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An IPAVSG Control Strategy for
Microgrid With Multi-Parallel VSG
System
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Yao Liu3
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Virtual synchronous generator (VSG) is widely used in various distributed power
generation systems due to great simulated inertia and damping support performance.
However, when the microgrid (MG) composed of multi-parallel VSG is in both grid-
connected and islanded modes with various large disturbances, the control strategy with
fixed parameters cannot guarantee the stable operation of the MG under all disturbances.
To this end, an improved parameter-adaptive virtual synchronous generator (IPAVSG)
control strategy is proposed in this paper to ensure that the virtual inertia and damping
are adaptively optimized with the system operating state during the disturbance process.
Therefore, the dynamic performance of the power frequency regulation and transient
stability are significantly improved. Meanwhile, in order to realize the output active power
of each VSG is distributed among the loads according to the ratio of its rated capacity,
the active power decoupling control is designed to eliminate the influence of the virtual
damping on the output active power of the VSG in islanded MG. The effectiveness and
practicability of the proposed control strategy are verified through several experiments.

Keywords: virtual synchronous generator, simulated inertia and damping, large disturbances, rated capacity,
active power decoupling control

1 INTRODUCTION

In recent years, distributed generation (DG) devices with clean energy such as solar energy andwind
energy are widely used in many fields of production and life. The microgrid, which is composed
of various distributed generation units with power converter, can be integrated into the power
grid or operated in islanded mode (Liserre et al., 2010; Mojica-Nava et al., 2014; Zhao et al., 2016;
Meng et al., 2019). Because of the rapid penetration of distributed generation units in power systems,
a variety of serious challenges such as poor transient response performance, insufficient inertia
and damping have emerged (Weng S. et al., 2019; Tian and Peng, 2020). In order to effectively
solve these problems, many reasonable control strategies by Ma et al. (2021c), Hu et al. (2021a) and
Wang et al. (2021) have been introduced into interface power converters of DG units.

The droop control is a classical control strategy for distributed generation units. Through
simulating the static droop characteristics of synchronous generator, the control of voltage and
frequency of the MG system are realized. The DG with droop control can maintain the load
voltage and frequency stability according to the droop curve. In addition, power can be reasonably
distributed among parallel DG units according to their respective droop curves without external
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communication (Li et al., 2021). However, the droop control
strategy cannot provide inertia and damping similar to
synchronous generator (SG) to inverter-interfaced distributed
generation (IIDG) units (Li, 2019). Thus, when a large
disturbance occurs, if additional power cannot be provided in
time to balance the disturbance, the stability of the MG with
the droop control strategy is extremely poor (Fang et al., 2019).
Although the low-pass filter droop control strategy with
equivalent virtual inertia is introduced by Eskandari et al. (2019).
the adjustment range of the parameters is small, and the
performance of dynamic adjustment needs to be further
improved.

Compared with the droop control, the virtual synchronous
generator (VSG) control strategy effectively solves the lack of
inertia and damping in the MG (Liu et al., 2014; D’Arco and
Suul, 2014; Ma et al., 2021a). The basic principle of VSG is
to introduce an equivalent rotation equation to emulate the
inertia and damping characteristics of synchronous generator
(SG). And the concept of VSG is originally proposed by Beck
and Hesse (2007) and Driesen and Visscher (2008). Then, the
equivalent mathematical model and specific implementation
method of VSG based on three-phase inverter are preliminarily
studied by Zhong and Weiss (2011) and Zhong et al. (2014).
Afterwards, the VSG control is applied in the control of
voltage, frequency, power flow and so on (Yang et al., 2011).
With further in-depth research, VSG control strategy or
improved control strategy based on it are used in various
types of equipment or occasions such as energy storage
(Rene et al., 2009; Kong et al., 2019), doubly-fed induction
generators (Hwang et al., 2017), high voltage direct current
transmission (Aouini et al., 2016) and direct current MG
(Wu et al., 2017).

VSG can effectively simulate the inertia and damping
performance of SG well. Thus, when MG fluctuates violently,
the system can alleviate the fluctuation of active power and
frequency of DG units. Improving the dynamic characteristics
of the MG by designing appropriate virtual inertia and damping
coefficients has been demonstrated by Zhong et al. (2014) and
Yang et al. (2011). At present, the research on parameter selection
based on VSG control is mainly divided into two categories: one
is the fixed virtual inertia and damping value represented by
Kerdphol et al. (2018), Fang et al. (2018) and Soni et al. (2013),
while the (Simpson-Porco et al., 2013; Hou et al., 2016;
Meng et al., 2016; Li et al., 2017; Alipoor et al., 2018;
Andalib et al., 2018; Wang et al., 2018) focus on the study of
adaptive parameters. Obviously, compared with fixed parameter
control, adaptive parameter control has awider adjustment range,
which can better cope with various disturbances in the MG.
In the parameter adaptive control strategy mentioned above,
the damping coefficient is not considered or fixed at zero by
Andalib et al. (2018) Hou et al. (2016), Alipoor et al. (2018) and
Simpson-Porco et al. (2013). Therefore, the areas and scenarios
are easily limited. Theoretical analysis of virtual inertia and
damping coefficients is not mentioned by Li et al. (2017), and
the realization of the control process is complicated. The
design principles of virtual inertia and damping are given by
Wang et al. (2018). Therein, the two key parameters change in

opposite directions. However, the parameter extremums and
optimal damping ratios that satisfy the stability of the system are
not explained in any way. A control strategy called Bang-Bang
is proposed by Meng et al. (2016). This strategy systematically
analyzes the specific effects of virtual inertia and damping on
power frequency, and designs the principle of parameter value
accordingly. Unfortunately, the Bang-Bang control contains
only two virtual inertia values, and the performance of the
controller cannot be greatly improved. It is noteworthy that
the vast majority of adaptive VSG strategies consider MG in
grid-connected mode. However, the MG also needs to operate
in islanded mode. In islanded mode, MG is impossible to
establish an electrical connection with the power grid. So,
the energy supply of the load and the voltage amplitude and
frequency adjustment are independently completed by each
DG unit (Lin et al., 2017). Once a disturbance occurs, the MG
needs better inertia and damping support. Therefore, in order
to effectively suppress the power-frequency oscillation of the
perturbation process, the parameter-adaptive VSG control
strategy needs to be considered for application to the islanded
MG. In addition, another core control requirement is that the
DG units connected in parallel should distribute the output
active power proportionally according to their rated capacity
(Huang et al., 2019; Jiang et al., 2020). Therefore, it is necessary
to introduce both adaptive VSG and power equalization control
in the islanded MG.

In summary, this paper proposes an improved parameter-
adaptive VSG control strategy for MG that is suitable for grid-
connected and islanded mode. In addition, power decoupling
control strategy used in islanded MG is also taken into account.
The outstanding features of the IPAVSG control strategy can be
summarized as follows.

1) The IPAVSG control strategy proposed in this paper is
suitable for grid-connected and islanded MG. In the
two modes, the virtual inertia and damping can be
optimally selected according to changes in the state of the
MG transient adjustment process to improve the power
frequency adjustment performance of the system. Especially
at the initial moment of disturbance, the virtual inertia
and damping quickly respond to larger values to suppress
oscillation and fluctuation.

2) An active power proportional distribution control strategy
is introduced into the islanded MG to eliminate the
influence of damping on the output power of the DG units
at steady state. Therefore, the output active power of each
DG unit is proportional to its rated capacity.

The structure of this article is arranged as follows. SectionThe
Basic Principle and Mathematical Model of VSG introduces the
mathematical model and power controller of the VSG. Section
The Transient Response Analysis of Parameter Perturbation
analyzes the specific effects of virtual inertia and damping on
the power and frequency transient adjustment process. Section
The IPAVSG Control Strategy for MPVS presents the virtual
inertia adaptive expression and power sharing control block
diagram of two parallel VSGs suitable for both grid-connected
and islanded mode. Section The Experimental Results analyzes
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the experimental results and proves the superiority and feasibility
of the control strategy proposed in this paper. Section The
Conclusion summarizes the advantages and feasibility of the
control strategy proposed in this paper.

2 BASIC PRINCIPLE AND MATHEMATICAL
MODEL OF VSG

To facilitate the interpretation, the IIDG unit controlled by VSG
strategy is referred to as a VSG in this paper. A classic control
topology of VSG is shown in Figure 1. It is composed of an
inverter triggered by PWM generator and an LC filter set to
reduce the current and voltage ripple. Utilizing the current and
voltage measurement signals from VSG terminals, the power
calculation and frequency measurement could be expediently
realized. In order to better investigate the control strategy of the
inverter, the dynamic characteristics of DG and energy storages
are omitted in this paper. Moreover, the state-of-charge of energy
storages is supposed to well satisfy the system requirements. In
order to better investigate the control strategy of the inverter, the
dynamic characteristics of DG and energy storages are omitted
in this paper. Hence, the IIDG containing energy storages can be
substituted for a DC voltage source (Simpson-Porco et al., 2013).
Moreover, the state-of-charge of energy storages is supposed to
well satisfy the system requirements.

As shown in Figure 1, the core of VSG can be separated into
two parts: the active power control module and the reactive
power control module. The active power control module is
composed of the equivalent governor and mechanical model.
The former simulates the prime mover of SG with the feature of
primary frequency modulation whereas the latter takes charge of
imitating mechanical rotor motion, which is considered as the

most essential part of VSG. The reactive power control module
is responsible for reactive power regulation. In operation, the
active power control module export phase angle and the reactive
power control module produce voltage magnitude respectively,
then the generated reference sine waves are conveyed to the
PWM generator to emit trigger signals. The details of these two
parts are shown in Figures 2, 3. The control system depicted
in Figure 2 is suitable for both the grid-connected mode and
islanded mode. Because the active power control module of
the VSG should include the swing equation and the equivalent
governor in both modes. The reactive power control module in
Figure 3 includes voltage regulator and integrator, which can
obtain the amplitude of reference voltage.The total mathematical
model can be concluded as

{{{
{{{
{

Pm − Pe −Dωn (ω− ωn) = Jωn
dω
dt

Qref −Kp (U −Un) −Qe = K
dU
dt

δ = ∫(ω−ωp)dt

(1)

where Pm, Pe, Qref, Qe are the virtual mechanical power, actual
output active power, the reactive power reference and actual
output reactive power, respectively. J and D represent the virtual
inertia and the damping coefficient, respectively. U and Un
represent the voltage of the VSG and the reference voltage,
and δ is the phase angle of the voltage. In actual control, the
output power angle δ should be connected to the power angle
balance compensator, which is shown in Figure 4, where δi, δi,
δ∗i respectively represent the average output power angle of all
VSGs in the system, the actual power angle of the ith VSG,
and the power angle of the ith VSG after compensation. This
method has been proposed well by Jiang et al. (2020) and Ma
et al. (2021b).ω andωn indicate the virtual angular frequency and
the reference angular frequency, respectively, and Δω = (ω−ωn)

FIGURE 1 | Classic topology and control block of MPVS.
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FIGURE 2 | Control modules of active power control module.

FIGURE 3 | Control modules of reactive power control module.

is the frequency deviation. In both grid-connected state and
islanded state, ωp represents the reference angular frequency of
the PCC, and it is directly collected by the phase-locked loop.
Under this operation, the smooth switching between islanded
mode and connected-grid mode can be achieved (Wang et al.,
2019). In order to avoid the complex iterative computation of
Eq. (1), the controller is designed in the frequency domain.

Observations obtained from Figure 2 depict that Pm is
composed of the active power reference Pref and the output power
regulated by the equivalent governor according to the frequency
deviation. It could be expressed as

Pm = Pref −Kω (ω−ωn) (2)

Then, the whole process of the active power control module is
calculated as

Pref −Kω (ω−ωn) − Pe −DωnΔω = Jωn
dω
dt

(3)

where Kω is the droop coefficient of the equivalent governor.
Eqs. (1)–(3) indicate that the VSG control strategy plays a

significant role in imitating the operating characteristics of SG
through introducing the rotor motion equation.

FIGURE 4 | Block diagram of power angle balance compensator.

3 TRANSIENT RESPONSE ANALYSIS OF
PARAMETER PERTURBATION

Theoretically, VSG can be operated alone or in parallel. This
paper aims to investigate the impact of some key parameters
(virtual inertia and damping coefficient) on the frequency and
active power outputs of the MG with multiple VSGs connected
in parallel, and we called this system as the multi-parallel VSG
system (MPVS). The structure of MPVS is depicted in Figure 1,
where the VSGs are attached to a point of common coupling
(PCC) through a distribution line, then the PCC is connected to
the utility grid via circuit breaker (CB). Notice that the capacitor
of the output LC filter can be neglected in consequence of the
susceptance is inappreciable around the fundamental frequency.
Thus, the VSG can be substituted with an ideal DC voltage source
with a series output impedance.

For the purpose of deeper analyzing the output characteristics
of the MPVS, networked power system, a universally applicable
model, is selected for instance. Figure 5 depicts the equivalent
model of networked power system, which contains multi-
paralleled virtual synchronous generators. To simplify themodel,
the reactive power output is not considered in this system and
these simplifications have no impact on the precision of themodel
(Zhong et al., 2014).

According to Eq. (1) and (3), themathematical model of VSGi
can be expressed as

{
{
{

Prefi −Kωi (ωi −ωn) − Pei −Diωn (ωi −ωn) = Jiωn
dωi
dt

δi = ∫(ωi −ωp)dt
(4)

where Pei means the active power of VSGi flowing into PCC.
The relationship between the Pei and the variables at PCC can be
expressed as

Pei =
3EiUp

Zi
sin δi = Kpi sin δi (5)

where Kpi = 3EiUp/Zi, Ei and Up represent the output voltages
of the VSG i and the PCC separately. Pei denotes the output
active power. Zi represents the equivalent line impedance and the
output impedance. sin δi represents power angle. ZL is the load
impedance.
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FIGURE 5 | Equivalent circuit model of networked power system.

The small signal model of the two-parallel VSG system is
derived as follows. Let

{{{
{{{
{

ωi = ωs +Δωi
ωp = ωps +Δωp
δi = δis +Δδi
Pei = Peis +ΔPei

(6)

Notice that the state variables in Eq. (6) are equivalent to the
value of steady state plus a perturbation value. Since Δδi is very
small, the following equations sin(Δδi) ≈ Δδi and cos(Δδi) ≈ 1
are satisfied. Furthermore, the second-order perturbation terms
could be omitted due to the frequency deviation is comparatively
small. Therefore, the small signal model of Figure 2 can be
obtained as Figure 6.Then the closed loop transfer function from
ΔPrefi to ΔPei is obtained as

ΔPei

ΔPrefi
=

EiUp

JiωnZis
2 +DpiZis+EiUp

(7)

where Dpi = Kωi +Diωn.
In line with Eq. (7), the peak time tp−p, settling time ts−p and

overshoot Mp−p of the step response of the active power can be
expressed as follows:

tp−p =
2πJiωnZi

√4JiωnZiEiUp −D
2
piZ

2
i

(8)

FIGURE 6 | Small signal model of active power control module.

Mp−p = e
−π√

D2
piZ

2
i

4JiωnZiEiUp −D2
piZ

2
i (9)

ts−p =
Dpi

2
√

Zi

JiωnEiUp
(10)

The closed loop transfer function from ΔPrefi to Δωi can be
obtained as

Δωi

ΔPrefi
=

Zis
JiωnZis

2 +DpiZis+EiUp
(11)

According to Eq. (11), the influences on the step response of
frequency caused by Dpi can be indicated as.

tp−ω =

arctan√
4JiωnEiUp −D2

piZi

D2
piZi

√
EiUp

JiωnZi
−

D2
pi

4J2i ω
2
n

(12)

Mp−ω = √
4EiUp

JiωnZi
e
−√

D2
piZi

4JiωnEiUp −D2
piZi

arctan√
4JiωnEiUp −D2

piZi

D2
piZi

(13)

ts−w =
8Jiwn

Dpi
(14)

In line with Eq. (7) and (11), the poles, the natural oscillation
angular frequency and damping ratio of the characteristic
equation can be calculated as

s1,2 =
−DpiZi ±√D2

piZ
2
i − 4JiωnZiEiUp

2JiωnZi
(15)

{{{{
{{{{
{

ωni = √
Kpi
Jiωn

ζni =
Dpi
2 √

1
JiωnKpi

(16)

Eqs. (7)–(16) clearly shows that the natural oscillation angular
frequency and damping ratio are determined by virtual inertia
and damping coefficient. The typical indexes for the dynamic
response the peak time (tp), overshoot (Ms) and settling time (ts)
are directly associated with natural oscillation angular frequency
and damping ratio, so that the dynamic responses of frequency
and active power of VSG have relation to Ji and Dpi. The
specific reflect is summarized inTable 1. Furthermore, the transit
stability is affected by the two parameters as well since the poles
would be to close to the imaginary axis to arouse oscillations. In
other words, when the disturbances occur, not only deteriorated
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TABLE 1 | Influence of parameter perturbation on dynamic responses.

Indexes Frequency Active power

Ji⇑ Dpi⇑ Ji⇑ Dpi⇑

tpi ⇑ ⇓ ⇑ ⇑
tsi ⇑ ⇓ ⇑ ⇓
Msi ⇓ ⇓ ⇑ ⇓

dynamic responses with long settling time, large overshoot and
short peak time, but unstable oscillations will be caused if Ji and
Dpi are chosen improperly. Therefore, it is of great significance to
select appropriate Ji and Dpi to get better dynamic responses and
improved transit stability of the MPVS.

Additionally, Eq. (7) also indicates that the active power
outputs of VSGi during the steady state are bound up with
Diωn +Kωi when the MG is operated in islanded mode.
In other words, the coupled effect between the primary
frequency modulation and the damping characteristic results
in the coupled effect of Kωi and Di on the active power
output during steady operation. Whether active power can
be shared proportionally by each VSG depends on whether
the value of Diωn +Kωi is proportional to its rated capacity.
Power sharing error is prone to emerge once the parameters
are chosen improperly. Consequently, it is essential to take
measures to achieve proportional power sharing during steady
state.

4 THE IPAVSG CONTROL STRATEGY FOR
MPVS

In this section, a IPAVSG control strategy appropriate for both
grid-connected and islanded MG is proposed, with which the
ameliorative dynamic responses of the MPVS can be achieved
through adaptively adjusting the virtual inertia and damping
coefficient. Furthermore, proportional power sharing during
steady operation in islanded mode is accomplished based on
decoupling the coupled effect between the damping coefficient
and equivalent governor droop coefficient on active power
outputs.

4.1 Parameter-Adaptive VSG Control
Strategy
In view of above analysis, if the virtual inertia and damping
coefficient are selected improperly, deteriorated oscillations with
long settling time and large overshoot will be aroused.Therefore,
an adaptive virtual inertia and damping control strategy is
designed to adaptively adjust inertia and damping to ameliorate
the dynamic responses. This strategy is suitable for both grid-
connected and islanded MG.

From Table 1, the influences of virtual inertia and damping
coefficient on frequency and active power dynamic responses are
roughly similar when it changes dynamically, so the dynamic
responses of the active power will also be improved if those

of frequency is modified. With respect to virtual inertia, in the
case of large disturbances and sudden changes, within a limited
value range, the smaller the virtual inertia is, the shorter the
settling time becomes. In contrast, the larger the virtual inertia
is, the smaller the overshoot and the longer the peak time stay,
which means the firmer system holds. In order to combine
these advantages, the virtual inertia should show a large value
when the frequency deviates and a small one when frequency
recovers (Andalib et al., 2018).Moreover, Eq. (16) shows that the
damping coefficient changes accordantly with the virtual inertia.

For quantitative selection of virtual inertia, the step responses
of the output frequency are plotted, and shown as Figure 7.

The two dashed lines represent the step responses of the output
frequencies with two fixed rotational inertias J. Furthermore, as
indicated by the expected curve (the solid one) in the picture
above, if a big J is selected in the rising area and a small J is given
in the descending area, the response time of the output frequency
is decreased and the overshoot is also reduced. According to
the same analysis method, the rules of the selection of virtual
inertia and damping coefficient during transient process can be
summarized as Table 2.

Notice that the large or small virtual inertia value mentioned
here is relative to the steady-state virtual inertia. Besides,
considering the stability of the system, the upper and lower
limits (Jimax and Jimin) of the virtual inertia need to be taken
into consideration, because low frequency oscillations of active
power may be caused if inertia exceeds the limits. Based on the
aforementioned analysis, the arc-tangent function is employed
for adaptive calculation of virtual inertia. The adaptive control
strategy with adjustable virtual inertia is designed as follows

Ji =

{{{{{{{{{{{
{{{{{{{{{{{
{

Ji0 +
Jimax − Ji0

π/2 arctan(Δωi
2Mi
× sign(dωi

dt )),

|Δωi| >Mi ∩Δωi × sign(
dωi
dt ) > 0

Ji0 +
Ji0 − Jimin
π/2 arctan(Δωi

2Mi
× sign(dωi

dt )),

|Δωi| >Mi ∩Δωi × sign(
dωi
dt ) ≤ 0

Ji0, |Δωi| ≤Mi

(17)

where Ji0 is the steady-state virtual inertia, which is associated
with the rated capacity. Mi is the frequency deviation threshold
set to avoid the chattering of Ji during steady state. In theory,

FIGURE 7 | Step response of frequency when J changes.
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TABLE 2 | Rules of Ji and Dpi.

Parameters Ji Dpi

Δωi × sign(dωi/dt) > 0 large large
Δωi × sign(dωi/dt) ≤ 0 small small

there should also be a threshold Mdi set for dωi/dt, and the
adaptive control for Ji will be triggered only if both |Δωi| >Mi
and dωi/dt >Mdi are satisfied. However, whether the frequency
keeps stable or not is mainly determined by Δωi while the sign of
dωi/dt only represents the trend of frequency changing, and
the value of Δωi is normally smaller than dωi/dt especially at
the initial stage when disturbances occur. Therefore, to facilitate
analysis, only the threshold for Δωi is set in this paper. In actual
situations, the change of Δωi may be small, Δωi/2Mi is introduced
in this paper to amplify the frequency fluctuation value. With the
proper threshold setting, the system can effectively filter out small
disturbances while keeping sensitive to large disturbances. If the
trigger condition |Δωi| >Mi is satisfied, the virtual inertia will be
adaptively changed.

The curve of the virtual inertia is depicted in Figure 8. The
right half part represents the period of frequency deviating
whereas the left means the period of frequency recovering. As
can be seen in Figure 8, different from the bang-bang control,
the adaptive control strategy designed here contributes to a
continuous and broader range of virtual inertia. When the
frequency deviates with the feature of Δωi × sign(dωi/dt) > 0, the
larger Δωi is, the larger virtual inertia correspondingly becomes,
which helps to suppress the overshoot and delay the peak time
of the frequency oscillation. In reverse, smaller virtual inertia
is conducive to shorten the settling time and accelerate the
response speed when frequency recovers. In the whole process,
the application of the arc-tangent function enables the virtual
inertia to be more sensitive to frequency deviation, even for the
initial small Δωi, the Ji obtained from Eq. (17) is capable to be

FIGURE 8 | Changing curve of virtual inertia.

comparatively large to suppress the oscillation effectively at the
initial stage of disturbances. With the further increase of the Δωi,
the Ji transits to the limits smoothly without beyond it, which is
favorable for ensuring the system transient stability.

In terms of the damping coefficient, according to Table 1, the
adjustment ofDi influences frequency and active power dynamic
responses in a similar tendency (Hu et al., 2021b). The adaptive
control strategy of Di is designed as

ζni =
Diωn +Kωi

2 √
1

JiωnKpi
= constant (18)

Equation (18)means that during the transit process, the Ji and
Di are adaptively adjusted in a similar tendency and at the same
time with a constant damping ratio. The upper or lower limits
of virtual inertia and damping coefficient are obtained when the
damping ratio is 0.7 or 1. In practice, the optimal damping ratio
(ζni = 0.707) is usually adopted for the best situation of the system.
Hence, the damping ratio is kept at 0.707 in this paper to better
ameliorate the dynamic responses and improve transient stability.

4.2 Active Power Proportional Distribution
Control Strategy
In accordance with the above analysis, the active power
outputs Pei are associated with the coupled effect of primary
frequency ωp modulation and the damping characteristic in
steady-state of islanded MG with MPVS. In general, the
governor droop coefficient is set as Kωi = Sratei/(0.1%ωn), Sratei
represents the rated capacity of the ith virtual synchronous
generator (Zhang et al., 2017), and the value of Di is supposed
to prioritize the requirements of the best dynamic response. As
can be seen in Figure 9, to fulfill these requirements, an active
power proportional distribution control strategy is proposed to
decouple the interaction between the equivalent governor droop
coefficient and the damping coefficient in the conventional VSG
control and eliminate the effect of Di on the active power output
during steady operation in islanded MG.

When the system is running in an islanded state and remains
stable, the output angular frequency of the inverter ω no longer
changes. According to equation Eq. 3 and Figure 9, the active
power output by VSGi and VSGj is shared in proportion to
formula Eq. (19).

Pei

Pej
=
Prefi −Kωi (ωi −ωn)

Prefj −Kωj (ωj −ωn)
= C (19)

Therefore, whether the line impedance is resistive, inductive
or capacitive, the active power ratio sharing is determined by Pref,
Kω and (ω−ωn).

Compared to the conventional VSG control strategy, the
principal modification is the introduction of a first-order lead-lag
unit in the damping feedback loops.Then, the closed loop transfer
function of ΔPei is obtained as follows

ΔPei

Δωp
=

Kpi × [JiωnTcis
2 + (Jiωn +DiTci +KωiTci) s+Kωi]

JiωnTcis
3 + (Jiωn +DiTci +KωiTci) s

2 + (Kωi +KpiTci) s+Kpi
(20)
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FIGURE 9 | Active power proportional distribution control strategy.

Equation (20) illustrates that the active power output is only
up bounded byKωi and the effect ofDi has been eliminated during
steady state. The specific implementation process of the whole
control strategy is as follows.

Si = {
1, |Δωi| ≤Mi
0, |Δωi| >Mi

(21)

During steady operation, the switching state value Si remains
at one and the branch included the first-order lead-lag unit is
chosen to decouple the effect of Di on active power output.
Subsequent to disturbances, Si changes to 0 so that the adaptive
control of Ji and Di will be activated. Consequently, the
proportional power sharing of theMPVS during steady operation
can be ensured while the dynamic responses of the system in
transient process is ameliorated.

5 EXPERIMENT RESULTS

In this section, verifications of the IPAVSG control strategy
are conducted through experiment results. As can be seen
from Figure 10, the experimental platform contains two IIDG
units operated in parallel. The corresponding experimental
parameters are shown in Table 3. The parallel hard-switched
PWM converters are digitally controlled by TMS28335 fixed-
point DSP to implement the power and voltage control algorithm
where switching frequency is 20 kHz. In practice, in order to
save resource, a discrete table is created in advance. The value of
arctan(x) can be directly taken from the table.

Firstly, an experiment is executed in grid-connected MG to
verify the IPAVSG control strategy. The performances of the
controllers to follow the power reference andmaintain frequency
stability are evaluated during a sudden load variation. The

FIGURE 10 | Experimental testbed.
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TABLE 3 | Parameters of the TEST system.

Parameters Symbol Values

Reference DC-bus voltage Udc 700V
Reference AC-bus voltage Un 380V
Reference frequency fn 50Hz
Reference or grid angular frequency ωn/ωg 50Hz
Line impedance RL 0.032Ω

XL 0.0198Ω
LC filter Rf 0.2Ω

Lf 3 × 10−3H
Cf 15 × 10−6F

Current controller Proportional gain 0.1
Voltage controller Proportional gain 280.8

Integral gain 0.2

IPAVSG
 the rated inertia J0 3
 maximum inertia Jmax 8
 minimum inertia Jmin 0.3
 the rated damping coefficient D0 25
 maximum damping coefficient Dmax 40
 minimum damping coefficient Dmin 8
 droop coefficient Kω 1 × 104

 Stator resistance Rs 0.01Ω
 Stator inductance Ls 3.56 × 10−3H

Bang-Bang
 big inertia Jbig 5
 small inertia Jsmall 1
 big damping Dbig 30
 small damping Dsmall 25
 droop coefficient Kω 1 × 104

VSG
 inertia J 3
 damping D 25
 droop coefficient Kω 1 × 104

references of active and reactive power for each IIDG unit are
assigned as 6 kW and 1 kVar. Then a 2 kW, 400 Var PCC load
reduction happens at 6.4s.

The frequency and active power dynamic responses controlled
by the conventional VSG and the Bang-Bang and the IPAVSG
control strategies are displayed in Figures 11, 12. Similar to

FIGURE 11 | Frequency outputs of IIDG1.

FIGURE 12 | Active power outputs of IIDG1.

the previous statement, only the results of IIDG1 are displayed
here because the parameters of the two IIDG units are
identical. When the load decreases suddenly, the frequency
deviations of the three control strategies are 0.027, 0.014 and
0.006 Hz, respectively. Besides, the active power overshoot of the
three control strategies are 1120, 510 and 250 W, respectively.
Obviously, the experiment results have verified that the frequency
and active power deviations can be suppressed with the virtual
inertia and the damping coefficient in three VSG control
strategies, in which the suppression is more effective in the
IPAVSG control strategy since the parameters can be adaptively
adjusted.

Another experiment is executed in islanded MG. The
rated capacities of the two IIDG units are 10kW and
5kW, respectively. The MG is operated steadily with
PCC loads rated at 12 kW at frist. A 1.2 kW load step
decrease happens at 0.5s, then reconnects to the MG at
1.3 s.

The IPAVSG control strategy in the islanded MG is supposed
to not only realize the adaptive tuning of virtual inertia and
damping coefficient, but also proportional active power sharing.
The former experiment results have illustrated the buffer and
suppression effect of virtual inertia and the damping coefficient,

FIGURE 13 | Frequency outputs from IIDG1 and IIDG2.
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FIGURE 14 | Active power outputs from IIDG1 and IIDG2.

and the conventional VSG control strategy has less superiority
than the Bang-Bang and IPAVSG control strategies in oscillation
suppression. Hence, in this experiment, we focus on the
performance comparison of Bang-Bang and IPAVSG control
strategies.

The frequency and active power of the system are displayed in
Figures 13, 14. To get a clearer illustration, only the frequency
responses of IIDG1 are displayed. Figure 13 depictes that the
frequency overshoot controlled by IPAVSG is 0.015 Hz, which
is much smaller than 0.028 Hz of Bang-Bang control. And the
frequency rising trendency controlled by IPAVSG is much slower
than that of Bang-Bang. Therefore, the better performances in
suppressing frequency dynamic response can be found in the
IPAVSG control strategy. Furthermore, during steady operation,
the loads connected to IIDG1 and IIDG2 of IPAVSG are 8000
and 4000 W, respectively. During load transition, the loads
decrease by 800 W and 400 W, respectively. The active power
decrease is even slower. By contract, the loads supported by
IIDG1 and IIDG2 of Bang-Bang are 8400 and 3600 W during
steady state, then the loads reduction are 840 W and 360 W
after 0.5 s. Besides, the active power decrease is slight faster.
These experiment results could validate that the IPAVSG control
strategy containing adaptive virtual inertia and damping control
and decoupling control in islanded MG, has effective impact on
ameliorating frequency and active power dynamic responses and
has decoupling effect of damping coefficient on power sharing,
with which the outputs could transit to a new steady state
smoothly and the loads can be shared proportionally no matter
before or after the load transition.

6 CONCLUSION

An IPAVSG control strategy consists of adaptive virtual inertia
and damping coefficient control along with decoupling control
is proposed in this paper. The IPAVSG strategy can be adopted
for MG with multiple IIDG units connected in parallel. The
adaptive virtual inertia and damping control of IPAVSG has
significantly ameliorated the dynamic responses of the MG
in both grid-connected and islanded modes. Additionally, the
active power outputs during steady state in islanded MG can
be shared proportionally to rated capacities of IIDGs. The
virtual inertia and damping coefficient of the IPAVSG control
strategy can be adaptively adjusted based on the frequency
responses, their proper selections are of great essentiality to
the system dynamic resonances. In conclusion, the IPAVSG
control strategy is of great benefit to the stability of the
system.

Several experiment results in both grid-connected and
islanded MG with different contingencies are conducted to
validate the advantages and effectiveness of the IPAVSG control
strategy. Comparisons between the conventional VSG control
and Bang-Bang control are also provided in this paper, which
facilitates a thorough acknowledge of these twopromising control
strategies for the utilization and development of renewable
energy.
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Two-Stage Robust Optimal
Scheduling of “Nearly-Zero-Carbon
Park” Considering the Synergy of
Waste Disposal and Carbon Capture
Gas-Fired Power Plants
Zongjun Yao1, Tieyan Zhang1* and Yan Zhao2,3

1School of Electrical Engineering, Shenyang University of Technology, Shenyang, China, 2Science and Technology Department,
Shenyang Institute of Engineering, Shenyang, China, 3Key Laboratory of Regional Multi-Energy System Integration and Control of
Liaoning Province, Shenyang, China

Aiming at the demand characteristics of “Nearly-zero Carbon Parks" (NZCP) powered by
all renewable energy for low-carbon emissions and waste reduction, a NZCP topology and
a two-stage robust optimal scheduling model based on the Carbon Capture Gas-fired
Power Plant (CCGPP)-Power to Gas(P2G)-Waste Disposal (WD) collaborative model are
proposed in this paper. First, the relationship betweenWD, CCGPP and energy supply and
demand that can be generated from renewable energy is studied, and according to the
system energy regulation requirements, the energy flexibility of residential loads, small
industrial loads and electric vehicles are considered, and the NZCP mathematical model
based on the CCGPP-P2G-WD collaborative model is established. Secondly, NZCP
energy supply and demand characteristics are studied, and an energy coordination model
for NZCP energy conversion and storage powered by 100% renewable energy is
established. Then, wind power, photovoltaic power, and combined demand response
uncertainties are considered, and the NZCP two-stage robust hybrid optimal dispatch
model is established based on second-order cone relaxation and dual theory. Finally, the
simulation analysis is carried out based on the operation data of the integrated energy
system of a park in a certain area in northern my country. The simulation results show that
the proposed two-stage robust optimal scheduling model of NZCP coordinated with WD
and CCGPP can effectively improve the economy of the system at a higher energy balance
level, improve the absorption capacity of renewable energy, and provide better multi-time
scale energy regulation characteristics for NZCP with a larger energy supply scale.

Keywords: nearly zero carbon park, carbon capture gas-fired power plants, waste disposal, demand side response,
two-stage robust optimization

INTRODUCTION

In the context of the zero-carbon strategy and the “dual-carbon” goal under the “14th Five-Year
Plan” modern energy system plan, seeking low-carbon, diverse, interactive and sustainable energy
coupling and transportation is the key to solving the problems of low-carbon development and
transformation of energy in human society (National Development and Reform Commission,

Edited by:
Qiuye Sun,

Northeastern University, China

Reviewed by:
He Ren,

Northeast Electric Power University,
China

Xuguang Hu,
Northeastern University, China

*Correspondence:
Tieyan Zhang

tyzhang62@163.com

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 08 May 2022
Accepted: 30 May 2022
Published: 28 June 2022

Citation:
Yao Z, Zhang T and Zhao Y (2022)

Two-Stage Robust Optimal
Scheduling of “Nearly-Zero-Carbon
Park” Considering the Synergy of

Waste Disposal and Carbon Capture
Gas-Fired Power Plants.

Front. Energy Res. 10:939110.
doi: 10.3389/fenrg.2022.939110

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 9391101

ORIGINAL RESEARCH
published: 28 June 2022

doi: 10.3389/fenrg.2022.939110

16

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.939110&domain=pdf&date_stamp=2022-06-28
https://www.frontiersin.org/articles/10.3389/fenrg.2022.939110/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.939110/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.939110/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.939110/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.939110/full
http://creativecommons.org/licenses/by/4.0/
mailto:tyzhang62@163.com
https://doi.org/10.3389/fenrg.2022.939110
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.939110


2022).The “China Research Report on Carbon Neutrality Before
2060” pointed out that carbon capture, utilization and storage
technology and biomass carbon capture and storage technology
are important ways and key means to achieve the goal of carbon
neutrality. Carbon capture and storage technology can effectively
reduce carbon emissions and achieve zero and negative carbon
emissions goals (Cheng et al., 2020; Hu et al., 2021; Wang et al.,
2021a). However, most of the carbon capture power plants based
on the transformation of traditional coal-fired power plants adopt
the split-flow operation mode, and the working process of the
absorption tower and the regeneration tower is coupled, resulting
in the higher the power output, the greater the energy
consumption of carbon capture, and the lack of carbon
utilization mechanism. Therefore, considering the negative
carbon emission characteristics of biomass waste treatment as
a zero-carbon renewable energy and the energy space-time
translation characteristics of P2G equipment with both source
and load attributes, the establishment of NZCP based on CCGPP-
P2G-WD collaborative mode is the key to improve the
consumption of renewable energy, reduce carbon emissions
and realize carbon recycling.

Carbon capture and storage technology is one of the main low-
carbon technologies at the current stage, which can absorb
abandoned wind and solar energy and achieve carbon
emission reduction. At home and abroad, some researches
have been carried out on the flexible operation mode of
carbon capture power plants. Cui et al. (2021a) introduces a
carbon storage device into the flue gas bypass of a carbon capture
coal-fired power plant, shifts the wind power output in time, and
proposes a flexible operation mode of coordination between wind
power and carbon capture power plants, which improves the
wind power consumption capacity; Cui et al. (2021b) introduces
price-based demand response into a comprehensive energy
system with carbon capture equipment, and adjusts the load
to match the output of renewable energy, which reduces the
carbon emissions of the system and improves the operating
economy of the system; Zhou et al. (2018) proposed a
combined operation mode of power-to-gas-carbon capture,
which uses CO2 captured by carbon capture equipment as a
rawmaterial for methane production in the power-to-gas process,
which improves the carbon utilization level on the basis of
ensuring economical efficiency.

NZCP fully dispatches zero-carbon resources in the
comprehensive energy system of the park, and realizes rapid
reduction of carbon emissions and approaches zero through
multi-energy coupling and complementation, multi-load
demand response, waste treatment and carbon capture and
storage technologies. As a typical comprehensive energy
application scenario, the park has carried out a lot of
researches at home and abroad on the energy balance
uncertainty of the park-level comprehensive energy system
and the improvement of the energy supply regulation capacity.
Zhou et al. (2018) established the topological structure of the
integrated energy system of the park, considering the economic
indicators of environment and energy efficiency, and proposed an
optimization method of the integrated energy system of the park
based on the improvement of efficiency and benefit; Fang et al.

(2020) analyzes the time-delay characteristics of thermal loads,
considers the comprehensive demand response mechanism of
various electric heating loads, improves the flexibility of energy
supply of the comprehensive energy system in the park, reduces
wind and light abandonment, and realizes the coordination and
optimization of the comprehensive energy system in the park;
Jiang et al. (2021) considers the randomness of renewable energy
output and load demand in multi-energy parks, and proposes an
optimal scheduling method based on an improved deep
deterministic policy gradient algorithm, which reduces the
impact of source and load uncertainty on scheduling;
According to fuzzy theory, Zhong et al. (2020) expresses wind
power and load with fuzzy parameters, and transforms
deterministic system constraints into fuzzy chance constraints
to solve the source and load uncertainty problem in the optimal
dispatch of carbon capture virtual power plants.

Biomass energy is also an important zero-carbon energy
source, and a lot of efforts have been made at home and
abroad in terms of WD energy supply characteristics and
optimized operation. Wang et al. (2021b) studied the energy
supply characteristics of waste incineration and sewage gas
production, considering the processing capacity and waste
output of waste treatment facilities, and proposed an operation
strategy for waste treatment facilities to participate in power grid
peak regulation; Yang et al. (2021) considers the low-carbon
characteristics of waste treatment units and introduces a carbon
quota trading mechanism, which improves the consumption
capacity of renewable energy while taking into account the
waste treatment; Zhou et al. (2019) considered the high energy
consumption characteristics of flue gas treatment in waste
incineration power plants, decoupled the power generation
process from the flue gas treatment process, and used
abandoned wind for flue gas treatment, which improved the
operation flexibility of waste incineration power plants with a
high proportion of wind power connected.

From the above analysis, it can be seen that the current
domestic and foreign research on the energy balance
characteristics and adjustment capacity of the integrated
energy system under the low-carbon constraints mainly focus
on the carbon capture technology of coal-fired power plants and
the low-carbon economic dispatch considering the carbon quota
trading mechanism. On the other hand, there are few studies on
the collaborative optimization of CCGPP and WD and the
improvement of power grid, heat grid, and gas grid regulation
capacity.

Therefore, the NZCP structure based on the CCGPP-P2G-
WD synergy model is proposed in this paper, which adopts a fully
renewable energy supply method and makes full use of zero-
carbon resources such as waste incineration, biogas treatment and
multi-load demand response in the park. In addition, the energy
supply and demand characteristics of NZCP are deeply analyzed.
Firstly, the energy production and conversion model of each
equipment is established based on the CCGPP-P2G-WD
collaborative model. Secondly, an energy coordination model
of NZCP energy conversion and storage is established by using
the energy coupling matrix to map the multi-energy coupling
method. Then, the NZCP two-stage robust optimal scheduling
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method is proposed, and the two-stage robust optimal scheduling
model is processed based on the second-order cone relaxation
and dual theory. Finally, the NZCP simulation model is
established, and four scenes are proposed for simulation
comparison analysis. The validity and economy of the model
proposed in this paper are verified.

