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mechanisms towards novel diagnostic and therapeutic targets
1. Introduction

Atherosclerosis is the leading cause of morbidity and mortality worldwide. Despite the

unprecedented gains over the past decades, patients with established atherosclerotic

cardiovascular disease (ASCVD) remain at high risk of recurrent ischemic events despite

optimal management (1–3). Deepening insights into the underlying mechanisms provide

unique opportunities to refine previous concepts of atherosclerosis pathobiology with the

ultimate goal to improve its prevention and treatment and eventually patient outcomes

(4). The atherogenicity of apolipoprotein-B containing lipoproteins is well established, but

recent studies have shed new light on the importance of lipid quality in the development

of atherosclerosis and its clinical complications (5, 6).

With this Research Topic, we have assembled an issue of compelling articles, comprising

original research, case reports, editorials, and state-of-the-art reviews, with the aim to give the

readers of Frontiers in Cardiovascular Medicine a comprehensive overview of the role of

modified lipoproteins in the different phases of atherogenesis. Indeed, this Research Topic

not only deepens our understanding of lipid-driven mechanisms underpinning ASCVD but

also provides insights into novel concepts to address the high burden of ASCVD.
2. Low-density lipoproteins, high-density
lipoproteins, and triglycerides

With the accumulation of evidence on sex-specific differences in atherosclerosis

pathobiology, clinical tools to guide sex-specific patient care are gaining increasing
01 frontiersin.org
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attention in recent years (7). The narrative review article by Wang

and He highlights specific differences in lipoprotein metabolism

and associated risk factors in women and men. For example,

women tend to have higher high-density lipoprotein cholesterol

(HDL-C) levels, which are observationally linked to lower

ASCVD risk; however, at the same time, women tend to have

higher triglyceride levels, which are associated with higher

cardiovascular risk. Furthermore, sex hormones and reproductive

factors may affect lipoprotein metabolism and, thus, the risk of

major adverse cardiovascular events (MACE). Gaining a better

understanding of sex-specific differences may open novel avenues

for clinical interventions that could improve the prevention and

treatment of ASCVD.

Taking this concept a step further, Dietrich et al. have

emphasized the importance of sex hormones and sex-specific effects

of HDL and its interaction with endothelial cells. In addition to their

immunomodulatory, anti-inflammatory, and anti-oxidative

properties, HDL particles are thought to provide vasculoprotective

effects by promoting vasorelaxation and regulating vascular lipid

metabolism. An improved understanding of how sex-specific factors

affect these interactions may be useful in developing personalized

approaches for preventing and treating ASCVD.

In the review article by Tirandi et al. the potential role of

physical activity in regulating the expression of proprotein

convertase subtilisin/kexin type 9 (PCSK9), a key regulator of

LDL-C levels, is discussed. In a related study, Wang et al.

investigated potential associations between PCSK9 levels and

platelet reactivity in individuals not receiving statin or

antiplatelet therapy. The authors reported a significant positive

correlation between PCSK9 and platelet reactivity, suggesting that

inhibiting PCSK9 may attenuate platelet reactivity and thus

MACE risk in patients at high ASCVD risk. This discovery

encourages further research on the pleiotropic effects of PCSK9

inhibition in caring for patients with established ASCVD.

The retrospective study by Wang and He assessed the

correlation between cardiometabolic risk factors and obesity in

103 patients with familial hypercholesterolemia. Their findings

demonstrate the potential of using novel biomarkers for risk

stratification and personalized management of moderate to high-

risk patients, such as those with familial hypercholesterolemia.

Similarly, the study by Zeng et al. emphasizes the importance of

considering non-HDL-C as a risk factor in men not receiving

statin therapy. The authors describe a U-shaped relationship

between non-HDL-C levels and all-cause and cardiovascular

mortality, suggesting that both low and high levels of non-HDL-

C are associated with increased mortality risk, a finding that was

similarly reported for LDL-C (8).

Xu et al.’s study focused on comparing established formulas

used for calculating LDL-C levels in fasting and postprandial

states in the Chinese population. Notably, the Friedewald

formula provided the highest accuracy for determining fasting

LDL-C levels, whereas the Sampson formula performed better for

measuring postprandial LDL-C levels. These findings may

stimulate further research in this direction to accurately assess

cardiovascular risk and eventually refine interventions in the

Chinese population.
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In an important review on macrophage-mediated pinocytotic

engulfment of lipoproteins, Miyazaki highlights a receptor-

independent endocytic pathway for foam cell formation. This

process appears to occur when lipoproteins accumulate around

inflammatory cells and involves plasma membrane ruffling, small

GTPases, and cytoskeletal rearrangement. Although native LDL

may not be the main driver of foam cell formation, further

experimental studies are necessary to identify the master

regulator of lipoprotein engulfment by macrophages to improve

our understanding of its role in ASCVD pathogenesis.
3. Quality of lipoproteins

One area of research that has gained increasing attention in recent

years is the role of modified lipoproteins in the life cycle of

atherosclerotic plaque. Modified lipids include oxidized low-density

lipoprotein (oxLDL), small-dense LDL, triglyceride-rich LDL,

electronegativeLDL,andvery low-density lipoprotein (VLDL) (5, 9–11).

Lee et al.’s review focuses on VLDL, a potential driver of

cardiometabolic diseases. The most electronegative VLDL

subclass exerts cytotoxic effects on the endothelium and has been

linked to chronic coronary syndromes and atrial remodeling in

patients with metabolic syndrome. The review article highlights

the significance of postprandial VLDL modification and the need

for further investigation into the role of VLDL subclasses in the

pathobiology of cardiometabolic diseases.

In a Bayesian network analysis focused on biomarkers of coronary

atherosclerosis, Voros et al. have highlighted the importance of

triglyceride-rich LDL particles in ASCVD development. In the 665

patients included in the analysis, LDL-triglycerides were directly

linked to carotid atherosclerosis in over 95% of the models.

Interestingly, genetic variants in the LIPC gene (encoding hepatic

lipase) were associated with LDL-triglyceride levels and the presence

of atherosclerotic plaque. These findings suggest that triglyceride-

rich LDL particles may play a crucial role in atherosclerosis

development, thus providing a potential target for future studies.

In a Chinese population, Liu et al. explored potential

associations between remnant cholesterol (RC) and new-onset

carotid plaques. The authors concluded that elevated RC levels

are strongly associated with the presence of new-onset carotid

plaques relative to other lipid parameters, particularly in those

with low LDL-C levels. This study highlights the importance of

considering RC in predicting residual cardiovascular risk, such as

in those with low levels of LDL-C. A meta-analysis by Tian et al.

further evaluated the prognostic value of RC in patients with

chronic coronary syndromes. They reported an increasing risk of

MACE with higher RC levels, although no significant association

with all-cause mortality was identified.

The review article by Shen et al. provides insights into the impact

of dyslipidemia on coronary collateral formation during diabetic

states. The authors note that both altered serum lipid profiles and

glycoxidative modification of lipoproteins contribute to endothelial

dysfunction and blunt endothelial progenitor cell responses and

interfere with the growth and maturation of collateral vessels in

diabetic patients with chronic coronary syndromes.
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The above review article and the aforementionedwork demonstrate

the significance of lipids in atherosclerosis and its acute and chronic

clinical sequelae (Miyazaki, Voros et al. Shen et al.). Further research

in this area may lead to innovative strategies for preventing and

treating ASCVD and ultimately improving patient outcomes.

Hong et al. conducted a systematic review and meta-analysis to

evaluate the relationship between oxLDL and cardiovascular

disease in patients with chronic inflammatory conditions. The

analysis of three observational studies comprising a total of 1,060

participants showed that circulating oxLDL levels are increased

in participants with ASCVD during chronic inflammatory

conditions. Indeed, their study suggests that oxLDL may be a

useful biomarker for risk stratification of patients with

established cardiovascular disease driven by chronic inflammation.

Since the introduction of the traditional risk factor concept in

the Framingham Study (12), cholesterol-rich lipoproteins have

been extensively examined, with instrumental variable approaches

now allowing for causal inference using observational data. In the

innovative study by Jin et al., the causal role of cholesterol efflux

capacity in chronic coronary syndromes, acute myocardial

infarction, and ischemic stroke was examined using Mendelian

randomization. Considering the potential limitations of their

approach, these findings suggest that increased cholesterol efflux

capacity reduces the risk of chronic coronary syndromes and

myocardial infarction but has a weaker causal effect on ischemic

stroke, likely because of its more heterogeneous pathobiology.

Collectively, the studies by Wang et al. Zeng et al. Xu et al. Liu

et al. Tian et al. and Jin et al. highlight the importance of

considering multiple factors in assessing cardiovascular risk with
FIGURE 1

Lipids and their modifications contribute importantly to the pathogenesi
technologies, including lipidomics, now allow the in-depth characterizatio
characteristics modulate the atherogenic effects of blood lipids, but gene
dependent mechanisms can determine their (cardio-)vascular effects. A
pathogenesis may allow for personalized risk assessment and the identificatio
risk and thus improving outcomes of patients at particularly high cardiovascu
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potential future therapeutic implications. In addition to

traditional risk factors, non-HDL-C and RC concentrations may

provide valuable insights into a patient’s overall cardiovascular risk.

These studies also highlight the interplay of lipoproteins, physical

activity, sex-specific determinants, and emerging biomarkers in

cardiovascular health and disease (Wang and He). Although the

traditional risk factor concept has long prevailed, it might have

resulted in an oversimplified understanding of ASCVD. An improved

understanding of ASCVD pathobiology offers unique opportunities to

further improve patient care and tomitigate residual cardiovascular risk.

In their review article, Durrington et al. highlight a critical role

of HDL-contained serum paraoxonase-1 (PON1) in protecting

against harmful LDL oxidation, a mechanism that drives early

phases of ASCVD. Accordingly, reduced serum PON1 activity is

associated with dyslipidemic, diabetic, and inflammatory states.

Low PON1 levels are further linked to adverse cardiovascular

events, particularly in patients with diabetes and established

ASCVD, providing a conceptual framework to study functional

determinants of HDL to reduce residual cardiovascular risk.

The articles by Wang and He, Dietrich et al., Tirandi et al., Lee

et al., Hong et al., and Durrington et al. underscore the significance

of biomarkers in cardiovascular disease prevention and

personalized patient care. The identification of novel biomarkers

can aid in personalized risk assessment and provide a basis for

targeted interventions in high-risk patients. Moreover, these

studies suggest that novel biomarkers, including oxLDL, PON1,

and electronegative VLDL, may serve as complementary tools for

the identification of patients at particularly high ASCVD risk

who may benefit from intensive secondary prevention measures.
s of atherosclerotic cardiovascular disease (ASCVD). High-throughput
n of lipoprotein structure and function. Both physical and chemical
tic susceptibility, sex and gender, physical activity, and receptor (in-)
better understanding of how these biomarkers contribute to ASCVD
n of novel therapeutic targets, aimed at reducing residual cardiovascular
lar risk.
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However, it is essential to recognize that these biomarkers should

not be used in isolation but should be considered alongside other

clinical tools, including risk scores. Moreover, the clinical utility of

novel biomarkers for risk assessment must undergo rigorous

validation in different populations and settings, taking into account

potential limitations inherent in the design of the studies noted above.

Together, the studies presented in this Research Topic highlight

the importance of biomarkers in the prevention and management

of ASCVD and its complications (Figure 1). The identification and

rigorous validation of novel biomarkers could assist in personalized

risk assessment to guide targeted interventions in high-risk

populations. To that end, high-throughput assays are needed for

qualitatively assessing changes in the structure and function of

lipoproteins to work toward the clinical implementation of

multidimensional lipid profiling. The herein proposed research

pursuit is crucial for developing effective prevention and

management strategies for patients at risk for or with established

ASCVD with the ultimate goal of reducing the burden of

residual cardiovascular risk.
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Background: Observational studies indicated that cholesterol efflux capacity (CEC)

of high-density lipoprotein (HDL) is inversely associated with cardiovascular events,

independently of the HDL cholesterol concentration. The aim of the study is to examine

the casual relevance of CEC for coronary artery disease (CAD) and myocardial infarction

(MI), and compare it with that for ischemic stroke and its subtypes using a Mendelian

randomization approach.

Methods: We performed a 2-sample Mendelian randomization to estimate the casual

relationship of CEC with the risk of CAD, MI, and ischemic stroke. A CEC-related

genetic variant (rs141622900) and other five genetic variants were used as the

instrumental variables. Association of genetic variants with CAD were estimated in a

GWAS involving 60,801 CAD cases and 123,504 controls. They were then compared

with the associations of these variants with ischemic stroke and its subtypes (large

vessel, small vessel, and cardioembolic) involving 40,585 ischemic stroke cases and

406,111 controls.

Results: Using the SNP of rs141622900 as the instrument, a 1-SD increase in CEC

was associated with 45% lower risk for CAD (odds ratio [OR] 0.55, 95% confidence

interval [CI] 0.44–0.69, p < 0.001) and 33% lower risk for MI (odds ratio [OR] 0.67, 95%

CI 0.52–0.87, p = 0.002). By contrast, the causal effect of CEC was much weaker for

ischemic stroke (odds ratio [OR] 0.79, 95% CI 0.64–0.97, p = 0.02; p for heterogeneity

= 0.03) and, in particular, for cardioembolic stroke (p for heterogeneity = 0.006) when

compared with that for CAD. Results using five genetic variants as the instrument also

indicated consistently weaker effects on ischemic stroke than on CAD.

Conclusion: Genetic predicted higher CEC may be associated with decreased risk of

CAD. However, the casual association of CECwith ischemic stroke and specific subtypes

would need to be validated in further Mendelian randomization studies.

Keywords: cholesterol efflux capacity, Mendelian randomization, coronary artery disease, stroke, genetics
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INTRODUCTION

Epidemiologic studies have shown an inverse relationship
between high-density lipoprotein (HDL) cholesterol levels and
cardiovascular disease (1); however, recent clinical trials (2, 3)
and Mendelian randomization (MR) studies (4, 5) failed to
established a clear causal association between HDL cholesterol
and cardiovascular disease. This led to the hypothesis that the
atheroprotective role of HDL lies in its function rather than in
its concentrations (6).

The most important measure of HDL function is cholesterol
efflux capacity (CEC), the ability of HDL to reverse cholesterol
transport from peripheral cells (7). Previous cohort and case-
control studies showed that CEC was inversely associated with
atherosclerosis and the incidence of cardiovascular events in
the general population, independently of the HDL cholesterol
concentration (8–11). However, observational epidemiological
studies may suffer from confounding and selection bias that
represent obstacles to valid causal inference (12, 13). The causal
association between CEC and cardiovascular diseases is still
controversial. Furthermore, ischemic stroke had a heterogeneous
mechanism and may have different cause and risk factors from
coronary artery disease (CAD) (14). Previous MR studies have
showed a weaker effect on ischemic stroke than on CAD for
some lipid metabolic factors, such as low-density lipoprotein
cholesterol and proprotein convertase subtilisin/kexin type 9
(PCSK9) variants (15, 16). Therefore, the relative effects of CEC
on CAD and ischemic stroke needs further investigation.

MR study, using genetic variants as instrumental variables,
is a method that can control potential confounders and reverse
causation that may bias observational studies, and make stronger
causal inferences between an exposure and risk of diseases (12).
In the present study, we aimed to use MR analysis to examine the
causal relevance of CEC for CAD andmyocardial infarction (MI),
and compares it with that for ischemic stroke and its subtypes.

MATERIALS AND METHODS

Study Design
A two-sample MR analysis using CEC-related genetic variants
as instrumental variable was designed to evaluate the causal
effect between CEC and risk of CAD and ischemic stroke
(Supplementary Figure 1). Summary-level data on the exposure
(CEC) were derived from a recent published genome-wide
association study (GWAS) of up to 5,293 European individuals
(17) and data on the outcome (CAD and ischemic stroke)
were obtained from GWASs of up to 446,696 European
individuals (18, 19). Table 1 and Supplementary Table 1 shows
the characteristics of these GWASs. Approval of ethics committee
and written informed consent were obtained before data
collection in the original GWASs.

Genetic Instrumental Variables
We used 6 single nucleotide polymorphisms (SNPs) associated
with CEC identified through GWAS by Low-Kam et al. (17)
as the instrumental variables. Low-Kam et al. (17) tested the
genetic association between 4 CEC measures and genotypes at

>9 million common autosomal DNA sequence variants in 5,293
French Canadians. They identified 10 genome-wide significant
signals (P < 6.25 × 10−9) representing 7 loci. Among the 7 loci,
2 loci (near the PPP1CB/PLB1 and RBFOX3/ENPP7 genes) only
reached genome-wide significance in the model further adjusted
for HDL-C and triglyceride levels whichmay lead to false positive
associations in the GWAS context (i.e., collider bias). Other 5
loci (CETP, LIPC, LPL,APOA1/C3/A4/A5, andAPOE/C1/C2/C4)
harbored genes with important roles in lipid biology and reached
genome-wide significance in the model adjusted for sex, age
squared, coronary artery disease status, experimental batches,
statin treatment, and the first 10 principal components. Except
for the APOE/C1/C2/C4 variant, association of other 4 loci
disappeared when correcting for HDL-C and triglyceride levels.
Only the SNP of rs141622900 in APOE/C1/C2/C4 locus reached
genome-wide significance in both twomodels andwas used as the
instrument. In sensitivity analysis, we used the most significant
SNP in each of the 5 loci (rs77069344, rs2070895, rs247616,
rs964184, and rs445925) as the instrument. These 5 SNPs were
in different genomic regions and not in linkage disequilibrium
(r2 < 0.1). The 1 SNP (rs141622900) instrument explained 0.9%
and the 5 SNPs instrument explained 5.3% of the variance in CEC
(F statistic = 59.2 and 45.9, respectively, indicating sufficient
strength of the instruments). Table 2 shows the characteristics
and associations of these included SNPs with CEC.

Outcomes
Summary statistics for the association of each CEC-related SNP
with the CAD and MI were extracted from the Coronary ARtery
DIsease Genome-wide Replication And Meta-Analysis Plus
Coronary Artery Disease Genetics (CARDIoGRAMplusC4D)
1000 Genomes-based GWAS (17). The CARDIoGRAMplusC4D
1000 Genomes-based GWAS interrogated 9.4 million variants in
up to 60,801 CAD cases and 123,504 controls from 48 studies
of predominantly European ancestry. Summary statistics for
the association of the included SNPs with ischemic stroke and
the 3 main subtypes of ischemic stroke (large artery stroke
[LAS], small vessel stroke [SVS], cardioembolic stroke [CES])
were extracted from the GWAS of Multiancestry Genome-wide
Association Study of Stroke (MEGASTROKE) consortium (19).
The MEGASTROKE consortium tested ∼8 million SNPs and
indels with minor-allele frequency ≥0.01 in up to 67,162 stroke
cases and 454,450 controls from 29 studies, predominantly
European ancestry (40,585 cases; 406,111 controls). This GWAS
involved 34,217 cases with LAS, 5,386 cases with SVS and 7,193
cases with CES of European ancestry. The associations of the 6
individual SNPs for CEC with CAD and MI, and ischemic stroke
and its subtypes are presented in Tables 3, 4, respectively.

Statistical Analysis
Per-allele effects of the selected SNPs on CEC and disease
outcomes were extracted from the GWASs and used to estimate
the causal effect of CEC on outcomes using two-sample MR
analyses. Using the SNP of rs141622900 as the instrument, Wald
ratio method were used to obtain effect estimate by dividing
the SNP-outcome estimate by the SNP-CEC estimate. Standard
error were estimated using the Delta method by dividing
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TABLE 1 | Characteristics of the GWAS studies used in this study.

Phenotype Consortium N Ethnicity Genotype data PMID

Exposure

Cholesterol efflux capacity (CEC) Up to 5,293 individuals European GWAS array 30369316

Outcomes

Coronary artery disease (CAD) CARDIoGRAMplusC4D Up to 184,305 individuals European GWAS array 26343387

Myocardial infarction (MI) CARDIoGRAMplusC4D Up to 171,876 individuals European GWAS array 26343387

Ischemic stroke (IS) MEGASTROKE Up to 446,696 individuals European GWAS array 29531354

Large artery stroke (LAS) MEGASTROKE Up to 440,328 individuals European GWAS array 29531354

Small vessel stroke (SVS) MEGASTROKE Up to 411,497 individuals European GWAS array 29531354

Cardioembolic stroke (CES) MEGASTROKE Up to 413,304 individuals European GWAS array 29531354

TABLE 2 | Characteristics of the included SNP loci associated with cholesterol efflux capacity.

SNP Locus Chromosome (Position) (hg19) EA/OA EAF CEC Beta SE p

rs77069344 LPL 8 (19 821 782) G/T 0.099 J774 basal 0.2008 0.0327 7.96 × 10−10

rs2070895 LIPC 15 (58 723 939) A/G 0.230 J774 basal 0.1424 0.0232 8.49 × 10−10

rs247616 CETP 16 (56 989 590) T/C 0.314 J774 basal 0.1466 0.0211 4.08 × 10−12

rs964184 APOA1/C3/A4/A5 11 (116 648 917) C/G 0.857 J774 ABCA1 dependent 0.2019 0.0281 6.78 × 10−13

rs445925 APOE/C1/C2/C4 19 (45 415 640) A/G 0.114 J774 ABCA1 dependent 0.2155 0.0303 1.20 × 10−12

rs141622900 APOE/C1/C2/C4 19 (45 426 792) A/G 0.058 BHK stimulated 0.2833 0.0417 1.03 × 10−11

SNP, single nucleotide polymorphism; EA, effect allele; OA, other allele; EAF, effect allele frequency; CEC, cholesterol efflux capacity; SE, standard error. The unit of beta coefficients is

SD increase of CEC per allele.

the SNP-outcome standard error by the SNP-CEC estimate
(20). When using the 5 SNPs as the instruments, we used a
conventional inverse-variance weighted (IVW)MR analysis with
multiplicative random effects assuming all genetic variants are
valid instruments. In IVW method, the SNP-outcome estimate
is regressed on the SNP-CEC estimate, weighted by the inverse-
variance of SNP-outcome estimate and with the y-axis intercept is
fixed to zero (21).We further conductedmethodologic sensitivity
analyses using MR-Egger, simple median, weighted median
methods using the 5 SNPs as the instruments, which are more
robust to the inclusion of pleiotropic or invalid instruments. MR-
Egger method can assess and control for directional pleiotropic
bias and provide an pleiotropy-corrected effect estimate in
which genetic variants are permitted to be invalid instrumental
variables (22). The median methods can provide a consistent
effect estimate using the median of the empirical distribution
function of individual SNP ratio estimates in which up to 50% of
the genetic variants are permitted to be invalid instruments (23).
Presences of heterogeneity between causal effects of individual
variants and comparisons between the causal effects of CEC on
CAD vs. ischemic stroke were tested using the CochranQ statistic
and I2 index in the IVW analysis (23). Evidence of pleiotropic
effects were assessed using intercepts of the MR-Egger regression
(22). Moreover, multivariable two-sample MR were performed
to adjust for major causes of survival (smoking, body mass
index, and blood pressure) using the 5 SNPs as the instruments
(24). Multivariable MR analysis was used to assess whether the
associations between genetic predisposition to CEC and ischemic
stroke may be affected by selection bias (25). The above analysis

TABLE 3 | Genetic association of cholesterol efflux capacity related genetic

variants with coronary artery disease and myocardial infarction in the

CARDIoGRAMplusC4D consortium.

SNPs EA/OA Coronary artery disease Myocardial infarction

Beta SE p Beta SE p

rs77069344 G/T −0.0514 0.0158 0.001 −0.0651 0.0176 0.000

rs2070895 A/G 0.0372 0.0108 0.001 0.0414 0.0121 0.001

rs247616 T/C −0.0312 0.0103 0.002 −0.0280 0.0114 0.014

rs964184 C/G −0.0500 0.0124 0.000 −0.0488 0.0139 0.000

rs445925 A/G −0.0858 0.0187 0.000 −0.0664 0.0214 0.002

rs141622900 A/G −0.1421 0.0278 0.000 −0.0963 0.0315 0.002

EA, effect allele; OA, other allele; SE, standard error; SNP, single nucleotide polymorphism.

The unit of beta coefficients is log-odds per allele. The odds ratio = exp(Beta), upper

bound of odds ratio = exp(Beta+1.96*SE), and lower bound of odds ratio = exp(Beta-

1.96*SE).

were conducted in the UK Biobank GWAS and FinnGen GWAS
as sensitivity analyses.

The percentage of variance explained in CEC was estimated
by 2× (effect on CEC)2 × minor allele frequency × (1- minor
allele frequency) (16). A power analysis was performed using
a web-based application (https://sb452.shinyapps.io/power/).
Effect estimates of CEC-outcome (CAD, MI, ischemic stroke and
its subtypes) are presented as odds ratios (ORs) with their 95%
confidence intervals (CIs) of outcome per 1-SD genetically higher
CEC. To account for multiple testing, a Bonferroni-corrected
significance level of p < 0.0083 (i.e., 0.05/6 for 6 outcomes)
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TABLE 4 | Genetic association of cholesterol efflux capacity related genetic variants with ischemic stroke and its subtypes in the MEGASTROKE consortium.

SNPs EA/OA Ischemic stroke LAS SVS CES

Beta SE p Beta SE p Beta SE P Beta SE p

rs77069344 G/T 0.0153 0.0160 0.339 0.0450 0.0396 0.256 0.0062 0.0371 0.868 0.0207 0.0316 0.514

rs2070895 A/G −0.0033 0.0121 0.783 −0.0587 0.0304 0.054 0.0367 0.0278 0.187 0.0136 0.0235 0.563

rs247616 T/C 0.0082 0.0110 0.455 −0.0168 0.0276 0.542 −0.0119 0.0258 0.645 0.0108 0.0212 0.609

rs964184 C/G 0.0181 0.0152 0.233 0.0060 0.0373 0.872 −0.0071 0.0349 0.838 0.0122 0.0297 0.681

rs445925 A/G −0.0298 0.0184 0.106 −0.0723 0.0461 0.117 −0.0365 0.0413 0.378 −0.0362 0.0350 0.301

rs141622900 A/G −0.0579 0.0254 0.023 −0.0963 0.0679 0.156 −0.0793 0.0598 0.185 0.0178 0.0509 0.727

EA, effect allele; OA, other allele; LAS, large artery stroke; SVS, small vessel stroke; CES, cardioembolic stroke; SE, standard error; SNP, single nucleotide polymorphism. The unit of

beta coefficients is log-odds per allele. The odds ratio = exp(Beta), upper bound of odds ratio = exp(Beta+1.96*SE), and lower bound of odds ratio = exp(Beta-1.96*SE).

was predefined as statistically significant evidence for a causal
association. All analyses were conducted with R 3.5.1 (R
Development Core Team).

RESULTS

Genetically determined 1-SD increase in CEC was casually
associated with a substantial decrease in risk of CAD (OR= 0.55,
95% CI: 0.44–0.69, p < 0.001) and MI (OR= 0.67, 95% CI: 0.52–
0.87, p = 0.002); but, by contrast, was not causally associated
with ischemic stroke (OR = 0.79, 95% CI: 0.64–0.97, p = 0.02)
or any separate subtype of ischemic stroke (LAS: OR = 0.67,
95% CI: 0.39–1.17, p = 0.16; SVS: OR = 1.08, 95% CI: 0.71–
1.63, p = 0.73; CES: OR = 0.72, 95% CI: 0.44–1.17, p = 0.18) at
the Bonferroni-adjusted level of significance (p < 0.0083) using
the SNP of rs141622900 as the instrument (Figure 1). The effect
of CEC on ischemic stroke was weaker than that on CAD (p
for heterogeneity = 0.03, I2 = 80%), and in particular on CES
(p for heterogeneity = 0.006, I2 = 87%), whereas the effects of
CEC on LAS and SVS were compatible with the magnitude of
the effect observed for CAD (p for heterogeneity = 0.53 and
0.34, respectively). The effects of CEC on ischemic stroke and its
subtypes were compatible with the magnitude of the effect for MI
(p for heterogeneity = 0.34, 1.00, 0.80, and 0.06, respectively).
These analyses had a >99, >99, 70, and 82% power to detect
a 30% decrease in risk of ischemic stroke, LAS, SVS, and CES
(equivalent to the upper limit of the CI for CAD), respectively;
this can exclude a causal effect of CEC on ischemic stroke and
CES of the same magnitude as on CAD, and indicate comparable
effects of CEC on LAS, SVS, and CAD. Whereas, the power to
detect a 13% decrease in risk of ischemic stroke, LAS, SVS, and
CES (equivalent to the upper limit of the CI forMI) was 72, 65, 16,
and 20%, respectively; this indicated comparatively little power
for comparable effects of CEC on ischemic stroke, particular
stroke subtypes and MI.

Similar disparate associations of CEC were observed with the
risk of CAD (OR = 0.85, 95% CI: 0.79–0.90, p < 0.001) and MI
(OR= 0.86, 95% CI: 0.80–0.92, p< 0.001), compared to ischemic
stroke (OR= 1.02, 95% CI: 0.95–1.09, p= 0.58) and its subtypes
(LAS: OR = 0.90, 95% CI: 0.76–1.07, p = 0.25; SVS: OR = 1.00,
95% CI: 0.85–1.17, p= 0.95; CES: OR= 1.04, 95% CI: 0.91–1.19,
p = 0.60), using the IVW methods with the 5-SNPs instrument

(Figure 1). The effect of CEC on ischemic stroke was weaker than
that on CAD (p for heterogeneity <0.001, I2 = 93%) and MI (p
for heterogeneity <0.001, I2 = 91%), and in particular on CES
(p for heterogeneity = 0.008, I2 = 86%; p for heterogeneity =

0.01, I2 = 83%), whereas the effects of CEC on LAS and SVS were
compatible with the magnitude of the effect observed for CAD
(p for heterogeneity = 0.49 and 0.07, respectively) and MI (p for
heterogeneity = 0.58 and 0.10, respectively). These analyses had
a >99, 99, 42, and 53% power to detect a 10% decrease in risk
of ischemic stroke, LAS, SVS, and CES (equivalent to the upper
limit of the CI for CAD and MI), respectively; this can exclude a
causal effect of CEC on ischemic stroke of the same magnitude as
on CAD andMI, and indicate comparable effects of CEC on LAS,
CAD, and MI.

Significant association for CAD and MI and insignificant
association for ischemic stroke and its subtypes were also
observed in sensitivity analyses using the MR-Egger, simple
median and weighted median methods using the 5-SNPs
instrument (Table 5). Evidence of heterogeneity was observed for
the outcome of CAD and MI (Q= 42.5, p < 0.001; Q= 35.4, p <

0.001) but not for the outcome of ischemic stroke or its subtypes
(Q= 5.3, p= 0.26; Q= 6.6, p= 0.16; Q= 2.8, p= 0.59; Q= 2.0,
p = 0.74) in the IVW analysis. MR-Egger regression showed no
evidence of directional pleiotropy for the association of CECwith
all disease outcomes (all p value for intercept >0.05) (Table 5).
In sensitivity analyses using FinnGen GWAS data, significant
associations for ischemic heart disease and MI and insignificant
association for ischemic stroke and CES were observed using the
SNP of rs141622900 as the instrument. However, no significant
associations for the outcomes was observed in the IVW analysis
using the 5-SNPs instrument (Supplementary Table 2). In the
multivariable MR adjusting for major causes of survival using the
5-SNPs instrument, the associations of CEC with ischemic stroke
and its subtypes remained insignificant, which were similar to
the estimates by the IVW method (Supplementary Table 3).
Similar results of insignificant associations for ischemic stroke
were observed in the UK Biobank data (Supplementary Table 4).

DISCUSSION

The present study is the first large-scale assessment and
comparison of causal relevance of CEC and the risk of vascular

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 July 2022 | Volume 9 | Article 89114812

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Jin et al. Cholesterol Efflux Capacity and Vascular Diseases

FIGURE 1 | Causal effect estimates of genetically predicted cholesterol efflux capacity on coronary artery disease and stroke. Estimates represented odds ratio (95%

CI) per SD genetically higher cholesterol efflux capacity derived from Wald ratio method using rs141622900 as the instrument and inverse-variance weighted method

using 5-SNPs (rs77069344, rs2070895, rs247616, rs964184, and rs445925) as the instrument. CI, confidence interval; SNP, single nucleotide polymorphism; CAD,

coronary artery disease; MI, myocardial infarction; IS, ischemic stroke; LAS, large artery stroke; SVS, small vessel stroke; CES, cardioembolic stroke.

disease using Mendelian randomization approach. The results
showed that genetic predicted higher CEC may be associated
with decreased risk of CAD. However, the casual association of
CEC with ischemic stroke and specific subtypes would need to be
validated in further Mendelian randomization studies.

Our findings of inverse relationship between CEC and CAD
and MI are consistent with several meta-analysis summarizing
previous observational studies (10, 26, 27). Although results
from the majority of studies were in line with the hypothesis
that higher CEC is associated with lower risk of CAD (9,
11, 28–31), a study by Li showed that increased HDL-
mediated CEC was paradoxically associated with increased
risk for incident myocardial infarction or stroke, which based
on the study population undergoing coronary angiography
(32). Moreover, the German Diabetes Dialysis Study (4D
Study) failed to observe an significant association of CEC
with the composite outcome (cardiac death, nonfatal MI, and
stroke) in patients with end-stage renal disease (33). The
CEC was quantified using human THP-1-derived macrophage
foam cells loaded with cholesterol, which was different
from cAMP (cyclic adenosine monophosphate)-stimulated
murine J774 macrophages employed by other studies in the
general population (8, 11). The reasons for the apparent
discrepancies among previous studies in the relationship
between CEC and CAD are unclear but could be ascribed to
difference in sample size, study population, study design, and

methods for CEC measurements across studies. Considering
the heterogeneity between observational studies and potential
confounders that warrant caution, MR studies using genetic
variants as instrumental variables could provide more robust
evidence for the causal relationship of CEC and the health
outcome of interest. The present study showed genetic predicted
higher CEC was associated with lower CAD risk, which supports
the direct causal association between CEC and CAD.

Our study does not support a causal role of CEC in ischemic
stroke. Few studies have investigated the association between
CEC and ischemic stroke and its subtypes expect two cohort
studies with inconsistent results (9, 29). Results from the
MESA (Multi-Ethnic Study of Atherosclerosis) cohort showed
no relationship of cholesterol mass efflux capacity with stroke
or with non-hemorrhagic stroke. However, a small subgroup (n
= 37) of the Dallas Heart study reported an inverse association
between CEC and stroke. Using genetic variants related to CEC
as the instrument, the association between CEC and ischemic
stroke was examined directly in our study. However, we found
no evidence of significant causal relationships between CEC
and ischemic stroke and its subtypes. In the present Mendelian
randomization study, the estimates of CEC with ischemic stroke
might be biased by sample selection on surviving exposure of
interest and on surviving competing risk of the outcome (24).
However, the results of multivariable MR analyses conducted
by adjusting for potential causes of survival were consistent
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TABLE 5 | MR statistical sensitivity analyses using 5 SNPs as the instrumental variables*.

Outcome MR-Egger Simple median Weighted median

OR (95% CI) P Intercept (95% CI) p value for intercept OR (95% CI) P OR (95% CI) p

CAD (60,801/123,504) 0.35 (0.14–0.89) 0.03 0.156 (−0.007, 0.319) 0.06 0.78 (0.71–0.86) <0.001 0.79 (0.71–0.87) <0.001

MI (43,677/128,199) 0.34 (0.13–0.89) 0.03 0.161 (−0.004, 0.326) 0.056 0.79 (0.70–0.88) <0.001 0.79 (0.71–0.88) <0.001

IS (40,585/406,111) 0.97 (0.57–1.65) 0.92 0.008 (−0.083, 0.100) 0.86 1.06 (0.96–1.17) 0.26 1.06 (0.97–1.16) 0.21

LAS (34,217/406,111) 1.60 (0.43–6.00) 0.49 −0.101 (−0.330, 0.128) 0.39 0.89 (0.69–1.16) 0.39 0.92 (0.72–1.17) 0.49

SVS (5,386/406,111) 0.66 (0.26–1.64) 0.37 0.074 (−0.086, 0.233) 0.37 0.97 (0.78–1.19) 0.74 0.96 (0.78–1.19) 0.72

CES (7,193/406,111) 0.79 (0.36–1.71) 0.55 0.048 (−0.086, 0.182) 0.48 1.08 (0.90–1.28) 0.41 1.08 (0.91–1.28) 0.41

MR, mendelian randomization; OR, odds ratio; CI, confidence interval; SNP, single nucleotide polymorphism; CAD, coronary artery disease; MI, myocardial infarction; IS, ischemic stroke;

LAS, large artery stroke; SVS, small vessel stroke; CES, cardioembolic stroke. *Five SNPs in the instrument included rs77069344, rs2070895, rs247616, rs964184, and rs445925.

with the main results. As with any selection bias correction by
multivariable adjustment, it may not be feasible to recover the
valid estimate. We repeated the analyses in the UK Biobank
data and FinnGen data, respectively. Both results were similar
to the main results in the present study. Larger scale Mendelian
randomization studies are still needed to clarify the genetic
effects of CEC on ischemic stroke and assess any heterogeneity
between ischemic stroke subtypes, which may shed light on the
relationship of CEC on ischemic stroke further. Furthermore,
in these future studies, the effects of genetically determined
CEC on ischemic stroke could be compared between patients
with vascular cognitive impairment vs. patients with non-
cognitive impairment.

The HDL-mediated CEC is the ability to remove excess
cholesterol from lipid-laden macrophages representing the first
crucial step within the process of reverse cholesterol transport
(7). Reverse cholesterol transport plays an important role
in atheroprotective mechanism by facilitating the removal of
cholesterol in the arterial wall and the subsequent decrease in
the proinflammatory response (34, 35). Our study found that the
effect of CEC was weaker on ischemic stroke than CAD, which
were consistently observed in such comparisons in the effects
of other blood lipid on vascular disease in recent Mendelian
studies. A Mendelian study suggested that the effects of LDL
cholesterol on ischemic stroke was weaker than that on coronary
heart disease (16). Moreover, another Mendelian study showed
PCSK9 genetic variants had smaller associations with risk of
ischemic stroke than with risk of coronary heart disease (15).
The potential explanation for the difference between the effects
of CEC on CAD and ischemic stroke is the biological differences
in these disease process. Ischemic stroke involves phenotypic
heterogeneity, with different biological pathways for LAS, SVS,
and CES, compared to the more homogenous CAD phenotype
(36). Moreover, a review reported that hematological disorders
were the most frequent etiology of cerebral infarcts of unusual
cause (37). Except for the usual cerebrovascular risk factors
such as hypertension, diabetes mellitus, and dyslipidemia, other
newly factors could be considered of the causal relevance for
ischemic stroke. Furthermore, differences in the distribution
of risk factors as well as patient characteristics between
CARDIoGRAMPlusC4D and METASTROKE consortium may
partly explain the different effects for CAD and IS observed in

the study. Additionally, insufficient statistical power due to small
sample size, especially for stroke subtypes, may be considered
as another reason. Anacetrapib, an CETP (cholesteryl ester
transfer protein) inhibitor that was developed for increasing
HDL cholesterol levels and promoting CEC to a greater degree,
was shown a significant reduction in CAD in the REVEAL
trial (38). Although it met its primary endpoint, the small
improvement against the main goal and the safety of CETP
inhibitor had become a point of contention consistently. Finally,
Anacetrapib was not filed for approval with the US Food and
Drug Administration. Our study provided supporting evidence
for the causal relationship between CEC and risk of CAD,
indicating potential intervention targets to the increase of CEC
for improving cardiovascular outcomes.

The present Mendelian randomization analyses relies on three
underlying assumptions. First, we identified 6 CEC-related SNPs
(P < 6.25 × 10−9) served as instruments in the MR analysis
that satisfied the first assumption. Second, we did not find that
the 5-SNPs in the study were associated with other key lipids
including low-density lipoprotein, triglycerides, total cholesterol,
and apolipoprotein B based onGWAS datasets. And the results of
multivariable MR analyses and sensitivity analyses using the UK
Biobank data and FinnGen data were consistent with the main
results. Thus, these results increase confidence in the validity of
the second assumption that there is no confounding (measured
or unmeasured) of the genetic variants with the outcome. Third,
all the genetic variants were not directly associated with the
outcomes (all P > 5 × 10−8), which suggested that the third
assumption was not violated.

Our study has several limitations. First, the study was
conducted based on datasets of predominantly European
ancestry and generalization of the results to other populations
of non-European ancestry was limited. However, the uniformity
of the included subjects may minimize the risk of bias by
population admixture. Second, the sample sizes of ischemic
stroke subtypes were still relatively small, specifically for SVS
and CES. Insignificant association between CEC and ischemic
stroke subtypes could be attributed to insufficient statistical
power. However, most estimates were consistent using different
MR approaches, which suggests that the observed associations
are not by chance. Third, although the GWAS that we used
to identify all CEC-related SNPs represents the first and largest
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effort to identify genome-wide significant loci associated with
CEC, sample size remains modest (N = 5,293 participants),
and therefore there is a limitation of power to find weak effect
variants. In the main analysis, only one SNP (rs141622900) was
used as the instrument. The SNP is strongly associated with
many key lipids relevant to cardiovascular disease, such as low-
density lipoprotein and apolipoprotein B. The pleiotropic effects
of the CEC-related SNPs on other key lipids was unable to be
assessed by two-sample multivariable MR in the present study
because of the lack of data. However, we have conducted MR-
Egger regression using 5 CEC-related SNPs as the instrumental
variables to assess evidence of pleiotropic effects in the study.
Though the results showed no evidence of directional pleiotropy,
further studies are needed to validate the associations of CEC
with disease outcomes. Forth, we performed multivariable MR
and sensitivity analyses to correct selection bias. However,
recovering the valid estimates of CEC for ischemic stroke has
not been fully addressed. Finally, Mendelian randomization has
been considered as an alternative approach for causal inferences
with a lot of advantages compared to randomized controlled
trials. However, it cannot replace randomized controlled trials
in establishing a claim of causality (39). Future clinical trials are
still needed with sufficient statistical power to validate the causal
relationship of CEC.

The study examined causal relationships between CEC and
risk of vascular disease using MR analysis, and suggests that
genetic predicted higher CEC may be associated with decreased
risk of CAD. However, the casual association of CEC with
ischemic stroke and specific subtypes would need to be validated
in further Mendelian randomization studies.
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Background: Non-HDL-C is well established causal risk factor for the progression of

atherosclerotic cardiovascular disease. However, there remains a controversial pattern of

how non-HDL-C relates to all-cause and cardiovascular mortality, and the concentration

of non-HDL-C where the risk of mortality is lowest is not defined.

Methods: A population-based cohort study using data from the National Health and

Nutrition Examination Survey (NHANES) from 1999 to 2014. Male participants without

statin therapy were divided into the six groups according to non-HDL-C levels (<100,

100–129, 130–159, 160–189, 190–219, ≥220 mg/dl). Multivariable Cox proportional

hazards models were conducted with a hazard ratio (HR) and corresponding 95%

confidence interval (CI). To further explore the relationship between non-HDL-C and

mortality, Kaplan–Meier survival curves, restricted cubic spline curves, and subgroup

analysis were performed.

Results: Among 12,574 individuals (average age 44.29 ± 16.37 years), 1,174(9.34%)

deaths during a median follow-up 98.38 months. Both low and high non-HDL-C levels

were significantly associated with increased risk of all-cause and cardiovascular mortality,

indicating a U-shaped association. Threshold values were detected at 144 mg/dl for all-

cause mortality and 142 mg/dl for cardiovascular mortality. Below the threshold, per

30 mg/dl increase in non-HDL-C reduced a 28 and 40% increased risk of all-cause

(p < 0.0001) and cardiovascular mortality (p = 0.0037), respectively. Inversely, above

the threshold, per 30 mg/dl increase in non-HDL-C accelerated risk of both all-cause

mortality (HR 1.11, 95% CI 1.03–1.20, p = 0.0057) and cardiovascular mortality (HR

1.30, 95% CI 1.09–1.54, p = 0.0028).

Conclusions: Non-HDL-C was U-shaped related to all-cause and cardiovascular

mortality among men without statin therapy.

Keywords: non-HDL cholesterol, all-cause mortality, cardiovascular mortality, U-shaped relationship, men
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INTRODUCTION

Non-high-density lipoprotein cholesterol (non-HDL-C), which
represents the total cholesterol content of apolipoprotein
B-containing lipoproteins, includes very low-density lipoproteins
(VLDL) and their metabolic remnants, intermediate-density
lipoproteins (IDL), lipoprotein(a), and low-density lipoproteins
(LDL) (1, 2). Non-HDL-C is well established causal risk factor
for the development of atherosclerotic cardiovascular disease
(1, 3, 4). Two decades ago, non-HDL-C was highlighted as an
important secondary lipid therapeutic goal in the United States
National Cholesterol Education Program’s Adult Treatment
Panel (5). Furthermore, the National Lipid Association and
International Atherosclerosis Society recently recommended that
non-HDL-C should be an equal target to LDL-cholesterol (LDL-
C) in patients with atherosclerotic cardiovascular disease (6).
Preponderantly, non-HDL-C trajectories remain fairly flat, and
non-HDL-C between age 25 and 40 years is sufficient to
confidently categorise individuals as high or low non-HDL-C
for the next 25 to 30 years (3). Moreover, non-HDL-C can
be accurately calculated in a non-fasting specimen, without
incurring additional expense (7).

A systematic review and meta-analysis by our team previously
demonstrated that the increased levels of non-HDL-C were
significantly associated with an increased risk of mortality in
patients with coronary heart disease (CHD) (8), which was
similar to previous research findings in population without
cardiovascular diseases (9) or patients with diabetes (10).
Interestingly, a U-shaped relationship was also recently identified
in different populations (11, 12). Studies detected the U-shaped
association of non-HDL-C with all-cause and cardiovascular
mortality among patients with hypertension or chronic kidney
disease (CKD) stages 3–5 (11, 12), non-HDL-C was U-shaped
associated with mortality among male hypertension in subgroup
analysis, but not in female (12). Differently, one study focused
on the men population, from the Israeli National Death Registry
demonstrated a positive association that non-HDL-C as a useful
predictor of cardiovascular disease mortality in 22 years follow-
up (13). Hence, for more clearly understand how non-HDL-
C relates to all-cause and cardiovascular mortality in men, the
aim of the present study used data from the large population
representative surveys to determine the relationship of non-
HDL-C with all-cause and cardiovascular mortality, and the
concentration of non-HDL-C associated with the lowest risk of
mortality in men without statin therapy.

MATERIALS AND METHODS

Study Population
We performed a population-based cohort study using data
from the National Health and Nutrition Examination Survey
(NHANES), and data were combined across 8 continuous
NHANES cycles: 1999–2000, 2001–2002, 2003–2004, 2005–2006,
2007–2008, 2009–2010, 2011–2012, and 2013–2014. NHANES
is a series of national surveys to evaluate the health status
of the United States population with a complex, stratified,
multistage, probability sampling method. The Centres for

Disease Control and Prevention ratified the study protocols, and
all the participants provided written informed consent. Detailed
about the NHANES has been published elsewhere (14, 15).

The total number of participants in primary survey was
82,091. After excluding participants for age <18 (n = 34,735),
female (n = 24,534) or without follow-up data (n = 1,085),
and those in baseline with cancer or missing data (n = 3,534),
acute myocardial infarction (AMI) or missing data (n = 952),
heart failure (HF) or miss data (n = 331) and excluding
because covariates were unavailable (n= 2,455), finally excluding
for baseline with statin therapy (n = 1,891). Hence, 12,574
individuals were included in our final analysis (Figure 1).

Covariates
Fasting samples obtained from peripheral venous blood were
stored at −20◦C and shipped weekly for laboratory analyses.
Non-HDL-C levels were calculated from total cholesterol
(TC) minus HDL cholesterol (HDL-C). The measurement of
TC used with an enzymatic assay method, and HDL-C was
used with a heparin-manganese precipitation method or a
direct immunoassay technique. Further detailed information
about the collection of blood samples and lipid concentration
measurement is available in another study (16). In addition,
creatinine, haemoglobin, and glycated haemoglobin A1c
(HbA1c) measurements were based on standardised procedures.
Demographic variables such as age, gender, body weight,
height, race/ethnicity (Mexican American, other Hispanic,
non-Hispanic White, non-Hispanic Black, other race), education
(Lower than high school, high school, more than high school),
were acquired according to the household interview. Information
on smoking status (current smoker, former smoker, and never
smoked), and history of disease had been assessed at baseline by
standard examinations, and questionnaires were administered
by trained health technicians, interviewers, and physicians. The
mean blood pressure was calculated as the average of three valid
measurements. Nutritional status (e.g., energy intake, protein
intake, carbohydrate intake, total fat intake) was acquired
according to the dietary interview. A “multiple pass” 24-h dietary
interview format was used to collect detailed information about
all foods and beverages, which were used to estimate the total
intake of energy, nutrients, and non-nutrient food components.
More information is available at www.cdc.gov/nchs/nhanes.

Outcomes
The primary determination of mortality for eligible participants
is based upon matching survey records to the records from the
National Death Index (NDI), and other sources including the
Social Security Administration, the Centres for Medicare and
Medicaid Services, data collection, and for the follow-up surveys
of the National Centre for Health Statistics, ascertainment
of death certificates are also incorporated. Participants were
eligible for mortality follow-up based on matching identifying
information during their NHANES interviews, such as the last
4 digits of social security number, full name, date of birth, state
of birth, state of residence, marital status, race, and sex (17). All-
cause mortality and cardiovascular mortality were the endpoints
of the present study. The mortality status of individuals was
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FIGURE 1 | Study flowchart. NHANES, National health and nutrition examination survey; AMI, acute myocardial infarction; HF, heart failure.

obtained from data from the NDI through December 31, 2015.
This study classified causes of mortality referred to the codes of
the international statistical classification of diseases, 10th revision
(ICD-10). Cardiovascular mortality was defined by the ICD-
10 codes for as I00-I09, I11, I13, and I20-I51. When treating
cardiovascular mortality as an outcome, the deaths due to other
causes were censored.

Statistical Analysis
The data were presented as mean values with standard deviation
(SD), the median with interquartile ranges, or frequencies with
percentages, as appropriate. Comparisons of the differences
between groups were made with one-way ANOVA, chi-square
tests, or Kruskal–Wallis H-tests by the classification of non-HDL-
C levels (<100, 100–129, 130–159, 160–189, 190–219, ≥220
mg/dl). Survival analysis according to non-HDL-C stratification
was performed using standardised Kaplan–Meier curves. The
proportional hazard assumption was examined and met by
plotting the log minus log survival curves and survival times.
The multivariable Cox proportional hazards models were used

for exploring the association of non-HDL-C with all-cause and
cardiovascular mortality. In model 1, there was no adjustment.
In model 2, we adjusted for age and race. In model 3, we
adjusted for age, race, education, body mass index (BMI), systolic
blood pressure, diastolic blood pressure, smoking, diabetes,
hypertension, CHD, stroke, creatinine, haemoglobin, HbA1c,
triglycerides, energy intake, protein intake, carbohydrate intake,
and total fat intake. Restricted cubic spline models were used
for nonlinear relationships with knots at 5, 35, 65, and 95
percentiles of non-HDL-C. If the relationships were non-linear,
the difference of relationships at the threshold was detected
by two piecewise linear regression models. The point with the
highest likelihood among all the possible values was chosen to
define the threshold value. The differences in the results when
applying one-line or two piecewise linear regression models were
compared by a logarithmic likelihood ratio test. Furthermore,
the subgroup analysis includes age (<65 or ≥65 years), race
(White, Black, or other race), education (lower than high school,
high school, more than high school), BMI (<25 or ≥25 kg/m2),
smoking (yes or no), diabetes (yes or no), hypertension (yes or
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TABLE 1 | Baseline characteristics according to non-HDL-C levels.

