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Editorial on the Research Topic
Artificial intelligence-based medical image automatic diagnosis and
prognosis prediction

Computer-assisted diagnosis and prognosis prediction (especially with medical
images) consist of a series of long-standing tasks, including classification, regression,
segmentation, tracking tasks, etc. Deep learning is one of the most important
breakthroughs in the field of artificial intelligence over the last decade. It has
achieved great success because of enormously increasing data and computation
resources. Not only there has been a constantly growing flow of related research
papers, but also substantial progress has been achieved in real-world applications
including axillary lymph node (ALN) metastasis status prediction, radiotherapy
planning, histological image understanding and retina image recognition.

This Research Topic seeks to present and highlight the latest development on applying
advanced deep learning techniques to cover the promising and novel deep learning
algorithms in automatic diagnosis and prognosis prediction. It has attracted a fair
number of submissions from researchers active in the study of automatic diagnosis and
prognosis prediction using medical images or/and other sources of information. After careful
peer review, nine manuscripts have finally been selected for publication in this Research
Topic, covering the topics including advanced Transfer Learning techniques that transfer
knowledge from other tasks or modals, multi-modal Learning techniques that enable multi-
modal diagnosis or prognosis prediction, novel multi-task learning framework that enables
joint diagnosis and prognosis prediction in a single model and advanced Unsupervised/
Semi-Supervised/Weak-Supervised Learning techniques which boost performance with
limited annotations.

In the field of cortical surface reconstruction in brain MR, An et al. proposed ResAttn-
Recon, a residual self-attention based encoder-decoder framework with skip connections.
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They also proposed a truncated and weighted L1 loss function to
accelerate network convergence, compared to simply applying the
L1 loss function. The average symmetric surface distance (AD) for
the inner and outer surfaces is 0.253 ± 0.051 and the average
Hausdorff distance (HD) is 0.629 ± 0.186, which is lower than
that of DeepCSR, whose absolute distance equals 0.283 ± 0.059 and
Hausdorff distance equals 0.746 ± 0.245.

In the area of object detection from Hu et al., it indicated that
small object detection is one of the most challenging and important
problems especially in medical scenarios. Complementary to the
researches with attention to feature extraction and data
augmentation of small objects, it proposed a method called pixel
level balancing (PLB), which takes into account the number of pixels
contained in the detection box as an impact factor to characterize the
size of the inspected objects. This factor is then used as a weight in
the training loss, so as to improve the accuracy of small object
detection. Finally, the PLB operation is applied in the RPN stage of a
two-stage detector. The experimental results demonstrated that it
can improve the detection effect of small objects and maintain the
accuracy of medium and large objects. Overall, the PLB method
shows promise in addressing the challenges of small object detection
in medical scenarios, particularly in tasks with higher requirements
for small objects like blood cell detection.

For vital signs estimation, photoplethysmography (PPG) is a
non-invasive method that measures the changes in blood volume in
the skin using light. PPG-based devices can estimate blood pressure
(BP), heart rate (HR), heart rate variability (HRV), and oxygen
saturation (SpO2) from the PPG signal. However, PPG
measurements may be influenced by factors such as
subcutaneous fat, skin color, and sex. The paper from Nachman
et al. presents a study that compares BP measurements between a
PPG-based device and a cuff-based device in different groups of
people based on sex, BMI, and skin color. The study found that the
PPG-based device had high accuracy and agreement with the cuff-
based device across all groups, regardless of their personal
characteristics. It also concluded that the PPG-based device can
provide valid BP measurements for various populations and enable
personalized BP management.

In fundus imaging, a deep learning method from Yao et al. called
FunSwin is proposed to analyze diabetic retinopathy grade and
macular edema risk based on fundus images. The method uses Swin
Transformer, a hierarchical vision transformer, as the main
framework, and integrates transfer learning and data
augmentation strategies to improve the performance. The
method is claimed to outperform other state-of-the-art methods
in both binary and multiclass classification tasks on the MESSIDOR
dataset, which contains 1,200 fundus images with labels for diabetic
retinopathy and age-related macular degeneration.

For histopathological image analysis, Xiao et al. propose a deep
learning framework called LAD-GCN for automatic estimation of
growth patterns for lung adenocarcinoma diagnosis (LAD). The main
idea is to jointly utilize a GraphConvolutional Network (GCN) to extract
spatial structure features of cells and a Convolutional Neural Network
(CNN) to extract global semantic features from histopathological images.
To achieve this, cell nuclei in the images are first segmented using an
existing instance segmentation model. By exploiting the complementary
information, the proposed method achieves improved performance, as
quantitatively validated on a lung adenocarcinoma dataset.

For computed tomography (CT) data analysis, the work by
Feng et al. analyzes the influential factors from radiomics
signature of pericoronary tissue (PCT) in coronary CT
angiography (CCTA) for functional ischemia, measured using
CT-derived fractional flow reserve (CCT-FFR). They segmented
PCT from CT images and extracted 1,691 radiomic features of
each vessel. They then performed feature selection using the
Boruta algorithm built on top of random forest classifier to
identify most contributive features to functional ischemia. The
machine learning derived radiomics signature shows significant
association in the study.

In the area of PET imaging, two experimental studies on
Flourine-18 fluorodeoxyglucose positron emission tomography/
computed tomography (18F-FDG PET/CT) images for diagnosis
and monitoring of fatal diseases stand out of the selective
reviewing process. The study by Shi et al. aims to investigate
the role of radiomics analysis on 18F-FDG PET images for the
sake of predicting microvascular invasion (mVI) in
hepatocellular carcinoma (HCC), a common liver malignancy
that leads to cancer death with a nontrivial probability. It further
explores hybrid criteria combining PET/CT and multi-
parameter MRI for higher prediction performance.
Quantitatively, the 18F-FDG PET image radiomics classifier
shows good performance in discriminating HCC with/without
mVI, with an AUC of 0.917 (95% CI: 0.824 and 0.970) and 0.771
(95% CI: 0.578 and 0.905), and the hybrid model, which
combines radiomics classifier and several key indicators based
on contrast-enhanced MRI, yields much improved predictive
performance with an AUC of 0.996 (95% CI: 0.939 and 1.000)
and 0.953 (95% CI: 0.883 and 1.000). The study by Wang et al.
tries to develop and validate 18F-FDG PET/CT image-based
radiomics to determine the Ki-67 status of high-grade serous
ovarian cancer (HGSOC), a disease with very high risk of
recurrence and death. It is found that Radiomics based on
Habitat can predict the Ki-67 expression accurately, and the
Habitat model can better stratify the prognosis (p < 0.05).

In the field of pathology, this study Zhang et al. provides
reliable machine learning-based (ML-based) models for
predicting the probability of lymph node metastasis (LNM) in
kidney cancer patients. The data was extracted from the
Surveillance, Epidemiology, and Outcomes (SEER) database
from 2010 to 2017, and variables were filtered using the least
absolute shrinkage and selection operator (LASSO), univariate
and multivariate logistic regression analyses. The independent
predictive factors of LNM were identified as pathological grade,
liver metastasis, M stage, primary site, T stage, and tumor size.
Among six ML algorithms, the XGB model significantly
outperformed any other machine learning models with an
AUC value of 0.916 in the model validation process, in which
M stage, T stage, and pathological grade were the top three
important variables. Based on the probability density function
(PDF) and clinical utility curve (CUC), the study suggested that
54.6% could be used as a threshold probability for the diagnosis of
LNM using the XGB model, which could distinguish about 89%
of LNM patients. As a conclusion, the machine learning-based
predictive tool can accurately predict the probability of LNM in
kidney cancer patients and has promising applications in clinical
practice.
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All nine papers tackle different but extremely relevant
domain issues of artificial intelligence-based medical image
automatic diagnosis and prognosis prediction. We believe this
Research Topic will raise awareness in the scientific and industry
community that a multidisciplinary research path is therefore in
need to meet the desire from healthcare providers that are
emerging in this field.
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Small Object Detection via Pixel Level
Balancing With Applications to Blood
Cell Detection
Bin Hu1, Yang Liu2,3*, Pengzhi Chu1, Minglei Tong4* and Qingjie Kong5

1Department of Compute Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao
Tong University, Shanghai, China, 2Department of Dermatology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao
Tong University School of Medicine, Shanghai, China, 3Department of Laser and Aesthetic Medicine, Shanghai Ninth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, 4College of Electronics and Information
Engineering, Shanghai University of Electric Power, Shanghai, China, 5Riseye Research, Riseye Intelligent Technology (Shanghai)
Co., Ltd., Shanghai, China

Object detection technology has been widely used in medical field, such as detecting the
images of blood cell to count the changes and distribution for assisting the diagnosis of
diseases. However, detecting small objects is one of the most challenging and important
problems especially in medical scenarios. Most of the objects in medical images are very
small but influential. Improving the detection performance of small objects is a very
meaningful topic for medical detection. Current researches mainly focus on the
extraction of small object features and data augmentation for small object samples, all
of these researches focus on extracting the feature space of small objects better. However,
in the training process of a detection model, objects of different sizes are mixed together,
whichmay interfere with each other and affect the performance of small object detection. In
this paper, we propose a method called pixel level balancing (PLB), which takes into
account the number of pixels contained in the detection box as an impact factor to
characterize the size of the inspected objects, and uses this as an impact factor. The
training loss of each object of different size is adjusted by a weight dynamically, so as to
improve the accuracy of small object detection. Finally, through experiments, we
demonstrate that the size of objects in object detection interfere with each other. So
that we can improve the accuracy of small object detection through PLB operation. This
method can perform well with blood cell detection in our experiments.

Keywords: medical image detection, object detection, small object, pixel level balance, blood cell detection

1 INTRODUCTION

With the development of artificial intelligence technology, deep learning based on CNN
(Convolutional Neural Network) has been widely used in medical image processing field. Using
computer aided technology to analyze and process medical images can assist doctors doing
qualitative and quantitative analysis of diseases, thereby improving the accuracy and reliability
of medical diagnosis greatly. Medical image detection is one of the main tasks in the field of medical
image processing. Many medical institutions in the world have rapidly entered this field. Medical
image detection has been combined with artificial intelligence technology for a long time. As early as
1993, CNN has been used for lung nodule detection. In 1995, the technology was also applied to
detect micro-calcification in mammography.
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Medical detection technology has been continuously
developed by applying CNN and other deep learning methods
(McInerney and Terzopoulos, 1996; Handels et al., 2013; Litjens
et al., 2017) to various medical images with different imaging
mechanisms. For example, Setio et al. detected lung nodules in 3D
chest CT scans and extracted 2D patches in nine different
orientations centered on these candidates (Golan et al., 2016).
Ross et al. utilized CNN to improve three existing CAD systems
for the detection of colonic polyps, sclerosing spinal deformity,
and lymphadenopathy in CT imaging (Roth et al., 2016). In
recent years, object detection technology has been widely used in
pathology (Janowczyk and Madabhushi, 2016), especially in
blood cells detection (Yang et al., 2017; Pan et al., 2018; Fujita
and Han, 2020). Detecting blood cells can assist diagnosing many
kinds of diseases, such as diagnosing breast cancer by detecting
mitosis or lymphocytes (Cire ş an et al., 2013; Zhang et al., 2022).
Object detection technology is constantly applied into application
scenarios of medical image processing, and thus bringing more
commercial value.

Object detection is mainly aimed at locating and identifying
objects in different positions in the image. In medical image
detection, the detection of small objects gets more attentions than
the detection of large objects. For example, lesions are identified
by detecting whether there are tiny abnormalities in the images,
determining whether a patient is likely to develop the disease. In
particular, in the detection of blood cells, some types of cells are
rarer and smaller than others, but they play an indispensable and
key role in the diagnosis of diseases. In such tasks, the large
adjacent objects in the image can be ignored, but the detection of
small objects is very important. However, object detection for
small objects is precisely a more difficult task. Objectively
speaking, small objects contain low pheromones and human
beings have the disadvantage in recognizing small objects.
These reasons bring a higher challenge to the detection task.

Previous research work mainly focused on how to enhance the
detection model’s extraction of the feature of small objects, and
through some methods to solve the unbalance of the samples. In
addition, there is also the use of rotation detection with angle
factors (Yang et al., 2019a; Yang et al., 2019b; Qian et al., 2019;
Yang and Yan, 2020) to better approximate the true position of
small objects. However, it is rarely mentioned that under the
multi-object detection task, there is a possibility of interference
among the multiple objects within one image. In the objective
logic of human observation, people can see large objects most
intuitively among objects of various sizes, but it is easy to ignore
the existence of small objects, let alone the recognition of the
small objects. In the detection model, theoretically, it is also
necessary to consider the mutual interference between objects of
different sizes during the training process, and the contribution of
objects with various sizes to the training loss are different.
Therefore, it is meaningful to study the interference of large
and small objects, and use some means to alleviate such
interference and guide the model to the optimization direction
of small object detection.

We studied the interference between objects of different sizes
in the training process, and designed a weight coefficient called
PLB weight to adjust the training effect of the model. The size of

the detected object is characterized by the size of the detection
rectangle. We use the number of pixels contained in it as the
calculation input of the weight coefficient. In the process of model
training, this coefficient can be used to dynamically adjust the
training loss of each object with various sizes, so that the model
can be training to the direction of improving the accuracy of small
object detection.

Our innovations and contributions to this work are
summarized as follows:

1) Instead of setting fixed empirical values before training, we
dynamically set the loss weights for objects of different sizes
during the training process of the detection model.

2) With our proposed method PLB, the training trend of two-
stage detector can be adjusted and the detection accuracy of
small objects can be further improved.

3) Our method can be combined with other methods to improve
the detection effect, bringing more potential capacity for some
medical applications which need higher detection effect of
small objects than bigger ones, such as blood cell detection.

2 RELATED WORK

Current detection models are divided into two categories: two-
stage detectors and one-stage detectors. Two-stage detection
network is represented by the RCNN series (Girshick et al.,
2014; Girshick, 2015; He et al., 2015; Ren et al., 2015; Dai
et al., 2016), the second category is represented by the YOLO
series (Redmon et al., 2016; Redmon and Farhadi, 2017; Redmon
and Farhadi, 2018; Bochkovskiy et al., 2020) and SSD series (Liu
et al., 2016; Shrivastava et al., 2016; Fu et al., 2017; Jeong et al.,
2017; Li and Zhou, 2017; Shen et al., 2017). Among them, the
former adopts the RPN network (Girshick, 2015). When
performing localization and recognition tasks, candidate
rectangular boxes are proposed in the RPN phase. In the
second stage, the candidate proposals are adjusted and the
objects in the boxes are identified. One-stage detectors use an
end-to-end deep neural network, and the model structure is
simpler than two-stage detectors, bring a faster computing
speed, so that it is more suitable for some time-sensitive
application scenarios. But for the improvement of detection
accuracy, one-stage detector usually weaker than two-stage
detector.

No matter which detection model is used, the CNN model is
used as the feature extractor to obtain the feature space of the
train set. With the continuous development of CNN models in
recognition tasks, especially the ResNet model (He et al., 2016)
and the DenseNet model (Huang et al., 2017), it has been
confirmed that the CNN model has a high accuracy and
universality for feature extraction in classification tasks. In
terms of improving the overall accuracy of the detection
model, a deeper CNN can be used as the backbone network to
extract the image features (Zhang et al., 2022). Attention
mechanism such as SENet (Hu et al., 2018) is used to improve
the sensitivity of the model to channel features. The model can be
adjusted through EfficientNet (Tan and Le, 2019) by adjusting the
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depth, width and pixel accuracy in the model to optimize the
overall performance, such as EfficientDet (Tan et al., 2020). In
addition, other methods such as NMS (Neubeck and Van Gool,
2006) and BN (Li et al., 2019) can be used to optimize the
detection model comprehensively.

The cost of manual labeling of medical datasets is more
expensive, and the acquisition and labeling of datasets is more
difficult than other scenarios. Therefore, for some incompletely
labeled datasets, some methods are also needed to improve the
accuracy of object detection. Unsupervised active learning
methods can be applied into this task to improve detection
performance (Changsheng et al., 2019). Such as Active
Learning Matrix Sketching (ALMS) (Li et al., 2021) which is
used to do simultaneous sample and feature selection in an
unsupervised setting. These methods aim to improve the
effectiveness of the latent feature space (Li et al., 2022), so that
the detection model can achieve more stable and good
performance.

Improving the detection accuracy of small objects is a more
difficult challenge. For the detection improvement of small target
objects, rotation detection is also an effective method. Traditional
detection models generally use horizontal rectangular boxes as
labels for localization tasks. However, for small objects, the
rotating detection boxes with an angle can more closely
approximate the real position (Yang et al., 2021a; Yang et al.,
2021b; Yang and Yan, 2022). Small objects have higher sensitivity
requirements to position, and rotation detection can bring better
training effects for the detection of small objects (Yang et al.,
2020; Yang et al., 2021c; Yang et al., 2022).

In the detection model based on deep neural network, with the
deepening of the network, the image features can be extracted
better to fit our detection task. But in the feature space at the end
of the model, the represented receptive field is getting bigger and
bigger, while the features corresponding to the small objects may
disappear. FPN network (Lin et al., 2017a; Pan et al., 2018) is a
good solution to this problem. In this network structure, middle
layers in the feature extraction process are reserved and combined
with the upper and lower layers, so that the feature of small
objects will not disappear with the deepening of the network.
Finally multi-layer feature vectors are obtained by FPN. Among
them, the low-dimensional feature has a smaller receptive field for
small objects which is biased towards the shape features of the
object, while the high-dimensional feature has a larger receptive
field which is biased towards the semantic features. The FPN
network improves the feature extraction effect especially for small
objects as it can retainmore features. As a result, the FPN network
can effectively improve the detection accuracy of small objects.

Different kinds of imbalances within the training samples are
also the reasons for the difficulty of detecting small objects. These
imbalances mainly include the imbalance of the object categories,
and the imbalance of the proportion of small objects and large
objects in the samples. In addition, the imbalance between the
foreground and background is also an important factor that
disturbs the training effect. In the detection model, the
corresponding weights can be set for each category in the data
set through a prior knowledge, and the loss in the training process
is weighted to adjust for the category imbalance of samples. For the

spatial imbalance of the detection task, some data augmentation
techniques (Pan et al., 2018; Kisantal et al., 2019) can be used to
deal with this problem. For example, copy the small objects and
paste them at different positions in the image multiple times to
increase the proportion of small objects. Besides, data
augmentation of training samples can also be performed
through image fusion (Li et al., 2013; Xu et al., 2013) and
image adversarial generation (Fang et al., 2020) techniques. This
expansion method can alleviate the imbalance of samples in space.
For the imbalance between foreground and background, the weight
of difficult and easy samples can be adjusted reference to the
theoretical method Focal Loss (Lin et al., 2017b). The main idea of
this method is to use an appropriate function to measure the
contribution of hard-to-classify and easy-to-classify samples to the
total loss for a better training effect.

3 PROPOSED METHOD

3.1 Overall Structure of Our Model
Figure 1 shows the structure of our detection model. In our new
model, the network structure of the model is mostly like a general
faster-rcnn structure. Our design is that the “RPN Header”
module and the “ROI Header” module in the detection will
output the coordinate of the detect box which will be put in
the calculation process of the loss function. We modified the
calculation of the loss function in a general two-stage detection
model, using the size of the “Detect box” as a weight factor for the
training loss contributed by each detect box. Through the
computational design of the weight factor, we can
appropriately adjust the loss contribution of each object with
different sizes, and then improve the detection effect of small
objects during the training process.

In the structure of our detection model, there are four loss
functions that can be adjusted in this way, which correspond to
the training effect of all classification task and localization task in
the two-stage detection model. As the four new loss function
shown in the right of Figure 1, these components use the weight
factors to adjust the contribution of each detect box to the
corresponding original loss.

The total loss of the detection is calculated by weighting the
above four components and setting a certain weight coefficient
for the original Smooth L1 Loss (Ren et al., 2015) and Cross
Entropy Loss (Ren et al., 2015). For different application
scenarios, the PLB (Pixel Level Balancing) operation can
selectively adopt a combination strategy of these four new loss
functions.

In our detection model, the training loss for each image is
defined as:

L(pi, ti) � 1
Ncls rpn

∑n

i
PlbiLcls rpn(pi, ppi ) + λ

1
Nreg rpn

∑n

i
ppi PlbiLreg rpn(ti, tpi )+

1
Ncls roi

∑n

i
PlbiLcls roi(pi, ppi ) + λ

1
Nreg roi

∑n

i
PlbiLreg roi(ti, tpi )

(1)

where pi and ti are the predicted category and position results, λ is
a parameter to weight the classification and the localization task.

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9112973

Hu et al. Pixel Level Balancing

9

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


In the RPN stage, only the loss of the foreground object is
calculated. The total loss function can optionally use the new
loss function weighted by PLB weight factors to replace the
original loss function components. If using the original loss
function, just set the PLB weights to 1.

3.2 Design of Pixel Level Balance Factor
In the training process of the detection model, due to the different
sizes of the objects, the sensitivity of the training to the size of the
objects is different, and there exists a potential mutual
interference. Pixel level balance refers to adjust the weight

coefficients for the training loss caused by each object under
inspection when multiple objects appear in the same image, and
considering their different sizes as a factor to change their mutual
interference. In particular, it can be assumed that large objects
will adversely affect the detection of small objects, so that in the
model, the detection accuracy of small objects is further reduced.
On the contrary, we can actively guide the model to change
towards the optimization of small object detection by adjusting
the weight coefficient of each inspected object.

The number of pixels of the inspected object can be used to
measure the sensitivity of its size to detection. During the training

FIGURE 1 | Overview of our approach design.

FIGURE 2 | Accuracy variation of small, medium and large object in PLB1C.

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9112974

Hu et al. Pixel Level Balancing

10

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


process, the size of each object is measured by the specific
rectangular box area. For the selection of the rectangular box,
the predicted box in the model training process can be used, or
the ground-truth labeled box that best matches the candidate box
can be used, they can be used as the representation of the
object size.

The pixel level balance factor is defined as follows:

area_mean � ∑n
i box_area

n
(2)

PLB_weight � area_meanp2
area_predict + area_mean

(3)

where n is the number of detection boxes after filtered for the loss
in this training, “area_predict”: the area of the predicted box or
labeled box.

If the contribution of the loss is determined according to the
number of pixels, it can be considered that an object of average
size has a balance factor of 1. Taking the detection accuracy of
small objects as the goal, in the above formula, when
“area_predict” approaches to 0, PLB value is equal to 2, which
increases the weight coefficient of small objects; when
“area_predict” approaches to the largest object among the n
inspected objects, assumed that sizes of the rest objects is close
to 0, then

PLB_weight � 2p area_max
n

area_max
n + area_max

� 2
n + 1

(4)

Obviously, when there is only one object under detection, that
means n is 1, then PLB weight is 1. Larger the object is, the PLB
weight of the object is getting smaller.

The value scope of the PLB factor is in (2/n+1, 2), and the
object with the average size has a corresponding weight of 1. It
can be considered that after adding the pixel balance factor as a
weight, each inspected object, regardless of its size, will
contribute equally to the loss function. Using such a design,
the training of the new model has a better effect compared to
the original method on optimizing the detection accuracy of
small objects.

3.3 Loss Function Combined With Pixel
Level Balance
Taking “faster_resnet50_fpn” as a basic model, for its
classification loss and border regression loss, PLB operations
can be integrated in the four loss functions.

For the loss of classification, we still use the Cross Entropy
Loss function as the loss standard of the model. But we need
to calculate the pixel level balancing factor according to the
size of the object corresponding to each detected box. Then
we use it as the weight for multiple classification loss in a
batch of images. The pixel level balancing factor can be
calculated by the predicted box or its corresponding
labeled box. The implementation logic of the function is
shown in Algorithm 1.

Algorithm 1. Cross Entropy Loss With Pixel Level Balancing

For the border regression loss function, Smooth L1 Loss is also
used as the loss standard of the model, but it is necessary to
calculate the pixel level balance factor according to the size of
objects corresponding to each predicted box, and then calculate
the pixel level balance factor of multiple objects of different sizes
within a batch of images. Then we use it as the weight for
localization loss for each object in our new function. The
specific implementation process is shown in Algorithm 2.

Algorithm 2. Smooth L1 Loss With Pixel Level Balancing

It can be seen that in the new loss function, the prediction
information of the box is also added to the calculation of the
classification loss, so that the classification loss and the width and
height of the detected box have a certain correlation. The border
regression loss will focus on the coordinate position of the border
and its width and height at the same time.

3.4 Proposed Framework MindSpore
We implement our PLB method in PyTorch for research and
exploration. At the same time, we recommend using an
implementation version under the MindSpore framework as
the final application. MindSpore is an enterprise-level
application framework based on Huawei’s AI ecosystem. It has
been used by Huawei in the medical field, and has open sourced
the code of many detection models. This framework is an open-
sourced product in the AI field that Huawei has been promoting
in the past two years. Based on the hardware environment of
Huawei’s Ascend series chips, it optimizes a large number of
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calculations in the model, speeds up the training and inference of
the model. Due to the framework is easy to develop, efficient for
execution and its full scene coverage, it can bring higher
application value to our PLB method.

The implementation of our method in the MindSpore
framework is basically the same as that under PyTorch, but
we need to do some extra processing on the PLB weight
computation. In order to prevent that all predict box areas
may be zero during the training process, the area value of the
predict box need to add by 1 to avoid division by zero exceptions.

4 EXPERIMENT RESULTS ANALYSIS

We use the dataset Pascal VOC2007 to explore the right way to
apply our PLB methods, and use the BCCD blood cell detection
dataset (Banik et al., 2020) to verify the effectiveness of PLB for
medical image detection. Through exploration the effectiveness of
our methods on Pascal VOC 2007, we verify it on BCCD datasets
with our implementations both on PyTorch and MindSpore
(https://www.MindSpore.cn/en). In our comparison experiment
group, we use faster-rcnn model as the reference, chose resnet50
and FPN as the backbone network, and basically set the default
values in the PyTorch library for its hyper-parameters, the SGD
optimizer withmomentum= 0.9, and the initial learning rate lr = 0.
005, the adjustment step size of the learning rate step_size = 3.

The source code was released at: https://gitee.com/hubindijun/
faster-rcnn-plb-MindSpore.git (MindSpore version); https://
github.com/hubindijun/faster-rcnn-plb-PyTorch.git (PyTorch
version).

4.1 Exploration of PLB in Natural Image
Detection
The experiment uses the Pascal VOC2007 dataset (5011 images
for training and 4,952 images for validation, 20 different
categories). Then we evaluate our method with the coco
evaluation standard. Finally, we mainly focus on the MAP and
the detection accuracy of objects with different sizes to analyze
the effect of PLB. The area range of small objects is (0,32*32), the
area range of medium-sized objects is [32*32,96*96] and the area
range of large objects is greater than 96*96, using pixel point
number as the unit of object size. In the dataset, the ratio of small,
medium and large objects is 845:2,698:4,301 in the training
dataset, while the ratio in the testing dataset is 909:2,706:4,203.

We selectively perform PLB operations on different parts of
the loss function. When the training epoch is 10, both the original
model and new one reach a status of convergence.

PLB method in the four different loss components are named
as follows, all of the four PLB operations use predict box as the
default standard for size representation.

PLB1C: PLB in the first RPN stage of the detection model
within coarse-grained classification loss;

PLB1B: PLB in the first RPN stage of the detection model
within bounding box regression loss;

PLB2C: PLB in the second stage of the detection model within
fine-grained classification loss;

PLB2B: PLB in the second stage of the detection model within
further bounding box regression loss.

4.1.1 The Selection of Predict Box or Matched Labeled
Box for Size Representation
Firstly, we conduct the two experiments about PLB2C with
default predict box and matched labeled box as the standard
for size representation. The training accuracy effect are showed in
Table 1. The results of the PLB2C shows that only use PLB
operation in the fine-grained classification loss can significantly
improve the detection accuracy of small objects, but the overall
accuracy of the model is reduced. PLB2C means higher
requirements for small objects and reduces the expectation of
the detection effect of medium and large objects. Although the
detection accuracy of small objects gets improved, the detection
accuracy of medium and large ones will decrease. Finally, due to
the proportion of small objects is relatively small in the dataset,
the overall detection accuracy will also decrease in the training.

However, after replacing predict box with matched labeled box
as the representation of the object size, the detection effect is
reduced, even the detection effect for small objects is reduced by
8.2% as shows in Table 1. We can draw a conclusion that
compare to the predict box, the matched labeled box is not
suitable for the representation of the object size in the model
training process.

4.1.2 Ablation Experiments Analysis
Through our design and experiments, we summarize the
detection effects of each scheme on the accuracy of small
objects, as shown in Table 2. Comparing the results of each
scheme, all of the PLB methods can obviously improve the
detection accuracy of small objects. However, the detect effect
of the PLB methods is different for medium and large objects.

With method PLB1C or PLB1B, the overall effect of the model
keeps well, especially the detection accuracy of small objects has a
significant improvement. Meanwhile, the methods have little
impact on medium and large objects. The training accuracy
tendency of PLB1C is shown in Figure 2.

PLB operations in the second stage also improve the detection
accuracy of small objects, as the results of PLB2C and PLB2B.

TABLE 1 | Training accuracy effect of PLB2C (IOU = 0.50:0.95) on PyTorch.

MAP AP_small AP_ Medium AP_large

Original faster_rcnn 48.9 18.3 39.7 56.3
PLB2C (default predict box) 46.6 (−4.70%) 19.2 (+4.92%) 38.8 (−2.27%) 53.9 (−4.26%)
PLB2C (matched labeled box) 47.7 (−2.45%) 16.8 (−8.20%) 38.3 (−3.53%) 55.1 (−2.13%)

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9112976

Hu et al. Pixel Level Balancing

12

https://www.MindSpore.cn/en
https://gitee.com/hubindijun/faster-rcnn-plb-MindSpore.git
https://gitee.com/hubindijun/faster-rcnn-plb-MindSpore.git
https://github.com/hubindijun/faster-rcnn-plb-PyTorch.git
https://github.com/hubindijun/faster-rcnn-plb-PyTorch.git
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


However, thatmethods have negative impact on detection ofmedium
and large objects. Due to there aremore samples ofmedium and large
objects than small ones, the overall detection accuracy is not well. As
the accuracy tendency of PLB2C shows us in Figure 3.

Through the different results of the PLBmethods, we can draw
a conclusion that in the training process of the two-stage detector,
the PLB operation utilized in the RPN stage can improve the
detection effect of small objects and maintain the accuracy of
medium and large objects. The purpose of PLB operation is to
balance the contribution to the model loss of objects which have
different sizes during the training process. In particular, we can
adjust the design of the PLB factor so that the training of the
model is transformed towards the detection accuracy
improvement of small objects.

TABLE 2 | Comparison of the PLB methods (IOU = 0.50:0.95) on PyTorch.

PLB1C PLB1B PLB2C PLB2B MAP AP_small AP_medium AP_large

Not used - - - 48.9 18.3 39.7 56.3
✓ - - - 49.3 19.3 (+5.46%) 40.2 56.5
- ✓ - - 49.2 19.1 (+4.37%) 39.9 56.8
- - ✓ - 46.6 19.2 (+4.92%) 38.8 53.9
- - - ✓ 48.7 19.0 (+3.83%) 39.2 56.2
✓ - ✓ 49.3 18.6 (+1.64%) 39.9 56.7
✓ ✓ - - 49.1 19.3 (+5.46%) 39.9 56.5

FIGURE 3 | Accuracy variation of small, medium and large object in PLB2C.

FIGURE 4 | Blood cell detection example from the BCCD data set. The
red tags denote different classifications of the detected objects.

TABLE 3 | Accuracy effect with PLB in BBCD Dataset (IOU = 0.50:0.95) on
PyTorch.

MAP AP_small AP_ Medium AP_large

Origin model 63.1 47.8 64.9 50.2
PLB1C 63.6 49.7 (+3.97%) 65.2 (+0.46%) 49.6 (−1.20%)
PLB1B 63.1 48.6 (+1.67%) 64.0 (−1.40%) 50.6 (+0.80%)
PLB1C + PLB1B 63.7 49.0 (+2.51%) 66.6 (+2.62%) 50.2 (+0%)

TABLE 4 | Accuracy effect with PLB in BBCD Dataset (IOU = 0.50:0.95) on
MindSpore.