NEARLY-ZERO CARBON PARKS SYSTEM
MODEL

The proposed NZCP considering the synergy of waste treatment
and carbon capture gas-fired power plants is aimed at the zero-
carbon demand and waste treatment demand of the integrated
energy system of the park, and considers the energy transfer
characteristics of waste incineration flue gas treatment and
carbon capture gas-fired power plants carbon storage, which is
sufficient. Coordinate zero-carbon resources such as waste
treatment and demand-side response in the park, based on the
coordinated coupling system between carbon capture, storage
and utilization, energy storage medium material flow and energy
flow. The CCGPP-P2G-WD collaborative method with multi-
temporal scale and multi-energy regulation ability constructed in
this paper and the NZCP energy coupling mode and connection
relationship it serves are shown in Figure 1. NZCP includes
renewable energy supply systems such as wind power generation,
photovoltaic power generation, waste incineration and manure
treatment, and the entire energy interaction network is composed
of power grid, heat network, gas network and transportation
network. NZCP realizes the recycling of carbon flow in the energy
coupling link through the synergy of CCGPP, WD and P2G.

Waste Treatment System Model
For the waste treatment requirements of NZCP, the classified
combustible waste is transported to a waste incineration power
plant for waste incineration to generate electricity (Wang et al.,

2021c). Biomass technology is used to convert the dry-wet
separation of manure and waste into biogas, which is then
purified and processed to obtain natural gas, which is used as
the input of carbon capture gas-fired power plants and connected
to the natural gas network at the same time (Zhang et al., 2020;
Teng et al., 2021).

Considering that in the waste treatment system, waste
incineration and manure treatment can support the multi-
source regulation capacity of electric heating gas in the park,
the energy conversion model is as follows:

⎡⎢⎢⎢⎢⎢⎣ PWD,E

PWD,H

PWD,G

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎣ ηWI,EaBG,E 0 0
ηWI,HaBG,H 0 0

0 ηFW,GaF,GηF,G ηSG,GaF,GηS,G

⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣ PBG

PFW

PSG

⎤⎥⎥⎥⎥⎥⎦
(1)

where PWD,E, PWD,H and PWD,G are the electric energy, heat
energy and natural gas energy provided by the waste treatment
system respectively, ηWI,E and ηWI,H are the power supply and
heating efficiency of the waste incineration power plant
respectively, aBG,E and aBG,H are the conversion coefficients of
electric energy and heat energy of the waste incineration power
plant respectively, ηFW,G and ηSG,G are the treatment efficiency of
the excrement treatment facility and the treatment efficiency of
the sewage treatment facility respectively, ηF,G and ηS,G are the
conversion coefficient of fecal waste and sewage waste into
natural heat and gas energy respectively, aF,G is biogas
methanation efficiency, PBG, PFW and PSG are the input
amount of combustible waste, fecal waste and sewage waste,
respectively.

During the working process of the waste incineration power
plant, the exhaust gas needs to be discharged after the flue gas
treatment reaches the standard (Xv et al., 2018). However, the
energy consumption of flue gas treatment accounts for nearly 1/4
of its power generation, and if it is classified as plant power, it will
affect the operating economy of the system (Cao et al., 2020).

FIGURE 1 | “Nearly-zero carbon park” topology diagram.
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Therefore, a flue gas storage device was introduced to decouple
the waste incineration power generation process from the flue gas
treatment process. The flue gas storage device divides the flue gas
discharged from the waste incineration power plant. By adjusting
the proportion of the flue gas entering the reaction tower and the
flue gas storage device, the energy demand of the flue gas
treatment can be shifted in time and space to realize the
dynamic flue gas treatment at different time scales.

The amount of flue gas generated by waste incineration power
generation can be expressed as:

VS,WI � vS,WIPWD,E � VS,RT + VS,MIGS (2)
where vS,WI is the unit flue gas coefficient of waste incineration
power generation,VS,RT is the amount of flue gas directly entering
the reaction tower, VS,MIGS is the amount of flue gas entering the
gas storage device.

In addition to the energy consumption of flue gas treatment,
there is energy consumption of the air pump in the filling and
deflating behavior of the flue gas and the gas storage tank. The
total energy consumption of flue gas treatment in waste
incineration power plants can be expressed as:

PS,C,WI � sS,RT(VS,RT + VS,MIGS−RT) + sS,MIGS(VS,MIGS−RT + VS,MIGS)
(3)

where sS,RT is the energy consumption coefficient of the reaction
tower, sS,MIGS is the energy consumption coefficient of the air
pump, VS,MIGS−RT is the amount of flue gas entering the reaction
tower from the flue gas storage device.

CCGPP-P2G-WD Collaborative Mode
In the CCGPP-P2G-WD cooperative operation mode, the CO2
emitted by CCGPP-WD provides P2G with hydrogen
methanation raw materials, and P2G-WD provides CCGPP
with natural gas as fuel to realize the electricity-carbon-
electricity cycle process.

During the working process of carbon capture gas power
plants, carbon capture energy consumption is very high. In
this paper, the carbon capture gas-fired power plant adopts
the solution storage operation mode, and its specific operation
mode and electric carbon characteristics refer to reference (Chen
et al., 2012). The CCGPP power generation process is decoupled
from the CO2 absorption process by introducing a solution
reservoir. The spatiotemporal shift of the energy demand of
CCGPP-P2G is achieved, and the rate of CO2 absorption and
desorption is controlled.

The total amount of CO2 captured by CCGPP-P2G at the
moment is:

QΣ
CCGPP−CO2 ,t

� θCO2 ,tηCCGPP−CO2 ,t
(PGD,E,t + PCCGPP,t) (4)

where θCO2 ,t is the carbon emission intensity processed at time t,
ηCCGPP−CO2 ,t

is the carbon capture rate of CCGPP capture CO2 at
time t, PGD,E,t is the electricity provided by the waste treatment
power plant at time t, PCCGPP,t is the output power of CCGPP at
time t.

The total amount of CO2 consumed by P2G at time t is:

QΣ
P2G−CO2 ,t

� χCO2 ,t
ηP2GPC,P2G,t (5)

where χCO2 ,t
is the amount of CO2 required to generate unit

capacity of natural gas, ηP2G is the gas production efficiency of
P2G, PC,P2G,t is the energy consumption of the P2G device at
time t.

The gas production of P2G at time t is:

VΣ
P2G−CH4 ,t

� 3.6ηP2GPC,P2G,t/Hg (6)
where Hg is natural gas calorific value.

The total energy consumption of CCGPP-P2G at time t is:

PC,CCGPP−P2G,t � PC,CCGPP,t + PC,P2G,t + PF,t (7)
where PC,CCGPP,t is the energy consumption of CCGPP at time t,
PC,P2G,t is the energy consumption of P2G at time t, PF,t is the
energy consumption of system at time t.

The net output of CCGPP and net CO2 emissions at time t are:

Pnet
CCGPP,t � PCCGPP,t − PC,CCGPP,t (8)

Qnet
CCGPP−CO2 ,t

� qCO2PCCGPP,t − QΣ
CCGPP−CO2 ,t

(9)
where PCCGPP,t is the total output of CCGPP at time t, qCO2 is the
amount of CO2 produced by unit power generation output.

Load Demand Response Model
Load demand response is an important zero-carbon resource,
which can optimize the low-carbon performance of the mining
system through source-load coordination and has good
dispatchability (Wei et al., 2018). The main loads in the park
include: smart users, small industrial loads, commercial loads and
electric vehicles. Under the limitation of the scope of the park, the
energy demand of electric vehicles is high, the battery capacity is
small, and the scale of cluster operation is insufficient. This paper
does not consider electric vehicles to discharge the grid. Smart
users can adjust energy consumption behavior according to
changes in electricity prices and reduce energy demand. The
energy consumption period of small industrial loads is flexible,
and the energy consumption period can be shifted. Commercial
loads have a large energy demand. In addition to rigid demand
response resources such as lighting, elevators and computers,
flexible loads such as air conditioning and energy storage in
commercial buildings can be mobilized to participate in the
demand response to effectively improve the multiple
regulation capacity of the park and reduce the peak-valley
difference of load curves (Gao et al., 2019).

The types of demand response are divided into price demand
response and incentive demand response. Price-based demand
response guides users’ energy consumption behavior through
electricity prices, and the participants are mainly translatable
loads (Wang et al., 2021d). Incentive demand response restricts
users’ energy consumption behavior through contracts, and the
participants are mainly interruptible loads (He et al., 2019).
Responding to changes in energy prices through load
reduction and translation can match the energy demand of the
park and promote the level of renewable energy consumption.
The NZCP load demand response model is as follows:
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Lk,i,DR,t � Lint
k,i,DR,t + Lshi

k,i,DR,t, i ∈ {E,H,G} (10)
Lk,i,t − Lk,i,DR,t ≤ Lk,i,t,max (11)
0≤ Lint

k,i,DR,t ≤ α
int
k,i,o,tLk,i,t (12)

−αshi
k,i,tLk,i,t ≤ Lshi

k,i,DR,t ≤ α
shi
k,i,tLk,i,t (13)

∑T
t�1
Lshi
k,i,DR,t � 0 (14)

where i is the load type, that is, the electrical load, the thermal
load, and the gas load respectively, k is the area type, residential
area, small industrial area, commercial area and electric vehicle,
respectively, Lk,i,DR,t, Lintk,i,DR,t, L

shi
k,i,DR,t, Lk,i,t and Lk,i,t,max are the

load involved in demand response, interruptible load,
transferable load, load forecast value, and maximum allowable
load at time t in the k area respectively, αintk,i,o,t and αshik,i,t are the
interruptible load proportion of the oth stage at time t in the k
area, and the transferable load proportion at time t in the k area
respectively.

NEARLY-ZERO CARBON PARKS ENERGY
SUPPLY AND DEMAND
CHARACTERISTICS
The proposed NZCP takes the CCGPP-P2G-WD collaborative
energy supply system as the core, takes wind power generation
and photovoltaic power generation as the main energy supply
methods, and realizes the conversion of various energy sources
through P2G, CCGPP and Electric Boiler (EB), supplemented by
the coordination of electricity storage, heat storage and gas
storage devices.

The energy coupling matrix is used to describe the multi-
energy conversion, storage and distribution relationship of
NZCP:

⎡⎢⎢⎢⎢⎢⎣ LE − LE,DR,t

LH − LH,DR,t

LG − LG,DR,t

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ PE,W

PH,W

PG,W

⎤⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎣ PES

PHS

PGS

⎤⎥⎥⎥⎥⎥⎦

+ ⎡⎢⎢⎢⎢⎢⎣ 1 0 0 ηGE 1 1
0 1 0 ηGEηGE,H ςWP,1ηEB ςPV,1ηEB
0 0 1 0 ςWP,2ηP2G ςPV,2ηP2G

⎤⎥⎥⎥⎥⎥⎦

×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PWD,EW

PWD,HW

PWD,GW

PGE

PWP,EW

PPV,EW

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

where PE,W, PH,W and PG,W are the electricity, heat and gas power
purchased from the main network respectively, PES, PHS and PGS

are the electricity, heat and gas power provided by the electricity
storage, heat storage and gas storage devices respectively, ηGE,
ηGE,H, ηEB and ηP2G are CCGPP power supply efficiency, CCGPP
thermoelectric ratio, EB heating efficiency, and P2G gas supply
efficiency, ςWP,1 and ςWP,2 are the distribution coefficient of wind
power supply EB and P2G respectively, ςPV,1 and ςPV,2 are the

distribution coefficients of PV supply EB and P2G respectively,
PWD,EW, PWD,HW and PWD,GW are the WD power supply, heating
power, and gas supply power respectively, PGE a is the total
output of CCGPP, PWP,EW and PPV,EW are the on-grid power of
wind power and the on-grid power of photovoltaics respectively.

NEARLY-ZERO CARBON PARKS
COORDINATION OPTIMIZATION MODEL

Objective Function
In this paper, the NZCP optimal scheduling model considering
the coordination of WD and CCGPP is established. Its essence is
to realize carbon recycling through ccGPP-P2G-WD cooperative
mode on the basis of considering the waste treatment and carbon
reduction requirements of the park, and form a comprehensive
energy system with near zero carbon emissions. The optimal goal
of minimum net operating cost of the system was established, and
the decision variables included total CCGPP output, WD
equivalent output, P2G output, EB output, carbon capture
energy consumption, flue gas treatment energy consumption,
transfer load of demand response, interruption load of demand
response and energy purchase from the main network.

min(Cs−s + Cbuy + CW,PV + CL,DR + CEB + CP2G + CGD + CCCGPP

+ CCSE − RCCGPP)
(16)

Cs−s � ∑ALL
ep

∑T
t�1
max{0, epi,t − epi,t−1}γepi,t (17)

Cbuy � ∑T
t�1
zE,tPE,W +∑T

t�1
zH,tPH,W +∑T

t�1
zG,tPG,W (18)

CWP,PV � ∑T
t�1
γWP,tPWP +∑T

t�1
γPV,tPPV (19)

CL,DR � ∑K
k

∑I
i

∑T
t�1
∑O
o

bk,i,o,int,tL
int
k,i,DR,t +∑K

k

∑I
i

∑T
t�1
bk,i,shi,tL

shi
k,i,DR,t (20)

CEB � ∑T
t�1
γEB,tPEB,t (21)

CP2G � ∑T
t�1
γP2G,tPC,P2G,t (22)

CGD � ∑T
t�1
[a + b(PBG,t + PFW,t + PSG,t) + c(PBG,t + PFW,t + PSG,t)2]

(23)
CCCGPP � ∑T

t�1
γCCGPP,tP

net
CCGPP,t (24)

CCSE � ∑T
t�1
γCSE,tQCSE,CO2 ,t (25)

RCCGPP � ∑T
t�1
γC,t(amountP

net
CCGPP,t − Qnet

CCGPP−CO2 ,t
) (26)

QCSE,CO2 ,t � QΣ
CCGPP−CO2 ,t

− QP2G−CO2 ,t (27)
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whereCs−s,Cbuy,CWP,PV,CL,DR,CEB,CP2G,CGD,CCCGPP,CCSE and
RCCGPP are the total equipment start-up and shutdown cost, the
main grid energy purchase cost, the operation andmaintenance cost
of renewable energy power generation equipment, the transferable
load and interruptible load compensation cost, the EB operating
cost, the P2G operating cost, the WD operating cost, the CCGPP
operating cost, the carbon sequestration cost , and the income
obtained by the carbon capture gas power plants by selling the
emission credits that do notmeet the carbon emission quotas. epi,t is
the start-stop state of the controllable device epi at time t, γepi,t

is the
start-stop cost of the controllable device epi at time t, zE,t, zH,t and
zG,t is the price of electricity, heat and natural gas at time t, γWP,t and
γPV,t are the unit operation and maintenance costs of wind power
and photovoltaics at time t respectively, bk,i,o,int,t and bk,i,shi,t are the
electric/heat/gas load interruption compensation price for the oth
level participating in demand response at time t in the k area, and the
electric/heat/gas load transfer compensation price for participating
in the demand response at time t in the k area, γEB,t and γP2G,t are the
operating cost coefficients of EB and P2G respectively, a, b, c are the
cost factor for waste disposal, γCCGPP,t is the operating cost
coefficients of CCGPP, γCSE,t is the unit cost of carbon
sequestration, QCSE,CO2 ,t is the amount of CO2 sequestered by the
carbon sequestration device; QP2G−CO2 ,t is the amount of CO2

captured for P2G devices, γC,t is the carbon trading price, amount

is the carbon emission benchmark quota per unit of electricity.

Restrictions
(1) Power balance constraints:

LE,t � PE,W,t + PWP,t + PPV,t + PWD,EW,t + PCCGPP,E,t + PES,t − PP2G,t

− PEB,t

(28)
LH,t � PH,W,t + PWD,HW,t + PCCGPP,H,t + PHS,t + PEB,t (29)
LG,t � PG,W,t + PWD,GW,t + PP2G,H,t + PGS,t − PCCGPP,t (30)

where PWP,t and PPV,t are the output power of wind power and
photovoltaic generators at time t respectively, LE,t, LH,t and LG,t
are the demand for electricity load, heat load, and gas load at the
moment respectively, PCCGPP,E,t and PCCGPP,H,t are the power
supply and heating power of CCGPP, respectively.

(2) CCGPP operating constraints:

PCCGPP,min ≤PCCGPP,t ≤PCCGPP,max (31)∣∣∣∣PCCGPP,t+1 − PCCGPP,t

∣∣∣∣≤ΔPCCGPP (32)
where PCCGPP,max and PCCGPP,min are the upper and lower limits of
CCGPP output respectively, ΔPCCGPP is the absolute value of the
CCGPP ramp rate.

(3) WD operating constraints:

WD includes waste incineration power plants and manure
treatment facility. The operation constraints of waste incineration
power plants are:

ΔPBG,min ≤ΔPBG,e,t − PBG,e,t−1 ≤ΔPBG,max (33)

0≤PBG,e,t ≤PBG,e,rated (34)
where ΔPBG,max and ΔPBG,min are the upper limit and lower limit
of the ramp rate of the waste incineration power plant
respectively, PBG,e,t is the output power of the waste
incineration power plant, PBG,e,rated is the rated power of the
unit of the waste incineration power plant.

The operation constraints of manure treatment equipment are:

ΔPFS,min ≤ΔPFS,g,t − PFS,g,t−1 ≤ΔPFS,max (35)
0≤PFS,g,t ≤PFS,g,rated (36)

where PFS,g,t is the output power of the manure treatment
equipment at time t, ΔPFS,max and ΔPFS,min are the ramp rate
constraint of the manure treatment equipment, PFS,g,rated is the
rated power of the manure treatment equipment.

(4) EB output and climbing constraints:

PEB,min ≤PEB,t ≤PEB,max (37)∣∣∣∣PEB,t+1 − PEB,t

∣∣∣∣≤ΔPEB (38)
where PEB,max and PEB,min are the upper limit and lower limit of
EB output respectively, ΔPEB is the EB ramp rate constraint.

(5) EB output and climbing constraints:

0≤PC,P2G,t ≤PP2G,max (39)∣∣∣∣PP2G,t+1 − PP2G,t

∣∣∣∣≤ΔPP2G (40)
where PP2G,max is the upper limit of P2G output, ΔPP2G is the P2G
ramp rate constraint.

(6) Energy storage device operating constraints:

PES,t � (1 − ςES)PES,t−1 + (ηchESPch
ES,t −

Pdis
ES,t

ηdisES

)Δt (41)

PHS,t � (1 − ςHS)PHS,t−1 + (ηchHSP
ch
HS,t −

Pdis
HS,t

ηdisHS

)Δt (42)

PGS,t � (1 − ςGS)PGS,t−1 + (ηchGSPch
GS,t −

Pdis
GS,t

ηdisGS

)Δt (43)

where PES,t−1, PHS,t−1 and PGS,t−1 are the electricity storage, heat
storage and gas storage capacity of the electricity storage device,
heat storage device and gas storage device at time t-1, respectively,
ςES, ςHS and ςGS are the energy loss rates of electricity storage
devices, heat storage devices, and gas storage devices, respectively,
ηchES and ηdisES are the charging efficiency and discharging efficiency
of the power storage device, respectively, ηchHS and ηdisHS are the
charging efficiency and discharging efficiency of the heat storage
device, respectively, ηchGS and ηdisGS are the charging efficiency and
discharging efficiency of the gas storage device, respectively, Pch

ES,t
and Pdis

ES,t are the charging power and discharging power of the
power storage device, respectively, Pch

HS,t and Pdis
HS,t are the

charging power and discharging power of the heat storage
device, respectively, Pch

GS,t and Pdis
GS,t are the charging power

and discharging power of the gas storage device, respectively.

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 9391106

Yao et al. CCGPP-WD-P2G Cooperative Operation

21

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


NEARLY-ZERO CARBON PARKS
TWO-STAGE ROBUST OPTIMAL
SCHEDULING MODEL

Optimized Scheduling Model
NZCP is powered by all renewable energy sources, but wind power,
photovoltaic power and multiple loads have strong uncertainties.
According to the traditional polyhedral uncertainty set form, the
uncertainty factors are expressed as (Sun et al., 2020):

PWP
t ∈ [P̂WP

t − ΔPWP
t , P̂

WP

t + ΔPWP
t ] (44)

∑T
t�1

P̂
WP

t − PWP
t

ΔPWP
t

≤ ΓWP (45)

PPV
t ∈ [P̂PV

t − ΔPPV
t , P̂

PV

t + ΔPPV
t ] (46)

∑T
t�1

P̂
PV

t − PPV
t

ΔPPV
t

≤ ΓPV (47)

Li,t ∈ [L̂i,t − ΔLi,t, L̂i,t + ΔLi,t] (48)

∑T
t�1

L̂i,t − Li,t

ΔLi,t
≤ ΓLi (49)

where PWP
t , P̂

WP
t and ΔPWP

t are the output uncertainty, forecast
value and fluctuation deviation value of wind power at time t
respectively, PPV

t , P̂
PV
t and ΔPPV

t are the PV output uncertainty,
predicted value, and fluctuation deviation value at time t
respectively, Li,t, L̂i,t and ΔLi,t are the uncertainty, predicted
value and fluctuation deviation value of i load at time t
respectively, i ∈ [E,H, G], ΓWP, ΓPV and ΓLi are the uncertain
adjustment parameters introduced for wind power output,
photovoltaic output, and load power, respectively, the value
range is an integer within the period 0–24.

After the polyhedron uncertainty set is established, the model
changes from a single stage to a two-stage model, and Eq. 16 is
transformed into the following two-stage robust hybrid optimal
scheduling model:

min
x∈X

cTx +max
z∈Z

min
y∈Y

bTy (50)
s.t. Ax≤ h

By + Cz � d
My +Nz≤ u����Qy����≤ q

(51)

where x is the first-stage optimization variable, corresponding to the
start-stop state of each controllable device, the start-up state of the
equipment is 1, and the stop state is 0, y and z is the second-stage
optimization variable, representing the output, wind, and load
uncertain variables corresponding to each equipment respectively, c
and b is the coefficientmatrix corresponding to the objective function,
A, B, C, M, N and Q are a sparse matrix of variables under the
corresponding constraints, h, d, u and q are constant column vector.

The established NZCP two-stage robust optimal scheduling
model decomposes the two-stage problem into the first-stage main
problem and the second-stage sub-problem. The main problem is
to optimize the start-stop state of each controllable device at each

time period under extreme conditions of wind and solar output
and original load. The sub-problem is based on the optimization
scheme obtained from the main problem, and the output of each
equipment in the NZCP is adjusted according to the uncertain
variables of wind power, photovoltaic power generation and load to
achieve the optimization goal of minimum net cost.

Solution Method
The C&CG algorithm is used to decompose the above two-stage
robust optimal scheduling model into a main problem and sub-
problems (Liu et al., 2018). The main problem is:

min
x∈X

cTx + ƛ (52)
s.t. Ax≤ h

ƛ≥ bTyk

Byk + Czk � d
Myk +Nzk ≤ u����Qyk

����≤ q
(53)

where k is the current iteration number, yk is the variable at the
kth iteration, zk is the value of the uncertain variable z in extreme
scenarios obtained after the kth iteration.

The sub-problems is:

max
z∈Z

min
y∈Y

bTy (54)
s.t. Axp ≤ h

By + Cz � d
My +Nz≤ u����Qy����≤ q

(55)

In a given scenario, the inner min problem is a second-order
cone programming problem, which is obtained by combining
dual theory with the outer max problem:

FIGURE 2 | Algorithm flow chart.
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max
z∈Z,ϑ1 ,ϑ2 ,ϑ3

(d − Cz)Tϑ1 + (u −Nz)Tϑ2 + qTϑ3 (56)
s.t. BTϑ1 +MTϑ2 + QTϑ3 ≤ b

ϑ1 ≥ 0, ϑ2 ≥ 0, ϑ3 ≥ 0
(57)

When Fq. 56 takes the maximum value, the value of the
uncertain variable z should be at the boundary of the uncertainty
set fluctuation interval established in this paper (Wang et al.,
2019). At the same time, when the wind and solar output is at the
lower limit and the load is at a peak, the system operating cost is
the highest, that is, in an extreme scenario, which can be
expressed as:

zWP � P̂
WP

t − PWP
t

ΔPWP
t

zPV � P̂
PV

t − PPV
t

ΔPPV
t

zi,L � L̂
i,L

i,t − Li,L
i,t

ΔLi,L
i,t

(58)

where zWP, zPV and zi,L are the binary variable. When the value is
1, it means that the boundary of the interval is obtained. At this
time, Eqs 56, 57 are rewritten as:

max
z,ϑ1 ,ϑ2 ,ϑ3

(d − Cẑ)Tϑ1 + (u −Nẑ)Tϑ2 + qTϑ3 + ΔzZm (59)
s.t. BTϑ1 +MTϑ2 + QTϑ3 ≤ b

0≤Zm ≤ �ϑz

∑T
t�1
zWP ≤ ΓWP

∑T
t�1
zPV ≤ ΓPV

∑T
t�1
zi,L ≤ ΓLi

ϑ1 ≥ 0, ϑ2 ≥ 0, ϑ3 ≥ 0

(60)

where �ϑ is the upper bound of the dual variable.
After the above derivation and transformation, the two-stage

robust optimization scheduling model is finally decoupled from the
main problem (52) and the sub-problem (59), and then solved by the
C&CG algorithm, in which the sub-problem can be solved by calling
the Cplex solver on theMatlab platform, the algorithm flow is shown
in Figure 2. CCGPP carbon emission intensity a; P2G-CCGPP fixed
energy consumption b; carbon emission allowance price c.

CASE SIMULATION

Example Basic Data
The simulation analysis is based on the operation data of the Park
Integrated Energy System in a region of northern China. In
NZCP, the forecast curves of wind power and photovoltaic
power generation are shown in Figure 3; The daily load
forecast curve is shown in Figure 4; the energy price forecast
curve is shown in Figure 5; the operating parameters of the

energy conversion equipment and energy storage equipment are
shown in Table 1; The daily load forecast curve is shown in
Figure 4; the energy price forecast curve is shown in Figure 5; the

FIGURE 3 | Forecast curve of wind power and photovoltaic power
generation.

FIGURE 4 | Forecast curve of wind power and photovoltaic power
generation.

FIGURE 5 | Forecast curve of electricity, heat and gas prices.
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operating parameters of the energy conversion equipment and
energy storage equipment are shown in Table 1; CCGPP carbon
emission intensity θCO2,t � 0.76/MW · h; P2G-CCGPP fixed
energy consumption PF,t � 15MW; carbon emission allowance
price γC,t � 129E/t; The waste treatment capacity of Waste
Incineration power generation equipment is 1500t/d, and the
rated power is 30 MW; The manure treatment capacity of the
Manure Treatment facility is 350t/d, and the rated power
is 6 MW.

Optimizing Results Analysis
In order to verify the effectiveness of the proposed CCGPP-P2G-
WD collaborative model and the NZCP two-stage robust optimal
scheduling model, the following four scenes are set up to simulate
and analyze the optimal model proposed in this paper:

Scene 1.Only P2G is considered to participate in the coordinated
operation of the park’s comprehensive energy system, and all
energy shortages are purchased from the external network.

Scene 2. WD is added On the basis of Scene 1, but the synergy
between its energy transfer characteristics and the comprehensive
energy system of the park is not considered.

Scene 3. CCGPP is added on the basis of Scene 1, but the synergy
between its energy transfer characteristics and the comprehensive
energy system of the park is not considered.

Scene 4. Adopt the proposed CCGPP-WD-P2G collaborative
operation mode, and use the proposed operation strategy to
coordinate and optimize with the park’s comprehensive energy
system.

On the basis of meeting the NZCP load requirements, the
multi-energy optimization operation effect of each device in
Scene 4 is shown in Figures 6–8.

In Scene 4, the CCGPP-WD-P2G collaborative mode
provides certain energy support for the power grid, heat grid,
and gas grid. Combined with the forecast curve of electricity,
heat and gas load of renewable energy, it can be seen that in the
period of 16–18 and 23–6, the system is in a low period of
electricity consumption, and the power generation of renewable
energy cannot be fully absorbed. Because of the introduction of a
flue gas storage device, the high energy consumption of flue gas
treatment of WD provides a way to absorb abandoned wind. At
the same time, CCGPP transfers the energy consumption of
carbon capture during the peak period of energy consumption
to the period of low load by introducing solution storage, which
further absorbs the abandonment of wind and light on the basis

of ensuring the reliability of energy supply during the peak
period. Then, the CO2 captured by CCGPP is used as the raw
material in the P2G production process, and the waste electricity
is fully absorbed by P2G. It can be seen from Figure 5 that the
electricity price at this time is relatively low. On the basis of fully
absorbing the abandoned wind and solar energy, the electricity
storage equipment is charged by purchasing energy from the
external network to adjust the load peak period.

During the period of 7–10, the output of wind power
decreases. It can be seen from Figures 6–10 that CCGPP-WD
is themain power source at this time. At the same time, the energy
consumption of carbon capture and flue gas treatment is
transferred to the load trough period, which improves the

TABLE 1 | Operating parameters of energy conversion equipment and energy storage equipment.

Equipment Type Power upper limit/MW Power lower limit/MW Ramp rate/(MW/min)

EB 0 20 1
ES 0 35 —

HS 0 15 —

GS 0 5 —

P2G 4 30 2

FIGURE 6 | Power balance curve of Scene 4.

FIGURE 7 | Thermal balance curve of Scene 4.
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energy supply efficiency of CCGPP-WD. The heat load demand is
low, and the heat energy provided by the CCGPP-WD is stored
by the heat storage device. During the 18-6 period, the heat load is
at the peak period, and the heat storage device cooperates with
CCGPP-WD and EB to supply energy for the heat load.

The manure treatment equipment in WD obtains natural gas
by purifying biogas, and P2G converts electricity into natural gas
through CO2 captured by CCGPP as a raw material. These two
types of gas sources provide natural gas for CCGPP. The gas
shortfall is purchased from the mainnet.

Combining Figures 6–8, it can be seen from the optimized
load curve that, compared with the load prediction curve before
optimization, the load peak-to-valley difference in Scene 4 is
smaller. Therefore, the CCGPP-WD-P2G cooperative mode
realizes load shaving peaks and valleys.

From Figures 9, 10, it can be seen that during the period 10–16,
the output of photovoltaic power generation is mainly used for
carbon capture and flue gas treatment. The volatility problem of
photovoltaics is well resolved by the CCGPP-WD-P2G synergistic
mode introduced into solution storage and flue gas storage devices.

It can be seen from Figure 11 that in Scene 1, P2G and energy
storage devices are limited by capacity constraints and ramp rate
constraints, resulting in a large amount of power abandonment,

and the power abandonment rate reaches 40.19%. In Scene 2, the
WD flue gas treatment process consumes a certain amount of
abandoned wind and light, and the abandoned electricity rate is
24.19%. In Scene 3, the carbon capture process of CCGPP absorbs
a lot of abandoned wind and light, and the electricity abandonment
rate is 16.57%. Scene 4 adopts the CCGPP-WD-P2G collaborative
mode to shift the energy consumption of carbon capture and flue gas
treatment in time and space, and mainly uses abandoned wind and
sunlight for energy supply, so the system has the strongest ability to
absorb renewable energy in this scene, the power abandonment rate
is only 5.33%. It can be seen that the CCGPP-WD-P2G collaborative
mode improves the renewable energy consumption capacity on the
basis of ensuring the balance of energy supply and demand in the
system. The optimization results of each unit cost and total net cost
of the four scenes proposed in this paper are shown in Table 2.
Compared with Scene 1, the introduction ofWD reduces the cost of
electricity purchase by 7.96×103 ¥, the heating cost of 6.29×103 ¥ and
the gas purchase cost of 5.79×103 ¥, and the total cost is reduced by
3.72×103 ¥. Combining with Table 2 and Figure 12, it can be seen
that although WD provides energy support for the power grid, heat
grid and gas grid in the process of realizing waste reduction, the

FIGURE 10 | Flue gas treatment energy consumption curve.

FIGURE 11 |Wind power and photovoltaic power curtailment in various
scenes.

FIGURE 8 | Gas balance curve of Scene 4.

FIGURE 9 | Carbon capture energy consumption curve.
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carbon emission increases by 64.47%. Compared with Scene 1, in
Scene 3, the electricity purchase cost is reduced by 23.03×103 ¥, the
heat purchase cost is reduced by 10.33×103 ¥, and the gas purchase
cost is increased by 8.99×103 ¥. It can be seen that CCGPP provides a
certain energy support for the system, but the gas source in the
system is insufficient, which increases the cost of gas purchase.
Combined with Table 2 and Figure 12, it can be seen that after the
introduction of CCGPP, carbon emissions were reduced by 41.83%
through carbon capture and carbon sequestration. Combining
Table 2 and Figures 11, 12, it can be seen that Scene 4 adopts
the CCGPP-WD-P2G collaborative mode proposed in this paper,
which reduces the cost of electricity purchase by 42.78×103 ¥, the
cost of sufficient heat by 13.49×103 ¥ and 2.84×103 ¥ gas purchase
cost. It can be seen that carbon capture provides P2G with a large
amount of CO2 as a rawmaterial for gas production, which saves gas
purchase costs and P2G operating costs. Because carbon capture and
carbon sequestration technology reduces carbon emissions, NZCP’s
participation in carbon emission allowance trading increases
revenue by 9.724×103 ¥, which in turn reduces the total cost by
27.03×103 ¥. At the same time, the absorbing capacity of renewable
energy has been increased by 86.73%, and the carbon emission has
been reduced by 98.33%, which has improved the absorbing capacity
of renewable energy, and achieved the goal of near-zero carbon
emission while maintaining a high energy balance in the system.

According to Figure 13, it can be seen that the load that can be
reduced and the load that can be shifted can affect the net cost. It
can be seen that with the increase of the proportional coefficient
of demand response, the operating cost of the system is gradually
reduced. When the proportional coefficient of the demand
response of the shiftable load is 0.3 and the proportional
coefficient of the demand response of the curtailable load is
0.2, the operating cost of the system is the lowest. With the
gradual increase of the proportional coefficient of the translatable
load demand response, the operating cost of the system also
increases gradually. Therefore, an appropriate proportion of
loads participating in demand response is beneficial for multi-
time-scale energy regulation of NZCP. However, an excessively
high load demand response proportional coefficient will lead to
an increase in energy regulation compensation, and at the same
time, it will affect the normal operation of small industrial loads
and commercial loads in the park, and reduce system benefits.

TABLE 2 | Comparison of optimization results in different scenes (*103¥).

Type Scene 1 Scene 2 Scene 3 Scene 4

Electricity purchase cost 81.19 73.23 58.16 38.41
Heat purchase cost 20.46 14.17 10.13 6.97
Gas purchase cost 23.42 17.63 32.41 20.58
Equipment start and stop costs 12.16 14.32 15.79 16.11
Operation and maintenance costs of renewable energy power generation equipment 8.95 8.32 7.69 7.11
Transferable and interruptible load compensation costs 14.45 17.62 19.36 27.55
EB operating cost 4.19 4.07 3.99 3.96
P2G operating costs 11.31 10.26 8.10 7.07
WD operating cost 0 7.52 0 4.24
CCGPP operating costs 0 0 6.49 6.72
Carbon sequestration cost 0 0 10.13 20.16
Carbon emission allowance revenue 6.34 1.07 10.16 16.12
Net cost 169.79 166.07 162.09 142.76

FIGURE 12 | Carbon emissions in each scene.

FIGURE 13 | The relationship between demand response load
proportional coefficient and cost.
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CONCLUSION

In order to fully dispatch zero-carbon resources, form a
production system for carbon recycling, and achieve near-zero
carbon emissions while improving system revenue. In this paper,
the CCGPP-WD-P2G collaborative model is proposed on the
basis of full renewable energy supply, which realizes the
collaborative optimization of zero-carbon resources in the
park. Four groups of scenes were proposed and compared,
and the following conclusions were drawn:

1) The CCGPP-WD-P2G collaborative mode is proposed to
participate in the optimal scheduling of NZCP, which
makes full use of the adjustment ability of zero-carbon
resources in the system and improves the economy of the
system maintaining a high energy balance level.

2) In the CCGPP-WD-P2G collaborative mode, the captured
CO2 is used as the rawmaterial for P2G gas production, which
reduces carbon emissions while reducing the operating cost of
P2G, and provides gas source support for CCGPP, realizing
the recycling of CO2.

3) The flue gas storage device and the CO2 solution storage
device are respectively introduced to decouple the flue gas
treatment link, the carbon capture link and the power
generation link, and the renewable energy output is shifted
in time and space. The load peak-valley curve is effectively
stabilized, the renewable energy consumption capacity is

improved, and the energy supply pressure on the upper
energy grid is reduced.

4) A reasonable proportion of interruptible loads and transferable
loads can be used to participate in scheduling, which can effectively
reduce the net cost of system operation and improve the flexibility
of energy supply and demand in the system.
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Energy load forecasting is a critical component of energy system scheduling and
optimization. This method, which is classified as a time-series forecasting method,
uses prior features as inputs to forecast future energy loads. Unlike a traditional single-
target scenario, an integrated energy system has a hierarchy of many correlated energy
consumption entities as prediction targets. Existing data-driven approaches typically
interpret entity indexes as suggestive features, which fail to adequately represent
interrelationships among entities. This paper, therefore, proposes a neural network model
named Cross-entity Temporal Fusion Transformer (CETFT) that leverages a cross-entity
attention mechanism to model inter-entity correlations. The enhanced attention module is
capable of mapping the relationships among entities within a time window and informing
the decoder about which entity in the encoder to concentrate on. In order to reduce
the computational complexity, shared variable selection networks are adapted to extract
features from different entities. A data set obtained from 13 buildings on a university
campus is used as a case study to verify the performance of the proposed approach.
Compared to the comparative methods, the proposed model achieves the smallest error
on most horizons and buildings. Furthermore, variable importance, temporal correlations,
building relationships, and time-series patterns in data are analyzed with the attention
mechanism and variable selection networks, therefore the rich interpretability of the model
is verified.

Keywords: integrated energy system, time-series forecasting, multi-entity forecasting, load forecasting, neural
networks, transformer network

1 INTRODUCTION

The integrated energy system (IES) is regarded as one of themost important forms ofmodern energy
systems (Tahir et al., 2021). A comprehensively optimized IES is capable of delivering considerable
energy savings, pollution reduction advantages, better system stability, etc. (Zhang et al., 2020;
Wang et al., 2022). One key specification of IES is the demand pattern of the energy end-users.
Therefore, demand forecasting can provide insights to enhance system design, scheduling strategy,
and control optimization for IES (Dittmer et al., 2021).

Statistic and machine learning techniques have long been applied for the demand forecasting of
end-users. The former techniques are straightforward strategies that focus on the target time series’
statistics. The latter techniques are trained with a period of load data accompanied with auxiliary
information before making predictions based on recent data. Typical statistic models include the
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simple linear regression model, moving average (MA) strategy,
and autoregression (AR) algorithm. Auto-Regressive Integrated
Moving Average (ARIMA) is a combination of MA and AR,
which includes stationary stochastic variables in the non-
stationary stochastic process. As a result, it is capable of
reproducing time series patterns (Newsham and Birt, 2010).
Notable traditional machine learning methods include Partial
Least Squares Regression (PLSR), Ridge Regression (RR), and
Support Vector Regression (SVR). PLSR basically uses the
covariance between the input and output variables instead of
analyzing the hyperplanes with the least variance between the
dependent and independent variables (Hosseinpour et al., 2016).
In RR models, a shrinkage estimator is added to the
diagonal elements of the correlation matrix (Sun et al., 2019).
SVR leverages kernel functions for modeling the nonlinear
transformation. These models often ignore the chronological
order of variables and struggle to properly model the temporal
features in the data.

Time-series forecasting approaches based on deep learning
have significantly grown in recent years, with the development
in neural network algorithms, available data, and hardware
power. Recurrent neural networks (RNN) (Rumelhart and
McClelland, 1987) is a category of neural network suitable
for time-series modeling. RNNs use hidden states that are
iteratively supplied back to the network for temporary time-
related information representation and storage, as implied by
the name (Tang et al., 2021). This gives the model memory for
temporal properties. However, RNN suffers from the vanishing
gradient problem (Ribeiro et al., 2020). The hidden state will
gradually degrade during simulation for long-term sequences.
To alleviate this problem, improved implementation of RNN
including Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and GRU Gated Recurrent Unit (GRU)
(Chung et al., 2014) have been proposed. These networks
introduce a gate for controlling time-series information.Thegates
assist the network in selecting critical data that requires long-term
memory. As a result, both networks can make predictions for
extended periods of time before the vanishing gradient problem
appears Ayodeji et al. (2022).