Non-HDL-C, mg/dl P-value

Total <100 100–129 130–159 160–189 190–219 ≥220

N 12,574 1,298 2,690 3,644 2,786 1,400 756

Age, years 44.29 ± 16.37 36.87 ± 16.98 41.77 ± 17.42 45.24 ± 16.47 46.79 ± 15.43 46.93 ± 14.10 47.26 ± 12.92 <0.001

Race <0.001

White 5,562 (44.23%) 534 (41.14%) 1,138 (42.30%) 1,671 (45.86%) 1,230 (44.15%) 626 (44.71%) 363 (48.02%)

Black 2,539 (20.19%) 437 (33.67%) 663 (24.65%) 685 (18.80%) 461 (16.55%) 185 (13.21%) 108 (14.29%)

Other 4,473 (35.57%) 327 (25.19%) 889 (33.05%) 1,288 (35.35%) 1,095 (39.30%) 589 (42.07%) 285 (37.70%)

Education <0.001

Lower than high

school

3,565 (28.35%) 322 (24.81%) 738 (27.43%) 977 (26.81%) 863 (30.98%) 417 (29.79%) 248 (32.80%)

High school 3,027 (24.07%) 330 (25.42%) 645 (23.98%) 863 (23.68%) 644 (23.12%) 361 (25.79%) 184 (24.34%)

More than high

school

5,982 (47.57%) 646 (49.77%) 1,307 (48.59%) 1,804 (49.51%) 1,279 (45.91%) 622 (44.43%) 324 (42.86%)

Body mass index,

kg/m2

28.09 ± 5.69 25.30 ± 5.21 26.92 ± 5.94 28.47 ± 5.84 29.04 ± 5.37 29.29 ± 4.96 29.44 ± 4.91 <0.001

SBP, mmHg 124.19 ± 16.20 120.82 ± 15.59 122.57 ± 15.83 124.33 ± 16.35 125.22 ± 16.35 126.02 ± 15.49 127.92 ± 16.89 <0.001

DBP, mmHg 72.83 ± 11.86 68.65 ± 11.77 70.76 ± 11.60 72.77 ± 11.89 74.34 ± 11.25 75.41 ± 11.65 77.21 ± 11.86 <0.001

Smoking 6,673 (53.07%) 660 (50.85%) 1,378 (51.23%) 1,888 (51.81%) 1,456 (52.26%) 810 (57.86%) 481 (63.62%) <0.001

Diabetes 765 (6.08%) 68 (5.24%) 171 (6.36%) 208 (5.71%) 171 (6.14%) 85 (6.07%) 62 (8.20%) 0.116

Hypertension 2,921 (23.23%) 217 (16.72%) 568 (21.12%) 867 (23.79%) 695 (24.95%) 359 (25.64%) 215 (28.44%) <0.001

Coronary heart

disease

99 (0.79%) 8 (0.62%) 26 (0.97%) 22 (0.60%) 27 (0.97%) 9 (0.64%) 7 (0.93%) 0.428

Stroke 178 (1.42%) 9 (0.69%) 33 (1.23%) 57 (1.56%) 41 (1.47%) 23 (1.64%) 15 (1.98%) 0.133

Creatinine, mg/dl 86.46 ± 34.07 87.25 ± 33.31 86.99 ± 31.75 85.80 ± 26.28 86.57 ± 30.04 86.60 ± 55.42 85.77 ± 38.44 0.689

Haemoglobin, g/l 15.23 ± 1.18 14.82 ± 1.30 15.07 ± 1.24 15.24 ± 1.16 15.35 ± 1.11 15.46 ± 1.05 15.54 ± 1.14 <0.001

HbA1c, % 5.58 ± 0.99 5.33 ± 0.72 5.46 ± 0.84 5.55 ± 0.89 5.63 ± 0.94 5.75 ± 1.18 6.08 ± 1.67 <0.001

Triglyceride, mg/dl 124.04

(82.04–198.02)

66.01

(49.00–92.06)

92.06 (66.98–131.04) 122.00 (86.03–176.05) 156.02 (108.00–231.07) 196.07 (134.05–293.09) 265.58 (178.09–456.62) <0.001

TC, mg/dl 199.05 ± 42.07 139.13 ± 20.04 167.38 ± 16.61 192.14 ± 15.25 218.15 ± 14.29 245.97 ± 13.75 290.67 ± 42.03 <0.001

HDL-C, mg/dl 47.84 ± 14.00 55.01 ± 17.04 51.57 ± 15.05 47.56 ± 13.19 44.94 ± 11.96 43.74 ± 11.35 41.96 ± 10.90 <0.001

LDL-C, mg/dl 121.54 ± 35.37 69.56 ± 12.96 95.66 ± 12.49 118.73 ± 14.48 142.30 ± 14.99 165.13 ± 16.73 202.66 ± 38.87 <0.001

Non-HDL-C,

mg/dl

151.21 ± 43.54 84.13 ± 12.14 115.81 ± 8.54 144.57 ± 8.65 173.22 ± 8.48 202.23 ± 8.50 248.70 ± 41.75 <0.001

Energy intake, kcal 2,562.21 ±

1,148.91

2,698.28 ±

1,208.16

2,599.52 ± 1,201.38 2,554.34 ± 1,129.65 2,497.82 ± 1,080.05 2,537.78 ± 1,172.34 2,516.30 ± 1,127.45 <0.001

Protein intake, gm 98.00 ± 49.24 100.23 ± 53.75 99.25 ± 51.72 97.09 ± 47.13 96.43 ± 47.57 99.31 ± 48.32 97.44 ± 49.75 0.088

Carbohydrate

intake, gm

307.40 ± 147.76 326.10 ± 155.89 310.65 ± 152.37 308.76 ± 148.86 299.71 ± 137.13 301.92 ± 151.54 295.73 ± 138.69 <0.001

Total fat intake, gm 94.34 ± 53.27 97.27 ± 55.11 95.99 ± 55.48 93.91 ± 52.47 92.72 ± 50.79 93.45 ± 53.11 93.17 ± 54.83 0.073

All-cause mortality 1,174 (9.34%) 115 (8.86%) 258 (9.59%) 312 (8.56%) 277 (9.94%) 134 (9.57%) 78 (10.32%) 0.381

Cardiovascular

mortality

184 (1.46%) 21 (1.62%) 39 (1.45%) 41 (1.13%) 41 (1.47%) 23 (1.64%) 19 (2.51%) 0.101

Non-HDL-C, non-high-density lipoprotein cholesterol; N, number; SBP, systolic blood pressure; DBP, diastolic blood pressure; HbA1c, glycated haemoglobin A1c; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol;

LDL-C, low-density lipoprotein cholesterol.

Values are expressed as the mean ± SD, the median with interquartile range or n (%).
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FIGURE 2 | Kaplan-Meier survival curves of non-HDL-C with all-cause (A) and cardiovascular (B) mortality. Non-HDL-C, non-high-density lipoprotein cholesterol. (A)

Other groups vs. non-HDL-C <100 mg/dl (all P < 0.005). (B) non-HDL-C = 130–159 or 160–189 mg/dl vs. non-HDL-C <100 mg/dl (all P < 0.005), non-HDL-C =

100–129 mg/dl vs. non-HDL-C <100 mg/dl (P = 0.0443), non-HDL-C = 190–219 mg/dl vs. non-HDL-C <100 mg/dl (P = 0.0546), non-HDL-C ≥220 mg/dl vs.

non-HDL-C <100 mg/dl (P = 0.3687).

no). All statistical analyses were performed using R version 3.3.2
(R Foundation for Statistical Computing, Vienna, Austria), and
p < 0.05 was considered statistically significant.

RESULTS

Baseline Characteristics
Finally, 12,574 individuals (average age 44.29 ± 16.37 years)
were included in this analysis. Table 1 demonstrates baseline
characteristics according to non-HDL-C levels. There were
significant subgroup differences in age, race, education, BMI,
systolic blood pressure, diastolic blood pressure, smoking,
hypertension, haemoglobin, HbA1C, triglycerides, TC, HDL-C,
LDL-C, energy intake, and carbohydrate intake (all p <0.001),
except for diabetes, CHD, stroke, creatinine, protein intake, total
fat intake, all-cause, and cardiovascular mortality. We found
1,174 (9.34%) all-cause deaths and 184 (1.46%) cardiovascular
deaths during a median follow-up of 98.38± 53.78 months.

Relationships of Non-HDL-C With
All-Cause and Cardiovascular Mortality
As demonstrated in Figure 2, Kaplan–Meier survival curves were
diverged according to non-HDL-C stratification. The highest risk
for all-cause mortality was observed when non-HDL-C <100
mg/dl, compared to other groups (all p < 0.005). Besides, more
risk for cardiovascular mortality was only observed when non-
HDL-C <100 mg/dl, compared to when non-HDL-C = 130-
159 or 160-189 mg/dl (all P < 0.005). The optimal non-HDL-C

concentration range was between 130 and 159 mg/dl for a lower
risk of all-cause and cardiovascular death.

Table 2 summarised the multivariable Cox regression results.
When non-HDL-C was treated as a continuous variable, per
30 mg/dl increment in non-HDL-C corresponded to the hazard
ratio (HR) (95% confidence interval, CI) as 0.94 (95% CI 0.90–
0.99, p = 0.0193) for all-cause mortality and 1.03 (95% CI 0.91–
1.16, p = 0.6826) for cardiovascular mortality in model 3. When
non-HDL-C was treated as a categorical variable, non-HDL-C
= 130-159 mg/dl as a reference, the fully adjusted HRs for all-
cause mortality were 1.98 (95% CI 1.59–2.48, p < 0.0001), 1.38
(95% CI 1.17–1.62, p = 0.0002), 1.11 (95% CI 0.95–1.31, p =

0.2007), 1.12 (95% CI 0.91–1.38, p = 0.2807) and 1.04 (95% CI
0.79–1.36, p = 0.8018) for non-HDL-C levels <100, 100–129,
160–189, 190–219, and≥220 mg/dl, respectively. Meanwhile, for
cardiovascular mortality, the fully adjusted HRs were 2.99 (95%
CI 1.73–5.16, p < 0.0001), 1.72 (95% CI 1.10–2.69, p = 0.0169),
1.36 (95% CI 0.88–2.11, p= 0.1636), 1.61 (95% CI 0.94–2.73, p=
0.0811), and 2.16 (95% CI 1.17–3.98, p = 0.0134) for non-HDL-
C levels <100, 100–129, 160–189, 190–219, and ≥ 220 mg/dl,
respectively.

Non-Linear Relationships of Non-HDL-C
With All-Cause and Cardiovascular
Mortality
As shown in Figure 3, the multivariable adjusted restrictive
cubic curves confirmed that the relationships of non-HDL-C
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TABLE 2 | Multivariable cox regression analysis of non-HDL-C with all-cause and cardiovascular mortality.

Model 1 HR (95% CI), P Model 2 HR (95% CI), P Model 3 HR (95% CI), P

All-cause mortality

Non-HDL-C (per 30 mg/dl increment) 1.01 (0.97, 1.05) 0.6087 0.95 (0.91, 0.99) 0.0207 0.94 (0.90, 0.99) 0.0193

Non-HDL-C group, mg/dl

<100 1.20 (0.97, 1.49) 0.0926 2.18 (1.76, 2.71) <0.0001 1.98 (1.59, 2.48) <0.0001

100–129 1.18 (1.00, 1.39) 0.0465 1.45 (1.22, 1.71) <0.0001 1.38 (1.17, 1.63) 0.0002

130–159 Reference Reference Reference

160–189 1.13 (0.96, 1.32) 0.1518 1.12 (0.95, 1.31) 0.1758 1.11 (0.95, 1.31) 0.2007

190–219 1.06 (0.87, 1.30) 0.5705 1.16 (0.95, 1.42) 0.1493 1.12 (0.91, 1.38) 0.2807

≥220 1.09 (0.85, 1.40) 0.4902 1.24 (0.97, 1.60) 0.0857 1.04 (0.79, 1.36) 0.8018

P for trend 0.3574 <0.0001 <0.0001

Cardiovascular mortality

Non-HDL-C (per 30 mg/dl increment) 1.08 (0.98, 1.19) 0.1076 1.05 (0.94, 1.18) 0.3504 1.03 (0.91, 1.16) 0.6826

Non-HDL-C group, mg/dl

<100 1.64 (0.97, 2.77) 0.0667 3.15 (1.85, 5.36) <0.0001 2.99 (1.73, 5.16) <0.0001

100–129 1.36 (0.88, 2.11) 0.1699 1.66 (1.07, 2.58) 0.0241 1.72 (1.10, 2.69) 0.0169

130–159 Reference Reference Reference

160–189 1.27 (0.83, 1.96) 0.2726 1.32 (0.86, 2.04) 0.2039 1.36 (0.88, 2.11) 0.1636

190–219 1.38 (0.83, 2.31) 0.2128 1.63 (0.97, 2.72) 0.0633 1.61 (0.94, 2.73) 0.0811

≥220 2.03 (1.18, 3.50) 0.0107 2.52 (1.45, 4.35) 0.0010 2.16 (1.17, 3.98) 0.0134

P for trend 0.5151 0.8498 0.5035

Non-HDL-C, non-high-density lipoprotein cholesterol; HR, hazard ratio; CI, confidence interval.

Model 1: no adjustment; Model 2: adjusted for age and race; Model 3: adjusted for age, race, education, body mass index, systolic blood pressure, diastolic blood pressure, smoking,

diabetes, hypertension, coronary heart disease, stroke, creatinine, haemoglobin, glycated haemoglobin A1c, triglycerides, energy intake, protein intake, carbohydrate intake, and total

fat intake.

TABLE 3 | The results of two piecewise linear regression model of non-HDL-C with all-cause and cardiovascular mortality.

All-cause mortality

HR (95% CI) P

Cardiovascular

mortality

HR (95% CI) P

Cut-off value 144 142

<Cut-off value (as continuous variables, per 30 mg/dl increment) 0.72 (0.62, 0.82)

<0.0001

0.60 (0.42, 0.85)

0.0037

≥Cut-off value (as continuous variables, per 30 mg/dl increment) 1.11 (1.03, 1.20)

0.0057

1.30 (1.09, 1.54)

0.0028

Non-HDL-C, non-high-density lipoprotein cholesterol; HR, hazard ratio; CI, confidence interval.

The two piecewise linear regression models were adjusted for adjusted for age, race, education, body mass index, systolic blood pressure, diastolic blood pressure, smoking, diabetes,

hypertension, coronary heart disease, stroke, creatinine, haemoglobin, glycated haemoglobin A1c, triglycerides, energy intake, protein intake, carbohydrate intake, and total fat intake.

with all-cause and cardiovascular mortality were U-shaped (All
p for likelihood ratio test < 0.0001). The threshold values
of non-HDL-C related to the lowest risk in multivariable

adjusted analyses were 144 mg/dl for all-cause mortality

and 142 mg/dl for cardiovascular mortality. As shown in
Table 3, below the threshold, per 30 mg/dl increase in non-

HDL-C reduced a 28% increased risk of all-cause mortality

(p < 0.0001) and a 40% increased risk of cardiovascular
mortality (p = 0.0037). Inversely, above the threshold, per 30
mg/dl increase in non-HDL-C accelerated risk of both all-

cause mortality (HR 1.11, 95% CI 1.03–1.20, p = 0.0057)
and cardiovascular mortality (HR 1.30, 95% CI 1.09–1.54,

p= 0.0028).

Subgroups Analysis of the Risk of
All-Cause and Cardiovascular Mortality
The stratified analyses are demonstrated in Figure 4 (Detail
data as shown in Supplementary Table S1). The non-linear
relationships for all-cause mortality with statistical significance
were found among participants who were aged <65 years
old, and race (White). Besides, the non-linear relationships for
cardiovascular mortality with statistical significance were found
among participants who were race (White), BMI ≥ 25 kg/m2,

and without diabetes. When non-HDL-C ≥ 142 mg/dl, per 30
mg/dl increase in non-HDL-C increased risk of cardiovascular
mortality were 1.41-fold for aged <65 years old (p = 0.0040),
1.38-fold for race (White) (p = 0.0182) and 1.68-fold for race
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(Black) (p = 0.0017), 1.57-fold for high school education (p
= 0.0002), 1.67-fold for smoking (p = 0.0002), 1.31-fold for
participants without diabetes (p = 0.0054) and 1.41-fold for
participants with hypertension (p= 0.0038).

DISCUSSION

The novel finding of the study is that both low and high non-
HDL-C levels were significantly associated with increased risk of
all-cause and cardiovascular mortality among men without statin
therapy in U-shaped relationships. Furthermore, we confirmed
that the non-HDL-C level was related to the lowest risk of all-
cause and cardiovascular mortality at threshold values of 144 and
142 mg/dl, respectively. These new results are probable to have
implications for the interpretation of levels of non-HDL-C in
clinical practise.

Global age-standardised mean non-HDL-C remained almost
unchanged from 1980 to 2018, and high non-HDL-C was
responsible for an estimated 3.9 million worldwide deaths from
ischemic heart disease and ischemic stroke in 2017, accounting
for a third of deaths from these causes (18). Undoubtedly,
it is particularly urgent to clearly understand the relationship
of non-HDL-C stratification with death, and locate the best
threshold values of non-HDL-C. One of our major findings
is that once non-HDL-C levels are greater than threshold
values, is closely contributed to higher mortality. This finding
is similar to previous several studies in different populations
(8, 9, 11, 13, 19–21). The potential explanation for this
finding is that extremely high non-HDL-C levels play a role
in accelerated atherosclerosis, leading to an increased risk of
death (22). In United States population study, non-HDL-C
may be best suited for the prediction of future coronary artery
calcium (CAC) progression, especially since non-HDL-C levels
≥ 190 mg/dl are consistently associated with significant CAC
progression in the overall population (β 16.4, 95%CI −5.63
to 27.2, p = 0.003) (23). One genetic study finding is that
levels of non-HDL-C are associated with the extent of coronary
atherosclerosis. Besides, the mutations of some genes like LDLR,
apolipoprotein B, and proprotein convertase subtilisin/kexin
type 9 (PCSK9), can result in hypercholesterolemia, and
guidelines suggested that non-HDL-C ≥ 220 mg/dl could
possibly imply hereditary genetic hypercholesterolemia (11, 24).
Patients with hypercholesterolemia have increased non-HDL-C
and are more prone to suffer from atherosclerotic cardiovascular
and cardiovascular death (11, 23).

Moreover, the present study contributed evidence that lower
non-HDL-C is also closely related to higher mortality in men
without statin therapy, and indicated a U-shaped association.
Although the disparity in the study population, in accordance
with our results, several previous studies have observed the
U-shaped association between non-HDL-C and mortality (11,
12). One study by Cheng and colleagues analysing data from
NHANES demonstrated that relatively higher or lower non-
HDL-C concentrations were linked to increased mortality, and
the lowest risk was found at threshold values of 158 and 190
mg/dl for all-cause and cardiovascular mortality, respectively.

The difference in threshold estimates might be attributed to
different study populations, of which all patients in the study
by Cheng et al. were hypertension, and had relatively higher
non-HDL-C levels (25). Likewise, the U-shaped relationships
between non-HDL-C and the risk of all-cause and cardiovascular
mortality have been shown in patients with CKD and the
optimal non-HDL-C concentration range was between 116.2
and 143.9 mg/dl (11). Similarly, a study of a general population
cohort also found a U-shaped association between levels of LDL-
C and the risk of all-cause mortality (26). In patients with
CHD, a paradoxical association existed between baseline non-
HDL-C and long-term all-cause mortality, but disappeared after
taking into account the effects of malnutrition, indicating that
the worse long-term prognosis in the low non-HDL-C group
(<2.2 mmol/L) was mainly mediated by the underlying effect
of malnutrition (27). Apart from that, an inverse association
between cholesterol and mortality has been demonstrated in
the elderly (28, 29). Another population-based register study
including 118,160 subjects without statin therapy found that high
lipoprotein levels were associated with lower mortality indicating
that high lipoprotein levels do not seem to be definitely harmful
in the general population (29). Similarly, participants with low
serum TC seem to have a lower survival rate than participants
with an elevated cholesterol level, irrespective of concomitant
diseases or health status (28). Unexpectedly, the finding of a U-
shaped association in our study is inconsistent with a positive
association in another study (13). The differences between the
two studies in the population (United States or Israel), sample
size (13,562 or 4,832), and follow-up time (98.38± 53.78 months
or 22.1± 3.2 years) may result in different conclusions.

However, the underlying mechanism of U-shaped association
is not clear. First, one possible reason is that the participants
with the lowest cholesterol levels had a poorer health status
(28), or debilitation and illness have been hypothesised to
cause a decrease in levels of cholesterol (26, 30, 31). Second,
higher HDL-C equals to low non-HDL-C levels according
to the calculation formula, extremely high HDL-C increases
mortality in the general population by analysing the data from
NHANES (12). The genetic variation of particular genes and
variation of the size or function of HDL particles may be the
underlying mechanism (12). Finally, the U-shaped association
between lipoprotein levels and mortality may be similar to the
obesity paradox, which is largely explained by methodological
issues, including reverse causation. No matter how, more
studies are needed to clarify the exact mechanism of the U-
shaped association.

The advantage of the present study lies in its relatively
large sample size and long-term follow-up. Regarding clinical
importance, our novel findings are conducive to understanding
the risk stratification of non-HDL-C and remind us that
when initiating lipid-lowering therapy in clinical practise,
attention should be paid to assessing the absolute risk of
atherosclerotic cardiovascular disease (26, 32, 33), rather than
starting treatment based solely on a moderate increase in
levels of a specific lipid marker. Anyway, there are still some
limitations to this study. First, during long-term follow-up, only
a single measurement of serum non-HDLC concentration at
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FIGURE 3 | Restricted cubic spine models of non-HDL-C with all-cause (A) and cardiovascular (B) mortality. Non-HDL-C, non-high-density lipoprotein cholesterol.

Restricted cubic spine models were adjusted for adjusted for age, race, education, body mass index, systolic blood pressure, diastolic blood pressure, smoking,

diabetes, hypertension, coronary heart disease, stroke, creatinine, haemoglobin, glycated haemoglobin A1c, triglycerides, energy intake, protein intake, carbohydrate

intake, and total fat intake.

FIGURE 4 | Subgroup analysis. Non-HDL-C, non-high-density lipoprotein cholesterol; HR, hazard ratio; CI, confidence interval; BMI, body mass index. Results are

expressed as multivariable-adjusted HR in continuous analyses (Non-HDL-C per 30 mg/dl increment). When analysing a subgroup variable, age, race, education,

BMI, systolic blood pressure, diastolic blood pressure, smoking, diabetes, hypertension, coronary heart disease, stroke, creatinine, haemoglobin, glycated

haemoglobin A1c, triglycerides, energy intake, protein intake, carbohydrate intake, and total fat intake were all adjusted except the variable itself.

baseline is available, leading to potential bias and failure to
evaluate the affection of non-HDL-C trajectories on mortality.
Second, although we adjusted many relevant confounding

variables that were considered to influence mortality, residual
confounders and hidden comorbidities might have been not
eliminated. Finally, our study was performed in a nationally
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representative sample of men in the United States, so our
results may not be easily extrapolated to the population in
other regions.

CONCLUSION

From a population-based cohort study base on the national
representative database, our study demonstrated that non-HDL-
C was U-shaped and related to all-cause and cardiovascular
mortality among men without statin therapy. The more
clear risk stratification of non-HDL-C and comprehensive
strategic management to deal with dyslipidemia deserves further
investigation for confirmation.
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Background: Elevated level of low-density lipoprotein cholesterol (LDL-C) is

concerned as one of the main risk factors for cardiovascular disease, in both

the fasting and postprandial states. This study aimed to compare themeasured

LDL-C with LDL-C calculated by the Friedewald, Martin–Hopkins, Vujovic,

and Sampson formulas, and establish which formula could provide the most

reliable LDL-C results for Chinese subjects, especially at the postprandial state.

Methods: Twenty-six subjects were enrolled in this study. The blood samples

were collected from all the subjects before and after taking a daily breakfast.

The calculated LDL-C results were compared with LDL-C measured by the

vertical auto profile method, at both the fasting and postprandial states.

The percentage di�erence between calculated and measured LDL-C (total

error) and the number of results exceeding the total error goal of 12%

were established.

Results: The calculated LDL-CF levels showed no significant di�erence from

LDL-CVAP levels at the fasting state. The calculated LDL-CS were significantly

higher than LDL-CVAP at the fasting state (P < 0.05), while the calculated

LDL-Cs were very close to LDL-CVAP levels after a daily meal. At the fasting

state, the median total error of calculated LDL-CF was 0 (quartile: −3.8 to

6.0), followed by LDL-CS, LDL-CMH, and LDL-CV. At the postprandial states,

the median total errors of LDL-CS were the smallest, 1.0 (−7.5, 8.5) and −0.3

(−10.1, 10.9) at 2 and 4h, respectively. The calculated LDL-CF levels showed

the highest correlation to LDL-CVAP and accuracy in evaluating fasting LDL-C

levels, while the Sampson formula showed the highest accuracy at the

postprandial state.

Conclusion: The Friedewald formula was recommended to calculate fasting

LDL-C, while the Sampson formula seemed to be a better choice to calculate

postprandial LDL-C levels in Chinese subjects.

KEYWORDS

LDL-C, postprandial, Friedewald formula, Vujovic formula, Martin–Hopkins formula,

Sampson formula, vertical auto profile method

Frontiers inCardiovascularMedicine 01 frontiersin.org

27

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.944003
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.944003&domain=pdf&date_stamp=2022-08-18
mailto:feliuling@csu.edu.cn
https://doi.org/10.3389/fcvm.2022.944003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.944003/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Xu et al. 10.3389/fcvm.2022.944003

Background

Cardiovascular disease (CVD) has been the leading

cause of death worldwide (1). The elevated level of low-

density lipoprotein cholesterol (LDL-C) is concerned

as one of the main risk factors of CVD, especially for

atherosclerotic CVD (2). In clinical practice, it is the

main laboratory parameter used for cardiovascular risk

assessment and the primary target for cholesterol control

(3). Therefore, it is crucial to ensure reliable measurement

of LDL-C levels.

There are several methods to measure LDL-C levels,

including ultracentrifugation, formula methods, direct method,

and nuclear MR (NMR) method (4). Among them, the

ultracentrifugation method is recommended as the reference

method for LDL-C measurement. Due to complex operations

and expensive equipment, ultracentrifugation is difficult to be

widely used in clinical practice. Vertical auto profile (VAP)

methodology, one of the ultracentrifugation methods, was used

to measure lipid profiles as a reference method, commonly at the

fasting state (5). However, a study involving the measurement

of lipid profiles by VAP at the postprandial or non-fasting state

is very rare worldwide (6, 7), and there was no similar study

in China.

In comparison, the formula method is simpler and cheaper.

The Friedewald method developed in 1972 is the main

mathematical formula for LDL-C calculation (8). It uses a

fixed coefficient, 2.2 (for mmol/l), to describe the relationship

between triglyceride (TG) and very-low-density lipoprotein

cholesterol (VLDL-C) (8). When the TG level was above

4.5 mmol/l, the accuracy of this formula will decline. Thus,

other formulas were proposed. In 2003, the Vujovic formula,

which uses 3.0 (for mmol/l) as a ratio of TG to VLDL-C,

was proposed for LDL-C calculation (9). Then, the Martin–

Hopkins formula was developed with an adjustable ratio

based on TG and non-high-density lipoprotein cholesterol

(non-HDL-C) levels (10). In 2020, Sampson and colleagues

(11) proposed a new formula, which was proved to be

suitable for samples with TG levels up to 9.0 mmol/l. Those

novel formulas were proved to be more accurate than the

Friedewald formula (12).

Recently, a variety of expert recommendations have

supported non-fasting lipid assessment (13–15), as elevated non-

fasting TG and LDL-C levels had been regarded as independent

risk factors of atherosclerotic CVD (16, 17). We once reported

that the direct measured LDL-C levels were significantly higher

than calculated LDL-C levels by the Friedewald formula at both

the fasting and non-fasting states in Chinese subjects (18). Three

novel formula methods and the VAP method were not involved

in this study. Thus, this study aimed to establish which formula

method could provide the most reliable LDL-C results when

compared with the VAP method for Chinese subjects, especially

in the postprandial state.

Methods

Study subjects

There were 26 subjects (in-patient) included in this study

in the Department of Cardiovascular Medicine of the Second

Xiangya Hospital, Central South University. All the subjects

were invited to fill out a questionnaire on medical history and

use of medication before participation. Subjects with fasting TG

levels above 4.5 mmol/l were excluded. No subject had a history

of thyroid diseases, liver and kidney diseases, autoimmune

diseases, cancer, or other severe medical illnesses. The study

was approved by the Ethics Committee of the Second Xiangya

Hospital of Central South University and informed consent was

gained from all the participants.

Specimen collection

After at least 12 h of overnight fasting, venous blood samples

were collected in all the subjects before (i.e., 0 h) and at 2 and

4 h after taking a daily breakfast according to their daily habits,

such as steamed bread, rice porridge, or noodles (19). All the

subjects were required to complete the meal in 15min. All the

blood samples were centrifuged at 4◦C for 3,000 rpm for 15min

and stored at−80◦C refrigerator until analysis.

Laboratory assays

Blood lipids were detected in two ways. First, all the

blood samples were measured in a medical laboratory in

Second Xiangya Hospital by a laboratory technician who had

no knowledge of this study as described before (20). Serum

levels of total cholesterol (TC) and TG were measured by

automated enzymatic assays, and the concentration of HDL-C

was measured by a direct method, i.e., the selective protection

method. LDL-C level was measured directly by the chemical

masking (CM) method (i.e., LDL-CCM) regardless of TG level.

Then, the VAP method was used to measure all the lipid

profiles, including LDL-C (i.e., LDL-CVAP), as a reference

method (5). In brief, it simultaneously measures cholesterol

concentrations of all the five lipoprotein classes in <1 h. After

centrifugation, the contents of the centrifuge tube (separated

layers of lipoproteins) were analyzed for cholesterol using the

continuous flow VAP analyzer (5).

Low-density lipoprotein cholesterol
calculation

For each sample, the LDL-C level was calculated using

mathematical formulas with CMmeasured lipids as follows:
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Friedewald (8): LDL-CF = TC – HDL-C – TG/2.2 (mmol/l)

Vujovic (9): LDL-CV = TC – HDL-C – TG/3 (mmol/l)

Martin–Hopkins (10): LDL-CMH = TC – HDL-C –

TG/adjustable factor (mg/dl)

Sampson (11): LDL-CS = TC/0.948 – HDL-C/0.971

– (TG/8.56 + TG × non-HDL-C/2,140 – TG2/16,100) –

9.44 (mg/dl).

The factor of 0.026 was used to convert LDL-C from mg/dl

into mmol/l, if necessary.

Statistical analysis

All the continuous levels were expressed as median

(interquartile range) and qualitative variables were expressed

as numbers and percentages. The measured TC, HDL-C, LDL-

C, and the calculated LDL-C were tested to be distributed

normally, while the measured TG was proven to be non-normal

distribution. The parametric and non-parametric statistical tests

were used for corresponding data, respectively. Differences

between different groups were analyzed by one-way ANOVA,

while differences among different time points within the

same group were analyzed by repeated measure one-way

ANOVA analysis. Categorical variables were compared using

the chi-squared statistic tests. The Bland–Altman difference

plots were used to compare calculated LDL-C levels and

the LDL-CVAP. Correlation between calculated LDL-C levels

and the LDL-CVAP was conducted with Pearson correlation

analyses. For each sample, the total error (%) between the

mathematically calculated LDL-C and LDL-CVAP was estimated

as follows: [(LDL-Cformula – LDL-CVAP)/LDL-CVAP] × 100%.

The accuracy of estimation was defined as the total error

± 12% (21). All the statistical analyses were performed with

SPSS version 25.0. All the P-levels were 2-tailed, and P <

0.05 was considered statistically significant. For differences

between LDL-CVAP and LDL-Cformula, P < 0.01 was considered

statistically significant, as we replaced post-hoc analysis in the

repeated measure one-way ANOVA analyses using one-way

ANOVA analyses.

Results

Population characteristics

There were 26 subjects who participated in this study,

including 17 (65.4%) men and 9 (34.6%) women. Their ages

ranged from 46 to 73 years, with a median age of 62.5

years. Five of them got a body mass index (BMI) of over

TABLE 1 Study population characteristics.

Parameters N = 26

Male, n (%) 17 (65.4)

Age, y 62.5 (54.75, 66.5)

BMI, Kg/m2 25.51 (23.2, 27.0)

Current smoking, n (%) 11 (42.3)

CHD, n (%) 18 (69.2)

Hypertension, n (%) 18 (69.2)

Diabetes, n (%) 8 (30.8)

History of statins, n (%) 12 (46.2)

Values are represented as median (interquartile range) and n (%) as appropriate.

BMI, body mass index; CHD, coronary heart disease.

28 kg/m2 and the median BMI of all the subjects was 25.5

kg/m2. The patients with coronary heart disease, hypertension,

and diabetes accounted for 69.2, 69.2, and 30.8%, respectively.

There were 42.3% of smokers and 46.2% of subjects taking

statins (Table 1).

Postprandial changes in serum levels of
blood lipids measured by di�erent
methods

It was obvious that the levels of TC, TG, and LDL-C

measured by CM were significantly higher than those measured

by VAP, while HDL-C levels measured by the two methods were

similar at both the fasting and postprandial states (Figure 1). No

matter which method was used, both the TC and LDL-C levels

decreased significantly after a daily meal compared to the fasting

state (P < 0.05, Figures 1A,C), while TG showed tremendously

increase at the postprandial time points (P < 0.05, Figure 1B).

The levels of HDL-C kept stable after a daily meal no matter

which method was used (Figure 1D).

The calculated levels of LDL-C were acquired by four

different formulas with blood lipids measured by CM, and they

showed a similar decrease after a daily meal and the postprandial

changes reached a statistic difference (P < 0.05, Figure 2). It is

worth noting that there was no significant difference between

calculated LDL-C levels at 2 and 4 h, no matter which formula

was used.

The calculated LDL-C levels via Friedewald, Martin–

Hopkins, and Sampson formulas showed no significant

difference when compared to LDL-CVAP levels at both the

fasting and postprandial states (Figures 2A,C,D). However, the

calculated LDL-CV levels were significantly higher than LDL-

CVAP levels at the fasting state (P < 0.05 Figure 2B), while the

calculated LDL-CV levels were very close to LDL-CVAP levels

after a daily meal (Figure 2B). The calculated LDL-CF levels

seem to be lower than LDL-CVAP levels at the postprandial
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FIGURE 1

Changes in serum levels of blood lipids via VAP and chemical masking method after a daily meal. *P < 0.05 when compared with VAP measured

values at the same time point. #P < 0.05 when compared with fasting value using the same measure method.

states, while the difference did not reach statistical significance

(P < 0.05, Figure 2A).

The calculated LDL-CF, LDL-CS, and LDL-CMH levels

were all significantly lower than LDL-CCM levels at the

fasting and postprandial states (P < 0.05, Figures 2A,C,D).

The LDL-CV levels were lower than LDL-CCM levels; however,

the difference reached statistical significance only at 4 h

postprandially (Figure 2B).

Consistency and correlation between
estimated and measured low-density
lipoprotein cholesterol

The Bland–Altman difference plots showed great

consistency in estimated and measured LDL-C

(Supplementary Figure 1). The measured LDL-CCM also had a

good consistency with LDL-CVAP (Supplementary Figure 1).

The Pearson correlation analyses showed a strong and positive

correlation between LDL-CVAP levels and the calculated LDL-C

levels by four formulas, and the r levels ranged from 0.836 to

0.961 at the fasting and postprandial states (P < 0.05, Table 2).

At the fasting state, the strongest correlation was found between

LDL-CVAP levels and LDL-CF levels (r 0.870, P < 0.05). At the

postprandial states, the strongest correlation was found between

LDL-CVAP levels and the LDL-CV levels (2 h: r 0.961, 4 h: r

0.956, P < 0.05).

A positive correlation was also found between LDL-CVAP

and LDL-CCM at the fasting and postprandial states (0 h: r

0.780, 2 h: r 0.883, 4 h: r 0.859, P < 0.05, Table 2). However,

the correlation between LDL-CVAP and LDL-CCM was weaker

than the correlation between LDL-CVAP and the calculated LDL-

C levels by four formulas at both the fasting and postprandial

states (Table 2).

Distribution of the total error at the
fasting and postprandial states

To determine the reliability of calculated LDL-C levels

by different formulas, we calculated the total errors between
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FIGURE 2

Changes in LDL-C levels via di�erent calculated methods after a daily meal. *P < 0.05 when compared with calculated values at the same

time point.

TABLE 2 Correlation in chemical masking method measured and

formula estimated vs. VAP measured LDL-C.

LDL0 LDL2 LDL4

Friedewald 0.870 0.920 0.913

Vujovic 0.85 0.961 0.956

Martin/Hopkins 0.837 0.927 0.902

Sampson 0.836 0.939 0.928

CM 0.780 0.883 0.859

calculated LDL-C and LDL-CVAP levels. At the fasting state, the

median total error of calculated LDL-CF was 0 (quartile:−3.8 to

6.0; Figure 3A; Supplementary Table 1). The median total errors

of calculated fasting LDL-CV, LDL-CMH, and LDL-CS were 11.2

(3.2, 18.9), 7.0 (−2.5, 15.3), and 3.4 (−1.7, 10.0), respectively

(Figures 3B–D; Supplementary Table 1).

The median total errors of LDL-CF were −3.9 (−14.1,

2.4) and −9.9 (−15.3, 0) at 2 and 4 h, respectively (Figure 3A;

Supplementary Table 1), which suggested that the Friedewald

formula could underestimate LDL-C levels when compared with

the VAP method at the postprandial state. The median total

errors of LDL-CV and LDL-CMH ranged from 2.6 and 6.5 at

the postprandial states (Figures 3B,C; Supplementary Table 1),

which indicated that Vujovic and Martin–Hopkins formulas

could overestimate LDL-C levels when compared with the

VAP method at the postprandial state. The median total

errors of postprandial LDL-CS were small, i.e., 1.0 (−7.5, 8.5)

and −0.3 (−10.1, 10.9) at 2 and 4 h, respectively (Figure 3D;

Supplementary Table 1).

Percentage of the accuracy of estimated
low-density lipoprotein cholesterol

The accuracy of calculated LDL-C levels by formulas was

considered as the percentage of the total error between −12

and 12%when compared with LDL-CVAP levels. The Friedewald

formula showed the highest accuracy, 80.8%, at the fasting

state, followed by Sampson, Martin–Hopkins, and Vujovic

formulas (Figure 3E). The Sampson formula showed the highest

accuracy, 80.8%, at 2 h postprandially, followed by Friedewald,

Martin–Hopkins, and Vujovic formulas (Figure 3E). At 4 h

after a daily meal, the Martin–Hopkins formula and Sampson

formula showed higher accuracy than Vujovic and Friedewald

formulas (Figure 3E).
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FIGURE 3

Accuracy of estimated LDL-C via di�erent formulas. (A–D) Di�erence between LDL-CVAP and LDL-Cformula at fasting and postprandial states. (E)

Accuracy percent (total error ±12%) of calculated value via four formulas at fasting and postprandial states. #P < 0.05 when compared with

fasting state.

Discussion

This is the first study to compare the calculated LDL-C

levels by different formulas to LDL-CVAP levels at both the

fasting and postprandial states in Chinese subjects. We found

that the calculated LDL-CF levels showed the highest correlation

to LDL-CVAP and accuracy in evaluating fasting LDL-C levels,

while the Sampson formula showed the highest accuracy at

the postprandial state. Therefore, the Friedewald and Sampson

formulas seemed to be a better choice to calculate fasting and

postprandial LDL-C levels, respectively, in Chinese subjects.

Similar to the postprandial change in LDL-CCM levels, LDL-

CVAP levels significantly decreased at 2 and 4 h after a daily

meal in this study, which was different from the results reported

by Hu et al. (22) who measured lipid profiles by enzymatic-

and NMR-based methods in 87 Chinese subjects and reported
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that there was no significant reduction in LDL-C levels and

LDL particles determined by NMR after a daily meal. However,

they found cholesterol content in large LDL particles that

significantly decreased at 2 and 4 h compared to the fasting one

(22). American researchers compared lipid profiles detected by

the VAP method between 10,135 fasting and 5,262 non-fasting

(<8 h since last meal) subjects, and found significantly lower

LDL-C levels and LDL particles in non-fasting subjects, although

percent differences in these parameters were small (6). Chinese

subjects showed a more obvious reduction in LDL-C levels at 2

and 4 h postprandially, for example, about 18% after a daily meal

and 28% after a high-fat meal (18, 23). Moreover, considering

that ultracentrifugation is the reference method for LDL-C

measurement, and the VAP method is rapid ultracentrifugation,

the reduction of LDL-C levels after a daily meal cannot be

ignored, especially in Chinese subjects.

It was reported that LDL-CCM levels were higher than LDL-

C measured by NMR in Chinese subjects with different diseases

(22). In this study, both the LDL-CVAP levels and LDL-C levels

calculated by formulas were lower than LDL-CCM levels at both

the fasting and postprandial states, which prompted us to pay

more attention to the difference between LDL-C levels calculated

by formulas and LDL-CVAP levels.

The Friedewald formula is recommended to calculate LDL-

C levels when TG levels are not very high (8). In this study,

there was no subject with fasting TG ≥ 4.5 mmol/l, which

may contribute to the strongest correlation between LDL-CF

and LDL-CVAP at the fasting state. However, the TG/VLDL

ratio varies with TG increasing at the fasting and non-fasting

states, which decreases the accuracy of the Friedewald formula

in LDL-C estimation. It is worth noting that the lowest

accuracy was found in LDL-CF at 4 h postprandially when TG

reached the peak level. Therefore, other formulas were proposed

for higher accuracy when TG increased, especially at the

postprandial state.

Compared to the stable ratio of TG/VLDL-C in the

Friedewald formula (2.2 for mmol/l or 5.0 for mg/dl), those

in the Vujovic and Martin–Hopkins formulas were changed

(9, 10). The ratio in the Vujovic formula was still fixed, but

relatively greater, presenting as 3 for mmol/l or 6.85 for mg/dl

(9). Its accuracy had been demonstrated in whole TC, TG, and

LDL-C ranges (9). With TG levels increased, the postprandial

correlation coefficients between LDL-CV and LDL-CVAP were

stronger than the fasting state, and higher than those of the other

three formulas. However, the accuracy of the Vujovic formula

seemed to be relatively low, especially at the fasting state and

2 h postprandially, although it increased after a daily meal, and

seemed to be better than Friedewald formula at 4 h after a daily

meal. The low accuracy may be resulted from its overestimation

of LDL-C compared to LDL-CVAP.

The ratio of TG and VLDL-C in the Martin–Hopkins

formula becomes complicated and dependent on TG and

non-HDL-C levels, varying from 3.1 to 11.9 (for mg/dl) (10).

With TG increasing and non-HDL-C decreasing, it elevates

correspondently. The accuracy of Martin–Hopkins formula

was moderate on the whole, but the difference in accuracy

between the fasting and postprandial states was small, which

was consistent with the findings of Sathiyakumar et al., which

found that the Martin–Hopkins formula was less affected by diet

than the Friedewald formula (7). However, the complexity of the

Martin–Hopkins ratio could reduce the convenience in clinical

practice to a certain extent. After all, clinicians cannot remember

so many numbers.

Other than the Friedewald, Vujovic, and Martin–Hopkins

formulas, the novel Sampson formula uses higher-order

mathematical terms in the form of a bivariate quadratic equation

that should better reflect the amount of TG in the core

of the lipoproteins (24). The Sampson formula is based on

the data of 8,656 American adults with a high frequency of

hypertriglyceridemia, and it was confirmed to be suitable for

LDL-C calculation of samples with TG over 9 mmol/l (11),

whichmay contribute to the highest accuracy at the postprandial

states after a daily meal. Actually, at the beginning of the

establishment of the Sampson formula, a comparison was made

between fasting and non-fasting samples, which suggested that

this formula was also applicable to non-fasting samples (11).

The LDL particles could be divided into different

subfractions according to their size. The size of LDL particles

had been suggested as a reliable assessment of atherogenicity

(25). The subfractions of LDL particles at the postprandial

states were reported to be lower by a different degree than those

in fasting states (6). This may contribute to the Friedewald

and Sampson formulas being the best choice for fasting and

postprandial states, respectively.

This study is associated with several limitations. First, the

sample size in this study was small compared to other clinical

studies (7). Second, there were 46.2% of subjects got a statin

history which may cause variation with those without statin use.

Third, we analyzed our subjects as a whole other than stratified

analysis, which may make a more precise result.

Conclusion

In conclusion, among four formulas, the Friedewald formula

was recommended to calculate fasting LDL-C, while the

Sampson formula seemed to be a better choice to calculate

postprandial LDL-C levels in Chinese subjects.
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Wei Feng Shen1,3*
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Coronary collateralization is substantially impaired in patients with type 2

diabetes and occlusive coronary artery disease, which leads to aggravated

myocardial ischemia and a more dismal prognosis. In a diabetic setting, altered

serum lipid profiles and profound glycoxidative modification of lipoprotein

particles induce endothelial dysfunction, blunt endothelial progenitor cell

response, and severely hamper growth and maturation of collateral vessels.

The impact of dyslipidemia and lipid-lowering treatments on coronary

collateral formation has become a topic of heightened interest. In this review,

we summarized the association of triglyceride-based integrative indexes,

hypercholesterolemia, increased Lp(a) with its glycoxidative modification, as

well as quantity and quality abnormalities of high-density lipoprotein with

impaired collateral formation. We also analyzed the influence of innovative

lipid-modifying strategies on coronary collateral development. Therefore,

clinical management of diabetic dyslipidemia should take into account of

its effect on coronary collateralization in patients with occlusive coronary

artery disease.

KEYWORDS

dyslipidemia, type 2 diabetes mellitus, coronary collateral circulation, coronary artery
disease, lipid-lowering therapy

Abbreviations: AGE, advanced glycation end product; Apo, apolipoprotein; CAD, coronary artery
disease; CEC, cholesterol efflux capacity; CETP, cholesterol ester transfer protein; CTRP, C1q
tumor necrosis factor related protein; DPP4, dipeptidyl peptidase-4; eNOS, endothelial nitric
oxide synthase; FGF, fibroblast growth factor; GLP-1, glucagon-like peptide-1; HDL, high-density
lipoprotein; HDL-C, HDL cholesterol; HGF, hepatocyte growth factor; HIF, hypoxia-inducible
factor; LCAT, lecithin cholesterol acyl transferase; LDL, low-density lipoprotein; LDL-C, low-
density lipoprotein cholesterol; Lp(a), lipoprotein(a); MCP, monocyte chemotactic protein; NO,
nitric oxide; oxLDL-C, oxidized low-density lipoprotein cholesterol; PCSK9, proprotein convertase
subtilisin/kexin type 9; PON, paraoxonase; PUFA, polyunsaturated fatty acid; RAGE, receptor for
advanced glycation end product; ROS, reactive oxide spices; sdLDL-C, small dense low-density
lipoprotein cholesterol; SGLT2, sodium-glucose co-transporter-2; T2DM, type 2 diabetes mellitus;
TG/HDL-C, triglyceride/high-density lipoprotein cholesterol; TRL, triglyceride-rich lipoprotein; TyG
index, triglyceride-glucose index; VEGF, vascular endothelial growth factor; VEGFR, VEGF receptor;
VLDL, very low density lipoprotein.
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Introduction

Type 2 diabetes mellitus (T2DM) is increasingly prevalent
worldwide, and cardiovascular disease represents the leading
cause of morbidity and mortality in patients with T2DM (1).
A cluster of lipid metabolic abnormalities, collectively referred
to as diabetic dyslipidemia, have been well established as
a major risk factor for adverse cardiovascular outcomes in
diabetic patients. The pattern of diabetic dyslipidemia consists
of hypertriglyceridemia associated with increased triglyceride-
rich lipoproteins and their remnants, decreased high-density
lipoprotein cholesterol (HDL-C), and elevated low-density
lipoprotein cholesterol (LDL-C) levels with predominance of
small dense LDL-C (sdLDL-C). Meanwhile, hyperglycemia and
chronic inflammation in diabetic conditions promote glycation
and oxidative modification of lipoprotein particles, leading to
changes in conformation and function, altered interaction with
membrane receptors and downstream signaling, and switch of
the phenotype toward a more atheroprone state (2).

Coronary collaterals have been recognized as an important
compensatory mechanism in salvage of ischemic myocardium,
preservation of left ventricular function, and improvement of
prognosis for patients with obstructive coronary artery disease
(CAD) (3–5). During the development of coronary collaterals,
two distinct processes, arteriogenesis and angiogenesis, are
involved. The former pertains to the remodeling of preexisting
arterial vessels through anatomic increase in lumen area and
wall thickness. The latter is defined as growth of new capillaries
that stem from the budding of preexisting capillary vessels (6).
These processes are finely tuned by a variety of biomechanical
and biochemical factors, including perfusion pressure, wall
shear stress, systematic hypoxia, oxidative stress, inflammatory
response and endothelial function.

Numerous clinical observations reveal substantially
impaired collateral circulation in occlusive CAD patients
with diabetes. Given the generally more severe atherosclerotic
lesions and microcirculation dysfunction in diabetic patients,
poor collateralization may provide a significant add-on effect
to aggravate myocardial ischemia and contribute to a more
dismal prognosis (7). A couple of underlying mechanisms
for the poor collateral formation in diabetic patients have
been identified. Chronic hyperglycemia and the engagement
of advanced glycation end-products with their receptors
(AGE-RAGE axis) adversely affects collateral development
by inhibiting vessel growth and maturation (8). On the other
hand, disturbed lipid metabolism also plays a critical role
and is regarded as a hallmark of impaired angiogenesis (9,
10). Currently, the impact of dyslipidemia and lipid-lowering
treatments on coronary collateral formation has become a topic
of heightened interest. This review is the first to summarize
the recent literature, in combination with our study findings,
to elucidate the association of different components of diabetic
dyslipidemia with coronary collateralization and highlight their

potential clinical implications in T2DM patients with CAD. The
relevant clinical studies investigating the association between
lipid profiles and coronary collateralization are summarized in
Table 1.

Impact of diabetic dyslipidemia on
collateral formation

Hypertriglyceridemia

In patients with impaired glucose tolerance, blunt insulin
sensitivity leads to compensatory hyperinsulinemia and
increases secretion of triglyceride and triglyceride-rich
lipoproteins. Hypertriglyceridemia confers an increased risk
of CAD and adverse outcomes in patients with T2DM, by
promoting release of excessive free fatty acids and stimulating
production of proinflammatory cytokines, fibrinogen, and
coagulation factors (11). Previous studies have shown that
certain conditions with a cluster of risk components including
hypertriglyceridemia (e.g., metabolic syndrome, overweight,
or obesity) are more likely to be associated with endothelial
dysfunction and reduced new vessel growth (10, 12), but
the independent role of hypertriglyceridemia in coronary
collateral formation remains difficult to be proven largely due to
concomitant changes in other lipoproteins and relevant factors,
particularly in patients with T2DM.

In recent years, several novel indexes by integrating
triglyceride with some related metabolic measurements (such as
HDL-C and glucose) have been proposed to better stratify the
status of coronary collateralization. Triglyceride-glucose (TyG)
index, calculated as log [fasting triglycerides (mg/dL) × fasting
blood glucose (mg/dL)/2], has been suggested as a surrogate
marker of insulin resistance (13). Elevated TyG index correlates
well with high arterial stiffness and microvascular damage (14),
which is associated with decreased coronary perfusion, reduced
shear stress and arteriogenesis (15). In a large observational
study, chronic total occlusion patients with poor coronary
collaterals had higher TyG index compared to those with good
collaterals. TyG was significantly associated with poor collateral
formation even after adjusting for various confounders (16).
Triglyceride to HDL-C ratio (TG/HDL-C ratio) and atherogenic
index of plasma (logarithmic transformation of TG/HDL-C
ratio) reflect the comprehensive situation of blood lipids and
severity of insulin resistance (17). An observational study of
elderly patients with acute myocardial infarction showed that an
elevated TG/HDL ratio was independently associated with poor
development of coronary collateral circulation (18). Of note,
although a number of reports have suggested the prognostic role
of atherogenic index of plasma beyond traditional risk factors
(19, 20), further prospective studies are needed to examine if this
index is applicable to predict coronary collateralization in type 2
diabetic patients with CAD.
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TABLE 1 Summary of clinical studies investigating the association between lipid profiles and coronary collateralization.

Authors Study
population

Design Number of
patients

Parameter of
lipid profiles

Main relevant results

Liu et al. (10) Consecutive patients
with CTO

undergoing CAG

Observational
study

1,653 patients (poor
CC: 355; good CC:

1298)

TG After multiple adjustment, the quartiles of TG (adjusted
OR = 1.267, 95% CI 1.088–1.474, P = 0.002) remained an

independent factor of poor CC.

