotoxicity against
K562 cells when kept in culture at a low effector-to-target ratio
(66). In order to selectively expand alloreactive NK cells, KIR+

cells can be isolated fromClini-MACS-purifiedCD3−CD56+ NK
cells using cell sorting, and then stimulatedwith the same cytokine
cocktail (65). GMP-sorted and expanded single KIR+ cells were
cytolytic against AML blasts, an effect that was more pronounced
than that mediated by bulk NK cells in an HLA-mismatched
setting.

Interleukin-21 can offer theoretical advantages for the expan-
sion of NK cells. The temporal exposure of IL-2/IL-15-stimulated
NK cells to IL-21 determines the extent to which NK-cell pro-
liferation and function are promoted (87). Specifically, NK cells
stimulated with IL-21 during the first week of culture were
shown to have strong proliferative response and cytotoxic activ-
ity compared with control cultures. The short-term expanded

NK cells had longer telomeres than NK cells maintained with
IL-21 continuously. IL-21 has also been used in combination
with IL-15 to activate HLA-mismatched NK cells derived from
CD34+ hematopoietic progenitors with SCF, Flt3-L, IL-15, and
hydrocortisone (72).

Use of Feeder Cells
While the minimum necessary NK-cell number for therapeutic
efficacy is still controversial, the consistent generation of large
amounts of functional cells is crucial to develop clinical protocols
of adoptively transferred NK cells. Different feeder cell types
have been used to expand NK cells, including irradiated PBMCs,
EBV-transformed lymphoblastoid cell lines (EBV-LCL), gene-
modified K562 cells expressing NK cell-stimulatory molecules
such as 41BB-ligand and mbIL-15 (67). Compared with IL-2-
mediated activation, NK-cell expansion in the presence of feeder
cells may also result in increased anti-tumor cytotoxic functions,
with comparable in vivo survival (69, 88).

K562 cells were transduced with constructs encoding mbIL-15
(IL-15+CD8α) and human 41BB-ligand (both containing green
fluorescent protein). NK-cell recovery was 21.6-fold after 7 days
of culture and increased to 152-fold and 277-fold after 14 and
21 days of culture, respectively. Importantly, the median recovery
ofNK cells was comparable whenmononuclear cells frompatients
with acute leukemia were used in the co-culture. The expanded
NK cells were cytotoxic against both AML cell lines and primary
AML blasts. When compared with IL-2-stimulated NK cells, the
cytotoxicity of expanded NK cells was greater at all effector-to-
target ratios (67). In a mouse model of AML, multiple injections
of expanded NK cells vigorously suppressed leukemia growth,
with some mice achieving long-term control of the disease in the
absence of xenogeneicGVHD. Finally, amaster cell bank of K562–
mb15–41BBL cells was established following GMP guidelines.
The transduced NK cells were used to expand NK cells from
leukapheresis collections at a 1:10 NK cell-transduced K562 cell
ratio. The expansion of NK cells ranged from 33- to 141-fold after
7 days in culture. The overall yield of NK cells was higher than that
observed in small-scale experiments.

A GMP-compliant NK-expansion methodology was also
applied to patients with metastatic melanoma or renal cell carci-
noma. A 278- to 1,097-fold NK-cell expansion was obtained when
OKT3-loaded, 30-Gy-irradiated autologous PBMCs were used
as feeders in AIMV medium containing 10% human AB serum
and 600U/ml IL-2 for 21–26 days. Following adoptive transfer to
patients treated with a lymphodepleting regimen, expanded NK
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cells persisted formultiple days, likely representing themajority of
NK cells in the circulation 1week after infusion (68). Autologous
PBMCs have also been used as feeders for the expansion of NK
cells from healthy donors. Feeder cells obtained from the NK-
depleted fraction of donor leukapheresis collections were used
at a 10:1 feeder/NK-cell ratio for a GMP-compliant expansion
procedure in Baxter LifeCell culture bags containing SCGM Cell-
Gro medium, 5% human AB serum, and 200U/ml IL-2 with
or without IL-15 supplementation. This protocol was successful
in propagating cultured NK cells, which expanded 117± 20-fold
after 19 days in the presence of 10 ng/ml IL-15 (65).More recently,
a similarNK-cell expansion efficiencywas reportedwhenNKcells
from healthy donors or patients with ALL in CR were co-cultured
with autologous PBMCs in CellGro SCGM medium containing
IL-2 and IL-15 (respectively, 34.9- vs. 39.5-fold average expansion
after 14 days) (89).

Allogeneic PBMCs have been used as feeder cells for large-scale
expansion of clinical-grade NK cells (62, 69). Allogeneic PBMCs
and NK cells were co-cultured in X-VIVO 20 medium containing
500U/ml IL-2 (69), or 100U/ml IL-2 and 10 ng/ml IL-15 (62).
In these studies, a similar 80- to 100-fold NK-cell expansion was
achieved in 14–15 days. In an interesting study from Kim and
colleagues, autologous PBMC feeders from cancer patients or
PBMCs from healthy donors were compared (90). Co-cultures
containing PBMCs from healthy donors could more efficiently
propagate NK cells than those containing PBMCs from cancer
patients (respectively, 300- vs. 169.4-fold average expansion after
14 days).

Pittari and colleagues described a novel technique for selec-
tion, deposition, and high-efficiency cloning of individual NK
cells displaying surface receptor repertoires of choice. Cells were
selected by FACS, deposited into U-shaped polystyrene 96-well
plates (one cell per well) containing CellGro SCGM medium
supplementedwith 10%humanAB serum andwithout exogenous
cytokines. Propagation of NK clones from single cells was driven
by trans-presentation of IL-15 by BaF/3 pre-B-lymphocytes dou-
ble transfected with human IL-15Rα and human IL-15 (BaF/3
IL-15Rα/IL-15). Additional feeder cells were EBV-BLCL (JY) and
PBMCs from three allogeneic donors (91). In this pre-clinical
design, the technique allowed for prompt propagation of NK
clones from NK-cell populations potentially involved in the con-
trol of leukemia relapse, i.e., expressing the KIR2DS1 activat-
ing receptor (22), regardless of their frequency (Figure 1). After
3weeks, propagated NK clones typically reached 0.25–4× 106

cells, with an overall cloning efficiency as high as 35–40%.
The replicative potential of NK cells expanded with genetically

modified K562 cells can be further enhanced by enforcing the
expression of human telomerase reverse transcriptase (TERT)
gene (92). After stimulation with K562 cells for 1week, NK cells
were transfected with a retroviral vector containing human TERT.
At variance with the control cultures that underwent replicative
senescence after 16 population doublings, TERT-NK cells contin-
ued to expand in vitro for more than 1,000 days, if periodically
re-stimulated with K562 cells. However, NK cells accumulated
genetic changes at late time-points, including gain in genes on
chromosome 1 and losses in genes on chromosome 16, suggesting

that genetic instability may be a limiting factor in immortalization
of NK cells.

Gas-permeable cell culture devices (G-Rex) are being evaluated
for the expansion of T cells and tumor cells. In these systems, gas
exchange across the base of the culture allows increased volumes
of medium per unit area, augments the rate of cell expansion,
and decreases cell death, minimizing cell manipulation. Using
this strategy, up to 19× 109 functional NK cells were produced
starting from leukapheresis products, within 8–10 days of culture
(93). The contaminating T cells mostly comprised CD8+ T cells
and could be removed by magnetic depletion. When compared
with conventional gas-permeable bags, the G-Rex yielded higher
fold expansions of NK cells, requiring no interimmanipulation or
feeding during the culture period. The NK cells were viable and
functional, even after 12months of cryopreservation.

Use of Cord Blood and Other Stem Cell Sources
to Expand NK Cells
Umbilical cord blood is an emerging source of NK cells for clinical
applications and also provides an in vitro system to analyze NK
development (4). Banked UCB units represent an ideal “off-the-
shelf ” source of NK cells for adoptive immunotherapy. Impor-
tantly, NK cells from PB and UCB differentially express cytokine
receptors, with IL-15Rα being preferentially detected onUCBNK
cells and IL-12Rβ1 and IL-18α receptors being primarily found
on PB NK cells (94, 95). The combination of IL-15 and IL-18 opti-
mally stimulates the proliferation of UCBNK cells and potentiates
the release of IFN-γ andTNF-α. The lower responsiveness ofUCB
NK cells to IL-2 observed in these studies may be the result of
lower expression of IL-2 receptors and of decreased phosphory-
lation of STAT5 as compared with PB NK cells. This implies that,
at variance with PB NK cells that are fully activated by IL-2 alone,
UCB NK cells may require additional cytokine stimuli (96). For
instance, the addition of tacrolimus and low-molecular-weight
heparin significantly enhances NK-cell expansion induced by IL-
2, IL-15, and anti-CD3 mAbs (56). Using this protocol, approxi-
mately 40× 106 NK cells were obtained from 1× 106 unmanip-
ulated UCB cells, in the absence of feeder cells, corresponding
to >1,000-fold expansion. Bioreactors have been used to expand
UCB-derived NK cells as well. This approach resulted into the
generation of a clinically relevant dose of NK cells with >2,000-
fold expansion, purity of >90%, high expression of activating
receptors and cytolytic activity against K562 leukemia cells (55).

It has been shown that UCB-derived NK cells actively migrate
to the BM, spleen, and liver 24 h after infusion in NOD-SCID-IL-
2Rγ-nullmice (97).NK cells were differentiated in 3–4weeks from
CD34+ hematopoietic progenitors exposed to multiple cytokines,
and were found to express CXCR4, CXCR3, and CCR6, which
likely accounted for their ability to home to BM and inflamed
tissues. A single NK-cell infusion combined with in vivo low-dose
IL-15 resulted in inhibition of leukemia growth and prolongation
of mice survival.

Finally, human embryonic stem cells (ESCs) as well as induced
pluripotent stem cells (iPSCs) are potential sources of pheno-
typically mature and functional NK cells (98). ESCs and iPSCs
were first used to produce hematopoietic progenitors with the
“spin embryonic body (EB)” method, in which defined numbers
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FIGURE 1 | Generation of NK clones from individual NK cells
with specific KIR receptor repertoires. (A) Flow cytometry
representation of NK-cell subsets defined by a combination of four
anti-KIR mAbs. In this example, subsets used for FACS-assisted
single-cell deposition express 2DS1, either alone (subset 1, red) or in
combination with at least one receptor among 2DL2, L3, and S2

(subset 2, green) or 3DL1 (subset 3, blue). The percent frequency of
NK-cell subsets is indicated. (B) Representative NK clones obtained
after 3-week in vitro propagation in the presence of IL-15
trans-presentation. E115: 2DS1pos; E78: 2DS1pos/CH-Lpos; E86:
2DS1pos/3DL1pos. For E78, specific KIR(s) can be identified by
real-time RT-qPCR.

of cells were spin-aggregated in serum-free medium. This strat-
egy removed the need for murine stromal support, and led
to hematopoietic cell development and proliferation. Spin EB-
derived cells were then tested in a feeder-free and serum-free
system containing NK-cell promoting cytokines, i.e., IL-3, IL-7,
IL-15, SCF, and Flt3-L. Within the first 2 weeks of culture, both
non-adherent CD31+ endothelial cells and CD73+ mesenchymal
stromal cells were detected. Importantly, NK cells developed in
similar numbers, phenotype, and functional characteristics as
those differentiatedwith the use ofmurine stromal cells (98). Arti-
ficial APCs engineered to express mbIL-21 additionally expanded
NK cells. As the expected requirement for NK-cell adoptive trans-
fer protocols is approximately 2× 107 NK cells/kg (see below),
genetically modified APCs allow the use of a starting population
of <106 ESCs/iPSCs per patient, corresponding to a lower num-
ber of cells compared with that required for NK-cell expansion
from the PB.

Use of Genetically Engineered NK Cells
Although lentiviral (LV) vectors have been successfully used to
transduce both T cells and NK-cell lines, LV transduction of both
freshly isolated and ex vivo-expanded NK cells may be challeng-
ing. Chimeric antigen receptors (CARs) are synthetic engineered
receptors that target surface molecules in their native conforma-
tion, independent of MHC and of antigen processing by the target
cells (99). The generations of CARs are typically classified based
on the intracellular signaling domains, with first-generationCARs
including only CD3ζ, second-generationCARs including one sin-
gle costimulatory domain and third-generation CARs including
two costimulatory domains, such as CD28 and 41BB.

Natural killer cells can be transduced with mRNA encoding for
anti-CD19 CARs. The expression of a receptor containing CD3ζ
and 41BB signaling molecules (anti-CD19-BB-ζ) was induced
in human NK cells with a clinical-grade electroporator. The
cytotoxicity of the transfected NK cells was evaluated both in vitro
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and in a mouse model of leukemia. Receptor expression was
already detectable 6 h after electroporation, reaching maximum
levels at 24–48 h. Toxicity against CD19-expressing targets was
specifically observed at 96 h. Median anti-CD19-BB-ζ expression
24 h after electroporation was 40.3 and 61.3% in freshly purified
and in expanded NK cells, respectively. NK cells expressing anti-
CD19-BB-ζ secreted IFN-γ in response to CD19+ target cells
and had enhanced cytotoxicity against B-cell malignancies (100).
Transduced NK cells were consistently more cytotoxic than non-
transduced NK cells. A large-scale, GMP-compliant protocol was
also developed and showed that median percentage of geneti-
cally modified NK cells with receptor expression was 82% after
24 h. NK cells transfected under these conditions exerted in vivo
cytotoxicity in NSG mice with B-cell leukemia, and suppressed
leukemia progression compared withmice inoculated withmock-
transfected NK cells (100). Interestingly, NK cells can acquire
anti-CD19 CARs from donor cells via trogocytosis (101). When
co-cultured with live K562 cells transduced to express anti-CD19-
BB-ζ, NK cells acquired anti-CD19 CARs, peaking at 1 h and
declining thereafter. NK cells displayed enhanced degranulation
in response to leukemia cell lines compared with NK cells co-
cultured with control cells.

Genetically modified NK-cell lines, such as NK-92 cells, have
been tested for in vitro and in vivo efficacy against MM. IL-
2-independent derivatives of NK-92 cells, i.e., NK-92MI cells,
have been transduced with a first-generation CAR targeting
CD138, an integral membrane protein expressed on differen-
tiated plasma cells (102). Genetically modified NK-92MI cells
harbored a CAR consisting of an anti-CD138 single-chain vari-
able fragment (scFv) fused to CD3ζ chain. The retargeted NK
cells (NK-92MI-scFv) released IFN-γ and granzyme-B, and lysed
CD138-expressing MM cell lines. When assayed in a xenograft
NOD-SCID mouse model, transduced NK cells exerted more
potent anti-tumor activity toward CD138-expressing MM cells
than NK-92MI-mock. Importantly, NK cells could be detected in
theMMmicroenvironmentmore than 20 days after their adoptive
transfer.

CS1 is another surface protein highly expressed on MM cells
and is amenable to targeting with CS1-specific CARs (103). CS1
co-localizes with CD138 on polarized plasma cells where it pro-
motes adhesion, clonogenic growth, and tumorigenicity. Com-
pared with mock-transduced NK cells, CS1-CAR-transduced NK
cells had increased cytotoxic activity against CS1-expressing MM
cells and showed heightened IFN-γ production. In an orthotopic
MM xenograft model, adoptively transferred CS1-CAR-NK-92
cells suppressed the growth of human IM9 MM cells and sig-
nificantly prolonged mouse survival (103). Overall, studies with
CAR-NK cells point to the efficacy of this approach. The safety
profile of CAR-NK cells may be advantageous compared with that
of CAR-T cells, because of lack of in vivo clonal expansion and
cytokine storm. Also, CAR-NK cells should not induce GVHD,
while potently mediating GVL effects.

Natural killer cells can also be transduced to express mbIL-15
(104). Compared with NK cells expressing wild-type IL-15, mbIL-
15NK cells secreted low amounts of IL-15 in culture supernatants.
Membrane-bound IL-15 appeared to be mostly occupying
autologous receptors, suggesting that mb-IL-15 preferentially
stimulates cells in cis, i.e., by direct binding to receptors expressed

in the same cell. Genetically modified NK cells were maintained
and expanded in culture without exogenous IL-2. When tested
in vitro and in vivo, mbIL-15NK cells displayed enhanced survival
and cytotoxicity, being capable of inhibiting the growth of AML
and sarcoma cells in NOD-SCID IL-2Rγ-null mice.

A complementary approach to existing methods of genetic
modification of NK cells is offered by a retroviral vector-based,
gene transfer protocol (105). Using a SFα11GFP viral vector,
transduced NK cells were visible as GFP-expressing cells by flu-
orescence microscopy. The median transduction efficiency after
one or two rounds of transduction was 27 and 47%, respectively.
On day 21 of culture, transduction efficiencies averaged 52 and
75%, respectively. The gene transfer procedure did not affect NK-
cell phenotype or function, suggesting that retroviral vectors can
be successfully applied to immunotherapy trials.

Clinical experience with CAR-engineered NK cells is in its
infancy (106). Two clinical trials are currently open with the aim
at exploring the therapeutic benefit of haploidentical NK cells
modified with anti-CD19 CARs in children with B-cell precursor
ALL (ClinicalTrials.govNCT00995137) and in children and adults
with refractory ALL (ClinicalTrials.gov NCT01974479). In these
studies, NK cells will be expanded by co-culture with irradi-
ated K562 cells modified to express mbIL-15 and 41BB-ligand.
The expanded NK cells will be then transduced with a signaling
receptor that binds to CD19 (anti-CD19-BB-ζ).

Use of Expanded NK-Cell Lines
SeveralmalignantNK-cell lines have been established andused for
clinical trials in China, Japan, andWestern Countries, as reviewed
elsewhere (107). A potential drawback of this approach is that
differences in HLA molecules across different ethnicities may
translate into the production of HLA-specific antibodies by the
recipient. NK-92 cells, the most extensively characterized NK-cell
line, were established in 1994 from the PB of a male Caucasian
patient with non-Hodgkin lymphoma, are IL-2-dependent and
harbor a CD2+CD56+CD57+ phenotype (108–112). The adop-
tive transfer of NK-cell lines has theoretical advantages related
to lack of expression of inhibitory KIRs, lack of immunogenicity,
and ease of expansion. The optimal conditions for large-scale
ex vivo expansion of NK-92 cells were recently defined. The
protocol uses X-VIVO 10 serum-free media, supplemented with
450U/mL of pharmaceutical grade rhuIL-2, and 2.5% allogeneic
or autologous human serum or plasma (64). Cells maintained in
gas-permeable culture bag systems with regular addition of fresh
supplemented media achieve >200-fold expansion in 15–17 days,
from a starting population of 6.25× 106 cells to approximately
1.5× 109 total cells per 1 L-culture. Patients with solid tumors
or leukemia/lymphoma (n= 2) were treated with two infusions
of escalating doses of NK-92 cells given 48 h apart, with no
infusion-related or long-term side effects being observed (63).
NK-92 cell doses ranged from 1× 109 to 1× 1010 cells/m2. The
dose of 1010 cells/m2 was considered the maximum expandable
cell dose. NK-92 cells persisted in vivo for at least 48 h, as shown
by Y chromosome-specific PCR in two female patients. Some
responses were observed in patients with lung cancer. Only one
patient developed anti-HLA antibodies, despite the allogeneic
nature of NK-92 cells. NK-92 cells (Neukoplast®) will continue
to be tested in patients with solid tumors, e.g., Merkel cell
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cancer and renal cell carcinoma, and with hematological malig-
nancies1 (Table 1).

Since several decades, EBV-immortalized B-lymphoblastoid
cells (EBV-BLCL) are known to robustly support NK cell in vitro
expansion and anti-tumor activity (113–115). Escudier and col-
leagues used 35-Gy-irradiated LAZ 388 EBV-BLCL for the ex vivo
expansion of NK cells from patients with metastatic renal cell
adenocarcinoma. NK cells were initially cultured in V-bottom
microplates, at a 4:1 feeder cell to NK-cell ratio, in DMEM
medium supplemented with 200U/mL IL-2. Two to five days
before clinical use, NK cells were transferred to Baxter bags, where
they received an additional 250U/ml IL-2 boost. On average,
expansion of culturedNK cells was limited to 50-fold after 21 days.
However, some clinical responses were observed when autologous
NK cells were used as consolidation treatment for patients in
partial remission (116). Berg and co-workers described a GMP-
compliant protocol involving a 20:1 EBV-BLCL feeder to NK-
cell ratio and 500U/ml IL-2. This system allowed for a 300- to
930-fold NK-cell expansion. EBV-BLCL feeders prevalently drove
such an extensive phenomenon, as the use of PBMCs in similar
conditions yielded inferior results (69). Based on this protocol,
a phase I clinical trial is currently investigating technical fea-
sibility and clinical efficacy of large-scale NK infusions (up to
1× 109/kg) in cancer patients receiving bortezomib administered
with the scope of increasing susceptibility of tumor cells to NK-
mediated lysis (117, 118).

K562 engineered to express mbIL-15 and 41BB-ligand (K562–
mb15–41BBL) may be used to efficiently propagate NK cells
with enhanced anti-leukemia properties. NK cells typically reach
a >20-fold expansion after 7 days of co-culture, and a >1,000-
fold expansion after 3weeks, with no concomitant T cell prop-
agation (67, 119). NK cells from patients with MM may also
efficiently growwhen co-culturedwithK562–mb15–41BBL (120).
When grown in GMP-compliant gas-permeable static cell culture
flasks (G-Rex), as many as 19 billion unmanipulated NK cells
can be obtained in 8–10 days starting from 150million NK cells
(93). Importantly, K562–mb15–41BBL cells have been success-
fully used to expand NK cells transduced with an anti-CD19-BB-
ζ CAR, which display enhanced reactivity to CD19+ leukemia
cells (119). Similar to K562–mb15–41BBL, K562 genetically mod-
ified to express mbIL-21, or to co-express the ligand for 41BB
and the NKG2D ligand MICA (K562–4-1BBL–mMICA), have
been shown to promote large-scale expansion of NK cells with
enhanced anti-tumor in vitro reactivity (121–123).

Impact of Expansion Methods on NK-Cell
Function and Homing Potential
There are theoretical concerns that extensive in vitro expan-
sion may affect the replicative potential and long-term viability
of in vivo-infused NK cells. For instance, both Fas expression
and susceptibility to apoptosis are increased after culture of NK
cells with IL-2 or with feeder cells (124). In addition, expanded
NK cells down-regulate receptors required for homing into sec-
ondary lymphoid organs, such as CCR7, a member of the G

1http://www.conkwest.com/nk-92

protein-coupled receptor family, and CD62L. In line with this,
NK cells expanded with genetically modified K562 cells were
shown to predominantly express a CD16+CD56+ phenotype,
with no detectable CCR7 (125). To obviate this, NK cells have been
cultured with genetically modified, IL-21/CCR7 expressing K562
cells. These culture conditions reportedly resulted into transfer of
CCR7 to 80%of expandedNK cells by trogocytosis, a fast, contact-
dependent uptake of membrane fragments, and molecules from
“donor” to “acceptor” cells (126). CCR7 conferred migratory
properties to NK cells by enhancing lymph node homing upon
adoptive transfer to athymic nude mice. NAM dose-dependently
increases CD62L expression on IL-2/IL-15-stimulated NK cells
(82). NK cells expanded with NAM displayed better in vitro
cytotoxic activity against a variety of tumor cell lines, including
leukemia cells, and enhanced homing, aswell as in vivopersistence
in NOD-SCID mice.

Recently, two GMP-grade NK cells products manufactured
at different production assistance for cellular therapies (PACT)
facilities were evaluated for homing characteristics, i.e., freshly
activated (FA)-NK, used by the Minnesota group, and ex vivo-
expanded (Ex)-NK, developed by the Baylor College of Medicine
group (93, 127). Although the two preparations had phenotypic
differences, cytotoxicity against NK-sensitive targets was simi-
lar. In vivo recovery after the infusion of thawed products was
lower compared with the infusion of fresh NK cells. Whereas
the negative impact of cryopreservation on FA-NK was rescued
by overnight culture with IL-2, this strategy was less effective on
Ex-NK cells, suggesting the need for optimized cell processing
methods (127). NK cells could be detected at day 7 but failed to
further expand between day 7 and day 14. Interestingly, higher
numbers of functional NK cells with enhanced expression of
NKG2A were recovered in mice infused with Ex-NK cells and
given IL-15. The homing pattern of the twoproductswas different,
with higher numbers of NK cells being detected in the BM ofmice
given Ex-NK cells and IL-15 compared with Ex-NK cells and IL-2.
Conversely, mice receiving FA-NK cells had more NK cells in the
spleen when given IL-15. This study emphasizes the importance
of continued cytokine stimulation for ex vivo-expanded cells,
and suggests that differences in the manufacturing process affect
in vivo homing and clinical efficacy of the NK-cell product.

Clinical Trials with NK Cells in
Hematological Malignancies

Autologous NK Cells
Early clinical studies exploited LAK-based immunotherapy in the
autologous setting. One hundred eight patients with refractory
metastatic cancer received LAK cells generated from autologous
PBMCs incubated with 1,000U/ml IL-2 for 3–4 days. Systemic
high-dose IL-2 was given to support LAK cells in vivo (128,
129). Objective tumor regression occurred in 22% of 106 evalu-
able patients. Median response duration was 10months for eight
patients achieving complete remission (CR). Further prospective
studies assessing the therapeutic effects of high-dose IL-2 and
LAK cells indicated a possible survival advantage for patients with
melanoma treated with LAK cells (130).
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Immunotherapy with systemic IL-2 and autologous LAK cells
was also given as consolidation treatment after autologous bone
marrow transplantation (BMT). Sixteen patients with lymphoma
received, 12–14 days post-transplantation, LAK cells generated
from PBMCs incubated with IL-2 for 5 days (131). In a similar
setting, NK cells obtained prior to transplant and activated with
IL-2 for 6 days were infused into 12 patients with advanced can-
cer and post-BMT pancytopenia (132). Concomitant with NK-
cell transfer, sequential high to low-dose systemic IL-2 was also
administered for over 90 days. This approach was well tolerated
and resulted in the early enhancement of NK-cell activity in four
recipients (132).

In general, trials with high-dose systemic IL-2 to support cir-
culating LAK or NK cells were limited by severe and potentially
lethal toxicities (e.g., vascular leak syndrome, oliguria, hypoten-
sion,myocardial infarction), counterbalancing the beneficial anti-
cancer effects of LAK activity (129, 131, 132). On the other
hand, chronic low-dose IL-2 treatment was relatively well toler-
ated (133–135), but unable to activate NK cells as robustly as
high-dose ex vivo IL-2, or IL-2 at concentrations that engage the
intermediate-affinity IL-2 receptor on NK cells (134, 136, 137).
Subsequent studies sought to maximize NK-mediated anti-tumor
effects. Ex vivo IL-2-activated NK-cell infusions were compared
with supplemental intravenous IL-2 boluses on days 28 and 35
during daily subcutaneous IL-2 administration in patients with
relapsed lymphoma or metastatic breast cancer. Both treatment
conditions induced strong NK-cell anti-tumor reactivity, and
boosted circulating cytokines, without any consistent impact on
clinical outcome compared withmatched patients from the Autol-
ogous Blood and Marrow Transplant Registry database (138).

The proliferation potential of NK cells isolated from cancer
patients may be similar to that of NK cells from healthy donors,
reassuring about the feasibility of manufacturing autologous NK-
cell products. Although autologous NK cells persist in vivo for at
least 1 week after infusion, they express lower levels of NKG2D, a
key activating receptor, and may necessitate in vitro re-activation
with IL-2 to lyse tumor targets (68).

Collectively, the analysis of phase II immunotherapy studies
with autologous NK cells failed to show efficacy (139). Several fac-
tors may have accounted for the disappointing results, including
competition with the recipient’s lymphocytes for cytokines and
“space”; inhibition of autologous NK cells by self-MHC (30, 140,
141); chronic immunosuppression induced by the tumor on host
immunity; and expansion of Treg cells by IL-2 (127). Autologous
NK cells are currently being tested in patients with hematological
malignancies and solid tumors (NCT00720785; Table 2) (142).
In this trial, which is recruiting participants, patients will receive
immune suppressive therapy with pentostatin, followed by
bortezomib to sensitize tumor cells to NK cytotoxicity (143),
escalating doses of autologous NK cells and IL-2.

Allogeneic NK Cells
Initial clinical trials on allogeneic T-cell depleted (TCD) hap-
loidentical HSCT for patients with AML showed enhanced NK-
mediated cytotoxicity when KIR-HLA class I mismatch occurred
(23). In 2005, Miller and co-workers administered haploidentical
NK cells in a non-transplantation setting to 43 patients with

advanced cancer. Three pharmacological regimens of different
intensity were used to prevent immunological rejection (57). After
a single leukapheresis, CD3+ T cells were depleted under GMP
conditions using CD3 microbeads. The TCD product was acti-
vated overnight with IL-2 before infusion. NK cells were enriched
to 40% on average after processing. The final IL-2-activated prod-
uct contained an NK-cell dose of 8.5× 106 cells/kg of recipient’s
body weight and a final T-cell dose of 1.75× 105 cells/kg. A low-
intensity immune suppressive regimen was administered on an
outpatient basis to the first 17 patients, followed by the infusion of
escalating doses ofNK cells. Importantly, no dose-limiting toxicity
occurred in this patient cohort. Using RT-PCR primers for donor-
specific MHC class I alleles, donor cells were shown to persist
for 5 days and to comprise <1% of circulating PBMCs, likely
due to immune rejection. Alternative low-intensity (fludarabine
alone) and high-intensity immune suppressive regimens (high-
dose cyclophosphamide and fludarabine) were subsequently used
in seven patients with renal cell carcinoma and 19 patients with
poor-prognosis AML, respectively. None of the patients given
fludarabine alone engrafted with donor NK cells. By contrast, 8 of
15 evaluable patients with AML showed at least 1% engraftment of
donor cells after NK-cell infusion. Overall, five patients achieved
a morphological CR. Among the four patients with a KIR-ligand
mismatch in the graft-versus-host direction, three achieved CR.
This was paralleled by the observation that CR was obtained only
in 2 of 15 patients without alloreactivity. Finally, IL-15 serum lev-
els were significantly higher in patients receiving higher-intensity,
lymphodepleting immune suppression, suggesting that a rise in
endogenous IL-15 may be required for the in vivo expansion and
persistence of infused NK cells.

Subsequent studies suggested the possibility that IL-2 admin-
istered after NK infusions also expands Treg cells, potentially
interfering with in vivo NK-cell proliferation (76). To address
this issue, IL-2 diphtheria toxin (IL-2DT) was administered to 15
patients with relapsed/refractory AML, 1 day before the enriched
NK product (145). IL-2DT is a recombinant cytotoxic fusion pro-
tein composed of the amino acid sequences for diphtheria toxin
followed by truncated amino acid sequences for IL-2. IL-2DT
reportedly depletes IL-2 receptor α-chain (CD25)-expressing
cells, including Treg cells. In this study, three processing methods
were used to prepare NK-cell products, including CD3 depletion
alone, CD3 depletion followed by CD56 selection, and single-step
CD3/CD19 depletion. Higher NK-cell doses were obtained after
depletion of CD3+ and CD19+ cells from a 5-h donor apheresis
collection. Among the 42 patients who did not receive host Treg
depletion, 21% achieved remissions. By contrast, Treg depletion
with IL-2DT resulted in remissions at day 28 for eight of 15
patients (53%). The magnitude of NK-cell expansion was also
higher after Treg depletion. The ability of IL-2DT to deplete Treg
cells was further supported by reductions in serum IL-35 concen-
trations 14 days after adoptive transfer. Finally, 7 out of 10 patients
(70%) with detectable donor NK cells attained CR by day 28
compared with only 1 of 5 patients (20%) lacking detectable donor
NK cells at day 7, suggesting that NK-cell persistence is required
for clinical efficacy. Interestingly, this study showed no correlation
between achievements of CR- and KIR-ligand mismatch.
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TABLE 2 | Completed and ongoing clinical trials with NK cells for patients with hematological malignancies are listed.

Pts. Diagnosis NK-cell preparation Status Clinical site Reference(s)/
NCI Identifier

10 Children with
MRD-negative AML

Conditioning with cyclophosphamide and
fludarabine; inhibitory KIR-HLA-mismatched
NK cells to reduce relapse risk; 6 doses of
1-million U/m2 IL-2 starting on day -1

Published St Jude Children’s Research
Hospital, Memphis, TN, USA

(59)

6 Leukemia, LY Immunotherapy with NK cells,
rituximab+GM-CSF; phase I

Completed (08/12) M.D. Anderson Cancer
Center, Houston, TX USA

NCT00383994

30 Lymphoma CD56 selection Published Duke University, NC, USA (144) NCT00586690

22 AML, MDS, JMML Haploidentical donor-derived NK cell infusion
and chemotherapy (CY, FLU, IL-2)

Completed (04/14) St Jude Children’s Research
Hospital, Memphis, TN, USA

NCT00640796

13 AL, LY, MY Allogeneic NK cells post-ABMT; phase I Completed (06/12) Tufts Medical Center, Boston,
MA, USA

NCT00660166

48 ALL, JMML, AML,
MDS, NHL

Haploidentical NK cells after chemotherapy
with clofarabine, CY, and etoposide; IL-2;
phase I

Completed (03/13) St Jude Children’s Research
Hospital, Memphis, TN, USA

NCT00697671

13 AML NK cells from haploidentical KIR-ligand
mismatched donors after FLU/CY
chemotherapy, followed by IL-2; phase I

Published Univ. of Bologna, Italy (75)

14 BCP-ALL Gene-modified NK cells; phase I Not recruiting St Jude Children’s Research
Hospital, Memphis, TN, USA

NCT00995137

86 Hematological
malignancies

NK cells after MRD or MUD HSCT in children
with solid tumors and leukemia; phase I

Recruiting NCI, Bethesda, MD, USA NCT01287104

13 Hematological
malignancies

NK cells and UCBT; phase I Recruiting M.D. Anderson Cancer
Center, Houston, TX, USA

NCT01619761

90 High-risk AML Donor NK cells and IL-2 before HSCT with
CD34+ cells and RIC; phase I/II

Active, not recruiting Masonic Cancer Center,
University of Minnesota

NCT00303667

6 CD20+ relapsed
NHL or CLL

Allogeneic NK cells; CY, FLU and rituximab
followed by IL-2; phase I/II

Published Masonic Cancer Center,
University of Minnesota

(76)

6 Relapsed NHL or
CLL

Donor NK cells, rituximab, IL-2 and
chemotherapy; phase I/II

Terminated early [failure to
meet primary outcome
(NK expansion)]

Masonic Cancer Center,
University of Minnesota

NCT00625729

47 Hematological
malignancies

Donor NK cells after haploidentical HSCT;
phase I/II

Completed (02/13) Asan Medical Center, Seoul,
Korea

NCT00823524

10 MM In vitro-expanded haploidentical NK cells;
phase I/II

Recruiting University Hospital, Basel,
Switzerland

NCT01040026

15 Hematological
malignancies (and
solid tumors)

Pre-emptive NK-DLI early after HSCT;
phase I/II

Active, not recruiting University Hospital, Basel,
Switzerland

NCT01386619

33 High-risk AML in CR,
not eligible for HSCT

CNDO-109-activated allogeneic NK cells;
phase I/II

Ongoing; preliminary
results (7 patients)
presented at 2014 ASH
Meeting

United States (multi-center) NCT01520558 and
ref. (77)

30 AL, MDS HLA-haploidentical NK cells following
salvage chemotherapy for patients who have
relapsed or persistent leukemia following
allogeneic HSCT; phase II

Ongoing, not recruiting Memorial Sloan-Kettering
Cancer Center, NY, USA

NCT00526292

2 Relapsed ALL Haploidentical NK cells+ epratuzumab and
low-dose IL-2; phase II

Terminated (slow accrual) M.D. Anderson Cancer
Center, Houston, TX, USA

NCT00941928

(145)

34 NHL, CLL Lymphodepleting chemotherapy with
rituximab and allogeneic NK cells; phase II

Recruiting Masonic Cancer Center,
University of Minnesota

NCT01181258

43 AML, MDS NK-cell-based non-myeloablative
haploidentical HSCT; phase II

Recruiting Masonic Cancer Center,
University of Minnesota

NCT01370213

6 CML NK cells and non-myeloablative HSCT;
phase II

Completed (11/14) M.D. Anderson Cancer
Center, Houston, TX, USA

NCT01390402

(Continued)
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TABLE 2 | Continued

Pts. Diagnosis NK-cell preparation Status Clinical site Reference(s)/
NCI Identifier

46 MDS Decitabine and vorinostat conditioning
followed NK cell infusion and IL-2; phase II

Recruiting Masonic Cancer Center,
University of Minnesota

NCT01593670

18 Refractory/relapsed
AML

Neukoplast™ (NK-92); 1-5×109/m2;
phase I

Recruiting Conkwest, Inc. NCT00900809

15 Hematological
malignancies

Neukoplast™ (NK-92), 1-5×109/m2;
relapse after autologous HSCT; phase I

Recruiting University Health Network,
Toronto

NCT00990717

16 AL, MDS NK cells and IL-2 before UCBT; phase II Terminated (competing
study started)

Masonic Cancer Center,
University of Minnesota

NCT00354172

18 LY or solid tumors Ex vivo-expanded allogeneic NK cells
(MG4101); phase I

Completed (03/13) Seoul National University
Hospital, Korea

NCT01212341

N.A. Hematological
malignancies, solid
tumors

Autologous NK cells 24h after treatment with
bortezomib; IL-2; phase I

Recruiting National Heart, Lung, and
Blood Institute, MD, USA

NCT00720785

AML, acute myeloid leukemia; MRD, minimal residual disease; ALL, acute lymphoblastic leukemia; LY, lymphoma; MY, multiple myeloma; JMML, juvenile myelomonocytic leukemia;
NHL, non-Hodgkin lymphoma; CY, cyclophosphamide; FLU, fludarabine; UCBT, umbilical cord blood transplantation; RIC, reduced intensity conditioning; MRD, matched related donor;
MUD, matched unrelated donor; NCI, National Cancer Institute; ASH, American Society of Hematology. *Clinical-grade CTV-1 lysate that primes NK cells ex vivo; see main text for
further details. N.A. , not available. www.clinicaltrials.gov website, last accessed March 2015.

Haploidentical, KIR-ligand-mismatched NK cells have been
safely infused in elderly patients with high-risk AML, with some
evidence of clinical benefit, especially for patients treated in CR
or for those with molecular disease relapse (75). Approximately,
40%of the screened patients had aKIR-ligand-mismatched donor,
suggesting that this strategy may be applicable to a signifi-
cant proportion of patients with AML. Another study attempted
to exploit KIR-ligand-mismatched NK cells from haploidentical
family donors in patients with relapsed MM (74). The apheresis
products were TCD and then cultured with IL-2, either overnight
or during incubation with anti-CD3 beads. Patients received
melphalan and fludarabine as conditioning regimen. After NK-
cell infusion, IL-15 levels increased. The response rate (RR)
was 50%, with no patient developing GVHD. However, donor
chimerismwas eventually lost in conjunction with the appearance
of host–anti-donor immune responses. The clinical application of
allogeneic NK cells to patients with MM is further encouraged
by the observation that most MM cell lines are susceptible to NK
attack in vitro, showing no evidence for HLA class I loss (146).

Resting human NK cells can be primed to kill NK-resistant
tumor cells by co-incubation with a clinical-grade lysate of the
leukemia cell line CTV-1 (CNDO-109). CNDO-109-activatedNK
cells remain primed, with no requirement for IL-2 treatment, and
can be cryopreserved. The safety, outcome and NK chimerism
data from an ongoing phase I/II transitional clinical trial of
CNDO-109-NK cells have been recently reported (77). This 3× 3
dose-escalation phase 1 studywas opened in 2013 for patients with
high-risk AML in first CR and with no conventional treatment
options available. Patients received preparative chemotherapy
consisting of cyclophosphamide and fludarabine on study day-6
to -2, followed by a single dose of CNDO-109-activated NK cells
on day 0. Patients were given different doses of NK cells (cohort
1= 3× 105, cohort 2= 1× 106, and cohort 3= up to 3× 106

cells/kg). CNDO-109-NK cells were manufactured from a single
apheresis collection fromHLA-haploidentical-related donors. NK

cells were isolated with anti-CD56 microbeads and co-incubated
overnight with CNDO-109 lysate under GMP conditions (Coro-
nado Biosciences)2. Residual T-cell contamination (defined as
<104 cells/kg patient body weight) was considered a safety cri-
terion for lot release. Seven eligible patients were enrolled. No
infusion-related toxicities or adverse events directly attributed to
NK therapy were observed, including GVHD. Patients experi-
enced transient myelosuppression lasting approximately 2weeks.
Three patients relapsed early post-treatment (average time to
relapse from CR1 being 104 days). In five of seven evaluable
patients, persistence of activated donor NK cells was observed
from day 7 post-infusion to as late as day 56 in one patient. The
comparison of donor and patient endogenous NK cells showed
a mature activated phenotype of donor NK cells. Two of the
three patients evaluated had persistence of low levels of activated
autologous NK cells (~10–20% of circulating NK cells), exceed-
ing the numbers circulating pre-treatment. This observation may
indicate that NK-cell therapy induces endogenous NK activation
and enhances innate immunity to AML in the absence of exoge-
nous cytokine administration. When the study was published in
abstract form, four of the seven patients enrolledwere relapse-free.

Natural killer cells have also been administered pre-emptively
to patients with high-risk cancer, after TCD haploidentical HSCT
(73). Sixteen patients were treated in a prospective phase II
study with purified NK cells on day 3, 40, and 100 after HSCT.
The median dose of NK cells was 12.1× 106/kg. With a median
follow-up of approximately 6 years, 4 out of 16 patients were
alive. The four patients who developed acute GVHD had received
>0.5× 105/kg contaminating T cells. Compared with a historical
cohort of patients treated with haploidentical HSCT without NK
donor lymphocyte infusions (DLIs), NK cells apparently exerted
no effect on disease relapse.

2http://www.coronadobiosciences.com/research-development/cndo-109.cfm
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Trials in Children and Young Adolescents
A landmark study from St. Jude Children’s Hospital (NKAML)
has shown the safety, feasibility, and engraftment potential of hap-
loidentical NK cells for children with favorable and intermediate-
risk AML (59). Patients received a mild conditioning regimen,
consisting of cyclophosphamide (60mg/kg on day-7) and flu-
darabine (25mg/m2/day from day-6 to -2), followed by KIR-
HLA-mismatched NK cells (median number of cells infused
29× 106/kg) and six doses of IL-2 (1× 106 U/m2). Donor PBMCs
obtained by leukapheresis were depleted of CD3+ T cells and then
enriched for CD56+ cells. The manipulated product contained a
very low number of contaminating B cells and T cells. The result-
ingNK population was infused fresh, without any incubationwith
IL-2.All patientswere inCR, as shownbyminimal residual disease
status. NK infusions werewell tolerated, with noGVHDobserved.
NK-cell engraftment was transient in all patients, with a median
peak NK-cell chimerism of 7%. One patient had prolonged NK
engraftment with 2% of donor NK cells being detected at day 189,
in association with delayed neutrophil and platelet engraftment.
With a median follow-up of approximately 32months, all patients
remained in remission. The 2-year EFS estimate was 100%.

The therapeutic potential of NK cells has also been tested in
young adolescents. A two-step T-cell depletion strategy with a
final CD56 enrichment step was pursued to isolate NK cells from
steady-state leukapheresis collections (147). Purified NK cells
were expanded for 2weeks inX-VIVO10mediumcontaining 10%
human AB serum and 1,000U/ml IL-2. This procedure resulted
in a median 95% NK-cell purity, 99% viability, and enhanced
cytotoxicity against the K562 line as well as primary leukemic
blasts obtained from patients. T-cell contamination was negligible
(<0.1%). Three childrenwithmultiply relapsedALL orAMLwere
treated with IL-2-stimulated NK cells after haploidentical HSCT.
Directed KIR mismatches in the GVL direction were present in
all three cases. Remission was achieved in all cases, although
patients ultimately died of infectious complications or disease
relapse. Another study in children and young adolescents with
ultra-high-risk solid tumors has shown that donor-derived NK
cells activated with IL-15 and 41BBL can be safely administered
after HLA-matched TCD HSCT (148). NK cells displayed potent
killing capacity. However, five of nine transplant recipients devel-
oped acute GVHD, with grade III GVHD being observed in three
patients. The unexpected occurrence of GVHD in this report
may be attributed to timing of NK-cell infusion, lack of post-
transplantation immune suppression or activation of NK cells that
were expanded on IL-15-secreting feeder cells (149). The obser-
vation that GVHD developed in all four patients given unrelated
donor transplants compared with one of five patients given related
donor transplants points to a T-cell-driven mechanism, mediated
by minor antigens and accentuated by the infused NK cells.

In vivo Targeting of NK Cells with Antibodies
IPH2101 is a first-in-class, non-depleting human IgG4 mAb
directed against inhibitory KIRs, and functions by blocking
inhibitory KIR–ligand interactions, leading to restored or aug-
mented NK-cell function against tumor cells. A phase I trial of
IPH2101 (#NCT00552396) was conducted in 32 patients with
relapsed/refractory MM (150). IPH2101 was given intravenously

every 28 days in sevn dose-escalated cohorts (0.0003–3mg/kg)
for up to four cycles. This study identified doses of IPH2101,
which conferred KIR2D occupancy in vivo, with no concomitant
dose-limiting toxicity or identification of a maximally tolerated
dose (MTD). With one exception, adverse events were mild and
transient and mainly consisted of self-limited infusion reactions.
Although IPH2101 enhanced ex vivo patient-derived NK-cell
cytotoxicity against MM, no objective responses were observed.
Another phase I study of escalating doses of IPH2101 in 23 elderly
patients with AML in first CR showed a correlation between
IPH2101 exposure andKIR occupancy (151). Adverse events were
mild and transient, consisting mainly of infusion syndrome and
erythema. The study drug did not affect the numbers and distri-
bution of lymphocyte subsets and NK cell receptor expression. At
the highest dose levels, TNF-α andMIP-1β serum concentrations,
as well as CD69 expression on NK cells, transiently increased.
Overall and relapse-free survival compared favorably to reports
in other patient populations with similar characteristics (151).

An immunization study of transgenic mice bearing human
immunoglobulin loci with different combinations of KIR2DLs
has recently led to the identification of the 1-7F9 mAb, based on
binding to soluble, recombinant KIR2DL1, -2, and -3 by ELISA
(152). The 1-7F9 antibodies bind to human NK cells, γδ+ T
cells, and CD8+ T cells, consistent with KIR expression patterns.
Using in vitro assays, 1-7F9 blocked the binding of HLA class I
to inhibitory KIR2DLs, augmenting NK cell-mediated killing of
HLA-C-expressing targets. 1-7F9 also enhanced the cytotoxicity
of NK cells from an HLA-C-matched donor against AML blasts.
Pre-treatment with 1-7F9 of patient-derived NK cells translated
into a two- to threefold increase in cytotoxicity against autol-
ogous AML cells. Finally, studies in NOD-SCID mice showed
that 1-7F9 potentiates NK-mediated killing and promotes mice
survival compared with co-infusions of NK cells and AML blasts
alone (152).

Bi-Specific and Tri-Specific Antibodies
A novel class of therapeutics uses either all or part of the antibody
structure to deliver enhanced effector activity to the tumor site.
The fusion of two (bi-specific) or three (tri-specific) portions
of the fragment of antigen-binding (Fab) region of a traditional
antibody yields reagents with high level of antigen specificity
and cross-links tumor antigens with potent immune effectors.
Bi-specific killer engagers (BiKEs) are constructed with a single-
chain Fv against CD16 and a single-chain Fv against a tumor-
associated antigen. The mechanisms by which BiKEs and TriKEs
potentiate NK effector functions include intracellular calcium
mobilization through direct CD16 signaling (153). Co-culture
of reagent-treated resting NK cells with Raji targets also trans-
lates into increased NK-cell degranulation, target cell death, and
NK production of IFN-γ, TNF-α, GM-CSF, IL-8, MIP-1α, and
RANTES.

Fully humanized CD16× 33 BiKEs have been shown to trig-
ger NK-cell activation in vitro against CD33+ AML cell lines
and primary refractory CD33+ AML targets (154). Combina-
tion treatment with BiKEs and ADAM17 inhibitor to prevent
CD16 shedding further enhanced NK-cell function. BiKEs were
also effective at activating NK cells from recipients of double
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UCB transplantation. BiKEs enhance degranulation and cytokine
production by NK cells derived from patients with myelodys-
plastic syndromes and cultured with CD33+ AML cell lines,
irrespective of disease stage and age stratum (155). A poten-
tial drawback of this approach is the relatively short half-
life of the antibody constructs, with limited trafficking to the
tumor site.

Other Approaches to Target NK Cells In vivo
A first in-human trial of Escherichia coli-produced rhIL-15
has been recently published (156). The primary objectives of
this single-institution, open-label, non-randomized 3+ 3 design,
phase I dose-escalation study were to assess safety, dose-limiting
toxicity, and MTD of rhIL-15 given as intravenous bolus at
3.0, 1.0, and 0.3 μg/kg/day for 12 consecutive days to patients
with metastatic malignant melanoma or renal cancer. Reduc-
tions in the number of lymphocyte subsets were evident within
20min of the infusion of IL-15, with the most dramatic decline
being observed with NK cells, γδ+ T cells and CD8+ mem-
ory T cells. The acute efflux of CD8+ cells from the circula-
tion was most pronounced for transitional and effector mem-
ory subsets. An influx of NK cells to the blood was detected
by 4 h, followed by a normalization of cell counts by 2–3 days.
The initial influx of cells mainly resulted from redistribution,
because no evidence of proliferation was observed until 48 h.
CD8+ cells showed evidence of activation, including prolifer-
ation and increased expression of CD38 and HLA-DR. Dose-
limiting toxicities in patients receiving 3.0 and 1.0 μg/kg/day
included grade 3 hypotension, thrombocytopenia, and elevations
of ALT and AST, resulting in 0.3 μg/kg per day being determined
the MTD. Common cytokine-related adverse events, including
fever, rigors, and hypotension occurred much less frequently in
patients treated with the 0.3 μg/kg dose level. Cytokines such

as IFN-γ, TNF-α, IL-6, and IL-8 increased up to 50-fold in
patient serum after rhIL-15 administration. Overall, there were
no clinical responses in this study, with stable disease being
recorded as a best response. However, five patients manifested
a decrease between 10 and 30% in their marker lesions, with
two of these patients experiencing clearing of lung lesions (156).
This study proves that rhIL-15 administration, as an intravenous
bolus dose, is associated with clinical toxicities due to marked
cytokine secretion. The authors initiated a dose-escalation trial
of continuous intravenous infusion of rhIL-15 to patients with
metastatic malignancies. Furthermore, the Cancer Immunother-
apy Trials Network (CITN3) is conducting a phase I dose-
escalation trial of subcutaneous rhIL-15 administered 5 days per
week for 2weeks.

Current Manufacturing Practices for CIK
Cells

Current protocols to differentiate CIK cells are based on the
combination of 1,000 IU/ml IFN-γ on day 1 of culture followed
24 h later by 50 ng/ml OKT3 and 300 IU/ml IL-2 (157). After
21–28 days, CD3+CD56+ cells, derived from CD3+CD56− cells,
acquire cytotoxicity against various tumor cell targets, including
AML, chronicmyeloid leukemia, and B-cell and T-cell lymphoma.
The expression of CD56 on CIK cells is thought to result pri-
marily from IFN-γ priming with subsequent IL-12 production
from monocytes. Recently, a GMP-grade protocol (ITG2) that
incorporates thymoglobulin® (TG) was used to prepare CIK cells
(Figure 2; Table 3) (45). TG is a purified, pasteurized preparation
of polyclonal γ immunoglobulin raised in rabbits against human
thymocytes (45). TG expanded CIK cells more efficiently than the

3http://citninfo.org/citn-science/clinical-studies.html

FIGURE 2 | Protocols to generate CIK cells from PBMCs. (A) Current protocols used to differentiate CIK cells from PBMCs rely on IFN-γ, anti-CD3 mAbs or
thymoglobulin (TG), and IL-2. (B) A representative experiment depicts the phenotype of CIK cells after 3-week culture under the above cytokine conditions.

Frontiers in Immunology | www.frontiersin.org May 2015 | Volume 6 | Article 23073

http://citninfo.org/citn-science/clinical-studies.html
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Pittari et al. NK cells for hematological malignancies

TABLE 3 | Completed and ongoing clinical trials with CIK cells for hematological malignancies are listed.

Pts. Diagnosis CIK cell preparation Status Clinical site Reference(s)/
NCI Identifier

11 AML, HL, CML,
ALL, MDS

LK or PB; 1,000U/ml IFN-γ +OKT3+ IL-2 for 20–26d;
median number of total allogeneic CIK cells 2.4×106/kg
(7.2–87.4); phase I

Published Italy (157)

5 AL UCB washout after UCB transplantation Published Italy (162)

9 DLBCL Autologous PB; 2,000U/ml IFN-γ +OKT3+ IL-2 Published China (163)

10 Lymphoma
(n=2)

1,000U/ml IFN-γ +OKT3+ IL-2; CIK cells then transfected
with pCEP-IL-2-plasmid

Published Germany (164)

1 Plasmocytoma Autologous CIK cells; monthly for 21 courses Published China (165)

12 Lymphoma
(n=6)

LK or PB; median 28×109 (range, 6–61) CIK cells per
patient

Published Italy (166)

41 MDS/MPD Post-transplantation infusion of allogeneic CIK cells as
consolidation therapy; phase II

Recruiting Stanford
University, USA

NCT01392989

17 AML/MDS Autologous CIK cells after HSCT or in patients unfit for
standard curative chemotherapy; phase I/II

Completed Singapore
General Hospital

NCT00394381

11 CML Adoptive immunotherapy in patients receiving standard
drug therapy; phase II

Completed Singapore
General Hospital

NCT00815321

20 Hematological
malignancies

Allogeneic CIK cells as post-HSCT immunotherapy; phase I Active, not
recruiting

NIH, US NCT00185757

20 Hematological
malignancies

Allogeneic CIK cells for relapse after allogeneic HSCT;
phase I/II

Recruiting Singapore
General Hospital

NCT00460694

PBMC, peripheral blood mononuclear cells; AL, acute leukemia; DLBCL, diffuse large B-cell lymphoma; LK, leukapheresis; CML, chronic myeloid leukemia; MDS, Myelodysplastic
syndromes; MPD, myeloproliferative disorders; d, day; UCB, umbilical cord blood; SCGM, stem cell growth medium; MM, multiple myeloma. www.clinicaltrials.gov website last accessed
March 2015.

anti-CD3 mAb when provided to clinical-grade cultures in com-
bination with IFN-γ and IL-2. Higher levels of NKG2D, NKp46-
triggering receptor, and killer-like immunoglobulin receptors
KIR2DL1 and KIR2DL2/DL3 were detected on CIK cells dif-
ferentiated with TG compared with those obtained with αCD3
antibodies. CIK cells were capable of lysing tumor cell targets
in an MHC-unrestricted manner and released high quantities
of bioactive IL-12p40. The use of the ITG2 protocol was not
associatedwith the emergence of Treg cells in vitro, thus reassuring
against the infusion of excessive numbers of tumor-suppressive
T-cell populations.

The administration of bulk CIK cells is not associated with
GVHD in mice, even after sequential infusions (158). The same
study also showed that bulk CIK cells are more effective than
selected CD56+ CIK cells or CIK cells depleted of potentially
alloreactive αβ+ CIK cells.

Several investigators have successfully obtained CIK cells from
UCB units. The washouts of UCB units may yield approxi-
mately 500× 106 CIK cells after a standardized 21-day expan-
sion culture (159). Compared with PB-derived CIK cells, UCB
CIK cells demonstrate lower immunogenicity and higher pro-
liferative capacity and anti-tumor activity in pre-clinical models
of cancer (160). Interestingly, UCB-derived CIK cells released
higher amounts of IL-2 and IFN-γ and expressed higher lev-
els of CCR6 and CCR7, pointing to a better ability to traffic
to tumor sites and secondary lymphoid organs. CIK cells dif-
ferentiated from PB and UCB also differ in receptor expres-
sion and in cytotoxic activity against ALL cells, suggest-
ing that the source of CIK cells may impact on therapeutic
efficacy (161).

Clinical Trials with CIK Cells

An International Registry on CIK Cells (IRCC) has been estab-
lishedwith the aimof reporting results fromclinical trials centered
on adoptively transferred CIK cells. In the first IRCC publication
(167), eleven clinical trials with autologous or allogeneic CIK cells
were identified, with 426 patients enrolled. Most trials included
male patients with hepatocellular carcinoma, gastric cancer, and
relapsed lymphoma. A clinical response was reported in 384
patients, who received up to 40 infusions of CIK cells. The total RR
was 24% and a decrease of tumor volumewas documented in three
patients. DFS rates were significantly higher in patients treated
with CIK cells than in a control group without CIK treatment. An
update published in 2014 (168) enlists the results obtained in 2,729
patients from 45 phase I/II studies. A total of 1,520 patients with
22 different tumor entities were treatedwithCIK cells, either alone
or in combination with chemotherapy. Allogeneic CIK cells were
employed in the majority of the trials (41 out of 45). The number
of CIK cells infused varied among the different trials, averaging
7.7× 109 cells. Data on patient survival were available for 19 out
of 45 trials; 15 of these 19 trials were paired, as they also included
control patients receiving none or standard therapy alone. Overall,
a beneficial effect of CIK cells emerged in patients with hepatocel-
lular carcinoma, renal cell carcinoma, non-small cell lung cancer
(NSCLC), colorectal carcinoma, and breast cancer. High numbers
of CIK cells at time of infusion were associated with a better
prognosis. Quality of life was also improved in four of the five
trials for which data were disclosed. Ancillary biological data were
provided in 23 studies. The absolute numbers of T cells, as well
as serum IFN-γ, were increased after immunotherapy compared
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with baseline. Some studies also reported a decrease of blood
Treg cells after CIK infusions. Immunotherapy was generally well
tolerated, with fever occurring in 41% of cases and headache and
fatigue reported in 30% of cases (168). Mild GVHD was observed
in seven of 52 patients treated with allogeneic CIK cells and was
responsive to steroid therapy. Based on these findings, the IRCC
currently recommends the use of at least 10× 109 CIK cells with
at least 30% CD3+CD56+ cells per infusion, every 2–4weeks, for
at least six times. The IRCC website4 (last accessed March 2015)
lists 1,787 patients treatedwithCIK cells,mostly for hepatocellular
carcinoma, gastric cancer, ovarian cancer, renal cell cancer, MM,
and NSCLC.

China has the largest population of patients with malignant
tumors and is the country where most clinical trials with CIK
cells were conducted (169). Using the VIP database of Chinese
scientific and technological journals5, 24 articles were selected.
Information on the total number of CIK cells used was avail-
able in 16 studies and ranged from 6× 106 to 1.5× 1010 in one
single treatment course. As far as hematological malignancies
are concerned, 1 study specifically dealt with non-Hodgkin’s dis-
ease (12 patients) and 4 studies with AML (51 patients). Only
14 out of 24 studies contained details about clinical outcome.
Of the reported 563 patients, 40 had a CR, 126 had a partial
response, 125 had a minimal response, 135 had stable disease,
and 58 had progressive disease. The remaining 76 patients did
not reach an objective response. The overall RR was 51.7%
(291/563) (169). Information on patient outcome was provided
in 10 studies. Four studies reported a 1-year OS rate of 72.5%,
six studies reported 2-year OS rate of 66.3%, one study reported
3-year overall RR of 75.5%, and two studies reported 5-year OS
rate of 38.2%.

A phase I study of allogeneic CIK cells has been conducted
in 11 patients with hematological malignancies relapsing after
allogeneic HSCT (157). Six patients had received other salvage
treatments before CIK administration, including DLIs, without
significant clinical response. The median number of CIK cells
infused was 12.4× 106/kg, with no infusion-related toxicities
recorded. Acute GVHD occurred in four patients 30 days after
the last CIK infusion, and progressed into extensive chronic
GVHD in two cases. Disease progression and deathwere observed
in six patients. One patient had stable disease, one experi-
enced hematologic improvement, and three obtained complete
responses. The same authors differentiated CIK cells from UCB
samples and administered them to five patients relapsed after
UCB transplantation (162). In three patients, chemotherapy had
been given before CIK administration to reduce disease burden.
Infusions of a median of 1.5× 106/kg CIK cells were provided
early after leukemia relapse. Some clinical response was observed
in one patient who also developed acute intestinal GVHD. The
remaining four patients experienced disease progression and died.
GVHDwasmanagedwith steroids andmesenchymal stromal cells
but the patient ultimately succumbed to leukemia relapse (162).

In another study (170), CIK cells were generated for 24 patients
with advanced-stage hematological malignancies, mostly from

4http://www.cik-info.org/index.php?kat=tableclinicaltrials
5http://oldweb.cqvip.com

allogeneic donors, either under steady-state conditions or after
stem cell mobilization. Overall, 55 infusions were given to 16
patients at doses ranging from 10 to 200× 106 CD3+ cells/kg.
Notably, the proportion of the CD3+CD56+ subset was higher
in CIK cultures derived from patients than in those differen-
tiated from healthy donors. The median expansion of CD3+

T cells and CD3+CD56+ NK-like T-cells was 9.33-fold and
27.77-fold, respectively. Responses attributable to CIK infusions
were documented in five patients, including two with ALL, two
with Hodgkin disease, and one with AML. In five patients, the
response to CIK cells could not be assessed as salvage chemother-
apy or dasatinib was concomitantly administered. Acute GVHD
occurred in three patients and was manageable. For three of
the six patients failing to respond, leukemia cells were avail-
able for in vitro killing assays, which showed only modest cyto-
toxicity of donor CIK cells against tumor targets. Overall, this
study in advanced-stage hematological malignancies suggests
that CIK administration may translate into some clinical effi-
cacy with a modest toxicity and low incidence and severity
of GVHD.

Finally, autologous immune effector cells generated by TG,
IFN-γ, and IL-2 (ITG2) can be safely administered to patients with
advanced and/or refractory solid tumors (Figure 2) (171). After
2–3weeks in culture, a median of 4.65× 106 immune effectors/kg
of recipient’s body weight was infused intravenously without
observing any toxicity. One patient with advancedmelanoma died
because of disease progression before the infusion of CIK cells.
The target dose of at least 2.5× 106 CIK cells/kg of recipient’s
body weight was reached in four out of five evaluable patients.
The median survival was 4.5months (range 1–13) from the first
infusion of CIK cells (171).

Closing Remarks

Although the field of NK cell and CIK cell-based immunotherapy
is rapidly advancing, some pre-clinical and clinical issues need
to be clarified before this immunotherapy approach is widely
offered to patients with hematological malignancies and solid
tumors (172).

Cell therapy products enriched for NK cells using CD3
depletion and CD56 selection contain variable percentages of
monocytes. It is now established that both monocytes and
monocyte-derived DCs can support NK-cell proliferation and
function (173). This implies that different NK-cell manufacturing
protocols may affect the cellular composition of the final prod-
ucts and impact on NK-cell function. Also, the optimal number
of NK cells to be infused remains to be determined. Patients
reportedly tolerate target doses of 2× 107 NK cells/kg without any
serious side effect (78). This number of NK cells can be routinely
obtained from a 1-day large-volume leukapheresis. However, it
is possible that higher doses and/or multiple infusions of NK
cells may be required for optimal clinical efficacy. Whether NK
cells may exert their beneficial effects pre-emptively in patients
with disease remission, or rather in the context of HSCT warrants
particular attention (73). In this respect, KIR ligand mismatch
is expected to mediate a more powerful effect in T-cell-depleted
HSCT, since alloreactive T cells reportedly blunt NK reactivity
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(37, 174). Finally, recent discoveries on NK-mediated allorecog-
nition will guide the choice of the optimal NK-cell donor in
order to maximally exploit the anti-tumor effect (33). The iso-
lation of single KIR+ NK cells under GMP conditions is feasi-
ble and yields clinically applicable numbers of alloreactive NK
cells (65).

Current clinical evidence also points toCIK cells as a potentially
useful immunotherapy approach for cancer patients. Similar to
other forms of immunotherapy, the infusion of CIK cells may
be more efficacious at disease stages where the tumor burden is
relatively low or in an adjuvant setting, rather than for advanced
disease (175).
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Natural killer (NK) cells are essential components of the innate immune system and play 
a critical role in host immunity against cancer. Recent progress in our understanding 
of NK cell immunobiology has paved the way for novel NK cell-based therapeutic 
strategies for the treatment of cancer. In this review, we will focus on recent advances 
in the field of NK cell immunotherapy, including augmentation of antibody-dependent 
cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immu-
notherapy with ex vivo-expanded, chimeric antigen receptor (CAR)-engineered, or 
engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack 
non-hematopoietic tissues, suggesting that an NK-mediated antitumor effect can be 
achieved in the absence of graft-vs.-host disease. Despite reports of clinical efficacy, 
a number of factors limit the application of NK cell immunotherapy for the treatment of 
cancer, such as the failure of infused NK cells to expand and persist in vivo. Therefore, 
efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by devel-
oping strategies to manipulate the NK cell product, host factors, and tumor targets 
are the subject of intense research. In the preclinical setting, genetic engineering of 
NK cells to express CARs to redirect their antitumor specificity has shown significant 
promise. Given the short lifespan and potent cytolytic function of mature NK cells, they 
are attractive candidate effector cells to express CARs for adoptive immunotherapies. 
Another innovative approach to redirect NK cytotoxicity towards tumor cells is to 
create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against 
tumor-associated antigens. These are exciting times for the study of NK cells; with 
recent advances in the field of NK cell biology and translational research, it is likely that 
NK cell immunotherapy will move to the forefront of cancer immunotherapy over the 
next few years.

Keywords: natural killer cells, adoptive immunotherapy, CAR NK cells, ADCC, anti-KiR antibody, NK-92, 
transplantation

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/%253Fdoi%253D10.3389/fbioe.2015.00106%2526domain%253Dpdf%2526date_stamp%253D2015-07-29
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2015.00578
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:krezvani@mdanderson.org
http://dx.doi.org/10.3389/fimmu.2015.00578
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00578/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00578/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00578/abstract
http://loop.frontiersin.org/people/29170/overview
http://loop.frontiersin.org/people/225408/overview


November 2015 | Volume 6 | Article 57883

Rezvani and Rouce NK Cell Immunotherapy in Cancer

Frontiers in Immunology | www.frontiersin.org

iNTRODUCTiON

Natural killer (NK) cell-mediated cytotoxicity contributes to the 
innate immune response against various malignancies, including 
leukemia (1, 2). The antitumor effect of NK cells is a subject of 
intense investigation in the field of cancer immunotherapy. In 
this review, we will focus on recent advances in NK cell immu-
notherapy, including augmentation of antibody-dependent 
cytotoxicity, manipulation of receptor-mediated activation, and 
adoptive immunotherapy with ex vivo-expanded, chimeric anti-
gen receptor (CAR)-engineered, or engager-modified NK cells.