MAP AP_small AP_ Medium AP_large

Origin model 62.9 48.7 65.4 48.0
PLB1C 63.3 51.4 (+5.54%) 65.6 (+0.31%) 48.3 (+0.63%)
PLB1B 63.1 49.6 (+1.85%) 64.2 (−1.83%) 50.3 (+4.79%)
PLB1C + PLB1B 63.6 50.4 (+3.49%) 66.6 (+1.83%) 49.2 (+2.50%)
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So how does PLB methods be more effective in the first stage?
We guess that in the first stage of the training process, the coarse-
grained classification task is mainly to classify the inspected
objects as foreground or background, among them the
background will not be included in the subsequent loss
calculation. The smaller the object is, the easier it is to be
misclassified as a background. So that in the second stage of
detection, it is no longer involved in training process. Therefore,
PLBmethod has a relatively obvious effect in the RPN stage of the
two-stage detection model. Moreover, compared with the
transformation of border regression loss with PLB, the loss
transformation effect for the classification with PLB is more
effective.

4.2 Practice of PLB in Medical Image
Detection
We have verified that PLB has a certain adjustment effect for object
detection, and using PLB in the RPN stage is more effective. Our
design can also be used in specific medical application scenarios,
such as routine blood testing and breast cancer diagnosis through
lymphocyte detection. All of these application scenarios are based
on detecting and measuring various types of blood cells to assist
disease diagnosis. We use the BCCD data set (765 pictures for
training, and 73 pictures for evaluating) to check the effect of PLB
in cell detection. Figure 4 shows the blood cell detection in general,
where there are three different cell types, inwhich the platelet size is
relatively small and hard to detect.

We carried out three sets of experiments with this dataset.
Using PLB with the model only in the coarse-grained
classification loss, or only in the RPN border regression loss,
or both of them at the same time, to demonstrate the effectiveness
of it in medical application scenarios. When the training epochs is
15, both the old and new models reach to convergence. We
conduct the experiments with our implementation both on
PyTorch version and MindSpore version. Tables 3 and
Table 4 shows the final results of pixel level balance
respectively to these three experiments.

Experimental results show that the PLB methods can
effectively improve the detection effect of small objects in the
process of medical image detection tasks. When using PLB in the
two loss functions in the RPN stage at the same time, the overall

detection effect is improved, especially for the detection accuracy
of small objects. Figure 5 shows the accuracy variation of small,
medium and large object when using PLB in the two loss
components in the RPN stage.

5 CONCLUSIONS AND OUTLOOK

In this paper, we have proposed pixel level balance different from
previous research, which focuses in the correlation of large and
small objects in the training process. This method can be combined
with other effective methods to improve small object detection,
such as FPN network to improve the feature extraction, or data
augmentation on the input dataset samples, etc. In some specific
application scenarios, pixel level balance can provide more special
effects. Obviously, in a train model, we can improve the detection
accuracy of small objects while ignoring the large one bymodifying
the design of pixel level balance factors.

Pixel level balance can perform well in the problem of higher
requirements for small objects in medical image detection. In our
experiments, the effectiveness of this method for blood cell
detection tasks has been demonstrated. It can be used in more
other medical detection tasks in the future and achieve more
development space or commercial value to medical image
detection technology.

For future work, to alleviate the strong label requirement for
deep learning-based detection, we would like to explore the
possible way of applying visual matching-based approaches
(Jiang et al., 2021a) for object detection and recognition. One
promising technique is adopting graph matching with (higher-
order) structure information (Yan et al., 2018) which can be more
generalizable to new objects, and the detection may be performed
in a joint matching fashion with multiple candidate objects with
different techniques from heuristic optimization (Yan et al., 2015;
Yan et al., 2016a) to dynamic programming based one (Jiang et al.,
2021b). Moreover, the recently developed deep learning-based
graph matching models (Wang et al., 2020; Wang et al., 2021)
can also be explored which can better model the visual features for
matching and object recognition. Readers are referred to the survey
papers for more comprehensive study of these areas, in terms of
both traditional learning-free methods (Yan et al., 2016b) as well as
deep learning models (Yan et al., 2020). The hope is that a more

FIGURE 5 | Accuracy variation of PLB1C combined with PLB1B within BCCD dataset.
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structure information can be effectively used for object detection,
against outliers, deformation, occlusion and other noise.
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Influence of Sex, BMI, and Skin Color
on the Accuracy of Non-Invasive
Cuffless
Photoplethysmography-Based Blood
Pressure Measurements
Dean Nachman1,2†, Arik Eisenkraft 2,3†, Nir Goldstein3, Arik Ben-Ishay3, Meir Fons3,
Roei Merin3 and Yftach Gepner4*

1Heart Institute, Hadassah Ein Kerem Medical Center, Jerusalem, Israel, 2Institute for Research in Military Medicine, Faculty of
Medicine, The Hebrew University of Jerusalem and the Israel Defense Force Medical Corps, Jerusalem, Israel, 3Biobeat
Technologies LTD., Petach Tikva, Israel, 4Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler
Faculty of Medicine and Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel

Vital signs obtained by photoplethysmography-based devices might be influenced by
subcutaneous fat and skin color. This observational comparison study aimed to test the
accuracy of blood pressure (BP) measurements between a photoplethysmography-based
device and cuff-based BP device in ambulatory individuals, coming for a routine BP checkup.
Systolic BP (SBP) and diastolic BP (DBP) measurements were stratified based on sex, BMI
(<25; 25 ≤BMI<30; 30 ≤kg/m2), and skin color (types 1–3 and 4–6 by the Fitzpatrick scale). A
total of 1548 measurements were analyzed. Correlations of SBP and DBP between the
devices among males/females were between 0.914–0.987 (p < 0.001), and Bland-Altman
analysis showed a bias of less than 0.5mmHg for both sexes. Correlations of SBP and DBP
between the devices among BMI groups were between 0.931–0.991 (p < 0.001), and Bland-
Altman analysis showed a bias of less than 1mmHg for all. Correlations of SBP and DBP
between the devices among the skin color groups were between 0.936–0.983 (p < 0.001),
and Bland-Altman analysis showed a bias of less than 1mmHg for all. This study shows similar
and high agreements between BP measurements obtained using a PPG-based non-invasive
cuffless BP device and a cuff-based BP device across sex, BMI, and skin color groups.

Keywords: blood pressure, photoplethysmography, age, BMI, sex

INTRODUCTION

Collecting physiological vital signs, such as blood pressure and blood oxygen saturation, is regarded as a
basic component in the clinical assessment of individuals. One of the challenges in collecting these vital
signs is the accuracy of themeasurements in individuals that are overweight or obese and individuals with
dark skin color, as measurements seem to be less reliable (Ries et al., 1985; Ries et al., 1989; Jubran and
Tobin, 1990; Zeballos andWeisman, 1991; Young, 1995; O’Brien, 1996; Palatini and Parati, 2011; Palatini
et al., 2019). This is still an ongoing debate with conflicting evidence and is especially relevant in devices
employing photoplethysmography (PPG) technology. As the US population is comprised of about 13.4%
African-Americans (see https://www.census.gov/), and 42.4% of the US population is obese (see https://
www.cdc.gov/obesity/data/adult.html), verifying the accuracy of such devices in these sub-populations is
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highly important to allow their general use. Moreover, though sex is
regarded as a fundamental aspect of human physiology, it is usually
not considered in the design of studies, or in developing personalized
medical strategies (Miller, 2014).

In the medical literature, several research groups have found that
skin pigmentation does not affect the bias or precision of pulse
oximetry, and has no clinically significant effect on pulse oximetry
signal quality (Bothma et al., 1996; Adler et al., 1998; Pipek et al.,
2021). In a recent study in patients with COVID-19 pneumonitis,
measurement of SpO2 was not affected by patient ethnicity to a
clinically significant degree (Wiles et al., 2021). Other research groups
have found that several pulse oximeters overestimated arterial oxygen
saturation during hypoxia in dark-skinned individuals (Bickler et al.,
2005; Feiner et al., 2007); in a study of two large cohorts, dark-skinned
patients had nearly three times the frequency of occult hypoxemia
that was not detected by pulse oximetry as White patients (Sjoding
et al., 2020). According to The US Food and Drug Administration’s
standards for studies undertaken to test the accuracy of pulse
oximeters, they should include among other components a range
of skin pigmentations, including at least two darkly pigmented
subjects or 15% of the study population, whichever is larger (US
Food and Drug Administration, 2013).

TABLE 1 | Demographic data of the participants.

Characteristic Mean ± SD

Age (years) 35.1 ± 23.8
Sex (M/F) 592/467
BMI (kg/m2) 24.1 ± 4.7
Fitzpatrick 3.3 ± 1.5

Total samples

n (%) Males (%) Age (years)
1548 (100%) 664 (42.9%) 35.1 ± 23.8

BMI

BMI<25 1057 (68.3%) 417 (39.4%) 29.1 ± 21.4
25 ≤ BMI<30 346 (22.4%) 168 (48.4%) 43.8 ± 24.3
30 ≤ BMI 145 (9.4%) 79 (54.5%) 48.6 ± 23.5

Skin color type

Fitzpatrick 1–3 936 (60.5%) 420 (44.9%) 35.2 ± 23.8
Fitzpatrick 4–6 612 (39.5%) 244 (39.9%) 34.9 ± 23.8

Body mass index (BMI): overweight defined as 25 ≤BMI <30, and obese defined as 30
≤BMI. The Fitzpatrick color scale: Type 1—always burns, never tans, palest, can have
freckles; Type 2—usually burns, tans minimally, light-colored but darker than fair; Type
3—sometimesmild burn, tans uniformly, golden honey or olive; Type 4—burnsminimally,
always tans well, moderate brown; Type 5—very rarely burns, tans very easily, dark
brown; and Type 6—never burns, deeply pigmented dark brown to darkest brown.

FIGURE 1 | Bland-Altman analysis of males and females. SBP systolic blood pressure, DBP diastolic blood pressure.
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In recent years, exciting algorithm and hardware improvements
in PPG technology allowed the development and validation of non-
invasive monitoring methods of blood pressure and other advanced
hemodynamic parameters (Nachman et al., 2020a; Nachman et al.,

2020b; Nachman et al., 2021). Whether these devices provide
accurate measurements of such parameters in both sexes, in
various skin tones, and body girth was not fully studied yet. In
the current study, we aimed to test the accuracy of blood pressure

TABLE 2 | Level of agreement between the PPG-based wearable measurements across commonly accepted standard.

<5 mmHg 5–7 mmHg 7–10 mmHg >10 mmHg

SBP DBP SBP DBP SBP DBP SBP DBP
Sex
Male 79.2% 80.1% 15.9% 13.7% 4.9% 6.2% 0.0% 0.0%
Female 76.9% 80.0% 17.1% 14.7% 5.6% 4.9% 0.3% 0.3%

Weight category
Normal weight 77.0% 79.7% 17.7% 14.9% 5.0% 5.3% 0.3% 0.2%
Overweight 80.7% 79.6% 14.2% 13.9% 5.1% 6.2% 0.0% 0.4%
Obese 76.3% 83.1% 16.1% 11.9% 7.6% 5.1% 0.0% 0.0%

Skin color
Fitzpatrick 1–3 77.3% 80.8% 17.4% 13.9% 5.3% 5.1% 0.0% 0.2%
Fitzpatrick 1–3 78.8% 78.8% 15.4% 14.9% 5.3% 6.0% 0.5% 0.2%

Number in the table are percentage of measurements with a delta of less than 5, 5–7, 7–10 or above 10 mmHg between the reference device and the PPG-based wearable
measurements. Body mass index (BMI): overweight defined as 25 ≤BMI <30, and obese defined as 30 ≤BMI. The Fitzpatrick color scale: Type 1—always burns, never tans, palest, can
have freckles; Type 2—usually burns, tans minimally, light-colored but darker than fair; Type 3—sometimes mild burn, tans uniformly, golden honey or olive; Type 4—burns minimally,
always tans well, moderate brown; Type 5—very rarely burns, tans very easily, dark brown; and Type 6—never burns, deeply pigmented dark brown to darkest brown.

FIGURE 2 | Correlation curves of males and females. SBP systolic blood pressure, DBP, diastolic blood pressure.
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(BP) measurements using a novel PPG-based device stratifying the
data based on sex, BMI, and skin color, in a field setting.

METHODS

Study Population
This was an observational comparative field study. Male and
female volunteers of all ages were recruited as they arrived for a
BP checkup provided by skilled evaluators from the Israeli
National Emergency Medical Services (EMS) in designated BP

measurement public screening stations deployed across the
country. Each participant has signed an informed consent
form as defined by the Institutional Review Board of the Tel-
Aviv Medical Center, Tel-Aviv, Israel (0032-15-TLV).

Study Protocol
Reference calibration BP measurements using a cuff-based device
(Welch Allyn DuraShock DS65 hand sphygmomanometer,
Skaneateles Falls, NY 13153, United States) were taken from
each participant and used as a baseline calibration value for the
PPG-based wearable device. Next, the wearable device was

FIGURE 3 | Bland-Altman analysis of the body mass index (BMI) groups. Normal weight was defined as BMI<25, overweight was defined as 25 ≤BMI <30, and
obese was defined as 30 ≤BMI. LOA level of agreement, SBP systolic blood pressure, DBP diastolic blood pressure.
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attached to each of the subjects by the EMS personnel and left for
30 s to acquire a PPG signal reading while the volunteers were at
rest. This was repeated on the other hand to show there are no
differences. After obtaining a signal, BP was measured
concomitantly in all subjects using both devices - the standard
cuff-based device previously mentioned on one hand and the
PPG-based device on the opposite arm. Since the cuff-based
device occludes blood flow to the arm, PPG measurements

cannot be obtained if the device is located on that same arm.
When comparing the PPG-based device to the cuff-based BP
device, and since it takes time between the systolic and the
diastolic measurements when using the cuff-based device, the
systolic value of the PPG-based device was recorded once the
systolic value was reached in the cuff-based device, and once the
diastolic value was reached in the cuff-based device, the diastolic
measurement in the PPG-based device was recorded. Adverse

FIGURE 4 |Correlation curves of the body mass index (BMI) groups. Normal weight was defined as BMI <25, overweight was defined as 25 ≤BMI <30, and obese
was defined as 30 ≤BMI. SBP systolic blood pressure, DBP diastolic blood pressure.
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events were recorded by the research team. The evaluators were
also recording basic demographic details of each participant,
including height, weight, and based on the Fitzpatrick color
scale provided to each, also determined the skin color type of
each participant. There was one evaluator per patient, as the aim
was to sustain the local routine blood pressure check-up protocol.

The PPG-Based Device
The skin-attached device (BB-613WP, Biobeat Technologies Ltd.,
Petah Tikva, Israel) is indicated for use in measuring and
displaying pulse oxymetry and blood pressure values, as well as
other advanced cardio-pulmonary parameters, using reflective
PPG. Following transmission of several specific wavelengths of
light, a detector measures the changing absorbance resulting from
the pulsating arterial blood at each of the wavelengths. When using
the device, a preliminary calibration step is performed using an
FDA-cleared cuff-based BP device. The calibration value is entered
into a user’s application, valid for up to 3 months (relevant
supportive clinical data has been presented by the company and
accepted by the FDA), after which a new calibration measurement
should be taken and introduced into the application using the same
method. From that moment on, the PPG measurements are
analyzed using pulse wave transit time (PWTT).

Statistical Analysis
Participants were stratified by sex, by BMI (BMI<25, defined as
normal weight; 25 ≤BMI<30, defined as overweight; and
30 ≤BMI, defined as obese; based on the World Health
Organization (WHO) definitions, https://www.who.int/news-
room/fact-sheets/detail/obesity-and-overweight), and skin color
based on the Fitzpatrick scale, divided between type 1–3 and type
4–6 (Fitzpatrick, 1988) (stratifications based on USFDA, 2013).
Correlation analysis was performed using Pearson’s correlation,
and agreement was evaluated based on the Bland-Altmanmethod
using 95% limits of agreement (LOA). p-values were set at 0.05.
Data analysis was performed using GraphPad Prism 8 and
presented as mean ± standard deviation.

RESULTS

Table 1 includes demographic data and characteristics of the
participants, stratified by BMI and skin color. No adverse events
were recorded during the study. A total of 1548 samples recorded
from 1057 participants were included in the analysis. For SBP, the
Bland-Altman analysis of the whole group showed that the PPG
had a bias of -0.02 ± 3.7 mmHg with 7.3 and −7.2 mmHg 95%

FIGURE 5 | Bland-Altman analysis of the body’s skin color is based on the Fitzpatrick color scale (Fitzpatrick, 1988). Type 1—always burns, never tans, palest, can
have freckles; Type 2—usually burns, tans minimally, light-colored but darker than fair; Type 3—sometimes mild burn, tans uniformly, golden honey or olive; Type
4—burnsminimally, always tans well, moderate brown; Type 5—very rarely burns, tans very easily, dark brown; and Type 6—never burns, deeply pigmented dark brown
to darkest brown. SBP systolic blood pressure, DBP diastolic blood pressure.
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LOA, and Pearson’s correlation (r) of 0.985. For DBP, the Bland-
Altman analysis of the whole group showed that the PPG had a bias
of −0.3 ± 4.2 mmHgwith 8.0 and −8.6 mmHg 95% LOA, r = 0.931.

Among males, we found a bias of 0.2 ± 3.5 mmHg with 7.1 and
−6.6 mmHg 95% LOA for SBP, with r = 0.987 (Figures 1A, 2A),
and a bias of 0.2 ± 3.8 mmHg with 7.3 and −7.7 mmHg 95% LOA
for DBP, with r = 0.949 (Figures 1B, 2B). Among females, we
found a bias of 0.1 ± 3.8 mmHg with 7.4 and −7.7 mmHg 95%
LOA for SBP, with r = 0.982 (Figures 1C, 2C), and a bias of −0.4 ±
3.9 mmHg with 8.5 and −9.3 mmHg 95% LOA for DBP, with r =
0.914 (Figures 1D, 2D).

In the three BMI groups, for SBP, a bias of −0.08 ±
3.8 mmHg with 7.3 and −7.5 mmHg 95% LOA was found in
the normal weight group, r = 0.981; 0.1 ± 4.1 mmHg with 8.0
and −8.2 mmHg 95% LOA in the overweight group, r = 0.978;
and −0.7 ± 3.5 mmHg with 6.3 and −7.6 mmHg 95% LOA in
the obese group, r = 0.991 (Figures 3A,C,E, and Figures
4A,C,E). For DBP, a bias of −0.5 ± 4.0 mmHg with 7.3 and
−8.3 mmHg 95% LOA in the normal weight group, r = 0.931;
−0.4 ± 3.6 mmHg with 6.6 and −7.4 mmHg 95% LOA in the
overweight group, r = 0.935; and −0.7 ± 3.3 mmHg with 5.8
and −7.3 mmHg 95% LOA in the obese group, r = 0.965
(Figures 3B,D,F, and Figures 4B,D,F).

Next, we analyzed the data of the two groups defined by the
Fitzpatrick scale. For SBP, the Bland-Altman analysis showed
that the PPG has a bias of −0.1 ± 3.9 mmHg with 7.4 and
−7.4 mmHg 95% LOA in type 1–3 group, r = 0.982; and −0.1 ±
3.8 mmHg with 7.2 and −7.5 mmHg 95% LOA in type 4–6
group, r = 0.983 (Figures 5A,C and Figures 6A,C). For DBP,
the Bland-Altman analysis showed that the PPG has a bias of
−0.4 ± 3.8 mmHg with 7.1 and −7.9 mmHg 95% LOA in type
1–3 group, r = 0.936; and −0.6 ± 3.9 mmHg with 7.1 and
−8.3 mmHg 95% LOA in type 4–6 group, r = 0.938 (Figures
5B,D and Figures 6B,D).

We also tested the level of agreement between the PPG-based
wearable measurements across commonly accepted standard
(Table 2). Overall, we found that the level of agreement
between divides for all sub-population was 8̃0% within
5 mmHg, 94% within 7 mmHg, and 99% in the range of
10 mmHg.

DISCUSSION

In this study, we found a high level of accuracy of BP obtained by
cuffless PPG-based BP device as compared to cuff-based BP

FIGURE 6 | Correlation curves of the body’s skin color are based on the Fitzpatrick color scale (Fitzpatrick, 1988). Type 1—always burns, never tans, palest, can
have freckles; Type 2—usually burns, tans minimally, light-colored but darker than fair; Type 3—sometimes mild burn, tans uniformly, golden honey or olive; Type
4—burnsminimally, always tans well, moderate brown; Type 5—very rarely burns, tans very easily, dark brown; and Type 6—never burns, deeply pigmented dark brown
to darkest brown. SBP systolic blood pressure, DBP diastolic blood pressure.
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measurements, an agreement that was not influenced by sex,
BMI, or skin color.

Hypertension is a leading risk factor for cardiovascular
morbidity and mortality in industrialized and developing
countries. Despite numerous developments in treatment, one-
third of patients are considered to suffer from uncontrolled BP.
The diagnosis and continuous management of BP rely on
accurate BP measurements. Although BP measurements using
sphygmomanometer are common and acceptable practice they
suffer from detrimental limitations, including the provision of
only point measurements, they are cumbersome, uncomfortable,
and in many patients, the measurements are unreliable due to
technical issues (Kronish et al., 2017; Ruzicka and Hiremath,
2017).

According to theWHO, in 2016, 39% of adults aged 18 years
and over (39% of men and 40% of women) were overweight,
and about 13% of the world’s adult population (11% of men
and 15% of women) were obese (see URL in the Statistical
analysis section). BMI and skin color are regarded as two
important personal characteristics when looking at BP
measurements, particularly as African Americans and obese
are at higher risk of hypertension (Muntner et al., 2018;
Chrysant, 2019; Ferdinand et al., 2020).

Novel PPG-based devices may provide continuous BP
measurements with ease, making long-term BP monitoring
and tailored therapy adjustments a reality (Nachman et al.,
2021). Some PPG-based oximeters demonstrated unreliable
measurements on people with darker skin tone (Ries et al.,
1985; Ries et al., 1989; Jubran and Tobin, 1990; Zeballos and
Weisman, 1991; Young, 1995). It is also accepted that cuff-based
BP measurements are influenced by an individual’s BMI. Thus,
these two personal characteristics could lead to biased and less
accurate measurements and have an impact on the quality of care,
and it is of utmost importance to assure accurate measurement
when using a PPG-based device.

In the current study, we compared BP measurements using a
novel PPG-based non-invasive cuffless BP device with a gold
standard non-invasive cuff-based BP device, and when stratifying
the participants based on sex, BMI, and skin color, we found a
high correlation and accordance between BP measurements
obtained using the two devices in all sub-groups. We have
previously shown that the device stands for the ANSI/AAMI/
ISO 81060-2 requirements, for intermittent BP measurement, as
defined in Stergiou et al., 2018 (Nachman et al., 2020a).

The PPG-based device may allow transformative
monitoring options with substantial clinical impacts such as
improving BP control and diagnosis. Our group demonstrated
the accuracy of the PPG-based device for continuous 24-h BP
measurement in a small pilot study and validation studies are
now undertaken by our group to show the accordance with
other physiological parameters recorded using the same PPG-
based devices, including more advanced hemodynamic
parameters such as stroke volume, cardiac output, and
systemic vascular resistance.

Future studies in a large population in which several BP
measurements will be taken for each participant along several
time points, rather than single time points, could further
strengthen the observations of this study.

A limitation of this study is that we did not follow an accepted
standard such as the ANSI/AAMI/ISO 81060-2 (Stergiou et al.,
2018), however the standard deals with cuff-based devices, and
there are currently no accepted standards beyond unofficial
recommendations regarding validation of cuff-less devices.
Moreover, this was a field study in which we did not want to
interfere too much with the routine. For this reason, we had only
one evaluator per patient measuring the BP and assessing the skin
type color, and not two. This also allowed us to collect data from
more people in a relatively short period and a real-world setting.

CONCLUSION

We have found that the PPG-based BP device provides valid
measurements regardless of sex, skin tone, or BMI. These findings
provide confidence in the generalizability of such technology,
helping in paving the way to a future of seamless, personalized BP
management.

REPORTING SUMMARY

Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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FunSwin: A deep learning
method to analysis diabetic
retinopathy grade and macular
edema risk based on fundus
images
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Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are

forms of degenerative retinal disorders that may result in vision impairment or

even permanent blindness. Early detection of these conditions is essential to

maintaining a patient’s quality of life. The fundus photography technique is non-

invasive, safe, and rapid way of assessing the function of the retina. It is widely

used as a diagnostic tool for patients who suffer from fundus-related diseases.

Using fundus images to analyze these two diseases is a challenging exercise,

since there are rarely obvious features in the images during the incipient stages

of the disease. In order to deal with these issues, we have proposed a deep

learning method called FunSwin. The Swin Transformer constitutes the main

framework for this method. Additionally, due to the characteristics of medical

images, such as their small number and relatively fixed structure, transfer

learning strategy that are able to increase the low-level characteristics of the

model as well as data enhancement strategy to balance the data are integrated.

Experiments have demonstrated that the proposed method outperforms other

state-of-the-art approaches in both binary andmulticlass classification tasks on

the benchmark dataset.

KEYWORDS

fundus image, diabetic retinopathy, macular edema, disease stage prediction, swin
transformer

OPEN ACCESS

EDITED BY

Tao Tan,
Eindhoven University of Technology,
Netherlands

REVIEWED BY

Siyi Xun,
Macao Polytechnic University, Macao
SAR, China
Qingchuan Li,
National University of Defense
Technology, China
Qinhang Xu,
National University of Defense
Technology, China

*CORRESPONDENCE

Guoxu Zhang,
zhangguoxu_502@163.com
Zhiguo Wang,
wangzhiguo5778@163.com

SPECIALTY SECTION

This article was submitted to Medical
Physics and Imaging,
a section of the journal
Frontiers in Physiology

RECEIVED 04 June 2022
ACCEPTED 28 June 2022
PUBLISHED 25 July 2022

CITATION

Yao Z, Yuan Y, Shi Z, Mao W, Zhu G,
Zhang G and Wang Z (2022), FunSwin: A
deep learning method to analysis
diabetic retinopathy grade and macular
edema risk based on fundus images.
Front. Physiol. 13:961386.
doi: 10.3389/fphys.2022.961386

COPYRIGHT

© 2022 Yao, Yuan, Shi, Mao, Zhu, Zhang
andWang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 25 July 2022
DOI 10.3389/fphys.2022.961386

26

https://www.frontiersin.org/articles/10.3389/fphys.2022.961386/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.961386/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.961386/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.961386/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.961386/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.961386&domain=pdf&date_stamp=2022-07-25
mailto:zhangguoxu_502@163.com
mailto:wangzhiguo5778@163.com
https://doi.org/10.3389/fphys.2022.961386
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.961386


1 Introduction

An eyeball is an impressively ingenious structure, with an

optical system that mimics a traditional camera, and the fundus

which functions as the photographic plate of the camera, allows

one to see the dynamic of the blood circulation and the health

status of the human body (Musadiq et al., 2003; Lee and Szema,

2005). For example, various characteristics of certain

complications of diabetes, hypertension, coronary heart

disease, and kidney disease can be identified in the fundus

(Nathan, 1993; Wong et al., 2001; Grunwald et al., 2010; Xu

et al., 2021). Presently, fundus photography is a commonly used

method for screening the fundus. This technique enables visual

perception of structure, which allows us to determine if there is

any abnormality in the fundus (Yannuzzi et al., 2004).

Diabetic retinopathy (DR) and age-related macular degeneration

(AMD) are two ophthalmic diseases that can be diagnosed through

fundus photographs. Basic clinical manifestations of DR will appear

on fundus images as neovascularization, capillary hemangiomas,

vasodilation, hemorrhage, and occlusion of capillaries and

arterioles (Stitt et al., 2016), whereas the basic manifestations of

AMD will appear on fundus images as mainly the alteration of

fundus macula (Zarbin et al., 2014). Unfortunately, in the early stages

of the disease there may not be obvious clinical symptoms evident in

the fundus image, making diagnosis challenging (Agurto et al., 2011).

Deep learning has made great strides in medical image

diagnosis over the last decade. In particular, a number of deep

neural networks have been modified and applied for detecting

diseases related with fundus images in recent years. For example,

several structural features of biological damage, such as blood

vessels, fundus hemorrhage, and exudate, are added to advanced

neural networks to train classification models based on artificially

designed features (Alqudah et al., 2018; Ghani et al., 2019; Dong

et al., 2021). These neural frameworks can also be trained using

simple image characteristics such as pixel intensities (Das et al.,

2021; Kanimozhi et al., 2021; Selçuk et al., 2022). Besides focusing

on feature innovations, scientists will also focus on

methodological innovations, such as developing a high

performance deep neural network and integrating different

machine learning algorithms with ensemble models (Sikder

et al., 2021; Du et al., 2022).

It is true that these state-of-the-art methods have provided

good results, however, many of them do not offer a diagnosis of

disease staging, at the same time, for the detection of the above

two diseases, they must be enhanced. Furthermore, the

diagnostic performance of the models needs to be enhanced

for the above two diseases. To address the above two pivotal

questions, we propose a deep learning method based on Swin

transformer. The main contributions of this work are

summarized as follows:

For one thing, the appropriate benchmark model and other

modules are selected and optimized for integrating a suitable

deep learning framework for analyzing fundus images in

accordance with the specific research objectives. For another,

a series of highly reliable preprocessing operations are

implemented based on the properties of the fundus images,

while ensuring the integrity of the distribution of the data,

thereby enhancing the accuracy of the resulting prediction.

Finally, the ImageNet-based transfer learning mode is used as

the basis training model in order to obtain sufficient low-level

features for the learning. Consequently, when the model is fused

with high-dimensional features, the model can be perceived more

clearly (particularly some potential disease classification bases)

and classification accuracy can be improved.

The paper is organized as follows: In Section 2, we provide an

overview of the datasets and a brief description of the methods. In

Section 3, we present experimental results and conclusions based

on these results. Finally, in Section 4, we conclude the paper with

a brief summary.

2 Materials and methods

As shown in Figure 1, This study involved four major stages:

Dataset curation, data preprocessing, model training and prediction.

The collected fundus images are first cut into squares and

normalized to the same size, then the samples are balanced

based on the number of each class. In addition, mixup and

cutmix are used to further process the data. Since the Swin

Transformer demonstrates excellent performance on other

medical image classification problems, this framework is used in

this study, and its parameters are adjusted based on the model’s

performance. Finally, the binanry and mutil classification

performance of the optimized will be evaluated by the evaluation

metics. As a reminder, “Binary Classification” refers to the

classification of health and disease, whereas “Multiclassification”

refers to the classification of health and disease at different levels.

The details of each process are described in the following sections.

2.1 Benchmark dataset

In this article, we used data from the MESSIDOR dataset

(Decencière et al., 2014) that is available online for public use.

There are 1,200 color numerical images of the posterior pole of

the eye in this dataset, which correspond to two diseases: Diabetic

retinopathy (4 levels, 0–3) and macular edema (3 levels, 0–2),

where level 0 corresponds to a healthy subject. Medical experts

have provided diagnoses for each image. Full details are available

in Supplementary Tables S1, S2.

2.2 Data preprocessing

Firstly, only the middle part of the image is intercepted,

which contains all pixels within the field of view, in order to
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lessen the interference caused by large areas of black

background. And the size of these small crops is set to

960 × 960. As a second step, the simplest data enhancement

methods (rotation and mirroring) are used to increase the

number of minority samples, eliminating the effects of

categories imbalance and maintaining an equal distribution

of the dataset. For example, As regards diabetic retinopathy, the

sample sizes for 0–3 levels are 546, 153, 247, and

254 respectively. On level 1 samples, we use 180-degree

rotation, mirroring, mirroring+180-degree rotation to

expand them to three times their original size. While level

2 and 3 samples are expanded by 180-degree rotation and

mirroring. This procedure allows each subclass to attain an

approximate balance in the number of samples and eliminates

the impact of imbalanced categories. Lastly, the internal mix-up

and cut-mix methods of the network (Liu et al., 2021) will also

be used to optimize the performance of the Swin Transformer.

CutMix and MixUp enable us to create inter-class examples.

CutMix randomly interpolates the pixel values between two

images and places fragments of one image over another, while

MixUp randomly interpolates the pixels between two images.

The two processes prevent the model from being overfitted to

the training distribution and improve its likelihood of being

able to generalize to examples outside of the distribution. A

further benefit of CutMix is that it prevents a model from over

relying on any particular feature when it is performing its

classifications.