Gao et al. (16) Consecutive patients
with acute coronary
syndrome and CTO

Observational
study

1,093 patients (poor
CC: 775; good CC:

318)

TyG index TyG index was significantly higher in patients with poor CC
compared to those with good CC (9.3 ± 0.65 vs. 8.8 ± 0.53,

P < 0.001).
The proportion of poor CC increased stepwise from the lowest

to the highest TyG index tertile (15.3% vs. 22.8 % vs. 49.2 %,
P < 0.001).

After adjusting for confounding factors, TyG index remained
correlated with the occurrence of impaired CC (OR 1.59, 95%
CI 1.07–2.36 and OR 5.72, 95% CI 3.83–8.54 for middle and
highest tertile groups vs. lowest tertile group, all P < 0.001)

The improvement of the AUC for assessing poor CC was most
significant when adding TyG index to baseline model, with a

best cut-off value of 9.105.
The most significant enhancement in risk reclassification and
discrimination was found after inclusion of TyG index into

baseline model, with a NRI of 0.238 (P < 0.001) and an IDI of
0.103 (P < 0.001).

Liu et al. (18) Consecutive patients
(≥60 years) with
ST-elevation MI

undergoing primary
PCI

Retrospective
case-control

study

346 patients (poor
CC: 238; good CC:

108)

TG/HDL TG/HDL ratio was significantly higher in patients with poorly
developed CC than in those with well-developed CC

(2.88 ± 2.52 vs. 1.81 ± 1.18, P < 0.001).
In multivariate logistic regression analysis, higher TG/HDL

ratio served as an independent positive predictor of poor
development of CC (OR 1.789, 95% CI 1. 346–2.378, P < 0.001).

The AUC of TG/HDL ratio for predicting poor CC was 0.716
(95% CI 0.654–0.778, P < 0.001) with an optimal cut-off value

of 1.58, sensitivity of 55.7% and specificity of 71.9%.

Aras et al. (33) Stable angina
pectoris with CTO of
one major coronary

artery

Retrospective
study

60 patients (poor
CC: 31; good CC: 29)

Lp(a) Lp (a) levels were significantly higher and vascular endothelial
growth factor levels were significantly lower in patients with

poor CC than in those with good CC (34 ± 19 vs.
20 ± 12 mg/dl, P < 0.001, and 2.5 ± 0.7 vs. 3.4 ± 0.8 ng/dl,

P < 0.001, respectively).
Poorly developed CC were more prevalent in patients with Lp

(a) levels ≥30 mg/dl than in those with Lp (a) levels <30 mg/dL
(72 vs. 37%, P = 0.008).

A strong negative correlation was observed between Lp (a) and
vascular endothelial growth factor (r = −0.708, P < 0.0001).

High levels of Lp (a) negatively affected the development of CC
(adjusted OR 0.92, 95% CI 0.88–0.96, P = 0.009).

Fan et al. (34) Chronic stable
coronary disease
with at least one
major coronary
occlusion or a

stenosis of ≥95%
with TIMI grade 1

Observational
study

654 patients
(Rentrop score 0, 1,
2, and 3 in 44, 91,

232, and 287
patients,

respectively)

Lp(a) Lp(a) levels were significantly decreased across Rentrop score
0–3 (25.80 ± 24.72, 18.99 ± 17.83, 15.39 ± 15.80, and

8.40 ± 7.75 mg/dL, P < 0.001).
In model 1, the risk of poor CC (Rentrop 0) was greater in the
third Lp (a) tertile compared to the first Lp(a) tertile (OR 3.34,
95% CI 2.32–4.83, P < 0.001). In model 2, the risk of poor CC
(Rentrop 0) was greater in Lp(a) >30 mg/dL group compared

to Lp(a) <30 mg/dL group (OR 6.77, 95% CI 4.44–10.4,
P < 0.001).

Shen et al. (35) Consecutive stable
CAD patients with
CTO of at least one

major epicardial
coronary artery

Observational
study

1284 patients (DM:
706; non-DM: 578;
poor CC: 505; good

CC: 779)

Lp(a)
TC

LDL-C
Non-HDL

HDL-C
TG

For diabetic and non-diabetic patients, Lp(a), total cholesterol,
LDL-C, and non-HDL-C levels were higher in patients with

poor CC than in those with good CC, whereas HDL-C and TG
levels were similar.

After adjustment for potential confounding factors, tertiles of
Lp(a), total cholesterol, LDL-C and non-HDL-C remained

independent determinants for poor CC. A significant
interaction between Lp(a) and total cholesterol, LDL-C or

non-HDL-C was observed in diabetic patients (all P interaction
<0.001) but not in non-diabetics.

At high tertile of total cholesterol (≥5.35 mmol/L), LDL-C
(≥3.36 mmol/L) and non-HDL-C (≥4.38 mmol/L), diabetic

patients with high tertile of Lp(a) (≥30.23 mg/dL) had an
increased risk of poor CC compared to those with low tertile of
Lp(a) (<12.66 mg/dL) (adjusted OR = 4.300, 3.970 and 4.386,

respectively, all P < 0.001).

(Continued)
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TABLE 1 Continued

Authors Study
population

Design Number of
patients

Parameter of
lipid profiles

Main relevant results

You et al. (36) Consecutive acute
MI undergoing

interventional CAG

Observational
study

409 patients (poor
CC: 277: good CC

132)

Lp(a) Patients with poor CC had a higher Lp (a) level than those with
good CC (219.1 [98.0–506.9] vs. 122.0 [64.5–215.6] mg/L,

P < 0.001).
The AUC of Lp(a) for predicting poor CC was 0.647 (95% CI:

0.592–0.702) with the cut-off value of 199.0 mg/L, sensitivity of
55.7% and specificity of 71.9%.

Regression analyses revealed that patients with high Lp(a) levels
had a greater risk of poor CC than those with low Lp(a) levels

(unadjusted OR 2.924, 95% CI 1.900–4.501; adjusted OR 2.929,
95% CI 1.863–4.604, both P < 0.001). Patients with Lp(a)

≥30 mg/dL also had a greater risk of poor CC than those with
Lp(a) <30 mg/dL (unadjusted OR 3.394, 95% CI 2.042–5.640;

adjusted OR 4.232, 95% CI 1.400–12.797, both P < 0.001).

Kadi et al. (38) Consecutive patients
with CTO of at least
one major epicardial

coronary artery

Case-control
study

151 patients (poor
CC: 49; good CC:

102)

HDL-C Serum HDL-C was lower in poor CC group compared to good
CC group (34.9 ± 8 mg/dL vs. 43.7 ± 9.4 mg/dL, P < 0.001).
The proportion of patients with low HDL-C was significantly

higher in the poor CC group compared with the good CC group
(P < 0.001). Serum TG levels and percentage of MI history were

higher in the poor CC group compared with good CC group
(P = 0.015 and P = 0.026, respectively). There was a positive and

strong correlation between Rentrop grade and serum HDL-C
level (r = 0.503, P < 0.001). Multivariate regression analysis

showed that reduced HDL-C level was an independent
predictor for poor CC (OR 4.3, 95% CI 1.964–9.369, P < 0.001).

Hsu et al. (39) Consecutive patients
undergoing CAG

Case-control
study

501 patients (poor
CC: 311; good

CC:190)

HDL-C There was no significant difference in HDL-C and other
variables between good and poor CC. Multivariate analysis
showed only number of diseased vessels was a significant

predictor of poor collateral development (OR 0.411, p < 0.001).

Lee et al. (44) Consecutive patents
undergoing CAG

Case-control
study

226 patients (poor
CC: 71; good

CC:155)

CEC CEC was higher in the good than in the poor CC group
(22.0 ± 4.6% vs. 20.2 ± 4.7%, P = 0.009). In multivariable

analyses, CEC was identified as an independent predictor of
good CC after adjustment for age, sex, HDL-C (OR, 1.10, 95%

CI 1.03–1.18, P = 0.004). It remained significant after additional
adjustment for DM, acute coronary syndrome, and Gensini

score (OR 1.09, 95% CI 1.02–1.17, P = 0.011).

Wang et al. (46) Patients with stable
angina and

angiographic CTO of
at least one major
coronary artery

Case-control
study

437 patients (DM:
102; non-DM: 355;
poor CC: 210; good

CC: 227)

CEC Compared to good collateralization group, CEC in poor
collateralization group was significantly higher in non-diabetic

patients (17.54 ± 11.86% vs. 13.91 ± 9.07%, P = 0.002). In
contrast, CEC was impaired in type 2 diabetes irrespective of
collateralization status (14.66 ± 10.47% vs. 13.26 ± 8.64%,
P = 0.462). CEC correlated closely with Rentrop score in

non-diabetic subjects, whereas no such association was present
for HDL-C or apolipoprotein A-I. After adjusting for

conventional risk factors including apolipoprotein A-I in
logistic regression analysis, elevated CEC was independently

associated with higher risk of poor collateralization in
non-diabetic but not in diabetic subjects.

AUC, area under the curve; CAD, coronary artery disease; CAG, coronary artery angiography; CC: coronary collaterals; CEC, cholesterol efflux capacity; CI, confidence interval; CTO:
chronic total occlusion; DM, diabetes mellitus; HDL-C, high-density lipoprotein cholesterol; IDI, integrated discrimination improvement; LDL, low-density lipoprotein; Lp(a): lipoprotein
(a); MI: myocardial infarction; NRI, net reclassification improvement; OR, odds ratio; PCI, percutaneous coronary intervention; TC, total cholesterol; TG, triglyceride; TyG index,
triglyceride-glucose index.

Hypercholesterolemia

Chronic exposure to high levels of cholesterol and
LDL-C results in functional and structural abnormalities
of the vasculature, including endothelial dysfunction,
subendothelial lipid deposition, plaque progression and
compromised collateral vessel growth (21, 22). In diabetic
dyslipidemia, hypercholesterolemia and a predominant
increase in sdLDL particles play negative roles in coronary
collateral formation.

Under hypercholesterolemia, angiogenesis and
arteriogenesis in response to tissue hypoxia are markedly
attenuated. Hypercholesterolemia decreases endothelial nitric
oxide (NO) bioavailability and NO synthase (eNOS) expression
and activity which are essential for endothelial progenitor cell
(EPC) migration (23). In animal models, cholesterol at high
concentration resulted in delayed native arteriolar growth
caused by reduced early monocyte/macrophage influx and
migration, and even mildly elevated cholesterol significantly
decreased expression of fibroblast growth factor (FGF) receptor
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1, vascular cell adhesion molecule-1, and macrophage scavenger
receptor-1, mimicking relative changes in arteriogenesis and
tissue perfusion (24). The extent of these alterations was related
to the duration of hypercholesterolemia. In patients with
hypercholesterolemia, the number and activity of circulating
EPCs were decreased compared to normocholesterolemic
subjects (25). Circulating EPCs have special cellular machinery
that is resistant to various types of stress, which allow them to
participate in tissue repair. Interestingly, hypercholesterolemia
reduced arteriogenesis more dominantly than hyperglycemia or
hyperinsulinemia (26).

The inhibitory effect of hypercholesterolemia on
angiogenesis/arteriogenesis could be attributed to the negative
effect of LDL-C on endothelial cell responsiveness to growth
factors (25). T2DM is usually accompanied by oxidation or
glycation of LDL, and glycoxidatively modified LDL poses more
pro-atherogenic and antiangiogenic properties than native
LDL (27). In addition, the predominance of sdLDL-C confers
a threefold increased risk for CAD, owning to their greater
propensity for endothelial penetration into arterial wall, lower
binding affinity for LDL receptor, longer circulation time,
and higher susceptibility to glycation, oxidative modification,
and uptake by scavenger receptors (28). The prospective
Framingham offspring study and large cohort studies suggest
that sdLDL is superior to LDL-C and other biomarkers in
predicting future cardiovascular events in stable CAD patients
with T2DM or hypertriglyceridemia (29–31). Nevertheless,
there is a paucity of clinical data regarding the impact of
elevated LDL-C and sdLDL-C on collateral formation in T2DM
patients with CAD.

Increased circulating lipoprotein(a)

Lipoprotein(a) is a genetically determined lipoprotein,
which contains principally a cholesterol rich LDL particle, one
molecule of apo B-100, and an apo (a). Noteworthy, Lp (a)
is known to have atherothrombogenic property by inhibiting
fibrinolysis system and promoting thrombus formation. In spite
of a very skewed distribution, elevated circulating Lp(a) has
emerged as an independent predictor of adverse outcomes for
both general and higher risk populations, especially when LDL-
C levels are elevated (32). In observational studies of patients
with stable CAD, serum Lp(a) levels decreased stepwise across
angiographic coronary collateral grade, and elevated Lp(a)
predicted poor collateral development (33, 34). Intriguingly, a
robust association between Lp(a) interactions with cholesterol-
containing lipids and coronary collateral formation was
suggested in patients with T2DM, which was non-linear and
limited to high Lp(a) and LDL-C or non-HDL-C levels (35).
At high tertiles of total cholesterol (≥5.35 mmol/L), LDL-C
(≥3.36 mmol/L) and non-HDL-C (≥4.38 mmol/L), patients
with high tertile of Lp(a) (≥30.23 mg/dL) had a significantly

increased risk of poor collateralization compared with those
with low tertile of Lp(a) (<12.66 mg/dL) (all P < 0.001).
Furthermore, the additional inclusion of interaction of Lp(a)
with total cholesterol, LDL-C and non-HDL-C provided better
risk prediction of poor coronary collaterals. However, no
interaction of Lp(a) with HDL-C and triglyceride on coronary
collateralization was observed. In patients with acute myocardial
infarction, increased Lp(a) in serum was closely correlated
with poor coronary collaterals (36). Overexpression of Lp(a) in
transgenic mice resulted in markedly reduced natural recovery
of blood flow in hindlimb ischemia animal models in a dose-
dependent manner. Lp(a) was found to stimulate the growth of
vascular smooth muscle, which was reversed by intramuscular
injection of hepatocyte growth factor (HGF) (37). Overall, these
results highlight that Lp(a) may reflect coronary collateral status.

Lipoprotein(a) is highly concentrated in the arterial
wall, carries cholesterol and binds oxidized phospholipids.
Elevated circulating Lp(a) inhibits transforming growth factor-
β activity and attenuates synthesis and/or release of vascular
endothelial growth factor (VEGF) and decreases production
of endothelium-derived NO, leading to impaired angiogenesis
(33). Moreover, one of our ongoing studies indicates that
circulating Lp(a) can also undergo glycation modification. As
a characteristic protein of Lp(a), apo(a) is a large protein
containing many kringle domains. Based on mass spectrometry
results, the glycation modification sites of apo(a) are mainly
concentrated on the kringle IV domain, whereas only a few
glycation modification sites are distributed in other domains.
Phenotypic experiments confirmed that glycated apo(a) and
glycated apo(a)-kIV can consistently induce inflammatory
factor expression and RAGE pathway activation. In a diabetic
mouse model with hindlimb ischemia, intraperitoneal injection
of glycated apo(a) and glycated apo(a)-kIV, respectively, resulted
in a substantial inhibition of angiogenesis. Further studies
have demonstrated that glycated apo(a) and glycated apo(a)-
kIV promoted the expression of adhesion molecules, decreased
the activities of eNOS and production of NO, and inhibited
endothelial proliferation, migration, and tubular formation.
Glycated apo(a) and glycated apo(a)-kIV induced endothelial
dysfunction mainly through up-regulation of nuclear co-
repressor NR0B1, which binds and inhibits the transcriptional
activity of cardiovascular protective nuclear receptors such as
LXR, NR4A1, and estrogen receptor.

Subnormal high-density lipoprotein
cholesterol level and high-density
lipoprotein dysfunction

Reduced HDL-C in serum is one of the typical
manifestations of diabetic dyslipidemia. The relationship
between serum levels of HDL-C and coronary collateral
formation remains controversial. In patients with stable CAD,
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one study showed that decreased HDL-C levels predicted
poor coronary collateralization (38), but such results were not
replicated in other studies (35, 39). These observations support
a notion that HDL functionality rather than quantity alone
may more reliably reflect its overall properties and has a better
clinical relevance (40).

High-density lipoprotein particle is composed of an outer
layer of apolipoproteins and phospholipids, surrounding a core
of esterified cholesterol, and has pluripotent effects. It primarily
mediates reverse cholesterol transport by carrying cholesterol
from peripheral tissues to the liver for metabolism and
excretion. In addition to its antioxidative, anti-inflammatory,
antithrombotic and anti-apoptotic features, HDL itself has
proangiogenic properties and regulates ischemia-induced
angiogenesis in multiple ways (41). Cholesterol efflux capacity
of HDL (HDL-CEC) is essential in maintaining cholesterol
balance in endothelial cells, and it regulates angiogenesis
via modulation of lipid rafts and VEGF receptor (VEGFR)-
2 signaling (42). Large cohort studies and meta-analysis
indicated that elevated HDL-CEC was associated with favorable
clinical outcomes independent of circulating HDL-C levels
(43). A case-control study reported a higher HDL-CEC
in chronic total occlusion patients with good coronary
collaterals compared to those with poor collaterals, and
high HDL-CEC predicted the presence of good coronary
collaterals (44). The degree of coronary collateralization
from the contra-lateral vessel (usually via connections of
the epicardial surface or intraventricular septum) was often
visually estimated using the Rentrop grading system (45):
0 = no visible filling of any collateral channel; 1 = filling of
side branches of the artery to be perfused by collateral vessels
without visualization of epicardial segment; 2 = partially filling
of the epicardial artery by collateral vessels; 3 = complete
filling of the epicardial artery by collateral vessels. Patients
were categorized into poor (grade 0 or 1) or good (grade
2 or 3) coronary collateralization group. This angiographic
assessment of coronary collaterals is routinely applied in clinical
practice. Wang et al. found that HDL-CEC correlated closely
with angiographic Rentrop collateral score in non-diabetic
patients, whereas HDL-CEC was impaired in patients with
T2DM irrespective of collateralization status. Furthermore,
this finding is supported by in vitro experimental results,
showing that although HDL isolated from non-diabetics
with poor collaterals had significantly greater potential in
promoting endothelial tubular formation in Matrigel compared
to HDL isolated from those with good collateralization,
the proangiogenic capacity of HDL isolated from diabetic
patients was markedly impaired which was not influenced
by collateral conditions (46). These results imply that well-
functioning HDL is biologically cardioprotective, contributing
to coronary collateral formation. Nevertheless, the functional
capacity of HDL is severely compromised in type 2 diabetic
patients with CAD.

Glycation and oxidative modification are key underlying
mechanisms that lead to HDL dysfunction and transforms
the lipoprotein into a proinflammatory protein under diabetic
conditions (47). Shen et al found that relative intensity
of glycation of apoA-I (a predominant protein moiety in
HDL) correlated positively, while HDL-associated paraoxonase
(PON) 1 and PON3 activities inversely, with the severity of
coronary atherosclerosis (48), and was related to decreased
lecithin: cholesterol acyl transferase (LCAT) activity and plaque
progression in type 2 diabetic patients undergoing percutaneous
coronary intervention (49). Similarly, abundance of apo A-IV
glycation was also correlated with the presence and severity
of CAD in patients with T2DM. Glycosylated apo A-IV
induces pro-inflammatory response in vitro and increases the
expression of tumor necrosis factor (TNF) -α and adhesion
molecules by the nuclear receptor NR4A3, thereby promoting
atherosclerosis in apo E-/- mice (50). Recently, the deleterious
effects of apo A-I and apo A-IV glycation on vessel growth in
diabetes were assessed. In a diabetic hindlimb ischemia mouse
model, blood reperfusion was determined by laser Doppler
perfusion imaging after treatment with intraperitoneal injection
of glycated apo A-I or glycated apo A-IV, and the gastrocnemius
and soleus muscles were collected for pathological analysis and
molecular biology evaluation. The results showed that both
glycated apo A-I and glycated apo A-IV induced inflammatory
reactions in endothelial cells and decreased new vessel growth.
Further mechanistical studies revealed that glycated apo A-I
skewed macrophage polarization toward M1 phenotype by
activating SHP2, whereas glycated apo A-IV down-regulated
cardiovascular protective nuclear receptor NR4A1 expression
(51), all of which are recognized as important steps to
the inhibition of angiogenesis. These findings point to a
notion that HDL dysfunction and subnormal HDL-C levels
act synergistically to decrease collateral formation in T2DM
patients with CAD.

Clinical relevance

Since diabetic dyslipidemia hampers collateral vessel growth
through inhibiting angiogenesis/arteriogenesis in its specific
manner and coronary collateralization is of important clinical
significance, the choice between the available management
options for T2DM patients with CAD should account for its
effect on collateral formation (Figure 1).

In terms of non-pharmacological intervention, intensive
lifestyle modification (including living habitat change, exercise,
and diet) exerts beneficial impact on homeostasis, lipid profiles
and coronary collateral circulation (52), thus should be the
main initial strategy. Cessation of cigarette smoking is proven
to decrease inflammatory response, increase the number
and function of EPCs, and improve VEGF activities, which
are beneficial for new vessel growth (53). Regular physical
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FIGURE 1

Impact of diabetic dyslipidemia on coronary collateral formation. In diabetic conditions, triglyceride (TG) and TG-rich lipoproteins (TRL) levels
are increased, high-density lipoprotein cholesterol (HDL-C) level is reduced, and low-density lipoprotein cholesterol (LDL-C) level is elevated
with predominance of small dense LDL-C (sdLDL-C). Meanwhile, glycation and oxidative modification of lipoprotein particles occur, promoting
inflammatory reaction, production of reactive oxide species (ROS), and endothelial progenitor cell (EPC) dysfunction. These changes hamper
collateral formation through inhibiting the process of angiogenesis and arteriogenesis. Exercise, lipid-lowering therapy, and antidiabetic agents
may improve coronary collateral formation. Represents cholesterol esters. GLP-1: glucagon-like peptide-1; IDL: intermediate density
lipoprotein; Lp(a): lipoprotein (a); PCSK9: proprotein convertase subtilisin/kexin type 9; SGLT2: sodium-glucose cotransporter 2; VLDL: very
low-density lipoprotein.

exercise improves lipid profile (54), and augments myocardial
oxygen demand and blood flow, acting as a driving force for
arteriogenesis, which helps in coronary collateral formation
in patients with stable CAD, exceeding the effect of any

drug treatment (55). Similarly, optimal blood pressure control
(especially diastolic blood pressure) is crucial in achieving
maximal coronary collateral flow (56, 57). While dietary quality
is important for overall health, the total daily caloric intake
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per se should be a key determinant of hyperlipidemia in which
a hypocaloric plan is favorable for reducing overweight and
improving lipid profile and insulin sensitivity (58).

Hypertriglyceridemia should be treated to eliminate residual
cardiovascular risk. Fibrates, a putative agonist ligand for
peroxisome proliferator activated receptor-alpha, reduce the
secretion of very-low-density lipoprotein (VLDL)-triglyceride,
enhance removal of LDL, and increase HDL-C levels (59).
High-dose of omega-3 polyunsaturated fatty acids (PUFA),
mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA), is a worthwhile add-on treatment, especially in statin-
treated patients with T2DM and CAD in whom triglyceride
levels remain elevated (60). In addition, PUFA could attenuate
inflammation, improve endothelial function, and decrease
thrombus formation (61). The REDUCE-IT trial evaluated a
highly purified EPA preparation (4 g/day) in patients with
hypertriglyceridemia and high cardiovascular risk. The results
were extraordinary, as there was a 25% relative reduction
in cardiovascular events, total coronary revascularization as
well as plaque burden (62). However, the STRENGTH trial
failed to obtain similar favorable results by treatment with
EPA/DHA preparation, and in contrast, it was associated
with a slightly higher rate of atrial fibrillation (63). This
discrepancy may be explained by different study design and
various degrees of change in triglyceride-rich lipids as well as
differential effects of EPA and DHA on membrane structure,
inflammatory biomarkers, endothelial function, and tissue
distribution (64). A recent study demonstrated a negative
correlation between peri-coronary adipose tissue attenuation
assessed by CT angiography and treatment with PUFA,
suggesting a lower extent of coronary inflammation (65, 66).
Adipokine C1q tumor-necrosis factor-related protein (CTRP)
1 has been shown to be involved in inflammatory reaction
and disease development (67). Elevated circulating CTRP1
was associated with poor coronary collateralization in T2DM
patients with stable angina pectoris. Notably, stimulation of
EPCs with CTRP1 decreases both cord length and branch point
number and VEGFR-2 levels (68). Whether the beneficial effect
of fibrates alone or in combination with PUFA on collateral
formation via affecting adipokines in T2DM patients with CAD
merits further confirmation.

Cholesterol-lowering therapy is the mainstay in primary
and secondary prevention of cardiovascular diseases (69,
70). Statins effectively decrease serum LDL-C and sdLDL-C
while increasing HDL-C levels and reduce the susceptibility
of apo B of LDL to undergo oxidation and glycation.
They also display significant anti-inflammatory properties and
improve endothelial function (so-called pleiotropic effects)
(71). Robust evidence supports the fact that use of statins
enhances angiogenesis as well as arteriogenesis independent of a
cholesterol-lowering mechanism (72, 73). Collateral formation
benefits from statin treatment in T2DM patients with CAD,
due partly to reduced apoptosis and decreased release of

soluble VEGFR-1 induced by proinflammatory cytokines (74,
75). Proprotein convertase subtilisin/kexin type 9 (PCSK9)
inhibitors have been increasingly used in the management of
dyslipidemia in individuals with T2DM (76, 77). The results
of post-hoc subgroup analysis of randomized clinical trials
indicated that alirocumab and evolocumab significantly reduced
circulating LDL-C and Lp(a), and increased HDL-C, without
affecting glycemic levels in patients with T2DM (78, 79). Current
data concerning PCSK9 inhibitors on collateral formation
are scarce. An in vivo study demonstrated a proangiogenic
activity of evolocumab through promoting cell proliferation,
migration, tubulogenesis, and VEGF secretion (80). Given
their unambiguous lipid-lowering properties, such a specific
role of PCSK9 inhibitors for neo-angiogenesis should be
clinically attractive.

Several new hypoglycemic agents, such as glucagon-like
peptide-1 (GLP-1) receptor agonists and sodium-glucose
cotransporter-2 (SGLT2) inhibitors, have been shown
to favorably affect lipoprotein metabolism (81, 82).
Nevertheless, further studies are needed to examine if they
can improve collateral formation especially for type 2 diabetic
patients with CAD.

Conclusion

In type 2 diabetic patients with CAD, the role of
hypertriglyceridemia in collateral formation is not clear likely
due to the concomitant changes in other lipoproteins. Elevated
circulating cholesterol and Lp(a) and their glycoxidative
modification hamper the process of new vessel growth.
Subnormal HDL-C levels and, more importantly, deficient HDL
function may act synergistically to decrease collateral formation.
The choice between the available management options should
account for its effect on coronary collateralization. In the
future, much more research needs to be done to focus on the
benefits of innovative lipid-modifying strategies, including use
of PCSK9 and new triglyceride- and Lp(a)-lowering treatment,
anti-diabetic agents as well as therapeutic normalization of
attenuated proangiogenic and antiatherogenic HDL function, in
the improvement of coronary collateral formation and clinical
outcome. Novel information as such should add new knowledge
on coronary pathophysiology and provide useful guidance of
patient care for clinicians.
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The amount of physical activity (PA) people practice everyday has been

reducing in the last decades. Sedentary subjects tend to have an impaired

lipid plasma profile with a higher risk of atherosclerosis and related

cardio- and cerebrovascular events. Regular PA helps in both primary and

secondary cardiovascular prevention because of its beneficial e�ect on the

whole metabolism. Several studies reported lower levels of plasma lipids

in trained subjects, but the precise mechanisms by which PA modulates

lipoproteins remain only partially described. Thereupon, proprotein convertase

subtilisin/kexin type 9 (PCSK9) is a serin protease whose main function

is to reduce the amount of low-density lipoprotein cholesterol (LDL-C)

receptors, with the direct consequence of reducing LDL-C uptake by the liver

and increasing its circulating pool. Accordingly, recently developed PCSK9

inhibitors improved cardiovascular prevention and are increasingly used to

reach LDL-C goals in patients at high CV risk. Whether PA can modulate

the levels of PCSK9 remains partially explored. Recent studies suggest PA

as a negative modulator of such a deleterious CV mediator. Yet the level of

evidence is limited. The aim of this review is to summarize the recent reports

concerning the regulatory role of PA on PCSK9 plasma levels, highlighting the

beneficial role of regular exercise on the prevention of atherosclerosis and

overall CV health.

KEYWORDS

proprotein convertase subtilisin/kexin type9, physical activity, exercise, inflammation,

cardiovascular

Introduction

Regular exercise has been recommended to improve both quality and quantity

of life in different clinical settings. The importance of fitness for a healthier life is

particularly important nowadays, since the modern society tends to underestimate

the time spent sitting in front of device screens, with almost two billion of

physically inactive subjects worldwide (1). From being nomadic hunter gatherers,

we became settled agriculturalists. Nowadays, we tend to spend even less time

outdoor with many works are now available online and can be done at home

using an internet connection. In this context, the recent severe acute respiratory

syndrome coronavirus 2 (SARS-CoV2) pandemic did not help. Epidemiological data

report that the total amount of physical activity (PA) has progressively reduced

in the last decades (2), meanwhile the number of obese subjects almost tripled
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worldwide (3). Obesity is a well-known cardiovascular risk

factor and is associated with a high number of comorbidities

involving most organs of our bodies.

However, physical activity might be aerobic or anaerobic.

The aerobic training consists in exercises involving large group

of muscles in a rhythmic and dynamic manner for a long time,

while the anaerobic training in a more intense activity, exerted

in a shorted time, and involving a restricted group of muscles

(4). Even though, the aerobic physical exercise has always been

regarded as healthier and therefore preferable, recent evidence

shows that both aerobic and anaerobic physical activity may

have beneficial effect on the cardiovascular system (4). Regular

PA has protective effects against cardiovascular diseases and all-

cause mortality (5) and atherosclerosis is negatively modulated

by regular exercise (6). Even slight increase of daily amount of

PA, in the magnitude of 30min of light- to vigorous-intensity

PA per day can significantly improve cardiovascular health (7).

Greater results are obtained with regular high-intensity exercise

training (8).

Our body has a greater ability to face PA and starvation

periods rather than an excess of caloric intake and sedentarism.

We have many hormonal pathways that can mobilize depots

and increase circulating glucose and lipid levels, instead the

machinery to reduce their levels is rather limited. As a result,

the excess of caloric intake associated with low exercise training

favor the development of metabolism impairment. The direct

consequence is the slowly progression toward the so-called

“X syndrome,” better known as the metabolic syndrome. This

syndrome is associated with several cardiovascular diseases

(9) and sudden cardiac death (10). CV prevention therefore

finds a cornerstone in strategies aiming at regulating lipid

levels by reducing low-density lipoprotein cholesterol (LDL-C)

and increasing high-density lipoprotein cholesterol (HDL-C).

PA was shown to have beneficial effects on lipid profile

(with sex-related differences), especially when coupled with

better dietary habits (11, 12). When this is not enough to

reach the target lipoprotein levels suggested by the guidelines,

pharmacological approaches including statins and PCSK9

inhibitors are suggested. In consideration of the recent paradigm

for cholesterol levels “the lower the better,” the use of proprotein

convertase subtilisin/kexin type 9 (PCSK9) inhibitors drugs such

as alirocumab and evolocumab to reduce circulating LDL-C in

patient at intermediate to very high risk is getting more and

more common in the clinical practice.

PCSK9 is a serine protease whose main role is to favorite the

catabolism of LDL-C receptor on the hepatocyte surface thereby

reducing LDL-C internalization and increasing its circulating

pool (13, 14). Reducing the PCSK9 plasma levels therefore

leads to reduced circulating cholesterol levels with direct

inhibitory effects on the atherosclerotic process. Yet, PCSK9

recently showed pleiotropic, non-LDL-C-mediated, effects that

are nowadays known tomediate some of the anti-atherosclerotic

effects of PCSK9 inhibitors (i.e., through inflammation) (15,

16). In fact, low grade inflammation is associated with PCSK9

transcription, especially in metabolic syndrome patients (17).

Furthermore, inflammation favorite the expression of PCSK9 in

the endothelial cells and vascular smooth muscle cells (18).

Whether PCSK9 mediates some of the beneficial effects of

PA on plasma lipoproteins remains to be fully investigated.

Recent evidence showed that PCSK9 plasma levels are regulated

by regular exercise in both animal models and humans, as

reported in Table 1. Although, the strength of this association

and the possible pathways are not precisely described. The

purpose of this review is to highlight the role of exercise

training on PCSK9 plasma levels, as a prevention strategy against

atherosclerosis. We searched PubMed and Web of Science

for the following keywords: “proprotein convertase/subtilisin

kexin type,” “PCSK9” in combination with “exercise” and

“physical activity.” Additionally, a list of recent pre-clinical

and clinical studies concerning this topic is reported as a table

and discussed.

The e�ect of exercise training on
low-density lipoprotein cholesterol

Exercise training consists in a structured and repetitive PA

that is practiced regularly. As longtime known, the amount and

the quality of exercises and trainings can determine different

results ranging from beneficial to even negative results in

different settings (29). As a result, one of the major pitfalls in

comparing different trials is due to the different type, intensity,

and duration of the exercise protocol. Concerning the effect of

exercise on cholesterol, several preclinical (30–32) and clinical

studies (33–35) found an amelioration of the lipid plasma profile

via regular exercise, especially aerobic one.

The modulation of circulating LDL-C in trained animals

and humans relates to the adaptation of the body toward a

higher metabolic state. Accordingly, the effects of exercise can

be seen even acutely. Immediately after PA, LDL-C plasma levels

decreases (36, 37). After termination, LDL-C levels tend to

return to their basal levels, yet with regular exercise they remain

lower on the long-term (38). Concerning the abovementioned

adaptations, a higher metabolic state associates with a reduction

of PCSK9. Consequently, the reduced catabolism of LDL

receptor, increases the uptake of circulating LDL thereby

reducing circulating cholesterol levels. Accordingly, recent

evidence showed that PA increases the amount of hepatic LDL-C

receptor (19, 39). Table 1 summarizes themain evidence proving

an effect of PA on PCSK9 levels. As most studies agree on a

beneficial lowering effect, an augmentation of PCSK9 levels may

coexist together with LDL-C reduction in well-trained people

(27). Such mixed effect might be due to many limitations in

the analysis and interpretation of the studies. Furthermore, the

amount of evidence concerning this topic remains quite limited.
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TABLE 1 Summary of recent pre-clinical and clinical studies evaluating the e�ect of exercise training on PCSK9.

Pre-clinical research

Author Year Model Intervention Findings

Wen et al.

(19)

2013 Mouse AET on treadmill and

different types of diet lasting

up to 8 weeks

Treadmill exercise increases hepatic PCSK9

mRNA while reducing circulating PCSK9.

Reduced lipid levels in mice fed with high-fat diet

Ngo Sock

et al. (20)

2014 Rat Treadmill AET for 8 weeks Exercise training has no effect on circulating

PCSK9 even if it reestablishes the expression of

sterol regulatory element binding protein 2

Farahnak

et al. (21)

2018 Rat AET via voluntary wheel

running for 6 weeks

Increasing of intestinal LDL-R and PCSK9

transcripts in both intact and ovariectomized

animals, indicating a possible role in the

trans-intestinal cholesterol excretion

Li et al.

(22)

2020 Rat AET on treadmill for 8 weeks Increase of hepatic LDL-R; inhibition of

neointimal formation via PCSK9 and LOX-1

reduction

Wolf

et al. (23)

2021 Rat AET via voluntary wheel

running for 10 months

Exercise favors the expression of PCSK9 in the

muscles of normotensive rats without affecting

circulating pool.

Clinical

Author Year Population Intervention Findings

Arsenault

et al. (24)

2014 Obese, sedentary men aged

between 30 and 65 years old

Moderate AET (160

min/week), more

occupational PA, and diet

Modest reduction of PCSK9 levels after 1 year.

PCSK9 is slightly associated with insulin resistance

but not with LDL-C plasma levels

Kamani

et al. (25)

2015 Hospital employees aged more

than 18 years old

Use of stairs instead of

elevator at workplace for up

to 6 months

Reduction of circulating levels of PCSK9 up to

20% at 3rd month but similar levels to the baseline

at 6th month

Boyer

et al. (26)

2016 Men 39–80 years old undergoing

coronary artery bypass graft

150 min/week of PA, and diet

program for 1 year

Increment of PCSK9 in relation with fitness and

visceral fat mobilization; no LDL-C modification

Sponder

at al. (27)

2017 Subjects aged between 30 and 65

years old with at least one

cardiovascular risk factor

Moderate-vigorous AET for 8

months, from 75 min/week of

high-intensity to 150

min/week of

moderate-intensity PA

Reduction of LDL-C levels with increased

circulating PCSK9

Makela

et al. (28)

2019 Sedentary, pre-diabetic, middle

aged patients

AET for 60min three times in

a week for up to 3 months

Reduction of PCSK9 plasma levels even though

low intensity PA seems not to influence PCSK9

levels

AET, aerobic exercise training; LDL-r, low-density lipoprotein cholesterol receptor; LOX-1, low-density lipoprotein receptor-1; mRNA, messenger ribonucleic acid; PCSK9, proprotein

convertase subtilisin/kexin type 9.

Mediators of PCSK9 modulation in
trained subjects

Trained people tend to show higher amount of lean mass

and lower levels of visceral fat (40–42). As known today, visceral

fat is not only a storage tissue, but it plays a crucial role in

the pathophysiology of different diseases (e.g., atherosclerosis)

by releasing several mediators with local and systemic effects

(i.e., adipocytokines) (Figure 1).

The hypertrophic visceral adipose tissue of obese patients

undergoes degenerative remodeling including hypoxia

and macrophage infiltration, favoring the development of

inflammation with direct effects on the quality and quantity

of released adipocytokines. The reduction of atheroprotective
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FIGURE 1

Evidence suggest that regular physical activity can regulate the PCSK9 plasma levels even though few evidence is available at the moment. As

possible explanations, the reduction of resistin, annexin A2, and LOX-1 are reported with the most concrete results. Although, PCSK9 can be also

augmented in trained subjects. This is probably related to a higher metabolism, a possible undiscovered mechanism, or confounding factors.

While it is less known if exercise training a�ects the plasma levels of SREBP2, both fasting and statin treatment represent two confounding

factors when evaluating the possible role of physical activity on PCSK9 levels. LOX-1, lectin-type oxidized low-density lipoprotein receptor-1;

Proprotein convertase subtilisin/kexin type 9; SREBP2, sterol regulatory element-binding protein 2.

adiponectin (43) and the increased levels of resistin facilitate

lipolysis with direct effects on vessel health (44). As exercise was

shown to reduce resistin levels (45, 46), such adipokine can be

a further link between exercise and PCSK9 since resistin was

reported to increase the expression of PCSK9 in hepatocyte

thereby modulating LDLR levels and indirectly atherogenesis

(47). Furthermore, activation of adiponectin receptors was

shown to regulate PCSK9 expression in experimental model

of atherosclerosis with direct impact on the disease burden

(48). Also, leptin interferes with PCSK9 expression via the

activation of STAT3 and p38MAPK pathways (49, 50). Among,

adipocytokines, fibroblast growth factor 21 is a peptide

implied in fatty acids and glucose metabolism (51) under

both physiological and pathological conditions including

obesity and metabolic syndrome (52). Acute exercise was

shown to increase the circulating levels of fibroblast growth

factor 21 (53), which in turn impairs the expression of

PCSK9 via the suppression of the hepatic sterol regulatory

element binding protein 2 (54). Expressed by a variety of

cell types including adipocytes, annexin A2 is an anionic

phospholipid-binding proteins of the Ca2+ dependent family

that was reported to reduce PCSK9 levels by favoring the

modification of its catalytic subunit (55–57). Of interest,

annexin A2 levels are elevated in people who regularly

practice exercise (25), thereby indicating another possible

molecular link.

Recently described as an important mediator of

atherogenesis, lectin-type oxidized low-density lipoprotein

receptor-1(LOX-1) may be another mediator of the effect of PA

on PCSK9 levels. LOX-1 is a scavenger receptor with important

function in oxidized LDL-C uptake by endothelial cells (58).

PCSK9 and LOX-1 are both involved in the atherosclerotic

process (59) and recent evidence showed that PCSK9 and

LOX-1 influence each other in the vascular tissue (18, 60)

and are co-related to the atheroma formation. Pre-clinical

evidence showed that PA can reduce cholesterol accumulation

in atherosclerotic plaques via the reduction of LOX-1 gene

expression (61). Both PCSK9 and LOX-1 are reduced upon

exercise (22).

Sterol regulatory element binding protein 2 (SREBP2) is a

molecule implicated in the synthesis of cholesterol (62) as well

as a transcriptional activator of PCSK9 (63, 64). For such reason,

SREBP2 is often used to explain the paradoxical association of

elevated PCSK9 levels and reduced LDL-C that is seen during

fasting periods.

Even though it is not clear whether PA can modulate

SREBP2 levels, regular exercise reduces the expression of several

enzymes that regulates lipid metabolism in animal models (65,

66). The reduction of SREBP2 levels would end in lower PCSK9

plasma levels, as it happens during fasting (67, 68). Indeed, few

days of fasting reduce the amount of circulating PCSK9 but with

the unexpected results of increasing the quantity of circulating

LDL-C (69).

Furthermore, regular PA can augment the circulating levels

of interferon gamma, a cytokine with critical role in regulation of

immune system, as showed in both pre-clinical (70) and clinical

(71, 72) settings. Recent studies suggested a role for interferon

gamma in PCSK9 regulation (73).
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An excess of body fat is related to several detrimental

is associated with higher risk of insulin resistance (74), and

insulin resistance is one of the key element of the metabolic

syndrome. Also, higher levels of insulin are associated with

a higher expression of PCSK9 via sterol regulatory element

binding protein 1c (SREBP-1c) (17). On the other hand, regular

physical activity can improve insulin sensitivity (75–77).

Pitfalls in determining the e�ect of PA on
PCSK9

First of all, the variations of LDL-C circulating levels can

either be a consequence or a cause of PCSK9 variations. In fact,

when PCSK9 modulate the amount of LDL-C also LDL-C can

directly bind the PCSK9 molecule, causing a direct impairment

of its functionality (78). Furthermore, many limitations reside

in the evaluation of circulating levels of this mediator as it is

not clear whether this is a fair counterpart of its hepatic levels.

Also, as most studies investigate the levels of this molecule, they

might not directly reflect its activity. Under this point of view,

the presence of studies showing augmentation of PCSK9 along

with reduction of LDL-C circulating levels might be explained

by different PCSK9 functionality. Furthermore, most of the

analytic method for detecting PCSK9 use antibodies binding to

its mature form. However, the activity of PCSK9 resides in its

catalytic processes (79).

As previously mentioned, another great limitation resides

in the difficult standardization of exercise protocols. Also, with

regard to clinical research, sample sizes are generally small,

and some studies has non-negligible unbalanced gender and/or

comorbidities differences. The interpretation of the relatively

small number of recent clinical trials is also hampered by the

fact that often they use holistic interventional program with

prescription of both PA and diet. Lastly, the concomitant use of

statin therapy can interfere with the interpretation of the results.

In fact, statin treatment augments the amount of circulating

PCSK9 (80–82), probably because they increase the levels of

SREBP2 (83).

Conclusions

Regular exercise is known to ameliorate lipid profile and

represent the cornerstone of cardiovascular prevention. Patient

that practice regular exercise show a non-negligible reduced

risk of developing atherosclerosis and possible cardiovascular

events. The relationship between PCSK9 and PA can be a

possible explanation with exercise training envisaging a non-

pharmacological PCSK9 inhibitor. Indeed, the reduction of

adiposity and molecules like LOX-1, annexin A2, fibroblast

growth factor 21, and resistin secondary to exercise favor the

reduction of PCSK9 in the bloodstream. Yet, at present, several

limitations impact on the interpretation of the results including

the difficult standardization of exercise protocols.
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Pinocytotic engulfment of
lipoproteins by macrophages
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Atherosclerosis is a major cause of acute coronary syndrome and stroke. Foam

cell formation inmacrophages is involved in controlling plaque stability and the

pathogenesis of atherosclerosis. Accordingly, many studies have examined the

processes of lipid incorporation, such as scavenger receptor-mediated uptake

of oxidized low-density lipoprotein, in cells. In addition to receptor-mediated

machinery, growing evidence has suggested that pinocytosis, which is

a receptor-independent endocytic pathway, is associated with foam cell

formation when a su�cient number of lipoproteins is accumulated around

cells. Pinocytotic engulfment of nanoparticles is initiated by plasmamembrane

ru	ing in a phosphatidylinositol-3 kinase-dependent manner. Subsequent

to pinosome closure, the majority of pinosomes are internalized through

endocytic processes, and they can be recycled into the plasma membrane.

These pinocytotic processes are modulated by small GTPases and their

cytoskeletal rearrangement. Moreover, pinocytotic abilities may vary between

immunological subsets in cells. Accordingly, macrophages may show diverse

pinocytotic abilities depending on the surrounding microenvironment. This

review summarizes the current understanding of pinocytotic engulfment of

lipoprotein in macrophages, and discusses how this endocytic process is

governed under hypercholesterolemic conditions.

KEYWORDS

CWC22, calpain-6, Rac1, Cdc42, Akt, liver X receptors, macrophage-colony

stimulating factor

Introduction

Ischemic heart disease is the leading cause of death globally. Atherosclerosis

is a major risk factor for coronary disease because expansion of such eccentric

thickening of the arterial wall can lead to thromboembolism and thrombotic occlusion.

Numerous basic and epidemiological studies have shown that an abnormality of

cholesterol handling, excessive adaptive response to vascular insults, and inflammation

burden are associated with the pathogenesis of atherosclerosis (1, 2). Among these

events, cholesterol accumulation in macrophages is an essential process to expand

atherosclerotic plaques and is a major factor for defining plaque stability (3, 4). Several

endocytic pathways for internalizing low-density lipoprotein (LDL) cholesterol have

been reported. Scavenger receptors, such as scavenger receptor-A, CD36, and lectin-

like oxidized LDL receptor 1 (5, 6), in macrophages recognize oxidized LDL, but

not native LDL, to internalize LDL through the conventional endocytic process. In

addition to the receptor-mediated pathways, macrophages enable the incorporation
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of nanoparticles through pinocytosis. Pinocytosis is a

fundamental cellular process that engulfs extracellular

fluids. Pinocytosis is categorized into micropinocytosis and

macropinocytosis, which are endocytic processes that engulf

small particles (typically < 0.1µm) and large particles (typically

> 0.2µm), respectively (7). Such pinocytotic engulfment

in macrophages, which occurs spontaneously and can be

further modified by environmental factors, are related to

the innate immune system to monitor surrounding antigens

and microbial-associated molecules. Growing evidence has

suggested that pinocytosis is mediated through incorporation of

native LDL, thereby inducing formation of foamy macrophages

(8). This mini review summarizes the recent understanding

of internalization and trafficking of pinosomes and their

regulatory mechanisms.

Membrane regulation and endocytic
tra�cking during pinocytotic
incorporation of LDL in
macrophages

The pinocytotic deposition of native LDL is sufficient to

convert cultured macrophages into foam cells (9). Pinocytotic

uptake is independent of the degree of LDL oxidation and does

not saturate (7), and the molecular mechanisms underlying

pinocytotic LDL uptake are distinct from those of receptor-

mediated pathways. Indeed, targeted deletion of the macrophage

scavenger receptors scavenger receptor-A and CD36 does

not inhibit pinocytotic LDL uptake in macrophage-colony

stimulating factor (M-CSF)-differentiated macrophages (10).

Generally, macropinocytotic internalization of nanoparticles is

divided into plasma membrane ruffling and pinosome closure,

which are regulated by submembranous actin organization.

Small GTPases have central roles in this cytoskeletal regulation.

Ras-GTP drives the activation of phosphoinositide 3-kinases

(PI3Ks), which generates patches of PtdIns(3,4,5)P3 (11). The

Rho family GTPase Rac and actin-nucleation-promoting factors,

such as SCAR/WAVE complex, enable binding to these patches,

which nucleates actin filaments. In addition to actin-regulating

factors, phospholipase Cγ can be activated by PtdIns(3,4,5)P3,

thereby generating diacylglycerol and subsequent activation of

protein kinase C, which is involved in the positive regulation of

pinocytosis (12). Kruth and colleagues investigated mechanisms

underlying pinocytosis using pharmacological approaches in M-

CSF-differentiatedmacrophages, and found that pinocytosis was

inhibited by a broad-range PI3K inhibitors (10). In contrast,

inhibition of the class I PI3K isoforms β , γ , or δ did not affect

micropinocytosis in M-CSF-stimulated macrophages. Similarly,

macrophages from mice expressing dominant-negative class I

PI3K β , γ , or δ isoforms had no inhibitory effects. Therefore,

PI3Ks, excluding class I isoforms, drive macropinocytosis in

macrophages. Pharmacological screening of signaling pathways

has shown that dynamin, microtubules, actin, and vacuolar type

H(+)-ATPase appear to be associated with pinocytotic uptake

(10). Accordingly, phosphoinositide metabolism accompanied

by cytoskeletal regulation are indispensable even for pinocytotic

LDL uptake in macrophages (Figure 1).

In addition to the molecules noted above, the contribution

of Rho GTPases to pinocytotic regulation has been well–

documented. Anzinger et al. reported that the Rho GTPase

inhibitor toxin B substantially inhibited pinocytotic LDL

uptake in M-CSF-differentiated human macrophages (13).

Using time-lapse microscopy, they found that this inhibitor

almost completely inhibited macropinocytosis, although

cholesterol deposition in cells was not completely inhibited.

Their findings suggest the contribution of another endocytic

process, such as micropinocytosis, to LDL cholesterol uptake.

In contrast, pharmacological inhibition of Rac1 failed to

inhibit pinocytotic LDL uptake in M-CSF-differentiated

macrophages (10). Our previous study showed that expression

of the Rho GTPases RhoA and Rac1 in bone marrow cells was

imperceptible, while it was dramatically induced during the

differentiation of cells into macrophages in the presence of M-

CSF (14). Treatment of bone marrow cells with tumor necrosis

factor (TNF)-α suppressed maturation of Rac1 mRNA and

potentiated macropinocytosis. Deficiency of calpain-6, which

is a non-proteolytic isoform of the calpain protease family, in

TNF-α-stimulated murine macrophages showed interrupted

macropinocytosis concomitantly with the normalization of Rac1

splicing. Macropinocytosis in calpain-6-deficient macrophages

was restored by small interfering RNA-based silencing of Rac1.

Therefore, aberrant Rac1 mRNA regulation exerts inhibitory

actions in pinocytotic LDL uptake in TNF-α-stimulated

macrophages. While the mechanisms by which Rac1 or its

splice variants interrupt LDL uptake are unclear, Rac1-mediated

regulation of the endosomal recycling pathway may contribute

to the inhibitory actions. Indeed, pinosomes in Rac1-expressing

macrophages frequently express the recycling endosome marker

Rab11. Moreover, macropinosome velocity in cells is decelerated

by pharmacological inhibition of Rac1. Therefore, pinocytotic

LDL uptake is likely to be due to Rac1-dependent vesicle

trafficking rather than Rac1-dependent membrane ruffling.