BiOLOGY OF NK CeLLS ReLevANT TO 
ADOPTive iMMUNOTHeRAPY

Natural killer cells are characterized by the lack of CD3/TCR 
molecules and by the expression of CD16 and CD56 surface 
antigens. Around 90% of circulating NK cells are CD56dim, 
characterized by their distinct ability to mediate cytotoxicity in 
response to target cell stimulation (3, 4). This subset includes 
the alloreactive NK cells that play a central role in targeting leu-
kemia cells in the setting of allogeneic hematopoietic stem cell 
transplant (HSCT) (5). The remaining NK cells, predominantly 
housed in lymphoid organs, are CD56bright, and although less 
mature (“unlicensed”) (3, 6, 7), they have a greater capability to 
secrete and respond to cytokines (8, 9). CD56bright and CD56dim 
NK cells are also distinguished by their differential expression 
of FcγRIII (CD16), an integral determinant of NK-mediated 
antibody-dependent cellular cytotoxicity (ADCC), with CD56dim 
NK cells expressing high levels of the receptor, while CD56bright 
NK cells are CD16 dim or negative (6). In contrast to T and 
B lymphocytes, NK cells do not express rearranged, antigen-
specific receptors; rather, NK effector function is dictated by 
the integration of signals received through germ-line-encoded 
receptors that can recognize ligands on their cellular targets. 
Functionally, NK cell receptors are classified as activating or 
inhibitory. NK cell function, including cytotoxicity and cytokine 
release, is governed by a balance between signals received from 
inhibitory receptors, notably the killer Ig-like receptors (KIRs) 
and the heterodimeric C-type lectin receptor (NKG2A), and 
activating receptors, in particular the natural cytotoxicity recep-
tors (NCRs) NKp46, NKp30, NKp44, and the C-type lectin-like 
activating immunoreceptor NKG2D (9).

The inhibitory KIRs (iKIRs) with known HLA ligands 
include KIR2DL2 and KIR2DL3, which recognize the HLA-C 
group 1-related alleles characterized by an asparagine residue 
at position 80 of the α-1 helix (HLA-CAsn80); KIR2DL1, which 
recognizes the HLA-C group 2-related alleles characterized by 
a lysine residue at position 80 (HLA-CLys80); and KIR3DL1, 
which recognizes the HLA-Bw4 alleles (9, 10). NK cells also 
express several activating receptors that are potentially specific 
for self-molecules. KIR2DS1 has been shown to interact with 
group 2 HLA-C molecules (HLA-C2), while KIR2DS2 was 
recently shown to recognize HLA-A*11 (10, 11). Hence, these 
receptors require mechanisms to prevent inadvertent activation 
against normal tissues, processes referred to as “tolerance to self.” 

Engagement of iKIR receptors by HLA class I leads to signals 
that block NK-cell triggering during effector responses. These 
receptors explain the “missing self ” hypothesis, which postulates 
that NK cells survey tissues for normal levels of the ubiquitously 
expressed MHC class I molecules (12, 13). Upon cellular trans-
formation or viral infection, surface MHC class I expression on 
the cell surface is often reduced or lost to evade recognition by 
antitumor T cells. When a mature NK cell encounters trans-
formed cells lacking MHC class I, their inhibitory receptors are 
not engaged, and the unsuppressed activating signals, in turn, 
can trigger cytokine secretion and targeted attack of the virus-
infected or transformed cell (13, 14). In parallel, cellular stress 
and DNA damage (occurring in cells during viral or malignant 
transformation) results in upregulation of “stress ligands” that 
can be recognized by activating NK receptors. Thus, human 
tumor cells that have lost self-MHC class I expression or bear 
“altered-self ” stress-inducible proteins are ideal targets for NK 
recognition and killing (14–16). NK cells directly kill tumor cells 
through several mechanisms, including release of cytoplasmic 
granules containing perforin and granzyme (16–18), expression 
of tumor necrosis factor (TNF) family members, such as FasL 
or TNF-related apoptosis-inducing ligand (TRAIL), which 
induce tumor cell apoptosis by interacting with their respective 
receptors Fas and TRAIL receptor (TRAILR) (16–19) as well as 
ADCC (9).

iNTeRACTiON BeTweeN NATURAL 
KiLLeR CeLLS AND OTHeR iMMUNe 
SUBSeTS

Increasing understanding of NK cell biology and their interaction 
with other cells of the immune system has led to several novel 
immunotherapeutic approaches as discussed in this review. 
NK cells produce cytokines that can exert regulatory control of 
downstream adaptive immune responses by influencing the mag-
nitude of T cell responses, specifically T helper-1 (TH1) function 
(20). NK cell function, in turn, is regulated by cytokines, such 
as IL-2, IL-15, IL-12, and IL-18 (21), as well as by interactions 
with other cell types, such as dendritic cells, macrophages, and 
mesenchymal stromal cells (10, 22, 23). IL-15 has emerged as a 
pivotal cytokine required for NK cell development and mainte-
nance. Whereas mice deficient in IL-2 (historically the cytokine 
of choice to expand and activate NK cells) have normal NK cells, 
IL-15-deficient mice lack NK cells (24).

Several cytokines are also known to inhibit NK cell activation 
and function, thus playing a crucial role in tumor escape from NK 
immune surveillance. Recently, considerable attention has been 
paid to the inhibitory effects of transforming growth factor-beta 
(TGF-β) and IL-10 on NK cell cytotoxicity (12, 25, 26). Several 
groups have shown that secretion of TGF-β by tumor cells results 
in downregulation of activating receptors, such as NKp30 and 
NKG2D, with resultant NK dysfunction (25, 26). Similarly, IL-10 
production by acute myeloid leukemia (AML) blasts induces 
upregulation of NKG2A with significant impairment in NK 
function (3).
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MODULATiON OF ANTiBODY-
DePeNDeNT CeLLULAR CYTOTOXiCiTY

The CD56dim subset of NK cells expresses the Fcγ receptor CD16, 
through which NK cells mount ADCC, providing opportunities 
for its modulation to augment NK effector function (27, 28). 
In fact, a number of clinically approved therapeutic antibod-
ies targeting tumor-associated antigens (such as rituximab 
or cetuximab) function at least partially through triggering 
NK cell-mediated ADCC. Several studies using mouse tumor 
models have established that efficient antibody–Fc receptor 
(FcR) interactions are essential for the efficacy of monoclonal 
antibody (mAb) therapy, a mainstay of cancer therapy (28, 29). 
Based on this premise, Romain et al. successfully engineered the 
Fc region of the IgG mAb, HuM195 targeting the AML leuke-
mia antigen CD33, by introducing the triple mutation S293D/
A330L/I332E (DLE). Using timelapse imaging microscopy in 
nanowell grids (TIMING, a method of analyzing kinetics of 
thousands of NK cells and mAb-coated targets), they dem-
onstrated that the DLE-HuM195 antibody increased both the 
quality and quantity of NK cell-mediated ADCC by recruiting 
NK cells to participate in cytotoxicity via CD16-mediated 
signaling. NK cells encountering DLE-HuM195-coated targets 
induced rapid target cell apoptosis by promoting conjugation 
to multiple target cells (leading to increased “serial killing” of 
targets), thus inducing apoptosis in twice the number of targets 
as the wild-type mAb (27).

Additional approaches under investigation to enhance 
NK cell-mediated ADCC include antibody engineering and 
therapeutic combination of antibodies predicted to have syner-
gistic activity. For example, mogamulizumab (an anti-CCR4 mAb 
recently approved in Japan) is defucosylated to increase binding 
by FcγRIIIA and thereby enhances ADCC. Mogamulizumab suc-
cessfully induced ADCC activity against CCR4-positive cell lines 
and inhibited the growth of EBV-positive NK-cell lymphomas in 
a murine xenograft model (30). These findings suggest that moga-
mulizumab may be a therapeutic option against EBV-associated 
T and NK-lymphoproliferative diseases (30). Obinutuzumab 
(GA101) is a novel type II glycoengineered mAb against CD20 
with increased FcγRIII binding and ADCC activity. In contrast to 
rituximab, GA101 induces activation of NK cells irrespective of 
their inhibitory KIR expression, and its activity is not negatively 
affected by KIR/HLA interactions (31). These data show that 
modification of the Fc fragment to enhance NK-mediated ADCC 
can be an effective strategy to augment the efficacy of therapeutic 
mAbs (31).

Although enhanced NK-mediated ADCC occurs in the 
presence of certain mAbs, in the case of non-engineered mAbs 
(such as rituximab), this NK-mediated cytotoxicity is typically 
still under the jurisdiction of KIR-mediated inhibition. However, 
ADCC responses can be potentiated in vitro in the presence of 
antibodies that block NK cell inhibitory receptor interaction 
with MHC class I ligands (32). These include the use of anti-KIR 
Abs to block the interaction of iKIRs with their cognate HLA 
class I ligands. To exploit this pathway pharmacologically, a 
fully humanized anti-KIR mAb 1-7F9 (IPH2101) (33) with the 
ability to block KIR2DL1/L2/L3 and KIR2DS1/S2 was generated. 

In vitro, anti-KIR mAbs can augment NK cell-mediated lysis of 
HLA-C-expressing tumor cells, including autologous AML blasts 
and autologous CD138+ multiple myeloma (MM) cells (34). 
Additionally, in a dose-escalation phase 1 clinical trial in elderly 
patients with AML, 1-7F9 mAb was reported to be safe and could 
block KIRs for prolonged periods (35). A recombinant version 
of this mAb with a stabilized hinge (lirilumab) was recently 
developed. Lirilumab is a fully humanized IgG4 anti-KIR2DL1, 
-L2, -L3, -S1, and -S2 mAb. The iKIRs targeted by lirilumab col-
lectively recognize virtually all HLA-C alleles, and the blockade of 
the three KIR2DLs allows targeting of every patient without the 
need for prior HLA or KIR typing (33, 34). Furthermore, the com-
bination of an anti-KIR mAb with the immunomodulatory drug 
lenalidomide was shown to potentiate ADCC and is being tested 
in a phase 1 clinical trial in patients with MM [NCT01217203 
(35)]. A potential concern is related to how inhibitory KIR block-
ade may impact on the ability of NK cells to discriminate self, 
healthy cells from abnormal virally infected or cancerous cells. 
Preliminary in vitro data suggest that Ab blockade of iKIRs will 
preferentially augment the ADCC response, without increasing 
cytotoxicity against self healthy cells (32). It is reassuring that 
in the IPH2101 phase 1 studies, no alterations in the expression 
of major inhibitory or activating NK receptors or frequencies 
of circulating peripheral lymphocytes were reported, indicat-
ing that the Ab does not induce clinically significant targeting 
of normal cells by NK cells (35). Lin et al. recently reported on 
the application of an agonistic NK cell-targeted mAb to augment 
ADCC (36). Following FcR triggering during ADCC, expression 
of the activation marker CD137 is increased. Agonistic antibodies 
targeting CD137 have been reported to augment NK-cell func-
tion, including degranulation, secretion of IFN-γ, and antitumor 
cytotoxicity in in vitro and in vivo preclinical models of tumor 
(36–39). The combination of the agonistic anti-CD137 antibody 
with rituximab is currently being evaluated in a phase 1 trial in 
patients with lymphoma [NCT01307267 (35–37)].

Other factors, such as specific CD16 polymorphisms and 
NKG2D engagement, can also influence ADCC, with certain 
polymorphisms (such as FcγRIIIa-V158F polymorphism) result-
ing in a stronger IgG binding (40). These findings are clinically 
relevant, as supported by the observation that patients with 
non-Hodgkin lymphoma (NHL) with the FcγRIIIa-V158F poly-
morphism experienced improved clinical response to rituximab 
(41, 42). In summary, several antibody combinations designed 
to boost ADCC have shown promising results in preclinical and 
early clinical trials, thus warranting further study of this strategy 
to enhance NK cell activity against tumor cells.

ADOPTive TRANSFeR OF AUTOLOGOUS 
NK CeLLS

The early studies of adoptive NK cell therapy focused on enhanc-
ing the antitumor activity of endogenous NK cells (43). Initial 
trials of adoptive NK therapy in the autologous setting involved 
using CD56 beads to select NK cells from a leukapheresis product 
and subsequently infusing the bead-selected autologous NK cells 
into patients (43, 44). Infusions were followed by administration 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


November 2015 | Volume 6 | Article 57885

Rezvani and Rouce NK Cell Immunotherapy in Cancer

Frontiers in Immunology | www.frontiersin.org

of systemic cytokines (most commonly IL-2) to provide addi-
tional in  vivo stimulation and support their expansion. This 
strategy met with limited success due to a combination of factors 
(44). Although cytokine stimulation promoted NK cell activation 
and resulted in greater cytotoxicity against malignant targets 
in  vitro, only limited in  vivo antitumor activity was observed 
(43–45). Similar findings were observed when autologous NK 
cells and systemic IL-2 were given as consolidation treatment 
to patients with lymphoma who underwent autologous BMT 
(46). The poor clinical outcomes observed with adoptive transfer 
of ex vivo activated autologous NK cells followed by systemic 
IL-2 were attributed to three factors: (1) development of severe 
life-threatening side effects, such as vascular leak syndrome as a 
result of IL-2 therapy; (2) IL-2-induced expansion of regulatory 
T cells known to directly inhibit NK cell function and induce 
activation-induced cell death (47–49); and (3) lack of antitumor 
effect related to the inhibition of autologous NK cells by self-HLA 
molecules. Strategies to overcome this autologous “checkpoint,” 
thus redirecting autologous NK cells to target and kill leukemic 
blasts are the subject of intense investigation (33–35). These 
include the use of anti-KIR Abs (such as the aforementioned 
lirilumab) to block the interaction of inhibitory receptors on the 
surface of NK cells with their cognate HLA class I ligand.

eXPLOiTiNG THe ALLOReACTiviTY OF 
ALLOGeNeiC NK CeLLS – ADOPTive 
iMMUNOTHeRAPY AND BeYOND

An alternative strategy is to use allogeneic instead of autologous 
NK cells, thus taking advantage of the inherent alloreactivity 
afforded by the “missing self ” concept (13). Over the past decade, 
adoptive transfer of ex vivo-activated or -expanded allogeneic NK 
cells has emerged as a promising immunotherapeutic strategy for 
cancer (24, 50–52). Allogeneic NK cells are less likely to be subject 
to the inhibitory response resulting from NK cell recognition of 
self-MHC molecules as seen with autologous NK cells. A number 
of studies have shown that infusion of haploidentical NK cells to 
exploit KIR/HLA alloreactivity is safe and can mediate impres-
sive clinical activity in some patients with AML (50–52). In fact, 
algorithms have been developed to ensure selection of stem cell 
donors with the greatest potential for NK cell alloreactivity for 
allogeneic HSCT (50).

Promising results in the HSCT setting suggest that the applica-
tion of this strategy in the non-transplant setting may be a plausi-
ble option. Miller et al. were among the first to show that adoptive 
transfer of ex vivo-expanded haploidentical NK cells after lym-
phodepleting chemotherapy is safe, and can result in expansion of 
NK cells in vivo without inducing graft-vs.-host disease (GVHD) 
(50). In a phase I dose-escalation trial, 43 patients with either 
hematologic malignancies (poor prognosis AML or Hodgkin 
lymphoma) or solid tumor (metastatic melanoma or renal cell 
carcinoma) received up to 2 × 107cells/kg of haploidentical NK 
cells following either low intensity [low-dose cyclophosphamide 
(Cy) and methylprednisolone or fludarabine (Flu)] or high 
intensity regimens (Hi-Cy/Flu). All patients received subcutane-
ous IL-2 after NK cell infusion. Whereas adoptively infused NK 

cells persisted only transiently following low intensity regimens, 
AML patients who received the more intense Hi-Cy/Flu regimen 
had a marked rise in endogenous IL-15 associated with expansion 
of donor NK cells and induction of complete remission (CR) in 
five of 19 very high-risk patients. The superior NK expansion 
observed after high-dose compared to low-dose chemotherapy 
was attributed to a combination of factors including prevention 
of host T cell-mediated rejection and higher levels of cytokines, 
such as IL-15. These findings provided the first evidence that hap-
loidentical NK cells are safe and can persist and expand in vivo, 
supporting the proof of concept that NK cells may be applied 
for the treatment of selected malignancies either alone or as an 
adjunct to HSCT (50).

Another pivotal pilot study, the NKAML trial (Pilot Study 
of Haploidentical NK Transplantation for AML), reported that 
infusion of KIR-HLA-mismatched donor NK cells can reduce 
the risk of relapse in childhood AML (51). Ten pediatric patients 
with favorable or intermediate risk AML in first CR were enrolled 
following completion of 4–5 cycles of chemotherapy. All patients 
received a low-dose conditioning regimen consisting of Cy/Flu 
prior to infusion of NK cells (median, 29 × 106/kg NK cells) from 
a haploidentical donor, followed by six doses of IL-2. NK infu-
sions were well tolerated with limited non-hematologic toxicity. 
All patients had transient engraftment of NK cells for a median 
of 10 days (range 2–189 days) with significant expansion of KIR-
mismatched NK cells. With a median follow-up of 964 days, all 
patients remained in remission, suggesting that donor-recipient 
HLA-mismatched NK cells may reduce the risk of relapse in 
childhood AML (51).

Other strategies currently under investigation include the infu-
sion of KIR-ligand-mismatched haploidentical NK cells as part of 
the pre-HSCT conditioning regimen (NCT00402558), and NK 
cell infusion to prevent relapse or as therapy for minimal residual 
disease in patients after haploidentical HSCT (NCT01386619).

ADOPTive NK CeLL THeRAPY iN SOLiD 
MALiGNANCieS

Natural killer cell-based immunotherapies are also a promising 
therapeutic option for solid tumors. A number of studies have 
shown that the presence of intratumoral NK cells correlates with 
delayed tumor progression and improved outcomes (53–55). 
However, the successful application of NK cell-based therapies 
in the solid tumor setting poses a special challenge. In addi-
tion to the immune evasion strategies common to hematologic 
malignancies, such as secretion of immunosuppressive cytokines 
and downregulation of activating ligands (55–57), additional 
challenges specific to solid tumors exist; NK cells must not only 
traffic to sites of disease, but also penetrate the tumor capsule in 
order to exert their effector function. Furthermore, tumor targets 
must be inherently susceptible to NK-mediated cytotoxicity (58). 
Several groups have focused on strategies to alter the tumor 
microenvironment by targeting myeloid-derived suppressor cells 
or regulatory T cells (Treg) rather than the tumors themselves 
(58, 59). In fact, the prospect of combining NK cell-based immu-
notherapy with approaches to target the immunosuppressive 
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tumor microenvironment or immune checkpoints, such as KIR 
blockade, is especially relevant to the treatment of solid tumors 
(55, 58). Several early phase clinical trials have demonstrated 
the feasibility of adoptive therapy with autologous or allogeneic 
ex vivo activated/expanded NK cells in patients with refractory 
solid malignancies [NCT01875601 (60)]; however, outside of 
the post-HSCT setting (namely in neuroblastoma), limited data 
on the clinical efficacy of NK cells in eradicating solid tumors 
exist. Currently, several trials are actively recruiting patients 
with refractory solid tumors for adoptive NK therapy (including 
NCT01807468, NCT02130869, and NCT0210089).

THe iDeAL MANUFACTURiNG STRATeGY 
FOR EX VIVO ACTivATiON OF NK CeLLS

Recent approaches to adoptive NK therapy focused on infusion 
of NK cells that have undergone a process of ex vivo cytokine 
activation and expansion (61). A number of cytokines (IL-2, 
IL-12, IL-15, IL-18, IL-21, and type I IFNs) have been studied to 
activate and expand NK cells ex vivo (62–65). The most exten-
sively studied cytokine is IL-2 (62, 63). This is not surprising, 
considering IL-2 was the only cytokine available in clinical grade 
until recently. Nevertheless, NK cells expanded in the presence 
of IL-12, IL-15, and IL-18, either alone or in combination, have 
shown remarkable activity against tumor targets in experimental 
models and offer an attractive strategy for clinical expansion of 
NK cells (64, 65). IL-15, in particular, is appealing as it does not 
stimulate Tregs (65). IL-15 has been tested in preclinical models 
with promising results; however, very high doses were necessary 
to observe any meaningful in vivo antitumor effects, and toxic-
ity of systemic cytokine administration and cytokine-induced 
NK-cell apoptosis remained major issues (65). Recently, Miller 
et al. compared the persistence and in vivo efficacy of adoptively 
infused freshly activated NK cells (FA-NK) and ex vivo-expanded 
NK cells (Ex-NK) in a xenotransplantation model. They showed 
that in vivo NK cell persistence is cytokine dependent, with IL-15 
being superior to IL-2. They also reported that cryopreservation 
of FA-NK or Ex-NK was detrimental to NK cell function, and that 
culture conditions influence homing, persistence, and expansion 
of NK cells in vivo (66).

Although the results from the abovementioned trials proved 
that transient persistence of adoptively transferred NK cells 
obtained via apheresis is feasible and safe, the requirement of a 
willing, available donor precludes the widespread applicability of 
this approach. Hence, more recent efforts have focused on opti-
mizing methods for ex vivo expansion of NK cells from peripheral 
blood mononuclear cells (PBMCs) collected by a simple blood 
draw, with a goal of producing large quantities of purified, func-
tionally active NK cells for clinical use. These expansion strategies 
include the use of “feeder cells,” such as monocytes in the form 
of irradiated PBMCs, EBV-transformed lymphoblastoid cell lines 
(EBV-LCLs) or gene-modified, irradiated K562 cells expressing 
membrane-bound IL-15 or IL-21 and 41BB ligand for costimula-
tion (61, 66–69) in gas-permeable large-scale expansion flasks. 
These techniques have dramatically increased the yield and 
activation status of NK cells, potentially overcoming the need for 

leukapheresis. Because the feeder cells used in these manufacture 
methods are lethally irradiated prior to use in culture (leaving 
the remaining feeder cells to be lysed by the expanding NK cells), 
the risk of infusing viable feeder cells is negligible. However, a 
number of safeguards have also been incorporated that include 
monitoring the growth rate of feeder cells and testing for the pres-
ence of viable feeder cells at the end of the culture period. Clinical 
products are, therefore, only released if no viable gene-modified 
K562 cells or transformed LCLs are present, with strict cutoff 
values for contaminating B cells and monocytes at the end of the 
culture period as well (67).

Although these expansion methods can produce large num-
bers of functionally active NK cells, concomitant expansion 
of competing cells with immunosuppressive properties, such 
as Tregs remains problematic. Early studies reported that NK 
cell infusions from haploidentical donors are able to induce 
remissions in some patients with AML, but not others (50–52). 
Several groups, therefore, set out to explore factors that may 
contribute to the failure of NK expansion in  vivo. Bachanova 
explored the effect of competition between Tregs and NK cells in 
57 patients with refractory AML who received lymphodepleting 
chemotherapy followed by NK cell infusion and IL-2 administra-
tion [NCT00274846 and NCT01106950 (70)]. Fifteen patients 
also received the IL-2-diphtheria toxin fusion protein (IL2DT) 
to deplete Tregs prior to NK cell infusion. IL2DT treatment 
was associated with increased donor NK cell persistence and 
improved CR and disease-free survival at 6 months (33 vs. 5% in 
patients not receiving IL2DT; P < 0.01). In the IL2DT cohort, NK 
cell expansion correlated with higher post-chemotherapy serum 
IL-15 levels (P = 0.002) and effective peripheral blood (PB) Treg 
depletion (<5%) at day 7 (P  <  0.01). This study shed light on 
the importance of optimizing the cytokine milieu to facilitate the 
in vivo expansion of adoptively transferred NK cells and identify-
ing ways to abrogate the immunosuppressive elements, such as 
regulatory T cells.

Although these data are encouraging, adoptive transfer of NK 
cells under good manufacturing practices (GMP) requires signifi-
cant infrastructure and specialized processing equipment, thus 
limiting the availability and scalability of these NK cell therapies 
to a few specialized institutions (61). Nonetheless, the feasibility of 
centralized processing and safe delivery of ex vivo-manufactured 
NK cells for infusion at remote clinics have been demonstrated, 
suggesting that the practice might become more widespread as 
procedures are optimized (71). For example, in order to improve 
access to ex vivo activated NK cells and ease the burden associated 
with producing cellular products at individual treatment centers, 
the National Heart, Lung, and Blood Institute (NHLBI, Bethesda, 
MD, USA) sponsored the Production Assistance for Cellular 
Therapies (PACT) program. Using this approach, activated NK 
cells have been sent to other centers for infusion into patients 
(72, 73).

Since the initial reports of successful adoptive transfer of NK 
cells (50–52), many groups continue to perform extensive pre-
clinical exploration of the ideal manufacturing strategy for ex vivo 
activation and expansion of NK cells. Several expansion methods 
optimized in the preclinical setting have been successfully scaled 
up for the clinic (61, 67–70). In addition to the six clinical trials 
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of adoptive NK cell therapy for leukemia that have reported their 
data (48–52, 70), there are currently 12 active clinical trials enroll-
ing patients with hematologic malignancies for NK cell adoptive 
therapy, a number that is steadily rising.

ALTeRNATive SOURCeS OF NK CeLLS 
FOR ADOPTive TRANSFeR – iS CORD 
BLOOD THe ANSweR?

Although the majority of clinical studies of NK cell immuno-
therapy have used PB NK cells, several alternative sources of NK 
cells exist. These include bone marrow, human embryonic stem 
cells (hESCs), induced pluripotent stem cells [iPCSs (74, 75)], and 
umbilical cord blood (CB). While the generation of NK cells from 
hESCs or iPCS has been largely experimental to date, clinical-
grade generation and expansion of NK cells from CB-derived 
CD34+ cells has been successfully achieved (76).

Umbilical CB as a source for NK cells lends additional clinical 
advantages. CB contains a high percentage of NK cells (77, 78) 
and serves as an immediate “off-the-shelf ” source of NK cells, 
with less stringent requirements for HLA matching, and lower 
risk of causing GVHD following infusion due to the naivety of 
the cord T cell repertoire (77, 78). Although no direct comparison 
of PB- and CB-derived NKs has been performed in the clinical 
setting, in vitro studies have identified a number of differences 
between CB and PB NK cells. CB NK cells form weaker conju-
gates with target cells due to the lower membrane expression of 
adhesion molecules on their surface (79, 80). CB NK cells also 
express higher levels of lectin-like inhibitory receptors (CD94/
NKG2A) and lower levels of KIRs, indicating an immature phe-
notype (81). CB NK cells are similarly sensitive to cytokines for 
in vivo expansion and persistence (82). However, it appears that 
the requirements for in vitro expansion of CB NK cells may be dif-
ferent to those required for PB NKs. CB NKs are less responsive 
to IL-2 stimulation, which may be related to the lower expression 
of IL-2Rα and reduced activation of the STAT5 signaling pathway 
as compared with PB NK cells (83). The combination of IL-15 and 
IL-18, however, can induce significant proliferation and cytokine 
production by CB NK cells, while the killing capacity of CB NK 
cells is significantly enhanced after stimulation with IL-15 (83). 
As with PB-derived NK cells, T-cell contamination is a concern, 
but can be ameliorated by CD3 depletion. T-cell contamination 
should be limited to <1–5 × 105/kg (61) to minimize the risk of 
GVHD. In addition, CD56+ selection reduces B-cell contamina-
tion to <1%, which minimizes passenger B lymphocyte-mediated 
complications, such as EBV-related post-transplant lymphopro-
liferative disorder (PTLD) and acute hemolytic anemia.

More recently, efforts have focused on optimizing the large-
scale expansion of purified CB-derived NK cells. Shah et  al. 
were the first to describe a strategy for expanding NK cells from 
cryopreserved CB units in which they employed K562-based 
artificial antigen-presenting cells (aAPCs) expressing membrane-
bound IL-21 (clone 9.mbIL21) (77, 84). The clone 9.mbIL21 cell 
line is GMP-grade and expresses membrane-bound IL-21, 4-1BB 
ligand, CD64 (FcγRI), and CD86. After only 14 days of culture in 
a gas-permeable culture system, mean-fold expansion of CB-NK 

cells was 1848-fold from fresh and 2389-fold from cryopreserved 
CB with >95% purity for CD56+CD3− NK cells. aAPC-expanded 
CB-NK cells displayed a phenotype similar to that of expanded 
PB-NK cells and maintained strong expression of the transcrip-
tion factors eomesodermin and T-bet. Furthermore, CB-NK cells 
formed functional immune synapses and efficiently killed various 
MM targets in vitro. Finally, aAPC-expanded CB-NK cells showed 
significant in  vivo activity against MM in a xenogenic mouse 
model. These findings highlight a clinically applicable strategy for 
the generation of highly functional CB-NK cells using an aAPC 
platform, which can be potentially extended to other hematologic 
malignancies and solid tumors (77). A number of phase I/II clini-
cal trials are underway to test the feasibility and efficacy of CB-NK 
cell adoptive therapy in patients with hematologic malignancies 
(NCT01619761, NCT01729091 NCT02280525, NCT01914263, 
and NCT00412360) (summarized in Table 1).

HUMAN NK CeLL LiNeS AS A SOURCe 
OF NK iMMUNOTHeRAPY

The adoptive transfer of NK cell lines has several theoretical advan-
tages over the use of patient- or donor-derived NK cells. These are 
primarily related to the lack of expression of iKIRs, presumed 
lack of immunogenicity, ease of expansion and availability as an 
“off-the-shelf ” product (85). Several human NK cell lines, such as 
NK-92 and KHYG-1, have been documented to exert antitumor 
activity in both preclinical and clinical settings (86–88). NK-92, 
the most extensively characterized NK-cell line, was established 
in 1994 from the PB of a male Caucasian patient with NHL. 
NK-92 cells are IL-2-dependent, harbor a CD2+CD56+CD57+ 
phenotype and exert potent in  vitro cytotoxicity (86). Infusion 
of up to 1010  cells/m2 NK-92 cells into patients with advanced 
lung cancer and other advanced malignancies was well tolerated 
and the cells persisted for a minimum of 48 h with encouraging 
clinical responses (86, 88–91). However, potential limitations of 
using NK cell lines, such as NK-92 cells, include the requirement 
for irradiation to reduce the risk of engrafting cells with potential 
in vivo tumorigenicity, and the need for pre-infusion condition-
ing to avoid host rejection. Furthermore, infusion of allogeneic 
NK cell lines may induce T and B cell alloimmune responses, 
limiting their in vivo persistence and precluding multiple infu-
sions. A number of studies are testing NK-92 cells (Neukoplast®) 
in patients with solid tumors, such as Merkel cell cancer and renal 
cell carcinoma, as well as in hematological malignancies (85).

While results from clinical studies of NK cell adoptive therapy 
are encouraging (48–52, 70), significant gaps remain in our 
understanding of the optimal conditions for NK cell infusion. 
Based on the pioneering work from Rosenberg et al. demonstrat-
ing the importance of lymphodepletion to support the expansion 
of tumor-infiltrating T cells (92) and given its emergence as a 
key determinant of efficacy with CAR therapy, several groups are 
actively investigating the ideal preparative regimen to promote 
the expansion and persistence of adoptively infused NK cells 
(53, 69, 70, 75). Available data support the use of high-dose Cy/
Flu regimen as the frontrunner, considering it is reasonably well 
tolerated and shown to support the in vivo expansion of NK cells 
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TABLe 1 | Published results of NK adoptive immunotherapy trials in hematologic malignancies.

Reference Approach Disease NK source of cells Conditioning regimen Dose of cells Outcome

Burns et al. (43) Ex vivo IL-2 activated 
autologous NKs or bolus IL-2

Relapsed lymphoma
N = 29

Autologous None 4 × 107–8 × 107 cells/kg 1° endpoint safety/feasibility; no change in 
outcome compared to historical controls

aMiller  
et al. (50)

IL-2 activated NK cells HR AML (adults)
N = 19

Haplo-related donors Hi-Cy/Flu 1 × 106–2 × 107 cells/kg 
followed by 14 days IL-2

5/19 (26%) CR

aRubnitz and 
Inaba (51)

Fresh-activated NK (FA-NK) LR/IR AML (pedi)
N = 10

Haplo-related donors Hi-Cy/Flu Median 29 × 106 cells/kg 
followed by IL-2 × 6 doses

10/10 (100%) CR at 964 days

Yoon et al. (49) IL-7/15/21 ex vivo cultured NKs HR
ALL/AML/MDS 
(adults)
N = 14

Haplo-related HSCT donors 
(from CD34+ fraction)

Pre-SCT conditioning 
regimen (Bu/Flu/thymo)

Median 2.2 × 106 cells/kg 1° endpoint safety/feasibility; (no toxicity; 
low-grade GVHD); 4/14 (28%) alive and well

aCurti and 
Ruggeri (52)

CD56+ selected NKs AML-CR and 
relapsed (adult)
N = 13

Haplo-related donors Hi-Cy/Flu 5 × 106 cells/kg followed by 
IL-2 × 6 doses

6/13 (46%) remain in CR

Stern et al. (48) 1–3 doses positively selected 
NKs

ALL, AML (adult and 
pedi)
N = 15

Haplo donors Pre-SCT conditioning 
regimen

Median 1.2 × 107 cells/kg 4/16 (25%) alive

Klingemann and 
Grodman (71)

Apheresis-mobilized CD56 
selection

HL, NHL, MM
N = 13

Haplo donors None 1 × 105–2 × 107 cells/kg 1° endpoint safety/feasibility; 7/13 in 
remission

aBachanova (70) NK infusion w/IL-2 ± IL2DT  
Treg depletion

AML
N = 42 (IL-2 alone)
N = 15 (+IL2DT)

Haplo donors Hi-Cy/Flu Mean 2.6 ± 1.5 × 107 cells/
kg

IL-2 alone: 9/42 (21%) CR/CRi
IL2DT: 8/15 CR/CRi (53%)

Choi et al. (116) Apheresis-mobilized, ex vivo 
IL-15/21 induced NK cells

N = 41 Haplo donors Bu/Flu/ATG Median 1 × 108 cells/kg Reduced leukemia progression 46 vs. 74%

HR, high risk; haplo, haploidentical; LR, low risk; IR, intermediate risk; Hi-Cy/Flu, high-dose cyclophosphamide and fludarabine; CR, complete remission; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; MDS, 
myelodysplastic syndromes; SCT, hematopoietic stem cell transplant; HL, Hodgkin lymphoma; NHL, non-Hodgkin lymphoma; pedi, pediatric; CRi, complete remission with incomplete platelet recovery; IL2DT, IL-2-diphtheria fusion 
protein.
aNK cells infused outside of the setting of hematopoietic cell transplantation.
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(51, 70). IL-15 is an ideal candidate cytokine for the expansion of 
NK cells in vivo, especially since it does not promote expansion 
of regulatory T cells (66), which have been shown to suppress 
NK cell effector function in IL-2-based trials (69, 70). In a recent 
phase 1 study in patients with metastatic melanoma or renal cell 
carcinoma, rhIL-15 was shown to activate NK cells, monocytes, 
γδ, and CD8 T cells (93). However, as an intravenous bolus dose, 
rhIL-15 proved too difficult to administer because of significant 
clinical toxicities (93). Based on these promising data, alternative 
dosing strategies are being investigated, including continuous 
intravenous infusions. To this effect, systemic IL-15 along with 
infusion of donor NK cells are currently being tested in a phase I 
clinical trial for AML (NCT01385423).

CHiMeRiC ANTiGeN  
ReCePTOR-MODiFieD NK CeLLS

Chimeric antigen receptors have been used extensively to redirect 
the specificity of T cells against leukemia (94). Recently, use of 
an anti-CD19-BB-ζ receptor transduced into autologous or allo-
geneic T cells produced dramatic clinical responses in patients 
with acute lymphoblastic leukemia (95, 96); however, infusions of 
activated T cells from an allogeneic source are likely to increase 
the risk of GVHD. T cell-depleted allogeneic NK cells, by con-
trast, should not cause GVHD, as predicted by observations in 
murine models, as well as in patients with leukemia and solid 
malignancies treated with haploidentical NK cells (50–52). Given 
their shorter lifespan and potent cytolytic function, mature NK 
cells provide attractive candidate effector cells to express CARs 
and, provide an excellent source of off-the-shelf cellular therapy 
for patients with cancer.

The feasibility of genetically engineering NK cells to express 
CARs has been shown in the preclinical setting (97, 98). Primary 
human NK cells, as well as NK-92 cells, have been successfully 
engineered to express CARs against a number of targets includ-
ing CD19, CD20, CD244, and HER2 (97). CAR-transduced 
NK cells mediate efficient in  vitro and in  vivo killing of tumor 
targets (97, 98) although to date, no clinical data of CAR NK cell 
therapy have been reported. Shimasaki et al. recently tested the 
expression of a receptor containing CD3ζ and 4-1BB signaling 
molecules (anti-CD19-BB-ζ) in human NK cells after mRNA 
electroporation using a clinical-grade electroporator. The authors 
reported adequate transfection efficiency 24 h after electropora-
tion, with median anti-CD19-BB-ζ expression of 40.3% in freshly 
purified and 61.3% in expanded NK cells. NK cells expressing 
anti-CD19-BB-ζ secreted IFN-γ in response to CD19-positive 
target cells. Interestingly, the levels of CAR expression in NK cells 
after mRNA transfection were comparable to those achieved by 
retroviral transduction. A large-scale protocol was developed to 
transfect expanded NK cells, achieving excellent receptor expres-
sion and considerable cytotoxicity of CAR-transduced NK cells 
in xenograft models of B-cell leukemia (99). Another interesting 
strategy is the development of CAR-modified NK cells that target 
NKG2D ligands on the surface of tumor cells, rendering NK more 
cytotoxic against a variety of hematologic and solid malignancies 
(100). NK cells have also been successfully engineered to target TA
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antigens on a variety of solid tumors. For example, an NK-CAR 
targeting the ganglioside GD2 (present on neuroblastoma 
cells) has been tested in preclinical studies (101, 102). GD2 
is also expressed on breast cancer stem cells, thus raising the 
potential for its widespread use as a target for immunotherapy 
(103). Additional antigens targeted by NK CARs include HER2 
(overexpressed in a number of solid tumors), CD138, and CS1 
(overexpressed in MM) (104, 105).

Although these data support the use of CAR engineering to 
redirect the specificity of NK cells to augment their cytotoxicity, 
a number of challenges remain. These include the relative dif-
ficulty in expressing exogenous genes in primary human NK cells 
and the need to expand NK cells in culture to achieve adequate 
numbers for clinical studies of immunotherapy. To counteract 
this difficulty, some groups have expressed CARs in the human 
NK-like cell line NK-92, in an attempt to engineer a uniformly 
cytolytic effector cell population (106). As previously mentioned, 
NK-92 cells can be easily expanded in culture and their safety 
has been shown in phase I clinical trials in human subjects. Thus, 
CAR-expressing NK-92 cells may offer a practical source of cells 
for NK cell-based immunotherapeutic trials. In order to prevent 
the risk of engrafting cells with potential in vivo tumorigenicity, 
however, NK-92 cells must be irradiated prior to infusion, which 
may in turn significantly impact their in vivo persistence and 
long-term antitumor efficacy. Although limited in  vivo per-
sistence could prove beneficial once the alloreactive NK cells 
have eradicated the tumors, a number of studies of adoptive 
therapy with NK cells and CAR-modified T cells have reported 
the importance of cell persistence in inducing long-term anti-
tumor response (50, 95, 96).

As with CAR-modified T cell therapy, a number of variables 
can affect the activation, antitumor efficacy, and persistence of 
CAR-NK cells. Second and third generation CAR constructs 
incorporating additional costimulatory domains (e.g., CD28, 
OX-40, or 4-1BB) have been shown to enhance both in vitro and 
in  vivo activation, and the persistence of CAR T cells. Further 
studies exploring the optimal vector, construct and transduction 
method are necessary to identify the “perfect NK CAR.”

SAFeTY CONCeRNS ReLATeD TO 
ADOPTive TRANSFeR OF CAR-MODiFieD 
NK CeLLS

When considering the use of CAR-modified effector cells, one 
must take into account their safety profile. Many of the same 
concerns raised with CAR-modified T cells may be relevant to 
CAR-NK cells. These include on-target/off-tumor effects, GVHD, 
cytokine release syndrome, tumor lysis syndrome, and toxicity 
to normal tissues due to limited selectivity of the target antigen 
(107–109). Thus, the necessity of equipping CAR-modified 
NK cells with a “safety switch” or suicide gene is an important 
question to explore. While mature allogeneic CAR-engineered 
NK cells are expected to be short lived, data on the persistence 
of more immature NK cells, such as those derived from CB, are 
lacking. Interestingly, a recent study reported that IL15/4-1BBL-
activated NK cells infused early after T-depleted allogeneic stem 
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cell transplantation in patients not receiving immunosuppressive 
prophylaxis could contribute to acute GVHD (110). To this effect, 
the insertion of a suicide safety switch system, as employed with 
CAR-modified T cells (111, 112), can provide an efficient means 
for depletion of these cells if needed. Inducible suicide systems 
have safely and effectively eradicated GVHD in patients receiving 
adoptively transferred T cells without causing deleterious effects 
(112). However, these systems have not been extensively studied 
in NK cells, and in the absence of clinical data on the in  vivo 
persistence of CAR-modified NK cells, the necessity of a suicide 
switch in this setting remains unknown.

Despite the growing wealth of preclinical experience with 
CAR-engineered NK cells, to date, only two clinical studies (both 
targeting CD19+ malignancies using a retroviral transduced anti-
CD19-BB-ζ NK-CAR) have obtained regulatory approval: one is a 
recently completed pediatric study at St. Jude Children’s Research 
Hospital, where haploidentical NK cells modified with anti-CD19-
BB-ζ CAR were infused into patients with B-ALL (ClinicalTrials.
gov.NCT00995137) and the other is an ongoing study at the 

National University Hospital in Singapore (ClinicalTrials.gov.
NCT01974479) using IL-2-activated haploidentical CAR-modified 
NK cells in pediatric and adult patients with refractory B-ALL 
(99). The results of these studies have not been reported to date.

BiSPeCiFiC AND TRiSPeCiFiC 
eNGAGeRS

An innovative immunoglobulin-based strategy to redirect NK 
cytotoxicity towards tumor cells is to create either bispecific or 
trispecific antibodies (BiKE, TriKE) (113). BiKEs are constructed 
by joining a single-chain Fv against CD16 and a single-chain 
Fv against a tumor-associated antigen (BiKE), or two tumor-
associated antigens (TriKE). Gleason et al. showed that bispecific 
(bscFv) CD16/CD19 and trispecific (tscFv) CD16/CD19/CD22 
engagers directly trigger NK cell activation through CD16, sig-
nificantly increasing NK cell cytolytic activity and cytokine pro-
duction against various CD19-expressing B cell lines. The same 
group also developed and tested a CD16 × 33 BiKE in refractory 
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AML and demonstrated that the potent killing by NK cells could 
overcome the inhibitory effect of KIR signaling (113, 114).

Notably, activated NK cells lose CD16 (FcRγIII) and CD62L 
through a metalloprotease called ADAM17, which is expressed 
on NK cells, which may in turn impact on the efficacy of 
Fc-mediated cytotoxicity (115). Romee et al. recently showed that 
selective inhibition of ADAM17 enhances CD16-mediated NK 
cell function by preserving CD16 on the NK cell surface, thus 
enhancing ADCC (115). Additionally, Fc-induced production of 
cytokines by NK cells exposed to rituximab-coated B cell targets 
can be further enhanced by ADAM17 inhibition. These findings 
support a role for targeting ADAM17 to prevent CD16 shedding 
and to improve the efficacy of therapeutic mAbs. The same group 
subsequently discovered that ADAM17 inhibition enhances 
CD16 × 33 BiKE responses against primary AML targets (114).

NK CeLLS – wHAT DOeS THe FUTURe 
HOLD?

Recent advances in the understanding of NK cell immunobiol-
ogy have paved the way for novel and innovative anti-cancer 
therapies. Here, we have discussed a representation of these novel 
immunotherapeutic strategies to potentiate NK cell function and 
enhance antitumor activity including ADCC-inducing mAbs, 
ex  vivo activated or genetically modified NK cells and bi- or 
trispecific engagers (Figure 1).

Although experience has shown that adoptive immuno-
therapy with allogeneic NK cells may be more efficacious than 

with autologous NK cells, to date, their long-term antitumor 
benefits have been modest (3). Expansion and persistence of NK 
cells following infusion appear to be the main determinants of 
clinical response (50–52, 70), thus underscoring the importance 
of identifying ways to enhance their persistence and antitumor 
activity. It is likely that the combination of high-dose lymphode-
pleting chemotherapy with additional modifications (such 
as Treg depletion, in  vivo administration of cytokines, such as 
IL-15 or enhancement of CD16-mediated antigen targeting) may 
maximize NK persistence and efficacy.

In addition, the possibility of third-party “off-the-shelf ” 
products with partially HLA-matched NK cells from CB, third-
party donors, or NK cell lines allow the advantage of unlimited 
sources of cells to improve the practicality of cell therapy. With 
increasing focus on genetically modifying NK cells to redirect 
their specificity or engager-modified NK cells, it is likely that 
NK cells will move to the forefront of cancer therapy over the 
next few years.
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Natural killer (NK) cells represent an attractive lymphocyte population for cancer
immunotherapy due to their ability to lyse tumor targets without prior sensitization and
without need for human leukocyte antigens-matching. Chimeric antigen receptors (CARs)
are able to enhance lymphocyte targeting and activation toward diverse malignancies.
CARs consist of an external recognition domain (typically a small chain variable fragment)
directed at a specific tumor antigen that is linked with one or more intracellular signaling
domains that mediate lymphocyte activation. Most CAR studies have focused on their
expression in T cells. However, use of CARs in NK cells is starting to gain traction because
they provide a method to redirect these cells more specifically to target refractory cancers.
CAR-mediated anti-tumor activity has been demonstrated using NK cell lines, as well as
NK cells isolated from peripheral blood, and NK cells produced from human pluripotent
stem cells. This review will outline the CAR constructs that have been reported in NK
cells with a focus on comparing the use of different signaling domains in combination
with other co-activating domains.

Keywords: chimeric antigen receptors, natural killer cells, cancer immunotherapy, NK-92 cells, induced pluripotent
stem cells

Introduction

Natural killer (NK) cells are an important component of the innate immune system due to
their ability to lyse infected or malignant cells without prior sensitization and without human
leukocyte antigens (HLA)-restriction (1). They play an important role in immune surveillance
and early control of many malignancies. NK cells recognize infected or transformed cells through
multiple cell surface receptors including NKG2D, CD16 [the receptor that mediates antibody-
dependent cellular cytotoxicity (ADCC)], and natural cytotoxicity receptors (NCRs) such as NKp44,
NKp46, and NKp30 (2). These receptors activate signaling adapter proteins such as DAP10,
DAP12, and CD3ζ, which contain immuno-tyrosine activation motifs (ITAMs) that initiate the
release of cytolytic granules containing perforin and granzymes, as well as mediate production
and release of cytokines and chemokines such as IFN-γ and TNF-α (3). Importantly, NK cell-
mediated cytotoxicity does not rely on the presentation of self HLA. Therefore, NK cells hold
significant clinical interest as a cell-based therapy for cancer because of their ability to be used
in an allogeneic setting and potentially provide an off-the-shelf cellular product. Clinical trials
using NK cells obtained from haploidentical donors demonstrate long-term remissions in patients
with refractory acute myelogenous leukemia (4). Trials against solid tumors such as breast cancer
and ovarian cancer have also demonstrated efficacy (5). NK cell lines (NK-92 cells) (6) and NK
cells derived from umbilical cord blood (7) have also been tested in clinical trials (NCT01729091,
NCT02280525).
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Chimeric antigen receptors (CARs) are engineered proteins
designed to activate lymphocytes, particularly T cells, upon target
recognition. CARs contain a single-chain variable fragment (scFv)
fused to a variety of possible intracellular signaling domain(s).
The scFv is designed to target antigens either overexpressed or
unique to tumor cells. The signaling domain initially tested was
the ζ chain of the T cell receptor complex CD3 in first generation
CARs (8). Second generation CARs employ co-activating proteins
such as CD28, CD137 (4-1BB), or CD134 (OX40) in combination
with CD3ζ to increase T cell activation and proliferation (9,
10). Finally, CAR constructs incorporate multiple co-activation
domains andCD3ζ in the third generationCARs (11). The clinical
success of anti-CD19 CAR-expressing T cells for treatment of B-
cell malignancies has fueled the design and evaluation of CARs
for T cell therapy toward other antigens and malignancies (12).
While development of T cell-CAR-based therapies seems to be
revolutionizing tumor immunotherapy, one major obstacle with
this approach is the need to collect and utilize autologous cells.
A second concern with the use of T cells is their long-term
persistence, resulting in chronic on-target-off-tumor effects such
as B-cell aplasia with the anti-CD19 CARs being used currently in
clinical trials.

Natural killer cells provide an alternative to the use of T cells for
adoptive immunotherapy since they do not require HLA match-
ing, so can be used as allogeneic effector cells (13). Clinical trials
of adoptively transferred allogeneic NK cells demonstrate these
cells can survive in patients for several weeks to months (4, 13).
Additionally, expression of CARs in NK cells may allow these
cells to more effectively kill solid tumors that are often resistant to
NK cell-mediated activity compared to hematologic malignancies
(especially acute myelogenous leukemia) that are typically more
NK cell-sensitive (4, 5). As such, CAR-expressing NK cells have
gained significant interest to provide a targeted, allogeneic, “uni-
versal” cell population for treatment of refractory malignancies.
This review will focus on the CAR constructs and activating
domains that have been reported to be used in NK cell lines (such
as NK-92 cells) and peripheral blood (PB) NK cells. Additional
work using NK cells produced from human pluripotent stem cells
is also discussed.

Chimeric Antigen Receptors Used in NK
Cell Lines

Natural killer cell lines have been utilized to evaluate CARs
targeting several different antigens. By far, the most commonly
studied NK cell line has been the NK-92 cell line, which has
been previously (6) and is currently being used in clinical trials
(NCT00900809 and NCT00990717). Other NK cell lines include
NKG, YT, NK-YS, HANK-1, YTS cells, and NKL cells (14). Work-
ing with NK cell lines has several advantages such as providing a
more homogeneous cell population compared to NK cells isolated
from PB. In addition, the NK-92 cells have been well-defined
and there is no need to perform any isolation of the NK cells
from donors. However, NK cell lines also have distinct disadvan-
tages. NK-92 cells lack the expression of several typical NK cell
activating receptors such as CD16, NKp44, and NKp46 (15, 16).
Also, NK-92 cells are tumor cell lines with multiple cytogenetic

TABLE 1 | CAR constructs utilized in NK cell lines (NK-92).

Reference Target CAR Construct Method

(23) ErbB2 (HER-2) mCD8α hinge/CD3ζ Amphotropic virus

(19) CD20 mCD8α hinge/CD3ζ Amphotropic virus

(22) CD19 CD8α TM/CD3ζ mRNA transfection
(50%)

(30) EpCAM CD8α
hinge/CD28/CD3ζ

Lentivirus along with
IL-15

(31) HLA-A2 EBNA3C CD8α
TM/CD137/CD3ζ

Retrovirus

(26) GD2 mCD8α hinge/CD3ζ Amphotropic virus

(20) CD19/CD20 CD3ζ mRNA transfection
(30–70%) and
lentivirus

(28) HLA-2 complex
with melanoma-
associated gp100
peptide

A2 TM/CD3ζ Transfection

(21) CD19/CD20 CD3ζ Lentivirus

(32) CS1 CD28
TM/CD28/CD3ζ

Lentivirus

(27) CD138 CD8α hinge/CD3ζ Lentivirus

(24) ErbB2 (HER-2) CD8α
hinge/CD28/CD3ζ

Transfection

(25) ErbB2 (HER-2) CD8α hinge/CD3ζ Lentivirus
CD8α
hinge/CD28/CD3ζ
CD8α
hinge/CD137/CD3ζ

(34) PSCA CD28 hinge/CD28
TM/CD3ζ

Lentivirus in YTS NK
cells and primary NK
cellDAP12 TM and

signaling

abnormalities (17) and are latently infected with Epstein–Barr
virus (18). Therefore, for safety purposes, these cells must be
irradiated prior to infusion.

The majority of studies to express CARs in NK-92 cells have
used first generation CAR constructs that contain CD3ζ as their
sole signaling domain. The scFvs of these CARs have targeted
CD20 (19–21), CD19 (20–22), ErbB2 (HER2) (23–25), GD2
(26), and CD138 (27) (Table 1). In addition to directly target-
ing cell surface proteins, CARs can also recognize HLA-peptide
complexes such as HLA-A2 expressing the melanoma-associated
gp100 peptide (28). CARs directed toward CD19 and CD20 are
designed to target B-cell malignancies and have also been studied
extensively in T cells (29). The only other difference in the anti-
CD19 or anti-CD20 CAR constructs used in NK-92 cells is the
transmembrane region. One study used the CD3ζ transmem-
brane sequence (19) while another used the CD8 transmem-
brane sequence (22). However, without a direct comparison it
is unknown if one construct is superior. Another study used an
HLA-A2 transmembrane region coupled to a CD3ζ signaling
domain (28), suggesting the transmembrane region may be eas-
ily altered without impacting CAR expression and functionality.
Interestingly, comparison of CAR transfected NK-92 cells with
ADCC function using NK-92 cells engineered to express CD16
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found that the anti-CD20 CAR engineered cells lysed primary
CLL cells more effectively thanNK-92 cells acting through ADCC
using rituximab (21). This study suggests that even first generation
CARs may be an improvement over ADCC-mediated anti-tumor
activity by NK-92 cells. It is important to note that NK-92 cells
require transfection of CD16 in order to perform ADCC. This
leaves open the possibility that PB-NK cells may still be better
equipped to perform ADCC better than NK-92 cells.

Solid tumor antigens can also be targeted by first generation
CAR constructs expressed in NK-92 cells. An anti-ErbB2 CAR
construct against HER2-positive breast, ovarian, and squamous
cell carcinoma cell lines mediated improved killing ability of NK-
92 cells (23). Additionally, this study showed a reduction in tumor
growth using ErbB2-expressing NIH 3.3 cells mixed with NK-
92s in a subcutaneous mouse model (23). An anti-GD2 CAR
using just the CD3ζ transmembrane and signaling domains was
able to target primary glioblastoma cells as well as GD2-positive
melanoma and breast carcinomas (26). NK-92 cells can also be
targeted against multiple myeloma (MM) using an anti-CD138
CAR with only CD3ζ as a signaling domain (27). Notably, mice
bearing a subcutaneous tumor treated with CAR-expressing NK-
92 cells survived significantly longer than NK-92 cell alone in a
CD138-positive tumor model; whereas, when a CD138-negative
MM tumor was used no difference was detected (27). These data
clearly demonstrate that first generation CARs are an effective
means to induce target cell lysis in NK-92 cells both in vitro and in
mouse models; however, many of the tumor models are subcuta-
neous, which may fail to properly recapitulate the complete tumor
environment or NK cell trafficking issues.

Second generation CARs expressing a second signaling domain
in conjunction with CD3ζ vastly improves the overall activ-
ity CAR-expressing T cells (9). This has generated interest in
using second generation CARs in NK cells. Similar to first
generation CARs, several different scFvs have been used with
second generation CARs including EpCAM for multiple carci-
nomas including breast and ovarian cancer (30), an HLA-A2
EBNA3C complex for Epstein–Barr virus (31), CS1 for MM (32),
and ErbB2 for HER2 positive cancers (24, 25). The most common
second generation CAR utilized in NK-92 cells pairs the CD28
intracellular domain with CD3ζ (Table 1). Notably, NK cells do
not naturally express CD28 (35); therefore, the effect that this
domain has in NK cells is unclear. Other second generation CARs
combine CD137 (4-1BB) intracellular domain with CD3ζ. Similar
to first generation CARs, all of the constructs lead to antigen
specific killing of target cells, displaying the diverse set of tumor
antigens CARs can target. Comparison of an ErbB2 scFv fused
with CD3ζ alone, CD28/CD3ζ, or CD137/CD3ζ tested head-to-
head against breast cancer cells found that both of the second
generation constructs improved killing compared to the first gen-
eration CARs (25). Specifically, the CD28/CD3ζ had 65% tar-
get lysis in ErbB2-positive MDA-MB453 while the CD137/CD3ζ
lysed 62% and CD3ζ alone killed 51% (25). Another modification
in their construct design was the modification of a cysteine to
a serine in the CD8α signaling peptide used, which the authors
suggest improves surface expression of the CAR in NK-92 cells.
Finally, CD28/CD3ζ was compared to DAP12 alone using an
anti-PSCA CAR in YTS NK cells for prostate cancer (34). In 293T

cell lines engineered to express PSCA, a significant increase in cell
killing was observed with the DAP12 containing CAR compared
to the CD28/CD3ζ CAR, suggesting DAP12 may provide a better
signaling domain than CD3ζ (34).

Chimeric Antigen Receptor use in
Peripheral Blood NK Cells

Chimeric antigen receptors have also been evaluated in PB-NK
cells, which can be isolated from donors through simple blood
draws or by apheresis if larger numbers of cells are needed. In
contrast to NK-92 cells, activated PB-NK cells express a wider
range of activating receptors, such as CD16, NKp44, and NKp46
as well as KIRs, which play an important role in NK cell licensing
(36). In addition, PB-NK cells can be given without irradiating
the cells so have the ability to expand in vivo, which has been
correlated with effectiveness in trials involving AML (4). A greater
variety of CAR constructs have been used and directly compared
in PB-NK cells targeting CD19 (37–39), CD20 (33), or ErbB2 (40,
41) (Table 2). Imai et al. describe the use of two first generation
anti-CD19 CARs, CD3ζ, or DAP10 signaling, and one second
generation CAR with CD137 and CD3ζ. Compared to CD3ζ,
DAP10 induced a much weaker response in PB-NK cells, and
addition of the CD137 domain to the CAR resulted in augmented
killing of RS4:11 and 380 (ALL) cell lines (37). Another study
compared CD3ζ or 2B4 alone, 2B4 combined with CD3ζ, and
a CD137/CD3ζ anti-CD19 CAR and tested them against the
leukemic cell line REH. In vitro studies demonstrated the 2B4
alone CAR was slightly less active compared to CD3ζ alone.
Comparing the second generation CARs, both were significantly
better than CD3ζ alone while similar activity was observed in the
2B4/CD3ζ and CD137/CD3ζ CARs (38). When this work was
extended to an anti-GD2 CAR for neuroblastoma with just the
CD3ζ and 2B4/CD3ζ endodomains, again the 2B4/CD3ζ was sig-
nificantly better than CD3ζ alone (38). Another study compared
CD3ζ alone with a CD28/CD3ζ CAR using ErbB2 as a target.

TABLE 2 | CAR constructs utilized in PB-NK cells.

Reference Target CAR construct Method

(37) CD19 CD8α TM/CD3ζ Retrovirus (mean 69%)
CD8α TM/DAP10
CD8α
TM/CD137/CD3ζ

(40) ErbB2 (HER-2) CD28/CD3ζ Retrovirus (mean 55%)

(38) CD19/GD2 CD3ζ or 2B4 alone Retrovirus (13–24%)

2B4/CD3ζ
CD8 TM/CD137/CD3ζ

(39) CD19 CD137/CD3ζ Transfection (mRNA)
(mean 58%)

(42) NKG2D
ligands

NKG2D/CD3ζ
co-expressed with
DAP10

Retrovirus and mRNA
transfection

(41) ErbB2 (HER-2) CD3ζ alone Retrovirus (40–50%)
CD28/CD3ζ

(33) CD20 CD137/CD3ζ Transfection (mRNA)
(50–95%)
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While no direct lysis experiment was performed, similar levels
of INF-γ production were observed in PB-NK cells engineered
with just CD3ζ or CD28/CD3ζ (41). While different measures
were used, the finding that CD28/CD3ζ does not improve activity
in PB-NK cells whereas the same construct was found to be
more active in NK-92 suggests there may be differences in CAR
activation of PB-NK and NK-92 cells.

One unique approach to CAR creation was to use the
ectodomain of NKG2D, an NK cell activation receptor, and link
it directly to CD3ζ (42). This approach utilizes natural NKG2D
ligands commonly overexpressed on malignant cells to active
the CAR. Further, NKG2D associates with DAP10 providing a
secondary signaling molecule. Indeed, co-expression of DAP10
with the NKG2D/CD3ζ CAR increased surface expression. This
CAR was tested against multiple cell lines derived from several
malignancies with the best responses demonstrated against ALL,
osteosarcoma, prostate carcinoma, and rhabdomyosarcoma (42).

A third source of NK cells suitable for CAR expression are NK
cells derived from human pluripotent stem cells – both induced
pluripotent stem cells (iPSCs) or human embryonic stem cells
(hESCs) (43–47). These NK cells display a similar phenotype to
PB-NK cells (43, 44, 48), and hESC/iPSC-NK cells can be grown
on a clinical scale (48). iPSC-derived NK cells engineered with
a CD4/CD3ζ CAR are able to inhibit HIV replication (49). In
these studies, the CAR was expressed in the iPSC cells, which
were then differentiated into CAR-expressing iPSC-NK cells. The
CD4/CD3ζ iPSC-NK cells were shown to suppress the in vitro
replication of HIV, providing a platform from which to work for
the further development of CAR positive iPSC-NK cells. iPSC-
derivedNK cells combine the best of PB-NK andNK-92 cells since
the cells express NKp44, NKp46, and KIRs, are a homogeneous
population with no evidence of undifferentiated iPSCs or T cells
in the expanded NK cell population. Additionally, CARs can be
easily expressed in hESC and/or iPSC-derivedNK cells using non-
viral gene transfer methods (49, 50). This is in contrast to PB-NK
cells that are much more challenging to achieve high levels of
stable CAR expression.

Outlook

As the interest in using CARs in not only T cells (10) but also
in NK cells continues to grow, there are still a number of ques-
tions that remain to be answered. Perhaps most important is
what CAR constructs mediate optimal anti-tumor (or anti-viral)
activity. Limited studies inNK-92 cells and in PB-NK cells directly
compare first and second generation CARs. Second generation
CARs in PB-NK cells are generally more active than first gen-
eration CARs. Additionally, the use of CD3ζ seems better than
DAP10 as the signaling domain (37, 38). In NK-92 cells, DAP12
outperformed a CD28/CD3ζ CAR, but it remains unclear if NK-
92 cells provide a good model for how CARs may function in
PB-NKcells or hESC/iPSC-derivedNKcells. SinceNKcells do not
naturally express CD28 (35, 51), it is not clear if CD28 is function-
ing in CAR-expressing NK cells. Different CAR constructs may
be required to provide optimal NK cell activation depending on
the tumor type or target antigen. More direct comparisons using
various intracellular signaling domains and scFvs are needed to
best resolve these questions.

Additional research is also needed to determine whether use
of an NK cell line (such as NK-92 cells), PB-NK cells, or iPSC-
NK cells will provide the best overall benefit. Both 4-1BBL/IL-15
(52) and mbIL-21 (53) artificial antigen presenting cells (aAPCs)
can be used to expand PB-NK or iPSC-NK cells (48). Therefore,
production of enough NK cells from these sources for clinical
use is not a problem. However, it remains to be determined if
one aAPC leads to an improved population for adoptive trans-
fer, and the methods to engineer PB-NK cells still need to be
further improved. iPSC-NK cells represent an attractive pop-
ulation of cells for NK-CAR therapy because once engineered
the iPSC line can be maintained indefinitely and provide an
almost limitless supply of NK cells. In addition, careful moni-
toring of the insertion site of the CAR can be achieved. Finally,
NK cell lines provide another alternative but in general express
fewer natural NK cell receptors and must be irradiated prior to
infusion, which limits in vivo expansion and persistence of NK
cells.

The method for CAR incorporation provides another impor-
tant consideration. To get stable expression of CARs, retro- and
lentivirus methods have dominated. However, following trans-
duction of NK-92 cells a selection step is usually required to get a
pure CAR-expressing population. In PB-NK cells, the efficiencies
of gene transfer were at best 69% (37) and ranged as low as 13–24%
(38) with most reporting around a 50% transduction efficiency.
One way around this issue is the possibility of expressing the CAR
in iPSCs and subsequent differentiation intomature NK cells (49),
which is done via nucleofection with transposon and avoids the
hazards of viral methods. Another consideration is whether the
use of suicide systems, such as Cas9 or thymidine kinase (TK),
will need to be put in place if unexpected toxicities arise despite
the expectation that CAR-expressing NK cells will only circulate
for a few weeks (14).

Despite the questions that remain, the ability to engineer
NK cells with CARs holds great promise as a novel cellu-
lar immunotherapy against refractory malignancies and poten-
tially chronic infectious diseases. The success of T cell-CARs
in cases of ALL and CLL has revolutionized the prospects for
cell-based immunotherapy. CAR-NK cells can build upon this
success to provide important benefits as CAR-based therapy
expands. Notably, NK cells can provide a homogenous, off-
the-shelf, standardized product that can be used in as an allo-
geneic product to treat patients. Therefore, this process does not
need to be done on a patient-specific basis, as with current T
cell-CAR-based therapies. The ability to more potently direct
NK cell-mediated cytotoxicity against refractory tumors through
the expression of CARs can continue to revolutionize cancer
treatment.
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Given their rapid and efficient capacity to recognize and kill tumor cells, natural killer (NK) 
cells represent a unique immune cell to genetically reprogram in an effort to improve 
the outcome of cell-based cancer immunotherapy. However, technical and biological 
challenges associated with gene delivery into NK cells have significantly tempered this 
approach. Recent advances in viral transduction and electroporation have now allowed 
detailed characterization of genetically modified NK cells and provided a better under-
standing for how these cells can be utilized in the clinic to optimize their capacity to 
induce tumor regression in vivo. Improving NK cell persistence in vivo via autocrine IL-2 
and IL-15 stimulation, enhancing tumor targeting by silencing inhibitory NK cell receptors 
such as NKG2A, and redirecting tumor killing via chimeric antigen receptors, all represent 
approaches that hold promise in preclinical studies. This review focuses on available meth-
ods for genetic reprograming of NK cells and the advantages and challenges associated 
with each method. It also gives an overview of strategies for genetic reprograming of NK 
cells that have been evaluated to date and an outlook on how these strategies may be 
best utilized in clinical protocols. With the recent advances in our understanding of the 
complex biological networks that regulate the ability of NK cells to target and kill tumors 
in vivo, we foresee genetic engineering as an obligatory pathway required to exploit the 
full potential of NK-cell based immunotherapy in the clinic.
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introduction

Natural killer (NK) cells are immune cells primarily found in the blood, liver, spleen, bone marrow, 
and to a lesser extent, in lymph nodes (1). They were initially identified based on their ability to lyse 
tumor cells without a need for priming (2–5). NK cells are now known to play an important role in 
host immunity against both cancers and certain viral infections (6–8).

NK cells can mediate cytotoxicity via multiple distinct mechanisms. Degranulation is the most 
studied cytotoxicity pathway, where NK cells release cytotoxic granules upon contact with the 
target. Cytotoxicity via this pathway is dictated by a balance of signals from an array of germline 
encoded activation and inhibitory cell surface receptors. Most activation receptors need simultane-
ous co-stimulation by other activation receptors to trigger NK cell cytotoxicity (9). One exception 
from this rule is the Fc receptor CD16, which alone can trigger NK cell degranulation against 
antibody-coated target cells via antibody-dependent cellular cytotoxicity (ADCC) (9). Other 
routes by which NK cells can kill targets are the death receptor pathways TRAIL/TRAIL-R and  
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Fas/FasL. Instead of triggering release of cytotoxic granules, 
death receptor pathways prompt apoptosis via caspase activation 
in target cells.

More than a decade has passed since initial reports established 
the anti-tumor potential of NK cells in patients with cancer. These 
studies showed that haplo-identical donor NK cells could prevent 
relapse in acute myeloid leukemia (AML) following hematopoietic 
stem cell transplantation (HSCT) and that adoptively infused 
mature donor NK cells could induce remission in AML patients 
(6, 10). Despite this revelation, doubts remain about the true 
therapeutic potential of NK cells in cancer immunotherapy. In 
contrast to therapy utilizing T cells, enthusiasm for NK cell-based 
immunotherapy has been tempered by uncertainties about their 
in vivo persistence, and doubts regarding their ability to migrate to 
tumor tissues following adoptive infusions. Although recent data 
have shown CMV reactivation reduces the risk for AML relapse 
following HSCT (11) potentially caused by CMV-induced NK cells 
cross-reacting with AML cells, NK cells, unlike T-cells, lack antigen 
specificity, further tempering enthusiasm for their use as immune 
effectors in cellular therapy.