2.3 Model training

2.3.1 The pipeline of the framework
The deep learning framework implemented in this study

consists of three components, which are the backbone, the neck,

and the head.

As illustrated in Figure 2, the Swin Transformer is served as

the framework’s backbone. Its structure is reminiscent of a

convolutional hierarchy and the resolution is reduced by half,

while the number of channels is doubled. The first patch

partition divides the image into a series of blocks, followed

by four stages, each of which contains two parts: patch merging

(the first block is linear) and Swin Transformer block. Patch

merging is similar to pooling; however, it does not lose

information in the process.

As depicted in Figure 3, Swin Transformer Block is basically

similar to a common transformer block except that it uses

window multi-head self-attention (W-MSA) and mobile

window multi-head self-attention (SW-MSA) to replace multi-

head self-attention (MSA) module. With this moving-window

method, self-focused computations are limited to a non-

overlapping local window, allowing for inter-window

connectivity. Moreover, this hierarchical converter is capable

of modeling images of various sizes and has linear computation

complexity. As a result of these features, Swin converter is highly

competitive in handling a wide variety of visual tasks (Zhang

et al., 2021; Jiang et al., 2022).

Global Average Pooling (GAP) composes the neck of the

framework. There are several advantages of GAP over traditional

fully ensemble layers. One is that it is more suitable for

convolutional structures by improving the compatibility of

function maps and categories, another is that there are no

parameters to adjust in the global media collection, meaning

that overestimation at the global level can be reduced. It

contributes to the achievement of good results in many

network structures for medical data (Bien et al., 2018; Valan

et al., 2019; Shahhosseini et al., 2021).

Linear CLS is the head of the framework. Using this module

makes the model relatively simple and easier to train since the

mapping between features and categories is clearly visible. Its loss

function is described as follows:

Loss � −∑
n

i�1
y(i) log(p(xi)) (1)

Where p(xi) is the result of the model output computed by

softmax and y(i) is calculated as follows:

FIGURE 1
Overview of the proposed methodology.
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y(i) �
⎧⎪⎪⎨
⎪⎪⎩

α

n
, i ≠ class

1 − α + α

n
, i � class

(2)

Where n is the number of categories, i is the predicted label, and

class is the current real category. Where α is smoothing

coefficient, which we set to 0.1, as in (Liu et al., 2021).

2.3.2 Parameter setting
This framework has the following parameters: the batch size

is set to 32, the epoch is set to 600, and the initialization policy of

the CLS head is TruncNormal, which has a standard deviation of

0.02. Additionally, AdamW is used as the optimizer with a

learning rate of 0.0001 and decay rate of 0.05. All other

parameters are set to the default values.

2.3.3 Performance metrics
Performance metrics have been employed to assess the

predictive performance of our models, including sensitivity,

specificity, accuracy, and F1-score. In medical image analysis,

these evaluation measurements are well established and they

have been used in the benchmark studies on the diagnosis of

fundus-related diseases as well. The metrics are calculated as

follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Acc � TP + TN

TP + FP + TN + FN

SN � RE � TP

TP + FN

SP � TN

TN + FP

PR � TP

TP + FP

F1 − Score � 2 × PR × RE

PR + RE

(3)

The variables TP, FP, TN and FN represent the true positive,

false positive, true negative, and false negative values,

respectively. RE and PR represent recall and precision.

3 Results and discussions

3.1 The result of binary classification on
diabetic retinopathy and macular edema

This paper compares nine state-of-the-art methods that

have been widely used in medical imaging in recent years,

which are Conformer (Peng et al., 2021), ConvNeXt (Liu

et al., 2022), HRnet (Wang et al., 2020), Vgg 11 (Simonyan

FIGURE 2
The framework of the Swin transformer.

FIGURE 3
The details of the Swin Transformer Block.
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and Zisserman, 2014), Mlp-Mixer (Tolstikhin et al., 2021),

Res2Net 50 (Gao et al., 2019), ShuffleNet V1 (Zhang et al.,

2018), T2T Vit (Yuan et al., 2021) and Vit Transformer

(Dosovitskiy et al., 2020).

As depicted in Table 1, the proposed method yielded the best

results for diabetic retinopathy on both the accuracy and F1-

score, and for sensitivity, our effect is second only to that of VIT

Transformer, which is only 0.43% worse. With regard to

specificity, our effect ranks third, which is 10.36% less than

that of the highest-performing model. Similarly, for macular

edema, as illustrated in Table 2, accuracy, F1-score, and

sensitivity of the proposed model have reached the highest

values, 98.66, 98.96, and 98.68%, respectively, while their

specificity is 1% lower than the best model.

The relationship between specificity and sensitivity is often

asymmetric, so it is very challenging to make sure both will

produce positive results. We have maintained that the objective

of this project is to better screen out patients with diseases,

therefore in terms of method design and model training, we have

sought a higher degree of sensitivity. Perhaps this explains why

our model is less specific than other models in binary diagnostics

of these disorders.

3.2 The results of multi-classification on
diabetic retinopathy and macular edema

Having to deal with the problem of multi-classification,

macro-average is used to calculate these indicators. According

to this principle, increasing the proportion of each category of

images will increase the weight of that category. The final result of

the indicator is the sum of the results obtained from multiplying

the corresponding indicator results of each subcategory by their

respective weights.

Table 3 and Table 4 illustrate that the proposed method is

superior to other models in various indicators with regard to the

TABLE 1 Comparing the existing methods of binary classification for
diabetic retinopathy.

Methods Accuracy Sensitivity Specificity F1-score

Conformer 0.8855 0.8817 0.8963 0.9193

Convnext 0.8267 0.9613 0.4451 0.8913

HRnet 0.8378 0.8796 0.7195 0.8891

Vgg11 0.8156 0.8538 0.7073 0.8725

Mlp Mixer 0.8585 0.9226 0.6768 0.9060

Res2net50 0.8267 0.8452 0.7744 0.8782

Shufflenet_v1 0.8045 0.8796 0.5915 0.8693

T2T Vit 0.8553 0.8323 0.9207 0.8948

Vit Transformer 0.8076 0.9419 0.4268 0.8786

Our Method 0.9062 0.9376 0.8171 0.9366

TABLE 2 Comparing the existing methods of binary classification for
macular edema.

Methods Accuracy Sensitivity Specificity F1-score

Conformer 0.9745 0.9755 0.9727 0.9801

Convnext 0.9320 0.8962 0.9966 0.9443

HRnet 0.9453 0.9283 0.9761 0.9563

Vgg11 0.7947 0.7283 0.9147 0.8204

Mlp Mixer 0.9441 0.9453 0.9420 0.9561

Res2net50 0.9648 0.9566 0.9795 0.9722

Shufflenet_v1 0.9648 0.9698 0.9556 0.9726

T2T Vit 0.9587 0.9377 0.9966 0.9669

Vit Transformer 0.9611 0.9604 0.9625 0.9695

Our Method 0.9866 0.9868 0.9863 0.9896

TABLE 3 Comparing the existing methods of multi-classification for
diabetic retinopathy.

Methods Accuracy Sensitivity Specificity F1-score

Conformer 0.7704 0.7524 0.9122 0.7691

Convnext 0.7123 0.6754 0.8770 0.6999

HRnet 0.7374 0.7031 0.8954 0.7311

Vgg11 0.6211 0.5630 0.8547 0.6013

Mlp Mixer 0.7248 0.7121 0.8942 0.7246

Res2net50 0.6352 0.5568 0.8665 0.6054

Shufflenet_v1 0.6101 0.6500 0.8383 0.6026

T2T Vit 0.6950 0.7023 0.8679 0.6845

Vit Transformer 0.7563 0.7268 0.9150 0.7490

Our Method 0.8412 0.8154 0.9413 0.8400

TABLE 4 Comparing the existing methods of multi-classification for
macular edema.

Methods Accuracy Sensitivity Specificity F1-score

Conformer 0.9733 0.9733 0.9865 0.9733

Convnext 0.8214 0.8147 0.9104 0.8091

HRnet 0.8761 0.8725 0.9379 0.8745

Vgg11 0.6136 0.6035 0.8056 0.5753

Mlp Mixer 0.9210 0.9202 0.9602 0.9209

Res2net50 0.8882 0.8849 0.9443 0.8872

Shufflenet_v1 0.9635 0.9638 0.9816 0.9636

T2T Vit 0.9174 0.9144 0.9583 0.9160

Vit Transformer 0.9514 0.9510 0.9754 0.9514

Our Method 0.9866 0.9866 0.9932 0.9866
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TABLE 5 Performance of binary classification before and after data augmentation.

Methods Accuracy Sensitivity Specificity F1-score

Diabetic Retinopathy No Augmentation 0.5444 1.0 0 0.7050

Augmentation 0.9062 0.9376 0.8171 0.9366

Macular Edema No Augmentation 0.9389 0.7941 0.9726 0.8308

Augmentation 0.9866 0.9868 0.9863 0.9896

FIGURE 4
Model convergence performance of binary classification.
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multiclassification problem of diabetic retinopathy and macular

edema. In comparison with the binary classification problem, our

model does not demonstrate any reduction in the multi-

classification problem. It may be that there are only three

subcategories to classify, or that there are distinct features

which separate subcategories.

3.3 Performance of data enhancement on
the model

The data augmentation test was conducted on the binary

classification. Table 5 summarizes the changes to evaluation

indicators of the proposed method before and after data

enhancement. Following data enhancement, almost all

indicators were improved. There are two main factors

contributing to this: The first is the expansion of

minorities by rotating and flipping against class

imbalances; this allows the data to be more balanced,

reduces the impact of unbalanced data on the model, and

enhances its performance. Additionally, fundus images the

physiological structure reflected by fundus images is

relatively fixed, that is, the distribution of segmentation

targets in fundus images is essentially regular, and the

semantic understanding of these targets is rather

straightforward. So, low-resolution information provides

specific features that are necessary for target object

recognition. Although the model has gained sufficient low-

level features from migration learning, there are still only a

limited number of original images available for input, which

means that the enhanced images compensate for the lack of

original data.

3.4 Performance of transfer learning on
the model

An assessment of transfer learning was conducted on the

binary classification. Accordingly, the accuracy, sensitivity,

specificity, and F1-score values of diabetic retinopathy are

respectively 0.7393, 1, 0 and 0.8501. Similarly, these indicators

of macular edema are 0.6457, 1, 0, and 0.7847. ACC and F1 of

both diseases increased significantly following the addition of

transfer learning.

3.5 Convergence of the model

As an example, we exploit the binary classification problem to

demonstrate the effects of model convergence. Figures 4A,B show

the convergence of the model in DR and MD respectively. The

abscissa represents the number of epochs used, while the ordinate

represents the value of the loss suffered by the epoch. As shown in

Figure 4A, the model converges more effectively only after data

augmentation. While in 4B the model without data augmentation

achieves better convergence, it is not evident from the actual test

results.

Loss declines may not be apparent when the model cannot

solve the problem of category imbalance. Accordingly, we can

consider balancing the data set to resolve this issue. However,

when the number of pictures increases because of a data balance,

the overall loss may increase slightly, although this may be due to

the increase in images, which does not adversely affect our

classification accuracy.

3.6 Running environment and time cost

The experiments were conducted using a computing server

with an Intel i9-11900K CPU, an NVIDIA RTX-3090 GPU, and

Kingston 32 GB memory. Ubuntu 18.04 is the operating system

of the server. In general, the training time for a picture is 0.02 s

and the testing time is 0.007 s.

4 Conclusion

In this project, a method referred to as FunSwin is

proposed as a means to solve the problem of grading

diabetic retinopathy and estimating macular edema risk

using fundus images. The basic framework for the method

is Swin Transformer, with some modules based on some

features of medical data to improve performance. In

comparison to the existing studies on this benchmark

dataset, FunSwin was found to outperform the existing

studies in binary classifications and multi-classifications of

these two diseases. Furthermore, as regards binary

classification, when each subcategory of disease is given the

same amount of training data, i.e., assuming that all data for

each subcategory is balanced, then the binary classification

effect of the model will still be improved. The study however,

may need further evaluations in the clinical practices. There

have been very few clinical studies on AI-based retinal diseases

due to a variety of challenges, such as regulatory requirements

and the annotations of experienced clinicians. Additionally,

there is no specific evidence that these fundus-related

symptoms are directly connected to particular diseases.

After receiving ethical approval and the accumulating of a

large, well-annotated dataset, this limitation of the proposed

method will be resolved in a future study. In future studies, we

also intend to use FunSwin in treating other retinal disorders,

such as stroke, heart disease, etc.
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Quantitative estimation of growth patterns is important for diagnosis of lung

adenocarcinoma and prediction of prognosis. However, the growth patterns of

lung adenocarcinoma tissue are very dependent on the spatial organization of

cells. Deep learning for lung tumor histopathological image analysis often uses

convolutional neural networks to automatically extract features, ignoring this

spatial relationship. In this paper, a novel fully automated framework is

proposed for growth pattern evaluation in lung adenocarcinoma.

Specifically, the proposed method uses graph convolutional networks to

extract cell structural features; that is, cells are extracted and graph

structures are constructed based on histopathological image data without

graph structure. A deep neural network is then used to extract the global

semantic features of histopathological images to complement the cell

structural features obtained in the previous step. Finally, the structural

features and semantic features are fused to achieve growth pattern

prediction. Experimental studies on several datasets validate our design,

demonstrating that methods based on the spatial organization of cells are

appropriate for the analysis of growth patterns.
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lung adenocarcinoma, histopathological, deep learning, polar representation-based
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1 Introduction

Lung cancer is a malignant tumor originating from the

bronchial mucosa or glands of the lungs that poses a great

threat to human health and life. In recent years, many

countries have reported significant increases in rates of lung

cancer; in men, lung cancer has the highest morbidity and

mortality among all malignant tumors (Ferlay et al., 2020).

The 5-year survival rate of patients with lung cancer is

relatively low at 19%, mainly owing to the high risk of distant

metastasis (Hirsch et al., 2017; Mayekar and Bivona, 2017).

Adenocarcinoma is the most common histopathological type

of lung cancer and accounts for up to 40% of lung cancer cases

(Cheng et al., 2016).

According to the 2011 IASLC/ATS/ERS lung

adenocarcinoma classification, lung adenocarcinoma has five

predominant growth patterns: lepidic, papillary, acinar,

micropapillary, and solid (Travis et al., 2011). Accurate

determination of growth patterns and proportions from

whole-slide images (WSIs) has crucial clinical implications

for diagnosis, subsequent treatment, and prognosis. The

World Health Organization recommends that invasive

adenocarcinoma should be semi-quantitatively estimated in

5% increments with respect to the various growth patterns

on histopathological slides (Travis et al., 2015). Typically, this

work involves visual inspection by experienced pathologists

through a microscope, which is a very time-consuming and

labor-intensive process (Gurcan et al., 2009). In particular,

semi-quantitative estimates of growth patterns are required;

however, traditional methods only allow estimation and not

quantification. WSI technology and computer-aided diagnosis

provide an effective strategy for lung adenocarcinoma

diagnosis, which can be used as an auxiliary basis for

manual evaluation and to alleviate the shortage of

pathologists. In this work, we focus on the identification and

quantification of lung adenocarcinoma tissue growth patterns

from WSIs. This is expected to help pathologists to make rapid

diagnoses in practical clinical applications and provide a basis

for subsequent treatment. However, identifying growth

patterns is challenging because of the high intraclass

variation and low interclass distinction among patterns. As

shown in, Figure 1, the spatial structure of lung cancer cells has

complicated characteristic manifestations; for instance, cells in

the lepidic growth pattern grow along alveolar walls in a lepidic

fashion, and the acinar growth pattern has well-defined

individual tumor glands with well-formed glandular lumina.

Recently, owing to the enormous potential of deep learning,

many convolutional neural network (CNN)-based methods have

emerged that can automatically extract more beneficial features

for classification compared with hand-crafted features (Szegedy

FIGURE 1
Pictures of typical growth patterns. Left: An example of an HandE-stained digital pathology image with manual segmentation of growth
patterns, where red is the lepidic growth pattern and green is the acinar growth pattern. Right: Five common growth patterns (lepidic, papillary,
acinar, micropapillary, and solid).
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et al., 2016; Coudray et al., 2018; Šarić et al., 2019; Noorbakhsh

et al., 2020; Yu et al., 2020; Fan et al., 2021). For example,

Coudray et al. (2018) used an Inception v3 architecture (Szegedy

et al., 2016) to learn a parametric function to automatically

classify lung tumor subtypes (adenocarcinoma and squamous

cell carcinoma) and predict mutations using a dataset from The

Cancer Genome Atlas. Yu et al. (2020) built a CNN model to

identify tumor regions from whole-slide histopathology images,

achieving an area under the curve value (AUC) > 0.935, and used

the proposedmodel to predict pathologists’ diagnoses. Kalra et al.

(2020) presented a memory-based exchangeable model that

could learn interdependencies among instances through a self-

attention mechanism, achieving a competitive accuracy of

84.84% for the classification of lung adenocarcinoma and

squamous cell carcinoma. Although CNN can automatically

encode rich semantic features contained in captured images,

the analysis of histopathological images often focuses on local

features, which leads to biased learning. The main reason for this

is that the interclass differences among tissue growth patterns are

small, that is, cancer cells with different tissue growth patterns

show no obvious visual differences. Furthermore, intraclass

differences in tissue growth patterns are evident, and models

need to cope with altered tumor tissue and cell diversity.

Therefore, as well as understanding the semantic features of

an image, an algorithm designed for classification of lung tumor

histopathological images needs to be able to analyze the spatial

structure between cancer cells. Graph convolutional networks

(GCN) (Kipf andWelling, 2016), variants of CNN that transform

data into spatially structured features, have recently become a

popular choice for processing structured data in the field of

computer vision. Some studies have proposed the use of GCN to

analyze histopathological images. For example, Li et al. (2018)

proposed a GCN for WSIs, which obtains graph nodes by

sampling representative patches and extracting features for

survival prediction. Adnan et al. (2020) introduced attention

through graph pooling to infer relations among sampled patches

and applied multiple instance learning to classify lung cancer

subtypes. Zhou et al. (2019) developed CGC-Net, which converts

a large histology image into a graph, where each graph node is a

nucleus and the connecting edges of the nodes represent the

similarity between nuclei. Wang et al. (2020) also segmented the

cell nucleus and extracted topological composition graphs for

tumor microenvironment analysis in renal cell carcinoma and

patient outcome prediction; however, they did not use GCN.

Inspired by the above methods, in this work we designed a

novel deep learning framework, called LAD-GCN (lung

adenocarcinoma diagnosis GCN), which aggregates the

advantages of GCN and CNN for analyzing histopathology.

Specifically, to capture complex tumor microenvironment

information and semantic information of entire image

patches, we designed a model with two independent feature

extraction branches as follows. 1) The GCNmodule, including

a polar representation-based instance segmentation model

(Xiao et al., 2021), is used to extract all the cell nuclei

contained in the histopathological patch and extract a

nuclear feature composition map, which is used as an input

to the GCN network to extract cell structural features. 2) The

CNN module directly extracts semantic information from the

whole patch to supplement the information loss of the GCN

module. Then, the cell structural features extracted by the

GCN branch and the image patch semantic features extracted

by the CNN branch are fused. Compared with the CNN-only

models that are widely used in image classification tasks,

LAD-GCN could provide complementary semantic and cell

structural information during feature extraction. Finally, we

quantitatively evaluated the proposed method on a private

dataset of lung adenocarcinoma postoperative formalin-fixed,

paraffin-embedded (FFPE) tissue slides. The results

demonstrate that our method is able to capture features

that are beneficial for growth pattern typing. Our major

contributions can be summarized as follows.

1. In response to the problem of the small interclass differences

in tissue growth patterns that mean there are no obvious

visual differences among cancer cells with different growth

patterns, we developed a novel GCN-based framework for

analysis of the histopathological growth patterns of lung

adenocarcinoma. The proposed method adopts a polar

representation-based instance segmentation model to

segment the nucleus and uses GCN to extract cell spatial

structural features.

2. To overcome the limitations of a single feature extraction

module, we designed a dual-network joint analysis method:

the GCN branch extracts the spatial structural features of cells,

while the CNN branch complements these with the extraction

of semantic features of patches.

3. We validated the proposed method on a private lung

adenocarcinoma WSI dataset, demonstrating the

effectiveness of the architecture.

2 Materials and methods

2.1 Materials

Our histopathological image dataset contained data obtained

from 243 lung adenocarcinoma patients at Shandong Provincial

Hospital; for each patient, there was one FFPE image of the

tumor area, stained with hematoxylin and eosin (HandE) and

scanned at 20× and 40× magnification with a pixel scale of

0.23 μm × 0.23 μm. All samples represented postoperative

pathology, including tumor tissue slides, normal tissue slides,

and slides containing the border between normal and tumor

tissue. In this dataset, all data were positive samples, that is, slides

containing tumor tissue. The tumor/non-tumor area and five

histological patterns (lepidic, acinar, papillary, micropapillary,
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and solid) were manually delineated by an experienced oncology

pathologist.

To make the algorithm more effective, we built a

segmentation model based on U-Net (Ronneberger et al.,

2015) to achieve tumor region extraction; the process is

shown in Figure 2. Specifically, for the images in the dataset,

both tumor and non-tumor regions were manually annotated by

pathologists. We derived 2× magnification WSIs, which were

full-coverage images, and trained the U-Net backbone in a

traditional fully supervised manner with a cross-entropy loss

function (Xie and Tu, 2015) to predict tumor regions in theWSIs.

It is worth noting that the size of the original pathological images

was non-uniform, and the model was able to achieve region

prediction in images of any size.

2.2 Overview of the LAD-GCN
architecture

Figure 3 provides an overview of our automatic diagnosis

framework. As shown in the figure, instead of directly

extracting features using a CNN, we developed both CNN

and GCN feature extractors simultaneously. The inputs are

patches from digitized postoperative FFPE tissue slides, and the

output is the predicted growth pattern type. The whole process

consists of three parts. 1) GCN module: a polar representation-

based instance segmentation model is used to segment all the

cell nuclei contained in the histopathological patch; the nuclear

features are extracted to form a composite map that can be used

as the input to the GCN; and then GCN are used to extract cell

spatial structure features. 2) CNN module: semantic feature

extraction is performed using a CNN, VGG16 (Simonyan and

Zisserman, 2015). 3) Feature fusion: cell spatial structural

features and semantic features are fused for tumor growth

pattern prediction.

2.3 Spatial feature encoding with GCN

In histopathology images, each cell has its own characteristic

information, and there is structural information between cells. To

extract this information, we segment out the nuclei and construct

a graph of the tumor microenvironment for graph convolution

operations. Specifically, we first extract all the nuclei contained in

the patch and calculate the centroids of the nuclei to define the

graph node set V; then extract the nuclei features, use K-nearest

neighbors (KNN) (Muja and Lowe, 2009) to find the connections

between adjacent cells to define the edge set A (Chen et al., 2020);

FIGURE 2
Schematic representation of data processing; we used U-Net as the backbone to segment tumor regions.

FIGURE 3
Overview of the proposed diagnostic methods for lung adenocarcinoma.
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and, finally, use GCN to learn the graph depth spatial structural

features.

2.3.1 Nuclei segmentation module
The major purpose of the nuclei segmentation module is to

extract the various nuclei contained in the input image patch,

which includes normal cells, tumor cells, and stromal cells. The

cell nuclei produced by the nuclei segmentation module are then

constructed as a graph and fed into a GCN module for spatial

feature extraction. To achieve this aim, we use a polar

representation-based instance segmentation model (Xiao et al.,

2021) from our previous work to learn the segmentation of

nuclei; this model leverages fully convolutional one-stage

object detection and consists of a backbone network, feature

pyramid network, and task-specific heads. Specifically, when we

input an original image via the proposed network, the position of

the cell center point and the distance of n (n = 36) root rays can be

obtained; then, the coordinates of these points on the contour are

calculated according to the angle and length, connecting these

points starting from 0°; and, finally, the regions within the

connected regions are taken as the results of instance

segmentation. The nuclei segmentation module models a

contour based on the polar coordinate system and transforms

the instance segmentation problem into an instance center

classification problem and a dense distance regression

problem (Xie et al., 2020); thus, the network only needs to

return to the length of the fixed angle, which reduces the

difficulty of the problem. Through the prediction of the

segmentation module, we obtain the mask of the nuclei, and

the second column in Figure 4 shows the result of the nuclei

segmentation.

2.3.2 Cell feature extraction and construct graph
A feature matrix for graph convolution is generated based on

the nuclear segmentation map generated in the previous step. It is

used for two main processes: cell feature extraction and graph

construction. In the first of these processes, the PyRadiomics

package (Van Griethuysen et al., 2017) in Python is used to

generate features corresponding to each cell, including eight

shape features and four textural features. The shape features

include major axis length, minor axis length, angular orientation,

eccentricity, roundness, area, and solidity. The textural features,

obtained from gray-level co-occurrence matrices, are

dissimilarity, homogeneity, angular second moment, and

energy. In addition, we use contrastive predictive coding

(Henaff, 2020) to encode features of 64 × 64 image patch

regions centered on the centroids of cell nuclei.

In the second process, we connect the nuclei into a graph,

using the centroid of each nucleus as a graph node, and use the

KNN algorithm to build the edge set A of the graph. Specifically,

in principle, each nucleus should have contact with the other

nuclei, and the nearest neighbor cells are considered to have

obvious intercellular interactions. The adjacency matrix is

defined as:

aij � 1, if j ∈ KNN i( ) andD i, j( )<d
0, otherwise,

{ (1)

where j ∈ KNN(i) denotes the K instances closest to instance i.

In this work, we set K = 5. D (i, j) indicates the Euclidean

distance between two nucleus instances. Thus, we obtain the

input for the GCN, the set of nodes and edges G = (V, A).

Figure 4 shows the nuclear segmentation results and the graph

structure constructed based on these results for three sample

patches.

2.3.3 GCN module
The cell structural information used to construct a graph is

very suitable for GCN-based feature extraction. To simplify the

operation, we use a spatial-based GCN, where the convolution

operation is defined as:

H l+1( ) � σ ~D
−1/2 ~A ~D

−1/2
H l( )W l( )( ), (2)

in whichH(l) ∈ Rm×k(l) denotes the k(l)-channel features at the lth

layer, σ(.) denotes an activation function, and W(l) is the trainable

weight matrix of each layer. ~A � A + IN is the adjacency matrix of

the undirected graph with added self-connection, and IN is the

identity matrix.

FIGURE 4
Three sample patches of cell nuclei structures. First column:
typical patches from lung tumor histopathological images. Second
column: nuclei segmentation mask from nuclei segmentation
module. Third column: graph nodes and edges.
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2.4 Semantic feature encoding with CNN

The purpose of semantic feature encoding is to encode the

semantic features of an entire image patch, which can be used to

mine the overall information contained in the image block and as

supplementary information regarding the spatial structure of

cells. In this work, we apply VGG16 (Simonyan and Zisserman,

2015) as a feature extractor for the CNN, which consist of a

convolutional layer, ReLU, max pooling, and fully connected

layer. The model structure is shown as the “CNN module” in

Figure 3. The size of the input feature map for each pooling

operation is 1/2 that of the previous layer. Finally, the semantic

feature encoding the CNNmodule outputs a feature vector with a

length of 1,024.

2.5 Multimodal tensor fusion

In many approaches, the features extracted by multiple

networks are superimposed onto a set of features through a

concatenation operation, followed by convolution operations.

However, such approaches are only suitable for extraction of

features of the same type. Here, the image semantic features are

extracted as a set of feature maps by CNN, and cell structure

features are extracted as nodes and edges by GCN. To integrate

these multimodal features, we recommend using kronecker

product (Zadeh et al., 2017), a feature fusion method for

modeling multi-feature interaction. The fusion module

combines multimodal tensors through outer product

calculation, which can be formulated as:

hfusion � hc ⊗ hs, (3)
where ⊗ is the outer product; hc and hs denote cell graph and

semantic features, respectively, and hfusion is a differential

multimodal tensor formed in a three-dimensional Cartesian

space. After aggregating the multimodal tensors, we use a

fully connected layer for the next feature operation. In

addition, we adopt a gating-based attention mechanism

(Arevalo et al., 2017) to limit the fusion proportion of

different modal features. For each modality feature hm, ∀m ∈
{c, s}, we learn a linear transformation Wcs→m for the weight

matrix parameters. The importance score of each feature is

defined as zm � σ(Wcs→m · [hc, hs]). Subsequently, the gated

representation hm, gated can be calculated as:

hm, gated � zmphm,∀m ∈ c, s{ }, (4)

where hm � ReLU(Wm · hm) denotes the feature after

activation by ReLU. Through this gated attention

mechanism, the expressive ability of each modality feature

can be controlled, and the size of the feature space is also

reduced before feature fusion.

2.6 Loss function

The loss function for LAD-GCN is the standard cross-

entropy loss:

TABLE 1 Effects of each module in our LAD-GCN design. Bold font indicates best result obtained for predictions.

Growth pattern Methods CNN GCN P (%) R (%) F1S (%)

Lepidic CNN module ✓ 90.64 87.76 89.18
GCN module ✓ 84.55 78.55 81.44
LAD-GCN ✓ ✓ 90.26 89.83 90.04

Acinar CNN module ✓ 89.79 87.24 88.50
GCN module ✓ 83.61 85.98 84.78
LAD-GCN ✓ ✓ 89.27 90.39 89.83

Papillary CNN module ✓ 85.17 79.78 82.39
GCN module ✓ 83.33 81.52 82.42
LAD-GCN ✓ ✓ 87.15 85.80 86.47

Micropapillary CNN module ✓ 79.56 89.44 84.21
GCN module ✓ 85.63 89.03 87.30
LAD-GCN ✓ ✓ 86.53 86.80 86.67

Solid CNN module ✓ 98.17 98.02 98.10
GCN module ✓ 95.85 97.33 97.07
LAD-GCN ✓ ✓ 98.34 98.78 98.56

TABLE 2 Comparison of the performances of each module in terms of
accuracy.

Methods Accuracy (%)

CNN module 88.49

GCN module 86.71

LAD-GCN 90.35

Frontiers in Physiology frontiersin.org06

Xiao et al. 10.3389/fphys.2022.946099

40

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.946099


min
P

L � −∑
B

b�1
pb logqb, (5)

where A represents the total number of image patches, and pb
and qb = pmodel (y|b) indicate the target labels and the

predicted class distribution produced by the model for

input b, respectively. The whole training process of the

network is performed in an end-to-end manner.

3 Experiments and results

3.1 Implementation details

For the GCN module, we first use a pre-trained nuclei

segmentation module to extract various nuclei from each

patch, and train the GCN model classifiers. We train the

CNN module and GCN module using the Adam optimizer

with an initial learning rate of 0.001 and a batch size of 64.

For the proposed LAD-GCN, the trained GCN module and

CNN module are then fine-tuned for 100 epochs with a

learning rate of 0.00001. All our modules were

implemented with PyTorch and trained on four NVIDIA

Tesla A100 GPUs.

3.2 Evaluation metrics

We employed four metrics for performance evaluation

of the baseline classification model, GCN module, CNN

module, and the proposed LAD-GCN: precision, recall,

F1-score, and accuracy. These performance metrics can

be understood by considering four terms: true positives

(TP), true negatives (TN), false positives (FP), and false

negatives (FN). The precision (P) and recall (R) were

defined as:

P � TP

TP + FP
, (6)

and

R � TP

TP + FN
. (7)

FIGURE 5
Typical histopathological image analysis results obtained with three networks. Red, green, yellow, blue, and cyan masks represent lepidic,
acinar, papillary, micropapillary, and solid growth patterns, respectively. (A) Example of histopathological images. (B) Ground truth by pathologists.
(C,D,E) Typical histopathological image analysis results obtained with three networks: (C)CNN, (D)GCN and (E) LAD-GCNs. Red, green, yellow, blue,
and cyan masks represent lepidic, acinar, papillary, micropapillary, and solid growth patterns, respectively.
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We further measured the F1 score (F1S), which combines

precision and recall, defined as:

F1S � 2TP
2TP + FP + FN

. (8)

In addition, we calculated the accuracy of five growth

patterns, defined as:

Accuracy � TP + TN

TP + TN + FP + FN
. (9)

3.3 Ablation study

To verify the effectiveness of the CNN module and GCN

module in lung tumor histopathological image analysis, we

conducted an ablation study. The results are shown in Table 1

and Table 2. The CNN module demonstrated greater ability in

the analysis of lepidic and acinar growth patterns, whereas the

GCN module could better capture the micropapillary

structure. Both modules worked well for identifying solid

growth patterns, possibly because the tumor cells were

densely packed and lacked characteristic patterns of

adenocarcinoma. The proposed model (LAD-GCN) fuses

semantic features and spatial features. Although it could

not achieve optimal results in the analysis of every growth

mode, its performance was stable. It achieved an accuracy of

90.35%, which was more than 1.8% better than that of the

CNNmodule, and more than 3.6% better than that of the GCN

module.