Rho GTPases, such as RhoD, Rac1, Cdc42, TCL, and TC10,

are thought to be essential factors for endocytic trafficking

(15). Indeed, overexpression of dominant active forms of

Rac1 accelerate macropinocytosis activity in rat fibroblasts

(16). However, notably, prolonged Rac1 activity impairs the

maturation of Rab21-positive pinosomes in macrophages

(17), suggesting that optimal Rac1 regulation can maximize

pinocytosis. However, Ding et al. showed positive regulation

of pinocytotic LDL uptake by Cdc42, which is a small GTPase,

in human and murine macrophages (18). Indeed, the loss of

Akt3 in murine and human M-CSF-differentiated macrophages

upregulates with-no-lysine kinase 1 and subsequently activates
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FIGURE 1

Overview of pinocytotic deposition of low-density lipoprotein cholesterol in macrophages. Phosphoinositide 3-kinase drives pinocytotic plasma

membrane ru	ing. Small GTPases are associated with tra�cking and recycling of pinosomes, as well as with pinocytotic plasma membrane

regulation, and have diverse actions in pinocytotic low-density lipoprotein cholesterol uptake in macrophages. While pinocytosis appears to be

optimized in an alternative (M2) macrophage subset, certain elements, such as Toll-like receptor 4 (TLR4)-mediated signaling, enable the

restoration of pinocytosis, even in an inflammatory (M1) subset. TLR4 driver lipopolysaccharide (LPS) can polarize macrophage di�erentiation

toward M1 subset, and activates pinocytotic activation through unknown mechanisms. Chemokine (C-C motif) ligand 19 reportedly possesses

similar pinocytotic e�ects in the cells. In the case of mmLDL-di�erentiated macrophages, cytoskeletal rearrangement appears to be driven

through TLR4/Ras/Raf/ERK/MEK axis independently of PI3K signaling. Furthermore, pro-inflammatory cytokine TNF-α upregulates calpain-6, a

non-proteolytic isoform of calpain protease family, to inhibit CWC22-mediated Rac1 splicing. This interferes with endosomal recycling pathway,

and in turn increases lysosomal processing of endosome-derived lipoprotein cholesterol to generate cytosolic lipid droplets. In contrast to M1

subset, macrophage-colony stimulating factor (M-CSF)-di�erentiated M2 macrophages exhibits phosphatidylinositol 3-kinase (PI3K)-dependent

cytoskeletal rearrangement and membrane ru	ing. Similarly, thrombospndin-1 enables to elicit CD47-mediated activation of PI3K and

subsequent pinocytotic uptake of native LDL. In this case, it is likely that Akt3 negatively regulates Cdc42 and acyl-CoA cholesterol

acyltransferase 1 to decelerate pinocytotic cholesterol deposition in the cells. ACAT1, acyl-CoA cholesterol acyltransferase 1; CCL19,

Chemokine (C-C motif) ligand 19; EE, early endosome; LE, late endosome; LPS, lipopolysaccharide; M-CSF, macrophage-colony stimulating

factor; mmLDL, minimally modified low density lipoprotein; PI3K, phosphatidylinositol 3-kinase; PIP3, phosphatidyl inositol 3-phosphate; Rac1,

Rac family small GTPase 1; RE, recycling endosome; TLR4, Toll-like receptor 4; TNF-α, tumor necrosis factor-α; TSP-1, thrombospndin-1.

serum and glucocorticoid-inducible kinase 1. Serum and

glucocorticoid-inducible kinase 1 promotes expression of the

Rho family GTPase Cdc42, thereby accelerating cytoskeletal

rearrangement and pinocytosis. Similarly, Akt3-dependent

negative regulation of pinocytosis is detectable in murine

peritoneal macrophages. This regulation is accompanied

by limited receptor-dependent uptake of acetylated LDL

and downregulation of acyl-CoA cholesterol acyltransferase

(19). Acyl-CoA cholesterol acyltransferase converts free

cholesterol into cholesterol ester to form cytosolic lipid

droplets in peritoneal macropahges (20). Therefore, Akt3

has a protective role in foam cell formation in macrophages

and atherogenesis. How Akt3 simultaneously downregulates

receptor-dependent and receptor-independent pathways is

currently unclear, but Akt3 might interfere with a common

signaling pathway, such as endocytic vesicle trafficking or

the exocytotic process. This possibility is consistent with a

previous study, which showed that overexpression of dominant-

negative Cdc42 counteracted macropinocytosis in vascular

endothelial cells (21). Collectively, small GTPases are associated

with vesicle trafficking and pinocytotic plasma membrane

regulation (Figure 1), and have diverse actions regarding

pinocytotic LDL uptake in macrophages. Therefore, defining

pinocytotic activity by expression levels of small GTPases alone

is difficult.

Regulatory mechanisms underlying
pinocytotic LDL incorporation

Macrophages can be divided into a variety of

subpopulations, which comprise pro-inflammatory,

immunosuppressive, and tissue-repairing types, and they

are dynamically interconverted depending on the tissue
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microenvironment (22). During bacterial infection, monocyte-

macrophages can be activated by inflammatory elements, such

as Toll-like receptor (TLR) ligands and interferon-γ, which

facilitate the skewing of macrophages into the M1 subset

(classically activated macrophages). M1 macrophages produce

inflammatory cytokines, such as TNF-α, interleukin (IL)-6,

and IL-12, reactive oxygen species, and reactive nitrogen

species, and induce a Th1-type immune response (23).

Furthermore, M1 macrophages exert strong antibacterial or

antiviral activity and antitumor effects. In contrast to the M1

subset, macrophages activated by IL-4 and IL-13 produced

by Th2 cells, basophils, mast cells, and innate lymphoid

cells are converted into M2 macrophages (alternatively

activated macrophages) (23). This activation exerts host

defense against parasites, tissue repair, angiogenesis, and tumor

growth, and becomes immunosuppressive. M2 macrophages

strongly express arginase and mannose receptors (24).

Tumor-associated macrophages that are infiltrated into tumor

tissue are thought to be converted from M1 to M2 subsets,

thereby accelerating tumor progression (25). Tumor-associated

macrophages showing low IL-12 expression levels and high

IL-10 expression levels, possess weak antitumor activity,

and drive matrix remodeling and angiogenesis (26). In

addition to the progression of cancer, aberrant regulation

of macrophage subsets can be involved in various diseases.

Therefore, phenotypic regulation of macrophage subsets can

be regarded as a therapeutic target. Arteriosclerosis, which is a

Th1-dominant vascular disorder, can be treated by skewing M1

to M2 macrophages (27). In contrast, bronchial asthma, which

is a Th2-dominant disease, might be targeted by the opposite

strategy (28).

M2 macrophages show constitutive pinocytotic activity and

can be further stimulated with related cytokines such as M-

CSF. Notably, the majority of the above-mentioned observations

on pinocytotic LDL uptake were from investigations using

M-CSF-differentiated human monocyte-derived macrophages.

Redka et al. showed that M-CSF/IL-4-differentiated M2

macrophages had robust micropinocytosis activity, while

that in granulocyte M-CSF/interferon-γ /lipopolysaccharide-

differentiated M1 macrophages was negligible (29). They found

that Rho GTPase expression levels in M1 macrophages were

lower than those in the M2 subset. In addition to small

GTPases, insufficient PI3K activity is likely responsible for

modest pinocytotic ability in the M1 subset (29). Calcium-

sensing receptors appear to be necessary for sustaining

small GTPases and PI3K in M2 macrophages. However,

notably, M1 macrophages show robust pinocytotic activity

when the cells are stimulated with certain pro-inflammatory

substances. Indeed, acute treatment of pro-inflammatory

macrophages with lipopolysaccharide or CC chemokine ligand

19 markedly accelerates macropinosome formation in human

monocyte-derived macrophages (29). Moreover, minimally

oxidized low-density lipoprotein (mmLDL), which is an

alternative TLR4 ligand, and cholesteryl ester hydroperoxide,

an active component of mmLDL, induce TLR4-dependent

macropinocytotic incorporation of oxidized LDL and native

LDL (30). In this case, mmLDL elicits an association

of spleen tyrosine kinase with a TLR4 complex, TLR4

phosphorylation, activation of the Vav1-Ras-Raf-MEK-ERK1/2

axis, phosphorylation of paxillin, and activation of Rac, Cdc42,

and Rho in murine peritoneal macrophages. These findings

suggest that mmLDL-induced TLR4 signaling normalizes the

disparity of small GTPases. Collectively, the status of small

GTPases is likely to depend on types of extracellular stimuli

rather than synchronizing with the phenotypic status of M1/M2

subsets. Accordingly, the master regulator of pinocytosis is

currently unclear.

While the regulatory mechanisms underlying pinocytosis

are poorly understood, several studies have focused on the

upstream modulator of this process (Figure 1). Agonists of

liver X receptors (LXRs) are involved in the downregulation

of pinocytotic uptake of native LDL in M-CSF-differentiated

macrophages (31). LXRs are ligand-activated transcription

factors involved in the control of lipid metabolism and

inflammation. Because targeting LXRs in bone marrow

cells facilitates atherosclerosis (32), LXRs may interfere

with pinocytotic cholesterol deposition in macrophages and

subsequent pathogenesis of atherosclerosis. Csányi et al. found

that thrombospndin-1 (TSP-1) and its cytoskeletal regulation

potentiated pinocytosis (33). Indeed, treatment of TSP-1

with human and murine M-CSF-differentiated macrophages

stimulated membrane ruffle formation and pericellular solute

internalization by macropinocytosis. The TSP1 cognate

receptor CD47, NADPH oxidase 1 (Nox1) signaling, PI3K,

and myotubularin-related protein 6 appear to be associated

with TSP1-induced macropinocytosis. Our previous study

showed that CWC22, which is an essential loading factor

of exon junction complex, was associated with pinocytotic

incorporation of native LDL in murine bone marrow-derived

macrophages (14). CWC22 in macrophages shows nuclear

localization in human mild atherosclerotic lesions, while

it shows cytosolic localization in advanced atherosclerotic

lesions. Macrophages in advanced lesions simultaneously

express calpain-6, which potentiates formation of a calpain-

6/CWC22 complex in the cytoplasm and inhibits nuclear

localization of CWC22. Because CWC22 has a direct role in

Rac1 mRNA splicing, calpain-6 counteracts CWC22-mediated

maturation of Rac1 mRNA. Indeed, calpain-6-deficient

macrophages show low Rac1 protein expression levels and

insufficient macropinocytosis activity. Knockdown of Cwc22

in calpain-6-deficient macrophages leads to the recovery

macropinocytosis, concomitantly with restoring Rac1 mRNA

maturation. As noted above, Rac1 facilitates the dynamics

of recycling endosomes. Therefore, CWC22 and related

splicing factors are thought to be negative regulators of the

pinocytotic process.
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Does pinocytosis drive
atherogenesis?

While fluid phase pinocytosis is a constitutive process in

macrophages and other cells under the physiological conditions,

this process is reportedly potentiated in former cell type when

they are localized in atherosclerotic lesions. In vivo experiments

using Apoe−/− hypercholesterolemic mice have indicated

that fluorescent nanobeads, which is similar in size to LDL

and were injected into blood circulation, were massively

accumulated in CD68-positive macrophages in atherosclerotic

lesions, but not in non-atheroma regions in arteries (34).

We also investigated the uptake of nanobeads using Ldlr−/−

hypercholesterolemic mice. As a result, similar deposition

of nanoparticle was reproduced in foamy macrophages in

atherosclerotic lesions (14). These observations suggest that

macrophages in atherosclerotic lesions preferentially engulf

environmental LDL-like particles under hypercholesterolemia.

Interestingly, targeting calpain-6 suppressed nanobeads

incorporation in foamy macrophages as well as atherogenesis

in hypercholesterolemic mice without altering plasma lipid

profiles. Notably, overexpression of calpain-6 can upregulate

pinocytotic incorporation of LDL in bone marrow-derived

macrophages without modifying receptor-mediated uptake

of oxidative LDL and phagocytic uptake of aggregated

LDL. Considering that calpain-6 is exclusively expressed in

macrophages in atherosclerotic lesions, it is interpreted that the

pinocytotic incorporation of LDL in lesional macrophages, at

least of their calpain-6-mediated portion, may be responsible for

the pathogenesis of atherosclerosis. Nevertheless, since calpain-

6 contribute to the other atherogenic processes in macrophages

such as cellular motility (14), the pathophysiological importance

of this endocytic process in the pathogenesis of atherosclerosis

has not been fully determined.

Discussion

As noted above, the contribution of pinocytosis to

the pathogenesis of atherosclerosis is currently sketchy.

This is because of the lack of responsible regulatory

element(s) of this processes. Cell-based experiments

suggest the dominant roles of small GTPases in pinocytotic

membrane ruffling, while they also contribute to the

other fundamental processes of cells, including mitosis

and cell motility. Identification of the pinocytotic master

regulator enables to perform intervention study in animal

models to determine the pathogenic significance of

this processes. It was reported that targeted deletion of

scavenger receptors, CD36, and scavenger receptor-A in

hypercholesterolemic mice inhibits the pathogenesis of

atherosclerosis without altering oxidized LDL uptake in

macrophages (35). Therefore, pinocytotic uptake of LDL in

the cells is worthy to be further investigated. To identify the

master regulator of pinocytotic LDL uptake, comprehensive

studies evaluating membrane regulation, vesicle trafficking,

exocytosis/efflux, and subsequent cholesterol deposition

are necessary.
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Background: Remnant lipoprotein cholesterol (RC) is an independent risk

factor for cardiovascular disease (CVD). However, the relationships of remnant

cholesterol and other conventional lipid parameters with new-onset carotid

plaque are not fully understood in the Chinese community-based population.

Materials and methods: A total of 872 plaque-free participants (51.39 ±

4.96 years old) with no history of CVD were included in this study. The plasma

concentrations of RC were calculated by subtracting low-density lipoprotein

cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) from

total cholesterol (TC). Multivariate regression models were used to evaluate

and compare the associations between RC and other lipid parameters and

new-onset carotid plaque.

Results: After a mean 6.77-year follow-up, the incidence of new-onset carotid

plaque was 188 (21.56%). RC was significantly associated with new-onset

carotid plaque [Odd ratio (OR) = 1.57 per 1 mmol/L increase, 95% confidence

interval (CI): 1.03–2.41, p = 0.038]. The highest tertile of RC (T3 group) had

the highest risk of new-onset carotid plaque (OR = 2.53, 95% CI: 1.63–3.95).

Similar results were seen for increased other lipid parameters, but decreased

HDL-C levels. When adding another lipid parameter into the adjusted model

with RC simultaneously, only RC remained significantly associated with

new-onset carotid plaque after adjusting for other lipid parameters (all p

value < 0.005). Furthermore, RC was strongly associated with new-onset

carotid plaque in participants with lower baseline LDL-C levels.

Conclusion: Increased RC levels were superior to other conventional

lipid parameters to be associated with new-onset carotid plaque in

the Chinese community-based population. Furthermore, RC should be

considered in participants with lower LDL-C levels for the purpose of early

atherosclerosis prevention.
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Introduction

There is considerable residual risk of arteriosclerotic
cardiovascular disease (ASCVD) after reduction of low-
density lipoprotein cholesterol (LDL-C) to the recommended
concentration achieved by statin regimens, and even after
managing other modifiable risk factors, such as hypertension
(1–3). Over the past many years, numerous clinical studies
have focused on high levels of triglyceride-rich lipoproteins
cholesterol, which indicates increased concentrations of
potentially remnant cholesterol and may help to explain the
residual risk (4–6).

Remnant cholesterol is the cholesterol content of
triglyceride-rich lipoproteins, and is composed of VLDL
and IDL in the fasting state, and chylomicron remnants in
the non-fasting state (2). When there is an excess of remnant
lipoproteins in the plasma, remnants can carry large amounts
of cholesterol and have the same potential ability as LDL to
penetrate and become trapped in the intima of the arterial wall,
resulting in the formation of foam cells, atherosclerosis, and
low-grade inflammation (7–12).

The presence of new-onset carotid plaque frequently serves
as a risk predictor in the assessment of CVD/Stroke risk, and
carotid plaque formation is a surrogate marker of a high-
risk of carotid atherosclerotic disease (13–15). The relationship
between remnant lipoproteins cholesterol and cardiovascular
events has been demonstrated for decades (4, 8, 16–20).
However, few studies have focused on comparing the differences
between RC and other conventional lipid parameters in
atherosclerotic disease, even other surrogate markers, such as
carotid plaque formation (21–24). In other words, the lack of
development in the evidence base for the associations between
RC and conventional lipid parameters and the risk of new-
onset carotid plaque has been more important, especially in
the Chinese community-based population with no history of
cardiovascular disease (25).

The present study aimed to longitudinally evaluate the
relationships between RC and other conventional lipid
parameters and new-onset carotid plaque, and further assess
the comparisons of RC and other parameters in relation to
new-onset carotid plaque when both lipids were put into the
model simultaneously.

Materials and methods

Study population

All participants included in this study were enrolled
from a community-based atherosclerosis cohort set up in
2011 in Beijing, China. Detailed descriptions of the study
procedures have been described previously (26). Initially,
a total of 4,431 participants aged ≥ 40 years underwent

the baseline survey in 2012 and responded on-site during
the follow-up visit in 2018. For the present study, 1,960
participants with carotid plaque-free status at baseline were
selected, and then 988 participants with quantitative carotid
artery measurements at the follow-up visit were included.
After stepwise exclusion, 116 participants included using lipid-
lowering medications (n = 80), history of cardiovascular
disease (n = 33), and missing data for lipid profiles (n = 3).
Ultimately, this analysis included 872 eligible participants
with a mean 6.77-year follow-up (Supplementary Figure 1).
This study was approved by the ethics committee of Peking
University First Hospital, and confirmed to the provisions
of the Declaration of Helsinki. All participants signed
informed consent.

Data collection

Baseline and follow-up data were collected by trained
researcher staff according to standard operating procedures. All
participants were interviewed using a standard questionnaire
that was specifically designed for the present study, to
obtain information on demographic characteristics, education,
occupation, lifestyle, personal, and medical history. Current
smoking means smoking at least one cigarette per day for
at least 6 months. Current drinking means drinking alcohol
at least once per week for at least 6 months. The body
mass index (BMI) was calculated by the following formula:
BMI = weight (kg)/height (m2). The peripheral systolic (SBP)
and diastolic blood pressure (DBP) readings used the mean
value of these three successful measurements using a standard
method (26).

A venous blood sample was obtained from the forearm
of each participant after an overnight fast (at least 12 h) at
the baseline survey. Subsequently, the Roche C8000 Automatic
Analyzer was used to examine all biochemistry parameters in
serum, including fasting blood glucose (FBG), 2-h glucose in
the standard 75-g oral glucose tolerance test (OGTT), total
cholesterol (TC), triglycerides (TG), high-density lipoprotein
cholesterol (HDL-C), and low-density lipoprotein cholesterol
(LDL-C), which were also directly measured by a chemical
method; serum creatinine (Scr, µmol/L) levels were measured
enzymatically. Non-HDL-C was calculated by subtracting HDL-
C from TC. RC was calculated by subtracting LDL-C and HDL-
C from TC, as done previously (21, 27, 28). In addition, the
estimated glomerular filtration rate (eGFR) was determined by
the CKD-EPI equation (26).

Hypertension was defined as any self-reported history,
SBP ≥ 140 mmHg or DBP ≥ 90 mmHg, or taking
anti-hypertensive medication. Diabetes mellitus was
defined as any self-reported history of diabetes, use of
hypoglycemic medication, FBG ≥ 7.0 mmol/L, and/or
OGTT ≥ 11.1 mmol/L.
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Carotid ultrasonography

All participants underwent carotid ultrasonography
by trained and certified sonographers both at the baseline
survey in 2012 using the high-resolution B-mode ultrasound
system (GE Vivid 7, 8∼10 MHz linear-array vascular
transducer; Milwaukee, WI, United States) and at the
follow-up visit in 2018 using a Terason Echo Ultrasound
System (Burlington, MA, United States). Briefly, carotid
ultrasound was performed according to standard scanning
and reading protocols at the baseline survey and follow-
up visit. Intima-media thickness (IMT) was detected as
the distance between the lumen-intima and the media-
adventitia ultrasound interfaces. Carotid IMT (cIMT)
was defined as the mean IMT measured at 1 cm lengths
of the far wall of the bilateral distal common carotid
artery. Carotid plaque was defined as focal structures
encroaching into the arterial lumen of at least 0.5 mm or
50% of the surrounding cIMT value, or demonstrating a
thickness > 1.5 mm as measured from the intima–lumen
interface to the media-adventitia interface at any level of the
bilateral common carotid artery, internal carotid artery, and/or
bifurcation (29).

Statistical analysis

Descriptive statistics were expressed as the mean± standard
deviation (SD) or median (interquartile range) for continuous
variables and number (percentage) for dichotomous variables.
Normally distributed continuous variables were compared
using Student’s t-test, whereas Kruskal-Wallis test was used
for variables with a skewed distribution. Pearson’s χ2-test or
Fisher’s exact test was applied to all categorical variables as
appropriate. Univariate and multivariate regression models
were used to evaluate the relationships between baseline lipid
parameters (both as a continuous and categorical variable)
and new-onset carotid plaque, after adjusting for sex and age
(Model 1), and further adjusting for BMI, current smoking,
current drinking, estimated glomerular filtration rate, diabetes
mellitus, hypertension, and the use of antihypertensive and
hypoglycemic medications (Model 2). Regarding possible
collinearity, the variance inflation factor (VIF) was calculated
for the included variables in each multivariable regression model
(Supplementary Table 1). We further assessed the comparisons
of RC and other conventional lipid parameters in relation to
new-onset carotid plaque when both lipid parameters were
put into the model simultaneously. In addition, we conducted

TABLE 1 Baseline characteristics stratified by remnant lipoprotein cholesterol (RC) tertiles.

Total Remnant cholesterol, mmol/L P-value

Tertile 1 (< 0.42) Tertile 2 (0.42- < 0.64) Tertile 3 (≥ 0.64)

N 872 290 290 292

Age, year 51.39± 4.96 50.86± 5.01 51.01± 5.11 52.30± 4.62 < 0.001

Female, N (%) 642 (73.62%) 227 (78.28%) 213 (73.45%) 202 (69.18%) 0.045

BMI, kg/m2 25.62± 3.31 24.35± 3.12 25.84± 3.25 26.67± 3.15 < 0.001

Total cholesterol, mmol/L 5.27± 0.90 4.83± 0.71 5.21± 0.80 5.76± 0.92 < 0.001

Triglycerides, mmol/L 1.22 (0.88, 1.77) 0.79 (0.63, 1.02) 1.23 (1.00, 1.55) 2.07 (1.54, 2.71) < 0.001

HDL-C, mmol/L 1.49± 0.40 1.74± 0.41 1.46± 0.33 1.26± 0.29 < 0.001

LDL-C, mmol/L 3.20± 0.74 2.79± 0.57 3.23± 0.65 3.57± 0.78 < 0.001

Non-HDL-C, mmol/L 3.78± 0.91 3.09± 0.60 3.76± 0.66 4.50± 0.83 < 0.001

Remnant cholesterol, mmol/L 0.52 (0.37–0.70) 0.32 (0.24–0.37) 0.52 (0.47–0.58) 0.81 (0.70–0.97) < 0.001

FBG, mmol/L 5.84± 1.49 5.64± 1.43 5.71± 1.05 6.17± 1.83 < 0.001

eGFR, mL/min/1.73◦m2 100.23± 9.42 101.75± 8.82 101.03± 9.27 97.92± 9.73 < 0.001

Current drinking, N (%) 196 (22.48%) 57 (19.66%) 69 (23.79%) 70 (23.97%) 0.370

Current smoking, N (%) 133 (15.25%) 33 (11.38%) 41 (14.14%) 59 (20.21%) 0.010

Disease, N (%)

Hypertension 235 (26.95%) 57 (19.66%) 67 (23.10%) 111 (38.01%) < 0.001

Diabetes mellitus 113 (12.96%) 30 (10.34%) 28 (9.66%) 55 (18.84%) 0.001

Treatment, N (%)

Antihypertensive 114 (13.07%) 35 (12.07%) 33 (11.38%) 46 (15.75%) 0.242

Hypoglycemic 34 (3.90%) 12 (4.15%) 7 (2.41%) 15 (5.14%) 0.229

Data are shown as mean± standard deviation (SD) or median (IQR, Q1-Q3) for continuous variables and number (percentage) for dichotomous variables.
BMI, body mass index; RC, remnant cholesterol; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Non-
HDL-C, non-high-density lipoprotein cholesterol; FBG, fasting blood glucose; eGFR, estimated glomerular filtration rate.
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threshold effect analysis for lipid parameters if the relationships
were non-linear (Supplementary Table 2), and investigated
the modification of baseline LDL-C levels for the effect of
RC on new-onset carotid plaque. In this study, a P-value
of < 0.05 (two-sided) was considered statistically significant
for all tests. All statistical analyses were performed using
Empower(R) (X&Y solutions, Inc., Boston, MA, United States)
and R software.1

Results

Baseline patient characteristics

Table 1 shows the baseline characteristics of eligible
participants, both overall and stratified by RC tertiles. Among
the 872 subjects, 73.62% were female, with an average age
of 51.39 ± 4.96 years old and a mean (SD) BMI of
25.62 ± 3.31 kg/m2. Those with hypertension and diabetes
accounted for 26.95% (235), and 12.96% (113), respectively. The
mean (SD) baseline lipid parameters were 5.27 ± 0.90 mmol/L
for TC, 3.20± 0.74 mmol/L for LDL-C, 1.49± 0.40 mmol/L for

1 www.R-project.org

HDL-C, and 3.78 ± 0.91 mmol/L for non-HDL-C, respectively.
The median (interquartile range, IQR) RC was 0.52 (0.37,
0.70)◦mmol/, and TG was 1.22 (0.88, 1.77)◦mmol/L. The
participants with higher RC (the top tertile) had higher levels of
BMI, TC, LDL-C, TG, non-HDL-C, FBG, lower levels of HDL-
C, and a higher prevalence of hypertension, diabetes mellitus
(p < 0.05). There was no significant difference between the
different RC tertiles for current drinking, or the use of anti-
hypertensive and hypoglycemic medication.

Associations of remnant lipoprotein
cholesterol and other lipid parameters
with new-onset carotid plaque when
considered individually

Of the 872 eligible plaque-free participants at baseline
in this study, 188 (21.56%) individuals developed new-onset
carotid plaque after a mean 6.77-year follow-up. As shown
in Figure 1, there was mainly positive association between
lipid parameters and new-onset carotid plaque, except for a
negative linear association with HDL-C. Table 2 demonstrates
the associations of RC and other conventional lipid parameters
with new-onset carotid plaque. RC (per 1 mmol/L increase)
was significantly associated with increases of 65% (95% CI:

FIGURE 1

The relationship between lipid parameters and new-onset carotid plaque*. (A) Remnant lipoprotein cholesterol (RC); (B) total cholesterol (TC);
(C) triglycerides (TG); (D) low-density lipoprotein cholesterol (LDL-C); (E) high-density lipoprotein cholesterol (HDL-C); and (F) Non-HDL-C.
*Adjusted for: sex, age, body mass index, current drinking, current smoking, estimated glomerular filtration rate, diabetes mellitus, hypertension,
antihypertensive, and hypoglycemic drugs.
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TABLE 2 Logistic regressions for the effects of baseline lipid parameters and new-onset carotid plaque.

Lipid parameters N (%) OR (95% CI) P-value

Crude Adjusted model 1 Adjusted model 2

RC, per 1 mmol/L increase 188 (21.56%) 1.65 (1.10–2.48) 0.016 1.52 (1.02–2.28) 0.042 1.57 (1.03–2.41) 0.038

Tertiles of RC

T1 (< 0.42) 46 (15.86%) Ref. Ref. Ref.

T2 (0.42–< 0.64) 50 (17.24%) 1.11 (0.71–1.71) 0.655 1.07 (0.69–1.67) 0.764 1.23 (0.78–1.95) 0.376

T3 (≥ 0.64) 92 (31.51%) 2.44 (1.64–3.64) < 0.001 2.18 (1.45–3.28) < 0.001 2.53 (1.63–3.95) < 0.001

p for trend < 0.001 < 0.001 < 0.001

TC, per 1 mmol/L increase 188 (21.56%) 1.28 (1.08–1.54) 0.006 1.30 (1.08–1.56) 0.006 1.28 (1.06–1.55) 0.011

Tertiles of TC

T1 (< 4.87) 50 (17.30%) Ref. Ref. Ref.

T2 (4.87–< 5.60) 59 (20.21%) 1.21 (0.80–1.84) 0.370 1.25 (0.81–1.91) 0.313 1.23 (0.79–1.90) 0.355

T3 (≥ 5.60) 79 (27.15%) 1.78 (1.19–2.66) 0.005 1.81 (1.19–2.76) 0.005 1.81 (1.18–2.78) 0.007

p for trend 0.004 0.005 0.006

TG, per 1 mmol/L increase 188 (21.56%) 1.15 (1.01–1.31) 0.040 1.12 (0.97–1.28) 0.115 1.12 (0.97–1.30) 0.128

Tertiles of TG

T1 (< 0.99) 45 (15.68%) Ref. Ref. Ref.

T2 (0.99–< 1.55) 64 (21.92%) 1.51 (0.99–2.30) 0.056 1.49 (0.97–2.29) 0.070 1.55 (0.99–2.41) 0.053

T3 (≥ 1.55) 79 (26.96%) 1.99 (1.32–2.99) 0.001 1.79 (1.18–2.72) 0.006 1.92 (1.22–3.00) 0.004

p for trend 0.001 0.007 0.005

HDL-C, per 1 mmol/L increase 188 (21.56%) 0.63 (0.41–0.96) 0.032 0.73 (0.46–1.15) 0.175 0.64 (0.39–1.05) 0.079

Tertiles of HDL-C

T1 (< 1.28) 69 (23.88%) Ref. Ref. Ref.

T2 (1.28–< 1.60) 69 (23.79%) 1.00 (0.68–1.46) 0.982 1.03 (0.69–1.55) 0.867 0.96 (0.64–1.46) 0.863

T3 (≥ 1.60) 50 (17.06%) 0.66 (0.44–0.99) 0.042 0.74 (0.48–1.15) 0.183 0.65 (0.41–1.05) 0.077

p for trend 0.046 0.188 0.0780

LDL-C, per 1 mmol/L increase 188 (21.56%) 1.43 (1.15–1.78) 0.001 1.40 (1.12–1.76) 0.003 1.40 (1.11–1.77) 0.004

Tertiles of LDL-C

T1 (< 2.85) 50 (17.42%) Ref. Ref. Ref.

T2 (2.85–< 3.46) 58 (19.80%) 1.17 (0.77–1.78) 0.463 1.10 (0.72–1.69) 0.666 1.14 (0.73–1.76) 0.567

T3 (≥ 3.46) 80 (27.40%) 1.79 (1.20–2.67) 0.004 1.70 (1.13–2.57) 0.012 1.75 (1.14–2.67) 0.010

p for trend 0.004 0.010 0.009

Non-HDL-C, per 1 mmol/L increase 188 (21.56%) 1.39 (1.16–1.65) < 0.001 1.35 (1.12–1.61) 0.001 1.36 (1.13–1.65) 0.001

Tertiles of Non-HDL-C

T1 (< 3.37) 49 (16.96%) Ref. Ref. Ref.

T2 (3.37–< 4.10) 57 (19.52%) 1.19 (0.78–1.81) 0.424 1.09 (0.71–1.68) 0.696 1.14 (0.73–1.77) 0.571

T3 (≥ 4.10) 82 (28.18%) 1.92 (1.29–2.87) 0.001 1.81 (1.20–2.73) 0.005 1.89 (1.23–2.89) 0.004

p for trend 0.001 0.003 0.003

Model 1: adjusted for age and sex. Model 2: adjusted for age, sex, body mass index, current drinking, current smoking, estimated glomerular filtration rate, diabetes mellitus, hypertension,
antihypertensive, and hypoglycemic drugs.
OR, odds ratio; CI, confidence interval; Ref., reference value; RC, remnant cholesterol; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C,
low-density lipoprotein cholesterol; Non-HDL-C, non-high-density lipoprotein cholesterol.

1.10–2.48; p= 0.016) for the risk of new-onset carotid plaque. In
the adjusted multivariable regression models, increased RC was
strongly associated with new-onset carotid plaque (OR = 1.57
per 1 mmol/L increase; 95% CI: 1.03–2.41; p = 0.038). Similar
results appeared in lipid parameters as categorical variables in
tertiles, and showed a gradient relationship except for HDL-C (p
for trend < 0.05).

Associations of remnant lipoprotein
cholesterol and other lipid parameters
with new-onset carotid plaque when
considered simultaneously

When RC and another conventional lipid parameter were
put into the multivariable regression model simultaneously,
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TABLE 3 Comparisons of remnant lipoprotein cholesterol (RC) and another lipid parameter in relation to new-onset carotid plaque.

Comparisons OR (95% CI) P-value OR (95% CI) P-value

Comparison I† (when considered RC and TC simultaneously)

RC, mmol/L TC, mmol/L

T1 (< 0.42) Ref. T1 (< 4.87) Ref.

T2 (0.42–< 0.64) 1.16 (0.73–1.86) 0.525 T2 (4.87–< 5.60) 1.12 (0.72–1.75) 0.611

T3 (≥ 0.64) 2.26 (1.40–3.65) < 0.001 T3 (≥ 5.60) 1.33 (0.83–2.12) 0.230

Comparison II† (when considered RC and TG simultaneously)

RC, mmol/L TG, mmol/L

T1 (< 0.42) Ref. T1 (< 0.99) Ref.

T2 (0.42–< 0.64) 1.16 (0.70–1.94) 0.564 T2 (0.99–< 1.55) 1.26 (0.77–2.07) 0.363

T3 (≥ 0.64) 2.55 (1.41–4.61) 0.002 T3 (≥ 1.55) 1.01 (0.55–1.85) 0.963

Comparison III† (when considered RC and HDL-C simultaneously)

RC, mmol/L HDL-C, mmol/L

T1 (< 0.42) Ref. T1 (< 1.28) Ref.

T2 (0.42–< 0.64) 1.21 (0.75–1.94) 0.428 T2 (1.28–< 1.60) 1.22 (0.79–1.88) 0.377

T3 (≥ 0.64) 2.54 (1.55–4.15) < 0.001 T3 (≥ 1.60) 1.02 (0.60–1.74) 0.929

Comparison IV† (when considered RC and LDL-C simultaneously)

RC-mmol/L LDL-C, mmol/L

T1 (< 0.42) Ref. T1 (< 2.85) Ref.

T2 (0.42–< 0.64) 1.14 (0.71–1.84) 0.578 T2 (2.85–< 3.46) 1.07 (0.68–1.67) 0.772

T3 (≥ 0.64) 2.25 (1.39–3.63) < 0.001 T3 (≥ 3.46) 1.33 (0.84–2.11) 0.230

Comparison V† (when considered RC and Non-HDL-C simultaneously)

RC, mmol/L Non-HDL-C, mmol/L

T1 (< 0.42) Ref. T1 (< 3.37) Ref.

T2 (0.42–< 0.64) 1.19 (0.72–1.96) 0.494 T2 (3.37–< 4.10) 0.94 (0.59–1.52) 0.811

T3 (≥ 0.64) 2.28 (1.31–3.97) 0.004 T3 (≥ 4.10) 1.17 (0.68–2.00) 0.569

†RC and other lipid parameters were simultaneously added into the multivariable regression model. The model was adjusted for age, sex, body mass index, current drinking, current
smoking, estimated glomerular filtration rate, diabetes mellitus, hypertension, antihypertensive, and hypoglycemic drugs.
OR, odds ratio; CI, confidence interval; Ref., reference value; RC, remnant cholesterol; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C,
low-density lipoprotein cholesterol; Non-HDL-C, non-high-density lipoprotein cholesterol.

only RC remained significantly associated with new-onset
carotid plaque, even after adjusting for other lipid parameters
respectively in different comparisons. Compared with the
bottom tertile (T1), the effect of higher RC (the top tertile)
for new-onset carotid plaque was increased by 2.26 (95% CI:
1.40–3.65) after adjusting for TC, 2.55 (95% CI: 1.41–4.16) after
adjusting for TG, 2.54 (95% CI: 1.55–4.15) after adjusting for
HDL-C, 2.25 (95% CI: 1.39–3.63) after adjusting for LDL-C,
and 2.28 (95% CI: 1.31–3.97) after adjusting for non-HDL-C,
respectively (Table 3).

Association of remnant lipoprotein
cholesterol for new-onset carotid
plaque modified by baseline
low-density lipoprotein cholesterol
levels

Furthermore, we investigated the modification of baseline
LDL-C levels for the effect of RC on new-onset carotid plaque

in participants with baseline LDL-C levels. After adjusting
for possible covariates, Figure 2 displays the smooth curves
showing the relationships between RC and new-onset carotid
plaque stratified by baseline LDL-C. Table 4 shows that baseline
LDL-C levels modified the association of RC for new-onset
carotid plaque, with an increased OR to 1.95 (95% CI: 1.06–
3.56) in participants with lower baseline LDL-C levels (p for
interaction= 0.044).

Discussion

The major findings of this study are that conventional
lipid parameters, especially RC, were superiorly associated
with new-onset carotid plaque, independent of other
lipids, in Chinese community-based population with no
history of cardiovascular disease. Additionally, among
participants with lower baseline LDL-C levels, RC should
be considered an important biomarker to assess carotid artery
atherosclerosis risk.
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FIGURE 2

Effect of new-onset carotid plaque based on remnant lipoprotein cholesterol (RC) modified by low-density lipoprotein cholesterol (LDL-C)
levels*. (A) Baseline LDL-C < 3.4 mmol/L; (B) baseline LDL-C ≥ 3.4 mmol/L. *Adjusted for: sex, age, body mass index, current drinking, current
smoking, estimated glomerular filtration rate, diabetes mellitus, hypertension, antihypertensive, and hypoglycemic drugs.

Previous studies have already investigated the relationship
between remnant lipoprotein cholesterol and cardiovascular
diseases (8, 16–20, 30–34). Remnant cholesterol was considered
a risk factor for various cardiovascular events. Varbo and
colleagues found that elevated RC could causes ischemic heart
disease, independent of reduced HDL-C (8). Remnant-like
particle (RLP) cholesterol has also similarly been shown to be
an independent risk factor for cardiovascular disease among
1,567 women from the Framingham Heart Study (30), and
in elderly Japanese coronary artery disease (CHD) patients
(31). In addition, some prospective studies have been presented
supporting the prognostic value of remnant lipoprotein for
cardiovascular disease, the results from the Jackson Heart Study
and Framingham Offspring Cohort Study demonstrated that
RC was positively associated with incident CHD events, but
the association was not significant after adjustments for HDL-
C and LDL-C (16). Some studies have reported the significant
association between remnant lipoprotein cholesterol and the
risk of coronary events in CHD or ACS patients with or without
diabetes (32–36).

However, few studies have focused on carotid
atherosclerosis assessed by carotid plaque. Masson et al.
conducted a cross-sectional study and concluded that higher
RC was associated with the presence of carotid atherosclerotic
plaque (21). In the present study, a superior independent
association of increased RC levels with new-onset carotid
plaque compared to other conventional lipid parameters
was demonstrated.

Several potential mechanisms may account for the effect of
elevated levels of RC on new-onset carotid plaque. Like LDL-C
passing the endothelial layer and trapping into the arterial

intima, this would lead to the accumulation of cholesterol,
the occurrence of atherosclerosis and cardiovascular events (3).
Unlike LDL, remnant lipoprotein cholesterol could be taken up
directly (no need to be modified: oxidation) by macrophages to
cause foam cell formation and atherosclerotic plaque formation
(37). Additionally, it has been shown that RC is an indicator
of endothelial vasomotor dysfunction (38) that can upregulate
the expression of pro-inflammatory factors (facilitate monocyte
movement into the arterial wall), adhesion molecules (promote
the formation of thrombus) (39), and coagulation factors
(enhance the aggregation of platelets) (40). Elevated RC was
causally associated with low-grade inflammation at a whole-
body level, with 37% higher C-reactive protein levels for
1-mmol/L higher levels of RC (12), and related to carotid
macrophage content, a marker for plaque instability (24). Taken
together, the direct and indirect roles (pro-inflammatory and
pro-atherothrombotic) of remnant lipoprotein cholesterol could
partially explain increased risk of new-onset carotid plaque.

TABLE 4 Association of remnant lipoprotein cholesterol (RC) for
new-onset carotid plaque modified by baseline low-density
lipoprotein cholesterol (LDL-C) levels.

Variables N (%) OR (95% CI) P-value p interaction

LDL-C, mmol/L

< 3.4 105 (18.72%) 1.95 (1.06–3.56) 0.031 0.044

≥ 3.4 83 (26.69%) 0.97 (0.40–2.34) 0.952

Model adjusted for age, sex, body mass index, current drinking, current smoking,
estimated glomerular filtration rate, diabetes mellitus, hypertension, antihypertensive,
and hypoglycemic drugs.
OR, odds ratio; CI, confidence interval; LDL-C, low-density lipoprotein cholesterol.
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In addition, Nakamura et al. reported that RC was
superior to non-HDL-C for predicting cardiovascular events
with LDL-C levels < 2.6 mmol/L treated with statins in
patients with coronary artery disease (41). Consistently, our
study demonstrated that increased RC levels were more
strongly associated with the risk of new-onset carotid plaque
when comparing two lipid parameters in the same model
simultaneously. Studies have reported that increased RC can
explain part of the residual risk of cardiovascular disease with
lower or well-controlled levels of LDL-C goal (4, 42). Lin
et al. found that higher RC concentrations were significantly
associated with coronary atherosclerotic burden, even with an
optimal level of LDL-C (23). In another study, the investigator
reported that subjects with higher baseline RC had a higher
risk of major adverse cardiovascular events (MACEs) than
those at lower concentrations, especially lower LDL-C levels,
with a highest HR of 2.69 (p = 0.001) (20). Similarly, our
study found that the stronger association of RC with the risk
of new-onset carotid plaque was demonstrated in participants
with lower baseline LDL-C levels (< 3.4 mmol/L), which
indicated that RC remained a residual risk factor for ASCVD
for new-onset carotid plaque when LDL-C achieved to goal
(< 3.4 mmol/L). A similar study demonstrated that the high
RC/low LDL-C group, was associated with increased ASCVD
risk (43).

The present study, to the best of our knowledge, is
the first to evaluate the associations between RC and new-
onset carotid plaque, and to compare RC and other lipid
parameters in relation to new-onset carotid plaque in the
Chinese population. Additionally, different baseline LDL-C
levels modified the association of RC for carotid plaque.
There are several limitations that need to be addressed. First,
all participants were from a community-based cohort, and
therefore external generalizability is limited. Second, the use
of fasting samples may underestimate the contribution of
chylomicron, due to VLDL are the dominant constituents
of circulating remnants (44), and calculated RC cannot
be as accurate as direct measurement, while it’s easier to
calculate RC by other conventional lipid parameters to
save costs, and the association was remarkably consistent
(27, 45–47). Third, data such as inflammatory biomarkers,
dietary habits, fatty liver, vascular ultrasound in other
territories, etc., were not collected at baseline, which may affect
atherosclerosis formation. Finally, carotid plaque formation
is a marker for carotid artery damage to evaluate the
risk of cardiovascular events, and the need to observe
the risk of MACEs during continuous follow-up should
be considered.

In conclusion, remnant cholesterol was superior and
independent of other conventional lipid parameters, and
was significantly associated with new-onset carotid plaque
when considered simultaneously. Remnant cholesterol could
be helpful to predict carotid artery damage in participants

with lower baseline LDL-C levels for the purpose of early
atherosclerosis prevention.
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Very-low-density lipoprotein (VLDL) is the only lipoprotein containing

apolipoprotein B that is secreted from the liver, where VLDL is assembled

from apolipoproteins, cholesterol, and triglycerides. The primary function of

VLDL is to transport cholesterol and other lipids to organs and cells for

utilization. Apart from its role in normal biologic processes, VLDL is also known

to contribute to the development of atherosclerotic cardiovascular disease.

Large VLDL particles, which are subclassified according to their size by nuclear

magnetic resonance spectrometry, are significantly correlated not only with

atherosclerosis, but also with insulin resistance and diabetes incidence. VLDL

can also be subclassified according to surface electrical charge by using

anion-exchange chromatography. The most electronegative VLDL subclass

is highly cytotoxic to endothelial cells and may contribute to coronary heart

disease. In addition, electronegative VLDL contributes to the development of

atrial remodeling, especially in patients with metabolic syndrome, which is

an established risk factor for atrial fibrillation. In this review, we focus on the

VLDL subclasses that are associated with apolipoprotein alterations and are

involved in cardiometabolic disease. The postprandial enhancement of VLDL’s

pathogenicity is a critical medical issue, especially in patients with metabolic

syndrome. Therefore, the significance of the postprandial modification of

VLDL’s chemical and functional properties is extensively discussed.

KEYWORDS

very-low-density lipoprotein, cardiovascular disease, triglycerides, metabolic
syndrome, apolipoproteins, cardiometabolic disorders
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Introduction

Composition of very-low-density
lipoprotein

Very-low-density lipoprotein (VLDL) is a precursor to
intermediate-density lipoprotein (IDL), which subsequently
forms low-density lipoprotein (LDL). Density-gradient
ultracentrifugation is the standard method used to isolate
VLDL and other major lipoproteins, including chylomicrons,
IDL, LDL, and high-density lipoprotein (HDL) from serum or
plasma (1, 2). The lipid core of VLDL consists of triglycerides
(TGs, 50–70% of particle mass), cholesterol ester (10–25%),
and fatty acids (<10%). The major core protein of VLDL
is apolipoprotein (apo)B100; other proteins include apoCI,
apoCII, apoCIII, and apoE. These surface apolipoproteins also
serve as ligands for cell-surface receptors and coordinators for
lipolysis (3).

The physiologic functions of
very-low-density lipoprotein – More
than a cargo carrier for lipids

VLDL functions as a cargo carrier, transporting cholesterol,
TGs, and proteins to peripheral cells for essential bioactivities.
In the liver, TGs and cholesterol are incorporated with apoB100,
which affects the lipid abundance and size of secreted VLDL
(4). After VLDL is secreted, it is hydrolyzed by lipoprotein
lipase (LPL), which is present in the capillary endothelium or
associated with VLDL receptors, and transformed into VLDL
remnant and IDL. HDL then takes up apoCII from VLDL
remnant and IDL, and cholesterol ester transfer protein (CETP)
exchanges their TGs and phospholipids with cholesterol. IDL
can be taken up by the liver via the LDL receptor or
after being transformed into LDL upon losing apoE and
TGs (3). VLDL is a TG-rich lipoprotein, and its assembly
and metabolism are affected by insulin resistance and long-
term nutrient excess (5). VLDL also modulates nitric oxide
signaling, which is essential for vascular smooth muscle
relaxation and blood pressure control (6). In addition, VLDL
enhances phospholipase D activity by increasing cytosolic
calcium levels and stimulates aldosterone synthesis in the
adrenal gland (7). Therefore, VLDL does not only serve as a
lipid cargo carrier, but it also modulates lipid-related blood
pressure regulation.

The classification of very-low-density
lipoprotein by particle size

The diameter of VLDL particles can be measured using
nuclear magnetic resonance (NMR) spectrometry. To classify

VLDL subfractions by particle diameter, most studies have
used a simplified classification system with different categories
of average diameter. The quantitative analysis of serum or
plasma lipoprotein subfractions requires high reproducibility.
Such reproducibility has been examined by pooling quality
control plasma lipoprotein samples and comparing NMR
results among 11 spectrometers and 5 laboratories. In total,
16 subclasses were identified: 6 for VLDL, 6 for LDL, and
4 for HDL (8). However, a consensus has not been reached
with respect to standard diameter ranges for classifying VLDL
subfractions. For instance, in the study by Garvey et al.
(9), three categories were defined as follows: large VLDL
(>60nm), intermediate VLDL (35–60 nm), and small VLDL
(<35 nm). In the study by Phillips et al. (10), the categories
were defined as follows: large VLDL (including chylomicrons,
if present, >60 nm), medium VLDL (42–60 nm), and small
VLDL (<42 nm). Wang et al. (11) used six categories of
VLDL as follows: largest (including chylomicrons, ± 75 nm),
very large (average diameter, 64.0 nm), large (53.6 nm),
medium (44.5 nm), small (36.8 nm), and very small (31.3 nm)
VLDL.

The classification of very-low-density
lipoprotein by particle charge

In 1988, Avogaro et al. (12) first characterized LDL
on the basis of surface electrical charge rather than
particle size by using anion-exchange chromatography
to separate LDL into LDL(+) and LDL(–). In addition,
Yang et al. (13) and Chen et al. (14) divided LDL
into five subfractions according to electrical charge,
called L1-L5. Similarly, Chen et al. also used the
same method of anion-exchange chromatography to
separate VLDL into five subfractions, called V1-V5 (15)
(Table 1).

Immunochemical isolation of
very-low-density lipoprotein
according to apolipoprotein content

Apolipoproteins are chemically unique, maintaining the
structural integrity and functional specificity of different
lipoprotein particles in lipid transport processes. Therefore,
lipoproteins can be classified immunochemically according
to their apolipoprotein composition (16). The two major
classes of apolipoprotein-based families are apoA-containing
and apoB-containing lipoproteins. VLDL, along with IDL and
LDL, is an apoB-containing lipoprotein family. The apoB-
containing lipoproteins can be divided into several subfamilies,
including cholesterol ester-rich lipoprotein (LP-B) and TG-rich
lipoproteins (16).
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TABLE 1 VLDL subclassified by size and electrical charge and the effects of VLDL subclasses on atherosclerotic CVD, MetS, and other conditions.

Classification Patients Fasting/postprandial Effects References

NMR-based VLDL subclasses and atherosclerotic CVD

Large, medium, and small VLDL
particles

Adults with incident coronary
artery calcium (n = 6814; age,
45–85 years)

Overnight fasting (12 h) Large VLDL was positively associated
with incident coronary artery
calcification in a model adjusted for
scanner type, age, gender, and race

Zeb et al. (25)

Large, medium, and small VLDL
particles

Healthy postmenopausal women
(n = 286; mean age, 61.7 years)

Fasting (12 h) Large VLDL was positively associated
(p < 0.05) with higher coronary artery
calcification after adjusting for age,
systolic blood pressure, current
smoking status, LDL cholesterol, HDL
cholesterol, and triglycerides

Mackey et al. (26)

NMR-based VLDL subclasses and MetS or other conditions

Large VLDL, medium VLDL, and
small VLDL

Irish adults (n = 1834,
middle-aged)

Overnight fasting Metabolically healthy patients with
smaller (below median) VLDL size

Phillips et al. (10)

Largest VLDL (including
chylomicrons) and five different
VLDL subclasses

Finnish men with or without
glucose intolerance (n = 9399;
mean age, 56.8 ± 6.9)

Overnight fasting The concentrations of all lipid
components in the VLDL subclasses
were increased as glucose tolerance
decreased

Wang et al. (11)

Large, intermediate, and small
VLDL particles

Patients with or without diabetes
(n = 148; mean age,
36.8 ± 11.8 years)

Overnight fasting Progressive insulin resistance was
associated with increased VLDL size
and an increase in large VLDL particle
concentrations

Garvey et al. (9)

Large, medium, and small VLDL
particles

Healthy women (n = 26,836;
age ≥ 45 years)

75.8% without-diabetes and
78.6% with diabetes were
fasting

Large VLDL imparted a higher risk
for incident type 2 diabetes mellitus
than did small particles

Mora et al. (27)

Women with type 1 diabetes
mellitus (n = 112; mean age,
44.9 ± 7.8 years)

Overnight fasting (10–12 h) Medium VLDL was associated with
previous pre-eclampsia

Amor et al. (28)

Six VLDL subfractions (V1-V6,
increasing density)

Adults, free of clinically
detectable CVD (n = 6814; age,
44–84 years)

Fasting (12 h) Several VLDL subfractions (V1-V4)
were associated with abdominal body
composition and intra-muscle fat
infiltration

Marron et al. (91)

Anion-exchange chromatography–based VLDL subclasses and MetS

VLDL subfractions with
increasing negative charge
(V1-V5)

Patients with or without MetS
(n = 26)

Overnight fasting V5, a highly negatively charged VLDL
subfraction, directly damaged the
endothelium

Chen et al. (15)

LDL and VLDL subfractions with
increasing negative charge
(L1-L5, V1–V5)

Asymptomatic individuals
(n = 33; age, 32–64 years)

Fasting Combined electronegativity of L5 and
V5 plasma concentration was
significantly correlated with coronary
heart disease risk

Shen et al. (31)

Most electronegatively charged
VLDL subfraction (VLDL-χ)

Patients with or without MetS
(n = 167; age, 23–74 years)

Overnight fasting and
postprandial

Plasma concentration of VLDL-χ (%)
at 2 h postprandial was positively
correlated with atrial enlargement in
patients with MetS

Lee et al. (71)

CVD, cardiovascular disease; LDL, low-density lipoprotein; NMR, nuclear magnetic resonance; VLDL, very-low-density lipoprotein.

Pathogenic very-low-density
lipoprotein

The physiologic basis for the differences in composition,
structure, and function among VLDL particles is important
because these differences can strongly influence the
atherogenic properties of VLDL. Moreover, abnormal

VLDL can adversely affect vascular or cardiac cells (see
below), which has important implications. In this review,
we present a summary of the emerging evidence for VLDL
in promoting cardiometabolic diseases and highlight how
the subclassification of VLDL can be used to distinguish
VLDL particles that are pathogenic from those that are
physiologically necessary.
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Independent of low-density
lipoprotein, very-low-density
lipoprotein is associated with
cardiometabolic disorders

Cholesterols carried by both
low-density lipoprotein and
very-low-density lipoprotein are
associated with atherosclerosis

Plasma LDL-cholesterol (LDL-C) alone is not sufficient
to predict all non-atherosclerotic and atherosclerotic
cardiovascular disease (ASCVD). Aside from LDL-C, VLDL
cholesterol (VLDL-C) is also known to contribute to the
development of ASCVD. Plasma VLDL-C is the primary
component of non–HDL-cholesterol (HDL-C) (17) and is a
predictor of ASCVD independent of LDL cholesterol (LDL-C)
(18–20).