Genetic manipulation of NK cells to improve their persistence, 
cytotoxicity, tumor targeting capacity, and ability to home to 
disease sites in  vivo holds potential to advance the efficacy of 
NK cell-based cancer immunotherapy. However, until relatively 
recently, the genetic manipulation of NK cells has proven to be 
challenging. Viral transduction, successfully used for T cells, 
has been associated with low levels of transgene expression and 
unfavorable effects on cell viability when used with NK cells. 
Recent optimization of viral transduction and the establishment 
of electroporation technologies for efficient gene transfection have 
revived the enthusiasm for studies evaluating genetic modification 
of NK cells. Investigators around the world are now exploring 
the potential of multiple different NK cell modalities to geneti-
cally reprogram with the overall aim of further improving upon 
their capacity to kill tumors in cancer patients. One example of 
how this technique can be utilized is to introduce genes into NK 
cells coding for gamma-cytokines (IL-2 and IL-15) to induce 
independence from the obligate need of exogenous cytokines 
for proper in  vivo persistence and expansion post infusion. 
This and similar strategies may further improve the efficacy of 
NK cell-based immunotherapy, as tumor regression following 
adoptive NK cell infusions in AML patients has been reported to 

be dependent on their ability to expand in vivo (6), while being 
limited by regulatory T cells also mobilized following exogenous 
cytokine administration (12, 13). The introduction of chimeric 
antigen receptors (CARs) and the down-regulation of inhibitory 
NK cell receptors such as NKG2A are additional examples of 
specific genetic manipulations that can be utilized to improve 
the outcome of adoptive NK cell immunotherapy.

Given their rapid and efficient method of recognizing tumor 
cells, NK cells represent a unique immune cell to genetically 
reprogram in an effort to improve the outcome of cell-based cancer 
immunotherapy. This review focuses on methods for introducing 
transgenes into NK cells and the advantages and limitations of 
such strategies. It also gives an overview of strategies for genetic 
reprograming of NK cells that have been evaluated to date and 
an outlook on how these specific strategies may be best utilized 
in clinic to maximize the anti-tumor potential of NK-cell based 
immunotherapy.

Methods and Challenges with Genetic 
Manipulation of NK Cells: viral 
Transduction versus Transfection

Genetic manipulation of T cells has successfully been used in both 
preclinical and clinical research (14). In contrast, studies on geneti-
cally engineered NK cells have historically been limited by poor 
efficacy of transgene delivery and substantial procedure-associated 
NK cell apoptosis. In this section, we discuss available approaches 
for gene delivery into NK cells, characterizing how each approach 
developed over time while highlighting the positive and negative 
aspects of each method (Box 1).

viral Transduction
The reduced efficacy of viral transduction of NK cells compared 
to T cells may in part be related to the innate properties that 
characterize NK cells. Innate immune receptors, such as pattern 
recognition receptors that recognize foreign genomic material, are 
likely involved in triggering apoptosis of NK cells following viral 
transduction (15). Best results from studies of viral transduction of 
NK cells have been achieved using either NK cell lines or primary 
NK cells that have undergone expansion ex vivo (Table 1). In con-
trast, viral transduction of primary resting human NK cells typically 

Box 1 | Pros and Cons for Methods of Genetic Modification of NK Cells.

Method Pros Cons vector/apparatus used

V
ira

l 
tr

an
sd

uc
tio

n

Stable transgene expression
Well characterized when used with other immune cells (e.g., T cells)
Can be used with gene editing technologies, such as CRISPR

Risk for sustained and uncontrollable adverse events 
due to stable transgene expression
Risk for insertional mutagenesis and immunogenicity
Cellular enrichment may be needed and viability may 
be compromised

Retroviral vectors
Lentiviral vectors
Adenoviral vectors
Vaccinia virus vectors

Tr
an

sf
ec

tio
n High transduction efficiency without compromising viability Transient transgene expression may not be sufficient 

to induce long-term clinical responses
Amaxa

Viral vector independent; less regulatory issues; no need for high-
level biosafety laboratory

BioRad
BTX

Can be used with gene editing technologies, such as CRISPR MaxCyte
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results in substantially lower transduction efficiencies. Most studies 
on viral transduction of NK cells have utilized retro- and lentiviral 
vectors. Although adenoviral- and vaccinia virus vectors have been 
utilized for transduction of NK cells, their use has been limited and 
they will not be discussed further in this review.

Retroviral vectors were the first viral vectors used to genetically 
modify NK cells. The first report on retroviral transduction of 
NK cells was published in the late 1990s and focused on genetic 
manipulation of the NK cell line NK-92 (16). This study reported 
a transduction efficacy of only 2–3%. Optimization of retroviral 
transduction approaches over the past decade has resulted in higher 
transduction efficiencies, especially when used with human NK 
cells that have undergone ex vivo expansion (Table 1). A recent 
report showed that retroviral transduction of ex vivo expanded NK 
cells with genes coding for either IL-15 or membrane bound IL-15 
(mbIL-15) resulted in an average 69 and 71% transduction efficiency, 
respectively (25). Although retroviral transduction of NK cells has 
been reported to not alter the function, phenotype, and proliferative 
capacity of NK cells (20, 23), their viability following retroviral trans-
duction has rarely been reported. A significant deleterious impact on 
the viability of primary NK cells undergoing retroviral transduction 
may preclude utilizing this approach in a clinical setting. Further, 
retroviral transduction also requires active cell division, impeding 
the use of this method with primary non-activated NK cells. This 
limitation is less important when retroviral transduction is utilized 
with NK cell lines such as NK-92 that have continuous and unlimited 
proliferation capacity. However, as discussed later in this review, it 
is important to note that this NK cell line does have phenotypic and 
function differences from primary human NK cells, which may have 
therapeutic implications for clinical therapy.

Lentiviral Vectors
More recently, studies evaluating transduction of NK cells using 
lentiviral vectors have been pursued. In contrast to transduc-
tion with retro- and adenoviral vectors, lentiviral vectors can 
incorporate transgenes into the genome of non-dividing cells. 
Further, lentiviral vectors allow for gene modification of NK cells 
without altering their phenotypic and functional properties as 
occurs following stimulation with i.e., cytokines. The first report 
on the successful use of lentiviral vectors for genetic modification 

TABLe 1 | Overview of techniques used to genetically modify NK cells with reported gene delivery efficacies and effect on cell viability.a

Method NK cell source efficacy (%) viability Reference

V
ira

l t
ra

ns
du

ct
io

n Retroviral vector NK cell lines 1–10 n.r. (16–19)
Resting/short-term activated NK cells 6–50 n.r. (18)
Expanded NK cells 6–96 n.r. (20–25)

Lentiviral vector NK cell lines 2–97 n.r. (26–29) 
Resting/short-term activated NK cells 3–73 n.r. (15, 26, 28, 30, 31)
Expanded NK cells 90 95% (26)

Tr
an

sf
ec

tio
n

Nucleofection (RNA and DNA) NK cell lines 17–48 45–97% (32–35)
Resting/short-term activated NK cells 11 n.r. (33)
Expanded NK cells – – –

Electroporation (RNA and DNA) NK cell lines 1–80 90% (36–39)
Resting/short-term activated NK cells 40–90 86–90% (40, 41)
Expanded NK cells 61–81 89–90% (40, 41)

aOnly those studies that have reported transgene expression following genetic manipulation of NK cell are reported in this table. 
n.r., not reported.

of NK cells was performed in primary murine NK cells (42), with 
subsequent studies establishing that lentiviral transduction of 
human NK cells could also be achieved (Table 1). Although most 
studies have reported lentiviral transduction of NK cell lines with 
efficiencies of 15–40% (27, 28), the efficiency highly varies from 
only a few percent to nearly 100%, and in some cases, multiple 
rounds of transduction are required (26, 29). Recent data indicate 
that transduction efficiencies of primary human NK cells can 
be increased by drug-induced inhibition of intracellular innate 
immune receptors in NK cells (15). Unfortunately, and similar to 
studies utilizing retroviral transduction, the viability of NK cells 
after lentiviral transduction has rarely been reported. Using an 
optimized protocol, our lab has achieved a maximum transgene 
expression in up to 60% of ex vivo expanded NK cells 3 days after 
lentiviral transduction with GFP without incurring any deleteri-
ous effects on NK cell viability, phenotype, or function (Personal 
communication, R. Childs).

In summary, viral transduction of NK cells results in vari-
able transduction efficacies and may require multiple rounds of 
transduction and/or post transduction cell enrichment to achieve 
acceptable transgene expression. Further, viral associated cell death 
and the need for post-transduction enrichment may compromise 
the clinical utility of this approach. Finally, although the risk may 
be low, the possibility of viral-induced insertional mutagenesis 
and immunogenicity (43, 44) occurring post transduction must 
be considered when utilizing this methodology in the clinic. 
Nevertheless, viral transduction of NK cells does achieve stable 
transgene expression which, depending on how the NK cell is being 
genetically modified, might be required to induce a durable and 
long-term clinical response.

Transfection
Compared to viral transduction, transfection of NK cells appears to 
be associated with lower degrees of apoptosis, less inter-individual 
and inter-experimental variability, with transgene delivery efficiency 
being completely independent of cellular division. In most cases, 
this approach results in a more rapid albeit transient expression of 
the transgene as compared to viral transduction where genes must 
first be incorporated into the cellular genome before expression can 
occur. Gene transfer using transfection can be achieved by either 
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electroporation (including nucleofection) or lipofection. Since the 
latter has been used only in a few studies (45), this review will focus 
on strategies utilizing the electroporation approach.

Electroporation is a method where genetic material is delivered 
into cells following a short electric pulse that temporarily induces 
small pores in the cell membrane, allowing charged molecules 
such as DNA and RNA to move into the cell. This technology 
was first used with NK cell lines in the late 1990s (32, 36–38, 46, 
47) and more recently has been used to genetically manipulate 
primary NK cells to express CARs (35, 39, 48) or cytokines for 
autocrine growth stimulation (49). With technological advances 
and the use of mRNA instead of cDNA, transfection efficiencies 
have increased dramatically, reaching up to 90% or more while 
having only a minimal deleterious effect on cell viability (Table 1). 
Remarkably, using mRNA electroporation, transfection efficiencies 
of 80–90% can be achieved in not only ex vivo expanded cells but 
also in primary resting (non-cytokine activated) human NK cells 
(40). Despite this remarkable advance, a detailed characterization 
on the effects of electroporation on the phenotype, function, and 
proliferative capacity of NK cells following electroporation has yet 
to be published.

As electroporation does not involve viral vectors, its use in the 
preclinical and clinical setting is associated with less regulatory 
issues. Also, as indicated above, electroporation most often leads to 
transient transgene expression, which may be viewed favorably from 
a safety perspective when new transgenes with unknown potential  
toxicities are being explored in early clinical trials. Regimens that 
use DNA electroporation technology have been employed to 
generate stable transgene expressing cells. Although the efficacy 
of this approach is typically lower than that achieved with viral 
transduction, it may be improved if combined with targeted 
integration techniques that avoid random integration in inactive 
heterochromatin regions. Such strategies also reduce the risk for 
off-target effects, including gene silencing due to random integra-
tion in active genes and integration in hot-spots that may trigger 
malignant transformation. With advantages in design of guiding 
RNAs and by having better on-target specificity compared to other 
gene editing technologies such as  Zink-Finger nuclease (ZFN) 
and the transcription activator-like effector nucleases (TALEN) 
technologies, the recently developed clustered regularly interspaced 
short palindromic repeats (CRISPR) technique has rapidly become 
a popular tool for targeted gene integration (50). The CRISPR/
Cas9 system induces permanent modifications at specific sites of 
the genome via double-strand breaks (DSBs), and can be used to 
integrate new genes at specific sites via homology-directed recombi-
nation (50). Although only moderate degrees of genome integration 
are currently being achieved with this technique today, the CRISPR/
Cas9 system could be used to produce stably transduced NK cells 
by gene editing of primary NK cells prior to their ex vivo expansion.

Gene Modification Strategies Aimed at 
improving the efficacy of NK Cell-Based 
Cancer immunotherapy

With new advances in the field, genetic manipulation of NK cells has 
opened up possibilities to study many different pathways involved in 

NK cell tumor targeting and the ability to genetically modify NK cells 
to improve their tumor cytotoxicity. Here, we will discuss reported 
gene modification strategies that can improve in vivo persistence and 
expansion, tumor tissue migration, and the tumor targeting capacity 
of adoptively infused NK cells (Figure 1, Table 2 and Box 2).

Strategies to improve Persistence and 
expansion of infused NK Cells
In vivo persistence and expansion of infused NK cells have been 
shown critical for inducing tumor regression following adoptive 
NK cell infusion (6). Using retroviral transduction of the IL-2 
gene into NK-92 cells, Nagashima et al. were able to propagate 
this NK cell line for up to 5 months in vitro without the addition 
of exogenous cytokines (16). Further, IL-2-expressing NK-92 cells 
where shown to also have enhanced tumor cytotoxicity compared 
to non-transduced parental NK-92 cells that were stimulated with 
exogenous IL-2. In line with these in vitro findings, these genetically 
modified cells showed improved in vivo persistence and anti-tumor 
responses when infused into tumor-bearing mice. Similar data 
with IL-2 gene delivery in expanded NK cells were reported by 
Konstantinidis et al. (51). As observed with IL-2 transduced NK-92 
cells, retroviral transduction of ex vivo expanded NK cells with the 
mbIL15 gene also dramatically increased their survival in vitro; 
median cell recovery was 85% for mbIL-15 NK cells after 7 days 
in culture without IL-2, whereas mock-transduced NK cells were 
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FiGURe 1 | Schematic overview of how genetic manipulation can be 
can be used to improve the efficacy of NK cell-based cancer 
immunotherapy in the clinic. Genetic engineering of NK cells to promote 
persistence and expansion by autocrine cytokine stimulation, migration to the 
tumor tissue via introduction of receptors involved in cellular homing (i.e., 
chemokine receptors and adhesion molecules), as well as bolstering their 
anti-tumor cytotoxicity via introduction of CARs or activating NK cell 
receptors (aNKRs) or via silencing of inhibitory NK cell receptors (iNKRs), 
protection from suppressive cytokines in the tumor environment, and 
boosted function via autocrine cytokine stimulation.
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TABLe 2 | Overview of strategies evaluated for improving the anti-tumor 
efficacy of primary human NK cells and NK cell lines in vitro and in 
preclinical animal models.

Modality Strategy Molecule Method Reference

Persistence/
expansion

Cytokine 
stimulation

IL-2 RV (16, 51)
IL-15/mbIL-15 RV, EP, LV (25, 29, 49, 52)

Migration – – – –

Cytotoxicity Redirected 
targeting

αCD19 CAR RV, LV, EP (28, 39–41, 53)
αCD20 CAR RV, LV, EP (28, 53, 54)
αCD33 CAR EP (38)
αCD138 CAR LV (24, 48)
αCS1 CAR LV (55)
αGD2 CAR RV (23, 56)
αHER2 CAR RV, EP (22, 57)
αerbB2 CAR EP (35)
αCEA CAR EP (36)
αEpCAM CAR LV (29)
αNKG2D-L CAR RV (58)
αTRAIL-R1 CAR RV (58)
αGPA7 RV (19, 59)

ADCC HA-CD16 RV (19)

Cytokine 
stimulation

IL-2 RV (16)
IL-15/mbIL-15 RV, LV, EP (25, 29, 49, 52)

Protection from 
suppressive 
cytokines

DNTβRII EP (34)

Receptor 
silencing

NKG2A (shRNA) LV (31)

RV, retroviral transduction; LV, lentiviral transduction; EP, electroporation; ADCC, 
antibody-dependent cellular cytotoxicity; HA-CD16, high-affinity CD16; DNTβRII, 
double negative TGF-β RII.
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essentially undetectable (25). Hence, the strategy of introducing 
genes coding for gamma-cytokines to improve in  vivo NK cell 
persistence and expansion following infusion independent of 
exogenous cytokine administration appears promising.

Strategies to enhance Migration of infused  
NK Cells
Proper tumor tissue homing of infused NK cells is a prerequisite 
for their ability to induce tumor regression. However, studies char-
acterizing the in vivo migration capacity of adoptively infused NK 
cells have been largely overlooked (60). Recent evidence suggests 
non-expanded and expanded NK cells have different migration 
patterns when infused into animal models (61). Moreover, using 
trogocytosis to transfer premade cell surface molecules from 
a feeder cell line to NK cells, Somanshi et  al. have shown that 

migration of infused NK cells can be redirected by equipping them 
with the lymph node homing receptor CCR7 (62). Despite these 
data, no study has so far used gene modification techniques to 
actively direct infused NK cells to selected organs. Based on data 
from Somanshi et al., we have been able to use mRNA transfec-
tion to genetically engineer NK cells with the CCR7 receptor to 
improve their migration toward one of its ligands CCL19 (Carlsten 
M., Manuscript in preparation, April 2015). Other strategies may 
involve utilizing chemokine receptors, such as CXCR3 to improve 
NK cell migration to inflamed tissues, such as those infiltrated with 
metastatic tumors (63).

Strategies to increase Tumor Cytotoxicity by 
infused NK Cells
The majority of reports on expression of transgenes in NK cells 
have characterized the effects of CARs in NK cell lines, expanded 
NK cells, and primary non-expanded NK cells (Table 2). CARs 
are engineered receptors that have the extracellular specificity of 
an antibody combined with potent intracellular signaling adaptors 
such as CD3ζ, CD28 and/or 4-1BB. Importantly, these receptors 
do not require stimulation through co-receptors to trigger robust 
anti-tumor cytotoxicity. The recent breakthrough success of anti-
CD19 CAR T cell therapy in patients with B cell malignancies has 
stimulated the research community to develop and investigate a 
wide array of CARs against multiple different epitopes expressed 
on numerous tumor types (64). Several of these CARs have been 
explored in NK cells (Table 2). CD19 and CD20 specific CARs 
against B cell malignancies (39–41, 53, 54), and CARs targeting 
CD33 on leukemia cells (38), CS1 and CD138 on myeloma cells 
(24, 48, 55), GD2 on neuroblastoma cells (23, 56), Her2/Neu and 
erbB2 on breast cancer cells (22, 35), carcinoembryonic antigen 
(CEA) on colon cancers (36), EpCAM on epithelial tumors (29), 
GPA7 on melanoma (59), NKG2D ligand on leukemia and solid 
tumors, and TRAIL-R1 on various tumor targets (58) have all been 
shown to have the capacity to redirect NK cell cytotoxicity against 
their target antigens. The majority of these studies have used viral 
vectors to transduce CARs into the NK cell, albeit electroporation 
has also been used in a few studies (Table 2).

Based on clinical data showing superior response rates in 
rituximab-treated lymphoma patients homozygous for the high-
affinity CD16-158V polymorphism (HA-CD16) compared to those 
who carry the low-affinity CD16-158F (LA-CD16) polymorphism 
(65, 66), several groups have recently addressed whether introduc-
tion of the HA-CD16 gene into NK cells lacking this polymorphism 
can be used as a strategy to augment ADCC against tumors. This 
approach has appeal as only a minority of patients is homozygous 
for HA-CD16 (67). Moreover, in contrast to CAR NK cells, infusions 
of NK cells genetically modified to express HA-CD16 may be used 
to improve the outcome of virtually any malignancy for which there 
is an FDA approved IgG1 antibody, without the expectation for 
any severe off target side-effects. In vitro experiments conducted by 
Binyamin and colleagues showed significantly improved cytotoxicity 
against a rituximab-coated B lymphoma cell line following stable 
transduction of the CD16 negative NK-92 cell line with HA-CD16 
compared to NK-92 cells were equipped with LA-CD16 (19). 
Recently, our group explored a similar approach, where ex vivo 
expanded NK cells from CD16-158F/F (LA-CD16) donors were 

Box 2 | examples of NK Cell Modalities to Gene Manipulate for 
improved Clinical efficacy.

Persistence/
expansion

Autocrine cytokine production (IL-2, IL-15, and mbIL-15)

Migration CCR7 and CXCR3

Cytotoxicity CARs, CD16, autocrine cytokine production (IL-2 and IL-15), 
and overexpression of double negative TGF-β II receptor to 
avoid suppressive effects of TGF-β. Silencing of inhibitory NK 
cell receptors, such as NKG2A
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found to have substantially augmented ADCC following electropo-
ration with mRNA coding for the HA-CD16 (68). These data suggest 
the addition of the HA-CD16 gene to patient NK cells that already 
express endogenous CD16 can be used to augment their ability to 
induce ADCC, and that this approach could be used as a strategy to 
improve the efficacy of antibody-based therapies for cancer patients.

Introduction of genes that render NK cells insensitive to 
suppressive cytokines such as TGF-β, thereby preserving their 
cytotoxicity, has also been studied. Yang et al. generated an NK-92 
cell line resistant to the suppressive effects of TGF-β by geneti-
cally modifying them to express the dominant negative mutant 
form of TGF-β type II receptor (DNTβRII) on their surface (34). 
Adoptive transfer of these TGF-β insensitive NK-92 cells in lung 
cancer-bearing mice was associated with increased levels of IFN-γ 
released from the infused cells and resulted in increased survival 
rates compared to mice treated with wild-type NK-92.

Genetic reprograming of NK cells may also be directed to 
achieve specific protein silencing with the aim of improving tumor 
targeting by circumventing NK cell inhibitory signals induced upon 
interaction with tumor cells. Initial studies have focused on the use 
of shRNA technology for this purpose. In this context, shRNAs 
expressed inside cells are processed by the Dicer endonuclease 
complex to generate double-stranded small interfering RNAs that 
prevent translation of their target mRNAs (69), shRNAs have been 
used successfully to knock-down expression of the HLA-E-binding 
inhibitory NK cell receptor NKG2A (31). Using an inducible vec-
tor in IL-2 activated NK cells, Figueiredo et al. observed a 40% 
increased killing capacity against the HLA-E expressing cell line 
K562 HLA-E. Using a similar approach with the NK cell line NKL, 
our group observed increased killing capacity of HLA-E expressing 
721.221 cells in vitro and in a preclinical mouse model (70). Further 
details on protocols for shRNA-mediated protein silencing in NK 
cells can be found in Purdy et al. (71). To date, studies utilizing 
CRISPR, ZFN, or TALEN to genetically modify NK cells to silence 
their inhibitory receptors for the same purpose of enhancing the 
anti-tumor capacity of NK cells have not yet been reported.

In conclusion, an array of gene modification strategies for NK 
cells has now been reported. Several of them hold promise for 
improving clinical responses of NK cell-based cancer immuno-
therapy. However, to date, few have been translated into clinical 
studies. The following section will discuss how these strategies 
can be incorporated in clinical NK cell cancer immunotherapy.

Considerations for the Development of 
Clinical Protocols using Genetically 
engineered NK Cells

Challenges associated with genetic manipulation of NK cells 
have significantly delayed the debut of this strategy in clinical 
cancer therapy. While recently initiated trials (NCT00995137 
and NCT01974479) exploiting the role for CAR19-expressing ex 
vivo expanded NK cells in patients with B cell malignancies will 
give us a first insight into the potential of this approach; further 
optimization of clinical compliant methods for genetic modifica-
tions of NK cells is needed to exploit the full clinical potential 
of this approach. Moreover, additional research on the multiple 

aspects of NK cell tumor targeting that could be modified with this 
technique is needed. Although clinical responses following infu-
sion of NK cells may be further improved by simply augmenting 
their tumor targeting capacity, studies evaluating the potential of 
this technology to improve the persistence of infused cells as well 
as avenues to promote proper NK cell migration and homing to 
the tumor tissue are also warranted (Figure 1).

Genetic engineering of NK cells to make them cytokine independ-
ent and thereby improve persistence, while boosting their cytotoxic 
capacity, may be one avenue to further explore. The advantage with this 
approach would be that exogenous cytokines would be unnecessary 
following NK cell infusion, which may reduce the risk of mobilizing 
regulatory T cells that directly suppress NK cell cytotoxicity (13). 
Challenges with taking this approach to a clinical context include 
the risk of inducing a cytokine release syndrome due to massive and 
unregulated NK cell proliferation. This approach also comes with 
the potential risk of inducing malignant transformation of the NK 
cells due to permanent autocrine growth stimulation, as have been 
observed for IL-2 engineered T cells (72). However, such scenarios 
may be avoided if genes coding for IL-2 or IL-15 are only temporar-
ily introduced via mRNA electroporation of NK cells. Should stable 
transgene expression be required to induce proper tumor regression, 
an alternative strategy to prevent runaway NK cell proliferation would 
be to introduce an inducible suicide gene in the modified cells (73).

Migration to the tumor tissue is another aspect governing 
proper tumor targeting. This aspect has been largely overlooked 
and could potentially improve clinical outcome if infused NK 
cells are redirected to the tumor site instead of circulating non-
specifically into mostly non-tumor-bearing tissues. No studies 
aimed at improving the in vivo homing of infused gene engineered 
NK cells have yet been published.

As discussed above, numerous strategies for redirecting or boost-
ing NK cell tumor killing in vitro have been explored. Introduction 
of CARs represent the most studied and developed approach that 
has recently reached clinical evaluation (Table 2). Expression of 
the high-affinity CD16 may soon also be tested in a clinical setting 
as this approach can be combined with already clinically available 
monoclonal antibodies that target an array of antigens expressed on 
a variety of different tumor types. Bolstering NK cell cytotoxicity 
via autocrine cytokine stimulation or via silencing of inhibitory NK 
cell receptors will likely require additional evaluation in preclinical 
animal models before they can be incorporated in clinical protocols. 
Once all these strategies are fully characterized pre-clinically, they 
may be combined to further improve the full anti-tumor potential of 
adoptively transferred NK cells. For instance, introduction of a CAR 
while simultaneously silencing the NKG2A inhibitory receptor may 
represent one such future approach. One can also consider adding 
autocrine cytokine stimulation to further improve cytotoxicity 
while simultaneously supporting their in  vivo persistence. As 
NK cell degranulation is regulated by a balance of activating and 
inhibitory signals from well-defined cell surface receptors, it may 
also be possible to add CARs or other activation receptors together 
with selected receptors that mediate inhibition via ligands that are 
expressed on normal tissues (and not tumor cells), thereby giving 
genetically reprogramed NK cells an additional layer of target 
specificity. However, many additional preclinical studies will be 
needed before these approaches can reach clinic.
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The choice of method for genetic reprograming of NK cells is 
another important factor that needs to be considered when tak-
ing genetically engineered NK cells to clinical evaluation. Viral 
transduction has the advantage of stable expression; however, 
as mentioned above, viral transduction of NK cells, especially 
primary cells, does not always lead to a satisfactory level of 
transgene expression and may require multiple rounds of transduc-
tion followed by selection of transgene positive cells. Moreover, 
proper expression of transgenes induced by viral transduction 
can take days, which may be of disadvantage since the lifespan 
of an NK cell may be relatively short following adoptive transfer 
(i.e., weeks). Future studies are warranted to better understand 
if multiple infusions of transfected NK cells can compensate 
transient transgene expression or if stable transgene expression is 
a prerequisite for inducing clinical responses following adoptive 
transfer of genetically engineered NK cells. Studies are also needed 
to fully understand the lifespan of NK cells, particularly those that 
have undergone ex vivo manipulation.

The optimal method for genetic manipulation of NK cells 
to be used in a clinical trial may also depend on what NK 
cell preparation is used (Box 3). The advantage with NK cell 
lines is that they can be utilized as an off-the-shelf product 
stably transduced to express the gene or genes of interest. They 
may also be long-lived if given the proper cytokine support. 
However, the downside with using NK cell lines, like NK-92, 
is the requirement for irradiation (10 Gy) prior to infusion to 
avoid the risk of engrafting cells that are potentially tumorigenic 
in vivo (74). Moreover, patients treated with infusions of NK cell 
lines would also need moderate to high level of preconditioning 
to suppress host immunity to avoid rejection of these allogeneic 
cells. Moreover, infusion of allogeneic cells can raise humoral 
immunity and lead to adaptive T-cell immune responses specifi-
cally against alloantigens, precluding repeated infusions even 
with the use of preconditioning. Similar allo-reactivity can be 
induced with the use of primary allogeneic NK cell infusions. 
The use of autologous NK cells circumvents these risks and 
precludes the need for preconditioning. The potential draw back 
with using autologous NK cells is that efficient tumor targeting 
can be prevented by inhibitory KIR interactions with self-HLA. 
A potential advantage with using an NK cell line versus primary 
NK cells is that large numbers of NK cells from the NK cell line 
can be infused, whereas the number of primary cells available 
for infusion are typically much more limited. However, this 
limitation has recently been circumvented by a number of highly 
efficient methods to expand primary NK cells ex vivo for clinical 

infusion (60). Ideally, infusion of autologous gene-modified NK 
cells can be used to avoid the rejection risk and the prerequisite 
for preconditioning. One approach to overcome limitations of 
autologous NK cell inactivation via self-HLA is to genetically 
modify these effectors to silence inhibitory self-HLA binding 
receptors, such as NKG2A and KIRs, which alone or in combina-
tion with for instance CARs, can improve the tumor targeting 
capacity of NK cells in the autologous setting.

Concluding Remarks

Anti-tumor antibodies and CAR T cells have established immu-
notherapy as a viable treatment option for patients with cancer. 
Given their rapid and efficient method of recognizing tumor cells, 
NK cells represent a unique immune cell to genetically reprogram 
in an effort to improve the outcome of cell-based cancer immuno-
therapy. However, technical and biological challenges associated 
with gene delivery into NK cells have significantly tempered this 
approach. Viral transduction of NK cells initially resulted in 
low transgene delivery efficiencies that often required multiple 
rounds of transduction and/or cellular enrichment to achieve 
acceptable numbers of transgene expressing cells. Nevertheless, 
recent improvements in retro- and lentiviral transduction of NK 
cells have led to a flurry of preclinical studies on gene engineered 
NK cells. A number of studies have also shown that NK cells 
can be genetically reprogramed using mRNA electroporation. 
In contrast to viral transduction, this approach offers high 
transfection efficiencies without compromising their viability 
and does not require high-level biosafety laboratories. Although 
promising preclinical data on mRNA electroporated NK cells 
have emerged recently, concerns have been raised regarding 
the clinical utility of this approach as it only results in transient 
transgene expression.

Recently initiated clinical trials will soon give insight into 
the potential effectiveness of cell-based cancer immunotherapy 
strategies that utilize genetically modified NK cells. Nevertheless, 
further optimization of both viral transduction and electropo-
ration of NK cells is still needed before this approach can be 
fully exploited in the clinic. With the recent advances in our 
understanding of the complex biological networks that regulate 
the capacity of NK cells to target and kill tumors in vivo, and 
with rapid developments in clinically compliant techniques to 
genetically manipulate NK cells, we foresee genetic engineering 
as an obligatory pathway to exploit the full potential of adoptive 
NK cell immunotherapy in patients with cancer.

Box 3 | NK Cell Source for Adoptive NK Cell Cancer immunotherapy.

NK cell source Pros Cons

NK cell lines (NK-92) Readily available Preconditioning needed
Easy to gene manipulate Host immunity against alloantigens limits repeated  

infusions and in vivo persistence?

Primary non-expanded NK cells Autologous cells, no rejection. No need for cell  
expansion ex vivo

Low number

Primary ex vivo expanded NK cells High numbers of highly activated autologous cells  
available for repeated use

GMP laboratory needed for expansion
Costs for reagents
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Natural Killer Cells for 
immunotherapy – Advantages of the 
NK-92 Cell Line over Blood NK Cells
Hans Klingemann* , Laurent Boissel and Frances Toneguzzo

NantKwest, Inc., Culver City, CA, USA

Natural killer (NK) cells are potent cytotoxic effector cells for cancer therapy and poten-
tially for severe viral infections. However, there are technical challenges to obtain suffi-
cient numbers of functionally active NK cells from a patient’s blood since they represent 
only 10% of the lymphocytes and are often dysfunctional. The alternative is to obtain 
cells from a healthy donor, which requires depletion of the allogeneic T cells to prevent 
graft-versus-host reactions. Cytotoxic cell lines have been established from patients with 
clonal NK-cell lymphoma. Those cells can be expanded in culture in the presence of 
IL-2. Except for the NK-92 cell line, though, none of the other six known NK cell lines 
has consistently and reproducibly shown high antitumor cytotoxicity. Only NK-92 cells 
can easily be genetically manipulated to recognize specific tumor antigens or to augment 
monoclonal antibody activity through antibody-dependent cellular cytotoxicity. NK-92 is 
also the only cell line product that has been infused into patients with advanced cancer 
with clinical benefit and minimal side effects.

Keywords: NK-92 cells, immunotherapy, cancer therapy, ADCC, cellular cytotoxicity

The remarkable responses recently achieved with T cells expressing chimeric antigen receptors 
(CARs) to target tumor antigens, especially in patients with lymphoid malignancies (1–3), highlight 
the ability of immune cells to become powerful therapeutic agents. However, in a significant num-
ber of patients, CAR-T-cell treatment was associated with adverse events including a potentially 
fatal “cytokine release syndrome” requiring ICU admission. In addition, the logistics and costs of 
this treatment pose a significant challenge for making it available for a larger number of patients. 
An increasing number of investigators believe that cellular therapy with natural killer (NK) cells 
obtained from the peripheral blood of either the patient (autologous) or a healthy donor (allogeneic) 
may represent safer effector cells for targeted cancer cell therapy than T cells.

However, there are biological, logistical, and financial challenges for the application of blood NK 
cells as a treatment modality for cancer patients (Figure 1). Autologous NK cells are typically not 
very effective as they are functionally silenced when they encounter self-MHC antigens, and they 
are also frequently compromised by the underlying disease and its treatment. On the other hand, 
allogeneic NK-cell infusions carry the risk of graft-versus-host (GvH) reactions even after the CD3 
lymphocytes have been depleted (4). “Supply” is also limited, in part, because only about 10% of 
circulating blood lymphocytes are NK cells: to collect sufficient numbers of NK cells, patients or 
donors often have to undergo repeated leukaphereses that at times requires placing a central venous 
line, which is a major inconvenience for patients. This also usually limits the number of collections 
of NK-cell products for treatment to one or two. Moreover, to reach therapeutically meaningful 
numbers, NK cells have to be expanded ex vivo. This is most effectively done by culturing the cells 
(for allogeneic cells, this is after T-cell depletion) on a genetically engineered feeder layer of K562 
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cells that has been modified to express stimulatory molecules, 
such as IL-15 or IL-21 and 4-1BB (5–7). While expansion of NK 
cell can be achieved, some of these protocols result in NK-cell 
telomere shortening and reduction in cytotoxicity. Additionally, 
and in contrast to T-cell therapies, the ability to target blood NK 
cells through a CAR type mechanism is challenging due to the 
low transfection efficiency of blood NK cells even when viral-
based methods are used.

Recognizing the significant challenges being faced in the use 
of blood-derived NK cells for therapeutic purposes, investigators 
have been trying to generate stable cell lines from blood NK cells. 
These efforts have generally been unsuccessful as those (frequently 
EBV-transformed) NK cells undergo only limited number of 
divisions before they experience apoptosis. The derivation of 
functional NK cells from embryonic stem cells and/or iPSC cells 
may be another avenue to generate sufficient numbers of NK cells 
for infusion. However, these studies are still at a relatively early 
stage and require additional characterization of the final product, 
as well as standardization of protocols, before this approach can 
be considered clinically relevant (8–10).

Another way of generating larger numbers of cytotoxic NK cells 
for treatment is via a clonal cell line immortalized from a patient 
who has developed a NK-cell lymphoma. However, NK-cell 
lymphoma is a relatively rare disease, and importantly, the clonal 
outgrowth of a cell line is a rare event. Over the past 20 years, 
only a handful of clonal NK-cell lines have been established 
(11–17) (Table  1). Those cell lines generally consist of “pure” 
NK cells, which proliferate and expand easily in culture, with a 
doubling time of 2–4  days and hence can be given to patients 
repeatedly on a flexible schedule. Most of those NK-cell lines do 
not display a robust and more universal cytotoxicity that would 
warrant their further development with the exception of NK-92, 
which is the only cell line that is consistently and highly cytotoxic 
to cancer targets (13). NK-92 cells have undergone extensive 
preclinical development (18–21) and have completed phase I 
trials in cancer patients [(22, 23), clinical trials NCT00900809 
and NCT00990717]. Importantly, NK-92 cells  –  in stark con-
trast to blood NK cells – can be easily engineered by non-viral 

transfection methods to express specific receptors or ligands that 
can retarget them toward malignant cells.

Infusing cells of malignant origin may be counterintuitive, 
but a large body of evidence suggests that it is indeed safe as the 
cells are irradiated before infusion. Irradiation prevents in vivo 
proliferation while maintaining their ability to kill target cells 
and produce immune active cytokines. For NK-92, functional 
cytotoxicity is maintained after irradiation with 1000 cGy, a dose 
that completely abrogates proliferation (24). A large dataset in 
immunocompromised SCID mice has demonstrated that NK-92 
cells are not tumorigenic (20, 21, 25, 26). This is supplemented 
with data from close to 50 patients who have now been treated 
with repeated infusions of irradiated NK-92 cells without any 
short- or long-term complications, especially tumor formation. 
Those phase I studies also confirmed that even with cell numbers 
as high as 10 billion cells/m2, infusions are safe with no severe 
unexpected side effects (22, 23). At higher doses, responses were 
observed even for unselected end-stage patients.

Relatively few cell lines comply with the commonly accepted 
definition of NK cells as summarized in Table  2. YT cells, for 
example, do not express CD56 but are generally considered 
“NK-like” because they kill the MHC negative cell line K562. On 
the other hand, NKL and NKG cell lines are more closely related 
to NK-92. In fact, the NKG cell line was established by using 
identical culture conditions, as described for NK-92, i.e., the 
combination of fetal calf and horse serum, β-mercaptoethanol, 
and hydrocortisone as base constituents for the medium. Both the 
NKG and NKL cell lines have demonstrated in vitro cytotoxicity 
against a variety of malignant target cells, but these cells have 
never been administered to patients (12, 15).

The remainder of the NK-cell lines listed in Table 1 has variable 
cytotoxicity toward cancer cell lines or primary malignant cells. 
One explanation may be that these cell lines express inhibitory 
KIR receptors, which are missing on NK-92 (less well charac-
terized for NKL and NKG). For NK cells to engage and release 
their cytotoxic granules, adhesion molecules and the expression 
of activating receptors (such as NKp30, NKp44, and NKp46) 
are also essential. The combination of expression of activating 
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TABLe 2 | Operational definition of NK-cell lines.

Parameter Characteristics

Derivation From NK-cell malignancy
Immortalization +++
Monoclonality +++
TCR genes In germline
Morphology Azurophilic granules, large cells
Immunophenotype CD1−, CD2+, sCD3−, cyCD3ϵ+, CD4−, CD5−, CD7+, 

CD8−, CD16−, CD56+, CD57−, TCRαβ−, and TCRγδ−

Karyotype Numerical and structural alterations
NK activity +++
EBV ±

TABLe 1 | NK-cell lines derived from patients with NK-cell leukemia/lymphoma.

Designation Origin CD16 Cytokine dependence Cytotoxicity Reference

NK-92 LGL – lymphoma neg IL-2 +++ (13)
NK-YS NK – nasal lymphoma neg IL-2 (+) (16)
KHYG-1 LGL – leukemia neg IL-2 ++ (17)
NKL LGL – leukemia pos IL-2 + (15)
NKG LGL – lymphoma neg IL-2 ++ (12)
SNK-6 NK – nasal lymphoma neg IL-2 Not tested (14)
IMC-1 LGL – leukemia pos IL-2 + (11)
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receptors and adhesion molecules, together with the lack of most 
of the currently known KIRs, accounts for the broad cytotoxicity 
of NK-92 (27).

PReCLiNiCAL STUDieS iN SCiD MiCe 
wiTH NK-92

A large number of SCID mice studies with infusing either 
irradiated NK-92 (1000 cGy to mirror the clinical protocols) or 
non-irradiated NK-92 cells have been reported for a spectrum 
of human cancer xenotransplanted malignancies. In addition to 
AML (21), myeloma (28), and melanoma (20) using the parental 
NK-92 cells, CAR-modified NK-92 have been shown to eliminate 
AML [CD33.CAR (29)], lymphoma [CD19.CAR (18)], myeloma 
[CS1.CAR (25)], prostate cancer [EpCAM.CAR (30)], breast 
cancer [Her-2.CAR (31)], neuroblastoma [GD2.CAR (32)], and 
glioblastoma [EGFR.CAR (33)]. In those studies, CAR-modified 
NK-92 cells (now called taNK = targeted NK cells) eliminated the 
human tumor and significantly improved survival without any 
side effects in the recipient mice (34).

An advantage of the NK-92 platform is the ability to transfect 
the cells with a gene of interest without using retrovirus or len-
tivirus, as is necessary for T cells and peripheral blood NK cells. 
NK-92 can be genetically engineered by simple electroporation. 
Since the cells are highly IL-2 dependent, this can be used as a 
selection marker: the gene/construct of interest is cloned into a 
bicistronic vector with an IL-2 variant that is restricted to the 
endoplasmic reticulum and thus avoids any safety issues associ-
ated with secreted IL-2. Only those cells that are successfully 
transfected will grow out in a medium without IL-2, a huge 
advantage of a cell line over blood cells that makes the NK-92 
cell platform an “off-the-shelf ” engineered cellular product (35).

CLiNiCAL TRiALS wiTH NK-92

Four phase I trials in three different countries (US, Canada, and 
Germany) for different malignancies have been conducted with 
NK-92. All patients had treatment-resistant advanced cancer. The 
initial trials in Chicago and Frankfurt enrolled patients with renal 
cell and lung cancer and other solid tumors (22, 23). Two to three 
infusions of escalating dose levels of NK-92 were given 48 h apart. 
The MTD in these trials was largely based on the number of NK-92 
cells that could be expanded over 2–3 weeks, and 1010 cells/m2 was 
considered the highest dose level. Except for some mild fever reac-
tions in the occasional patient, the infusions were well tolerated. 
Despite the advanced disease, clinically significant responses were 
seen in patients with melanoma, lung cancer, and kidney cancer.

The study at Princess Margaret in Toronto (Keating, unpub-
lished) enrolled patients with hematological malignancies, some 
of whom had relapsed after an autologous stem cell transplant. 
Again, those infusions were well tolerated and some clinically 
significant responses were noted. A phase I study at Pittsburgh 
Cancer Center is currently enrolling the last cohort of patients 
with relapsed/treatment-resistant AML. Those patients had a 
high leukemic blast infiltration in the bone marrow, posing a 
potential risk for tumor lysis syndrome, which, however, was not 
observed. Some patients showed a decrease or stabilization of 
their bone marrow blast count.

Despite the allogeneic nature of NK-92 cells and repeated 
infusions, the formation of HLA antibodies only occurred in less 
than half of all patients. This is likely related to the fact that cancer 
patients are immunocompromised, but it also mirrors earlier 
in vitro data suggesting that NK-92 cells are only mild stimulators 
in a mixed lymphocyte reaction (NantKwest, unpublished).

The costs of preparation and administration of NK-92 are 
significantly less compared to autologous or allogeneic NK cells 
and, particularly, compared to CAR.T cells, a treatment that has 
garnered significant attention recently. In contrast to CAR.T cell 
protocols, which involve highly selected patients and are believed 
to cost on the order of $250,000 or more, infusion cycles with 
engineered NK-92 cells are generally less than $20,000, with the 
option of repeated treatment cycles (Table 3).

THe NeXT GeNeRATiON OF eNGiNeeReD 
NK-92: haNK AND taNK

The parental NK-92 cells do not express the FcγRIIIa receptor 
(CD16) (Figure  2). Therefore, NK-92 cells cannot mediate 
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TABLe 3 | Comparison between CAR-T cells and taNK.

CAR-T taNK

• Limited availability (T-cell “fitness”)
• Donor variability
• Complex collection procedure

• NK-92 is donor-independent,  
off-the-shelf product

• Requires precise logistics between 
the production facility and the 
treatment center

• Frozen product can be provided  
to treatment center as needed

• Costimulation with CD28 and/or 
4-1BB

• First generation CAR sufficient

• Transfection with virus supernatant • Electroporation of plasmid or mRNA

FiGURe 2 | aNK, haNK, and taNK.
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antibody-dependent cellular cytotoxicity (ADCC). A NK-92 
variant that expresses the high-affinity Fc receptor FcγRIIIa 
(158V) (haNK) is in clinical development to be combined with 
IgG1 monoclonal antibodies (mAbs). In vitro and in vivo studies 
have confirmed that combination with FcγRIIIa (V/V) augments 
mAb efficacy (36–39). The rationale for a treatment that combines 
mAb treatment with haNK infusions is based on the number of 
retrospective studies demonstrating an improved overall survival 
benefit in patients expressing the high-affinity FcγRIIIa recep-
tor upon treatment with mAbs, such as Rituxan® (lymphoma), 
Herceptin® (breast cancer), and Erbitux® (colon cancer) (36, 37, 
39, 40). Since only 10% of the population is homozygous for the 
high-affinity FcγRIIIa receptor (V/V), there is a clear rationale 

for infusing haNK to those patients who carry the low- or 
intermediate-affinity FcγRIIIa receptor (90% of the population) 
(41) to maximize mAb efficacy.

The term “taNK” refers to targeted NK-92 cells (42). Those 
cells have been transfected with a gene that expresses a CAR 
for a given tumor antigen. A large body of preclinical murine 
data supports this approach as one with superior efficacy to the 
parental aNK cells [reviewed in Ref. (34)]. Further, the efficient 
transfection of NK-92 with mRNA (>80%) provides a route for 
quickly assessing the effectiveness of any given CAR construct for 
a particular indication (43). This approach may also ultimately 
provide a timely approach for personalized treatment based on a 
patient’s particular tumor antigen/mutation.

THe PATH TO PeRSONALiZeD CANCeR 
THeRAPY

Currently, only CARs that recognize common known tumor anti-
gens are used to transfect T cells. What is needed are CARs that 
recognize patient-specific tumor antigens. This “missing link” 
can be achieved by using proteomic analysis of patient tumors to 
identify patient-specific neoantigens, followed by the screening of 
an antibody library for that particular antigen. Gene sequencing 
alone is not sufficient as many somatic DNA changes in tumors 
do not translate into expression of tumor antigens. Based on 
the nucleotide sequence of the antibody’s antigen binding site, a 
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single chain Fv (scFv) for the CAR specific for the patient’s cancer 
can be engineered and transfected into NK-92 cells via mRNA or 
other approaches.

The non-viral, mRNA-based off-the-shelf CAR technology 
allows to generate large numbers of taNK that are highly specific 
to the patients’ tumor (“precision medicine,” Figure  3). These 
cells can be frozen and shipped to the treatment site, on short 
notice. By identifying multiple patient-specific cancer antigens, 
the technology also enables the engineering of alternative and 
overlapping CARs in the event of a change in the tumor antigen 
profile (“escape”).

HOMiNG AND TARGeT ReCOGNiTiON

For NK cells to get to the site of tumor, they have to express certain 
“homing” molecules, such as CXCR4 for bone marrow and CCR7 
for lymphoid tissue (44, 45). There is also some suggestion that 
CXCR2 is responsible for targeting cytotoxic cells to solid tumors 
(46). Although the expression of a CAR probably can account 
for some homing, the migration of cells from the blood stream 
into the bone marrow, lymph nodes, or solid tumors requires 
appropriate trafficking and homing receptors. Once the cells are 
at their “destination,” the CAR will help targeting the malignant 
cells among the healthy ones.

COMBiNATiON THeRAPY

An off-the-shelf cell line, such as NK-92, with all its modifications 
lends itself to combination therapy. A recent review summarized 

the additive and synergistic effect of certain drugs (bortezomib, 
IMiDs, and HDAC inhibitors) on the function of blood NK cells 
(47) and NK-92 cells (48, 49).

The checkpoint inhibitors (Keytruda®, Opdivo®, and Yervoy®) 
have recently shown some remarkable responses in several types 
of cancers. This beneficial effect is believed to be largely due to 
blocking of inhibitory molecules on T cells, such as CTLA-4 
and PD1. Studies on the expression of checkpoint molecules on 
activated NK cells are somewhat inconclusive, but blood NK 
cells seem to express PD1 (50). By using checkpoint inhibitors in 
combination with NK-cell therapeutics, it could be expected that 
both the innate and the T-cell immune response can be further 
augmented.

The NK-92 platform clearly provides a base for targeting 
tumors through a multiplicity of approaches. The platform has 
been proven to be safe and effective even in its unmodified 
(parental) form. Additional improvements through genetic 
modifications will provide a combination therapy approach with 
mAb therapy (haNK) and a direct targeting approach through 
CAR modification (taNK). As an off-the-shelf therapy that can 
be administered universally to patients, this platform can provide 
a cell therapy modality that is not only versatile but that can be 
tailored to specific patient needs.
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Heat-shock protein 70 (Hsp70) is frequently found on the plasma membrane of a large 
number of malignant tumors including non-small cell lung cancer (NSCLC) and gets 
released into the blood circulation in lipid vesicles. On the one hand, a membrane (m)
Hsp70-positive phenotype correlates with a high aggressiveness of the tumor; on the other 
hand, mHsp70 serves as a target for natural killer (NK) cells that had been pre-stimulated 
with Hsp70-peptide TKD plus low-dose interleukin-2 (TKD/IL-2). Following activation, 
NK cells show an up-regulated expression of activatory C-type lectin receptors, such 
as CD94/NKG2C, NKG2D, and natural cytotoxicity receptors (NCRs; NKp44, NKp46, 
and NKp30) and thereby gain the capacity to kill mHsp70-positive tumor cells. With 
respect to these results, the efficacy of ex vivo TKD/IL-2 stimulated, autologous NK cells 
is currently tested in a proof-of-concept phase II clinical trial in patients with squamous 
cell NSCLC after radiochemotherapy (RCT) at the TUM. Inclusion criteria are histolog-
ical proven, non-resectable NSCLC in stage IIIA/IIIB, clinical responses to RCT and a 
mHsp70-positive tumor phenotype. The mHsp70 status is determined in the serum of 
patients using the lipHsp70 ELISA test, which enables the quantification of liposomal and 
free Hsp70. Squamous cell and adeno NSCLC patients had significantly higher serum 
Hsp70 levels than healthy controls. A significant correlation of serum Hsp70 levels with 
the gross tumor volume was shown for adeno and squamous cell NSCLC. However, 
significantly elevated ratios of activated CD69+/CD94+ NK cells that are associated with 
low serum Hsp70 levels were observed only in patients with squamous cell lung cancer. 
These data might provide a first hint that squamous cell NSCLC is more immunogenic 
than adeno NSCLC.

Keywords: biomarker, tumor markers, biological, heat-shock protein 70, nsclc, gross tumor volume, 
lymphocytes, immune responses
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TaBle 2 | Patient collective #2.

number

Gender Female 8

Male 47

Histology Squamous cell 28

Adeno 24

Large cell 1

Other 1

No histology 1

UICC stage Ia 1

Ib 0

IIa 2

IIb 0

IIIa 18

IIIb 34

IV 0

Clinico-pathological characteristics of 55 NSCLC patients treated at the Martin-Luther 
University Hospital, Halle-Wittenberg.
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inTrODUcTiOn

According to recent statistics, lung cancer is still among the most 
frequent causes of cancer-related deaths and the second most 
common cancer in both men and women in Western societies 
(1). The numbers of new cases are further increasing especially in 
Asia and Africa (2). According to the GLOBOCAN report 2000 
(3), the incidence of lung cancer worldwide is 1,238,900 with a 
mortality of 1,103,100 and a 5-year prevalence of 1,394,400. One 
reason for this high mortality is that patients with lung cancer 
are frequently diagnosed in advanced tumor stages since the 
symptoms, such as dyspnea, coughing, or chest pain, are quite 
unspecific for a long period of time (4). Even after radical sur-
gery, chemo-, and/or radiotherapy using up-to-date therapeutic 
approaches could not improve the outcome of locally advanced 
tumor stages. The progression-free and overall survival of non-
small cell lung cancer (NSCLC) patients in stage IIIA and IIB is 
often <16 months (5). Therefore, there is a high medical need to 
explore new treatment modalities to increase life expectancy and 
to develop minimal invasive methods for an earlier detection of 
NSCLC.

In 2013, immunotherapy was elected as the “breakthrough of 
the year” for the treatment of cancer by the journal “Science” (6). 
The basis for this was the increase in knowledge in the detec-
tion of tumor-specific traits that have the potential to serve as 
tumor-specific targets for immunotherapeutic approaches. 
Along this line, our laboratory investigated the potential of the 
major stress-inducible heat-shock protein 70 (Hsp70, HSPA1A) 
as a tumor-specific target. Hsp70 is frequently overexpressed in 
many different tumor types like hematological malignancies, 
breast, prostate, colon, brain, and lung cancer (7, 8). Hsp70 assists 
protein folding, prevents protein aggregation and apoptotic cell 
death under physiological conditions and following stress (9, 
10). Tumor cells compared to normal cells not only express 
significantly higher levels of Hsp70 in the cytosol (7, 8), but also 
exhibit an unusual plasma membrane localization of Hsp70 (11). 
Therefore, mHsp70 has the potential as a tumor-specific target 
for immunological approaches. Additionally, we have shown 
recently that mHsp70 positive tumor cells actively secrete Hsp70 
in lipid vesicles, most likely exosomes, that mirror the membrane 
orientation of the cell from which they are derived (12). Based on 
these findings, liposomal Hsp70 which is found in the peripheral 
blood circulation can reflect the mHsp70 status of the tumor. 
We have established the lipHsp70 ELISA (13), which enables the 
detection of Hsp70 in the serum and plasma of patients. The use 
of the monoclonal antibody (mAb) cmHsp70.1 (14, 15) in this 
ELISA allows a quantitative determination of free and liposomal 
Hsp70 in the blood, whereas other commercially available Hsp70 
ELISA tests only detect free Hsp70.

A mHsp70-positive tumor phenotype exerts dual functions, 
on the one hand, a high mHsp70 density is associated with a high 
aggressiveness of the tumor (16) and the potential of metastatic 
spread; on the other hand, mHsp70 on tumor cells serves as a 
target for activated natural killer (NK) cells, which have been 
incubated either with Hsp70 protein or TKD a 14mer peptide 
derived from Hsp70 in combination with low-dose IL-2 (TKD/
IL-2) (12, 17, 18). Following activation, these NK cells regain the 

capacity to kill mHsp70-positive tumor cells in  vitro (19) and 
in vivo (15, 20) via granzyme B-mediated apoptosis (21).

For a better understanding of this duality of mHsp70, we 
addressed the question whether serum Hsp70 levels are associ-
ated with clinical parameters, such as gross tumor volume (GTV) 
at diagnosis and after radiochemotherapy (RCT), and whether 
serum Hsp70 levels can have impact on the immune phenotype 
of squamous cell and adeno NSCLC (18).

MaTerials anD MeThODs

Patient Material
Blood samples of healthy human donors and NSCLC patients of 
the Klinikum rechts der Isar, TUM (patient collective #1; Table 1) 
and the Martin Luther University Hospital Halle-Wittenberg 
(patient collective #2, Table 2) were collected between 2008 and 
2015. In patient collective #1, blood was taken from patients with 
squamous cell (n = 25) and adenocarcinoma (n = 18) of the lung 
at diagnosis and directly after RCT (n = 6), and from age- and 
gender-matched healthy human volunteers (n = 126) as a control 
group. Tumor biopsies were obtained from nine NSCLC patients, 
six in stage IV, and three in stage 3 (patient collective #1). The 

TaBle 1 | Patient collective #1.

number

Gender Female 11

Male 32

Histology Squamous cell 25

Adeno 18

UICC stage Ia 1

Ib 1

IIa 0

IIb 0

IIIa 13

IIIb 13

IV 15

Clinico-pathological characteristics of 43 NSCLC patients treated at the Klinikum rechts 
der Isar, TU München, Munich, Germany.
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median age of all patients of patient collective #1 was 64 years and 
ranged from 23 to 95 years. In a screening study, NSCLC patients 
are stratified for their tumor stage and Hsp70 phenotype to enter 
a phase II clinical trial at the TUM, which is entitled “Targeted NK 
cell based adoptive immunotherapy for the treatment of patients 
with NSCLC after radiochemotherapy (RCT)” (18). In patient col-
lective #2, blood was taken from 55 patients (median age 63 years, 
range 47–86 years) with advanced stage, inoperable NSCLC with 
an indication for primary RCT. These patients were recruited into 
a pilot study entitled “Potential plasma hypoxia markers in the 
radiotherapy of non-small cell lung cancer” (22). Characteristics 
of both patient collectives are summarized in Tables  1 and 2. 
Briefly, blood was collected in two EDTA KE/9 ml tubes and one 
Serum Z/9 ml separator tube (S-Monovette, Sarstedt, Nümbrecht, 
Germany). For the serum, blood was allowed to clot for 15 min at 
room temperature. After collecting 1.4 ml of EDTA blood for flow 
cytometry, plasma and serum were obtained by centrifugation at 
750 g for 10 min. Aliquots of 100–300 μl were stored at −80°C for 
further analysis. The studies were approved by the local Ethics 
Committee of the Medical Faculties of both Universities (TUM, 
Halle-Wittenberg) and written informed consent was obtained 
from all patients before entering the trial. All procedures were 
performed in accordance to the Declaration of Helsinki, 1975, as 
revised in 2008. Clinical stage was determined according to the 
UICC TNM classification, seventh edition.

radiochemotherapy and Volumetric 
Parameters
Three-dimensional conformal RT (3D-RT) was given normofrac-
tionated (5 fractions/week) with curative intent (66 Gy total dose, 
2  Gy single dose; Siemens Primus, Germany). Chemotherapy 
consisted of cisplatin (20 mg/m2 body surface on days 1–5) and 
vinorelbine (25 mg/m2 body surface on day 1) in treatment week 
1 and 5 (2 courses). RT was CT based (Siemens Lightspeed RT, 
Germany) and all patients received a PET-scan (Philips Accel, 
USA) before RT. CT and PET images were merged and GTV 
was defined as the primary tumor and involved nodes (patho-
logic confirmed, highly suspicious by CT and PET). GTV was 
delineated by an experienced radiation oncologist at planning 
CT before RT and all image data were registered in the Oncentra 
Masterplan external beam planning software (Nucletron, USA) 
used for RT plan calculation.

Detection of hsp70 in serum/Plasma 
Using the liphsp70 elisa
The Hsp70 content in the blood of NSCLC patients and healthy 
donors was determined using the lipHsp70 ELISA, which is 
equally suitable for serum and plasma samples (13). Using the 
monoclonal cmHsp70.1 antibody as a detection reagent (15), it 
is possible to detect both, soluble-free and lipid-bound Hsp70 
in the serum/plasma of patients and healthy human individuals. 
This ELISA allows a quantitative analysis of the total amount of 
Hsp70 in the circulation blood (13). Briefly, 96-well MaxiSorp 
Nunc-Immuno plates (Thermo, Rochester, NY, USA) were coated 
overnight with 2  μg/ml rabbit polyclonal antibody (Davids, 
Biotechnologie, Regensburg, Germany), directed against human 

Hsp70 in sodium carbonate buffer (0.1  M sodium carbonate, 
0.1 M sodium hydrogen carbonate, pH 9.6). After washing three 
times with phosphate-buffered saline (PBS, Life Technologies, 
Carlsbad, CA, USA) with 0.05% Tween-20 (Calbiochem, Merck, 
Darmstadt, Germany), wells were blocked with 2% milk pow-
der (Carl Roth, Karlsruhe, Germany) in PBS for 1.5 h at 27°C. 
Following another washing step, serum samples diluted 1:5 in 
CrossDown Buffer (AppliChem, Chicago, IL, USA) were added 
to the wells for 2 h at 27°C. Then, the wells were washed again 
and incubated with 4  μg/ml of the biotinylated mouse mAb 
cmHsp70.1 (multimmune, Munich, Germany) in 2% milk 
powder in PBS for 2  h at 27°C. Finally, after another washing 
step, 0.2  μg/ml horseradish peroxidase-conjugated streptavidin 
(Pierce, Thermo, Rockford, IL, USA) in 1% bovine serum albu-
min (Sigma-Aldrich, St. Louis, MO, USA) was added for 1 h at 
27°C. Binding was quantified by adding substrate reagent (R&D 
Systems, Minneapolis, MN, USA) for 30 min at 27°C and absorb-
ance was read at 450  nm, corrected by absorbance at 570  nm, 
in a Microplate Reader (BioTek, Winooski, VT, USA). An eight-
point standard curve was determined for each ELISA test using 
0–50  ng/ml recombinant Hsp70 diluted in CrossDown Buffer. 
Each sample was measured in triplicates.

immunohistochemical staining
Immunohistochemical staining was performed on formalin-
fixed and paraffin-embedded specimen of lung tumors (n = 9). 
Sections were cut, dewaxed and hydrated, heated for 30  min 
in a microwave oven in 600  ml DAKO retrieval buffer, then 
washed for 5  min in H2O. After washing twice with T-PBS 
buffer, specimens were blocked for 1 h in 10% rabbit serum in 
PBS containing 1% BSA. Immunohistochemistry was done with 
streptavidine–biotin complex (StreptABC) using mouse mAb 
cmHsp70.1 (multimmune, Munich Germany) at a dilution of 
1:200 overnight 2 h at 4°C.

analysis of the lymphocyte 
subpopulations with Flow cytometry
In order to determine the proportion of different lymphocyte 
subpopulations, flow cytometric (FACS) analysis was performed 
using freshly collected EDTA blood (1.4  ml). Therefore, blood 
(100 μl) was transferred into 14 test tubes and then fluorescently 
labeled antibodies were added. The antibody combinations that 
were used for the FACS analysis are summarized in Table  3. 
After an incubation time of 15 min in the dark, the tubes were 
centrifuged for 5 min at 500 g at room temperature after adding 
2 ml of PBS/10% FCS washing buffer. In order to eliminate eryth-
rocytes, cells were incubated with lysing buffer (1:9 dilution of BD 
Lysing Solution Cat. 3490202 with millipore H2O) for 10 min at 
the room temperature in the dark. The respective percentages of 
B, T, and NK cell subpopulations are defined as the proportion 
of cells within the lymphocyte gate R1 (see Figure  3). For the 
determination of regulatory T cells, buffer A (1:10 dilution of 
component A with H2O) was added to the respective tubes. After 
two washing steps, cells were permeabilized with buffer C (1:50 
dilution of buffer A with component B) for 30 min in the dark. 
Following another two washing steps, a PE-conjugated antibody 
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TaBle 3 | Panel of antibodies and 14 antibody combinations used in the study.

specificity antibody clone company cat no. Volume

Ctrl IgG1-FITC X40 BD 345815 5
IgG1-PE X40 BD 345816 5
IgG1-PerCP X40 BD 345817 5
IgG1-APC X40 Caltag/Invitrogen MG 105 1

T/NK CD94-FITC HP-3D9 BD 555888 5
CD56-PE NCAM16.2 BD 345811 5
CD3-PerCP SK7 BD 345766 10
CD45-APC HI30 Caltag/Invitrogen MHCD 4505 1

B/T/NK CD56-FITC NCAM16.2 BD 345811 5
CD19-PE HIB19 BD 555413 20
CD3-PerCP SK7 BD 345766 10
CD45-APC HI30 Caltag/Invitrogen MHCD 4505 1

T/NK CD56-FITC NCAM16.2 BD 345811 5
CD16-PE 3G8 BD 555407 10
CD3-PerCP SK7 BD 345766 10
CD45-APC HI30 Caltag/Invitrogen MHCD 4505 1

T/NK CD56-FITC NCAM16.2 BD 555518 5
NKG2D-PE 149810 R&D FAB139P 10
CD3-PerCP SK7 BD 345766 10
CD69-APC L78 BD 340560 5

T/NK CD56-FITC NCAM16.2 BD 345811 5
NKp30-PE IM3709 BC PN 3709 10
CD3-PerCP SK7 BD 345766 10
CD69-APC L78 BD 340560 5

T/NK CD56-FITC NCAM16.2 BD 345811 5
NKp46-PE IM3711 BC PN 3711 10
CD3-PerCP SK7 BD 345766 10
CD69-APC L78 BD 340560 5

T/NK CD94-FITC HP-3D9 BD 555888 5
NKG2D-PE 149810 R&D FAB139P 10
CD3-PerCP SK7 BD 345766 10
CD56-APC B159 BD 555518 10

T/NK CD94-FITC HP-3D9 BD 555888 5
NKp30-PE IM3709 BC PN 3709 10
CD3-PerCP SK7 BD 345766 10
CD56-APC B159 BD 555518 10

T/NK CD94-FITC HP-3D9 BD 555888 5
NKp46-PE IM3711 BC PN 3711 10
CD3-PerCP SK7 BD 345766 10
CD56-APC B159 BD 555518 10

CD4/CD8 T CD4-FITC RPA-T4 BD 555346 20
CD8-PE RPA-T8 BD 555366 20
CD3-PerCP SK7 BD 345766 10
CD45-APC HI30 Caltag/Invitrogen MHCD 4505 1

Ctrl IgG1-FITC X40 BD 345815 5
IgG1-PE X40 BD 345816 5
IgG1-PerCP X40 BD 345817 5
IgG1-APC X40 Caltag/Invitrogen MG 105 1

CD4 Treg CD4-PE RPA-T4 BD 555346 20
FoxP3-FITC 259/C7 BD 560046 20
CD3-PerCP SK7 BD 345766 10
CD25-APC 2A3 BD 340907 5

CD8 Treg CD8-PE RPA-T8 BD 555366 20
FoxP3-FITC 259/C7 BD 560046 20
CD3-PerCP SK7 BD 345766 10
CD25-APC 2A3 BD 340907 5

APC, allophycocyanin; B, B lymphocyte; BD, Becton Dickinson Biosciences; BC, Beckman Coulter; CD, cluster of differentiation; COPD, chronic obstructive pulmonary disease;  
Ctrl, control; FITC, fluorescein isothiocyanate; NK, natural killer cell; PE, phycoerythrin; T, T lymphocyte; Treg, regulatory T cells.
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directed against the intracellular transcription factor forkhead 
box P3 (FoxP3) was added for another 30  min. After another 
two washing steps, 5 × 104 cells were analyzed on a FACScalibur 
instrument (Becton Dickinson, Heidelberg, Germany).

statistical analysis
Statistical analysis was performed using the IBM SPSS 20.0 
software package for windows (SPSS Inc., USA). Statistically 
significant differences between Hsp70 levels of patients with high 
and low GTV and high and low CD94 expression, lymphocyte 
subpopulations of healthy donors, patients with squamous cell 
and adenocarcinoma as well as between the percentage of all lym-
phocytes of patients with high and low Hsp70 expression were 
determined with Mann–Whitney’s U-test. Correlation between 
serum Hsp70 levels and GTV was evaluated using Spearman’s 
Rank Correlation Coefficient. Potential differences in Hsp70 
serum levels in NSCLC patients before and after RCT were 
determined with the Wilcoxon Rank-Sum Test. Comparison 
of Hsp70 levels in the serum of two patient groups (squamous 
cell and adeno NSCLC) and a group of healthy donors was also 
performed using the Kruskal–Wallis test with a Dunn multiple 
comparison test. A value of p < 0.05 was considered as statisti-
cally significant.

resUlTs

comparison of hsp70 levels in Patients 
with squamous cell, adeno nsclc, and 
healthy human individuals
Serum samples derived from 25 squamous cell and 18 adeno 
NSCLC patients (patient collective #1), and 126 age- and gender-
matched healthy donors were analyzed to determine the Hsp70 
levels in the peripheral blood. As shown in Figure 1A, patients 
with squamous cell and adeno NSCLC (NSCLC; n =  43) have 
significantly higher serum Hsp70 levels (p ≤ 0.001) compared to 
healthy control controls (healthy; n = 126), as determined with 
the lipHsp70 ELISA, at diagnosis. The mean serum Hsp70 levels 
of patients with squamous cell and adeno NSCLC, 16.69 ± 2.7 ng/
ml and 14.51 ± 2.49 (median 12.15 vs. 12.20 ng/ml), respectively, 
did not differ significantly from each other (p = 0.825), but both 
tumor types differed significantly (p ≤ 0.001) from that of healthy 
controls (7.0  ng/ml) as shown in Figure  1B. A representative 
image of an Hsp70 positive tumor section of a squamous cell 
(upper graph) and an adeno (lower graph) NSCLC in stage IV 
is illustrated in Figure  1C. All nine tumor sections of NSCLC 
patients (six in stage IV and three in stage III) had elevated Hsp70 
serum levels and exhibited a strong Hsp70 staining in the tumor 
cells but not in the connective tissue. Studies are ongoing that aim 
to analyze a potential correlation between cytosolic and serum 
Hsp70 levels in a larger panel of patients.