Figure 5 shows the results of histopathological image

analysis of four images, which included lepidic, acinar,

papillary, micropapillary, and solid growth patterns. The

GCN and CNN modules produced very similar masks to

the manual ground truth; however, LAD-GCN could still

provide a subtle improvement. As shown in the figure, the

areas predicted by the deep learning model were often larger

than those obtained by manual labeling; this was because

manual annotation focused on regions typical of particular

growth patterns, whereas the trained deep learning model

could predict both typical and atypical growth pattern regions.

Pathologists perform semi-quantitative assessments of growth

patterns when analyzing histopathological images of lung

adenocarcinomas. This process is very dependent on the

subjective evaluation of individuals and is difficult to

quantify. The trained model could predict the type of

growth pattern for each small patch region, enabling

quantification of types across the entire histopathological

image.

4 Discussion and conclusion

In this study, we proposed the LAD-GCN framework, which

consists of a GCN module and a CNN module, for the task of

lung adenocarcinoma growth pattern prediction. The GCN

module captures the spatial structural features between cells,

whereas the CNN module captures semantic features of whole

patches; these features can be fused to predict growth patterns. In

particular, our proposed model showed significantly enhanced

performance in lung adenocarcinoma growth pattern prediction

tasks. In the future, our goal is to combine image analysis with

patient medical records to predict medication and prognostic

status, and to apply our LAD-GCN framework to other

histopathological WSI analysis tasks such as images of breast,

kidney, and brain.
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Objective: To investigate the role of prediction microvascular invasion (mVI) in

hepatocellular carcinoma (HCC) by 18F-FDG PET image texture analysis and

hybrid criteria combining PET/CT and multi-parameter MRI.

Materials and methods: Ninety-seven patients with HCC who received the

examinations of MRI and 18F-FDG PET/CT were retrospectively included in this

study and were randomized into training and testing cohorts. The lesion image

texture features of 18F-FDG PET were extracted using MaZda software. The

optimal predictive texture features of mVI were selected, and the classification

procedure was conducted. The predictive performance of mVI by radiomics

classier in training and testing cohorts was respectively recorded. Next, the

hybrid model was developed by integrating the 18F-FDG PET image texture,

metabolic parameters, and MRI parameters to predict mVI through logistic

regression. Furthermore, the diagnostic performance of each time was

recorded.

Results: The 18F-FDG PET image radiomics classier showed good predicted

performance in both training and testing cohorts to discriminate HCC with/

without mVI, with an AUC of 0.917 (95% CI: 0.824–0.970) and 0.771 (95% CI:

0.578, 0.905). The hybrid model, which combines radiomics classier, SUVmax,

ADC, hypovascular arterial phase enhancement pattern on contrast-enhanced

MRI, and non-smooth tumor margin, also yielded better predictive

performance with an AUC of 0.996 (95% CI: 0.939, 1.000) and 0.953 (95%

CI: 0.883, 1.000). The differences in AUCs between radiomics classier and

hybrid classier were significant in both training and testing cohorts (DeLong test,

both p < 0.05).
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Conclusion: The radiomics classier based on 18F-FDG PET image texture and

the hybrid classier incorporating 18F-FDG PET/CT and MRI yielded good

predictive performance, which might provide a precise prediction of HCC

mVI preoperatively.

KEYWORDS

hepatocellular carcinoma, microvascular invasion, fluorine-18 fluorodeoxyglucose-
positron emission tomography (18F-FDG-PET), magnetic resonance imaging, texture
feature

1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common

liver malignancies and one of the leading causes of cancer death

in the world (Sung et al., 2021). The main cause of unsatisfactory

HCC prognosis is that it is difficult to detect at the early stage

because of poor symptoms. The primary curative treatment

modality of HCC is partial hepatectomy. However, upon

detection, most HCC patients are unsuitable for hepatectomy

because of the underlying liver cirrhosis and hepatic dysfunction.

Even though HCC patients receive curative surgical resection,

there is still a relatively high recurrence rate, even in HCC

patients receiving liver transplantation, as high as 15%–30%

(Hoffman and Mehta, 2021; Tampaki et al., 2021). Therefore,

early diagnosis and accurate prediction of postoperative HCC

recurrence are important. Some established factors such as tumor

grade, stage, size, liver function, and treatment acted as predictors

of postoperative HCC recurrence (Ochiai et al., 2012).

Vascular invasion of HCC representing invasive tumor

behavior is a significant predictor of poor outcomes (Jonas

et al., 2001). Macrovascular invasion (MVI) could be readily

detected by contrast-enhanced CT/MR imaging before surgical

resection (Teefey et al., 2003). However, as a histologic finding,

microvascular invasion (mVI) is usually visible only on

microscopy by histopathology of the surgical specimen, which

is difficult to diagnose before surgical resection. Therefore, it is

essential to detect clinical predictors to suggest the presence of

mVI preoperatively.

Previous research has reported that the status of mVI can be

predicted by key imaging and laboratory tests. Several previous

studies have reported that tumor margin, capsule, and

peritumoral enhancement on CT/MRI scans were significantly

associated with mVI (Nishie et al., 2008; Witjes et al., 2012).

However, contradictory results were also reported in some

studies (Kim et al., 2009; Chou et al., 2014). In clinical

practice, developing a reliable preoperative predictor for mVI

is still necessary. As a functional molecular imaging modality,

fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission

tomography (PET)/computed tomography (CT) is useful for

evaluating HCC differentiation grade by estimating the

glucose metabolism of tumor cells (Cho et al., 2017). Recently,

several studies have reported the role of 18F-FDG PET/CT in

defining mVI in patients with HCC. However, there is no

consistent conclusion, and the current results showed a wide

range of sensitivity, specificity, and accuracy for preoperatively

detecting mVI, which indicated that the current PET/CT

technique is insufficient alone for establishing a risk factor for

mVI (Kornberg et al., 2009; Lee et al., 2009; Lin et al., 2017; Kim

and Kim, 2021). Recently, Li et al. conducted radiomics analysis

on 18F-FDG PET/CT to preoperatively predict mVI and

prognosis in patients with very early and early stages of HCC,

which is the importance of precise treatment of patients (Li et al.,

2021).

In this retrospective study, we aimed to verify the

comprehensive value of 18F-FDG-PET/CT in the prediction of

mVI by quantitative uptake measurement and image texture

analysis. We also focus on the role of the hybrid model of

incorporating 18F-FDG-PET/CT and multi-parameter MRI.

We hypothesized if 18F-FDG-PET/CT findings predict mVI

and, more importantly, the added value, if any, of PET/CT for

the hybrid model in the prediction of mVI.

2 Materials and methods

2.1 Patients

This retrospective study was conducted in accordance with

the Declaration of Helsinki proposed in 1975 and revised in

2000 and was approved by the Ethics Committee of the universal

medical imaging center, Shanghai University (SHQJ-2019-05).

The consecutive HCC patients were confirmed by histopathology

after partial hepatectomy from January 2018 to April 2021. The

inclusion criteria were as follows: (Sung et al., 2021)

age >18 years; (Hoffman and Mehta, 2021) primary HCC

confirmed by pathology of surgical specimens; (Tampaki

et al., 2021) multi-parameter MR images containing

conventional unenhanced MR imaging (including T1WI and

T2WI), dynamic contrast-enhanced T1WI (including the arterial

phase imaging, portal venous phase imaging, and delayed phase

imaging), and diffusion-weighted imaging (DWI) (with b-value

of 0 and 800 s/mm2); (Ochiai et al., 2012) PET/CT and multi-

parameter MRI examination approximately within 4 weeks

before surgery; and (Jonas et al., 2001) no history of

preoperative anti-cancer treatment. The exclusion criteria of

this study were as follows: (Sung et al., 2021) preoperative
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images showing macrovascular invasion; (Hoffman and Mehta,

2021) HCC patients who underwent any anti-cancer treatment

before partial hepatectomy; (Tampaki et al., 2021) those with

time intervals of PET/CT, MRI, and surgery more than 4 weeks;

(Ochiai et al., 2012) those with no pathology slides available for

review; and (Jonas et al., 2001) images with artifacts affecting

evaluation.

The patients enrolled in this study were randomly divided

into two cohorts (training and testing) with a ratio of 7:3 using

computer-generated random numbers.

2.2 18F-FDG PET/CT acquisition and image
analysis

2.2.1 18F-FDG PET/CT acquisition
This study examined all 18F-FDG PET/CT acquisitions with

the SIEMENS Biograph mCT Flow PET/CT system (Siemens

Medical Solutions United States, Inc.). After at least 6 h of fasting,

the patient was intravenously administered a standard dose

(3.7 MBq/kg) of 18F-FDG, followed by image acquisition

60 min later, from the thigh to the head. Whole-body non-

contrast enhancement CT scanning protocols were as follows:

120 kVp, 30–170 mAs adjusted to the patient’s body weight and

with a section width of 3 mm and collimation of 0.75 mm. An

emission scan was performed in a three-dimensional (3D) mode

with an acquisition time of 1.7 min per bed position. PET images

were reconstructed by a 2-iteration, 21-ordered-subset

expectation maximization algorithm using CT images for

attenuation correction.

2.2.2 18F-FDG PET metabolic and volumetric
parameters

Standardized uptake values (SUV) were calculated by the

region-of-interest (ROI) technique. In order to calculate

SUVmax and SUVmean, manually defined circular ROI was

drawn on attenuation-corrected emission images selected for the

largest axial image of the HCC lesion. On the PET image, an

ellipse iso-contour was drawn covering the lesion, and the

volume of interest (VOI) in 3D, that is, metabolic tumor

volume (MTV), was obtained semi-automatedly with an iso-

contour SUV value threshold of 2.5 (Kim et al., 2017). Total

lesion glycolysis (TLG) was calculated by multiplying the selected

PET volume by the average SUV within that volume: TLG =

MTV × (average SUV). If the lesion had a low uptake of 18F-FDG,

the VOI was calculated on CT images and was then copied to

PET to obtain the VOI on PET. Contrast-enhanced MRI was

sometimes used to help delineate lesions.

The parameters of HCC 18F-FDGmetabolic avidity SUVmax,

SUVmean, the ratio of the maximum standardized uptake value

of tumor to the average standardized uptake value of normal liver

(TLRmax), and the average tumor-to-normal liver standardized

uptake value ratio (TLRmean) were calculated and recorded.

2.2.3 Texture analysis on axial 18F-FDG PET
images
2.2.3.1 Data standardization

Before texture analysis of the 18F-FDG PET image, the data

standardization procession to minimize the influence of image

contrast and brightness variations was performed by adopting a

method of normalizing the intensities of greyscale images into

the range of mean value ± three standard deviations (SD) (μ −

3SD, μ + 3SD).

2.2.3.2 18F-FDG PET image texture analysis

Texture feature extraction and selection were performed with

the MaZda software package (version 4.6, available at http://

www.eletel.p.lodz.pl/mazda/) (Szczypinski et al., 2009). The

largest axial 18F-FDG PET image of each HCC lesion was

selected for image texture analysis. The ROI was manually

circumscribed over the entire HCC lesion possibly on each

selected image by an experienced radiologist (Figure 1).

MaZda software allows the computation of almost 300 texture

features based on the image histogram, co-occurrence matrix

(COM), run-length matrix, absolute gradient, auto-regressive

model, and wavelet transforms (WAV) (Pinker et al., 2018).

These texture features (Supplementary Table S1) were extracted

from each ROI.

In order to achieve the highest differentiation power of HCC

with or without mVI, avoid the problem of dimensionality, and

reduce the bias, the image texture feature selection was

performed by a feature selection algorithm combining Fisher’s

coefficient (Fisher), classification error probability combined

with the average correlation coefficients (PA), and mutual

information (MI) on module B11. Then, 30 texture features

with the highest discriminative power were selected. In the

training cohort, the classification procedures were conducted

using principal component analysis (PCA), linear discriminant

analysis (LDA), and non-linear discriminant analysis (NDA) on

module B11 of the MaZda software package, and the sensitivity,

specificity, positive predictive value, negative predictive value,

and accuracy of diagnosis were calculated. The best classification

procedure was selected as the radiomic classifier with the highest

accuracy. In the testing cohort, the optimal 30 texture features

were selected according to the result of the training cohort, and

the predictive performance of the radiomic classifier for

differentiation of the status of mVI of HCC was calculated.

2.3 MRI technique and image analysis

All MRI examinations were performed with a 3.0-T MRI

scanner (Magnetom Aera, Siemens Healthcare, Erlangen,

Germany; or Ingenia, Philips Healthcare, Best, the Netherlands).

The imaging protocol was as follows: axial fast spin echo T2WIwith

fat saturation using a navigator-triggered technique, DWI using a

single-shot echoplanar imaging pulse sequence with b-values of
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0 and 800 s/mm2. The apparent diffusion coefficient (ADC) of the

HCC lesion was measured on the ADC map by the ROI drawn by

two radiologists circumscribing the entire lesion on the largest axial

image in consensus. T1WI images were obtained before and after

administration of gadolinium injection solution, with a dose of

0.1 mmol per kilogram of body weight and an injection rate of 2 ml/

sec. The arterial phase (AP) images were acquired approximately

25 s after contrast material injection. The portal venous phase

(PVP) images were acquired approximately 55–65 s after the

start of contrast material administration, and delayed phase

(DP) images were acquired 90–100 s after contrast material

injection. All parameters for the MRI sequences are summarized

in Supplementary Table S2.

2.3.1 Image analysis
MR images were retrospectively analyzed on a workstation or

a picture archiving and communication system (PACS). Two

clinically experienced radiologists evaluated the MR images in

consensus to obtain reliable results. Both readers were blinded to

the status of mVI.

The two radiologists qualitatively made the following: 1)

classified the arterial phase enhancement patterns on dynamic

contrast-enhanced MRI into three patterns: hypervascular HCC,

isovascular HCC, and hypovascular HCC; (Hoffman and Mehta,

2021) determined the presence or absence of intratumoral artery;

2) classified the patterns of tumor margin into two patterns:

smooth margin or non-smooth margin; and 3) determined HCC

with or without peritumoral enhancement on the AP images.

Qualitative findings on dynamic contrast-enhanced MR

imaging were defined as follows: 1) hypervascular HCC:

homogeneously hypervascular, hypervascular with slit-like

hypovascular foci, or multifocal hypovascular foci, with a

peripheral hypovascular area (Figure 2); 2) hypovascular

HCC: with a nodular- or irregular-shaped hypointense

portion at an inner area, with irregular rim-like enhancement,

with a peripheral hypervascular area, discontinuous rim, or

crescent-like, with linear or spot-like hypervascular foci, or

completely hypovascular HCC (Figure 2) (Rhee et al., 2021);

3) intratumoral artery: the blood vessels within the tumor in AP

images (Figure 2) (Segal et al., 2007); 4) a smooth margin defined

as a nodular-shaped tumor without extranodular extension or

infiltrative, non-smooth margins defined as a nodule with

extranodular extension or an infiltrative margin (Figure 3)

(Nakashima et al., 2003; Segal et al., 2007); and 5)

FIGURE 1
Flowchart of texture features (TF) extraction. (A) The 18F-FDG PET image of the maximum axial section of hepatocellular carcinoma (HCC) was
chosen. (B) The region of interest (ROI) of the tumor was drawn in red on MaZda. (C) The gray level histogram (GLH), gray level co-occurrence
matrices (GLCM), gray level run lengthmatrices (GLRLM), histogram of oriented gradient (HOG), wavelet transformation (WT), and the autoregressive
model (ARM) of tumor were calculated, respectively. (D) A combination of feature selection algorithms, including Fisher’s coefficient (Fisher),
classification error probability combined with the average correlation coefficients (PA), and mutual information (MI), was used to determine
30 texture features with the highest discriminative power for differentiation HCC with or without between mVI.
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peritumoural enhancement on AP images: defined as a patchy

hyperintense area adjacent to the tumor with broad contact to the

tumor border on the AP images, presenting isointense to liver

parenchyma on the DP images (Figure 2) (Kim et al., 2009).

2.4 Intra-observer and inter-observer
agreement

The reproducibility of the intra-observer and inter-observer

agreement for texture analysis was measured using 20 randomly

chosen samples drawn from axial 18F-FDG PET images and ADC

map by two radiologists blinded from patients’ characteristics. To

evaluate intra-observer reproducibility, the first radiologist

delineated an ROI twice within 2 weeks following the same

procedure. Meanwhile, the second radiologist also

independently delineated the ROI once following the same

procedure. Then, the inter-observer agreement was assessed by

comparing the results with the texture features extracted calculated

from the first ROI delineation by the first radiologist. The intraclass

correlation coefficient (ICC) was used to evaluate the intra-

observer and inter-observer agreements. An

ICC >0.75 indicated satisfactory agreement.

2.5 Microvascular invasion evaluation by
histopathology

All surgical specimens and the status of mVI were reviewed

and evaluated by an experienced pathologist in liver pathology.

mVI was defined as the presence of a tumor in a portal vein,

hepatic vein, or a large capsular vessel of the surrounding hepatic

tissue lined by the endothelium that was visible only on

microscopy (Roayaie et al., 2009; Xu et al., 2019). We

categorized the HCC patients with mVI as the mVI-positive

(mVI+) group and the HCC patients without mVI as the mVI

negative (mVI−) group.

2.6 Statistical analysis

Inter-reader agreement was expressed by Cohen’s kappa

coefficient. A kappa statistic of 0.8–1.0, 0.6–0.79, 0.40–0.59,

0.2–0.39, and 0–0.19 was considered excellent, good,

moderate, fair, and poor agreement, respectively.

For categorical variables, the differences between the mVI (−)

and mVI (+) groups were analyzed by the Chi-squared test or

Fisher’s exact test. For continuous variables with a normal

distribution, an independent-samples t-test was used to test

the significant difference of the mVI (−) and mVI (+) groups;

for continuous variables with a skewed distribution, a non-

parametric Mann–Whitney U test was used. A two-tailed

p-value less than 0.05 was considered that the difference was

statistically significant. SPSS software (SPSS version 24.0; SPSS

Inc., Chicago, IL, United States) was used to perform statistical

analysis. The predictive value of each factor for mVI was

determined by analysis of the area under the ROC curve

(AUC). The differences in AUCs were compared by the

DeLong test (DeLong et al., 1988) performed using MedCalc

software (version 20.023). The calibration of the hybrid model

FIGURE 2
The patterns of arterial phase enhancement of hepatocellular carcinoma on contrast-enhanced MRI. (A) Homogeneously hypervascular HCC.
(B) Hypervascular HCC with slit-like hypovascular foci. (C) With multifocal hypovascular foci. (D) Hypervascular HCC with the peripheral
hypovascular area. (E) Completely isovascular HCC. (F) HCC with a nodular or irregular-shaped hypovascular portion at the inner area. (G)
Hypovascular HCC with irregular rim-like enhancement. (H) Hypovascular HCC with the peripheral hypervascular area, discontinuous rim or
crescent-like, and the presence of peritumoral enhancement seen in the arterial phase. (I) Hypovascular HCC with linear or spot-like hypervascular
foci. (J) the presence of an intratumoral artery.
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was performed by comparing the predicted and actual

probability of mVI by the Hosmer–Lemeshow test.

3 Results

For the intra-observer and inter-observer agreement,

radiomics features achieved satisfactory consistency. There

was no radiomics feature to be eliminated. The mean ICC was

0.956 (range, 0.892 to 1, p < 0.001) in the intra-observer

agreement and the mean ICC was 0.915 (range, 0.751 to

0.999, p < 0.001) in the inter-observer agreement.

In this study, the study flowchart for predicting mVI based

on texture features, metabolic and volumetric parameters, and

multi-parameter MRI is shown in Figure 4. A total of 97 patients’

clinical characteristics are presented in Table 1.

Of the 97 patients with HCC, 58.8% (57/97) had tumors with

mVI and 41.2% (40/97) without mVI. In the training cohort,

mVI (+) was presented in 55.9% (38/68) of tumors, similar to

65.5% (19/29) seen in the testing cohort (p > 0.05). There were

also no significant differences in other baseline clinical features

between the training and testing groups (all p > 0.05, Table 1),

which indicated that the distribution of baseline clinical-

pathologic characteristics in the training and testing group

was balanced.

In the pooled cohorts, the values of SUVmax, SUVmean,

TLRmax, TLRmean, and ADC of HCC with mVI (n = 57) were

higher than HCC without mVI (n = 40) (all p < 0.05). There

was no significant difference in MTV, TLG, and ADC/

ADC_liver between HCC with and without mVI (Table 2;

Figures 5, 6).

ROC curve analysis showed that the cutoff values of

SUVmax, SUVmean, TLRmax, TLRmean, and ADC for

predicting HCC with mVI were 5.65, 3.79, 2.53, 1.92, and

1,171.5, respectively, with the largest Youden indexes but

moderate diagnostic efficacy (all AUC < 0.70) (Table 3). In all

quantitative metabolic parameters, the predictor with the highest

diagnostic efficacy is SUVmax with the largest AUC (0.698, 95%

CI: 0.593 to 0.803, p = 0.001), providing sensitivity and specificity

of 59.6% and 80.0% at a cutoff value of 5.65 (Table 4;

Supplementary Figure S1).

On dynamic contrast-enhanced MRI review of pooled all

cohorts, the HCCs with mVI were significantly associated with

enhancement patterns on AP imaging and tumor margin (all p <
0.05; Table 2). Most HCCs with mVI (44/57, 77.2%)

demonstrated hypovascular lesions (Figure 5). The HCCs with

mVI (28/57, 49.1%) manifest as having more frequency of non-

smooth tumor margin than the HCCs without mVI (11/

40, 27.5%).

Based on the above results, we selected the quantitative

parameters of SUVmax and ADC, as well as the qualitative

parameters of the hypovascular enhancement pattern on AP

MR imaging and non-smooth tumor margin for subsequent

analysis.

3.1 Training cohort

Based on the feature selection algorithm combining Fisher,

PA, and MI coefficients in features modeling, 30 optimal features

are selected and listed in Supplementary Table S3.

Compared to PCA (47.1%, 32/68) and LDA (19.1%, 13/68),

NDA had the lowest misclassification rate with 7.4% (5/68) for all

these three classification procedures by MaZda software (p <
0.01). The NDA classification with an AUC of 0.917 (95% CI:

0.824–0.970) showed a sensitivity of 100%, a specificity of 83.3%,

a positive predictive value of 88.4%, a negative predictive value of

100%, and an accuracy of 92.6% (Table 4).

FIGURE 3
The patterns of hepatocellular carcinoma tumor margin. (A) Smooth tumor margin and intact tumor capsule. (B) Tumor with a non-smooth
margin.
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Combining radiomics classification results based on the

texture of the 18F-FDG-PET image, SUVmax, ADC, and the

qualitative parameters of the hypovascular arterial phase

enhancement pattern and non-smooth tumor margin, the

hybrid model regression equation was as follows:

Logit (P) = −2.077 + 0.203 × SUVmax + 2.825 × ADC −

4.717 × Radiomics − 0.041 × non-smooth − 0.664 × hypo-

vascular.

P is the probability of HCC with mVI. For p ≥ 0.5, the lesion

was expected to be HCC with mVI, whereas the other lesions

were categorized as HCC without mVI.

The hybrid model with an AUC of 0.996 (95% CI: 0.939,

1.000; p < 0.001) yielded a sensitivity of 94.7%, a specificity of

100%, a positive predictive value of 100%, a negative predictive

value of 93.8%, and an accuracy of 97.1% (Table 4). The

difference in AUC between the radiomics classification model

and the hybrid model was significant (p = 0.017). The calibration

of the hybrid model was performed by comparing the predicted

and actual probability of mVI by the Hosmer–Lemeshow test

(p > 0.05). (Supplementary Figure S2A) The difference between

the predicted and actual probabilities of mVI showed no

statistical significance.

3.2 Testing cohort

We selected 30 texture features that were consistent with the

training cohort. By using the neural network NDA classifier test

included in module B11, the misclassification rate for HCC with

versus without mVI was 20.7% (6/29). The sensitivity, specificity,

positive predictive, negative predictive, and accuracy values were

84.2%, 70.0%, 84.2%, 70.0%, and 79.3%, respectively, with an

AUC of 0.771 (95% CI: 0.578, 0.905) (Table 4).

In the testing cohort, the hybrid criteria yielded an AUC of

0.953 (95% CI: 0.883, 1.000; p < 0.001), a sensitivity of 95.0%, a

specificity of 70%, a positive predictive value of 86.4%, a

negative predictive value of 87.5%, and an accuracy of

86.7% (Table 4).

The performances of the radiomics and hybrid models to

predict HCC with mVI were also good in the testing cohort,

indicating their robustness. The difference in AUC between

radiomics criteria and hybrid criteria was also significant (p =

0.013), indicating that the hybrid model incorporated 18F-FDG

PET/CT and MRI yielded better predictive performance. The

calibration of the hybrid model was performed by comparing the

predicted and actual probability of mVI by the

Hosmer–Lemeshow test (p > 0.05) (Supplementary

Figure S2B). The difference between the predicted and actual

probability of mVI showed no statistical significance.

4 Discussion

To our knowledge, this study has produced the first texture-

based radiomics model of 18F FDG PET and a hybrid model that

incorporated texture features of 18F-FDG PET, quantitative

metabolic parameters, and quantitative and qualitative MRI

parameters for predicting the status of mVI in HCC. We

found that the radiomics model based on the texture of
18F-FDG PET had a good diagnostic performance with an

FIGURE 4
Study flowchart for predictingmVI by analyzing PET texture features and the hybridmodel incorporated 18F FDG PET/CT andMRI in training and
testing set.
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AUC of 0.917 (95% CI: 0.836–0.998) and 0.771 (95% CI:

0.578 TO 0.966) in the training and testing cohorts,

respectively. Furthermore, hybrid criteria combining 18F-FDG

PET and MRI could significantly increase diagnostic

performance more than the radiomics model (p < 0.05) and

yield an AUC of 0.996 (95% CI: 0.939, 1.000; p < 0.001) and 0.953

(95% CI: 0.883, 1.000) in the training and testing cohorts,

respectively. Accordingly, our results may increase the

accuracy of preoperative detection of the HCC with or

without mVI. It is useful for planning the most appropriate

treatment strategy and improving the prognosis of patients

with HCC.

Despite progressions in diagnostic and therapeutic

modalities, the prognosis of the patient with HCC is still to

be improved due to the recurrence rate after treatment

remaining high (Mlynarsky et al., 2015). The high

heterogeneity of the HCC may have resulted in a varied

prognosis (Lu et al., 2016; Lin et al., 2017). As a

pathological feature, mVI reflects the invasiveness of the

tumor, which usually appears in aggressive HCC while not

in low-grade HCC. The patient with HCC presenting mVI has

a shorter disease-free survival (DFS) due to a higher risk of

tumor recurrence (Miyata et al., 2006). Therefore, mVI is an

important prognostic factor of HCC and plays an important

role in planning a personalized therapeutic strategy (Erstad

and Tanabe, 2019; Xu et al., 2019). It is necessary to detect

clinical predictors to suggest the presence of mVI

preoperatively in order to establish a personalized

therapeutic strategy.

Several previous studies have shown that various imaging

modalities, including ultrasound, CT, especially contrast-

enhanced CT, 18F-FDG PET/CT, and MRI, have the potential

to detect HCC with mVI (Lin et al., 2017; Hyun et al., 2018; Hu

et al., 2019; Li et al., 2021; Meng et al., 2021). These studies showed

that various imaging modalities might have a comparable

predictive performance for mVI, whether the morphologic

features, metabolic activity features, radiomics analysis, or

combination are used. However, it is still unclear which

modality is better and unable to completely meet clinical needs

to establish risk factor for mVI only by one modality. In this study,

we first extracted texture features from ROI in an 18F-FDG PET

image and selected 30 optimal texture features in our study.

Meanwhile, the NDA classification procedure and the neural

network classifier on module B11 of the MaZda software

TABLE 1 Clinical characteristics of patients with HCC in the training and testing cohort.

Training cohort (n = 68) Testing cohort (n = 29) p-value***

mVI+ (n =
38) n
(%) or
median (IQR)

mVI− (n =
30) n
(%) or
median (IQR)

p-value* mVI+ (n =
19) n
(%) or
median (IQR)

mVI− (10)
n (%)
or median
(IQR)

p-value**

Sex 0.452 0.414 0.519

Male 26 (38.2) 23 (33.8) 11 (37.9) 8 (27.6)

Female 12 (17.6) 7 (10.3) 8 (27.6) 2 (6.9)

Age (years) 55 (36.5, 59.3) 55 (50, 63.3) 0.158 50 (50, 62) 46 (55, 62) 0.628 0.512

HBV infection 0.965 0.450 0.583

Absent 15 (22.1) 12 (17.6) 11 (37.9) 4 (13.8)

Present 23 (33.8) 18 (26.5) 8 (27.6) 6 (20.7)

Child–Pugh 0.973 1.000 0.961

A 29 (42.6) 23 (33.8) 14 (48.3) 7 (24.1)

B 9 (13.2) 7 (10.3) 5 (17.2) 3 (10.3)

Liver cirrhosis 0.833 0.245 0.420

Absent 13 (19.1) 11 (16.2) 8 (27.6) 7 (24.1)

Present 25 (36.8) 19 (27.9) 11 (37.9) 3 (10.3)

AFP (ng/ml) 0.357 0.270 0.932

≤200 16 (23.5) 16 (23.5) 12 (41.4) 4 (13.8)

>200 22 (32.3) 14 (20.6) 7 (24.1) 6 (20.7)

Image tumor size (mm) 42 (18.8, 79.3) 40 (17.5, 69.8) 0.923 64.0 (55.0, 85.0) 67.5 (44.0, 96.3) 0.982 0.888

HCC, hepatocellular carcinoma; HBV, hepatitis B virus; AFP, alpha-fetoprotein; mVI, microvascular invasion; IQR, interquartile range.

*The difference in HCC with mVI and without mVI in the training cohort.

**The difference in HCC with mVI and without mVI in the testing cohort.

***The difference in HCC with mVI and without mVI in the pooled cohort.
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package were adopted to construct a radiomics model for

predicting HCC with mVI. Our results showed that the

radiomics model derived from the image texture feature of axial
18F-FDG PET achieved a classification accuracy of 92.6% with an

AUC of 0.917 in the training cohort and 79.3% with an AUC of

0.771 in the testing cohort. However, the traditional imaging

radiologic features or metabolic activity features, such as

quantitative metabolic parameters from PET/CT or quantitative

and qualitative MRI parameters, yielded an accuracy range from

58.8% to 73.5% in the training cohort and 58.6%–72.4% in the

testing cohort. These results showed that the radiomics model may

be much better than the traditional morphologic and metabolic

activity features. A recent study showed that a radiomics

nomogram based on 18F-FDG PET/CT was constructed to

TABLE 2 Radiologic findings of primary HCC in the training and testing cohorts.