Prenner et al. (18) used cardiac electron beam computed
tomography scanning to assess coronary artery calcification,
which is an independent predictor of CVD risk, in a
population of high-risk patients with type 2 diabetes. Their
results showed that VLDL-C is an independent risk factor
for coronary artery calcification, particularly in women.
Furthermore, this association was independent of circulatory
TG levels (18). In patients with type 2 diabetes who previously
underwent coronary stent implantation, an elevated VLDL-C
level >0.52 mmol/L was independently associated with in-
stent restenosis (hazard ratio = 3.01) (21). Iannuzzi et al. (22)
used ultrasound to measure carotid intima–media thickness
in postmenopausal women and showed that VLDL-C was
the lipoprotein most strongly associated with subclinical
atherosclerosis. In addition, evidence from clinical studies has
consistently indicated a causal role for TG-rich lipoproteins
such as VLDL in ASCVD. An updated consensus statement
regarding the current understanding of the role of TG-rich
lipoproteins and their remnants in ASCVD has been published
recently (5).

The size of very-low-density
lipoprotein affects its atherogenicity

Large VLDL particles have a greater association with the
incidence of atherosclerosis than do smaller VLDL particles
(Table 1). The size-based subclassification of lipoproteins is
performed by the NMR analyzer, which uses characteristic
signals of lipoprotein subclasses with different sizes as the basis
for quantification. A set of purified standards is required for
converting signal amplitudes to specific particle concentrations
(23). The standards for VLDL are isolated by using a
combination of ultracentrifugation and agarose gel filtration,

and the size distribution is determined by using electron
microscopy (2).

VLDL circulates in the blood for about 4 h before it is
converted to IDL and then LDL (24). Lipolytic remodeling is
responsible for the down-sizing of the largest VLDL particles
and their conversion to IDL and LDL. Unlike small LDL, large
VLDL was associated with an increased risk of incident coronary
artery calcification and calcium score progression during follow-
up (25). Likewise, in relatively healthy postmenopausal women,
large VLDL was positively associated with coronary artery
calcification, suggesting that the measurement of lipoprotein
subclasses may improve the prediction of coronary artery
disease beyond using the conventional lipid panel (26).

In addition, the size of VLDL was shown to be correlated
with insulin resistance and diabetes mellitus (11, 27) (Table 1).
In a prospective study by Mora et al. (27) of 26,836 initially
healthy women followed for 13 years, large VLDL particles
were found to predict type 2 diabetes. Likewise, Wang et al.
(11) reported in a population study of 9399 Finnish men that
abnormal glucose tolerance and new onset type 2 diabetes
were associated with an increase in VLDL particles, with the
exception of very small VLDL. Conversely, a lower number
of large VLDL particles was shown to be the most significant
predictor of metabolic health in adults, regardless of body
mass index and obesity status (10). Garvey et al. (9) described
the effects of insulin resistance and type 2 diabetes on the
particle size and concentration of lipoprotein subclasses. Their
results showed that progressive insulin resistance was associated
with increased VLDL size. Compared with individuals who
have normal insulin sensitivity, patients with insulin resistance
or diabetes showed increased concentrations of large VLDL
particles, but no change in medium VLDL or small VLDL
particle concentrations. For patients with type 1 diabetes,
medium VLDL particle concentration was independently
associated with previous pre-eclampsia during pregnancy after
adjusting for age and statin use (28).

The charge-based electronegativity of
very-low-density lipoprotein
determines its atherogenicity

Lipoprotein particles can be separated according to charge
by using anion-exchange chromatography. L5, which is the
most electronegatively charged subfraction of LDL, induces
endothelial apoptosis through the lectin-like oxidized LDL
receptor-1 (LOX-1) in the absence of the LDL receptor
(LDLR) (29). Similarly, the most electronegative subfraction
of VLDL, V5, was shown to induce endothelial apoptosis
and was the subfraction most rapidly internalized into
endothelial cells (15). In addition, patients with metabolic
syndrome (MetS) were found to have increased levels of
electronegative VLDL. VLDL isolated from patients with
MetS induced brain inflammation with glial cell activation
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TABLE 2 Clinical studies showing altered VLDL apolipoproteins in patients with metabolic and atherogenic diseases.

Apolipoprotein Study
type

Patients Fasting/
postprandial

Effects References

ApoCI Human Cross-sectional studies (age, 56–80 years) Fasting and
postprandial (4 h)

ApoC1 positively
correlated with carotid
atherosclerosis

(35–37)

ApoCIII Human Ludwigshafen Risk and Cardiovascular Health
Study (LURIC; n = 3041)

Not specified Seven common variants of
APOC3 (rs734104, rs4520,
rs5142, rs5141, rs5130,
rs5128, and rs4225) were
associated with modestly
raised apoC-III and
elevated VLDL/TG but
were not associated with
CAD

(92)

Human Middle-aged patients (n = 688; average age,
66 years; 52% women)

Fasting ApoCII, apoCIII, and apoE
were associated with
composite CVD (fatal and
non-fatal myocardial
infarction, ischemic stroke,
and sudden cardiac death)

(39)

ApoAV Human Patients with non-alcoholic fatty liver disease
(n = 17) vs. healthy liver (n = 6)

Fasting ApoA5 mRNA level was
associated with
hepatosteatosis

(46)

ApoE Human Two independent cohorts: women (n = 322;
age, 30–55 years) and men (n = 418; age,
40–75 years)

Not specified Increased apoE content in
VLDL and LDL with
apoCIII were associated
with a lower risk of CHD

(33)

Angiopoietin-like
protein (ANGPTL)-3

Human and
mice

Humans and mice (e.g., Angptl3−/− , Ldlr−/− ,
Lipg−/−) with hyperlipidemia

Fasting ANGPTL-3 inhibition
reduces the content and
size of lipids in VLDL

(54)

CAD, coronary artery disease; CHD, coronary heart disease; CVD, cardiovascular disease; LDL, low-density lipoprotein; TG, triglyceride; VLDL, very-low-density lipoprotein.

in mice, suggesting that electronegative VLDL can promote
cognitive dysfunction (30). Furthermore, Shen et al. (31)
further confirmed that the most electronegative human plasma
LDL (i.e., L5) and VLDL (i.e., V5) are highly atherogenic.
In their study, the combined electronegativity of L5 and
plasma concentration of V5 was significantly correlated with
coronary heart disease risk in an age-adjusted analyses of
asymptomatic individuals. Moreover, when human aortic
endothelial cells were treated with L5 + V5 and L1 + V1,
L5 + V5 induced significantly greater senescence-associated–
β-galactosidase activity than did L1 + V1. In ApoE−/−

mice, aortic lipid accumulation and cellular senescence
were associated with the electronegativity of LDL and
VLDL (31).

Altered apolipoprotein content in
very-low-density lipoprotein affects its
atherogenicity

By 1972, the primary structures, including protein and DNA
sequences, had been determined for almost all apolipoproteins

(AI, AIV, B, CI, CII, CIII, D, E, I, and J) (16). VLDL
particles containing apoE, apoCI, apoCIII, and apoAV have
been shown to affect VLDL metabolism, site utilization, and
atherogenicity. In the following sections, each lipoprotein is
briefly described.

ApoE
Emerging evidence supports that the compositional change

of apolipoproteins in VLDL affects its atherogenicity (Table 2).
VLDL is one of several major lipoproteins containing apoE,
which is a specific ligand for cysteine-binding repeats of
the VLDL receptor (VLDLR). VLDLR is widely expressed
throughout the body, including the heart, skeletal muscle,
adipose tissue, and brain, and it has an important role
in the uptake and metabolism of apoE-containing TG-rich
lipoproteins. ApoE is a polymorphic protein arising from three
alleles at a single gene locus (32). The enrichment of apoE
content in VLDL has been shown to protect against coronary
heart disease (33).

ApoCI
Primarily associated with HDL in the fasting state, apoCI

transiently attaches to the surface of TG-rich lipoproteins such
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as chylomicrons and VLDL postprandially. ApoCI modulates
several enzymes involved in lipoprotein metabolism and
can reduce the uptake of VLDL by inhibiting its binding
to VLDLR (34). The increased intima-media thickness of
the common carotid artery indicates early atherosclerosis
and was found to be associated with apoCI content in
postprandial TG-rich lipoproteins (35, 36). In addition, the
number of apoCI molecules per VLDL particle in the
fasting state was associated with the plaque size of carotid
atherosclerosis (37). ApoCI was also shown to be correlated
with cholesterol enrichment in VLDL particles and the delayed
clearance of TG-rich lipoproteins (37). In hypercholesterolemic
rabbits, the constitutive expression of human apoCI provided
protection against serious atherosclerosis (38). This benefit was
found to be related to the inhibition of plasma cholesteryl
ester transfer protein (CETP) activity (38). These findings
support that apoCI enrichment attenuates the atherogenicity
of VLDL particles.

ApoCIII
ApoCIII has been suggested to be a central regulator of

TG-rich lipoprotein metabolism (39). A direct association
of apoCIII with atherosclerosis was revealed by clinical
genetic studies and studies showing that loss-of-function
mutations in APOC3 are associated with low TG levels
(40) and a reduced incidence of ischemic CVD (41).
Increased plasma levels of apoCIII are associated with
increased levels of VLDL, IDL particles, and TGs (42). In
human monocytic THP-1 cells, apoCIII activated protein
kinase C alpha (PKCα) and transforming protein RhoA,
which resulted in β1-integrin activation and promoted
endothelial cell adhesion. These results suggested that
apoCIII not only modulates lipoprotein metabolism, but
may also contribute to atherosclerosis development (43).
The antisense apoCIII inhibitor volanesorsen, which reduces
apoCIII levels by >75% and plasma TGs levels, inhibits
apoCIII synthesis in the liver (44). However, the indication
for the clinical use of volanesorsen is limited to patients
with familial chylomicronaemia syndrome for preventing
pancreatitis; therefore, its effect on reducing CVD remains
undetermined (39).

ApoAV
In contrast to APOC3, genotype combinations of common

APOA5 variants (c.-1131 T > C, S19 W, and c.∗31C > T)
are associated with elevated TG levels and increased CHD
risk (45). In addition, patients with non-alcoholic fatty liver
disease have elevated apoAV expression, which promotes
hepatic TG storage in lipid droplets but decreases VLDL
secretion by the liver (46). ApoAV also accelerates TG-rich
lipoprotein uptake by the liver (47). However, the mechanism by
which apoAV regulates circulatory VLDL metabolism remains
largely unknown.

Mechanisms of modified
very-low-density lipoprotein in
cardiometabolic disorders

Overproduction of TGs in the liver and
non-alcoholic fatty liver disease

A key feature of large VLDL is the overproduction of TGs
in the liver, which may occur for several years before the onset
of type 2 diabetes (27). In the liver, the biogenesis of VLDLs
and the assembly of apolipoproteins are complex and highly
regulated processes (4). A major source of TG synthesis is the
endoplasmic reticulum (ER) lumen, where TGs are assembled
with apoB100 to form lipid-poor primordial VLDL particles.
This process is facilitated by microsomal triglyceride transfer
protein (MTP) (4), which transfers both neutral and polar lipids
to form VLDL particles (Figure 1). Whether and how MTP
is modulated in patients with insulin resistance and diabetes
remain unclear.

Because of its large size (average diameter >60 nm), VLDL
is shifted from the ER membrane to the cis Golgi for cargo
selection and vesicle formation. However, the utilization of
vesicular carrier proteins for VLDL remains an ongoing subject
of investigation (4). It has been suggested that VLDL exits the
hepatic ER in a specialized vesicle (i.e., the VLDL transport
vesicle), which can accommodate a particle diameter of up to
100–200 nm (48).

Patients with non-alcoholic fatty liver disease have increased
hepatic stearol-CoA desaturase (SCD)-1 activity, which converts
saturated fatty acids to monosaturated fatty acids that serve as
a major substrate for the synthesis of de novo TGs and other
lipids (49). How the abundance of TGs and the degree of TG
desaturation are controlled or regulated during VLDL synthesis
remain undetermined.

Hepatic apoAIV expression, which is regulated by nuclear
transcription factor cAMP-responsive element-binding protein
H (CREBH), is correlated with hepatic TG content in patients
with chronic liver steatosis (50). CREBH activation plays key
roles in hepatic steatosis by upregulating apoAIV during VLDL
assembly in the ER and promotes the assembly of large and
TG-enriched VLDL particles (50) (Figure 1). In addition to
its expression in the liver, apoAIV is predominantly expressed
in human enterocytes to facilitate intestinal chylomicron
assembly and is highly upregulated after a fatty meal
(51).

Regulation of lipolysis

The utilization of VLDL and the breakdown of TGs
in organs require the key enzyme lipoprotein lipase
(LPL) to generate free fatty acids. The inhibition of
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FIGURE 1

Mechanisms of large very-low-density lipoprotein (VLDL) in non-alcoholic fatty liver disease and gut microbiome imbalance. The
overproduction of triglycerides (TGs) is related to increased activity of hepatic stearol-CoA desaturase (SCD)-1, which converts saturated fatty
acids to monosaturated fatty acids that serve as the substrate for the synthesis of de novo TGs. The assembly of TGs with apolipoprotein
(apo)B100 is facilitated by microsomal triglyceride transfer protein (MTP). In non-alcoholic fatty liver disease, the nuclear transcription factor
cAMP-responsive element-binding protein H (CREBH) is upregulated, in turn increasing expression of hepatic apoAIV, which promotes the
assembly of TG-rich, large VLDL. Angiopoietin-like protein family 3 (ANGPTL3) inhibits the enzyme activity of lipoprotein lipase (LPL), which is
essential for breakdown of TGs in VLDL utilization. Both intermediate-density lipoprotein (IDL) and LDL particles are recognized by LDL receptor
(LDLR) expressed in the liver. LPL activity is also inhibited by apoCIII. Large VLDL promotes plasma CETP-induced remodeling of TG-rich HDL.
A high-carbohydrate diet and obesity impair microbiome diversity, which is related to reduced plasma HDL levels and increased hepatic apoCIII
production that in turn inhibit LPL activity and enhance the abundance of large VLDL in the circulation.

lipolysis increases the size of circulating VLDL. Several
members of the angiopoietin-like protein (ANGPTL) family
regulate the activity of LPL. ANGPTL3, ANGPTL4, and
ANGPTL8 are upregulated in patients with type 2 diabetes
and obesity (52). In a group of patients who received
RNA inhibition therapy with antisense oligonucleotides
targeting ANGPTL3, protein levels of ANGPTL3 were
reduced by as much as 84.5% from baseline 6 weeks after
injection, while levels of TGs were reduced by 63.1%,
VLDL cholesterol by 60.0%, and apoCIII by 58.8% (53).
In mice, ANGPTL3 inhibition reduced TG content in
the liver and retarded atherosclerosis progression (53).
Endothelial lipase, which reduces LDL-C via an LDLR-
independent mechanism, is essential for phospholipid
reduction in VLDL and LDL (54). In LDLR−/− mice,
ANGPTL3 inhibition caused a marked reduction in the
TG content of VLDL. Furthermore, in ApoE−/− mice,
ANGPTL3 inhibition promoted VLDL clearance with the
involvement of multiple remnant receptors (54). However,
in the liver, ANGPTL3 did not perturbate apoB lipidation
and hepatic VLDL assembly (54). These findings suggest
that ANGPTL3 governs VLDL catabolism and largely
affects VLDL lipid content and size. On the other hand,
endothelial lipase exerts anti-atherogenic effects by enhancing
the catabolism of β-VLDLs (55), which are cholesterol-rich
chylomicron and VLDL remnants that accumulate in the
plasma of patients with type III dysbetalipoproteinemia

(56). In elderly patients, the removal of TG-rich lipoprotein
remnants is delayed, but TG breakdown is unchanged.
Whether VLDL receptor function is impaired and whether
ANGPTL3 is involved in aging-related, delayed VLDL
removal remain unknown.

Interaction of very-low-density
lipoprotein with high-density
lipoprotein

The reverse-remnant cholesterol transport mechanism,
which is the acquisition of VLDL surface components by
HDL during LPL-mediated lipolysis, plays an important
role in VLDL catabolism (57). HDL affects the lipolysis of
VLDL TGs and the release of surface lipids, free cholesterol,
phospholipids, and exchangeable apoE, apoCII, and apoCIII
from VLDL during lipolysis (58). HDL can also be classified
into subpopulations according to size, apolipoprotein content,
charge, mass, and density. Although subpopulations of both
large and small HDL particles increased VLDL TG lipolysis
efficiency and surface material removal from VLDL, the
small, protein-enriched HDL particles exhibited a greater
effect on this process and promoted a more efficient release
of surface components, thereby affecting the properties
of the generated remnants. Loss of apoC proteins from
VLDL during lipolysis promoted the metabolism of
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apoB-containing lipoprotein because both apoCII and
apoCIII inhibit the binding of apoB lipoproteins to the
LDLR (58).

Increased TG content has been suggested to decrease the
stability of HDL, VLDL, and LDL via several mechanisms.
First, TGs have a direct destabilizing effect on lipoprotein
particles from the CETP-induced remodeling of TG-rich HDL.
Second, TGs have indirect effects that enhance spontaneous
and enzymatic hydrolysis and oxidation. Third, products of
the aforementioned processes, particularly free fatty acids,
further augment lipoprotein destabilization and fusion. TGs
are also involved in the substantial release of proteins from
lipoproteins. Finally, the combination of destabilized LDL and
VLDL enhances their retention in the arterial wall, triggering
atherosclerosis (59).

Genetic variants associated with
very-low-density lipoprotein particles

Genetic variants have been associated with lipoprotein
subclasses. Among those, the common variant rs73059724
resulted in small VLDL particles with fewer phospholipids
(60). The variant rs73059724 is located on chromosome 19
and is associated with the promoter and intron of HIF3A,
which regulates the cellular uptake of cholesterol esters and
VLDL by promoting hypoxic conditions. In addition, HIF3A
hypermethylation is associated with increased adiposity in Asian
infants and children (61, 62). These findings suggest that
HIF3A may regulate VLDL particle size. Furthermore, DNA
methylation at HIF3A may explain the prenatal influences on
adiposity. In another recent genetic study, Li-Gao et al. (63)
investigated postprandial metabolomics and found that the
ANKRD55 locus led by the rs458741:C variant was strongly
associated with extremely large VLDL, body composition,
and the incidence of diabetes. This finding illuminates
the strong genetic linkage between VLDL modification and
insulin resistance.

Gut microbiome imbalance

Vojinovic et al. (64) showed in a prospective population-
based cohort of 2309 individuals that 32 microbial families
and genera in gut microbiota were associated with size-defined
subfractions of VLDL, HDL, serum lipid values, and glycolysis-
related metabolites. Among the 32, 18 microbial families and
genera were significantly associated with VLDL particles of
various sizes (extra small, small, medium, large, very large,
and extremely large) (64). Another recent study showed that,
in healthy individuals, low microbiota diversity was associated
with obesity, abdominal obesity, and low HDL-C level (65).
These reports suggest that gut microbiota imbalance may be

involved in the alteration of VLDL particle size. Thus, the source
of altered VLDL particles is presumably the intestines, although
the real origin of altered VLDL particles may be diet. In animals
and humans, a high-carbohydrate diet results in the elevation of
large TG-enriched VLDL particles, along with the enrichment of
apoC proteins. Carbohydrate intake increases hepatic secretory
rates of VLDL TGs without changing the secretion of apoB,
which together lead to large and dense VLDL particles (66).

Very-low-density lipoprotein
particles in the non-fasting state
carry a risk for atherosclerosis and
atrial fibrillation

Very-low-density lipoprotein particle
changes in fasting and postprandial
states

Postprandial hypertriglyceridemia is a hallmark of
dyslipidemia in patients with type 2 diabetes. Recently, it
has been suggested that postprandial dyslipidemia is equally
as important as the estimation of lipids in the fasting state,
particularly for patients with type 2 diabetes (67). Mora et al.
(27) characterized lipoprotein particles according to size in
fasting and non-fasting states by using NMR, noting similar
results between LDL and HDL particles. However, compared
with fasting VLDL, non-fasting large VLDL particles carried
much higher risk for diabetes. In the Copenhagen General
Population Study, in which NMR spectrometry was used
to analyze the lipids of 9293 individuals, the results showed
that VLDL and IDL particles contained one-third of plasma
cholesterol in the non-fasting state (68). Postprandial TGs are
carried by primarily chylomicron and VLDL remnants, which
are ligands of the VLDL receptor involved in macrophage foam
cell formation during the development of atherosclerosis (69).

Correlation of postprandial
very-low-density lipoprotein rather
than fasting very-low-density
lipoprotein with atrial cardiopathy

VLDL utilization serves as the major energy source for the
heart. Under physiologic conditions, approximately 70% of the
heart’s energy is derived from fatty acid oxidation (70). Lee
et al. (71) showed that postprandial VLDL is independently
correlated with atrial enlargement, indicating that postprandial
VLDL is a risk factor for atrial fibrillation (Table 1). In a
prospective study of individuals with MetS (n = 87) and without
MetS (n = 80), they found that negatively-charged VLDL (2-
h postprandial VLDL-χ, concentration in %), waist and hip
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circumferences, body mass index, and blood pressure were
positively correlated with left atrial diameter. After adjusting
for obesity and blood pressure, 2-h postprandial VLDL-χ, but
not fasting VLDL, was independently correlated with left atrial
diameter. Each 1% increase in VLDL-χ correlated with an
incremental left atrial diameter increase of 0.23 cm. Nakajima
et al. (72) showed that postprandial VLDL has a higher affinity
to the VLDL receptor, with better internalization into cells
than non-postprandial VLDL. With these findings in mind,
postprandial modified VLDL has been suggested as a therapeutic
target for atrial remodeling in patients with MetS (54).

VLDL composition, especially in the postprandial state, is
influenced by meals and eating habits. Guerrero et al. (73)
described the effects of a sucrose-enriched diet on elevated levels
of VLDL-cholesterol and TGs, insulin resistance, and hepatic
steatosis in male Wistar rats. In addition, Drorna et al. (74)
reviewed the available evidence for the impact of high-fructose
intake on health. In healthy individuals, the consumption of up
to 1.5 g fructose/kg body weight per day for 4 weeks resulted
in increased plasma TG concentrations (74). In addition to
elevating TG levels, high fructose intake can induce hepatic
steatosis, insulin resistance, and hyperuricemia (74). It is very
likely that high fructose intake can alter VLDL particles with
respect to size and TG richness. After a single high-fat meal,
postprandial changes in TGs and VLDL can be significant in
men with abdominal obesity compared with non-obese men
(75). However, no such difference was observed between obese
and non-obese women (75), suggesting sex-based differences in
postprandial VLDL secretion during the reproductive stage.

Therapeutic implications

Nutritional intervention

In patients with existing cardiometabolic risks, 8-week
nutritional intervention with a high polyphenol diet can
significantly reduce the postprandial lipid content of large
VLDL after a high-fat test meal (76). Another study showed
that the consumption of a diet composed of fruit, avocado,
whole grains, and trout for 8 weeks can reduce fasting
insulin and VLDL and lower the postprandial increase in
TGs and VLDL (77). With respect to the intake of fish,
notable differences were seen in the NMR lipoprotein profile
of the three main n-3 fatty acid subtypes: eicosapentaenoic
acid (EPA), docosahexaenoic acid (DHA), and a-linolenic acid
(ALA). Only a high intake of EPA significantly reduced VLDL
particles and VLDL TGs (78). In addition, the reduction
of apoCIII expression is believed to be the mechanism
underlying the TG-lowering effects of omega-3 carboxylic
acids, which contain 50–60% EPA and 15–25% DHA, as
well as other active omega-3 free fatty acids (79). Fasting
per se is beneficial for VLDL modification. In a study
of 40 relatively healthy, middle-aged individuals, long-term
fasting improved the postprandial lipid profile, especially
with respect to the concentrations of large VLDL particles,
which are significantly decreased after 7 and 14 days
of fasting (80). Nevertheless, the impact of nutritional
intervention on clinical cardiovascular outcomes warrants long-
term observation and follow-up.

FIGURE 2

Size- and charge-defined subfractions of VLDL and their association with cardiometabolic diseases. The size-defined classification of VLDL
according to particle diameter is performed using nuclear magnetic resonance (NMR) spectrometry. Large VLDL, which has a diameter larger
than 60 nm, is associated with insulin resistance, type 2 diabetes mellitus, and coronary artery calcification. VLDL-χ or V5, the most
negatively-charged subfraction of VLDL, is isolated and measured using anion-exchange chromatography. VLDL-χ or V5 causes direct damage
to the endothelium and associated with coronary heart disease risk and atrial myopathy in metabolic syndrome (MetS).
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Potential of other very-low-density
lipoprotein-targeted therapies

In addition to nutritional intervention, synbiotic and
probiotic supplements that improve gut microbiome imbalance
have shown potential for decreasing serum VLDL-C levels
(81). In addition, several oral anti-diabetic drugs have been
identified that promote beneficial effects on VLDL metabolism.
Pioglitazone, a PPAR-γ activator, was shown to facilitate LPL
activity and promote the clearance of VLDL (82). Furthermore,
glucagon-like peptide 1 (GLP-1) agonist reduced TG levels in
the liver and the VLDL secretion rate (83).

Commonly used lipid-lowering drugs, although not
specifically VLDL-targeted, have also been shown to help
reduce VLDL. HMG-CoA reductase inhibitors (i.e., statins)
reduce one-third of VLDL-TGs and more than 40% of
apoCIII levels (84). In addition, peroxisome proliferator-
activated receptor-α (PPAR-α) agonists (i.e., fibrates), which are
prescribed primarily for managing hypertriglyceridemia, reduce
VLDL-apoCIII levels, as well (84). Similar to selective estrogen
receptor modulators, the first selective PPAR-α modulator
(SPPARMα) LY-518674, which targets the receptor–cofactor
binding profile of the PPARα ligand, modulates tissue- and
gene-selective responses. In clinical phase II/III trials, this
SPPARMα agonist reduced TG and apoCIII levels by about 50%
(85). Proprotein convertase subtilisin-kexin type 9 (PCSK9)
inhibitors, which reduce the degradation of LDL receptors
and promote LDL uptake in the liver, also upregulate VLDL
receptors and reduce VLDL levels. PCSK9 inhibitors have also
been shown to preferentially modify the size and apolipoprotein
composition of VLDL particles (86).

Several lipid-lowering agents are under development,
including CETP inhibitor (87), microsomal triglyceride transfer
protein (MTTP) inhibitor (88), and antisense oligonucleotides
targeting the genes encoding apoB100 (88) and apoCIII (89).
These therapeutics are currently being tested in clinical trials.
Monoclonal antibody targeting ANGPTL3 has been shown to
robustly reduce VLDL levels but at the expense of elevating
LDL levels (90). In addition, ARO-ANG3 is an siRNA-based
medication that inhibits the hepatic translation of ANGPTL3
mRNA [102]. These new medications have the potential to
produce favorable effects on VLDL structure and metabolism.

Concluding remarks

Independent of LDL-C, VLDL’s atherogenic properties
are associated with TG abundance, which largely affects
particle size, apolipoprotein content alteration, electrical charge,
and lipid composition, especially in the postprandial state
(Figure 2). With adverse modification, VLDL facilitates

ectopic lipid accumulation, which has been observed in
the liver, heart, and skeletal muscles. To elucidate the
pathogenic roles of VLDL in cardiovascular diseases, the
issues of modification, in both fasting and postprandial states,
should be taken into consideration. To improve adversely
modified VLDL, nutritional intervention, especially through
the reduction of fructose content in food, should be widely
recommended, especially for patients with insulin resistance
and cardiometabolic risks. However, interpreting data from
only the size-based, charge-based, or apolipoprotein-based
classified VLDL does not provide complete knowledge or
information about lipids in health and diseases. To obtain a
more comprehensive understanding of the lipid transport and
metabolism process, methodologies are needed that can reflect
the complex immunochemical and functional properties of all
apolipoprotein-containing lipoproteins in the blood.
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Atherosclerotic cardiovascular disease is the leading cause of deathworldwide.

Intense research in vascular biology has advanced our knowledge ofmolecular

mechanisms of its onset and progression until complications; however,

several aspects of the patho-physiology of atherosclerosis remain to be

further elucidated. Endothelial cell homeostasis is fundamental to prevent

atherosclerosis as the appearance of endothelial cell dysfunction is considered

the first pro-atherosclerotic vascularmodification. Physiologically, high density

lipoproteins (HDLs) exert protective actions for vessels and in particular for

ECs. Indeed, HDLs promote endothelial-dependent vasorelaxation, contribute

to the regulation of vascular lipid metabolism, and have immune-modulatory,

anti-inflammatory and anti-oxidative properties. Sex- and gender-dependent

di�erences are increasingly recognized as important, although not fully

elucidated, factors in cardiovascular health and disease patho-physiology. In

this review, we highlight the importance of sex hormones and sex-specific

gene expression in the regulation of HDL and EC cross-talk and their

contribution to cardiovascular disease.

KEYWORDS

HDL, endothelial cells, sex di�erences, cardiovascular disease, HDL-endothelial

crosstalk

Introduction

The relationship between high-density lipoproteins (HDLs) and cardiovascular

disease (CVD) is a topic of intense investigation since decades (1).

Epidemiological studies have shown a correlation between low levels of HDL-

cholesterol (HDL-C) and increased incidence of CVD (2). Indeed, a U-shape correlation

has been recently reported whereby both low (<50 mg/dl in women and <40 mg/dl in

men; 0.8 and 1.3 mmol/L, respectively) and high (>80 to 90 mg/dl; >2.3 mmol/L) levels
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of HDL have been associated to increased all-cause and CV

mortality in both men and women without previous CVD (3–5).

Increasing evidence suggests that rather than cholesterol

levels present on HDL, HDL particle number, lipid

and protein composition play a key protective role in

reducing CVD risk (6–8). HDL particle composition

directly influences HDL vaso-protective functions (i.e.

reverse cholesterol transport (RCT), nitric oxide (NO)

production from endothelial cells (ECs), anti-oxidative and

anti-inflammatory properties).

ECs are a physical barrier between blood and body tissues,

which act as gatekeepers of cardiovascular homeostasis.

Indeed, EC-released vasoactive substances (in particular

NO) regulate hemostasis, control vascular permeability

and modulate both acute and chronic immune responses

to injuries (9). In light of its strong vasodilatory, anti-

inflammatory and anti-oxidative properties, NO plays

a central role in the maintenance of vascular health

(10). Reduction in NO bioavailability is the hallmark of

endothelial cell dysfunction (ECD), which in turn favors

atherosclerosis (11).

Sex-related inter-individual variability (hormonal levels,

hormone therapies, gene expression profiles etc.) can influence

CVD risk by acting on both HDLs and ECs (12–14).

Increasing evidence suggests that sexual hormone

levels—in particular testosterone and estradiol—and sex-

specific cellular gene expression profile can influence

not only HDL-C levels but also HDL subclasses and

function. Indeed, men display reduced levels of HDL-

C and a more pro-atherogenic phenotype compared to

women (15–17).

Furthermore, estrogens are well-recognized EC protective

molecules, able to stimulate NO production, EC growth and

wound healing mechanisms (18, 19). Of note, differences in

gene expression profile between female and male ECs appear

to influence EC susceptibility to insults, with the activation

in female ECs of more efficient stress-response mechanisms

compared to male ECs (20, 21). These differences could explain,

at least in part, why pre-menopausal women have lesser CVD

risk than age-matched men and could give useful hints for

personalized therapy development.

In this Review, we mainly focused on the influence of sex-

specific factors on both HDL and EC function and how sex-

dependent differences modulating HDL-EC cross- talk may

contribute to the CV protection of pre-menopausal women

compared to age-matched men (22–24). Indeed, sex closely

interacts with gender in the development of atherosclerosis

therefore, although not systematically addressed, some gender-

specific aspects (i.e., pertaining to the socio-economic and

cultural sphere) have been also mentioned in case of their

known influence on HDL and EC function and potential CV

patho-physiological impact (23–26).

HDL-targeting drugs: The failure of
cholesteryl ester transfer protein
inhibitors

The concept that HDL is the “good cholesterol” first

originated from the Framingham Heart Study, which showed

strong inverse association between HDL-C and coronary heart

disease (CHD) (27). However, this concept has been challenged

by results of following clinical trials in which cholesteryl ester

transfer protein (CETP) inhibitors, despite raising HDL-C

levels, failed to reduce CV morbidity and mortality. These

results suggested that beyond the simple increase of HDL-

C plasma levels, the modulation of HDL composition could

be more important to achieve cardiovascular benefits (28–30).

CETP is a plasma protein that transfers cholesteryl ester from

HDL to apolipoprotein B (ApoB)-containing lipoproteins in

exchange for triglyceride (TG). The inhibition of CETP leads

to higher cholesterol levels in HDLs. Indeed, species lacking

CETP and patients with CETP deficiency are characterized by

increased HDL-C levels and reduced risk for CVD (31–34). In

the Investigation of Lipid Level Management to Understand

its Impact in Atherosclerotic Events (ILLUMINATE) trial, the

CETP inhibitor Torcetrapib increasedHDL-C levels as expected,

but this increase was not paralleled by decreased CHD and

the trial was stopped due to elevated risk of cardiac and death

events (35).

In line with the notion that HDL-C alone may not be

a reliable marker of the cardio-protective quality of HDLs,

it has been recently shown in a sex-mixed pool of patients

that CETP inhibitors, Torcetrapib and Evacetrapib, not only

increased HDL-C but also enhanced the concomitant content

of apoC3/apoE in HDLs. These two proteins rendered HDLs

dysfunctional and were associated with higher CHD (36).

Different CETP inhibitors, such as Dalcetrapib and Anacetrapib

slightly reduced CHD risk, although this effect could have been

influenced by the concomitant reduction in non-HDL-C in

treated patients (37–42).

Genetic polymorphisms associated with increased HDL-

C levels also did not influence the risk score for myocardial

infarction (1, 43). Population studies carried out in Copenhagen

highlighted a dramatic enhancement of CHD risk in women

with CETP deficiency, in spite of the elevated HDL-C levels

(44). Furthermore, as result of rare genetic variants on scavenger

receptor BI (SR-BI) gene and reduced ability of HDLs to deliver

cholesterol to the liver, the consequent increased HDL-C levels

were linked to higher rather than lower risk of CHD risk in both

men and women (45, 46). Indeed, the increased cholesterol in

HDL in these specific circumstances was linked to an impaired

HDL-mediated RCT. Taken together; this evidence questioned

the rationale of using CETP inhibitors as treatment for CVD

and highlighted the need for a better characterization of the
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complexity of HDL, in particular focusing on HDL composition

as key determinant of function in health and disease.

Sex- and age-related di�erences in
HDL measurements

HDL-C is commonly used as a predictor marker for

CVD risk, as reported in SCORE (Systematic Coronary

Risk Evaluation) risk charts and the ASCVD Pooled Cohort

Equations (47, 48). So far, reference values for lipid profiles,

including HDL, used in clinical practice are the same for both

men and women, despite growing evidence on the influence

of sex differences in the discriminative performance of CVD

risk scores. Indeed, pre-menopausal women have higher HDL-

C levels and lower risk of CVD compared to men (Figure 1)

(12, 49–51). Phases of menstrual cycle may influence lipid

profile. While post-prandial serum TG were higher in women

during the follicular compared to the luteal phase of menstrual

cycle, HDL and ApoB levels were stable in both phases (54). In

another study, a significant decrease in the mean levels of TC,

LDL-C, TC/HDL-C, LDL/HDL and TG/HDL was observed in

the luteal compared to the follicular phase of menstrual cycle

(55). Some studies suggested assessing female parameters during

the follicular phase of menstrual cycle could help to minimize

differences due to sexual hormones fluctuations (55, 56).

Patient age is another important factor influencing sex-

dependent differences, since HDL-C levels can vary during

individual lifetime. Healthy pre-pubertal children had high

levels of HDL-C independently from their sex (56). HDL-C

levels then drastically decreased in boys after puberty (∼45

mg/dL/1.16 mmol/L), while remaining higher in girls (∼55

mg/dL/1.42 mmol/L) (57). These differences were lost in post-

menopausal women, independently from menopausal age (58,

59).

Hormonal therapies can also alter lipid parameters.

Transgender men (i.e., female to male) displayed a clear

reduction in HDL compared to women, but higher levels than

cis-gender men (25, 60).

These sex- and age-dependent differences need to be taken

into account when HDL-C levels are used as a CVD prognostic

marker. Moreover, when considering the relationship between

high HDL-C levels and increased all cause and CV mortality,

relevant factors to be evaluated are sex differences together

with the presence of CVD and other comorbidities. In fact,

the increased cardiovascular risk associated with high HDL-

C initially reported in a sex-mixed pool of patients without

previous cardiovascular conditions by the CANHEART Study

and others (3, 5) has not been confirmed afterwards in women

with hypertension (61). Another study analyzed six community-

based cohorts and showed that in men the inverse linear

association between HDL-C and CHD events has a broader

span compared to women. For HDL-C values >90 mg/dL

(>2.33 mmol/L) in men and HDL-C values >75 mg/dL (>1.94

mmol/L) in women, the association between HDL-C and CHD

events reached a plateau with no further reductions in CHD

risk (62).

All-cause mortality in healthy, smoking, middle-aged (50–

59 years) and older (>60 years) Finnish men was positively

associated with HDL-C in the middle-aged group, while there

was a U-shaped pattern in older men. Of note, the middle-

aged group had a higher reported alcohol intake than the older

individuals. Moreover, alcohol- and violence-related mortality

was strongly positively associated with HDL-C specifically in the

middle age group (63). Thus, alcohol may have influenced the

association of HDL-C and mortality through its HDL raising

effect and being a risk factor for behavioral-related non-natural

as well as alcohol-related deaths beyond coronary disease, such

as cancer, cardiomyopathy, stroke (5, 63).

Insights into sex-dependent and
independent di�erences in HDL
structure and composition

HDLs are heterogeneous lipoproteins formed by a

cholesterol ester and TG enriched hydrophobic core and

a surface lipid bilayer containing mainly free cholesterol,

phospholipids and various proteins (6, 64). The biogenesis of

HDLs starts from the synthesis and secretion of apolipoprotein-

AI (ApoA-I) in the liver and intestine (65). The interaction

between secreted ApoA-I and cell membrane protein ATP-

binding cassette transporter A1 (ABCA1), expressed by

hepatocytes and enterocytes (66), allows the acquisition of

lipids and formation of nascent HDLs. Nascent HDLs are

converted into mature particles via cholesterol esterification

performed by lecithin-cholesterol-acyl transferase (LCAT) (67).

Endothelial lipase and hepatic lipase are involved in the lipolysis

of phospholipids and TGs in HDLs, leading to smaller HDL

particles (68). Phospholipid transfer protein further exchanges

lipids between HDLs (69). HDL clearance is orchestrated by

SR-BI and CETP, which regulate the transfer of cholesteryl-ester

from HDLs to the liver and the exchange of ApoB-containing

lipoproteins with TGs (70).

Women have increased HDL-C and ApoA-I levels and lower

ApoB compared to men. These sex-related differences in plasma

lipoproteins start to be evident during puberty, in concomitance

with the increase in testosterone in males and estrogens in

females (Figure 1) (52).

Estrogens increased ApoA-I expression in the liver and

HDL-C levels in pre-menopausal women by modulating the

expression of SR-BI and hepatic lipase (71–73). On the contrary,

testosterone administration enhanced hepatic lipase activity,

increasing HDL catabolism (Figure 1) (52). Androgen therapy

was also associated with an unfavorable shift toward an

atherogenic lipid profile characterized by reduced ApoA-I and
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FIGURE 1

Sex-specific di�erences in lipoproteins and their e�ect on cardiovascular risk factors. Women (left) display increased levels of HDL-C and

ApoA-I and reduced levels of TG and ApoB compared to men (right) (12, 49–52). Men also display increased levels of hepatic lipase compared

to women, which in turn have higher SR-BI expression levels. These di�erences correlate with estrogens and testosterone levels and result in a

reduced risk for CVD and CHD in women compared to men (53). Sex-independent factors associated with increased risk for CVD and changes

in lipid profile have also been reported in this figure (bottom).

increased apo-B levels in men (74). Suppression of androgens

in men, in fact, leaded to an increase in HDL-C, ApoA-I

and reduced ApoB levels (75). It has also been shown that

hyperandrogenism, which is a common feature of polycystic

ovary syndrome, was associated with lower HDL-C levels and

dyslipidemia (76, 77).

Differences in lipid profile have also been associated with

sex-specific gene expression profile. The KDM6A gene encodes

for a histone-demethylase protein highly expressed in the female

liver and its expression levels positively correlated with HDL-

C (78, 79). In turn, KDM6A silencing in hepatocytes lead to

downregulation of genes regulating HDL-C levels (13).

Single nucleotide polymorphisms (SNPs) on the CETP gene

have been associated with higher HDL-C and ApoA-I levels (80,

81). TaqIB is the most common SNP variant of the CETP gene

and the TaqIB genotype can be expressed as either dominant

B1B1 homozygote, B1B2 heterozygote or recessive B2B2. In

particular, B2B2 carriers had higher HDL-C plasma levels and

20% lower risk of CHD vs. the B1B1 carriers (82). Of note, the

increase in HDL-C levels in CETP-TaqIB, B2B2 carriers seemed

to be independent from sexual hormones (81) and was lost in

obesity and type 2 diabetes (T2D). Indeed, other CETP SNP

variants in both sexes were not associated with HDL-C levels nor

with metabolic syndrome and obesity (83). A 16% increase in

HDL-C levels has been reported in men with B2 TaqIB variant

affected by T2D compared with those homozygous for the B1

allele (83).

ApoE, encoded by APOE gene, is the major ligand for

clearance of TG-rich lipoproteins and has anti-atherogenic

function (84, 85). APOE-e2 polymorphism has a sex-specific

effect on lipid profile and has been associated with high HDL-C

levels in woman and increased TG levels in men (86). There are

no sex-differences reported for ApoE isoform 4 in the context

of CVD risk, while the ApoE4 allele seems to confer a memory

advantage in midlife men and an increased risk of Alzheimer in

women (87, 88).

HDL-associated LCAT increased mass concentration and

higher LCAT activity have been correlated with CHD risk in

women but not in men (89, 90). However, mechanisms of

the sex-specific association of LCAT and CV risk need further

investigation given the conflicting results so far available, for

instance in patients with sickle cell anemia and proteinuria
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where a less pronounced reduction of LCAT activity in women

compared to men has been considered protective against

accelerated kidney disease progression in this patient population

(91). Moreover, LCAT deficiency led to the development of

spontaneous atherosclerotic lesions similarly in aged male and

female mice (92) and a female specific protection against diet-

induced obesity and insulin resistance has been described in

mice with combined LCAT and LDL receptor deficiency (93).

Inflammation decreases HDL-C levels and altered HDL

composition in a sex-independent manner (Figure 1) (94, 95).

Changes in the HDL-associated lipids include a decrease in

cholesterol ester and an increase in free cholesterol, TG, free

fatty acids and ceramide-enriched lipoproteins. Dysfunctional

HDLs show marked alterations in protein composition and

become pro-atherogenic. These changes include an increase of

serum amyloid A (SAA), a decrease apoA-I but also variations

in enzymes and transfer proteins, such as LCAT, CETP, PON-1,

and apolipoprotein-M (apoM) (94).

Central adiposity directly correlates with CVD risk (96,

97). Increase in central adiposity was able to alter HDL

subclasses distribution, but overall HDL-C levels seemed not

affected by this parameter (98). Obesity also affects HDL

composition, function and subclasses distribution (99, 100).

Obesity induces, most prominently in women compared to

men, a pro-atherogenic dyslipidemia characterized by increased

LDL and TG and reduced HDL-C, ApoA-I and ApoA-II levels.

We and others showed that in morbidly severe obese patients

bariatric surgery restores HDL endothelial-protective properties

by modulating HDL composition (101–104). Bariatric surgery

improves CV morbidity and mortality regardless of sex and

gender (105, 106). Indeed, in a small patient cohort, we also

showed after Roux-en-Y gastric bypass similar benefits on HDL

endothelial protective function for both sexes (103). Circulating

HDL-C levels increased in our patients after RYGB in agreement

with other studies (107) however concentrations usually remains

well below cut offs (80–90 mg/dL; 2.06–2.33 mmol/L) that are

associated with higher CVD risk (53, 108). Finally, it is worth

to consider that, in the context of obesity and bariatric surgery,

gender-dependent differences (e.g., differences between women

and men in the perception of their body weight in relation to

esthetic, health and therapeutic perspective) are very important

and need to be appraised when evaluating study results and

identifying gaps of existing knowledge (106).

Insight into sex-dependent
regulation of EC function

Women before menopause have lower risk of developing

CHD and endothelial-protective properties of estrogens can

be important contributors (Figure 1) (109). Aging-driven

reduction of flow-mediated dilation appears at the age

of menopause, more than a decade later than in men, in

concomitance with the loss of circulating estrogens (110).

Chronic treatment with estrogens improved endothelial-

dependent vasodilation in both ovariectomized animal

models and post-menopausal women (111–113). Moreover,

clinical studies suggested that estradiol treatment was able to

revert endothelial dysfunction in post-menopausal women

with atherosclerotic, non-stenotic arteries by preventing

acetylcholine-induced coronary vasospasm (114). At present

however, controversies still exist on the cardio-protective

effect of hormonal replacement therapy in post-menopausal

women (115).

At the molecular level, estrogens can stimulate ECs

primarily through estrogen receptors (ERα and Erβ, GPER1)

on EC surface. Activation of ERs increases eNOS activity

and NO production, thus promoting EC-mediated vasodilation

(Figure 2) (116, 123). EC glycocalyx protects ECs from second

insults after trauma hemorrhagic shock (T/SH) (117). Recently,

it has been shown that estrogen administration after T/SH

protects the EC glycocalyx from degradation by regulating tPA

and PAI-1 levels, making ECs more resistant to additional

damages (124). Furthermore, estradiol signaling attenuated

endothelial inflammatory response by reducing cytokine and

chemokine release (such as monocytes chemoattractant protein

1 (MCP-1) and IL-8) as well as EC adhesion molecule expression

(125, 126). Prolonged exposure to estradiol also created a new

homeostatic status in which immune cells were potentiated

and ECs were less sensible to pro-inflammatory stimuli and

apoptosis (Figure 2) (109).

While the EC protective role of estrogens have been well

established, the effect of androgens on ECs is still under debate.

Monocytes binding to aortic ECs seemed to be higher in

male than female rabbits with hypercholesterolemia, suggesting

a correlation between androgen levels and EC inflammation.

However, this sex-dependent difference was also evident in

non-hypercholesterolemic rabbits (127). Testosterone has also

been associated with impaired vascular function in women

(122, 128). This could be due to the fact that, although

testosterone production is 10 times higher in men compared

to women, women may be more sensitive to this hormone

(129). Indeed, several studies pointed out an important

sex-independent role of androgen receptors in regulating

EC viability, proliferation, and angiogenesis/repair likely via

upregulation of the VEGF-A, cyclin A, and cyclin D1 expression

(Figure 2) (121). Of note, abundance of testosterone in male

mice may favor its conversion into estradiol mediated by

aromatase P450, causing hyper-activation of ERs promoting

atherosclerosis (130, 131).

An overall marker of early atherosclerosis is the

transformation of macrophages into foam cells through

intracellular lipid accumulation. Treatment with testosterone

promoted foam cell formation in men (but not in women) by

increasing lipid loading, thus contributing to the development

of atherosclerosis (Figure 2) (132).
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FIGURE 2

Sex-specific gene expression patterns and sexual hormones influence EC response to stimuli and EC-HDL cross talk. ECs derived from female

donors (left) display reduced sensibility to stress and inflammation thanks to the activation of sex-specific pathways involved in stress response.

Estradiol is able to reduce inflammation by reducing MCP-1 release and VCAM-1 expression. Furthermore, estradiol bound to HDLs is able to

strongly activate SR-BI pathway increasing the NO production (53, 114, 116, 117). On the contrary, ECs derived from male donors (right) display

a stronger susceptibility to inflammation, increased levels of oxidative stress and autophagy (118–120). Testosterone also contributes to create a

pro-inflammatory environment by favoring the transformation of macrophages into foam cells (121). Estrogens stimulate NO production in

both sexes through the activation of ER receptors (114). In contrast, androgen receptors are able to increase the expression of genes involved in

cell viability, proliferation and angiogenesis/repair both in men and women ECs (122).

Interestingly, transgender men treated with testosterone

for 12 weeks displayed increased leukocytes-endothelium

interactions, expression of adhesion molecules on EC

surface, pro-inflammatory cytokine release, decreased HDL-C

levels and dyslipidemia (23, 26). Furthermore, the levels of

polymorphonucleate adhesion to ECs in transgender men were

similar to diabetic men with silent myocardial ischemia, which

highlight the need of a closer monitoring of cardiovascular

risk in these patients (26). Progesterone, instead, protected

ECs after cerebrovascular occlusion in male rats (133) and has

been associated with increased NO production in women (134).

However, administration of synthetic progesterone analogs,

such as medroxyprogesterone, correlated with increased risk

of coronary disease and stroke in women under hormonal

replacement therapy (115, 135). Indeed, it has been shown that

estrogen or progesterone and its synthetic analogs differently

affect plasma lipoproteins, in particular, estrogen increases

whereas progesterone and its synthetic analogs decrease HDL-C

concentrations (136). Accordingly, while 17beta-estradiol had

no effects, progesterone and three synthetic analogs suppressed

ApoA-I-mediated cellular cholesterol release from human

fibroblasts resulting in generation of less HDL particles (137).

Sex is a key variable in vascular biology and in particular,

EC function is influenced by sexual hormones, but also by

chromosomes resulting in sex-specific differences in gene

expression profile. Human umbilical vein endothelial cells

(HUVECs) derived from females and males were found

intrinsically different independently from their exposure to

sexual hormones, implicating a role for genomic sexual

dimorphisms in CV system (14, 138). Transcriptomic performed

in HUVECs in boy-girl twins or in non-twin adult ECs showed

that sex-differences were present either at birth and maintained

throughout life or acquired over life (118). As expected, sex

differences in adult EC transcriptome involved many genes

influenced by estrogens or androgens. Interestingly, androgen

and estrogen receptors were not differentially expressed in
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adult ECs. Intriguingly, half of the genes showing sex-specific

differences in HUVECs were sex chromosomal genes. Moreover,

coronary artery disease targets (derived using multiple genome-

wide association studies) were also enriched in the gene

set showing sex difference in HUVECs, making possible to

speculate about sex differences in CAD rooted in differential

gene expression in ECs already at birth (118). Gene hallmark

analysis showed increased expression of genes involved in

endothelial to mesenchymal transition, NF-kB pathway and

hypoxia in females, while increased expression in MYC

targets, oxidative phosphorylation and mTOR pathway were

reported in males (118). Other studies reported target-specific

differences comparing male and female non-twin HUVECs,

which may contribute to sex differences between males and

females in endothelial function. Higher cell proliferation,

migratory properties and endothelial NO synthase expression

were observed in female HUVECs, while in themale cells beclin-

1 and the LC3-II/LC3-I ratio, two widely accepted markers of

autophagy, were higher (119). Notably, cellular size, shape as

well as mRNA and protein expression of estrogen and androgen

receptors were similar among sexes (119). Proteomic analysis

of the secretome of serum-deprived HUVECs isolated from

healthy female and male newborns revealed higher expression

of proteins involved in cellular response to stress (e.g., several

members of Annexin and Heat Shock Protein families) and

apoptosis (e.g., PTX3) in male cells (120). These results are

in agreement with reports obtained in different cells (e.g.,

neurons or cardiomyocytes) challenged with stressor stimuli

and overall suggest lower resistance to oxidative stress and

higher propensity of male cells to undergo apoptosis. On the

contrary, female neurons/cardiomyocytes may be more resistant

to oxidative stress with a pro-autophagy predisposition (139,

140); the latter characteristic will need to be further investigated

in ECs as the above mentioned study on HUVEC transcriptome

in boy-girls twins shows a male and not a female pro-autophagy

gene signature (118).