The Transformer (Vaswani et al., 2017), which employs an
attention mechanism to describe cross-time interactions for time
series, has recently become one of the most popular network
architectures.The attention module accepts all time frame inputs
and provides weights that directly map the impact of the previous
time frame on future targets. Therefore, the gradient vanishing
problem due to long-time dependence is eliminated. Another
benefit of the transformer is that the network grants better
interpretability. Natural language processing (Tetko et al., 2020)
and computer vision (Dosovitskiy et al., 2021), two of the most
important domains of artificial intelligence, have both benefited
greatly from the transformer. The better modeling capabilities
of this model, however, come at the cost of more computation.
The computational complexity of attention to explicitly simulate
the cross-time relationship is O(n2), where n is the scale of time
frames. In comparison, the computational complexity of most
neural network implementations, such as GRU and LSTM, is
O(n). Meanwhile, while the transformer solves the problem of

time dependence, it does not support input selection inside a
single time frame.

Combining LSTM and Transformer, the Temporal Fusion
Transformer (TFT) proposed by Lim et al. (2021) is a state-of-
the-time model for multi-horizon forecasting. TFT leverages a
backbone network based on LSTM layers for variable selection
and encoding. The attention module receives the output from
LSTM at all time frames as input, which addresses LSTM’s
disadvantage by efficiently modeling time dependence.

For time-series forecasting including multiple entities,
the TFT uses entity encodings to distinguish entities and
independent networks to produce predictions, without modeling
the correlation between entities. As a result, TFT may not
cope well with the correlation among entities across different
time steps, which is crucial for IES load forecasting (Feng and
Zhang, 2020; Wang R. et al., 2021).

Therefore, the Cross-Entity Temporal Fusion Transformer
(CETFT) was developed in this research as an improved
version of the Transformer structure geared to energy load
forecasting with correlations across distinct entities. The cross-
entity attention module and entity encoding networks based
on shared variable selection blocks are two innovative methods
offered to adapt the network to multi-entity prediction tasks.
This allows for simultaneous quantification of correlation across
entities and time domains. Experiments on 13 buildings on
a university campus are conducted to compare the proposed
method to existing predicting algorithms. Future analyses
are taken to comprehensively evaluate the interpretability of
the network, Including cross-time correlations, cross-entity
correlations, special attention to unconventional time-series
trends, and variable importance.

The remaining of this paper is organized as follows: Section 2
gives an introduction and mathematical definition of IES and
time series forecasting; In Section 3, the structure of the proposed
CETFT and its submodules are explained in detail; Section 4
carried out a case study based on the campus building data set
evaluating the performance and interpretability of the proposed
model; and Section 5 briefly concludes this paper.

2 PRELIMINARY

2.1 Integrated Energy Systems
The IES is mainly composed of multiple energy supply, exchange,
storage, and consumption entities (Lin and Fang, 2019). These
entities could transmit energy to each other according to a certain
scheduling strategy to achieve a balance within the system and
minimize the overall energy usage and expense. One major
concern in achieving this goal is forecasting loads of consumption
entities in advance, and the interdependence of entities is critical
to achieving this goal.

2.2 Time-Series Forecasting
As illustrated in Figure 1, the goal of load forecasting can be
framed as a supervised learning problem on time-series data.The
data are a sequence of observations with equal time intervals,
including targets and auxiliary information. The object of the
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FIGURE 1 | Demonstration of a time-series forecasting problem with multiple
entities.

problem is to forecast future target values based onhistorical data.

These data are organized in chronological order and grouped
into a series of time windows of equal lengths. Each time window
is further divided into two parts by a given forecast time frame t.
In the inference phase, it is typically sufficient to take as input data
a short period before the prediction time to encode the current
state. The length of the data window as inputs is denoted by L.
Those after the forecast time are outputs of the problem. The
forecasting horizon is given by H, which is the number of time
frames to be forecast.

In an IES, there are typically multiple entities that are
correlated to each other. Let E be the number of unique entities
in the system, e.g., different buildings on a campus, indexed by
1,2,…,E. The target is the energy load yi,t ∈ ℝ of entity i ∈ E at
time step t in the future time window [t, tF], where tF = t+H.

From the perspective of accessibility, the features χ t = [ut;xt]
are divided into known features that can be predetermined
ahead of time (e.g., calendar features) and unknown features
ut that are observed and must be predicted for future values
(e.g., meteorological information). Typically, the targets are also
a subset of the unknown features. The features χ i associated with
a certain entity i include the private property of that entity and
public features that affect the entire area.

The object of the problem is to construct a model f(⋅) to
forecast future outputs for each entity in a time period, which is
denoted by:

̂yi (t,τ) = f (τ,ytS∶t ,ztS∶t ,xtS∶tF) , (1)

where f(⋅) is the proposed prediction model. The output ̂yi(t,τ) is
the forecast value at time t+ τ, given known variables spanning
from starting time frame tS = t− L+ 1. Finally, the output of the

model is the targets of all entities at the time frame t+ τ, which is
a set of targets ̂y(t,τ) = { ̂y1(t,τ),…, ̂yE(t,τ)}, where τ = 1,2,…,H.

3 METHODOLOGY

The basic idea of neural networks is to apply weights to inputs
through serial layers, in the form of:

Layer (z) = Activation (Wz + b) , (2)

where z ∈ ℝdinput is input of the layer,W ∈ ℝdlayer×dinput is weight, b ∈
ℝdlayer is bias, andActivation(⋅) is a proper activation function that
enhances the otherwise linear matrix multiplication and addition
operation with non-linearity. Typically, the training process of
neural networks is to optimize the weights and biases to fit the
training data set and minimize metrics or losses. Usually, a batch
of input vectors will be stacked into a matrix and processed at the
same time, and b will be horizontally broadcast to fit the shape.

The weights are hard parameters that only change during
learning and are insistent during inferences. In contrast, recently
developed neural networks tend to utilize “soft” weights to
simulate the cognitive attention to inputs, of which a typical
example is the attention mechanism (Vaswani et al., 2017).These
networks leverage additional branch layers to adaptively calculate
weights from inputs, which are again multiplied by the inputs at
the layer at the main route.

The proposed CETFT utilizes two of these modules. First
is the cross-entity attention module, which builds associations
between each entity at different times. The second is the variable
selection network (Lim et al., 2021) used for entity encoding,
which simulates the importance of features for understanding the
state of each entity at each time. In this paper, both thesemodules
have been improved to adapt to the cross-entity situation. This
sectionwill provide a detailed definition of these two keymodules
and also the overall architecture of the network.

3.1 CETFT Architecture
The CETFT can be roughly separated into three sequential
submodules, as shown in Figure 2: 1) the cross-entity attention,
2) the entity encoding network, and 3) the output layers. Gated
residual networks are used to connect adjacent sub-modules and
further process intermediate variables. These modules will be
defined in this section.

3.2 Cross-Entity Attention
In order to model the correlation among entities as well as
time steps at the same forecast time, A cross-entity attention
mechanism is employed for the temporal fusion transformer.The
attention module receives encoded vectors from entity encoding
networks and generates temporally enhanced feature vectors
for the output layer. Before the module, an encoded vector
of dinput will be generated for all entities from all times. For
a system with E entities, L encoder length, and H decoder
length, the number of vectors available is E(L+H). The attention
module receives twomatrics as input:Z1 ∈ ℝ

dinput×E(L+H) composed
of all encoded vectors stacked, and Z2 ∈ ℝ

dinput×EH within the
predicted time period. Adapted from the implementation of
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the attention mechanism called scaled dot-product attention
(Vaswani et al., 2017), the process is represented as:

CEAttention (Q,K ,V) = Softmax(
QKT

√dk
⊙ M̃)V (3)

QT =WQZ2, (4)

KT =WKZ1, (5)

VT =WVZ1, (6)

where Q ∈ ℝEH×dk , K ∈ ℝE(L+H)×dk , and V ∈ ℝE(L+H)×dv are the
query, key and value matrices, respectively, and WQ ∈ ℝ

dk×dinput,
WK ∈ ℝ

dk×dinput, WV ∈ ℝ
dv×dinput, are learnable weights. The ⊙

symbol denotes Hadamard product, and the mask matrix M̃ ∈
ℝEH×E(L+H) provides information accessibility control for the
module, which will be defined later The Softmax function is a
function that scales a input vector z ∈ ℝdinput into the range (0,1),
and keeps the sum of the elements equal to 1:

Softmax(z)j =
exp(zj)

∑dinput
i=1
exp(zi)
, (7)

where exp(⋅) is the power with natural base. The output of the
whole module is with dimension EH× dv.

The process can be interpreted as a weighted sum of the
features. The weights are calculated by multiplying the keys from
all time and queries within the prediction horizon. The module
scale the feature vectors according to the relationship among time
frames and scale the input according to the estimated attention.

For time series forecasting, a decoding mask M should be
applied to define the causal relationships between embeddings
(Li et al., 2019).The encoding embeddings, however, are available
to all time frames.Therefore, themask for a single-entity attention
mask is shaped like a right-angled trapezoid. The lengths of the
top base and the bottom base are equal to the size of encoder
embeddings and the size of all embeddings, respectively. The
mask is described as a matrix M ∈ ℝH×(L+H), where its elements
are:

Mi,j = {
1 j ≤ L+ i
−∞ j > L+ i , for 1 ≤ i ≤H,1 ≤ j ≤ L+H. (8)

Themaskmatrix is illustrated in the left sub-figure inFigure 3.
To adapt to a multiple-entity application, the attention mask

should be repeated by the number of entities both horizontally
and vertically, which is illustrated in Figure 3. Mathematically,
the cross-entity mask is defined as:

M̃i,j = {
1 jmod (L+H) ≤ L+ imodH,
−∞ otherwise,

for 1 ≤ i ≤ EH,1 ≤ j ≤ E (L+H) .
(9)

Furthermore, to increase the representative capability of the
attention mechanism, it is common to stack multiple attention
heads into a multi-head attention module, which is defined as:

MultiHead (Q,K ,V) =Wh [H1;…;Hmh
] , (10)

Hh = CEAttentionh (Q,K ,V) , (11)

where h is the index of attention head,mh is the number of heads,
andWh ∈ ℝmhdv×dv is a weight parameter matrix.

3.3 Entity Encoding Networks
The entity encoding modules are a set of networks for producing
encoded vectors from raw inputs, which are passed to the
attention layer.The network consists of two components in series.
Firstly, the shared variable selection network filters important
variables in the input, and then the LSTM layers will initially
extract the time information.

3.3.1 Shared Variable Selection
At different times, the variables that have the main impact on
the forecast are different. The variable selection networks are
intended to screen valuable variables and apply weights to those
variables based on their projected importance.

The inputs will be categorized according to distinct entities
initially, as indicated in Figure 2. Each input will be sent into a
single variable selection network at each time frame. All of these
networks’ outputs will be collected and organized in the same
hierarchy as their inputs.

Before being fed into the networks, the numerical inputs
are normalized. The categorical inputs will be encoded using a
normalized vector whose length is determined by the number of
available values. After this process, it makes no difference to the
network whether the input is continuous or discrete, except that
discrete variables are represented as a vector rather than a single
value. Without loss of generality, the following definition will be
based on a single continuous variable.

In practice, the variable selection network modules can be
reused if the same features are shared across time or entities,
which is similar to how themodules were shared for encoders and
decoders in the original TFT model. Different from the original
TFT implementation, the variable selection networks are shared
among entities to reduce the complexity of the network. These
networks rely on the idea of a Gated Residual Network (GRN)
defined by Lim et al. (2021) as follows:

GRNω (z3) = LayerNorm(z3 +GLUω (η1)) , (12)

η1 =W1,ωη2 + b1,ω, (13)

η2 = ELU(W2,ωz3 + b2,ω) (14)

where ω is an identifier of the network that corresponds to a
certain input element, LayerNorm is a standard layer normalizer
by Ba et al. (2016), and η1, η2 ∈ ℝ

dlayer are intermediate variables,
W1,ω, W2,ω, b1,ω, b2,ω are learnable weights and biases of the
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FIGURE 2 | CETFT architecture. Entity encoding networks receive inputs directly related to theirs corresponding entity, and the outputs are concatenated
chronologically. The cross-entity attention integrates information from all entities and time frames. Gated residual layers provide enhancement to skip connections.
Dense layers generate forecasting results.

FIGURE 3 | Left: The original self-attention mask for TFT. Right: The cross-entity attention mask for CETFT, generated by repeating the single-entity attention mask
by E times both horizontally and vertically.

layers, and Exponential Linear Unit (ELU) is a type of activation
function defined as (Clevert et al., 2016):

ELU = {x if x > 0
exp (x) − 1 if x ≤ 0, (15)

The Gated Linear Unit (GLU) is (Dauphin et al., 2017):

GLUω (z) = σ (W3,ωz + b3,ω) ⊙ (W4,ωz + b4,ω) , (16)

where σ(⋅) is the sigmoid function and⊙ is Hadamard product,
W3,ω.W4,ω, b3,ω, b4,ω are learnable layer parameters.

In practice, individual shared variable selection networks
are built for each element in the model input. Let χj,t be j-th
normalized or encoded input variable at time frame t, the variable
selection layer is:

vχj,t = Softmax(GRNvχj
(χj,t)) , (17)

where vχj,t identifiers the networkwith parameters for j-th variable
at given time t.

On the other hand, the input χj,t is handled by an extra GRN
layer associated with itself:

̃χj,t = GRN ̃χj,tχj,t , (18)

Individual variable selection networks corresponding to the
inputs connected with a certain entity are collected based on pre-
defined entity attributes, and their outputs are aggregated into a
single vector. LetV i

t be the set of variables associated with entity i
at time t, and the variable selection network for entity i produces
the following output:

̃χit = ∑
j∈V i

t

vχj,t ̃χj,t (19)
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TABLE 1 | Building categories and energy load patterns.

No. Category Pattern

B1 Administration Varies from 8 a.m. to 5 p.m.
B2 Lecture hall Relatively small but chaotic load
B3–B7 Classroom/Lab Varies from 8 a.m. to 10 p.m.
B8 Library The largest and most stable load
B9 Parking structure with photovoltaic panels Negative load during the daytime
B10–B13 Student residence hall Diverse load

Note that aside from inside the entity encoding networks, the
GRN blocks also act as connectors of the main modules in the
CETFT network.

3.3.2 LSTM Layers
LSTM layers are a type of RNN layers that receive inputs of
the current time and also hidden inputs from past time. The
mathematical definition of LSTM can be found in the paper by
Hochreiter and Schmidhuber (1997). The LSTM layers generate
two parts of return values, namely the output vector and the
hidden vector. The output vector, as indicated by the name, is the
variable passed to other modules. On the other hand, the hidden
vector is passed back to the layer.

In CETFT, the LSTM layers are used to further process the
features of each time output by the variable selection network
to initially extract the time information. The past inputs ̃χitS∶t
are fed into LSTM encoders to get output and hidden vectors
for each frame, and the latter is further inputs ̃χit+1∶tF to LSTM
decoders. The outputs of LSTM encoders and decoders are
grouped chronologically into a vector ̃χ i. Finally, the outputs from
all entities are aggregated and flattened into a big vector, which is
the attention layer’s input, to align with the cross-entity attention
module.

FIGURE 4 | Pearson correlation of building loads.

3.4 Output Layer
The outputs of the attention module will pass through another
GRN before a set of dense layers are introduced to generate
quantile outputs for the model. The model will generate multiple
outputs corresponding to the forecasted values of each entity
at each prediction time. In addition, the quantile loss by
Sharda et al. (2021) summed across all outputs is used to train
CETFT.

4 CASE STUDY

4.1 Dataset and Evaluation Setting
The data set is a collection of energy loads of 13 buildings at
the University of Texas at Dallas, accompanied by 21 columns
of auxiliary variables including meteorological records and
calendar information1. The recordings span from January 2014
to December 2015 with a 1-h sample interval, providing a total of
17,520 records.

The buildings can be separated into six categories, as listed in
Table 1. B9 is a site equipped with photovoltaic panels, whose
load drops to negative numbers during the daytime. B2 is a
lecture hall. Its load is relatively small and drops to 0 about 30%
of the time. All other buildings have higher loads during the
day and lower loads at night, but their load patterns vary with
different categories. The correlations among these buildings can
be clearly seen fromPearson analysis illustrated in Figure 4. A list
of auxiliary features and their accessibility and types are shown
in Table 2. The correlations among meteorological variables are
illustrated in Figure 5. The heat map indicates high correlations
among the variables related to irradiance and temperature, while
they share a negative correlation with the solar zenith angle and
relative humidity.

The categorical inputs are converted to encoding vectors, while
continuous inputs are normalized.These inputs are concatenated
into a vector for each entity at each time step. The data sets
are chronologically divided into training/validation/test sets with
a ratio of 0.7:0.15:0.15. The forecast horizons are selected as
1, 6, 12, and 24 h ahead. This horizon configuration is based
on the daily periodicity of the time series and is commonly
adopted by recent works (Arsov et al., 2021; He et al., 2022). In

1The data is accessible on the website of IEEE Data Port (https://dx.doi.org/
10.21227/jdw5-z996).
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TABLE 2 | Feature and target specification in the UTD dataset.

Variable Accessibility Type

Holiday Predetermined Categorical
Day Predetermined Categorical
HOD (Hour of Day) Predetermined Categorical
DOW (Day of Week) Predetermined Categorical
MOY (Month of Year) Predetermined Categorical
Cloud type Unknown Categorical
DHI (Diffuse Horizontal Irradiance) Unknown Continuous
DNI (Direct Normal Irradiance) Unknown Continuous
GHI (Global Horizontal Irradiance) Unknown Continuous
Clearsky DHI Unknown Continuous
Clearsky DNI Unknown Continuous
Clearsky GHI Unknown Continuous
Dew point Unknown Continuous
Temperature Unknown Continuous
Pressure Unknown Continuous
Relative humidity Unknown Continuous
Solar zenith angle Unknown Continuous
Precipitable water Unknown Continuous
Wind direction Unknown Continuous
Wind speed Unknown Continuous
Load Target Continuous

the test data set, there are 1460 and 846 missing data of buildings
B2 and B9 out of 2628 records, respectively, and therefore the
two buildings are excluded from forecast targets during model
evaluation.

The hyperparameters CETFT and TFT are tuned with
the Optuna framework (Akiba et al., 2019). The range of the
hyperparameters are: network layer size range in [8, 256],
attention head size in [1, 16], learning rate range in [1e-5,
0.1], dropout range in [0.1, 0.3]. The model is optimized based
on the loss on the evaluation set, and the optimized model
is further evaluated on the test set. The Ranger optimizer is

FIGURE 5 | Pearson correlation of meteorological variables. CDHI, clearsky
DHI; CDNI, clearsky DNI; CGHI, clearsky GHI; DP, dew point; T, temperature;
P, pressure; RH, relative humidity; SZA, solar zenith angle; PW, precipitable
water; WD, wind direction; WS, wind speed.

adopted for training, with the batch size equal to 128 and a
max epoch of 300. The learning rate is divided by 10 if the
evaluation loss has stopped reducing for 4 epochs, and the
training will early stop after 10 epochs without performance
improvement.

The models to be compared are roughly divided into
three categories: identification-based methods, of which a
representative algorithmARIMA; traditional statistical methods,
including PLSR, RR and SVR; and deep-learning-basedmethods,
including LSTM, GRU and TFT. The metric used for evaluation
is Symmetric Mean Absolute Percentage Error (sMPAE) which is
commonly used in time-series forecasting in the field of energy
(Demir et al., 2021; Meira et al., 2021; Putz et al., 2021):

sMAPE = 1
n

n

∑
i=1
|

yi − ̂yi
(yi + ̂yi)/2

| (20)

where n is the amount of prediction made. A smaller value of the
metric indicates a better performance of the model.

4.2 Comparison With Baseline
Table 3 collects the sMAPE error of all testing scenarios, covering
different horizons, models, and buildings. The best model is
marked in bold in each line. It can be seen that CETFT has
achieved the best performance in 37 tests out of 44.The remaining
best results were achieved by TFT, RR, and ARIMA, respectively.
From an architectural point of view, CETFT achieves the best
results for all horizons with the exception of B1, B5, and B8. In
terms of computational complexity, our network takes 3 h and
27 min to train, while TFT takes 1 h and 25 min on an Nvidia
A100 GPU with 40 GiB memory.

All models’ predictive power declines as the horizon lengthen,
which is to be expected given the limited amount of information
available for future forecasts. ARIMA is the model that suffers
the most as the horizon lengthens. Although ARIMA performed
best on B8 when horizon = 1, it quickly became the model with
the biggest error as the horizon was extended. When the horizon
is increased from 12 to 24, however, the ARIMA error does not
greatly rise, which can be explained by the cyclical pattern of
energy usage throughout the day.

Statistical machine learning models including PLSR, RR, and
SVR have obtained similar results. The RR model’s accuracy
gradually drops as the horizon lengthens, whereas PLSR and
SVR remain reasonably stable. When horizon = 1, however,
the latter two already have bigger errors. As a result, the RR
model has a superior overall performance. There is a more
remarkable phenomenon regarding these models, that is, their
performance on buildings B12 and B13 is rather poor. These
statistical models may fail to capture special patterns related
to certain entities in the time series, resulting in inaccurate
forecasts.

LSTM and GRU, the two RNN-based models, have relatively
similar model performance. The accuracy of these two models
is relatively little influenced by the prediction horizon. These
two models outperform statistical machine learning techniques
for B10–B13 prediction, but they don’t have any evident
advantages in other buildings. In general, neither of these
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TABLE 3 | SMAPE on the UTD dataset.

horizon = 1

 Entity ARIMA PLSR RR SVR LSTM GRU TFT CETFT

 B1 3.73% 7.87% 4.73% 8.65% 6.99% 6.38% 3.80% 3.13%
 B3 5.28% 11.47% 7.95% 10.51% 8.25% 6.83% 5.92% 4.93%
 B4 3.05% 4.78% 2.45% 6.38% 4.79% 3.89% 2.88% 2.12%
 B5 3.89% 7.21% 3.59% 6.50% 9.38% 8.65% 6.86% 6.79%
 B6 5.17% 8.55% 5.14% 8.92% 8.95% 6.91% 4.96% 3.27%
 B7 9.18% 15.14% 8.63% 14.05% 12.88% 8.55% 6.59% 3.92%
 B8 1.35% 2.85% 1.77% 3.42% 3.47% 2.68% 2.40% 1.72%
 B10 6.93% 11.64% 7.10% 11.90% 6.43% 6.98% 5.44% 4.79%
 B11 7.38% 11.70% 6.50% 14.13% 8.37% 7.34% 7.60% 6.41%
 B12 6.76% 30.21% 18.98% 30.49% 7.38% 7.70% 6.27% 5.60%
 B13 15.28% 42.78% 25.13% 39.11% 9.34% 10.19% 7.79% 6.06%

horizon = 6

 Entity ARIMA PLSR RR SVR LSTM GRU TFT CETFT

 B1 10.67% 9.18% 6.04% 9.11% 7.68% 7.90% 4.94% 3.88%
 B3 17.62% 12.10% 7.35% 10.93% 8.98% 8.89% 7.05% 5.66%
 B4 10.62% 5.58% 3.48% 6.74% 5.45% 5.35% 3.60% 2.44%
 B5 9.85% 8.88% 7.07% 7.95% 10.62% 9.80% 7.45% 7.41%
 B6 15.60% 9.48% 5.07% 9.40% 10.12% 9.88% 6.39% 4.00%
 B7 31.97% 16.20% 10.08% 14.34% 13.17% 12.11% 7.06% 4.34%
 B8 2.95% 3.19% 2.38% 3.60% 3.73% 3.49% 2.60% 1.82%
 B10 13.80% 12.79% 9.40% 12.24% 7.86% 9.19% 6.73% 5.66%
 B11 13.22% 12.19% 9.56% 14.37% 8.60% 7.70% 7.80% 6.83%
 B12 13.34% 30.95% 28.21% 30.88% 8.46% 9.42% 7.39% 6.51%
 B13 29.73% 44.31% 24.39% 40.14% 10.37% 14.15% 10.05% 7.85%

horizon = 12

 Entity ARIMA PLSR RR SVR LSTM GRU TFT CETFT

 B1 16.52% 9.67% 7.70% 9.31% 8.93% 8.98% 4.49% 4.94%
 B3 28.70% 12.45% 8.55% 11.10% 10.33% 10.41% 6.59% 6.49%
 B4 18.15% 5.97% 4.47% 6.87% 6.57% 5.99% 3.03% 2.79%
 B5 14.47% 9.66% 8.58% 8.78% 11.49% 10.84% 7.67% 8.12%
 B6 25.18% 9.82% 5.95% 9.64% 12.29% 11.74% 5.73% 5.10%
 B7 51.33% 16.57% 11.44% 14.51% 15.34% 14.62% 6.56% 5.39%
 B8 3.93% 3.32% 2.71% 3.68% 3.88% 3.81% 2.62% 2.02%
 B10 19.33% 13.52% 10.71% 12.56% 8.54% 8.47% 7.14% 6.93%
 B11 17.82% 12.44% 10.16% 14.53% 8.68% 7.98% 8.08% 7.16%
 B12 18.91% 31.42% 29.24% 31.23% 9.52% 9.05% 8.25% 7.80%
 B13 41.54% 46.41% 29.22% 41.23% 12.04% 13.22% 10.71% 10.14%

horizon = 24

 Entity ARIMA PLSR RR SVR LSTM GRU TFT CETFT

 B1 17.64% 10.03% 8.52% 9.61% 9.52% 9.19% 4.95% 5.03%
 B3 31.18% 12.86% 9.26% 11.29% 10.66% 10.30% 6.74% 6.14%
 B4 20.25% 6.25% 4.74% 7.02% 6.00% 5.96% 3.07% 2.65%
 B5 15.53% 10.13% 9.31% 9.43% 11.53% 11.87% 7.87% 8.40%
 B6 26.50% 9.85% 6.33% 9.86% 11.84% 11.44% 6.05% 4.38%
 B7 51.93% 17.26% 12.25% 14.75% 14.82% 13.48% 6.34% 4.83%
 B8 4.36% 3.48% 2.96% 3.76% 4.00% 4.07% 2.64% 2.15%
 B10 20.27% 14.51% 12.25% 13.07% 8.48% 8.66% 7.73% 7.08%
 B11 17.96% 12.64% 10.49% 14.79% 8.66% 9.16% 8.15% 7.91%
 B12 20.38% 31.90% 30.43% 31.81% 9.47% 9.78% 8.94% 8.73%
 B13 48.58% 49.93% 35.14% 43.14% 12.52% 13.14% 11.49% 11.01%

The best model in each row is marked in bold.
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two models may be particularly favorable for multi-entity
forecasting.

The TFT is the closest to the proposed CETFT in terms
of performance. But on most buildings, especially buildings
including B6 and B7, CETFT still shows a clear advantage, where
the error is reduced by about 1–2 percentage points. When the
horizon is smaller, CETFT offers more visible advantages than
TFT. This reflects CETFT’s superiority over TFT in extracting
information from entities. In general, CETFT delivers the best
overall forecasting performance by combining the advantages of
TFT for time-series forecasting with advances based on multi-
entity forecasting.

4.3 Model Interpretability
It is feasible to interpret the model by examining the runtime
weights during prediction thanks to the incorporation of two
soft-weight-based network structures, namely the cross-entity
attention module and shared variable selection network. Both
of these networks will assign bigger weights to the more
important inputs each time the model makes a prediction
(Ding et al., 2020; Niu et al., 2021). As a result, a probabilistic
assessment of the contribution or importance of a particular
object (i.e., a variable/entity/time frame) to the prediction can
be made by aggregating the soft weights pertaining to that object
across the whole data set (Lim et al., 2021).

Several use cases, including 1) variable importance
assessment, 2) cross-entity relationship evaluation, 3) cross-time
relationship evaluation, and 4) time-series pattern identification,
will be exhibited in this section to evaluate the model’s
interpretability.

4.3.1 Variable Importance Assessment
By aggregating the weights of the shared variable selection
networks, it is possible to assess the importance of different
variables to the network. The importance of all variables
and known variables can be determined by aggregating the
weights of the variable selection network in the encoder and
decoder sections, respectively. The two classes of importance
are normalized so that their sum is equal to 1, and the result
is recorded in Tables 4, 5. In these two tables, the importance
percentages greater than 5% and 10% are, respectively marked in
bold, indicating key variables for encoding and decoding.

Holiday, day, HOD, GHI, clearsky DHI, clearsky GHI,
Pressure, precipitable water, and load are critical factors in the
encoder stage, according to the model. Because the load has a
clear daily periodicity and is considerably affected by holidays,
the impact of holidays and hours on the forecast is interpretable.
The variables related to sunlight are strongly correlated, and the
importance of clearsky GHI is the highest for all variables, but
someof the variables are of low importance.This could be because
the variable selection network identifies redundant features and
reduces dimensionality. It is worth noting that the importance of
the load itself is not at its peak. This illustrates the importance of
auxiliary variables in load forecasting.

On the decoder side, Holidays and hours still have a very
important impact on the prediction. However, the rank of date
and DOW is the opposite of those of the encoder. This may

TABLE 4 | Importance of variable importance for past inputs.

Variable Importance

Holiday 7.66%
Day 5.90%
HOD 7.71%
DOW 2.45%
MOY 4.78%
Cloud type 2.71%
DHI 3.38%
DNI 3.39%
GHI 7.37%
Clearsky DHI 6.10%
Clearsky DNI 3.29%
Clearsky GHI 9.18%
Dew point 2.76%
Temperature 1.99%
Pressure 5.40%
Relative humidity 3.19%
Solar zenith angle 1.03%
Precipitable water 8.13%
Wind direction 4.69%
Wind speed 3.40%
Load 5.48%

Aggregation of variable selection network weights and normalized to sum to 1.
Percentages greater than 5% are marked in bold.

TABLE 5 | Importance of variable importance for future inputs.

Variable Importance

Holiday 26.77%
Day 7.66%
HOD 50.13%
DOW 11.78%
MOY 3.67%

Aggregation of variable selection network weights and normalized to sum to 1.
Percentages greater than 10% are marked in bold.

be due to the fact that the information of DOW is partially
contained in the Day variable, and the network decreases the
dimensionality of the two and retains the influence of one
of the variables for the same reason as the sunlight-related
variables.

4.3.2 Cross-Entity Relationship Evaluation
The cross-entity relationship is evaluated by aggregating and
normalizing the weights of the attention module per entity, as
illustrated in Figure 6. The figure maps the normalized attention
from different buildings to predicate to the encoded feature
vectors of different buildings. High, medium, and low attention
are indicated by the colors red, white, and green, respectively.
Note that the attention is not necessarily synced with correlation,
as the former more likely represents the model’s assessment
of causality between variables (Wang X. et al., 2021; Yang et al.,
 2021).

It can be seen that B9 has received the most attention from
other buildings. This makes sense because B9 has photovoltaic
panels installed, which is the only building with electricity
generating capacity, and its energy consumption pattern differs
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FIGURE 6 | Heatmap of attention weights aggregated per entity. The
horizontal axis represents the entity being input, and the vertical axis denoted
the entity being predicted.

FIGURE 7 | Heatmap of attention weights aggregated per time. The
horizontal axis represents the entity being input, and the vertical axis denoted
the entity being predicted.

significantly from the others. Higher weights are given to three
classroom/lab buildings (B3, B5, and B7), as well as two student
living halls (B11, B13). This reflects the model’s selection of
variableswith a similar pattern.The administration building (B1),
the lecture hall (B2), and the library (B8) are three structures

that are reasonably independent or utilize a consistent amount of
energy. As a result, their contribution to the prediction is minor.

4.3.3 Cross-Time Relationship Evaluation
Similar to the cross-entity relationship, it is also possible to
identify the cross-time relationship by aggregating the attention
weights per time. The heatmap is shown as Figure 7. This
relationship is expressed in relative time rather than absolute
time, and the axis tick tables represent hours relative to the
current time.

A diagonal line running from the upper left to the lower
right is clearly visible in the figure. This shows that the
network is mostly interested in information from the same
hour the day before. Each time frame’s attention in the
encoder peaks right of the diagonal line, then gradually
decreases and again increases in chronological order. This
is primarily owing to the variable’s periodic character. The
majority of inputs of interests occur at the same time the
day before, as well as a few hours ahead of the prediction
time.

This figure also demonstrates the difficulty in long-term
series forecasting. While the attention mechanism can directly
model correlations across time frames, the amount of attention
the network can provide diminishes over time. Maximum
attention is given to the first prediction, while the attention level
becomes increasingly distracted over time. As a result, longer-
period projections are still insufficiently informative and perform
poorly.

4.3.4 Time-Series Pattern Identification
Attention weights can also be aggregated in terms of absolute
time frames. This allows time-series pattern identification by
providing a picture of how much each actual time frame
contributes to the model output.

Figure 8 uses the attention provided at different past times
collected from building B4, B5, B6, and B12 for demonstration
of this capability of the network. The horizontal axis represents
the number of hours elapsed since Sunday, 13 September 2015,
which is the first day in the test data set. The load of B6 is shown
in red, while the overall attention is shown in cyan. It can be
seen that loads of the four buildings all show obvious periodic
characteristics within a cycle of 24 h. For B4, B5, and B6, the loads
show consistent behavior duringworkdays, but a different pattern
occurs eachweekend.The first such change occurs at about 100 h.
Therefore, there is also a cyclical feature with a period of a week
(i.e., 168 h). Simultaneously, the network’s attention has shown a
similar periodicity, with a notable spike over the weekend. The
time-series pattern for B12 is a bit different. The load for B12
does not show a clear periodicity based on weeks. Instead, the
load generally shows an upward trend over time. Corresponding
to this characteristic, the attention to B12 experienced a rise
when the load dropped. These analyses demonstrate how the
attention module reacts to the input time-series patterns and
pays particular attention to particular changes. This provides
insight for automatic analysis of the time-series characteristics
and significant events.
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FIGURE 8 | Load and normalized attention to building (A) B4, (B) B5, (C) B6, and (D) B12 for 500 h since 13 September 2015.

5 CONCLUSION

This paper presents a deep-learning-based model named
CETFT for multi-entity energy load forecasting. Entity
encoding networks and a cross-entity attention module
are defined. In a case study involving 13 buildings on
a university campus, the proposed model achieves the
minimum errors on all buildings given different prediction
horizons. Further analyses are performed to assess the model’s
interpretability, revealing the relevance of variables, linkages
between entities and time frames, and time-series features.
The concept of selection networks could be used in future
work to address the complexity of cross-entity attention
processes and strike a balance between model correctness and
computation overhead, along with improved fine-grained input
categories for better adaption to a wider variety of time-series
data.
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NOMENCLATURE

τ prediction time offset

χt initial input

ω shared variable selection network identifier

b layer bias

dinput input dimension

dlayer layer dimension

dk dimension of key

dv dimension of value

E number of entities

f(⋅) prediction model

H attention head

H prediction Horizon

i entity index

K key matrix

L encoder length

M attention mask matrix

M̃ cross-entity attention mask matrix

mh number of attention head

n amount of predictions

Q query matrix

t time frame

tF end of future time window

tS starting time of input

ut observed input

V value matrix

v input identifier

W layer weight

xt predetermined input

yi actual target value

̂yi predicted target value

z layer input vector

Z layer input matrix
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An Improved Dual-Loop Feedforward
Control Method for the Enhancing
Stability of Grid-Connected PV and
Energy Storage System Under Weak
Grids
Chunxu Li1, Xinrui Liu1*, Rui Wang1, Yi Zhang2 and Li Zhang3

1The College of Information Science and Engineering, Northeastern University, Shenyang, China, 2State Key Laboratory of
Alternate Electrical Power Systemwith Renewable Energy Sources, North China Electric Power University, Beijing, China, 3School
of Electrical and Electric Engineering, Nanyang Technological University, Singapore

Although the stability of the grid-connected photovoltaics (PV) and energy storage
systems under weak grids has been widely researched, the classical improvement
methods focus more on suppressing the harmonics introduced by the phase-locked
loop (PLL). Furthermore, the current distortion caused by the DC voltage loop is difficult
to be eliminated. In this study, based on the hybrid energy storage system of battery-
supercapacitor, a dual-loop compensation method is proposed. First, the small-signal
model and output impedance matrix are built in d-q axis. Second, for different
disturbance loops, a DC voltage loop disturbance compensation method based on
power feedforward is proposed to suppress the harmonics caused by the DC voltage
controller (DVC). In addition, a voltage feedforward PLL disturbance compensation
method is proposed, which can reduce the PLL perturbations and revise the output
impedance to improve system stability. Finally, the output impedance frequency
characteristic analysis and the hardware-in-the-loop (HIL) simulation results show
that the proposed control method can effectively improve the stability of the system
under weak grids.

Keywords: PV and energy storage system, weak power grids, grid-connected inverter, phase-locked loop, stability
analysis

1 INTRODUCTION

Renewable energy sources such as PV have the characteristics of intermittency and randomness. In
order to ensure the stability of the microgrid system, certain capacity energy storage devices need to
be configured in the microgrid system. The battery-supercapacitor (SC)–based hybrid energy storage
system (HESS) has been proposed to mitigate the impact of dynamic power exchanges on the
battery’s lifespan (Jing et al., 2017). Aiming at the control of the PV and energy storage microgrid,
(Akram et al., 2018), proposed an iterative search algorithm to improve the optimal size of the PV
and energy storage systems in the microgrid. (Tricarico et al., 2020) made improvements on the
microgrid topology. In (Xu and Cen, 2021), a coordinated control strategy was used to suppress the
power fluctuations of grid-connected PV power generation systems. Due to the interaction between
the inverter and grid impedance, will cause a decrease in system stability. Therefore, considering the
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weak grid conditions, the research on stable control of grid-
connected inverters is particularly important.

The impedance analysis is widely used in the stability analysis
of grid-connected inverters. (Sun, 2011) pointed out that if the
ratio of the grid impedance to the inverter output impedance
satisfies the Nyquist stability criterion, the system will remain
stable. (Wen et al., 2014) analyzed the control of the voltage
controller in the low-frequency range, the output impedance
decreases as the voltage loop bandwidth increases, and the
wider will be the frequency range of the negative impedance.
In this regard, (Xu et al., 2017), proposed an adaptive control
method, which adjusts the voltage feedforward signal through an
adaptive criterion to improve the stability. (Lu et al., 2018)
revealed that the dc-link voltage control may cause high-
frequency oscillations in the inverter. (Yuan et al., 2017)
pointed out that controller parameters of DVC affect the
oscillation. In addition, (Harnefors et al., 2015), suggested not
to select the bandwidths of DVC, unnecessarily large, to avoid
oscillation. (Dong et al., 2014); (Wen et al., 2015a); (Wen et al.,
2015b); (Bakhshizadeh et al., 2016); (Yang et al., 2019); (Nicolini
et al., 2020) mainly analyzed the influence of the PLL on the
stability of the inverter and pointed out that the PLL is one of the
main factors that affect the stability of the system. The method of
introducing a feedforward function was used by (Wang et al.,
2010); (Xue et al., 2012); (Zhang et al., 2018) to improve stability.

To solve the influence of PLL on system stability, (Cespedes
and Sun, 2014); (Yang et al., 2014); (Zhou et al., 2014); (Davari
and Mohamed, 2016) made different attempts. In (Zhou et al.,
2014), a small-signal model of the control system including the
PLL was established. It was discussed that the gain of the PLL has
a greater effect on the stability of the inverter, and a method is
proposed to reduce the bandwidth of the PLL to solve this
problem. (Yang et al., 2014) used virtual impedance to
regulate the output impedance instead of adjusting the current
loop gain to improve the inverter’s harmonic suppression and
stability robustness. The current control loop can be
independently designed. (Wang et al., 2014) reviewed the
control methods of VSCs and CSCs based on virtual
impedance. (Cao et al., 2017) proposed an impedance matrix
modeling method, which simplifies the stability judgment

process. However, the impact of the DC side voltage
fluctuation is ignored. For PV grid-connected systems, the DC
side voltage will fluctuate under the influence of factors such as
intensity of light. Therefore, it is necessary to take DC voltage
fluctuations into consideration.

This study aims at the stability of weak grid-connected PV and
energy storage systems. To meet the dynamic response
requirements, a HESS is adopted. For the grid-connected
inverter, the small-signal analysis and impedance method are
used to analyze the stability of the system, including the influence
of the PLL and the voltage loop controller. The main
contributions are as follows:

1) Considering the State of Charge (SoC) of the battery, an
adaptive bandwidth frequency low-pass filter (LPF) is
proposed, smoothing the low-frequency power from the
battery, ensuring DC bus voltage stability.

2) A DC voltage loop disturbance compensation control based
on power feedforward is added to the DVC to reduce the
perturbation signals caused by the controller parameters.

3) To eliminate the negative effects introduced by PLL, a
disturbance compensation method based on voltage
feedforward is proposed, which further improves the
stability of grid connections.

The rest of this article is organized as follows. Section
3 establishes the impedance model of the grid-connected
inverter. Section 4 discusses the proposed control method and
analyzes the control effect. Section 5 builds a HIL platform to
verify that the proposed method can reduce the frequency range
of the negative impedance characteristics. The conclusion is given
in Section 6.