Training cohort (n = 68) Testing cohort (n = 29) p-value***

mVI+ (n =
38) n
(%) or
median
(IQR)

mVI− (n =
30) n
(%) or
median
(IQR)

p
value*

mVI+ (n =
19) n
(%) or
median (IQR)

mVI− (10)
n (%)
or median
(IQR)

p-value**

SUVmax 0.056 0.068 0.011

6.2 (3.9, 8.3) 4.0 (2.6, 4.8) 7.8 (4.0, 9.3) 4.5 (2.6, 8.2)

SUVmean 0.022 0.211 0.006

4.2 (2.6, 5.6) 3.0 (2.1, 3.3) 4.7 (2.9, 6.6) 3.4 (2.4, 5.8)

TLRmax 0.006a 0.153 0.001a

3.1 (2.3, 4.7) 2.1 (1.7, 2.5) 4.0 (2.0, 6.4) 2.6 (1.5, 4.7)

TLRmean 0.029a 0.338 0.017a

2.4 (1.4, 3.2) 1.6 (1.3, 1.8) 2.5 (1.5, 4.3) 1.8 (1.5, 3.4)

MTV 0.168 0.737 0.303

33.0 (6.7,141.3) 15.9 (5.8, 104.9) 101.2 (18.5, 180.8) 81.5 (8.3, 241.2)

TLG 0.155a 0.728 0.102

115.0 (22.6,
940.2)

48.1 (13.2, 350.4) 661.3 (70.4,
1,507.2)

255.5 (31.4,
1728.2)

ADC (×10−3 mm2/s) 0.091 0.066 0.014

1.29 (1.07, 1.42) 1.12 (0.94, 1.25) 1.19 (0.87, 1.54) 1.03 (0.83, 1.25)

ADC/ADC_liver 0.365 0.945a 0.650a

0.9 (0.8, 1.3) 1.0 (0.9, 1.2) 1.3 (1.0, 1.7) 1.1 (1.0, 1.8)

Arterial phase enhancement pattern <0.001 0.698 <0.001
Hypervascular 7 (10.3) 19 (27.9) 6 (20.7) 4 (13.8)

Hypovascular 31 (45.6) 11 (16.2) 13 (44.8) 6 (20.7)

Intratumoral artery 1.000 0.372 0.642

Presence 5 (7.4) 4 (5.9) 3 (10.3) 3 (10.3)

Absence 33 (48.5) 26 (38.2) 16 (55.2) 7 (24.1)

Tumor margin 0.053 0.694 0.033

Smooth 22 (32.4) 24 (35.3) 7 (24.1) 5 (17.2)

Non-smooth 16 (23.5) 6 (8.8) 12 (41.4) 5 (17.2)

Peritumoral enhancement in the arterial
phase

0.204 0.449 0.077

Presence 10 (14.7) 5 (7.4) 9 (31.0) 3 (10.3)

Absence 28 (41.2) 25 (36.8) 10 (34.5) 7 (24.1)

HCC, hepatocellular carcinoma; mVI, microvascular invasion; IQR, interquartile range; TLRmax, SUVmax/SUVmen_liver; TLRmean, SUVmean/SUVmen_liver; MTV, metabolic tumor

volume; TLG, total lesion glycolysis; ADC, apparent diffusion coefficient.

*The difference in HCC with mVI and without mVI in the training cohort.

**The difference in HCC with mVI and without mVI in the testing cohort.

***The difference in HCC with mVI and without mVI in the pooled cohort.
aNon-parametric Mann–Whitney U test.
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predict the mVI status in patients with very-early- and early-stage

HCC with an AUC of 0.891 (95% CI: 0.799–0.984) in the training

cohort and an AUC of 0.692 (95% CI: 0.497–0.887) in the testing

cohort, which also showed that the radiomics model had a strong

predictive power in detecting HCC with mVI (Li et al., 2021).

Of course, there are still several remaining significant

challenges for radiomics in detecting HCC with mVI, such as

replicability, standardization of images and data, and ethical

and regulatory considerations (Forghani et al., 2019). In our

study, we adopted a method of normalizing image intensities

in the range of mean gray-level value ± three standard

deviations (SD) to minimize the influence of contrast and

brightness variation. In the testing cohort, our radiomics

criteria yielded a classification accuracy of 79.3% with an

FIGURE 5
A 70-year-old hepatocellular carcinoma in liver segment VII woman with microvascular invasion, demonstrating Hypovascular enhancement
pattern, high metabolic of SUVmax 9.2, MTV 134.2 cm3, TLG 915.2, TLR 4.5, and ADC of 0.86 × 10−3 mm2/s. Contrast-enhanced MR in arterial phase
image (A), diffusion-weightedMR image (B), ADCmap (C), and 18F-FDGPET (D) (MTV,metabolic tumor volume; TLG, total lesion glycolysis; TLR, ratio
of tumor-to-liver SUV; ADC, apparent diffusion coefficient).

FIGURE 6
A 56-year-old hepatocellular carcinoma in liver segment VII man without microvascular invasion, demonstrating hypervascular enhancement
pattern, lowmetabolic of SUVmax 3.5, MTV 72.2 cm3, TLG 196.5, TLR 1.9, and ADC value of 1.1 × 10−3 mm2/s. Contrast-enhancedMR in arterial phase
image (A), diffusion-weightedMR image (B), ADCmap (C), and 18F-FDGPET (D) (MTV,metabolic tumor volume; TLG, total lesion glycolysis; TLR, ratio
of tumor-to-liver SUV; ADC, apparent diffusion coefficient).

TABLE 3 ROC results of 18F-FDG PET/CT parameters and ADC in predicting HCC with mVI in the pooled cohort.

Characteristic
parameter

Area under
curve

p-values Sensitivity (%) Specificity (%) Cutoff

SUVmax 0.698 (0.593, 0.803) 0.001 59.6 80.0 5.65

SUVmean 0.676 (0.567, 0.786) 0.003 66.7 77.5 3.79

TLRmax 0.693 (0.586, 0.799) 0.001 68.4 70.0 2.53

TLRmean 0.643 (0.531, 0.756) 0.017 64.9 75.0 1.92

ADC(×10−3mm2/s) 0.651 (0.537, 0.765) 0.012 68.4 75.0 1.17

ROC, receiver operating-characteristic curve; HCC, hepatocellular carcinoma; mVI, microvascular invasion; TLRmax, SUVmax/SUVmen_liver; TLRmean, SUVmean/SUVmen_liver;

ADC, apparent diffusion coefficient.
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AUC of 0.771 (95% CI: 0.578–0.905), which was lower than

that classification accuracy of 92.6% with an AUC of 0.917

(95% CI: 0.824–0.970) in the training cohort. This indicated

that the robustness of radiomics was to be improved.

The previous studies have also reported that the quantitative

and qualitative parameters of SUVmax, ADC values,

hypovascular lesion, and non-smooth tumor margin were

associated with mVI status in patients with HCC (Mulé et al.,

2020; Zhang et al., 2020). Therefore, in this study, we constructed

hybrid criteria combining radiomics criteria and quantitative and

qualitative parameters derived from 18F-FDG PET/CT and MRI

to predict the status of mVI in patients with HCC and achieved

better results by significantly increasing AUC, yielded an AUC of

0.996 (95% CI: 0.939 to 1.000; p < 0.001) and 0.953 (95% CI:

0.883–1.000) in the training and testing cohorts, respectively. The

difference in AUC between hybrid criteria and radiomics criteria

showed statistical significance (p-values of 0.0165 and 0.0133 in

the training and testing cohorts, respectively). Our findings

suggest that the utility of the hybrid model combining
18F-FDG PET/CT and MRI may improve the preoperative

prediction of the status of mVI in HCC, compared to the

only utility of the radiomics model based on texture features

of 18F-FDG PET.

There were several limitations in this study. First, this was

a retrospective study with a small sample size, which could

influence the robustness and reproducibility of our

prediction models. The study samples were only divided

into the training and testing cohorts to perform internal

validation in this study. There may be a phenomenon of

overfitting in the data processing for the AUC significant

difference between the radiomics classier training set and the

validation set. Therefore, the current study should need

further validation with data augmentation and cross-

validation in the future. Second, in this study, the HCC
18F-FDG PET image textures were extracted only from the

two-dimensional largest axial image of each HCC, which

may cause loss of the entire tumor heterogeneity

information. Therefore, the 3D structures radiomics of

the tumor need further study in the future. Third, there

was no significant association between the clinical

characteristics and the status of mVI in our study (p >
0.05). It was different from the previous study by Hyun

et al. (2018), which showed that some clinical

characteristics of clinical stage, AST, and AFP were

significant predictors of mVI. The radiological hybrid

model incorporating more clinical, pathological, and

prognosis characteristics and radiomics should be

considered in future studies.

In conclusion, the hybrid radiological model that

incorporates the image texture of the 18F-FDG PET

signature, quantitative metabolic parameter, and quantitative

and qualitative MRI parameters has powerful predictive

performance in predicting the status of mVI preoperatively.

Thus, such models may facilitate planning clinical treatment

and improving survival in selected patients with HCC. Of

course, it is warranted to validate the robustness and

reproducibility of our prediction models by large-scale

multicenter studies in the future.

TABLE 4 Diagnostic performance of hepatocellular carcinoma with microvascular invasion in the training and testing cohorts.

True
positive

False
positive

False
negative

True
negative

Sensitivity Specificity Positive-
predictive
value

Negative-
predictive
value

Accuracy

Training cohort (n = 68)

Radiomics
model

38 5 0 25 100 83.3 88.4 100 92.6%

SUVmax 20 5 18 25 52.6 83.3 80 58.1 66.2

ADC 26 8 12 22 68.4 73.3 76.5 64.7 70.6

Hypovascular 31 11 7 19 81.6 63.3 73.8 73.1 73.5

Non-smooth
margin

16 6 22 24 42.1 80 72.7 52.2 58.8

Hybrid model 36 0 2 30 94.7 100 100 93.8 97.1

Testing cohorts (n = 29)

Radiomics
model

16 3 3 7 84.2 70 84.2 70 79.3

SUVmax 14 3 5 7 73.7 70 82.4 58.3 72.4

ADC 13 6 2 8 86.7 57.1 68.4 80 72.4

Hypovascular 13 6 6 4 68.4 40 68.4 40 58.6

Non-smooth
margin

12 5 7 5 63.2 50 70.6 41.7 58.6

Hybrid model 19 3 1 7 95 70 86.4 87.5 86.7
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Habitat radiomics analysis of pet/
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ovarian cancer: Application to
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Purpose: We aim to develop and validate PET/ CT image-based radiomics to

determine the Ki-67 status of high-grade serous ovarian cancer (HGSOC), in

whichwe use themetabolic subregion evolution to improve the prediction ability

of themodel. At the same time, the stratified effect of the radiomicsmodel on the

progression-free survival rate of ovarian cancer patients was illustrated.

Materials and methods: We retrospectively reviewed 161 patients with HGSOC

from April 2013 to January 2019. 18F-FDG PET/ CT images before treatment,

pathological reports, and follow-up data were analyzed. A randomized grouping

method was used to divide ovarian cancer patients into a training group and

validation group. PET/ CT images were fused to extract radiomics features of the

whole tumor region and radiomics features based on the Habitat method. The

feature is dimensionality reduced, andmeaningful features are screened to forma

signature for predicting the Ki-67 status of ovarian cancer. Meanwhile, survival

analysis was conducted to explore the hierarchical guidance significance of

radiomics in the prognosis of patients with ovarian cancer.

Results: Compared with texture features extracted from the whole tumor, the

texture features generated by the Habitat method can better predict the Ki-67

state (p < 0.001). Radiomics based on Habitat can predict the Ki-67 expression

accurately and has the potential to become a new marker instead of Ki-67. At

the same time, the Habitat model can better stratify the prognosis (p < 0.05).

Conclusion: We found a noninvasive imaging predictor that could guide the

stratification of prognosis in ovarian cancer patients, which is related to the

expression of Ki-67 in tumor tissues. This method is of great significance for the

diagnosis and treatment of ovarian cancer.

KEYWORDS

PET/CT, high-grade serous ovarian cancer, Ki-67, radiomics, Habitat, progression-free
survival
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Introduction

Ovarian cancer is one of the most common gynecological

cancers (Torre et al., 2018). In the past few decades, although the

survival rate ofmost tumors has improved, the 5-year survival rate of

ovarian cancer has not changed since 1980 (2). Most ovarian tumors

belong to high-grade serous ovarian cancer (HGSOC) (Kohn and

Ivy, 2017). They usually have extensive peritoneum (III stage) or

extraperitoneal (IV stage) spread in the late stage, and the risk of

recurrence and death is very high (Chen and Du, 2018). In the early

stages of treatment, most ovarian cancer patients respond to surgery

and platinum-based chemotherapy but patients often relapse and

develop resistance to chemotherapy (Jayson et al., 2014). Therefore,

the exploration of prognostic biomarkers for ovarian cancer patients

is constantly expanding.

Ki-67 is a kind of nuclear protein, which is expressed in the

whole cell cycle of proliferating cells except for G0 cells. It is closely

related to cell proliferation and invasion (Schlüter et al., 1993). In

ovarian cancer, there is a clear link between Ki-67 and recurrence

and prognosis of ovarian cancer (Deng et al., 2015a; Qiu et al., 2019).

Positron emission tomography (PET) is a kind of functional imaging

method, which can clarify the spatial distribution of the metabolic

activity through tracer uptake and accurately locate the malignant

lesion area combined with the anatomical information provided by

CT (9). Some studies have shown that ovarian cancer PET/CT has

higher preoperative staging accuracy than simple CT, and the

accuracy of CT and PET/CT staging is between 53%–55% and

55%–89% (Kemppainen et al., 2019; O’Connor et al., 2013;

Castellani et al., 2019). At the same time, PET/CT is more

accurate in detecting recurrence than other reference standards

(such as CA-125, CT, or MRI) (Limei et al., 2013). In other

cancers, the radiomics model composed of noninvasive PET/ CT

has had a good prediction effect, but it has not been reported in

ovarian cancer (Antunovic et al., 2017; Acar et al., 2019; Kong et al.,

2019). In this study, we used metabolic subregion evolution

(Habitat) to improve the prediction ability of the radiomics

model (Mu et al., 2020). In imaging medicine, the Habitat

method is often used to divide different tumor subregions

(reflecting different functional or material areas of the focus),

which is a method with strong application scenarios.

Materials and methods

Patients

This retrospective study was approved by the review committee

of our institution and was adherent to the principles and

requirements of the Declaration of Helsinki. This retrospective

study collected 197 patients with HGSOC in our hospital from

April 2013 to January 2019. The exclusion criteria are as follows: 1)

have suffered from other tumors, 2) no PET/CT scan performed, 3)

any targeted treatment before scanning, and 4) performed within

3 weeks before surgery with negative 18F-FDG uptake. At the same

time, the patients were operated on and treated according to NCCN

guidelines. After a regular and complete follow-up (imaging data),

the patients achieved progression-free survival. Progression-free

survival (PFS) refers to the time from randomization to the first

occurrence of disease progression or death from any cause. Finally,

161 patients were included in the study. The patients were randomly

divided into a training group (n = 112) and test group (n = 49).

18F-FDG PET/CT acquisition

Patients were fasting from food and water for more than 6 h, and

their blood sugar level was controlled below 7mmol/L. One hour after

intravenous injection of 18F-FDG (GE MINItrace II; GE Healthcare,

Milwaukee, WI) at 0.08–0.16 mci/kg, PET/CT was performed from

the head to the middle of the femur (GE Discovery PET/CT Elite; GE

Healthcare, Milwaukee, WI). A 3dimensional PET model was used,

with a matrix of 192 × 192 and an exposure time of 2 min/bed

position. Low-dose spiral CT was performed at 120–140 kV and

80 ma. After CT attenuation correction, PET images were

reconstructed using the algorithm of time-of-flight and point-

spread-function, including 2 iterations and 24 subsets.

Habitat generation and feature extraction

The workflow of radiomics is shown in Figure 1. For processing

images, we have standardized processing, and then in the process of

delineation and ROI processing we used LIFEx software (https://

www.lifexsoft.org/) and ITK-SNAP (http://www.itksnap.org/pmwiki/

pmwiki.php). Based on the metabolic threshold of PET images, we

quickly identified the tumor contour. On the python (version 3.8.5)

platform, we implemented the Otsu threshold way by self-built code,

and we obtained two metabolic subgroups that maximized the

variance between groups. Based on the threshold, the

corresponding tumors in PET images were divided into the high

metabolism region (the red region in Figure 2) and the low

metabolism region (the green region in Figure 2), representing

different Habitat subgroups. We define the difference in SUV

metabolism between these two subregions, and we define them as

PEThight and PETlow. So far, we have obtained three kinds of ROIs

based on PET images, including the whole tumor. Based on each ROI

and its effect on the image, we extract 1316 texture features, replace

the abnormal value of omics features with the average value, and then

separate the feature data according to the average value μ = 0 δ 2 = 1.

Feature selection and model
establishment

For the selection of models, we adopt a variety of methods,

such as PCC, PCA, and Lasso, to operate separately or in parallel
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many times, in order to remove redundant and strongly collinear

or correlated variables, reduce model parameters, make them

match the sample size of this study, and avoid overfitting or

underfitting phenomenon in the final prediction model.

For modeling, we use common classifiers (SVM, LAD, logistic

regression, decision tree, random forest, and the naive Bayesian

algorithm). In different models, the model with high AUC and

strong generalization ability is selected to be included in the final

model selection. According to the different ROI extracted, the feature

extracted from thewhole tumor region is calledR, and themodel based

on the Habitat region (PEThight and PETlow) extraction is Rhabitat.

Statistical analysis

SPSS statistical software (version 24.0; IBM), R (version 3.63),

and MedCalc Statistical Software version 15.2.2 (MedCalc

Software bvba, Ostend, Belgium; http://www.medcalc.org; 2015)

were used for all analyses. The clinical characteristics of the

training group and the validation group were statistically tested

to test their data distribution. The t test was used for data with

normal distribution and homogeneity of variance, and the U test

was used for data without normal distribution. The Delong test

was performed on different models in the training group and the

test group. Clinical decision curves and survival curves of different

group models were compared to explore the significance of PFS.

Results

Clinical features

The clinical characteristics of patients in the training group and

the validation group are shown in Table 1. There was no significant

difference in clinical characteristics between the two groups.

Description and comparison of prediction
models

The model takes the patient’s Ki-67 status (>50%) (Qiu et al.,

2019) as the label for modeling and analysis. The details of R and

Rhabitat models generated are shown in Table 2. According to the

diagnostic efficiency, we found that the Rhabitat model (the training

FIGURE 1
Schematic diagram of study design.
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group: the AUC value is 0.835, 95% CIs: [0.7240-0.9460], accuracy:

0.7919, sensitivity: 0.8377; the training group: the AUC value is 0.835,

95% CIs: [0.7240-0.9460], accuracy: 0.7919, sensitivity: 0.8377; the

training group: theAUCvalue is 0; the test group: AUC=0.8076, 95%

CIs: [0.7225-0.9611], accuracy: 0.7557, sensitivity: 0.8192) had the

highest diagnostic efficiency (Figure 3), higher than R (the training

group: AUC = 0.7670, 95% CIs: [0.6842-0.8498], accuracy: 0.7519,

sensitivity: 0.8077); the test group: the AUC value was 0.7488, 95%

CIs: [0.6583-0.8393], accuracy: 0.7223, sensitivity: 0.7892). In the

Delong test, we found that the efficiency of the Rhabitat model was

higher than that of the R model (p < 0.05).

Decision curve analysis and survival
analysis

The decision curve analysis (DCA) displays estimates of a series of

probability threshold (normalized) net benefits used to classify

observations as “high risk.” These curves help to assess a treatment

policy that recommends that the impact of a risk-based policy on the

population be comparedwith the “treat all” and “no treat” intervention

policies, thereby recommending treatment for patients estimated to be

“at high risk.” DCA of the two models is shown in Figure 4.

Through the aforementioned screening, we obtained the

combination model Rhabitat with strong classification and

prediction ability. In order to further explore its prediction

ability for the prognosis of patients with HGSOC, we drew

the survival curve and found that the model has a strong

prediction stratification ability, and the K-M test (Figure 5)

has a significant difference (p < 0.001).

Discussion

In this study, we developed and validated radiomics from

positron emission tomography (PET), computed tomography

FIGURE 2
Schematic diagram of Habitat method. (a) The blue area represents the whole tumor area; (b) Based on the whole tumor area, we have
implemented the subarea partition by habitat algorithm.

TABLE 1 Clinical characteristics of HGSOC patients in training and test groups.

Characteristic Training
group (n = 112)

Test group (n = 49) p value

Age, mean ± SD, year 53.22±9.31 53.43±10.52 p > 0.1

NACT p > 0.1

Yes 43 13

No 69 36

LNM

Yes 59 29 p > 0.1

No 53 20

FIGO stage p > 0.1

Stage III 72 33

Stage IV 40 16

Ascites p > 0.1

<200 ml 61 24

200ml–1000 ml 37 19

>1000 ml 14 6
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(CT), and the Habitat subregion to predict the Ki-67 status in

patients with ovarian cancer and to explore its role in prognostic

stratification. Patients can be divided into low-risk and high-risk

groups through the establishment of an imaging omics model.

There is a significant difference between the model using the

Habitat subregion and the traditional model.

In recent years, some scholars have proposed the molecular

classification of ovarian cancer related to prognosis, which is

marked as differentiation, immunoreactivity, mesenchymal, and

proliferative (Tothill et al., 2008; Verhaak et al., 2013). At the

same time, studies have shown that the molecular classification

based on CT imaging features can effectively distinguish ovarian

cancer and can be used as a predictor of prognosis (Vargas et al.,

2015). A multicenter study used computed tomography imaging

features to assess its association with disease progression time

and ovarian cancer transcriptomic characteristics and to develop

an image-based risk scoring system (Vargas et al., 2017). Studies

have also been conducted to explore the association between

proteomics and imaging omics. It is found that four proteins in

ovarian cancer patients are related to CT-based imaging. Among

them, the correlation between the CRIP2 protein and mesenteric

diseases is strongest, and the abundance of other three proteins

(STXVP2, ASS1, and CBD) is related to the heterogeneity of

tumor location (Beer et al., 2020). There are a lot of research on

prognosis but there are some problems of insufficient

explanation, such as trying to find the interpretable aspect of

gene transcription (Lu et al., 2019). Some studies suggest that

SUVmax and SUVmean are moderately correlated with the Ki-67

TABLE 2 Description of two models.

Model Standardization method Feature selection method Characteristic quantity Model classifier

R Z-score Recursive feature elimination 20 Auto-encoder

Rhabitat Z-score Kruskal–Wallis 8 Logistic regression

FIGURE 3
The ROC and calibration curve of R and Rhabitat. (a) The performance of training set and validation set on model R (based on whole tumor); (b)
The performance of training set and validation set onmodel Rhabitat (based on differentmetabolic sub-regions). (c)Demonstrate the calibration effect
of the R model; (d) Demonstrate the calibration effect of the Rhabitat model.
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index, which confirms the value of the PET image for Ki-67 but it

is difficult to accurately predict the expression of Ki-67 (Deng

et al., 2015b; Mayoral et al., 2018. We use the Habitat method to

generate two metabolic subregions with different metabolic

characteristics (Mu et al., 2020). In this experiment, the Otsu

scheme is used. The principle is to generate two parts so that the

overall similarity of each part is the highest and the difference

between different parts is the largest. Automatic segmentation is

realized by a variance correlation algorithm. At present, the

Habitat method has been applied in many medical images.

Some studies have shown that it can significantly improve the

performance of PFS and OS models in predicting locally

advanced cervical cancer patients in PET/ CT (16) and has a

significant predictive value for glioma prognosis (Verma et al.,

2020; Park et al., 2021), nasopharyngeal carcinoma (Xu et al.,

2020), lung cancer (Cherezov et al., 2019), and prostate cancer

(Parra et al., 2019). For this research model, the overall

characteristics of the tumor were eventually incorporated into

the PETmode high metabolic area and lowmetabolic area, where

the high metabolic area represented the strongest part of the

tumor activity, which had a significance for the prognosis of

patients (Pinho et al., 2020), while the PET low metabolism area

was often the edge of the tumor and correlated with immune

infiltration (Grove et al., 2021). At the same time, we should note

that Habitat subregions generated by PET modality are more

heterogeneous and eccentric, and are often associated with poor

prognosis (Mu et al., 2020). We used the random grouping

method to ensure the independence of data between the

training group and test group, and verified by the test group,

which showed that the PET/MR mode radiology model based on

the Habitat method has some generalization ability. We have also

noted that some scholars used enhanced CT scanning images to

process images with the Gaussian mixture model (another

common analysis method in the field of habitat analysis) to

identify cystic and solid tumor subregions and help ovarian

cancer patients with accurate puncture (Beer et al., 2021). The

Gaussian mixture model could aim to distinguish the

heterogeneity of mixture since its birth, which was

undoubtedly in line with the application background of the

aforementioned research. Just as the Gaussian mixture model

could better distinguish the cystic and solid parts of ovarian

cancer, our research used the Otsu model with maximized

variance between groups to identify areas with more active

metabolism to represent the tumor proliferation activity (Ki-

67) and prognosis. Our outlook for this technology provides a

noninvasive method to evaluate the activity of local lesions in

chemotherapy for patients with high-grade serous ovarian

cancer, which is also related to the overall survival time of

patients.

At the same time, this study has the following shortcomings

(Torre et al., 2018): a single center, that is, the lack of effective

external verification, will undoubtedly greatly affect the

generalization and application ability of the model (Lisio

et al., 2019); the PET modal images processed by Habitat have

been verified by the literature, but CT images were not included

in this study due to cautious attitude and early development

(Kohn and Ivy, 2017). For the study of PFS, there is a lack of

further involvement of clinical factors, which needs further

multicenter and large-scale data research.

Conclusion

Noninvasive imaging prediction indicators based on PET

images can guide the prognosis stratification of ovarian cancer,

which is related to the expression of Ki-67 in tumor tissues, and

the accuracy of Habitat is improved. In the diagnosis and

treatment of ovarian cancer, it is important to use a variety of

technical means to guide the prognosis and molecular typing,

especially for noninvasive means.

FIGURE 4
Decision curve analysis for R and Rhabitat.

FIGURE 5
The survival curves of Rhabitat.
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Objectives: To determine the association between radiomics signature (Rad-

signature) of pericoronary tissue (PCT) in coronary computed tomography

angiography (CCTA) and CT-derived fractional flow reserve (CT-FFR), and

explore the influential factors of functional ischemia.

Methods:We retrospectively included 350 patients who underwent CCTA from

2 centers, consisting of the training (n = 134), validation (n = 66), and testing

(with CCTA and invasive coronary angiography, n = 150) groups. After

evaluating coronary stenosis level in CCTA (anatomical CT), pericoronary fat

attenuation index (FAI), and CT-FFR, we extracted 1,691 radiomic features from

PCT. By accumulating and weighting the most contributive features to

functional ischemia (CT-FFR ≤ 0.8) the Rad-signature was established using

Boruta integrating with a random forest algorithm. Another 45 patients who

underwent CCTA and invasive FFR were included to assure the performance of

Rad-signature.

Results: A total of 1046 vessels in 350 patients were analyzed, and functional

ischemia was identified in 241/1046 (23.0%) vessels and 179/350 (51.1%)

patients. From the 47 features highly relevant to functional ischemia, the

top-8 contributive features were selected to establish Rad-signature. At the

vessel level, the area under the curve (AUC) of Rad-signature to discriminate

functional ischemia was 0.83, 0.82, and 0.82 in the training, validation, and

testing groups, higher than 0.55, 0.55, and 0.52 of FAI (p < 0.001), respectively,

and was higher than 0.72 of anatomical CT in the testing group (p = 0.017). The

AUC of the combined model (Rad-signature + anatomical CT) was 0.86, 0.85,

and 0.83, respectively, significantly higher than that of anatomical CT and FAI

(p < 0.05). In the CCTA-invasive FFR group, using invasive FFR as the standard,

the mean AUC of Rad-signature was 0.83 ± 0.02. At the patient level,

multivariate logistic regression analysis showed that Rad-signature of left

anterior descending (LAD) [odds ratio (OR) = 1.72; p = 0.012] and anatomical

CT (OR = 3.53; p < 0.001) were independent influential factors of functional
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ischemia (p < 0.05). In the subgroup of nonobstructive (stenosis <50% in

invasive coronary angiography) and obstructive (≥50%) cases of the testing

group, the independent factor of functional ischemia was FAI of LAD (OR = 1.10;

p = 0.041) and Rad-signature of LAD (OR = 2.45; p = 0.042), respectively.

Conclusion: The machine-learning-derived Rad-signature of PCT in CCTA

demonstrates significant association with functional ischemia.

KEYWORDS

machine learning, fractional flow reserve, radiomics, functional ischemia, coronary
computed tomography angiography

Introduction

Functional ischemia is a state in which the blood flow cannot

meet the metabolic needs of tissues even in the absence of

vascular obstruction (Moroni et al., 2021). Coronary

computed tomography angiography (CCTA) is widely used

for demonstrating the degree of coronary stenosis, but lacks

the information of blood flow function. Invasive fractional flow

reserve (FFR) is the gold standard for assessing coronary blood

flow, and used for clinical decision-making in the treatment of

coronary artery disease (CAD) (Pijls et al., 2007; Tonino et al.,

2009; De Bruyne et al., 2012; Windecker et al., 2014). However,

its clinical application is limited due to the invasive and high-cost

pressure guide wire. Recently, CT-derived FFR (CT-FFR) based

on hydrodynamics or deep learning has been developed to

noninvasively measure lumen blood flow, avoiding additional

radiation exposure and invasive procedure. A CT-FFR

value ≤0.8 is considered coronary functional ischemia, and

studies have proved that CT-FFR is highly consistent with

invasive FFR (Tesche et al., 2017; Alex et al., 2020). In

addition to assessing blood flow from the perspective of

lumen, exploring the association between functional ischemia

and pericoronary tissue (PCT) may provide more evidence for

the diagnosis and treatment of CAD.

The bidirectional interaction between pericoronary adipose

tissue (PCAT) and the adjacent coronary wall leads to coronary

artery inflammation and plaque formation (Margaritis et al.,

2013; Antonopoulos et al., 2014; Antonopoulos et al., 2015;

Antonopoulos et al., 2017). Then, inflammatory cell

infiltration and edema in PCAT result in increased CT

attenuation, realizing the visualization and quantitative

evaluation of vascular inflammation. A PCAT imaging

biomarker, fat attenuation index (FAI), has been introduced

as a strong and independent predictor of major adverse

cardiovascular events (Dai et al., 2022). Ma et al. (2021) found

that overall FAI was not significantly associated with abnormal

FFR, but lesion-specific PCAT was independently related to

abnormal FFR. FAI only incorporates PCAT density, but does

not reflect the complex tissue structures around the coronary

artery. Although the widely used CT attenuation range of PCAT

is from −190 to −30 Hounsfield unit (HU), the PCAT attenuation

of high-risk plaque with a “fat stranding” sign can reach 31 HU,

because of the complex plaque components (Hedgire et al., 2018).

In order to analyze PCT, machine learning-based radiomics

allows to extract and analyze numerous quantitative features

inside the medical images (Gillies et al., 2016).

Therefore, we hypothesize that the radiomic features of PCT

are associated with functional coronary ischemia. Considering

that some information may be omitted when solely determining

the adipose tissue by CT attenuation, we aim to comprehensively

analyze PCT by extracting the radiomic features of adipose and

other tissues around the coronary artery. We established a

machine-leaning-derived radiomics signature (Rad-signature)

based on PCT to discriminate functional ischemia, compared

with the conventional stenosis grading on CCTA (anatomical

CT) and FAI, and then analyzed the influential factors of

functional ischemia.

Materials and methods

Study sample

The patients were retrospectively included in two medical

centers [Hospital-1: Shanghai General Hospital-North (city

center); Hospital-2: Shanghai General Hospital-South

(Songjiang new city)]. The inclusion criteria of subjects with

CCTA were as follows: 1) patients with suspected or diagnosed

CAD, defined by the guidelines (Fox et al., 2006; Fihn et al., 2012;

Montalescot et al., 2013); 2) patients with CCTA from January to

December 2020 to establish the model and validate its

performance; 3) patients who underwent CCTA and invasive

coronary angiography (ICA) from January 2014 to December

2019 to test the model and analyze the influential factors of

functional ischemia by subgrouping the patients into obstructive

and nonobstructive CAD. Additionally, patients who underwent

CCTA and invasive FFR from January 2020 to December

2021 were included to assure the performance of Rad-

signature in discriminating standard functional ischemia.

The exclusion criteria were: 1) history of coronary stenting or

bypass surgery; 2) poor image quality and insufficient for

diagnosis; 3) coronary artery variation; 4) total occlusion of
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coronary artery limiting the calculation of CT-FFR; 5) images

that cannot be processed by the post-processing workstation,

resulting in the failure of CT-FFR calculation or PCT

segmentation; 6) time interval between CCTA and ICA (or

invasive FFR) >2 months.

The patients were divided into four groups, including the

training, validation (patients with CCTA), testing (with CCTA

and ICA), and CCTA-invasive FFR groups. Figure 1 displays

patient selection and grouping. The institutional review board

approved this retrospective study and exempted the patient

informed consent.