Female HUVECs showed a stronger transcriptional

response after shear stress exposure compared to male cells

involving, for instance, upregulation of genes such as eNOS,

heme-oxygenase 1 (HO-1) downregulation of NADPH oxidase

4 (Nox 4), endothelin-1 (ET-1) or vascular cell adhesion

molecule 1 (VCAM-1), the latter downregulated by 22.2-fold in

female vs only 3.5-fold in males (141).

Regarding EC energy supply, similar baseline ratios of

glycolysis vs. mitochondrial respiration were observed in

HUVECs obtained from male/female twins, but female cells

performed better under starvation or under VEGF stimulation

with higher ATP and metabolite levels compared to male cells,

suggesting a more flexible modulation of energy production in

females (120, 142).

Further studies will need to elucidate whether the described

higher adaptability of female ECs to stress may confer

them protection against CVD risk. Conversely, a stronger

transcriptional response in female ECs might, in specific cases,

favor disease onset and progression (e.g., in the context of

the higher prevalence of autoimmune diseases in the female

population) (143–145).

Collectively, increasing evidence highlights the presence

of sex dependent differences in ECs at different stages of

life. However, there are very few studies in adult ECs (i.e.,

HAECs) compared to the studies in HUVECs, which makes

difficult to adequately investigate or compare changes in EC

gene expression acquired later in life. Moreover, it is important

to consider sex as a crucial biological variable not only in

cardiovascular clinical research but also in experimental studies

on EC biology to increase the quality and translational value

of results.

Insights into sex-dependent
di�erences in HDL and EC crosstalk

Lifestyle and CVD: Sex-dependent
di�erences

Smoking, alcohol consumption, diet and exercise are

modifiable CVD risk factors (Table 1).

The number of smoked cigarettes positively correlated with

increased CHD risk in both sexes. In fact, smoking induced

endothelial dysfunction and damage, increasing lipid oxidation,

decreasing HDL, and promoting inflammation, and a pro-

thrombotic state (146, 147). Furthermore, a worse lipid profile

characterized by increased ApoB and reduced ApoA-I and

ApoA-II was reported in smokers compared to non-smokers

independently from their sex (148). Interestingly, smoking was

reported as a stronger risk factor for CVD in women than inmen

accordingly to the Finnmark Study (149). This could be partially

attributed to the ability of smoking to alter estradiol metabolism

leading to the formation of inactive catechols (150, 151),

thus inhibiting estradiol vaso-protective properties. Moreover,

exposure to passive smoking from birth was associated with

reduced HDL-C levels in adolescent girls but not in boys (152).

The anti-estrogenic effect of smoking positively correlates with

increased CHD risk and strong reduction in HDL-C levels in

young compared to older women and men (150, 153). The

evidence that ex-smokers had higher HDL-C levels compared

to smokers of both sexes further confirm these results (154).

Furthermore, the Copenhagen City Heart Study reported that

smoking women had 9.4 higher risk of myocardial infarction

compared to non-smoking women, while the risk score was only

2.9 times higher in smoking men compared to non-smokers

(155). On the contrary, reduced levels of endothelial progenitor

cells (EPCs) have been reported in men compared to women.

Smoking further decreased EPCs inmen, while no difference was

found between smoking and non-smoking women. In this case,
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TABLE 1 Comparative description of the e�ect of lifestyle habits on HDLs and ECs in men and women.

Men Women

Smoking Increases CHD risk (147, 148) Increases CHD risk (147, 148)

Induces EC dysfunction (147, 148) Induces EC dysfunction (147, 148)

Reduces HDL number and functionality [147, 148] Reduces HDL number and functionality (147, 148)

Promotes inflammation (147, 148) Promotes inflammation (147, 148)

Reduces EPCs number (157) Alters estrogen metabolism (151, 152)

Increases risk of CVD and MI (152)

Alcohol Increases HDL-C levels (162) Increases HDL-C levels (162)

Prevents EC activation and inflammation (170) Reduces stroke risk (169)

Increases overall mortality (169)

Prevents EC activation and inflammation (170)

Diet Mediterranean diet: reduces small dense LDL and

increases medium LDL, reduces EC inflammation and

oxidative stress (174, 175)

Mediterranean diet: reduces medium dense LDL and increases

small LDL, reduces EC inflammation and oxidative stress.

Increases eNOS activity and reduces CVD risk. (174, 175, 192)

Dairy diet: Reduces insulin sensitivity (176, 177)

Physical activity Prevents EC dysfunction and atherosclerosis (194, 195) Prevents EC dysfunction and atherosclerosis (194, 195)

Increases HDL-C levels (198, 199) Increases HDL-C levels (198, 199)

CHD, Coronary Heart Disease; EC, Endothelial Cells; HDL, High-Density Lipoproteins; HDL-C, HDL-Cholesterol; CVD, Cardiovascular Disease; MI, Myocardial Infarction; LDL,

Low-Density Lipoproteins; eNOS, endothelial Nitric Oxide Synthase; EPCs, Endothelial Precursor Cells.

sex-differences on the effect of smoking were mostly attributed

to a protective effect of estradiol on EPCs (156).

Low to moderate alcohol consumption did not affect CVD

risk in both sexes (157). The CoLaus Study reported no

differences in expression of HDL-related genes (i.e., ABCA1,

APOE5, CETP, hepatic lipase and lipoprotein lipase) based on

alcohol consume in a sex-mixed pool of Caucasian patients

(158). CHD risk could perhaps vary depending on the ethnicity

of the patients. The Atherosclerosis Risk in Communities

(ARIC) study reported reduced CHD in whites but increased

disease in black alcohol consumer men independently from

levels of alcohol consumed (159). This was partially attributed to

different hepatic gene variants and expression levels (i.e., CETP,

hepatic lipase, LPL, and PON1) between these two ethnicities

(159, 160). Meta-analysis data suggested that HDL-C levels

increased an average of 0.06 mmol/L per 23 g/day of alcohol

consumed (161). The increase of HDL-C levels in alcohol

consumers have been attributed to enhanced HDL production

(hepatic and extra-hepatic), decreased CETP activity and lower

HDL-C clearance (162). However, this increase is strongly

influenced by alcohol-gene interactions (163). As an example,

men and post-menopausal women carrying the homodimeric

γ2 variant of the ADHIC gene had a slower rate of alcohol

clearance, which was associated with elevated HDL-C levels

(164, 165). It is worth specifying that sex differences in alcohol

consumption are difficult to detect, since generally women

can tolerate lesser amount of alcohol due to their sex-specific

absorption, body fat/water ratio, reduced levels of enzymes

involved in alcohol metabolism and glomerular filtration rate

(166). Furthermore, studies in the general population indicated

that among all alcohol consumers/abusers, only 1/3 were

women (167). Nevertheless, moderate alcohol consumption was

associated with lower risk of stroke in women compare to men

but also with a 10% increased risk of overall mortality (168).

Alcohol has also a direct effect on ECs. Indeed, moderate

levels of alcohol were able to prevent endothelial activation

and pro-inflammatory cytokine release in human coronary

artery ECs stimulated with the pro-inflammatory SAA (169).

Furthermore, a reduction in monocyte adhesion to TNF-α-

stimulated ECs was reported in moderate alcohol consumer

men compared to non-consumers (170). On the other hand,

heavy alcohol consumption (both measured and self-reported)

was associated with increased circulating vascular adhesion

molecules (i.e., E-selectin, intracellular adhesion molecule 1

(ICAM-1) and VCAM-1) and reduced flow-mediated dilation in

sex-mixed cohorts of patients, independently of alcoholic liver

disease (171, 172).

Diet also affects women and men in a different manner.

Mediterranean diet was able to reduce total cholesterol, LDL-

C, ApoB and ApoA-1 plasma levels in both sexes. However,

men under Mediterranean diet experienced a reduction in

small dense LDL and an increase in medium LDL, while the

opposite trend was observed in women (173, 174). Furthermore,

a comparison between red meat and dairy diet highlighted a

reduction in insulin sensitivity in women following the dairy

diet. Instead, no differences between the two diets were reported

inmen (175, 176). ABCA1 is one of themost sex-influenced gene

in the liver and its expression is higher in females (177). Indeed,
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estrogen levels and dietary components were able to regulate

ABCA1 expression in macrophages, leukocytes and liver in

human and rodents, increasing ApoE-positive HDL particles

and improving cholesterol efflux (178–181). Among all the

genetic variants, ABCA1/R230Cwas associated with lowHDL-C

(182). It has been shown that dietary macronutrient proportions

regulated the effect of ABCA1/R230C in premenopausal women

by directly interacting with ABCA1 gene (183). In particular,

metabolically unfavorable pattern was found in ABCA1/R230C

premenopausal women following high carbohydrates and low

fat diet, while the opposite pattern was found in women

following high fat and low carbohydrates diet (183).

On the contrary, lowering dietary fat intake was able

to restore HDL functionality (in particular HDL-CEC) in

hypercholesterolemic female pigs by reducing cholesterol

plasma levels (184).

There is some evidence that diet could directly affect

EC function. Transitory disruption of endothelial function

and reduction in vasorelaxation have been reported after

acute administration of high-fat meal, in concomitance with

increased triglyceride-rich lipoproteins in plasma (185, 186).

On the contrary, chronic consumption of low-fat diets

(i.e., Mediterranean diet) was associated with improved

endothelial function and reduced markers of endothelial

activation in plasma in men (187–189), most likely through

changes in cholesterol metabolism and the presence of oleate

and decosahexanoic acid, which were able to reduce pro-

inflammatory molecule expression and monocyte adhesion in

ECs in vitro (190). Same results were shown also in women.

Indeed, a pilot study demonstrated that specific components of

Mediterranean diet (i.e., legumes, redmeat, and overall proteins)

were associated with reduced inflammation and oxidative stress,

increased eNOS activity and reduced CVD risk in a cohort of

ethnically mixed women (191).

Physical activity is well known as protective factor against

CVD (192). Evidence showed that physical activity was able to

slow down EC dysfunction and atherosclerosis progression in

both sexes (193, 194). However, how physical activity differently

influence CVD risk in women and men is still under debate.

A systematic review focused on physical activity and stroke

incidence claiming that, among all the analyzed studies, 35%

of them reported a strong association between physical activity

and stroke incidence in women, while the same correlation

in men was evident only in few studies (195). Even so, the

Framingham Study reported that physical activity conferred

protection against stroke in men, but not in women (196).

The correlation between physical activity and reduction in

CVD risk could be partially attributed to increased HDL-C

levels in physically active individuals compared to sedentary

ones. However, the increase in HDL-C seemed to be significant

only when a threshold volume of physical activity was reached

(197, 198). Even if the threshold level has not been accurately and

systematically estimated yet, epidemiological and cross-sectional

studies suggested that the threshold value was 1,500 kcal/week

in men and 1,200 kcal/week in women independently from their

menopausal status (199–201).

Reverse cholesterol transport

The best-known property of HDL is RCT, which consists in

the ability of HDL to accept excess cholesterol from peripheral

cells, in particular macrophages, and transport it to the liver

for excretion or re-utilization. RCT is considered the most

important anti-atherogenic function of HDLs. Components of

cholesterol efflux include the passive diffusion of cholesterol

from cells as well as the active cellular cholesterol transfer by

ABCA1, ABCG1, and SR-BI. In this context, ECs may represent

a potential barrier to HDL in reaching macrophages within

the vessel wall. However, HDL and lipid-free ApoA-I are able

to cross intact aortic EC monolayers from the apical to the

basolateral compartment in a transcytosis process, involving

ABCG1 and SR-BI (202). Contrary to other cells that form the

atherosclerotic plaque (smooth muscle cells and macrophages),

ECs do not accumulate cholesterol (203) and have a strong

ability to efflux cellular cholesterol to HDLs independently

of ABCA1, ABCG1, and SR-BI expression or activity (204).

On the other hand, it has been shown that in conditions

of hyperlipidemia ECs can metabolize LDLs into cholesterol

crystals, which accumulate intracellularly and confer a foam

cell-like morphology to ECs (205).

HDLs derived from healthy normolipidemic men and

women had different RCT capacities due to the activation of sex-

specific mechanisms for cholesterol efflux (206). The rs1799837

(APOA1) and rs1800588 (LIPC) SNP variants represented

the major determinants of HDL cholesterol efflux capacity

in women, while rs2230806 (ABCA1) and rs5082 (APOAII)

variants were key determinants in men (207). Furthermore,

serum isolated from women displayed an enrichment in large-

HDL-particles (L-HDL-P) and increased capacity to mediate

cholesterol efflux through SR-BI receptors. On the other hand,

serum isolated from men showed increased preβ-HDL particles

and cholesterol efflux through ABCA1 receptors (206). Both

low and high HDL-C levels were associated with reduced

free cholesterol transfer on HDLs in both sexes, especially in

women, in patients with acutemyocardial infarction and Tangier

disease (208).

These findings not only suggest that HDL composition

differs in men compared to women, but also that these

differences in HDL pool may have an impact in their

ability to stimulate cholesterol efflux. Estradiol levels, in fact,

positively correlated with HDL cholesterol efflux capacity

(HDL-CEC) from macrophages in pre-menopausal women and

were associated with increased concentration of L-HDL-P and

lower concentration of small-HDL-particles (S-HDL-P) (209).

However, HDL-CEC decreased in transgender women (men
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to women) under estradiol hormone therapy, suggesting that

reduction of testosterone and increase in estradiol may act

synergistically in reducing HDL-CEC (24). This hypothesis is

in line with the evidence that testosterone deprivation in men

increased HDL-C levels but not HDL-CEC, while estradiol

treatment had the opposite effect (210). The correlation between

androgen levels and CVD in men is controversial. Low levels of

androgens were associated to increased CVD in older men (211).

On the other hand, testosterone administration in hypogonadal

men can blunt EC-mediated vasorelaxation (212, 213). Thus,

age and type of androgen used are important factors to

be considered.

Inflammation

Increased expression levels of specific adhesion molecules—

such as VCAM-1 and ICAM-1 and E-selectin—are a well-

recognized marker of EC inflammation and oxidative stress.

HDL particle concentration is inversely correlated with

the expression of cellular adhesion molecules, as well as

inflammatory mediators C-reactive protein (CRP) and TNF-α.

The underlying mechanism can be partly attributed to HDL-

associated sphingosine 1 phosphate (S1P). S1P signaling through

S1P receptor has been shown to protect against TNF-α-induced

monocyte binding to ECs preventing the activation of NF-

kB and c-Jun pathways as well as reducing the secretion of

pro-inflammatory chemokines (214).

OxLDLs can induce MCP-1, which is involved in the

recruitment of monocytes into the sub-endothelial space

and their differentiation into foam cells. It is an important

inflammatory process in the initial stages of atherosclerosis

(215). In vitro and in vivo experimental studies suggested that

HDL associated-PON1 inhibited LDL-oxidation by catalyzing

the breakdown of oxidized phospholipids, thus abolishing the

production of pro-inflammatory cytokines (MCP-1, IL-8 and

macrophage colony stimulating factor) from ECs (216–220).

HDLs are also able to transfermicroRNA to ECs (221). It was

shown that HDL-transferred microRNA-223 directly targeted

ICAM-1 gene at 3’UTR sites suppressing gene expression and

function in HUVECs stimulated with TNF-α thus reducing

leukocyte adhesion. Regulation of TNFα-induced ICAM-1

expression by HDLs was not found in fibroblasts, suggesting a

specific miR-223 delivery on ECs (222–224).

HDL-induced NO production also plays an important

role in the reduction of EC inflammation. The induction

of PI3K-Akt-eNOS signaling mediated by the binding of

ApoA-1 and SR-B1 up-regulates cyclooxygenase (COX-2)

expression and prostaglandin I2 (PGI2) release in ECs

(225). PGI2 is a potent inhibitor of inflammation, which

limits immune cell proliferation as well as inhibits platelet

aggregation, thus affecting smooth muscle relaxation and

vasodilation (226).

HDL-C levels also correlated with risk of infection. Similarly

to what was showed regarding all-cause mortality risk (3, 4),

both low and high levels of HDL-C were associated with

increased risk of infection (227). The increased risk of infection

associated with low levels of HDL-C could be in part due to the

loss of leucopoietic control and immune cell modulation from

HDLs (228, 229). The mechanism in case of high levels of HDL-

C is less clear, but particular genetic mutations associated with

increased HDL levels may also affect disease susceptibility. For

instance, in case of LIPC and SCARB1 (encoding for hepatic

lipase and SR-BI, respectively), whose mutations were associated

with increased risk of CAD (46, 230). Interestingly, several SNP

variants located in the promoter and intron 1 of LIPC gene

were associated with changes in HDL-C levels in women but not

in men (231). SCARB1 rs5888 SNP variant, instead, has been

associated with a greater reduction in total cholesterol, LDL-C

and ApoB in women treated with atorvastatin compared to men

in patients with acute coronary syndrome (232).

Peri-menopausal and menopausal women had increased

levels of TNF-α, CRP, TG and LDL compared to their pre-

menopausal counterparts, which may underline a reduction on

HDL functionality driven by the collapse in estrogen levels (233).

HDL anti-inflammatory properties are impaired or lost

in chronic inflammatory conditions. Concomitantly with

a decrease of HDL particle levels also changes in the

structure and function of HDLs are observed. Patients

with chronic inflammatory disorders, including rheumatoid

arthritis, systemic lupus erythematosus, and psoriasis, which are

associated with an increased risk of atherosclerotic CVD, exhibit

a consistent decrease in HDL particles and ApoA-1 levels and

HDL vaso-protective properties in a sex-independent manner

(234–236). However, in other diseases as in the antiphospholipid

syndrome, studies reporting a strong reduction in HDL

functionality were conducted comparing only affected and

healthy women (237). Thus, it will be important to further

elucidate with sex-matched comparisons whether or not men

and women HDLs are similarly affected also in those immune-

inflammatory diseases.

Interestingly, it has been recently shown that HDL-C

and ApoA-I levels measured before SARS-CoV-2 infection

negatively correlated with COVID-19 mortality and

hospitalization, independently of age, sex, comorbidities,

or statin treatment (238–240). Furthermore, HDL cargo was

profoundly altered in severe COVID-19 patients, with increased

abundance of SAA-1 and−2, SFTPB, ApoF, and inter-alpha-

trypsin inhibitor heavy chain H4 (241). These findings are

corroborated by the evidence that treatment with reconstituted

HDLs in COVID-19 patients reduced SAA-1, SFTPB, and ApoF

in HDLs (242). Of note, men with COVID-19 were more prone

to develop into the severe condition and die compared to women

(Figure 2) (243, 244). Indeed, no striking differences were found

between pre- and post-menopausal women, suggesting that

reduction in female mortality may be independent from
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estrogen levels (243, 244). In vitro experiments conducted

on ECs exposed to SARS-CoV-2 S1 spike protein showed a

significant increase in the overall inflammatory status in cells

treated with androgens (245). Recent findings showed that male

sex clinical-biological characteristics, rather than male gender-

related differences (i.e., pertaining to the socio-economic

sphere, such as education) were independently associated with

intensive care unit admission, invasive ventilation, and/or death

in COVID-19 (246).

Anti-apoptotic and anti-oxidative
properties

EC homeostasis relies on the balance between pro- and anti-

apoptotic stimuli coming from bloodstream and neighboring

cells (247, 248). Once the balance is disrupted, (pro)-apoptotic

ECs favor platelet aggregation and coagulation, creating a pro-

atherogenic environment (249, 250). OxLDL can promote EC

apoptosis by increasing intracellular Ca2+ levels (251–253),

favoring the onset and progression of CVD (114). In contrast

to LDLs, HDLs protect ECs from apoptosis by preserving

mitochondrial integrity and inhibiting the activation of the

caspase-downstream cascade (254–256). Indeed, HDLs isolated

from a mixed sex pool of healthy donors was able to reduce EC

apoptosis both in vivo and in vitro, while sex-matched HDLs

isolated from CAD patients showed opposite results (257).

In particular, HDL particles containing ApoA-I seemed to be

more cytoprotective than other HDL subclasses (258, 259).

Moreover EPCs can quickly differentiate into mature ECs

to rescue vascular integrity in conditions of high cell turnover

(260). HDLs can promote endothelial repair by increasing EPC

number and function in male mice (261, 262).

In addition to their anti-apoptotic properties, HDLs can also

reduce oxidative stress. PON-1 is an accessory protein of HDL

that, in coordination with ApoA-I, protect lipoproteins, ECs and

intimal macrophages from oxidative insults by hydrolyzing lipo-

lactones (263–266). High levels of oxidative stress can increase

HDL lipid peroxide loading, decreasing their protective activity

against LDL oxidation (267, 268). Significant differences in HDL

peroxide levels between men and women have been reported

as a readout of sex-specific reduction in HDL anti-oxidative

functions in men (269).

Decreased HDL anti-oxidative properties driven by high

glycemic burden have also been reported in both type 1 and

type 2 diabetic men and post-menopausal women (270, 271). In

this context, it has been shown that PON-1 activity was more

strongly impaired in T2D women compared to men (272).

Furthermore, women with hypertension, metabolic

syndrome or peri-menopause not only had higher levels

of oxLDLs compared to healthy middle-age or pre-

menopausal women, but also reduced defenses against

oxLDLs. However, the contribution of estrogens in this context

is still unclear (273–275).

HDLs can serve as carriers for other molecules, for instance

estrogens. It has been shown that the binding of estrogens

with HDLs increases their anti-oxidative properties due to

estrogen esterification performed by LCAT (276). Indeed, LCAT

was able to esterify HDL-bounded E2. Esterified E2 was then

transferred fromHDL to LDL thanks to CETP (276). Incubation

experiments demonstrated that E2 esterification and further

association with LDL was able to increase LDL resistance to

oxidation (276, 277). On the contrary, hyperandrogenism is

associated with increased oxidative stress and reduced HDL

anti-oxidative functionality in women (278, 279). To the best

of our knowledge HDLs have not been reported as carriers

for androgens.

HDL-mediated endothelial
NO-production

Several mechanisms account for the endothelial NO-

stimulating capacity of HDLs. In cultured ECs, HDLs directly

activate the production and release of NO by binding of

ApoA-I to SR-BI, leading to increased intracellular ceramide

levels and phosphorylation of endothelial NO-synthase (eNOS)

(280). Cholesterol efflux from ECs to HDLs via ABCA1 also

promotes NO synthesis by modulating cholesterol-binding

protein caveolin-1 and eNOS (281). Mechanistically, the binding

of HDLs to SR-B1 leads to tyrosine kinase Src-mediated

activation of phosphoinositide 3-kinase (PI3K), which in turn

stimulates Akt and Erk pathways. The activation of Akt directly

stimulates eNOS by phosphorylation at Ser-1179 (282) (see

Figure 2).

Estradiol is able to induce rapid arterial vasodilation by

stimulating eNOS activity by acting via ERs (18). HDLs isolated

from female mice and healthy women (but not male mice or

men) were able to enhance NO production. In addition to ERs,

estradiol bound to HDLs was also able to enhance eNOS activity

through the activation of SR-BI receptors (Figure 2) (283).

Specific lipid and protein components of HDLs have a

strong impact on NO production. S1P is a lipid carried

mainly on apoM-containing HDLs (>50% of circulating S1P).

S1P-apoM HDLs are involved in persistent activation of

Akt/eNOS pathway, thus leading to NO dependent vasodilation

through S1P receptor stimulation (284–286). Decreased levels of

ApoM/HDL correlated with increased CVD risk and have been

reported in type 2 diabetes in both sexes and in women (but not

in men) with type 1 diabetes (287–289).

Reduced HDL-associated PON-1 activity leads to the

activation of endothelial lectin-like oxidized LDL receptor

(LOX-1) and PKCαII, thus inhibiting the activity of eNOS (290).

Inflammation and metabolic syndromes can also drastically
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affect the ability of HDLs to stimulate NO production (291, 292),

thus promoting atherosclerosis (293).

Conclusions

Sex hormones and sex-specific gene expression are

important although still incompletely understood determinants

in the regulation of HDL and EC cross talk and their

contribution to cardiovascular health and disease. Despite

increasing evidence pointing out that sex-origin of cultured cells

and in particular ECs can strongly affect scientific results (294–

296), most of the articles do not report any information about

the sex of the cells or of the animals used in their experiments.

The use of sex-mixed cohorts of patients or imbalanced number

of women and men during clinical trials also represents a

potential source of bias. As highlighted in this Review, it is of

foremost importance to always consider the influence of sex as

biological variable in each step of research and to clearly report

and analyze this information.
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Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University,
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Background and aims: Proprotein convertase subtilisin/kexin type 9 (PCSK9)

levels could predict cardiovascular event in patients with well-controlled

LDL-C levels, suggesting an LDL-independent mechanism of PCSK9 on the

cardiovascular system. Accumulating evidence suggests PCSK9 might be

associated with increased platelet reactivity. This study aimed to assess the

relationship between PCSK9 levels and platelet reactivity in subjects not taking

statins or antiplatelet agents.

Methods: A cross-sectional study was conducted to investigate the

independent contribution of PCSK9 to platelet activity by controlling for the

potential confounding factors. The study population included 89 subjects from

a health examination centre who underwent routine annual health check-ups

or had an examination before a selective operation. Subjects taking statins

or antiplatelet agents were excluded. Adenosine diphosphate (ADP)-induced

platelet aggregation was determined by PL-11 platelet analyzer using

impedance aggregometry and plasma PCSK9 levels were determined using

an ELISA. Serum Lipid profile was assessed by measuring the concentration

of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and

triglyceride (TG), with low-density lipoprotein cholesterol (LDL-C) being

directly measured using enzymatic techniques. The association between

PCSK9 and platelet reactivity was investigated.

Results: The study subjects were composed of 53 males and 36 females

with an average age of 55 (±11) years old. The univariate correlation analysis

showed significant correlation between ADP-induced maximal aggregation

rate (MAR) and PCSK9 (r = 0.55, p < 0.001) as well as TC (r = 0.23, p = 0.028),

LDL-C (r = 0.27, p < 0.001), and PLT (r = 0.31, p = 0.005). Being male (41.2%

vs. 46.6, p = 0.04) and smoking (37.4 vs. 46.2%, p = 0.016) were associated

with lower ADP-induced MAR than being female and non-smoking. However,

there is no correlation between PCSK9 and AA-induced platelet maximal

aggregation rate (r= 0.17, p= 0.12). Multiple regression analysis suggested that

PCSK9 contributed independently to ADP-induced maximal aggregation rate

(β = 0.08, p = 0.004) after controlling for the e�ect of TC, LDL-C, PLT, being

male, and smoking.
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Conclusions: PCSK9 is positively associated with platelet reactivity, whichmay

partly account for the beneficial e�ect of PCSK9 inhibition in reducing the risk

of major adverse cardiovascular events after acute coronary syndrome (ACS).

KEYWORDS

proprotein convertase subtilisin/kexin type 9, platelet aggregation, ADP, cross-

sectional study, impedance aggregometry

Introduction

Atherosclerotic cardiovascular disease (CVD) is a major

cause of disease burden. Platelets have an important role in

coronary thrombosis pathogenesis and atherogenesis.

Studies have shown that platelet activity varies greatly among

individuals. It could explain the variability in the risk for

CVD (1–4). Prior clinical studies found an association between

platelet activity and incident cardiovascular morbidity and

mortality (5, 6). Hypercholesterolemia and its induced reactive

oxygen species production can activate platelets (7–9). However,

the molecules through which platelets become hyperactive

remain not fully understood.

Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9),

mainly synthesized by the liver, kidney, and small intestine,

bind and inhibit low density lipoprotein receptor (LDLR)

recircularization by promoting its degradation in the lysosomes

and consequently increase low density lipoprotein (LDL)

particles in the circulation (10). Regulation of cholesterol-rich

LDL level is not the only role that PCSK9 has in atherosclerosis

pathogenesis. In prospective cohort studies, plasma PCSK9

level was correlated with enhanced atherosclerosis progression

and elevated probability of future cardiovascular events

independently of LDL plasma levels, suggesting alternative roles

for PCSK9 in the pathogenesis of atherosclerosis (11, 12).

A relationship between PCSK9 plasma levels and total

number of circulating platelets has been reported in

patients with stable coronary artery disease (13). A strong

correlation between PCSK9 levels and platelet reactivity

was also revealed in patients with recent acute coronary

syndromes who underwent coronary intervention and

received P2Y12 inhibitors (14). However, statin use could

increase PCSK9 levels and antiplatelet drugs could affect

platelet activity in CAD patients (15, 16). In another study,

human recombinant PCSK9 added to healthy human plasma

significantly increased platelet aggregation when stimulated

with epinephrine (17). But the concentration of human

recombinant PCSK9 used in an in-vitro study was much higher

than the physiological concentration in humans. Therefore,

the naive correlation between plasma PCSK9 and platelet

reactivity in subjects without lipid lowering or antiplatelet drugs

is not known.

In the present study, we revealed a correlation between

plasma PCSK9 and platelet reactivity when stimulated by agonist

adenosine diphosphate (ADP) in vitro in healthy subjects

without lipid-lowering or antiplatelet drugs. The ADP-induced

maximal aggregation rate of platelets was 15.8% higher in

patients with highest tertile PCSK9 value than the patients

in the lowest tertile. Additionally, we found that PCSK9 was

independently correlated to platelet activity after adjusting for

low density lipoprotein cholesterol (LDL-C) and platelet (PLT)

count. The results of this study provide another piece of evidence

on the correlation between PCSK9 and platelet activity in

healthy subjects.

Methods

Study population and design

This study is a cross-sectional, single center clinical study.

Eighty-nine subjects who underwent routine annual health

check-ups or had an examination before a selective operation

were enrolled from a health examination center. Inclusion

criteria were: 1) aged between 18 and 80 years and 2) obtained

signed informed consent. The exclusion criteria were subjects

with atherosclerotic cardiovascular disease (ASCVD), malignant

tumor, renal dysfunction, liver dysfunction, thyroid disease,

autoimmune disease, or coagulation disorders. Subjects who had

lipid lowering drugs or antiplatelet drugs in the past 3 months

before screening were excluded. Hypertension and diabetes were

defined as being present when an individual self-reported a

health professional’s diagnosis and was using associated drugs.

Written informed consent was obtained from each patient

included in the study. The study protocol conforms to the ethical

guidelines of the 1975 Declaration of Helsinki and the study

protocol has been priorly approved by the ethics committee of

Second Xiangya Hospital on research on humans.

Assessment of platelet reactivity

A blood sample was withdrawn after overnight fasting

and analyzed for platelet reactivity within 2 h. Whole blood
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aggregation was determined using PL-11 platelet analyzer

(SINNOWA, Nanjing). The system detects the electrical

impedance change due to the adhesion and aggregation of

platelet on two independent electrode-set surfaces. Sodium

citrate was used as an anticoagulant; adenosine diphosphate and

arachidonic acid were used as agonists. A 1:9 dilution of whole

blood anticoagulated with sodium citrate and 0.9% NaCl was

stirred at 25◦C. ADP 5 0µmol/L and arachidonic acid (AA) 2

mg/mL were added.

Assessment of PCSK9 serum levels

Blood samples were collected after overnight fasting and

the samples were stored at −80◦C until analysis. Plasma

PCSK9 concentration was determined by a sandwich enzyme-

linked immunosorbent assay (ELISA). Commercial PCSK9

(Quantikine ELISA, R&D systems Inc.) ELISA kits were used to

quantify the concentrations of them.

Statistical analysis

For clinical data, continuous data are expressed as mean

and standard deviation for normally distributed data or median

and interquartile range for non-Gaussian data distribution. For

comparison of variables between different groups of tertile

PCSK9 values, one-way ANOVA test was used for normally

distributed data, with LSD performed for multiple comparisons.

Kruskal-Wallis test was used for non-Gaussian distributed data.

The distribution of data was examined with the Kolmogorov-

Smirnov test. Categorical variables are presented as percentages

of subjects and were compared using Pearson X2 or Fisher’s

exact tests, as appropriate. The correlation between PCSK9,

other lipid parameters, PLT, and platelet activity was evaluated

by Spearman’s rank test. Continuous PCSK9 levels were

categorized into tertiles of equal size to assess the association

with ADP-induced maximal aggregation rate (MAR). Platelet

reactivity abovemean value was classified as higher. Multivariate

linear regression was used to assess the association between

PCSK9 levels and ADP-induced MAR. Unstandardized B and

p-values were used to present results of the linear regression

model. Adjusted R square and p-values were used to present

for goodness of fit of the multivariate linear regression. All

tests were two-sided; a p < 0.05 was considered statistically

significant. Calculations were performed using SPSS version 26.0

(IBM Corporation, Chicago, USA).

Results

Study population

Between 2020 and 2021, 89 subjects, including 53 male and

36 female with an average age of 55 (±11) years, were recruited

at Second Xiangya hospital. All subjects had not taken statins

or antiplatelet agents before. Baseline clinical characteristics,

comorbidities, and laboratory tests of participants according to

tertile of PCSK9 are summarized in Supplementary Table 1.

Factors correlate with platelet reactivity

Correlation analysis including all characteristic parameters

revealed a significant correlation of ADP-induced MAR with

total cholesterol (TC) (r = 0.23, p = 0.028), LDL-C (r = 0.27,

p <0.001), and PLT (r = 0.312, p = 0.005). No significant

correlation was found between ADP-inducedMARwith age and

other lipid parameters including plasma triglyceride (TG), high-

density lipoprotein cholesterol (HDL-C), nonesterified fatty

acid (NEFA), apolipoprotein A, [apo(A)], and apolipoprotein B

[apo(B)] (Figure 1).

A significantly higher ADP-induced MAR was also observed

in females compared to males (46.6 ± 11.1% vs. 41.2 ± 11.7%,

p = 0.039) and in non-smoking subjects (46.2 ± 11.4% vs. 37.4

± 11.4%, p = 0.016) in comparison to smokers. No significant

difference in ADP-induced MAR was found in subjects with or

without hypertension and diabetes (Figure 2).

Plasma total cholesterol, low density
lipoprotein cholesterol, and platelet
reactivity

In accordance with correlation analysis, a significantly

higher ADP-induced MAR was observed in subjects with higher

TC level (TC≥3.64 mmol/L:46.8 ± 10.3% vs. TC<3.64 mmol/L:

40.7 ± 12.1%, p = 0.013; Figure 3A). On the other hand,

subjects with ADP-induced MAR higher than the mean value

had significantly higher TC level (3.88± 0.90 mmol/L vs. 3.44±

0.72 mmol/L, p= 0.013; Figure 4A).

Although no significant difference of ADP-induced MAR

was observed between tertile LDL-C groups or between high

vs. low LDL-C groups according to mean value (Figure 3B),

those who had higher platelet reactivity had significantly higher

LDL-C levels (2.51 ± 0.72 mmol/L vs. 2.13 ± 0.57 mmol/L;

Figure 4B).

Platelet count and platelet reactivity

In line with the correlation analysis, ADP-inducedMARwas

significantly higher in subjects with higher PLT (PLT≥220.6 ×

1012/L: 47.6 ± 12.3% vs. PLT<220.6 × 1012/L: 39.4 ± 9.8%;

Figure 3C). Vise versa, those who had higher platelet reactivity

also had significantly higher PLT [ADP-induced MAR≥mean

(43.7%): 248.4 ± 71.9 × 1012/L vs. ADP-induced MAR<43.7%:

201.7± 93.0× 1012/L] (Figure 4C).
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FIGURE 1

Correlation analysis. Univariate linear correlation analysis of subject characteristics including age (A), TC (B), TG (C), LDL-C (D), HDL-C (E), NEFA

(F), apoA (G), apoB (H), and PLT (I) with ADP-induced platelet maximal aggregation rate (MAR).

FIGURE 2

ADP-induced platelet aggregation stratified by Sex and Comorbidities. ADP-induced platelet maximal aggregation rate (MAR) in healthy subjects

stratified by Sex (A), Hypertension (B), Smoking (C), and Diabetes (D). *: P < 0.0332, ns: P > 0.1234.
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FIGURE 3

ADP-induced platelet aggregation stratified by TC, LDL-C, and PLT. ADP-induced platelet maximal aggregation rate (MAR) in healthy subjects

stratified by TC (A), LDL-C (B), and PLT (C). *: P < 0.033, **: P < 0.002, ns: P > 0.1234.

FIGURE 4

TC, LDL-C, and PLT stratified by low and high ADP-induced platelet aggregation rate. Comparison of (A) Serum TC level, (B) serum LDL-C level,

and (C) PLT in subjects with ADP-induced maximal platelet aggregation rate (MAR) lower and higher than mean value. *: P < 0.033,

**: P < 0.002, ns: P > 0.1234.

Plasma PCSK9 concentration and platelet
reactivity

Analysis of the correlation between plasma PCSK9

concentration and baseline characteristics revealed that PCSK9

concentration was not correlated with age. Except for LDL-C (r

= 0.23, p = 0.03), PCSK9 concentration was not significantly

correlated with other lipid parameters. A higher plasma PCSK9

was observed in subjects with hypertension (246.1 ± 53.8 vs.

207.6 ± 57.0, p = 0.03) and in non-smoking subjects (221.8 ±

58.6 vs. 185.8 ± 43.3, p = 0.043). No significant difference in

PCSK9 level was observed between females and males, nor in

subjects with and without diabetes (Supplementary Figure 1).

A direct linear correlation was found between increased

plasma PCSK9 levels and adenosine diphosphate (ADP)-

induced maximal aggregation rate (MAR) (r = 0.555, p<0.001;

Figure 5A). This correlation was also observed in both female

and male subgroups despite difference in ADP-induced MAR

between sex (Figures 5B,C).

The distribution of ADP-induced MAR between subgroups

of subjects with different PCSK9 value exhibited a trend of

increment when PCSK9 increase (Supplementary Figure 2A).

Vice versa, the distribution of PCSK9 in subjects with higher

ADP-induced MAR above the mean value compared to subjects

with low ADP-induced MAR showed a correlation with high

PCSK9 level (Supplementary Figure 2B).

When assessed according to tertile values of PCSK9, there

was a significant increase in ADP-induced MAR in the 2nd-

tertile compared to 1st-tertile (43.5 ± 11.7% vs. 35.0 ± 7.6%;

p<0.001). In addition, an increase of ADP-induced MAR was

observed in the 3rd-tertile compared to 2nd-tertile (48.7± 9.3%

vs. 43.5 ± 11.7%; p = 0.035; Figure 5D). On the other hand,

subjects with high ADP-induced MAR had significantly higher

plasma level of PCSK9 (Figure 5E).
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FIGURE 5

Association between proprotein convertase subtilisin/kexin type 9 (PCSK9) levels and ADP-induced platelet maximal aggregation rate (MAR). (A)

Univariate linear correlation analysis of serum PCSK9 with ADP-induced MAR. (B,C) The correlation of serum PCSK9 with ADP-induced MAR was

stratified by sex. (D) Comparison of ADP-induced MAR in subject with di�erent PCSK9 according to tertile value. (E) Comparison of serum

PCSK9 in subjects with ADP-induced MAR lower and higher than mean value. ****: P < 0.0001.

TABLE 1 Univariate linear regression analysis regarding the

association of ADP-induced MAR and characteristics.

Variate Univariate

β p-value

PCSK9 0.089 <0.001

TC 3.254 0.028

LDL-C 4.779 0.009

PLT 0.041 0.005

Sex −4.026 0.096

Smoking −8.832 0.016

ADP, Adenosine diphosphate; PCSK9, Proprotein Convertase Subtilisin/Kexin Type 9;

MAR, maximal aggregation rate; TC, total cholesterol; LDL-C, low density lipoprotein-

cholesterol; PLT, platelet.

Plasma PCSK9 level was not associated with AA-induced

platelet aggregation in the correlation analysis. In addition, AA-

induced platelet MARwas not different according to tertile value

of PCSK9. Plasma PCSK9 concentration in subjects with high

ADP-induced MAR was similar compared to those with low

ADP-induced MAR (Supplementary Figure 3).

Univariate and multivariate linear
regression analysis

In univariate linear regression analysis, PCSK9 (β = 0.089,

p<0,001), TC (β = 3.254, p =0.028), LDL-C (β = 4.779, p =

0.009), PLT (β = 0.041, p = 0.005), and smoking (β = −8.832,

p = 0.016) were factors that could significantly predict the

value of ADP-inducedMAR (Table 1). Inmultivariate regression

analysis, only parameters of covariates that were retained in the

model during stepwise elimination procedure are included in

model 2. PCSK9 (β = 0.09, p = 0.001), LDL-C (β = 4.81, p =

0.046), and PLT (β = 0.05, p = 0.005) were found to predict

ADP-induced MAR. The adjusted R2 of the multivariate model

was 0.284, p<0.001 (Table 2).

Discussion

The role of PCSK9 in altering plasma LDL-C via PCSK9-

LDLR axis has been well established; recent studies have

suggested a possible role of PCSK9 in regulating platelet

function. Our study is the first to confirm an independent and
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TABLE 2 Multivariate linear regression analysis of the association of

ADP-induced MAR and variables.

Variables Model 1 Model 2

(adjusted R2 0.27, (adjusted R2 0.284,

p = 0.002) p = 0.001)

β p-value β p-value

PCSK9 0.08 0.004 0.09 0.001

TC −2.92 0.591 / /

LDL-C 7.58 0.236 4.81 0.046

PLT 0.04 0.073 0.05 0.005

Sex −0.63 0.83 / /

Smoking −4.73 0.262 / /

ADP, Adenosine diphosphate; PSCK9, Proprotein Convertase Subtilisin/kexin Type 9;

MAR, maximal aggregation rate; TC, total cholesterol; LDL-C, low density lipoprotein-

cholesterol; PLT, platelet.

positive correlation between PCSK9 level and platelet reactivity

in populations without established CVD, who did not take statin

or antiplatelet agents.

Platelet reactivity refers to the degree of the response

of blood platelets to an external stimulus. Agonists such as

ADP and collagen activate platelets by binding to specific

receptors that are presented on the platelet surface membrane.

Platelet activation leads to an increase of intra-cytoplasmatic

concentration of calcium and platelet shape change, enabling

platelets to interact with each other and aggregate (18). On

the other hand, platelet activation induces conformational

changes in GPIIb/IIIa that transform it into its fibrinogen

binding form through activating phospholipase Cβ (PLCβ) or

phospholipase Cγ (PLCγ) (19). The receptor-bound fibrinogen

connects two GPIIb/IIIa molecules on nearby platelets. This

process is the final common pathway of agonist-induced platelet

aggregation (20).

Platelet aggregation is modified by activating and

inactivating biomolecules and conditions. Some components

circulating in the blood can potentiate the activation

process in the presence of a strong agonist. For example,

adrenaline lowers cytosolic cAMP levels and augments platelet

activation; insulin-like growth factor I and thrombopoietin

enhance platelet activation via phosphatidylinositol 3-

kinase (PI3K) signaling pathway (21). Diabetes mellitus

and states of increased vascular stress might increase the

responsiveness of platelets to agonists (22). On the other

hand, bioactive mediators released from endothelial cells,

such as prostaglandin I2 (PGI2), prostaglandin E2 (PGE2),

and nitric oxide (NO), were negative platelet-priming

substances (23). A study indicated that polyunsaturated

fatty acid products of 12-lipoxygenase can also hamper

platelet activation (24).

Measurement of platelet aggregation in platelet-rich plasma

using light transmission aggregometry (LTA) is considered

the “gold standard” for measurement but is complex and

technically demanding. Newer approaches to measuring platelet

aggregation uses impedance aggregometry, which is based on the

measurement of the electrical resistance between two electrodes

immersed in stirred whole blood. As platelets aggregate and

bind to the electrodes, there is a change in electrical impedance

that corresponds to the degree of aggregation that has occurred.

Therefore, it is deemed to be more physiological than studies

performed in platelet-rich plasma (25).

ADP is one of the major components released from

activated platelets and it acts as an agonist at two platelet

purinergic G-protein coupled receptors—the Gq-coupled P2Y1

and Gi-coupled P2Y12 receptor. While P2Y1 activation is

responsible for intracellular calciummobilization, shape change,

and initiation of aggregation, the P2Y12 receptor is responsible

for the completion of the aggregation to ADP (26). In the

present study we found that ADP-induced platelet aggregation

was associated with PLT, PCSK9, and LDL-C in multivariate

regression model.

In multivariate regression analysis, ADP-induced platelet

aggregation was associated with PLT, which has been described

previously in patients after recent coronary stent-implantation

and on dual-antiplatelet therapy (27).

Previous studies have found a correlation between plasma

PCSK9 and platelet reactivity in patients with coronary artery

disease and hypercholesterolemia. In a cohort of stable coronary

artery disease patients, plasma PCSK9 levels were positively

correlated with the platelet count and plateletcrit (13). The

PCSK9-REACT study found that, in patients with a recent

acute coronary syndrome (ACS) undergoing percutaneous

coronary intervention and receiving P2Y12 inhibitor, there

was a direct association between PCSK9 plasma level and

high-on-treatment platelet reactivity (14). In patients with

hypercholesterolemia who received background statin and

acetyl salicylic acid therapy, platelet function parameters were

significantly reduced after 12 months of treatment with

the monoclonal antibody (mAb) anti-PCSK9 alirocumab or

evolocumab (28). However, in these studies, use of statin and

aspirin will affect both the plasma PCSK9 level and platelet

activity (15, 16). In our study, a significant association of

PCSK9 with increased ADP-induced MAR was detected in

healthy subjects without statin and antiplatelets. Importantly,

this association was significant even after adjusting for

other covariates.

Similar to a previous study in CAD, platelet reactivity

correlated with plasma LDL-C level in the present study

(29, 30). Hypercholesterolemia may influence platelet reactivity

through several mechanisms. 1) Formation of ox-LDL,

which was induced by high LDL-C, could activate platelets

by binding with CD36 and LOX-1 receptors (31–33). 2)
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Cholesterol incorporation in plasma membranes induces

platelet hypersensitivity to stimuli, whereas its depletion

strikingly reduces platelet reactivity (34–36). However, PCSK9

correlated with platelet reactivity after adjusting LDL-C level

in multivariate linear regression in our study, suggesting

PCSK9 may affect platelet activity through a lipid-lowering

independent mechanism. A recent study found PCSK9

can directly enhance agonist-induced platelet activation by

binding to platelet CD36 and thus activating Src kinase and

MAPK-extracellular signal-regulated kinase 5 and c-Jun

N terminal kinase, increasing the generation of reactive

oxygen species and activating the p38MAPK/cytosolic

phospholipase A2/cyclooxygenase-1/thromboxane A2

signaling pathway (10).

Another finding of this study is AA-induced platelet

aggregation was not correlated to plasma PCSK9. Arachidonic

acid is derived from membrane phospholipids through

phospholipase A2 (PLA2). AA is transformed into prostaglandin

G2 and prostaglandin H2 by cyclooxygenase-1(COX-1),

then transformed into TXA2, which is a strong activator

of platelets. Our finding suggests PCSK9 does not affect

PLA2/Cox-1/TXA2 pathway.

The limitation of the present study is its cross-sectional

nature. The findings of our study could only indicate

associations, not causality. Another limitation is the relatively

small sample size of the population.

Conclusions

In summary, PCSK9 levels are associated with platelet

activation in subjects not taking statins or antiplatelet

agents. Subjects with increased concentration of PCSK9 have

significantly higher platelet activation. The finding of this study

provides additional evidence of the correlation between PCSK9

level and platelet activation beyond CVD patients. Future

studies are warranted to further elucidate the role of PCSK9 as a

risk factor for ASCVD.
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Purpose: We aimed to analyze the correlation between overweight and

obesity-related indicators and cardiovascular risk predictors in patients

with familial hypercholesterolemia (FH) and to evaluate their mutual

predictive properties.

Methods: A total of 103 patients with FH included from 2004 to 2017

were retrospectively analyzed. Pearson correlation analysis and multiple

linear regression analysis were used to assess the correlation between

overweight and obesity-related indicators and cardiovascular risk predictors in

FH patients. Subject operating characteristic (ROC) curve was used to analyze

their reciprocal predictive performance.

Results: (1) Atherogenic index of plasma (AIP) (β = 0.020) and ApoB/ApoA1

Ratio (BAR) (β = 0.015) were independently correlated with body mass

index (BMI) (P < 0.05); AIP (β = 1.176) was independently correlated with

waist-to-hip ratio (WHR) (P < 0.01); AIP (β = 1.575), BAR (β = 0.661)

and atherogenic coefficient (AC) (β = 0.427) were independently correlated

with waist-to-height ratio (WHtR) (P < 0.05). (2) The area under the ROC

(AUC) for overweight corresponding to AIP, BAR, and AC were 0.695 (95%

CI = 0.593–0.797, P < 0.01), 0.660 (95% CI = 0.555–0.766, P < 0.01), and

0.632 (95% CI = 0.525–0.740, P < 0.05), respectively; and AUCs for central

obesity corresponding to AIP, BAR and AC were 0.757 (95% CI = 0.656–

0.857, P < 0.001), 0.654 (95% CI = 0.536–0.771, P < 0.05) and 0.651 (95%

CI = 0.538–0.764, P < 0.05), respectively. The AUCs for moderate risk of AIP

corresponding to BMI, WHR, and WHtR were 0.709 (95% CI = 0.608–0.811,

P < 0.001), 0.773 (95% CI = 0.678–0.867, P < 0.001), 0.739 (95% CI = 0.641–

0.836, P < 0.001), respectively, and BMI, WHR and WHtR corresponded to

an AUC of 0.691 (95% CI = 0.585–0.797, P < 0.01), 0.734 (95% CI = 0.632–

0.835, P < 0.001), and 0.706 (95% CI = 0.603–0.810, P < 0.01) for high risk of

AIP, respectively.
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Conclusion: AIP has independent positive linear correlation with indicators

related to overweight and obesity in FH patients; AIP has good predictive

performance for overweight and obesity in FH patients, and WHR has good

performance for identifying moderate and high risk of AIP in FH patients.

KEYWORDS

hypercholesterolemia, cardiovascular, obesity, atherogenic, correlation

Introduction

Familial hypercholesterolemia (FH) is an autosomal
dominant disorder with an estimated prevalence of 1/300
to 1/500 in heterozygous populations and at least 20
million people worldwide with FH (1–5). It is well known
that hypercholesterolemia predisposes to the formation of
atherosclerotic plaques in the vascular wall and has a high
risk of cardiovascular disease (CVD) events. The prevalence
of FH is higher in patients who have experienced a CVD
event, and control of other CVD risk factors appears to
be less optimal than in other patients (6). The results of
a cross-sectional survey of FH in China showed that the
prevalence of FH in the Chinese population is similar to that
in other countries; however, FH in China is mainly found
in patients with early-onset coronary heart disease and their
lipid levels are poorly controlled and at higher risk of CVD
(7). Together with the fact that cholesterol is involved in the
formation of cellular barriers for many basic physiological
processes and acts as an important component of signal
transduction (1), many studies have emphasized that patients
with FH should be identified early and given early intervention
(8–11).

The detection of traditional lipid profiles and their
associated calculated indices are the main methods currently
used to assess the risk of CVD. However, in the absence of an
abnormal lipid profile, the possibility of coronary artery disease
(CAD) cannot be excluded. Therefore, it has been suggested that
different combinations of these lipid profile parameters could
be used to identify such high-risk individuals. The atherogenic
index of plasma (AIP), ApoB/ApoA1 Ratio (BAR) and the
atherogenic coefficient (AC) have been considered as high-
quality predictors of cardiovascular risk (12, 13). In recent years,
AIP has gained widespread interest as a screening tool for
dyslipidemia and is considered a major cardiometabolic risk
factor and an emerging indicator to predict CVD risk (14),
reflecting the balance between atherogenic and antiatherogenic
factors in an integrated manner (15, 16). BAR has also been
proposed to be better than LDL-C and superior to non-high-
dense lipoprotein cholesterol (non-HDL-C) as a marker of
CVD risk (17–20). This ratio has also been considered as a
potential marker of cardiovascular risk because it can often

be abnormal in the presence of normal conventional lipid
levels (21). A study by Lu et al. indicated that BAR is a
valid predictor of coronary heart disease risk in overweight
and obese people (22). Another ratio index that is HDL-
C dependent and has significance in predicting CAD risk is
AC, calculated as [(TC-HDL-C)/HDL-C] (23). It has been
demonstrated that AC reflects the atherogenic potential of
the entire lipoprotein fraction profile and can be used for
therapeutic management (12).

It is well known that overweight and obesity-related
indicators, including body mass index (BMI), waist-to-height
ratio (WHtR) and waist-to-hip ratio (WHR), are among
the good criteria to reflect the degree of body fatness
and healthiness, and are widely used to screen overweight
and centrally obese people. A large epidemiological survey
showed that more than two-thirds of deaths associated with
high BMI were due to CVD (24). Abdominal obesity (also
central obesity) involves the accumulation of abdominal fat
and is considered an independent risk factor for obesity-
related diseases and death (25). It has been reported that
when AIP values of 0.12–0.21 and > 0.21 indicate the
likelihood of critical abdominal obesity and abdominal obesity,
respectively, while the combination of waist circumference and
AIP may increase the specificity and sensitivity of abdominal
obesity detection in clinical practice, thus suggesting that
AIP may be used as a reference for estimating abdominal
obesity (26).