To investigate whether RCT impacts on serum Hsp70 levels in 
a small subgroup of patients (n = 6), blood was collected before 
start of therapy and directly after completion of therapy. Although 
Hsp70 levels after RCT remained significantly higher compared 
to those of healthy human individuals, a slight drop, which did 
not reach statistical significance (p = 0.463; Wilcoxon Rank-Sum 

Test), was detectable in the serum Hsp70 levels after completion 
of RCT (Figure 1D).

correlation of hsp70 levels at Diagnosis 
with Tumor Volume in nsclc Patients
A comparison of free and lipid-bound Hsp70 in the circula-
tion of tumor patients revealed that a major part of Hsp70 is 
bound to lipid vesicles, most likely exosomes, which are actively 
secreted by viable tumor cells carrying Hsp70 on their cell 
surface (12, 23). Therefore, we studied a potential correlation 
of the detected serum Hsp70 levels with the GTV of 55 NSCLC 
patients (patient collective #2; Table  2) that was determined 
by PET-imaging before start of RCT. The average tumor size 
of these patients was 219.9  ±  32.3  ml and the mean Hsp70 
level was 11.2 ± 1.7 ng/ml. The Spearman’s Rank Correlation 
Coefficient revealed a significant correlation (p = 0.03) between 
these two metric parameters. Regarding the median GTV of 
143.6 ml, these patients were subdivided into a group with low 
(≤143.6 ml) and high (>143.6 ml) median GTV. As shown in 
Figure  2, patients in the high GTV group had significantly 
higher serum Hsp70 levels than patients with a low tumor 
volume (p < 0.05).

Differences in the immune Phenotype of 
healthy human Donors, Patients with 
squamous cell and adenocarcinoma of 
the lung
Nowadays, it is well accepted that an intact immune system plays 
a key role in long-term tumor control and in prevention of distant 
metastasis (24). Therefore, we comparatively investigated differ-
ences in the relative amount of lymphocytes and lymphocyte 
subpopulations, such as B, T, and NK cells, in the EDTA blood 
of healthy human donors (n = 10) and NSCLC patients (patient 
collective #1; n  =  43; Table 1) at diagnosis, using multi-color 
FACS analysis. The panel of fluorescence-labeled antibodies and 
antibody combinations that were used in the study, is summa-
rized in Table 3. Compared to blood of healthy human donors, 
the relative number of lymphocytes was significantly lower in 
patients with squamous cell (n = 25; p = 0.001) and adeno (n = 18; 
p = 0.008) NSCLC, although the percentage of lymphocytes in 
patients with different histology was very similar (22.4 ± 1.6% for 
squamous cell and 21.8 ± 2.4% for adenocarcinoma patients vs. 
34.5 ± 1.77% in healthy controls) (Figure 3). The gating strategy 
of the lymphocytes is exemplified in the lower part of Figure 3. 
Gate R1 refers to the gated population of lymphocytes, whereas 
gate R2 represents granulocytes. The population of CD14+ mono-
cytes is localized between the gates R1 and R2.

With respect to CD19+ B cells, patients with squamous 
cell carcinoma had significantly lower percentages of B cells 
than healthy donors (p  =  0.001) and adenocarcinoma patients 
(p = 0.02) (Figure 4A). A comparison of different CD3+ T cell 
subpopulations, such as CD4+, CD8+, CD4+/CD25+ regulatory, 
NKG2D+, and CD94+ T cells revealed no major differences, apart 
from a significant increase in the subpopulation of CD3+/CD56+ 
NKT cells in patients with adeno lung carcinomas compared to 
healthy controls (p = 0.038) (Figure 4B). The activation marker 
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that patients with squamous cell NSCLC had elevated ratios of 
CD3−/CD56+ NK cells and CD3−/NKG2D+ NK cells in general, 
compared to healthy controls (p = 0.053) and adenocarcinoma 
patients (Figure 4C).

correlation of hsp70 serum levels with 
lymphocyte subpopulations in squamous 
cell and adenocarcinoma Patients
CD3−/CD94+ NK cells were found to be significantly elevated in 
squamous cell carcinoma of the lung (Figure 4C). Furthermore, 
we have shown earlier that the C-type lectin receptor CD94 
plays a key role in the recognition of Hsp70 by NK cells (17). To 
investigate the influence of serum Hsp70 on the ratio of CD3−/
CD94+ NK cells, patients with squamous cell (n  =  25) and 
adenocarcinoma (n =  18) were divided into groups with high 
(≥8.5% in squamous cell and ≥6.5% in adenocarcinoma) and 
low (<8.5% in squamous cell and <6.5% in adenocarcinoma) 
median percentages of CD3−/CD94+ NK cells. It appeared that 
patients with squamous cell NSCLC with a high CD3−/CD94+ 
NK cell ratio had significantly lower serum Hsp70 levels than 
the corresponding group with a low ratio of CD3−/CD94+ NK 
cell ratio (p = 0.048) (Figure 5A). The CD94+ NK cell popula-
tion was also found to be positive for CD69, which indicates 
that these NK cells are active. Patients with high percentages of 
CD94+/CD69+ NK cells have low Hsp70 serum levels and also a 
lower GTV, which indicates that these NK cells might be able to 
control the growth of mHsp70-positive tumor cells. In contrast, 
patients with adenocarcinoma showed no significant differences 
with respect to the ratio of CD3−/CD94+ NK cells and serum 

FigUre 1 | hsp70 serum levels (nanogram per milliliter) in healthy human individuals and patients with squamous cell and adeno nsclc at 
diagnosis and directly after rcT therapy. (a) Serum Hsp70 levels of healthy donors (healthy; n = 126; median Hsp70 level: 7.03 ng/ml, 95th percentile: 
13.84 ng/ml) and NSCLC patients (NSCLC; n = 43; median Hsp70 level: 12.15 ng/ml, 95th percentile = 40.20 ng/ml) (patient collective #1) at diagnosis measured 
with the lipHsp70 ELISA; ***p < 0.001 (Mann–Whitney U-Test). (B) Serum Hsp70 levels of healthy donors (healthy; n = 126) and patients with squamous cell 
(squamous; n = 25; median Hsp70 level: 12.10 ng/ml; 95th percentile: 40.50 ng/ml) and adeno (adeno; n = 18; median Hsp70 level: 12.38 ng/ml; 95th percentile: 
40.20 ng/ml) NSCLC (patient collective #1) at diagnosis measured with the lipHsp70 ELISA; ***p < 0.001 (Kruskal–Wallis test with Dunn’s multiple comparison test). 
(c) Representative immunohistochemical images of a squamous cell and adeno NSCLC section stained with cmHsp70.1 antibody; 20× magnification (patient 
collective #1). The upper graph shows a squamous cell NSCLC and the lower graph an adeno NSCLC section. Only the tumor tissue but not the surrounding tissue 
shows an Hsp70 staining. (D) Serum Hsp70 levels of NSCLC patients (n = 6; patient collective #1) at diagnosis (before) and directly after RCT (after).

CD69 appeared to be slightly, but not significantly, elevated on 
CD3+ T cells of patients with squamous cell (p = 0.81) and adeno-
carcinoma (p  =  0.197) patients compared to healthy controls 
(Figure 4B). A representative picture of the strategy to analyze 
CD3+/CD4+ T cells is illustrated in the inset of Figure  4B. In 
contrast to the T cell subpopulations, significant differences were 

observed with respect to CD3− NK cell subpopulations regard-
ing the activation marker CD69 and the C-type lectin receptor 
CD94. Patients with squamous cell NSCLC had significantly 
higher percentages of CD3−/CD56+/CD69+ (p  =  0.016) and 
CD3−/CD56+/CD94+ (p = 0.028) NK cells than healthy controls 
(Figure 4C). Although not significantly different, it also appeared 
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FigUre 2 | hsp70 serum levels and gross tumor volume (gTV) in 
nsclc patients. According to their median Hsp70 levels, NSCLC patients 
(n = 55; patient collective #2) were divided into patients with low GTV 
(≤143.6 ml; median GTV: 109.40 ml; 95th percentile: 296.30 ml) and high 
GTV (>143.6 ml; median GTV: 163.50 ml; 95th percentile: 688.00 ml); 
*p < 0.05 (Mann–Whitney U-test).

FigUre 3 | relative amounts of lymphocytes (%) in healthy human 
individuals and patients with squamous cell and adeno nsclc. 
Comparison of the percentage of peripheral blood lymphocytes (PBL) in 
healthy human individuals (n = 10) and patients with squamous cell (n = 25) 
and adeno (n = 18) NSCLC at diagnosis (patient collective #1); **p < 0.01, 
***p < 0.001 (Mann–Whitney U-test). Graph below: gate R1 refers to the 
population of PBL which is analyzed by FACS, G2 refers to the population of 
granulocytes.
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that patients with squamous cell NSCLC had elevated ratios of 
CD3−/CD56+ NK cells and CD3−/NKG2D+ NK cells in general, 
compared to healthy controls (p = 0.053) and adenocarcinoma 
patients (Figure 4C).

correlation of hsp70 serum levels with 
lymphocyte subpopulations in squamous 
cell and adenocarcinoma Patients
CD3−/CD94+ NK cells were found to be significantly elevated in 
squamous cell carcinoma of the lung (Figure 4C). Furthermore, 
we have shown earlier that the C-type lectin receptor CD94 
plays a key role in the recognition of Hsp70 by NK cells (17). To 
investigate the influence of serum Hsp70 on the ratio of CD3−/
CD94+ NK cells, patients with squamous cell (n  =  25) and 
adenocarcinoma (n =  18) were divided into groups with high 
(≥8.5% in squamous cell and ≥6.5% in adenocarcinoma) and 
low (<8.5% in squamous cell and <6.5% in adenocarcinoma) 
median percentages of CD3−/CD94+ NK cells. It appeared that 
patients with squamous cell NSCLC with a high CD3−/CD94+ 
NK cell ratio had significantly lower serum Hsp70 levels than 
the corresponding group with a low ratio of CD3−/CD94+ NK 
cell ratio (p = 0.048) (Figure 5A). The CD94+ NK cell popula-
tion was also found to be positive for CD69, which indicates 
that these NK cells are active. Patients with high percentages of 
CD94+/CD69+ NK cells have low Hsp70 serum levels and also a 
lower GTV, which indicates that these NK cells might be able to 
control the growth of mHsp70-positive tumor cells. In contrast, 
patients with adenocarcinoma showed no significant differences 
with respect to the ratio of CD3−/CD94+ NK cells and serum 

FigUre 1 | hsp70 serum levels (nanogram per milliliter) in healthy human individuals and patients with squamous cell and adeno nsclc at 
diagnosis and directly after rcT therapy. (a) Serum Hsp70 levels of healthy donors (healthy; n = 126; median Hsp70 level: 7.03 ng/ml, 95th percentile: 
13.84 ng/ml) and NSCLC patients (NSCLC; n = 43; median Hsp70 level: 12.15 ng/ml, 95th percentile = 40.20 ng/ml) (patient collective #1) at diagnosis measured 
with the lipHsp70 ELISA; ***p < 0.001 (Mann–Whitney U-Test). (B) Serum Hsp70 levels of healthy donors (healthy; n = 126) and patients with squamous cell 
(squamous; n = 25; median Hsp70 level: 12.10 ng/ml; 95th percentile: 40.50 ng/ml) and adeno (adeno; n = 18; median Hsp70 level: 12.38 ng/ml; 95th percentile: 
40.20 ng/ml) NSCLC (patient collective #1) at diagnosis measured with the lipHsp70 ELISA; ***p < 0.001 (Kruskal–Wallis test with Dunn’s multiple comparison test). 
(c) Representative immunohistochemical images of a squamous cell and adeno NSCLC section stained with cmHsp70.1 antibody; 20× magnification (patient 
collective #1). The upper graph shows a squamous cell NSCLC and the lower graph an adeno NSCLC section. Only the tumor tissue but not the surrounding tissue 
shows an Hsp70 staining. (D) Serum Hsp70 levels of NSCLC patients (n = 6; patient collective #1) at diagnosis (before) and directly after RCT (after).

Hsp70 levels (p  =  0.908) (Figure  5B). These findings might 
indicate that squamous cell NSCLC is more immunogenic than 
adeno NSCLC.

DiscUssiOn

Many lung tumors are diagnosed at advanced stages, which often 
restrict curative-intent treatment. In bronchial carcinoma, first 
diagnosis can be delayed by unspecific symptoms like coughing 
or dyspnea, which is also seen in inflammatory diseases of the 
lung, such as chronic obstructive pulmonary disease (COPD) or 
pneumonia. Apart from that, the majority of patients with the 
diagnosis COPD are smokers who additionally have an increased 
risk of developing lung cancer. Consequently, there is an urgent 
need for novel tumor biomarkers that can distinguish malignant 
from benign diseases. In contrast to normal cells, tumor cells 
frequently present Hsp70 on their surface. Membrane Hsp70-
positive tumor cells have the capacity to actively secrete Hsp70 
in lipid vesicles with molecular characteristics of exosomes (8, 
9, 12). In a large variety of different malignant tumor entities, 
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***p = 0.001 (Mann–Whitney U-test). (B) Percentage of T cell subpopulations in the blood of healthy donors (n = 10), squamous cell (n = 25) and adeno (n = 18) 
NSCLC patients (patient collective #1); *p < 0.05 (Mann–Whitney U-test). A representative example of the analysis of CD3+/CD4+ helper T cells by FACS analysis is 
shown in the inset (percentages of positively stained cells are shown in each quadrant of the dot blot). (c) Percentage of NK cell subpopulations in the blood of 
healthy donors (n = 10), squamous cell (n = 25) and adeno (n = 18) NSCLC patients (patient collective #1); *p < 0.05 (Mann–Whitney U-test).
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elevated Hsp70 levels in the serum could be detected (4, 5) which 
reflect a mHsp70-positive tumor phenotype. Herein, we could 
show significantly elevated levels of Hsp70 in the peripheral blood 
circulation of patients with squamous cell and adeno NSCLC 
when compared to healthy individuals. Previous work of our 
group has demonstrated that differences exist in Hsp70 serum 
levels in patients with inflammatory diseases, such as chronic 

hepatitis or liver cirrhosis and tumors, such as hepatocellular 
carcinoma (HCC) (25). All patients exhibited elevated Hsp70 
levels in the serum compared to healthy controls, but the highest 
Hsp70 levels were detected in the group of tumor patients. In 
line with these findings, it has been demonstrated that NSCLC 
patients have higher Hsp70 levels in the blood than patients with 
COPD (26). These findings might provide a first hint that Hsp70 
could have the potential as a tumor-specific biomarker, which is 
able to distinguish inflammatory and tumor diseases.

Since liposomal Hsp70, which can be quantified in the serum 
and plasma of patients, is derived from viable tumor cells (13, 
27), we were interested to study the impact of RCT on serum 
Hsp70 levels in a small cohort of six NSCLC patients diagnosed 
with NSCLC stage IIIA and IIIB from whom blood was taken at 
diagnosis and after RCT. Despite a slight drop directly after com-
pletion of RCT, serum Hsp70 levels remained significantly higher 
than those in healthy individuals. This means that it might be 
possible to determine the Hsp70 tumor phenotype in the serum 
of patients not only at diagnosis but also during RCT.

Tumor staging in the follow-up period (2–3 months after RCT) 
revealed clinical responses, such as partial response or stable 
disease in these patients. Future studies on a larger patient cohort 
will elucidate whether clinical responses can be determined by a 
drop in the serum Hsp70 levels since the major part of circulating 
Hsp70 is actively released in a lipid-bound form by viable tumor 
cells (13). In order to further test this hypothesis, the GTV was 
compared to the serum Hsp70 levels. Herein, we could show that 
a small GTV was associated with low Hsp70 and a large GTV with 
high serum Hsp70 levels in NSCLC patients (n = 55; collective 
#2). Furthermore, a significant correlation between serum Hsp70 
levels and PET-based GTV was shown using Spearman’s Rank 
Order Correlation. A potential correlation of the Hsp70 levels 
with the UICC stage has to be performed in a patient cohort with 
a more balanced distribution of different UICC stages. Studies 
of Zimmermann et  al. (26) have shown that the Hsp27 and 
Hsp70 serum levels could discriminate clinical stages in NSCLC 
and the group of Bauer et  al. (28) has shown that the tumoral 
expression of both HSPs might provide useful biomarkers for risk 
stratification of UICC stage I/II colon cancer. Considering the 
potential prognostic and predictive quality of tumor volume and 
its changes during RT of cancer (29, 30), serial GTV registrations 
at different time points before, during and after RT by CT, MRI, 
or PET will be determined together with serum Hsp70 levels in 
ongoing studies.

Nevertheless, further research is necessary to assess in more 
detail how homogeneously membrane Hsp70 is expressed in 
tumor cells within one tumor or in tumors of different patients 
in order to validate a direct correlation between serum Hsp70 
levels and the viable tumor mass. Immunohistochemistry data 
reveal that tumor cells, but not the surrounding normal tissue, 
are Hsp70 positive. Equally important is to determine which 
factors can influence the active secretion of Hsp70-containing 
vesicles by tumor cells. In the tissue of patients with squamous 
cell carcinoma of the head and neck, a high membrane Hsp70 
expression on viable tumor cells was found to be associated with 
high serum Hsp70 levels (31). Salamuta S. Mambula observed a 
re-binding of extracellular Hsp70 to the cell surface of prostate 

FigUre 5 | comparison of the cD94 immune phenotype and hsp70 
serum levels in squamous cell and adeno nsclc patients.  
(a) Correlation of the CD94 expression and serum Hsp70 levels in squamous 
cell NSCLC patients (n = 25) (patient collective #1). NSCLC patients were 
divided in a group with low (≤8.5% CD3−/CD94+ NK cells; median Hsp70 
level: 17.45 ng/ml; 95th percentile: 59.00 ng/ml) and high (>8.5% CD3−/
CD94+ NK cells; median Hsp70 level: 10.45 ng/ml; 95th percentile: 17.70 ng/
ml) percentage of CD3−/CD94+ NK cells; *p < 0.05 (Mann–Whitney U-test). 
(B) Correlation of the CD94 expression and serum Hsp70 levels in adeno 
NSCLC patients (n = 18) (patient collective #1). NSCLC patients were divided 
in a group with low (≤6.5% CD3−/CD94+ NK cells; median Hsp70 level: 
12.15 ng/ml; 95th percentile: 40.20 ng/ml) and high (>6.5% CD3−/CD94+ NK 
cells; median Hsp70 level: 12.35 ng/ml; 95th percentile: 22.50 ng/ml) 
percentage of CD3−/CD94+ NK cells; *p < 0.05 (Mann–Whitney U-test).
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carcinoma cells after its release (32). This phenomenon might 
also have an impact on circulating levels of Hsp70.

Apart from the fact that high membrane Hsp70 expression 
levels are associated with and aggressive tumor phenotype, 
radioresistance (16), and tumor progression (33), Hsp70 can also 
provide a target for the innate immune system (11, 34, 35). In gen-
eral, the immune system of each individual human blood donor 
is highly individual, depending on the genetic constitution com-
bined with the exposition to various antigens during life. Patients 
with solid tumors often show an immunosuppressed immune 
phenotype due to a variety of tumor immune escape mechanisms 
(36). In the present study, we intended to detect differences in the 
immune phenotype of patients with NSCLC of different histol-
ogy and healthy human individuals. Considering that patients 
with squamous cell and adenocarcinoma had significantly lower 
percentages of lymphocytes in the peripheral blood than healthy 
controls (Figure 4A), our findings confirm that the immune sys-
tem is essential for tumor control. Since membrane Hsp70 acts 
as a recognition structure for Hsp70-peptide pre-activated NK 
cells (35), we asked the question whether lipid-bound, circulat-
ing Hsp70 has an impact on the immune phenotype of peripheral 
blood lymphocytes (PBL). Flow cytometric analysis of the blood 
of patients with squamous cell carcinoma showed decreased 
percentages of B cells but elevated percentages of activated NK 
cell subpopulations in patients with squamous cell, but not adeno 
NSCLC. Significantly increased percentages of CD69+/CD94+ 
NK cells were found in these patients compared to the healthy 
donors and adenocarcinoma patients. We could show that high 
serum Hsp70 levels are associated with a larger GTV in squamous 
cell but not adeno NSCLC. Regarding Figures  5A,B, patients 
with a lower percentage of CD94+/CD69+ activated NK cells have 
higher Hsp70 serum levels in squamous cell NSCLC. Since high 
Hsp70 serum levels are associated with a larger GTV we specu-
late that CD94+/CD69+ activated NK might be able to control 
growth of membrane Hsp70-positive tumor cells. Depending on 
its subcellular localization Hsp70 exerts dual functions. On the 
one hand, high intracellular and membrane-bound Hsp70 levels 
protect tumor cells from apoptotic cell death and thus mediate 
therapy resistance; on the other hand, membrane Hsp70 acts as 
a recognition structure for activated NK cells. Highly malignant 
tumor cells that secrete large amounts of Hsp70 might escape 
protective antitumor immunity by inducing tolerance, and 
therefore high Hsp70 levels that are associated with a larger 
GTV might be associated with a suppression of C-type lectin-
positive NK cells. Vice versa, high percentages of CD94+/CD69+ 
NK cells can control growth of mHsp70-positive squamous cell 
carcinomas and thus serum levels of Hsp70 are lower. In case 
of adeno NSCLC, no correlation of the percentage of CD94+/
CD69+ NK cells and serum Hsp70 levels were observed. This 
finding might be attributed to the fact that adenocarcinomas are 
less immunogenic.

Previously, it has been demonstrated that the cell surface 
density of the C-type lectin receptor CD94 was up-regulated on 
NK cells after stimulation with Hsp70-peptide TKD (aa450–463) and 
low-dose IL-2 (17). Apart from Hsp70, it is known that CD94 
interacts with non-classical HLA-E molecules (37), and serves 

either as an activating or inhibitory receptor depending on the 
NKG2C or NKG2A co-receptor (38). In Hsp70 membrane-
positive SCCHN patients, even 2 years after surgery and radiation 
therapy, the expression density of CD94 and NKG2D on NK cells 
was found to be significantly up-regulated (31). An increased 
expression of CD69 on NK cells is associated with an increased 
cytotoxic activity, proliferation, TNF-α production and the induc-
tion of further activation markers, such as CD25 and ICAM-1 
(39). Our present data indicate that an increased percentage of 
CD69 and CD94 positive NK cells is only present in the blood 
of patients with squamous cell but not of adeno NSCLC patients 
and a significant association of the CD94 expression with serum 
Hsp70 could be also only detected in the group of squamous cell 
NSCLC patients (Figures 5A,B).

According to the diversity of their gene expression patterns, 
adenocarcinoma can be divided into subgroups with different 
outcome in overall survival (40). In squamous cell carcinoma 
of the lung, a reinforcement of the innate immune response by 
danger signals, such as circulating Hsp70, might be favorable. 
NK cells are not only able to detect “missing self ” on malignant 
cells (41), but also can recognize membrane Hsp70 if expressed 
in a tumor-specific manner (42). Experimental mouse models 
indicate that the development of tumor-specific CD8+ cytotoxic 
T cell responses is highly dependent on the NK cell-mediated 
elimination of tumor cells (43, 44) through the secretion of 
IFN-γ. Also macrophages and dendritic cells are activated by 
IFN-γ and TNF. An 11-year follow-up epidemiologic survey has 
shown that the paucity of activated NK cells was associated with 
an increased risk to develop cancer (45). Taken together our data 
indicate that NK cells as the first line of defense might play a 
major role in the control of squamous cell NSCLC. The danger 
molecule Hsp70 in the presence of pro-inflammatory cytokines, 
such as IL-2, might support the immune system to reinforce 
immunity against cancer.

cOnclUsiOn

We could show that Hsp70 detected by the lipHsp70 ELISA can 
serve as a tumor biomarker in liquid biopsies of patients with 
squamous cell and adeno NSCLC. Due to the fact that vesicular, 
lipid-bound Hsp70 predominantly originates from viable tumor 
cells, a correlation of serum Hsp70 levels with GTV was found. 
This finding is in accordance to the result that changes in tumor 
volume during radiotherapy in NSCLC patients have potential 
prognostic and predictive value (46, 47).

Compared to healthy individuals, NSCLC patients have 
decreased lymphocyte counts in general. However, a com-
parison of lymphocyte subpopulations in NSCLC patients with 
different histology revealed elevated percentages of CD69+/
CD94+ NK cells in squamous cell but not adeno NSCLC 
patients. This might provide a hint that squamous cell NSCLC 
is more immunogenic than adeno NSCLC. High serum Hsp70 
levels are associated with a larger GTV and lower percentage 
of CD69+/CD94+ NK cells. This might indicate that activated 
NK cells might be able to control growth of mHsp70-positive 
tumors in squamous cell NSCLC patients. If tumor escape 
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Heat shock protein 70 (Hsp70) is frequently overexpressed in tumor cells. An unusual
cell surface localization could be demonstrated on a large variety of solid tumors includ-
ing lung, colorectal, breast, squamous cell carcinomas of the head and neck, prostate
and pancreatic carcinomas, glioblastomas, sarcomas and hematological malignancies, but
not on corresponding normal tissues. A membrane (m)Hsp70-positive phenotype can be
determined either directly on single cell suspensions of tumor biopsies by flow cytom-
etry using cmHsp70.1 monoclonal antibody or indirectly in the serum of patients using
a novel lipHsp70 ELISA. A mHsp70-positive tumor phenotype has been associated with
highly aggressive tumors, causing invasion and metastases and resistance to cell death.
However, natural killer (NK), but not T cells were found to kill mHsp70-positive tumor cells
after activation with a naturally occurring Hsp70 peptide (TKD) plus low dose IL-2 (TKD/IL-2).
Safety and tolerability of ex vivo TKD/IL-2 stimulated, autologous NK cells has been demon-
strated in patients with metastasized colorectal and non-small cell lung cancer (NSCLC) in
a phase I clinical trial. Based on promising clinical results of the previous study, a phase
II randomized clinical study was initiated in 2014. The primary objective of this multicen-
ter proof-of-concept trial is to examine whether an adjuvant treatment of NSCLC patients
after platinum-based radiochemotherapy (RCTx) with TKD/IL-2 activated, autologous NK
cells is clinically effective. As a mHsp70-positive tumor phenotype is associated with poor
clinical outcome only mHsp70-positive tumor patients will be recruited into the trial. The
primary endpoint of this study will be the comparison of the progression-free survival of
patients treated with ex vivo activated NK cells compared to patients who were treated with
RCTx alone. As secondary endpoints overall survival, toxicity, quality-of-life, and biological
responses will be determined in both study groups.

Keywords: Hsp70-based immunotherapy, NSCLC patients, radiochemotherapy clinical trial, clinical phase II, NK cells

INTRODUCTION
The major stress-inducible heat shock protein 70 (Hsp70) is
known as a cytoprotective molecular chaperone, which is fre-
quently overexpressed in a large variety of tumor cells. As a molec-
ular chaperone Hsp70 supports the correct folding of nascent and
misfolded proteins, prevents protein aggregation following stress

and assists protein transport across membranes (1). High cytoso-
lic Hsp70 levels in tumor cells are associated with poor prognosis,
metastatic spread (2) and resistance to standard therapies, such
as radiochemotherapy (RCTx) (3–7). Inside tumor cells Hsp70
contributes to tumor cell survival by interfering with apoptosis
pathways (8, 9).
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Apart from these intracellular chaperoning functions Hsp70
has been found to be expressed on the cell surface of highly
aggressive primary and metastatic tumor cells. This finding was
not expected since Hsp70 lacks a transmembrane domain. Ini-
tially, the membrane expression of Hsp70 was proven by selective
cell surface iodination (10) and by biotinylation followed by pro-
teomic profiling of cell surface bound proteins (11). Later a mouse
monoclonal antibody was established [cmHsp70.1 mAb; (12)],
which is able to detect mHsp70 highly selectively on the plasma
membrane of viable tumor cells by flow cytometry. Screening of
viable single cell suspensions of more than 1,000 freshly isolated
tumor biopsies and their corresponding normal tissues revealed
that more than 50% of all tumors, but none of the healthy normal
tissues exhibited a mHsp70-positive phenotype (13, 14). A prog-
nostic value of mHsp70 on tumor cells has been demonstrated in
xenograft tumor mouse models (13), since metastases of ortho-
topically implanted primary tumor cells showed a significantly
higher surface Hsp70 density than the primary tumor cells (15).
Moreover, survival of patients with mHsp70-positive squamous
cell carcinoma of the lung and lower rectal carcinomas revealed
a significantly decreased overall survival (OS) (16) compared to
their mHsp70-negative counterparts.

Evidence is accumulating that cell surface translocation of
Hsp70 in tumor cells is mediated via non-classical vesicular path-
ways (17) since inhibitors of the classical ER-Golgi transport route
(Brefeldin A, Monensin) did not affect the cell surface expression
of Hsp70. Anchorage of Hsp70 in the plasma membrane of tumor
cells is most likely enabled by tumor-specific lipid components,
such as globotriaosylceramide Gb3 (18), which directly interact
with Hsp70 and are compounds of lipid rafts. Whether mHsp70
in lipid rafts mediates chaperone activity for cell surface signaling
receptors is still a matter of debate. Following stress, such as a non-
lethal radio- or chemotherapy not only the intracellular Hsp70
levels but also the membrane density of Hsp70 was found to be
increased in tumor cells (19–21). Following irradiation Hsp70 is
predominantly co-located with phosphatidylserine in the plasma
membrane of tumor cells and thus has to leave the cholesterol-rich
microdomain signaling platforms (22). Although elevated Hsp70
membrane and cytosolic levels confer resistance of tumor cells to
standard therapies such as radio- and chemotherapy (2, 5, 6, 8),
it also has been shown that mHsp70 serves as a target structure
for activated natural killer (NK) cells. It appears that mHsp70 can
fulfill dual functions: on the one hand, it can mediate protection
against lethal damage, which is induced by radio- and chemother-
apy; on the other hand, it might provide a target structure for the
cytolytic attack by the innate immune system (13, 14, 16, 19).

PRECLINICAL FINDINGS
ACTIVATION OF NK CELLS WITH Hsp70 PEPTIDE TKD PLUS IL-2 AND
IDENTIFICATION OF CD94 AS A SURROGATE MARKER FOR CYTOLYTIC
ACTIVE NK CELLS
Previously, we demonstrated that incubation of NK, but not T
cells, with peptide-free recombinant Hsp70 protein in combina-
tion with pro-inflammatory cytokines, such as IL-2 or Il-15 can
stimulate the cytotoxic, proliferative, and migratory capacity of
NK cells against highly aggressive, mHsp70-positive tumor cells,
in vitro (14, 23). Similar to full-length Hsp70 protein, a 14-mer

peptide (TKDNNLLGRFELSG, aa 450–463) also could activate
the cytolytic and proliferative capacity of NK cells at equimolar
concentrations (24). The stimulatory 14-mer peptide is an N-
terminal extension of the 8-mer binding epitope of the antibody
cmHsp70.1, which detects mHsp70 on the cell surface of tumor
cells. Since the induction of the cytolytic activity of NK cells with
the peptide is dose-dependent and saturable it is assumed that
the interaction of NK cells with the peptide might be receptor-
mediated. By antibody and protein/peptide blocking assays the
C-type lectin receptor CD94 could be identified as a potential
receptor, which mediates the interaction with the stimulatory
Hsp70 peptide. CD94 forms a heterodimer either with the co-
receptor NKG2A or NKG2C and thus acts as an inhibitory or
activation receptor complex. Following incubation of NK cells
with Hsp70 protein or Hsp70 peptide plus IL-2, the density of
CD94 was found to be significantly up-regulated concomitant with
an increased cytolytic activity against mHsp70-positive tumor cells
(25, 26). Therefore, the density of CD94 on NK cells was consid-
ered as a surrogate marker for the cytolytic activity of NK cells
against mHsp70-positive tumor cells.

MODE OF TUMOR CELL KILLING OF mHsp70-POSITIVE TUMOR CELLS BY
PEPTIDE PLUS IL-2 ACTIVATED NK CELLS
It has been shown that cell membrane-bound Hsp70 renders
tumor cells more susceptible to the lysis of NK cells that had
been stimulated with Hsp70 protein/peptide plus low dose IL-
2 (13, 14). In order to uncover the mechanism of lysis affin-
ity chromatography, experiments were performed using lysates
of activated NK cells on columns that were bound to either
Hsp70 protein or Hsp70 peptide. Interestingly, the apoptosis-
inducing serine protease granzyme B has been found to show
an interaction with Hsp70 protein and peptide as determined by
matrix-laser desorption ionization time of flight mass peptide fin-
ger printing (MALDI-TOF) (27). The interaction of granzyme B
with Hsp70 was previously confirmed by Western blot and flow
cytometry (27).

Natural killer cells that have been stimulated with Hsp70 plus
IL-2 show a significantly up-regulated production of granzyme
B in their intracellular vesicles. In contrast, the levels of perforin
were found to be up-regulated only moderately (25, 26). Therefore,
it is assumed that mHsp70-positive tumor cells are predomi-
nantly killed by granzyme B. Incubation of isogenic tumor cell
systems that differ in their mHsp70 expression levels indicate that
granzyme B in the absence of perforin effectively lysed mHsp70-
positive tumor cells, but not their mHsp70-negative counterparts.
Regarding these results, we concluded that Hsp70-positive tumor
cells are killed by Hsp70 plus IL-2 activated, CD94-positive NK
cells via granzyme B-mediated apoptosis (27).

PRECLINICAL MODELS SHOWING THE EFFICACY OF Hsp70 PLUS IL-2
ACTIVATED NK CELLS
An incubation of purified human NK cells with Hsp70 peptide
plus low dose IL-2 resulted in a specific tumor cell killing of
mHsp70-positive, but not their mHsp70-negative counterparts,
in vitro. Furthermore, activated NK cells compared to resting
NK cells showed a significantly increased migratory capacity
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toward mHsp70-positive tumor cells as demonstrated in a tran-
swell migration system. In order to proof the Hsp70-based anti-
tumor activity of NK cells, in vivo immunodeficient SCID/beige
mice bearing Hsp70-positive colon carcinoma cells were injected
intravenous (i.v.) into the tail vein with either peripheral blood
lymphocytes (PBLs), CD3-positively sorted T lymphocytes or
CD3-negative CD94-positive NK cells that had been stimulated ex
vivo with Hsp70 peptide plus low dose IL-2. A single injection of
activated NK, but not of T cells, was found to result in a significant
reduction in the tumor weight of the mice (28). After stimulation
of PBL with Hsp70 peptide plus IL-2 activation markers such as
CD25 or CD69 were found to be increased predominantly on the
NK cell fraction. This result indicated that it is possible to selec-
tively stimulate NK cells within unsorted PBL. Furthermore, the
amount of tumor cell killing appeared to correlate with the actual
number of activated NK cells that show a high expression density
of CD94 (25, 26).

Ex vivo activated human NK cells could also control metasta-
sized mHsp70-positive pancreatic carcinomas in immunodeficient
mice, as shown previously (15). These data indicate that mHsp70
acts as a universal tumor-specific target structure, which is not
restricted to only one specific tumor entity. In contrast, unstimu-
lated NK cells did not induce tumor cell killing. Interestingly, NK
cells that had been stimulated with IL-2 only were significantly
less efficient in the control of the tumor growth in mice. A sin-
gle injection of mice with Hsp70 peptide plus IL-2 activated NK
cells, but not with identically stimulated T cells or IL-2 activated
NK cells was also able to significantly enhance the OS of tumor-
bearing mice (15). Following four repeated i.v. injections with
Hsp70 peptide plus IL-2 pre-activated NK cells, the primary pan-
creatic tumor was found to be eliminated completely and hepatic
metastases could be prevented (15).

CLINICAL RESULTS
SUMMARY OF THE FINDINGS OF A PHASE I CLINICAL TRIAL USING
Hsp70 PEPTIDE PLUS IL-2 ACTIVATED NK CELLS
Based on promising preclinical results using ex vivo activated NK
cells in different tumor mouse models, a phase I clinical trial in
tumor patients was performed in 2002 (29). Mouse models also
have indicated that pre-activated NK cells are well tolerated even at
high numbers (28). A major goal of the previously performed clin-
ical phase I study (29) was to test whether a treatment of tumor
patients with autologous, ex vivo Hsp70 peptide plus IL-2 acti-
vated NK cells is safe and well tolerated. After i.v. injection of
escalating numbers of ex vivo pre-activated NK cells and escalat-
ing numbers of treatment cycles (up to six cycles) using complete
leukapheresis products none of the patients showed any severe
toxicities [no toxicities ≥grade 2 according to common toxicity
criteria (CTC)]. Biological and clinical responses were evaluated in
patients with confirmed metastatic colorectal cancer (N = 11) and
non-small cell lung cancer (NSCLC) (N = 1) who failed clinical
responses to standard therapies such as chemotherapy, radiother-
apy, or laser-induced thermotherapy. At the beginning of the NK
cell-based therapy, patients suffered from multiple pulmonary,
hepatic, soft tissue and bone metastases, or local relapses. Because
of the advanced tumor stages of the patients, it was ethically not
accepted to obtain fresh biopsies to determine the Hsp70 status

of the tumor during the study. Patients were enrolled in the study
at least 4 weeks after the last standard therapy. Leukocyte concen-
trates were obtained from all patients by a 3–4 h leukapheresis
at the Institute for Clinical Chemistry and Laboratory Medicine,
University Hospital Regensburg. After sterile density gradient cen-
trifugation lymphocytes were counted and re-suspended at cell
densities of 5–10× 106/ml in fetal-calf serum (FCS)-free, GMP
grade culture medium. For the dose escalation part, PBLs of the
patients were frozen in aliquots. After simultaneous addition of
Hsp70 peptide TKD (2 µg/ml, Bachem) and recombinant IL-2
(100 IU/ml Aldesleukine, Chiron) the cell suspensions were trans-
ferred into 250 ml Teflon culture bags (VueLife-118) and incubated
in an incubator at 37°C for 3–5 days under gentle rotation. After
washing in physiological saline (0.9% NaCl) and harvesting, the
cells were suspended in physiological saline (500 ml) conditioned
with 100 IU/ml recombinant IL-2. Sterility testing of the cell prod-
ucts was performed before, on day 3 and directly before re-infusion
of the cells (Figure 1). Four of the 12 patients who were treated
within an intra-individual and inter-individual dose escalation
schedule showed no adverse effects. Therefore, from patient 4
onward all patients received the complete leukapheresis product
containing between 0.7× 109 and 8.5× 109 PBLs in a single injec-
tion. The number of activated NK cells, which were re-infused
ranged from 0.1× 109 to 1.5× 109 cells in all patients. These treat-
ments were repeated up to six times in individual patients without
observing any toxic side effects. The laboratory parameters, which
were taken before and after each re-infusion cycle showed no NK
cell-based treatment associated changes. A gradual deterioration
of bilirubin, lactate dehydrogenase, and liver enzymes in some
patients could be related to the disease progression. Irrespectively

FIGURE 1 | Scheme of the NK cell activation in the clinical phase I trial.
NSCLC patients after radiochemotherapy undergo leukapheresis and the
immune phenotype (NK cell and T cell markers) is assessed by flow
cytometry. Following erythrocyte depletion on a SEPAX system peripheral
blood lymphocytes (PBLs) are stimulated ex vivo in a GMP laboratory with
TKD/IL-2 for 3–5 days. After measuring of NK activation markers and sterility
testing, the activated cells are washed and re-infused (i.v.) in the patient.
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of the treatment cycle, the number of leukocytes, thrombocytes,
and hemoglobin remained unaltered at each leukapheresis. After
each re-infusion, vital parameters of all patients were monitored
for at least 1 h. Only after the first re-infusion of the cells into
the first patient, the patient was hospitalized overnight. A graphic
overview of the NK cell activation process is shown in Figure 1. In
step 1, patient received a leukapheresis, after gradient density cen-
trifugation, patient-derived PBLs were tested for their activity by
flow cytometry and functional assays. Then PBLs were incubated
with TKD/IL-2 for 3–5 days in a GMP laboratory. After testing
viability, sterility, and functional characteristics, cells were washed
twice in 0.9% NaCl solution. Then activated cells were re-infused
in 500 ml 0.9% NaCl conditioned with IL-2 (100 IU/ml) into the
patient by i.v. injection within 30–60 min.

In addition to routine laboratory exams also specific laboratory
parameters were determined from the blood product and from
the patient before treatment, before leukapheresis, before cell re-
infusion, and after cell re-infusion. The immune phenotype of the
lymphocytes and the release of cytokines such as IFNγ, TNFα,
and the apoptosis-inducing enzyme granzyme B were determined
in the ex vivo cell culture before and after stimulation and in the
blood of the patient before and after re-infusion of the activated
cells. From day 1 to 4 of stimulation, the expression density of
CD94 on activated NK cells continuously increased as it has been
shown for healthy individuals previously. A comparison of the
mean fluorescence intensity of the Hsp70 receptor CD94 after
the first and the fourth treatment cycle also revealed a significant
increase. These data indicate that similar to healthy controls the
CD94 expression could also be increased on NK cells of tumor
patients that had been treated with radio- and/or chemotherapy
before. With respect to the cytolytic activity of ex vivo stimulated
NK cells, 10 out of the 12 patients showed a significant increase
after stimulation with Hsp70 peptide plus IL-2. In contrast, a stim-
ulation of the patient’s cells with IL-2 alone showed no significant
increase in the cytolytic activity. Studies using either Hsp70 spe-
cific or CD94 specific antibodies to block the target structure or
the NK receptor demonstrated that Hsp70 is recognized on tumor
cells by CD94-positive NK cells of the patients. Most interestingly,
we could show that the cytolytic activity of ex vivo stimulated NK
cells could be confirmed in the blood of the patients even 24 h after
re-infusion of the cells. A comparison of the activity of NK cells in
the blood before and after the fourth re-infusion cycle revealed sig-
nificantly increased cytolytic responses of the blood lymphocytes
in three out of five patients.

Clinical tumor responses (one stable disease, one mixed
response) could be observed in one patient with colorectal and
one patient with NSCLC who received at least four treatment
cycles (29). Despite the low numbers, these findings were not
expected due to the fact that all patients suffered from advanced
tumor stages and had progressive disease during their last standard
therapy.

In summary, the phase I clinical trial showed that re-infusion
of Hsp70 peptide TKD plus IL-2 activated autologous NK cells
is feasible, safe, and well tolerated. The immunological and
clinical responses warrant additional studies in patients with a
lower tumor burden and a confirmed mHsp70-positive tumor
phenotype (29).

DESCRIPTION OF AN ONGOING PROOF-OF-CONCEPT CLINICAL PHASE
II TRIAL USING Hsp70 PEPTIDE PLUS IL-2 ACTIVATED NK CELLS IN
PATIENTS WITH NSCLC FOLLOWING RADIOCHEMOTHERAPY
There is still a strong need to further improve the therapy
of patients with non-resectable locally advanced NSCLC, since
despite multimodal therapies the prognosis of those patients
remains bad with a median OS of approximately 16 months.
In this tumor stage, <20% of the patients survive more than
5 years (30). Several approaches to improve outcome have been
evaluated, including systemic treatments or novel radiation tech-
niques. The addition of chemotherapy did not enhance OS
in these patients significantly (31). Although a distinct dose–
response relationship is known for radiation therapy in lung
cancer, escalated regimes have not improved outcome in NSCLC
as shown in a prospective clinical trial (32). Immunotherapy
seems to be a promising concept to improve the therapy of
those patients. Since the membrane expression density of Hsp70
could be selectively enhanced on tumor cells following stan-
dard therapies such as ionizing irradiation and chemotherapy
in vitro, we aimed to treat tumor patients with Hsp70 peptide
TKD plus IL-2 activated (TKD/IL-2) autologous NK cells that
had been treated with a RCTx. On the one hand, RCT should
reduce the actual mass of viable tumor cells, and on the other
hand, RCT should enhance the membrane density of Hsp70,
which is recognized by pre-activated NK cells. Patients (n= 90)
with NSCLC in non-metastasized but locally advanced stages
IIIA and IIIB after RCTx (platinum based chemotherapy, 60–
70 Gy) will be enrolled into the randomized multicenter clinical
phase II trial (EUDRA-CT:2008-002130-30). Previous findings
have indicated that a mHsp70-positive tumor phenotype is asso-
ciated with a significantly decreased OS (16). Therefore, this
interventional phase II trial incorporates a 1:1 randomized con-
trol group of patients that receive no adjuvant NK cell-based
immunotherapy in addition to the current standard of treat-
ment (simultaneous RCTx), and also exhibit a mHsp70-positive
tumor phenotype.

The major in- and exclusion criteria of the trial are summa-
rized in Table 1. The scheme of the ongoing clinical phase II trial
is shown in Figure 2. In a pre-study part, the Hsp70 phenotype
of the tumor will be assessed in the blood of the patient by an
Hsp70-specific ELISA and if available on tumor biopsies by flow
cytometry using an Hsp70-specific mouse monoclonal antibody
and the tumor stage will be determined. After successful RCTx
(partial response, or at least stable disease) NSCLC patients in
stage IIIA and IIIB will be randomized into the study. Patients in
the interventional study arm receive four cycles of ex vivo TKD/IL-
2 stimulated NK cells on a monthly schedule. Tumor assessment
will be performed in both arms of the trial every 3 months for
the first year and every 6-month thereafter until progression of
disease.

The mHsp70 status on the tumor will be assessed in a pre-study
screening part carried out in the Department of Experimen-
tal Radiation Oncology at the Klinikum rechts der Isar, Tech-
nische Universität München (TUM). Tumor biopsies obtained
during the bronchoscopy at primary staging will be sent to the
sponsor’s laboratory. Freshly isolated single cell suspensions of
biopsies are used for analysis of the Hsp70 tumor phenotype.
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Table 1 | In- and exclusion criteria of the ongoing phase II clinical trial: targeted NK cell-based adoptive immunotherapy for the treatment of

patients with non-small cell lung cancer (NSCLC) after radiochemotherapy.

Inclusion criteria Exclusion criteria

First diagnose of histologically and/or cytologically proven and

unresectable NSCLC with clinical stage III A and III B

Prior treatment with any other investigational drug within 4 weeks prior to first dose

of study medication

Completion of radiochemotherapy no longer than 8 weeks ago Any severe heart disease or any severe concomitant disease (ECOG status >2)

Progression free according to RECIST 1.1 criteria at the first

assessment after completion of radiochemotherapy

NSCLC patients (stage IIIA/B) eligible for initial surgery with a confirmed consent of

an interdisciplinary tumor board

Confirmed presence of Hsp70 on the patient’s tumor Patients that show ALK positivity or an activating mutation of the EGFR-TK domain

(assessment of ALK or EGFR status not mandatory)

Female or male, age 18–75 years Patients with locally advanced or metastatic NSCLC other than predominantly

squamous cell histology

ECOG status ≤2 Any disease (including psychotic disorders, drug abuse, active infection,

uncontrolled hypertension, unstable angina, congestive heart failure, myocardial

infarction within the previous year, serious cardiac arrhythmia requiring medication,

hepatic, renal or metabolic disease), metabolic dysfunction, physical examination

finding, or clinical laboratory finding like (in the investigator’s opinion) to affect the

evaluation of the study or place the patient at risk whilst on treatment

Neutrophil count ≥1.5×109/l after completion of

radiochemotherapy

Any serious infection or sepsis

White blood cell (WBC) ≥2.5×109/l after completion of

radiochemotherapy

Any active autoimmune disease

Hemoglobin ≥8 g/l after completion of radiochemotherapy Any immunodeficiency syndrome

Platelet count ≥100×109/l after completion of radiochemotherapy Surgery or immunotherapy within 4 weeks before study entry

Normal renal function (creatinine <150% ULN) Patients with a known hypersensitivity to any of the administered substances

should be excluded from the clinical trial

Normal liver function (bilirubin <150% ULN; G-GT, GPT and GOT

<250% ULN)

Patients with a known positive HIV test should be excluded from the clinical trial as

well as patients with positive hepatitis A, B, C tests (assessment not mandatory)

Normal blood coagulation (PTT 25–40 s) Receipt of immunosuppressive drugs including systemic corticosteroids within

3 weeks before study entry. Low dose corticosteroids as they are a common

treatment option for patients suffering from COPD are not an exclusion criteria

Measurable disease according to immune related RECIST criteria Radio- cytostatic- and immunotherapy in parallel or within 2 weeks prior study start

Female patients of childbearing potential must have negative

pregnancy test performed during screening period (≤14 days

before initiation of study dosing)

Women who are pregnant or breast feeding

Postmenopausal women must be amenorrheal for at least

12 months to be considered of non-childbearing potential. Female

patients of reproductive potential must agree to employ an

effective method of birth control throughout the study and for

6 months following discontinuation of study drug

Female patients of reproductive potential unwilling to practice a highly effective

method of birth control

Written (signed) informed consent document indicating that the

patient of all pertinent aspects of the trial prior to enrollment and

to participate in the study

History of non-compliance with medical regimes

Ability to comply with the study Patients unwilling to or unable to comply with the protocol

If bronchoscopy has been performed alio loco prior to patient
admittance, the mHsp70 expression will be determined by quanti-
fying the amount of exosomal Hsp70 in the blood of the patients.

Previously, we have shown that mHsp70-positive tumor cells
actively release Hsp70 in exosomes, which present Hsp70 on their
surfaces. Since most commercial Hsp70 ELISAs are unable to

www.frontiersin.org                                                                                                                                                      April 2015 | Volume 6 | Article 162 | 133

http://www.frontiersin.org
http://www.frontiersin.org/NK_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specht et al. Hsp70-based immunotherapy after radiochemotherapy in NSCLC patients

FIGURE 2 | Scheme of the phase II clinical trial. In the pre-study part, the
Hsp70 phenotype and the stage of the tumor disease is assessed. Only
Hsp70-positive NSCLC patients in stage IIIA/B who received a
radiochemotherapy (RCTx) and showed at least a stable disease are

randomized into the trial. The interventional group receives four cycles of ex
vivo TKD/IL-2 activated NK cells on a monthly basis; the control group gets
best supportive care. Tumors will be assessed in the first year every
2–3 months by CT in both groups.

detect lipid-bound, exosomal Hsp70 in the serum we established
a novel lipHsp70 ELISA test. This ELISA detects and quantifies
exosomal Hsp70 in the serum of patients with a high accu-
racy (patent filed). Using this Hsp70 ELISA, we could show
that patients with tumors of different entities (including NSCLC
patients) exhibit significantly higher Hsp70 serum levels than
a group of age- and gender-matched healthy volunteers (33).
Therefore, in the screening part of the study, Hsp70 serum lev-
els will be measured in NSCLC patients before and after RCTx.
In the therapeutic clinical phase II trial, Hsp70 serum levels will
be assessed before and after NK cell-based immunotherapy for
the treatment group and at identical fixed time points for the
control group. The mHsp70 phenotype will be correlated with
the Hsp70 serum levels and the tumor volume will be corre-
lated with the Hsp70 serum level. Furthermore, the results of the
Hsp70 serum values before and after therapy will help to eluci-
date, whether serum Hsp70 levels can improve the monitoring
of the clinical outcome after therapeutic intervention. The results
of the Hsp70 serum levels will also help to further validate the
role of exosomal Hsp70 as a prognostic/diagnostic tumor bio-
marker, as it was suggested for head and neck, lung, colorectal,
pancreatic, brain cancer, and leukemic patients before (33). Ele-
vated levels of Hsp70 in the serum were also found in patients
with squamous cell carcinoma of the head and neck (34) and
glioblastomas (35).

Identical to the phase I clinical trial the leukapheresis prod-
ucts, which are used as source material for stimulated NK cells, are
produced centralized at the Institute for Clinical Chemistry and
Laboratory Medicine, Transfusion Medicine, University Hospital
Regensburg, under GMP conditions in order to obtain comparable
cell products. Afterwards cell processing is performed in a GMP
cleanroom laboratory. For all manufacturing steps, the permis-
sion of the competent authorities was obtained. NSCLC patients
in the treatment arm will be treated four times every 2–6 weeks
with ex vivo TKD/IL-2 stimulated NK cells after RCTx. In case of
significant toxicities, the treatment will be interrupted, the dose of
re-infused cells will either be reduced or stopped. Patients in the
control arm also have received standard RCTx prior to enrollment.
Tumor assessment will be done for both study groups at enroll-
ment, every 3 months during the first year and every 6-month
thereafter until progression of disease. Response to treatment will
be assessed centrally at TU München in order to prevent bias.

REGULATORY ASPECTS AND PRODUCTION OF THE INVESTIGATIONAL
MEDICINAL PRODUCT OF THE PHASE II CLINICAL TRIAL (APCETH GmbH
UND Co. KG, MUNICH)
The Investigational Medicinal Product (IMP) is classified as an
advanced therapy medicinal product [ATMP, somatic cell product,
Regulation (EC) No 1394/2007]. The process established in an aca-
demic institution for the phase I had to be transferred and adapted
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to the actual requirements for ATMP’s. The process required
approximately 1.5 years and was completed with the manufacturer
license granted to apceth by the local and national authority as a
prerequisite for the clinical trial application by the sponsor. The
manufacturing of TKD-activated autologous NK cells follows the
principles of good-manufacturing practice (EU-GMP guidelines)
in order to provide a robust and reproducible pharmaceutical
product.

The implementation involved the development phase, the
transfer to GMP, and the implementation of a GMP-compliant
process. The development phase defined the process steps (closed
systems wherever possible), the equipment and quality control
(QC) methods, the definition of in-process controls, and the mate-
rials (should be available in adequate quality). The comparability
to the process applied for phase I and the results obtained should
be confirmed. The transfer phase involved a stepwise implemen-
tation to full GMP mainly relating to up-scaling from small-scale
(microtiter-plates), medium-scale (bags with small volume of cell
suspension), and large-scale in addition to the qualification of the
materials and analytical methods. The GMP-process was estab-
lished with the successful validation of the QC methods and the
validation of the process by media-fills and qualification runs.
The modifications to the phase I process relate to the exact spec-
ification of the starting material “apheresis product” including
transport to the GMP-facility, the introduction of closed systems
(density centrifugation of the starting material is now performed
in a Sepax® device and harvesting/washing procedures in closed
systems; in a class B room), release criteria, and test methods.
Special attention was paid to the reconstitution buffer [Ringer-
lactate and 0.1% human serum albumin (HAS)] and the shelf-life
(24 h) as the end product is delivered to several study centers.
Most of the development work was attributed to the definition
and validation of analytical QC methods (flow cytometry) and
the qualification of ancillary and raw materials (for example, TKD
and cytokines). Flow cytometry of the activated NK cell popula-
tion was challenging and different approaches had to be evaluated
resulting in a change of specification (CD94) and the introduction
of a parallel culture for QC-testing to test for the mean fluores-
cence intensity. The test results according to the specifications
for potency, purity, identity, and absence of microbial contami-
nation/endotoxins/mycoplasma are the basis for the release of the
final product for further application by the qualified person. This
IMP is not cryo-preserved and has a limited shelf-life; at least the
sterility results are not available at the time of application and
requiring a well-defined aseptic manufacturing process.

The seven participating study sites have been initiated in 2014
and the study will last for approximately 2 years after the inclu-
sion of the first patient (in 2015) into the interventional study
part. Since the phase I trial (29) and pilot studies (36) have shown
that four repeated infusion cycles of ex vivo stimulated, autolo-
gous leukapheresis products lead to elevated basal NK cell activity
in the peripheral blood of the patients, four treatment cycles will
also be administered in the clinical phase II trial. The NK cell
activity in the peripheral blood of the patients will be determined
prior to study entry and start of adjuvant immunotherapy, every
3 months after enrollment for the first year and every 6-month
thereafter to determine the biological activity. Multiparameter

Table 2 | Panel of CE-certified, fluorescence-labeled antibodies

(Beckman Coulter), which are used in the clinical trial.

Fluorescence-conjugated

antibodies

Article# Specificity

IgG1-FITC/PE/PC7/APC A07795/A07796 Control

737662/IM2475

IgG2a-PE/APC A09142/A12693 Control

CD3-FITC−/CD94-APC+ A07746/B09980 NK cells

CD3-FITC−/CD56-PE+ A07746/A0788 NK cells

CD3-FITC−/CD16-PE+ A07746/A07766 NK cells

CD3-FITC+/CD56-PE− A07746/A0788 NKT cells

CD3-PC7+ 737657 T cells

CD3-PC7+/CD4-PE+ 737657/A07751 T helper cells

CD3-PC7+/CD8-APC+ 737657/IM2469 T cytotoxic cells

CD3-FITC−/CD19-PC7+ A07746/IM3628 B cells

CD3-FITC−/CD14-PE A07746/A07764 Macrophages

CD45-APC+ A79392 Leukocytes

CD66b(CD67)-FITC+ IMO531-U Neutrophils, eosinophils,

granulocytes

7-AAD (A07704) was used as a viability dye.

flow cytometric analysis will be performed with the peripheral
blood of the patients to determine the activation status of the
NK and T cells using a pre-fixed panel of antibodies as indi-
cated in Table 2. The cytotoxic response of patient derived NK
cells before and after RCTx and after immunotherapy will be
assessed by Europium cytotoxicity assays using K562 cells as a
classical NK cell target and by measuring the density of NK/T
cell activation markers such as CD94 and CD69 in the labo-
ratory of Gabriele Multhoff at the TUM. Serum Hsp70 levels
will be measured as mentioned above. In parallel to the blood
analysis, tumor response assessment will be performed and cen-
trally reviewed according to the immune related Response Criteria
(irRC). Patients will be excluded when they show progressive dis-
ease according to irRC [increase of tumor burden more than 25%
relative to nadir (minimum recorded tumor burden, confirmation
by a repeat, consecutive assessment no <4 weeks from the date first
documented)].

CONCLUDING REMARKS
This review aims to summarize results from bench to bedside
experiments that resulted in the initiation of a phase II clinical
trial using ex vivo activated NK cells in a targeted immunother-
apy of NSCLC patients after RCTx bearing Hsp70 membrane-
positive tumors. Hsp70 has been found to serve as a biomarker
for highly aggressive tumors and metastases (5, 6, 19). Preclinical
data have shown that stimulation of NK cells with Hsp70 pep-
tide TKD plus IL-2 results in an increased migratory capacity of
NK cells and an enhanced killing of Hsp70 membrane-positive
tumor cells in vitro (24), and in relevant tumor mouse models
(28). An increased expression density of the C-type lectin receptor
CD94 has been identified as a useful surrogate for the cytolytic
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activity of NK cells (25, 26), and granzyme B-mediated apop-
tosis was found to be responsible for the killing of tumor cells
presenting Hsp70 on their cell surface (27). A phase I clinical
trial has shown that re-infusion of ex vivo TKD/IL-2 stimulated
autologous NK cells in patients with late-stage colorectal cancers
and NSCLC is feasible, safe, and well tolerated (29). As stress,
such as RCTx has been found to increase the cell surface den-
sity of Hsp70 selectively on tumor cells (21), a proof-of-concept
phase II clinical trial was initiated in NSCLC patients stage IIIA/B
after RCTx.
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Natural killer (NK) cells play a major role in cancer immunotherapies that involve tumor-an-
tigen targeting by monoclonal antibodies (mAbs). NK cells express a variety of activating 
and inhibitory receptors that serve to regulate the function and activity of the cells. In 
the context of targeting cells, NK cells can be “specifically activated” through certain Fc 
receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/
or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating 
signals within NK cells. Once activated through Fc receptors by antibodies bound to 
target cells, NK cells are able to lyse target cells without priming, and secrete cyto-
kines like interferon gamma to recruit adaptive immune cells. This antibody-dependent 
cell-mediated cytotoxicity (ADCC) of tumor cells is utilized in the treatment of various 
cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell 
lymphoma, and others. NK cells also express a family of receptors called killer immu-
noglobulin-like receptors (KIRs), which regulate the function and response of NK cells 
toward target cells through their interaction with their cognate ligands that are expressed 
on tumor cells. Genetic polymorphisms in KIR and KIR-ligands, as well as FcγRs may 
influence NK cell responsiveness in conjunction with mAb immunotherapies. This review 
focuses on current therapeutic mAbs, different strategies to augment the anti-tumor 
efficacy of ADCC, and genotypic factors that may influence patient responses to anti-
body-dependent immunotherapies.

Keywords: natural killer cell, therapeutic monoclonal antibody, antibody-dependent cellular cytotoxicity, cancer, 
immunotherapy

introduction

Natural killer (NK) cells have been described throughout the literature for their ability to kill virally 
infected and malignant cells without priming. Unlike B and T cells, NK cells do not require somatic 
gene rearrangements to produce highly specific receptors that recognize target cells (1, 2). Instead, 
mature NK cells reserve large amounts of cytotoxic granules containing perforin and granzymes, as 
well as the mRNA of IFNγ that is ready for translation if stimulated. As soon as the balance between 
inhibitory and activating signals within NK cells are skewed toward activation, NK cells are capable 
of forming synapses with target cells, allowing the release of the perforin and granzyme to lyse the 
target cells, as well as for IFNγ production (3). In addition, NK cells can initiate the transduction 
of death signals within target cells through death receptor/ligand ligation (4). Their capabilities of 
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tumor cytotoxicity and inflammatory cytokine production enable 
NK cells to play an important role in different settings of cancer 
immunotherapy.

NK Cell Recognition and “Missing-Self” 
Hypothesis
Mature NK cells express a series of transmembrane receptors. 
The activating receptors allow them to recognize stress-induced 
ligands, while their inhibitory receptors prevent them from 
attacking normal cells. Activating receptors are often associ-
ated with adaptor proteins that have activation motifs in their 
cytoplasmic domains. Upon ligand binding, followed by phos-
phorylation, these activating receptors can activate down-stream 
kinases, leading to NK cell degranulation and cytokine secretion 
(5). Inhibitory receptors, on the other hand, have one or more 
inhibitory motifs in their cytoplasmic tails. Once phosphoryl-
ated, they recruit phosphatases and deactivate signaling kinases, 
resulting in NK cell inhibition (6). NK cell activity is tightly 
regulated through the balance between inhibitory and activating 
signals transduced by these receptors.

One family of receptors on human NK cells is that of the 
killer immunoglobulin-like receptors (KIR), which recognize 
HLA as their ligands (7). Some inhibitory and activating KIRs 
share the same ligand (8); however, most inhibitory KIRs have 
stronger binding affinity to their shared ligand (9, 10). One 
way to shift the activating-inhibitory balance toward NK cell 
activation is by decreasing the inhibitory KIR signaling. When 
cells are under stress or virally infected, the HLA expression 
on their surface is often downregulated in order to escape from 
T cell recognition. When an NK cell encounters these “target” 
cells, an immune mediated synapse can occur. If the target cell 
is missing the expression of the HLA ligand for the inhibitory 
receptors on that NK cell, and expresses ligands for the activat-
ing receptors, the interaction could lead to NK cell activation 
due to lack of inhibitory signals (“missing-self ” hypothesis) 
(11, 12).

However, within an individual, not all NK cells have the same 
receptor expression profile, and each individual has a different 
KIR expression profile. As a result, not all NK cells express inhibi-
tory KIR receptors (13, 14). The NK cells without any inhibitory 
KIR receptors have been shown to be hyporesponsive to HLA-null 
targets compared to NK cells expressing inhibitory KIR receptors 
that can recognize self-HLA molecules (15). NK cells that express 
no inhibitory KIR receptors, or KIR receptors that only recognize 
allogeneic HLA (i.e., which do not recognize or bind self-HLA) 
do not go through a “licensing” process during NK cell differen-
tiation. Licensing plays a role in enabling the licensed NK cells to 
be more capable of killing targets that do not express inhibitory 
HLA ligands (such as HLA-null targets). Unlicensed NK cells are 
less potent in their activation by, or killing of, HLA-null targets, 
than are licensed NK cells (16). Interestingly, in mouse models, 
such unlicensed (hyporesponsive) NK cells, which express Ly49 
receptors (the inhibitory receptors found on mouse NK cells 
that are the functional counterparts of human inhibitory KIRs) 
but have not seen “self-ligand,” can be made to be functional by 
transferring these NK cells to an environment where cognate 
ligand is expressed (17, 18).

Besides the expression of HLA ligands for the inhibitory 
receptors on NK cells, there are other mechanisms by which 
self-normal cells are protected from being attacked by NK cells. 
Studies in both mice (19–23) and humans (24, 25) have shown 
that after continuous exposure to the ligand for NK-activating 
KIR receptors, NK cells expressing these activating receptors can 
become hyporesponsive to target cells that express the ligand. 
This is evidence that the NK cells can be desensitized through 
their continual receptor contact with activating ligands.

ADCC Mechanism
In the setting of tumor-targeting monoclonal antibody (mAb) 
therapies, the anti-tumor efficacy of many mAb are shown to 
be NK cell-dependent (26). Human NK cells can express both 
FcγRIIC/CD32c (27) and FcγRIIIA/CD16a (28), which bind 
to the Fc portion of human immunoglobulins. FcγRIIIA often 
associates with FcϵRI-γ chains or CD3-ζ chains within the 
cell membrane, or with a heterodimer of these two chains (5). 
Both FcϵRI-γ and CD3-ζ chains have immune tyrosine-based 
activating motifs (ITAM) in their cytoplasmic tails. Unlike most 
activating receptors on NK cells, FcγRIIC has an ITAM in its own 
cytoplasmic tail. Upon FcγR binding, these ITAMs are phospho-
rylated, and through signal transduction mechanisms (binding to 
tyrosine kinases ZAP-70 and Syk and activation of PI3K, NF-κb 
and ERK pathways) NK cell degranulation, cytokine secretion, 
and finally tumor cell lysis occur (29).

Antibody-dependent NK-mediated tumor killing occurs 
through several different pathways, including: (1) exocytosis of 
cytotoxic granules; (2) TNF family death receptors signaling; 
(3) pro-inflammatory cytokine release, such as IFNγ. Both 
the uptake of perforin and granzymes by target cells and TNF 
family death receptor signaling cause target cell apoptosis (29), 
while IFNγ released by NK cells activate nearby immune cells 
to promote antigen presentation and adaptive immune responses 
(30). IFNγ production and cytotoxicity have been considered 
two distinctive functions of different NK subsets (31, 32), but 
growing evidence shows that the main cytotoxic NK subset, 
CD56dimCD16+ NK cells, that are responsible for mAb-mediated 
tumor killing, are also able to produce IFNγ following activation 
(33, 34). In addition to inhibiting cell proliferation, angiogenesis, 
and increasing MHC surface expression (35), IFNγ was also 
shown to contribute to upregulation of TRAIL expression on NK 
cells (36), which suggests that one mechanism may interact with 
another to synergistically enhance tumor killing. A recent study 
indicates that NK-insensitive targets can become NK-sensitive 
via treatment with IFNγ, which induces lysis through ICAM-1 
upregulation and increasing conjugate formation with NK cells 
(37). These mechanisms might work together to eliminate tumor 
targets through engagement of both innate and adaptive immu-
nity; whether one is predominant over the others in tumor killing 
is still unknown (29–37).