In the training, validation, and testing groups, a CT-FFR

value ≤0.8 was defined as coronary functional ischemia (Tesche

et al., 2017; Alex et al., 2020). In the invasive FFR group, an

invasive FFR value ≤ 0.8 was defined as standard coronary

functional ischemia. Basic characteristics and medical history

were collected from the electronic medical record system,

including age, sex, body mass index (BMI), smoking history,

family history of CAD, diabetes, hypertension, and

hyperlipidemia.

Coronary computed tomography
angiography acquisition and anatomic
evaluation

CCTA examination was performed on different CT

equipment (Somatom Definition Flash and Somatom Force,

Siemens Healthineers; Revolution CT and Discovery750 HD,

GE Healthcare; Aquilion ONE, Canon Medical Systems) in the

two centers (Supplementary Table S1). Beta-blockade was

administrated for patients with a heart rate >90 beats per

minute. Prospective gated CT scanning was performed. The

scan covering range was from 1 cm below the tracheal carina

to 2 cm below the left diaphragm. The tube voltage and current

were automatically set using smart mode. The volume of contrast

medium (Iopamidol 370 mg I/mL; Bracco) was calculated as

0.8 ml/kg, and the flow rate was 4–5 ml/sec. Then 20 ml of

normal saline was injected at the same flow rate.

According to the standard segments of coronary artery

recommended by the Society of Cardiovascular Computed

Tomography of America (Leipsic et al., 2014), two

experienced radiologists with 5- and 15-years experience in

cardiovascular imaging independently evaluated the diameter

stenosis level of the left anterior descending (LAD), left

circumflex (LCx), and right coronary artery (RCA), using a

dedicated image processing workstation (Advanced

Workstation 4.6, GE Healthcare) with curved planar

reformation, multiplanar reformation and volume rendering,

and resolved the disagreement by mutual consultation. The

vessels of <1.5 mm in diameter were excluded from

anatomical evaluation.

Invasive coronary angiography and
invasive fractional flow reserve methods

Invasive coronary angiography was performed by

experienced interventional cardiologists according to local

clinic standards, who were blinded to the results of CCTA.

After radial artery or femoral artery puncture, left and right

coronary angiography was performed. Based on the 5 projection

angles of the left coronary artery and 2 of the right coronary

artery, the degree of stenosis was quantitatively determined. A

stenosis level ≥50% was considered obstructive CAD. An

interventional cardiologist performed invasive FFR

FIGURE 1
Flowchart of patient selection and grouping. CCTA, coronary computed tomography angiography; CAD, coronary artery disease; ICA, invasive
coronary angiography.
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measurements based on coronary stenosis to determine the

hemodynamic significance and the need for revascularization.

The FFR pressure wire (Pressure Wire Abbott, St. Jude Medical,

United States) was placed distal to the stenosis position. An

FFR ≤ 0.80 was considered functional ischemia. The dose of

contrast agent for each view was approximately 5 ml. The X-ray

dose pattern was electrophysiological. The image acquisition rate

was 7.5 frames per second.

Functional CT-derived fractional flow
reserve

An on-site research prototype application (cFFR v3.5.0,

Siemens Healthineers, not currently commercially available)

was implemented for CT-FFR computation, which has been

previously described and validated (Itu et al., 2016; Coenen

et al., 2018; Tesche et al., 2018). This application calculates

the CT-FFR value using a deep learning-based framework,

which integrates the complex nonlinear relationship between

the various features extracted from the coronary tree geometry

and computes the blood flow of a coronary position (Itu et al.,

2016). This model calculates CT-FFR based on reduced-order

hydrodynamics. This application program can segment the

coronary artery lumen on CT images to generate a coronary

tree, and semiautomatically represent the CT-FFR value of any

point in this tree. Before calculating CT-FFR, the observer needs

to confirm or manually edit the automatically recognized

coronary centerlines, and then the software generates a 3D

pseudocolor map to comprehensively visualize the CT-FFR

values of the coronary artery tree.

A radiologist with 10 years of cardiac imaging experience

measured CT-FFR values, blinded to the results of medical

history and other examinations. In this study, the CT-FFR

values of LAD, LCx, and RCA were recorded. For vessels with

stenosis, the measuring position was 2–3 cm distal from the

stenosis. In the case of multiple stenoses in a single vessel, the

distal end of the farthest lesion was measured. For normal vessels,

the measuring position was the farthest end (about 1.5 mm in

diameter). In order to match the positions of the invasive FFR

and CT-FFR measurements, an independent radiologist, blinded

to the functional results, marked the corresponding location on

the CT-FFR image after identifying the location of the invasive

FFR on the fluoroscopic image.

Pericoronary tissue segmentation and
radiomic feature extraction

The same radiologist segmented PCT using dedicated

software (Coronary plaque analysis v5.0.2, Frontier, Syngo.

via, Siemens Healthineers). The software automatically

segmented the image, and the radiologist manually modified

them in case of inaccuracy. PCT is defined as all voxels extending

outward from the outer wall of the vessel with a radius equal to

the vessel diameter (Goeller et al., 2019). For LAD and LCx, the

analyzed PCT was 4 cm long in the proximal segment of the

vessels. For RCA, the analyzed tissue was 4 cm long in the

proximal segment (1–5 cm from RCA ostium). The software

then calculated FAI based on the segmented volume.

After importing the PCT mask, the dedicated software

(Radiomics 13.0, Frontier, Syngo. via, Siemens Healthineers)

automatically extracted and calculated 1,691 radiomic features

of each vessel in about 10 s, including three major categories:

18 first-order, 75 texture, and 17 size and shape features.

Feature selection and rad-signature
construction

To select stable and repeatable features, a radiologist with

10 years of experience in cardiac imaging randomly selected

30 vessels from the training group, segmented PCT and

extracted radiomic features, and repeated the same procedure

1 month later. In these two measurements, the features with an

intraclass correlation coefficient >0.8 were considered stable.

Boruta algorithm integrated with random forest selected

highly associated features by iteratively deleting features. Then

the Boruta algorithm-selected features were converged by

hierarchical clustering, and the most important features were

selected as candidate features from each cluster. In this study, a

random forest algorithm constructed a Rad-signature

incorporating multiple features into one value (Dercle et al.,

2020; Wu et al., 2020). The parameters in the training group were

estimated by grid search with 10-fold cross-validation to avoid

overfitting. The feature importance was assessed by the Gini

impurity decreased overall decision trees. Each coronary vessel

has a Rad-signature with a rad-score range of 0–1, indicating the

probability of functional ischemia. The greater the Rad-signature,

the more likely functional ischemia happens. In the CCTA-

invasive FFR group, 4-fold cross-validation was used to

estimate the performance of Rad-signature in discriminating

standard functional ischemia. Figure 2 shows the process of

establishing Rad-signature and performance evaluation.

Supplementary Figure S1 demonstrates a representative case

of Rad-signature establishment.

Statistics

Continuous variables were represented by median (25% and

75% quartile), and the difference between groups was tested by

the Mann-Whitney U test. Categorical variables were expressed

by frequency (percentages) and tested by Chi-Square test. At the

vessel level, the performance of Rad-signature, anatomical CT,

and FAI in identifying functional ischemia (CT-FFR ≤ 0.8) was
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evaluated by receiver operating characteristic (ROC) curve, area

under the curve (AUC), accuracy, sensitivity, and specificity. The

optimal cut-off value was indicated by Youden’s index based on

the training group. The difference between AUCs was evaluated

by Delong’s test. The incremental value of Rad-signature to

anatomical CT was further evaluated by net reclassification

index. At the patient level, the vessel with the lowest CT-FFR

was used to define functional ischemia. The potential risk factors

of functional ischemia were explored in the entire study sample

by univariate and multivariate logistic regression analysis.

Additionally, in the testing group (with CCTA and ICA),

subgroup analysis was implemented to further assess the

correlation between Rad-signature and functional ischemia in

different risk levels (obstructive or nonobstructive CAD). The

statistics was performed by open-source packages (R v3.6.0,

http://www.Rproject.org; Python v3.7 with Scikit-survival

library v0.13.2, https://scikit-survival.readthedocs.io/en/latest/).

Supplementary Table S2 lists the details of software packages and

functions. A p < 0.05 was considered statistically significant.

Results

Patient and vessel characteristics

In the training, validation, and testing groups, a total of

350 patients (66 years; 61–71 years) were eligible for this study

from 442 candidates, including 134, 66, and 150 in the training,

validation, and testing groups, respectively. In the three groups,

1046 vessels were analyzed including 350 LAD, 346 LCx, and

350 RCA, and functional ischemia (CT-FFR ≤ 0.8) was identified

in 241/1046 (23.0%) vessels and 179/350 (51.1%) patients. In the

three groups, anatomical CT detected coronary stenosis ≥50% in

377/1046 (36.0%) vessels and 236/350 (67.4%) patients. At the

vessel level, the median FAI was −83.5 HU (−89.7 to −77.6 HU).

In the testing group, ICA diagnosed obstructive CAD

(stenosis ≥50%) in 148/447 (33.1%) vessels and in 95/150

(63.0%) patients. Tables 1, 2 summarize the clinical and CT

characteristics of the three groups, respectively.

The CCTA-invasive FFR group included 55 vessels in

another 45 patients (65 years; 59–71 years), including 7 RCA,

37 LAD, and 11 LCx. Functional ischemia (FFR ≤ 0.8) was

detected in 13/55 (23.6%) vessels and 11/45 (24.4%) patients.

Radiomics feature selection

The stability analysis revealed 429 radiomic features with an

intraclass correlation coefficient >0.8 out of 1691 features

extracted from the training group. Boruta algorithm identified

47 candidate features which were highly associated with

functional ischemia (Figure 3 and Supplementary Table S3).

Hierarchical clustering demonstrated 8 distinct clusters of

highly correlated radiomic features to functional ischemia

(Figure 4). According to the feature importance, the most

contributive feature from each of the 8 clusters was selected to

establish the Rad-signature (Figure 5). The eight most

contributive features included 4 texture features, 3 gray-level

FIGURE 2
Establishment and evaluation of anatomical CT, FAI, and Rad-signature. CCTA, coronary computed tomography angiography. PCT,
pericoronary tissue. CT-FFR, CT-derived fraction flow reserve; FAI, fat attenuation index.
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features, and 1 geometric feature. The correlation diagram and

paired plots show minimal association among these top-8

contributive features (Supplementary Figure S2). The swarm

plots show the distribution of radiomic features in the

ischemia (CT-FFR ≤ 0.8) and nonischemic (CT-FFR > 0.8)

groups (Supplementary Figure S3). The optimal cut-off value

of Rad-signature to define functional ischemia was

0.202 according to the Youden index in the training group.

Identifying functional ischemia of rad-
signature, fat attenuation index, and
anatomical CT

The performance of Rad-signature, FAI, and anatomical CT

in identifying functional ischemia was evaluated at the vessel

level. In the training group, the AUC of Rad-signature was

0.83 [95% confidence interval (CI): 0.78–0.87], significantly

higher than 0.55 (0.49–0.62) of FAI (DeLong’s p < 0.001), but

not higher than 0.79 (0.74–0.83) of anatomical CT (p = 0.175).

The AUC of the combined model of Rad-signature and

anatomical CT increased to 0.86 (0.82–0.90), higher than 0.83

(0.78–0.87) of only Rad-signature (p = 0.054). After adding Rad-

signature to the traditional anatomical CT model, the net

reclassification index was 0.25 (0.13–0.38, p < 0.001), which

indicated the incremental value of Rad-signature in

discriminating functional ischemia.

In the validation group, the AUC of Rad-signature was 0.82

(0.74–0.89), significantly higher than 0.55 (0.46–0.64) of FAI (p <
0.001), but not higher than 0.78 (0.71–0.85) of anatomical CT (p =

0.443). TheAUCof the combinedRad-signature and anatomical CT

model was 0.85 (0.79–0.91), significantly higher than that of FAI

(p < 0.001) and anatomical CT (p = 0.012).

In the testing group, the AUC of Rad-signature was 0.82

(0.77–0.86), significantly higher than 0.52 (0.45–0.59) of FAI (p <

0.001) and 0.72 (0.65–0.79) of anatomical CT (p = 0.017). The

AUC of the combined Rad-signature and anatomical CT model

was 0.83 (0.77–0.91), significantly higher than that of FAI or

anatomical CT (p < 0.001). Table 3 and Figure 6 show the

comparison of AUCs among the three groups. In addition, in the

subgroup of obstructive CAD (stenosis ≥ 50%) identified by ICA

(284 vessels in 95 patients), the AUC of Rad-signature was 0.76

(0.68–0.84), significantly higher than 0.53 (0.42–0.63) of FAI (p <
0.001) (Supplementary Table S4). The AUC of the combined

Rad-signature and anatomical CT model was 0.80 (0.73–0.88),

significantly higher than that of other models (p < 0.05). In the

analysis of subgroups divided by vessels, the RCA, LAD, and LCx

groups, the AUC of the combined model was significantly higher

than that of FAI and anatomical CT in the three subgroups (all

p < 0.05) and showed an incremental value on the basis of Rad-

signature (Supplementary Table S5).

In the CCTA-invasive FFR group, at the vessel level, using

invasive FFR as the gold standard, the accuracy of CT-FFR was

85.4%, and the AUC of CT-FFR was 0.928 (0.85–1.00). The AUC

of Rad-signature in the 4-fold cross-validation was 0.81, 0.86,

0.84, and 0.83, and the mean AUC was 0.83 ± 0.02.

Supplementary Figure S4 shows the AUCs of Rad-signature in

the cross-validation.

Influential factors of functional ischemia

For all 350 patients in this study, at the patient level,

univariate logistic regression showed that sex, left ventricular

mass derived from CCTA images (LVM-CT), Rad-signature of

LAD (Rad-LAD), Rad-signature of LCx (Rad-LCx), the mean

Rad-signature of RCA, LAD, and LCx (Rad-mean), and

anatomical CT were significantly associated with functional

ischemia (p < 0.05). Multivariate logistic regression showed

that Rad-LAD [OR = 1.7 (95% CI: 1.1–2.6), p = 0.018] and

TABLE 1 Clinical characteristics.

Characteristics All Training group Validation group Testing group p-Value

n = 350 n = 134 n = 66 n = 150

Male 208 (59.4%) 79 (59.0%) 41 (62.1%) 88 (58.7%) 0.884

Age, years 66.0 [61.0; 71.0] 66.5 [62.0; 71.0] 65.0 [59.5; 71.0] 65.0 [60.0; 71.0] 0.599

Hypertension 197 (56.3%) 76 (56.7%) 37 (56.1%) 84 (56.0%) 0.992

Diabetes 124 (35.4%) 64 (47.8%) 23 (34.8%) 37 (24.7%) <0.001

Hyperlipemia 124 (35.4%) 51 (38.1%) 28 (42.4%) 45 (30.0%) 0.153

Smoking 94 (26.9%) 23 (17.2%) 23 (34.8%) 48 (32.0%) 0.005

Family history of CAD 29 (8.29%) 10 (7.46%) 11 (16.7%) 8 (5.33%) 0.019

Body mass index, kg/m2 24.3 [22.0; 26.4] 24.2 [21.5; 26.3] 24.3 [22.0; 26.8] 24.2 [22.4; 26.4] 0.678

Data are represented by median [25% and 75% quartile] or frequency (percentage).

p-Value represents the difference among the train, validation, and testing groups.

Bold values signify statistical significance.

CAD, coronary artery disease.
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anatomical CT [OR = 3.5 (2.1–6.0), p < 0.01] were independent

influential factors of functional ischemia.

The patients in the testing group (n = 150) were divided into

two subgroups according to the ICA results, i.e., 95 (63.3%)

patients with obstructive CAD (stenosis ≥ 50%) and 55 (36.7%)

non-obstructive (<50%). In the obstructive subgroup, univariate

logistic regression showed that age, LVM-CT, Rad-LAD, Rad-

LCx, and Rad-mean were significantly associated with functional

ischemia (all p < 0.05). Multivariate logistic regression showed

that Rad-LAD [OR = 2.45 (95% CI: 1.08–6.27), p = 0.042]

independently associated with functional ischemia. In the

nonobstructive subgroup, univariate logistic regression showed

that FAI-LAD (p = 0.026) and Rad-LCx (p = 0.067) were strongly

associated with functional ischemia. Multivariate logistic

regression showed that FAI-LAD [OR = 1.1 (1.0–1.2), p =

0.041] independently associated with functional ischemia.

Tables 4, 5 show the logistic regression results.

Additionally, in the subgroup of patients with single-vessel

disease, Rad-LAD, Rad-mean, and FAI-RCA were independently

associated with functional ischemia. In the subgroup of patients

with multiple vessel disease, Rad-LAD, Rad-LCx, and Rad-mean

were independently associated with functional ischemia

(Supplementary Table S6).

Discussion

Based on the comprehensive imaging features of PCT, we

successfully established a radiomics signature (Rad-signature) to

discriminate coronary functional ischemia. The AUC of the Rad-

TABLE 2 CT characteristics.

Variables Training group Validation group Testing group p-value

n = 134 n = 66 n = 150

LVM-CT 127 [108; 151] 138 [113; 163] 134 [115; 152] 0.221

CT-FFR_RCA 89.0 [84.0; 93.0] 91.0 [86.0; 94.0] 92.0 [86.0; 94.0] 0.011

≤0.8 26 (19.4%) 8 (12.1%) 13 (8.7%)

>0.8 108 (80.6%) 58 (87.9%) 137 (91.3%)

CT-FFR_LAD 80.5 [67.0; 86.0] 80.5 [66.2; 87.8] 85.0 [76.0; 90.0] 0.001

≤0.8 67 (50%) 33 (50%) 52 (34.7%)

>0.8 67 (50%) 33 (50%) 98 (65.3%)

CT-FFR_LCx 91.0 [85.0; 94.8] 92.0 [87.0; 95.0] 92.0 [86.0; 95.0] 0.816

≤0.8 18 (13.4%) 7 (10.8%) 17 (11.6%)

>0.8 116 (86.6%) 58 (89.2%) 130 (88.4%)

CT-FFR_patient 76.0 [63.5; 84.0] 77.5 [65.0; 85.0] 82.5 [71.0; 88.0] 0.001

≤0.8 78 (58.2%) 37 (56.1%) 64 (42.7%)

>0.8 56 (41.8%) 29 (43.9%) 86 (57.3%)

FAI_LAD −87.18 [−92.52; −82.17] −84.08 [−92.75; −78.84] −84.97 [−91.15; −78.18] 0.082

FAI_RCA −86.29 [−91.90; −79.47] −84.04 [−91.46; −79.78] −84.16 [−90.22; −78.21] 0.229

FAI_LCx −79.86 [−85.44; −75.03] −79.45 [−83.70; −74.01] −79.83 [−87.09; −74.06] 0.745

Anatomical CT_RCA 0.138

<50% 86 (64.2%) 48 (72.7%) 112 (74.7%)

≥50% 48 (35.8%) 18 (27.3%) 38 (25.3%)

Anatomical CT_LAD 0.125

<50% 50 (37.3%) 29 (43.9%) 74 (49.3%)

≥50% 84 (62.7%) 37 (56.1%) 76 (50.7%)

Anatomical CT_LCx 0.991

<50% 105 (78.4%) 52 (78.8%) 117 (78.0%)

≥50% 29 (21.6%) 14 (21.2%) 33 (22.0%)

Anatomical CT_patient 0.404

<50% 38 (28.4%) 24 (36.4%) 52 (34.7%)

≥50% 96 (71.6%) 42 (63.6%) 98 (65.3%)

LVM-CT, left ventricular mass on CT; CT-FFR, CT-derived fraction flow reserve; FAI, fat attenuation index.

Data are represented by median [25% and 75% quartile] or frequency (percentage).

Bold values signify statistical significance.
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signature reached 0.82 in the validation and testing groups, which

was significantly higher than that of FAI and numerically higher

than anatomical CT but not statistically significant. The

combined model of Rad-signature and anatomical CT

increased the AUC compared with only anatomical CT, so

adding Rad-signature has incremental value in discriminating

functional ischemia. We also ensured that Rad-signature

provides a good discrimination ability of standard functional

ischemia (invasive FFR ≤ 0.8).

Coronary stenosis degree on CCTA is a widely-used

indicator in diagnosing CAD with high accuracy and

negative predictive value (Meijboom et al., 2008; Garg

et al., 2016). However, conventional CCTA only provides

morphological information but does not provides

FIGURE 3
Importance ranking of 47 relevant radiomic features identified by Boruta algorithm in the training group. GLDM, gray level dependence matrix;
GLRLM, gray level run length matrix; GLCM, gray level co-occurrence matrix; GLSZM, gray level size zone matrix.

FIGURE 4
Correlation heatmap and dendrogram derived from
hierarchical clustering in the training group. Boruta algorithm
identified 8 different clusters derived from 47 important features.
The darker color indicates higher correlation coefficient.
GLDM, gray level dependence matrix; GLCM, gray level co-
occurrence matrix; GLSZM, gray level size zone matrix; GLRLM,
gray level run length matrix.

FIGURE 5
Importance ranking of the top-8 contributive features
established by random forest algorithm of discriminating
functional ischemia in the training group. The darker color
indicates higher correlation. GLDM, gray level dependence
matrix; GLCM, gray level co-occurrence matrix.
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hemodynamic significance and lesion-specific ischemia, the

functional ischemia (Park et al., 2012). In recent years,

researchers have realized the inconsistency between

morphologic stenosis and functional ischemia. Tonino et al.

reported that 65% of the patients with moderate coronary

stenosis and 20% with severe stenosis were not functionally

significant (Tonino et al., 2010). Park et al. conducted a

prospective study and found that the frequency of visual-

functional mismatch was 40% between coronary angiography

and FFR (Park et al., 2012). Furthermore, Pijls et al. found that

the patients with CAD benefited more from FFR-guided

revascularization strategies than morphological assessment

by standard angiography, and 2-years mortality and

incidence of myocardial infarction were significantly

reduced (Pijls et al., 2010). CT-FFR noninvasively measures

lumen blood flow, but it often depends on dedicated software,

and sometimes the remote processing results are not timely,

which limits the wide application of CT-FFR. The

establishment of Rad-signature can be performed with an

on-site workstation or personal computer, thus Rad-

signature may be a practical and economical indicator.

Since clinical decision-making should depend on the

coronary functional significance, our study provides new

evidence for the diagnosis and treatment of CAD by

mining the functional correlation from anatomical CT.

Radiomics can extract a large number of imaging features

from CCTA from a computational point of view. Meanwhile,

machine learning can effectively select valuable information from

numerous features and establish predictive models (Zhang et al.,

2021). In our study, the Rad-signature was a powerful predictor

and independent influential factor of functional ischemia. It

derived from the eight most contributive radiomic features

extracted from PCT on CCTA images, including 4 texture,

3 gray-level, and 1 geometric feature. Half of these

contributive features were texture features, which were wavelet

and log transformation based on the Gray-Level Co-occurrence

Matrix which describes the spatial relationships of pixel pairs or

voxel pairs with predefined gray intensity, and Gray Level

Dependence Matrix which describes the grayscale relationship

between the central pixel or the voxel and its neighborhood. The

texture features may reflect the heterogeneity of PCT. The gray

level features may reflect the intensity of PCT. Therefore, the

main components of Rad-signature are not only the intensity

information similar to FAI, but also the image heterogeneity

information beyond the traditional image analysis standards.

Similarly, Oikonomou et al. discussed that the radiomic features

of PCAT derived from CCTA were highly associated with

pathologically confirmed fibrosis and microvascular

remodeling, and can differentiate patients with acute

myocardial infarction and stable CAD, because they capture

the spatial shifts in composition and lipid content of PCAT

(Oikonomou et al., 2019). Vascular inflammation leads not only

to plaque formation and lumen stenosis, but also to endothelial

dysfunction and impaired vasodilation (Margaritis et al., 2013;

TABLE 3 Performance metrics of all models at the vessel level.

Model AUC 95% CI Accuracy 95%CI Sensitivity Specificity p-Value

Training group

Rad-signature 0.83 0.78–0.87 0.72 0.67–0.76 0.80 0.69 0.020

Anatomical CT 0.79 0.74–0.83 0.71 0.67–0.76 0.73 0.71 <0.001

FAI 0.55 0.49–0.62 0.46 0.41–0.51 0.36 0.50 <0.001

Combined model (Rad-signature and anatomical CT) 0.86 0.82–0.90 0.81 0.77–0.85 0.79 0.81 N/A

Validation group

Rad-signature 0.82 0.74–0.89 0.71 0.64–0.77 0.81 0.67 0.098

Anatomical CT 0.78 0.71–0.85 0.72 0.65–0.78 0.64 0.74 0.012

FAI 0.55 0.46–0.64 0.45 0.38–0.52 0.51 0.43 <0.001

Combined model (Rad-signature and anatomical CT) 0.85 0.79–0.91 0.82 0.76–0.87 0.68 0.86 N/A

Testing group

Rad-signature 0.82 0.77–0.86 0.69 0.64–0.73 0.82 0.66 0.531

Anatomical CT 0.72 0.65–0.79 0.71 0.66–0.75 0.61 0.73 <0.001

FAI 0.52 0.45–0.59 0.51 0.46–0.56 0.54 0.50 <0.001

Combined model (Rad-signature and anatomical CT) 0.83 0.77–0.91 0.78 0.74–0.82 0.66 0.80 N/A

p-Values represents the difference between the AUC of the model and combined model (Rad-signature and anatomic CT).

Bold values signify statistical significance.

AUC, area under the ROC curve; CI, confidence interval; Anatomical CT, coronary stenosis grade on CCTA; FAI, fat attenuation index.
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Antonopoulos et al., 2017), which may decrease distal flow

reserve and cause functional ischemia.

We also conducted a subgroup analysis and evaluated the

influential factors of functional ischemia. In the subgroup of

obstructive CAD, Rad-LAD was an independent influential

factor of functional ischemia. It suggests that the radiomic

phenotype may be associated with pericoronary inflammation

and easier to be captured in patients with obstructive CAD. In the

nonobstructive subgroup, FAI-LAD rather than Rad-signature

was an independent factor of functional ischemia. With the

development of coronary atherosclerosis, the histological

structure of PCT changes accordingly. Therefore, Rad-

signature may be suitable for patients with moderate and

severe coronary stenosis and FAI may be applicable for those

with minimal and mild stenosis. Similarly, Antonopoulos et al.

(2017) reported that FAI can be used to detect vascular

inflammation at an early stage and change dynamically with

the status of inflammation.

here are limitations. First, our study used a time-

independent testing group instead of an external testing

group. Multiple CT equipment enhanced the robustness of

the model, but if external testing is adopted, the difference in

imaging features caused by different CT devices between the

two centers may interfere with the exploration of the

relationship between PCT and functional ischemia.

Second, we evaluated the ability of Rad-signature in

discriminating functional ischemia defined as CT-FFR ≤
0.8. Although CT-FFR ≤ 0.8 is widely considered coronary

functional significance, noninvasive CT-FFR does not

directly measure blood flow. Different reference standards

may lead to a different selection of radiomic features, which

means that further study is necessary to refine and calibrate

the Rad-signature model. Furthermore, preliminary

exploration in the CCTA-invasive FFR group suggested

that Rad-signature may have a good ability in

discriminating standard functional ischemia. However,

more cases were needed to further validate the results.

FIGURE 6
ROC curves of Rad-signature, FAI, anatomical CT and combinedmodel (Rad-signature and anatomical CT) in (A) the training, (B) validation, and
(C) testing groups. ROC, receiver operating characteristic; AUC, area under the ROC curve; Rad, Rad-signature; FAI, fat attenuation index.
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TABLE 4 Logistic regression analysis of discriminating coronary functional ischemia in the whole study population at the patient level.

Variables Univariate analysis Multivariate analysis

OR (95% CI) p-Value OR (95% CI) p-Value

Sex 0.49 (0.32–0.76) 0.001 0.78 (0.38–1.62) 0.506

Age 0.98 (0.96–1.01) 0.181

Hypertension 0.96 (0.63–1.47) 0.861

Diabetes 1.25 (0.8–1.94) 0.326

Hyperlipemia 1.42 (0.92–2.22) 0.115

Smoking 1.25 (0.78–2.01) 0.359

Family history of CAD 0.83 (0.38–1.77) 0.628

BMI 0.97 (0.91–1.03) 0.282

LVM-CT 1.01 (1.00–1.01) 0.023 1.01 (1.00–1.01) 0.106

Rad-LAD 1.99 (1.57–2.56) <0.001 1.72 (1.13–2.64) 0.018

Rad-RCA 3.17 (0.28–37.65) 0.352

Rad-LCx 1.49 (1.19–1.88) <0.001 1.22 (0.85–1.74) 0.274

Rad-mean 2.02 (1.59–2.61) <0.001 1.25 (0.76–2.09)

FAI-LAD 1.01 (0.98–1.03) 0.652

FAI-RCA 1.02 (1.00–1.04) 0.097 1.00 (0.94–1.03) 0.980

FAI-LCx 1.00 (0.98–1.02) 0.878

Anatomic CT 3.74 (2.32–6.13) <0.001 3.52 (2.10–6.04) <0.001

OR, odds ratio; CI, confidence interval; CAD, coronary artery disease; BMI, body mass index; LVM-CT, left ventricular mass on CT; Rad-LAD, rad-score of left anterior descending; Rad-

RCA, rad-score of right coronary artery; Rad-LCx, rad-score of left circumflex; Rad-mean, the mean rad-score of LAD, RCA and LCx; FAI-LAD, fat attenuation index of LAD; FAI-RCA,

FAI of RCA; FAI-LCx, FAI of LCx; Anatomic CT, coronary stenosis grade on CCTA.

Bold values signify statistical significance.

TABLE 5 Logistic regression analysis of discriminating coronary functional ischemia in subgroups divided by invasive coronary angiography in the
testing group at the patient level.

Variables Non-obstructive (stenosis < 50%) (n = 55) Obstructive (stenosis ≥ 50%) (n = 95)

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

OR (95% CI) p-Value OR (95% CI) p-Value OR (95% CI) p-Value OR (95% CI) p-Value

Sex 0.37 (0.10–1.24) 0.117 0.31 (0.12–0.74) 0.01 1.35 (0.27–7.26) 0.717

Age 0.98 (0.91–1.06) 0.652 0.95 (0.9–0.99) 0.021 0.94 (0.88–1.00) 0.054

Hypertension 0.84 (0.25–2.84) 0.782 0.83 (0.37–1.86) 0.648

Diabetes 0.66 (0.13–2.58) 0.571 0.81 (0.31–2.09) 0.668

Hyperlipemia 1.31 (0.39–4.38) 0.656 2.37 (0.9–6.6) 0.086 2.09 (0.64–7.22) 0.227

Smoking 1.5 (0.39–5.38) 0.538 1.88 (0.8–4.48) 0.148

Family history of CAD 1.36 (0.06–15.27) 0.809 0.26 (0.01–1.85) 0.238

BMI 0.92 (0.75–1.1) 0.37 1.03 (0.91–1.16) 0.671

LVMCT. 1.01 (0.99–1.03) 0.241 1.01 (1–1.03) 0.031 1.01 (0.99–1.03) 0.267

Rad_LAD 1.60 (0.86–3.17) 0.15 2.07 (1.32–3.46) 0.003 2.45 (1.08–6.27) 0.042

Rad_RCA 0.78 (0.39–1.43) 0.447 0.88 (0.56–1.33) 0.566

Rad_LCx 1.74 (0.97–3.26) 0.067 1.65 (0.89–3.21) 0.117 1.72 (1.10–2.87) 0.025 1.71 (0.80–4.30) 0.2

Rad_mean 1.54 (0.85–2.94) 0.166 1.92 (1.23–3.17) 0.006 0.84 (0.25–2.24) 0.739

FAI_LAD 1.11 (1.02–1.22) 0.026 1.10 (1.01–1.22) 0.041 1 (0.96–1.04) 0.894

FAI_RCA 1.04 (0.98–1.12) 0.236 1.02 (0.98–1.07) 0.359

FAI_LCx 1.02 (0.93–1.11) 0.711 1.01 (0.97–1.04) 0.745

OR, odds ratio; CI, confidence interval; CAD, coronary artery disease; BMI, body mass index; LVM-CT, left ventricular mass on CT; Rad-LAD, rad-score of left anterior descending; Rad-

RCA, rad-score of right coronary artery; Rad-LCx, rad-score of left circumflex; Rad-mean, the mean rad-score of LAD, RCA, and LCx; FAI, fat attenuation index.