In this study, to determine whether atherogenic lipid
indicators such as AIP are independently associated with
overweight and obesity-related indicators such as BMI,
we analyzed the correlation between lipid parameters (i.e.,
lipid calculation indicators) such as AIP, BAR, and AC
with overweight and obesity-related indicators, and finally
evaluated the predictive performance of cardiovascular risk
predictors for overweight and overweight and obesity-related
indicators for AIP in risk and high risk identification
performance. It is also hoped that these findings will
highlight the threat of overweight and even obesity in FH
patients and promote the benefits of weight control in FH
patients, thus reducing the risk of atherogenic disease in
this population.
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Patients and methods

Inclusion of study subjects

The original data of the FH study samples were obtained
from the subproject “Collection and clinical epidemiology of
hereditary hyperlipidemia blood specimens in family lines”
under the “Collection, preservation and utilization of genetic
resources of major diseases” of the “Tenth Five-Year Plan”
of China. The original data was initially screened from the
population who attended the outpatient clinic of the First
Hospital of Lanzhou University from 2004 to 2017 based on
the initial fasting lipid levels, and then invited them and their
first-degree relatives to undergo a physical examination again
on a specified date, which included biochemical tests such as
lipid panel, physical examination, electrocardiogram and face-
to-face questionnaires, and all study subjects signed an informed
consent form to voluntarily participate in this study. In addition,
two of the following three criteria were met and included in
the project: (1) At least two family members in each family line
with dyslipidemia, as determined by the National Cholesterol
Education Program (NCEP) (27), with TC ≥ 6.20 mmol/L
and/or LDL-C ≥ 4.10 mmol/L without secondary causes; (2) at
least 2 generations of involvement per family line; and (3) at least
1 member of each family line with hypercholesterolemia with an
age of onset no older than 50 years.

In order to make the above information meet the needs of
the current study, we initially screened out cases in which the
above information might bias the results, including non-Han,
non-first-degree relatives, age < 18 years, and TG > 5.6 mmol/L.
Finally, we followed the Dutch Lipid Clinic Network (DLCN)
(28) for clinical lipid monitoring guidelines and included
Patients with scores of 6 and above (i.e., definite FH and
probable FH) were included in the current study the screening
process for the study sample is shown in Figure 1.

Questionnaire survey and clinical
evaluation

Questionnaire
The questionnaire for the hyperlipidemia family blood

specimen collection project was pre-designed by the
researchers to obtain general demographic information,
life and dietary habits, disease history and medication history
of the participants. The survey involved in this study mainly
included the following aspects: (1) general demographic
information: such as ethnicity, gender, age, etc.; (2) lifestyle
habits: such as smoking, alcohol consumption, physical exercise,
etc.; (3) dietary habits: dietary preferences; (4) disease history:
past history, current disease history and family history, etc.; (5)
medication history: type of medication, name of medication,
start date of medication, dose of medication, etc.

FIGURE 1

Flowchart of the study sample. FH, familial hypercholesterole
mia; TG, triglycerides.

Clinical assessment
Clinical assessments were performed by uniformly trained

clinicians. BMI was calculated by dividing weight (kg) by
the square of height (m2), using an overweight cut-off
point of 24 kg/m2 suitable for BMI in Asian populations
(29), and the study population was divided into overweight
and non-overweight groups. WHR was obtained by dividing
waist circumference (cm) by hip circumference (cm), and
WHtR calculated as waist circumference (cm)/height (cm.)
WHtR ≥ 0.5 and WHR ≥ 0.9 in men and ≥ 0.85 in women
were considered centrally obese (30). Xanthoma included
tendinous xanthoma (which could be located the back of the
fingers, elbows, knees, or elsewhere and also included the
thickening of the Achilles tendon) and tuberous xanthoma,
as well as rash and flat xanthoma. Fasting blood glucose
(FBG) ≥ 7.0 mmol/L or those who had been treated with
hypoglycemic therapy were identified as having diabetes. With
regard to family history of disease, it was defined as a
family history of appropriate disease in first-degree relatives
(i.e., children, parents, and siblings) and grandparents in
second-degree relatives of study subjects, including diabetes,
hypertension, hypercholesterolemia, and CVD (coronary heart
disease, stroke). Systolic blood pressure (SBP) ≥ 140 mmHg or
diastolic blood pressure (DBP) ≥ 90 mmHg measured three
times on non-same day or taking antihypertensive medication
was defined as hypertension. Mean arterial pressure (MAP) was
calculated as (SBP + 2DBP)/3. Those who smoked within the
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past 6 months and reached 1 cigarette/day were classified as
smokers, those who never smoked or smoked occasionally but
did not meet the smoking criteria or quit smoking for more than
1 year were classified as non-smokers. Those who drank alcohol
continuously for more than 6 months and drank alcohol at least
once a week on average were classified as alcohol drinkers, and
those who never drank alcohol or drank occasionally but did
not meet the criteria for drinking alcohol were classified as non-
drinkers. The AIP risk was divided into three groups: (1) low
risk, AIP < 0.11; (2) moderate risk, AIP ≥ 0.11 and ≤ 0.21; and
(3) high risk, AIP > 0.21 (31, 32).

Laboratory tests

The results of the laboratory analyses were obtained from
the subjects’ data profiles. The analysis of biochemical items
such as the full lipid panel was performed at the Laboratory
Department of the First Hospital of Lanzhou University, and
all blood sampling was performed on the following morning
after 8–12 h of fasting, with appropriate quality control,
using the same fully automated biochemical analyzer. Serum
TC, HDL-C, LDL-C, and TG concentrations were measured
by applying enzyme colorimetric method, serum ApoA1,
ApoB and Lipoprotein (a) [Lp(a)] levels were measured by
applying immunoturbidimetric method, and serum FBG levels
were measured by applying hexokinase method. The above
biochemical items were performed in an automated biochemical
analyzer (Beckman Coulter, Brea, CA, USA). Based on
independent lipid parameters, the following clinical indicators
were calculated: non-HDL-C, AIP, BAR, LDL-C/ApoB ratio,
HDL-C/ApoA1 ratio, LDL-C/HDL-C ratio, and AC. non-HDL-
C values were obtained by subtracting HDL-C values from TC
values. AIP was calculated as Log10 (TG/HDL-C) (15).

Statistical analysis

Data were analyzed using SPSS version 20.0 (SPSS,
Inc., Chicago, IL, USA). For continuous variables, normal
distribution was expressed as mean ± standard deviation
(x̄ ± s) and non-normal distribution was expressed as median
and quartiles [M (P25, P75)]; for categorical variables, it
was expressed as number and percentage (N/%). Normality
of continuous variables was tested using Shapiro-Wilk test
and Q-Q plot test. In clinical characteristics and biochemical
parameters between groups, for some physical and blood
indicators such as MAP, BMI, WHR, which are normally
distributed continuous variables, the Student’s t-test was applied
to analyze the differences between two independent variables,
and the chi-square test was performed before the t-test; for TG
and Lp(a), which are two continuous variables that do not obey
normal distribution, the Mann-Whitney U-test was applied

to analyze the differences between two analysis of variance
between independent variables. For the analysis of variance
of categorical variables such as males, smokers, and alcohol
drinkers, we applied the chi-square test. Pearson correlation
analysis was used to determine the relationship between BMI,
WHR, and WHtR and the levels of AIP, BAR, and AC. Multiple
stepwise linear regression analysis was used to determine the
independent correlations between BMI, WHR, and WHtR and
the levels of AIP, BAR, and AC. Receiver operating characteristic
(ROC) analysis was used to explore the performance of
cardiovascular risk predictors in identifying overweight and
central obesity. P < 0.05 was considered statistically significant,
and all tests were two-sided.

Results

Basic information of familial
hypercholesterolemia patients

After excluding samples with missing key data such as basic
information, overweight and obesity-related indicators and lipid
indicators, a total of 103 patients with FH from 17 family lines
were finally included in this study. As shown in Table 1, the
study subjects were all Han Chinese, including 39 (37.9%) males
and 64 (62.1%) females, with an age range of 18–85 years,
an overall mean age of (46.12 ± 14.29) years, and an overall
mean BMI of (23.63 ± 3.39) kg/m2. The study subjects were
classified according to BMI into overweight group (53, 51.4%)
and non-overweight group (50, 48.6%), and the results were
compared between the two groups for basic conditions showing
age (P = 0.019), xanthoma (P = 0.027), hypertension (P< 0.001),
MAP (P < 0.001), BMI (P < 0.001), WHR (P < 0.001),
WHtR (P < 0.001), FBG (P = 0.012), TG (P = 0.002), HDL-
C (P = 0.016), ApoA1 (P = 0.007), AIP (P = 0.001), BAR
(P = 0.003), AC (P = 0.029), and LDL-C/HDL-C ratio (P = 0.035)
were statistically significant between the two groups, while
gender, smoking, alcohol consumption, dietary oiliness, dietary
saltiness, history of coronary heart disease, TC, LDL-C, ApoB,
Lp(a), non-HDL-C, LDL-C/ApoB, and HDL-C/ApoA1 were not
statistically significant between the two groups (P > 0.05). The
study subjects were divided into central obesity group (59 cases,
59%) and non-central obesity group (41 cases, 41%) according
to WHR and WHtR, and the basic conditions were compared
between the two groups, which showed that age (P = 0.001),
male (P = 0.023), smoking (P = 0.024), xanthoma (P = 0.014),
hypertension (P = 0.003), MAP (P < 0.001), BMI (P < 0.001),
WHR (P < 0.001), WHtR (P < 0.001), FBG (P = 0.007),
TG (P < 0.001), HDL-C (P = 0.010), ApoA1 (P = 0.007),
and AIP (P < 0.001) were statistically significant between the
two groups. statistically significant, whereas the differences in
alcohol consumption, dietary oiliness, dietary salinity, history
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TABLE 1 Basic Clinical features of patients with familial hypercholesterolemia.

Variables All n = 103 BMI ≥ 24 kg/m2 P Central obesity P

No (n = 53) Yes (n = 50) No (n = 59) Yes (n = 41)

Age (years) 46.12± 14.29 42.94± 16.27 49.48± 11.04 0.019 42.19± 15.80 51.54± 10.24 0.001

Male (N/%) 39 (37.9%) 17 (32.1%) 22 (44%) 0.212 17 (28.8%) 21 (51.2%) 0.023

Smokers (N/%) 28 (27.2%) 12 (22.6%) 16 (32%) 0.286 11 (18.6%) 16 (39%) 0.024

Alcohol drinkers (N/%) 45 (43.7%) 23 (43.4%) 22 (44%) 0.286 26 (44.1%) 16 (39%) 0.615

Dietary oiliness (N/%) 21 (20.4%) 12 (22.6%) 9 (18%) 0.559 12 (20.3%) 9 (22%) 0.846

Salty diet (N/%) 27 (26.2%) 10 (18.9%) 17 (34%) 0.081 11 (18.6%) 15 (36.6%) 0.063

CHD history (N/%) 5 (4.8%) 2 (3.8%) 3 (6%) 0.599 3 (5.1%) 2 (4.9%) 0.925

Xathoma (N/%) 18 (17.5%) 5 (9.4%) 13 (26%) 0.027 6 (10.2%) 12 (29.3%) 0.014

Hypertension (N/%) 34 (33%) 8 (15.1%) 26 (52%) <0.001 12 (20.3%) 20 (48.8%) 0.003

MAP (mmHg) 91.24± 14.11 85.77± 12.40 97.03± 13.58 <0.001 86.47± 12.49 97.19± 13.83 <0.001

BMI (kg/m2) 23.63± 3.39 20.94± 1.91 26.48± 1.99 <0.001 21.85± 2.72 25.97± 2.73 <0.001

WHR 0.87± 0.08 0.83± 0.07 0.91± 0.08 <0.001 0.82± 0.06 0.94± 0.06 <0.001

WHtR 0.51± 0.06 0.47± 0.04 0.55± 0.04 <0.001 0.47± 0.04 0.56± 0.04 <0.001

FBG (mmol/L) 4.96± 0.79 4.77± 0.68 5.16± 0.85 0.012 4.78± 0.62 5.21± 0.93 0.007

TC (mmol/L) 5.86± 1.41 5.82± 1.21 5.92± 1.59 0.724 5.95± 1.27 5.74± 1.61 0.483

TG (mmol/L) 1.48 (0.90–2.34) 1.10 (0.76–1.88) 1.78 (1.10–2.61) 0.002 1.1 (0.77–1.72) 1.92 (1.38–2.78) <0.001

HDL-C (mmol/L) 1.33± 0.27 1.39± 0.28 1.26± 0.25 0.016 1.39± 0.26 1.25± 0.27 0.010

LDL-C (mmol/L) 3.95± 1.30 3.82± 1.12 4.08± 1.46 0.313 3.95± 1.20 3.90± 1.46 0.876

ApoA1 (g/L) 1.43± 0.27 1.50± 0.29 1.36± 0.24 0.007 1.49± 0.28 1.34± 0.25 0.007

ApoB (g/L) 0.93± 0.50 0.86± 0.22 0.91± 0.25 0.262 0.89± 0.25 0.87± 0.22 0.658

Lp(a) (mg/L) 249.5 (168–309) 227.5 (175–324) 256.5 (156–304) 0.905 238 (168–329) 256.5 (147–286) 0.762

AIP 0.05± 0.30 -0.05± 0.29 0.15± 0.28 0.001 −0.06± 0.27 0.21± 0.29 <0.001

BAR 0.63± 0.17 0.58± 0.15 0.68± 0.18 0.003 0.61± 0.16 0.66± 0.19 0.103

AC 3.50± 1.17 3.26± 0.90 3.76± 1.35 0.029 3.35± 0.94 3.68± 1.34 0.168

LDL-C/HDL-C 3.05± 1.14 2.82± 0.92 3.28± 1.29 0.035 2.91± 0.96 3.19± 0.16 0.227

LDL-C/ApoB 4.49± 0.95 4.53± 1.04 4.44± 0.86 0.649 4.50± 1.03 4.42± 0.86 0.693

HDL-C/ApoA1 0.93± 0.12 0.93± 0.12 0.93± 0.13 0.911 0.94± 0.12 0.93± 0.13 0.845

Non-HDL-C (mmol/L) 4.54± 1.32 4.42± 1.11 4.65± 1.51 0.385 4.55± 1.19 4.49± 1.52 0.822

Data are presented as mean± standard deviation, median (25th–75th percentile) or n (%). Bold values indicate statistical significance.

of coronary heart disease, TC, LDL-C, ApoB, Lp(a), non-HDL-
C, LDL-C/ApoB, BAR, AC, LDL-C/HDL-C, LDL-C/ApoB, and
HDL-C/ApoA1 were not statistically significant between the two
groups (P > 0.05).

Relationship between overweight and
obesity-related indicators and
cardiovascular risk predictors in
patients with familial
hypercholesterolemia

Simple correlation analysis
Further analysis of linear relationships between overweight

and obesity-related indicators and conventional lipid profiles
and lipid-related calculated parameters in patients with FH, as
shown in Table 2, revealed that BMI was significantly negatively

correlated (P < 0.01) with HDL-C (r = −0.284) and ApoA1
(r = −0.269), and with AIP (r = 0.385), BAR (r = 0.348)
and AC (r = 0.256) were significantly positively correlated
(P < 0.01); WHR was significantly negatively correlated with
HDL-C (r = −0.303) and ApoA1 (r = −0.361) (P < 0.01)
and positively correlated with TG (r = 0.329), AIP (r = 0.501)
and BAR (r = 0.287) (P < 0.01). WHtR showed significant
negative correlations (P < 0.05) with HDL-C (r = −0.196)
and ApoA1 (r = −0.203), and significant positive correlations
(P< 0.01). The overall significant correlations of overweight and
obesity-related indicators with AIP, BAR and AC among lipid
parameters in FH patients were shown, and the scatter plots of
correlations between BMI, WHR and WHtR and AIP, BAR, and
AC were plotted in Figure 2.

Independent correlation analysis
Given the above correlations, independent correlation

analyses between BMI, WHR and WHtR and AIP, BAR and AC
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TABLE 2 Correlation analysis of overweight and obesity indicators
and lipid parameters in patients with familial hypercholesterolemia.

BMI WHR WHtR

r P r P r P

TC (mmol/L) 0.048 0.634 −0.112 0.272 0.136 0.173

TG (mmol/L) 0.233 0.018 0.329 0.001 0.310 0.002

HDL-C (mmol/L) −0.284 0.004 −0.303 0.002 −0.196 0.048

LDL-C (mmol/L) 0.126 0.207 −0.017 0.865 0.216 0.029

ApoA1 (g/L) −0.269 0.006 −0.361 <0.001 −0.203 0.041

ApoB (g/L) 0.161 0.105 0.031 0.760 0.186 0.061

Lp(a) (mg/L) −0.058 0.689 0.035 0.810 −0.069 0.633

AIP 0.385 <0.001 0.501 <0.001 0.465 <0.001

BAR 0.348 <0.001 0.287 0.004 0.327 0.001

AC 0.256 0.009 0.121 0.233 0.275 0.005

LDL-C/HDL-C 0.247 0.012 0.123 0.224 0.282 0.004

LDL-C/ApoB −0.059 0.554 −0.128 0.206 0.022 0.823

HDL-C/ApoA1 −0.050 0.615 0.056 0.584 −0.009 0.929

Non-HDL-C (mmol/L) 0.109 0.274 −0.057 0.577 0.185 0.062

Pearson correlation analyses were used. Bold values indicate statistical significance.

were performed by applying multiple stepwise linear regression,
as shown in Tables 3–5. After adjusting for age, sex, smoking,
xanthoma, MAP and FBG, the results showed that independent
correlations with BMI were AIP (β = 0.020, P = 0.013) and
BAR (β = 0.015, P = 0.003), AIP (β = 1.176, P = 0.001)
independently associated with WHR, and AIP (β = 1.575,
P = 0.001), BAR (β = 0.661, P = 0.024) and AC (β = 0.427,
P = 0.035) independently associated with WHtR. It can be seen
that overweight and obesity-related indicators BMI, WHR, and
WHtR all had independent positive linear correlations with
AIP.

Predictive performance analysis of
cardiovascular risk predictors for
overweight and obesity in patients with
familial hypercholesterolemia

To further assess the role of AIP, BAR and AC in identifying
overweight as well as central obesity conditions in FH patients,
we plotted ROC curves, which showed that the area under
the ROC (AUC) for overweight when AIP, BAR, AC and
combined triple indicators were 0.695 (95% CI = 0.593–0.797,
P = 0.001), 0.660 (95% CI = 0.555–0.766, P = 0.005), 0.632
(95% CI = 0.525–0.740, P = 0.021) and 0.710 (95% CI = 0.611–
0.810, P < 0.001), respectively, as shown in Figure 3A;
the AUCs for central obesity with AIP, BAR and AC and
the combination of all three were 0.757 (95% CI = 0.656–
0.857, P < 0.001), 0.654 (95% CI = 0.536–0.771, P = 0.012),
0.651 (95% CI = 0.538–0.764, P = 0.013) and 0.762 (95%
CI = 0.666–0.858, P < 0.001), Figure 3B. It can be seen that

AIP has the best predictive performance for overweight and
obesity among cardiovascular risk predictors, while the area
under the curve suggests the possibility that AIP its predictive
performance for obesity is better than that for overweight; in
addition, the combined AIP, BAR, and AC three indicators
have a moderate predictive performance for overweight in FH
patients.

Analysis of the identification
performance of overweight and
obesity-related indicators in familial
hypercholesterolemia patients for
moderate and high risk of atherogenic
index of plasma

AIP is known to have the best predictive performance
for overweight and obesity based on BMI, WHR and WHtR
judgments, however, to explore which indicator is more
accurate for identifying the risk level of AIP, the AUC was
further used to compare the three overweight and obesity
related indicators for identifying moderate risk of AIP and
high risk of AIP, respectively, and the results showed that
the AUC for BMI, WHR, and WHtR for moderate risk
were 0.709 (95% CI = 0.608–0.811, P < 0.001), 0.773 (95%
CI = 0.678–0.867, P < 0.001), and 0.739 (95% CI = 0.641–
0.836, P < 0.001), respectively, as shown in Figure 4A; the
AUCs of BMI, WHR, and WHtR for AUC for high risk of
AIP were 0.691 (95% CI = 0.585–0.797, P = 0.002), 0.734 (95%
CI = 0.632–0.835, P < 0.001), and 0.706 (95% CI = 0.603–
0.810, P = 0.001), respectively, as shown in Figure 4B. It
can be seen that the three overweight and obesity-related
indicators BMI, WHR, and WHtR have good identification
performance for both moderate and high risk of AIP, with
WHR having the largest AUC, followed by WHtR, and BMI
having the smallest. It is suggested that WHR has better and
more robust performance in identifying moderate and high
risk of AIP. As for the combined diagnostic effectiveness, the
AUC of combining BMI, WHR, and WHtR was 0.782 (95%
CI = 0.689–0.874, P < 0.001) for moderate risk of AIP and
0.749 (95% CI = 0.648–0.850, P < 0.001) for high risk of AIP.
It showed that the combination of BMI, WHR, and WHtR
had a moderate level of discrimination ability for moderate
and high risk of AIP although the discrimination performance
was not significantly improved compared to the individual
indicators.

Discussion

In this study, by analyzing the correlation between
cardiovascular risk predictors and overweight and obesity-
related indicators in patients with FH, the results showed
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FIGURE 2

Scatter plots of correlation between overweight and obesity indicators and cardiovascular risk predictors.

TABLE 3 Independent correlation analysis of cardiovascular risk
predictors with BMI.

BMI (un-adjusted) BMI (adjusted)

Constant β P Constant β P

AIP −0.765 0.035 <0.001 −1.169 0.020 0.013

BAR 0.210 0.018 <0.001 0.138 0.015 0.003

AC 1.412 0.088 0.009 /a / /

Multivariable stepwise linear regression models are shown. Adjusted confounders
included age, sex, smoking, xanthoma, MAP and FBG. Bold values indicate
statistical significance. a“/”denotes no independent correlation.

that AIP was independently associated with BMI, WHR
and WHtR, BAR was independently associated with BMI
and WHtR, and AC was independently associated with
WHtR. Although independent correlations between AIP and
BMI have been reported (33) and between BAR and waist
circumference (34), up to now, in patients with FH, the

TABLE 4 Independent correlation analysis of cardiovascular risk
predictors with WHR.

WHR (un-adjusted) WHR (adjusted)

Constant β P Constant β P

AIP −1.557 1.848 <0.001 −1.692 1.176 0.001

BAR 0.105 0.605 0.004 / / /

AC 1.991 1.716 0.233 / / /

Multivariable stepwise linear regression models are shown. Adjusted confounders
included age, sex, smoking, xanthoma, MAP and FBG. Bold values indicate
statistical significance.

present study is the first to report correlations regarding the
group of cardiovascular risk predictors in patients with FH
with the group of overweight and obesity-related indicators.
The significance of this study is that (1) by analyzing
the correlation between cardiovascular risk predictors and
overweight and obesity-related indicators in patients with
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TABLE 5 Independent correlation analysis of cardiovascular risk
predictors with WHtR.

WHtR (un-adjusted) WHtR (adjusted)

Constant β P Constant β P

AIP −1.124 2.314 <0.001 −0.967 1.575 0.001

BAR 0.160 0.927 0.001 0.046 0.661 0.024

AC 0.841 5.244 0.005 1.288 0.427 0.035

Multivariable stepwise linear regression models are shown. Adjusted confounders
included age, sex, smoking, xanthoma, MAP and FBG. Bold values indicate
statistical significance.

FH families, it provides a theoretical basis for actively
controlling overweight and obesity-related indicators in FH
patients and thus reducing CVD risk, which has important
public health implications; (2) among cardiovascular risk
predictors, AIP was found to have the strongest predictive
effect on overweight, especially central obesity, which provides
a basis for identifying overweight, especially obesity, through
cardiovascular risk predictors.

AIP is a more comprehensive indicator of the balanced
relationship between atheroprotective and atherogenic factors
than a simple lipid index. The results of this study also
showed that AIP among cardiovascular risk predictors has
a better performance than BAR and AC both in terms of
independent correlation with overweight and obesity-related
indicators and in terms of identification of overweight and
obesity. In fact, Shen et al. have reported that AIP can be
a valid indicator for the assessment of abdominal obesity
(26), and a recent cross-sectional study from a Chinese
population also concluded that AIP was a novel and good
biomarker associated with abdominal obesity (35). This is
consistent with the results of the ROC curve analysis in
the present study. Given the superiority of AIP over lipid
indices alone, coupled with the fact that it can be easily
calculated from conventional lipid profiles, AIP has gradually
been increasingly favored and used in clinical practice to guide
the assessment of CVD risk and disease prognosis in recent
years (16, 13, 36–38). Therefore, it is reasonable to assume
that CVD risk is further elevated in those obese populations
in FH patients by the analysis of this study. As for the
study on AIP in FH, Tomáš Freiberger’s team compared the
levels of lipid-related parameters between FH patients with
and without a history of CVD and found that AIP and TG
were significantly higher in those with CVD events in FH,
concluding that AIP is associated with a history of CVD
in FH patients, which reflects the atherosclerotic small LDL
and small HDL particles presence, which may be associated
with the risk of CVD in FH patients (34). The results of
the present study showed significantly higher TG and AIP as
well as significantly lower HDL-C in overweight individuals
with FH, suggesting an imbalance between atherogenic and
anti-atherogenic factors. Moreover, in further multifactorial

FIGURE 3

(A) Predictive performance analysis of AIP, BAR, and AC for
overweight. (B) Predictive performance analysis of AIP, BAR, and
AC for central obesity.

regression analysis in this study, BMI was independently
associated with AIP, and BMI was an independent risk factor
for increased risk level of AIP, suggesting that overweight
patients with FH are at higher risk of CVD (33). It is well
known that the main clinical manifestations of FH patients are
significantly elevated atherogenic lipid indicators LDL-C and
TC, and CVD events are the main cause of death in FH patients,
and if BMI, an indicator associated with overweight and obesity,
is not effectively controlled in these patients, it will add to
their high CVD risk.

BAR represents the balance between ApoB-rich atherogenic
particles and ApoA1-rich anti-atherogenic particles (17, 39) and
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FIGURE 4

(A) Performance analysis of BMI, WHR, and WHtR for identifying
moderate risk of AIP. (B) Performance analysis of BMI, WHR, and
WHtR for identifying high risk of AIP.

is also considered as a potential marker of cardiovascular risk
due to the fact that this ratio can often be abnormal in the
presence of normal conventional lipid levels (21). It is generally
accepted that a BAR above 0.9 is associated with a high risk
of CVD (40), along with higher TG levels, AIP values and
lower HDL-C levels (17). Showing that BAR was significantly
and positively correlated with AIP, which is also consistent
with what we observed in our results, some studies have also
pointed out that AIP reflects the qualitative composition of
lipoproteins, while BAR shows their quantity. Since they have
different but complementary emphases, we suspect that they
are intrinsically linked and hypothesize that there should be
consistency in the manifestation of some diseases, and that
combining these two indices to predict certain diseases may be
promising. Currently, although the relationship between BMI

and BAR is unclear, the results of some studies suggest that
there may be an intrinsic association between BMI and BAR.
A cohort study from China showed that both BMI and BAR were
significantly elevated in patients with lactinoma (41), suggesting
that there may be some intrinsic association between BMI and
BAR in the disease state. Consistent with this, the results of the
present study showed that BMI was independently associated
with BAR in FH patients, suggesting that BMI is an independent
influence on the elevated BAR in FH patients, and the present
study also found that BAR indicators were significantly higher
in overweight individuals than in non-overweight individuals,
suggesting that overweight factors further increase the risk of
CVD events in FH patients.

Several other lipid-related parameters, including
non-HDL-C (42), AC (12), LDL-C/HDL-C (43), LDL-C/ApoB
ratio (44, 45), and HDL-C/ApoA1 ratio (46, 47), have also been
reported to be associated with CVD risk. However, the results
of the current study did not show an independent correlation
between BMI and these indicators. Although the results of the
present study showed a significant correlation between BMI
and LDL-C/HDL-C and AC in patients with FH, the correlation
between them was found to disappear after adjusting for
confounding factors.

It is generally accepted that age, male and blood pressure are
important risk factors for cardiovascular events, and this is also
true in patients with FH. Consistently, the results of the current
study also showed that AIP was significantly correlated with age,
male and MAP in addition to BMI independently, suggesting a
higher risk of CVD in men with FH than in women, and the
possibility that blood pressure is also a risk factor for CVD in
patients with FH (27, 36, 48).

The results of this study showed that both AIP and BAR
had significant independent correlations for BMI. However, by
plotting ROC curves, it was shown that AIP was slightly better
than BAR in predicting overweight. Our results also showed
that cardiovascular risk predictors AIP, BAR, and AC were
all independently correlated with WHtR among overweight
and obesity-related indicators, but comparative analysis of
ROC curves revealed that AIP was the strongest identifier of
central obesity among the three cardiovascular risk predictors.
Consistent with this result, one study found that AIP was
significantly associated with BMI but not BAR by analyzing
changes in cardiometabolic markers in overweight/obese
children before and after lifestyle interventions; their results
also showed that AIP was strongly associated with obesity,
whereas BAR was not significantly associated with obesity (49).
Although AIP is a calculated value, it is a sensitive indicator of
dyslipidemia and may indirectly reflect the diameter of LDL-C
particles (50). Therefore, we hypothesized that the combination
of BMI and AIP could increase the specificity and sensitivity
of overweight and even obesity detection in clinical practice.
From Shen et al. showed that an AIP of 0.11–0.21 or > 0.21
suggested the possibility of borderline abdominal obesity or
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abdominal obesity, respectively, by examining the relationship
between waist circumference and AIP, suggesting that AIP can
be used as a reference for estimating abdominal obesity (26).
Similarly, our results show a linear correlation between BMI
and AIP, according to our derived mathematical expression
for the relationship between AIP and BMI, an increase in
BMI of 1.0 kg/m2 causes an increase in AIP of 0.035, an AIP
value of 0.110 when BMI is 25 kg/m2, and an AIP ≥ 0.215
when BMI ≥ 28 kg/m2, which is essentially consistent with
BMI ≥ 25 and ≥ 28 kg/m2 correspond to moderate risk
(≥ 0.11) and high risk (≥ 0.21) for AIP, respectively, which
also indicates that moderate risk AIP indicates overweight, while
high risk AIP indicates the presence of obesity. WHtR ≥ 0.5
and/or WHR ≥ 0.9 in men and ≥ 0.85 in women are
known to be considered centrally obese (30). According to the
mathematical expression of the present study results AIP and
WHR, AIP = 1.848WHR-1.557, bringing the AIP values of 0.11
and 0.24 into the formula, the resulting WHR values are 0.90
and 0.97, respectively, indicating that central obesity judged
based on WHR corresponds to a moderate risk of AIP, and
when WHR exceeds 0.97, patients with FH are at high risk
of AIP. According to the mathematical expression of AIP and
WHtR of the results of this study, AIP = 2.314WHtR-1.124,
bringing the AIP values of 0.11 and 0.24 into the formula, the
resulting WHtR values are 0.53 and 0.59, respectively, and it
can be basically concluded that central obesity judged based
on WHtR corresponds to moderate risk of AIP, and when
WHtR exceeds 0.59 FH patients would have a high risk of
AIP. Thus, it can be seen that if obesity judged based on BMI
has a high risk of AIP, while central obesity judged based on
WHtR and WHR has a moderate risk of AIP. On the other
hand, the assessment of AIP risk based on BMI may be more
sensitive than the assessment of AIP risk based on WHtR and
WHR. However, the AIP risk level corresponding to obesity
judged based on BMI and the AIP risk level corresponding to
central obesity judged based on WHR combined with WHtR
derived from this study contradict each other. In view of this,
which of BMI, WHtR and WHR identifies the more reliable
AIP risk, the present study again compared the identification
of these three overweight and obesity-related indicators for
intermediate AIP risk and high AIP risk, respectively, using
AUC, and the results showed that WHR had the largest
AUC, WHtR the second largest, and BMI the smallest for
both intermediate AIP risk and high AIP risk. It is suggested
that WHR may be a better and more robust identifier of
overweight and obesity-related indicators for moderate and
high risk of AIP.

However, there are still some shortcomings in this
study: (1) Although our conclusions were obtained based
on retrospective data analysis, the causal relationship
between BMI and cardiovascular risk predictors such as

AIP has not been clearly answered in this study, and deeper
mechanisms based on genetic diagnosis need to be further
explored. (2) With the accelerated urbanization in China,
the increase of “small family” has made the collection of
FH family cases more difficult. Although the sample size
of this study is eligible for this small incidence genetic
disease, a larger sample size study is still necessary to
improve the robustness of the results and the reliability of
the conclusions.

Conclusion

(1) Overweight and obesity-related indicators BMI, WHR
and WHtR in FH patients all had independent positive
linear correlations with AIP; (2) among cardiovascular
risk predictors, AIP has better performance for predicting
overweight and obesity; (3) overweight and obesity-related
indicators had better performance in identifying both medium
and high risk for AIP, among which WHR had the best
performance in identifying medium and high risk for AIP in
patients with FH.
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Introduction: We sought to explore biomarkers of coronary atherosclerosis in

an unbiased fashion.

Methods: We analyzed 665 patients (mean± SD age, 56± 11 years; 47% male)

from the GLOBAL clinical study (NCT01738828). Cases were defined by the

presence of any discernable atherosclerotic plaque based on comprehensive

cardiac computed tomography (CT). De novo Bayesian networks built out of

37,000 molecular measurements and 99 conventional biomarkers per patient

examined the potential causality of specific biomarkers.

Results: Most highly ranked biomarkers by gradient boosting were interleukin-

6, symmetric dimethylarginine, LDL-triglycerides [LDL-TG], apolipoprotein

B48, palmitoleic acid, small dense LDL, alkaline phosphatase, and asymmetric

dimethylarginine. In Bayesian analysis, LDL-TG was directly linked to

atherosclerosis in over 95% of the ensembles. Genetic variants in the genomic

region encoding hepatic lipase (LIPC) were associated with LIPC gene

expression, LDL-TG levels and with atherosclerosis.

Discussion: Triglyceride-rich LDL particles, which can now be routinely

measured with a direct homogenous assay, may play an important role in

atherosclerosis development.

Frontiers in Cardiovascular Medicine 01 frontiersin.org

123

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.960419
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.960419&domain=pdf&date_stamp=2023-01-04
https://doi.org/10.3389/fcvm.2022.960419
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.960419/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-960419 December 20, 2022 Time: 12:20 # 2

Voros et al. 10.3389/fcvm.2022.960419

Clinical trial registration: GLOBAL clinical study (Genetic Loci and

the Burden of Atherosclerotic Lesions); [https://clinicaltrials.gov/ct2/show/

NCT01738828?term=NCT01738828&rank=1], identifier [NCT01738828].

KEYWORDS

triglyceride-rich LDL, LDL-triglycerides, cardiovascular risk, Bayesian network
analysis, omics, hepatic lipase

Highlights

- In our Bayesian analysis, LDL-TG was directly upstream from
atherosclerosis.

- LDL-TG was associated with atherosclerosis independently of
well-known factors.

- Hepatic lipase’s genetic variants correlated with LDL-TG levels
and atherosclerosis

- LDL-TG was positively linked to triglycerides, sd-LDL, and
inflammatory markers.

Introduction

Cardiovascular disease remains the leading cause of
mortality and morbidity worldwide (1). Acute manifestations
of coronary artery disease (CAD) are caused by at least
three relevant biological processes: underlying coronary arterial
atherosclerosis that develops over decades (2), acute plaque
rupture/erosion (3) followed by coronary arterial thrombosis
(4). Many long-term studies of cardiovascular outcomes
have identified low-density lipoprotein cholesterol (LDL-C)
and apolipoprotein-B (Apo-B) as key causal risk factors for
cardiovascular events (5, 6).

Such long-term cardiovascular outcomes studies are very
helpful in establishing clinically relevant risk factors that can
be monitored and modified in clinical practice, such as LDL-
C and Apo-B. A limitation of the current cardiovascular
biomarker studies is that they primarily rely on clinical events,
which is a combination of the three underlying biological
processes with different time scales, namely atherogenesis,
plaque rupture/erosion and thrombosis. As a consequence,
the current cardiovascular biomarker studies do not efficiently
identify and discriminate which of these three specific biological
processes is associated with and causally linked to a risk factor.

Non-invasive coronary arterial imaging with cardiac
CT presents a unique opportunity to isolate causal factors
of atherosclerosis per se. Accordingly, we designed a
nested case-control analysis within the Genetic Loci and
the Burden of Atherosclerotic Lesions (GLOBAL) clinical
study (ClinicalTrials.gov number NCT01738828) (7) to
identify additional causal factors. We used de novo Bayesian

network analysis, a hypothesis-free approach (8), to enrich
for associations with risk of CT for causal relevance to the
development of atherosclerosis. In order to examine causal
relevance of relationships among the multi-modal covariates
of CAD (genetics, gene expression, proteomics, etc.), we
used a specific technique successfully employed to infer
biological pathways from steady-state cross-sectional data,
namely Bayesian belief networks (8, 9). In addition, our
network analysis incorporated whole genome sequencing data
and other data modalities to avoid latent confounding and
to study potential causal biomarkers revealed by Bayesian
network analysis.

Materials and methods

Patients

The analyses for the present study were performed in
a subgroup from the Genetic Loci and the Burden of
Atherosclerotic Lesions (GLOBAL) multicentric clinical study
(ClinicalTrials.gov number NCT01738828). The present nested
Case-Control study was performed in the pre-specified Pilot
Discovery (340 patients) and Pilot Validation (340 patients)
cohorts, which, in combination, included 680 patients. Entirely
complete clinical, imaging, multiomic and genetic data with zero
missingness that is required to build the integrated data frame
for Bayesian analysis was available in 665 patients. Of these, 317
subjects had no discernable atherosclerosis on comprehensive
CT and were therefore designated as “Controls” and 348
subjects had discernable plaque on CT and were designated as
“Cases.” The GLOBAL study included subjects of 18–90 years
of age and self-referred as Caucasian, with the indication of or
undergoing coronary computerized tomography (CT). Subjects
under immunosuppressive or immunomodulatory therapy or
chemotherapy were excluded from the study. Those with major
surgery and blood transfusion within the last two months,
contraindicated CT, or preexisting cardiac affections were also
excluded from the study. Blood draw for all blood-based
biomarker analysis, “omics” testing and genetic testing was
performed at the time of the CT imaging procedure. For further
details about the GLOBAL study design, please go to Voros
et al. (7). The study was conducted according to the criteria
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set by the declaration of Helsinki and all included subjects
signed informed consent for the use of genetic material for
research purposes. The study was approved by institutional
review boards and ethics committee as appropriate. Cardiac
CT was evaluated as previously described (7). Subjects with
any evidence of atherosclerotic plaque in coronary CT were
considered cases, and those without, controls. Peripheral blood
samples were obtained from enrolled subjects, and plasma,
serum, whole blood, and buffy coat were adequately stored for
further analysis.

Data analysis approach

In order to examine causal relevance of relationships among
the multi-modal covariates of CAD (genetics, gene expression,
proteomics, etc.), we used Bayesian belief networks (8, 9).
Although Bayesian Belief networks may not always be able to
establish a unique relationship between covariates, we relied on
Markov equivalence to take advantage of additional information
in order to break synonymous probabilistic relationships. This
approach can take the form of intentional perturbations (8) or
of genetic constraints, the use of which in Bayesian networks
permits analysis that is statistically related to mendelian
randomization (10). Furthermore, we investigated our networks
of causally enriched probabilistic relationships by means of
per-patient counterfactual simulations (11), where the genetic
constraints played a role similar to that of instruments
in instrumental variable analysis. In addition, our networks
incorporated our whole genome sequencing data and other data
modalities to avoid latent confounding and to study potential
causal biomarkers revealed by Bayesian network analysis.

Detailed sample size calculations for
Bayesian network analysis

Tanner and Donoho have pioneered a compressed sensing
approach which bounds inferable complexity given available
data and assumed sparseness (12). In their simulations, for
example, if number of samples, n = 300, number of useful
predictors, k, is 3 on average, and number of variables, p, is
100,000 (as in our case), the x-axis – delta – in Figure 1 is
n/p = 300/100000 ∼ 0, the worst possible case, but the y-axis –
rho – is k/n = 3/300∼ 0 < < 0.15. While the specific numbers do
not map to our problem domain, they illustrate that statistical
inference depends on k, n, and p, and in our case is expected
to be very hard. In order to ensure that we do not suffer from
overfitting, we have applied a number of priors, as documented
in the manuscript. In particular, these include the probability
of the local model (modeled by BIC, or penalized likelihood)
multiplied by the prior probability of the model of a given
complexity and has been described by us in the supplement

to a prior work (13). In the case of a single class (e.g., only
gene expression), the total overall penalty simplifies to E-BIC
with gamma = 1/2, or simply BIC + log(| S|), where | S| is the
number of all possible models (network fragments) of the same
size as S. When multiple data types are present, our incremental
penalty for adding a term of class C to a model is defined as
deltaBIC + log(| C|) + log(| S_c|), where deltaBIC is the change
in BIC due to this addition, | C| is the number of classes, and
| S_c| is the number of elements in class C. Effectively, this
formula computes E-BIC subject to the Bayesian belief that all
classes are equally informative a priori, before any data is seen,
thus penalizing large classes, e.g., genetics, more than small
ones, e.g., clinical data. Subject to this regularization strategy,
the network’s default state is to be fully disconnected, and it can
only become connected through the preponderance of evidence
that overcomes these two penalties. Further, the use of large
model ensembles makes it virtually impossible that the network
overtrains systematically; in a way that would be repeatable in
simulations. Any overtraining would be diluted by the entropy
of the ensemble. Performing simulations on a per-network basis
and averaging their predictions allows us to shrink the overall
standard error of the estimate by the aforementioned dilution
of errors. This property of ensemble methods is well-studied
and has been reflected in a number of popular approaches to
classification and regression, as described in the manuscripts
cited above.

Conventional biomarker analysis
A panel of conventional biomarkers were evaluated

using commercially available kits and reagents, as listed in
Supplementary Table 2.

Isolation of genomic deoxyribonucleic
acid

Isolation of genomic DNA was performed using the
QIAamp DNA Blood Midi Kit (Qiagen part no. 51185). Starting
with 0.3–1 ml of whole blood, a lysis buffer and protease were
added to each sample for cell lysis. After lysis, the lysate was
loaded onto a QIAamp spin column. DNA remained bound to
the QIAamp membrane, while impurities were washed away in
2 vacuum steps. Upon drying the membrane, DNA was eluted
in 200 µl of elution buffer. The yield of genomic DNA was
subsequently determined by PicoGreen quantitation or by using
the Qubit fluorometer.

Whole genome sequencing (Illumina
Service Laboratory)

Whole-genome sequencing was performed by the Illumina
Service Laboratory.
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FIGURE 1

Clusters of circulating biomarkers against CT measures of atherosclerotic plaque, stenosis, and disease burden. This figure displays the results of
unsupervised hierarchical clustering of circulating biomarkers against CT measures of atherosclerotic plaque, stenosis, and disease burden.
Each row represents a biomarker that was nominally associated with atherosclerosis, and each column represents a CT measurement of
atherosclerosis. The dendrograms on both axes show the results of hierarchical cluster analysis. Inside the heat map, positive correlations are
shown in red and negative correlations are shown in blue; the intensity of the color represents the strength of association, as quantified by
Kendall’s tau. There are six major clusters of CT measurements of atherosclerosis: complex plaque, calcified plaque, non-calcified plaque,
calcification/stenosis, disease burden, and a second cluster of complex plaque. There are four clusters of circulating biomarkers with different
patterns of association with different measures of atherosclerosis: Cluster 1 includes triglycerides, fatty acids, calcification, endothelial
dysfunction, fibrosis, and inflammation. LDL-TG is strongly associated with early-stage, non-calcified plaque and complex plaque, and IL-6 is
strongly associated with later-stage, calcified plaque and atherosclerosis burden. Cluster 2 includes ApoB-containing lipoproteins, lipoprotein
(a), and biomarkers of insulin resistance; Cluster 3 includes hepatic biomarkers and markers of hepatic cholesterol synthesis; and Cluster 4
contains vitamin D alone.

Genomic deoxyribonucleic acid quantitation
Genomic DNA was quantified prior to library construction

using PicoGreen (Quant-iTTM PicoGreen R© dsDNA Reagent,
Invitrogen, Catalog #: P11496). Quants were read with
Spectromax Gemini XPS (Molecular Devices).

Library construction – Polymerase chain
reaction-free

Paired-end libraries were manually generated from 500 ng to
1 µg of genomic DNA using the Illumina TruSeq DNA Sample
Preparation Kit (Catalog #: FC-121-2001), based on the protocol
in the TruSeq DNA PCR-free Sample Preparation Guide.

Prefragmentation genomic DNA cleanup was performed using
paramagnetic sample purification beads (Agencourt R© AMPure R©

XP reagents, Beckman Coulter). Samples were fragmented
and libraries were size-selected following fragmentation and
end-repair using paramagnetic sample purification beads,
targeting 300 bp inserts. Final libraries were quality controlled
for size using a gel electrophoretic separation system and
were quantified.

Clustering and sequencing – v3 chemistry
Following library quantitation, DNA libraries were

denatured, diluted, and clustered onto v3 flow cells using the
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Illumina cBotTM system. cBot runs were performed based on
the cBot User Guide, using the reagents provided in Illumina
TruSeq Cluster Kit v3. Clustered v3 flow cells were loaded onto
HiSeq 2000 instruments and sequenced on 100 bp paired-end,
non-indexed runs. All samples were sequenced on independent
lanes. Sequencing runs were performed based on the HiSeq
2000 User Guide, using Illumina TruSeq SBS v3 Reagents.
Illumina HiSeq Control Software and Real-time Analysis were
used on HiSeq 2000 sequencing runs for real-time image
analysis and base calling.

Genotyping
Samples were processed using Infinium chemistry,

based on the Infinium LCG Assay Guide, and run on the
HumanOmni2.5-8 array. Resulting intensity.idat files were
loaded into GenomeStudio R© software to export genotyping calls.

Ribonucleic acid isolation from
PAXGene tubes

RNA isolation was completed using the PAXgene Blood
miRNA Kit (Qiagen, Venlo, The Netherlands). PAXgene Blood
RNA Tubes were first centrifuged to pellet the samples, then
washed with water and resuspended. After digestion with
proteinase K, the samples were homogenized by centrifugation
through PAXgene Shredder spin columns. Isopropanol was
added to the samples to optimize binding conditions, and the
samples were then centrifuged through PAXgene RNA spin
columns, where total RNA >18 nucleotides (including miRNA)
was bound to the silica membrane. The bound RNA was
treated with DNase to remove genomic DNA contamination
and washed. Pure RNA was then eluted.

Small ribonucleic acid sequencing
methods and materials

Libraries were prepared for small RNA sequencing using
the TruSeq Small RNA Sample Prep Kit (Illumina). Prior
to library preparation, RNA samples were quantitated
by spectrophotometry using a Nanodrop ND-8000
spectrophotometer and assessed for RNA integrity using
an Agilent 2100 BioAnalyzer or Caliper LabChip GX. RNA
samples with A260/A280 ratios ranging from 1.6 to 2.2, with
RNA integrity number values ≥7.0, and for which at least 1,000
ng of total RNA was available proceeded to library preparation.
Total RNA samples must have been prepared using extraction
chemistry that does not exclude small RNA species (e.g., the
QIAGEN miRNeasy Kit).

Library preparation began with 1,000 ng of total RNA in
5 µl of nuclease-free water, to which an adapter oligonucleotide
was added that was then ligated to the 3′ hydroxyl present on

miRNA species using T4 RNA ligase (New England Biolabs).
Similarly, a different adapter sequence was ligated to the 5′ end
of RNAs that possessed a 5′ phosphate, in order to create a
single-stranded molecule with defined sequences at both the
5′ and 3′ ends. This molecule was reverse-transcribed and
amplified using 14 cycles of PCR with primers that include
sequences complementary to the 5′ and 3′ adapter sequences,
a specific index sequence, and Illumina sequencing adapter
sequences. The resulting product was analyzed using an Agilent
2100 BioAnalyzer, and the molar amount of mature miRNA
present in the library was estimated by integrating the area
under the curve in the 145–160 bp range. Individual libraries
were mixed to create multiplexed pools, and the mixture was
purified by gel electrophoresis, wherein the 145–160 bp range
was excised from the gel, crushed using a Gel Breaker tube (IST
Engineering), eluted into nuclease-free water, and concentrated
by precipitation with ethanol. The concentration of the final
library pool was determined using PicoGreen (Invitrogen), and
the size distribution of the pool was determined using an Agilent
2100 BioAnalyzer. Library pools were normalized to 2 nM in
preparation for sequencing.

mRNA sequencing

Prior to library preparation, alpha and beta globin mRNA
was reduced using the GLOBINclearTM-Human Kit (Life
Technologies, Carlsbad, CA), following the manufacturers
protocol. Total RNA samples were converted into cDNA
libraries using the TruSeq Stranded mRNA Sample Prep
Kit (Illumina, #RS-122-2103). Starting with 100 ng of total
RNA, polyadenylated RNA (primarily mRNA) was selected
and purified using oligo-dT conjugated magnetic beads.
This mRNA was chemically fragmented and converted
into single-stranded cDNA using reverse transcriptase and
random hexamer primers, with the addition of Actinomycin
D to suppress DNA-dependent synthesis of the second
strand. Double-stranded cDNA was created by removing
the RNA template and synthesizing the second strand in
the presence of dUTP instead of dTTP. A single A base
was added to the 3′ end to facilitate ligation of sequencing
adapters, which contained a single T base overhang. Adapter-
ligated cDNA was amplified by polymerase chain reaction
to increase the amount of sequence-ready library. During
this amplification, the polymerase stalls when it encounters
a U base, rendering the second strand a poor template.
Accordingly, amplified material used the first strand as a
template, thereby preserving the strand information. Final
cDNA libraries were analyzed for size distribution using an
Agilent BioAnalyzer (DNA 1000 Kit, Agilent #5067-1504),
quantitated by qPCR (KAPA Library Quant Kit, KAPA
Biosystems #KK4824), and then normalized to 2 nM in
preparation for sequencing.
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Mass-spectrometry–based proteomics
methods

We performed proteomics discovery experiments in 2
stages; the first stage was performed using non-targeted mass
spectrometry, followed by the second stage of targeted mass
spectrometry using multiple reaction monitoring.

Discovery experiments using
non-targeted mass spectrometry

Samples were processed essentially as described previously
(14). Briefly, each 30 µl sample was depleted of high abundance
proteins using an affinity resin (IgY14/Supermix, Sigma).
All columns were prepared with the same manufacturing
batch of affinity resin and tested for consistent performance
prior to use. Control samples, consisting of aliquots of a
pooled human plasma sample, were inserted at the start,
middle, and end of each set of 20 paired study samples,
resulting in a batch size of 23. After depletion, samples
were frozen, freeze-dried, digested with trypsin (1:10, w:w,
Promega), and desalted on Empore C18 plates (3M Bioanalytical
Technologies). Resulting peptides were separated by strong
cation exchange (SCX, Waters) chromatography into 6 fractions
with a linear salt gradient and desalted on Oasis HLB plates
(Waters). Samples were distributed into two 96-well plates (one
test plate and one backup plate). Samples were then dried and
resuspended in 96.25/3.75 (v/v) water/acetonitrile and 0.1%
formic acid, containing 19 internal standard peptides. Mass
spectrometry analysis was performed by nanoflow reversed
phase liquid chromatography (NanoAcquity UPLC, Waters),
coupled by electrospray (Michrom ADVANCE CaptiveSpray
MS Source) to a high-resolution mass spectrometer (Q
Exactive, ThermoScientific) in liquid chromatography mass
spectrometry (LC-MS) and liquid chromatography/tandem
mass spectrometry (LC-MS/MS) mode. The LC column was
used at a flow rate of 1.8 µl/min (Waters nanoAcquity UPLC
column BEH130 C18, 150 µm × 100 mm, 1.7 µm). Each of
the 6 fractions was run as a separate set of 338 samples plus
control samples.