NK Cell FcγRs in ADCC
Genotypic variations (polymorphisms) exist in humans in 
both FcγRIIIA and FcγRIIC that influence FcR function. Thus, 
FcγRIIIA and FcγRIIC genotype can influence the interaction of 
these receptors with immunoglobulin, resulting in differential 
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effectiveness of mAb therapy depending on an individual’s geno-
type. In addition, immunoglobulin isotypes (IgG1, IgG2, IgG3, 
and IgG4), as well as fucosylation and glucosylation patterns, 
have varying influence on the affinities of these IgG molecules for 
both FcγRIIIA and FcγRIIC (38–41). Such factors (patient FcγR 
genotype and antibody Fc backbone) create the opportunity for 
considering therapeutic treatment options that may optimize the 
degree to which a patient will respond when administering mAb 
therapy. Selection of an optimized regimen may lead to a more 
effective trigger of the proper immune response.

A number of studies have shown that anti-tumor activity of 
certain tumor-specific mAbs is associated with higher affinity 
FcRs, based on the FcR genotype. These results suggest that these 
mAbs are acting through antibody-dependent cell-mediated 
cytotoxicity (ADCC) by the cells that express those FcRs. In 
particular, FcγRIIIA expressed on NK cells has a single nucleo-
tide polymorphism (SNP) that results in FcγRIIIA polymorphic 
variants [FcγRIIIA with phenylalanine (F) at amino acid position 
158, or FcγRIIIA with valine (V) at amino acid 158], which vary 
in their strength of binding to immunoglobulins. Several stud-
ies have shown that those individuals that are homozygous for 
V (FcγRIIIA-158-V/V) have improved clinical outcome (after 
treatment with ADCC-inducing tumor-reactive mAb) over those 
that are either heterozygous (FcγRIIIA-158-V/F) or homozygous 
(FcγRIIIA-158-F/F) for the lower affinity FcγRIIIA isoform 
(42–46). While not all such studies confirm these findings, 
several clinical analyses are consistent with this result. These are 
presented in the section below regarding a few of the mAbs that 
appear to be acting, at least in part, via ADCC.

Therapeutic Monoclonal Antibodies for 
Cancer Treatment

Tumor-specific mAbs that recognize tumor-selective antigens on 
the surface of tumor cells are being used as cancer therapy. These 
therapeutic mAbs target and attack tumor cells through various 
mechanisms, including directing toxic molecules to target cells, 
inhibiting target cell proliferation, blocking inhibitory signals for 
immune cells, and directing immune cells to kill targets through 
ADCC (47). Some newer antibodies, such as bi-specific antibodies 
(bsAbs), work through promoting conjugate formation between 
target cells and NK or T cells (48). A more comprehensive list of 
anti-cancer mAbs has been summarized in other reviews (47, 49, 
50). This review focuses on NK cell-mediated anti-tumor activity, 
via ADCC, and thus includes discussion of representative tumor-
specific mAbs that have been shown in pre-clinical or clinical 
models to function, at least in part, via ADCC (Table 1).

Anti-GD2 mAb for Melanoma and 
Neuroblastoma Treatment
GD2 is a disialoganglioside expressed on human melanoma and 
neuroblastoma cells with restricted expression on normal tis-
sues, which makes it a suitable target for mAb immunotherapy 
(Table 1). The first anti-GD2 antibody, 3F8, is a murine IgG3 mAb 
that was produced in 1985 from a mouse hybridoma (62). 3F8 is 
able to elicit complement activation and ADCC against human 

neuroblastoma cells. However, most patients in early clinical 
trials that received 3F8 developed human anti-mouse antibody 
(HAMA) response (63). HAMA may compete for the binding 
site of the therapeutic antibodies resulting in decreased binding 
to GD2, therefore dampening the anti-tumor efficacy and lead-
ing to acceleration of clearance of the therapeutic antibody from 
circulation (64).

Another murine anti-GD2 mAb, 14.18, which is also an 
IgG3, was generated separately by Mujoo et  al. in 1987 (65). 
This antibody also displayed the capability to induce efficient 
in vitro ADCC and in vivo anti-tumor effects. An isotype vari-
ant of this murine anti-human GD2 antibody, 14.G2a (66), was 
tested clinically and showed some anti-tumor activity (67, 68), 
but HAMA response was still present in a significant portion 
of patients. While effective in targeting tumor and reducing 
tumor size in occasional patients, it became evident that it 
was necessary to improve the backbone of these initial mAb 
to increase efficacy and decrease the immunogenicity of this 
immunotherapeutic option.

In order to reduce the HAMA response and lengthen the 
antibody half-life in patients, efforts were made to create chimeric 
anti-GD2 antibodies, containing human constant regions with 
murine variable regions. Since a chimeric antibody has a majority 
of human epitopes, these epitopes should not be recognized by 
the immune system as foreign, and thus be less immunogenic 
than the fully murine antibodies. Dinituximab (formerly known 
as ch14.18) is a chimeric mAb comprising a fusion protein of the 
human constant portion of IgG1 and the GD2-reactive variable 
portion of the murine 14.18 mAb (69). Dinituximab has been 
shown to induce stronger ADCC than 14.G2a in  vitro against 
GD2-positive neuroblastoma cells (70), and have anti-tumor 
activity against GD2-positive melanoma cells in vivo (71). In the 
initial published phase I clinical study of dinituximab treatment 
for pediatric neuroblastoma (72), no human anti-chimeric anti-
body (HACA) response was detected. Four out of nine children 
had anti-tumor response and one had a minor response. Thus, 
by modifying the backbone of the antibody, improved clinical 
outcome was observed.

To further improve antibodies, a fully human antibody was 
“grafted” with murine complementarity determining regions 
(CDRs), which confer antigen specificity. These humanized anti-
bodies are considered less immunogenic than chimeric antibod-
ies (73). However, even with humanized antibodies specific for 
GD2, pain and capillary leak were seen as significant toxicities. 
These toxicities limit the dose that can be administered, which 
restrains the possible anti-tumor effect that one would expect if 
a higher dose could be given. The toxicities are mainly attributed 
to complement activation (74), which is elicited by the CH2 
domain on antibodies (75). Therefore, by reducing complement 
activation via a point mutation at amino acid position 322 in the 
CH2 domain of humanized antibody, complement activation is 
greatly reduced. Such reduction in complement activation, and 
thus reduced toxicities (76), allowed for higher treatment-dose to 
be administered to patients, while at the same time maintaining 
the anti-tumor ADCC effect (77). Both humanized 14.18K322A 
and humanized 3F8 are under clinical investigation (Table  1) 
(73, 78).
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Herceptin/Trastuzumab
Trastuzumab is a humanized anti-HER2 mAb used to treat 
HER2-positive breast carcinoma (Table  1), as well as many 
other types of cancers that overexpress HER2, a member of the 
human epidermal growth factor receptor (EGFR) family. HER2 
is a transmembrane tyrosine kinase with no known ligand. 
Dimerization of HER2 with certain EGFR family members leads 
to activation of signaling pathways that promote cell proliferation 
and survival (79). HER2 is overexpressed on a variety of tumors 
with limited expression on normal tissues, thus it is an ideal target 
for treatment of HER2-positive cancers.

Trastuzumab was first approved by the FDA in 1998 to treat 
HER2-positive metastatic breast cancer. Besides preventing 
HER2 from dimerization, trastuzumab was also shown to medi-
ate ADCC against HER2-positive tumor cells in  vitro, and the 
major effector cells were NK cells expressing FcγRIIIA (80, 81). 
A mutant trastuzumab that lost the ability to bind to FcγR lost 
anti-tumor activity in  vivo in a xenograft breast tumor model, 
suggesting that ADCC is involved in the anti-tumor effect of 
anti-HER2 mAb therapy in vivo (54). In addition, Clynes et al. 
showed that the anti-tumor response to trastuzumab in a breast 
carcinoma xenograft mouse model was decreased in mice lacking 
the activating receptor FcγRIIIA, but enhanced in mice lacking 

TABLe 1 | Representative tumor-antigen targeting monoclonal antibodies and immunocytokines functioning through ADCC.

Target Status Reference or clinical trial#

MAb

Rituximab CD20 FDA approved for non-Hodgkin’s lymphoma Cartron et al. (42)

Phase I relapsed indolent B-cell non-Hodgkin NCT02384954

Lymphoma, combined with ALT-803a

Combination with matrix metalloproteases inhibitor in pre-clinical models Romee et al. (51)

Obinutuzumab CD20 FDA approved for chronic lymphocytic leukemia Goede et al. (52)

Hul4.18K322A GD2 Phase I neuroblastoma, melanoma, NCT01576692

Osteosarcoma, ewing sarcoma NCT00743496

Phase II neuroblastoma NCT01857934

Hu3F8 GD2 Phase I GD2+ tumors NCT01419834

Phase I high-risk neuroblastoma and GD2+ solid NCT01662804

Tumors, combined with IL2

Phase I refractory high-risk neuroblastoma, combined with GM-CSF NCT01757626

Dinituximab GD2 FDA approved for high-risk neuroblastoma, combined with IL2 and 
GM-CSF

Yu et al. (53)

Trastuzumab HER2 FDA approved for HER2+ breast cancer and HER2+ metastatic gastric 
adenocarcinoma

Junttila et al. (54)

Cetuximab EGFR FDA approved for metastatic colorectal cancer and head and neck cancer Messersmith and Ahnen (55)

iMMUNOCYTOKiNe

Rituximab-RLIb CD20 Tested for human B lymphoma in SCID mouse Vincent et al. (56)

c.60C3-RLIc GD2 Tested in mouse GD2+ cell lines EL4
(subcutaneous) and NXS2 (metastatic)-grafted mouse models

Vincent et al. (57)

Hul4.18-IL2 GD2 Completed phase II refractory neuroblastoma Delgado et al. (58), 
Shusterman et al. (59)  

KM2812 PSMA Tested in human prostate cancer cell LNCaP-xenografted mouse model Sugimoto et al. (60)

Bi-SPeCiFiC ANTiBODY AND SiNGLe CHAiN vARiABLe FRAGMeNT

AFM13 CD30/CD16 Phase II relapsed Hodgkin lymphoma NCT02321592

(CD20)2xCD16 CD20/CD16 Tested in humanized mouse grafted with autologous human B cells Glorius et al. (61)

aALT-803 is a fusion protein consisting of mutated IL15 and IL15Rα/Fc complex.
bRLI (IL15Rα-linker-IL15) is a fusion protein linking the NH2-terminal domains of IL15Rα to IL15 through a 20-amino acid linker.
cc.60C3 is a chimeric anti-GD2 mAb.
This table is a selected (not complete) list of therapeutic mAbs that are capable of inducing antibody-dependent cellular cytotoxicity.

the inhibitory receptor FcγRIIB (82). These experimental data 
demonstrate that Fc receptor recognition is responsible for at 
least part of anti-tumor efficacy of trastuzumab.

Cetuximab
Cetuximab is an FDA-approved chimeric mAb for treatment 
of EGFR-expressing metastatic colorectal cancer (mCRC) (55), 
metastatic non-small cell lung cancer, and head and neck cancer. 
It reacts against the human EGFR, and can interfere with tumor 
growth via receptor blockade from growth factor activation. In vitro 
studies indicate that some of the anti-tumor activity of cetuximab 
is mediated via ADCC (83, 84), and cetuximab-mediated in vitro 
ADCC is correlated with NK cell FcγR polymorphisms of the 
effector donors (46, 85). In addition, in mCRC patients treated 
with cetuximab and irinotecan, those who have higher affinity 
FcγR polymorphisms had longer progression-free survival (45, 
86). In other studies of mCRC patients, the opposite association 
has been found, namely low affinity FcγR polymorphism was 
associated with better clinical outcomes (87–89). However, the 
patients in these studies either had different percentage of KRAS 
mutation or received other antibody concurrently with cetuxi-
mab, which indicates patient mutation profile as well as treatment 
regimen could also influence the impact of FcγR on cetuximab 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/


July 2015 | Volume 6 | Article 368142

Wang et al. NK cells in cancer immunotherapy

Frontiers in Immunology | www.frontiersin.org

response (90). Nevertheless, both in vitro and some clinical data 
suggest that cetuximab-mediated ADCC through NK cells may 
contribute to its anti-tumor activity.

Rituximab and Obinutuzumab
Rituximab is a chimeric IgG1 mAb targeting CD20, a B cell 
differentiation antigen (Table  1). There are various mecha-
nisms that may account for the anti-tumor effect of rituximab: 
complement-dependent cytotoxicity (CDC), direct target cell 
apoptosis, antibody-dependent phagocytosis and ADCC (91). 
In xenograft mouse models of B-cell lymphoma, the anti-tumor 
effect of rituximab was greatly reduced in FcRγ−/− nude mice (82), 
or in mice treated with FcγR block (92). Interestingly, clinical 
evidence gathered by Cartron et al. suggested that FcγRIIIA on 
NK cells plays an important role in anti-tumor effect of rituximab. 
Cartron et  al. evaluated FcγRIIIA polymorphisms in follicular 
lymphoma patients treated with rituximab, and this was the first 
time that better response to rituximab was associated with higher 
affinity FcγRIIIA genotype (42). However, there have been mixed 
results as to the influence of FcR genotype on clinical response to 
rituximab. Some groups have found in B cell lymphoma patients 
with no association between FcγR polymorphism and outcome 
(93–95). There are various factors that could contribute to the 
differences in these findings, including patient population, geno-
typing methodology, rituximab treatment strategy, and whether 
or not patients received concurrent chemotherapy (96–99).

Modifications have been made to improve the binding affin-
ity of therapeutic anti-CD20 mAb to activating Fc receptors, in 
hopes of maximizing the ADCC function of this mAb therapy. 
One such effort consists of using glycoengineered antibodies, 
which are produced in CHO cells that overexpress β-1,4-N-
acetyl-glucosaminyltransferase III and Golgi α-mannosidase II, 
and will increase the binding affinity to both the higher affinity 
and to the lower affinity isoforms of FcγRIIIA (39, 41, 100). The 
first Fc-glycoengineered anti-CD20 humanized mAb, obinutu-
zumab, was shown to induce stronger ADCC and direct target 
cell death in vitro, and it also elicited better anti-tumor activity 
in a lymphoma xenograft mouse model compared to rituximab 
(101, 102). In a phase III clinical trial comparing obinutuzumab 
vs. rituximab, combined with chemotherapy, for treating chronic 
lymphocytic leukemia (CLL) patients (52), obinutuzumab plus 
chlorambucil significantly prolonged progression-free survival 
compared to rituximab plus chlorambucil. Obinutuzumab alone, 
or in combination with chemotherapy, is currently under clinical 
investigations for other B-cell malignancies as well (103–106).

How to Augment Anti-Tumor  
effects of ADCC

Since ADCC is an important contributor to the anti-tumor activ-
ity of many mAb therapies, enhanced immune activation of the 
effector cells may be an ideal adjuvant therapy to augment ADCC 
activity of mAb. In addition to the ADCC capabilities of NK cells, 
they can also stimulate the activity of other immune processes 
through their release of cytokines (such as IFNγ), and thus can 
provide a link to initiate additional immune responses to attack 
target tumors.

mAb + Radiation Therapy
Approximately 60% of oncology patients receive radiation therapy 
as part of their cancer treatment. Radiation elicits an anti-tumor 
effect through the induction of DNA damage but may also increase 
tumor susceptibility to immune response (107). Consequently, 
the effect of radiation may be modulated by immune response 
(108, 109) and radiation may augment the efficacy of immuno-
therapies (110). The mechanisms by which radiation may interact 
with the immune system include radiation-induced production 
of inflammatory cytokines, release of tumor-specific antigens, 
phenotypic changes in tumor cell expression of immune suscep-
tibility markers, and effects on vascular architecture that enhance 
immune surveillance (107, 110). Included among the phenotypic 
changes induced by radiation are the upregulation of MHC class 
I, NKG2D ligand, and the Fas death receptor; all of which may 
potentiate the ADCC response (111–114). In addition, radiation 
may impact the expression of antigens targeted by tumor-specific 
antibodies and this has been show to enhanced ADCC response 
in  vitro (115, 116). The potential interaction of radiation and 
ADCC has not yet been clarified in vivo. Interestingly, however, 
a number of tumor-specific antibodies that are known to elicit 
ADCC (including cetuximab, trastuzumab, and dinituximab) are 
commonly administered to patients that also receive radiation 
therapy. The role of ADCC and NK cells in the clinical response to 
such combined modality treatment has not been defined. Further 
pre-clinical investigation is needed to evaluate whether the effects 
of radiation on tumor immune susceptibility may be leveraged to 
enhance ADCC response in the clinical setting.

mAb + Matrix Metalloproteases inhibitor
Upon activation, NK cells have been shown to shed FcγRIIIA 
(also known as CD16) from their cell membrane, a process that 
is mediated by matrix metalloproteases (MMPs) activation (117, 
118). In  vitro treatment of NK cells with the MMP inhibitor, 
GM6001, rescues FcγRIIIA loss stimulated by K562 tumor cells, 
but does not interfere with NK cell degranulation (118), which 
indicates that FcγRIIIA shedding and degranulation of NK cells 
are dependent upon separate pathways. It is plausible, therefore, 
that maintaining FcγRIIIA expression on NK cell surface via an 
MMP inhibitor could enhance the ADCC function of NK cells 
without interrupting NK cell degranulation (119). Recently, one 
specific MMP, ADAM17, was identified by Romee et al. as the 
key MMP responsible for FcγRIIIA expression loss after NK cell 
activation (51). According to their report, an ADAM17-specific 
inhibitor not only rescues FcγRIIIA shedding stimulated by tumor 
targets but also improves NK cell degranulation as well as IFNγ 
production in the presence of tumor-specific mAb (51). These 
in vitro studies suggest that limiting the loss of FcγRIIIA on the 
cell surface is important for enhanced NK cell-mediated ADCC, 
and opens new possibilities for combination of both MMP and 
mAb therapies to further promote ADCC.

Anti-GD2 mAb + iL2 + GM-CSF
While anti-GD2 mAb alone produced some anti-tumor activity 
in neuroblastoma patients, combining the mAb with GM-CSF 
and interleukin 2 (IL2) to further activate immune effector cells 
enabled potent clinical anti-tumor efficacy of anti-GD2 mAb. 
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Our lab previously showed that peripheral blood mononuclear 
cells (PBMCs) obtained from cancer patients pre-IL2 treatment 
had low levels of ADCC against a neuroblastoma cell line, even 
in the presence of both anti-GD2 mAb and IL2. However, PBMCs 
obtained from the same patient following 4 weeks of IL2 infusions 
mediated much higher ADCC of neuroblastoma cells, and the 
addition of IL2 in vitro dramatically boosted the anti-GD2 mAb-
mediated ADCC (120, 121). Moreover, depletion of FcγRIIIA-
positive cells eliminated ADCC completely (120). These data 
suggest that in vivo infusion of IL2 could overcome the immune 
suppression seen in some cancer patients; when using NK cells 
obtained from patients following therapy with IL2, the in vitro 
combination of IL2 and anti-GD2 mAb greatly boosted ADCC 
of neuroblastoma cells.

Besides IL2, GM-CSF also acts as an immune stimulator, 
especially following immune suppressive chemotherapy, to 
rescue bone marrow myeloid function (122–125). The combina-
tion of GM-CSF and the murine anti-GD2 mAb, 3F8, resulted in 
complete responses of GD2-positive cancer patients, particularly 
in patients with minimal residual disease (MRD) (126). In a 
phase III clinical trial for high-risk neuroblastoma patients fol-
lowing induction therapy and autologous transplant, patients 
were randomized into standard therapy (isotretinoin) or into 
a group that received the combined immunotherapy regimen 
of dinituximab  +  IL2  +  GM-CSF in addition to isotretinoin. 
Patients in the immunotherapy treatment group had significantly 
improved event-free survival and overall survival as compared to 
the patients that received the standard of care alone (53). Other 
mAb therapies, such as rituximab and trastuzumab (81), are also 
being combined with IL2 in clinical trials to evaluate the anti-
tumor efficacy (127–129).

mAb + iL15
IL15 is another cytokine that can activate immune cells, such as 
NK and T cells. IL15 receptors (IL15R) share the same β chain 
and common γ chain as IL2 receptors, but IL15R have a unique 
α chain that is specific for IL15, which is used for IL15 presenta-
tion to β/γ receptors on immune cells. Soluble IL15 has been 
shown to activate NK cells, enhance NK-mediated cytotoxicity, 
and cytokine production in vitro (130), and administration of 
recombinant human IL15 (rhIL15) to cancer patients resulted 
in in vivo NK cell proliferation and activation (131). While IL2 
has the potential for T regulatory cell (Treg) maintenance, which 
could dampen activating immune response, IL15 does not stim-
ulate Tregs (132). Moreover, IL15 does not trigger T cell death 
after activation, or lead to vascular leak syndrome (VLS), both of 
which are significant toxicities seen in pre-clinical models using 
IL2 (133–135). Therefore, in addition to IL2, IL15 is a potential 
candidate that can be used clinically combined with mAb, to 
improve NK cell-mediated ADCC without severe toxicity.

Indeed, the Caligiuri group reported enhanced NK-mediated 
ADCC by IL15 in 1994 (130). More recently, Moga et al. showed 
that in vitro activation of PBMCs by IL15 significantly improved 
rituximab-mediated ADCC against B lymphoma cells, and the 
major effector cells were NK cells (136). They also showed this 
enhancement of rituximab-mediated ADCC using PMBCs from 
CLL patients against a CLL cell line (137). In addition, they showed 

that IL15 treatment resulted in similar ADCC levels between 
individuals with the lower affinity FcγRIIIA and individuals that 
have the higher affinity FcγRIIIA (137). These findings suggested 
that the difference between the capabilities of the high and low 
affinity FcγRIIIA to mediate ADCC might be overcome by IL15 
treatment. Such findings suggest that IL15 administration may 
compensate for mAb-affinity differences that are dependent upon 
FcγRIIIA polymorphisms.

Different from IL2, the activation of NK and T cells by IL15 
is through trans-presentation by the IL15Rα chain, which is 
expressed independent of the β/γ chains. With efforts to increase 
the stimulation activity of soluble IL15, several different IL15 
agonists have been generated and tested in pre-clinical models 
in order to boost NK-mediated ADCC efficacy. A fusion protein 
linking IL15Rα chain sushi domain and human IL15 (RLI) 
has been generated and shown superior stimulation potential 
in vitro and better anti-tumor effects in vivo than soluble IL15 
(138, 139). In addition, an IL15 mutant has been identified as a 
better surrogate for soluble IL15 due to its enhanced activity to 
stimulate proliferation of cells expressing IL15R (140). Later on, 
the same group generated a fusion protein consisting of the IL15 
mutant and an IL15Rα/Fc complex (141). This IL15 superagonist, 
ALT-803, could improve rituximab-mediated ADCC against B 
cell lymphoma both in  vitro and in  vivo [Maximillian (142)]. 
Thus, IL15 combined with tumor-specific mAb appears to merit 
clinical testing as a potential immunotherapy, which is currently 
underway (NCT02384954) (Table 1).

immunocytokines
Anti-GD2 Immunocytokines
Immunocytokines (IC) are fusion proteins made by linking 
immune-activating cytokine to a tumor-specific mAb. The ini-
tially described IC (ch14.18-IL2) linked IL2 to the C-terminus of 
the ch14.18 chimeric anti-GD2 mAb (143). The IL2 component 
on these IC has the same ability as soluble IL2 in terms of stimu-
lating cell proliferation via IL2 receptors (IL2R) (144), and have 
been shown to mediate the conjugation between IL2R-positive 
cells and tumor target cells (145). IC also preserve FcR binding 
ability, and thus are capable of mediating in vitro ADCC (144). 
By targeting IL2 to the tumor microenvironment, IC might be 
superior at activating tumor infiltrating immune cells resulting 
in improved ADCC while causing less toxicity than soluble IL2. 
Lode et  al. showed that ch14.18-IL2 had improved anti-tumor 
efficacy than the combination of ch14.18 and soluble IL2 in a 
spontaneous neuroblastoma metastases mouse model (146). 
They also showed that the mechanism behind this anti-tumor 
effect strongly depended on NK cells, since NK cell depletion 
completely abrogated the anti-tumor effect in this model (147).

A separate humanized IC was created by linking human IL2 
to the humanized 14.18 mAb (hu14.18-IL2; Table  1). This IC 
was assessed for anti-tumor activity in a phase II clinical trial 
of refractory neuroblastoma patients divided into two strata 
of patients depending on disease burden. Stratum 1 included 
patients with disease measurable by computed tomography and/
or magnetic resonance imaging using standard radiographic 
criteria, while stratum 2 included patients with disease evalu-
able only by 123I-MIBG scintigraphy and/or BM histology. Of 36 
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patients evaluable for response, no responses were seen in the 
13 patients in stratum 1 while 5 complete responses were noted 
in the 23 patients in stratum II (59). In another phase II clinical 
trial of hu14.18-IL2 in 14 patients with measurable metastatic 
melanoma, 1 patient had a partial response to the immunotherapy 
(148). Both of these trials suggest that hu14.18-IL2 works better in 
clinical cases where MRD is present than in individuals that have 
bulky disease. Furthermore, in the phase II neuroblastoma study 
of hu14.18-IL2 noted above where 21.7% of stratum II patients 
with MRD responded, all of the responders had a favorable KIR/
KIR-ligand genotype (i.e., KIR-ligand missing) (58). This study 
indicates that NK cells play an important role in response to the 
hu14.18-IL2 treatment in neuroblastoma patients.

Anti-PSMA Immunocytokine
Prostate-specific membrane antigen (PSMA) is a surface antigen 
highly expressed by poorly differentiated prostate cancers, which 
makes it a suitable target for mAb therapies. Several anti-PSMA 
mAb and antibody-drug conjugates have been tested clinically, 
and a small fraction of patients showed anti-tumor response, 
which in part was due to ADCC (149). To improve ADCC func-
tion of anti-PSMA mAb, an anti-PSMA IC was generated by 
fusing IL2 to a mouse/human chimeric anti-PSMA mAb (60). 
This IC showed enhanced in vitro ADCC, and superior in vivo 
anti-tumor activity compared to a naked anti-PMSA mAb (60). 
Continued research is underway in both pre-clinical models and 
clinical testing to determine if superior anti-tumor efficacy is 
noted with this novel IC.

IL15-Linked Immunocytokine
One limitation of IL2-linked ICs is IL2-mediated toxicity that 
restricts the maximum-tolerated dose (MTD) that can be 
administered. In contrast to IL2, IL15 does not appear to elicit as 
severe adverse side effects. In addition, IL15 may have improved 
anti-tumor efficacy (133). Since IL15 is most active in a trans-
presentation form, a fusion protein of human IL15Rα and human 
IL15, called RLI, was generated. This fusion protein showed supe-
rior activation function than soluble IL15 both in vitro and in vivo 
(138, 150). Vincent et al. linked RLI to the end of chimeric anti-
GD2 antibody (c.60C3) and generated an RLI-linked anti-GD2 
IC (57). This IC had similar IL15-induced proliferative activity as 
RLI, and similar ADCC-inducing ability as anti-GD2 antibody 
in  vitro. Moreover, anti-GD2-RLI exhibited better anti-tumor 
activity than either RLI or anti-GD2, alone or in combination, in 
an NXS2 mouse neuroblastoma model (57). The same group also 
showed that RLI-linked rituximab significantly prolonged survival 
as compared to administration of RLI and rituximab at the same 
time in a residual lymphoma mouse model (56). These pre-clinical 
data suggest that IL15-linked IC merit clinical investigation to 
evaluate both efficacy and toxicity relative to IL2-linked IC.

Novel Bi-Specific Antibodies or Single Chain 
variable Fragment Targeting NK Cells
With evolving genetic engineering technologies, non-conventional 
antibodies that have dual or tri specificity have been constructed. 
They either target two different antigens on tumor cells, or facili-
tate conjugate formation between immune cells and tumor targets 

(151). There are two classes of bsAbs: Fc-containing bsAbs that 
are of similar size as conventional mAbs and those bsAbs without 
an Fc domain, which are of much smaller size. They are further 
divided according to their structures, specificities, or how they are 
constructed (152). In efforts to bring NK cells and tumor cells in 
proximity, several bsAbs or single chain variable fragment (scFv) 
have been constructed to bind both tumor antigen and FcγRIIIA 
(CD16). AFM13 is a bi-specific tetravalent antibody construct 
that targets both CD30 and CD16 (153), which is currently in a 
phase II clinical trial for relapsed Hodgkin lymphoma patients 
(NCT02321592) (Table 1). It has been shown to exhibit superior 
cytotoxicity than other CD30-targeting antibodies in vitro and its 
ADCC activity is independent of the FcγRIIIA allotypes (154). 
A CD20/CD16 bsAb also showed improved clearance of B cell 
malignancy compared to rituximab both in  vitro and in  vivo. 
Again, the efficacy of this antibody construct is not influenced by 
FcγRIIIA polymorphism (61). Two different CD33/CD16 bsAbs 
have been shown to efficiently kill acute myeloid leukemia (AML) 
cells or stem cells from myelodysplastic syndrome, a precursor 
of AML (155–157). A few CD19/CD16 bsAb or derivatives have 
also been generated to target leukemia and lymphoma cells and 
showed promising ADCC activity in vitro (158–161).

For solid tumors, a bsAb-targeting HER2/CD16 has been tested 
in mouse model against HER2-positive tumor cells and showed 
enhanced anti-tumor efficacy than trastuzumab against HER2-
low expressing tumor. Interestingly, the efficacy of this bsAb is 
also FcγRIIIA polymorphism independent (162). In addition, 
an EpCAM/CD16 bi-specific scFv antibody fragment showed 
enhanced in vitro killing of human carcinomas with a broad range 
of origins, as well as efficient killing of NK-resistant carcinoma 
targets (163). The fact that a lot of these bsAbs discussed above 
have proficient anti-tumor effect regardless of FcγRIIIA affinity 
on NK cells enlarges the patient population that will potentially 
benefit from such type of immunotherapy.

Adoptive Transfer of Ex Vivo-Activated NK Cells
A separate approach to augment NK cell function and ADCC is 
to infuse NK cells that have been activated and expanded in cell 
number ex vivo. During the ex vivo expansion of NK cells, these 
activated effectors are primed to kill tumors more effectively, 
and they can then be infused into cancer patients. Autologous 
NK cells may be relatively tolerant to self-tumors and, in certain 
settings, may have less anti-tumor potential than allogeneic NK 
cells (164). There are several approaches being pursued in order 
to expand and activate NK cells ex vivo. In the presence of IL2 
and irradiated feeder cells, such as EBV-LCL cells or geneti-
cally modified K562 cells, NK cells are preferentially expanded 
to 200- to 400-fold within a 21-day period (165, 166). NK cells 
can be potently expanded and activated by culturing them with 
K562 cells that have been modified to be far more stimulatory 
by expressing membrane-bound IL15 and 41BBL. NK cells that 
have been ex vivo expanded using these modified K562 cells have 
better anti-tumor activity in vitro and in vivo in mouse models 
(166). In addition, ex vivo-expanded NK cells have also been 
shown to be able to mediate ADCC, and in combination with 
tumor antigen-specific antibodies, they exerted better anti-tumor 
efficacy (167, 168). Different protocols using expanded NK cells 
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are currently under clinical testing, either alone or in combination 
with tumor-specific mAb (169–171). These ongoing clinical trials 
may answer the questions of how long these NK cells may survive 
in vivo, their homing capacity, and tumor-targeting specificity.

Genotypic Factors that Affect Antibody/
NK Cell Based immunotherapy

Despite the success noted in some immunotherapies involving 
NK cells, some patients do not benefit from these immuno-
therapies. Therefore, it would be advantageous to be able to 
identify those patients who would likely respond, and those 
who would be less likely to benefit from immunotherapies that 
require NK cell response. There are many different genotypic 
factors that could potentially affect the efficacy of different 
immunotherapies in various cancer types. Here, we focus 
mainly on those genotypes that could affect NK cell function 
and ADCC efficacy.

Killer-immunoglobulin Receptors  
on NK Cells and Their Ligands
Killer-immunoglobulin receptors are expressed on a subset of NK 
cells and on some T cell subsets. KIRs are a family of receptors 
with high polymorphisms inherited on chromosome 19 (172). 
There are 15 functional KIR genes and 2 KIR pseudogenes in the 
human genome. Of the functional KIR genes, some function as 
inhibitory receptors and others are activating receptors (173). For 
some KIR genes, the ligands are well defined (7). KIRs with defined 
ligands generally recognize distinct HLA class I molecules, but do 
so with less specificity than T cell receptors. Furthermore, and 
again in distinction to T cell receptors, KIRs appear to recognize 
class I HLA molecules without regard to peptides that may be 
presented in the cleft (pocket) of the HLA structure. Some inhibi-
tory and activating KIRs with high homology in extra cellular 
domains share the same HLA ligand, with the inhibitory KIR/
KIR-ligand interaction being a much stronger binding pair. The 
interaction between KIRs and KIR-ligands influence NK cell 
education and function (15, 174). Since KIR haplotype, as well 
as KIR expression, is highly diverse among the population, and 
since KIR-ligands are inherited independently from KIRs, an 
individual’s KIR/KIR-ligand genotype can affect NK cell function 
and ADCC in different settings. These differences in genotypes 
for KIR/KIR-L between different individuals have been associ-
ated with the individual’s outcome in response to certain forms 
of immunotherapy, particularly those immunotherapies that 
involve NK cells.

The KIR haplotype of NK cell donors (175–177) as well as 
the relationship between the donor’s inhibitory KIR and the 
recipient’s KIR-ligand genotypes can predict clinical outcomes in 
allogeneic hematopoietic transplantation for AML patients; the 
impact of KIR and KIR-L genotypes may also play a role in some, 
but not all, settings of hematopoietic transplantation for acute 
lymphoid leukemia (ALL) patients (178–180). Recipients that 
are missing the KIR-ligands for the KIR genes that are present 
on the donor NK cells are predicted to have longer progression-
free survival post-transplantation than those who have the 

KIR-ligand genes present for the donor KIR genes (178–180). In 
an autologous hematopoietic transplantation setting for high-risk 
neuroblastoma patients, Venstrom et  al. showed that patients 
who were missing any self-inhibitory KIR-ligand had improved 
progression-free survival and improved overall survival (181). 
Even though direct ADCC was not involved in these transplants 
for cancer patients, these data involving KIR/KIR-L relationships 
indicate that NK cells likely contribute to the anti-tumor response 
post-transplantation.

In some immunotherapies where ADCC is involved, patients 
missing their self-inhibitory KIR-ligand also had better clinical 
outcome. In neuroblastoma patients treated with anti-GD2 mAb 
or IC, and in lymphoma patients treated with rituximab, inhibi-
tory KIR-ligand missing was associated with improved clinical 
outcome (58, 181–183). These findings suggest that self KIR/
KIR-ligand genotypes not only affect NK cell function but also 
affect NK-mediated ADCC effects in the clinical setting.

The effects of inhibitory KIR/KIR-ligand interactions on NK 
cell function have been investigated for over a decade, but the role 
of activating KIR/KIR-ligand interactions in immunotherapies 
involving NK cells has only recently been reported. In 2011, 
Scquizzato et  al. evaluated the impact of recipient KIR-ligand 
missing for both inhibitory and activating donor KIR genes, in 
a group of patients with various hematopoietic malignancies 
who received allogeneic hematopoietic stem cell transplantation 
(184). They found that the cohort of recipient patients missing 
the KIR-ligand for donor KIR genes had better disease-free 
survival, but only when patients who had KIR-ligands missing 
for their activating KIR were excluded from the analysis (184). 
This finding suggests that activating KIR/KIR-ligand interactions 
may have differential impact on patient outcome than inhibitory 
KIR/KIR-ligand interactions, thus the KIR-ligand missing model 
to predict patient outcome appears to be applicable only to inhibi-
tory KIRs, with exclusion of activating KIRs.

In 2012, Venstrom et al. reported that in a large group of AML 
patients, those who received allografts from donors that had the 
activating KIR gene, KIR2DS1, and two copies of the ligand for 
KIR2DS1, HLA-C2, exhibited a higher relapse rate than patients 
who received grafts from KIR2DS1-positive donors and either 
one or no copies of HLA-C2 (24). Consistent with this clinical 
observation, Pittari et  al. showed that KIR2DS1-positive NK 
cells from healthy donors that have two copies of HLA-C2 were 
hyporesponsive to tumor targets as compared to KIR2DS1-
positive NK cells from donors with one or no copy of HLA-C2 
(25). Both clinical and in  vitro data suggest that NK cells that 
express activating KIR2DS1 are subjected to hyporesponsiveness 
via long-term contact of the activating KIR with its cognate ligand 
when two copies of the ligand are present. Whether or not NK 
cell hyporesponsiveness affects patient response in the context of 
ADCC, where mAb is administered to trigger NK cell activation 
through FcγRs, is still under investigation. As the interactions 
of activating KIRs and their ligands have not been studied as 
extensively as the interactions of the inhibitory KIRs and their 
ligands, much more characterization is required. Inhibitory KIR/
KIR-ligand genotypes and activating KIR/KIR-ligand interac-
tions may also serve as potential predictors of clinical outcome 
in the future.
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NK Cell Fc Receptor Genetic variations
FcγRs function as receptors for the Fc portion of IgG immuno-
globulins, and in doing so serve as a link of the innate immune 
system to the humoral system. In humans, there are three classes 
of FcγR, including variations of FcγRI, FcγRII, and FcγRIII. 
These three receptor classes are characteristically expressed 
on various immune cells. NK cells express both FcγRIIC and 
FcγRIIIA, which have low to intermediate affinity for IgGs 
(depending on FcR polymorphisms and IgG subclasses). As 
noted above, individuals with intact immune systems all express 
FcγRIIIA on most of their NK cells, less than half the population 
expresses FcγRIIC on their NK cells. Genetic variability exists 
within both FcγRIIC and FcγRIIIA, and this genotypic varia-
tion can vary the expression and avidity of these FcγRs for IgG 
molecules (185, 186).

As was mentioned above, several groups have found associa-
tions between SNP genotype of FcγRIII3A-158-V/F and patient 
response; those with the higher affinity V/V genotype respond 
better to some antibody therapies than those with V/F or F/F 
(42–46). In fact, FcγRIIIA-158-V has improved binding affinity 
for IgG1 subclasses as compared to FcγRIIIA-158-F, which is 
the most common IgG subclass used in mAb cancer immuno-
therapeutics. Interestingly, FcγRIIIA-158-V and FcγRIIIA-158-F 
have increased binding strength for IgG3 over IgG1 (187). This 
suggests that antibody IgG subclass variations may improve their 
interaction with NK cells, via improved engagement of FcγRIIIA, 
and thus improve tumor destruction. However, other FcRs (such 
as Fcwever) are expressed on other immune cells, such as neutro-
phils and monocytes/macrophages, that also play an important 
role in tumor killing, and have improved binding to IgG1 isotypes 
over IgG3 (188).

Another FcγR that is expressed on NK cells, that also has 
improved binding to IgG3 over IgG1, is FcγRIIC. FcγRIIC is 
the result of the unequal crossover of FcγRIIA (an activating 
FcR expressed on myeloid immune cell lineages) and FcγRIIB 
(an inhibitory FcR expressed on B cells, monocytes, and mac-
rophages) (185). FcγRIIC also has SNPs within its nucleotide 
sequence that governs its expression (or non-expression) on the 
cell surface. SNP sites within exon 3 of FcγRIIC result in either 
an open reading frame, hence protein expression on the cell 
surface (FcγRIIC-ORF), or a stop codon, thus non-expression of 
FcγRIIC on the cell surface (FcγRIIC-STOP). As such, FcγRIIC 
is expressed in ~20–40% of the population, and co-expression of 
FcγRIIC with FcγRIIIA may result in enhanced ADCC capabili-
ties of the NK cells (186).

Some of the FcγRs have been shown to be subject to copy 
number variability (CNV), and this CNV can result in variable 
expression of these FcRs on the cell surface. Both FcγRIIC and 
FcγRIIIA can be CNV, and CNV in these receptors correlates 
with differences in protein expression levels (189, 190), as well as 
increased ADCC function through enhanced NK cell activation 
(186, 190).

Given that the isotypes of FcγRIIIA have been shown to 
have differential binding affinity to IgG subclasses, that FcγRIIC 
expression on NK cells is variable within the population, and that 
these FcγRs can be CNV, using genotypic measures to pre-select 

patients based on their FcγR genotype for therapeutics that 
require NK cell may be of critical importance for future clinical 
investigations. Detailed simultaneous testing of polymorphisms 
and CNV in all three of these genes (FcγRIIA, FcγRIIC, and 
FcγRIIIA) has yet to be evaluated for associations with clinical 
outcome in clinical trials of ADCC-inducing tumor-reactive 
mAbs. However, it is likely that these factors, which should influ-
ence in vivo ADCC function, will be found to play a role in the 
clinical activity of ADCC-inducing mAb therapies.

Concluding Remarks

Monoclonal antibodies utilize different mechanisms to destroy 
cancer cells, one of which is ADCC. As these treatments have 
continued to evolve from original mouse antibodies to chimeric 
antibodies to humanized and fully human antibodies, thera-
peutic mAbs for cancer treatment are still being engineered to 
achieve improved anti-tumor efficacy. Besides optimizing the 
characteristics of the mAb itself, there are other ways to improve 
anti-tumor effect, one of which is to improve ADCC by combin-
ing immune stimulatory therapies with the mAb. Since NK cells 
are considered a major player in mAb-mediated ADCC against 
tumor cells, reagents that can enhance NK cell activation, such 
as IL2, may be combined with mAb to improve the ADCC effect. 
However, due to IL2-associated toxicity in patients (191), novel IC 
therapeutics are being generated in an attempt to reduce toxicity 
and to allow for an increased MTD. Another cytokine that helps 
NK cell activation is IL15, and it is currently being tested clini-
cally in various types of cancer. Besides cytokines or IC, newly 
discovered mechanisms that could potentially improve ADCC 
include MMP inhibitors to prevent FcR shedding, and ionizing 
radiation to make tumors more immunogenic and vulnerable to 
immune-mediated destruction. These approaches combined with 
tumor-specific mAb are still being explored in pre-clinical models 
to determine efficacy and optimize dosing regimens. Finally, 
genotypic profiles of NK cells also may contribute to our under-
standing of the magnitude of ADCC responses of NK cells in any 
given patient. Specifically, KIRs and FcR genotypes may help 
to predict clinical outcome to ADCC-inducing mAb therapy, 
allowing for more personalized treatment. More detailed analy-
ses of associations of clinical outcome with NK cell genotype 
profiles are needed in order to determine the predictive value 
of this form of genotyping for distinct types of cancer and for 
different immunotherapies that involve NK cells.
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Immunosuppressive factors, such as soluble major histocompatibility complex class I 
chain-related peptide A (sMICA) and transforming growth factor beta 1 (TGF-β1), are 
involved in tumor immune escape mechanisms (TIEMs) exhibited by head and neck 
squamous cell carcinomas (HNSCCs) and may represent opportunities for therapeutic 
intervention. In order to overcome TIEMs, we investigated the antibody-dependent cel-
lular cytotoxicity (ADCC), cytokine release and retargeted tumor infiltration of sMICA-in-
hibited patient NK cells expressing Fcγ receptor IIIa (FcγRIIIa, CD16a) in the presence 
of cetuximab, an anti-epidermal growth factor receptor (HER1) monoclonal antibody 
(mAb). Compared to healthy controls, relapsed HNSCC patients (n = 5), not currently in 
treatment revealed decreased levels of circulating regulatory NK cell subsets in relation to 
increased cytotoxic NK cell subpopulations. Elevated sMICA and TGF-β1 plasma levels 
correlated with diminished TNFα and IFN-γ release and decreased NKG2D (natural killer 
group 2 member D)-dependent killing of HNSCC cells by NK cells. Incubation of IL-2-
activated patient NK cells with patient plasma containing elevated sMICA or sMICA ana-
logs (shed MICA and recombinant MICA) significantly impaired NKG2D-mediated killing 
by down-regulation of NKG2D surface expression. Of note, CD16 surface expression 
levels, pro-apoptotic and activation markers, and viability of patient and healthy donor 
NK cell subpopulations were not affected by this treatment. Accordingly, cetuximab 
restored killing activity of sMICA-inhibited patient NK cells against cetuximab-coated 
primary HNSCC cells via ADCC in a dose-dependent manner. Rapid reconstitution of 
anti-tumor recognition and enhanced tumor infiltration of treated NK cells was monitored 
by 24 h co-incubation of HNSCC tumor spheroids with cetuximab (1 μg/ml) and was 
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inTrODUcTiOn

Natural killer cells are lymphoid effector cells important for the 
innate immune response against virally infected and malignant 
cells (1, 2). NK cells eliminate transformed target cells during 
cytotoxic interactions by releasing pro-inflammatory cytokines, 
especially IFN-γ and TNF-α (3). Similarly, tumor-infiltrating NK 
cells can trigger stimulating interactions via “cell cross-talk” with 
dendritic cells (DCs), possibly facilitating tumor antigen presen-
tation and induction of tumor antigen-directed T-cell responses. 
This demonstrates the constitutive role of NK cells as mediators 
between the innate and acquired immune systems (4–6). In this 
respect, NK cell killing activity is regulated by both stimulatory 
and inhibitory receptors. Interaction between NK cell inhibitory 
receptors in the presence or absence of MHC class I molecules 
on normal and possible target cells was described as the “missing 
self ” hypothesis (7, 8). Activating receptors include the natural 
cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46 with 
poorly characterized ligands, and the NKG2D receptor, which 
recognizes a variety of well-defined ligands expressed by trans-
formed cells (9–12). Several studies confirmed the predominant 
relevance of NKG2D in efficient recognition and elimination of 
tumor- and “stressed” cells by targeted binding of MICA and 
MICB (9, 10, 12). Interestingly, elevated levels of soluble forms of 
these NKG2D ligands (sMICA and sMICB), generated by matrix 
metalloproteinase (MMP)-dependent proteolytic cleavage 
(“shedding”) were detected in plasma/serum of cancer patients 
(13). These soluble NKG2D ligands are responsible for systemic 
reduction of NKG2D expression on the surface of various circulat-
ing blood lymphocytes, especially cytotoxic NK cells, NK-like T 
(NKT) cells, and CD8+ αβ+- and γδ+-T cells. Thus, these immune 
modulating effects resulted in decreased tumor surveillance by 
attenuated recognition and elimination of malignant cancer cells 
(14–16).

Some reports described NK cell dysfunction in patients with 
head and neck squamous cell carcinoma (HNSCC). These highly 
aggressive solid tumors originate from the epithelial lining of the 
upper aero-digestive tract and are able to escape NK cell-mediated 
immunosurveillance. Tumor progression is accomplished by 
significantly reduced expression levels of NKG2D on effector 
cells (17–20). Detection of increased sMICA plasma levels moni-
tored in HNSCC patients at advanced disease stages (stage IV) 
and poor clinical prognosis further supports the importance of 
diminished tumor surveillance in HNSCC progression (21, 22). 
Indeed, high sMICA levels coincide with increased frequencies 
of lymph node (LN) metastasis. Additionally, decreased survival 
rates in high-risk cancer patients are potentiated by high sMICB 
levels (19, 20, 23). Interestingly, the multiple dysfunctions of NK 

cells can be largely reversed by cancer antigen-targeted antibod-
ies, which stimulate the antibody-dependent cellular cytotoxicity 
(ADCC)-mediated cytotoxicity of activated NK cells to selec-
tively eliminate malignant cells. Therefore, multiple monoclonal 
antibodies (mAbs) have been designed to target diverse tumor 
surface molecules. Based on the assumption that mAbs interact 
specifically with tumor target molecules, mAbs could affect tumor 
cells by directly inhibiting essential signaling pathways initiated 
by target molecules and/or by stimulating effector cell cytotox-
icity, resulting in tumor elimination. One highly investigated 
cancer antigen for treatment of solid tumors is the epidermal 
growth factor receptor (EGFR). EGFR is a member of the ErbB 
protein family, which consists of four transmembrane receptor 
proteins, including HER1 [EGFR, ErbB1: avian erythroblastic 
leukemia viral (v-erb-b) oncogene homolog, receptor for EGF], 
HER2 (ErbB2), HER3 (ErbB3), and HER4 (ErbB4) (24–26). 
EGFR overexpression is associated with poor clinical prognosis 
in multiple solid tumors and EGFR signaling plays an important 
role in malignant cell migration, evasion, and proliferation (27). 
Therefore, mAbs designed to target EGFR were developed. In the 
last decade, cetuximab, an anti-EGFR human-mouse chimeric 
IgG1 monoclonal antibody (mAb) was approved by the Food 
and Drug Administration (FDA) for treatment of metastatic 
colorectal cancer, metastatic non-small cell lung cancer, and 
HNSCC patients (28, 29). However, only a weak to moderate 
(10–20%) benefit was observed in clinical trials with high-risk 
cancer patients (30–35). In this context, HNSCC cells may have 
evaded NK cell immunosurveillance due to polymorphisms in the 
FcγRIIIa (CD16a) on effector cells that impact interaction with 
the IgG1 Fc, heavy-chain, portion of cetuximab. This partially elu-
cidates patient-specific responses to cetuximab and underscores 
the essential importance of modulating immunological synapses 
(36–38). In addition, the tumor microenvironment can impact 
lymphocyte-dependent immunosurveillance, which correlated 
strongly with tumor infiltration as well as NK cell-mediated kill-
ing activity. The ability to control these factors could contribute 
to improved prognosis in some malignant diseases (39–42). Thus, 
NK cells as key players in ADCC-related cetuximab activity were 
able to infiltrate primary colorectal adenocarcinomas and NK 
cell infiltration was an independent predictor for response and 
progression-free survival in patients receiving cetuximab treat-
ment (43).

Recently, we described a decreased anti-tumor recognition, 
cytokine release and a reduced NKG2D expression on NK cells 
from untreated HNSCC patients. In vitro blocking experiments 
revealed a synergistic negative effect of sMICA potentiated by 
TGF-β1 on the killing activity of patient NK cells (22). In the 
current study, cetuximab treatment reconstituted the tumor 

characterized by increased IFN-γ and TNFα secretion. This data show that the impaired 
NK cell-dependent tumor surveillance in relapsed HNSCC patients could be reversed 
by the re-establishment of ADCC-mediated effector cell activity, thus supporting NK 
cell-based immunotherapy in combination with antineoplastic monoclonal mAbs.

Keywords: aDcc, cetuximab-activated nK cells, hnscc tumor spheroids, soluble Mica, TgF-β1
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surveillance capacity of sMICA-inhibited NK cells from HNSCC 
patients (n = 5), thus demonstrating the potential usefulness of 
cetuximab in retargeted ADCC. In order to investigate specific 
NK cell-dependent tumor infiltrations and ADCC-related 
cetuximab response, we developed HNSCC tumor-like cell 
clusters and a tumor spheroid model derived from primary, 
singularized tumor cells from these HNSCC patients. Our 
results indicate a crucial relevance of enhanced sMICA levels in 
tumor surveillance and infiltrations of inhibited patient NK cells. 
Finally, we demonstrate that these immunosuppressive effects 
on NK cell-mediated killing activity could be bypassed using 
cetuximab-coated HNSCC cells.

PaTienTs anD MeThODs

hnscc Patients
We analyzed five HNSCC patients (three male and two female, 
age range: 24–76  years) and five age-matched healthy indi-
viduals (three male and two female, age range: 26–58  years) 
served as controls. Histopathology confirmed that patients had 
stage II–IV HNSCC. Patients were included in this study after 
tumor recidivism but before initiation of any clinical treatment 
(Table 1). Corresponding patient blood samples (80–100 ml) 
were received shortly before the tumor surgery and associated 
tumor fragments were collected during tumor extractions from 
all patients. Informed consent was obtained from patients, 
caretakers, and healthy controls (HCs). Patient characteristics 
are summarized in Table 1. Blood samples were collected from 
HNSCC patients and healthy individuals in Heparin- and 
EDTA-coated tubes. Total leukocytes and the resultant sub-
populations were counted by five-color flow cytometry (FCM) 
analysis as described previously (44). Immunocompetent cell 
subpopulation distributions were compared among patients 
and HCs (Figure 1).

Target cell line
The human HNSCC cell line SCC-4 (ATCC: CRL-1624) (45, 46) 
was used to compare the cytotoxic activities of freshly purified 
patient and healthy NK cells and served as an internal control 
for scored intensities of comparable fluorescence staining’s from 

different patient-derived primary HNSCC cells. Therefore, 
the SCC-4 was cultured in DMEM and GlutaMAX™ medium 
(GIBCO, Invitrogen, Germany) supplemented with 10% (v/v) 
heat-inactivated fetal bovine serum (FBS) and 2 mM l-glutamine 
(PAA Laboratories GmbH, Austria).

Preparation of single cell suspension 
from Primary Tumor samples
Tumor samples from untreated HNSCC patients (n  =  5) were 
collected post-surgery and washed twice in serum-free DMEM/
F12HAM/Glutamax supplemented with 100  U/ml penicillin, 
100 μg/ml streptomycin, 0.25 μg/ml amphotericin B (antibiotic–
antimycotic 100×, all purchased from Life Technologies, Gibco®, 
Darmstadt, Germany). After dissociation with 0.05% trypsin/
EDTA (Life Technologies, Gibco®, Darmstadt, Germany), tumor 
pieces were minced with scissors and scalpels in a sterile dish. 
The digestion was stopped with DMEM/F12HAM/Glutamax 
containing 10% AB-Serum (former: PAA, Linz, Austria), anti-
biotic–antimycotic and the sample was passed through a 70 or 
100-μm nylon mesh cell strainer (BD Biosciences, Heidelberg, 
Germany) to achieve single cell suspensions. Cells were collected 
in a 50-ml conical tube and subsequently centrifuged. Suspended 
cells were counted with trypan blue, characterized with FCM 
and cultivated in DMEM/F12HAM/Glutamax/10% AB serum/
antibiotic–antimycotic in an incubator (37°C, 5% CO2, 90% 
humidity). Cultured tumor cells formed small tumor cell clusters 
after a few days, which resulted in tightly arranged HNSCC tumor 
spheroids (diameter: 1–3 mm) after cell cultivation of 1–2 weeks. 
Tumor cluster and spheroids derived from our HNSCC patients 
were used for NK cell-based cytotoxicity and tumor-infiltration 
assays monitored by fluorescence microscopy and time-lapsed 
transmitted imaging.

cytokine analysis
The BD CBA Kit was utilized for scavenging soluble cytokines, 
especially IFN-γ and TNFα with beads of known size and fluo-
rescence, allowing identification of soluble molecules in blood 
or supernatants from cell culture medium by FCM as described 
previously (44).

TaBle 1 | The clinical parameters and immune status of hnscc (n = 5) patients summarized after tumor (TU) and lymph node (ln) surgery but before 
any acute clinical therapeutic regimens.

Patient characteristics 1 2 3 4 5

Age (years) 24 69 66 76 29

TNM classification T2N2M1 T3N2M1 T3N2M1 T1N1M0 T2N2M0

Grading 2 2 2 1 2

Treatment/chemotherapy Surgery/− Surgery/− Surgery/− Surgery/− Surgery/−
TU/LN locations Neck/ear Upper gingiva/lower jaw Neck/ear Jaw angle Tongue

TU/LN material for research +/− +/+ +/+ +/+ +/−
immune status Leukocytes (cells/μl) 11,000 6250 8000 4900 8200

Lymphocytes (% of leukocytes) 13.6 19.4 14.6 11.5 43.2
Monocytes (% of leukocytes) 10.5 4.5 8.9 6.6 6.2
T cells (% of lymphocytes) 74.7 70.1 82.7 82.2 54.9
B cells (% of lymphocytes) 11.2 1.9 12.1 6.2 5.0
NKT cells (% of lymphocytes) 1.1 7.5 1.7 1.3 3.4
NK cells (% of lymphocytes) 12.8 19.5 2.7 9.3 33.2
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NK cells (Figures 2 and 3). Singularized HNSCC cells were also 
tested for MICA, HER2, and HER1 surface expression, the latter as a 
target for restored ADCC before initiation of described cytotoxicity 
assays. To determine the effect of cetuximab on NK cell-dependent 
killing activity, various cetuximab doses (Cetmab: 1 pg/ml–1 μg/
ml) were used to coat the corresponding HNSCC target cells 
(E:T ratio: 10:1). To inhibit putative effects of cetuximab toward 
NK  cell-mediated cytotoxicity, the NK cells were pre-incubated 
for 20  min with anti-CD16 mAb (20 μg/ml). The effector-based 
 cytotoxicity of these treated NK cell samples were analyzed against 
corresponding patient HNSCC cells in the indicated effector-
to-target ratios (Figures  3 and 4). To avoid effector and target 
cell sedimentations or insufficient stirring of our co-incubated 
approaches during the cytotoxic reactions, the co-cultured cell 
suspensions were shaken in an CO2-incubator (CO2cell, 170-400 
Plus, RS Biotech, Scotland) for 4 h (37°C, 5% CO2, 250 rpm). An 
optimized gating panel (Figure S1 in Supplementary Material) 
based on a no-wash single platform FCM procedure (FC500, 
Beckman Coulter, Germany) was applied. Treated NK cells were 
stained with several monoclonal antibodies (mAbs): CD45 FITC 
(fluorescein isothiocyanate), CD56 PE ( phycoerythrin) or NKG2D 
PE, CD16 PC-7 (phycoerythrin-cyanin-7) in order to exclude the 
effector cells from primary HNSCC target cells stained with CD9 
FITC, CD9 PE, HER1 PE, MICA PE, or CD81 PE. Effector and  
target cells were stained with mAbs as described previously (47, 48). 
Target cell elimination by effector cells was calculated as the total 
loss of viable HNSCC target cells as follows (48, 49):

 

Killing activity concentrationco-cultured HNSCC cells/= −(1 µLL

HNSCC control cells/ Lconcentration
/

) %µ ×100  

Fluorescence Microscopy
IL-2 activated patient NK cells were cultured (24  h) with PP 
[(high sMICA); 1:2 diluted with X-VIVO™10] or healthy plasma 
[HP (low sMICA); 1:2 diluted with X-VIVO™10]. Afterward, 
these treated NK cells were co-incubated (1  h, 37°C, 5% CO2, 
approximate E:T ratios of 5:1) on 4-well chamber slides (1.7 cm2 
growth area/well, 0.5–1.0  ml working volume, Nunc™, USA) 
with corresponding adherent HNSCC cell clusters derived from 
HNSCC patients (n = 5, time of cultivation: 3–12 days) in pres-
ence or absence of 1 μg/ml cetuximab for indicated periods of 
time (Figure 5A). The capability of tumor infiltration from those 
treated patients NK cells (see above) in corresponding patient 
HNSCC tumor spheroids (n = 5) were assessed with and without 
1 μg/ml cetuximab and analyzed after 24 h co-cultivation (37°C, 
5% CO2) (Figure  6). 2D/3D confocal fluorescence microscopy 
(CFM) using FITC- and PE-conjugated mAbs was used to sepa-
rate stained patient NK cells (CD45 FITC or NKG2D PE) and cor-
responding HNSCC cell clusters or tumor spheroids (CD9 FITC, 
HER1 PE, HER2 PE, or MICA PE), as described before (47).

Time-lapse Microscopy
Transmission microscopy was used to monitor infiltration of 
sMICA-inhibited NK cells into corresponding HNSCC tumor 
spheroids. Low numbers of tumor spheroids were grown scat-
tered on chamber slides for 16 h (37°C, 5% CO2). Subsequently, 

FigUre 1 | Phenotypical and functional characterizations of patient nK cell subsets and primary tumor cells from non-treated hnscc patients 
(n = 5) after tumor relapse. (a) In vitro rearrangement of the NK cell phenotype was quantified in the PB before separation of NK cells and after IL-2 expansion 
(1000 IU/ml IL-2; 9–12 days). Shown are the absolute numbers of patient (HNSCCNK cells) and healthy donor (HDNK cells) CD56+/CD3− NK cells [cells/μl] [left graph area 
(NK)], the mean fluorescence intensity [MFI (%)] of distribution of resultant CD56bright/CD16dim&neg and CD56dim/CD16+ NK subpopulations [middle graph area 
(subsets)] and co-expressed NCRs [MFI (%) right graph area (NCRs)] among total NK cells. (B) SMICA and TGF-β1 levels were analyzed in blood plasma from 
corresponding HNSCC patients (PP) and compared to age-matched healthy donor plasma controls (HP). (c) Assessment of the basic killing activities between 
effector cells isolated from patient and healthy donor NK cells against SCC-4 target cells. Freshly isolated, non-stimulated NK cells from patients (HNSCC), and 
healthy controls (HC) were treated with corresponding HNSCC patient plasma (high sMICA/TGF-β1) or associated healthy control plasma (low sMICA/TGF-β1) and 
co-incubated for 4 h (37°C, 5% CO2, 250 rpm) with SCC-4 cells at the indicated E:T ratios and cytotoxicity (%) was measured by FCM. (D,e) Immunofluorescence 
staining and FCM-based characterization of relevant tumor antigen expression from primary tumor samples derived from corresponding HNSCC patients (n = 5). 
After preparation of single cell suspensions from primary tumor samples, tumor cells were cultured (1–2 days, 37°C, 5% CO2) on chamber slides and characterized 
phenotypically for CD9, MICA, HER1, and HER2 expression profiles by immunofluorescence microscopy. Depicted is the staining for one representative HNSCC 
sample. (D) The HNSCC cells were also analyzed for CD9 (FITC), MICA (PE), HER1 (PE), and HER2 (PE) surface expression levels by FCM (e). Nuclei were stained 
with DAPI (4′,6-diamidino-2-phenylindole, blue fluorescence). (F) Secretion of soluble immunosuppressive factors derived from five tumor samples. SMICA and 
TGF-β1 levels in expanded primary HNSCC cell cultures were analyzed by ELISAs in the collected cell medium supernatants at the indicated time frames. (a–F) Data 
are shown as mean ± SD from two to four experiments for the five patients. Range of statistically significant differences: from *p ≤ 0.01 to **p ≤ 0.001.
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Quantification of sMica and TgF-β1 in 
hnscc Patients
The BAMOMAB MICA-Sandwich ELISA kit for sMICA (AXXORA 
GmbH, Germany) was designed for quantification of soluble 
MICA (sMICA). The kit was utilized for detection and monitoring 
of immunosuppressive molecules in HNSCC patient blood plasma 
(n = 5), HCs (n = 5), and supernatants of cell culture medium dur-
ing adherent growth phase of tumor cell clusters and generation 
of tumor spheroids as described previously (47). TGF-β1 levels in 
human blood plasma samples and cell culture supernatants were 
quantified by MTPL ELISA (Milenia Biotec, Version 3.0, Germany).

immunomagnetic separation of 
cD56+cD3− nK cells
Up to 100 ml heparinized blood from HNSCC patients (n = 5) 
was used to isolate viable mononuclear cells (MNC) in high yield 
and purity by Ficoll-Paque density gradient. Primary NK cells 
were separated from purified MNCs via “non-touched” depletion 
using the EasySep® Human NK Cell Enrichment Kit (STEMCELL 
Technologies SARL, Germany). Other leukocyte subsets were 
labeled with tetrameric antibody complexes against CD3, CD4, 
CD14, CD19, CD20, CD36, CD66b, CD123, HLA-DR, glyco-
phorin A, and dextran-coated magnetic particles. The non-labeled 
cells were scavenged by an EasySep® hand magnet according to 
the manufacturer’s recommendations. Freshly purified NK cells 
(purity: 95.1 ± 2.8%) were expanded and activated with 1000 IU/
ml IL-2 for 9–12 days as described previously (47).

Production of shed Mica
To generate shMICA, the DNA sequence encoding for full length 
MICA engineered with an N-terminal histidine-tag was cloned 
into a tet-on vector system and transfected into the UKF-NB3 
tumor cell line using the Neon transfection system (Life 
Technologies, USA). Cells were selected with 0.25 mg/ml G418 
and 1 μg/ml puromycin (Life Technologies, USA). MICA expres-
sion was induced by addition of 2  μg/ml doxycycline (Sigma, 
Germany). Further on cells were stressed by serum starvation 
for 72 h to induce MICA shedding. Finally shMICA was puri-
fied with Protino Ni-NTA agarose (Macherey-Nagel, Germany) 
from cell culture supernatants and concentrated using Amicon 
centrifugal filter units (Merckmillipore, Germany).

cytotoxicity assays
To analyze the NK cell-mediated killing activity in presence and 
absence of cetuximab, we developed a matched effector-target cell 
system based on a FCM-based cytotoxicity assay. Therefore, we 
utilized only concordant patient NK cells, patient plasma (PP, high 
sMICA) and primary patient HNSCC tumor cells (n = 5). To demon-
strate the sMICA-mediated inhibition, IL-2 expanded (9–12 days) 
primary patient NK cells were co-incubated overnight (24 h, 37°C, 
5% CO2, 250 rpm) with 500 pg/ml shMICA, PP containing high 
MICA levels (PP, range: 220.9–870.7 pg/ml) and, as a comparative 
control, with HC plasma (HP, range: 2.8–22.0 pg/ml) diluted 1:2 
in X-VIVO™10 medium (Biowhittacker™Cambex Bioscience, 
Belgium). Phenotypical cell characterizations were accomplished to 
detect altered expression patterns of CD16 and NKG2D on treated 

NK cells (Figures 2 and 3). Singularized HNSCC cells were also 
tested for MICA, HER2, and HER1 surface expression, the latter as a 
target for restored ADCC before initiation of described cytotoxicity 
assays. To determine the effect of cetuximab on NK cell-dependent 
killing activity, various cetuximab doses (Cetmab: 1 pg/ml–1 μg/
ml) were used to coat the corresponding HNSCC target cells 
(E:T ratio: 10:1). To inhibit putative effects of cetuximab toward 
NK  cell-mediated cytotoxicity, the NK cells were pre-incubated 
for 20  min with anti-CD16 mAb (20 μg/ml). The effector-based 
 cytotoxicity of these treated NK cell samples were analyzed against 
corresponding patient HNSCC cells in the indicated effector-
to-target ratios (Figures  3 and 4). To avoid effector and target 
cell sedimentations or insufficient stirring of our co-incubated 
approaches during the cytotoxic reactions, the co-cultured cell 
suspensions were shaken in an CO2-incubator (CO2cell, 170-400 
Plus, RS Biotech, Scotland) for 4 h (37°C, 5% CO2, 250 rpm). An 
optimized gating panel (Figure S1 in Supplementary Material) 
based on a no-wash single platform FCM procedure (FC500, 
Beckman Coulter, Germany) was applied. Treated NK cells were 
stained with several monoclonal antibodies (mAbs): CD45 FITC 
(fluorescein isothiocyanate), CD56 PE ( phycoerythrin) or NKG2D 
PE, CD16 PC-7 (phycoerythrin-cyanin-7) in order to exclude the 
effector cells from primary HNSCC target cells stained with CD9 
FITC, CD9 PE, HER1 PE, MICA PE, or CD81 PE. Effector and  
target cells were stained with mAbs as described previously (47, 48). 
Target cell elimination by effector cells was calculated as the total 
loss of viable HNSCC target cells as follows (48, 49):

 

Killing activity concentrationco-cultured HNSCC cells/= −(1 µLL

HNSCC control cells/ Lconcentration
/
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Fluorescence Microscopy
IL-2 activated patient NK cells were cultured (24  h) with PP 
[(high sMICA); 1:2 diluted with X-VIVO™10] or healthy plasma 
[HP (low sMICA); 1:2 diluted with X-VIVO™10]. Afterward, 
these treated NK cells were co-incubated (1  h, 37°C, 5% CO2, 
approximate E:T ratios of 5:1) on 4-well chamber slides (1.7 cm2 
growth area/well, 0.5–1.0  ml working volume, Nunc™, USA) 
with corresponding adherent HNSCC cell clusters derived from 
HNSCC patients (n = 5, time of cultivation: 3–12 days) in pres-
ence or absence of 1 μg/ml cetuximab for indicated periods of 
time (Figure 5A). The capability of tumor infiltration from those 
treated patients NK cells (see above) in corresponding patient 
HNSCC tumor spheroids (n = 5) were assessed with and without 
1 μg/ml cetuximab and analyzed after 24 h co-cultivation (37°C, 
5% CO2) (Figure  6). 2D/3D confocal fluorescence microscopy 
(CFM) using FITC- and PE-conjugated mAbs was used to sepa-
rate stained patient NK cells (CD45 FITC or NKG2D PE) and cor-
responding HNSCC cell clusters or tumor spheroids (CD9 FITC, 
HER1 PE, HER2 PE, or MICA PE), as described before (47).