2 GRID-CONNECTED PV AND ENERGY
STORAGE SYSTEM UNDER WEAK GRIDS

Figure 1 is a weak grid-connected PV and energy system. PV and
HESS are connected to the DC bus through DC/DC converters.
Therefore, the DC bus voltage becomes a key indicator for stable

FIGURE 1 | Grid-connected PV and energy storage system.
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operation. L is the filter inductance on the inverter side, and R is
the parasitic resistance on the inductance. The grid impedance is
represented by Zg, which comprises an inductance Lg and a
resistance Rg, and θ is the phase angle of the PLL. DC bus voltage
and current are represented by vdc and idc, respectively. The
control system of the inverter comprises a DVC, an AC current
controller (ACC), and PLL.

2.1 Structure Design of HESS
The PV array is connected to the DC microgrid through a boost
converter, which adopts theMPPT control algorithm. TheHESS uses
a bidirectional DC/DC converter to connect to the DC microgrid.
Due to the imbalance between power generation and load demand,
the HESS is proposed to maintain the DC bus voltage vdc stability.

In Figure 2, RL represents the load of the DC bus, UPV, iPV,
UBat, iBat,USC, and iSC represent the voltage and output current of
PV array, battery, and SC; LPV, LBat, and LSC are the filter
inductance of the converter; CPV is the filter capacitor; and S1,
S2, S3, S4, and SPV are the control switches.

2.2 Self-Adaptive LPF Considering SoCBat
The control block diagram of the voltage stabilization control
strategy is shown in Figure 3. The basic idea of this control
strategy is that the battery supports the low-frequency part of
power changes and the SC supports the high-frequency part of
power changes. Therefore, vdc is compared with its reference
value vdc ref, and the total current iHESS ref is provided by the PI
controller. A low-pass filter (LPF) is used to divide the total
current into a steady-state power component and a dynamic
power component. The steady-state power component is used as
the reference value iBat ref for battery current control, and the
dynamic power component is used as the reference value iSC ref

for SC current control.
The smaller the bandwidth frequency of the LPF, the smoother

the power borne by the battery after PHESS passes through the
LPF, and the more the power borne by the SC. Therefore, the
power distribution effect of the LPF can be optimized by changing
the size of bandwidth frequency.

On the basis of the traditional power distribution method, the
SoC of the HESS is considered, and the bandwidth of the LPF is
changed in real time according to its SoC value to realize the
reasonable distribution of the power in HESS.

We set the improved self-adaptive bandwidth frequency ω1 as
follows:

ω1 � SoCBat

SoCBat ref
· ω0, (1)

where 0.2< SoCBat < 0.9, ω0 is the initial bandwidth frequency of
the LPF, and SoCBat ref is the optimal SoC of the battery, with a
magnitude of 0.6.

In Figure 4, the power with a frequency lower than ω1 is borne
by the battery, and the power with a frequency higher than ω1 is
borne by the SC. Figure 4A shows the power distribution under
the traditional LPF, where ω1 � ω0. Figure 4B shows that the
larger SoCBatmeans larger ω1, and the battery bears more range of
power output. When the battery power is low, ω1 decreases with
SoCBat. SC takes on more range of power output so as to extend
the working time of HESS and protect the battery.

FIGURE 2 | DC microgrid structure.

FIGURE 3 | Structure of voltage stabilization control.

FIGURE 4 | (A) Traditional LPF power distribution diagram, (B) self-
adaptive LPF power distribution diagram considering SoCBat.
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With the self-adaptive LPF power distribution method, the
new reference current iBat ref andiSC ref are obtained. By sending
these parameters to the PI controllers, we can get the bidirectional
DC/DC control signals.

2.3 System Power Distribution
In the power distribution control strategy, the DC bus voltage is
controlled by the PV and the HESS. Pinv is the power at the input
of the inverter, and PL is the power of DC load. Pdc represents the
output power from the DC bus side. PC is the power of the DC
bus capacitor.

Pdc � Pinv + PL. (2)
PC � PPV + PHESS − Pdc. (3)

PC � vdc · Cdc
dvdc
dt

. (4)

In order to stabilize the DC bus voltage, dvdc/dt � 0, which
means PHESS � PDC − PPV. The HESS is responsible for
balancing the power between the DC bus side and the PV.
The power of the HESS is allocated to the battery and the SC.

PHESS � PBat + PSC. (5)
When the energy emitted by the system can satisfy (5), vdc can

remain stable.

3 DESIGN OF THE GRID-CONNECTED
INVERTER

3.1 Design of Inverter Controllers
Figure 5 is the dual-loop control block diagram with a power
feedforward. The proportional and integral gain of the PI
controllers are kpv and kpi; kiv and kii.

According to Figure 1, the mathematical model of the grid-
connected inverter under the dq axis is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
dvdc
dt

+ vdc
Rsw

� idc − is

L
did
dt

− ωLiq + ud � vd

L
diq
dt

+ ωLid + uq � vq

, (6)

where id and iq are the dq-axis components of the grid-connected
current at the PCC point, ud and uq are the dq-axis components

of the PCC voltage, vd and vq are the inverter output voltage, and
ω is the grid angle frequency. We usually set vq = 0, iq = 0. The
topology diagram of the control system is shown in Figure 6.
According to the power conservation at the input and output of
the inverter, we can get

Pinv � idcvdc�Pout � 3vdid
2

. (7)

FIGURE 5 | Dual-loop control structure of the inverter.

FIGURE 6 | Topology diagram of the control system.

FIGURE 7 | Frequency characteristics of Zqq with and without power
feedforward.
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According to (7), id can be expressed as follows:

id � idc · 2vdc3vd
. (8)

According to (8), the power feedforward item 1/kg � 2vdc/3vd
is introduced into the DVC.

The voltage loop control is to maintain the power balance and
stabilize the DC side voltage (Harnefors et al., 2007). The

FIGURE 8 | Small signal model of the grid-connected inverter with PLL, ACC, and DVC.

FIGURE 9 | (A) Impedance ratio curves of different kpv ; (B) impedance ratio curves of different kppll .
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introduction of a power feedforward link will reduce the signal of
the outer loop voltage control command, thereby reducing the
steady-state error of vdc, improving the response speed. Figure 7
compares the frequency characteristic curve of Zqq with and
without power feedforward. It can be seen that the range of
negative impedance characteristics of Zqq is reduced with the
addition of power feedforward, which indicates that the
feedforward in DVC will improve the stability of the system.

3.2 Modeling of Output Impedance
The model of output impedance is built in d-q axis. In order to
distinguish the variables of the system and the control loop, the
superscript c represents the control loop variable, and the
superscript s represents the system variable.

Zout � [Zdd Zdq

Zqd Zqq
] � [ Ls + R −ωL

ωL Ls + R
]. (9)

K is the transfer function of the filter:

K �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω2
n

s2 + 2ζωns + ω2
n

0

0
ω2
n

s2 + 2ζωns + ω2
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1
2
. (10)

Gdel is the time delay caused by the control loop and PWM
modulation, which can be expressed as follows:

Gdel �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 − 0.5Tdels

1 + 0.5Tdels
0

0
1 − 0.5Tdels

1 + 0.5Tdels

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (11)

In the formula, Tdel � 1/fsw, fsw is the switching frequency.
Gid is the transfer function from duty ratio ~d

s
to inductor current

~i
→s

L, and Gid is as (Wen et al., 2015a) follows:

Gid � −Vdc

(Ls + R)2 + (ωL)2 [ Ls + R ωL
−ωL Ls + R

]. (12)

As mentioned, the inverter uses PLL to obtain the phase
information of the grid voltage. The angle output by the PLL
will then be used for the d-q axis conversion inside the inverter, so
the dynamic characteristics of the PLL will affect the output
voltage, current, and duty ratio signals of the inverter, which in
turn affects its output impedance (Bakhshizadeh et al., 2016) Eq.
13 is the transfer function of PLL.

GPLL �
kppll + kipll/s

s + Us
d(kppll + kipll/s), (13)

where, kppll and kipll are the PI controller parameters in the PLL.
When a small signal disturbance is applied to the output

voltage, the relationship between the control loop voltage ~u
→c

and
the system voltage ~u

→s
is as follows:

[ ~uc
d

~uc
q
] ≈ [ 1 Us

qGPLL

0 1 − Us
dGPLL

]︸��������︷︷��������︸
Gu
PLL

[ ~us
d

~us
q
]. (14)

In the same way, the duty ratio signal has the following
relationship:

⎡⎣ ~d
s

d
~d
s

q

⎤⎦ ≈ [ 0 −Ds
qGPLL

0 Ds
dGPLL

]︸�������︷︷�������︸
Gd
PLL

[ ~us
d

~us
q
] + ⎡⎣ ~dc

d
~d
c

q

⎤⎦. (15)

For the control loop inductor current, there is the following
relationship:

[~icd~icq ] ≈ [ 0 IsqGPLL

0 −IsdGPLL
]︸������︷︷������︸

Gi
PLL

[ ~us
d

~us
q
] + [~isd~isq ]. (16)

Gu
PLL , G

d
PLL, and G

i
PLL respectively, represent the influence of PLL

on system voltage, duty ratio, and current.
The ACC control loop in Figure 8 is realized by converting the

system output current ~i
→s

L into the current of the control loop ~i
→c

L
under the action of the filter and PLL and then through Gdei and
Gci. Gdei is the feedforward decoupling link:

Gdei �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −3ωL
Vdc

3ωL
Vdc

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (17)

Gci is the current controller:

Gci �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
kpi + kii

1
s

0

0 kpi + kii
1
s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (18)

Ignoring the power loss of switching devices, the active power
balance equation is as follows:

FIGURE 10 | Small-signal model of the grid-connected inverter.
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vdcis � 3
2
(udid + uqiq). (19)

Add a small signal disturbance the �us helps obtain the power
equation:

P � P0 + ~P. (20)
Q � Q0 + ~Q. (21)

In the formula, P0 and Q0 and ~P and ~Q are

[ P0

Q0
] � 3

2
· [Ud Uq

Uq −Ud
][ Id

Iq
]. (22)

[ ~P
~Q
] � 3

2
· [Ud Uq

Uq −Ud
][~id~iq ] + 3

2
· [ Id Iq

−Iq Id
][ ~ud

~uq
]. (23)

The input current is of the inverter is

is � P

vdc
. (24)

~is �
~P

Vdc
− P0

V2
dc

~vdc. (25)

Set Gu � 1/Vdc and Gpu � P0/V2
dc. Gdc represents the loss of DC

side capacitance and switching device:

Gdc � [Rsw/(CRsws + 1) 0
0 Rsw/(CRsws + 1)]. (26)

The transfer function matrix Gi
PQ and Gu

PQ is defined and used
for power calculation as

Gi
PQ � 3

2
· [Ud Uq

Uq −Ud
]. (27)

Gu
PQ � 3

2
· [ Id Iq

−Iq Id
]. (28)

To obtain the impedance model of the inverter, supposing that
on the DC side of the inverter, besides the DC voltage vdc, there is
also a voltage corresponding to it, which is defined as vm. Gcdc is
the voltage controller:

Gcdc �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
kpv + kiv

1
s

0

0 kpv + kiv
1
s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (29)

Let the power feedforward term Gk � [ 1/kg
0

].
Therefore, according to Figure 8, the output impedance

matrix of the grid-connected inverter small-signal model can
be derived as follows:

Zout dc � (I + G1 + G3)(G2 + G4 + Z−1
out)−1. (30)

G1 � KGdelGid(Gci − Gdei). (31)
G2 � KGi

PLLGdelGid(Gci − Gdei) + KGd
PLLGdelGid. (32)

G3 � Gi
PQGuGciGdelGid(GdcGcdc + Gk) + GdcGpu. (33)

G4 � −Gu
PQGuGciGdelGid(GdcGcdc + Gk). (34)

4 DUAL-LOOP COMPENSATION CONTROL

4.1 The Influence of the Proportional Gain of
DVC on the Stability of the System
Under weak grid conditions, the increase of kpv will easily cause
DC bus voltage fluctuations and grid-side current distortions.

In Figure 9A, the Nyquist curves of the impedance ratio are
shown. As kpv increases, the impedance ratio curve gradually
includes the (−1, j0) point. It shows that kpv will affect the stability
of the system.

4.2 The Influence of the Proportional Gain of
PLL on the Stability of the System
In a weak grid, the PLL and the grid impedance are coupled with
each other, and the voltage at the PCC point is distorted. The
increase in kppll also increases the output error and reduces the
system stability.

In Figure 9B, it can be seen that as kppll increases, the
impedance ratio curve gradually includes the (−1, j0) point. It
shows that the increase in kppll will make the grid-connected
system unstable.

Aiming at the problem that the grid impedance, the PLL, and
the DC voltage loop are coupled with each other, corresponding
control methods need to be adopted to suppress unstable factors.

4.3 Disturbance Compensation Method
of DVC
The disturbance path of the DC voltage loop in Figure 8 shows
that ~u

→s
affects ~i

→c

L dref through the DC voltage loop and then
affects the system output current through the current
loop. Adding a compensation matrix Gfdc at the output of the
DVC can offset the disturbance signal. Based on the small-signal
model, the compensation matrix can be obtained as follows:

Compensation signal:

Gfdc � Gu · Gdc · Gcdc. (35)
~i
→comp

L dref � −( ~u→s · Gu
PQ)Gfdc. (36)

Since Gu
PQ only affects the d-axis, the control signal can be

obtained as follows:

icomp
dref � −3

2
· ud · id · Gfdc. (37)

Disturbance Compensation Method of PLL
Figure 10 shows the disturbance path of the PLL, where the
voltage at the PCC point passes through the transfer matrix Gi

PLL
and then affects the output voltage command through the current
loop. Therefore, a compensation matrix Gfp can be added at the
ACC to offset the disturbance signal.

According to Figure 10, let the compensation term Gfp be

Gfp � K · Gi
PLL · Gci. (38)
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Due to the control voltage being ~u
→c

, therefore according to the
relationship between the control loop voltage ~u

→c
and the system

voltage ~u
→s

, the actual feedforward term can be obtained:

Gp
fp � K · GIREF · GP · Gci, (39)

where

GIREF � [ 0 iqref
0 −idref ]. (40)

GP � (kppll + kipll/s)
s

. (41)

Since Gi
PLL only affects the q-axis current, the improved

current control equation of the inverter can be expressed as
follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
vd � (kp + ki

s
)(idref + icomp

dref − id) − ωLiq + ud

vq � (kp + ki
s
)(iqref − iq) + ωLid + uq + uq ·K · Gfpq

. (42)

The adjustment gain ξ is used to adjust the magnitude of the
compensation signal, and Gfpq can be expressed as follows:

Gfpq �
−idref · (kppll + kipll/s) · Gci · ξ

s
. (43)

Figure 11 of the current loop control system with
compensation terms is shown in, where Gcomp−dc � 3/2 · id ·
Gfdc , Gcomp−pll � K · Gfpq.

4.5 Analysis of Output Impedance
This section uses the data in Table 1 to analyze the frequency
characteristics of the inverter output impedance based on the
previous deduction.

Comparison of simulation results of impedance frequency
characteristics with and without Gcomp−dc is shown in Figure 12.

It can be seen from the figure that when the PLL is acting, the
output angle of the PLL is affected by the q-axis voltage, and Zqq

characteristic is negative. The DVC and ACC use the angle to
transform the coordinates and then introduce the negative
influence of PLL to the d-axis. Zdd presents a negative
characteristic, and its amplitude is related to the output power
of the inverter.

After adding Gcomp−dc, Zdd presents the frequency
characteristic of positive impedance, which shows that the
voltage loop compensation strategy proposed in this study
effectively eliminates DVC’s negative effects on the d-axis. Zqq

still presents negative impedance characteristics.
Figure 13 shows the impedance frequency characteristics with

and without Gcomp−pll, and after adding the PLL disturbance
compensation, Zqq presents the positive characteristic, and the

FIGURE 11 | Diagram of the current loop control system with
compensation terms.

TABLE 1 | Grid-Connected system parameters.

Parameter Symbol Value

Filter inductance L 19mH
Filter capacitance C 0V
Filter impedance Rsw 100Ω
DC voltage vdc 600V
D-axis grid voltage vd 200V
Q-axis grid voltage vq 0V
D-axis l current reference idref −20A
Q-axis current reference iqref 0A

FIGURE 12 | Impedance frequency characteristics with and without
Gcomp−dc.
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control method effectively eliminates the negative influence of
PLL on the q-axis and improves the stability of the system.

The negative influence of PLL on the q-axis makes Zqq exhibit
negative characteristics. As the bandwidth of PLL increases, the
range of frequency characteristics of negative impedance on Zqq

becomes larger, while the bandwidth of PLL has little effect on the
amplitude of Zqq. Its amplitude is related to the output power of
the inverter.

As shown in Figure 14, the inverter current vector is
synchronized with the grid voltage vector. Assuming that the
inverter only delivers active power to the grid, when the
disturbance occurs on the q-axis, the voltage vector will
transition from the original equilibrium state �u

→s
to the new

equilibrium state �u
→s

1. Similarly, the inverter current vector will be
synchronized with the grid voltage vector and transition from the
original equilibrium state �i

→s

L to the new equilibrium state �i
→s

L1. In
the low-frequency band, the calculation formula of Zqq is as
follows:

Zqq � −
∣∣∣∣∣~vsq∣∣∣∣∣∣∣∣∣∣~isq∣∣∣∣∣ � −

∣∣∣∣Vs
d

∣∣∣∣∣∣∣∣Isd∣∣∣∣ . (44)

The amplitude of grid voltage remains unchanged, and as
the grid-connected power becomes larger, the amplitude of
Zqq becomes smaller. When the grid-connected power
changes, the frequency characteristic curve of Zqq is shown
in Figure 15.

In Figure 15, different grid-connected power has no effect on
the phase angle of Zqq, and as the grid-connected power becomes
larger, the amplitude of Zqq becomes smaller.

In Figure 13, the addition of the compensation term not only
eliminates the negative impedance characteristic of Zqq but also
reduces the amplitude of Zqq in the low-frequency band and
increases the output power of the inverter.

5 EXPERIMENTS

In order to verify the validity of the proposed control strategy, a
HIL simulation platform was built in the OPAL-RT real-time
simulation system which comprises an external controller and
simulation computer. Figure 16 is the OPAL-RT HIL system
structure diagram. The host computer (Host PC) is used to build
the system model and download it to the target computer
(OP5600) through the TPC/IP channel; the target computer
uploads information to the Host PC to monitor the operation
of the model in real time. The grid-connected inverter controller
adopts the TMS320F28335 digital signal processor (DSP). The
DSP controller is responsible for collecting model output signals,
performing real-time calculations, and generating PWM signals
to send to the I/O board of the target machine to control the
inverter.

When the output power of the PV array fluctuates:
Figure 17 shows the control experiment results of the PV and

energy storage system under case 1. Pdc = 4 kW. By changing light
intensity, in the first 2s, PPV > Pdc, the battery is charged

FIGURE 13 | Impedance frequency characteristics with and without
Gcomp−pll .

FIGURE 14 | Phasor diagram of the inverter when perturbation happens
in q channel.

FIGURE 15 | Frequency characteristics of Zqq under different grid-
connected power.
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smoothly. At 2s, Pdc reduces to 2kW, PPV < Pdc, SC discharges
quickly to compensate for the power fluctuation of the system,
and the battery discharges smoothly. At 4s, PPV increases to 6kW,

SC absorbs the power impact, and the battery is charged
smoothly. During 6–8s, PPV = Pdc, HESS works steadily.

Figure 18 compares the waveforms of the vdc in different
energy storage systems versus PPV in case 1. It can be seen that vdc
has different degrees of fluctuation and is finally stabilized at
600 V. At 4 s, the fluctuation is the most obvious. The system
without SC is stable after 0.3 s with larger fluctuation amplitude;
HESS is stable after 0.1 s, and the fluctuation amplitude is smaller.
It proves that when PPV fluctuates, the HESS has faster dynamic
response performance and higher stability than battery energy
storage systems due to introduction of supercapacitors with
higher power density.

When the output power of the DC bus fluctuates:
Figure 19 shows the control experiment results of the PV

and energy storage system in case 2. At first PPV < Pdc, the

FIGURE 16 | HIL experiment topology.

FIGURE 17 | (A) DC bus output power Pdc; (B) PV array output power
PPV ; (C) HESS output power.

FIGURE 18 | (A) vdc of the system without SC in case 1; (B) vdc of HESS
in case 1.
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battery is in a stable discharge state. Due to load reduction, Pdc

decreases, SC is charged quickly to compensate for the power
fluctuation, and the battery absorbs the remaining power
smoothly. When Pdc suddenly increases, the SC provides

sudden power to offset the impact, during which the battery
discharges smoothly.

Figure 20 compares the waveforms of the vdc in case 2. The
most obvious fluctuation happens at 2s, the battery energy storage
system takes 0.2 s to get stable, and the fluctuation amplitude is
larger. The HESS takes 0.1 s to get stable with a smaller
fluctuation. The HESS can overcome the shortcoming of the
slow response of the battery system to the sudden change of load
demand and effectively and quickly reduce the influence of
system power fluctuation vdc.

In order to suppress the negative impact of DVC and PLL,
the experimental results of the improved method for the
traditional inverter control strategy are as follows. Figures
21, 22 show the simulation results of the grid-connected
current before and after the compensation control is added
to the inverter. The addition of the DVC compensation
proposed in this article effectively eliminates the negative
impact of the DC voltage loop, and the harmonic distortion
rate of the grid-connected current is reduced from 4.18% to
1.02%. The system becomes stable and meets the grid-connected
standards. The harmonic distortion rate of the grid-connected
current is reduced from 1.02% to 0.68% when the negative
influence of the PLL is compensated on the q-axis, which proves
the validity of the control method proposed in this study.

In Figure 23, the experimental results show that in the very
weak-grid condition, after compensation is added at 0.5 s, the
distortion of the grid current is suppressed. The grid-connected
system is restored to a stable state.

The common fault in the grid-connected operation of the PV
system is simulated. The single-phase grounding fault current is
measured at the PCC point. When a single-phase ground fault

FIGURE 19 | (A) DC bus output power Pdc; (B) PV array output power
PPV ; (C) HESS output power.

FIGURE 20 | (A) vdc of the system without SC in case 2; (B) vdc of HESS
in case 2.

FIGURE 21 | Grid-connected current waveform; (A) without
compensation; (B) with DVC compensation; (C) with PLL compensation.
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occurs at the PCC point, the grid-connected current will change
rapidly. A-phase ground fault occurs at 0.9 s. At 1.2 s, the A-phase
ground fault is eliminated. The experimental results are shown in
Figure 24. When phase A is grounded, it increases rapidly and
distorts. After the fault is eliminated, the current can quickly
recover to the current waveform before the A phase is grounded
in about 0.01 s. After adding compensation, due to the negative
feedback signal in the DVC compensation, the output current is
greatly reduced when the fault occurs, and the current waveform
is almost stable. The experimental results show that the proposed
control method has a certain anti-interference ability to single-
phase ground fault.

6 CONCLUSION

Aiming at the DC side voltage disturbance of the PV and energy
storage system, this study adopts a HESS with a self-adaptive LPF

FIGURE 22 | Grid-connected current THD; (A) traditional control without compensation; (B) with DVC compensation; (C) with PLL compensation.

FIGURE 23 | Grid-connected current under very weak-grid.

FIGURE 24 | Phase-A grounding fault current; (A) without
compensation; (B) with compensation.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 93937612

Li et al. Improved Dual-Loop Feedforward Control

53

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


to quickly and effectively stabilize the DC bus voltage. A small-
signal model of the grid-connected inverter is established in the
dq coordinate system, and the influence of the DC voltage loop
and PLL on the output impedance of the inverter is discussed. The
DC voltage loop disturbance compensation method based on
power feedforward and the PLL disturbance compensation
method based on voltage feedforward are proposed. The
analysis results of the impedance frequency characteristics and
HIL experiment show that the proposed method can reduce the
range that the output impedance appears as a negative
characteristic, thereby improving the stability of the system.
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With the rapid development of integrated energy system, the large-scale and

high-permeability access of distributed generations (DGs) is making the

distribution networks develop into active distribution networks (ADNs). The

increased complexity of ADNs also increases the vulnerabilities for cyberattacks.

It is a new challenge how to evaluate the situation of an ADN so as to support the

decision-making of grid control policies in the condition of cyberattacks

probably occur. Hence, in this paper, we proposed a method of situation

assessment for ADNs considering cyberattacks. This method is aggregated

by two parts. 1) An index system is presented, which includes the indexes of DGs

stability, the indexes of security risk considering cyberattacks along with the

traditional safety indexes. 2) The entropy weight method is used to assign

weights to each index, and taking the normal operation status of ADNs as the

reference scenario, an operating situation assessment method for ADNs is

proposed based on grey correlation analysis method. Finally, in order to verify

the effectiveness of the proposed index system and assessment method,

12 attack scenarios are established from three categories: attacks on DGs,

attacks on controllable loads and attacks on both of them, and the situation of

the ADN, a case based on IEEE 33-node standard distribution system, is

evaluated under each scenario.

KEYWORDS

integrated energy systems, active distribution network, situation assessment,
cyberattack, index system, assessment method

1 Introduction

The rapid development of integrated energy systems alleviate the energy crisis, but

also brings security threats to the power system. However, situation assessment of power

grid can help to grasp the operation status of power grid in time, provides basis for the

projection and early warning of power grid situation, and assists the operation control

decision of power grid so as to ensure the safe and stable operation of power grid (Lin

et al., 2018; Russell, et al., 2018; Wang et al., 2019; Wang et al., 2020; Lai et al., 2022).
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As a substantial component of ADNs, the large integration of

DGs, controllable loads (CLs), and distributed energy storages

(DESs) have caused severe challenges for the safe and stable

operation of the ADNs. 1) In terms of DGs, power flows are now

bidirectional rather than unidirectional, and it also alters the

architecture of the conventional distribution network (Sultan

et al., 2013). Furthermore, different manufacturers of DG use

different communication protocols (Wang X. et al., 2017).

Attackers could substantially threaten the safe and stable

operation of ADNs and even cause power outages if they

successfully utilize communication protocol vulnerabilities and

other crucial information (Ismail et al., 2020). 2) In terms of CLs,

with the uninterrupted improvement of inhabitants’ living

standards, household terminal load is changed into household

CLs via the Internet of Things. However, some household

equipment cyber security protection measures are inadequate.

When attackers utilize vulnerabilities to launch cyber attacks on

large-scale household CLs, it may causes ADNs voltage overruns,

frequency oscillations, circuit breaker disconnection, and power

outage in severe case (Gallo et al., 2020). 3) In terms of DESs, the

essential protocol standards for DESs access into ADNs are still

in the initial stage, and communication management has not

attracted much attention. Taking the electric vehicle charging

and discharging station as an example, due to the user side of

information security protection is relatively vulnerable, the

attackers are more likely to use parking intelligent terminal

embedded system vulnerabilities embedded malicious code

and send malicious control command via the Internet, which

can destroy the mode of electric vehicle charging and

discharging, cause the power quality problems and ADNs

power balance of demand and supply in severe cases

(McLaughlin et al., 2016). It can be seen that the attackers

launch cyber attacks through using the cyber security

vulnerability, the adverse impact on ADNs can not be

underestimated. Hence, in order to ensure the safe and stable

operation of the ADNs, it is urgent to establish the operation

situation assessment method of ADNs considering cyberattacks,

so as to adjust the operation status of power grid, formulate

control strategies and emergency plans.

At present, situation assessment as the core content of power

grid situation awareness, the study of situation assessment can be

mainly divided into three categories. 1) From the perspective of

power grid dispatching control center, the situation awareness

technology to the power grid operation control, and an intelligent

dispatching system based on situation awareness are applied by

Lai et al. (2020), Shahsavari et al. (2019) and Li et al. (2015). 2)

The operation situation assessment and projection methods of

power grid based on massive data collected by wide-area

measurement system are studied by Li et al. (2020), Liu et al.

(2018), Li et al. (2021), Jena et al. (2017) and Ren et al. (2019). 3)

The main components and functional hierarchy of power grid

situation awareness system are analyzed by Li et al. (2019), Wang

and Govindarasu. (2020) and Zhao et al. (2019), and propose the

smart grid situation awareness model and conceptual design. The

above studies mainly focus on the power grid operation safety

status assessment and the theoretical framework of power grid

situation awareness, but the situation awareness methods are

rarely discussed in detail and need to be further studied.

In the study of power grid situation awareness, there are

relatively few studies about situation awareness of ADNs. A

framework of ADNs situation awareness, constructs an

optimal dispatching framework based on analysis of the

linkage relationship between situation awareness and

optimal dispatching, and elaborates the key technology for

optimal dispatching of ADNs (Wang H. et al., 2017). From the

initiative perspective of ADNs, a framework of situation

awareness and points out the key problem should be solved

in realizing situation awareness is given by Lin et al. (2016).

Huang et al. (2017) mines a large amount of historical data

values of ADNs, adds the ADNs virtual measurement

information data, so as to improve the accuracy of state

estimation and provides technical support for the online

status perception of ADNs. Tao et al. (2020) proposes a

situation awareness system of ADNs based on distributed

monitoring and multi-source information fusion, and

elaborates the situation awareness technology of ADNs

based on multi-source information fusion. Above all, most

of the above research works focus on the theoretical level of

the ADNs situation awareness system framework, the key

technologies such as multi-source information fusion ADNs

situation assessment and projection methods are not in-depth

enough studied, and there are rarely relevant study of

considering cyberattacks and operation law of ADNs.

In order to evaluate the operation status of ADNs effectively,

this paper studies the situation assessment method of ADNs

considering cyberattack. The main contributions are as follows.

(1) Considering the uncertain outputs of DGs and the

vulnerabilities for cyberattacks to DGs and controllable

loads, the indexes of DGs stability and the indexes of

security risk considering cyberattacks along with the

traditional safety indexes are employed as the indexes of

situation assessment of ADNs.

(2) On the basis of the proposed index system, the operation

situation assessment method of ADNs is established based

on the entropy weight method and grey relation method.

This method can quantitative assessment the operation

safety status of ADNs to provide the basis for operation

situation projection and operation control decision

of ADNs.

(3) Twelve attack scenarios of the ADN, a case based on IEEE

33-node standard distribution system, are established from

three categories: attacks on DGs, attacks on controllable

loads and attacks on both of them to verify the

effectiveness of the proposed index system and assessment

method.
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The rest of paper is organized as follows. Section 2 proposes

situation assessment index system. Sections 3 investigates

situation assessment method of ADNs based on entropy

weight method and grey correlation analysis method. Section

4 verifies the proposed method in IEEE 33-node active

distribution system. And conclusions are presented in Section 5.

2 Situation assessment index system

The safe and stable operation of ADNs depends on its

safety characteristics during operation, the stability of DGs in

ADNs and the risk when it suffering cyberattacks (Canizes

et al., 2017). On the one hand, the normal operation of ADNs

require sufficient capacity margin to maintain the normal level

of the voltage and frequency. The voltage value should not

deviate too much from the rated voltage, and the number of

voltage qualified nodes should not be less than the normal

operation status standards. The branch line should not run

under heavy load for a long period. The output of the DGs

should not fluctuate too much in operation status. On the

other hand, the cyberattack events against power system in

recent years show that the potential cyberattacks risks also

have a crucial impact on the safe and stable operation of

ADNs. Therefore, we present the situation assessment index

system of ADNs as shown in Figure 1.

2.1 Safety indexes of ADNs

The safe operation characteristics of ADNs are related to the

power supply capacity margin, the voltage violation severity, the

voltage qualification rate and the load rate (Fauzan et al., 2019).

Those indexes can reflect the security margin of power supply

capacity, the harmful degree of system voltage fluctuation and the

security risk of ADNs.

2.1.1 Power supply capacity margin
The power supply capacity margin represents the percentage

of the loads that can be increased based on the current loads. It

can be defined as follows:

η � Smax − Ltotal

Smax
× 100% (1)

In Eq. 1, Smax represents the maximum of power supply capacity,

which is the sum of the capacity of the main transformer and the

output of each DG in the ADNs. Ltotal represents the total load

value in the ADNs.

2.1.2 Voltage violation severity
The voltage violation severity represents the degree of voltage

deviation from the rated voltage. While the power grid failure has

happened, the voltage value also be impacted, and the operation

voltage value deviates from the normal voltage may aggravate the

vulnerability of the ADNs. In severe cases, it directly impacts the

safe and stable operation status of the ADNs. Hence, voltage

violation severity can be defined as follows:

ωi �
⎧⎪⎨⎪⎩

0.95 − ui ui < 0.95
0 ui < 1.05

ui − 0.95 ui > 1.05
(2)

In Eq. 2, ui represents the ratio of the ith node to rated voltage

in ADNs.

2.1.3 Voltage qualified rate
Voltage qualified nodes need to satisfied the following

requirements: 1) Power supply voltage exist on the nodes. 2)

The nodes voltage value do not exceed the threshold. The voltage

qualification rate refers to the percentage of voltage qualified

nodes account for the total number nodes of the ADNs. Voltage

qualified rate also reflects the comprehensive voltage quality

during the operation status of ADNs. To some extent, it

represents characterizes the security of ADNs operation status.

Hence, voltage qualified rate can be defined as follows:

f � 1 − Nexceed

Nall
× 100% (3)

In Eq. 3, Nexceed represents the number of nodes exceed the

voltage threshold or lost the function of power supply. Nall

represents the total number nodes of ADNs.

2.1.4 Load rate
If the load rate of the main transformer approaches the

threshold or run with heavy loads, once the distribution network

suffered cyberattacks or failures happened, it may cause the load

changed or large-scale power flow of a certain node transfer into

another node. Therefore, it may lead to the overload of the main

transformer and large-scale cascading failures happened in the

future in severe case. From the perspective of safe operation of

ADNs, no matter whether the failure of ADNs happened or not,

FIGURE 1
Situation assessment index system of ADNs.

Frontiers in Energy Research frontiersin.org03

Li et al. 10.3389/fenrg.2022.971725

58

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.971725


we expect that the main transformer running in a safe range, and

security risk decreases as the load rate decreases. Hence, the load

rate can be defined as follows:

γ � ST
STmax

(4)

In Eq. 4, ST represents the actual transmission capacity of main

transformer in ADNs. STmax represents the max transmission

capacity of main transformer in ADNs.

2.2 Security indexes of DGs

The distribution network contains a large number of

renewable energy DGs. Such as photovoltaic power

stations, wind farms and so on. The output of those kinds

of DGs are greatly impacted by climate, and climate can lead

to uncertain output of DGs (Arya, 2016). What’s more, DGs

are more likely to fluctuate under all kinds of disturbance,

those disturbances can cause the change of the direction and

value of the power flow in the distribution network, and even

result in the fluctuation of the system voltage and bring the

challenge to itself safe operations status. At the same time, due

to many uncertain factors of DGs, the high permeability of

DGs may increase the risk of stable operation of the ADNs and

result in different degrees of impact on the ADNs security.

Therefore, the output volatility and the penetration rate of

DGs are play an important role in index evaluating the

security risks of ADNs.

2.2.1 Output volatility of DGs
Output volatility of DGs can be defined as follows:

ζDG � SDG(t + 1) − SDG(t)
SDG(t) (5)

In Eq. 5, SDG(t + 1) represents the actual output of all DGs at

time (t+1). SDG(t) represents the actual output of all DGs at

time t.

2.2.2 Penetration rate of DGs
Penetration rate of DGs can be defined as follows:

λ � SDG

Ltotal
× 100% (6)

In Eq. 6, SDG represents the actual output of all DGs in ADNs.

Ltotal represents the total load of ADNs.

2.3 Risk indexes

According to the three elements of network security

proposed by the National Institute of Standards and

Technology (Zhao et al., 2019), cyberattacks can be classified

into three categories according to their consequences as follows:

1) Destroying the confidentiality; 2) Destroying the integrity; 3)

Destroying the availability. Among them, the first category of

attacks aims to steal data and does not directly impact the power

grid. The second category of attacks aims to control the power

generations or loads maliciously by tampering or falsifying

measurement data or control commands, which can directly

impact the operation status of the power grid. The third category

of attacks makes the cyber system partially or completely lose

control of the power grid by blocking communication or

increasing time delay, which mainly impacts the observability

and controllability of the power grid. It can be seen that only the

second category of attacks can be awareness through the

operation status data of the power grid. Therefore, this paper

established ADNs security risk index for second category of

attacks.

2.3.1 Mutation severity of power supply capacity
Cyberattacks can cause the main transformers and DGs

out of running, aggravate the power supply burden of the

remaining transformers, and result the output shortage or

voltage collapse of ADNs. Cyberattacks can also lead to

increase output of DGs, aggravate the instability of ADNs,

and excessive reactive power output can cause the voltage to

exceed the safe operation range. The sudden changes of power

supply capacity can impact the reliability and quality of

ADNs, which may bring hidden impact to the safe

operation status of the ADNs (Liang et al., 2021).

Therefore, the mutation severity index of power supply

capacity can be defined as follows:

α � Smax(t + 1) − Smax(t)
Smax(t) (7)

In Eq. 7, Smax(t + 1) represents the maximum power supply

capacity of distribution network in time (t+1). Smax(t) represents
the maximum power supply capacity of distribution network in

time t.

2.3.2 Mutation severity of loads
Cyberattacks can lead to the large-scale controllable loads

casting/dropping synchronously or frequent and synchronous

casting and dropping, threaten the safe and stable operation of

the ADNs(Kurt et al., 2018; Wei et al., 2020; Liang et al., 2021).

Hence, we use the mutation severity of loads represent the impact

of the cyberattacks.

The index of mutation severity of loads can be defined as

follows:

β � ∑M
i�1|Li(t + 1) − Li(t)|

Ltotal(t) (8)

In Eq. 8, Li(t+1) represents the loads of node i in time (t+1).

Li(t) represents the loads of node i in time t. Ltotal(t+1) is the total

loads of ADNs in time t.
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3 Situation assessment method

In this section, the basic thought of the situation assessment

method of ADNs is as follows: first, after establishing the ADNs

situation assessment indexes according to Section 2, the weights

are assigned to the indexes according to the impact degree of each

index on the assessment results; then, the normal operation

status of ADN is taken as the reference scenario, and the

correlation degrees between the attack scenarios to be assessed

and the reference scenario are calculated based on the grey

correlation analysis method; finally, the security risk levels of

those scenarios can be determined according to the pre-defined

criteria.

3.1 Calculating the weights of situation
assessment indexes based on entropy
weight method

In the situation assessment of ADNs, each index has different

functions and impacts on the assessment results, so it is necessary

to assign corresponding weights to different indexes. The index

weight reflects the importance in the index systems, and a

reasonable weight distribution is the basis for accurately

assessing the operating situation of the ADNs. The entropy

weight method needs to calculate only once, which can help

to obtain the suitable index weight to each evaluation object, so

that the calculation of the weights are no longer complexity, and

that is a most widely used objective weight method. To sum up,

this paper adopts this method to obtain the weight of each index.

Suppose that there are m indexes, and n samples,

xij(i ∈ [1, n], j ∈ [1, m]) represents the jth index of the ith

sample, then each original data sample can be represented as

follows:

Xi � (xi1, xi2,/, xim) (9)

The original data assessment matrix can be represented as

follows:

Xnm � [X1, X2,/Xn]T (10)

The process of calculating the weights of situation assessment

indexes based on entropy weight method is as follows.

(1) Standardizing the index values. The index system proposed

in this paper includes positive indexes and negative indexes.

Among them, the positive index has property that the larger

the index value is, the better the index will be. However, the

negative index has property that the smaller the index value

is, the better the index will be. In the ADNs safety index

system, we should consider the impact of cyberattacks.

Therefore, the voltage qualification rate and the power

supply capacity margin should be included in the positive

index system. Similarly, the voltage violation severity, the

load factor, the output volatility of DGs, the permeability of

DGs, the power supply capacity mutation severity and the

load mutation severity should be included in the negative

index system. The range transformation method is used to

standardize the original calculated values of each index in the

safety index system of ADNs considering cyberattacks. If the

kth index is positive index, it can be calculated as follows:

xik
′ � xik −min(x1k, x2k,/, xnk)

max(x1k, x2k,/, xnk) −min(x1k, x2k,/, xnk) (11)

If the kth index is negative index, it can be calculated as

follows:

xik
′ � max(x1k, x2k,/, xnk) − xik

max(x1k, x2k,/, xnk) −min(x1k, x2k,/, xnk) (12)

(2) Calculating the entropy of each index. The entropy of each

index can be calculated as follows:

Ej �
∑n
i�1
xij
′ ln xij

′

lnn
(13)

It shows, when xij′ � 0, xij
′ ln xij

′ � 0.

(3) Calculating the weight of each index. The weight of each

index can be calculated as follows:

wj � 1 − Ej

∑m
j�1
(1 − Ej) (14)

3.2 Situation assessmentmethod based on
grey correlation

Grey correlation analysis method is an important part of

grey system theory. The essence of grey correlation analysis

method is to judge the correlation degree between the

reference sequence curve and the research sequence curve

according to their similarity degree. Compared with the

method of mathematical statistics in system analysis, this

method does not require a large number of sample data

and it also does not satisfies the rule of typical probability

distribution either. Meanwhile, this method has

uncomplicated calculation processing, and the calculation

results are consistent with the results of qualitative analysis,

so as to this method is widely used.