Bold values signify statistical significance.
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Conclusion

The machine-learning-derived radiomics model of Rad-

signature of PCT showed a good ability in discriminating

coronary functional ischemia. It may potentially become a

noninvasive, fast, and economical indicator to screen functional

ischemia before expensive invasive examinations. The combined

model demonstrated the incremental value of Rad-signature to

anatomical CT, rather than the superiority of Rad-signature

alone in discriminating functional ischemia, which may help

identify high-risk patients.
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Development of machine
learning models integrating PET/
CT radiomic and
immunohistochemical pathomic
features for treatment strategy
choice of cervical cancer with
negative pelvic lymph node by
mediating COX-2 expression

Zhe Zhang, Xiaoran Li and Hongzan Sun*

Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China

Objectives: We aimed to establish machine learning models based on texture

analysis predicting pelvic lymph node metastasis (PLNM) and expression of

cyclooxygenase-2 (COX-2) in cervical cancer with PET/CT negative pelvic

lymph node (PLN).

Methods: Eight hundred and thirty-seven texture features were extracted from

PET/CT images of 148 early-stage cervical cancer patients with negative PLN.

The machine learning models were established by logistic regression from

selected features and evaluated by the area under the curve (AUC). The

correlation of selected PET/CT texture features predicting PLNM or COX-2

expression and the corresponding immunohistochemical (IHC) texture features

was analyzed by the Spearman test.

Results: Fourteen texture features were reserved to calculate the Rad-score for

PLNM and COX-2. The PLNMmodel predicting PLNM showed good prediction

accuracy in the training and testing dataset (AUC = 0.817, p < 0.001; AUC =

0.786, p < 0.001, respectively). The COX-2 model also behaved well for

predicting COX-2 expression levels in the training and testing dataset

(AUC = 0.814, p < 0.001; AUC = 0.748, p = 0.001). The wavelet-LHH-GLCM

ClusterShade of the PET image selected to predict PLNMwas slightly correlated
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with the corresponding feature of the IHC image (r = −0.165, p < 0.05). There

was a weak correlation of wavelet-LLL-GLRLM LongRunEmphasis of the PET

image selected to predict COX-2 correlated with the corresponding feature of

the IHC image (r = 0.238, p < 0.05). The correlation between PET image

selected to predict COX-2 and the corresponding feature of the IHC image

based on wavelet-LLL-GLRLM LongRunEmphasis is considered weak positive

(r = 0.238, p=<0.05).

Conclusion: This study underlined the significant application of the machine

learning models based on PET/CT texture analysis for predicting PLNM and

COX-2 expression, which could be a novel tool to assist the clinical

management of cervical cancer with negative PLN on PET/CT images.

KEYWORDS

PET/CT, lymphatic metastasis, radiomics, cyclooxygenase 2, machine learning

Introduction

Cervical cancer is the fourth most prevalent cancer and the

fourth leading cause of female cancer, with more than

6,00,000 incidences and 3,00,000 death cases reported in 2020

(Sung et al., 2021). The most commonly used clinical treatments

are radical hysterectomy with pelvic lymph node dissection.

However, the prognosis of post-operative patients varied

significantly due to tumor heterogeneity (Bhatla et al., 2021).

Several studies have indicated the most relevant prognostic factor

in early cervical cancer is pelvic lymph node metastasis (PLNM)

(Rudtanasudjatum et al., 2011; Horn et al., 2014; Zyla et al., 2020;

Federico et al., 2022; Wenzel et al., 2022). Kulisara et al. have

proved that patients with lymph node metastasis (LNM) had

poorer 5-year overall survival than the patients without LNM

(p < 0.05) (Nanthamongkolkul and Hanprasertpong, 2018). In

addition, lymphadenectomy may increase the probability of

some complications including lower limb lymphedema, ileus,

and chylous ascites (Yost et al., 2014; Kuroda et al., 2017; Nica

et al., 2020; Umbreit et al., 2020). The accuracy of predicting

LNM in cervical cancer patients is crucial for treatment decision-

making.

Previous studies have indicated that PET/CT could be used for

the evaluation of LNM as a preoperative imaging test, which is of

vital importance for clinical strategies and individualized treatment

(Sironi et al., 2006; Lv et al., 2014; Fasmer et al., 2020).

Nevertheless, these studies usually used lymph node metabolism

and diameter to assess LNM. Few studies have evaluated the

metastasis of PLN with slightly higher FDG metabolism and

diameter less than 1 cm on PET images which has limitations

in detecting micrometastasis. Radiomics is rapidly gaining

momentum and this technique is characterized by quantifying

tumor heterogeneity through extraction of computational features

using advanced computational algorithms. Texture parameters of

radiomics features of PET images and IHC pathomic features

could potentially be adopted to predict the PLNM for strategy

choice of cervical cancer patients.

Substantial evidence suggests that cyclooxygenase-2 (COX-

2), a key protein in prostaglandin metabolism, has a critical role

in PLNM in cervical cancer (Ryu et al., 2000; Hoellen et al., 2016).

Previous studies have indicated elevated COX-2 was strongly

related to LNM in stage IB cervical cancer (Kang et al., 2006), the

high COX expression has been revealed positive correlation with

malignancy in the parametrial tumor tissue or LNM (Ryu et al.,

2000). Other studies also found that high-level expression of

COX-2 was correlated with a poorer prognosis, recurrence, low

sensitivity of nedaplatin, and radiosensitivity (Kim et al., 2003;

Chen et al., 2005; Ishikawa et al., 2006; Manchana et al., 2006; Jo

et al., 2007; Huang et al., 2013; Stasinopoulos et al., 2013; Kato

et al., 2015). In neoplasia, COX-2 stimulates cell proliferation

which promotes angiogenesis through pathways involving an

increase in VEGF production (Huang et al., 2013; Xu et al., 2014).

It has been suggested that COX-2 expression may enhance LNM

after the onset of lymphovascular space invasion

(Khunamornpong et al., 2009; Hoellen et al., 2016). The

heterogenic 18F-FDG uptake was strongly related to the

histopathological appearance in the tumor region. 18F-FDG

heterogenic uptake within the tumor was correlated with the

heterogeneity of tumor histopathological tissues (Zhao et al.,

2005; Henriksson et al., 2007). IHC assay demonstrated that

tumor angiogenesis and cancer cell proliferation were

significantly related to the enhancement of tumor

heterogeneity. Therefore, the high expression of COX-2 played

a connecting role between the increase of tumor heterogeneity

and PLNM (Liu et al., 2011).

Based on texture parameters of radiomics features of PET

images, the global and local-regional heterogeneities of 18F-FDG

distribution could be potentially assessed. Moreover, some

mathematical methods were obtained to describe the

relationships between their position in PET images and the

gray-level intensity of pixels or voxels (Chicklore et al., 2013;

O’Connor, 2017). In this study, we hypothesized that the

overexpression of COX-2 promoted the increase of tumor

heterogeneity and then caused the change of texture features
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of radiomics derived from IHC and PET/CT imaging. The

texture features of the primary tumor lesion may be correlated

with PLNM in patients with early-stage cervical cancer.

Therefore, we aimed to establish machine learning models of

texture analysis that could predict PLNM and COX-2 expression

based on PET/CT imaging to assist the clinical management of

PLNM therapy in cervical cancer with PET/CT negative PLN.

Materials and methods

Radiomics workflow

The study flowchart and radiomics workflow are shown in

Figure 1 and includes the collection and exclusion of patients,

image acquisition, ROI segmentation, feature extraction and

selection, establishment and evaluation of machine learning

models, and correlation analysis between PET and IHC

images with the same texture features.

Patients

This retrospective study consisted of 170 patients with

histologically confirmed stage IA-IIA cervical cancer who

underwent radical hysterectomy with pelvic node dissection

between September 2015 and December 2019 in Shengjing

Hospital of China Medical University. All patients

underwent 18F-FDG PET/CT scan within 1 week before

treatment. The Hospital Institutional Review Board approved

this study and informed consents were nor required due to

retrospective nature. Inclusion criteria for cases: (Sung et al.,

2021) Cervical squamous cell carcinoma confirmed by

pathology and lymph node dissection performed in the

patient; (Bhatla et al., 2021) Ia-IIa stage identified by

2021 Federation of Gynecology and Obstetrics (FIGO)

staging (Bhatla et al., 2021); (Horn et al., 2014) The SUVmax

of PLNM was less than 2.5 and the diameter was less than 1 cm;

(Zyla et al., 2020) Normal serum glucose level before PET/CT

scanning; (Rudtanasudjatum et al., 2011) No other tumor or

metabolic disease. A total of twenty-two patients were excluded

from the sample. Seven of them were excluded because they had

received chemoradiotherapy before surgery. Nine histological

sections could not be obtained. The tumor volumes of three

patients were less than 1 cm3 to be unable to extract texture

parameters. The PET image quality of the three cases was too

bad to segment regions of interest (ROI). Eventually, 148 cases

(54 PLNM and 94 non-PLNM) were enrolled in the study and

randomly divided into a training dataset and a testing dataset

according to the 7:3 ratio.

18F-FDG PET/CT technique

The patients were all performed with the PET-CT (Discovery

PET/CT 690; GE Healthcare, Chicago, Illinois, United States)

and received an injection of 3.7 MBq/kg 18F-FDG intravenous.

The CT parameters were 3.27 mm slice thickness, 120 kV tube

voltage, and 30–210 Ma. Then, with a three-dimensional

acquisition mode and a matrix size of 192 × 192, PET data

were captured at a speed of 1.5 min/bed (total of seven to eight

beds). Using an iterative reconstruction algorithm of order subset

expectation maximization, the PET image was reconstructed

with twice iteration, 24 subsets and 6.4 mm Gaussian filter. In

FIGURE 1
Study flowchart and radiomics workflow. (A) Study flowchart. (B) Radiomics workflow.

Frontiers in Physiology frontiersin.org03

Zhang et al. 10.3389/fphys.2022.994304

80

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.994304


the AW4.5 workstation (GE Healthcare), and all PET images

were transferred. The conventional metabolic parameters of

tumors in 18F-FDG PET images for all patients consisted of

total pathological glycolysis (TLG), the metabolic tumor volume

(MTV), SUVmax, SUVpeak, and SUVmean. SUV corrected for body

weight and was measured automatically using a threshold of 42%

SUVmax from the ROIs.

Immunohistochemical analysis

Department of Pathology in our hospital prepared all

paraffin sections for cervical cancer. IHC staining was

performed by Leica BOND MAX™ (Leica Biosystems). Goat

anti-human COX-2 (1:400 dilution) polyclonal primary

antibodies (Abcam) were used to incubate these sections,

following species-appropriate secondary antibodies and the

standard procedures were performed as in the previous

report (Li et al., 2021a). Tumor sections were scanned using

the Pannoramic MIDI slice scanner (3DHISTECH Ltd.)

forming a digital image (×400) and analyzed by

QuantCenter software with the Pannoramic viewer. The

whole images were scanned by the DensitoQuant software

and the analysis procedure was performed as in previous

reports (Yeo et al., 2015; Li et al., 2021b). The

immunoreactive scoring system (IRS) was utilized to assess

the expression level of COX-2 (Kim et al., 2008). The IRS was

derived from the addition of staining intensity (scored on a

0–3 scale: 0, negative; 1, weakly positive; 2, moderately positive;

and 3, strongly positive) and staining extent (scored on a

0–4 scale: 0, no staining; 1, 1%–25% positive 2, 26%–50%

positive; 3, 51%–75% positive; and 4, 76%–100% positive

tumor cells). The level of COX-2 expression was classified as

a dichotomous variable for high (IRS, 4–7) or low (IRS, 0–3)

expression.

Extracting texture features of PET and
immunohistochemical images

All PET images were loaded to 3D slicer (https://www.

slicer.org) software 4.10.2 version. Two nuclear medicine

physicians manually segmented independently the largest

slice of all tumors in PET images to form 2D ROI, blinded to

patient clinical information. Then, the texture features of

ROI in PET images were extracted by the pyradiomics

package (van Griethuysen JJMFedorov et al., 2017). The

resampled voxel size was set to 1 mm × 1 mm × 1 mm to

be isotropic of the image. The discretization of the grayscale

was set to 25 bin width. The PET original images were

transformed into eight images by the first level wavelet

transform. Then the texture features were extracted from

ROI based on PET original images and wavelet transformed

images.

A pathologist randomly captured the cancer tissue area of the

cervix on the digital IHC image (×20). The captured images that

were native red/green/blue (RGB) images were converted to

greyscale before computing the texture features (Kather et al.,

TABLE 1 Patient characteristics.

Training
dataset (N = 104)

Testing
dataset (N = 44)

p value

Age 51 (33–64) 53 (35–74) 0.266

Stage

IA 27 11 0.743

IB 43 21

IIA 34 12

Differentiation 0.482

Well 24 12

Moderate 65 23

Poor 15 9

PLNM 1.000

No 66 28

Yes 38 16

COX-2 0.856

Low expression 44 20

High expression 60 24

WBC (×109/L) 6.106 5.784 0.272

NEU (%) 60.622 59.048 0.537
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2016). Then the same texture features as PET images were

extracted with 3D slicer.

Dimensionality reduction of texture
features

All texture feature parameters were standardized using the

Z-score method. In the training dataset, with 10-fold cross-

validation, the least absolute shrinkage and selection operator

(LASSO) algorithm was used to filter clinical features, the

conventional metabolic parameters, and texture features

derived from PET images that could be used to predict

PLNM and COX-2 expression. A classical metabolic

parameter was generated using a linear combination of

selected texture features of PET images of non-zero

coefficient after dimensionality reduction. Afterward, both

of them were weighted by their respective coefficients to

establish the radiomics score (Rad-score) (Huang et al.,

2016). The Rad-score was utilized to construct machine

learning models to prognosticate PLNM and COX-2

expression.

Establishing and testing machine learning
model

The Rad-score (PLNM) in the training dataset was utilized to

establish the PLNM model for predicting PLNM with logistic

regression algorithm. And the Rad-score (COX-2) was the

FIGURE 2
The result of extracting texture feature parameters of PET images. Eight hundred and thirty-seven texture features were extracted from the ROI
in the PET image, including the first order features (n = 18), gray level co-occurrence matrix (GLCM) features (n = 24), gray level size zone matrix
(GLSZM) features (n = 16), gray level run length matrix (GLRLM) features (n = 16), neigbouring gray tone difference matrix (NGTDM) features (n = 5),
gray level dependence matrix (GLDM) features (n = 14), and wavelet features derived from one level of wavelet decomposistions yielding eight
derived images (n = 93*8).
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parameter for establishing the COX-2 model. The PLNM and

COX-2 models in the testing dataset were tested independently.

Statistical analysis

The Mann-Whitney U test (continuous variables) or the

Pearson chi-square test (rank variables) was used to evaluate the

distribution of the clinical feature between the training and

testing dataset. The correlation of selected PET texture

features and the corresponding IHC texture images was

analyzed with the Spearman correlation method. The

differences in Rad-score (PLNM) between the PLNM group

and non-PLNM group in all datasets and Rad-score (COX-2)

between the COX-2 high expression group and COX-2 low

expression group were analyzed with the Wilcoxon test. To

evaluate the results of PLNM and COX-2 models, the ROC

curve was used. All data processing, establishing machine

learning models, and statistical analysis were performed with

R software version 3.5.1 or SPSS software version 25.0 (IBM

Corp., Armonk, NY, United States). A two-tailed p < 0.05 was

considered statistically significant in all statistical analysis.

Results

The distribution of clinical characteristics
of patients

The basic clinical characteristics of patients were summarized

in Table 1. With a median age of 51 years, 104 patients were

randomly assigned to the training dataset, containing 38 patients

with PLNM. COX-2 was highly expressed in 60 patients in the

training dataset. There were 44 patients with a median age of

53 years old in the testing dataset. Sixteen of them were PLNM

positive. In the testing dataset, there were 24 patients with COX-2

high expression. Statistical analysis showed that there was no

statistically significant difference in the distribution of all clinical

features between the training and the testing dataset (p > 0.05).

Filtering and integration of features

A total of 837 texture features were extracted from the ROI in

the PET image, including the First Order Features (n = 18), Gray

Level Co-occurrence Matrix (GLCM) Features (n = 24), Gray

Level Size Zone Matrix (GLSZM) Features (n = 16), Gray Level

Run Length Matrix (GLRLM) Features (n = 16), Neigbouring

Gray Tone Difference Matrix (NGTDM) Features (n = 5), Gray

Level Dependence Matrix (GLDM) Features (n = 14) and

Wavelet Features derived from one level of Wavelet

decomposistions yielding eight derived images (n = 93*8). The

detailed texture feature parameters of PET images were shown in

Figure 2. The same 837 texture features were extracted based on

the IHC images.

All clinical features, conventional metabolic parameters, and

texture features derived from PET images were selected to predict

PLNM. When Lambda was 0.027 in predicting PLNM with the

LASSO algorithm, the 14 most informative features were

reserved in the training dataset (Figure 3). And minimal

binomial deviation for predicting PLNM was acquired with

the 14 reserved features. Figure 4 showed that the coefficients

of the reserved texture feature were used to predict PLNM with

logistic regression algorithm. Partial regression coefficients were

negative for nine of the reserved features and positive for five of

the features. Then the reserved features were multiplied by their

partial regression coefficients and linearly integrated into Rad-

score (PLNM). The Rad-score (PLNM) was used to establish the

PLNM model with logistic regression algorithm.

Rad-score (PLNM) = − 0.038 * wavelet-LLH-GLCM MCC

−0.177 * wavelet-LLL-GLRLM LongRunEmphasis

+0.076 * wavelet-HLL-GLCM MCC

−0.334 * wavelet-HHL-GLDM LargeDependenceLowGray

LevelEmphasis

+0.671 * wavelet-LHH-Firstorder Median

−0.311 * wavelet-HLH-Firstorder Median

FIGURE 3
All features of PET image selected to predict PLNM by LASSO
algorithm. When lambda was 0.027 in predicting PLNM with the
LASSO algorithm, 14 most informative features were reserved to
predict PLNM in the training dataset.
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+0.133 * wavelet-LLH-Firstorder Kurtosis

−0.327 * wavelet-LHL-GLCM Correlation

−0.048 * original-GLCM ClusterShade

+0.242 * wavelet-LHH-GLCM Correlation

−0.121 * wavelet-LLH-Firstorder Median

+0.069 * wavelet-HLH-Firstorder Skewness

−0.158 * original-GLDM LargeDependenceLowGrayLevel

Emphasis

−0.004 * wavelet-LHH-GLCM ClusterShade − 0.641.

Fourteen features were selected to predict COX-2 by LASSO

10-fold cross-validation in the training dataset (Figure 5). The

histogram showed the coefficients of the reserved features in

Figure 6. Partial regression coefficients were negative for eight of

the reserved features and positive for six of the features. Rad-

score (COX-2) was integrated according to the calculation

formula below. The Rad-score (COX-2) was used to establish

the COX-2 model with logistic regression algorithm.

Rad-score (COX-2) = − 0.044 * wavelet-LLH-GLCM MCC

−0.326 * wavelet-LLH-GLCM Correlation

−0.245 * wavelet-LHL-GLCM MCC

+0.165 * wavelet-LLL-GLRLM ShortRunEmphasis

+0.144 * original-GLDM LargeDependenceLowGrayLevel

Emphasis

+0.198 * wavelet-HLL-GLDM LargeDependenceLowGray

LevelEmphasis

−0.206 * wavelet-LHL-Firstorder Kurtosis

+0.17 * wavelet-HLH-Firstorder Mean

+0.042 * wavelet-HLH-Firstorder Median

−0.31 * wavelet-HHL-GLCM Correlation

−0.205 * wavelet-LLH-GLDM DependenceVariance

FIGURE 4
The coefficients histogram of texture features was selected
to predict PLNM. Using the LASSO model, 14 corresponding
texture features were selected to predict PLNM.

FIGURE 5
All features of PET image selected to predict COX-2 by LASSO
algorithm. When lambda was 0.025 in predicting PLNM with the
LASSO algorithm, 14 most informative features were reserved to
predict PLNM in the training dataset.

FIGURE 6
The coefficients histogram of texture features was selected
to predict COX-2 expression. Using the LASSO model,
14 corresponding texture features were selected to predict COX-2
expression.
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FIGURE 7
Rad-score (PLNM) distribution difference between PLNM negative subgroup and positive subgroup in the training dataset and testing dataset.
The rad-score (PLNM) of patients with PLNM was higher than the rad-score (PLNM) of patients with non-PLNM in the training dataset and testing
dataset (p < 0.001, p < 0.05, respectively).

FIGURE 8
Rad-score (COX-2) distribution difference between COX-2 low expression subgroup and high expression subgroup in the training dataset and
testing dataset. Rad-score (COX-2) of patients with high expression of COX-2 was higher than that with low expression of COX-2 in the training
dataset (p < 0.001). In the testing dataset, therewas no significant difference in Rad-score (COX-2) between patients with high COX-2 expression and
patients with low COX-2 expression (p < 0.05).
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−0.324 * wavelet-HLH-Firstorder Skewness

+0.427 * wavelet-LHH-GLCM Correlation

−0.415 * wavelet-HHL-Firstorder Median + 0.324.

Distribution differences of rad-scores in all
datasets

The Rad-score (PLNM) of patients with PLNM was higher

than the Rad-score (PLNM) of patients with Non-PLNM in the

training dataset and testing dataset (p < 0.001, p < 0.05,

respectively) (Figure 7). And the Rad-score (COX-2) of

patients with high expression of COX-2 was higher than that

with low expression of COX-2 in the training dataset (p < 0.001).

Whereas, in the testing dataset, there was no statistically

significant difference in Rad-score (COX-2) between patients

with high COX-2 expression and patients with low COX-2

expression (p < 0.05) (Figure 8).

Evaluation of machine learning models

The AUC value of the machine learning model was shown in

Figure 9 which was aimed to predict PLNMwas 0.817 (p < 0.001)

in the training dataset, and 0.786 (p < 0.001) in the testing

dataset. And the COX-2 model also behaved well for predicting

COX-2 expression levels in the training and testing dataset

(AUC = 0.814, p < 0.001; AUC = 0.748, p = 0.001)

(Figure 10). The sensitivity (Sen) value of the PLNM model

was 65.8% in the training dataset, and 100.0% in the testing

dataset. The specificity (Spe) value of the COX-2 model was

72.7% in the training dataset, and 90.0% in the testing dataset

(Table 2).

The correlation of texture features derived
from PET image with same texture
features of immunohistochemical image

Table 3 showed the correlation between the texture features derived

from ROI in the PET image selected to predict PLNM and the same

texture features of the IHC image by Spearman correlation analysis.

Only the wavelet-LHH (glcm) (ClusterShade) derived from the PET

image was slightly correlated with the same feature of the IHC image

(r = −0.165, p < 0.05). The correlation of texture features of the PET

image selected to predict the COX-2 expression level with the IHC

image’s same texture features as illustrated in Table 4. There was a weak

correlation that wavelet-LLL (glrlm) (LongRunEmphasis) derived from

the ROI of the PET image correlated with the same feature of the IHC

image (r = 0.238, p < 0.05).

FIGURE 9
The ROC curves of the PLNM model in the training dataset
and testing dataset. The blue ROC curve represents the training
dataset; the yellow ROC curve represents the testing set. The AUC
value of each model that was aimed to predict PLNM was
0.817 (p < 0.001) in the training dataset, and 0.786(p < 0.001) in the
testing dataset.

FIGURE 10
The ROC curves of the COX-2 model in the testing dataset.
The blue ROC curve represents the training dataset, the yellow
ROCcurve represents the testing set. Both of them behavedwell in
predicting COX-2 expression levels in the training dataset and
testing dataset (AUC = 0.814, p < 0.001; AUC = 0.748, p = 0.001,
respectively).
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Discussion

We provided machine learning models to study the

diagnostic value of the textural features in PET images for

predicting PLNM and performed well with good accuracy,

sensitivity and specificity. Based on PET texture analysis

predicting PLNM and COX-2 expression levels, this study

revealed that machine learning models could assist clinical

treatment of PLN in patients with early-stage cervical cancer.

The rate of PLNM among patients with cervical squamous cell

carcinoma stages IA-IIA was 36.54% in the training dataset

and 36.36% in the testing dataset. The rate of COX-2 high

expression among the patients was 57.69% in the training

dataset and 54.55% in the testing dataset. The high expression

of COX-2 were characteristics to predict PLNM associated

with PET texture analysis and enriched level of COX-2 in the

IHC images located in tumor, respectively. The Chi-square

test or M-U analysis confirmed that the distribution of all

clinical features was balanced between the training and testing

dataset avoiding the inaccuracy and overfitting of the

imbalanced feature distribution for building machine

learning models.

The correlation between COX-2 high expression of primary

tumor lesions and PLNM has been widely reported in cervical

cancer (Ryu et al., 2000; Kim et al., 2003; Liu et al., 2011). The

COX-2 model in this study performed well in the training and

testing dataset (AUC = 0.814/0.748, p < 0.001/p = 0.001,

respectively). And the specificity was 0.727 in the training

dataset, and 0.900 in the testing dataset. The correlation

feature of GLCM based on original and wavelet transformed

images was also selected to calculate the Rad-score (COX-2). This

TABLE 2 Evaluation of machine learning model prediction in the training and testing dataset.

Model Training dataset Testing dataset

AUC (95% CI) p Sen Spe AUC (95% CI) p Sen Spe

PLNM model 0.817 (0.730–0.886) <0.001 0.658 0.924 0.786 (0.636–0.895) <0.001 1.000 0.538

COX-2 model 0.814 (0.726–0.884) <0.001 0.750 0.727 0.748 (0.594–0.866) 0.001 0.542 0.900

AUC, area under the curve; Sen, sensitivity; Spe, specificity; CI, confidence interval.

TABLE 3 Correlation of PET texture parameters selected to predict the
PLNM with same texture parameters of IHC image.

Feature Spearman test

Filter Class Name r p

Wavelet-LLH GLCM MCC −0.157 0.057

Wavelet-LLL GLRLM Long Run Emphasis −0.002 0.980

Wavelet-HLL GLCM MCC 0.024 0.772

Wavelet-LHH First order Median −0.025 0.767

Wavelet-HLH First order Median −0.006 0.946

Wavelet-LLH First order Kurtosis −0.070 0.400

Wavelet-LHL GLCM Correlation 0.026 0.754

Wavelet-HHL GLDM LDLGLE 0.085 0.302

Original GLCM Cluster Shade 0.115 0.163

Wavelet-LHH GLCM Correlation −0.016 0.849

Wavelet-LLH First order Median −0.008 0.920

Wavelet-HLH First order Skewness −0.144 0.080

Original GLDM LDLGLE −0.155 0.060

Wavelet-LHH GLCM Cluster Shade −0.165* 0.045

GLCM, gray level co-occurrence matrix; MCC, maximum correlation coefficient;

GLRLM, gray level run length matrix; GLDM, gray level dependence matrix; LDLGLE,

large dependence low gray level emphasis. * indicating significant correlation.

TABLE 4 Correlation of PET texture parameters selected to predict the
COX-2 expression level with same texture parameters of IHC
image.

Feature Spearman
test

Filter Class Name r p

Wavelet-LLH GLCM MCC −0.157 0.057

Wavelet-LLL GLRLM Short Run Emphasis −0.042 0.614

Wavelet-LLH GLCM Correlation 0.238* 0.004

Wavelet-LHL GLCM MCC −0.098 0.238

Wavelet-LHL First order Kurtosis −0.043 0.606

Wavelet-HLH First order Mean 0.123 0.135

Wavelet-HLL GLDM LDLGLE 0.079 0.338

Wavelet-HLH First order Median −0.005 0.947

Wavelet-HHL GLCM Correlation 0.109 0.187

Original GLDM LDLGLE 0.050 0.545

Wavelet-LLH GLDM Dependence Variance 0.047 0.568

Wavelet-HLH First order Skewness −0.144 0.080

Wavelet-LHH GLCM Correlation −0.016 0.849

Wavelet-HHL First order Median 0.114 0.168

GLCM, gray level co-occurrence matrix; MCC, maximum correlation coefficient;

GLRLM, gray level run length matrix; GLDM, gray level dependence matrix; LDLGLE,

large dependence low gray level emphasis. * indicating significant correlation.

The bold values represents the wavelet-LLL (glrlm) (LongRunEmphasis) derived from

the ROI of PET images correlated better with the same feature of IHC images relative to

other texture features (r = 0.238, p<0.05).
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indirectly confirmed that PET texture analysis of the primary

tumor can predict that PLNM may be partly due to the high

expression of COX-2. At present, the clinical evaluation of COX-

2 mainly relies on IHC analysis, and the study ulitized PET/CT

texture features for predicting COX-2 expression level before

treatment is evaluated. We made a workflow based on the

prediction of PLNM and COX-2 expression to assist the

clinical management of PLN in early-stage cervical cancer

(Figure 11). Kim et al. (2008) have confirmed that images

with para-aortic lymph node recurrence possessed valuable

expression of COX-2 attributes in cervical cancer across

different patients. The prediction of the PLNM model was

positive, the PLN dissection may be necessary whereas the

prediction of the PLNM model was negative and the

predicting COX-2 model was positive, COX-2 inhibitors were

helpful for patients to control micrometastasis or recurrence of

lymph nodes. Moreover, our results demonstrated the two of

selected PET texture to predict PLNM and COX-2 expression

that were slightly correlated with corresponding texture features

from IHC images.

There are several limitations in the current study. Firstly, it

was retrospective and performed at a single institution based on a

small sample size. Prospective multicenter studies on automatic

image acquisition and reconstruction are required to improve the

process. Secondly, although we chose 2D ROI to be consistent

with the 2D IHC image feature extraction method, the cross-

sections of the IHC images in this study may not correspond

exactly to the cross-sections of PET/CT. Further clinical studies

on large-scale data sets based on the 3D printing technology are

needed to achieve more accurate matching of PET images and

pathological images to fully address this question. Thirdly,

further test-retest studies and more standardized workflow are

needed to assess feature robustness of PLNM for better

generalization.

Conclusion

In conclusion, combining PET/CT texture analysis to predict

PLNM and COX-2 expression can improve the predictive ability of

machine learning models for PLNM trends in PLN-negative patients.

In addition, the correlation between the texture features of PET images

and the corresponding texture features of IHC images provides a

reasonable explanation that the texture features of the primary tumor

on PET images can predict PLNM. Based on this machine learning

model integrating PET/CT radiomic and IHC pathomic features, it is

expected to provide guidance for the treatment strategy of negative

pelvic lymph node cervical cancer in the near future.
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Introduction: The accurate cerebral cortex surface reconstruction is crucial for
the study of neurodegenerative diseases. Existing voxelwise segmentation-based
approaches like FreeSurfer and FastSurfer are limited by the partial volume effect,
meaning that reconstruction details highly rely on the resolution of the input
volume. In the computer version area, the signed distance function has become
an efficient method for 3D shape representation, the inherent continuous nature
makes it easy to capture the fine details of the target object at an arbitrary
resolution. Additionally, as one of the most valuable breakthroughs in deep
learning research, attention is a powerful mechanism developed to enhance
the performance of the encoder-decoder architecture.

Methods: To further improve the reconstruction accuracy of the cortical surface, we
proposedResAttn-Recon, a residual self-attentionbasedencoder-decoder framework.
In this framework, we also developed a lightweight decoder network with skip
connections. Furthermore, a truncated and weighted L1 loss function are proposed
to accelerate network convergence, compared to simply applying the L1 loss function.

Results: The intersection over union curve in the training process achieved a
steeper slope and a higher peak (0.948 vs. 0.920) with a truncated L1 loss. Thus,
the average symmetric surface distance (AD) for the inner and outer surfaces is
0.253 ± 0.051 and the average Hausdorff distance (HD) is 0.629 ± 0.186, which is
lower than that of DeepCSR, whose absolute distance equals 0.283 ± 0.059 and
Hausdorff distance equals 0.746 ± 0.245.

Discussion: In conclusion, the proposed residual self-attention-based framework
can be a promising approach for improving the cortical surface reconstruction
performance.