Time-lapse Microscopy
Transmission microscopy was used to monitor infiltration of 
sMICA-inhibited NK cells into corresponding HNSCC tumor 
spheroids. Low numbers of tumor spheroids were grown scat-
tered on chamber slides for 16 h (37°C, 5% CO2). Subsequently, 

FigUre 1 | Phenotypical and functional characterizations of patient nK cell subsets and primary tumor cells from non-treated hnscc patients 
(n = 5) after tumor relapse. (a) In vitro rearrangement of the NK cell phenotype was quantified in the PB before separation of NK cells and after IL-2 expansion 
(1000 IU/ml IL-2; 9–12 days). Shown are the absolute numbers of patient (HNSCCNK cells) and healthy donor (HDNK cells) CD56+/CD3− NK cells [cells/μl] [left graph area 
(NK)], the mean fluorescence intensity [MFI (%)] of distribution of resultant CD56bright/CD16dim&neg and CD56dim/CD16+ NK subpopulations [middle graph area 
(subsets)] and co-expressed NCRs [MFI (%) right graph area (NCRs)] among total NK cells. (B) SMICA and TGF-β1 levels were analyzed in blood plasma from 
corresponding HNSCC patients (PP) and compared to age-matched healthy donor plasma controls (HP). (c) Assessment of the basic killing activities between 
effector cells isolated from patient and healthy donor NK cells against SCC-4 target cells. Freshly isolated, non-stimulated NK cells from patients (HNSCC), and 
healthy controls (HC) were treated with corresponding HNSCC patient plasma (high sMICA/TGF-β1) or associated healthy control plasma (low sMICA/TGF-β1) and 
co-incubated for 4 h (37°C, 5% CO2, 250 rpm) with SCC-4 cells at the indicated E:T ratios and cytotoxicity (%) was measured by FCM. (D,e) Immunofluorescence 
staining and FCM-based characterization of relevant tumor antigen expression from primary tumor samples derived from corresponding HNSCC patients (n = 5). 
After preparation of single cell suspensions from primary tumor samples, tumor cells were cultured (1–2 days, 37°C, 5% CO2) on chamber slides and characterized 
phenotypically for CD9, MICA, HER1, and HER2 expression profiles by immunofluorescence microscopy. Depicted is the staining for one representative HNSCC 
sample. (D) The HNSCC cells were also analyzed for CD9 (FITC), MICA (PE), HER1 (PE), and HER2 (PE) surface expression levels by FCM (e). Nuclei were stained 
with DAPI (4′,6-diamidino-2-phenylindole, blue fluorescence). (F) Secretion of soluble immunosuppressive factors derived from five tumor samples. SMICA and 
TGF-β1 levels in expanded primary HNSCC cell cultures were analyzed by ELISAs in the collected cell medium supernatants at the indicated time frames. (a–F) Data 
are shown as mean ± SD from two to four experiments for the five patients. Range of statistically significant differences: from *p ≤ 0.01 to **p ≤ 0.001.
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FigUre 2 | impact of sMica on nKg2D surface expression and nKg2D-mediated nK cell cytotoxicity against hnscc cells. Isolated CD56+/CD3− NK 
cells from untreated HNSCC patients (n = 5) were stimulated for 9–12 days with 1000 IU/ml IL-2. (a) Effect of high sMICA levels on NKG2D surface expression. IL-2 
activated patient NK cells were incubated (37°C, 5% CO2) at the indicated points of time with shMICA (500 pg/ml), rMICA (500 pg/ml) and patient plasma containing 
high MICA levels (PP, range: 220.9–870.7 pg/ml). The NKG2D expression levels on total NK cells and both CD56dim/CD16+ and CD56bright/CD16dim&neg NK subsets 
were compared to non-treated control NK cells. (B) Phenotypical analyses on time-dependent impact of shMICA on NKG2D surface expression were determined by 
FCM. Exemplarily depicted here are representative dot plots for one time-dependent experiment.
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FigUre 3 | Determination of the sMica impact on aDcc-stimulating and pro-apoptotic nK cell receptors. (a) Surface expression levels of CD16, TRAIL, 
FasL, and CD57 on the same effector cell samples were measured at the indicated time points and compared to non-treated control cells. As an additional control, 
effector cell viability was monitored over a 24-h period (B–D). The impact of sMICA on the NKG2D-mediated NK cell cytotoxicity and NK cell stability during 
effector-target interactions against primary HNSCC cells (n = 5) was analyzed by FCM. Therefore, the same overnight-treated NK cell samples (see above, section 
Figure 2a) were subsequently co-incubated for 4 h (37°C, 5% CO2) with corresponding patient HNSCC target cells at the indicated E:T ratios. (e) Inhibition of 
sMICA effects on NKG2D-mediated NK cell cytotoxicity. SMICA molecules in all treatment samples (shMICA, rMICA, and PP) were blocked by pre-incubation 
(20 min) with MICA-specific mABs (20 μg/ml, MAB13001). NKG2D-dependent killing rates of those incubated NK cells against primary HNSCC cells were measured 
after 4 h (“Blocking assays,” ratio: 10:1, 37°C, 5% CO2) as described above. Data are shown as mean ± SD from three to four experiments for each patient. 
Statistically significant difference: *p ≤ 0.01 and **p ≤ 0.001.
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IL-2 activated patient NK cells (n = 5) were incubated for 24 h (37°C, 5% CO2) with (a) shed MICA (shMICA, 500 pg/ml), (B) with patient plasma containing high 
MICA levels (PP, n = 5, range: 220.9–870.7 pg/ml) and healthy plasma (HP, n = 5, range: 1.9–28.5 pg/ml) served as a control. (a) CD16-mediated ADCC of those 
treated patient NK cells was assessed by FCM-based cytotoxicity assay using cetuximab (Cetmab, range of dose titration: 1 μg/ml–1 pg/ml)-coated primary 
HNSCC cells and compared to killing activity of shMICA-treated NK cells against non-coated HNSCC cells. (B) To overcome sMICA effects against NK cell 
cytotoxicity, 1 μg/ml cetuximab was chosen based on the earlier titration experiments (see above). Inhibition of cetuximab-dependent ADCC was achieved by 
blocking CD16 epitopes on treated patient NK cells with anti-CD16 mAb [20 μg/ml, 20 min pre-incubation, graphs (a,B)]. (c) The effector cell stability of PP- and 
HP-treated viable NK cells during tumor cell lysis was analyzed in presence and absence of 1 μg/ml cetuximab and compared to non-treated effector cell controls 
quantified by single platform functionality assays. (D) FCM-based characterization was utilized to monitor CD16 and NKG2D surface expression patterns on treated 
NK cells (CD16/NKG2D, see overlay histograms) before (−PP) and after (+PP) overnight incubation with patient plasma (PP) containing high sMICA and TGF-β1 
levels. Analogously, HNSCC cell clusters were singularized for FCM-based characterization of target cell antigens (HER1/HER2/MICA) to assess alterations in the 
killing activity from different treated patient NK cells. (e) Effect of IL-2 on the killing activity of patient NK cells (n = 5) in presence (+IL-2/+Cetmab) and absence 
(+IL-2) of 1 μg/ml cetuximab (Cetmab). IL-2 expanded NK cells were incubated with patient plasma containing high MICA levels (PP, n = 5, range: 220.9–870.7 pg/
ml), healthy plasma (HP, n = 5, range: 1.9–28.5 pg/ml) and control medium. Cytotoxicity of treated NK cells was analyzed at the indicated ratios with and without 
Cetmab (1 μg/ml)-coated primary patient HNSCC cells and compared to killing activity of unstimulated NK cells against non-coated HNSCC cells (−IL-2). (a–D) 
Data represent the mean ± SD of three experiments for each patient. Statistically significant difference: *p ≤ 0.01 and **p ≤ 0.001.
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HNSCC spheroids were co-incubated with freshly isolated, 
non-stimulated patient NK cells (1  ×  106  effector cells/ml). 
Putative effector cell migration and tumor chemoattraction were 
monitored by time-lapse microscopy and imaging (Video S1 in 
Supplementary Material) as described previously (47).

Blocking assays
To inhibit the restored NK cell-based cytotoxicity by cetuximab, 
patient NK cells were pre-incubated for 20 min with anti-CD16 
mAb (clone 3G8, 20 μg/ml, A07766, Beckman Coulter, Germany). 
Afterward, killing activity of treated NK cells was analyzed with 
cetuximab-coated primary patient HNSCC cells over a time 
period of 4 h (37°C, 5% CO2, 250 rpm) at an E:T ratio of 10:1 
and compared to corresponding controls (Figure 4) as described 
previously (47). To analyze the direct role of sMICA on NKG2D-
mediated cytotoxicity, we incubated IL-2-activated patient NK 
cells with shMICA, rMICA, and PP containing high sMICA levels 
overnight in the presence or absence of specific MICA antibodies, 
respectively (20  μg/ml, MAB13001, R&D systems, Germany). 
Additionally, plasma from five healthy donors (low sMICA, see 
above) was utilized to incubate patient NK cells as a control.

statistical analyses
The Mann–Whitney non-parametric U-test was utilized to 
compare clinical and pathological parameters of plasma sMICA 
and TGF-β1 levels from HNSCC patients (n =  5) with healthy 
individuals (n = 5). The Student’s t test was used to assess the sig-
nificance of the killing activity of patient NK cells incubated under 
various conditions. A p level ≥0.01 was considered statistically as 
non-significant. Unless otherwise declared, results of statistical 
evaluations from functional assays are indicated as mean ± SD 
and represent three to four experiments for each patient.

resUlTs

characterization of altered nK cell 
subsets and expression of ncrs in 
hnscc Patients
Compared to age-matched healthy individuals (50), HNSCC 
patients showed a broad range of leukocyte subpopulations and 

absolute numbers of lymphocytes and leukocytes (Table  1). 
Although median NK cell amounts (12.8%; range: 2.7–33.2%) 
did not differ from HCs (Table 1), the absolute NK cell numbers 
(cells/μl) differed widely in the peripheral blood (PB) of patients 
and healthy donors (left graph sector, Figure  1A). Moreover, 
the proportion of immunoregulatory NK cells (CD56bright/
CD16dim&neg) was markedly reduced in all patients [median: 
2.4% (HNSCCNK cells) versus 11.8% in healthy donors (HDNK 

cells), middle graph sectors, Figure 1A]. In contrast, the cytotoxic 
NK cell subpopulation (CD56dim/CD16+) was strongly increased 
for all investigated HNSCC patients [median (HNSCCNK cells): 
96.2% versus 86.8% (HDNK cells), middle graph sector, Figure 1A]. 
Moreover, freshly isolated patient NK cells revealed low to mod-
erate expression levels of the NCRs, NKp30, NKp44, NKp46, 
and NKG2D compared to higher frequencies of IL-2 stimulated 
NK cells from HCs (right graph sector, Figure 1A). Nevertheless, 
the percentage of NK cells expressing NCRs increased (~4.7-fold, 
3.8-fold, and 2-fold for NKp30, NKp44, and NKp46, respectively) 
during IL-2 activation over 9–12 days and was accompanied by 
~60.7-fold higher expression levels of NKG2D (Figure 1A, right 
graphs) for all stimulated patient NK cells. The distribution of 
NK cell subpopulations shifted to higher CD56bright/CD16dim&neg 
NK cell subsets (median before IL-2: 2.4% versus median after 
IL-2: 12.5%) and consequently lower percentages of CD56dim/
CD16+ NK cells (median before IL-2: 96.2% versus median after 
IL-2: 88.9%) (Figure 1A).

reduced nK cell-Dependent cytotoxicity 
and increased immunosuppressive 
Factors in hnscc Patients
The well-defined immunosuppressive factors sMICA and  
TGF-β1, which are responsible for impaired immunosurveillance, 
were quantified in PB from our HNSCC patients. Higher levels of 
both soluble factors were detected in HNSCC patients compared 
to HCs (sMICA, median: 532.8 versus 5.9 pg/ml; TGF-β1, median: 
48.9  ×  104 versus 10.9  ×  104  pg/ml, respectively) (Figure  1B). 
Healthy plasma samples showed sMICA and TGF-β1 levels 
close to the detection limits of this assay [sMICA (mean ± SD): 
10.8  ±  11.2  pg/ml; TGF-β1: 9.5  ±  5.2  ×  104  pg/ml; Figure  1B, 
HP], whereas sMICA (TGF-β1) in PP ranged between 220.9 and 
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870.7 pg/ml (25–64.8 × 104 pg/ml) (Figure 1B, PP). To compare 
the basic killing activity between patient NK cells and NK cells 
from healthy individuals, freshly isolated, non-stimulated NK 
cells from both, patients and HCs were co-incubated overnight 
(37°C, 5% CO2) with corresponding HNSCC PP (high sMICA/
TGF-β1) or associated HC plasma (low sMICA/TGF-β1). In both 
cases, the NK cell-mediated cytotoxicity was analyzed against the 
target cell line SCC-4 at the indicated ratios (4 h, 37°C, 5% CO2, 
250 rpm) by FCM (Figure 1C). HNSCC plasma-treated patient 
NK cells (HNSCC, Figure  1C) exhibited significantly reduced 
cytotoxicity in all prepared E:T ratios when compared to NK cells 
from healthy donors pre-incubated with the corresponding HC 
plasma (Figure 1C).

Phenotypical analysis of Tumor-relevant 
expression Markers on Primary Patient 
hnscc cells
Expression levels of relevant surface antigens, especially HER1 
and HER2, were examined on single tumor cell suspensions 
prepared from primary tumors surgically removed from HNSCC 
patients (n = 5, see above). Pre-characterized SCC-4 cells were 
utilized as a positive control for HER1 and HER2 expression 
because it was previously shown that these HNSCC cells displayed 
high amplification rates of HER1 genes in combination with 
enhanced HER2 and MICA expression levels (51). In addition to 
the HER1/2 levels, we analyzed expression levels of surface mark-
ers CD9 and MICA on the mono-dispersed patient tumor cells 
(Figure  1E). Representative overlay plots (FCM) were shown 
exemplarily in Figure 1E for prepared tumor cells derived from 
one HNSCC patient and were compared with qualitative evalua-
tions determined by CFM. In Figure 1D, representative results of 
overlapping CFM exemplarily illustrated for cultured (1–2 days) 
adherent patient tumor cells after fluorescence labeling with simi-
lar stimulation energy and duration are shown. For counterstain-
ing, we utilized DAPI as a fluorescent stain that binds strongly 
to A–T rich DNA regions of nuclei and chromosomes and emits 
blue fluorescence (Figure 1D). All tumor samples showed higher 
HER1 and CD9 levels in contrast to low-to-moderate expression 
of membrane-associated MICA and HER2 molecules. In sum-
mary, the antigens exhibited variable expression levels on all 
tumor samples of HNSCC patients and were slightly lower than 
on the SCC-4 control line as presented in Table 2.

Primary patient HNSCC cells (n  =  5) were cultured over 
2  weeks (37°C, 5% CO2) to investigate time-dependent accu-
mulation of immunosuppressive factors (sMICA and TGF-β1), 
and cell culture supernatants were collected at the indicated 
time periods (Figure  1F). A time-dependent increase of both 

TaBle 2 | antigen expression levels measured on singularized patient hnscc cells (n = 5) after preparation from tumors.

scc-4 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

HER1 +++ ++ +++ ++ +++ ++
HER2 +++ +/− +/− + + +
MICA ++ +/− + +/− + +
CD9 +++ ++ ++ ++ + ++

Fluorescence labeling of these tumor cells were compared to the SCC-4 cell line and intensities were scored as follows: weak (+/−), moderate (+), good (++), and strong (+++).

immunosuppressive molecules was identified in cell culture 
supernatants in which the mean of sMICA levels increased from 
18.7 ± 9.5 to 218.7 ± 131.9 pg/ml, and the mean of TGF-β1 levels 
increased from 6.8 ± 4.8 × 104 to 40.9 ± 11.6 × 104 pg/ml between 
the first and last time points monitored (Figure 1F).

sMica affects nKg2D expression and 
cytotoxicity of il-2-activated Patient 
nK cells
Tumor-derived TGF-β1 potentiated the sMICA-mediated down-
regulation of NKG2D surface expression on various effector cells, 
especially NK cells, and resulted in decreased NKG2D-dependent 
immunity, thus reflecting the predominant role of the sMICA-
NKG2D system (20, 52). Therefore, we co-cultured IL-2-activated 
patient NK cells overnight (24 h) with sMICA analogs (shMICA 
and rMICA, each in 500 pg/ml) and PP containing high sMICA 
levels (range: 220.9–870.7 pg/ml). All incubated NK cell samples 
from the five HNSCC patients exhibited a time-dependent down-
regulation of NKG2D expression on total NK cells and both NK 
cell subsets (Figures 2A,B), whereas surface expression of CD16, 
pro-apoptotic FasL, and TRAIL receptors as well as activation 
marker CD57 were largely unaffected and stable over the indi-
cated time period on all NK cell fractions by the described sMICA 
analogs (Figure 3A). We detected a distinct effect of shMICA on 
NKG2D expression on total NK cells and resultant NK subpopu-
lations analyzed during the indicated time frame of 24 h (37°C, 
5% CO2) by FCM. The time-dependent NKG2D down-regulation 
is displayed in plots exemplarily shown for one experiment 
(Figure 2B). Although surface phenotype, cell proportions, and 
viability of NK cells were not affected by co-incubation with PP 
(24 h, high MICA, Figure 3A), the observed decrease of NKG2D 
surface expression was accompanied by reduced IFN-γ and 
TNFα secretion compared to IL-2 activated patient NK cells [IL-2 
(9–12 days), Figure 5D].

Additionally, the impact of sMICA on the NKG2D-mediated 
NK cell cytotoxicity of overnight co-incubated NK cells was 
analyzed against corresponding primary tumor cells derived from 
HNSCC patients (n = 5) to assess the degree of killing activity. 
Effector and target cells were co-incubated for 4 h (37°C, 5% CO2, 
250 rpm) at indicated E:T ratios and killing activity was subse-
quently compared to X-VIVO™10-incubated controls without 
sMICA analogs. The cytotoxicity of shMICA- and PP-treated 
NK cells was strongly suppressed compared to low inhibition 
frequencies of rMICA-incubated effector cells at all E:T ratios 
(Figures  3B–E). During the cytotoxicity assays of co-cultured 
effector and target cells, the NK cell viability was decreased in 
shMICA-, rMICA-, and PP-treated NK cells as compared to 
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FigUre 5 | restored effector-target cell interactions via cetuximab-dependent aDcc of sMica-inhibited nK cells. (a) Activated patient NK cells were 
cultured (24 h) with patient plasma (PP; 1:2 diluted with X-VIVO™10) containing high sMICA levels and co-incubated (1 h, approximate E:T ratios of 5:1) with 
corresponding HNSCC cell clusters (time of cultivation: 3–12 days) in (i) presence and (ii) absence of 1 μg/ml cetuximab. (iii) Activated patient NK cells treated for 
24 h with healthy plasma (HP [low sMICA]; 1:2 diluted with X-VIVO™10) were used to monitor early effector-target cell interactions, served as a positive control. 
CD45 (green) for PP- and HP-treated patient NK cells were analyzed by staining with FITC-conjugated mAb, whereas co-incubated adherent HNSCC clusters were 
unlabeled. Before initiating these functional assays, effector and target cells were tested flow cytometrically for relevant surface markers, especially MICA, HER2 and 
HER1 on HNSCC cells (B), and CD16 and NKG2D levels on PP (high sMICA/TGF-β1)-treated NK cells (c). Variable IFN-γ and TNFα secretions levels during 
co-incubations of treated NK cells with HNSCC cell clusters or tumor spheroids in presence or absence of cetuximab were quantified and compared with untreated 
controls (D). Statistically significant difference: *p ≤ 0.01 and **p ≤ 0.001.

November 2015 | Volume 6 | Article 543163

Klöss et al. Cetuximab-restored NK cell cytotoxicity

Frontiers in Immunology | www.frontiersin.org

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


November 2015 | Volume 6 | Article 543164

Klöss et al. Cetuximab-restored NK cell cytotoxicity

Frontiers in Immunology | www.frontiersin.org

more stable effector cells in X-VIVO™10-incubated controls 
(Figures  3B–E). To confirm the direct sMICA impact on the 
NKG2D-mediated NK cell cytotoxicity, MICA-specific mAbs 
(20 μg/ml, MAB13001) were used to deplete sMICA molecules 
in different treatment mixtures (shMICA, rMICA, and PP) 
(Figure  3E). NK cell cytotoxicity of these treated effector cells 
co-incubated with corresponding primary HNSCC cells were 
compared with sMICA analog-treated NK cells co-cultured with-
out sMICA-specific mAbs as a negative control. The diminished 
killing activity of sMICA-affected NK cells was partially restored 
when compared to untreated (X-VIVO™10) control effector cells 
and to NK cells pre-treated with healthy plasma (HP, low sMICA) 
(Figure 3E).

cetuximab restores nK cell-Dependent 
cytotoxicity against Primary hnscc cells 
via aDcc
Cetuximab is a therapeutic mAb directed against the HER1 epitopes 
on several types of high-malignant tumors (53). Consequently, 
cetuximab is a powerful stimulus of NK cell-mediated ADCC 
via activation of FcγRIIIa against cetuximab-coated tumor cells 
and for induction of cytokine release, especially IFN-γ and TNFα 
secretion. Figure 4A demonstrates significantly restored NK cell-
based cytotoxicity against cetuximab-coated HNSCC cells with 
mAb concentrations of 1 μg/ml (mean: 43.8 ± 10.8%) and 1 ng/
ml (mean: 38.4 ± 6.8%) as compared to reduced killing activity 
of shMICA-incubated NK cells (mean: 13.4  ±  11.2%) against 
non-coated HNSCC cells and anti-CD16 mAb-blocked NK cells 
(mean: 28.8 ± 8.9%). Based on these titration experiments, only 
1 μg/ml cetuximab were applied in subsequent experiments to 
restore the decreased NK cell cytotoxicity (mean: 41.5 ± 6.3%) 
after overnight incubation with PP (high sMICA, mean of 
cytotoxicity: 26.1 ± 6.3%) and blocking experiments with anti-
CD16 mAb-treated NK cells (mean of cytotoxicity: 24.8 ± 5.7%) 
(Figure 4B). Untreated (X-VIVO™10) and healthy plasma (HP, 
low sMICA)-incubated patient NK cells were defined as unaf-
fected control cells. NK cell viability was affected exclusively 
by PP-treatment and HP-incubated NK cells exhibited similar 
viability levels as untreated effector cells (Figure 4C). As internal 
effector cell controls, we assessed the activation marker NKG2D 
and IgG Fc receptor (CD16) of PP-treated (high sMICA) NK cells 
after 24 h overnight incubation by FCM. As shown in Figure 4D 
(upper row), the expression of NKG2D was significantly decreased 
but the CD16 expression levels were not changed on these effector 
cells. Otherwise, the phenotypical characterizations of target cell 
parameters showed higher levels of HER1 and HER2 antigens 
and only low-to-moderate MICA expressions on corresponding 
patient HNSCC cells (Figure 4D, lower row).

To determine whether IL-2 potentiates the cetuximab-medi-
ated outcome on restored effector cell cytotoxicity against HNSCC 
cells, we analyzed the degree of ADCC from X-VIVO™10-, 
PP-, and HP-treated patient NK cells against cetuximab-coated 
and non-labeled HNSCC cells in the presence or absence of 
IL-2 (Figure 4E). Reconstituted NK cell cytotoxicity via ADCC 
was detected against cetuximab-coated HNSCC cells (IL-2 and 
Cetmab) compared to decreased cytotoxicity of PP-incubated NK 

cells against non-labeled HNSCC cells independently from the 
presence (+IL-2) or absence of IL-2 (Figure 4E, middle graph). 
Combination of IL-2 with cetuximab-coated or non-coated 
HNSCC cells (IL-2 with Cetmab or IL-2 alone) revealed no 
improvement of ADCC from X-VIVO™10- and HP-treated NK 
cells, but inclusion of IL-2 significantly enhanced NK cell cyto-
toxicity compared to untreated NK cells (-IL-2) (Figure 4E, left/
right graphs). The cetuximab-mediated reconstitution of NK cell 
cytotoxicity correlated with higher IFN-γ and TNFα secretion 
levels (24 h PP + 1 μg/ml Cetmab + 4 h HNSCC cells) compared 
to PP-treated NK cells [24 h PP (high MICA) Figure 5D].

cetuximab reconstitutes nK cell 
infiltration into hnscc clusters and 
Tumor spheroids
To assess the capability of tumor infiltrations from sMICA-
affected patient NK cells in absence or presence of 1  μg/ml 
cetuximab, we developed different in vitro models by establish-
ing co-cultures (37°C, 5% CO2). Therefore, activated patient NK 
cells were pre-incubated overnight with corresponding PP (high 
sMICA) or healthy plasma (HP, low sMICA) served as a positive 
control. Afterward, the early recognition and tumor-infiltration 
capabilities of these treated effector cells were monitored after 1 h 
co-incubation with primary HNSCC cell clusters (Figure 5) or 
after 24 h in HNSCC tumor spheroids derived from five HNSCC 
patients to identify specific tumor-infiltrated NK cells (Figure 6).

Early “effector-to-target” affinities of treated NK cells against 
adherent HNSCC cell clusters coated or not coated with 1 μg/
ml cetuximab were monitored (10  min–1  h) by CFM. The 
experiments showed clearly impaired and disordered “effector-
to-target” interactions and decreased HNSCC cell cluster 
infiltrations from PP-treated NK cells in absence of cetuximab 
(Figure  5A, one row) compared to normal tumor infiltration 
capabilities of HP-treated (low sMICA) NK cells, served as a 
positive control [Figure 5A, lower row, right picture (control)]. 
In contrast, early effector cell-dependent infiltration within 
20–30  min and restored anti-tumor reaction was observed by 
PP-treated NK cells against cetuximab-coated HNSCC clusters 
after 1  h (Figure  5A, upper row) accompanied by raised IFN-
γ and TNFα medium levels (24 h PP + 1 μg/ml Cetmab + 4 h 
HNSCC cells, Figure 5D). Otherwise, the cytokine secretions of 
PP-inhibited NK cells against non-coated HNSCC cell clusters 
(without cetuximab) revealed significantly degraded IFN-γ and 
TNFα concentrations analyzed in medium supernatants [24 h PP 
(high sMICA), Figure 5D].

In addition, phenotypical analysis of relevant effector and tar-
get cell parameters were analyzed before co-cultivations. HNSCC 
cells revealed high HER1 and CD9 expression levels (not shown) 
and low-to-moderate MICA levels on the target cell clusters 
(Figure 5B). Otherwise, treated NK cells with corresponding PP 
(high sMICA, 24 h) showed a decreased NKG2D surface expres-
sion as detected by FCM analysis, while CD16 surface expression 
was unaffected (Figure 5C). In this context, sMICA and TGF-β1 
accumulated time-dependently in the cell culture medium as 
summarized in Figure  1F analyzed for different time periods 
(0–2 up to 11–14 days).
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Analysis of tumor-infiltration assays were also performed 
with PP-treated (high sMICA) NK cells co-cultured (24 h, 37°C, 
5% CO2) against non-coated HNSCC tumor spheroids. As moni-
tored for one spheroid by time-lapse imaging, effector-to-target 
cell interactions and tumor infiltrations of NK cells were strongly 
abolished and resulted in a lack of recognition of the HNSCC 
spheroid by non-functional NK cells, even though they were in 
close proximity to the spheroids (24 h, Video S1 in Supplementary 
Material). However, the PP-mediated inhibition of NK cell func-
tions was also clearly restored by cetuximab-coated HNSCC 
spheroids (1 μg/ml cetuximab) via multiple effector-target inter-
actions exemplarily shown for one representative overlay photo-
graph (Figure 6B, right overlay plot containing yellow regions) 
generated by 2D CFM. Similarly, 3D fluorescence microscopy 
allowed visualization of the reconstituted specific tumor infiltra-
tions by PP-treated (high sMICA) NK cells via putative ADCC 
in HNSCC tumor spheroids over 24 h in the presence of 1 μg/
ml cetuximab (green-yellow areas, Figure  6C). Moreover, the 
medium supernatants of those incubated samples (PP-cultured 
NK cells and cetuximab-coated HNSCC tumor spheroids) 
revealed significantly increased IFN-γ and TNFα secretion levels 
(24 h PP + 1 μg/ml Cetmab + 24 h HNSCC tumor spheroids, 
Figure  5D). However, the tumor infiltration [CD45+ NK cells 
(green signals), Figure 6D] and cytokine release [24 h PP (high 
sMICA), Figure 5D] of same PP-inhibited NK cells were strongly 
reduced in 24 h-incubated samples in absence of cetuximab and 
consequently non-coated HNSCC tumor spheroids.

DiscUssiOn

Dysfunctional tumor surveillance in HNSCC patients is further 
hampered by tumor immune escape mechanisms, which may 
induce dysregulation of immunocompetent cell profiles. In con-
trast to literature reports describing decreased NK cell numbers 
in HNSCC MNCs (54), we did not observe marked alterations in 
total NK cells among the total lymphocytes in our cohort of five 
relapsed HNSCC patients not currently in treatment. Previously, 
we demonstrated disbalances in NK cell subpopulations in 55 
patients with initial and relapsed HNSCC (22). However, the 
immunoregulatory NK cell population responsible for stimula-
tion of immature DCs by TNFα and IFN-γ secretion (5, 55) was 
significantly decreased in comparison with age-matched healthy 
individuals. Accordingly, Wulff et al. reported reduced regulatory 
NK cells in many HNSCC patients at different tumor stages (56). 
We detected higher levels of cytotoxic NK cell subpopulations 
compared to HCs, which may reflect suppressed cytotoxic 
interactions against HNSCC cells and limited tumor-infiltration 
capacities of these inhibited NK cell subsets. Additionally, we 
demonstrated that alterations in NK cell subtypes in our HNSCC 
patients were accompanied by disrupted TNFα and IFN-γ secre-
tion. Enhanced sMICA and TGF-β1 plasma levels in HNSCC 
patients also correlated strongly with NKG2D-dependent dys-
function of patient NK cells, resulting in suppressed killing activ-
ity against HNSCC cells and decreased NK cell viability during 
cytotoxic effector-target interactions. In accordance, Bose et al. 
described marked alterations in the Th1/Th2 cytokine ratios and 
significantly increased suppressor regulatory T cells in cultured 

MNCs from HNSCC patients resulted in decreased cytotoxic-
ity of HNSCC effector cells (54). According to our cytotoxicity 
experiments, high sMICA/TGF-β1 levels derived from HNSCC 
PP also contribute to diminished effector cell stability. This was 
also confirmed by Rossi et al. via correlation between impaired 
NK cell viability, effector cell cytotoxicity and decreased NKG2D 
and NKp46 surface expression (57). Increased NK cell suscepti-
bility also reflects the ability of the tumor to release apoptosis-
promoting factors (programmed death receptor ligand, PDL-1), 
which can abolish several effector cell functions within the tumor 
microenvironment as detected on PD-1+ NK cells in cancer 
patients (58, 59).

We translated an activation protocol from a previous phase I/II 
trial (Clin-Gov-No-NCT01386619), which described stimulation 
of allogeneic NK cells (1000 IU/ml IL-2) with resultant increased 
distribution of NK cell subsets and high NCR expression levels 
(11), to NK cells isolated from our HNSCC patients. After IL-2 
stimulation, the activated patient NK cells revealed improved 
distribution of increased immunoregulatory NK cells (CD56bright/
CD16dim&neg), enhanced TNFα and IFN-γ secretion and up-
regulated NKG2D expression levels that resulted in enhanced 
cytotoxicity against associated HNSCC cells. Increased expres-
sion of CD56 was coincident with higher levels of NCRs as was 
also detected in other studies, suggesting that tumor-infiltrating 
NK cells were activated effector cells, but characterized by poor 
functionality (39, 60, 61). Indeed, our incubations (24 h) of acti-
vated NK cells with sMICA analogs or PP containing increased 
sMICA resulted in decreased NKG2D expression followed by 
impaired NKG2D-dependent killing activity against associated 
HNSCC cells. However, NK cell viability and expression levels of 
CD16, pro-apoptotic FasL and TRAIL receptors as well as for the 
activation marker CD57 were not affected by sMICA. In contrast, 
the significantly decreased levels of FasL on cultured HNSCC 
MNC NK cells shown by Bose et al. might be due to marked up-
regulation of suppressor regulatory T cells followed by enhanced 
TGF-β1 secretion levels (54).

Our observations regarding inhibited cytotoxic functions 
of sMICA-treated NK cells due to suppressed HNSCC tumor 
infiltration indicate suppressed migratory capacity of NK cells 
toward HNSCC tumors as detected by transmitted time-lapse 
imaging (Video S1 in Supplementary Material). This is one of 
the numerous effector cell functionalities, impairment of which 
can result in TIEM allowing unhindered tumor growth. NKG2D 
is an activating receptor for NK, NKT, CD8+, and γδ+ T effector 
cells, and down-regulation of NKG2D in HNSCC patients seems 
to be a crucial mechanism of immune evasion. Soluble NKG2D 
ligands (NKG2DL) in association with growth factors, such as 
TGF-β1, released from mesothelioma cell-generated exosomes 
were described to potentiate the down-modulation of NKG2D 
surface expression on activated NK cells (62). Indeed, we 
observed significant correlations between time-dependent high 
sMICA and TGF-β1 secretion levels and increased HNSCC cell 
growth of our tumor clusters or spheroids, which also resulted 
in disrupted NKG2D-mediated immunosurveillance of blocked 
patient NK cells as shown previously in our HNSCC patient 
study (22). However, the negative impact of increased TGF-β1 
levels detected in these HNSCC patients could be inhibited by 
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FigUre 6 | reconstitution of nK cell-dependent tumor infiltration by cetuximab. Tumor recognition and infiltration of sMICA-affected NK cells in absence or 
presence of cetuximab (1 μg/ml) were analyzed by co-culturing (24 h, 37°C, 5% CO2) of corresponding patient NK cells, plasma (high sMICA) and HNSCC tumor 
spheroids derived from HNSCC patient tumors (n = 5). Activated NK cells were pre-incubated (24 h) with corresponding patient plasma containing high sMICA 
(PP: > 500 pg/ml; diluted 1:2 with X-VIVO™10) and co-incubated (24 h) with primary HNSCC spheroids (time of cultivation: 11–14 days) in the presence of 1 μg/ml 
cetuximab. CD45 (green) for PP-treated patient NK cells were identified by staining with FITC-conjugated mAb, whereas tumor spheroids were labeled with 
anti-HER2 PE-conjugated mABs (a). Tumor-infiltrating NK cells were illustrated by overlay plots (CFM). Exactly the same orientation of CD45+ NK cells (green) and 
HER2+ tumor spheroids (red) showed a positive, overlapping signal in yellow [see black arrows (B)] for ADCC-related effector-target cell interactions, whereas single 
positive, HNSCC cells (CD45−/HER2+) are shown as red signals and single positive NK cells are depicted by green signals in the corresponding photographs (a). 3D 
fluorescence microscopy visualized tumor-infiltrating patient NK cells (green-yellow areas) in corresponding HNSCC tumor spheroids in the presence (c) and 
absence (D) of 1 μg/ml cetuximab. DAPI [blue signals (a,c,D)] was used to stain DNA from methanol-fixed effector and target cells for analyses of the nuclear 
morphology.
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neutralization antibodies against this immunosuppressive factor, 
indicating that TGF-β1 seemed to potentiate the sMICA-induced 
decrease of patient NK cell cytotoxicity and diminished NKG2D 
expression. According to our results, others have demonstrated 
restored NKG2D expression levels on NK and CD8+ T cells after 
tumor resection in glioma patients, which was accompanied 
by enhanced killing activities of those effector cells against 
NKG2DL-positive tumor targets (63). Interestingly, NKG2D was 
markedly down-regulated on activated CD8+ T cells but only if 
CD4+ T cells and NKG2DLs, such as soluble MICB, were present 
(64). This observation supports the hypothesis that soluble 
NKG2DLs played a secondary role and the down-regulation of 
NKG2D was primarily caused by tumor-derived TGF-β1 (63). 
The immunosuppressive tumor environment was responsible 
for the high diversity of antigen presentation patterns in stroma-
infiltrating NK cells and tumor-infiltrating NK cells. The effector 
cells showed lower CD56 levels and higher CD16 expression dur-
ing cytotoxic interactions with breast cancer cells and resulted in 
altered NK cell phenotypes with decreased functional capacities 
(65). In accordance with this report, we demonstrate stable CD16 
expression levels, which were not affected by sMICA analogs or 
HNSCC plasma containing high amounts of sMICA and TGF-β1.

NK cell subsets have a stimulating Fc receptor for binding 
IgG (Fcγ RIIIa), which induces ADCC and may trigger TNFα 
and IFN-γ secretion to finally recognize and kill antibody-coated 
targets (66). Since several ErbB family members, including HER1 
(EGFR), HER2 and HER3, seem to be strong predictors for the 
outcome of HNSCC (67), we stained different tumor samples 
post-surgery from corresponding relapsed patients for HER1/2 
and collected PB for NK cell separation as well as blood plasma 
for quantification of sMICA and TGF-β1. The chimeric (human-
murine) IgG1 cetuximab directly affects HER1-positive tumor 
cells by activation immunocompetent cells (66). Therefore, we 
assessed our sMICA-affected NK cells regarding to cytotoxicity 
and tumor infiltrations. We found improved killing activity via 
ADCC for sMICA-inhibited NK cells against cetuximab-coated 
HNSCC cells. Additionally, enhanced cytokine (TNFα and IFN-
γ) release was observed compared to low cell lysis of the same 
effector cells co-cultured with untreated tumor cells. Negative 
effects of sMICA and TGF-β1 on NK cell cytotoxicity were 
overcome by cetuximab and correlated well with high IFN-γ 
and TNFα secretion levels described previously in HNSCC 
and other cancers (53, 68). In this context, it was reported that 
cetuximab-induced NK cells are able to activate DC maturation 
markers and antigen presentation machinery via IFN-γ secre-
tion, thus allowing initiation of adaptive immune responses by 
NK cell stimulated DC maturation (69). We demonstrated that 
combining cetuximab with IL-2 (1000 IU/ml) re-established NK 
cell cytotoxicity and reconstituted TNFα and IFN-γ secretion. 
This is in agreement with other reports that described increased 
ADCC activity and cytokine release in the presence of cetuximab 
and several cytokines (IL-2, IL-12, IL-15, and IL-21) compared to 
cetuximab-mediated ADCC in absence of these cytokines (53, 65, 
68). Prospective studies should clarify how to improve the cetuxi-
mab effect combined with pro-inflammatory cytokines, especially 
IL-2. Interestingly, it was demonstrated that ADCC- and IL-2-
activated NK cells were less susceptible to immunosuppression 

by chemotherapy or other immunosuppressive drugs, especially 
mycophenolate mofetil (MMF), than non-stimulated NK cells in 
cancer patients (68, 70).

To investigate the potency of cetuximab on cytotoxic function-
alities of sMICA-inhibited NK cells, we generated HER1-positive 
tumor spheroids to simulate the in vivo tumor microenvironment. 
This enabled us to analyze the restoration of tumor-infiltrating 
capability of NK cells with down-regulated NKG2D expression 
levels in a well-defined system. Tumor spheroids were utilized 
to monitor specific migratory capability and tumor chemoat-
traction of effector cells, especially NK cells, over well-defined 
time periods (71). However, only few reports describe the effec-
tor cell-mediated immunosurveillance toward tumor spheroids. 
Inactivation of NK cells by clustered Ewing’s sarcoma cells and 
cytotoxicity of γδ+ T cells against pediatric liver tumor spheroids 
was demonstrated (72, 73). In our tumor models, we were able to 
assess the cetuximab-mediated tumor infiltration from sMICA-
inhibited NK cells toward corresponding primary HNSCC cell 
clusters and tumor spheroids that expressed high levels of HER1 
and HER2. HNSCC spheroids expressed only low-to-moderate 
levels of membrane-bound MICA, but sMICA and TGF-β1 
release steadily increased in supernatants of cultured HNSCC 
tumor spheroids and reached saturation levels after a few days 
of cultivation. The accumulation of immunosuppressive factors 
in HNSCC spheroid supernatants supported the assumption 
that NKG2D-mediated cytotoxicity of co-cultured patient NK 
cells was diminished, which corroborates the negative effect 
toward NK cell-mediated immunosurveillance by these tumor 
spheroids as described previously (71). Importantly, we detected 
early effector-to-target interactions displayed in small HNSCC 
tumor cell clusters during the first hours of co-cultivation in the 
presence of cetuximab. Furthermore, we successfully demon-
strated cetuximab-mediated tumor infiltrations and increased 
TNFα and IFN-γ secretions of sMICA-inhibited NK cells in 
associated HNSCC spheroids using 2D- and 3D-microscopy 
techniques. This supported results from monolayer cultures of 
different effector-to-target cell ratios co-incubated for previous 
cytotoxicity assays. Correspondingly, others evaluated the direct 
localization of fluorescently stained therapeutic antibody, cetux-
imab-IRDye800CW, in histologic sections with tonsil, tongue, 
and cutaneous squamous cell carcinoma (SCC) by fluorescence 
immunohistochemistry (74). Interestingly, the heterogeneous 
composition and tumor architecture in short-term culture of 
HNSCC tumor slices demonstrated a high diversity of individual 
responses to cetuximab, but the absence of any effector cell subset 
(75). It was recently suggested that drug resistance to anti-EGFR 
therapies in HNSCC is not affected by the hypoxic tumor 
microenvironment within the investigated tumors (76). Indeed, 
the inhibition of EGFR via cetuximab reduces angiogenesis via 
hypoxia-inducible factor-1α and Notch1 in HNSCC (77).

cOnclUsiOn

In conclusion, our current results emphasize that cetuximab is 
able to neutralize negative effects of TIEMs. This was shown in 
a corresponding effector-target system of patient NK cells, PP 
containing immunosuppressive factors (sMICA and TGF-β1), 
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Figure s1 | gating strategy. Flow cytometry-based cytotoxicity assay of NK 
cells against singularized HNSCC cells. NK and HNSCC cells were stained with 
CD9 FITC, CD56 PC7, and CD45 KO mAbs. 7-AAD (7-amino-actinomycin D) 
was used to discriminate non-viable cells in FCM. Blue: CD45+ NK cells; red: 
CD9+ HNSSC cells; and grey: 7-AAD+ effector and target cells. Dot plot areas 
were defined by the analysis of mono-cultured NK and HNSCC cells incubated 
for the identical time periods. Dot plot (WBC/MNC) displays an overview of all 
scatter events properties, and shows differentiations to non-specifically stained 
debris by low forward scatter signals. Plot (CAL) illustrates the events of the 
region “beads” along the time course to calibrate the events for “cells/μl” and 
detect even sample flow. Region (Target cells) is defined to include viable CD9+ 
HNSCC cells, and region (Effector cells) is defined to include all CD45+ NK 
cells. Plot (“Cell clusters”) represents the viable effector-target–cell interactions. 
Plot (“Viability”) is defined as a region to exclude the 7-AAD+ cells. These 
7-AAD+ cells are not further presented in the following dot plots by using the 
characteristic signal when representing the 7-AAD fluorescence against the side 
scatter (SSC) properties.

Video s1 | Time-lapse imaging of PP (high sMica and TgF-beta1 
levels)-treated nK cells against corresponding hnscc tumor spheroids 
over a time period of 24 h. These NK cells (smaller rounded effector cells) 
isolated from the same HNSCC patient showed a decreased tumor recognition 
against associated tumor spheroids via reduced migratory capability and a 
decreased cytotoxicity.
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High-dose chemotherapy with consecutive autologous stem cell transplantation (auto-
SCT) is a well-established treatment option for patients suffering from malignant lym-
phoma or multiple myeloma. Natural killer (NK) cells are an important part of the immune 
surveillance, and their cell number after autoSCT is predictive for progression-free and 
overall survival. To improve knowledge about the role of NK cells after autoSCT, we 
investigated different NK cell subgroups, their phenotype, and their functions in patients 
treated with autoSCT. Directly after leukocyte regeneration (>1000 leukocytes/μl) follow-
ing autoSCT, CD56++ NK cells were the major NK cell subset. Surprisingly, these cells 
showed unusually high surface expression levels of CD57 and killer Ig-like receptors (KIRs) 
compared to expression levels before or at later time points after autoSCT. Moreover, 
these NK cells strongly upregulated KIR2DL2/3/S2 and KIR3DL1, whereas KIR2DL1/
S1 remained constant, indicating that this cell population arose from more immature NK 
cells instead of from activated mature ones. Remarkably, NK cells were already able to 
degranulate and produce IFN-γ and MIP-1β upon tumor interaction early after leukocyte 
regeneration. In conclusion, we describe an unusual upregulation of CD57 and KIRs 
on CD56++ NK cells shortly after autoSCT. Importantly, these NK cells were functionally 
competent upon tumor interaction at this early time point.

Keywords: nK cells, cD57, Kir, autologous stem cell transplantation, cD107a expression, iFn-γ production

inTrODUcTiOn

Natural killer (NK) cells are an important part of the innate immune system and are able to 
kill virus-infected or malignantly transformed cells (1). Their important role in tumor sur-
veillance has been demonstrated in many different tumor models (1). NK cell cytotoxicity is 
regulated by a diverse repertoire of inhibitory and activating receptors. Inhibitory receptors, 
such as killer Ig-like receptors (KIRs) and the C-type lectin-like receptor NKG2A, recognize 

Abbreviations: HDC, high-dose chemotherapy; (auto)SCT, (autologous) stem cell transplantation; MM, multiple myeloma; 
NHL, non-Hodgkin lymphoma; TP1–3, time point 1–3; KIRs, killer Ig-like receptors; NK cell, natural killer cell.
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different alleles of HLA molecules (HLA-A, B, and C by KIRs 
and HLA-E by NKG2A) on healthy cells. In contrast, many 
tumor cells downregulate their HLA molecules to evade T cell 
recognition, making them more susceptible to NK cell kill-
ing (2). Additionally, tumor cells may express stress-induced 
molecules, such as MHC I chain-related molecule A/B or 
UL-16-binding proteins, which are ligands for the activating 
NK cell receptor NKG2D (3, 4).

High-dose chemotherapy (HDC) with consecutive autologous 
stem cell transplantation (autoSCT) is an effective and well-
established treatment option for patients suffering from multiple 
myeloma (MM) (5) or malignant lymphoma (6–9). Before treat-
ment with the myeloablative chemotherapy, hematopoietic stem 
cells are collected from peripheral blood and frozen. Following 
HDC, these cells are thawed and given back to the patient in order 
to shorten the time of aplasia, thereby reducing the infection and 
blood transfusion rates.

Many reports have demonstrated the important role of the 
absolute lymphocyte count after HDC/autoSCT (10). It has been 
shown that an absolute lymphocyte count >500/μl is associated 
with improved overall and progression-free survival in patients 
with Hodgkin lymphoma (11), non-Hodgkin lymphoma (NHL) 
(12), acute myeloid leukemia (13), MM (12), and metastatic breast 
cancer (14). By analyzing the different lymphocyte subsets at day 
15 following autoSCT, a clear correlation between improved over-
all survival and progression-free survival could only be found 
for NK cell counts >80/μl. No correlation was found for any 
other lymphocyte subset (15). In a more recent study, improved 
median overall and progression-free survival as well as the NK 
cell count at day 15 after HDC/autoSCT were all associated with 
an increased IL-15 concentration at day 15 of ≥76.5 pg/ml for 
NHL patients receiving HDC/autoSCT (16).

Because there is no information available regarding the 
detailed analysis of NK cell subsets or function early after HDC/
autoSCT, in our study, we prospectively investigated the major 
NK cell subsets directly after leukocyte recovery (leukocytes 
>1000/μl) and also at later time points after HDC/autoSCT in 
patients with different lymphoproliferative diseases. Moreover, 
we further analyzed the different NK cell subsets, evaluating 
their education and differentiation markers, as well as their 
functional properties, such as cytokine/chemokine production 
and degranulation capacity.

MaTerials anD MeThODs

Patients’ characteristics and  
study Design
This study was carried out in accordance with the recommenda-
tions of the local ethics committee of the University of Erlangen, 
and all patients gave written informed consent in accordance 
with the Declaration of Helsinki. Patients who suffered from 
MM or malignant lymphoma and received HDC/autoSCT were 
included. Blood was taken from these patients at three different 
time points. Time point 1 (TP1) was before the start of the HDC 
and at least 3 weeks after the last chemotherapy. The second time 
point (TP2) was 1–2  days after leukocyte regeneration (>1000 

leukocytes/μl) following autoSCT, and the third time point (TP3) 
was after at least 2 weeks following leukocyte recovery.

reagents
For NK and K562 cell culture, we used full media containing 
RPMI 1640 media (Gibco®) supplemented with 10% FBS, MEM 
non-essential amino acids (1%), sodium pyruvate (1%), l-glu-
tamine (1%; all from PanBiotech), and penicillin/streptomycin 
(1%; Thermo Fischer Scientific). For the washing steps, we used 
Dulbecco’s phosphate-buffered saline (DPBS; Gibco®).

To analyze the different leukocyte subsets, CD3, CD14, CD16, 
CD19, CD45, and CD56 antibodies with different fluorochromes 
from Becton Dickinson (BD) were used. For detailed NK cell sub-
set analyses, we used anti-KIR2D-, KIR3DL1/2-, and KIR2DL1/
S1-PE (Miltenyi), KIR2DL1-PerCP (R&D), KIR2DL2/3/S2-APC 
(Beckman Coulter), KIR3DL1 PE-Vio770 (Miltenyi), NKG2A 
FITC (Miltenyi), and CD57 APC (BD). For the KIR staining, the 
clones of the antibodies were selected according to Czaja et al. 
(17), and a sequential staining protocol was used as described 
by Beziat et  al. (18). For intracellular staining, we used IFN-γ 
PE-Cy-7 and MIP-1β APC-H7 (BD). To exclude dead cells, 
7-AAD (BD) for extracellular and Fixable Viability Dye eFluor® 
520 (eBioscience) for intracellular staining were used.

PBMc Preparation, Freezing, and Thawing
Blood samples were obtained from the patients at the indicated 
time points. PBMCs were isolated by performing a Ficoll density 
centrifugation of whole blood samples, and then the PBMCs 
were frozen (5 × 106 PBMCs/ml freezing media containing 90% 
FCS + 10% DMSO; from Sigma) until they were used.

For thawing, tubes were incubated at room temperature and 
gently thawed by re-suspending the cells in prewarmed full media 
(without FCS). The cells were washed twice and counted before 
being used for further analysis.

extra- and intracellular antibody staining
For surface staining, the cells were incubated with different anti-
body cocktails for 10′ at 4°C; then, they were washed and either 
fixed in BD CytoFix™ solution or further processed for intracel-
lular staining using the BD Cytofix/Cytoperm™ kit. Briefly, the 
cells were first incubated for 30′ at 4°C with Fixable Viability Dye 
eFluor® 520 (eBioscience), and then they were washed and fixed 
for 20′ at 4°C in 100 μl BD Cytofix™ solution. Subsequently, the 
cells were washed in BD Cytoperm™ solution and incubated 
with the indicated intracellular antibodies for 20′ at 4°C. Finally, 
the cells were washed, placed into BD CytoFix™ solution, and 
analyzed with a BD FACSCanto II™ or Canto10c™ using the 
FlowJo® software (FlowJo, LLC) was used to analyze the FACS 
data.

Functional assays
After thawing, the cells were placed into full media supplemented 
with 100 IU IL-2/ml (Proleukin®, Novartis) in a 96-U well plate 
overnight. The cells were harvested, washed, counted, and 
incubated with K562 cells (ratio 1:1) in full media in a 96-U well 
plate for 4 h. CD107a APC (BD) was added at the start of the 
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coculturing period and BD GolgiStop™ (BD) was added after 1 h 
for the rest of the incubation time.

statistics
For statistical analysis, we used GraphPad Prism® software. In 
all graphs, the mean and SD were calculated and plotted. For 
comparison between matched samples, we used a Wilcoxon 
test, whereas for non-matched samples, we performed a Mann–
Whitney test. Statistical significance is indicated with the p-values 
(*<0.05; **<0.01; ***<0.001; *****<0.0001).

resUlTs

Patients’ characteristics and leukocyte 
subsets
Peripheral blood samples from 32 different patients collected 
at three specific time points (TP1–3, as described in Section 
“Materials and Methods”) were available for the analysis of leu-
kocyte subsets. The basic patient characteristics are summarized 
in Table  1. The ratio between male and female patients was 
approximately 2:1. Half of the patients suffered from MM. The 
average age at HDC/autoSCT was 56.7 years. The average time 
between SCT and TP2 was 11.6 days, whereas the time between 
collecting samples at TP2 and TP3 was 38.8 days. All three values 
were normally distributed.

Before the start of HDC/autoSCT at TP1, CD3+CD56− T cells 
and CD14+ monocytes were the two major leukocyte subsets 
in all patients (Figure  1A; for gating strategy, see Figure S1 in 
Supplementary Material). While CD14+ monocytes were the 
major subset early after leukocyte recovery after HDC/autoSCT 
at TP2 (Figures 1A,B), CD3+CD56− T cells were the major sub-
set at TP3 (Figures 1A,B). In contrast, the NK cell percentages 
within the leukocyte population significantly decreased from TP1 
to TP2 (p-value: 0.0175) but recovered to the initial value at TP3 
(p-value TP2/TP3: 0.0263; TP1/3: 0.19; Figures 1A,B).

By correlating the NK cell dynamics at the three different 
time points with clinical data, we observed that the fold change 
of the NK cell percentage within the leukocyte population 
between TP1 and TP2 (ratio TP2/TP1) significantly differed 
between patients having a time period of ≤11  days between 
SCT and TP2 and those having a period of >11 days (p-value: 
0.04). When the time period was >11 days, no decrease in the 

TaBle 1 | Patient characteristics.

gender Male (23), female (9)

Mean age (range) 56.7 years (30–74 years)

Malignancy

Multiple myeloma 16

Diffuse large-cell B cell lymphoma 7

Mantle cell lymphoma 3

T cell lymphoma 5

Hodgkin lymphoma 1

recurrent/refractory disease at 1 year 
after scT (yes/no)

6/21 (5 patients were lost during 
follow-up)

Time period scT–TP2 (mean, days) 11.6

Time period TP2–TP3 (mean, days) 38.8

NK cell percentage within the leukocyte population at TP2 
was observed. Moreover, another significant difference was 
observed when comparing the fold change in the NK cell per-
centage between TP1 and TP2 in patients who were refractory/
recurrent or not at 1 year after SCT (p-value: 0.0258). Patients 
with recurrent or refractory disease did not have a decrease 
in their fold change ratio (TP2/TP1), while patients without 
recurrent/refractory disease did have a decrease at 1 year after 
SCT. Additionally, the fold increase in the NK cell percentage 
between TP2 and TP3 (TP3/TP2 ratio) was more pronounced 
when the time period between TP2 and TP3 was ≤38  days 
(p-value: 0.12; Figure 1C).

No differences were observed when analyzing the patients’ age 
or hematological malignancies in relation to the fold changes of 
the NK cell percentages within the leukocyte population between 
the three different time points (Figure S2 in Supplementary 
Material).

cD56++cD16−/+ nK cells are the Major 
subset at leukocyte recovery
Next, we analyzed the different NK cell subsets based on 
their CD56 and CD16 expression. NK cells were divided into 
CD56++CD16− or CD16+ and CD56+CD16++ NK cells (see Figure 
S1 in Supplementary Material). The CD56++CD16+ population has 
been reported to be an intermediate state between CD56++CD16− 
and CD56+CD16++ NK cells (19, 20). The CD56+CD16− popula-
tion was excluded, as it was shown that this population could be 
induced by cryopreservation (21).

At TP1, the major NK cell subset was the CD56+CD16++ 
NK cell population (71.86%), followed by the CD56++CD16+ 
(17.71%) and the CD56++CD16− (10%) populations (Figure 2A). 
After leukocyte regeneration (TP2), the CD56+CD16++ cells 
significantly decreased (39.98%; p-value: <0.0001), whereas both 
CD56++ NK cell subsets significantly increased (CD16−: 22.85%, 
p-value: <0.0001; CD16+: 36.51%, p-value: <0.0001). At TP3, the 
levels of CD56+CD16++ NK cells increased again (64.85%; p-value: 
<0.0001) but remained reduced in contrast to the starting levels 
at TP1 (p-value: 0.0064). Conversely, the levels of CD56++CD16− 
(14.41%; p-value: 0.0006) and CD16+ (20.66%; p-value: <0.0001) 
cells decreased but remained significantly elevated compared 
to the starting values [p-values: 0.0184 (CD16−) and 0.0428 
(CD16+); Figure 2B].

The ratio between mature CD56+ and more immature CD56++ 
NK cells, which is approximately 10 within healthy donors (data 
not shown), was already significantly reduced within our patients 
before HDC/autoSCT (TP1; ratio: 3.707) because all patients 
had previously received chemotherapy. Nevertheless, the ratio 
significantly dropped at TP2 (ratio: 1.157; p-value: <0.0001) and 
did not recover to initial values at TP3 [ratio: 2.49; p-value: 0.0001 
(TP2–3); 0.0111 (TP1–3); Figure 2C].

The CD56+/CD56++ ratios at TP2 and TP3 were both inde-
pendent of the time period between SCT and TP2 (≤11  days: 
1.247 vs. >11  days: 1.041; p-value: 0.392) and between TP2 
and TP3 (≤38  days: 2.59 vs. >38  days: 2.32; p-value: 0.504; 
Figure  2D). Within the group of MM patients, the CD56+/
CD56++ ratio was lower compared to lymphoma patients, but 
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FigUre 1 | (a) The percentages of the different leukocyte subsets within the leukocyte population at all three time points are indicated. (B) The percentage of 
CD14+ monocytes within the leukocyte population increased from TP1 (43.49%) to TP2 (61.22%; p-value: 0.0003), becoming the major leukocyte subset at TP2 but 
decreased below the starting levels at TP3 (34.6%; p-value TP2/TP3: <0.0001; TP1/3: 0.0088). In contrast, the T cell percentages decreased from TP1 (37.89%) to 
TP2 (22.5%; p-value: <0.0001), but they increased again at TP3 (48.49%) above the initial values to become the major leukocyte subset at TP3 (p-value TP2/TP3: 
<0.0001; TP1/3: 0.0093). The NK cell percentages decreased from TP1 (8.94%) to TP2 (7.32%) but reached the initial levels again at TP3 (8.29%). (c) Patients with 
a time period of ≤11 days between SCT and TP2 had a decrease from TP1 to TP2 within their NK cell percentage (ratio TP2/TP1: 0.49), in contrast to patients with 
a time period >11 days (ratio TP2/TP1: 1.07). Similarly, patients with no recurrent/refractory disease 1 year after SCT had a decrease of their NK cell percentage at 
TP2 (ratio TP2/TP1: 0.66), as opposed to patients who were recurrent/refractory at 1 year (ratio TP2/TP1: 1.28). The increase of the NK cell percentage from TP2 to 
TP3 was more pronounced in patients with a time period of ≤38 days between TP2 and TP3 (ratio TP3/TP2: 3.73) than in patients with a time period of >38 days 
(ratio TP3/TP2: 1.97).
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it was only significantly lower at TP2 (1.656 vs. 0.6578; p-value: 
0.0019; Figure  2D). In contrast, the patients’ age and relapse/
refractory status at 1  year after autoSCT seemed to have no 
impact on the CD56+/CD56++ ratio at any time point (Figure S3 
in Supplementary Material).

increased levels of cD57 and Kir 
expression after leukocyte regeneration
Next, we analyzed the expression of markers for NK cell educa-
tion and differentiation at the indicated time points.

As expected, the NKG2A expression on all NK cells increased 
from TP1 (67.63%) to TP2 (76.51%; p-value: 0.0179), and the 
percentage of NKG2A+ NK cells remained elevated above the 
starting values until TP3 (77.67%; p-value: 0.0009). Further NK 
cell subset analyses revealed that the observed early increase 
in NKG2A at TP2 was potentially an effect of the elevated 
CD56++ population expressing higher levels of NKG2A than the 
CD56+CD16++ population because the NKG2A expression did 
not significantly differ within the distinct subsets between TP1 
and TP2. In contrast, the percentage of NKG2A-expressing NK 
cells was significantly elevated in all subsets at TP3 compared to 
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FigUre 2 | (a,B) The level of CD56+CD16++ NK cells significantly dropped at TP2 (39.98%) and recovered at TP3 (64.58%), but it remained lower in contrast to the 
starting levels (TP1: 71.86%). Moreover, the percentages of CD56++CD16−/+ NK cells were markedly increased at TP2 (CD16−: 22.85%; CD16+: 36.51%) and 
remained elevated at TP3 (CD16−: 14.41%; CD16+: 20.66%) compared to the TP1 values (CD16−: 10%; CD16+: 17.71%). (c) The ratio of CD56+/CD56++ NK cells 
at TP1 was already lower than in healthy controls (approx 10; data not shown), with a ratio of 3.707, and decreased further at TP2 (1.157). Although the ratio 
increased at TP3 (2.49), it was still lower compared to TP1 and healthy control samples. (D) There were no significant differences when analyzing the CD56+/CD56++ 
ratio at TP2 with regard to the time period between SCT and TP2 (≤11 days: 1.247; >11 days: 1.041) or at TP3 with regard to the period between TP2 and TP3 
(≤38 days: 2.59; >38 days: 2.32). A significant difference of the CD56+/CD56++ ratio between lymphoma and myeloma patients was only observed at TP2 
(lymphoma patients: 1.656; myeloma patients: 0.6578).
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TP1 [p-value: 0.0054 (CD56++CD16−); 0.0259 (CD56++CD16+); 
0.0031 (CD56+CD16++); Figure 3A].

CD57+ NK cells, known to define terminally differentiated NK 
cells, significantly increased from TP1 (43.53%) to TP2 (56.66%; 
p-value: 0.0163) in all NK cells but decreased to the initial values 
at TP3 (39.13%; p-value: 0.4274). Surprisingly, CD57 expression 
was significantly increased within the CD56++CD16+/− popula-
tion at TP2 (CD16−: 32.98%; CD16+: 57.78%, p-value: <0.0001) 
but decreased again from TP2 to TP3 (CD16−: 5.592%; CD16+: 
19.06%, p-value: <0.0001). Nevertheless, the percentage of 

CD57+ cells was still elevated in contrast to the starting values 
at TP1 [CD16−: 4.1%; CD16+: 15.58%, p-values: 0.0102 (CD16−); 
0.0214 (CD16+)]. CD57 expression within the CD56+CD16++ 
population was also elevated at TP2 (72.15%; p-value: 0.0006) 
but to a much lesser extent (Figure 3B).

Strikingly, the percentage of KIR+ NK cells remained constant 
over time (TP1: 42.45%; TP3: 44.09%; p-value: 0.463), even 
shortly after leukocyte regeneration (TP2: 40.77%; p-value: 
0.4106). Of note, the KIR expression within the CD56++CD16+/− 
NK cell population was markedly increased at TP2 (CD16−: 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


FigUre 3 | (a) NKG2A expression was significantly increased at TP2 (76.41%) and TP3 (77.67%) within all NK cells compared to the starting values (TP1: 67.63). 
Moreover, the percentage of NKG2A+ cells was significantly increased at TP3 within the CD56++CD16− (TP1: 89.94%; TP3: 93.1%) and CD16+ (TP1: 87.6%; TP3: 
92.27%) subsets as well as within the CD56+CD16++ subset (TP1: 60.39%; TP3: 71.42%). (B) Similarly, the percentage of CD57+ NK cells increased at TP2 
(56.66%) but returned to the initial values at TP3 (TP1: 43.53%; TP3: 39.13%). Consistently, within the CD56++CD16− and CD16+ as well as within the 
CD56+CD16++ NK cell subsets, there was a highly significant increase of CD57 expression at TP2 (CD56++CD16−: 32.98%; CD56++CD16+: 57.78%; and 
CD56+CD16++: 72.15%), which decreased at TP3 again but remained above the starting values within the CD56++ subsets (CD16−: TP1 4.1% and TP3 5.592% and 
CD16+: TP1 15.58% and TP3 19.06%). (c) In parallel, the KIR expression was significantly elevated at TP2 (CD16−: 19.35%; CD16+: 42.14%) and TP3 (CD16−: 
10.43%; CD16+: 28.14%) compared to TP1 (CD16−: 7.82%; CD16+: 22.44%) within the CD56++ subsets but not within the CD56+CD16++ cells  
(TP1: 51.42%; TP2: 52.89%; and TP3: 55.23%).
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19.35%; CD16+: 42.14%; p-value: <0.0001 for both populations) 
and remained elevated at TP3 (CD16−: 10.43%; CD16+: 28.14%) 
in comparison to the starting values at TP1 [CD16−: 7.82%; 
CD16+: 22.44%; p-values: 0.0083 (CD16−); 0.0015 (CD16+)]. KIR 
expression within the CD56+CD16++ population remained stable 
throughout all time points (TP1: 51.42%, TP2: 52.89%, and TP3: 
55.23%; Figure 3C).

elevated cD57 and Kir expression is age 
Dependent
Additionally, we analyzed the influence of different clinical 
factors on the expression levels of NKG2A, CD57, and KIRs 
within the different NK cell subsets. As CD57 expression levels 
within healthy individuals are known to be age dependent (22), 
we compared CD57 expression within the younger (≤56 years) 
and older (>56 years) patient populations. Notably, there was a 
significant difference in the percentage of CD57+ cells within the 
CD56++CD16− population at TP2 (≤56 years: 23.98%; >56 years: 
42.8%; p-value: 0.0056), whereas this effect was not observed 

within the CD56++CD16+ or the CD56+CD16++ population 
(Figure 4A).

Similar, by analyzing KIR expression within the CD56++CD16+/− 
populations, we observed a significant difference in their expres-
sion at TP2 between the two age groups [≤56  years: 14.74% 
(CD16−) and 37.29% (CD16+); >56 years: 24.39% (CD16−) and 
47.44% (CD16+); p-values: 0.0088 (CD16−), 0.0317 (CD16+)]. No 
age-dependent difference was found for KIR expression within 
the CD56+CD16++ population at TP2 but at TP3 (≤56  years: 
50.51%; >56 years: 60.37%; p-value: 0.0225; Figure 4B).