However, there are some limitations in the grey correlation

analysis method, such as its need to select reference sequence,

that is, to determine the optimal value of each index, which is too

subjective. At the same time, it is difficult to determine the

optimal value of part of indexes. In the processing of situation
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assessment of ADNs, the data in the normal operation status can

be taken as a reference sequence, and this reference sequence

without any strong subjectivity. So it is best choices to apply

in situation assessment of ADNs.

The main steps and methods are as follows.

(1) Selecting the reference sequence. It is necessary to draft the

reference sequence before doing grey correlation analysis,

and reference sequence should be an ideal reference

standard. We use the data sample when the ADNs is not

suffering from attacks as the reference sequence. Suppose

that there are m indexes and n samples, according to Eq. 9,

the reference sequence can be represented as follows:

X0 � (x01, x02,/, x0m) (15)

(2) Calculating the difference sequences and determine the

maximum and minimum values of the difference

sequence. Calculate the absolute difference between each

element of the original data sequences and the reference

sequences, which can be used to form the difference

sequence, it can be calculated as follows:∣∣∣∣x0j − xij

∣∣∣∣ (16)

(3) Calculating the correlation coefficient according to the

maximum value max
i

max
j

|x0j − xij| and the minimum

value min
i

min
j

|x0j − xij| of the difference sequences, it can

be calculated as follows:

ξ(j) � min
i

min
j

∣∣∣∣x0j − xij

∣∣∣∣ − ρmax
i

max
j

∣∣∣∣x0j − xij

∣∣∣∣∣∣∣∣x0j − xij

∣∣∣∣ + ρmax
i

max
j

∣∣∣∣x0j − xij

∣∣∣∣ (17)

In Eq. 17, ρ is the resolution coefficient, and its value range is

(0, 1). Usually, ρ is set to 0.5.

(4) Calculating the correlation degree. The correlation degree

can be calculated as follows:

r(x0j − xij) � ∑m
j�1
wjξ i(j) (18)

In the above Equation, the value of the weight wj directly

impacts the correlation degree, that is, the result of the situation

assessment of the ADNs. The wj in this paper takes the objective

weight of each index, which can be calculated by entropy weight

method in 3.1.

3.3 Grading the risk level of ADNs
situations

According to the situation assessment method of the

ADNs, the situation security risk degree of the ADNs can

be determined by the correlation degree. It means if the

security risk degree is high, the correlation degree will be

low. Therefore, according to the numerical range of the

correlation degree, the security risk level can be graded into

6 levels, namely 0, 1, 2, 3, 4 and 5. The numerical range of the

correlation degree of each security risk level is shown in

Table 1.

4 Case study

In this section, we select the IEEE 33-node standard

distribution system as a basis case, and connect DGs to it

to form an ADN case for study. As shown in Figure 2, we take

photovoltaic power (PV) as an example of renewable energy

DGs, and connect PVs to the node 18 and node 22. In

addition, micro gas turbine units are connected to the

node 33.

Firstly, 12 attack scenarios are presented based on the

possible cyberattacks on the ADN. Then, the security risk level

of the ADN under each attack scenario is evaluated according

the proposed method. Where, the operation parameters of the

ADN for the calculation are obtained through simulations.

Finally, we theoretically analyze the security risk of the ADN

under the comparing attack scenarios to illustrate the

rationality of the assessment results.

All the experiments are programmed on toolbox Matpower,

and all the simulations run on a Dell PC with a 3.3 GHz CPU and

16 GB ram.

4.1 Attack scenarios

Based on the possible cyberattacks on the ADN, we

envisage 12 attack scenarios from three categories: attacks

on DGs, attacks on controllable loads and attacks on both of

them, which can be shown in Table 2. In addition, we take the

ADN operation status in normal as the reference scenario and

set it as scenario 0.

4.2 Situation assessment under attack
scenarios

In this part, we firstly obtain the operation parameters of the

ADN under each scenario through simulations, and then

calculate the indexes according to Eqs 1–8.

Taking scenario 1 as an example. The operation parameters

obtained by simulation are shown in Table 3. It should be noted

that the operating parameters need to be obtained from the

measurement system in practice.

Then, according to Eqs 1–8, the situation assessment indexes

are calculated as shown in Table 4.
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Similarly, we can calculate the situation assessment indexes

of other scenarios, and the final calculation results are shown in

Table 5.

The power supply capacity margin and voltage qualified

rate can be standardized by Eq. 11, and voltage violation

severity, load rate, output volatility of DGs, penetration

rate of DGs, mutation severity of power supply capacity

TABLE 1 Security risk level grading of ADNs situations.

r 0.9 < r≤ 1 0.8 < r≤ 0.9 0.7 < r≤ 0.8 0.6 < r≤ 0.7 0.5 < r≤ 0.6 r≤ 0.5

Risk level 0 1 2 3 4 5

FIGURE 2
An ADN based on IEEE 33-node standard distribution system.

TABLE 2 Cyberattack scenarios.

Attack target Scenario Attack strategy

DGs 1 Remove the PV of node 18
2 Remove the PV of node 22
3 Remove the micro gas turbine of node 33
4 Remove the PV and the micro gas turbine of node 18, 22, 33 synchronously

Loads 5 Increase the load of nodes 12, 13, 14, 15, 16, 17 and 18 by 60 kW synchronously
6 Increase the load of nodes 2, 19, 20, 21, 22, 32 and 33 by 60 kW synchronously
7 Reduce the load of nodes 12, 13, 14, 15, 16, 17 and 18 by 60 kW synchronously
8 Cut off the branch line after node 17
9 Cut off the branch line after node 15
10 Cut off the branch line after node 6

DGs and Loads 11 Cut off all of the DGs, and increase the load of nodes 12, 13, 14, 15, 16, 17 and 18 by 60 kW synchronously
12 Cut off all of the DGs, and reduce the load of nodes 12, 13, 14, 15, 16, 17 and 18 by 60 kW synchronously

TABLE 3 Simulation results of operation parameters of the ADN under
scenario 1.

Smax Ltotal ui/un Nexceed ST

6.744 4.4522 0.9367 7 3.168

STmax SDG(t) SDG(t − 1) Smax(t − 1) Ltotal(t − 1)
4.52 2.2241 2.3821 6.9021 4.4024

TABLE 4Calculation result of situation assessment indexes of the ADN
under scenario 1.

η ω φ γ ζDG λ α β

0.3398 0.0133 0.7879 0.7009 0.0663 0.4996 0.0229 0.0113
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and mutation severity of load can be standardized by Eq. 12.

The situation assessment indexes after standardization are

shown in Table 6.

The weight of different situation assessment index

in situation assessment can be calculated by Eqs 13–14, and

the calculation results are shown in Table 7.

Taking scenario 0 as the reference scenario, and calculate the

correlation coefficient of each situation assessment index

between the reference scenario and the different attack

scenarios according to the Eqs 15-17. The calculation results

are shown in Table 8.

The correlation degree of each scenario with references

scenario 0 is calculated by Eq. 18, and the calculation results

are shown in Table 9.

Based on the security risk level graded in Table 1, the

correlation degree calculation under each attack scenario is

determined in the interval, and the final security risk level of

the ADNs model under different attack scenarios is obtained,

which can be shown in Table 10.

TABLE 5 Situation assessment indexes of the ADN under different cyberattack scenarios.

Scenario η ω φ γ ζDG λ α β

0 0.362 0.000 1.000 0.631 0.000 0.541 0.000 0.000

1 0.3398 0.0133 0.7879 0.7009 0.0663 0.4996 0.0229 0.0113

2 0.3321 0.0000 1.0000 0.6991 0.1303 0.4706 0.0450 0.0000

3 0.1316 0.0234 0.4848 0.8595 0.7412 0.1382 0.2558 0.0132

4 0.0021 0.0359 0.3939 0.9979 1.0000 0.0000 0.3451 0.0246

5 0.3259 0.0090 0.7879 0.7144 0.0663 0.5337 0.0229 0.0811

6 0.3281 0.0000 1.0000 0.7080 0.0538 0.5315 0.0186 0.0729

7 0.4070 0.0000 1.0000 0.5306 0.0867 0.5480 0.0299 0.0982

8 0.3596 0.0013 0.9091 0.6646 0.0995 0.5026 0.0343 0.0304

9 0.3659 0.0000 0.9394 0.6515 0.1119 0.5028 0.0386 0.0443

10 0.4862 0.0000 0.6364 0.4497 0.3178 0.5147 0.1097 0.2828

11 0.0620 0.0313 0.3939 0.9365 0.7412 0.1279 0.2558 0.0943

12 0.2157 0.0079 0.8182 0.7677 0.7412 0.1530 0.2558 0.0850

TABLE 6 Standardized situation assessment indexes of the ADN under different cyberattack scenarios.

Scenario η ω φ γ ζDG λ α β

0 0.7438 1.0000 1.0000 0.6692 1.0000 0.0126 1.0000 1.0000

1 0.6976 0.6295 0.6500 0.5418 0.9337 0.0884 0.9337 0.9600

2 0.6817 1.0000 1.0000 0.5450 0.8697 0.1413 0.8697 1.0000

3 0.2674 0.3482 0.1500 0.2525 0.2588 0.7478 0.2588 0.9532

4 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.9131

5 0.6688 0.7493 0.6500 0.5172 0.9337 0.0261 0.9337 0.7132

6 0.6735 1.0000 1.0000 0.5288 0.9462 0.0301 0.9462 0.7421

7 0.8365 1.0000 1.0000 0.8524 0.9133 0.0000 0.9133 0.6529

8 0.7384 0.9638 0.8500 0.6081 0.9005 0.0829 0.9005 0.8925

9 0.7515 1.0000 0.9000 0.6320 0.8881 0.0824 0.8881 0.8434

10 1.0000 1.0000 0.4000 1.0000 0.6822 0.0607 0.6822 0.0000

11 0.1238 0.1281 0.0000 0.1120 0.2588 0.7665 0.2588 0.6664

12 0.4413 0.7799 0.7000 0.4200 0.2588 0.7207 0.2588 0.6995

TABLE 7 The weight of assessment indexes of the ADN.

Index η ω φ γ ζDG λ α β

w 0.107 0.116 0.129 0.110 0.112 0.279 0.112 0.035
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4.3 Analysis

In this part, we illustrate the rationality of the assessment

results shown in Table 9 and Table 10 through theoretically

analyzing the security risk of the ADN under the comparing

attack scenarios.

(1) Comparing Scenario 1 with Scenario 2. In those two

scenarios, the types and the total output power of the

removed DGs in scenario 1 is consistency with scenario

2. But in scenario 1, the distance of the removed DGs

from the main power supply of the distribution network

is farther than in Scenario 2, and the result of calculating

security risk higher than scenario 2. The reason is that

the removed DGs far away from the main power source,

and it have the heavier task of the local ADN power

balancing, so as to the security risk level of scenario 1 is

higher than scenario 2 while the ADN suffered

cyberattacks.

(2) Comparing scenario 1 with scenario 3. The total output

power of the removed DGs in scenario 1 is consistency with

scenario 3, and the distance of the removed DGs in scenario

1 is farther from the main power supply than scenario 3,

which lead to the security risk level of scenario 3 is higher

than scenario 1, and the security risk of scenario 3 is level 4.

The micro gas turbine serving as PV node in scenario

3 outputs more reactive power than the PV power supply

serving as PQ node in scenario 1. Therefore, it has heavier

task of balancing the reactive power and maintains voltage

level in ADN, the security risk level of scenario 3 is higher

after suffering attacked. So as to the security risk of scenario

3 is higher than scenario 1 after the ADN suffered

cyberattacks.

(3) Comparing scenario 1, scenario 2, scenario 3 and scenario 4.

Removing all of the DGs lead to the security risk of the ADN

is level 5 in scenario 4. The reason is that the more DGs are

removed, the more power will be loss, and the total of

demand of power on the power grid become very high.

At the meantime, the capacity of the power grid to maintain

the voltage balance have decreased and results the voltage

fluctuations.

(4) Comparing scenario 5 with scenario 6. During the

normal operation of the ADN, the voltage of nodes 12,

13, 14 and 15 are lower than reference value, but the

voltage of nodes 18, 19, 20 and 21 are close to the

reference voltage value. While increasing the same

loads, the security risk of increasing loads of the nodes

with low voltage value is higher than increasing loads of

the nodes with close to the reference voltage value. The

low voltage nodes are more likely to exceed the voltage

limit and become the voltage unqualified nodes. While

nodes with voltage value are close to the baseline voltage

value, it have greater margin and not likely to exceed the

voltage limit, so as to the security risk of scenario 5 is

higher than scenario 6.

(5) Comparing scenario 5 with scenario 7. Simultaneous

increasing loads lead to the higher security risk than

simultaneous removing loads. The increasing of loads

aggravate the distribution network burden of the power

supply and reducing the node voltage. When the loads are

removed, the load rate of the main transformers are

reduced after the fluctuation become stabilization, the

power supply pressure also alleviated, the nearby node

voltage value is closer to the reference value. It is more

beneficial to the stable operation of the distribution

network, and not easy to cause security risks, so as to

the security risk of scenario 5 is higher than scenario 7.

(6) Comparing scenario 8, scenario 9 and scenario 10. When

the cut off line contains little load, the security risk

decreases slightly with increasing of the cut off line

loads. The security risk level increased as the load

contained by the cut line increasing substantially.

When the cut off line contains a small amount of

loads, and the length of lines are slightly longer (the

TABLE 8 Correlation coefficient of each situation assessment index
under different cyberattack scenarios.

scenario η ω φ γ ζDG λ α β

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 0.891 1.000 1.000 0.805 0.793 0.825 0.793 1.000

2 0.917 0.725 0.588 0.801 0.883 0.889 0.883 0.926

3 0.517 0.600 0.370 0.552 0.403 0.453 0.403 0.914

4 0.406 0.495 0.333 0.434 0.333 0.381 0.333 0.852

5 0.702 0.449 0.476 0.532 0.719 0.942 0.719 0.368

6 0.673 1.000 1.000 0.578 0.992 0.793 0.992 0.431

7 0.866 1.000 1.000 0.798 0.877 0.978 0.877 0.631

8 0.649 1.000 0.714 0.589 0.931 0.726 0.931 0.393

9 0.888 1.000 0.714 0.911 0.815 0.836 0.815 0.949

10 0.665 1.000 0.455 0.608 0.611 0.927 0.611 0.333

11 0.647 0.333 0.476 0.459 0.784 0.857 0.784 0.345

12 0.934 1.000 1.000 0.992 0.780 0.896 0.780 0.655

TABLE 9 Correlation degree of each cyberattack scenario to the reference scenario.

Scenario 1 2 3 4 5 6 7 8 9 10 11 12

r 0.788 0.872 0.541 0.39 0.812 0.930 0.915 0.858 0.875 0.699 0.357 0.525
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amount of load contained is slightly increasing), which

are benefit for alleviating the power demand pressure of

the power supply. Making the power supply for other

node loads are more stable, and the voltage is closer to the

reference voltage value. Therefore, it can be explained

that why the security risk of scenario 9 is slightly lower

than that of scenario 8 (see Table 9). With the total of the

loads contained in the cut off line are increased

substantially, the adverse effects of the long line being

cut off and the fluctuations and user losses will exceed the

beneficial effects of the load reduction. The

security risk level increase accordingly, thus the

security risk of scenario 10 is higher than scenario

8 and scenario 9.

(7) Comparing scenario 11 with scenario 12. Removing DGs and

aggravating loads value may lead to security risk of the ADN

become highest. Removing DGs and shedding loads

synchronously may lead to security risk of the ADN

become relatively low. After removing the DGs and

increasing loads, it may aggravate the burden of power

supply. However, shedding a certain amount of loads can

alleviate the power supply capacity decline that caused by

removing DGs, andmake the ADN relatively difficult to have

security risks, so the security risk of scenario 12 is lower than

scenario 11.

Through the above comparative analysis, it can be seen that

the situation assessment results of all attack scenarios are

consistent with the theoretical analysis conclusions, which

verified the effectiveness and practicability of the situation

assessment index system and assessment methods of ADNs

that we proposed in this paper.

5 Conclusion

With the rapid development of integrated energy system,

the large-scale and high-permeability access of DGs is

making the distribution networks develop into ADNs. The

increased complexity of ADNs also increases the

vulnerabilities for cyberattacks, and the factors of

cyberattacks should be considered in situation assessment

system. At present, research on the situation awareness of

ADNs is relatively preliminary, there are few relevant study

considering cyberattacks and the operation rules of ADNs.

Therefore, in this paper, the index system and assessment

method of situation assessment for ADNs considering

cyberattacks are proposed and verified through the IEEE

33-node ADN system. The characteristics of this work are

as follows:

(1) The index system includes three parts: safty indexes of

ADNs, security indexes of DGs and the

security risk indexes of ADNs suffering from

cyberattacks.

(2) The assessment method includes three steps. Firstly, the

entropy weight method is used to assign weights to each

assessment index according to its impact on the

assessment results, which avoids the subjectivity of the

traditional expert weight method. Then, the normal

operation status of ADNs is taken as the reference

scenario, and the grey correlation analysis method is

used to calculate the correlation degree of the scenario

to be evaluated to the reference scenario. Finally, the

security risk level of the scenario to be evaluated is

assessed based on the pre-established grading standard

for ADNs situations.

(3) For case study, 12 attack scenarios are established

considering cyberattacks that the DGs and controllable

loads in ADNs might suffering, the situation of each

attack scenario are assessed using our proposed method,

and the rationality of the assessment results is illustrated by

the theoretical analysis. By the case study, the effectiveness of

the proposed index system and assessment method are

verified.

This paper can provide a practical method for the on-line

operation situation assessment of ADNs. The assessment results

can help the operation and maintenance staff to grasp the real-

time operation status of ADNs, and provide a basis for the

situation projection and early warning of ADNs. It can also

support for off-line research on the projection and early warning

method, operation control strategy and network planning of

ADNs. The results of the case study can directly provide

reference for the study of situation awareness and planning

of ADNs.

The future work will conduct the study on situation

projection method for ADNs considering cyberattacks to

complete the ADNs situation awareness system.
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Resilient cooperative control for
optimal current sharing and
voltage regulation of
microgrid-based distribution
network under FDI attacks

Biheng Wang*

NARI Technology Nanjing Control System Co., Ltd., Nanjing, China

In this study, the security secondary control problems are considered for

optimal current sharing and voltage restoration of a microgrid distribution

network under false data injection (FDI) attacks. To solve these problems, a

resilient secondary control method is provided. Specifically, a resilient

secondary controller is designed by introducing an adaptive parameter

based on the adaptive technique. Then, a theoretical analysis method is

provided to show that the designed resilient secondary controller can

ensure optimal current sharing and voltage regulation under FDI attacks.

KEYWORDS

resilient control, voltage regulation, current sharing, adaptive control, FDI attacks

Introduction

In recent years, microgrids (MGs) have received a lot of attention (Wang et al., 2021a;

Yao et al., 2022; Wang et al., 2021c; Wang et al., 2020). Specifically, a direct current (DC)

MG has been widely investigated owing to it is favorable to the alternating current (AC)

MG such as higher reliability and efficiency (Dragicevic et al., 2016; Deng et al., 2022a; Liu

et al., 2021). By fully utilizing the inherent DC nature of the distributed generators (DGs)

and DC loads, the DC MG avoids multiple conversions between DC/AC and AC/DC to

improve the efficiency. According to the current report, the DC MG has been proved to

have a 10%–22% improvement in efficiency in comparison to the AC MG. For the DC

MG, the control issues mainly include voltage restoration and current sharing. A

hierarchical control framework including primary, secondary, and tertiary control is

widely adopted to solve such control issues (Ding et al., 2020; Rui et al., 2020; Deng et al.,

2021a; Wang et al., 2021b; Lin et al., 2021). The primary control rapidly responds for

system disturbance based on the local controller. The secondary control is to eliminate the

voltage deviation caused by primary control through certain information exchange. The

tertiary control aims to achieve economic dispatch and optimal power flow (Liang et al.,

2016). In this study, the secondary control in the islanded DC MG is the main focus.

Recently, distributed secondary control for voltage restoration and current sharing of

the DC MG gains more attention due to its flexibility, scalability, and reliability.

OPEN ACCESS

EDITED BY

Qiuye Sun,
Northeastern University, China

REVIEWED BY

Yao Weitao,
Nanyang Technological University,
Singapore
Xiaokang Liu,
Huazhong University of Science and
Technology, China
Yu Wang,
Imperial College London,
United Kingdom

*CORRESPONDENCE

Biheng Wang,
bihengwang2022@163.com

SPECIALTY SECTION

This article was submitted to Smart
Grids,
a section of the journal
Frontiers in Energy Research

RECEIVED 30 May 2022
ACCEPTED 07 July 2022
PUBLISHED 12 August 2022

CITATION

Wang B (2022), Resilient cooperative
control for optimal current sharing and
voltage regulation of microgrid-based
distribution network under FDI attacks.
Front. Energy Res. 10:956672.
doi: 10.3389/fenrg.2022.956672

COPYRIGHT

© 2022 Wang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 12 August 2022
DOI 10.3389/fenrg.2022.956672

68

https://www.frontiersin.org/articles/10.3389/fenrg.2022.956672/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.956672/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.956672/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.956672/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.956672/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.956672&domain=pdf&date_stamp=2022-08-12
mailto:bihengwang2022@163.com
https://doi.org/10.3389/fenrg.2022.956672
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.956672


Compared with centralized control, distributed 26 controls need

no central controller and only peer-to-peer information

exchange is required (Guo et al., 2020). In recent works,

many distributed controllers have been proposed. For

example, a distributed finite-time controller is proposed in

Guo et al. (2018a) to achieve average voltage regulation and

accurate current sharing. Deng et al. (2020) introduced an event-

trigger controller to significantly reduce the communication

burden. In addition, a fast model predictive control is

proposed (Lian et al., 2021a) to regulate the voltage and

desired current flows in a DC MG, in which the proposed

controller is based on a distributed alternating direction

method of the multipliers method.

Although many distributed control methods have been

proposed, it should be noted that all the aforementioned

distributed secondary control results assume that the

communication between networks is reliable. However,

network communication between DGs is often sensitive to

cyber attacks. Typically, the classical attack modes can be

divided into false data injection (FDI) attacks (Yang and

Dong, 2019; Yang et al., 2022) and denial-of-service (DoS)

attacks (Deng et al., 2021; Ma et al., 2021; Yang et al., 2021;

Deng et al., 2022b). FDI attacks are usually launched by attacker

injecting some false data, while DoS attacks usually occur by

jamming network communication. Recently, some results on

FDI attacks for MGs have received considerable attention. The

main focuses contain attack detection (Hetel et al., 2017; Sahoo

et al., 2020; Habibi et al., 2021a), impact mitigation (Zhang et al.,

2021; Habibi et al., 2021b), and resilient controller design (Jiang

et al., 2021; Karimi et al., 2021; Cecilia et al., 2022). The detection

problem is usually formalized as identifying a change in sets of

inferred candidate invariants, which can be solved by the classic

analytical method (Hetel et al., 2017; Sahoo et al., 2020) or AI-

based algorithm (Habibi et al., 2021a). The attack impact

mitigation is another critical concern, which can be achieved

by replacing the attacked signal with a reconstructed signal

(Zhang et al., 2021) or artificial neural network–based method

(Habibi et al., 2021b). In addition, resilient controller design is

another effective method to against FDI attacks. The existing

methods include observer-based methodology (Cecilia et al.,

2022), high-order differentiator–based distributed controller

(Jiang et al., 2021), and adaptive controller (Karimi et al., 2021).

Note that in Habibi et al. (2021b), Jiang et al. (2021), Karimi

et al. (2021), and Cecilia et al. (2022), current sharing ratios are

only set as the inverse of droop gains. However, the optimal

current sharing ratiosmay change online with the change in power

generation costs and the updated user demands. Thus, how to

develop an optimal current sharing method with the function of

resilient the influence of FDI attacks is an interesting and open

work. In proposing this method, the following challenges are

encountered: 1) the existing secondary control methods for

current sharing and voltage regulation are available under the

condition that the secondary control information is reliable.

However, under the influence of FDI attacks, the accurate

information of the secondary control cannot be achieved and

thus leading to the voltage deviating from the normal value and the

current sharing can be also influenced. Therefore, the first

challenge is how to develop a resilient control method to

correct the voltage deviation and current sharing derivation

caused by FDI attacks. 2) It is difficult to build a linearization

model of MG and the closed-loopmodel of theMG becomes more

complex under the influence of FDI attacks. Therefore, another

challenge caused by the considered problem is how to propose a

stability analysis method for the nonlinear MG under FDI attacks.

To solve this issue, a resilient cooperative control method is

proposed to achieve the optimal current sharing and voltage

regulation problem for MG based distribution network in the

presence of FDI attacks. In this study, the main contributions can

be summarized as follows.

1 Based on the designed resilient secondary control method,

the DC MG both achieve optimal current sharing and restore

the bus voltage simultaneously even under the influence of

FDI attacks. In addition, with the help of the designed

adaptive parameter, the effects of FDI attacks on MG can

be eliminated, which makes the method resilient to FDI

attacks. Therefore, both the resilient and the system

performance can be improved.

2 Based on the Lyapunov theory, a stability analysis method is

established for the overall closed-loop MG system to show

that the designed resilient secondary controller can resist the

influence of FDI attacks theoretically. In addition, a guideline

for the controller design is introduced to facilitate

implementation for the designer.

Problem formulation

In this section, the main contents will be elaborated as

follows: 1) modeling of the DC MG; 2) introducing the FDI

attacks; and 3) presenting the control objectives.

DC MG system

As shown in Figure 1, current and voltage control loops and

droop control are the primary control of each DG in the physical

layer. As known, the dynamic responses of voltage and current

control are much faster than that of the droop control. Therefore,

the droop control can decisively indicate the dynamics of the

primary control. Based on this analysis, the model of the DGwith

primary control is given by

Vm � −dmIm + Vp, (1)

where Vm represents the voltage reference of the mth DG, Vp is

the nominal DC voltage, dm indicates the droop gain, and Im
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represents the current output. Since the voltage and current

control loops have clever designs, the voltage output of the

converter Vo
m can track Vm rapidly. According to the

aforementioned statement, Vm can be written as follows:

Vm � Vo
m. (2)

According to the relationship between DC bus voltageVb and

Vo
m can be expressed mathematically as follows:

Vb � −RmIm + Vo
m, (3)

where Rm denotes the resistance of the line between common bus

and DG. Based on Wang et al. (2021a) (3), the relationship

between current Im and the DC bus voltage Vb immediately is

known:

Vb � −(dm + RmIm + Vp). (4)

If the values of the line resistance Rm m = 1,2,...,N are much

less than dm, that is, Rm ≪ dm, the following equation holds

Im
In

� Rn + dn

Rm + dm
≈

dn

dm
,∀i � 1, . . . , N. (5)

If the effects of line resistance Rm in (]) is ignored, then the

current sharing ratio and the droop gain dm are inversely

proportional. Nevertheless, using droop control to solve the

current sharing problem also exists.

Some drawbacks, including: 1) line resistance Rmm = 1,2,...,N

affect the current sharing accuracy inevitably; 2) larger droop

gains dm m = 1,2,...,Nmay improve the current sharing accuracy,

while a larger deviation of DC bus voltage Vb may be generated;

3) with the change in operational condition of DC MG, the

optimal current sharing ratio obtained from the tertiary layer will

be different, and thus it does not always hold the expected

relationship Figure 1.

False data injection attacks in cyber layer

In some situation, the attackers may launch FDI attacks on

the control input, which will make the voltage deviates from

the normal value and the current sharing can be also

influenced. Under FDI attacks, the input um may be

regulated to uam, that is,

ua
m(t) � um + fm, (6)

where fm is an unknown and time-varying attack signal injected

by attackers. In this study, the FDI attacks may occur in any

control input um, and the constrain of FDI attacks is that the

attack signal fm is bounded, that is, the following assumption is

satisfied.

Assumption 1. It is assumed that f � [f1, f2, . . . , fN]T is

bounded, that is, |fm|≤fm with fm being an unknown

constant for m = 1,...,N.

Control objectives

From (Eq. 4), it is obvious that, since Im̸= 0 when the system

tends to stable, there exists error between bus voltage Vb(t) and

the nominal value Vp. Then, a secondary controller um will add

into the mth DG, which can be summarized as follows,

FIGURE 1
DC MG model under FDI attacks.
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Vb � um − (dm + Rm)Im + Vp· (7)

According to the relationship among Im, Ij, dj, and dm in (Eq.

5), it is known that the droop gains dm form = 1,2,...,N should be

selected large enough to ignore the influence of line resistance

Rm. Unfortunately, larger droop gains dm will lead to larger

deviation of bus voltage of (Eq. 4). In addition, optimal current

sharing ratios obtained from the tertiary layer will change with

the change in the external environment of the MG, which may

lead to the failure of the inversely proportional. Thus, the

objectives of this study can be summarized as follows;

1 Voltage restoration:

lim
t→∞

vb(t) � Vp; (8)

2 Current sharing:

lim
t→∞ ( Ipn

ηm(t)
− Ipm
ηn(t)

) � 0,∀n ≠ m, (9)

where the piecewise constant function ηm(t) represents the

optimal current sharing ratio obtained from the tertiary layer

and Ipm represents the current value at the steady state.

Secondary current sharing and
voltage regulation control

In this section, a resilient secondary current sharing and

voltage restoration controller will be designed and then provide a

stability analysis method based on the Lyapunov stability theory.

Resilient controller design

To achieve control objectives (Ding et al., 2020; Rui et al.,

2020), the resilient controller is designed as follows:

um � ∫(sign(ym) � f̂m + um)dt (10)

where sign (ym) denotes the sign function of ym, which satisfies

sign(ym) � ⎧⎪⎨⎪⎩
1,
0,
−1,

ym > 0,
ym � 0,
ym < 0.

(11)

The symbol ym is denoted by ym � ∑N
k�1ekHkm with Hkm

being the element in row k and column i of the matrix H (the

definition of matrix H and variable e�k will be given later). The

term f^m
(t) is an adaptive parameter and is updated by

f̂m � γm
∣∣∣∣ym

∣∣∣∣, (12)

where the parameter γm is chosen as an arbitrary positive

constant. To show the controller more intuitively, the secondary

current sharing and voltage restoration controller will be

presented in Figure 2.

Remark 1. Different from the existing results on secondary

control (Guo et al., 2018b; Lian et al., 2021b), a resilient

secondary control method is proposed in this study. By

introducing an adaptive parameter f^m in the resilient

controller um, the advantage of the designed controller is that

the FDI attacks can be resisted, that is, the designed controller can

ensure that optimal current sharing and voltage regulation can be

achieved even under the influence of FDI attacks. The specific

effect will be shown in the simulation section.

Stability analysis

Before giving the main result, the model of the DC MG will

be firstly derived. Define eV (t) = Vp − Vb(t). According to Liu

et al. (2021), it has

eV(t)1N � −u(t) + (d + R)I(t), (13)

where u(t) = col{um(t)} and I(t) = col{Im(t)} with col{um(t)}

representing a column vector composed of elements u1,u2,...,uN.

In addition, d = diag{dm} and R = diag{Rm} with diag{dm}

representing a diagonal matrix with diagonal elements

d1,d2,...,dN.

As discussed in Guo et al. (2020), it assumes that the

resistance RL integrates the loads and the resistances between

lines. Then, it has

Vb(t)
RL

� 1TNI(t) (14)

Substituting Guo et al. (2020) into Liang et al. (2016), one

gets

I(t) � A−1u(t) + A−1Vp1N, (15)

FIGURE 2
Framework of the resilient secondary controller.
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where the matrix A � RL1N1TN + d + R is invertible, as discussed

in Guo et al. (2018a). Based on Liang et al. (2016) and Guo et al.

(2018a), it has

eV(t)1N � −RL1N1
T
NH

−1u(t) + (d + R)H−1Vp1N.

Define e�= αceV (t)1N − βLηI(t) with α = diag{αm}, c = diag

{cm}, β = diag{βm}, and η = diag{ηm}. Then, it has

_�e(t) � H( _u + f), (16)

where H � −(αcRL1N1TNA
−1 + βLηA−1) is a Hurwitz matrix

(Guo et al., 2020).

Theorem 1. Consider the DC MG under FDI attacks satisfying

Assumption 1. If the resilient secondary controller um in Deng

et al. (2021a) with adaptive parameter f^m updated by Lin et al.

(2021) is used and arbitrary positive constants γm for m = 1,2,...,N

are chosen and then the resilient optimal current sharing and

voltage regulation problems can be solved, that is, the control

objectives Ding et al. (2020) and Rui et al. (2020) can be achieved

simultaneously.

Proof: Define V � 1
2‖�e‖2. The derivative of V along (Deng

et al., 2020) yields

_V � �eTH _u + �eTHf, (17)
where

�eTH _u � [�e1 �e1/�eN]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
H11 H12 / H1N

H21 H22 / H2N

..

. ..
.

/ ..
.

HN1 HN2 / HNN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ _u,

[∑N

k�1�ekHk1∑N

k�1�ekHk2/∑N

k�1�ekHkN] _u,
� ∑N

m�1
∑n
k�1

ekHkm _um.

(18)

By using the similar method, it has

�eTHf � [e1e1/eN]⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
H11 H12 / H1N

H21 H22 / H2N

..

. ..
.

/ ..
.

HN1 HN2 / HNN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦f,

� [∑N

k�1�ekHk1∑N

k�1�ekHk2/∑N

k�1�ekHkN]f,
� ∑N

m�1
∑N
k�1

�ekHkmfm.

(19)

Substituting Yang et al. (2022) and Yang and Dong (2019)

into Lian et al. (2021a), it has

_V(t) � ∑N
m�1

⎛⎝∑N
k�1

�ekHkm _um +∑N
k�1

�ekHkmfm
⎞⎠. (20)

Define ym � ∑N
k�1ekHkm. Then, Deng et al. (2022b) can be

rewritten as follows:

_V(t) � ∑N
m�1

(ym _um + ymfm). (21)

According to Assumption 1, it has

_V(t)≤ ∑N
m�1

ym _um + ∑N
m�1

∣∣∣∣ym

∣∣∣∣�fm. (22)

Substituting (Eq. 14) into (Eq. 13), one gets

_V(t)≤ − ∑N
m�1

∣∣∣∣ym

∣∣∣∣(f̂m − f̂m). (23)

To achieve the main result, the following Lyapunov function

is introduced:

W(t) � V(t) + 1
2γm

∑N
m�1

(f̂m − f̂m)2. (24)

The derivative of W(t) is

_W(t) � _V(t) + 1
γm

∑N
m�1

(f̂m − f̂m)f̂m. (25)

Substituting Ma et al. (2021) into Sahoo et al. (2020), one gets

_W(t)≤ − ∑N
m�1

∣∣∣∣ym

∣∣∣∣(f̂m − f̂m) + 1
γm

∑N
m�1

(f̂m − f̂m)f̂m. (26)

Substituting Lin et al. (2021) into Habibi et al. (2021a), one

gets

_W(t)≤ − ∑N
m�1

∣∣∣∣ym

∣∣∣∣(f̂m − �fm) + ∑N
m�1

(f̂m − �fm)∣∣∣∣ym

∣∣∣∣ (27)

By applying the LaSalle–Yoshizawa theorem, it is easy to

show that

lim
t→∞

�e(t) � 0. (28)

According to Deng et al. (2020) and Habibi et al. (2021b), it

yields

lim
t→∞(αcev(t)1N − βLηI(t)) � 0.

Thus, it has

lim
t→∞

αcev(t)1N � lim
t→∞

βLηI(t). (29)

By multiplying 1TN × 1 on each side of Cecilia et al. (2022),

one has

lim
t→∞

ev(t)∑N
i�1
αmcm � lim

t→∞
1TN × 1βLηI(t). (30)

If βm (m = 1,2,...,N) such that bm = bn,∀m,n = 1,...,N, then

lim
t→∞

1TN × 1βLηI(t) � 0. (31)
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According to ∑N
i�1αmcm > 0, then it is obtained that

lim
t→∞(V

p − Vb(t)) � 0, (32)
lim
t→∞ βLηI(t) � 0. (33)

Thus, it has shown that bus voltage regulation and optimal

current sharing can be achieved by using the designed resilient

secondary controller (Deng et al., 2021a) with adaptive updated

law (Lin et al., 2021) even under the influence of FDI attacks.

Remark 2. In Theorem 1, a new stability analysis method is

provided to show that the resilient secondary controller (Deng

et al., 2021a) can resist FDI attacks theoretically. In particular, the

term 1
2γm∑N

m�1(f̂m − f̂m)2 is introduced in the Lyapunov

function W(t). Then, the control objectives of voltage

regulation and optimal current sharing can be achieved.

Simulation results

To verify the advantage of our designed resilient secondary

controller, it is first shown that the developed method is effective

to achieve the optimal current sharing and voltage regulation.

Then, it is further to prove the effectiveness of our method by

comparing with the existing secondary method in Lian et al.

(2021b). In the simulation, the detailed DG parameters are given

in Table 1 and the Laplacian matrix L is chosen as follows:

L � ⎡⎢⎢⎢⎢⎢⎣ 2 −1 −1
−1 1 0
−1 0 1

⎤⎥⎥⎥⎥⎥⎦.

Resilient optimal current sharing and
voltage regulation

In this subsection, the verification of our resilient secondary

controller (Deng et al., 2021a) against FDI attacks is shown. In

this case, there is no attacker to destroy the system, that is, fm ≡
0 for m = 1,2,...,N.

1) Consider 0–10 s, the experimental results are shown in

Figure 3 by using the resilient secondary controller (Deng

et al., 2021a). From Figure 3, it is shown that the proposed

controller ensures that the bus voltage 156 can be regulated to

Vp after introducing the secondary controller (Deng et al.,

2021a). In addition, the ratios of Im for m = 1,2,3 are

maintained as I1:I2:I3 ≈ 1:2:4 after introducing the

secondary controller (Deng et al., 2021a).

TABLE 1 Parameters on controllers and the MG system.

DGs:1, 2, & 3

DG VDC 48 V fs 20 kHz

Droop gain d1 = 8, d2 = 4, d3 = 2

Proposed controller α1 = α2 = α3 = 1

β1 = β2 = β3 = 0.5

γ1 = γ2 = γ3 = 3

Load RL � 5Ω R

Nominal voltage Vp = 48 V

FIGURE 3
Trajectories of the voltage and the current with load added in.

FIGURE 4
Trajectories of the voltage and the current under ourmethod.
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2) Consider 10–15 s, an extra load RL = 5 Ω is added to the

MG. According to the solution at the tertiary layer, the

optimal sharing ratio is changed to I1:I2:I3 = 1:1:1 when the

load is changed. Thus, the parameter ηi (i = 1, 2, 3) of the

resilient secondary controller is adjusted to η1:η2:η3 = 1:1:1.

Then, the bus voltage will be regulated to Vp by using the

automatic adjustment function of the resilient secondary

controller (Deng et al., 2021a). In addition, the current

sharing ratio will also alter to I1:I2:I3 ≈ 1:1:1 through our

controller.

Comparison studies

In this case, the designed resilient secondary method and

the secondary control method in Lian et al. (2021b) are

both applied to solve the optimal current and voltage

regulation for DC MG under FDI attacks. Specifically,

the secondary controllers are added into the DC MC at

t = 2 s. The FDI attack f1 = sin (0.1t) is added into the 1 st

DG at t = 6 s and the FDI attacks f2 = 2sin (0.1t) and f3 =

3sin (0.1t) for DGs 2 and 3 are added at t = 10 s. Under our

resilient secondary controller and the secondary controller

in Lian et al. (2021b), the simulation results are shown in

Figures 4,5.

1) Consider 0–6 s, it can be seen that both methods can ensure

that the bus voltage be regulated to Vp and the ratios of Im for

m = 1,2,3 are maintained as I1:I2:I3 ≈ 1:2:4 after introducing

the secondary controller at t = 2 s.

2) Consider 6–10 s, the FDI attack is added into the 1 st DG at

this interval. Our method can ensure that the bus voltage

regulates to Vp by using the resilient secondary controller

(Deng et al., 2021a). In addition, the current 176 sharing ratio

will also retain to I1:I2:I3 ≈ 1:2 4 through our controller.

However, the bus voltage will deviate to Vp by using the

resilient secondary controller (Deng et al., 2021a), and the

current sharing ratio will fluctuate with the addition of attacks

under the secondary controller (Lian et al., 2021b).

3) Consider 10–15 s, the FDI attacks are added into all DG

attacks at this interval. Our method can still ensure that

voltage regulates to Vp and the current sharing ratio will

also hold. However, the method in Deng et al. (2021a)

does not guarantee these two objectives. Thus, it has

shown that the developed method is effective to resist

FDI attacks.

Conclusion

In this article, it has solved the security secondary control

problems for optimal current sharing and voltage restoration of

an islanded DC MG under FDI attacks. To solve these problems,

a resilient secondary control method has been provided. First, a

resilient secondary controller has been designed by introducing

an adaptive parameter based on the adaptive technique. Then, a

theoretical analysis method has been provided to show that the

designed resilient secondary controller can ensure optimal

current sharing and voltage regulation under FDI attacks.

Finally, a simulation example is given by using the MATLAB

testing platform to verify the developed resilient secondary

control method. Now, this result cannot be extended to the

directed network case due to that the Laplacian matrix is no

longer a symmetric matrix under directed network case.