KEYWORDS

cortical surface reconstruction, residual self-attention mechanism, signed distance
function, deep learning, MRI volume

1 Introduction

In neural image processing, the brain cortical surface reconstruction plays an essential
role in the study of neurodegenerative diseases [1] and psychological disorders [2].
Specifically, the cortical surface reconstruction aims to extract two surface meshes from
brain magnetic resonance imaging (MRI). The inner white matter surface separates the white
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matter and the gray matter tissues, and the outer pial surface
separates the gray matter tissue and the cerebrospinal fluid [3].
Considering the highly curved and folded intrinsic folding pattern of
the cortical surface [4], it is challenging to extract anatomically
plausible and topologically correct cortical surfaces in practice.

To address this, traditional approaches use a series of lengthy
and computationally intensive processing algorithms, with manual
intervention for hyperparameter fine-turning [5–11]. For instance,
the widely used and reliable [9] toolkit usually takes hours to process
a MRI volume data. In recent years, several deep learning
approaches have emerged to overcome this shortage, and
according to the data format being processed, these approaches
can be categorized as voxel-based, mesh-based, and implicit surface
representation-based. Voxel-based approaches first obtain the brain
white matter tissue segmentation based on 3D-CNN [12] or 3D-
Unet-like [13] architecture. Then the triangular mesh of the inner
surface is extracted by applying mesh tessellation to the
segmentation masks, with surface mesh smoothing and topology
correction [14]. The outer pial surface mesh can then be derived
from inflating the white matter surface mesh [15]. Leonie et al. [15]
proposed FastSurfer to accelerate the FreeSurfer pipeline by
replacing the traditional white matter segmentation algorithm
with a 3D-CNN network. [16] proposed the SegRecon framework
for cortical surface reconstruction and segmentation. Due to the
partial volume effect (PVE) [17], voxel-based approaches have
inherent limitations in capturing fine details at high resolution.
Mesh-based approaches are mainly implemented by deforming the
initial surface mesh to the target surface mesh, with a geometric
deep-learning model. For instance, [18] proposed PialNN to
reconstruct the pial surface from the white matter surface
handled by the FreeSurfer pipeline. [19] proposed Voxel2Mesh to
deform predefined sphere template meshes to cortical surfaces. [20]
Proposed Vox2Cortex that leverages convolutional and graph
convolutional neural networks to deform the template mesh to
densely folded target cortical surface. Despite fast processing,
theoretical guarantees are to be further developed to prevent self-
intersections of the surface mesh. Implicit surface representation-
based methods reformulate cortical surface reconstruction as the
prediction of the implicit surface representation [21]. Typically, [3]
proposed the DeepCSR network to learn an implicit surface function
in a continuous coordinate system, with topology correction
algorithm to ensure the geometric accuracy of the target surface.

Given brain MRI volume, existing deep learning approaches
spend less time reconstructing cortical surface compared to
traditional pipeline, with high reliability. Most of these
approaches require voxelwise or vertexwise features extracted
from the input MRI volume, however, none of them considered
the long range feature dependencies, which plays an important role
in model performance improvement. For instance, DeepCSR [3]
directly concatenates the local and global features from the encoder
feature maps, combined with the location coordinates of the query
point as the input of the decoder network, PialNN [18] combined
the norm and the location coordinate of the initial mesh vertex with
the volumetric features extracted from local convolution, to predict
the deformation displacement in the inflating process. Both
approaches ignored the relationship between query points or
mesh vertices. In this work, to efficiently model the long range
feature dependencies in cortical surface reconstruction, the concept

of the self-attention mechanism is introduced from neural language
processing [22–24] and computer version [25–27] area. For pioneer
works that apply self-attention to vision tasks [28], proposed Vision
Transformer (ViT) for image recognition [29], proposed Tokens-
To-Token Vision Transformer (T2T-ViT) to improve classification
accuracy [30], proposed Swin Transformer, a general framework for
image classification and segmentation, all the above works are
discussed around 2D images. In this work, firstly, the input MRI
volume is registered to a standard brain space, such as MNI105.
Secondly, after the 3D Convolution block, the residual connected
multi-head self-attention block and global flatten block, multi-scale
feature maps and global feature vector are prepared to obtain
volumetric features of sampling points at any given resolution.
Then combined with location coordinates in standard space, the
signed distance values of sampling points toward four cortical
surfaces are predicted, Thirdly, after topology correction and iso-
surface extraction operation, the inner and outer surface of the left
and right hemispheres are reconstructed in parallel.

In this paper, we proposed ResAttn-Recon, a novel implicit
surface representation approach based framework for inner and
outer cortical surface reconstruction. In this work, we propose
employing the concept of the self-attention mechanism and
residual connection trick to the 3D convolutional neural network
(3D CNN) encoder, 1 × 1 convolution is embedded into a multi-head
self-attention block to fit the 3D feature map input. The proposed
framework is able to reconstruct the cortical surface at an arbitrary
resolution and benefit from the theoretical support of the implicit
surface representation approach. The experimental performance has
been substantially improved compared to the DeepCSR and the
simple encoder-decoder framework without the attention block.
The main contributions of this paper are as follows.

1) To the best of our knowledge, this is the first exploration in
employing the residual self-attention mechanism in 3D cortical
surface reconstruction.

2) A Commit2 from Review4 with skip connections is developed as
an improvement over the DeepCSR decoder network, to simplify
the network structure without losing performance.

3) The prior constraints are imposed on the network training with
the proposed truncated L1 loss and Gaussian decay weighted
L1 loss, as a new strategy for model performance improvement.

The rest of this paper is organized as follows. Section 2
introduces the basic theories and the proposed framework, as
well as the dataset enrolled in this work, In Section 3, the details
of the experimental evaluation and analysis are given. Section 4 and
Section 5 provide a discussion and conclude this paper.

2 Materials and methods

In this section, we introduced ResAttn-Recon, a residual self-
attention-based cortical surface reconstruction network.
Simultaneously, the lightweight decoder networks and the loss
function with prior constrains are also explored to improve the
reconstruction performance. As shown in Figure 1, the proposed
framework consists of four main parts: 1) data preprocessing,
including data acquisition from FreeSurfer toolkit and MRI
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volume registration; 2) feature extraction; 3) implicit surface
representation performed with the proposed ResAttn-Recon
network; and 4) post-processing to extract the target inner
and outer cortical surfaces from the predicted signed distance
function representation. The residual self-attention block is
embedded in the encoder network following the intermediate
feature map.

2.1 Data acquisition

In this paper, we used the publicly available dataset from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [31], MRI
scans of 560 T1 original images are enrolled in this work,
470 images for training, 30 images for validation and the
remaining 60 images for testing. Ground-truth of inner and outer
surfaces from the left and right hemispheres are extracted by the
FreeSurfer pipeline. Images are normalized to the size of 182 × 218 ×
182, with voxel spacing to [1, 1, 1]. To unify the coordinate systems
of the input MRI scans, affine registration is first performed to the
MNI105 brain template [32].

2.2 Surface representation

The signed distance function (SDF) is a continuous function to
represent the surface distribution, and has been widely employed in
3D shape representation.

The SDF function can be defined as follows:

SDFsurface xi( ) � si,where xi ∈ R3, si ∈ R (1)
Here, xi stands for any point in Euclidean space represented by its
3D location coordinate, and si is the shortest Euclidean distance
from the point xi to the surface, with a positive sign if the point is
inside the watertight surface or negative sign if the point is outside
the surface.

With the SDF values of given spatial points, the target surface
can be expressed as a set consisting of all points satisfying the
following:

SDFsurface ·( ) � 0 (2)
Then, after Gaussian smoothing and topology correction

processing, the target surface is extracted with a zero iso-surface
extraction algorithm, such as marching cubes [33].

In this work, the continuous SDF inΩ space is approximated by
the deep learning model. Given query point, the well-trained
network predicts its SDF value to the target surface directly. This
provides theoretical support for reconstructing surfaces of arbitrary
resolutions. In detail, the approximator is implemented by a decoder
network parameterized by θ, which is further described below.

2.3 ResAttn-recon framework

2.3.1 Feature extraction encoder module
The network architecture is illustrated in Figure 2, and the raw

brain MRI need to be firstly registered to MNI105 space before being
sent to the network. The feature extraction encoder module consists of
three subblocks, the 3DConvolution (Conv3D) block, the Residual Self-
Attention block, and the Global Flatten block. The Conv3D block
consists of five Conv3D layers, each of which is followed by a Rectified
Linear Units (ReLU) activation, with the 3D max pooling operation
before the fourth convolution. The number of convolution output
channels is sequentially increased to 23; 24; 25; 26; 27 after each
convolution. The convolutional kernel is set to 3 × 3 × 3, with the
stride equal to two and padding equal to one. The fourth output feature
map is then input into the residual self-attention block, followed by the
global flatten block to generate the global feature map. The image
features represented by the encoder intermediate feature maps and
outputs are firstly extracted by the proposed feature extraction encoder
module from the registered MRI, then we construct a bounding box
grid with evenly spaced points at a predefined desired resolution (e.g;,

FIGURE 1
The workflow for cortical surface reconstruction. Input the 3D MRI volume, given enough sampling points, it predicts 4 mesh surfaces of arbitrary
resolution in parallel.
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512 × 512 × 512), which is capable of covering the registered brain
MRI in MNI105 standard registration space. After that, the relative
position coordinates of the predefined sampling points in
MNI105 space as mentioned above are projected to the multiscale
feature maps generated by the Conv3D block and the residual self-
attention block. The interpolated values obtained from the projected
locations and the global feature vector after the Global Flatten block are
concatenated as the feature vector of the sampling point.

2.3.2 Residual self-attention mechanism
To better aggregate the feature representation of the sampled

points, the widely used self attention mechanism is introduced to
our proposed encoder-decoder network architecture, where the
detail operation can be described as follows:

X̂ � Sof tmax
θ X( )ϕ X( )����

dfeat

√( )φ X( ) (3)

Where X ∈ N × L stands for the local and global feature
representation extracted from encoder feature maps, N is the
number of sampled points, and L is the dimension of the
corresponding feature vector. After the 1 × 1 convolution and

reshape operation, linear transformation of θ(·), ϕ(·) and φ(·)
are implemented by three single-layer perceptrons (Linear map)
in this work. The point-to-point affinity is calculated by the inner
product of θ(X) and φ(X).

In this work, the multi-head self-attention mechanism [22] is
applied to improve the expression ability of the attention module.
For this 3D reconstruction work, as illustrated in Figure 2, the
residual connection in the Residual Self-attention Block indicates
that this block does not change the dimension of the input feature
map, which equals (batch size × num channels × d × w × h) for
single image. From another point of view, the input feature map can
be considered as a token array (with the shape of (d × w × h)), each
token corresponds to a 128-dimensional feature embedding vector
alone the channel direction (number of channels equals 128 in this
case). Therefore, the input feature map of the Residual Self-attention
Block is converted to a 2 days array squence input X with the shape
of ((d × w × h), 128), by reshape and transpose operations. After
that, mulit-head self-attention operation can be easily applied to X.
In this case, the number of heads equals 4, thereforeX is projected to
subdimension space 4 times in parallel; after four self-attention
operations, the outputs are concatenated and further projected. The
sequence output is reshaped again by the reverse operation of “space

FIGURE 2
The proposed ResAttn-recon architecture for cortical surface reconstruction. The concept of the multi-head self-attention mechanism was
introduced to our residual self-attention block.
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and sequence conversion” as shown in Figure 2, and output the
attentioned 3D feature map, followed by a 1 × 1 × 1 convolution.
The “space and sequence conversion” operation means taking
feature in the same spatial location across all channels.

MultiHead Q,K,V( ) � Concat head1, . . . , headn( )WO

where headi � Attention QWQ
i , KWK

i , VW
V
i( ) (4)

Here, Q, K and V represent the Query, Key and Value matrix as
shown in Figure 2, and n � 4, WQ

i � WK
i � WV

i ∈ R128×32,
WO ∈ R128×128 in this work.

It is worth noting that to fully take advantage of the spatial
sequence information extracted by sampling, the absolute positional
coding strategy is applied in this work, where the positional coding is
directly added to the input of the self attention module. Specifically,
one raw MRI input is firstly normalized and reshaped to
1 × 182 × 218 × 182, and the size of feature representation X
becomes 128 × 12 × 14 × 12 after the Conv3D block, where the
first dimension represents the number of channels. The shape of
positional coding P can be expressed as:
(batch size × embedded dim × width × height × depth), where
embedded_dim is the dimension of positional vector and equals
128 in this case. In this work, during network training, we initialized
the positional coding P with standard normal distribution where
P ~ N(0, 1), and then taking P as trainable parameters to update
with backpropagation. As seen in Figure 2, the learnable positional
encoding matrix P was simply added to the input feature map,
inspired by Sequence to Sequence Learning [34].

For the residual self-attention block, before the self-attention
module, two 3D convolution operations are performed, each
followed by 3D batch normalization and ReLU activation.
Notably, we added the residual connection between the Conv3D
block output and the self-attention module output to help improve
the learning.

2.3.3 Decoder with skip connections
To further simplify the decoder network without losing

performance, the feed-forward network is composed of six fully
connected layers, and feature vectors extracted from feature maps
and corresponding coordinates of sampling points are concatenated
as the input of the decoder network. Since position coordinates are
critical for 3D shape representation [21], we introduced skip-connection
to maintain the proportion of location information. As shown in
Figure 3, the input feature vector is concatenated with the
intermediate output of the following four fully connected layers. The
output vector of the decoder network representing the SDF values of four
corresponding cortical surfaces for each voxel is a vector with length 4.

2.3.4 Loss function
In 3D object reconstruction, L1 loss is the most frequently used

loss function, and the basic form of L1 loss for one cortical surface
can be written as follows, where N represents the number of
sampling points and B represents batch size during training:

L fθ X( ), S( ) � 1
B
∑
B

b

∑
N

i�1
fθ xi( ) − si
∣∣∣∣

∣∣∣∣ (5)

And for parallel training with four cortical surfaces, the formula
becomes:

L fθ X( ), S( ) � 1
B
∑
B

b

∑
N

i�1
∑
4

j�1
fθ xji( ) − sji
∣∣∣∣∣

∣∣∣∣∣ (6)

For cortical surface representation with signed distance function
values, sampling points close to the cortical surface are critical for
reconstruction details, while sampling points away from the cortical
surface contribute less to the reconstruction process. To help the
training network capture more detailed information around the
surface, the truncate interval [−δ, δ] is applied to the ground-truth

FIGURE 3
Decoder network for SDF values prediction. The skip-connection mechanism is introduced to make full use of the location information of the
sampling points.
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and the predicted signed distance values, where the truncated L1 loss
can be expressed as follows:

T λ, δ( ) ≔ min max λ,−δ( ), δ( ) (7)

Ltruncate fθ X( ), S( ) � 1
B
∑
B

b

∑
N

i�1
∑
4

j�1
T fθ xji( ), δ( ) − T sji , δ( )
∣∣∣∣∣

∣∣∣∣∣ (8)

T(·) is defined as the truncated function with parameter δ. Given
proper small hyperparameter values of δ, the network can focus
more on surface details, while for larger value of δ, more samples are
used for model weight updates. In general, the basic form of L1 loss
is the special case of its truncated form.

Furthermore, we also propose exploring the potential of the
L1 loss function with a Gaussian decay coefficient. The Gaussian
function in this case is of the following form:

G si( ) � A

σ
���
2π

√ exp −1
2

si − μ( )2

σ2
( ) (9)

where A is the amplitude coefficient. Due to the smooth decay
characteristic of the Gaussian function, as the distance between the
sampling point and the ground-truth surface increases, the loss
weight of the corresponding sampling point decreases. We hope this
design can perform dynamic loss constraint during network
training, and help the network to better converge to the optimal
solution. The Gaussian decay L1 loss can be described as follows:

Lgaussian fθ X( ), S( ) � 1
B
∑
B

b

∑
N

i�1
∑
4

j�1
G sji( ) · fθ xji( ) − sji

∣∣∣∣∣
∣∣∣∣∣ (10)

The amplitude coefficient A, μ and θ are hyperparameters based on
experience. In this work, A equals 20, μ equals 0, and θ equals 1.5.
For the netwok training, the Adam optimizer was employed with a
fixed learning rate equals 0.0001.

2.4 Cortical surface extraction

For the cortical surface extraction pipeline, firstly, the input MRI
volume is registered into the MNI105 space; secondly, given arbitrary
reconstruction resolution, i.e., 512 × 512 × 512 by uniform sampling
from MNI105 space, the attention-based encoder-decoder network
outputs the SDF representation with the shape of 512 × 512 × 512,
followed by aGaussian filter smoothingwith a standard deviation of 0.5.

To prevent grid self-intersection, and to ensure that the
predicted signed distance function values is homeomorphic to a
sphere, in this work, we apply a topology propagation algorithm
using a fast marching technique proposed by bazin. et.al [35], that
enforces the network prediction result to a desired topology.

1 Mvertices←[];

2 Mv ← 0 ;

3 While n≤ N do

4 if l≥Vi
n and l≤VN (i)

n (i � 1..8) then
5 ΔP ← (l−Vi

n)(|PN (i)
n −Pi

n |)
VN (i)

n −Vi
n

6 Mv ← Pi
n + ΔP ;/* Coordinate interpolation */

7 Mvertices.append(Mv) ;/* Accumulate mesh vertex

coordinates */

8 else

9 continue

10 end

11 end

Algorithm 1: Marching cubes pseudocode
Data: the SDF value of the i-th vertex of the n-th cube Vi

n, the 3D
coordinate of the i-th vertex of the n-th cube Pi

n,N cubes to iterate,
the scale surface level set l, the adjacency vertex index N(i) of the
index i in the query cube
Result: Extracted surface mesh vertices coordinates Mvertices

Then, the marching cubes algorithm proposed by [33] is further
employed to cortical surface extraction, followed by Laplacian
smoothing. The core idea of the marching cubes algorithm can
be summarized as Algorithm 1 For vertices vi ∈ M, where M
represents the extracted surface mesh, the Laplacian smoothing
operation can be described as follows:

Smooth vi( ) � ∑
k∈N i( )

vk
N i( )∣∣∣∣

∣∣∣∣ (10)

whereN (i) is the adjacency vertices of the i-th vertex. Note that the
post-processing operation of the four surfaces is performed in
parallel, for efficiency.

4 Results

To verify the effectiveness of ourmethod, we first designed a series of
ablation studies to explore the importance of prior constraints and the
skip connections mechanism, after which we evaluated the performance
of three loss function. Finally, the precision analysis is performed
compared with DeepCSR for challenging pial surface reconstruction.

4.1 Ablation experiment

As shown in Table 1, the ablation experiment is conducted to
measure the importance of the proposed components.

The average absolute distance (AD) and the Hausdorff distance
(HD) [36,37] are employed as the surface evaluationmetrics, and the
lower the values, the better the reconstruction results.

4.1.1 Decoder network with skip connections
In this experiment we explored the expressive capability of fully

connected layers in the decoder network architecture with the skip
connections mechanism. As shown in Table 1, row 4 records the
baseline encoder-decoder network where the decoder network is the
fully connected layers without skip connections mechanism, and the
feature vectors and location coordinates are simply concatenated from
the decoder input. It was found that the decoder with skip-connection
(row 4) shows lower AD and HD indicators than that without skip
connections (row 5). The results indicate that the location information
of the sampling points make a considerable contribution to
reconstruction work. Nevertheless, there is still much room for
improvement in the reconstruction indicators, compared with the
DeepCSR framework (row 3).

In order to further validate the performance of the proposed
lightweight decoder network, different indicators are used to
compare with the decoder network in DeepCSR framework. As
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shown in Table 2, the proposed decoder network outperforms
DeepCSR’s decoder network in the number of parameters
(2636527 vs. 3549188), parameters size (10.05 MB vs. 13.53 MB),
and the average inference speed (0.47 ± 0.02 vs. 6.34 ± 0.02) for
testing dataset. The average L1 Loss (computational cost shown in
formula 5) of the proposed framework is 1,291.89 ± 10.50, lower
than that of the DeepCSR framework (1,452.85 ± 28.98). By the way,
the computational cost looks larger, because the distance space is not
normalized to the [-0.5,0.5] interval.

4.1.2 Loss function with prior constraints
The performance of the proposed framework between employing

prior constraints (trained with a truncated L1 loss or Gaussian decay
L1 loss) and without prior constraints (trained with a basic L1 loss) are
compared, as shown in row five and row six of Table 1, Additionally, the
reconstruction results improved with the help of prior constraints
imposed on the loss function from the perspective of AD and HD
indicators. For fairness, the training process of the DeepCSR-SDF
network also employs the L1 loss and its variants, and take the
optimal result for performance comparison and analysis.

4.2 Methods comparision

For further comparison and analysis, besides the DeepCSR
framework, Voxel2Mesh and GAN [38] were added to the
experiments. Since the Voxel2Mesh framework cannot
reconstruct the inner and outer surfaces in parallel, analysis of
white matter surface reconstruction performance is considered
for convenience.

For GAN model, the 3D-UNet is employed as the backbone of
the generator network. The generator predicts the SDF
representation (output channel equals 4) relevant to four cortical
surfaces. The discriminator takes the MRI volume and the ground
truth/predicted SDF representation as input, and discriminate true
or false label, where cross entropy loss is used as the discriminator
loss function. As shown in Table 3, the AD and HD values derived
fromVoxel2Mesh and GANmodel are significantly higher than that
from the proposed framework. The GAN model shows the worst
performance for AD and HD indicators.

From another persperctive, according to the data format being
processed, the GAN model reconstruct the cortical surface based on

TABLE 2 Lightweight decoder analysis.

Methods Params Params Inference Computational

Num (decoder) Size M) Speed (ms) Cost (basic L1 loss)

DeepCSR 3549188 13.53 6.34 ± 0.02 1,452.85 ± 28.98

Proposed 2636527 10.05 0.47 ± 0.02 1,291.89 ± 10.50

TABLE 1 Results of comparison analysis with DeepCSR and the ablation study on the proposed ResAttn-Recon framework for cortical surface reconstruction.
Including the white matter surface and the pial matter surface, where AD = Average symmetric surface distance, HD = Hausdorff distance.

Method Left white matter
surface

Right white matter
surface

Left pial matter
surface

Right pial matter
surface

AD(mm) HD(mm) AD(mm) HD(mm) AD(mm) HD(mm) AD
(mm)

HD
(mm)

DeepCSR(OCC) 0.669
(±0.543)

2.718
(±0.607)

0.601
(±0.482)

2.648
(±1.060)

0.298
(±0.149)

0.998
(±1.082)

0.291
(±1.082)

0.880
(±0.231)

DeepCSR(SDF) 0.280
(±0.054)

0.586
(±0.131)

0.273
(±0.047)

0.565
(±0.124)

0.292
(±0.073)

0.898
(±0.351)

0.290
(±0.063)

0.937
(±0.375)

Voxel2Mesh 0.389
(±0.251)

0.996
(±0.427)

0.403
(±0.187)

1.005
(±0.602)

- - - -

GAN 0.429
(±0.107)

1.094
(±0.133)

0.448
(±0.207)

1.146
(±0.192)

0.641
(±0.251)

2.518
(±0.426)

0.675
(±0.170)

2.704
(±0.332)

3D CNN encoder 0.389
(±0.045)

1.056
(±0.241)

0.391
(±0.137)

1.102
(±0.255)

0.413
(±0.120)

1.103
(±0.271)

0.398
(±0.036)

1.122
(±0.292)

+Fully connected decoder only

3D CNN encoder 0.318
(±0.103)

0.829
(±0.252)

0.359
(±0.128)

1.011
(±0.380)

0.352
(±0.090)

0.972
(±0.347)

0.343
(±0.131)

0.981
(±0.334)

+Skip-connection decoder

3D CNN encoder + Skip-connection
decoder

0.318
(±0.023)

0.705
(±0.023)

0.356
(±0.070)

0.750
(±0.101)

0.304
(±0.066)

0.968
(±0.467)

0.308
(±0.045)

0.834
(±0.164)

+Truncated L1 loss

ResAttn-Recon (Proposed framework with
residual self-attention block)

0.278
(±0.042)

0.591
(±0.075)

0.272
(±0.030)

0.557
(±0.064)

0.223
(±0.063)

0.614
(±0.277)

0.242
(±0.033)

0.720
(±0.214)
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MRI voxels, 1) Due to the partial volume effect, the reconstruction
accuracy is limited by the resolution of MRI volume, 2) The idea of
generative adversarial network is to infer whether each voxel is
inside or outside the surface of the cerebral cortex by training the
generator, and then give a true or false judgment through the
decision network. Each voxel has only binary information (inside
or outside), while ignoring the distance information to the surface.
Mesh based Voxel2Mesh model deform predefined sphere template
meshes to cortical surfaces. 1) Despite fast processing, theoretical
guarantees are lack to prevent self-intersections of the surface mesh.
2) Besides, a Voxel2Mesh model only able to reconstruct a single
surface once (outer or inner surface). The proposed framework
reconstruct the surface based on sampling points, and therefore has
the theoretical support to reconstruct cortical surfaces of arbitrary
resolution.

4.3 Visualization analysis

As illustrated in Figure 4, the reconstruction of the pial surface is
more challenging than that of the white matter surface. The
reconstructed pial surface of the left hemisphere is shown in the
first row. The proposed ResAttn-Recon framework achieves the best
reconstruction result, and the reconstruction result with DeepCSR has
obvious surface bumps in the red rectangle area. The encoder-decoder
architecture without the attention module (no attention version) has
several reconstruction defects. The upper rectangular frame area shows
severe reconstruction noise near the surface, and the lower rectangular
frame area has multiple grid self-intersections. For the white matter
reconstruction surface of the left hemisphere shown in the second row,
there is no major visual difference between the three network structures
in this case.

It is also worth noting that the ground-truth surfaces handled by
FreeSurfer look rougher than the actual physiological surface. To
address this, both the proposed framework and the DeepCSR

framework have moderately smoothed the predicted surface
through a post-processing algorithm. To further visualize the
robustness of the proposed model, another eight examples of
cortical surfaces (prediction and corresponding ground-truth)
were illustrated in Figure 5.

4.4 Loss function evaluation

As seen in Figure 6, we compared the convergence curve of the
intersection over union (IOU) based on the three loss functions
mentioned above. By the way, for IOU, the SDF representation of
the cortical surface could be further converted to the binarized SDF
mask, 0 for inner surface points and one for outer surface points,
then the binarized SDF mask based IOU could be further calculated
between the ground-truth SDF and the predicted SDF. It is clear that
the IOU curve based on the truncated L1 loss is distributed over the
other two curves throughout the training process. For the other two
curves, before 10 k training steps, the slope of the IOU curve based
on the basic L1 loss is larger than that based on the Gaussian decay
L1 loss, after which the IOU curve of the latter surpassed that of the
former.

As shown in Table 3, the maximum IOU value of the trained
with truncated L1 loss is 0.948 after convergence, followed by the
loss function based on the Gaussian decay coefficient with a
maximum IOU equals 0.935. The maximum IOU value based on
the basic L1 loss is 0.92, which is considerably lower than the former.
Also, thecorresponding convergence trend of the training curve can
be confirmedfrom Figure 6.

The experimental results show that training with the truncated
L1 loss and Gaussian decay L1 loss outperform the basic L1 loss, and
among them, the truncated L1 is more effective. For the Gaussian
decay L1 loss, the loss weighting coefficients tend to zero for
sampling points away from the ground-truth surface, which leads
to these points making less of a contribution for network training.

TABLE 3 The maximum IOU values with different loss functions: the L1 loss, Gaussian decay L1 loss and Truncate L1 loss functions.

Loss function L1 loss Gaussian decay L1 loss Truncated L1 loss

IOU peak value 0.920 0.935 0.948

FIGURE 4
Visual assessment of cerebral cortical reconstruction results. The first row corresponds to the pial matter surface of the left hemisphere, and the
second row corresponds to the white surface of the left hemisphere.
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4.5 Precision analysis

To measure the precision of the reconstructed cortical surface, the
average absolute distance (AD) is employed in millimeters (mm). Mesh
vertices with anAD greater than 1 mm, 2mmand 5mmas a percentage
of the total number of mesh vertices are calculated.

Due to the highly folded and curved geometry, pial surface
reconstruction is much more challenging than white surface
reconstruction. Moreover, 60 ADNI test datasets with pial surface
ground-truth are enrolled for precision analysis. As shown in
Table 4, compared with DeepCSR, the AD percentage greater

than 1 mm (3.616 vs 5.582 for left pial), 2 mm (1.467 vs
2.432 for left pial) and 5 mm (0.131 vs 0.249 for the left pial) are
lower than those of the DeepCSR framework, indicating that the
proposed method has a good robustness of the overall
reconstruction.

5 Discussion

We successfully developed a residual self-attention-based
architecture to reconstruct the inner and outer surface of the left

FIGURE 5
More visualization examples of the prediction results by the proposed method with corresponding ground-truth, including pial and white matter
surfaces of left and right hemispheres.

FIGURE 6
IOU convergence curves during training process with different loss functions. L1 loss, the truncated L1 loss and the Gaussian decay L1 loss were
compared for analysis.
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and right hemispheres in parallel. In the current work of cortical
surface reconstruction, including the voxel-based, mesh-based, and
the implicit surfaces representation-based approaches, none of them
considered the importance of capturing long range feature
dependencies, during voxelwise or mesh vertex wise or sampling
pointwise feature extraction, which is essential for 3D geometric
surfaces representation is not considered. Given enough sampling
points, the implicit surface representation-based approach has the
theoretical support to reconstruct cortical surfaces of arbitrary
resolution, our study is developed based on this direction and
compared with the typical DeepCSR architecture. To adapt the
residual connected multi-head self-attention to the 3D shape
representation task, the 1 × 1 convolution is embedded in this
module, with a learnable positional encoding matrix.

Ablation studies are undertaken to evaluate the impact of the
residual self-attention module, the skip connections trick in decoder
network, and the loss function with prior constraints. Experiments
show that these components are effective in improving the
reconstruction performance. We proposed the truncated L1 loss
and the Gaussian decay weighted L1 loss to explore the effect of loss
function on model expression potential. The truncated L1 loss
achieves optimal results compared to simply applying the basic
L1 loss function, and the training process achieved a higher IOU
value (0.948 vs. 0.920) with the proposed truncated L1 loss. The
average symmetric surface distance (AD) for the inner and outer
surfaces is 0.253 ± 0.051, the average Hausdorff distance (HD) is
0.629 ± 0.186, which is lower than that of DeepCSR, whose AD
equals 0.283 ± 0.059, and HD equals 0.746 ± 0.245. In addition, to
measure the robustness of the overall reconstruction process, the AD
greater than 1 mm, 2 mm and 5 mm as a percentage of the total
number of mesh vertices are calculated, and we evaluated the
challenging pial cortical surface result compared with DeepCSR,
in 1 mm (3.616 vs. 5.582) and 2 mm (1.467 vs. 2.432) and 5 mm
(0.131 vs. 0.249). From the perspective of visual analysis, the
proposed ResAttn-Recon outperforms DeepCSR and the simple
encoder-decoder architecture without the attention module. From
Figure 5, it was found that the SDFs of pial matter surfaces are harder
to approximate than the white matter surfaces during network
training in parallel. Our proposed framework can better capture
the surface details in a limited data size. Thus, the proposed residual
self-attention-based framework can be a promising approach for
improving the cortical surface reconstruction performance.

Our study has one main limitation: due to the lengthy processing
time by the FreeSurfer pipeline, only a total of 560 T1 weighted images
are enrolled in our dataset. In the future, more MRI volumes will be
retrieved to expand the training dataset. Furthermore, it is desirable to
enroll a larger pool of multicenter data to demonstrate the clinical
value of this framework. Since topology correction algorithm during
post processing usually takes a few minutes to enforce the prediction

result to a desired topology, we will also pay more attention to the
optimization of the post processing algorithm to further shorten the
time of cortical surface reconstruction pipeline.

6 Conclusion

In this paper, we proposed ResAttn-Recon for challenging cerebral
cortical surface reconstruction tasks. Firstly, we explored the concept of
residual self-attention to the encoder-decoder architecture. Secondly, a
lightweight decoder network with skip connection is developed to
simplify the network without losing performance. In addition,
experiments show that the proposed truncated L1 loss and Gaussian
decay weighted L1 loss function contribute to the network training and
performance improvement. The superior performance is achieved by
the proposed framework compared with DeepCSR and a simple
encoder-decoder framework without an attention block. The
proposed framework can be a promising approach for improving
the cortical surface reconstruction performance. We hope our work
can inspire insights and show new directions toward cortical surface
reconstruction study.
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