In contrast, there was no difference in NKG2A expression 
throughout all age groups, time points, or NK cell populations 
(Figure 4C).

We also addressed CD57, KIR, and NKG2A expressions in 
different subsets with regard to recurrent/refractory disease at 
1 year after SCT and hematological malignancy. There were no 
differences in the expression of the three markers regarding the 
rate of relapsed/refractory disease throughout all NK cell subsets 
and time points, except for CD57 expression at TP1 within the 
CD56++CD16− NK cell population, which was higher in patients 
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FigUre 4 | (a) There was a significant difference in the average of CD57+ cells within the CD56++CD16− NK cell subsets at TP2 in patients ≤56 years (23.98%) vs. 
>56 years (42.8%). A significant difference was not observed within the CD56++CD16+ (≤56 years: 50.83% vs. >56 years: 65.36%) or the CD56+CD16++ subset 
(≤56 years: 70.25% vs. >56 years: 74.23%). (B) The percentage of KIR+ NK cells at TP2 differed significantly between the two age groups within the CD56++ subset 
(≤56 years: CD56++CD16−: 14.74% and CD56++CD16+: 37.29% vs. >56 years: CD56++CD16−: 24.39% and CD56++CD16+: 47.44%). A significant difference within 
the CD56+CD16++ subset was observed at TP3 (≤56 years: 50.51% vs. >56 years: 60.37%). (c) No difference was observed in NKG2A expression within the 
different NK subsets and age groups.
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with no recurrent/refractory disease 1 year after SCT (p-value: 
0.0083; Figure S4A in Supplementary Material).

Furthermore, patients with MM had higher NKG2A expres-
sion within the CD56++CD16−/+ subset at TP2 compared to 
lymphoma patients. No further differences were observed (Figure 
S4B in Supplementary Material).

Detailed Kir expression analysis
We next performed an extended KIR analysis within the sam-
ples of five additional patients, who were not included into the 
original analysis group because we did not have a sample from 
TP3. We analyzed the expression levels and distribution of global 

KIR expression (anti-KIR2D and anti-KIR3DL1/2), as well as 
KIR2DL1/S1, KIR2DL2/3/S2, and KIR3DL1, within the different 
subsets at TP1 and TP2. Notably, global KIR expression levels 
were upregulated within both CD56++ NK cell populations at 
TP2 compared to TP1, whereas they remained stable within the 
CD56+CD16++ NK cell population, confirming the results from 
the former analyzed patient cohort (Figures  5A–C). Within 
the CD56+CD16++ population, no clear differences between 
the expression levels of the different KIR subsets were observed 
comparing TP1 and TP2 (Figure 5C). In contrast, both CD56++ 
NK cell subsets upregulated their KIR2DL2/3/S2 and KIR3DL1 
expression levels from TP1 to TP2, whereas the KIR2DL1/S1 levels 
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FigUre 5 | (a) Global KIR expression (anti-KIR2D and anti-KIR3DL1/2) was upregulated within the CD56++CD16− NK cell population from TP1 to TP2 (TP1: 
13.56%; TP2: 29.04%). KIR2DL1/S1 remained stable (TP1: 3.33%; TP2: 3.2%), whereas KIR2DL2/3/S2 (TP1: 6.49%; TP2: 12.08%) and KIR3DL1 (TP1: 5.85%; 
TP2: 14.54%) were both upregulated. (B) Within the CD56++CD16+ NK cells, the global KIR expression was upregulated from TP1 to TP2 (TP1: 33.74%; TP2: 
54.24%) in addition to the KIR2DL2/3/S2 (TP1: 22.95%; TP2: 39.28%) and KIR3DL1 expression (TP1: 16.25%; TP2: 25.02%). In contrast, the KIR2DL1/S1 levels 
remained stable (TP1: 8.95%; TP2: 9.44%). (c) The expression levels of global KIR expression (TP1: 62.24%; TP2: 63.66%) as well as that of KIR2DL1/S1 (TP1: 
14.65%; TP2: 14.26%) remained stable, whereas the two other KIR subsets revealed a slight decrease from TP1 to TP2 within the CD56+CD16++ NK cell population 
[2DL2/3/S2: 48.4% (TP1) and 42.65% (TP2); 3DL1: 31.77% (TP1) and 22.88% (TP2)]. The proportions of the different KIR subsets within the whole KIR population 
are indicated within the pie charts (a–c).
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remained stable between the two time points (Figures  5A,B). 
Moreover, the proportion of the different KIR subsets within 
the global KIR population changed within the CD56++CD16− 
population, with KIR2DL2/3/S2 being the dominant KIR subset 
at TP1 and KIR3DL1 being the dominant one at TP2 (Figure 5A; 
pie chart). Within the CD56++CD16+ population, KIR2DL2/3/S2 
was the dominant KIR population at TP1 and was the only one to 
increase from TP1 to TP2 (Figure 5B; pie chart).

nK cell Function is Preserved after 
leukocyte recovery
Finally, we analyzed the functions of the different NK cell subsets 
at the three time points before and after HDC/autoSCT. After an 
overnight incubation with low-dose IL-2 (100 IU/ml) and 4 h of 
coculture with K562 cells, we investigated the cytokine (IFN-γ) 
and chemokine (MIP-1β) productions, as well as the NK cell 
degranulation (CD107a expression) capacity (for gating strategy 

see Figure S5 in Supplementary Material). Due to very low cell 
numbers at TP2, functional analysis was only possible in a subset 
of all included patients (n = 17).

As expected, CD56++CD16− NK cells were the main subset 
to produce IFN-γ upon interaction with K562 cells at all three 
time points (Figure  6A). The percentage of IFN-γ-positive 
CD56++CD16− NK cells was slightly decreased at TP2 compared 
to TP1 but significantly increased from TP2 to TP3 (p-value: 
0.0008). Similarly, MIP-1β- and CD107a-positive CD56++CD16− 
cells remained constant between TP1 and TP2, whereas their 
percentages increased from TP2 to TP3 [p-values: 0.0056 (MIP-
1β) and 0.0232 (CD107a)].

Whereas IFN-γ production was only marginal at all three time 
points within the CD56++CD16+ NK cell population (Figure 6B), 
MIP-1β- and CD107a-positive cells had similar percentages at 
TP1 and TP2. Both percentages significantly increased from TP2 
to TP3 (p-value: 0.0079 for both).

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


FigUre 6 | (a) The CD56++CD16− subset revealed an increase of IFN-γ-, MIP-1β-, and CD107a-positive cells between TP2 and TP3 [TP2: 4.9% (IFN-γ), 15.17% 
(MIP-1β), 34.37% (CD107a), TP3: 11.58% (IFN-γ), 22.58% (MIP-1β), 43.82% (CD107a)], while the percentages between TP1 and TP2 were similar [TP1: 7.92% 
(IFN-γ), 16.89% (MIP-1β), and 32.7% (CD107a)]. (B) IFN-γ-positive cells within the CD56++CD16+ population were only marginal at all three time points (TP1: 1.29%; 
TP2: 1.01%; TP3: 1.72%), whereas MIP-1β- and CD107a-positive cells increased from TP2 to TP3 [TP2: 13.26% (MIP-1β), 25.78% (CD107a); TP3: 18.37% 
(MIP-1β), 35.26% (CD107a)] but not from TP1 to TP2 [TP1: 14.79% (MIP-1β), 27.64% (CD107a)]. (c) No IFN-γ-positive cells were detectable within the 
CD56+CD16++ population at any of the three time points. MIP-1β-positive cells remained stable throughout all three time points (TP1: 8.93%; TP2: 10.06%; TP3: 
10.18%) which is similar to CD107a-expressing cells (TP1: 14.26%; TP2: 16.47%; TP3: 19.33%). (D) Patients were grouped according to the duration between 
SCT and TP2 (≤11 vs. >11 days). While there were no differences between the percentage of CD107a-expressing cells within the CD56++CD16− population at TP1 
and TP2, the percentage of CD107a-positive NK cells at TP2 was lower within patients with a longer duration between SCT and TP2 within the CD56++CD16+ 
(≤11 days: 30.74%; >11 days: 16.68%) and the CD56+CD16++ (≤11 days: 19.34%; >11 days: 11.21%) populations.
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Within the CD56+CD16++ NK cell subsets, the percentage of 
MIP-1β- and CD107a-positive NK cells after coincubation with 
K562 cells remained constant at all three time points, whereas 
no IFN-γ-positive NK cells were detected at any time point 
(Figure 6C).

Although the number of available patient samples was low, we 
tried to correlate the NK cell function values with clinical data. 
Remarkably, there was an impact of the duration from SCT to 
TP2 (≤11 vs. >11 days), as the percentage of CD107a-positive 
cells within the CD56++CD16+ and CD56+CD16++ populations 
was significantly lower when the time period between SCT and 
TP2 exceeded 11 days [p-values: 0.0111 (CD56++CD16+); 0.027 
(CD56+CD16++); Figure 6D]. In investigating age-dependent dif-
ferences (≤56 vs. >56 years), we observed that patients older than 
56 years tended to have slightly higher percentages of IFN-γ- and 
MIP-1β-positive CD56++CD16− cells at TP1, although the differ-
ence was not significant. Furthermore, no significant differences 
in the presence of MIP-1β- or CD107a-positive CD56++CD16+ 
or CD56+CD16++ NK cells between the two age groups were 
observed at all three time points, although older patients tended 
to have lower CD107a expression within the CD56+CD16++ 
subset at TP3 (p-value: 0.074). Notably, the observed increase 
of CD107a-positive CD56+CD16++ cells from TP2 to TP3 was 
only present in younger but not older patients [≤56 years: 15.69% 
(TP2) and 24.05% (TP3), p-value: 0.1; >56 years: 17.16% (TP2) 
and 15.14% (TP3), p-value: 0.82; Figure S6 in Supplementary 
Material].

DiscUssiOn

In the setting of HDC/autoSCT, it has been demonstrated that a 
rapid NK cell recovery at 1 month after HDC/autoSCT is associ-
ated with a prolonged progression-free survival in MM (23) and 
NHL patients (16). In those studies, the absolute NK cell count 
(cells/μl) at 1 month or 15 days after HDC/autoSCT was investi-
gated, whereas in our study, we analyzed the NK cell percentage 
within the leukocyte population in correlation with the day of 
leukocyte recovery following autoSCT.

Our data demonstrate that the percentage of NK cells within 
the leukocyte population decreased after leukocyte recovery but 
increased to the initial levels over time. Notably, when the time 
period between SCT and TP2 was >11 days, indicating a delay 
in leukocyte recovery, the decrease within the NK cell percent-
age was lower. This may be explained by the fact that leukocyte 
recovery (white blood cell count >1000/μl) after SCT is mainly 
due to the recovery of neutrophil granulocytes (10), and their 
recovery can be delayed in contrast to NK cell recovery (24). 
Moreover, the higher increase of the NK cell percentage from 
TP2 to TP3 in patients from whom the third blood sample was 
collected ≤38 days after TP2 indicates that the NK cell percentage 
within the leukocytes increases much more within the first month 
after leukocyte recovery and then decreases again. Similar results 
have been demonstrated by Rueff et al. by analyzing the absolute 
NK cell count numbers (cells/μl) 1, 3, 6, 12, and 24 months after 
SCT. Here, the NK cell numbers first increased 1 month after SCT, 
but then they decreased again until 6 months after SCT (23). The 

absence of a decrease in the NK cell percentage at TP2 within 
patients with recurrent/refractory disease at 1  year after SCT 
could be explained by the fact that most of these patients (4/6; 
66.6%) had a time period of >11 days from SCT to TP2, unlike 
non-relapsing/refractory patients (8/21; 38%).

In line with other NK cell reconstitution studies after SCT 
(24–26), we observed elevated percentages of the more immature 
CD56++CD16+/− NK cell subsets shortly after SCT, decreasing 
only slowly at later time points. As the ratio between CD56+/
CD56++ NK cells did not differ with shorter (≤38 days) or longer 
(>38 days) time periods between TP2 and TP3, we assume that 
normalization of the NK cell subset distribution takes much 
longer than the recovery of the NK cell numbers. Similar observa-
tions have been made within patients receiving an allogeneic SCT 
after reduced-intensity conditioning (26). The conditioning and 
former treatment regimens could explain the different NKG2A+  
NK cells ratios between myeloma and lymphoma patients at TP2.

Moreover, the percentage of NKG2A+ NK cells was increased 
after HDC/autoSCT and remained high even after several 
months, as it has been recently demonstrated by Pical-Izard et al. 
after allogeneic SCT (26). In contrast, we could demonstrate a 
highly significant increase of CD57+ and KIR+ NK cells, mainly 
within the CD56++CD16+/− subsets at TP2. This effect has not 
been described thus far within the literature because most of 
the studies have evaluated NK cell subsets 1  month after SCT 
(23–27). At this time point, the percentage of CD57+ and KIR+ 
NK cells had already decreased back toward normal levels 
within our study group. The prolonged immature phenotype in 
the Pical-Izard study may be attributed to GVHD prophylaxis, 
especially cyclosporine A (CSA). Vukicevic et al. investigate the 
NK cell phenotype at an equally early time point after allogeneic 
stem cell transplantation as we did but did not detect an upregu-
lation of KIRs within the CD56++ subsets (28), which might 
be due to the allogeneic transplantation setting. Acquisition of 
CD57 and KIRs as well as downregulation of NKG2A has been 
demonstrated as signs of NK cell differentiation and maturation 
(22). It is known that CD57 expression increases with age within 
the CD56+CD16++ population (29), whereas we did not observe 
any age-related differences within this NK cell subset at any time 
point. Nevertheless, an age-dependent difference was observed at 
TP2 within the CD56++CD16− population.

Therefore, the question arises whether these CD56++ cells 
described here represent more mature new NK cells or are just 
activated “old” NK cells that might have increased their CD56 
expression and lost CD16 on their surface. As this phenotype 
is reset after at least 2 weeks after leukocyte regeneration, one 
could argue that the phenotype shift is due to the cytokine milieu 
during HDC/autoSCT. Indeed, there have been several reports 
about increased cytokine concentrations during allogeneic and 
autologous SCT (16, 25, 30) shaping the NK cell phenotype. 
It has been reported that CD56+CD16++ NK cells are capable 
of up-regulating CD56 expression upon IL-15 (28) or IL-12 
stimulation (31), of which IL-15 is known to be increased dur-
ing HDC/autoSCT (16). Furthermore, different groups demon-
strated a downregulation of CD16 by metalloproteinases, which 
can be induced by IL-2 (32, 33). In general, the combined effect 
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of CD56 upregulation upon IL-15 stimulation and the loss of 
CD16 through IL-2-stimulated upregulation of metallopro-
teinases might result in the observed CD56++CD16+/− NK cell 
phenotype at TP2. Nevertheless, the CD56++ NK cells described 
in our study upregulated KIR3DL1 and KIR2DL2/3/S2, while 
KIR2DL1/S1 remained stable. KIR3DL1 and KIR2DL2/3 are 
the first KIRs expressed after SCT, whereas KIR2DL1 is upregu-
lated quite late (34, 35). Therefore, we could assume that the 
KIR upregulation was due to the generation of “fresh/new” NK 
cells and was not due to a shift of “old” NK cells to a CD56++ 
phenotype because we should have observed no changes within 
the KIR subtype distribution between TP1 and TP2 if the cells 
were derived from the “old” NK population. Moreover, we 
observed a slight upregulation of CX3CR1 at TP2 (data not 
shown). CX3CR1 expression is associated with a more mature 
and differentiated NK cell phenotype within healthy donors 
(36). In contrast to the observed CD56 upregulation, which can 
be explained by IL-15 stimulation (28), CX3CR1 is known to be 
downregulated upon IL-15 stimulation (36), which contradicts 
the idea that CD56++ NK cells with a mature phenotype (CD57+, 
CX3CR1+, and KIR+) have arisen from CD56dim NK cells. In 
future studies, it would be very interesting to investigate which 
factors are responsible for this NK cell phenotype because 
protocols for inducing NK cell maturation and differentiation 
have yet to be optimized.

Most importantly, we analyzed NK cell functional activity 
directly after leukocyte recovery after HDC/autoSCT. Upon 
interaction with K562 tumor cells, the percentage of IFN-γ- and 
MIP-1β-positive CD56++CD16+/− NK cells did not differ between 
TP1 and TP2. This result demonstrates that NK cells are capable 
of recognizing tumor cells and inducing cytokine and chemokine 
production, even at a very early time point after HDC/autoSCT. 
Moreover, the degranulation capacity of the CD56+CD16++ NK 
cell subset, known to be mainly responsible for NK cell cytotoxic-
ity (37), remained stable throughout the whole time period until 
TP3, indicating that these NK cells were able to kill tumor cells 
at an early time point after SCT. This finding is consistent with 
other studies in which patients received allogeneic SCT. For 
example, in the setting of HLA-matched SCT after reduced-
intensity conditioning, it has been demonstrated that the NK cell 
degranulation and chemokine production capacity was similar 
to healthy controls as early as 1 month after SCT. In contrast to 
our data, IFN-γ production upon interaction with K562 cells was 
significantly reduced after SCT compared to healthy donors (26). 
These differences might be due to the use of immunosuppressive 
drugs such as CSA because it has been demonstrated that CSA is 
able to reduce IFN-γ production upon target-cell interaction (38), 
although a recent report has failed to demonstrate such an effect 
(39). Furthermore, we compared IFN-γ production upon interac-
tion with K562 cells before and after SCT and not directly with 
healthy control samples. Therefore, although we did not observe a 
significant decrease in IFN-γ-positive cells between TP1 and TP2, 
their percentage might be still significantly lower than in healthy 
controls. Additionally, we observed that the degranulation capac-
ity was influenced by the time period between SCT and TP2 
because patients with a time period >11 days had significantly 

reduced CD107a-positive CD56+CD16++ cells at TP2. Because 
the prolonged time from SCT to TP2 indicates a longer period for 
leukocyte recovery, this might give an explanation for the reduced 
degranulation capacity. Nevertheless, we could not discover 
a correlation between NK cell function at TP2 and the rate of 
recurrent/refractory disease at 1 year after SCT, which might be 
due to the low number of recurrent/refractory patients and the 
short follow-up period.

To the best of our knowledge, this is the first study investi-
gating NK cell function at such an early time point after HDC/
autoSCT. We were able to demonstrate that NK cells were capable 
of cytokine/chemokine production and degranulation upon 
tumor cell interaction. Furthermore, we describe an unusual 
CD56++ NK cell population expressing high levels of CD57 and 
KIRs shortly after SCT. Further analysis and characterization 
of this population might reveal more details about how NK cell 
maturation and differentiation are regulated.
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Natural killer (NK) cells are innate lymphocytes that are capable of eliminating tumor
cells and are therefore used for cancer therapy. Although many early investigators used
autologous NK cells, including lymphokine-activated killer cells, the clinical efficacies were
not satisfactory. Meanwhile, human leukocyte antigen (HLA)-haploidentical hematopoietic
stem cell transplantation revealed the antitumor effect of allogeneic NK cells, and HLA-
haploidentical, killer cell immunoglobulin-like receptor ligand-mismatched allogeneic NK
cells are currently used for many protocols requiring NK cells. Moreover, allogeneic NK
cells from non-HLA-related healthy donors have been recently used in cancer therapy.
The use of allogeneic NK cells from non-HLA-related healthy donors allows the selection
of donor NK cells with higher flexibility and to prepare expanded, cryopreserved NK cells
for instant administration without delay for ex vivo expansion. In cancer therapy with
allogeneic NK cells, optimal matching of donors and recipients is important to maximize
the efficacy of the therapy. In this review, we summarize the present state of allogeneic
NK cell therapy and its future directions.

Keywords: natural killer cells, allogeneic, cancer immunotherapy, adoptive cell therapy, non-HLA-related donor

Introduction

Cancer is amajor threat for humansworldwide, with approximately 14million new cases and 8.2mil-
lion cancer-related deaths in 2012 (1). Although most common cancer treatments include surgery,
chemotherapy, and radiotherapy, unsatisfactory cure rates require new therapeutic approaches,
especially for refractory cancers. For this purpose, cancer immunotherapies with various cytokines,
antibodies, and immune cells have been clinically applied to patients to encourage their own immune
system to help fight the cancer (2).

Adoptive cellular immunotherapies have employed several types of immune cells, including
dendritic cells (DCs), cytotoxic T lymphocytes (CTLs), lymphokine-activated killer (LAK) cells,
cytokine-induced killer (CIK) cells, and natural killer (NK) cells. Although there has been recent
progress in DC therapy and CTL therapy, clinical applications are somewhat limited because cancer
antigens must first be characterized and autologous cells must be used. By contrast, LAK cells, CIK
cells, and NK cells have antigen-independent cytolytic activity against tumor cells. In particular,
NK cells can be used from not only autologous sources but also allogeneic sources and, recently,
allogeneic NK cells have been employed more often in cancer treatment. Whereas autologous NK
cells from cancer patients may have functional defects (3), allogeneic NK cells from healthy donors
have normal function and can be safely administered to cancer patients (4). Allogeneic NK cell
therapy is particularly beneficial because it can enhance the anti-cancer efficacy of NK cells via
donor–recipient incompatibility in terms of killer cell immunoglobulin-like receptors (KIRs) on
donor NK cells and major histocompatibility complex (MHC) class I on recipient tissues.

Frontiers in Immunology | www.frontiersin.org June 2015 | Volume 6 | Article 286184

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2015.00286
https://creativecommons.org/licenses/by/4.0/
mailto:ecshin@kaist.ac.kr
http://dx.doi.org/10.3389/fimmu.2015.00286
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00286/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00286/abstract
http://loop.frontiersin.org/people/23194/overview
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Lim et al. Allogeneic NK cell therapy

Biology of NK Cells and Their Receptors

Natural killer cells are innate lymphocytes that provide a first line
of defense against viral infections and cancer (5). Human NK cells
are recognized as CD3−CD56+ lymphocytes. They can be further
subdivided into two subsets based on the surface expression level
of CD56. The CD56dim population with low-density expression
of CD56 comprises approximately 90% of human blood NK
cells and has a potent cytotoxic function, whereas the CD56bright

population (approximately 10% of blood NK cells) with high-
density expression of CD56 displays a potent cytokine producing
capacity and has immunoregulatory functions (6). The CD56dim

NK cell subset also expresses high levels of the Fc receptor for
IgG (FcγRIII, CD16), which allows them to mediate antibody-
dependent cellular cytotoxicity (ADCC) (7). NK cells comprise
5–15%of circulating lymphocytes and are also found in peripheral
tissues, including the liver, peritoneal cavity, and placenta. Acti-
vated NK cells are capable of extravasation and infiltration into
tissues that contain pathogens or malignant cells while resting NK
cells circulate in the blood (8).

The NK cell activity is regulated by signals from activating
and inhibitory receptors (9, 10). The activating signal is mediated
by several NK receptors including NKG2D and natural cytotox-
icity receptors (NCRs) (9–11). By contrast, NK cell activity is
suppressed by inhibitory receptors, including KIRs, which bind
to human leukocyte antigen (HLA) class I molecules on target
cells (9, 10, 12). NKG2A is also an important inhibitory receptor
binding to non-classical HLAmolecule, HLA-E (13). If target cells
lose or downregulate HLA expression (14), the NK inhibitory
signal is abrogated, allowing NK cells to become activated and
kill malignant targets. However, NK cell function is impaired
in cancer patients by various mechanisms, particularly in tumor
microenvironment (15).

Although NK cell activity is determined by the summa-
tion of signals from activating and inhibitory receptors, the
inhibitory signal through KIRs is a main regulator of NK cell
function particularly in allogeneic settings. Inhibitory KIRs have
long cytoplasmic tails containing two immunoreceptor tyrosine-
based inhibition motifs (ITIMs). Each KIR has its cognate lig-
and and consists of two (KIR2DL) or three (KIR3DL) extra-
cellular Ig-domains. KIR2DL1 and KIR2DL2/3 recognize group
2 HLA-C (called C2, Lys80) and group 1 HLA-C (called C1,
Asn80), respectively. KIR3DL1 recognizes HLA-Bw4 (16). The
KIR repertoire on human NK cells is randomly determined
and independent of the number and allotype of HLA class I
ligands (17).

Therapeutic Efficacy of Allogeneic NK Cells

Role of Allogeneic NK Cells in Hematopoietic
Stem Cell Transplantation
The antitumor activity of allogeneic NK cells has been demon-
strated in the setting of hematopoietic stem cell transplantation
(HSCT). Allogeneic HSCT is an established curative treatment
for hematologic malignancies. In allogeneic HSCT, donor T cells
contribute to graft-versus-host disease (GVHD) and graft-versus-
tumor (GVT) effects (18). In T cell-depleted HSCT, however,

donor NK cells are the major effector cells responsible for con-
trolling residual cancer cells before T cell reconstitution (19, 20).

Natural killer cells are the first lymphoid population to recover
after allogeneic HSCT. In the first month of transplantation,
reconstituted NK cells represent the predominant lymphoid cells
and play a crucial role in controlling the host immune system.
Allogeneic NK cells prevent viral infections and restrain residual
cancer cells in the early phase of transplantation (21). Of note,
the GVT activity of donor NK cells is significantly improved
when KIRs of donor and HLA class I of the recipient are incom-
patible, and consequently when inhibitory signals are absent, as
observed in HLA-haploidentical HSCT (22). Therefore, increased
GVT activity of NK cells with KIR-HLA incompatibility is the
underlying rationale for the development of allogeneic NK cell
therapy.

Allogeneic NK Cell-Based Immunotherapy
Following the discovery of inhibitory KIRs and the understanding
that they play a role in preventingNK cell killing of selfMHC class
I-expressing tumor cells, investigators began to research the pos-
sibility of using allogeneic donor NK cells instead of autologous
NK cells for cancer therapy. Several groups have infused activated,
expanded donor NK cells to patients early after allogeneic HSCT
to provide antitumor effects (23). In Table 1, clinical trials with
allogeneic NK cells as therapeutics are summarized.

Allogeneic NK cells can be delivered either in a setting of HSCT
or a non-HSCT setting. HSCT is a curative platform for many
patients with hematologic malignancies. For patients lacking an
HLA-identical donor and for those with progressive disease, the
use of HLA-haploidentical family donors is increasingly consid-
ered to be a suitable alternative. Therefore, in most clinical trials
using allogeneic NK cells, autologous or haploidentical HSCT are
followed by NK cell infusion as therapeutics to protect relapse and
delay recurrence. Several groups have explored the use of allo-
geneic NK cells in treating relapses of hematologic malignancies
following HLA-haploidentical HSCT in clinical trials, and GVHD
did not develop when allogeneic haploidentical NK cells were
used (19, 24). In these studies, tumor responses were observed in
some patients and overall rates of relapse were reduced. Notably,
infusion of allogeneic NK cells can cause cancer regression even
without allogeneic HSCT. The patients received allogeneic NK
cells without HSCT following non-myeloablative chemotherapy.
The chemotherapy pre-conditioning delayed the rejection of the
transferred cells, and in some cases, the allogeneic NK population
even expanded before being ultimately rejected (25, 26).

In a non-transplantation setting,Miller and colleagues were the
first to establish the safety and efficacy of adoptive cellular transfer
of HLA-haploidentical NK cells in patients with advanced cancer
(27). In this study, 19 acutemyeloid leukemia (AML) patients were
given haploidentical NK cell infusions together with IL-2 and 5
patients achieved complete remission. Allogeneic NK cells with
KIR-HLA mismatches between patients and donors exhibited
greater tumor-killing activity without causing GVHD. Based on
the success observed in AML, a number of clinical trials are being
carried out to determine the feasibility and efficacy of allogeneic
NK cell infusion for cancer treatment. Many of 15 ongoing clin-
ical trials are oriented to hematological malignancies including
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TABLE 1 | Selected clinical trials with expanded allogeneic NK cells.

Diseases Status Phase of
trials

Cell product Combined therapy Institute ClinicalTrials.gov
Identifier

Hepatocellular carcinoma Ongoing Phase 2 Ex vivo-expanded NK
cells

None Samsung Medical Center,
Korea

NCT02008929

Lymphoma and solid
tumors

Completed Phase 1 Ex vivo-expanded NK
cells

None Seoul National University
Hospital, Korea

NCT01212341

High-risk solid tumors Ongoing Phase 2 Ex vivo-expanded NK
cells

Haploidentical HSCT,
RIC, and IL-2

Samsung Medical Center,
Korea

NCT01807468

Non-B lineage hematologic
malignancies and solid
tumors

Completed Phase 1 Ex vivo-expanded
haploidentical NK cells

Chemotherapy and
IL-2

St. Jude Children’s Research
Hospital, USA

NCT00640796

Hematological malignancies Ongoing Phase 1 IL-2-activated NK cells Haploidentical HSCT
and RIC

Institut Paoli-Calmettes,
France

NCT01853358

Multiple myeloma Ongoing Phase 1/2 Ex vivo-expanded
haploidentical NK cells

Autologous HSCT
and chemotherapy

University Hospital, Basel,
Switzerland

NCT01040026

Leukemia and
myeloproliferative disease

Ongoing Phase 1/2 Ex vivo-expanded NK
cells

Haploidentical HSCT,
TBI, and
chemotherapy

M.D. Anderson Cancer
Center, USA

NCT01904136

ALL Ongoing Phase 2 K562-mb15-41BBL
and IL-2-stimulated NK
cells

Haploidentical HSCT
and chemotherapy

National University Health
System, Singapore

NCT01974479

AML and ALL Ongoing Phase 1/2 Ex vivo-expanded NK
cells

Haploidentical HSCT Asan Medical Center, Korea NCT01795378

Relapsed/refractory
pediatric acute leukemia

Ongoing Phase 2 Activated and
expanded NK cells

Haploidentical HSCT
and salvage
chemotherapy

Hospital Universitario La Paz,
Spain

NCT02074657

Myelodysplastic syndrome
and leukemia

Completed Phase 1/2 IL-2-activated NK cells Haploidentical HSCT,
chemotherapy, and
IL-2

M.D. Anderson Cancer
Center, USA

NCT00402558

Leukemia Completed Phase 2 IL-2-activated NK cells Chemotherapy and
IL-2

Masonic Cancer Center,
University of Minnesota, USA

NCT00274846

Relapsed/refractory
pediatric T cell leukemia and
lymphoma

Ongoing Phase 1/2 Activated and
expanded NK cells

Salvage
chemotherapy

Hospital Infantil Universitario
Niño Jesús, Madrid, Spain

NCT01944982

Leukemia Ongoing Phase 1/2 mbIL21-expanded
haploidentical NK cells

Chemotherapy M.D. Anderson Cancer
Center, USA

NCT01787474

Acute leukemia and
myelodysplastic syndrome

Ongoing Phase 1 K562-mb15-41BBL
and IL-2-stimulated NK
cells

Immunosuppressive
therapy and IL-2

National University Hospital,
Singapore

NCT02123836

HSCT, hematopoietic stem cell transplantation; RIC, reduced-intensity conditioning; ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia; TBI, total body irradiation.

leukemia, multiple myeloma, and myelodysplastic/proliferative
diseases. Additionally, clinical trials have shown that allogeneic
NK cells play a therapeutic role in solid tumors (26, 28, 29). The
clinical efficacy of expanded allogeneic NK cells was investigated
in patients with recurrent metastatic breast and ovarian cancers in
combinationwith aHi-Cy/Flu preparative chemotherapy regimen
(29). Adoptive transfer of ex vivo-expanded allogeneic NK cells
was safe and effective in patients with advanced non-small cell
lung cancer (26). These findings provided proof of concept that
allogeneic NK cells could be effective not only in hematologic
malignancy patients but also in solid tumor patients. Clinical
trials are currently carried out in hepatocellular carcinoma and
neuroblastoma (NCT02008929, NCT01807468).

Adoptive transfer of allogeneicNKcells that come froma totally
unrelated donor has also been demonstrated to be safe without
any significant side effects (NCT01212341). Allogeneic NK cell

therapy is currently applied to patients with advanced hepatocel-
lular carcinoma after curative resection (NCT02008929). In this
clinical trial, ex vivo-expanded allogeneic NK cells were admin-
istered without combination with other therapeutic modalities to
investigate the isolated effect of infused allogeneic NK cells.

Taken together, the clinical studies mentioned above demon-
strated that the infusion of allogeneic NK cells after ex vivo
expansion is largely safe and some responses appear encouraging.

Optimized Selection of Donors

Lessons from Allogeneic HSCT
In T cell-depleted HSCT, donor NK cells are the major effector
cells responsible for controlling residual cancer cells (19), and
it has been shown that the KIR genotype of donors influences
the outcome of HSCT (30). From the experience of allogeneic
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HSCT, we can learn how allogeneic NK cell donors are selected
to maximize the antitumor activity of infused allogeneic NK cells.

There are two distinct types of KIR haplotypes: group A and
groupB. TheKIR group B haplotype hasmore activating receptors
than the KIR group A haplotype (31). According to the KIR
genotype, all individuals can be divided into the A/A genotype
(homozygous for A haplotypes) or the B/x genotype (having
1 or 2 B haplotypes). There have been reports that the donor
KIR genotype influences outcomes of unrelated HSCT for acute
hematological malignancies and that the B/x genotype confers
significant survival benefit to patients (22, 32, 33). B/x donors
are further differentiated on whether their B haplotype genes are
in the centromeric or/and telomeric part. On the basis of this
information, the KIR B-content score can be calculated from 0 to
4 (30, 34). High donor KIR B-content scores have been associated
with a significantly reduced relapse in children after haploidenti-
cal HSCT for acute lymphocytic leukemia (ALL) (35), and donors
with two or more B-content scores showed superior survival after
unrelated HSCT for AML (27).

Incompatibility betweenKIRs of donors andHLAs of recipients
is also an important factor. Considering that each KIR binds to
specific HLA allotypes as an inhibitory ligand (e.g., KIR2DL1 to
group 2 HLA-C, KIR2DL2/3 to group 1 HLA-C, and KIR3DL1
to HLA-Bw4), a recipient may lack specific HLA allotypes that
inhibit donor NK cells. In this case, higher antitumor activity of
donor NK cells is expected. Indeed, antitumor activity of donor
NK cells is significantly improved when KIRs and HLAs are
incompatible between donor and recipient (19, 24, 36).

In addition to the KIR genotype and incompatibility, actual
expression of KIRs on NK cells needs to be considered for the
best antitumor activity of allogeneic NK cells because the expres-
sion of KIRs occurs in stochastic combination (37). Antitumor
activity is likely to be mediated by single-KIR+ allogeneic NK
cells not encountering any inhibitory signal from HLA molecules
on recipient cells (38). Although NK cells are the first lymphoid
population to recover after allogeneic HSCT (21), reconstitution
of mature NK receptor repertoires requires at least 3months (39).
Importantly, during this period, donor-derived single-KIR+ NK
cells are not fully functional (38). In this aspect, infusion of single-
KIR+ mature NK cells selected for KIR-HLA mismatches might
lead to better clinical outcomes. Currently, multicolor flow cytom-
etry enables the examination of KIR expression in the NK cell
population. The approach to generate GMP-grade single-KIR+

NK cells (40) will allow customized allogeneic NK cell therapy.

Sources of Allogeneic NK Cells
To permit therapeutic use of allogeneic NK cells in clinical set-
tings, a sufficient number of highly enriched NK cells must be
obtained. The sources for allogeneic NK cells include periph-
eral blood mononuclear cells (PBMCs) collected by leukapheresis
from healthy donors and umbilical cord blood (UCB).

Peripheral blood mononuclear cells collected by leukapheresis
are generally utilized as a source of allogeneic NK cells. Vari-
ous methods to obtain ex vivo-expanded, activated, and CD3+

T cell-depleted NK cells have been well established in clinical
scales and grades (41). Although those NK cells showed potent
antitumor efficacy in vitro and in vivo, clinical outcomes were

insufficient. The clinical resultsmight be influenced by several fac-
tors including malignancy types and pre-conditioning treatment.
As described above, the therapeutic efficacy of allogeneic NK cell
therapy can be potentiated by optimal selection of NK cell donors
in a non-HSCT setting. Since NK cells from haploidentical donors
had been used in allogeneic HSCT settings, allogeneic NK cells
were mostly obtained from haploidentical donors even in a non-
HSCT setting. Recently, ex vivo-expanded, allogeneic NK cells
from unrelated, random donors were successfully administered to
patients with malignant lymphoma or advanced solid tumors in a
phase 1 trial (NCT01212341) that has proceeded to a phase 2 trial
of patients with hepatocellular carcinoma (NCT02008929). This
strategy, which used unrelated NK donors, allowed free selection
of the best donor in terms of donor KIR-recipient HLA incom-
patibility without limitation of small pools of related donors. Fur-
thermore, the use of allogeneic NK cells from non-HLA-related
healthy donors allows preparation of expanded, cryopreserved
NK cells for instant administration without delay for ex vivo
expansion.

Umbilical cord blood is another promising source of allogeneic
NK cells. However, cytokine-based differentiation of CD34+

hematopoietic stem and progenitor cells to NK cells needs to be
carried out to obtain large numbers of functional NK cells from
UCB (42). This process requires high-dose cytokine cocktails and
delicate culture regimens that may result in low-cost effective-
ness. Recently, an NK cell expansion method from UCB using
artificial antigen presenting feeder cells was reported. NK cells
expanded by this method showed in vitro cytotoxicity against
various myeloma targets and in vivo antitumor activity in a mouse
model of myeloma (43).

Future Directions

Genetic Modification
Genetic modification is a promising option for redirecting the
function of various types of immune cells (44). Much work has
been performed, particularly on genetically redirecting T cells
against a range of tumor antigens. For example, T cells expressing
chimeric antigen receptors (CARs) targeting CD19 antigens have
been developed to treat B-cell-derived malignancy, and clinical
trials are currently ongoing (45–47). The successful experience
with CAR-expressing T cells in the treatment of hematological
malignancies has prompted the development of CAR-expressing
NK cells. NK cells are attractive for CAR expression because they
have cytotoxic function and, unlike T cells, allogeneic NK cells do
not cause GVHD.

As summarized in Table 2, two clinical trials are investigating
the use of CAR-expressing allogeneic NK cells. The aim of both
studies is to assess the safety, feasibility, and efficacy of expanded,
activated, and CD19-redirected haploidentical NK cells in ALL
patients who have persistent disease after intensive chemotherapy
or HSCT (NCT00995137, NCT01974479). Further, other tumor
antigens, such as CS1, CEA, CD138, and CD33, are targeted by
CARs expressed by NK cells, although NK-92, YT, or NKL cell
lines were used (48–51).

Genetic modification is also performed to express cytokine
transgenes in NK cells. NK cell function could be enhanced by
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TABLE 2 | Genetically modified, expanded allogeneic NK cells.

Modification Genes
transferred

NK cells Application Status Reference/ClinicalTrials.gov Identifier

Target specificity CD19 Haploidentical, expanded
NK cells

ALL Phase 1 St. Jude Children’s Research Hospital
(NCT00995137)

CD19 Haploidentical, expanded
NK cells

ALL Phase 2 National University Health System,
Singapore (NCT01974479)

CD19 Expanded NK cells B-ALL Preclinical Cho et al. (52)
CD20 Expanded NK cells CD20+ B-NHL Preclinical Chu et al. (53)
GD2 Expanded NK cells Neuroblastoma Preclinical Esser et al. (54)

NK cell function NKG2D Expanded NK cells Various tumor targets (B-ALL etc.) Preclinical Chang et al. (55)
IL-12 IL-2-activated NK cells B16 lung tumor Preclinical Goding et al. (56)

ALL, acute lymphocytic leukemia; B-NHL, B-cell non-Hodgkin lymphoma; B-ALL, B-cell acute lymphoblastic leukemia.

expression of cytokines, such as IL-2 (57, 58), IL-12 (56, 59), and
IL-15 (60–62). Cytokine expression enhances the activation of NK
cells, survival and proliferation of NK cells, and accumulation
of NK cells in tumor tissues. To improve the efficacy of NK cell
therapy, genetic modification of NK cells is explored to express
activating receptors, such as NKG2D (55).

Therapeutic Regimens
In allogeneic NK cell therapy, optimal therapeutic regimens
for clinical applications should be considered because adop-
tively transferred NK cells not only target tumor cells but also
interact with the immunological environment. To potentiate the
therapeutic efficacy of allogeneic NK cells, proper strategies,
including pre-conditioning or combination therapy, could be
applied (34).

Upregulation of NKG2D ligands by spironolactone (63) or his-
tone deacetylase inhibitors (64, 65) and upregulation of TRAIL-R2
by doxorubicin (66) result in enhanced antitumor efficacy of NK
cells. Proteasome inhibitors also sensitize tumor cells to NK cell-
mediated killing via TRAIL and FasL pathways. In addition, c-kit
tyrosine kinase inhibitor (67) and JAK inhibitors (68) increase
the susceptibility of tumor cells to NK cytotoxicity and enhance
antitumor responses by increased IFN-γ production from NK
cells. However, protein kinase inhibitors should be used cautiously
because some protein kinase inhibitors, such as sorafenib, inhibit
the effector function of NK cells (69).

Immunomodulatory drugs can augment NK cell function.
Lenalidomide enhances rituximab-induced killing of non-
Hodgkin’s lymphoma and B-cell chronic lymphocytic leukemia
through NK cell and monocyte-mediated ADCC mechanisms
(70). Combination therapy using IL-2 and anti-CD25 shows

anti-leukemic effects by depletion of regulatory T cells in addition
to activation and expansion of NK cells (71). Alloferon, an
immunomodulatory peptide, enhances the expression of NK-
activating receptor 2B4 and granule exocytosis from NK cells
against cancer cells (72).

Therapeutic antibodies can be combined with allogeneic NK
cell therapy (73). Antibodies against tumor antigens (e.g., CD20
and CS1) can induce ADCC of NK cells (74, 75). Antibodies to
activating NK receptors (e.g., 4-1BB, GITR, NKG2D, DNAM-1,
and NCRs) can enhance NK activation (74, 76–79). In addition,
inhibitory receptors (e.g., KIR2DL, PD-1, PD-L1, and NKG2A)
can be blocked by antibodies (80–85). Bispecific and trispecific
killer cell engagers directly activateNK cells throughCD16 signal-
ing and thus, induce cytotoxicity and cytokine production against
tumor targets (86, 87).

Conclusion

Antitumor activity of allogeneic NK cells was first observed in
a setting of HLA-haploidentical HSCT. Allogeneic NK cell ther-
apy was tried mostly using HLA-haploidentical NK cells with
or without allogeneic HSCT and, recently, allogeneic NK cells
from unrelated, random donors have been used in a non-HSCT
setting. The efficacy of allogeneicNK cell therapy can be enhanced
by optimal donor selection in terms of the KIR genotype of
donors and donor KIR-recipient MHC incompatibility. Further-
more, efficacy can be increased by geneticmodification ofNKcells
and optimized therapeutic regimens. In the future, allogeneic NK
cell therapy can be an effective therapeutic modality for cancer
treatment.
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Natural killer (NK) cells express activating and inhibitory receptors, which recognize
MHC class-I alleles, termed “Killer cell Immunoglobulin-like Receptors” (KIRs). Preclin-
ical and clinical data from haploidentical T-cell-depleted stem cell transplantation have
demonstrated that alloreactive KIR-L mismatched NK cells play a major role as effectors
against acute myeloid leukemia (AML). Outside the transplantation setting, several reports
have proven the safety and feasibility of NK cell infusion in AML patients and, in some
cases, provided evidence that transferred NK cells are functionally alloreactive and may
have a role in disease control. The aim of the present work is to briefly summarize
the most recent advances in the field by moving from the first preclinical and clinical
demonstration of donor NK alloreactivity in the transplantation setting to the most recent
attempts at exploiting the use of alloreactive NK cell infusion as a means of adoptive
immunotherapy against AML. Altogether, these data highlight the pivotal role of NK cells
for the development of novel immunological approaches in the clinical management
of AML.

Keywords: natural killer cells, acute myeloid leukemia, stem cell transplantation, immunotherapy, alloreactivity

Introduction

The clinical management of acute myeloid leukemia (AML) relies on aggressive chemotherapy,
followed by allogeneic stem cell transplantation (SCT). Although the post-chemotherapy complete
remission (CR) rate ranges from 60 to 85% in younger patients, the disease relapse is still very high,
thus reducing overall survival (OS) to 40%. Of note, the prognosis of elderly patients is particularly
poor with an OS of about 10%. Such a particular dismal clinical outcome is due to an increase in
unfavorable biological features, which reduces the CR rate and, whenever CR is obtained, to the
inability to undergo post-CR consolidation programs, including SCT, due to co-morbidities. In
the attempt to improve AML clinical outcome, novel regimens and targeted therapies have been
proposed in the last few years but the clinical results have proven limited. In particular, a minimal
residual disease (MRD), resistant to further treatments, often persists after induction chemotherapy.
In that context, the use of an immunological approach to target MRD may significantly impact on
the eradication of disease. The proof-of-principle of the capacity of immune cells to eradicate MRD
derives from the results of allogeneic SCT, which clearly represents an option for relapse prevention.
In particular, the critical role of natural killer (NK) cells as key players in AML prevention
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and eradication has been clearly established, especially in the
context of haploidentical SCT. However, the SCT approach has
important limitations and is not applicable to all patients. For
these reasons, it is conceivable to exploit the anti-leukemia poten-
tial of NK cells outside the transplantation setting as adoptive
immunotherapy.

NK Cells: Biological Pills

Within allogeneic SCT, donor lymphocytes recognize and destroy
the recipient’s residual leukemic cells. The demonstration that this
process, known as graft versus leukemia (GvL) effect, plays amajor
role in the therapeutic effect of SCT has led to the development
of novel strategies of adoptive immunotherapy before and after
SCT (1). Although most of the data refer to allogeneic T cells
as GvL mediators, it is known that other subsets of circulating
lymphocytes, such as NK cells, may significantly act as effector
cells against leukemia in the post-transplantation setting. NK
cells are defined by the expression of CD56 and CD16 and by
the absence of the T-cell marker, CD3. NK cells are involved in
the innate immune response and in cancer immunosurveillance,
where they kill transformed tumors in a major histocompati-
bility complex (MHC)-unrestricted manner (2). NK cells origi-
nate from the bone marrow (BM) and then home to secondary
lymphoid tissues. They account for 10–15% of peripheral blood
lymphocytes and their activity depends on the expression on
their surface of several activating and inhibitory receptors that
recognize MHC class-I molecules (Figure 1A); the most notable
inhibitory receptors are named killer cell immunoglobulin-like
receptors (KIRs), which recognize allotypic determinants within
certain groups of HLA class-I alleles. The lack of expression of
the specific HLA class-I allele by allogeneic target cells allows
KIRs to sense the absence of the self class-I KIR-ligand (KIR-L),
thusmediating NK alloreactivity. Indeed, the engagement of these
NK cell receptors results in stimulation or inhibition of NK cell
effector function. KIR genes are closely packed in the leukocyte
receptor complex on chromosome 19q13.4 and are inherited as
haplotypes. Two distinct KIR haplotypes have been identified.
Group A haplotypes encode inhibitory KIRs and have a fixed
gene content, whereas group B haplotypes are variable in num-
ber and combination. NK cells become functionally competent
only after they encounter self-HLA molecules during a process
named licensing or NK cell education. About 10–20% of NK
cells remain unlicensed and are hypo-responsive. Recently, other
inhibitory receptors on NK cells have been identified, such as
CD94/NKG2A receptors, that recognize a non-classicMHC class-
I molecule (HLA-E). CD94/NKG2A continuously recycles from
the cell surface through endosomal compartments, thus facilitat-
ing its inhibitory capacity (3). NK cells can also express activating
forms of KIRs and the activating receptor CD94/NKG2C that
interact with the same HLA molecules as their inhibitory coun-
terparts. Other activating receptors include natural cytotoxicity
receptors (NKp46, NKp30, NKp44), DNAM-1 that interacts with
CD112 and CD155, and NKG2D, which recognizes ligands, up-
regulated during cellular stress, such as tumor transformation
and viral infections (4). In addition, CD16 (FcgammaRIIIA) trig-
gers antibody-dependent cellular cytotoxicity on opsonized target

FIGURE 1 | (A) Receptors and ligand involved in NK cell-mediated
cytotoxicity. (B) Percentage of long-term CR patients after NK cell infusion.
Thirteen AML patients, five with active disease, two in molecular relapse, and
six in morphological complete remission (CR) were treated with alloreactive
NK cells, after fludarabine/cyclophosphamide immunosuppressive
chemotherapy. Only one of the five patients with active disease achieved
transient CR, whereas the other four patients had no clinical benefit. On the
contrary, five out of eight patients showed a response, which in some cases
was long-lasting CR [adapted from Curti et al. (5)].

cells, including tumor cells. Integrins also play a central role in
mediating adhesion to target cells and degranulation (4).

NK Cell Alloreactivity in Allogeneic SCT

Haploidentical Hematopoietic SCT
Although autologousNK cell activity is usually impaired in cancer
patients (6), allogeneic alloreactive NK cells from healthy donors
have been shown to exert important effector cell function and
could be safely infused in cancer patients without side effects
(7). In particular, within the setting of allogeneic SCT, the KIR-L
incompatibility between donor and recipient in the GvL direc-
tion has been demonstrated to enhance the anti-cancer efficacy
of NK cells, thus providing a novel and successful platform for
anti-tumor immunotherapy. In the setting of T-cell-depleted hap-
loidentical KIR-L mismatched SCT, we demonstrated that NK
cell alloreactivity mediates a powerful and protective GvL effect,
which is dissociated from Graft versus Host Disease (GvHD) (8).
Indeed, early after T-cell-depleted transplantation, the reconsti-
tuted NK cells represent the predominant lymphoid cell popula-
tion and the hematopoietic stem cells gave origin to an NK cell
repertoire, which is identical to the donor one (8–10). Of note,
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the GvL activity of donor NK cells is triggered when the donor’s
KIRs and the recipient’s HLA class-I molecules are incompatible,
and consequently when inhibitory signals in the recipient are
lacking. Preliminary studies in preclinical models demonstrated
that human alloreactiveNK clones, infused intoNOD/SCIDmice,
previously engrafted with human AML cells, are capable of clear-
ing leukemia cells and improving survival. These preclinical data
on the impact of donor NK cell alloreactivity were confirmed
in a series of more than 112 AML patients transplanted with
haploidentical donors. Patients were divided in two subgroups,
according to KIR-L incompatibility in the GvH direction. In
the group with KIR-L incompatibility a significantly reduced
relapse rate was observed. Moreover, 5-year event-free survival
was 5% in contrast to 60% observed in the group without KIR-L
incompatibility, thus demonstrating that KIR-L incompatibility
is the only independent predictive factor for survival in AML
patients. Furthermore, alloreactive mismatched NK cells facili-
tated hematopoietic engraftment after infusion of haploidentical
stem cells and inhibited GvHD by killing host antigen-presenting
cells (9). Of note, in our adult cohort of transplanted patients, NK
cell alloreactivity was not efficient in preventing disease relapse
of acute lymphoblastic leukemia (ALL). In contrast, in a group
of pediatric leukemia patients, including ALL, undergoing hap-
loidentical SCT, Pende et al. showed the beneficial role of acti-
vating KIRs and donor NK cell alloreactivity (11). Other clinical
studies support the protective role of alloreactive NK cells in
the haploidentical SCT setting. Stern et al. showed the results
of a phase II multicenter study in which purified NK cells were
administered pre-emptively in recipients of T-cell-depleted hap-
loidentical SCT. Sixteen young patients with high-risk leukemia or
highly malignant solid tumors were included in this protocol and
received NK-donor lymphocyte infusions (DLI) on days 40 and
100 after transplantation. This study demonstrated the feasibility
of the procedure. However, as a consequence of contaminating
T cells in NK-DLI cell preparation, the trial showed a high inci-
dence of acuteGvHD,whereas the anti-leukemic activity appeared
to be very limited (12). The use of allogeneic donor NK cells
instead of autologousNK cells for cancer therapy has been recently
reported. Several groups have explored allogeneic NK cells for the
treatment of relapse following HLA-haploidentical SCT. Interest-
ingly, GvHD did not occur. Some groups have infused activated,

expanded donor NK cells in patients early after allogeneic SCT.
Table 1 summarizes clinical trials with allogeneic NK cells as
therapeutics. In these studies, clinical responses were observed
in some patients and overall rates of relapse were reduced. For
patients lacking an HLA-identical donor and for those with pro-
gressive disease, the use of HLA-haploidentical family donors is
now increasingly considered to be a suitable alternative. How-
ever, many different protocols of T-cell-repleted haploidentical
transplantation are ongoing and few data are available on the role
of NK alloreactive donors in the presence of T cells in the graft
and/or when GvHD prophylaxis is administered. The results of
these studies are highly warranted to better elucidate the possible
competition of NK and T cells and the role of immune suppressive
drugs on NK cells in vivo.

Unrelated and Matched SCT
Unlike haploidentical SCT, the role of NK cell alloreactivity in
the field of unrelated SCT is controversial, even though several
studies have already investigated this setting (Table 2). Some
years ago Giebel et al. conducted a study involving 130 patients
with hematological malignancies who underwent allogeneic SCT
and received Cyclosporine, ATG and short-term methotrexate as
GvHD prophylaxis. With a median follow-up of 4.5 years, the OS
was 87% in patients with a KIR mismatch in the donor direc-
tion versus 48% in non-KIR-mismatched patients; disease-free
survival (DFS) was 87% in the first group compared with 39%
in the second one. Transplant-related mortality was 6% in the
KIR-mismatched patients and 40% in non-mismatched patients
(13). These results were not confirmed in studies published by
other centers (14, 15), which showed a detrimental effect of KIR-L
incompatibility, correlated with HLA mismatching. These con-
troversial data demonstrated that the role of NK cells remains
unclear in the setting of unrelated SCT. Several factors, such as
post-transplantation immunosuppressive therapies, T-cell deple-
tion, different stem cell sources and doses, may impact in this
patient setting (13–15). In a group of donor-recipient pairs miss-
ing an inhibitory KIR-L, a beneficial role of alloreactive NK cells,
transiently and randomly originated from donor stem cells, was
observed (16). These cells expressed the inhibitory single KIR
receptor that could not be blocked by the host cells. However,
these alloreactiveNK cells were not functional, thus corroborating

TABLE 1 | Clinical trials with expanded allogeneic NK cells in haploidentical SCT.

Diseases Phase of trials Cells Combined therapy Institute

High-risk solid tumors Ongoing phase 2 Ex vivo expanded NK cells Haploidentical HSCT, RIC
and IL-2

Samsung Medical Center,
Korea

Hematological malignancies Ongoing Phase-1 IL-2-activated NK cells Haploidentical HSCT and RIC Institut Paoli-Calmette, France

Leukemia and
myeloproliferative disease

Ongoing phase 1/2 Haploidentical HSCT, TBI and
chemotherapy

Ex vivo expanded NK cells M.D. Anderson Cancer
Center, USA

ALL Ongoing phase 2 K562-mb 15–41 BBL and IL-2
stimulated NK cells

Haploidentical HSCT and
chemotherapy

National University Health
System, Singapore

AML and ALL Ongoing phase 1/2 Ex vivo expanded NK-cells haploidentical HSCT Asan Medical Center, Korea

Relapsed/refractory
pediatric acute leukemia

Ongoing phase 2 Activated and expanded
NK cells

Haploidentical HSCT and
salvage chemotherapy

Hospital Universitario La Paz,
Spain

Myelodisplastic syndrome
and leukemia

Completed phase 1/2 IL-2-activated NK cells Haploidentical HSCT,
chemotherapy and IL-2

M.D. Anderson Cancer
Center, USA
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TABLE 2 | Themost relevant papers reporting the impact of KIR-Lmismatch
in unrelated SCT.

Authors Survival TRM Relapse GvHD ATG

Davies et al. (14) ↓ Not assessed → ↑a,b No
Giebel et al. (13) ↑ ↓ ↓a ↓a,c Yes
Bornhäuser et al. (15) → → ↑ → Yes
Malmberg et al. (17) ↓ ↑ → → Yes

aTrend, P-value between 0.05 and 0.09.
bGvHD grade II–IV.
cGvHD grade III–IV.

the notion that NK cells must be educated and consequently
armed by the presence of the appropriate inhibitory KIR-L (17).
New data have been provided on the possible role of activat-
ing KIRs which are present on KIR B haplotypes. Cooley et al.
showed that B haplotype, which is present in 60% of donors, is
fundamental in preventing relapse while NK cell alloreactivity
does not influence the outcome of a very large cohort of unre-
lated transplants (18). However, in the setting of T-cell-depleted
haploidentical transplants, the presence of KIR B haplotypes is
associated with reduced infection-related mortality in the group
of patients transplanted from NK alloreactive donors without any
impact on relapse (19).

Alloreactive NK Cells as Adoptive
Immunotherapy

Natural killer cells have already been used as a means of adop-
tive immunotherapy beside the SCT setting (16, 20). These
studies reported on the trafficking and body distribution of
infused NK cells. Based on these preliminary data, NK cell selec-
tion for immunotherapy has recently been developed at clin-
ical level (21). In 2005, Miller et al. published the results of
a seminal study in which up to 1.5× 107/haploidentical NK
cells/kg were safely infused in AML and cancer patients follow-
ing Fludarabine/Cyclophosphamide (Flu/Cy) immunosuppres-
sive chemotherapy; in this study some clinical responses without
GvHD were observed. Circulating haploidentical NK cells were
found up to 28 days after infusion, especially when exogenous
interleukin (IL)-2 was given. In vivo expansion of NK cells was
correlated with a high IL-15 serum concentration. In partic-
ular, 19 poor risk AML patients, together with 10 metastatic
melanoma patients and 13metastatic renal cell carcinoma patients
received a cell population enriched in NK cells. Five out of 19
AML patients achieved CR, NK cell adoptive immunotherapy
was well tolerated and no hematological toxicity was recorded.
The maximum tolerated dose of NK cells was not achieved and
GvHD was not observed despite the relatively high number of
infused haploidentical T cells. However, it should be noted that
NK cells were only partially purified after a single round of
depletion of CD3+ cells which resulted in less than a 2 log
reduction of T cells (21). A group of 10 low-risk pediatric AML
patients were treated with haploidentical KIR–HLA mismatched
NK infusion. All patients were alive at the 2-year follow-up.
As compared to the adult trial by Miller’s group, the median
number of infused NK cells was significantly higher and NK

cells were processed to obtain a highly purified cell population
(22). We reported the results of a trial of NK cell-based adoptive
immunotherapy in 13 AML patients, 5 with active disease, 2 in
molecular relapse, and 6 in morphological CR. The median age
was 62 years (range 53–73). Highly purified CD56+CD3- NK
cells from haploidentical KIR-ligand mismatched donors were
infused after fludarabine/cyclophosphamide immunosuppressive
chemotherapy. No signs of GvHD and/or NK cell-related toxicity
were reported. As expected, patients with active disease had no
clinical benefit. Interestingly, both patients in early molecular
relapse achieved CR and three patients in CR were disease-free
after a follow-up of 34, 32, and 18months of followup (Figure 1B).
Infused NK cells were detected in the peripheral blood of all
evaluable patients and in the BM in some cases. Importantly,
infused NK cells were demonstrated ex vivo to be alloreactive
by killing in vitro the recipient’s cells, including leukemia (5).
Several biological factors, both of recipient and donor origin, may
be implicated in the therapeutic effect of NK cells after infusion
into AML patients. Miller and collaborators recently reported on
the critical impact of some components of the recipient immune
response on the anti-leukemia activity of infused NK cells (23).
In particular, they reported NK cell expansion correlates with
the post-chemotherapy serum concentrations of some cytokines,
such as IL-15 and IL-35, and the number of T regulatory cells
(Tregs) critically influences the capacity of infused NK cells to
expand and to kill AML cells. The clinical relevance of these
findings is supported by a better DFS in patients undergoing
NK immunotherapy and depleted of Tregs. As for the donor,
it would be interesting to test whether the composition of the
donor NK cell population may be correlated to a different clin-
ical outcome. In particular, the frequency and the function of
alloreactive NK cells may impact on the anti-leukemia capacity
of infused NK cells. Moreover, the presence within the graft of
different subsets of CD56+ cells, other than “classic” NK cells,
should be evaluated in more detail and, possibly, correlated with
the response to NK therapy. The manipulation of donor NK
cell graft may represent an interesting approach to increase NK
cell activity before infusion. This is a critical point since NK
cell-based immunotherapy may be significantly hampered by the
transient effector function of infused NK cells. In particular,
in vitro priming with cytokines, such as IL-12, IL-18, and IL-15,
has been reported. This treatment results in the expansion of the
memory-like NK cell subset with enhanced functional properties
(24) and more prolonged persistence in the host. (25). Recently,
in a mouse tumor model a cytokine-based treatment resulted in
enhanced anti-tumor activity via the reversal of NK cell anergy,
which occurs in the presence of MHC-deficient tumors (26).
Since HLA-loss is known to be a fundamental immune escape
means for adaptive T-cell-mediated immune response (27), pre-
venting NK-cell anergy may have important clinical implications
for cancer immunotherapy.

Conclusions

Alloreactive NK cells have been emerging as a potent effector
cell population against AML. The demonstration of a significant
clinical activity of alloreactive purified NK cell infusion outside
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the transplantation setting represents a proof-of-principle for such
an anti-leukemia effect, which has been clearly established in the
context of haploidentical SCT. Altogether, these data highlight the
pivotal role of NK cells for the development of novel immunologi-
cal approaches in the clinical management of AML. Nevertheless,
several biological issues still require full elucidation. In particular,
a more in-depth evaluation of the impact that recipient- and
donor-derived factors may have in influencing in vivo NK cell

activity is an important point. The design of future NK cell-based
clinical trials, both in the SCT and adoptive immunotherapy set-
tings, should include a correlation between clinical results and bio-
logical outputs. Indeed, correlative biological studies may make
it possible to identify those subsets of patients, who may really
benefit from NK immunotherapy, in the attempt to tailor both
pharmacological and immunological therapies to the patients’
characteristics.
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Treatment of hematological malignant disorders has been improved over the last years,
but high relapse rate mainly attributable to the presence of minimal residual disease
still persists. Therefore, it is of great interest to explore novel therapeutic strategies
to obtain long-term remission. Immune effector cells, and especially natural killer (NK)
cells, play a crucial role in the control of hematological malignancies. In this regard, the
efficiency of allogeneic stem cell transplantation clearly depends on the immune-mediated
graft versus leukemia effect without the risk of inducing graft versus host disease.
Alloreactive donor NK cells generated following hematopoietic stem cell transplantation
ameliorate the outcome of leukemia patients; in addition, in vivo transfer of in vitro
expanded NK cells represents a crucial tool for leukemia treatment. To improve NK cell
effector functions against resistant leukemia cells, novel immunotherapeutic strategies are
oriented to the identification, isolation, expansion, and administration of particular NK cell
subsets endowed with multifunctional anti-tumor potential and tropism toward tumor
sites. Moreover, the relationship between the emergence and persistence of distinct
NK cell subsets during post-graft reconstitution and the maintenance of a remission state
is still rather unclear.

Keywords: NK cell subsets, hematological malignancies, HSCT, NK cell therapy, NK cells

INTRODUCTION

Natural killer (NK) cells belong to innate lymphocytes that play an important role in the early
phase of immune defense against microbial infections, and tumor growth and dissemination.
They represent a population of highly specialized large granular lymphocytes capable of mediating
cytotoxic activity and endowed with the ability to release cytokines and chemokines when properly
activated by target cells or pro-inflammatory stimuli (1–3). During microbial infection or tumor
growth and invasion, NK cells can be rapidly recruited to and accumulate in the parenchyma of
injured organs, contributing to the elimination of infected or transformed cells as well as to the
recruitment and activation of other immune cells (4, 5). Thus, NK cells are important effectors in
the early phase of innate immune responses and play a crucial role as immune regulators of adaptive
immunity (6).

Activation of NK cell functional program results from a delicate balance of signals initiated by
a complex receptor system formed by both inhibitory and activating receptors. These receptors
are acquired during differentiation, and are oligoclonally distributed on mature NK cells; in most
instances, the inhibitory signals override the triggering ones (2).
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The inhibitory receptors that mainly bind to MHC class
I molecules are grouped into two classes: the killer cell
immunoglobulin-like receptor (KIR) family that includes recep-
tors for human leukocyte antigen (HLA)-A, -B, and -C group of
alleles, and theC-type lectin receptors, such as CD94/NKG2A that
binds to the non-classical HLA class I molecule, HLA-E.

Both the inhibitory receptor families have also an activating
counterpart with similar specificity but different ligand affinity,
showing inhibitory receptors greater ligand affinity with respect to
their activating counterpart. The MHC I activating receptors pos-
sess a short intracellular domain and associate with a transducing
chain that initiates the activating signaling pathway when engaged
by ligands (7–9). The human KIR family consists of 13 genes and
2 pseudogenes, and displays a high degree of diversity that arises
from both variability in KIR content and allelic polymorphisms.
KIR genes are variably inherited by individuals and expressed by
NK cells in an oligoclonal manner.

Among non-MHC I NK cell activating receptors, the best
studied is the low-affinity Fc-γ receptor IIIA (CD16) involved
in the NK cell-mediated antibody-dependent cellular cytotoxicity
(ADCC) (10). Another important activating receptor is NKG2D
that binds to self-molecules undergoing up-regulation on stressed,
infected, or damaged cells belonging to MIC and ULBP fami-
lies (11). In addition, NK cell activating receptors also include
NKp44, NKp46, and NKp30 Ig-like molecules, collectively termed
natural cytotoxicity receptors (NCR), and DNAM-1 (CD226) that
cooperatively triggers natural killing (12–14).

Activating and inhibitory receptors are acquired during NK
cell differentiation and activation, and are selectively expressed on
distinct NK cell subsets. Recognition of MHC I receptors during
NK cell development is critical for the acquisition of the functional
competence through a process defined as NK cell education or
licensing (15, 16). Thus, based on the receptor repertoire and
expression levels, phenotypically distinct mature NK cell popula-
tions have been identified and suggested to represent specialized
subsets mediating different functions and endowed with distinct
migratory properties (17).

Natural killer cell differentiation primarily occurs in the bone
marrow (BM), although NK cell progenitors can undergo final
maturation also in the periphery, and the existence of a thymic
pathway of NK cell differentiation has been also described in
mice (18–20).

Fully mature, NK cells mainly circulate in the peripheral blood
(PB) but they can be also found in several lymphoid and non-
lymphoid organs, such as spleen, tonsils, lymph nodes, liver, intes-
tine, lungs, and uterus (1, 21–24). PB NK cells represent about
5–20% of total lymphocytes.

Two major human NK cell subsets, namely, CD56highCD16+/−

and CD56lowCD16high, can be distinguished in the PB based
on the expression levels of the low-affinity Fc-receptor γ IIIA
(CD16) and the neural cell adhesion molecule (NCAM, CD56).
CD56highCD16+/− NK cells primarily secrete immunoregulatory
cytokines, whereas the CD56lowCD16high NK cell subset is the
major killer population mediating both natural cytotoxic activity
and ADCC. It is still matter of debate whether these subsets
are functionally distinct terminally differentiated NK cells or NK
cells at a different stage of maturation (17, 25). A sequential

relation between these twomajorNKcell subsets has been recently
reported in that it has been shown that CD56high NK cells have
longer telomeres than CD56low NK cells and can differentiate into
CD56low in humanized mice in the presence of human IL-15, thus
suggesting that they represent a more immature stage (26–28).