Therefore, it is my further work to extend this result to the

directed network case.
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FIGURE 5
Trajectories of the voltage and the current under the method
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To operate the power grid safely and reduce the cost of power production, power-
load forecasting has become an urgent issue to be addressed. Although many power
load forecasting models have been proposed, most still suffer from poor model training,
limitations sensitive to outliers, and overfitting of load forecasts. The limitations of current
load-forecasting methods may lead to the generation of additional operating costs for
the power system, and even damage the distribution and network security of the related
systems. To address this issue, a new load prediction model with mixed loss functions
was proposed. The model is based on Pinball–Huber’s extreme-learning machine and
whale optimization algorithm. In specific, the Pinball–Huber loss, which is insensitive
to outliers and largely prevents overfitting, was proposed as the objective function for
extreme-learning machine (ELM) training. Based on the Pinball–Huber ELM, the whale
optimization algorithm was added to improve it. At last, the effect of the proposed hybrid
loss function prediction model was verified using two real power-load datasets (Nanjing
and Taixing). Experimental results confirmed that the proposed hybrid loss function load
prediction model can achieve satisfactory improvements on both datasets.

Keywords: outliers, whale optimization algorithm, load forecasting, Pinball–Huber regression, extreme-learning
machine

1 INTRODUCTION

As an integrated system that can optimize the allocation of energy resources according to
the regional energy structure and energy reserves, integrated energy systems have become
an important way to accelerate the global sustainable energy transformation (Wu et al., 2019,
2021). Power-load forecasting is an important part of the power system (Ahmad et al., 2020;
Yang et al., 2022b). Accurate power-load forecasting can arrange the start and stop of generator sets
more economically and reasonably to maintain power supply and demand balance (Shi et al., 2021),
and maintain the safety and stability of power grid operation (Dynge et al., 2021). In addition,
it can effectively reduce the cost of power generation, transmission, and distribution; improve
economic and social benefits; and ensure the operation of the society (Chu et al., 2021; Lin and
Shi, 2022). The existing mainstream power load forecasting methods are mainly divided into two
categories: statistical (Rehman et al., 2022) and artificial intelligence methods (Aslam et al., 2021).
Factors such as seasons (van der Meer et al., 2018), climates (Alipour et al., 2019), and temperature
(Yang et al., 2022d) have a direct impact on power load. Statistical methods are a very effective
solution to such systems with trends, seasons, and periodic changes. Many scholars have carried
out research on power load forecasting based on these methods such as the auto regressive
(AR) (Louzazni et al., 2020), auto regressive moving average (Yan and Chowdhury, 2014), and auto
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regressive integrated moving average models (Asadi et al., 2012).
The statistical methods usually take power load or energy as
a single input series, while the artificial intelligence methods
consider the relationship between the output and multiple
influencing factors. Under the condition of sufficient historical
samples, artificial intelligencemethods usually have high forecast
accuracy and strong generalization ability, such as the support
vector machine (Yang et al., 2022a) and neural networks (NNs)
(Huang et al., 2002; Oreshkin et al., 2021). Extreme-learning
machine (ELM) is an emerging generalized single-hidden-layer
feed-forward neural-network-learning algorithm, which can
generate hidden variable parameters at random to calculate
output weights, and it is widely used in forecast. Liu and
Wang (2022) proposed a transfer-learning-based probabilistic
wind power forecasting method. Model-based transfer learning
is utilized to construct the multilayer extreme-learning machine.
The enhanced Crow search algorithm–ELM (ENCSA–ELM)
model was proposed to accurately forecast short-term wind
power to improve the utilization efficiency of clean energy in
Li et al. (2021). ELM is more efficient, has lower computational
costs, and has greater generalization than shallow learning
systems.

Both time series and artificial intelligence methods usually
take the loss function as the training objective. The existing
literature mainly uses the mean absolute error (L1 loss), mean
absolute percentage error (MAPE), and root mean square
error (RMSE) to evaluate the effect of power load forecasting.
Furthermore, to develop an algorithmic framework capable
of handling data containing outliers, a robust loss function,
Huber–Loss (Ge et al., 2019), has been introduced. Compared
with other loss functions, this function has different sensitivity
to abnormal data and is more tolerant to noise. Furthermore, the
loss function can adjust the robustness of the model according to
the tuning parameters 𝜏, and it can better suppress the influence
of outliers.

However, these improved evaluation indicators are still mostly
based on the absolute value criterion, only considering the size of
the error, but not the direction of the error.They also do not fully
account for the different consequences of positive and negative
errors. In fact, the positive and negative errors of the power load
forecasting affect the reliability and economy of power differently,
so the error evaluation indicators should be differentiated. The
improvement of the abovementioned traditional indicators is
mainly reflected in the improvement of the mathematical form,
the introduction or construction of new statistics, and the
construction of a multiindicator evaluation system.

Hybrid algorithmic frameworks have been developed
and widely used in power-load forecasting. However, these
algorithmic frameworks have hyperparameters that need to be
carefully optimized before forecasting. The optimized values
of these algorithms determine the performance of the forecast
(Yang et al., 2022c). Grid search, gradient descent, and cross
validation are commonly used methods for optimizing the
parameters of forecast models. The studies have also proposed
nature-inspired meta-heuristic optimization algorithms to
efficiently optimize these parameters. Geng et al. (2015)
proposed a load-forecasting model hybridizing the seasonal

SVR and chaotic cloud simulated annealing algorithm to
receive more accurate forecasting performance. Xie et al. (2020)
proposed a method combined Elman neural network and the
particle swarm optimization for the short-term power load
forecasting. Heydari et al. (2020) proposed a hybrid model that
considers price and load forecasting, including variational mode
decomposition, generalized regression NNs, and gravitational
search algorithms.

In summary, the current requirement for power load
forecasting is increasing from the following perspectives:
1) the forecasting accuracy needs to be improved; 2) a
robust loss function is required to develop machine learning
framework that can fully account for the different consequences
of positive and negative errors and outliers; and 3) more
advanced optimization methods are needed to improve
model parameters. The contributions of this article are
the following: 1) A new hybrid model was proposed to
improve the load-forecasting accuracy and prevent overfitting,
which combines the Pinball–Huber–ELM with WOA. In
specific, in our proposed Pinball–ELM, WOA is employed
to search weights and thresholds, which provide good
training results for load prediction; and 2) an improved
ELM was developed to handle data with outliers. Due
to its excellent properties, the Pinball–Huber loss was
incorporated into the ELM as the objective function for its
training.

The rest of this article is organized as follows. In Section 2,
we review the basic ELM and propose our powerful ELM.
Next, Section 3 introduces WOA. Section 4 then illustrates
our proposed hybrid loss function load prediction model and
presents the model-training process for cross validation of
tuning parameters. In Section 5, the testing of the proposed
hybrid load-forecastingmodelWOA–Pinball–Huber–ELMusing
two datasets from Nanjing and Taixing is described. Section 6
concludes the article.

2 PINBALL–HUBER EXTREME-LEARNING
MACHINE

2.1 Extreme-Learning Machine
Unlike traditional NNs, ELM is a single-hidden-layer feed-
forward NN that randomly selects its input weights and
thresholds. The number of nodes in the input layer, hidden layer,
and output layer are N, L, and M, respectively. Under the action
of the activation function, the hidden layer output matrix H is as
follows:

H =
[[[

[

g (ω1 ⋅ x1 + b1) g (ω2 ⋅ x1 + b2) ⋯ g (ωL ⋅ x1 + bL)
g (ω1 ⋅ x2 + b1) g (ω2 ⋅ x2 + b2) ⋯ g (ωL ⋅ x2 + bL)
⋮ ⋮ ⋱ ⋮

g (ω1 ⋅ xN + b1) g (ω2 ⋅ xN + b2) ⋯ g (ωL ⋅ xN + bL)

]]]

]N×L,
(1)

where x is the input matrix, ω is the input weight matrix,
and b is the threshold in the hidden layer, which are
randomly generated in ELM. The output T of the ELM is then
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T = [t1, t2,…, tN]M×N =
[[[

[

t1j
t2j
⋮
tMj

]]]

]M×L

=
[[[[

[

∑t
i=1
βi1 ⋅ g (ωi ⋅ xj + bi)

∑t
i=1
βi2 ⋅ g (ωi ⋅ xj + bi)
⋮

∑t
i=1
βiM ⋅ g (ωi ⋅ xj + bi)

]]]]

]M×L

(j = 1,2,…,N) , (2)

where β is the correlation weight matrix between the hidden and
output layers.

ELM mainly uses the randomly generated ω and b, and
it selects the least square method to complete the calculation
of the β. The algorithm does not need to perform multiple
solving operations, which greatly reduces the complexity of the
operation.

According to the two theorems in Zhang et al. (2020), when
the activation function is differentiable, it is not necessary to
adjust all parameters in ELM. At last, the solution of β can be
obtained as follows:

β =H−1T
′
, (3)

where H−1 is the generalized inverse matrix of H.

2.2 Regression Loss Function
The regression loss function represents the gap between the
predicted and actual value. If the gap is larger, the value of the
loss function is larger; otherwise, its value is smaller. During the
optimization process, through continuous learning and training,
the value of the loss function is gradually reduced, so that the
performance of the model is continuously improved.

2.2.1 L2 Loss
In the training of forecast models, the most commonly used loss
function is L2 loss (mean squared error), which is defined as

L2 = 1
M

M

∑
i=1
(yi − ̂yi)

2, (4)

where M is the number of output samples in the training set,
yi represents the expected output of the training set, and ̂yi
represents the forecast output of the training set. For models
using the L2 loss, the convergence is fast when the error is large.
However, the L2 loss is sensitive to outliers, which affects the
performance of the forecast model.

2.2.2 L1 Loss
The L1 loss (mean absolute error) is more robust to outliers than
the L2 loss, which is defined as

L1 = 1
M

M

∑
i=1
|yi − ̂yi|, (5)

where M is the number of output samples in the training set,
yi represents the expected output of the training set, and ̂yi
represents the forecast output of the training set. Although the L1
loss enhances robustness, it is not smooth and nondifferentiable
at zero, and it converges slowly.

2.2.3 Huber Loss
Huber loss is a combination of the L2 and L1 losses, which
includes a parameter δ. δ determines the degree of inclination of
the Huber loss on the L1 and L2 losses; that is, it is used to control
the quadratic and linear range of the loss function.TheHuber loss
combines the advantages of the L1 and L2 losses, and it is more
robust to outliers than the L2 loss, while converging faster.

Huber loss reduces the penalty for outliers, so it is a commonly
used robust loss function. It is defined as

ρδ (r) =
{
{
{

1
2 r

2 |r| ≤ δ

|r|δ − δ
2

2 |r| > δ,
(6)

where r represents the absolute value of the difference between
the expected output and predicted output. δ represents the tuning
parameter, which is used to determine the behavior of the model
to deal with outliers.

2.2.4 Pinball Loss
Pinball loss is mostly used in regression analysis problems, which
is related to the quantile distance and is not sensitive to outliers.
The Pinball loss used is defined as

L𝜏 = {
(yi − ̂yi)𝜏 yi ≥ ̂yi
( ̂yi − yi) (1− 𝜏) yi < ̂yi,

(7)

where 𝜏 ∈ [0,1] is the target quantile to adjust for the positive
and negative errors in the forecast. yi and ̂yi are defined as above.
When 𝜏 = 0.5 , the Pinball loss is the same as the L1 loss, and it can
be considered as a generalized L1 loss. When 𝜏 ≠ 0.5 , the Pinball
loss has different penalties for positive and negative errors.

2.2.5 Proposed Pinball–Huber Loss
To implement different penalties for positive and negative errors
during training, and enhance the robustness of the loss function,
thereby improving the accuracy, the proposed improved loss
function named the Pinball–Huber loss is

V (r) =

{{{{{{{{
{{{{{{{{
{

1
2𝜏r

2 −δ ≤ r < 0
1
2 (1− 𝜏) r

2 0 ≤ r ≤ δ

𝜏(|r|δ − δ
2

2 ) r < −δ

(1− 𝜏)(|r|δ − δ
2

2 ) r > δ,

(8)

where 𝜏 ∈ [0,1] is the target quantile to adjust for the positive
and negative errors in the forecast. δ represents the threshold,
which is used to determine the behavior of themodel to deal with
outliers. r represents the absolute value of the difference between
the expected output and predicted output. Compared withHuber
loss, the Pinball–Huber loss maintains its low sensitivity to
outliers in the data and implements different penalties for positive
and negative errors, considering the direction of errors. In power
load forecasting, since there are often outliers in power load data,
and positive and negative errors should be distinguished, our
proposed Pinball–Huber is expected to improve the forecasting
accuracy and convergence speed.
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2.3 Pinball–Huber–Extreme-Learning
machine
The presence of data outliers can affect the prediction
performance of ELM. The Pinball–Huber loss obtained by
introducing the pinball feature based on the Huber loss can
effectively distinguish the effects of positive and negative
errors and further improve the accuracy of prediction, while
maintaining robustness. Therefore, this study introduces the
Pinball–Huber loss into the traditional ELM and uses the
Pinball–Huber loss as the objective function to train the ω and b
of ELM. When dealing with power data with outliers, the model
shows quite good robustness, and greatly improves the ELM
effect regarding the prediction accuracy. The improved model
named the Pinball–Huber–ELM is as follows:

minω,b MHL = 1
M ∑

M
i=1V (ri)

s.t. V (r) =

{{{{{{{{
{{{{{{{{
{

1
2𝜏r

2 −δ ≤ r < 0
1
2 (1− 𝜏) r

2 0 ≤ r ≤ δ

𝜏(|r|δ − δ
2

2 ) r < −δ

(1− 𝜏)(|r|δ − δ
2

2 ) r > δ
ωi = [ωi1,ωi2,…,ωiN]

T

b = [b1,b2,…,bL]T .

(9)

3 WHALE OPTIMIZATION ALGORITHM

The whale optimization algorithm was inspired by the
unique bubble net prey method of the whale population
(Mirjalili et al., 2016). It searches for the optimal solution
through the following three mechanisms: surrounding the prey,
searching for the prey, and attacking the prey by the spiral bubble
net.

3.1 Surround Prey
1) Whale swimming toward the optimal position

Whale groups can find out the coordinates of their prey and
surround them during hunting. In WOA, it is assumed that the
position of the optimal individualwhale in the current population
is the position of the prey, and the optimal whale is surrounded
by other whales. The mathematical model is

D = |C ⋅X∗ (t) −X (t)| , (10)

X (t + 1) = X∗ (t) −A ⋅D. (11)

In Eqs. 10 and 11, t is the current iteration; X∗(t) is the best-
obtained solution in the previous iteration; X(t) is the solution in
the current iteration; andX(t) is the solution in the next iteration.
The specific formulas of the coefficient vectors A and C are

A = 2a ⋅ r2 − a, (12)

C = 2 ⋅ r1. (13)

In Eqs. 12 and 13, r1, r2 are the two numbers randomly
selected in the range of [−1,1], and a is the convergence factor.
As the solution is updated, the value of a decreases linearly from
2 to 0. The formula is

a = 2− 2( t
tmax
), (14)

where tmax is the maximum number of iterations.
Equation 11 shows that it can be updated on the basis of the

current optimal individual position (X∗,Y∗) and continue to
search for the individual position (X,Y). Y∗ represents the fitness
value obtained from position X∗. Y represents the fitness value
obtained from position X. By adjusting the values of the A and C
vectors, we can achieve various positions around the best position
relative to the current position. Any individual whale is allowed to
update its position near the current optimal solution and simulate
surrounding the prey.

2) Whales swimming toward random locations
In the process of searching for prey, the method that the

vector A changes with the iterative process can be used. In effect,
humpback whales randomly explore the solution space based
on each other’s positions. Therefore, A is used in the global
exploration phase to update the whale position so as to stay away
from the current individual when the random value is >1 or <1.

In contrast to the local development phase, in the global
exploration phase, the positions of individual whales are
upgraded based on randomly selected individuals, rather than
the best whales found so far. This mechanism focuses on
exploration. Thus, when |A| > 1, the WOA algorithm performs
a global exploration operation. During the prey-hunting phase,
the location of the prey is unknown to the whale population.
This mechanism focuses on optimization. Thus, when |A| < 1,
the whales obtain the location of the prey through collective
cooperation. Whales use random individual positions in
the population as navigation targets to find food, and the
mathematical model is described as follows:

D = |C ⋅Xrand −X| , (15)

X (t + 1) = Xrand −A ⋅D. (16)

In Eqs. 15 and 16, Xrand represents the position of the whales
randomly selected in the current whale population.

The WOA algorithm begins execution with a random set of
whale swarm locations. The shrinking envelope is achieved as
the convergence factor a decreases. The fluctuation range of the
coefficient vector A also decreases as the convergence factor a
decreases. That is, when the convergence factor a decreases from
2 to 0 during the iteration, the fluctuation of the coefficient vector
A also decreases; its range is [−a,a].

In each iteration, the whale individual updates its position
using the randomly selected whale position information or the
whale individual position information with the best fitness value
obtained so far. As the parameter a decreases from 2 to 0,
the transition of the algorithm between the global exploration
phase and local development phase is realized. When |A| > 1, we
randomly select a whale in the population; when |A| < 1, we select
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the currentwhalewith the best fitness value to update the position
of the individual whale. Given the value of p, WOA has the ability
to swap between helical or circular motion. At last, satisfying a
termination condition terminates the WOA algorithm.

3.2 Bubble Net Chase
Two methods were used to build a mathematical model of the
predation behavior of whales in bubble nets. The first is the
reduction of the wraparound mechanism, which is achieved by
reducing the value of a in Eq. 14, where the fluctuation range
of A also decreases accordingly. In other words, A represents
a random value in the interval [−a,a], where a decreases from
2 to 0 during the iteration. Defining a random value of A in
[−1, 1], the new position of the individual whale can be defined
somewhere between the whale’s original position and the current
best whale position. The shrinking and wrapping mechanism of
whale group predation can be represented by a two-dimensional
space (0 ≤ A ≤ 1). This space contains all possible positions to
transform from (X,Y) to (X∗,Y∗).

The second is the spiral update position mechanism. The
method first calculates the distance between the whale located
at (X,Y) and the prey located at (X∗,Y∗). Between the location
of the whale and prey, the researchers used a spiral equation
to mimic the spiral of a humpback whale shape motion. Its
mathematical model is described as

X (t + 1) = D
′
⋅ ebl ⋅ cos (2πl) +X∗ (t) . (17)

In Eq. 17, D
′
= |X∗(t) −X(t)| represents the distance between

the optimal whale individual and current whale individual in the
tth iteration; b represents the constant of the logarithmic spiral
equation; l is the random value between [−1, 1] number; and “⋅”
is element-wise multiplication.

Whales follow a spiral path while swimming around their
prey in a shortened circle. To obtain a model that simulates this
behavior, it is assumed that there is a 50% probability during the
optimization process to randomly choose between the encircling
mechanism and spiral updating position mechanism to update
the positions of individual whales. Its mathematical model is

X (t + 1) = {
X∗ (t) −A ⋅D, p < 0.5
D
′
⋅ ebl ⋅ cos (2πl) +X∗ (t) , p ≤ 0.5. (18)

In Eq. 18, p represents the random number between [0, 1].
After the bubble net chase pattern, the humpback whales begin
to randomly search for prey.

4 PROPOSED FORECASTING MODEL

In this section, we propose a hybrid loss function power load
forecastingmodel.Thismodel combines a powerful ELMwith an

improved Pinball–Huber loss function. To optimize the effect of
the improved algorithm,weneed to obtain the optimal solution of
the tuning parameters of Huber loss through two cross validation
in advance.

At last, the implementation flow of our hybrid loss function
prediction model is as follows:

1) We obtain the original data and preprocess them. We divide
the data into training and test sets appropriately.

2) The training set is then divided into five subsets. Any
nonrepetitive part of the five subsets (i.e., any subset) is
used as the training set; the remaining four parts of the
training set (i.e., the remaining subsets) are used as the
test set. We compute MSEi using the test set and employ a
different subset as the test set each time. We use five-fold
cross validation for parameters δ and 𝜏. We divide the value
range of a into five equal parts. Then we randomly pick
a value from each interval and obtain five values, denoted
as [0,0.2] , [0.2,0.4] , [0.4,0.6] , [0.6,0.8] , [0.8,1]. Experiments
were performed five times with different values for each test
set used.We use five δ-values and five 𝜏-values to combine 25
experimental data.

3) We first assign empirical parameter values, then apply 2 five-
fold cross-validations to average the 25 values of MSEi to
obtain the final averageMSE, calledCV,CV = (∑ki=1MSEi)/k.
Twenty-five MSEi’s were compared, and the minimum value
of MSE is selected to be substituted into the Pinball–Huber
loss regression function.

4) In the training set, we take the minimum value of the
Pinball–Huber as the goal, use WOA to solve the optimal
parameters ωi,bj of ELM, and substitute them into formula
to obtain βjk.

5) The input weight of the model, the threshold of intermediate
nodes, and the output weight of the model are all brought
into the ELM model, and then the input of the test set is
substituted into the model to obtain the prediction output of
the test set.

5 CASE STUDIES

We performed power-load forecasts for Nanjing and Taixing
power data. We recorded Nanjing’s power load data (total load
power of the grid/MW every 15 min) every half an hour. Nanjing
data have 1920 data points (2003.2.18.00:00–2003.3.29.23:30).
The training set included 1,152 data points, and the test set
included 768 data points. We record Taixing’s electricity load
data (daily electricity consumption/10,000 kwh) every other day.
Taixing data have 1,175 data points (2018.5.13–2021.8.2). The
training set includes 705 data points, and the test set includes 470
data points. The specific situation is shown in the Table 1.

An evaluation is performed in this subsection; the
performance of our proposed WOA–Pinball–Huber–ELM
algorithm is evaluated using the power load data of Nanjing and
Taixing, as shown in Tables 2 and 3. The actual electrical load
power and the WOA–Pinball–Huber–ELM-based electrical load
forecast result graph forNanjing’s data are shown in Figure 1.The
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TABLE 1 | Characteristics of experimental data in Nanjing and Taixing.

Dataset Size Min Max Median Mean Std.

Nanjing Total data 1920 2,362.152 5,276.500 3,879.217 3,802.732 607.709
Training data 1,152 2,564.228 5,151.652 3,991.129 3,860.526 635.217
Testing data 768 2,362.152 5,276.500 3,775.403 3,716.042 553.120

Taixing Total data 1,175 1,210.872 2,875.318 1,893.728 1,902.926 249.797
Training data 705 1,210.872 2,516.598 1,799.584 1,795.856 203.690
Testing data 470 1,424.918 2,875.318 2,040.657 2,063.533 225.466

TABLE 2 | Evaluation index of Nanjing data is obtained from three prediction algorithm experiments.

Train Test

RMSE MAE MAPE RMSE MAE MAPE

WOA-ELM 191.52 178.92 0.04 202.42 187.02 0.04
WOA-L1-ELM 168.93 120.63 0.04 194.06 155.35 0.04
WOA-L2-ELM 161.20 120.82 0.04 193.94 152.58 0.04
WOA-Pinball-ELM 182.92 141.66 0.04 192.49 150.48 0.04
WOA-HUBER-ELM 172.50 136.45 0.04 188.21 149.17 0.04
WOA-Pinball-Huber-ELM 153.69 115.11 0.03 186.05 146.58 0.04

TABLE 3 | Evaluation index of Taixing data is obtained from three prediction algorithm experiments.

Train Test

RMSE MAE MAPE RMSE MAE MAPE

WOA-ELM 58.56 43.78 0.02 74.04 60.25 0.02
WOA-L1-ELM 59.50 41.47 0.02 69.67 58.04 0.02
WOA-L2-ELM 57.71 41.68 0.02 73.91 57.45 0.02
WOA-Pinball-ELM 58.49 42.00 0.02 70.79 51.62 0.02
WOA-HUBER-ELM 57.44 41.30 0.02 73.36 54.72 0.03
WOA-Pinball-Huber-ELM 57.62 41.58 0.02 69.57 51.48 0.02

actual electrical load power and theWOA–Pinball–Huber–ELM-
based electrical load forecast result graph for Taixing data are
shown in Figure 2.

As far as the power load data in Nanjing are concerned,
we use the proposed algorithm (WOA–Pinball–Huber–ELM)
and the compared algorithms (WOA–ELM, WOA–L1–ELM,
WOA–L2–ELM, WOA–Pinball–ELM, WOA–Huber–ELM) for
experiments, and the experimental results are shown in Table 2.
From the experimental results of the test set in Table 2, the four
(improved based on the basic WOA–ELM) algorithms and the
basicWOA–electric power data predicted by ELMalgorithm.The
above four improved algorithms corresponding to the calculated
three evaluation indicators (RMSE, MAE, and MAPE) data are
mostly better than the three calculated by the basic WOA–ELM
algorithm.

The Pinball–Huber loss function is obtained by
combining the Pinball and Huber loss. We improved
the WOA–Pinball–Huber–ELM, WOA–Pinball–ELM,

WOA–Huber–ELM, WOA–L1–ELM, and WOA–L2–ELM
algorithms from the Pinball–Huber, Pinball loss, Huber loss,
and L1 and L2, respectively. Furthermore, we used these
algorithms to predict the electric power data and calculate the
corresponding three evaluation indicators. The three evaluation
indexes calculated by the WOA–Pinball–Huber–ELM algorithm
were better than the three evaluation indexes calculated by
the improved WOA–Pinball–ELM and WOA–Huber–ELM
algorithms. In addition, the three evaluation indexes calculated
by the WOA–Pinball–Huber–ELM algorithm were better
than the three evaluation indexes calculated by the improved
WOA–L1–ELM andWOA–L2–ELM algorithms.

Considering the power load data of Taixing, the experimental
results are presented in Table 3. From the experimental results
of the test set in Table 3, it can be seen that the four improved
algorithms and the basicWOA–ELMalgorithmpredict the power
load prediction power data. The power data obtained by the
above four improved algorithms correspond to the calculated
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FIGURE 1 | Actual power and prediction result graph based on WOA–Pinball–Huber–extreme-learning machine (ELM) in Taixing.

FIGURE 2 | Actual power and prediction result graph based on WOA–Pinball–Huber–ELM in Taixing.

three evaluation indicators RMSE, MAE, and MAPE data than
the three calculated using the basic WOA–ELM algorithm. The
evaluation index data are small, and the effect is better.

It is obvious from Table 3 that the three evaluation indexes
calculated using the WOA–Pinball–Huber–ELM algorithm
were better than the three evaluation indexes calculated by
the improved WOA–Pinball–ELM and WOA–Huber–ELM
algorithms. At last, the three evaluation metrics calculated by
the WOA–Pinball–Huber–ELM algorithm are better than those
calculated by the improved WOA–L1–ELM and WOA–L2–ELM
algorithms.

6 CONCLUSION

To ensure the safe operation of the grid, we must confirm
that the power-load forecast is accurate and effective. However,
the complexity of the grid structure brings many difficulties
to future power-load forecasting, and the current popular
forecasting methods cannot handle all the difficulties. To
address this challenge, this study proposed a new hybrid loss
function load predictionmodel, theWOA–Pinball–Huber–ELM.
It is a combination of the Pinball–Huber ELM and whale
optimization algorithm. The Pinball–Huber loss, which is
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insensitive to outliers and largely prevents overfitting, is treated
as the objective function for our optimized ELM training.
Based on two real power load forecasting datasets in Nanjing
and Taixing and comparative experiments with two improved
algorithms, our WOA–Pinball–Huber–ELM model shows great
advantages in handling outliers and improving forecasting
accuracy.

In future work, our proposed framework can be employed
for other forecasting problems in environmental science
(Zhang et al., 2021, 2022) and bioinformatics (Miao et al., 
2022).
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A hybrid SVR with the firefly
algorithm enhanced by a
logarithmic spiral for electric
load forecasting
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Accurate forecasting of an electric load is vital in the effective management of

a power system, especially in flourishing regions. A new hybrid model called

logarithmic spiral firefly algorithm-support vector regression (LS-FA-SVR) is

proposed to promote the performance of electric load forecasting. The new

hybrid model is acquired by combining the support vector regression, firefly

algorithm, and logarithmic spiral. Half-hourly electric load from five main

regions (NSW, QLD, SA, TAS, and VIC) of Australia are used to train and test

the proposed model. By comparing the model results with observed data on

the basis of the root mean squared error (RMSE), mean absolute error (MAE),

and mean absolute percent error (MAPE), the performance of the proposed

hybrid model is the most outstanding among all the considered benchmark

models. Hence, the results of this study show that the hybrid model LS-FA-SVR

is preferable and can be applied successfully because of its high accuracy.

KEYWORDS

electric load, time series forecasting, firefly algorithm, support vector regression, logarithmic

spiral, management of power system

1 Introduction

As an integrated system that can optimize the allocation of energy resources according
to the regional energy structure and energy reserves, an integrated energy system has
become an important way to accelerate the global sustainable energy transformation.
Accurate load forecasting not only plays a decisive role in the comprehensive planning,
operation, management and cascade use of energy system but is also a key technology to
promote the development of the energymarket (Wang et al., 2018; Chen andWang, 2021;
Yang et al., 2022c). Hence, technology for the smart and efficient management of grid
uncertainty has attracted research interest. In particular, load forecasting is a core factor of
smart grid applications, such as demand response, as it can accurately predict the demand
flexibility and potential problems in a grid. In addition, load forecasting can contribute
to the efficient integration and wide allocation of distributed energy resources and their
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coordination to accommodate supply and demand
(Kaur et al., 2016). Therefore, the prediction of the short-term
load has become the chief task in power dispatching and power
planning (Wu et al., 2021; Yang et al., 2022d).

However, high accuracy in predicting a short-term load
is difficult to obtain because the electric load time series is
complex and shows vacillating behavior with many variables
considered. In order to deal with this problem, regression
models, stochastic process models, and exponential smoothing
are employed to forecast the electric load in traditional methods
(Zhang et al., 2021, 2022b,a). However, the traditional methods
scarcely acquire the complexity of the system. Hence, artificial
intelligence approaches are extensively used to predict the power
load, such as artificial neural networks, support vector machines,
and nature-inspired meta-heuristic algorithms.

Among all the data mining techniques based on artificial
intelligence, artificial neural networks have become hot
techniques in the research of forecasting electric load.
Yang et al. (2022a) developed a highly accurate short-term
load forecasting method using non-linear auto-regressive
artificial neural networks with exogenous multi-variable input.
Yang et al. (2022b) presented a novel approach for short-
term electrical load forecasting by the radial basis function
neural networks, and the result showed that the application of
neural networks in short-term load forecasting is encouraging.
Wang et al. (2016) proposed an outstanding model based on a
wavelet neural network to address the complex nonlinearities
and uncertainties in forecasting the electric load, and the
accuracy of the proposed model is better than the considered
models. Yang et al. (2021b) proposed a new hybrid model to
forecast electric load series with outliers, which is based on
a robust extreme learning machine and an improved whale
optimization algorithm. An et al. (2013) presented a novel
approach based on a feed-forward neural network to predict the
electricity demandwith high accuracy and demonstrated that the
proposed model improved the forecasting accuracy noticeably.
Yang et al. (2021a) applied the radial basis function neural
network (RBFNN) to generate accurate predictions for nonlinear
time series. In recent years, with the development of the deep
learning theory and hardware equipment, the technology based
on deep learning is widely used in power load forecasting.
Kong et al. (2017) established a forecasting framework based
on LSTM for residential load forecasting. In particular, the
recurrent neural network (RNN) and its variants (long short-
term memory (LSTM) and gated recurrent unit (GRU)) have
been widely used because of their outstanding ability to deal
with time series. Feng developed a two-step short-term load
forecasting (STLF) model which designed a Q-learning-based
dynamic model selection. This model can provide reinforced
deterministic and probabilistic load forecasts (DLFs and PLFs)
(Feng et al., 2019). Afrasiabi et al. (2020) proposed a model
for conditional probability density forecasting of residential

loads based on an end-to-end composite model comprising
convolution neural networks (CNNs) and a gated recurrent unit
(GRU).

Although neural networks and deep learning methods
have been widely used in load forecasting, it should not
be ignored that they usually fall into the local minimum
because of the restriction on generalization ability which barely
makes full use of information from selecting the sample
(Cui et al., 2021). Fortunately, the support vector machine
developed by Vapnik (1999), one of the outstanding data
mining techniques, can overcome this problem and improve
the accuracy of prediction. Because of the excellence of the
characteristics, the support vector machine has become one
of the popular methods in forecasting the short-term electric
load. Stojanović et al. (2013) used least square support vector
regression (LSSVR) based on historical daily load demands
in combination with the calendar and climate features for
forecasting the half-hourly load demand of the next day.
Chen et al. (2017) established a new support vector regression
(SVR) forecasting model with the ambient temperature of
2 hours before the demand response event as input variables, and
the result showed themodel offered a higher degree of prediction
accuracy and stability in short-term load forecasting.

The SVR has been proved to be an excellent model
for load demand forecasting. However, the SVR can be
improved in many aspects actually; the parameters of the
support vector machine play an important role in the accuracy
of prediction and are a core part in improving the SVR
(Kisi et al., 2015; Najafzadeh et al., 2016). Various optimization
algorithms have been used for the selection of these parameters
like the grid search algorithm and gradient descent algorithm
(Kisi et al., 2015). Computational complexity seems to be the
main disadvantage of the grid method, which restricts its
applicability to simple cases. The grid search algorithm is also
prone to local minima.

Among the methods of optimizing parameters by using data
mining technology, a classic way of optimizing parameters of
the SVR is meta-heuristic optimization algorithms. At present,
with the development of optimizers, meta-heuristic optimization
algorithms are increasingly popular in selecting the optimal
parameter value because the algorithms can bypass local optima
and are easy to implement (Mirjalili and Lewis, 2016).

The idea of meta-heuristic algorithms comes from the
behavior of animal or physical phenomena. In addition, the
algorithms can be grouped into threemain categories (Figure 1).
The process of searching for an optimal parameter can be
divided into two phases: exploration and exploitation (Olorunda
and Engelbrecht, 2008). More specifically, the exploration
phase is targeted to investigate the search space globally, and
the exploitation phase is employed to search for the best
results by following the exploration phase. Therefore, meta-
heuristic optimization algorithms are widely utilized to find the
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FIGURE 1
Classification of meta-heuristic algorithms.

parameters of support vector regression for short-term electric
loads. Peng et al. (2016) presented a support vector regression
model hybridizedwith the quantumparticle swarmoptimization
algorithm for electric load forecasting, and the results showed
the proposed model can simultaneously provide forecasting
with good accuracy. Hong (2011) proposed an electric load
forecasting model which combines the support vector regression
model with the chaotic artificial bee colony algorithm to
improve the forecasting performance, and the forecasting
results indicated the hybrid model was a promising alternative
for electric load forecasting. Xiao et al. (2017) employed the
multi-objective flower pollination algorithm to optimize the
parameters of support vector regression for short-term load
forecasting, and the experimental results clearly showed
that both the accuracy and stability of the proposed model
were superior to those of the single models. Yan et al. (2012)
proposed an innovative hybrid model comprising the least
square support vector machine and chaos optimization,
obtaining the optimal parameters for short-term electric
load forecasting. For short-term load forecasting, Zhang and
Guo (2019) proposed a hybrid method-based support vector
regression (SVR) with meteorological factors and electricity
price. This model is optimized by an improved adaptive genetic
algorithm (IAGA), which is an improved method of the GA
(Najafzadeh et al., 2018).

To prevent the optimization algorithm from falling into the
local minimum and make it search parameters over a wide
range to expand detection probability in the early period, the
current study applies an optimization algorithm which is the
firefly algorithm improved by a logarithmic spiral (LS-FA). This
algorithm can increase the search efficiency in the late period.
Hence, it shows good performance to prevent the operation from
falling into local optima and to ensure convergence for searching
the parameters of the SVR.

Considering the advantages of the LS-FA and SVR, we
combined the LS-FA and SVR and then proposed a novel short-
term electric load predictive model for the goal of generating
accurate electric load predictions. In this model, better model

parameters are obtained by the FA improved by a logarithmic
spiral. We intend to apply the proposed approach in this study
to real electric load forecasting tasks to verify the ability of the
proposedmodel.Therefore, the proposed algorithm is compared
to existing approaches which use the SVR improved by FA, LR-
FA (Yang, 2010a), WOA (Mirjalili and Lewis, 2016), and DA
(Mirjalili, 2016) to demonstrate the optimization performance of
the LS-FA. The experimental results prove that the LS-FA-SVR
can achieve better forecasting performance, which demonstrates
that the LS-FA optimization algorithm can optimize better
parameters for the SVR.

The main contributions of this study can be summarized as
follows:

1) From the perspective of parameter optimization, we
introduced the Lévy-flight firefly algorithm (LF-FA) and the
logarithmic spiral firefly algorithm (LS-FA) to enhance the
searching ability of exploring the global space and exploiting
the local space. Specifically, the LS-FA can obtain a great
trade-off between the exploration and exploitation ability of
the FA.

2) Since the LS-FA can improve the poor convergence of the
LF-FA, we combined the introduced LS-FA and SVR into a
novel hybrid model which is denoted as LS-FA-SVR for the
tasks of generating accurate electric load tasks. We applied
the proposed model to five real electric load time series in
Australia, and the experiments proved that the LS-FA can
optimize better parameters for the SVRmodel, and the LS-FA-
SVR can generate more accurate electric load predictions.

This study is organized as follows. In Section 2, the support
vector regression (SVR), firefly algorithm (FA), Lévy-flight firefly
algorithm (LF-FA), logarithmic spiral firefly algorithm (LS-FA),
and the establishment of the new model are detailed; Section 3
introduces the dataset of the experiment, the evaluation criteria
of the model, the results of the proposed model, and the
comparative performance of all the consideredmodels. Section 4
summarizes the proposed model and makes corresponding
conclusions. Moreover, future work is also given in this section.
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2 Methodology formulation

2.1 Support vector regression

Support vector regression (SVR), one of the greatest data
learning tools, is developed by Boser et al. (1992). Compared
with other data mining techniques, SVR obtains minimal upper
bound generalization error by the principle of the statistical
machine learning process and structural risk minimization
(Che et al., 2012). According to the theory proposed by Vapnik,
given a training dataset ν = {(xi,yi)|i = 1,2,…, l;xi ∈ Rn;yi ∈ R};
here, xt is the n dimensional input vector, yt represents the target
value, and l stands for the number of samples in the training
dataset. SVR can be solved by estimating the linear regression
as follows:

Minimize 1
2 ‖w‖

2 +C
l
∑
i=1
(ξi + ξ∗i )

Subject to
{{
{{
{

yi − 〈w,ϕ(xi)〉 − b ≤ ε+ ξi
〈w,ϕ(xi)〉 + b− yi ≤ ε+ ξ

∗
i

ξi,ξ∗i ≥ 0, (i = 1,2,…, l) ,

(1)

where ω is the weight vector, b is a scale quantity, C represents
the regularization constant, and ɛ is the insensitive loss function.
Moreover, the slack variables ξi and ξ*i represent the upper and
lower excess deviation, respectively (Figure 2).

Formula 1 can be solved by the Lagrangian multipliers, and
the nonlinear regression can be obtained as follows:

f (x) =
l

∑
i=1
(β∗i − βi) ⋅ k(xi,x) + b, (2)

where βi and β*i are the Lagrangian multipliers.
It must be noticed that k(xi,x) is called the kernel function

which converts a nonlinear problem in input space to a linear
problem in feature space. Moreover, the selection of kernel
functions is discussed in Section 3.4.

2.2 Firefly algorithm

The firefly algorithm is proposed by Yang in 2008, and it is
based on the idealized behavior of the flashing characteristics of
fireflies (Yang, 2010b). For simplicity in describing the FA, the
following three rules are idealized (Yang, 2009):

1) All fireflies are unisex so that one firefly will be attracted to
other fireflies regardless of their sex.

2) Attractiveness is proportional to their brightness, so for any
two flashing fireflies, the less bright one will move toward
the brighter one. The attractiveness is proportional to the
brightness, and they both decrease as their distance increases.
If there is no brighter one than a particular firefly, it will fly
randomly.

3) The brightness of a firefly is affected or determined by the
landscape of the objective function to be optimized.

In general, the brightness can simply be proportional
to the objective function when dealing with the maximum
problem. In contrast, when dealing with the minimum problem,
some techniques are employed to convert the minimum
problem into a maximization problem. Based on what is
mentioned previously, the pseudo-code of the FA is shown in
Figure 3.

In the FA, there are two issues: the variation of light intensity
and the formulation of attractiveness. Generally speaking, the
attractiveness of a firefly is determined by its brightness or light
intensity which is associated with the objective function. The
brightness I of a firefly at location x can be shown as I(x) ∝ f(x).
But the attractiveness β can be seen in the eyes of the beholder
or judged by other fireflies (Kavousi-Fard et al., 2014).Moreover,
the light intensity decreases with the distance from its source, and
light is absorbed in the media. Hence, attractiveness is allowed
to vary with the degree of absorption. Hence, the light intensity
I(r) can be obtained on the inverse square law and absorption as

FIGURE 2
Transformation process illustration of the SVR.
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FIGURE 3
Pseudo-code of the FA.

follows:

I (r) = I0 ⋅ e−γr
2
, (3)

where I0 and γ stand for the original light intensity and
light absorption coefficient, respectively. Here, the definition of
attractiveness β can be expressed by

β (r) = β0 ⋅ e
−γr2 , (4)

where β0 is the attractiveness at r = 0.
Then, the Cartesian distance is employed to calculate the

distance between any two fireflies i and j at xi and xj as follows:

rij = √
d

∑
p=1
(xi,p − xj,p)

2, (5)

where xi,p is the pth component of the spatial coordinate xi of ith
firefly.