Recently, authors identified a distinct CD56low NK cell subset
based onCD16 expression levels in the BM and PB of healthy chil-
dren and acute lymphoblastic leukemia (ALL) pediatric patients
(Figure 1). The CD56lowCD16low NK cells are more prominent
in the BM, and in this organ their frequency further increases
in ALL children. Both BM and PB CD56lowCD16low NK cells
release IFNγ upon IL-12 plus IL-15 stimulation, and are the major
killer population against K562 erythroleukemia cells. However,
unlike healthy donors, BMandPBCD56lowCD16low NKcells from
ALL children poorly degranulate in response to K562 target cell
stimulation. Interestingly, using PB NK cell subsets from two hap-
loidentical HSC donors as source of effector cells and the leukemic
blasts of the corresponding recipients as targets, CD56lowCD16low

NK cells are the unique population capable of killing leukemic
blasts (29).

Overall, our findings suggest that CD56lowCD16low NK
cells represent an intermediate state between CD56high and
CD56lowCD16high NK cells. However, the lower levels of CD16
may also imply that CD56lowCD16low NK cells represent a
post-activation stage, as a disintegrin and metalloproteinase-17
(ADAM-17)-dependent CD16 shedding can occur following NK
cell activation (30, 31). In this regard, in accordance with the
increased number of CD56lowCD16low NK cells in leukemic chil-
dren, our preliminary data indicate that ADAM-17 is signifi-
cantly more abundant in their BM plasma as compared to healthy
donors (32).

NK CELLS FOR HEMATOLOGICAL
CANCER THERAPY: ALLOREACTIVE
NK CELLS

The ability of NK cells to kill leukemic cells in mice without
T-cell involvement and prior sensitization was first reported in
1975 (33, 34). Thereafter, growing evidence showed that NK
cells preferentially lyse target cells expressing lower or aberrant
MHC class I molecules. Based on this evidence, Kärre et al.
formulated the missing self hypothesis, arguing that NK cells
survey the body for the expression of self-MHC class I molecules
and destroy cells on which they are missing (35). Only at the
beginning of the 1990s, MHC I inhibitory receptors were dis-
covered in the mouse and humans, and they were shown to
deliver negative signals to the NK cells, thus, preventing their
cytotoxic activity (2). Accordingly, the use of human NK cell
clones revealed that NK cells are unable to lyse autologous nor-
mal cells when they express inhibitory receptors for at least one
self class I allele. Subsequent findings indicated that NK cells
are endowed with alloreactivity and can lyse target cells lacking
MHC I molecules (36). This notion has had important clinical
implications.

The NK cell therapeutic potential was clearly demonstrated
when a potent anti-leukemic effect was observed in patients
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FIGURE 1 | CD56lowCD16low NK cells are a functionally and phenotypically distinct NK cell subset.

with acute myeloid leukemia (AML) undergoing mismatched/
haploidentical hematopoietic stem cell transplantation (HSCT).
This protocol of transplantation relied on the generation of allore-
active NK cells with a KIR repertoire unable to bind to host
MHC class I molecules, and was associated with a 65% prob-
ability of disease-free survival, decreased incidence of relapse,
and no increased incidence of graft versus host disease (GVHD)
in T-cell-depleted transplants (37). However, patients with KIR-
ligand incompatibility can be still at high risk of GVHD as T-
cell alloreactivity may dominate NK cell alloreactivity in min-
imally T-cell-depleted grafts and in T-cell-repleted transplants
(38). The AML-specific effect in unrelated donor transplantation
was observed only under particular conditions, including infusion
of high doses of stem cells, almost complete depletion of T-cells,
no post-grafting immunosuppression, and donors selected for the
perfect mismatch at HLA loci (39).

The KIR genes are polymorphic and are organized into
two broad haplotypes: group A KIR haplotype, which encodes
mainly inhibitory receptors (KIR2DL2/3, KIR3DL2/3, KIR2DL4,
KIR3DL1) and one activating receptor (KIR2DS4), and group
B KIR haplotype, which encodes both inhibitory (KIR2DL2/3,

KIR3DL2/3, KIR2DL5B/A, KIR2DL4, KIR3DL1) and several acti-
vating KIR (KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5, KIR3DS1)
(Table 1) (40, 41).

Although the initial findings outlined the importance of
inhibitory KIRs on the outcome of HSCT, several later studies also
focused attention on the influence of activating KIRs. Thus, AML
patients transplanted with HSC from donor with alloreactive NK
cells carrying KIR2DS1 displayed a lower rate of leukemia relapse
as compared to those carrying KIR3DS1 who had no effect on
leukemic disease but showed a reduced risk of infection-related
mortality (42). Similarly, Mancusi et al. reported that transplan-
tation from donors with KIR2DS1 and/or KIR3DS1 resulted in
reduced non-relapse mortality and improved survival (43).

The KIR protective effects were dependent on high levels of
HLAC ligands and was restricted to donors with HLA-C1/C1 or
HLA C1/C2, whereas it was lost if the donors were HLA C2/C2.
This is probably due to the high levels of activating HLA C2
ligands that could induce NK cell tolerance, thus impairing their
anti-leukemic effector functions (42).

Variation of the KIR gene family and the impact of KIR-ligand
mismatch on the outcome of HSCT have been also addressed.
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TABLE 1 | Killer immunoglobulin-like (KIR) haplotypes.

HLA class I ligand Inhibitory Activating

A. Haplotype
3DL2 HLA-A(A*3, A*11) +
2DS4 HLA-C(C*5, C*16, A*11) +
3DL1 Bw4 +
3DS1 Bw4? +
2DL4 HLA-G +
3DP1 −
2DL1 HLA-C(C2) +
2DP1 −
2DL2 HLA-C(Cl/c2, few HLA-B) +
2DL3 HLA-C(Cl/c2, few HLA-B) +
3DL3 N.D +
B. Haplotype
3DL2 HLA-A(A*3, A*11) +
2DS4 HLA-C(C*5, C*16, A*11) +
2DS1 HLA-C(C2) +
2DS3/5 N.D +
2DL5A N.D +
3DL1 Bw4 +
3DS1 Bw4? +
2DL4 HLA-G +
3DP1 −
2DL1 HLA-C(C2) +
2DP1 −
2DS3/5 N.D +
2DL5B N.D +
2DL2 HLA-C(Cl/c2, few HLA-B) +
2DL3 HLA-C(Cl/c2, few HLA-B) +
2DS2 A11? +
3DL3 N.D +

Gray and white box contain telomeric and centrometric KIRs respectively; C1/c2 denotes
a strong reaction with C1 and weaker cross-reaction with C2; ? denotes uncertainty.

Kröger et al. analyzed the KIR haplotypes in leukemic patients
who received T-cell-depleted unrelated HSCT. They observed
that only patients that have received transplants from donors
carrying group A haplotype or a small number of activating KIR
genes, exhibit reduced relapse and increased disease-free survival.
This effect was observed only for AML/myelodysplastic syndrome
and to a lesser extent for chronic myeloid leukemia, whereas no
effect was evidentiated for ALL (44). The influence of donor and
recipient KIR genotype on the outcome of HSCT between HLA-
matched siblings was also reported by McQueen et al. Transplants
were divided in four groups according to the combination ofA and
B KIR genotype in the donor and recipient. Better survival was
found to be associated with the donor lacking and the recipient
having group B KIR haplotype. When haplotype B was present
in the donor and absent in the recipient, increased relapse and
acute GVHD was observed only if recipient and donor were
homogyzous for HLAC1 KIR ligand and lacked HLAC2 ligand.

These findings could be attributable to the presence of activat-
ing KIRs in the graft, with a preferential promotion of GVHD
but not GVL response, as the activating KIRs on grafted NK or T
cells might cause host alloaggression and impaired reconstitution
of a responsive immune system (45). Conversely, a multicenter
analysis demonstrated a significant and substantial survival bene-
fit for AMLpatients receiving grafts fromunrelated donors having
1 or 2 KIR B haplotypes, thus providing evidence that donors with

KIR B haplotype should be used preferentially inHLA-matched or
HLA-mismatched unrelated donor transplantation (46). In addi-
tion, it is not the presence of the activating B haplotype by itself,
but rather the presence of three particular donor genes (2DL5A,
2DS1, and 3DS1) within the B haplotype that is associated with
reduced relapse (47). Moreover, AML patients transplanted with
HSC from donor with alloreactive NK cells carrying KIR2DS1
and/or KIR3DS1 also display a reduced mortality related to infec-
tions, and thus a better event-free survival (42, 43).

Although many reports demonstrate a therapeutic role for
alloreactive NK cells in AML, evidence are also available on
the importance of KIR-HLA matching. In this regard, Farag
et al. analyzed the outcome of 1571 unrelated donor–recipient
transplanted patients with myeloid malignancies by comparing
donor–recipient pairs, such as HLA-A, -B, -C, and -DRB1
matched, KIR-ligand-mismatched, and HLA-B and/or-C-
mismatched but KIR-ligand-matched, and reported that
treatment-related mortality, treatment failure, and overall
mortality were lowest only after matched transplantation (48).

No clear benefit has been observed for haploidentical HSCT
in adult ALL patients with respect to AML patients (37, 44).
However, successful results have been obtained in children with
ALL transplanted with haploidentical T cell depleted HSC (49).
A possible explanation for the distinct role of alloreactive NK
cells in pediatric versus adult ALL transplanted patients stems
from a recent report demostrating a differential activating ligand
repertoire on the leukemic cells. Pediatric ALL blasts exhibited
higher expression levels of both the DNAM-1 ligand Nec-2, and
the NKG2D ligands ULBP-1 and ULBP-3, as compared to adult
ALL blasts (50).

NK CELL RECONSTITUTION AFTER HSCT
AND ADOPTIVE INFUSION OF NK CELLS

After HSCT, the first class of lymphocytes which reconstitute
in the PB are NK cells that precede T cell reconstitution. The
earliest reconstituted NK cells exhibit a CD56high phenotype and
express high levels of NKG2A/CD94 and lower levels of inhibitory
KIR (51, 52). The analysis of the functional ability of NK cells
reconstituted after adult unrelated donor or umbilical cord blood
grafting reveal that NK cells fromT cell-depleted transplant recip-
ients without immunosuppression, display poor degranulating
ability, whereas degranulation is normal or increased in patients
undergoing T-cell-repleted transplants and receiving immuno-
suppression. Based on this observation, a role for T cells in NK cell
education and KIR acquisition has been suggested (53). However,
another study on the comparison of NK cell reconstitution in
T cell-repleted and T cell-depleted HLA-matched sibling, HSCT,
indicates that functional recovery of both uneducated and edu-
cated NK cells is similar in T cell-depleted and T cell-repleted
settings. Moreover, NKG2A+ donor NK cells are predominant
early after transplantation before expression of KIR, whereas the
NKG2A− NK cells expressing KIR for non-self ligand, remain tol-
erant in both settings, suggesting that NK cell subsets expressing
inhibitory receptors for non-self HLA class I molecules remain
hyporesponsive after HLA-matched HSCT (54).
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Overall, the analysis of the NK cell repertoire and functional
ability at different times after transplantation reveal a marked
hyporesponsiveness of NK cells early after transplantation (55).

Moreover, cytokine producing and degranulating abilities are
not co-expressed in reconstituting NK cells after allo-HSCT, as
target cell-induced IFNγ production is markedly diminished in all
transplant settings, whereas the cytotoxic activity is impaired only
in T cell-depleted HSCT. The decreased ability to produce IFNγ
is rapidly reverted by exposure to low dose of IL-15 suggesting a
potential therapeutic role for this cytokine by enhancing NK cell
protective ability against infection and relapse (56).

In accordance with these findings, our preliminary results on
the CD56lowCD16low NK cells indicate that like CD56high NK
cells this subset is present in the PB and BM already at 1month
post-T cell-depleted HSCT, and their number is increased with
respect to healthy individuals. However, unlike healthy donors,
no differences in CD56lowCD16low NK cell distribution between
the two tissue compartments during the first 6months afterHSCT
are observed. In transplanted patients, CD56lowCD16low NK cells
produce higher levels of IFNγ after IL-12 plus IL-15 stimulation,
but they are still the only NK cell degranulating subset when
challenged with K562 cells, although the extent of degranulation
is lower than that of healthy controls (Stabile et al. unpublished
observations).

Adoptive transfer of NK cells have been also considered a
promising therapeutic option in the treatment of hematologi-
cal malignancies, especially in T-cell-depleted haplo-SCT setting
because their potent GVL effect (55, 56).

The early clinical trials based on adoptive cell transfer, utilized
lymphokine-activated killer (LAK) cells generated from autolo-
gous PBMCs cultured in vitrowith high doses IL-2 for 3–7 days in
order to induce anti-tumor killer cells that mainly consisted of NK
cells (57–59). Systemic high doses of IL-2 were also administered
in order to activate the autologous NK cells in vivo; however,
in this case, severe toxicity occurred due to capillary leak syn-
drome induced by IL-2 (59, 60). Subcutaneous administration of
low doses of IL-2 alone or in combination with LAK cells gave
encouraging results only in patients with melanoma and renal
carcinoma (61, 62). Although these approaches augmented in vivo
activity of NK cells, no consistent efficacy of autologous NK-cell
therapy could be detected in patients with other cancer histotypes,
including hematological malignancies (62).

The failure of this kind of immunotherapy has been attributed
to downregulation of NK cell activity by KIR engagement by
self-MHC (37), competition with recipient’s lymphocytes for
cytokines and space, chronic immunosuppression induced by
tumor and/or expansion of Treg cells by IL-2 (63, 64). How-
ever, by analyzing cancer patients (metastatic melanoma, renal
cell carcinoma, refractory Hodgkin’s disease, and refractory
AML) subjected to adoptive transfer of human NK cells from

haploidentical-related donors, Miller and collaborators demon-
strated that transferred NK cells can be expanded in vivo and
that expansion is dependent on the more intense cyclophos-
phamide/fludarabine chemotherapy regimen that induces lym-
phopenia and high endogenous concentrations of IL-15, which
are not observed when lower doses of chemotherapy are admin-
istered. More importantly, 5 of 19 poor-prognosis AML patients
achieved complete remission after haploidentical NK cell therapy,
with a significant higher complete remission ratewhenKIR-ligand
mismatched donors were used (65). In accordance with the pres-
ence of high concentrations of IL-15 mature NK cells transferred
in high-risk AML patients undergoing haploHSCT, were found to
proliferate in vivo during the early days after haplo HSCT even in
the absence of exogenous IL-2 administration, and this resulted
in relative low patient relapse rate (66). Moreover, IL-15 together
with IL-12 and IL-18 was reported to increase the expression of
high affinity IL-2 receptor that was associated with increased NK
cell survival, proliferation, and effector function, thus leading to
propose immunotherapeutic strategies based on short cytokine
preactivation of NK cell before adoptive transfer and followed by
low doses of IL-2 therapy (67, 68).

The existence of NK cell subsets with distinct phenotype, func-
tional ability, and adhesion and chemotactic properties that drive
their tropism to different tissue compartments, strongly suggests
that NK cell-based therapies still require a better identification of
NK cell subsets endowed with optimal anti-tumor potential and
tropism to tumor sites, to achieve optimal clinical benefit.

CONCLUSION

Authors suppose that the identification and characterization of
multifunctionalNK cell subsets, which can be rapidlymobilized in
the PB andwith strong ability tomigrate to tumor sites, would pro-
vide new insights on the role played by NK cells under patholog-
ical conditions and, more importantly, would allow the design of
new approaches of adoptive immunotherapy to treat patients with
NK cell-susceptible hematological malignancies. Further studies
would also clarify the relationship between emergence and persis-
tence of distinct NK cell subsets during post-graft reconstitution
and the maintenance of a state of remission.
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Understanding immune alterations in cancer patients is a major challenge and requires
precise phenotypic study of immune subsets. Improvement of knowledge regarding the
biology of natural killer (NK) cells and technical advances leads to the generation of high
dimensional dataset. High dimensional flow cytometry requires tools adapted to complex
dataset analyses. This study presents an example of NK cell maturation analysis in Healthy
Volunteers (HV) and patients with Acute Myeloid Leukemia (AML) with an automated
procedure using the FLOCK algorithm. This procedure enabled to automatically identify
NK cell subsets according to maturation profiles, with 2D mapping of a four-dimensional
dataset. Differences were highlighted in AML patients compared to HV, with an overall
increase of NK maturation. Among patients, a strong heterogeneity in NK cell maturation
defined three distinct profiles. Overall, automatic gating with FLOCK algorithm is a recent
procedure, which enables fast and reliable identification of cell populations from high-
dimensional cytometry data. Such tools are necessary for immune subset characterization
and standardization of data analyses. This tool is adapted to new immune cell subsets
discovery, and may lead to a better knowledge of NK cell defects in cancer patients.
Overall, 2D mapping of NK maturation profiles enabled fast and reliable identification of
NK cell subsets.

Keywords: AML, NK maturation, automated gating, FLOCK algorithm, multidimensional flow cytometry

INTRODUCTION

Natural Killer (NK) cells are immune effectors that play a key role in tumor rejection, with an ability
to detect and lyse tumor cells without prior stimulation (1–3). Their fundamental role in anti-tumor
immune response has been widely demonstrated in both solid tumors and malignant hemopathies,
and parameters linked to NK cell activation can either be prognostic factors (4–9) or predictive
markers of response to chemotherapy or radiotherapy (10, 11). Thus,monitoringNK cell parameters
seems to be an important point to stratify patients at diagnosis and to assess NK cell response
during the course of treatment. For such applications, NK cell alterations in cancer patients need
to be further described in order to dissect mechanisms involved and define the relevant therapeutic
strategies based on NK restoration (12, 13).
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In addition to classical NK activating receptors, maturation is
fundamental for triggering immune response while maintaining
self tolerance (14). NK cell maturation and activation are intrin-
sically linked (14). Therefore, this point is probably of primary
importance for NK cell reactivity in the context of malignancies.
Recent studies highlight increasing number ofmarkers that define
NK cell subsets according to maturation parameters. In mice,
some parameters appear as relevant markers to define NK cell
clusters according tomaturation process, such as CD16 or CD11b,
CD27, and Mac-1, which define NK subsets with progressive
acquisition of NK cell effector functions (14–17). In Humans,
four parameters further define NK cell subsets according to the
expression of NKG2A, KIR, CD57, and CD56 (16, 18). NK cells
initially differentiate from immature CD56bright to CD56dull phe-
notype, with different functions, including cytotoxicity, cytokine
production, and migratory capacities (14, 19, 20). Subsequently,
NK cells lose expression of NKG2A, and sequentially express
CD57 and KIR. Accordingly, five states of maturation stages are
defined according to expression of these markers.

To date, an increasing number of NK cell activation and matu-
ration markers have been described (17, 21). The improvement of
knowledge regarding the biology of NK cells led to an increase of
markers required to phenotypically and functionally characterize
these cells (21). Technological advances in the field of flow and
mass cytometry led to the development of complex panels to study
NK cells, with subsequent generation of high dimensional dataset
(21). In this context, manual processing of the data presents
many limitations. First, generation of gates in two dimensions is
time-consuming, and subject to operator subjectivity (22). Hence,
gating strategy can impact on results and conclusions when mul-
tiple gates are drawn [(22); Gondois-Rey et al. manuscript in
preparation]. Second, the high number of results generated is
sometimes hard to interpret and summarize, in particular when
large cohorts of patients are analyzed. Another problem is the
global comprehension of a complex system and interpretation of
results when conclusions are drawn parameter by parameter. New
tools are then required to address these problems. Recently, algo-
rithms for automatic gating and 2D mapping of high dimensional
dataset have been developed, such as Spade (23), viSNE (24),
flowClust (22), or FLOCK (25, 26). These algorithms combined
to classification methods enable the visualization of multiple
parameters and summarize information. These approaches are of
particular importance to enable data visualization, in particular
in the context of study of complex systems such as immunity.
The present study is an example of application of NK matu-
ration profiling in Healthy Volunteers (HV) and patients with
Acute Myeloid Leukemia (AML) using automated analysis of flow
cytometry data.

PATIENTS AND METHODS

Patients and Healthy Volunteers
Fresh peripheral blood samples were prospectively collected from
AML patients (N = 18) at diagnosis before induction chemother-
apy and from aged-matched healthy volunteers (N = 18). All
participants gave written informed consent in accordance with
the Declaration of Helsinki. Patients above 65 years at diagnosis

were excluded. The entire research procedure was approved by the
ethical review board (Institut Paoli-Calmettes Marseille, France).
Table 1 lists the baseline characteristics of patients.

Flow Cytometry
A FACS Canto II (BD Biosciences, San Jose, CA, USA) was
used for flow cytometry. NK cells from whole blood EDTA were
immunostained with Krome Orange-conjugated anti-CD45, Phy-
coerythrin cyanin 7 (PC7)-conjugated anti-CD3, allophycocyanin
(APC)-conjugated anti-CD56, fluorescein isothiocyanate (FITC)-
conjugated anti-CD158b1b2j, FITC-conjugated anti-CD158a,h
(further referred to as KIR), APC-alexafluor 750 (APC AF 750)-
conjugated anti-CD159 (NKG2A), pacific blue-conjugated anti-
CD57. All the antibodies used in the study were a kind gift of
Beckman Coulter, Marseille, France. Red blood cells were lysed
with BD FACS Lysing solution (BD Biosciences) before data
acquisition.

Cluster Identification Procedure
FCS files were read, compensated, transformed, and exported
using flowCore (R, Bioconductor) (27). FLOCK algorithm was
then applied to each exported data file (26). Resulting gated data
were imported with R. Centers of populations were extracted,
assembled, and exported as a unique tabulated text file using R.
MeV permitted heatmap visualization and hierarchical clustering
(28). Centers were clustered using euclidean distance. The tree of
centers was cut at a threshold that results in clusters with homo-
geneous mean fluorescence intensity (MFI) profile. Those clear
populations were annotated using expert knowledge. The auto-
mated gating and cluster identification procedure was described
by Gondois-Rey et al. (manuscript in preparation).

Statistical Analyses
Statistical analyses were performed using GraphPad Prism
(GraphPad Software, San Diego, CA, USA). Differences in the
distribution of continuous variables between categories were
analyzed by either Mann–Whitney test (for comparison of two
groups) or Kruskal–Wallis with Dunns’ post test (comparison of
three or more groups). Statistical significance was set at P< 0.05.

RESULTS

Automatic Gating with FLOCK
Provides Reliable Results
Multiparametric flow analysis of NK cell subsets has become
complex over recent years with the identification of several subsets
of NK cells depending on classical activating receptors, inhibitory
receptors, and maturation markers. More importantly, it has
become evident that rare subsets may be under or overestimated
during manual analysis by different investigators and different
software. We have, therefore, searched for a more reliable tool
to provide unbiased analysis of NK cell subsets in the periph-
eral blood of AML patients. First, PBMCs from healthy donors
(N = 18) and AML patients at diagnosis (N = 18) were isolated
and stained for CD56, CD3, KIR (see PATIENTS AND METH-
ODS), NKG2A, and CD57. Then CD3−CD56+ live NK cells were
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TABLE 1 | Patients characteristics.

Characteristic All AML group 1 AML group 2 AML group 3

Patients (no.) N 18 7 5 6
Age at diagnosis Mean (SD) 52.2 (13.2) 52.6 (14.8) 56.2 (7.1) 48.4 (16.0)
Sex ratio, M/F 1.57 0.43 4.00 2.00
FAB category N (%)
M0 2 (11.1) 1 (14.3) 1 (20.0) 0 (0.0)
M1 5 (27.8) 1 (14.3) 2 (40.0) 2 (33.3)
M2 5 (27.8) 2 (28.6) 1 (20.0) 2 (33.3)
M3 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
M4 1 (5.6) 1 (14.3) 0 (0.0) 0 (0.0)
M5 3 (16.7) 2 (28.6) 0 (0.0) 1 (16.7)
M6 1 (5.6) 0 (0.0) 1 (20.0) 0 (0.0)
M7 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Unclassified 1 (5.6) 0 (0.0) 0 (0.0) 1 (16.7)
Status at diagnosis N (%)
De novo 13 (72.2) 6 (85.7) 4 (80.0) 3 (50.0)
t-AML 4 (22.2) 0 (0.0) 1 (20.0) 3 (50.0)
s-AML 1 (5.6) 1 (14.3) 0 (0.0) 0 (0.0)

White blood cell (109 cells/L) Median (SD) 9.5 (51.4) 24.7 (41.2) 10.2 (14.0) 7.4 (77.6)
Cytogenetic prognosis N (%)

1 1 (5.6) 1 (14.3) 0 (0.0) 0 (0.0)
2 12 (66.7) 3 (42.9) 4 (80.0) 5 (83.3)
3 5 (27.8) 3 (42.9) 1 (20.0) 1 (16.7)

ELN
Favorable 3 (16.7) 1 (14.3) 2 (40.0) 0 (0.0)
Intermediate 10 (55.6) 3 (42.9) 2 (40.0) 5 (83.3)
Unfavorable 5 (27.8) 3 (42.9) 1 (20.0) 1 (16.7)

Blasts (blood) at diagnosis Mean (SD) 42.6 (34.4) 37.6 (27.7) 53.0 (44.2) 39.8 (37.2)
Blasts (BM) at diagnosis Mean (SD) 63.7 (29.2) 56.9 (24.9) 73.0 (34.8) 63.8 (32.0)

initially manually pre-gated, exported, and then analyzed with
FLOCK algorithm.

Results obtained with manual gating were compared with
results obtained with FLOCK. Annotated clusters were merged
and graphically compared to the equivalent subsets obtained with
manual gating (Figure 1A). Frequencies of FLOCK-gated and
manually gated subsets of NK cells in HV samples with respect
to CD56, CD57, KIR expression were comparable (Figure 1B).
Thus, for each sample, proportions of NK cells within the dif-
ferent clusters with the two approaches were found to be fully
consistent.

Automated Gating with FLOCK Algorithm
Evidences NK Subpopulations
Natural killer cell maturation profiles in HV and AML patients
were defined according to FLOCK output. For cluster annotation
of FLOCKoutput data, we used an unsupervised hierarchical clus-
tering with MeV (Figures 2A,B). Overall, the procedure enabled
identification of five subsets of NK cells based on the expression
of CD56, CD57, KIR, and NKG2A in both patients and healthy
volunteers. NK cell differentiate from CD56bright to CD56dim phe-
notype. CD56bright phenotype then defines the most immature
subset of circulating NK cells. In CD56dim NK cells, expression
of NKG2A, KIR, and CD57 define several maturation stages (18).
Automatic gating procedure with FLOCK enable identification of
these different subsets of NK cells, with CD56bright NK cells, and
among CD56dim cells, four subsets defined by the positivity or the
negativity of KIR and CD57 (Figures 2A,B). In accordance with

previous studies, KIR positivity inversely correlates with NKG2A
expression, in both HV and AML patients (18, 29). We then
considered the repartition of NK cells within the different clusters.
On average, the percentage of CD56bright cells was found to be
significantly lower in AML patients compared to HV (1.3± 3.2%
vs. 6.4± 5.8%, respectively; P= 0.001) (Figures 2C,D).

Overall, 2D mapping of NK maturation profiles enabled the
visualization of high dimensional dataset as well as fast and reli-
able identification of NK cell subsets. With this unsupervised
automated gating of NK cells with four parameters, the algorithm
was able to distinguish all the NK subsets that were previously
described in the literature, but did not identify any new popu-
lation. Notably, NKG2A was not informative in NK cell cluster
definition by the algorithm.

AML Patients Present Distinct
Maturation Profiles
Patients and HV were clustered according to the percent-
ages of NK cells represented in the CD56bright, KIR−/CD57−,
KIR+/CD57−, KIR−/CD57+, KIR+/CD57+ clusters with MeV
using unsupervised hierarchical clustering (HClust, Pearson cor-
relation) (Figure 3). This representation allowed defining three
distinct groups of patients. The first group of patients (N = 7)
presented a NK cell maturation profile with 50% (range: 40–67%)
NK cells in the cluster KIR−/CD57− cluster. Considering the
repartition of NK cells within the different clusters, there was no
significant difference between this group and HV. The second
group of patients (N = 5) presented an intermediate maturation
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FIGURE 1 | Comparison of manually gated data and FLOCK analysis. (A) NK clusters were automatically defined by FLOCK and manually annotated as
CD56bright or CD56dim NK cells, among which four additional subsets were defined according to KIR and CD57 expression. For a given sample, clusters were defined
by FLOCK. The clusters were merged when corresponding to the same NK subpopulation and visualized with FlowJo for comparison with manual gating. Each color
represents the merging of clusters corresponding to the same population. (B) Frequencies of FLOCK and manually gated subsets of NK cells with respect to CD56,
CD57, KIR expression. Data are presented as mean±SD of Healthy Volunteers (N= 18).

profile, with 43% (range: 30–52%) NK cells in the KIR−/CD57−

cluster and 37% (range: 28–48%) NK cells in the KIR+/CD57+

cluster. For this group, the proportion of NK cells in the CD56bright

cluster was significantly lower than HV (P= 0.05). Of note, the
apparent high frequency of cells in the cluster KIR+/CD57+

was not significantly different from HV. The third group of
patients (N = 6) presented an hyper-maturation profile, with
proportions of NK cells of 13% (range: 7–24%) NK cells in
the KIR−/CD57− cluster and 58% (range: 34–83%) NK cells
in the KIR+/CD57+ cluster. For this group, the proportion of
NK cells in the KIR−/CD57− cluster was significantly lower

than HV (P< 0.05) whereas the proportion of NK cells in the
KIR+/CD57+ cluster was significantly higher (P< 0.01).

In conclusion, we observed that NK cells in AML patients
display marked differences compared to HV, with a strong inter-
individual variability, defining three distinct groups of patients
according to NK maturation profiles.

DISCUSSION

Accumulating evidence highlights NK cell parameters as potential
prognostic factors in cancer patients, which provides a strong
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FIGURE 2 | NK maturation in HV and AML patients. NK maturation profiles in HV (A) and AML patients (B) were defined according to FLOCK output and NK
subpopulations were represented using Manhattan Hierarchical Clustering based on CD56, KIR, NKG2A, and CD57 expression. Five clusters were defined; each
individual is represented in three to five clusters, depending on the presence or absence of NK cells in the different clusters. Percentages of NK cells within clusters
are presented as mean±SD in HV (C) and AML (D).

rationale for developing therapeutic strategies aiming at restoring
NK cell functions (4–9). However, reaching this point warrants
better characterization of NK cell alterations in cancer patients as
well as elucidation of the mechanisms involved (30, 31).

Among important parameters involved in NK cell func-
tions, the maturation process is of particular importance; since,

depending on the maturation stage NK cells will gain or lose
important functions, such as migration capacities, effector func-
tions, response to cytokines, proliferative capacities, IFN-γ pro-
duction, or cytotoxic activity (8, 14, 32). All these functions
are absolutely required for a functional effect against tumor
cells. Thus alteration of the maturation process is likely to
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FIGURE 3 | AML patients can be classified into three distinct groups according to NK maturation profiles. Left panel: patients and HV were grouped
according to the percentage of NK cells represented in the CD56bright, KIR−/CD57−, KIR+/CD57−, KIR−/CD57+, KIR+/CD57+ clusters using hierarchical
clustering (HClust, Pearson correlation). This second step of clusterization enabled to define three distinct groups of patients. The frequency of NK cells in each subset
for each individual is presented in the right panel. The dashed lines represent the mean frequencies of NK subpopulations in HV and in the three groups of patients.

impact NK cell functions, with direct consequences on patients’
survival (33).

Natural killer cell maturation is a multistep process marked
by differential expression of many markers, among which CD56,

NKG2A,KIR, andCD57 are of particular importance (18).NKcell
subsets can also be defined according to the expression of CD16
and CD56. For instance, it has been described discrete stages of
NK cell differentiation. First, CD56bright NK cells expressing low
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levels of CD16 correspond to a transition between early immature
CD56bright CD16− NK cells and CD56dim CD16+ NK cells (34).
Variations of NK cells in these different compartments have been
described in several clinical conditions such as HIV infection
and in aging (13). In addition, another NK cell population of
CD56−CD16+ cells has been described and found expanded in
particular pathological conditions such as HIV or hepatitis C
virus infection (35, 36). Although these discrete stages have been
evidenced, the functions of these cells remain elusive, particularly
in the context of AML.

Whether NK maturation is impacted by the close proximity
with leukemic blasts is an important question. Under physiolog-
ical conditions, circulating NK cells differentiate from CD56bright

to CD56dim phenotype. Then NK cells lose NKG2A expression,
and gain KIR expression. CD57 is acquired at later stages of dif-
ferentiation, and defines a subset of NK cells with low proliferative
capacities and high cytotoxic potential (16, 18). In our study, we
show that NK cells in AML patients present marked differences
compared to Healthy Volunteers. The proportion of CD57+ NK
cells is increased in one-third of patients, at the expense of less
mature NK subsets, with a drastic decrease of immature NK
cells. Although CD57+ NK cells have been described as the most
cytotoxic subset of NK cells, in the context of AML, we still need
to check whether these cells display efficient cytotoxic activity on
cancer target cells. In addition, the impact of these extreme mat-
uration profiles on clinical outcome warrants further exploration
on a larger cohort of patients.

Natural killer cell maturation has been studied in human
breast and lung cancer (37, 38). In contrast to our study, tumor-
infiltrating NK cells display an immature phenotype, with high
percentages of CD56bright NK cells compared to healthy tissues.
A notable difference in our study is that we analyzed periph-
eral blood cells, whereas the previously cited studies were done
with infiltrating NK cells. Mamessier et al. hypothesized that
NK cells were de-differentiated rather than immature cells; this
could explain the high proportion of CD56bright in tumor tissue,
without direct impact on central NK maturation or migration
of the most immature cells on the tumor site. One additional
difference in the context of AML is that NK cells maturate in close
contactwith tumor cells. This could explain the high proportion of
highly maturated NK cells. However, some authors also described
CD56dimCD57+ enrichment in tumor-infiltrated lymph nodes in
patients with metastatic melanoma, with significant impact on
patients’ survival (33).

Technical advances in flow and mass cytometry now enable
the dissection of NK cell biology with high precision, with the
subsequent need for tools adapted to the analysis of datasets with
unprecedented dimensionality (21, 25, 39). In our study, we used
an automated procedure using the FLOCK algorithm and hier-
archical clustering, which enabled unsupervised identification of
NK subsets and patients profiling based on NK parameters. Auto-
matic gating algorithms are powerful and reliable tools adapted to
high dimensional dataset analysis (25, 40) with potential limita-
tions highlighted in the case of rare populations (40, 41). In the
case of immunomonitoring studies on large cohorts of patients,
the development of such approaches is of primary importance for
data analysis standardization. First, the high number of subjects
included in these studies requires automated gating in order to

reduce the time of analysis. Second, visualization of all the clusters
allows fast and unsupervised identification of cell populations.
Moreover, the hierarchical classification of patients according to
maturation profiles enables the discovery of distinct patterns or
specific subgroups among patients. The clinical consequences
of such observations should be evaluated on larger cohorts of
patients. Considering the potential impact of NK maturation on
clinical outcome, NK cell maturation profiling might be informa-
tive in prognostic immune signatures and may find applications
in patients’ stratification at diagnosis.
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Natural killer (NK) cells participate in the early immune response against melanoma and 
also contribute to the development of an adequate adaptive immune response by their 
crosstalk with dendritic cells and cytokine secretion. Melanoma resistance to conven-
tional therapies together with its high immunogenicity justifies the development of novel 
therapies aimed to stimulate effective immune responses against melanoma. However, 
melanoma cells frequently escape to CD8 T cell recognition by the down-regulation of 
major histocompatibility complex (MHC) class I molecules. In this scenario, NK cells 
emerge as potential candidates for melanoma immunotherapy due to their capacity to 
recognize and destroy melanoma cells expressing low levels of MHC class I molecules. 
In addition, the possibility to combine immune checkpoint blockade with other NK cell 
potentiating strategies (e.g., cytokine induction of activating receptors) has opened new 
perspectives in the potential use of adoptive NK cell-based immunotherapy in melanoma.

Keywords: melanoma, immunotherapy, natural killer cells, adoptive transfer, checkpoint blockade

iNTRODUCTiON

Melanoma is largely resistant to current therapies as chemotherapy and radiotherapy (1) and con-
sequently remains as an important cause of mortality mainly in Caucasians. Metastatic melanoma 
is highly aggressive constituting the most lethal skin cancer (2). Despite the different approaches 
developed for primary prevention of melanoma, its incidence rate continues increasing in many 
countries (3).

It has been postulated that melanoma ability of inducing an immune response contributes to 
patient survival. Thus, melanoma is usually highly immunogenic and induces cytotoxic T cell 
(CTL)-mediated immune responses. Tumor infiltrating lymphocytes (TILs) have been identified in 
melanoma lesions usually associated with spontaneous tumor regression and favorable prognostic 
in primary melanoma (4).

Innate immune responses against melanoma have also been described. Natural killer (NK) cells 
constitute the first line of defense against transformed cells as tumors or virus-infected cells. In vitro 
experiments have established that NK cells can recognize and destroy melanoma cell lines (5–7). The 
role of NK cells against melanoma in vivo has been demonstrated in murine models (8), and it is also 
supported by the observation of NK cell alterations (e.g., down-regulation of activating receptors or 
NK cell exhaustion) in melanoma patients (9, 10) suggesting the development of escape mechanisms 
to evade NK cell-mediated destruction of melanoma cells.
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FiGURe 1 | Bidirectional interaction of NK cells with melanoma cells. 
(A) NK cell recognition of targets depends on the balance between activating 
(KAR) and inhibitory signals (KIR). (B) Activated NK cells secrete perforin (Pfn) 
and granzymes (Gz) that are involved in (C) NK cell-mediated killing of 
susceptible targets. (D) Melanoma cells became resistant to NK cell-
mediated killing by increasing the expression of HLA class I molecules. At the 
same time, NK cells reduce the expression of activating receptors further 
contributing to melanoma escape.
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It is well known that age affects both adaptive and innate 
immune responses against tumors (11–14). The hypothesis of 
immunosurveillance against melanoma is further sustained 
by the recent finding that elderly melanoma patients had a 
higher incidence of melanoma-related mortality than younger 
patients in spite of the lower incidence of sentinel lymph node 
metastasis (15).

Altogether, these characteristics of melanoma reinforce the 
previous consideration of melanoma as a suitable model for 
studying tumor immunity. Here, we review the current state 
of knowledge on NK cell-mediated recognition and lysis of 
melanoma cells and the up to date immunotherapeutic strategies 
against melanoma based on NK cells.

NK Cell-Mediated Anti-Melanoma 
Responses
The key role played by NK cells as a first line of defense against 
tumors has been established in hematological malignancies based 
on the graft-versus-leukemia effect (16–18). However, their role 
against solid tumors such as melanoma is less recognized. It has 
been reported that NK cells contribute to melanoma surveillance 
in  vivo (19–21). NK cells can actively participate in the initial 
phase of tumor development and may control metastasis, but the 
direct action of NK cells against tumor tissue is not well known. 
NK cells may contribute to cancer elimination not only by the 
lysis of tumor cells but also by the secretion of cytokines and the 
promotion of antigen-presenting cell maturation contributing to 
the adaptive immune response (22–24).

Natural killer cells express several activating receptors that 
after cross-linking with their respective ligands trigger NK cell 
degranulation releasing their cytotoxic granule content leading to 
target cell apoptosis (Figure 1A). Research during the last decade 
has highlighted that several activating receptors are involved in 
NK cell recognition of tumor cells (6, 25). The existence of diverse 
ligand–receptor interactions is relevant in melanoma recognition 
since it has been demonstrated that melanoma cells express a 
variety of ligands for different NK cell-activating receptors (7). 
It has been postulated that the integration of multiple activating 
signals may overcome the inhibitory signals mediated by major 
histocompatibility complex (MHC) class I-specific inhibitory 
receptors (25, 26). In addition, different ligands may interact 
with the same activating receptor as occur for NKG2D ligands 
(MICA/B and ULBPs) (27) and DNAM-1 ligands [CD112, also 
named Nectin-2, and CD155 that is considered the poliovirus 
receptor (PVR)] contributing together to NK cell activation (28). 
Recently, the family of receptors that bind nectin and nectin-like 
proteins has expanded. It has been described that some of these 
activating receptors have an inhibitory counterpart that compete 
for the same ligands. For instance, the activating DNAM-1 and 
the inhibitory T cell immunoreceptor with immunoglobulin and 
ITIM domains (TIGIT) compete for the same ligand (CD155) on 
the target cells, regulating NK cell activation (29). The receptor 
TACTILE (CD96) also binds CD155 and may inhibit cytokine 
secretion in mice (30, 31), although its role in human NK cell 
function remains unclear. Other receptor for nectin-like proteins 
is CRTAM that is expressed on NK cells and CD8 T cells upon 

activation and binds nectin-like 2 promoting adhesion to target 
cells (32).

A characteristic that makes melanoma a prototype for the 
study of NK cell-mediated tumor destruction is the fact that 
melanoma cells frequently show altered expression of MHC class I 
molecules (33). Diminished expression of MHC class I molecules 
makes melanoma cells unaffected by CTLs but facilitate NK cell 
killing (34). The altered MHC class I phenotypes on tumor cells 
can be classified as reversible (“soft lesions”) when the MHC class 
I expression can be recovered or upregulated after cytokine treat-
ment or irreversible (“hard lesions”) when the molecular defect is 
structural and cannot be recovered such as loss of heterozygosity 
due to mutations on β2 microglobulin (34). Thus, the molecular 
mechanisms involved in the down-regulation or loss of MHC 
class I molecules in tumor cells have an impact on tumor develop-
ment and in CTL-based immunotherapy efficacy. In experimental 
and clinical models, tumor regression has been associated with 
reversible MHC class I alterations whereas irreversible alterations 
were linked with tumor progression (34–36).

Mature NK cells express CD16 (FcγR-III) that mediates 
antibody-dependent cell cytotoxicity (ADCC) representing 
an effective mechanism of lysis of antibody-coated target 
cells. However, it has been described that NK cell activation is 
associated with metalloproteinase-mediated cleavage of CD16 
molecules. The treatment with metalloproteinase inhibitors 
prevented CD16 down-regulation and increased NK cell poly-
functionality (cytokine production and degranulation). The use 
of metalloproteinase inhibitors in monoclonal antibody (mAb)-
based immunotherapy is proposed to benefit cancer patients (37).
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Melanoma Cells express Ligands for  
NK Cell-Activating Receptors
We have previously analyzed a large panel of melanoma cell lines 
from the “European Searchable Tumor Cell Line and Data Bank” 
(ESTDAB, http://www.ebi.ac.uk/ipd/estdab/) and “Outcome and 
impact of specific treatment in European research on melanoma” 
(OISTER, QLG1-CT-2002-00668) projects demonstrating a high 
expression of ligands for NK-cell activating receptors on these cell 
lines. A high percentage of melanoma cell lines expressed ligands 
for NKG2D (85%) and DNAM-1 (95%)-activating receptors. The 
expression of MICA/B on melanoma cell lines prevailed over 
ULBP expression (7). Several studies have analyzed the expres-
sion of NKG2D ligands on melanoma specimens by immunohis-
tochemistry showing a high heterogeneity. MICA/B expression 
was observed at a higher frequency than ULBP2 on melanoma 
metastasis (38). The analysis of MICA expression on melanoma 
lesions revealed a higher expression in primary melanoma than 
in metastatic melanoma (39, 40). The pattern of expression was 
not homogeneous, and interestingly, in some patients, a prefer-
ential staining was observed at the invasive front (38). Regarding 
DNAM-1 ligands, CD155 was found to be expressed in the 
majority of melanoma cell lines analyzed in contrast with the 26% 
of melanoma cell lines expressing CD112 (7). The expression of 
CD155 on melanoma specimens and melanoma cell lines also 
showed a stronger expression on metastatic melanoma compared 
to primary melanoma (41).

The identification of cellular ligands for the natural cytotoxic-
ity receptors (NCRs) NKp30, NKp44, and NKp46 has remained 
elusive until recently. The use of chimera proteins constructed 
using the extracellular domain of NKp30, NKp44, or NKp46 
fused to the Fc immunoglobulin domain (NCR-Fc) or to an 
amino-terminal isoleucine zipper (NCR-ILZ) allowed to analyze 
the expression of NCR ligands on tumor cells. A high variability 
in the binding of NCR chimeras to melanoma cells was observed 
with melanoma cell lines expressing ligands for NKp30 and 
NKp44 but not for NKp46 (6, 42) and other cell lines express-
ing ligands for NKp46 (43). The study of melanoma lesions in 
patients with metastatic tumors identified NKp44 ligands in all 
melanoma samples analyzed and NKp30 ligands in the major-
ity of samples, whereas the expression of NKp46 ligands was 
null (44). The expression of NCR ligands was also analyzed on 
melanoma cells from lymph nodes and paired samples obtained 
from skin metastasis. Melanoma cells from lymph nodes showed 
staining with NKp44-Fc and NKp46-Fc chimeras and were more 
susceptible to NK cell-mediated lysis than melanoma cells from 
skin metastasis that had low or negative staining with NCR-Fc 
(6). These differences probably represent different stages of the 
disease. Thus, it has been proposed that in early stages, melanoma 
cells overexpress NCR ligands and during melanoma progression 
NCR ligand expression is down-regulated (6, 43) representing an 
immunoescape mechanism used by melanoma.

Recently, several cellular ligands for NCRs have been identi-
fied. NKp30 recognizes B7-H6 that has been found expressed on 
melanoma cell lines (45), human leukocyte antigen (HLA)-B-
associated transcript 3 (BAT3) (46), and CMV pp65 tegument 
protein (47). The proliferating cell nuclear antigen (PCNA) has 

been recognized as a NKp44 ligand (48, 49). In contrast, cellular 
ligands for NKp46 remain elusive. The characteristics of NCR 
ligands identified so far suggest that these receptors may recognize 
damage-associated molecular patterns related to cellular stress 
(e.g., tumor transformation or infection) (50). In vitro receptor 
blocking experiments showing NCR-mediated lysis of melanoma 
cell lines further support the role of this receptor family in the 
control of melanoma (5, 6, 51).

NK Cell–Melanoma interaction
Natural killer cell recognition and lysis of melanoma cells involve 
different receptor–ligand interactions including NKG2D-, 
DNAM-1-, and NCRs-activating receptors. The expression pat-
tern of ligands for activating receptors on melanoma and the 
expression of MHC class I molecules recognized by inhibitory 
receptors will determine the activation of NK cells (Figures 1A–
C). As indicated before, NK cell lysis of melanoma cells may 
depend on the disease stage and the anatomical location due to 
the differential expression of ligands (6, 52). Antibody blocking 
experiments have demonstrated that usually melanoma cell lysis 
requires signaling through several activating receptors (25, 52).

The role of NKG2D in NK cell recognition and lysis of mela-
noma cells has been extensively discussed. Whereas, NKG2D is 
clearly involved in the lysis of melanoma cells expressing high 
levels of NKG2D ligands, and NCRs and DNAM-1 are the 
receptors involved in the elimination of melanoma cells with low 
expression of ligands for NKG2D. Thus, it has been described that 
NCRs and DNAM-1 cooperation is frequently involved in the 
lysis of melanoma cells both in humans and in mice (6, 53). The 
participation of several activating receptors in the activation of 
NK cells against melanoma contributes to the effective NK cell-
mediated lysis of these cells (Figure 1).

The majority of studies analyzing effector–target interac-
tions in melanoma are performed using cell lines cultured as 
monolayer or in suspension testing ligand expression correlation 
with CTL- or NK cell-susceptibility to lysis. Recently, the use of 
three-dimensional (3D) cell culture systems has been proposed 
for the analysis of melanoma interaction with lymphocytes. Thus, 
melanoma cells grown in 3D architecture showed lower recogni-
tion by melanoma-specific CTLs compared to those melanoma 
cells growing in 2D monolayers. It has been proposed that culture 
in 3D affects the expression of molecules involved in melanoma 
recognition by CTLs (54, 55). We can speculate that 3D culture 
also alter the expression of ligands for NK-cell activating recep-
tors increasing melanoma resistance to NK cell lysis in a similar 
way as occurs in melanoma tissue.

An expansion of highly cytotoxic CD57+ NK cells has been 
found in tumor-infiltrating lymph nodes in melanoma patients. 
Their potential use as a source of cytotoxic NK cells for adop-
tive immunotherapy is discussed (56). The expansion of highly 
mature CD57+ NK cells has been observed in CMV-seropositive 
individuals, and it is further increased by age (11, 12). These cells 
represent highly differentiated NK cells with low proliferative 
capacity and high cytotoxicity. Although these cells have a lower 
expression of NKp30 and NKp46 (57–59), the expression of 
the activating receptors DNAM-1 and NKG2C is increased on 
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the CD57+ subpopulation of CD56dimCD16+ NK cells in CMV-
seropositive young donors, but it is reduced in the old individuals 
(59). These changes in the expression of cytotoxicity activating 
receptors may have functional relevance not only against CMV 
infection but also against other age-associated diseases as cancer. 
Thus, the potential use of CD57+ NK cells in melanoma immuno-
therapy requires a detailed analysis of their cytotoxic capacity and 
the expression of activating receptors since it depends on other 
factors as CMV latent infection and age (11, 12, 59).

Checkpoints in NK Cell Activation
Natural killer cell activation depends on a tune balance medi-
ated by inhibitory and activating signals transmitted through 
surface receptors upon contact with their respective ligands. In 
this process, the interaction between MHC class I molecules on 
target cells and MHC class I-specific inhibitory receptors on NK 
cells represents a major checkpoint regulating NK cell functions 
(60). Killer cell immunoglobulin-like receptors (KIR) are a fam-
ily of highly polymorphic receptors that recognize MHC class I 
molecules. Inhibitory and activating KIRs have been described. 
KIRs govern NK cell education and function and inhibitory KIR–
HLA interactions may be associated with failed tumor immuno-
surveillance mediated by NK cells (61). NKG2A, an inhibitory 
C-type lectin-like receptor, forms heterodimers with CD94 and 
recognizes HLA-E molecules (62–64). The immunoglobulin-like 
transcript-2 (ILT-2) specific for HLA-G is also expressed by NK 
cells. It has been observed an inverse correlation between ILT-2 
expression on T cells and clinical response in melanoma patients 
treated with oncolytic virus immunotherapy (65).

The discovery of inhibitory receptor-recognizing ligands other 
than MHC class I molecules such as TIGIT or the programed cell 
death-1 (PD-1) molecules constitute novel checkpoints in NK cell 
activation that requires further consideration (22, 31, 66–68). The 
PD-1/PD-L1 axis has been described as a checkpoint that regu-
lates NK cell functions in tumor-bearing mice. Thus, blockade 
of PD-1/PD-L1 in nude mice resulted in anti-metastatic effect 
supporting the role of PD-1 on NK cell function (69).

Together with the expression level of MHC class I molecules 
on melanoma cells and the expression of MHC class I-specific 
inhibitory receptors on autologous NK cells, the expression of 
activating receptors on NK cells, and their ligands on melanoma 
are key actors in the final balance leading to an effective NK cell 
activation (9, 25).

MeLANOMA eSCAPe MeCHANiSMS TO 
AvOiD NK CeLL CYTOTOXiCiTY

Immune evasion by tumor cells through the down-regulation of 
MHC class I molecules to avoid CD8 T cell recognition constitutes 
a well-known mechanism used by melanoma (33). Melanoma 
loss of MHC class I expression increases its susceptibility to NK 
cells. As indicated above, the altered expression of HLA class 
I antigens is frequently found in melanoma (33), and several 
studies have shown that melanoma cells evolve down-regulating 
class I antigens to avoid being recognized by CD8+ T cells (34, 
36). However, the analysis of the HLA class I antigen alterations 
in melanoma cell lines from ESTDAB showed that the most 

frequently observed phenotype is the down-regulation of HLA-B 
locus that is reversible after treatment with IFN-γ whereas the 
total lack of expression as a consequence of gene mutations or 
deletions leading to HLA heavy chain or β2m deficiency is only 
found in a minor group of samples (33). The bidirectional interac-
tion between NK cells and melanoma cells induces changes in 
both effector and target cells (Figure 1D). It has been shown that 
melanoma immunoediting by NK cells make melanoma cells 
resistant to NK cell-mediated killing by increasing the expression 
of HLA class I molecules (70) and that blockade of HLA antigens 
with mAbs results in increased NK cell-mediated killing, indicat-
ing that HLA antigens expressed on melanoma cells interact with 
NK-inhibitory receptors avoiding NK cytotoxicity (71).

It has been also proposed that NK cell-mediated immuno-
surveillance against melanoma can generate immunoselection 
of melanoma cell variants with low expression of ligands for 
activating receptors that are resistant to NK cells (72). Thus, 
MICA and NCR ligand expression is lower in metastatic mela-
noma compared to primary melanoma lesions (6, 43). Shedding 
of soluble ligands for activating receptors constitutes another 
mechanism used frequently by melanoma cells to escape to the 
action of effector cells (25). Soluble NKG2D ligands MICA and 
ULBP2 are released by melanoma cells and can down-regulate 
the expression of NKG2D on effector cells. Thus, soluble ULBP2 
was associated with lower survival in melanoma patients (38). 
NKG2D ligands can be released by ADAM protease-mediated 
shedding or secreted in exosomes with different functional out-
comes (73). Shedding of B7-H6, a ligand for NKp30, by tumor 
cells has been recently described (74) also contributing to tumor 
escape from NK cells.

The down-regulation of NK cell-activating receptors has been 
described as an additional mechanism that contributes to tumor 
escape in cancer patients (25, 75–77). Thus, the decreased expres-
sion of NKp30 on NK cells from metastatic melanoma patients 
was associated with a reduced ability to kill melanoma cells (44). 
NK cells in stage IV melanoma patients displayed low levels of 
activating receptors that correlated with lower survival (20). 
IFN-γ released by NK cells induces indoleamine 2,3-dioxygenase 
(IDO) expression and prostaglandin E2 (PGE2) production by 
melanoma cells that inhibit NK cell function by down-regulating 
the expression of NKp30- and NKG2D-activating receptors 
further contributing to melanoma escape (78, 79).

T cell immunoreceptor with immunoglobulin and ITIM 
domains signaling after interaction with its ligands suppresses NK 
cell production of IFN-γ (67). In advanced melanoma patients, 
CD112 and CD155 were found upregulated in melanoma cells. 
In these patients, the expression of TIGIT either on CD8+ T cells 
or NK cells did not show significant differences compared with 
healthy donors whereas the expression of DNAM-1 on CD8+ T 
cells was down-regulated (66). These results suggest that inhibi-
tory signaling through TIGIT can contribute to immune escape 
in melanoma.

Finally, suppression of NK cells by factors or cytokines 
secreted either by tumor cells or other cells in the tumor microen-
vironment such as myeloid derived suppressor cells (MDSCs) or 
macrophages can also contribute to immunoescape of cytotoxic 
cells (22).

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


TABLe 1 | NK cell-based immunotherapeutic strategies for melanoma.

Category Strategy Start date–
completion date

Melanoma patients Phase/status identifier/reference

Autologous NK 
cells

LAK cells in combination with.IL-2 (i.v.) 1985 Seven metastatic melanoma Phase I 
completed

Rosenberg et al. (92)

Autologous NK cells combined with IL-2 
(i.v.) and chemotherapy

2006–2009 Seven metastatic melanoma Phase II 
completed

NCT00328861 
Parkhurst et al. (93)

Autologous NK cells and bortezomib 
(proteasome inhibitor)

2015 recruiting 
participants

Hematological and solid tumors 
including metastatic melanoma

Phase I NCT00720785

Allogeneic NK 
cells

Allogeneic haploidentical NK cells 2004 10 metastatic melanoma Phase I 
completed

Miller et al. (95)

Allogeneic haploidentical NK cells (from 
PBMC) combined with chemotherapy

2009–2012 Refractory or relapsed melanoma Phase I/II 
completed

NCT00846833

Mismatched LAK followed by IL-2 (i.v.) 2009–2014 Malignant melanoma Phase II 
completed

NCT00855452

NK cell line NK92 cells One metastatic melanoma Phase I 
completed

Arai et al. (100)

Checkpoints/
immune 
modulators

anti-KIR and anti-CTLA-4
anti-KIR and anti-PD-1

2012–2015
2015 recruiting 
participants

Advanced solid tumors
Advanced solid tumors

Safety study
Phase I

NCT01750580
NCT01714739
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All these mechanism together may contribute to the alterations 
of NK cell phenotype and function described in cancer patients.

NK CeLL-BASeD iMMUNOTHeRAPY iN 
MeLANOMA

Different strategies of melanoma immunotherapy developed dur-
ing the last decade focused on the use of checkpoints inhibitors 
or immune modulators, oncolytic virus therapy, cancer vaccines, 
adoptive T cell, and NK cell therapies and the use of cytokines (80). 
Many of those clinical trials are currently underway and include 
combined therapies. Here, we described those strategies focused 
on NK cell-mediated activation against melanoma or those 
immunotherapies that, although are not specifically directed to 
enhance NK cell function, may favor NK cell activation (Table 1).

Modulation of NK Cell Responses
There are different strategies to exploit the possibility to modulate 
NK cells in melanoma immunotherapy. The use of new forms of 
cytokine therapies or mAbs against tumor antigens can directly 
contribute to enhance NK cytotoxicity whereas immune check-
points regulators constitute a novel immunotherapy strategy 
to modulate immune responses through their interaction with 
inhibitory receptors on immune cells.

Cytokines
Different cytokines have demonstrated a role in tumor immu-
nity. Two cytokines have been approved by the Food and Drug 
Administration (FDA) for melanoma treatment as single agent: 
high doses of IL-2 for metastatic melanoma and IFN-α for the 
adjuvant therapy of Stage III melanoma based on the results 
obtained in clinical trials using high doses of IL-2 in metastatic 
melanoma patients (81) and IFN-α that demonstrated a sig-
nificant benefit in relapse-free and overall survival of high-risk 
melanoma patients (82). Novel strategies have been developed 

such as bifunctional molecules consisting in cytokines fused to 
antibodies that allow the targeted delivery of the cytokines or the 
expression of cytokines in viral vectors or irradiated tumor cells 
for their use as vaccines. In addition, cytokines such as IL-2 or 
IL-15 are also used for the in vitro expansion of NK cells and T 
cells for adoptive transfer (83).

Checkpoint Blockade
As indicated before, one of the major checkpoints in NK cell 
activation is mediated by MHC class I-specific inhibitory recep-
tors interacting with their ligands on target cells. Thus, blockade 
of this checkpoint constitutes an emerging area of research. Two 
NK cell checkpoint inhibitors lirilumab (anti-KIR mAb) and 
IPH2201 (anti-NKG2A mAb) are currently under revision. A 
safety study to analyze anti-KIR mAb in combination with ipili-
mumab (anti-CTLA4) (NCT01750580) is completed and a Phase 
I clinical trial of anti-KIR mAb in combination with anti-PD-1 
is still recruiting patients (NCT01714739). IL-18 secretion by 
tumor cells upregulates PD-1 on NK cells (84). It has been shown 
that IL-18 secreted by tumor cells could elicits an expansion of 
NK cells overexpressing PD-L1 with immunoablative functions 
by reducing the number of mature NK cells and dendritic cells 
(DC) in a PD-L1-mediated manner, at least in the B16F10 
melanoma model in mice (85). It has been suggested that the 
use of anti-IL-18 neutralizing antibodies in combination with 
anti-PD-1 mAb (nivolumimab) may bypass NK cell inhibition 
by PD-1 (22). Blocking several immune checkpoints can achieve 
synergistic anti-tumor effect with therapeutic benefits.

The clinical efficacy and pharmacological activity of anti-
NKG2A mAb IPH2201 are going to be analyzed in clinical trials 
currently recruiting patients with squamous cell carcinoma 
of the oral cavity for an efficacy study of pre-operative use of 
IPH2201 (NCT02331875) or for a dose-ranging study of patients 
with high grade serious carcinoma of ovarian, fallopian tubes, 
or peritoneal origin (NCT02459301). The results of these trials 
may open new perspectives for melanoma treatment.
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Increased tumor sensitivity to NK cells has been observed 
after treatment with proteasome inhibitors, doxorubicin or 
histone deacetylase inhibitors that upregulates the expression 
of NKG2D ligands, the secretion of proinflammatory cytokines, 
or the expression of TNF receptors. However, when combining 
these therapies with NK cell adoptive transfer, a strict control of 
NK cell function should be taken into account (22). In addition 
to the checkpoint blockade exerted by mAbs directed to receptors 
on cytotoxic cells or their ligands on tumors, mAbs may also act 
through ADCC or by redirected lysis of target cells.

Bispecific Killer Engagers
Novel strategies are in progress aimed to redirect NK cell 
cytotoxicity by CD16-directed bispecific and trispecific killer 
engagers (BiKEs and TriKEs respectively) constructed using one 
(BiKEs) or two (TriKEs) variable single-chain fragments against 
tumor-associated antigens. BiKEs and TriKEs trigger NK cell 
activation through CD16 (86). When combined with an inhibitor 
of ADAM17 to prevent CD16 shedding after NK cell activation, 
an enhancement of tumor cell lysis was observed (37, 87). The 
use of CD16-directed BiKEs has been limited so far to malignant 
hematological diseases.

Adoptive NK Cell Therapy in Melanoma 
Patients
Optimal adoptive cancer immunotherapy should link both innate 
and adaptive immune responses. NK cells may contribute to the 
adaptive immune responses by favoring DC maturation and 
priming of T cells. The bidirectional crosstalk between NK cells 
and DC was demonstrated for the first time by Gerosa et al. in 
2002 (88). NK cells activated by IL-2 or by mature DC directly 
induced DC maturation and enhanced DC ability to stimulate 
naïve CD4+ T cells. These effects were cell contact dependent, 
and IFN-γ and TNF secreted by NK cells also contributed to 
DC maturation (88). The interaction of NK cells and DC in the 
tumor microenvironment has shown to play a pivotal role in 
the induction of tumor-specific immune responses. However, 
tumor-induced immunosuppressive environment can deregulate 
the interactions of NK cells with DC (89, 90). Co-culture of DCs 
and lymphokine-activated killer (LAK) cells resulted in NK cell 
activation associated with enhanced inflammatory cytokine 
production and lysis of melanoma cells. LAK cell-mediated 
induction of DCs maturation has a significant effect on priming 
of anti-tumor CTLs (91).

Autologous NK Cells
Lymphokine-activated killer cells were used for the first time in 
melanoma patients by Roserberg et  al. (92) showing complete 
remission in one patient with metastatic melanoma that lasted at 
least 10 months after combined therapy (LAK and IL-2).

Clinical trials of adoptive NK cell-based immuno-
therapy against melanoma are very limited. A Phase II trial 
(NCT00328861) completed in 2009 combined autologous NK 
cells with intravenous (i.v.) IL-2 and chemotherapy. Although 
no clinical effect was observed, the transferred NK cells 

persisted in the peripheral blood from 14  weeks to several 
months suggesting that combined therapy with antibodies 
could be beneficial (93).

Another trial using autologous NK cells combined with the 
proteasome inhibitor bortezomib is ongoing (NCT00720785). 
The use of bortezomib has been related to the upregulation of 
NKG2D ligands on tumor cells that may promote NK cell recog-
nition and lysis of tumor cells (22).

Because, the expression of activating receptors on NK cells 
from tumor-bearing patients is frequently found down-regulated, 
the efficacy of autologous NK cells expanded in vitro is limited 
by the activating receptor phenotype of expanded NK cells that 
should be taken into consideration.

Allogeneic NK Cells
Few clinical trials using allogeneic NK cells for melanoma treat-
ment have been reported usually combined with chemotherapy. 
It has been shown that NK cell activation of activating receptors 
together with administration of anti-tumor antibodies have 
substantial anti-cancer effects supporting that the combination 
of allogeneic NK cells and antibody therapy can be an efficient 
strategy in clinical trials (94). A phase I trial using allogeneic 
NK cells in 10 metastatic melanoma patients showed successful 
engraftment of NK cells. Four melanoma patients demonstrated 
stable disease after the first cell infusion but the disease progressed 
few weeks after a second infusion of NK cells. In the same trial, 
5 of 19 poor prognosis AML patients achieved complete remis-
sion after NK cell infusion showing best results when KIR ligand 
mismatched donors were used (95). The role of haploidentical 
NK cell transfer was analyzed in a clinical trial (NCT00846833) 
in patients with refractory or relapsed malignant melanoma. 
A recent study analyzed the adoptive transfer of mismatched 
lymphocytes activated in  vitro with recombinant human IL-2 
(NCT00855452) for the induction of graft-versus-tumor effect in 
metastatic solid tumors including melanoma. The results of these 
trials have not yet been published.

Adoptive Transfer of NK Cell Lines
The difficulties of expanding large numbers of clinical grade NK 
cells (96) together with the lower transduction efficacy of primary 
NK cells are major limiting factors for their clinical application 
compared to NK cell lines. Further developments of viral vectors 
such as the alpharetroviral platform are required to fully exploit 
NK cells in cancer immunotherapy (97). It has been postulated 
that the use of NK cell lines that can be easily expanded in vitro 
could facilitate the development and standardization of protocols 
for the use of NK cells in therapy. The human NK cell line NK-92 
(98) represents an alternative to donor-derived peripheral NK 
cells since it can be maintained in vitro and expanded to large 
numbers under good manufacturing practice (GMP) conditions 
for immunotherapy (99). The NK-92 cell line was evaluated in a 
Phase I trial in one metastatic melanoma patient that showed a 
minor response (100). The toxicity was low and this cell line was 
approved by the FDA for the treatment of melanoma. The pos-
sibility of engineered NK cell lines to express chimeric receptors 
has been also considered (101).
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Chimeric Antigen Receptor-Modified NK Cells
A strategy to redirect NK cell cytotoxicity against melanoma is 
the use of chimeric antigen receptor (CAR)-modified NK cells. 
CARs consist of an external domain that specifically recognizes 
a given tumor antigen, linked with one or more intracellular 
signaling domains that trigger cytotoxic cell activation. NK 
cell lines, peripheral blood NK cells, and NK cells derived from 
human pluripotent stem cells can be engineered to express CARs. 
These CAR-transduced NK cells can specifically recognize and 
kill a variety of tumor targets expressing the surface target 
antigen [for review in Ref. (101, 102)]. It has been shown that 
the CAR-transduced NK92 cell line, NK-92MI-GPA7-zeta can 
recognize the melanoma-associated gp100 peptide in the context 
of HLA-A2, showing redirected killing of melanoma cell lines and 
primary melanoma (103). These results support the use of CAR 
engineering to redirect the specificity of NK cells to augment their 
cytotoxicity against tumors including refractory melanoma cells.

CONCLUSiON

Stimulation of the immune system has been considered a possible 
therapy for melanoma for many years. Experimental and clinical 
efforts have focused in exploring possibilities to use different 
elements of the adaptive and innate immune responses to control 
and eliminate melanoma cells. However, the heterogeneity of 
these tumors makes necessary a detailed analysis of the possible 
interactions between the melanoma and the immune system cells. 
NK cells are undoubted components within the anti-melanoma 
immunotherapy arsenal. The potential efficacy of NK cell-based 
immunotherapy in melanoma patients will rely on melanoma 
phenotype (expression of ligands for activating receptors and low 
expression of MHC class I molecules for the use of autologous 
NK cells), NK cell status (no exhausted, no senescent), NK cell 

phenotype (high level of NKG2D, NCRs and DNAM-1; CD16 
expression for ADCC), microenvironment (proinflammatory 
versus inhibitory), NK cell crosstalk with other cell types (e.g., 
DCs, macrophages, MDSCs). The better understanding of the 
interactions between NK cells and melanoma will open the pos-
sibility to use combined strategies of checkpoints blockade and 
cytokine or activating receptor stimulation to enhance autolo-
gous NK cell cytotoxic capacity. These strategies should also be 
considered to modulate NK cell functionality in protocols of 
adoptive therapy against melanoma using autologous, allogeneic, 
or engineered ex vivo-expanded NK cells.
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