Finally, the position of firefly i which is attracted to the
brighter firefly j at t+ 1 time can be expressed by

xi,t+1 = xi,t + β0 ⋅ e
−γr2ij (xj − xi) + α (rand− 0.5) , (6)

where rand is a random number in [0,1], and α is the parameter
in [0,1].

2.3 Lévy-flight firefly algorithm

The Lévy-flight firefly algorithm (LF-FA) is proposed by
Yang (2010a) to enhance the ability of exploring the global space
and exploiting the local space. Specifically, this algorithm can

obtain a great trade-off between the exploration and exploitation
ability of the FA. Hence, the LF-FA is utilized to update the
position next time as follows (Yang and Deb, 2009; Kaveh and
Khayatazad, 2012):

xi,t+1 = xi,t + β0 ⋅ e
−γr2ij (xj − xi) + α ⋅ sign [rand− 0.5] ⊕ Levy, (7)

whereα is the randomization parameter, and⊕ is the dot product.
rand is a random number in [0,1], and sign[rand− 0.5] provides
a random direction while the random step length is drawn from
the Lévy flights. It is required to explain formula 7 combining α
and sign[rand− 0.5] ⊕ Levy which can make a firefly walk more
randomly (Mirjalili et al., 2014). In other words, the LF-FA can
jump out of the local optimum and enhance the global search
capability of the FA.

The LF is one of the random walks, and its steps are decided
by the step length. Furthermore, jumps conforming to the Lévy
distribution can be shown as follows (Walster et al., 1985):

Levy (η)∼μ = t−1−η (0 ≤ η ≤ 2) , (8)

and the Lévy random number is calculated by

Levy (η)∼
ϕ× μ

|υ|1/η
, (9)

where υ and μ conform to the standard normal distributions. ϕ
can be calculated as follows:

ϕ = [
Γ (1+ η) × sin (π× η/2)

Γ ((1+ η)/2) × η× 2(η−1)/2
]
1/η
, (10)

where Γ stands for the standard gamma function and η = 1.5.
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FIGURE 4
Flow of the LS-FA-SVR model for electric load forecasting.

2.4 Logarithmic spiral firefly algorithm

In the section, because of the poor convergence of the
LF-FA, the logarithmic spiral is introduced in this study to
balance the abilities of exploration and exploitation (Mirjalili and
Lewis, 2016). The logarithmic spiral is selected to improve the
performance of the FA. Considering formula 6, we propose a
modified formula as follows:

xi,t+1 = xi,t + β0 ⋅ e
−γr2ij (xj − xi)cos (2πt) + α (rand− 0.5) , (11)

in which t is a random number from-1 to 1.
In Section 3.1, some experiments would be carried out to

assess the performance of the LS-FA by comparing it with some
optimizers based on the FA.

2.5 Hybrid model LS-FA-SVR

In this section, the proposed hybrid model LS-FA-SVR will
be introduced in detail, and the flow of this proposed model is
shown in Figure 4.

1) Input train data set;
2) initialization parameters;
3) initialization population;
4) preliminary calculations;
5) optimization starts;
6) update the position and calculate the fitness;
7) optimization stops;
8) SVR model obtained; and
9) output result of the test dataset.

Above all, the innovative hybrid model LS-FA-SVR can be
obtained.
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3 Empirical study

3.1 Performance of the LS-FA

This section aims to test the performance of the optimization
by the proposed modified algorithm LS-FA through some
classical unimodal benchmark functions. The structure of the
four benchmarks considered in this experiment is as follows
(Mirjalili and Lewis, 2016):

F1 : f1 =
l

∑
i=1

x2i , (12)

F2 : f2 =max{|xi|,1 ≤ i ≤ l} , (13)

F3 : f3 =
l

∑
i=1
|xi| +

l
∏
i=1
|xi|, (14)

F4 : f4 =
l

∑
i=1

i ⋅ x4i + random [0,1) , (15)

where the value of the dimension in this experiment is 20. To
compare the LS-FA with the FA and LF-FA, all the numbers of

fireflies are set at the same value (10), and the values of alpha and
gamma are 0.25 and 1, respectively.

To perform the result of the proposed method LS-FA,
minimum (Min), maximum (Max), and standard deviation
(Std) are selected to measure the errors of the optimizer. After
implementing the FA, LF-FA, and LS-FA using Matlab 2014(b),
every algorithm has been run 30 times to get the average error for
each method. Table 1 shows the results with the optimization.

Multiple studies have shown that the modified algorithm
LS-FA has the best predictive results among the other two
algorithms (FA and LF-FA) by searching the minimum of four
benchmark functions. To be specific, the maximum of the LS-
FA is smaller than that of the FA and LF-FA. The minimum
of the LS-FA is relatively small among all the three methods.
Moreover, the LS-FA has the smallest standard deviation, and it
means the performance has the best stabilization. In addition,
Figure 5 presents the trace of optimization by calculating the
mean of errors for the four benchmark functions. The LS-FA
has outstanding performance for searching the minimum of the

TABLE 1 Performance of FA, LF-FA, and LS-FA.

Criterion F1 F2 F3 F4

FA LF-FA LS-FA FA LF-FA LS-FA FA LF-FA LS-FA FA LF-FA LS-FA

Maxa 5.34 6.65 4.87 1.24 1.26 1.10 8.82 8.52 8.05 59.87 41.35 35.41
Minb 1.50 2.16 1.68 0.80 0.70 0.68 4.58 4.66 3.69 4.73 5.90 3.49
Stdc 1.10 1.17 0.72 0.12 0.16 0.10 1.32 0.99 0.81 13.91 9.75 8.40

aMin is the minimum.
bMax is the maximum.
cStd is the standard deviation.

FIGURE 5
Trace of fitness for FA, LF-FA, and LS-FA.
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four functions. Specifically, the speed of the LS-FA is faster than
that of the FA and LF-FA. Moreover, the average error for all
four models by the LS-FA is significantly smaller than that by
other algorithms. In short, through these studies, it can be proved
that the proposed algorithm LS-FA has a better performance of
optimization. In other words, the logarithmic spiral can improve
the performance of the FA by boosting the ability to balance
exploration and exploitation. Hence, this modified optimizer is
chosen to search for suitable parameters of SVR in the study.

3.2 Data description

To verify the effectiveness of the proposedmodel, the datasets
of electric load from 1 January 2018 to 1 February 2018 in
NSW, QLD, SA, TAS, and VIC are used as the experimental data
(Table 2 andFigure 6).Thedatasets of the electric load (MW) are
retrieved from the website of energy security for all Australians
(http://www.aemo.com.au/). The sample data used in this study
are half-hourly electric load, and the total number of these five
regions is 1,488. In this study, each dataset was divided into
two sets: the training dataset including 960 data points (from
2018/1/1 0:30 to 2018/1/21 0:00) and the remaining as the test
dataset (from 2018/1/21 0:30 to 2018/2/1 0:00).

3.3 Evaluation criteria

Because there is no confirmed universal standard method,
this study adapts multiple error criteria to evaluate the
effectiveness of the proposed hybrid model: the mean absolute
error (MAE), root mean square error (RMSE), and mean
absolute percent error (MAPE). The MAE, RMSE, and
MAPE are applied to quantify the forecast error, and the
performance of the model is reliable when their value is close to
zero.

These three criteria are calculated as follows:

MAE = 1
N

N

∑
i=1
|yi − ŷi|, (16)

RMSE = √ 1
N

N

∑
i=1
(yi − ŷi)

2, (17)

MAPE = 1
N

N

∑
i=1
|
ŷi − yi
yi
| × 100%, (18)

where yi is the observed value, ŷi is the predicted value to yi, and
N is the number of samples.

FIGURE 6
Datasets of all five regions.

TABLE 2 Statistical properties for each dataset.

Region Training set Test set

NSW QLD SA TAS VIC NSW QLD SA TAS VIC

N 960 960 960 960 960 528 528 528 528 528
Mean 8115.3 6720.3 1375.8 1102.9 4987.3 8818.6 6937.8 1503.0 1085.7 5578.9
Std 1350.0 873.1 417.8 70.3 1095.6 1493.2 905.8 357.5 86.3 1156.5
Min 5910.1 5258.4 653.2 950.8 3449.8 6197.6 5359.5 894.2 865.2 3683.1
Max 12230.6 8670.0 2879.9 1263.8 8999.2 12494.6 9020.4 2609.9 1256.5 9085.2
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FIGURE 7
Predictive results of the SVR with different kernel functions.

TABLE 3 Performance of the SVRwith different kernel functions based onMAPE, MAE, and RMSE.

Criterion Linear Polynomial rbf Sigmoid

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

NSW 1.13 99.08 123.22 8.58 786.68 964.58 1.38 122.32 155.59 61.88 5462.42 6533.04
QLD 1.04 73.10 91.57 4.41 312.24 401.27 1.27 88.97 113.14 38.79 2638.53 3916.17
SA 3.38 48.78 59.70 11.00 182.03 256.63 3.75 54.11 64.30 62.73 941.26 1154.82
TAS 1.38 14.85 20.99 5.04 51.30 99.96 1.70 17.78 25.19 24.34 242.74 612.28
VIC 2.07 112.63 137.15 9.28 565.44 763.20 2.28 124.07 151.53 91.87 5327.46 7083.36

3.4 Selection of the kernel function

In this section, the selection of the kernel function in the
SVR for electric load forecasting is discussed, and the data of five
regions in Australia are applied to search for the fittest choice
of the kernel function. First, four main kernel functions are
provided when the model is established by SVR, and they are
shown as follows:

Linear :K(x,xi) = xTxi,
Polynomial :K(x,xi) = (γxTxi + r)

p,
Rbf :K(x,xi) = exp(−γ‖x− xi‖

2) ,
Sigmoid :K(x,xi) = tanh(γx

Txi + r) .

γ > 0
γ > 0

(19)

Second, in order to find the best kernel function for
forecasting electric load, we selected the last twelve half-
hour load data (xn−12,xn−11,xn−10,…,xn−2,xn−1) as the input
variables of SVR with different kernel functions, and the output
variable is xn. At last, the best kernel function can be selected
from the four kernel functions based on the performance of
prediction. The experiment is performed, and the results of
forecasting electric load based on different kernel functions
are shown in Figure 7. It is obvious that the sigmoid kernel

function has the worst performance, and the accuracy of
the polynomial is just higher than it. In addition, the SVR
based on the rbf kernel function and linear kernel function
has better predictive results since it approaches the original
data.

In order to show the performances clearly, the three criteria
(MAPE, MAE, and RMSE) of errors are calculated, and the
results are shown in Table 3. The MAPE, MAE, and RMSE of
the liner kernel function have the smallest values in all five
regions. It must be noted that the rbf kernel function is just
slightly poorer than the linear one. Moreover, it can be found
that the polynomial and sigmoid functions are not suitable
for electric load forecasting with larger errors. Based on this
research, the linear is chosen as the kernel function of SVR in the
study.

3.5 Process of LS-FA-SVR

In Section 2.5, the hybrid model LS-FA-SVR is established
for short-term load forecasting. Here, the bandwidth of liner
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FIGURE 8
Results of the SVR with different optimizers.

TABLE 5 Performance of the LS-FA-SVR based onMAE, MAPE, and RMSE compared to othermodels.

Region DA-SVR WOA-SVR LS-FA-SVR FA-SVR

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

NSW 1.089 95.816 119.326 1.089 95.786 119.294 0.954 91.328 112.111 1.11 96.88 119.92
QLD 0.920 63.994 80.608 0.921 64.020 80.597 0.750 59.759 75.423 0.92 64.15 80.72
SA 3.379 48.791 59.686 3.376 48.763 59.656 2.757 42.708 51.397 3.41 49.12 60.13
TAS 1.376 20.961 14.797 1.376 14.796 20.964 1.095 11.389 10.393 1.38 13.93 14.49
VIC 1.702 116.478 94.186 1.701 94.169 116.498 1.330 89.354 109.622 1.70 94.26 116.60

To verify the proposed model LS-FA-SVR, we conducted a forecasting experiment with the same electric load in NSW, QLD, SA; TAS and VIC. The comparisons of electric load values
forecast using WOA-SVR, DA-SVR; FA-SVR, and the new proposed LS-FA-SVR are shown in Table 5 (Mirjalili and Lewis,2016; Mirjalili, 2016). It is clear that the new model
LS-FA-SVR has the lowest MAE, MAPE, and RMSE, among all four models.

kernel and the regularization parameter of SVR can be optimized
by the LS-FA. In this study, the numbers of fireflies, absorption
coefficient, and iteration of LS-FA are 15, 1, and 20, respectively.
Based on these, the prediction of short-term load in NSW, QLD,
VIC, SA and TAS can be obtained.

3.6 Empirical analysis

To avoid some accidental situations which would cause
unreliable conclusions, we conducted 30 runs for experiments in
five regions, and three error indicators are recorded in Table 4 in
each run.

Comparing the LS-FA-SVR with FA-SVR, the difference
between them is whether the logarithmic spiral has been
improved. It can be found that after introducing the logarithmic
spiral into the model, the MAE, MAPE, and RMSE in five
regions all decrease, which indicates that the LS is necessary

for forecasting the electric load. Moreover, this study compared
LS-FA-SVR with two new optimizers which were developed
in 2016. The two benchmark models are DA-SVR and WOA-
SVR. Through the comparisons, the three error indicators have
decreased significantly. For example, the RMSE of THE LS-
FA-SVR in NSW is 112.111, yet the values of DA-SVR and
WOA-SVR are 119.326 and 119.294, respectively. The smaller
the values of MAE, MAPE, and RMSE, the better the model
will be. According to the aforementioned results, it is clear
that the proposed model LS-FA-SVR outperforms the three
benchmark models for five regions, and they are shown in
Figure 8.

We applied the LS-FA-SVR model to the forecasting
experiments for the five experimental datasets and stated the
results in Table 5. As the last row of this table shows, the
mean values of MAE, MAPE, and RMSE in NSW are 91.328,
0.954, and 112.111, respectively. Meanwhile, the mean values of
MAE, MAPE, and RMSE in QLD are 59.759, 0.750, and 75.423,
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respectively.Moreover, Figure 8 clearly shows that themodel LS-
FA-SVR interprets the curves of the original electric load inNSW,
QLD, SA, SAT, and VIC, which indicates that the new model
gets a satisfactory performance and a high forecasting accuracy.
Comprehensively considering the results of MAE, MAPE, and
RMSE in NSW, QLD, SA, TAS, and VIC, it can be concluded that
the LS-FA-SVRmodel is the best overall, and its prediction is the
best.

4 Conclusion and future work

Accurate forecasting of the electric load can provide valuable
references for economic managers and electric power system
operators. The study proposed a hybrid model LS-FA-SVR for
improving the forecasting accuracy, where the parameters of
SVR are optimally determined by the optimization algorithm
LS-FA. This hybrid approach can search over a wide range to
expand the detection probability in the early period. It can
increase the search efficiency in the late period. Hence, the LS-
FA has a good performance to prevent the operation from falling
into local optima and to ensure the convergence for searching
the parameters of SVR. In addition, the empirical results show
that the MAE, MAPE, and RMSE values of LS-FA-SVR are all
modestly smaller than those of WOA-SVR, DA-SVR, and FA-
SVR. Compared with these other methods, the new method
has a strong ability to find the optimal solution, and the run
time is shorter. In other words, LS-FA-SVR is an attractive and
effective model which combines a novel optimization algorithm
to determine the parameters of SVR. In future work, several
research directions can be tried. More related variables can be
taken into consideration. One possibility is to apply other factors
which may influence electrical demand, such as the population
and GDP, to obtain more comprehensive results (Li et al., 2017).
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In order to save resources and reduce air pollution, human beings have begun

to pay attention to the production and use of photovoltaic, wind power

and other green power. Due to the difficulty of direct transaction between

green power producers and power users, a park-level energy Internet has

been proposed and used to connect all kinds of green electricity with power

users. Then park users can effectively buy and use green electricity. Taking the

park-level energy Internet as the scenario, this paper constructs a transaction

model between green power operators and green power producers. The

model is a dynamic game of complete and perfect information. The dynamic

characteristics of this game model are analyzed by using semi-tensor product

method, and corresponding strategies are provided for all players. From the

results obtained, it is easy to find that in many cases, the strategy profile of all

participants are constantly changing to obtain more profits, rather than stable

at some traditional Nash equilibrium.

KEYWORDS

park-level energy internet, green electricity, green power operator, green power producer, game,

semi-tensor product of matrices, Nash equilibrium

1 Introduction

Because of the limited resources and the increasingly serious environmental
pollution, in recent years, many countries in the world have paid much attention to
the production and consumption of renewable energy. For example, China has issued
many policy documents on renewable resources, which promoted the rapid development
of China’s renewable resources. More and more households are trying to produce and
use green power, such as photovoltaic and wind power. These households may sell their
excess electricity to the grid company or directly to other customers. In the future, the
power grid company may be more responsible for power grid operation, maintenance,
power transmission, system upgrade and capacity expansion. For both sides of the direct
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transaction of green power, the power grid company charges an
appropriate network fees to ensure sufficient communication
capability between the power management system and
scheduling agencies (Deng et al., 2019).

On the other hand, since green power transactions involve
many technical issues in data processing, security and so
on, a kind of energy Internet appears, called park-level
energy Internet. Through interconnection of multiple types
of distributed energy sources, multiple types of loads, energy
storage and information flow, etc., park-level energy Internets
can promote a large proportion of renewable energy access and
green power market transaction (Huang et al., 2020). And in
order to realize the continuous power supply to the users in the
park, the park-level energy Internet is connected to the external
power grid, which plays a unified role in the allocation of power
resources and acts as a backup power source through the dual-
main line configuration (Zhang and Tong, 2022).

However, there are various difficulties in the process of
direct transaction between green power producers (GPPs) and
power users. The current direct trade rules can not guarantee
the interests of all parties directly related to the transaction.
Therefore, there is usually a green power operator (GPO) in
the park. The GPO purchases power from traditional energy
generators, renewable energy generators and external grids. And
it determines a price at which the GPO sells green electricity
to users by referring to the traditional electricity price and the
history of transactions.

Many excellent researchers have considered the transaction
model betweenGPOs and park users and have given some results
(Sun and Nie, 2015; Pineda and Bock, 2016; Tai et al., 2016;
Zhang and Tong, 2022). But they all emphasize the application
of block chain technology in energy trading. For example, Zhang
used block chain technology to build a bargaining game model
of power transaction between GPOs and power users (Zhang
and Tong, 2022). However, there is little discussion on how to
determine a price at which small-scale GPPs sell green power
to GPOs. Taking the park as the application background, we
try to model and analyze the transaction process of GPOs and
GPPs.

2 Preliminaries

For the sake of simplicity, we introduce some notations.

• δin: the ith column of the n× n identity matrix;
• Δn ≔ {δin ∣ i = 1,2,…,n}, namely Δn denotes the set of all
columns of n× n identity matrix;
• δn[i1, i2,…, is] ≔ [δ

i1
n δi2n⋯δ

is
n], called logical matrix;

• 𝕃m×n: the set ofm× n logical matrices;
• 𝕄m×n: the set of allm× n real matrices;
• ℝn: the set of all n-dimensional real vectors;

• Coli(M)(Rowi(M)): the ith column (row) of a matrixM.

The green power trading model we will establish later is a
game model, so we need to give a proper strategic updating
rule and analyze its characteristics. The following are two basic
concepts of game theory.

Definition 1 [(Cheng et al., 2015; Robert, 1999)]. A normal
game consists of three factors:

1) n players N = {1,2,…,n};
2) Player i has the strategy set Si = {1,2,…,ki}, i = 1,2,…,n, and

S = Πn
i=1Si is the set of profiles;

3) Payoff functions ci : S→ℝ, i = 1,2,…,n.

Definition 2 [(Robert, 1999)]. In the n-player normal
game G = {S1,…,Sn;c1,…,cn}, the strategies {s∗1 ,…, s

∗
n} are a

Nash equilibrium if, for each player i, s∗i is player i′s best
response to the strategies specified for the n− 1 other players
{s∗1 ,…, s

∗
i−1, s
∗
i+1,…, s

∗
n}:

ci (s∗1 ,…, s
∗
i−1, s
∗
i , s
∗
i+1,…, s

∗
n)

≥ ci (s∗1 ,…, s
∗
i−1, si, s

∗
i+1,…, s

∗
n) (1)

For a dynamical game, it has been proved in (Cheng et al.,
2015) that the game can be determined as a logical dynamic
system, as long as its strategy updating rule is assigned. By using
a new mathematical tool, called semi-tensor product of matrices
(STP), we are able to convert a logical system into its algebraic
form (Cheng and Qi, 2009; Cheng and Qi, 2010). Then it is
convenient to study logical systemunder an algebraic framework.
In the following, we recall STP and some basic results.

Definition 3 [(Cheng and Qi, 2010)]. Let A ∈𝕄m×n,B ∈
𝕄p×q, and denote the least common multiplier of n and p by l =
l cm (n,p). Then the STP of A and B is defined as

A⋉B≔ (A⊗ I l
n
)(B⊗ I l

p
), (2)

where Ik is the k× k identity matrix, ⊗ is the Kronecker product of
matrices.

Remark 1. STP is a natural generalization of the traditional
matrix product, since all fundamental properties of the traditional
matrix product are retained. Especially, STP coincides with the
traditional matrix product when n = p. So the matrix products
used in this paper can be thought of as STP and the symbol ⋉ is
usually omitted. Some important properties of STP are listed in the
following. We refer to (Cheng et al., 2011) for more details.

1) Amn×mnmatrix

W[m,n] = δmn [1,m+ 1,2m+ 1,…,(n− 1)m+ 1, 2,m

+ 2,2m+ 2,…,(n− 1)m

+ 2,…,m,2m,3m,…,nm] .
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is called swapmatrix. For any two column vectors x ∈ ℝm and
y ∈ ℝn, we have

W[m,n]xy = yx.

2) A 22n × 2n logical matrix Φn is defined as

Φn = δ22n [1,2n + 2,2× 2n + 3,…,(2n − 2)2n + 2n − 1,22n] .

For any δi2n ∈ Δ2n , we have δ
i
2n ⋉ δ

i
2n =Φnδ

i
2n .

Example 1.

1) Let A = [
3 1 3 0
1 3 2 2

], B = [
1 −2
2 0
]. According to

Definition 3, we have

A⋉B

= [
[3 1] × 1+ [3 0] × 2 [3 1] × (−2) + [3 0] × 0
[1 3] × 1+ [2 2] × 2 [1 3] × (−2) + [2 2] × 0

]

= [
9 1 −6 −2
5 7 −2 −6

]

2) Let x = [2 3 8 1]T, y = [−3 0.5 2]T. Then

x⋉ y = [−6 1 4 −9 1.5 6 −24 4 16 −3 0.5 2]T

3 Model

3.1 Problem analysis

Normally, a small-scale GPP can only sell its green electricity
to GPOs, but a GPO may choose to buy traditional electricity
outside the park when the electricity price of surrounding
GPPs is too high. A GPO usually has multiple GPPs as its
neighborhoods. Similarly, each GPP often has multiple GPOs
nearby to trade with. Therefore, there is not only competition
among operators, but also among nearby GPOs, and none of
them can dominate the market alone. To sum up, when the
traditional electricity price is lower than the green electricity
price, the green power acquisition transaction is regarded as a
game model, where the neighbors of a GPP are only GPOs, and
the GPO’s neighbor has only GPPs, too.

The GPO usually exists in the form of a company or
enterprise, and the majority of GPPs are households. So GPPs
have no opportunity to bargain directly with GPOs. The
transaction process of GPOs and GPPs is roughly as follows:

• Step1. It is required by the third-party platform that all GPPs
participating in trading activities, must give their quoted
price before the official quotation of the GPO on the same
day.

• Step2. The GPO quotes once a day based on the current
market conditions.
• Step3. If a GPP agrees to the quotation, then a green
electricity transaction between them takes place. Otherwise,
the transaction fails and they look forward to next deal.

It is noted that in Step 1, noGPOknows these prices before its
quotation. In other words, only after the GPOmakes a quotation
can it learn of the price of each GPP from the third-party
platform, and use it as the reference data for its next quotation.
GPOs will make appropriate strategic adjustments according to
the previous historical transaction data. Roughly speaking, when
the previous transaction price is low, the quotation is still not
high and then many GPPs are reluctant to sell green electricity
to GPOs. When the transaction volume decreases to a certain
extent, or even threatens to be insufficient to maintain the green
power supply of GPOs to park users, the quoted price is raised
but still not higher than the traditional electricity price.

Similar to the study of general game problems, we assume
that.

1) All players are rational and choose the appropriate decisions
in order to make more profits every time;

2) GPOs cannot make profits in partnership and must quote
independently, and the same to GPPs;

3) GPPs can only sell green power toGPOsnearby, and any one
of GPOs has the ability to accept all the renewable electricity
in the vicinity.

3.2 Strategy updating rule

As analyzed in Section 3.1, the transaction process of GPOs
and GPPs is regarded as a game. We adopt Unconditional
Imitation (Nowak and May 1992) as the strategy updating rule.
Precisely speaking, if

j∗ = argmax
j∈U(i)

cj (x (t)) , (3)

then

xi (t+ 1) = xj∗ (t) . (4)

where x(t) = (x1(t),…,xi(t),…,xn(t))T, xi(t) is the strategy of
player i at time t, U(i) is the neighborhood of player i (here,
meaning those players that can trade with player i).

When there are two different subscripts j∗1 and j∗2 , satisfying

cj∗1 (x (t)) = cj∗2 (x (t)) = max
j∈U(i)

cj (x (t)) , (5)

We describe the strategy in two cases. One is that when the
player i is GPP, we set

xi (t+ 1) =max{xj∗1 (t) ,xj∗2 (t)} . (6)

Another is that when the player i is GPO, we choose

xi (t+ 1) =min{xj∗1 (t) ,xj∗2 (t)} . (7)
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3.3 Payoff Bi-matrix

The traditional electricity price of the external network is
used as a reference of GPOs. The general cost Cg of a GPO
includes two parts: the cost C1 of purchasing green power from
GPPs, the cost C2 of operation and maintenance of the GPO,
namely

Cg = C1 +C2. (8)

According to Assumption 1, only when the green electricity
price sold to park users is not higher than the traditional
electricity price outside the park, these users are willing to
buy green electricity instead of traditional electricity. Therefore,
in order to retain these users, the price Pusers at which GPO
sells green power to users, should be less than the traditional
electricity price Ptraditional, namely

Pusers ≤ Ptraditional. (9)

For any GPO, the following inequality holds to ensure the
investment profit in green power

Pquotation + Poperation ≤ Pusers, (10)

where Pquotation is GPO’s quotation for green electricity from
GPPs; Poperation is the cost price of GPO′ operation and
maintenance, i.e., the average operating cost of GPO.

Combing (Eqs. 9, 10), we have

Pquotation + Poperation ≤ Pusers ≤ Ptraditional. (11)

Hence we get

Pquotation ≤ Ptraditional − Poperation (12)

That is, when purchasing green power from GPPs, GPO’s
quotation should not be higher than the difference between the
traditional electricity price and the cost price of GPO′ operation
and maintenance.

For any GPP, it is also necessary to ensure its profit, so
that the GPP is willing to make a green electricity deal with a
GPO.Therefore, Pquotation should not be lower than the cost price
Pproduce of the GPP.

Pproduce ≤ Pquotation (13)

From (Eqs. 11–13), we have

Pproduce ≤ Ptraditional − Poperation (14)

Let Pproduce = A and Ptraditional − Poperation = B. We divide
interval [A,B] into n+ 2 grades: A, A+ B−A

n+1
,A+ 2(B−A)

n+1
,…,A+

n(B−A)
n+1

and B. From Assumption 1, no player (i.e. GPO and GPP)

TABLE 1 Payoff bi-matrix.

GPP⟍GPO 1 2 ⋯ n− 1 n

1 (1,n) (2,n− 1) ⋯ (n− 1,2) (n,1)
2 (0,0) (2,n− 1) ⋯ (n− 1,2) (n,1)
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
n− 1 (0,0) (0,0) ⋯ (n− 1,2) (n,1)
n (0,0) (0,0) ⋯ (0,0) (n,1)

wants to choose extreme strategy A or strategy B. Assume that
there arem GPPs and GPOs. We set

S1 = S2 =⋯ = Sm

= {A+ B−A
n+ 1
,A+

2 (B−A)
n+ 1
,…,A+

n (B−A)
n+ 1
}

We simply denote A+ i(B−A)
n+1

as i, i = 1,2,…,n. Using
Unconditional Imitation as the strategy updating rule, we get
the payoff bi-matrix as in Table 1.

Remark 2.

1) The profit of green power is divided into n+ 1 shares on
average. The number of shares to win, except for extreme
strategies, is considered as a strategy for each player to act in
our model.

2) From Table 1, it is easy to find that the payoff bi-matrix is an
asymmetry and upper triangular matrix. This characteristic
is determined by the transaction process of GPOs and GPPs,
which is shown in Section 3.1.

According to Theorem 3.1 of (Cheng et al., 2015), the
strategy dynamics of each player can be expressed as a n-valued
logical dynamic system. Nowwe identify δkn with k,k = 1,2,…,m,
then each strategy profile (k1,k2,…,km)T is equivalent to δrnm ,
where

δrnm = δ
k1
n ⋉ δ

k2
n ⋉⋯⋉ δ

km
n

= δ(k1−1)n
m−1+(k2−1)nm−2+⋯+(km−1−1)n+km

nm

Namely,

r = (k1 − 1)nm−1 + (k2 − 1)nm−2 +⋯+ (km−1 − 1)n+ km.

We use xi(t) to express the strategy of player i at time step
t. Define x(t) = ⋉mi=1xi(t) ∈△nm . Then based on STP (Cheng
and Qi, 2010), enable us to equivalently transform the above
green power transaction model into a linear form as in
(Eq. 15).

x (t+ 1) =Mx (t) , (15)

whereM ∈ 𝕃nm×nm is called the structure matrix of system.
Theorem 1. Assume that there are m1 GPOs and m2 GPPs

nearby, and denote m =m1 +m2. For the green power transaction
model provided above, a strategy profile (s∗1 , s

∗
2 ,…, s

∗
m) is a
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FIGURE1
The topology diagram of two GPOs and two GPPs.

Nash equilibrium, if and only if Rowr(Colr(M)) = 1, where r =
(s∗1 − 1)n

m−1 + (s∗2 − 1)n
m−2 +⋯+ (s∗m−1 − 1)n+ s

∗
m.

Froof. For a strategy profile (s∗1 , s
∗
2 ,…, s

∗
m), if

Rowr(Colr(M)) = 1, where r = (s∗1 − 1)n
m−1 + (s∗2 − 1)n

m−2 +⋯+
(s∗m−1 − 1)n+ s

∗
m, then x = δ

r
nm is a fixed point of system (15), since it

satisfies δrnm =Mδrnm . According to the strategy updating rule, each
player adopt the best strategy from his neighborhoods. So the fixed
point shows that player i still choose the same strategy as before,
as long as the strategies of all other players remain unchanged.
From Definition 2, (s∗1 , s

∗
2 ,…, s

∗
m) is a Nash equilibrium.The above

analysis process can be deduced backwards. Therefore, the proof is
completed.

4 Illustrative example

For the convenience of showing themethod itself, we assume
that there are two GPOs and two GPPs nearby. The topology
diagram is given as in Figure 1.

Set n = 2 and divide interval [A,B] into 4 grades:
A,A+ (B−A)/3,A+ 2(B−A)/3 and B. According to the above
analysis, four players consisting of two GPPs and two GPOs,
definitely not choose extreme strategies A or B. We denote
A+ (B−A)/3 and A+ 2(B−A)/3 by 1 and 2, respectively. From
Table 1, the payoff bi-matrix is given as in Table 2.

In the following, we illustrate how to use the payoff
bi-matrix and the strategy updating rule, introduced above,
to establish the dynamic characteristics for each player. For
example, let x1(t) = x4(t) = 2,x2(t) = x3(t) = 1. For GPP1, it has

TABLE 2 Payoff bi-matrix for the case of n = 2.

GPP⟍GPO 1 2

1 (1,2) (2,1)
2 (0,0) (2,1)

two neighborhoods: GPO 1 and GPO 2. Then we get

c1,2 (x1 (t) ,x2 (t)) = 0,c1,4 (x1 (t) ,x4 (t))

= 2⇒ c1 (t) =max(c1,2,c1,4) = 2⇒ x1 (t+ 1) = x4 (t) = 2;

c2,1 (x2 (t) ,x1 (t)) = 0,c2,3 (x2 (t) ,x3 (t))

= 2⇒ c2 (t) =max(c2,1,c2,3) = 2⇒ x2 (t+ 1) = x3 (t) = 1;

c3,2 (x3 (t) ,x2 (t)) = 1,c3,4 (x3 (t) ,x4 (t))

= 2⇒ c3 (t) =max(c3,2,c3,4) = 2⇒ x3 (t+ 1) = x4 (t) = 2;

c4,1 (x4 (t) ,x1 (t)) = 1,c4,3 (x4 (t) ,x3 (t))

= 1⇒ c4 (t) =max(c4,1,c4,3) = 1⇒ x4 (t+ 1) = x3 (t) = 1.

We use the same argument for each profile
(x1(t),x2(t),x3(t),x4(t))T, and can compute next action for each
player as in Table 3.

Identify action k with δk2, k = 1,2. From Table 3, it is
verified for each player’ strategy that its dynamic characteristics
is

xi (t+ 1) =Mix (t) , i = 1,2,3,4, (16)

where xi(t) ∈△2,x(t) = ⋉4i=1xi(t), and

M1 = δ2 [1,2,1,2,2,2,2,2,1,2,1,2,2,2,2,2] ,

M2 = δ2 [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,2] ,

M3 = δ2 [1,2,1,2,2,2,2,2,1,2,1,2,2,2,2,2] ,

M4 = δ2 [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,2] .

By using properties of STP, we obtain

x (t+ 1) = x1 (t+ 1)x2 (t+ 1)x3 (t+ 1)x4 (t+ 1)

=M1x (t)M2x (t)M3x (t)M4x (t)

=M1W[2,16]M2x (t)x (t)M3x (t)M4x (t)

=M1W[2,16]M2Φ4x (t)M3x (t)M4x (t)

=M1W[2,16]M2Φ4W[2,16]M3x (t)x (t)M4x (t)

=M1W[2,16]M2Φ4W[2,16]M3Φ4x (t)M4x (t)

=M1W[2,16]M2Φ4W[2,16]M3Φ4W[2,16]M4x (t)x (t)

=M1W[2,16]M2Φ4W[2,16]M3Φ4W[2,16]M4Φ4x (t)

=Mx (t)

where

M =M1W[2,16]M2Φ4W[2,16]M3Φ4W[2,16]M4Φ4

= δ16 [1,11,1,11,11,11,11,11,1,11,6,16,11,11,16,16] .
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TABLE 3 Strategy updating for the case of twoGPOs and twoGPPs.

Profile 1111 1112 1121 1122 1211 1212 1221 1222

c1(t) 1 2 1 2 2 2 2 2
c2(t) 2 2 2 2 1 1 1 1
c3(t) 1 2 0 2 2 2 2 2
c4(t) 2 1 2 1 2 1 2 1
x1(t+ 1) 1 2 1 2 2 2 2 2
x2(t+ 1) 1 1 1 1 1 1 1 1
x3(t+ 1) 1 2 1 2 2 2 2 2
x4(t+ 1) 1 1 1 1 1 1 1 1

Profile 2111 2112 2121 2122 2211 2212 2221 2222

c1(t) 0 2 0 2 2 2 2 2
c2(t) 2 2 0 0 1 1 1 1
c3(t) 1 2 0 2 2 2 2 2
c4(t) 2 1 0 1 2 1 0 1
x1(t+ 1) 1 2 1 2 2 2 2 2
x2(t+ 1) 1 1 2 2 1 1 2 2
x3(t+ 1) 1 2 1 2 2 2 2 2
x4(t+ 1) 1 1 2 2 1 1 2 2

FIGURE 2
The state transition diagram of system (16).

It is easy to find two elements on the diagonal of matrix
M. So there are only two equilibrium points in this game: δ116
and δ1616, namely Nash equilibriums. In addition, by a simple
computation we get a limit cycle C : δ616→ δ1116→ δ616. And their

attraction domains are

D(δ116) = {δ
1
16,δ

3
16,δ

9
16}∼ {(1,1,1,1) , (1,1,2,1) , (2,1,1,1)}

D(δ1616) = {δ
12
16,δ

15
16,δ

16
16}∼ {(2,1,2,2) , (2,2,2,1) , (2,2,2,2)}

D (C) = {δ216,δ
4
16,δ

5
16,δ

6
16,δ

7
16,δ

8
16,δ

10
16,δ

11
16,δ

13
16,δ

14
16}

∼ {(1,1,1,2) , (1,1,2,2) , (1,2,1,1) , (1,2,1,2) ,

(1,2,2,1) , (1,2,2,2) , (2,1,1,2) , (2,1,2,1) ,

(2,2,1,1) , (2,2,1,2)}

The state transition diagram of system 16) is given in
Figure 2. From Figure 2 and Theorem 1, we know that only
when the initial state is taken from D(δ116) and D(δ1616), system
(16) will be stable at the Nash equilibrium δ116 (meaning strategy
profile (1, 1, 1, 1)) and δ1616 (meaning strategy profile (2, 2, 2, 2)),
respectively.

Remark 3. The results obtained above show that the strategy
profile depends on its initial state, and finally be stable at one of
three attractors. We explain it in three cases.

• If player i chooses an initial strategy profile from
{(1,1,1,1), (1,1,2,1), (2,1,1,1)}, then the strategy profile will
reach (1, 1, 1, 1) and be stable at this point in order to make
as much profit as possible.
• If the player adopts an initial strategy profile from
{(2,1,2,2), (2,2,2,1), (2,2,2,2)}, then the strategy profile will
be stable at (2, 2, 2, 2).
• For other initial strategy profiles, they change every time.That
is, they are unstable.
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The classification model for
identifying single-phase earth
ground faults in the distribution
network jointly driven by physical
model and machine learning
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Long Cheng1†, Li Shilong1†, Zhang Weiwei2† and Zheng Qin2†

1State Grid Sichuan Electric Power Research Institute, Chengdu, Sichuan, China, 2Nari Technology
Nanjing Control Systems Co., Ltd., Jiangning, Jiangsu, China

Single-phase earth ground faults are themost frequent faults likely to occur but

hard to identify in a distribution system, especially in a neutral ineffectively

grounded system. Targeting on this goal, a novel AdaBoost-based single-phase

earth ground fault identification model is put forward. First, after depicting the

zero-sequence circuit of the distribution system, a feature engineering that can

reflect local and global evolutionary processes in the fault period is constructed

in detail. Second, to overcome two problems, namely, different number

problems between fault and non-fault samples and curse of dimension,

principal component analysis is used for feature extraction, in which only a

small number of low-dimension mapped features are extracted, and then

transmitted into the AdaBoost-based ground fault identification model.

Subsequently, this work borrows from machine learning and applies its

learning curve and receiver operating characteristic curve to guide the

optimization of the proposed identification model. Numerical studies verify

the effectiveness and adaptability of the proposedmodel toward solving single-

phase earth ground faults.

KEYWORDS

distribution network, machine learning, single-phase ground fault, principal
component analysis, ROC, classification model

1 Introduction

In extreme short-circuit situations, designing feeder relays would be simple in general.

However, the single-phase earth ground fault is out of this category, especially in low- and

medium-voltage distribution networks (3~66 kV) with ineffectively grounded neutral

points (Cui et al., 2011; Xue et al., 2015). In this regard, it is also referred to as a small-

current grounded system. In contrast with other short-circuit faults, single-phase earth

ground faults are mostly to happen, and by incomplete statistics, they account for around

60%~80%. Interestingly, most interphase faults are the deteriorated outcomes of single-
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phase earth ground faults. Therefore, detecting this “weak” earth

fault is very important for protection engineers in order to

prevent more severe hazards and to ensure the safety and

reliability of power delivery.

Most scholars have conducted many studies in this field. So

far, some staged and conclusive achievements have been made.

Specifically, the approach in identification single-phase earth

ground fault can be normally categorized into two

mainstream branches: steady-state method and transient

method. As for the former, it includes six sub-approaches (Xu

et al., 2005; Ai et al, 2009; Gautam and Brahma, 2012; Li, 2017):

zero-sequence current amplitude comparison method, zero-

sequence current phase comparison method, fifth harmonic

component method, zero-sequence active power component

method, zero-sequence reactive power method, and zero-

sequence admittance method. The main principal of these

methods is that zero-sequence current of the fault line is the

summation of all non-fault lines, and it shall be larger than any of

other lines. Considering the line-to-ground conductance and the

resistance loss of an arc suppression coil, a new protection

criterion is established via recognizing the direction difference

of active power (Xu et al., 2005; Li, 2017). Although not limited to

the arc suppression coil, its active component is generally small,

especially when the three-phase imbalance degree is relatively

large, it will be easier to misjudge faults due to the false active

current component. With respect to the transient method, it

includes three parts: first half-wave polarity method, transient

power direction method, and transient parameter identification

method (Yao and Cao, 2009; Zeng et al., 2012). Compared with

the former, this method is relatively less influenced by the form

that the neutral point is grounded or noneffective. From this

perspective, it possesses better adaptability (Zhu, 2011). Hence, it

has been gradually becoming more important and popular in this

single-phase earth ground fault identification field, especially as

the function of transient-recording-type devices is becoming a

mainstream product (Jiale et al., 2007; Zhang and Yin, 2011;

Ghaderi et al., 2017).

Moreover, revolving around this target, there are several

novel techniques, such as three-phase current method and

transient frequency band method. Specifically, Song et al.

(2011) propose the three-phase current method, which collects

the sudden change of three-phase current in a transient process,

calculates the relevant coefficients between each pair of phases,

and subsequently discriminates the ground fault according to the

fault phase that has the smallest relevance degree. As for the

latter, some scholars have proposed a method of extracting

information of specific frequency in transient zero-sequence

current and then identifying single-phase earth ground faults

by comparing the difference between the amplitude and polarity

(Xue et al., 2003; Liu et al., 2018). An et al. (2020) propose the

grounding protection principle based on half-wave Fourier

algorithm and establish an action criterion algorithm model

based on half-wave Fourier algorithm. Shu et al. (2019)

propose the wavelet transform method to realize the

extraction of transient zero-sequence information. Lishan

et al. (2020) propose a fault line identification scheme with

admittance asymmetry parameters as the criterion and utilize

the fifth harmonic principle to solve the issue regarding the

disappearance of fault differences between the fault lines and

non-fault lines of the neutral point after passing through the

extinction coil grounding system. He et al. (2017) identify

grounding faults by using relative entropy of the generalized

S-transform energy of zero-sequence current. Zhou (2016)

establishes a dynamic grounding fault sensing criterion based

on the features of injection current variables after fault

occurrence and identifies fault lines by comparing the effective

value of zero-sequence current variables of different feeders.

Although these transient signal methods produce ideal effects

in handling faults with a large zero-sequence current, they are

likely to be affected by systematic influences inmultiple processes

(e.g., constant startup value, sampling noise, and electromagnetic

interference, etc.) during actual operation when fault zero-

sequence current is low, leading to low algorithmic sensitivity.

They are too easily affected by operating conditions of the

distribution network and rely excessively on the differential

configuration of various configuration parameters.

In fact, the issue of identifying faults can be viewed as the

scope of classification, for which it is highly relevant to machine

learning (e.g., clustering, classification, and regression under the

semi-supervised/supervised mode). Recently, machine learning

technology has developed rapidly. With reference to the

2016 International Summit on Application of Machine

Learning Industry jointly held by IBM and CDA Data

Analysis and Research Institute, this has been applied in

many fields, for e.g., finance, IT, computers, and

transportation, and has proven to be extraordinarily valuable.

In view of this, some researchers are working on building an

intelligent fault identification model via machine learning

FIGURE 1
Capacitance current distribution represented by the three-
phase system during single-phase grounding.
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technology (Wang et al., 2021). Although relatively reliable

identification results have been elementarily achieved, the lack

of hyperparameter adjustment, over/underfitting judgment, and

feature extraction in optimizing the identification model is its

critical defect. In general, exploring the application of machine

learning in the fault identification field requires more systematic

and theoretical discussions in depth.

In light of the aforementioned background, this article

borrows from machine learning and puts forward a novel

single-phase earth ground fault identification method jointly

driven by practical fault data and Simulink model.

Major contributions of this article include:

1) In reflecting the local and global evolutional process of fault

features and forms, this article chooses two major fault

features (including their amplitudes, delta variations and

phase degrees), which could form an entire feature

engineering taking the stable/transient state of the faulty

network into account.

2) In combination with machine learning, a mainstream feature

reduction method of principal component analysis (PCA) is

applied into which feature reduction of high-dimension fault

features can in validity select only a small number of but key

mapped features of potential values and further elevate model

identification efficiency in engineering practice.

3) AdaBoost-based single-phase earth fault identification model

is designed in this work into which the features of high

priority are fed, where several manners of learning curve,

validation curve, and receiver operating characteristic curve

(ROC) are all brought out into guiding model optimization,

and thus an entire fault identification technology based on

machine learning is gradually formed. Additionally, model

performance is quantitively analyzed from the perspective of

accuracy and area under the curve (AUC) indicators.

The remainder of this article is organized as follows: in

Section 2 depicts the equivalent circuit diagram of a

distribution system when a single-phase earth ground fault

occurs in this system and constructs the ground fault feature

engineering. Next, a machine-learning-based ground fault

identification model is built. To overcome its underfitting/

overfitting possibilities, some hyperparameter optimization

techniques have been applied, such as up-sampling

technology, feature reduction, learning/validation curve, and

receiver operating characteristic curve (ROC). Finally, the

practical dataset and the Simulink dataset are both used as

learning samples in the Numerical studies part, and in this

section, it demonstrates the validity and adaptability of the

proposed ground fault identification model under multiple

scenarios.

2 Feature engineering of single-phase
earth ground faults

2.1 Physical model of single-phase
grounding faults

To construct reasonable and complete fault features, this

section will analyze the change features of system parameters in

single-phase earth ground faults, like the capacitance current

distribution in the system, from the perspective of the circuit of

the distribution network. The distribution of capacitance current

during single-phase grounding is shown in Figure 1. In Figure 1:

COG, COI, and COII are the capacitive parameters over the ground

of each generator, line I, and line II, respectively; _IBG and _ICG are,

respectively, the capacitive parameters over the ground of phase

B and phase C on generator G; _IBI and _ICI are, respectively, the

capacitive parameters over the ground of phase B and phase C on

line I; and _IBII and _ICII are, respectively, the capacitive parameters

over the ground of phase B and phase C on line I.

In combination with information from Figure 1, it can be

seen that the voltage drop of load current and capacitance current

on line impedance can be ignored after phase A of line II is

grounded. It can be inferred that capacitance current over the

ground of phase A of all element equipment also equals zero

when phase A of the entire system is grounded, and voltage and

capacitance current over the ground of phase B and phase C are

increased by 1.732 times. The distribution of the capacitance

current under such circumstances is as shown in “→” of Figure 1.

The zero-sequence equivalent network and phasor network of

single-phase grounding are, respectively, depicted in

Figures 2A,B.

2.2 Feature engineering of single-phase
grounding faults

According to the zero-sequence equivalent network model of

single-phase grounding faults in Figure 2, the fault features of

fault lines, non-fault lines, and non-fault elements are totally

different. Given this understanding, we could construct the

FIGURE 2
Zero-sequence equivalent network and phasor network
during single-phase grounding.
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features of single-phase grounding faults. In addition, as we also

take into account the needs of wildfire prevention, it is necessary

to give further consideration to integration with transient

recording data when constructing the features. The

engineering constructed in this article puts focus on and

includes the amplitude, phase position, and variables of the

zero-sequence voltage and zero-sequence current of the same

cycle.

2.2.1 Features of zero-sequence voltage
There are three features of zero-sequence voltage: amplitude

cycle sequence, variable amplitude cycle sequence, and phase

position cycle sequence. The cycle sequence that they belong to

refers to the sampling dataset of a cycle. The definitions of the

three features, namely, zero-sequence voltage amplitude cycle

Uamp
p , zero-sequence voltage variable amplitude cycle ΔUamp

p ,

and zero-sequence voltage phase position cycle Utheta
p , are,

respectively, shown in Eqs 1–3.

_Up � [ _U1

P, _U
2

p,/, _U
k

p,/ _U
T

p],∀k ∈ T,

_U
k

p � fft([ _Ut−T
p ,/, _U

t−1
p , _U

t

p], base),
Uamp,k

p � func ext( _Uk

p, amp),
Utheta,k

p � func ext( _Uk

p, theta),
Uamp

p � [Uamp,1
p , Uamp,2

p ,/, Uamp,k
p ,/Uamp,T

p ],
(1)

⎧⎪⎪⎨⎪⎪⎩
ΔUamp

p � [ΔUamp,1
p ,ΔUamp,2

p ,/,ΔUamp,k
p ,/,ΔUamp,T

p ],
ΔUamp,k

p � Uk,t
p − Uk,t−1

p ,

Uk,t
p � func ext( _Uk

p),
,

(2)
Utheta

p � [Utheta,1
p , Utheta,2

p ,/, Utheta,k
p ,/, Utheta,T

p ]. (3)

Here, Up is the zero-sequence voltage cycle vector sequence; _U
k
pis

the kth zero-sequence voltage phasor in the zero-sequence

voltage vector, which can be obtained by extracting the

fundamental wave phasor with Fourier decomposition after

the corresponding moment t moves forward by a cycle and

constructs a sequence; T is the cycle sequence scale related to

equipment sampling frequency (in this article, sampling

frequency = 12,800 Hz, T � 256);Uamp,k
p and Utheta,k

p ,

respectively, correspond to the amplitude and phase mass of

the kth zero-sequence voltage; fft(·) and func ext(·),
respectively, correspond to Fourier decomposition function

and amplitude/phase position extraction function; and

ΔUamp,k
p is the kth zero-sequence voltage variable amplitude.

2.2.2 Features of zero-sequence current
Similarly, there are also three features of zero-sequence

current: amplitude cycle sequence, variable amplitude cycle

sequence, and phase position cycle sequence. The definitions

of the three features, zero-sequence current amplitude cycle Iamp
p ,

zero-sequence current variable amplitude cycle ΔIamp
p , and zero-

sequence current phase position cycle Ithetap , are shown in Eqs

4–6, respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

_Ip � [ _I1p, _I2p,/, _I
k

p,/, _I
T

p],∀k ∈ T,

_I
k

p � fft([ _It−Tp ,/, _I
t−1
p , _I

t

p], base),
Iamp,k
p � func ext( _Ikp, amp),

Itheta,kp � func ext( _Ikp, theta),
Iamp
p � [Iamp,1

p , Iamp,2
p ,/, Iamp,k

p ,/, Iamp,T
p ],

, (4)

⎧⎪⎪⎨⎪⎪⎩
ΔIamp

p � [ΔIamp,1
p ,ΔIamp,2

p ,/,ΔIamp,k
p ,/,ΔIamp,T

p ],
ΔIamp,k

p � Ik,tp − Ik,t−1p ,

Ik,tp � func ext( _Ikp),
, (5)

Ithetap � [Itheta,1p , Itheta,2p ,/, Itheta,kp ,/, Itheta,Tp ]. (6)

Here, _Ipis the zero-sequence current cycle vector sequence; _I
k
ps is

the kth zero-sequence current phasor in zero-sequence current

vector, which can be obtained by extracting the fundamental

wave phasor with Fourier decomposition after the corresponding

moment t moves forward by a cycle and constructs a sequence;

Iamp,k
p and Itheta,kp , respectively, correspond to the amplitude and

phase mass of the kth zero-sequence current; fft(·) and

func ext(·), respectively, correspond to Fourier

decomposition function and amplitude/phase position

extraction function; and ΔIamp,k
p is the kth zero-sequence

current variable amplitude.

By using the zero-sequence voltage amplitude Uamp
p , zero-

sequence voltage variable amplitude ΔUamp
p , zero-sequence

voltage phase position Utheta
p , zero-sequence current amplitude

Iamp
p , zero-sequence current variable amplitude ΔIamp

p , and zero-

sequence current phase position Ithetap in Eqs 1–6, the feature

engineering of single-phase grounding faults can be constructed

as M � [Uamp
p ,ΔUamp

p , Utheta
p , Iamp

p ,ΔIamp
p , Ithetap ].

3 Single-phase grounding fault
classification model driven by
machine learning

Combined with the feature-target key value sequence of

single-phase grounding faults acquired from the true-type test

and simulation model, this model is categorized as supervised

learning in the field of machine learning and, to be more precise,

belongs to the classification category. In theory, supervised

learning is often oriented and signifies better training effects.

However, directly lifting machine learning to the classification of

single-phase grounding faults may lead to a result that falls short

of expectation. There are three reasons behind this possibility.

The first reason is that the present studies lack a complete and

sufficient database of single-phase grounding faults, which will

result in good training effects but will not lead to ideal practical

generalization ability. The second reason is that the present

database of single-phase grounding faults mainly contains

grounding faults and does not have the database of waveforms

related to the interfered system during normal operation. The

third reason is that, combined with the fault feature vector
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constructed in Section 2.2, there could be 1,536 dimensions.

When considering the vertical expansion of sample database

dimensions, the model classification effects would not be as good

as expected, even when high-performance machine learning

classification models are adopted.

Concerning the aforementioned three problems, this section

will introduce the sampling method, feature dimension

reduction, and classification algorithm in the machine

learning technique in the hope of constructing a single-phase

grounding fault classification model with great robustness.

3.1 Sampling technique

The sampling technique is mainly used to solve problems in

class-imbalance, namely, situations where training samples of

different types vary significantly from each other in the

classification task. Normally, the classifier decision rule is:

y/(1 − y)> 1, where y is the probability threshold predicted to

be a positive sample. The threshold y/(1 − y) is set at 0.5,

indicating that possibility of true-positive and -negative

samples is the same. However, when the number of positive

samples and the number of negative samples are not the same,

having m+ and m−, respectively, representing the number of

positive and negative samples, then the observation probability is

m+/m−. Since the general hypothetical training set is the overall
unbiased sampling of authentic samples, the observation

probability represents the true probability. Therefore, as long

as the prediction of the classifier is higher than the observation

probability, as in y/(1 − y)>m+/m−, the result should be

deemed as a positive sample.

Based on the aforementioned details, there are three

methods to solve class-imbalance (Shu et al., 2019): the

first method is to directly carry out under-sampling for the

negative samples in the training set, as in removing some

negative samples to make sure the number of positive samples

and the number of negative samples are close. The second

method is to implement oversampling for the positive samples

in the training set, as in adding some positive samples to make

sure the number of positive samples and the number of

negative samples are close. The third method, also referred

to as “threshold movement,” is to directly implement learning

based on the primary training set, but it is necessary to embed

m−y/(m+ − ym+) in the decision-making process when using

the trained classifier for prediction.

In comparison, the under-sampling method is prone to

losing negative samples and some important information. At

the same time, threshold movement should be based on the

premise that “the training set is the overall unbiased sampling of

true samples,” which is usually false. In other words, it is often

unable to effectively infer the real probability based on the

training set observation probability in real practice. Therefore,

this section will focus on the up-sampling method to resolve

class-imbalance.

3.2 Feature dimension reduction

Among the feature dimensionality reduction methods, the

mainstream and mature option is the principal component

analysis method (PCA). The idea central to the PCA method is

the reduction of dimensionality. In the analysis process,

multiple variables are transformed into a small number of

comprehensive variables (principal components). The

transformed principal components are not related to each

other and are in the form of a linear combination of original

variables. Therefore, a great deal of information can be

displayed in the form of a linear combination and without

repetitions. The PCA algorithm principle and pseudo code are

shown in Table 1.

In combination with the principal component analysis

method, the dimensionality reduction engineering

construction of grounding fault features in Section 1.2 is

carried out. There is an independent and unrelated

eigenvalue distribution in the new space after construction.

After considering the principle of the “90%” value space,

Figure 3 depicts the selection of the top 10 eigenvalues, and

the cumulative ratio of features accounts for 91.37%.

Therefore, the initial structure with 1,536-dimension load

feature engineering can be optimized and reduced to

12 dimensions, and the space compression rate can reach

as high as 99.21%.

3.3 AdaBoost classification model

Since for every set of feature vectors, its classification result

is provided; obviously, this issue belongs to the supervised

learning field. In machine learning, logistic regression,

TABLE 1 PCA algorithm principle and pseudo-code.

Input: Sample set
D � {x1, x2,/, xm}

Dimensional index of
low-dimensional space dindex

Process:

1: Neutralize all grounding fault feature samples: xi ← xi − 1
m∑m

i�1xi

2: Calculate the covariance matrix of the sample XXT

3: Conduct eigenvalue decomposition for the covariance matrix XXT

4: Take w1 ,w2 ,/,wdindex eigenvector corresponding to dindex the largest eigenvalue

Output: Projection matrix W � {w1 ,w2 ,/,wdindex}

The bold term of {xm, ym} represents them
th feacture vector and its fault label. The SVM

is the abbreviation of supporting vector machine.
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support vector machine, K-neighbor proximity, and decision

tree, as well as integration-based learners, such as AdaBoost,

XGBoost, and LightGBM, are typical technologies used (Wu

and Hiroshi, 2014; Dahlan, 2018; Pan et al., 2020). Compared

with a single classifier (also known as a “weak learner”),

integrated learning combined with multiple learners can

often obtain significantly better generalization performance

than a single learner. As demonstrated by many practical

applications, however, AdaBoost presents better convergence

performance, consumes less time, and occupies lower memory

resources. As such, this section will mainly focus on extending

this algorithm to the online model in identifying single-phase

earth faults.

Bagging and boosting methods focus on sample sampling

and parallel learning, and error sample relearning and

reinforcement of the base learner, respectively. It is obvious

that the latter has more advantages. In view of this, based on

optimization of the fault feature set by dimensionality reduction

of the PCA method, this section will build a single-phase

grounding fault classification model combined with Boosting’s

AdaBoost method. Of which, the base learner of the AdaBoost

method primarily utilizes SVM in order to enhance the

robustness of the classification effect of the model.

Furthermore, the pseudo-code of the principle of

constructing the grounding fault classification model

combined with the AdaBoost method is shown in Figure 2.

3.4 The flowchart of the proposed
identification model

Combined with Sections 2–3, the proposed single-phase earth

fault identification model based on AdaBoost is detailed in Figure 4.

As seen from Figure 4, it mainly includes five key steps: data

preprocessing, construct feature, feature engineering, build

AdaBoost-based identification model, and optimize

hyperparameter. Particularly, data preprocessing used for

extracting zero-sequence voltage and zero-sequence current is first

conducted. Second, Step B constructs fault features via current

mainstream algorithms in addition to the proposed angle-

conversion model. Next, feature engineering is explored according

to PCA-based algorithm to select the best andmost sensitive features.

Subsequently, a custom-designed single-phase earth ground fault

identificationmodel is put forward, where anAdaBoost-basedmodel

is conducted as an example and numerically compared in detail.

4 Numerical studies

In order to verify the effectiveness of the method proposed in

this article, a single-phase grounding fault feature set is constructed

by combining the two dimensions of true waveform and

simulation modeling. Of these, the distribution network model

based on PSCAD, as shown in Figure A1, and the selected

Mianyang true test waveform are established. The single-phase

grounding fault with variable parameters such as arc suppression

coil grounding system and ungrounded system under different

load levels, fault initial phase angle, and transitional resistance,

along with normal operation tests of the system, such as non-

synchronization closing, magnetizing inrush current, and non-

synchronization load commissioning and decommissioning, has

been taken into consideration.

The result is that the number of single-phase grounding fault

samples and anti-interference samples is, respectively, 108 and

27, equating to a ratio of nearly 6:1. In combination with up-

FIGURE 3
Distribution of eigenvalues of single-phase grounding faults
after dimensionality reduction using the PCA method.

FIGURE 4
AdaBoost-based single-phase earth ground fault
identification model.
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FIGURE A1
Single-phase grounding fault simulation system of a distribution network based on PSCAD.

FIGURE 5
3U0 amplitude change curve when a single-phase grounding fault occurs in arc suppression coil grounded and ungrounded systems.
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sampling technology, the ratio of the number of fault samples

and non-fault samples will be adjusted to 1:1, and the total

number of samples will be 216. In addition, the initial fault

feature dimension is 1,536 dimensions. After dimensionality

reduction by the PCA method in Section 2.2, the dimension

of the eigenvector will be adjusted to 12 dimensions, with a

compression rate as high as 99.21%.

4.1 Statistical analysis of single-phase
grounding fault features

In combination with Section 1.2, the M �
[Uamp

p ,ΔUamp
p ,Utheta

p , Iamp
p ,ΔIamp

p , Ithetap ] of single-phase

grounding fault feature engineering can be constructed directly,

but there is a lack of the boost method to learn the process

mechanism between feature engineering and target. In this

regard, the following will take 3U0 of zero-sequence voltage

amplitude and 3I0 of zero-sequence current amplitude of single-

phase grounding fault under systems of arc suppression coils being

grounded and ungrounded as examples to provide their distribution

statistical curves, as shown in Figures 5, 6, respectively.

It can be seen from Figures 5, 6 that no matter whether the

system is grounded or not, there are obvious demarcations for the

zero-sequence voltage and zero-sequence current of the system,

which correspond to before and after the fault. In addition, after

demarcation, 3U0 and 3I0 show a trend of gradual increase and

deterioration. The two features clearly illustrate the necessity and

importance of adopting 3U0 and 3I0 to build feature engineering for
grounding faults, and they can provide favorable learning features

for the AdaBoost method, thus guiding it to build a reasonable

single-phase grounding fault classification learning model.

4.2 AdaBoost accuracy rate of the
AdaBoost grounding fault classification
model

For the simulation test and true waveform fault set, after

adopting the single-phase grounding fault classification model

FIGURE 6
3I0 amplitude change curve when a single-phase grounding fault occurs in arc suppression coil grounded and ungrounded systems.

TABLE 2 Pseudo-code of the ground fault classification learning
model based on AdaBoost proposed by Shu et al. (2019).

Input: grounding fault
feature sample set
D � {{x1, y1}, {x2, y2},/, {xm, ym}}

Base
learning algorithm I � SVM

Number of training rounds
T

Process:

1: D1(t) � 1/m. Neutralize all samples: xi ← xi − 1
m∑m

i�1xi

2: f or t � 1, 2,/,T do

3: ht � I(D,Dt )
4: t � Px~Dt(ht(x) ≠ f (x))
5: if t > 0.5 then break

6: αt � 1
2 ln (1−tt

)
7: Dt+1(x) � Dt(x)

Zt
× { exp(−αt ), if ht(x) � f (x)

exp(αt ), if ht(x) ≠ f (x) � Dt(x) exp (−αt f (x)ht(x))
Zt

8: end for

Output: H(x) � sign(∑T
t�1αtht(x))
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constructed using AdaBoost algorithm in Table 2, the confusion

matrix (Shu et al., 2019) of fault and non-fault samples,

including the training set and test set, can be obtained, as

shown in Table 3.

In Table 3, indicators TPR, TFR, FPR, and FFR represent

the true-positive rate, true-false rate, false-positive rate, and

false rate, respectively (Shu et al., 2019). According to the

confusion matrix in Table 3, there are 101 correct

predictions of fault cases, up to 93.52% of the total, while

the prediction accuracy of non-fault examples is 100%, with

all predictions divided correctly. After analyzing the seven

waveforms being incorrectly divided for fault examples, the

errors are all attributed to one type of reason, namely, the

grounding fault of ultra-high resistance Rd. Data from a real

test in Mianyang is taken as an example: single-phase

grounding fault under the mixed medium of branches and

leaves on the cement ground through 50 cm conductor; line

voltages Uab, Ubc , U0 , Ia, Ib, Ic , and I0 of corresponding line are
shown in Figure 7.

According to Figure 6, when the system is in normal

operation, the voltage imbalance is nearly 3%. As far as the

zero-sequence voltage change curve is concerned, the fault

belongs to a long-term gradual fault, and the change of zero-

sequence voltage is also a process of gradual deterioration and

increase. At the first fault moment, the transitional resistance

reaches as high as 27k, and 3U0 and 3I0 change slightly. Most

algorithms are likely to include this into the category of zero-

sequence voltage fluctuation caused by non-synchronization

load of system commissioning and decommissioning.

However, in the second fault after 612 ms, the sudden

trend changing of zero-sequence voltage and the obvious

characteristics of opposite polarity of 3U0 and 3I0 can

obviously be judged as a single-phase grounding fault for

most algorithms. In terms of the latter, the single-phase

grounding fault classification model based on AdaBoost

constructed in this article can also study and judge the

grounding fault.

In addition, after further analyzing the waveform, it is

found that the reasons for the poor effect of most algorithms

also relate to two aspects. The first aspect is the

algorithm level. Looking at the waveform, even 100 ms after

the fault has occurred, in combination with the obvious

opposite direction characteristics of zero-sequence voltage

and zero-sequence current, the head half-wave method and

TABLE 3 AdaBoost confusion matrix.

Predicted fault sample Predicted non-fault sample

Actual fault samples 101/TPR 7/TFR

Actual non-fault samples 0/FPR 108/FFR

FIGURE 7
Single-phase grounding fault under the mixed medium of branches and leaves on the cement ground through a 50-cm conductor.
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steady-state method can still identify the fault. For the

parameter method, the zero voltage change trend is not

obvious in the middle of the fault, which can easily lead to

the failure of the parameter method. The second aspect is the

response speed. From the perspective of fault form, this is a

long-time gradual fault, and the interval between the salient

features of the two faults is 618 ms. If the fault can be

identified only in the second salient feature, it is likely that

the hidden danger of mountain fire will occur due to the

burning of dry leaves caused by the previous fault, and the best

rescue opportunity will be missed.

4.3 Performance of the AdaBoost single-
phase grounding fault classificationmodel

In order to help build the algorithm and give full play to its

practical application, the performance of the proposed AdaBoost

single-phase grounding fault classification model will be verified

from the dimensions of the learning curve and ROC curve. In

order to understand the intuitive evaluation of the performance

of the classification model from the perspective of the two types

of curves, the definitions of the two types of curves will be

described first.

4.3.1 Learning curve
The learning curve is the score change curve of sizes and

models of different training sets on the training set and

verification set, that is, the number of samples is taken as

the abscissa, and the scores on the training and cross-validation sets

(such as accuracy) are taken as the ordinate. A learning curve can

help us judge the current state of the model: overfitting/high

variance or underfitting/high-bias. Figure 8 shows the learning

curve for measuring the degree of overfitting or underfitting of

the model. The high variance emphasizes that the generalization

ability of the model is not ideal when applied to the test set, while the

high-bias characterization model lacks the deep mining of feature

engineering.

4.3.2 Receiver operating characteristic curve
The receiver operating characteristic curve (ROC curve in

short) is also known as the sensitivity curve. The reason for such

a name is that the points on the curve reflect the same

sensitivity. They are all responses to the same signal

stimulus, but the results have been obtained under several

different criteria. The general outline of the ROC curve is

shown in Figure 9.

In Figure 9, the receiver operating characteristic curve is a

coordinate diagram composed of false alarm probability as the

horizontal axis and hit probability as the vertical axis. The curve

drawn reflects the different results obtained by the subjects under

specific stimulus conditions due to different judgment criteria.

The ROC curve emphasizes the balance between TPR and FPR,

which can effectively avoid the influence of differentiation of

different judgment criteria.

FIGURE 8
Learning curve used for assessing model overfitting/
underfitting.

FIGURE 9
ROC curve to measure the pros and cons of model
classification performance.

FIGURE 10
Application of the AdaBoost ground fault classificationmodel
learning curve.
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Combined with the classification characteristics of single-

phase grounding faults, the higher the proportion TPR of the

samples predicted to be positive and actually positive in Figure 8

in all positive samples, the lower the proportion FPR of the

samples predicted to be positive but actually negative in all

negative samples; or the higher the area of the blue closed

area constructed by points (FPR and TPR) (random guess: the

area of the closed graph is 0.5), the better the performance of the

fault classification model.

Furthermore, the learning curve and ROC curve based on the

AdaBoost single-phase grounding fault classification model are

given in Figures 10, 11, respectively.

It can be seen from Figure 10 that with the increase

of the number of training samples, the classification accuracy

of the training set and the verification set gradually trend

toward sameness, and the classification accuracy of the

verification set gradually increases. The generalization ability

of the characterization model applied to the unknown fault

set is strong, but the improvement of this ability comes at

the expense of a certain level of weakening of the training

effect of the training set. Therefore, the performance of

the classification model constructed by the machine

learning method represented by AdaBoost depends on the

compromise of training and verification effects, and it is also

the balance between high-bias and high variance of the

classification model.

With regard to Figure 10, it can be seen that under the premise

of cross validation of five copies for the training set, the AUC of

each corresponding ROC curve is 0.98, 0.89, 1.00, 0.89, and 0.92,

respectively, which are far higher than 0.5 of random guess, and the

overall average AUC /standard deviation of AUC is 0.93 and ±0.05.

A small standard deviation indicates that the training effect of the

model is relatively stable. Moreover, comparative studies between

the proposed and the other two methods are also conducted,

namely, logistic regression (LR) and K-neighbor (KN), as shown

in Table 4. As seen from Table 4, both the accuracy and AUC

indicators of the model constructed in this work are superior, which

fully demonstrates the validity and the high value in engineering

practice.

In general, the AdaBoost single-phase grounding fault

classification model established in this article can better adapt

to the differential selection of different judgment criteria under

specific stimulus conditions, the overall performance is more

stable, and the robust performance is better.

5 Conclusion

This article discusses the classification research of machine

learning algorithm jointly driven by both physical model

and fault data in single-phase earth ground fault identification

and constructs a single-phase grounding fault classification

model based on AdaBoost. For PSCAD simulation model

and fault and non-fault examples under the true waveform

test, the classification accuracy of the model is 93.52%.

Second, in conjunction with up-sampling technology, PCA

FIGURE 11
ROC curve of the AdaBoost ground fault classification model.

TABLE 4 Identification effects of six models based on machine
learning under PCA-based feature engineering.

Indicator LR KN AdaBoost

PCA Accuracy/% 88.58 83.74 93.52

AUC 0.92 0.87 0.93
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dimensionality reduction technology, learning curve, and ROC

curve, the construction of feature engineering, dimensionality

reduction optimization, and model performance evaluation are

achieved, respectively. Among them, after PCA dimensionality

reduction technology is adopted, feature engineering can be

transformed into the feature space represented by a 12-

dimension vector with a space compression rate as high as

99.21%. The training effect of the training set and verification

set in the learning curve tends to be 0.93 as a whole, and the

average AUC under cross verification also reaches nearly 0.93,

which mutually confirms the highly accurate training effect

of the proposed AdaBoost model and the identification

and generalization ability of grounding faults under strong

interference and bad working conditions.

Data availability statement

The raw data supporting the conclusion of this article will be

made available by the authors, without undue reservation.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.

Funding

This work was supported by the State Grid Sichuan Supply

Company Science Project under grant no. 52199720002T.

Conflict of interest

HY, ZW, and ZQ were employed by Nari Technology

Nanjing Control Systems Co., Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

The authors declare that this study received funding from

State Grid Sichuan Supply Company Science Project. The funder

had the following involvement in the study: collection, analysis,

interpretation of data.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

An, D., Chen, T., Li, J., Yao, K., Zhang, H., andWang, H. (2020). Design of a small
current grounding line selection device based on a half-wave Fourier algorithm. [J],
Power Syst. Prot. Control 48 (09), 157–163.

Ai, B., Zhang, R., and Li, Y. (2009). Overview of line selection technology for small
current earth fault. North China Electric Power, Beijing.

Cui, T., Dong, X., Zhiqian, B., and Juszczyk, A. (2011). Hilbert-transform-based
transient/intermittent earth fault detection in noneffectively grounded distribution
systems. IEEE Trans. Power Deliv. 26 (1), 143–151. doi:10.1109/tpwrd.2010.
2068578

Dahlan, R. (2018). “AdaBoost noise estimator for subspace based speech
enhancement[C],” in 2018 international conference on computer, Control,
informatics and its applications (IC3INA), 110–113.

Gautam, S., and Brahma, S. M. (2012). Detection of high impedance fault in
power distribution systems using mathematical morphology. IEEE Trans. Power
Syst. 28 (2), 1226–1234 Aug. doi:10.1109/tpwrs.2012.2215630

Ghaderi, A., Ginn, H. L., and Mohammadpour, H. A. (2017). High impedance
fault detection: A review. Electr. Power Syst. Res. 143, 376–388. doi:10.1016/j.epsr.
2016.10.021

He, L., Shi, C., Yan, Z., Cui, J., and Zhang, B. (2017). A fault location
method for small current grounded systems based on the relative entropy of
generalized S-transform energy[J]. Trans. Chin. Soc. Electr. Eng. 32 (08),
274–280.

Jiale, S., Kang, X., and Song, G. (2007). etc. A preliminary study on the principle of
relay protection based on parameter identification[J]. J. Electr. Power Syst.
Automation 19 (1), 14–20.

Li, X. (2017). Line selection method of small current Earth fault based on three
lines display. Electr. Eng. 4, 6–7.

Lishan, W., Jia, W., and Jiao, Y. (2020). Single-phase fault line selection scheme of
a distribution system based on fifth harmonic and admittance asymmertry[J].
Power Syst. Prot. control 48 (15), 77–83.

Liu, W., Xu, B., Liu, Y., Wang, A., and Chen, H. (2018). Small current grounding
fault demarcation method based on transient current[J]. Automation Electr. Power
Syst. 42 (24), 157–162+202.

Pan, Z., Fang, S., and Wang, H. (2020). LightGBM technique and
differential evolution algorithm-based multi-objective optimization design of
DS-APMM. IEEE Trans. Energy Convers. 36 (1), 441–455. doi:10.1109/tec.2020.
3009480

Shu, H., Li, Y., Tian, X., and Yi, F. (2019). Distribution network fault line
selection based on correlation analysis of cross-overlap
differential transformation[J]. Automation Electr. Power Syst. 43 (06),
137–144+ 176.

Song, G., Guang, L., and Yu, Y. (2011). Location of single-phase grounding fault
section in distribution network based on sudden changes in phase current [J].
Automation Electr. Power Syst. 35 (21), 84–90.

Wang, W., Cheng, L., and Fan, Y. (2021). Earth fault identification method for
distribution station independent of zero sequence voltage. Automation Electr.
Power Syst. 45 (9), 122–129.

Wu, S., and Hiroshi, N. (2014). Parameterized AdaBoost: Introducing a
parameter to speed up the training of real AdaBoost. IEEE Signal Process. Lett.
21. (6), 687–691. doi:10.1109/lsp.2014.2313570

Xu, B., Xue, Y., and Li, T. (2005). Overview of line selection technology for small
current Earth fault. Electr. Equip. 4, 1–7.

Xue, Y., Li, J., and Xu, B. (2015). The transient equivalent circuit and transient
analysis of the small current grounding fault of the neutral point through the arc

Frontiers in Energy Research frontiersin.org12

Xueneng et al. 10.3389/fenrg.2022.919041

116

https://doi.org/10.1109/tpwrd.2010.2068578
https://doi.org/10.1109/tpwrd.2010.2068578
https://doi.org/10.1109/tpwrs.2012.2215630
https://doi.org/10.1016/j.epsr.2016.10.021
https://doi.org/10.1016/j.epsr.2016.10.021
https://doi.org/10.1109/tec.2020.3009480
https://doi.org/10.1109/tec.2020.3009480
https://doi.org/10.1109/lsp.2014.2313570
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.919041


suppression coil grounding system[J]. Proc. Chin. Soc. Electr. Eng. 35 (22),
5703–5714.

Xue, Y., Zuren, F., Xu, B., Chen, Y., and Jing, L. (2003). Research on low current
grounding line selection based on transient zero sequence current comparison [J].
Automation Electr. Power Syst. 4 (09), 48–53.

Yao, H., and Cao, M. (2009). Resonant grounding of power system [M]. Beijing:
China Electric Power Press.

Zeng, X., Wang, Y., Jian, L., and Xiong, T. (2012). New principles of
fault arc suppression and feeder protection based on flexible

grounding control of distribution network[J]. Proc. Chin. Soc. Electr. Eng. 32
(16), 137–143.

Zhang, B., and Yin, X. (2011). Power system relay protection [M]. Background:
China Electric Power Press.

Zhou, Z. (2016). Machine learning [M]. Beijing: Tsinghua University Press.

Zhu, L. (2011). Research on single-phase short-circuit fault and its protection of low
resistance grounding system in 10kV distribution network [D]. Changsha: Hunan
University.

Frontiers in Energy Research frontiersin.org13

Xueneng et al. 10.3389/fenrg.2022.919041

117

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.919041


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Advances and innovation in sustainable, reliable 

and affordable energyExplores sustainable and 

environmental developments in energy. It focuses 

on technological advances supporting Sustainable 

Development Goal 7: access to affordable, 

reliable, sustainable and modern energy for all. 

Discover the latest 
Research Topics

See more 

Frontiers in
Energy Research

https://www.frontiersin.org/journals/energy-research/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Applications of date-driven artificial intelligence in integrated energy systems
	Table of contents
	An IPAVSG Control Strategy forMicrogrid With Multi-Parallel VSGSystem
	4.1 Parameter-Adaptive VSG Control Strategy
	4.2 Active Power Proportional Distribution Control Strategy
	Data Availability Statement
	Author Contributions
	Funding
	REFERENCES

	Two-Stage Robust Optimal Scheduling of “Nearly-Zero-Carbon Park” Considering the Synergy of Waste Disposal and Carbon Captu ...
	Introduction
	Nearly-Zero Carbon Parks System Model
	Waste Treatment System Model
	CCGPP-P2G-WD Collaborative Mode
	Load Demand Response Model

	Nearly-Zero Carbon Parks Energy Supply and Demand Characteristics
	Nearly-Zero Carbon Parks Coordination Optimization Model
	Objective Function
	Restrictions

	Nearly-Zero Carbon Parks Two-Stage Robust Optimal Scheduling Model
	Optimized Scheduling Model
	Solution Method

	Case Simulation
	Example Basic Data
	Optimizing Results Analysis

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	A Transformer-Based Multi-EntityLoad Forecasting Method forIntegrated Energy Systems
	An Improved Dual-Loop Feedforward Control Method for the Enhancing Stability of Grid-Connected PV and Energy Storage System ...
	1 Introduction
	2 Grid-Connected PV and Energy Storage System Under Weak Grids
	2.1 Structure Design of HESS
	2.2 Self-Adaptive LPF Considering SoCBat
	2.3 System Power Distribution

	3 Design of the Grid-Connected Inverter
	3.1 Design of Inverter Controllers
	3.2 Modeling of Output Impedance

	4 Dual-Loop Compensation Control
	4.1 The Influence of the Proportional Gain of DVC on the Stability of the System
	4.2 The Influence of the Proportional Gain of PLL on the Stability of the System
	4.3 Disturbance Compensation Method of DVC
	Disturbance Compensation Method of PLL
	4.5 Analysis of Output Impedance

	5 Experiments
	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Research on situation assessment of active distribution networks considering cyberattacks
	1 Introduction
	2 Situation assessment index system
	2.1 Safety indexes of ADNs
	2.1.1 Power supply capacity margin
	2.1.2 Voltage violation severity
	2.1.3 Voltage qualified rate
	2.1.4 Load rate

	2.2 Security indexes of DGs
	2.2.1 Output volatility of DGs
	2.2.2 Penetration rate of DGs

	2.3 Risk indexes
	2.3.1 Mutation severity of power supply capacity
	2.3.2 Mutation severity of loads


	3 Situation assessment method
	3.1 Calculating the weights of situation assessment indexes based on entropy weight method
	3.2 Situation assessment method based on grey correlation
	3.3 Grading the risk level of ADNs situations

	4 Case study
	4.1 Attack scenarios
	4.2 Situation assessment under attack scenarios
	4.3 Analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Resilient cooperative control for optimal current sharing and voltage regulation of microgrid-based distribution network un ...
	Introduction
	Problem formulation
	DC MG system
	False data injection attacks in cyber layer
	Control objectives

	Secondary current sharing and voltage regulation control
	Resilient controller design
	Stability analysis

	Simulation results
	Resilient optimal current sharing and voltage regulation
	Comparison studies

	Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References

	Electricity Demand Forecasting Witha Modified Extreme-LearningMachine Algorithm
	A hybrid SVR with the fireflyalgorithm enhanced by alogarithmic spiral for electricload forecasting
	Research on strategy of greenelectricity acquisitiontransaction of park-level energyinternet by using STP
	The classification model for identifying single-phase earth ground faults in the distribution network jointly driven by phy ...
	1 Introduction
	2 Feature engineering of single-phase earth ground faults
	2.1 Physical model of single-phase grounding faults
	2.2 Feature engineering of single-phase grounding faults
	2.2.1 Features of zero-sequence voltage
	2.2.2 Features of zero-sequence current


	3 Single-phase grounding fault classification model driven by machine learning
	3.1 Sampling technique
	3.2 Feature dimension reduction
	3.3 AdaBoost classification model
	3.4 The flowchart of the proposed identification model

	4 Numerical studies
	4.1 Statistical analysis of single-phase grounding fault features
	4.2 AdaBoost accuracy rate of the AdaBoost grounding fault classification model
	4.3 Performance of the AdaBoost single-phase grounding fault classification model
	4.3.1 Learning curve
	4.3.2 Receiver operating characteristic curve


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Back cover