Intensity data files for each LC-MS run within a SCX fraction
were aligned using Elucidator (Rosetta Biosoftware). Peak
intensities for each peptide ion were then extracted across all
files. LC-MS/MS files were analyzed by Mascot (Matrix Sciences)
and the Uniprot human protein database (version 2013_08)
to assign high confidence peptide sequences to the observed
peptide ions. All sequenced peptides were then clustered by their
parent proteins. Potential intensity bias introduced by sample
processing and/or loss of sensitivity of the mass spectrometer
over the time of the experiment was corrected by normalization.
The normalization procedure was based on a regression model,
which predicted log-intensity level on a per-peptide basis. First,

the mean raw log-intensity for each peptide was calculated. Then
the regression model (linear regression or natural cubic spline
smoothing) for sample processing variables was fit to the data.
Finally, the normalized log-intensity was computed as the raw
log-intensity minus the regression-predicted log-intensity plus
the mean raw log-intensity.

The statistical significance of the intensity differences
between the various clinical groups was assessed using a
paired t test, which was performed independently on each
peptide and each protein, for the matched case and control
samples. An analysis of variance model was also used to
compare the same two groups to account for dyslipidemia,
hypertension, and diabetes status covariates, which were not
matched between sample pairs. All statistical test P values were
adjusted for multiple testing by conversion to Q values using
Storey’s method.

Metabolomics and lipidomics methods
by mass spectrometry

Sample preparation for global metabolomics
Samples were stored at –70◦C until processed. Sample

preparation was carried out as described previously (15) at
Metabolon, Inc. Briefly, recovery standards were added prior
to the first step in the extraction process for quality control
purposes. To remove protein, dissociate small molecules bound
to protein or trapped in the precipitated protein matrix,
and to recover chemically diverse metabolites, proteins were
precipitated with methanol under vigorous shaking for 2 min
(Glen Mills Genogrinder 2000), followed by centrifugation. The
resulting extract was divided into 4 fractions: 1 for analysis by
ultra-high performance liquid chromatography tandem mass
spectrometry (UPLC-MS/MS; positive mode), 1 for analysis
by UPLC-MS/MS (negative mode), 1 for analysis by gas
chromatography–mass spectrometry (GC-MS), and 1 sample
was reserved for backup.

Three types of controls were analyzed in concert with
the experimental samples: samples generated from a pool
of human plasma (extensively characterized by Metabolon,
Inc.) served as technical replicates throughout the data set;
extracted water samples served as process blanks; and a cocktail
of standards spiked into every analyzed sample allowed for
instrument performance monitoring. Instrument variability
was determined by calculating the median relative standard
deviation (RSD) for the standards that were added to each
sample prior to injection into the mass spectrometers (median
RSD = 5%; n = 30 standards). Overall process variability was
determined by calculating the median RSD for all endogenous
metabolites (i.e., non-instrument standards) present in 100%
of the pooled human plasma samples (median RSD = 11%;
n = 610 metabolites). Experimental samples and controls were
randomized across the platform run.
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Mass spectrometry analysis
Non-targeted MS analysis was performed at Metabolon,

Inc. Extracts were subjected to either GC-MS (16) or UPLC-
MS/MS (15). The chromatography was standardized and, once
the method was validated, no further changes were made. As
part of Metabolon’s general practice, all columns were purchased
from a single manufacturer’s lot at the outset of the experiments.
All solvents were similarly purchased in bulk from a single
manufacturer’s lot in sufficient quantity to complete all related
experiments. For each sample, vacuum-dried samples were
dissolved in injection solvent containing 8 or more injection
standards at fixed concentrations, depending on the platform.
The internal standards were used to assure both injection
and chromatographic consistency. Instruments were tuned and
calibrated for mass resolution and mass accuracy daily.

The UPLC-MS/MS platform utilized a Waters Acquity
UPLC with Waters UPLC BEH C18-2.1 × 100 mm,
1.7 µm columns and a Thermo Scientific Q-Exactive high
resolution/accurate mass spectrometer interfaced with a heated
electrospray ionization source and Orbitrap mass analyzer
operated at 35,000 mass resolution. The sample extract was
dried and then reconstituted in acidic or basic LC-compatible
solvents, each of which contained 8 or more injection standards
at fixed concentrations to ensure injection and chromatographic
consistency. One aliquot was analyzed using acidic, positive
ion–optimized conditions, and the other using basic, negative
ion–optimized conditions in 2 independent injections using
separate dedicated columns. Extracts reconstituted in acidic
conditions were gradient eluted using water and methanol
containing 0.1% formic acid, while the basic extracts, which
also used water/methanol, contained 6.5 mM ammonium
bicarbonate. The MS analysis alternated between MS and
data-dependent MS2 scans using dynamic exclusion, and the
scan range was from 80 to 1,000 m/z.

The samples destined for analysis by GC-MS were dried
under vacuum desiccation for a minimum of 18 h prior to
being derivatized under dried nitrogen using bistrimethyl-
silyltrifluoroacetamide. Derivatized samples were separated on
a 5% phenyldimethyl silicone column with helium as carrier
gas and a temperature ramp from 60 to 340◦C within a 17-min
period. All samples were analyzed on a Thermo-Finnigan Trace
DSQ MS operated at unit mass resolving power with electron
impact ionization and a 50–750 atomic mass unit scan range.

Compound identification, quantification, and
data curation

Metabolites were identified by automated comparison of
the ion features in the experimental samples to a reference
library of chemical standard entries that included retention
time, molecular weight (m/z), preferred adducts, and in-source
fragments as well as associated MS spectra and curated by
visual inspection for quality control using software developed
at Metabolon. Identification of known chemical entities was

based on comparison to metabolomic library entries of
purified standards. Over 2,500 commercially available purified
standard compounds have been acquired and registered into the
Laboratory Information Management System for distribution
to both the LC-MS and GC-MS platforms for determination
of their detectable characteristics. An additional 250 mass
spectral entries have been created for structurally unnamed
biochemicals, which have been identified by virtue of their
recurrent nature (both chromatographic and mass spectral).
These compounds have the potential to be identified by future
acquisition of a matching purified standard or by classical
structural analysis. Peaks were quantified using area-under-the-
curve. Raw area counts for each metabolite in each sample were
normalized to correct for variation resulting from instrument
inter-day tuning differences by the median value for each run-
day; therefore, the medians were set to 1.0 for each run. This
preserved variation between samples but allowed metabolites
of widely different raw peak areas to be compared on a similar
graphical scale. Missing values were imputed with the observed
minimum after normalization.

TrueMass R© lipomic panel
Lipids were extracted in the presence of authentic

internal standards by the method of Folch et al. (17) using
chloroform:methanol (2:1 v/v). For the separation of neutral
lipid classes [FFA, TAG, DAG, CE], a solvent system consisting
of petroleum ether/diethyl ether/acetic acid (80:20:1) was
employed. Individual phospholipid classes within each extract
[PC, PE] were separated using the Agilent Technologies 1100
Series LC. Each lipid class was transesterified in 1% sulfuric
acid in methanol in a sealed vial under a nitrogen atmosphere
at 100◦C for 45 min. The resulting fatty acid methyl esters
were extracted from the mixture with hexane containing 0.05%
butylated hydroxytoluene and prepared for GC by sealing the
hexane extracts under nitrogen. Fatty acid methyl esters were
separated and quantified by capillary GC (Agilent Technologies
6890 Series GC) equipped with a 30 m DB 88 capillary column
(Agilent Technologies) and a flame ionization detector.

Evaluation of associations between
low density lipoprotein triglycerides
and plasma lipoproteins

For a confirmatory study, eight hundred and six
subjects were included from the National Institutes of
Health CT study. The cohort included both males and
females that were at least 18 years of age and with clinical
indication for a coronary CT angiography. There were
no additional inclusion criteria. Exclusion criteria were
current pregnancy and severely decreased renal function
(estimated glomerular filtration rate < 30 mL/min/1.73m2
body surface area). The study protocol was approved by
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the National Heart, Lung, and Blood Institute’s Institutional
Review Board and all subjects provided informed consent
at enrolment. ClinicalTrials.gov identifier: NCT01621594.
Plasma LDL-TG was determined by homogeneous assay
(Denka Seiken Co., Ltd., Tokyo, Japan), and subjects were
divided according to LDL-TG terciles. Fasting lipid panel
was determined by standard enzymatic methods on a
Cobas 6000 analyzer (Roche Diagnostics, Indianapolis, IN,
USA). LDL cholesterol and very low-density lipoprotein
(VLDL) cholesterol were calculated using Sampson’s
formula (18). Small dense LDL cholesterol was measured
by a homogeneous assay (Denka Seiken Co, Ltd., Tokyo,
Japan). Lipoprotein subclass profile was determined in
Vantera Clinical NMR Analyzer (Labcorp, Burlington,
NC, USA). The LipoProfile-3 or 4 algorithm was used to
determine the particle number of lipoprotein subclasses:
Number of triglyceride-rich lipoprotein particles (TRL-
P) and the following subclasses: very small-, small-,
medium- and large-TRL-P; LDL particle number (LDL-P),
and its subclasses: small-, medium-, large-LDL-P; HDL
particle number (HDL-P), as well as HDL subclasses:
small-, medium-, and large-HDL-P. GlycA levels were
determined in a Vantera Clinical NMR Analyzer (Labcorp,
Burlington, NC, USA). Plasma high sensitivity (hs-CRP) was
measured on the Cobas 6000 analyzer (Roche Diagnostics,
Indianapolis, IN, USA).

Results

Demographic features and
atherosclerosis in the patient
population

A total of 665 patients were included in our analysis;
general demographic features are shown in Supplementary
Table 1. Typical angina (62 vs. 64%) and atypical angina
(36.5 vs. 36%) were similar in cases and controls. In general,
the mean ± SD age in the overall study population was
56 ± 11 years, 47% of patients were male, and the mean
Diamond-Forrester score was 26% (range, 0–94%). LDL-C,
high-density lipoprotein cholesterol (HDL-C), and triglycerides
in cases and controls are also shown in Supplementary
Table 1. The prevalence of atherosclerosis (i.e., cases) was
52% in the overall cohort. Seven percent of patients had
a coronary calcium score of zero but had a non-calcified
plaque. Predominantly non-calcified, partially calcified, and
calcified plaques were present in 7, 36, and 57% of cases,
respectively. Napkin ring sign, a high-risk feature by CT,
was observed in 10% of patients. Moderate stenosis (50–
69%) was the highest degree of stenosis in 7% of patients,
and 16% of patients had moderate-to-severe stenosis (≥50%
luminal stenosis). Mean ± SD segment involvement score

and segment involvement score index were 2.2 ± 3.1 and
2.4± 3.3%, respectively.

Biomarker associations with
atherosclerosis

In a preliminary coarse filter of the biomarkers, nominal
univariate associations (raw P < 0.05) with atherosclerosis were
identified for 30 of the 99 conventional biomarkers; these are
illustrated in a heatmap in Figure 1. The dendrogram on the
left of the plot was generated by unsupervised hierarchical
clustering and indicates four (4) clusters. Cluster 1 included
total plasma triglycerides and LDL-TG, as well as fatty acids and
measures of endothelial dysfunction, inflammation, and fibrosis.
Cluster 2 included ApoB-containing lipoprotein measurements,
lipoprotein(a), and measures of insulin resistance. Cluster 3
included hepatic measurements of bilirubin metabolism and
a marker of cholesterol biosynthesis. Cluster 4 contained
vitamin D alone.

The thirty biomarkers identified by univariate analysis were
further subjected to gradient boosting analysis to identify the
strongest predictors of atherosclerosis Figure 2A indicates
the relative influence of the eight biomarkers ranked most
highly. Interleukin-6 [IL-6], symmetric dimethylarginine, and
LDL-TG emerged as the top 3 predictors of case-control
status, with a relative influence of over ∼30% for IL-
6 and symmetric dimethylarginine and ∼15% for LDL-
TG. As described below, of these eight (8) biomarkers
strongly associated with atherosclerosis, only LDL-TG was
directly connected to atherosclerosis in the Bayesian network
analysis.

Bayesian network analysis using
reverse engineering with forward
simulation

The primary result and output from the hypothesis-free
Bayesian network analysis is shown in Figure 2B. The ensemble
of Bayesian networks identified consisted of 24,929 nodes
and 110,350 edges, which occurred in >5% of the models
in the ensemble. LDL-TG was the only biomarker directly
upstream from the presence of atherosclerotic CAD (ASCAD),
which occurred in 95% of networks in the ensemble. This
suggests a potential causal role of triglyceride-rich LDL particles,
as measured by LDL-TG levels, in the development and
progression of atherosclerosis. Given the central role of LDL-
TG in the Bayesian networks, we further explored the potential
contribution of LDL-TG to atherosclerosis. It is important to
point out that clinical features, such as age and gender, were also
included in the Bayesian analysis and therefore, the Bayesian
findings do normalize our findings for age and gender.
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FIGURE 2

Gradient boosting analysis identified the strongest predictors of atherosclerotic coronary artery disease. Hypothesis-free Bayesian network
analysis using reverse engineering with forward simulation (REFSTM) Suggests a potential causal role of triglyceride-rich LDL particles, as
measured by LDL-TG levels, in the development and progression of atherosclerosis. (A) Out of the 30 conventional biomarkers included in the
multivariate analysis, the top 8 analytes are shown in the bar graph. The length of the bar corresponds to the relative influence the biomarker in
predicting atherosclerotic coronary artery disease. The biomarkers include IL-6 (inflammation), symmetric dimethylarginine (endothelial
dysfunction), and LDL-TG (ApoB-containing lipoprotein cluster). (B) This figure is not an illustration; it is an actual output from the
hypothesis-free Bayesian network analysis. A total of 24,929 nodes and 110,350 edges were discovered in more than 5% of the networks in the
ensemble; shown is the subnetwork of measurements with 1 degree of separation from LDL-TG. Arrow thickness indicates the fraction of
networks in which the causal edge appears; different colored boxes represent different types of measurements (yellow:
mass-spectrometry–based lipidomics; pink: mass-spectrometry–based metabolomics; green: gene expression [mRNA]; gray: conventional
biomarker measurements). Notably, among all of the biomarkers that were measured and included in the model, LDL-TG was the only
biomarker with a direct connection to ASCAD (see blue arrows pointing to the edge connecting LDL-TG to ASCAD). This suggests that
triglyceride-rich lipoprotein particles, as measured by LDL-TG levels, may have a causal role in atherosclerosis. Interestingly, in this causal
model, sd-LDL, ApoB, and C-reactive protein are downstream from LDL-TG, while palmitoleic acid and total triglyceride levels appear upstream
from LDL-TG. Fibrinogen and galectin-3 are downstream from C-reactive protein. ADMA, asymmetric dimethylarginine; ALP, alkaline
phosphatase; ApoB, apolipoprotein B; IL-6, interleukin-6; LDL-TG, low-density lipoprotein-triglycerides; SDMA, symmetric dimethylarginine,
ASCAD, atherosclerotic coronary artery disease; CAD, coronary artery disease; CRP, C-reactive protein; POA, palmitoleic acid; sd-LDL, small,
dense low-density lipoprotein; TG, triglycerides.
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Low density lipoprotein triglycerides
and atherosclerosis

As an independent biomarker, LDL-TG levels were
significantly higher in cases versus controls (mean ± SE,
20.19 ± 0.93 vs 17.21 ± 0.40 mg/dL; P < 0.001). The
four quartiles of LDL-TG measurements were examined; odds
ratios in the second, third, and fourth quartiles were 1.38
(95% CI, 0.86–2.24), 1.43 (95% CI, 0.89–2.31), and 2.84
(95% CI, 1.75–4.64), respectively, compared to the first (i.e.,
reference) quartile (Table 1). Adjusting the model for age,
sex, LDL-C and ApoB levels demonstrated that the association
of LDL-TG with atherosclerosis was independent of these
well-known factors.

Cumulative incidence curves

To examine the relative contribution of each key biomarker
to atherosclerosis, we constructed cumulative incidence curves
for ApoB, LDL-C, and LDL-TG levels against the cumulative
incidence of atherosclerosis in all patients and in patients
who were not on statins (Figure 3). Our data confirmed
the well-described relationship between LDL-C levels and
the incidence of atherosclerosis, which was most apparent
in patients who were not on statin therapy (Figure 3E).
A similar pattern was also observed for ApoB (Figure 3D).
It is acknowledged that the left tails of the cumulative
incidence curves are likely to be highly influenced by patients
with known ASCAD whose LDL-C and ApoB levels were
likely lowered by recent statin therapy. Importantly, statin
therapy appears to have little influence on the cumulative
incidence of ASCAD as a function of LDL-TG measurements
(Figures 3C,F).

Hepatic lipase (LIPC), low density
lipoprotein triglycerides and
atherosclerosis

Since previous publications (19–21) have demonstrated
an association between hepatic lipase (encoded by the LIPC
gene), LDL-TG and atherosclerosis, we performed a genomic
screen of the LIPC gene region. The SNP rs261336 was
associated with both higher levels of LDL-TG and higher odds
of atherosclerosis, while rs12898984, rs12900448, rs4774301,
rs4775064 and rs4775065 were associated with lower circulating
levels of LDL-TG and lower odds of atherosclerosis (Table 2 and
Figure 4).

In addition, LIPC gene expression in circulating
mononuclear cells was significantly lower in Cases than
in Controls (mean expression: 1.20 (0.08) vs. 1.49 (0.07);
p = 0.015).

Associations of low density lipoprotein
triglycerides with other known risk
markers

We analyzed lipid panel test results and lipoprotein subclass
profile, determined by proton nuclear magnetic resonance
(1H-NMR) spectroscopy, in 800 patients from the National
Institutes of Health CT cohort, subdivided by LDL-TG terciles
(Supplementary Table 3). Total Cholesterol and LDL-C
increased from low to high LDL-TG terciles (p < 0.0001 for
trend). The same trend was observed for triglycerides and
calculated VLDL-C (18). Small dense LDL (sd-LDL) cholesterol
as measured by Denka assay increased along the LDL-TG
tertials. Lipoprotein subclass analysis by 1H-NMR spectroscopy
revealed that total, large, medium, and very small triglyceride-
rich lipoprotein (TRL) particle number increased from low to
high LDL-TG terciles (p < 0.0001 for trend). Furthermore, the
number of LDL particles was higher in high LDL-TG terciles at
the expense of smaller LDL particles (p < 0.0001), probably due
to the poorer sdLDL recognition by LDL receptor (22), leading
to its accumulation in the plasma.

Finally, LDL-TG was positively associated with GlycA
(p < 0.0001 for trend), a recently identified systemic
inflammation marker derived from the 1H-NMR signal of
N-acetyl groups on the glycan portion of acute-phase proteins in
plasma (23). Overall, these results suggest that increased LDL-
TG is linked to a more pro-inflammatory and pro-atherogenic
phenotype and are, therefore, aligned with the findings from the
Bayesian Network Analysis.

Discussion

Our results suggest that, while several serum biomarkers
are associated with human ASCAD, triglyceride-rich LDL
particles, as measured by LDL-TG levels, may have an important
central role, potentially as a result of abnormal hepatic lipase
function. Our study design provided a unique opportunity
to assess biomarker associations in the context of the impact
of genetic predisposition on atherosclerosis. We completed
precise and detailed quantitative phenotyping measurements
of human coronary arterial atherosclerosis in a prospective
study using comprehensive cardiac CT, analyzed in a central
core laboratory. This precision phenotyping was coupled
with measuring and ranking 99 circulating biomarkers and
37,000 “omics” measurements. We built hypothesis-free, causal
Bayesian networks of biological pathways to examine the
potential role of serum biomarkers in a comprehensive manner.

Our initial analysis identified four main biomarker clusters,
thus providing unique high-level insights into the pathogenesis
of ASCAD (Figure 1). The content of these clusters is
consistent with prevailing hypotheses of the development
of atherosclerosis as a result of atherogenic lipoproteins,
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TABLE 1 Odds ratios (95% CI) for atherosclerosis against the lowest quartile of LDL-TG.

Quartile 1
[8.5–14.1 mg/dl]

Quartile 2
[14.1–16.9 mg/dl]

Quartile 3
[16.9–22.1 mg/dl]

Quartile 4
[22.1–45.7 mg/dl]

P-value versus
fourth quartile

P-value for
trend

LDL-TG
Unadjusted

Reference 1.38
(0.86–2.24)

1.43
(0.89–2.31)

2.84
(1.75–4.64)

2.67e-05 5.35e-05

LDL-TG
Model 1a

Reference 1.31
(0.80–2.13)

1.39
(0.86–2.27)

3.00
(1.84–4.95)

1.38e-05 2.50e-05

LDL-TG
Model 2b

Reference 1.43
(0.88–2.33)

1.56
(0.95–2.56)

3.36
(1.95–5.85)

1.50e-05 3.88e-05

LDL-TG
Model 3c

Reference 1.34
(0.82–2.20)

1.48
(0.89–2.46)

3.37
(1.94–5.91)

1.86e-05 4.49e-05

LDL-TG
Model 4d

Reference 1.44
(0.89–2.35)

1.56
(0.94–2.60)

3.42
(1.88–6.29)

6.31e-05 1.99e-04

LDL-TG
Model 5e

Reference 1.34
(0.82–2.20)

1.46
(0.87–2.47)

3.32
(1.81–6.16)

1.19e-04 3.55e-04

CI, confidence interval; LDL-TG, low-density lipoprotein–triglycerides.
aAdjusted for age and gender.
bAdjusted for LDL-C.
cAdjusted for age, gender, and LDL-C.
dAdjusted for APOB.
eAdjusted for age, gender, and APOB.

FIGURE 3

Cumulative incidence curves for the presence of coronary atherosclerosis as a function of ApoB, LDL-C, and LDL-TG. Cumulative incidence
curves demonstrate the well-described relationship between ApoB and LDL-C levels and the incidence of atherosclerosis, which is primarily
apparent in the ApoB range of 50–150 mg/dl and in the LDL-C range of 60–200 mg/dl. The left tails of the curves are distorted by statin-treated
patients (A,B), in which you see a high cumulative incidence of atherosclerosis despite very low levels of ApoB (panel A) and LDL-C (B). This
likely represents patients with known ASCAD whose LDL-C and ApoB levels have been lowered by aggressive statin therapy. The sigmoid
relationship for ApoB and LDL-C is more apparent when statin-treated patients are excluded (D,E). On the other hand, a clear, near-exponential
relationship is seen for the incidence of atherosclerosis as a function of serum LDL-TG levels, with no apparent effect of statin therapy (C,F).
ApoB, apolipoprotein B; LDL, low density lipoprotein.

inflammation, and endothelial dysfunction, in some instances
in the context of insulin resistance and diabetes (24–26).

Furthermore, in univariate (Figure 1) and multivariable
analyses (Figure 2A), we also found that ApoB-containing

lipoproteins, insulin resistance, endothelial dysfunction,
inflammation, and fibrosis are all strongly associated with
human coronary atherosclerosis, consistent with decades of
hypothesis-driven data.
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TABLE 2 Genetic association between LIPC gene variants, LDL-TG and atherosclerosis.

Variant (SNP) LDL-TG ASCAD (“Case”)

Beta SE CI P-value OR Ln(SE) CI P-value

rs261336 0.07 0.0297 0.01_0.13 0.0223 1.5 0.2011 1.01_2.23 0.0434

rs12898984 −0.06 0.0285 –0.11 to 0.00 0.0424 0.67 0.1899 0.46_0.97 0.0342

rs12900448 −0.06 0.0285 –0.11_–0.00 0.0424 0.67 0.1899 0.46_0.97 0.0342

rs4774301 −0.06 0.0285 –0.11_–0.00 0.0424 0.67 0.1899 0.46_0.97 0.0342

rs4775064 −0.06 0.0285 –0.12_–0.00 0.0386 0.67 0.1899 0.46_0.98 0.0374

SNP, single nucleotide polymorphism. LDL-TG, low density lipoprotein triglycerides; ASCAD, atherosclerotic coronary artery disease; SE, standard error; CI, confidence interval;
Ln, natural log.

FIGURE 4

Genetic variants in the LIPC Gene, Circulating Levels of LDL-TG and Atherosclerosis. The genetic variant rs4774301 in the LIPC genomic region is
associated with significantly lower circulating levels of LDL-TG (A) and simultaneously, with significantly lower prevalence of atherosclerosis (B).
Jitter plot (C) demonstrates the same concept in a single graph, demonstrating that the number of the “T” alleles at rs4774301 is associated with
lower circulating levels of LDL-TG and with lower prevalence of ASCAD. LIPC: hepatic lipase gene; LDL-TG: low density lipoprotein triglycerides.

A key finding was that, out of tens of thousands of
blood-based molecules and biomarkers, LDL-TG emerged with
a potential central role in human coronary atherosclerosis,
potentially as a function of abnormal hepatic lipase activity.
This was seen in our hypothesis-free, causal, Bayesian network
analysis, which included 24,929 variables and 110,350 significant
edges in the models. LDL-TG was directly connected to human
coronary atherosclerosis in 95% of the models in the ensemble.
The output of the Bayesian network analysis shown in Figure 2B
(not an illustration) indicates the potential central role of
triglyceride-rich LDL particles, as measured by LDL-TG levels.
In this model, triglyceride levels and palmitoleic acid were
upstream from LDL-TG, while small, dense LDL (sd-LDL)
inflammatory markers (e.g., C-reactive protein, fibrinogen,
and lipoprotein-associated phospholipase A2), and fibrosis
markers (e.g., galectin-3) were downstream. In addition to these
potentially “positive” controls, the absence of HDL-C, ApoAI,
CETP and vitamin-D may serve as relevant “negative controls”
in the Bayesian networks.

The hierarchal organization of the lipid/lipoprotein-related
biomarkers, inflammatory biomarkers and fibrosis-related
biomarkers in the Bayesian networks are consistent with a
mechanistic hypothesis in which triglyceride-rich LDL particles

drive downstream inflammation and a fibrotic response, directly
contributing to the initiation and progression of human
coronary atherosclerotic plaques (Figure 2B). It is important
to emphasize, however, that our findings do not suggest that
triglyceride-rich LDL particles themselves physically localize in
the coronary vessel wall to initiate the atherosclerosis process.
The overall lipoprotein milieu in patients with elevated LDL-TG
may lead to the increased formation of sd-LDL particles, which
then may physically localize to the arterial wall.

Our panomic dataset offers a unique and unprecedented
opportunity to assess causality of certain biomarkers, as we
can assess simultaneous associations between genotypes, gene
expression levels, circulating biomarkers and the atherosclerotic
phenotype via comprehensive cardiovascular CT. Overall, our
data is consistent with the potential central hypothesis that
loss-of-function variants in the hepatic lipase gene may be
associated with lower hepatic lipase activity, higher LDL-
TG levels resulting in atherosclerosis. In our data, LIPC
gene expression levels were significantly lower and LDL-TG
levels were significantly higher in patients with atherosclerosis.
Furthermore, single nucleotide polymorphisms (SNP’s) in the
LIPC gene that were associated with elevated LDL-TG levels
were simultaneously associated with increased prevalence of
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atherosclerosis, suggesting the potential role of LDL-TG based
on the principles of natural randomization (Figure 4) (27). Our
data is consistent with historical findings that polymorphisms in
the LIPC gene are associated with circulating levels of LDL-TG
(28–30).

From a mechanistic point of view, our results are consistent
with a potential hypothesis whereby lower hepatic lipase activity
may result in decreased lipolysis, decreased remodeling, and
decreased initial clearance of TRL’s, such as very low-density
lipoprotein (VLDL) particles. The increased residence time
of TRL’s may lead to prolonged exposure of TRL’s to CETP
activity, resulting in more TG-rich IDL and LDL particles,
as reflected in elevated LDL-TG levels. The presence of TG-
rich IDL and LDL particles favor the generation of sd-LDL
particles, which physically may localize to the arterial wall,
resulting in the retention of these atherogenic lipoprotein
particles, triggering an inflammatory reaction and endothelial
dysfunction, culminating in the initiation and propagation of
atherosclerosis.

In general, our findings are consistent with the literature
but also add to those findings by demonstrating a possible
central role of LDL-TG, potentially as a function of abnormal
hepatic lipase activity, as revealed by our unique causal Bayesian
network analysis and through genetic validation. A large
epidemiologic study has examined the association of LDL-TG
with angiographic ASCAD (31). In that study, LDL-TG levels
were measured by the ultracentrifugation-precipitation method
(“beta-quantification”), a cumbersome reference procedure not
used for routine diagnostic testing. The main finding was
that LDL-TG was a stronger predictor of ASCAD compared
to LDL-C and was independent of LDL-C, with an overall
odds ratio of 1.3 (95% CI, 1.19–1.43; P < 0.001). Although
consistent with our findings, the odds ratio in our study
was much higher at 3.41 (95% CI, 1.94–6.01), likely due
to the use of precision phenotyping in our approach. Also
consistent with our findings, they also identified significant
correlations between LDL-TG and IL-6 and between LDL-
TG and C-reactive protein. In a smaller more mechanistic
sub-study of 114 patients, it has also been reported that in
patients with high LDL-TG levels, LDL particles are enriched in
triglycerides and depleted in cholesterol esters. VLDL particles
showed the opposite trend; they were enriched in cholesterol
esters and depleted in triglycerides. These observations are
in line with the association of LDL-TG with very small TRL
particle number that we observed. It is also consistent with our
mechanistic hypothesis on the central role of the remodeling
of apoB-containing lipoprotein particles in the development
of atherosclerosis.

Several other large clinical trials have also provided
important information related to the association of LDL-TG
with atherosclerosis. Albers et al. examined the potential role
of LDL-TG, sd-LDL and HDL subclasses in 3,094 subjects in
the AIM-HIGH clinical trial (19), which was evaluating the

effect of extended-release niacin in a secondary prevention
population on statin background. The primary endpoint was
the composite of death from coronary artery disease, non-
fatal myocardial infarction, ischemic stroke, hospitalization
for acute coronary syndrome or symptom-driven coronary
or cerebrovascular revascularization. In their study, sd-LDL
and LDL-TG were not event related. The advantage of our
study is a very clear phenotype of coronary atherosclerosis
based on comprehensive cardiovascular CT. In addition, the
AIM-HIGH study was a secondary prevention population
on the background of statin therapy, different from our
patient population.

Saeed et al. also examined the potential role of LDL-TG
in 9,334 subjects without prevalent CAD the ARIC study (20),
using a direct homogenous assay that can be routinely applied in
clinical laboratories. They found that LDL-TG were significantly
associated with cardiovascular disease, even after adjusting for
traditional risk factors, including lipids. This is consistent with
our own findings in a similar patient population. Similarly, the
authors also found that variants in the promoter region of the
LIPC gene were associated with lower hepatic lipase activity,
consistent with our own findings.

Finally, Silbernagel et al. (21) demonstrated that LDL-
TG was associated with cardiovascular mortality in 3,140
subjects. Genome-wide association study in this cohort
demonstrated that variants in the LIPC gene were significantly
associated with circulating LDL-TG levels, consistent with
our own findings. Furthermore, in a two-sample Mendelian
randomization analysis, the authors found that low hepatic
lipase activity may be the causal factor behind elevated LDL-TG
levels, driving atherosclerotic cardiovascular risk. The authors
suggested that LDL-TG may be on the causal pathway related to
cardiovascular disease. Our combined unbiased, causal Bayesian
network analysis and genomic analysis is consistent with
these findings and propose a more detailed biological network
explaining the hepatic lipase/LDL-TG axis of atherosclerosis
(Figure 5).

In summary, we performed an unbiased, causal Bayesian
network analysis to identify potential novel causal factors in
human coronary atherosclerosis, revealing the potential key role
of TG-rich lipoprotein particles. We then used our panomic
data, including genetic validation, to further explore the
potential central role of LDL-TG, demonstrating that the hepatic
lipase/LDL-TG axis may be an important pathway in ASCAD.

Limitations

Although this was a prospective, multicenter study with
central core laboratory analysis of all imaging and biochemical
measurements, it has some limitations. First, we only included
Caucasian subjects in our study, as it was powered for genome-
wide association analyses based on a single ethnic background,
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FIGURE 5

Central Illustration. Multiomic Validation of the Hepatic Lipase (LIPC)/LDL-TG Axis in Atherosclerotic CAD along the Central Dogma of Biology.
Gene expression levels of hepatic lipase (LIPC) are significantly lower (A) and circulating LDL-TG levels are significantly higher (B) in patients with
atherosclerotic CAD, presumably due to LOF variants in the LIPC gene (upper part of the Figure). On the other hand, GOF variants in the LIPC
gene are simultaneously associated with lower circulating LDL-TG (C) levels AND with lower prevalence of atherosclerotic CAD (D). Except for
hepatic lipase activity measurements (indicated by dotted line around hepatic lipase in the Figure), the GLOBAL study database contains all other
multiomic measurements along the hepatic lipase/LDL-TG/atherosclerosis axis. The overall data presented here is consistent with our
hypothesis that circulating triglyceride-rich LDL particles may have a potential causal role in atherosclerosis, due to abnormal hepatic lipase
activity. LIPC, hepatic lipase; LDL-TG, low density lipoprotein triglycerides; CAD, coronary artery disease; LOF, loss-of-function; GOF,
gain-of-function.

requiring at least 6,700 subjects (7). Second, we have limited
longitudinal follow-up of the patients. Nevertheless, a key
feature of Bayesian network analysis with the implementation
of REFS is its ability to generate causal biological models,
even in the absence of longitudinal outcomes. In addition,
since we had whole genome sequence data, we were also
able to demonstrate causality through genetic methods. Third,
although the genetic analysis is consistent with a potential
central role of the hepatic lipase/LDL-TG axis, we did not have
functional measurements of hepatic lipase. Finally, although
we had in a priori Discovery and Validation dataset in our
own GLOBAL clinical study, we did not validate our findings
in external datasets, technically limiting our findings to the
GLOBAL clinical study population.

Summary and conclusion

While ApoB-containing lipoproteins, inflammatory
biomarkers, and markers of endothelial dysfunction and fibrosis
were all associated with human coronary atherosclerosis,
triglyceride-rich LDL particles, as measured by LDL-TG levels,
emerged as a potentially key factor, within a sub-network
that includes apoB and LDL-C. Furthermore, genetic analysis
revealed the potential central role of the hepatic lipase/LDL-TG
axis in atherosclerosis. With the recent introduction of a
simple and fully automated method for the quantification of
LDL-TG levels (32), this biomarker may become an important
tool in the clinical assessment of patients at risk for, or with,
atherosclerosis. Furthermore, the results from this study have
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confirmed a possible role of hepatic lipase in human coronary
atherosclerosis, which in the future can be explored as a target
for drug development. It is also already known that several
approved lipid-lowering drugs, such as fibrates, and statins, have
a differential effect on LDL-TG versus LDL-C (33), which will
be useful to further investigate to better understand their overall
impact in cardiovascular event reduction.
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Oxidized low-density lipoprotein
associates with cardiovascular
disease by a vicious cycle of
atherosclerosis and inflammation:
A systematic review and
meta-analysis
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Nehal N. Mehta and Alexander V. Sorokin*
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Background: Low-density lipoprotein cholesterol (LDL-C) is an established marker

for cardiovascular disease (CVD) and a therapeutic target. Oxidized LDL (oxLDL)

is known to be associated with excessive inflammation and abnormal lipoprotein

metabolism. Chronic inflammatory diseases confer an elevated risk of premature

atherosclerosis and adverse cardiovascular events. Whether oxLDL may serve as a

potential biomarker for CVD stratification in populations with chronic inflammatory

conditions remains understudied.

Objective: To perform a systematic review and meta-analysis evaluating the

relationship between oxLDL and CVD (defined by incident CVD events, carotid

intima-media thickness, presence of coronary plaque) in patients with chronic

inflammatory diseases.

Methods: A systematic literature search was performed using studies published

between 2000 and 2022 from PubMed, Cochrane Library, Embase (Elsevier), CINHAL

(EBSCOhost), Scopus (Elsevier), and Web of Science: Core Collection (Clarivate

Analytics) databases on the relationship between oxLDL and cardiovascular risk on

inflamed population. The pooled e�ect size was combined using the random e�ect

model and publication bias was assessed if P < 0.05 for the Egger or Begg test along

with the funnel plot test.

Results: A total of three observational studies with 1,060 participants were

ultimately included in the final meta-analysis. The results demonstrated that oxLDL is

significantly increased in participants with CVD in the setting of chronic inflammatory

conditions. This meta-analysis suggests that oxLDL may be a useful biomarker in risk

stratifying cardiovascular disease in chronically inflamed patients.
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Introduction

Atherosclerosis is a complex pathophysiological process driven

by metabolic derangements, lipid accumulation, and inflammation

(1–3). While it may be clinically silent at early stages, atherosclerotic

lesions often transform into vulnerable plaques prone to rupture and

incite subsequent adverse events, including myocardial infarction,

stroke and death (4, 5). Coronary artery disease (CAD) is an

atherosclerotic cardiovascular disorder and continues to be the

leading cause of mortality worldwide, despite advancements in

treatments (6, 7). While traditional cardiovascular (CV) risk factors

contribute to the pathogenesis of CAD, other novel risk factors

may be involved. In particular, systemic inflammation has thought

to play a role in the development and progression of CAD (1, 8).

Growing body of evidence has shown that chronic inflammatory

diseases, such as psoriasis (PSO), rheumatoid arthritis (RA), human

immunodeficiency virus (HIV), and systemic lupus erythematosus

(SLE) are associated with accelerated atherosclerosis and premature

adverse CV events (9–14). In fact, such conditions are now

considered independent risk factors for cardiovascular disease (CVD)

(15). However, traditional CV risk stratification using Framingham

risk score and age is suboptimal in assessing CVD risk in patients

with chronic inflammatory conditions (16–18). For example, severe

psoriasis has been shown to confer an additional 6.2% increase in

long-term risk of CVD based on Framingham Risk score (19). Given

the elevated CVD risk and current challenges in evaluating CVD in

these inflamed populations, it is necessary to identify prognostic tools

that will adequately capture and assess CVD risk.

Low-density lipoprotein cholesterol (LDL-C) is a known

biomarker of cardiovascular disease (CVD) (20, 21). Pharmacological

reduction of LDL-C is considered a main tool in the primary

prevention of atherosclerotic cardiovascular disease (ASCVD);

however, the issue of residual atherosclerotic risk that remains

in patients with decreased LDL-C and elevated high density

lipoprotein-cholesterol (HDL-C) is of additional clinical concern

(22). Alternativly, other LDL-related lipoprotein species, such as

small-dense LDL (sdLDL), lipoprotein (a) [Lp (a)], and oxLDL, have

been shown to be reliable markers of CVD risk prognosis as well (23–

25). Oxidative stress contributes to atherosclerotic plaque formation

by stimulating activation of macrophages and vascular smooth

muscle cells, increasing extracellular cholesterol accumulation within

vessel walls, and transforming macrophages into pro-inflammatory

and pro-thrombotic phenotypes (26). The observed critical step in

atherosclerotic plaque build-up, the foam cell formation, is triggered

by the uptake of oxLDL bymacrophages through scavenger receptors,

such as CD36, as well as lectin-like oxLDL receptor (LOX-1) (27–

29). Previous studies have found that circulating oxLDL associates

with every stage of atherosclerosis, from subclinical atherosclerosis

to overt cardiovascular disease, including hypertension, coronary and

peripheral arterial disease, acute coronary syndromes, and ischemic

cerebral infarction, and has prognostic value in estimating CVD

risk (25, 30, 31). Indeed, elevated levels of oxLDL were shown to

predict myocardial infarction in the Health ABC cohort, even after

adjusting for age, gender, race, smoking, and metabolic syndrome

(30). OxLDL may even be associated with arterial aging, as a recent

study found that oxLDL demonstrated predictive value of arterial

stiffness, as measured by pulse-wave velocity, in patients with normal

to mildly reduced renal function (32). Further, oxLDL is linked with

metabolically dysfunctional pathologies frequently associated with

CVD, including obesity, metabolic syndrome, and diabetes mellitus

(25). Thus, oxLDL has recently become an important therapeutic

target for CVD and has been recognized as a biomarker for CAD

and other age-related atherosclerotic processes (24, 31, 33, 34).

However, to what extent oxLDL contributes to CVD within systemic

inflammation and whether it has any clinical utility in CVD risk

stratification for such populations remain understudied. Therefore,

we conducted a systematic review to examine the available evidence

and aimed to investigate the association between oxLDL levels and

CVD in the setting of chronic inflammation by meta-analysis.

Methods

Search strategy

The systematic review and meta-analysis were conducted

according with the Preferred Reporting Items for Systematic reviews

and Meta-Analyses guidelines (35) and the protocol was registered

with the PROSPERO International Prospective Register of Systematic

Reviews (PROSPERO 2022 CRD42022354525). This meta-analysis

was not based on the individual participant data, thus ethical approval

was not applicable.

A systematic search of studies published between 2000 and

2022 was conducted through PubMed, Cochrane Library, Embase

(Elsevier), CINHAL (EBSCOhost), Scopus (Elsevier), and Web

of Science: Core Collection (Clarivate Analytics) databases. The

initial search strategies were performed: “oxidized phospholipid”

OR “oxPLs” OR “oxidized LDL-C” OR “oxidized low-density

lipoprotein” OR “oxLDL” OR “low-density lipoprotein receptor-1”

OR “LOX-1” OR “sLOX-1” OR “apoA-I” OR “Apolipoprotein A-

I” OR “Apolipoproteins E” OR “apolipoprotein E” OR “ApoE” OR

“ApoC2” OR “ApoC3” OR “oxHDL” OR “Lipoproteins, LDL” OR

“Lipoproteins, HDL” OR “modified lipoprotein” and (“Myocardial

Infarction” OR “Stroke” OR “Cerebral” OR “Angina Pectoris”

OR “Arteriosclerosis” OR “atherogenes” OR “atherosclerotic” OR

“coronary artery disease” OR “Psoriasis”) and (“Patient Outcome

Assessment” OR “Risk Assessment” OR “Treatment Outcome”).

While we initially planned to include all oxidized lipids in our

systematic review, the results of the search strategy were ultimately

focused on oxidized low-density lipoprotein as this search term

yielded the greatest number of relevant studies. We also considered

reference lists and review articles for other potentially relevant

citations. The references of retrieved articles were also reviewed

to identify any relevant study. Language restriction of English

was applied. We used Endnote software (Clarivate Analytics,

Philadelphia, PA) for management of the studies.

Study selection criteria

A 2-step selection process was conducted using Covidence

(Covidence, Melbourne, Victoria, Australia) screening software.

In the first step, titles and abstracts generated from the search

strategy were reviewed by two independent researchers. Studies

that did not examine the association between oxidized low-density

lipoprotein, chronic inflammatory conditions, and cardiovascular

disease measures were excluded. In the second step, studies

Frontiers inCardiovascularMedicine 02 frontiersin.org140

https://doi.org/10.3389/fcvm.2022.1023651
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Hong et al. 10.3389/fcvm.2022.1023651

successfully screened in after the first step were reviewed in full text to

confirm if they reported themean with standard deviation, or median

with interquartile range for observational studies.

Inclusion and exclusion criteria

Inclusion criteria were: observational studies investigating the

relationship between oxLDL and CVD in patient populations

with chronic inflammatory diseases, including psoriasis,

systemic lupus erythematosus, rheumatoid arthritis, and human

immunodeficiency virus.

Exclusion criteria were: incorrect study design; literature reviews,

discussions, editorials, opinion pieces, and abstracts-only texts;

wrong comparators; incorrect setting; wrong patient population;

studies that did not report mean and standard deviation or median

with interquartile range for observational studies; unavailable full

text articles.

Data extraction and quality assessment

After the 47 available full-text articles were selected, 3 full-text

sources were examined for representative data containing effect size

(ES) of oxLDL measured by mean and standard deviation or median

and interquartile range. For these studies, Covidence software was

used to extract the data. The following data were extracted from

each included study: first author’s name, publication year, number

of subjects, participant population, type of publication, patient

characteristics (mean or median age in years, percentage of men,

baseline body mass index), effect size of oxLDL (represented by mean

with standard deviation, median with interquartile range), and study

outcomes [defined as incident CVD event, carotid intima-media

thickness, or coronary plaque presence as measured by coronary

computed tomographic angiography (CCTA)]. To standardize the

different measurements and units of oxLDL reported in the studies

used in our analysis, we utilized the standardized mean difference

with 95% confidence interval to consistently compare oxLDL across

studies. Any studies representing results through median with

interquartile range (IQR) were converted to mean with standardized

mean difference based on methods from Wan et al. (36). All data

extractions were completed by two reviewers (EF, HL) and checked

by another reviewer (CGH).

Statistical analyses

The pooled standardizedmean difference with its 95% confidence

interval (CI) was calculated for oxLDL to account for the

different units of oxLDL measurement across all studies. Statistical

heterogeneity was identified if the P value for Cochran Q was <0.05

or the I2 statistics was >50% (37). The Hedges random effects

model was chosen if heterogeneity was detected (38). Otherwise, an

inverse variance fixed effect model was used. Publication bias was

considered if P<0.05 for the Egger or Begg test along with the funnel

plot method (Supplementary Figure 1). All statistical analyses were

performed using R Statistical Software (version 4.2.0, R Foundation

for Statistical Computing, Vienna, Austria).

Results

Study selection

The screening and selection process is demonstrated using

a flowchart diagram in Figure 1. Initially, a total of 7,309

relevant studies were imported into Covidence with 846 duplicates

immediately removed. Of the 6,463 remaining references, 6,416 were

excluded in the first step of the selection strategy based on title and

abstract screening. Review of the remaining 47 studies in full text

form during the second step of the selection strategy yielded 3 final

studies (39–41) with 1,060 participants that were included in the

meta-analysis. While excluded from the meta-analysis, 4 additional

studies from the 47 full-text sources were included in our discussion

for their findings on other promising biomarkers of LDL oxidation,

including LDL-conjugated dienes, soluble lectin-like oxidized LDL

receptor-1 (sLOX-1), oxidized phospholipids (Ox-PLs), and other

oxidation-modified lipoproteins (OMLs) (27, 33, 42, 43).

Study characteristics

The studies included in our meta-analysis are shown in Table 1.

The sample size of individual study ranged from 105 to 755

participants. Of the three studies, one was cross-sectional (40) and

the rest were cohort studies (39, 41). All the studies were published

between 2010 and 2021 and only included participants without

known CVD history. The enrolled participants had a mean age range

from 38.96 to 51 years. The sex by percent male in the studies

ranged from 31.5 to 77%. The baseline bodymass index (BMI) ranged

from 23.3 to 28.0. All three studies measured oxLDL concentration

using an enzyme-linked immunosorbent assay (ELISA) (Mercodia,

Uppsala, Sweden). One study reported oxLDL as per the change in

oxLDL levels (1oxLDL) (39), one study reported oxLDL levels in

U/L (40), and one study reported oxLDL levels in mU/L (41). Thus,

to account for the different measurements of oxLDL reported in

these studies, the pooled standardized mean difference with its 95%

confidence interval (CI) was calculated. In order to assess the effect

size (ES) of oxLDL and CVD, two studies utilized the odds ratio (OR)

(40, 41) and one study used the hazard ratio (HR) (39) (Table 1). All

quality scores of the included studies were calculated as>5 according

to the Newcastle-Ottawa Scale (NOS) (44). NOS scores of the studies

included in the meta-analysis are presented in Table 2.

Elevated oxLDL significantly associates with
CVD in inflamed populations

The individual studies and pooled meta-analysis results are

demonstrated in Figure 2. Of the three studies, two assessed

oxLDL levels in 468 participants with HIV disease and associated

CVD (defined by carotid intima-media thickness or coronary

plaque presence on coronary CTA) vs. 487 participants with HIV

disease without CVD and found that increased oxLDL levels were

significantly associated with CVD compared to those without CVD

(ES for Parra: 0.75 (0.46, 1.03]; ES for Hoffman: 0.34 [0.20, 0.48]).

In one study of participants with rheumatoid arthritis, there was

no significant association between oxLDL ES and CVD. As shown
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FIGURE 1

Flow chart of the study selection generated by PRISMA.

in Figure 2, the pooled total effect size of elevated oxLDL indicated

that participants with chronic inflammatory diseases with associated

CVD had a significant increase in oxLDL compared to those

without CVD (0.44 [95% CI: 0.11, 0.77]). Cochran Q and I2 index

indicated that there was heterogeneity observed for the marginal

analysis. The heterogeneity may be secondary to different methods of

measurements and study participants. P-value of the Egger’s test for

funnel plot asymmetry was 0.86, which does not suggest the presence

of publication bias.

Discussion

Chronic inflammatory conditions, such as psoriasis, RA, HIV,

and SLE, have increased oxLDL levels, accelerated atherosclerosis,

and premature adverse cardiovascular outcomes (9–13, 45). Thus,

these pathologies provide suitable human models to study the

mechanisms of inflammatory atherosclerosis and associated CVD

in humans. In our systematic review with meta-analysis, we aimed

to use these diseases to better understand oxLDL as a CV risk

biomarker and its relationship with atherosclerotic CVD within

the context of chronic inflammation. We found that compared to

chronically inflamed subjects without CVD, elevated oxLDL levels

were significantly associated with higher CVD presence in patients

with chronic inflammatory conditions (ES total: 0.44 [95% CI: 0.11,

0.77]). These results extend the current understanding of the clinical

utility of oxLDL as a potential biomarker for CV risk assessment in

chronically inflamed populations.

Oxidized LDL is known to have pro-inflammatory and pro-

atherogenic properties (46) and can predict increased risk of

myocardial infarction (MI) (47–49). Additionally, many studies have

demonstrated elevated levels of oxLDL in chronic inflammatory

populations. Autoantibodies against oxLDL (auAb-oxLDL) were

shown to be elevated in patients with psoriasis compared to

matched controls, with 42% of psoriasis patients and 3.3% of control

subjects having higher auAb-oxLDL levels than the cut-off point

(352 mU/mL) (50). The autoantibody levels were also found to

significantly correlate with the Psoriasis Area Severity Index score, a

tool used to assess the severity and extent of psoriasis (50). OxLDL

also significantly associated with noncalcified coronary burden, a

marker of subclinical atherosclerosis, in patients with psoriasis (33).

A recent study comparing female lupus patients with and without

CVD found that oxLDL was significantly higher in those with CVD

(14). However, to our knowledge, this is the first meta-analysis
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TABLE 1 Baseline characteristics of studies included in the meta-analysis.

Reference Design Study
Population

Age Sex,
male%

BMI oxLDL
mean
(SD)

oxLDL
assay

Adjusted variables CVD
outcome

E�ect size
(95% CI)

oxLDL
exposure

Other variables

Ajeganova

et al. (38)

Cohort

(hospital-

based)

114 RA patients

from the BARFOT

trial

50.6

±11.2

31.5 24.93± 4 Case: 56.4

(12.69);

Control:

54.2

(15.5)

Mercodia 1oxLDL Age Occurrence of

MI, Angina

pectoris,

congestive HF,

ischemic

cerebrovascular

event

HR 1.03

[1.0–1.06]

0.035

Parra et al. (39) Cross-

sectional

187 HIV patients at

Hospital

Universitari de Sant

Joan

38.96±

0.61

68.8 23.31±

0.27

Case: 97.8

(29.22);

Control:

76.22

(28.43)

Mercodia U/L Age, gender, smoking

status, SBP, DBP,

glucose, LDL-C,

HDL-C, TG, BMI,

HIV-1 basal viral load,

basal CD4 cell count,

lipodystrophy,

exposure time to

NRTI, NNRTI and (PI)

treatments,

inflammatory markers,

and oxidative markers

Atherosclerosis

evaluated by

carotid

intima-media

thickness

(CIMT). CVD

risk estimated

using FRS, low

risk (<10%),

moderate

(10–20%) and

high risk

(>20%)

OR 1.026

[1.001–1.05]

Hoffmann

et al. (40)

Cohort

(community-

based)

755 HIV-positive

participants from

the REPRIEVE

study

51± 6 77 28.0± 6.0 Case:

382.27

(138.09)

Control:

340.03

(116.48)

Mercodia mU/L ASCVD risk, HIV

Parameters (ART

duration, CD4, nadir

CD4), age, sex, and

race, LDL-C level,

HTN, and current

smoking

Prevalence and

composition of

CAD

measured as

coronary

plaque on

coronary CTA

OR 1.01

[0.90–1.15]

BARFOOT, Better Anti-Rheumatic Pharmaco-Therapy; REPRIEVE, Randomized Trial to Prevent Vascular Events in HIV; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol;

TG, triglycerides; BMI, body mass index; HIV-1, human immunodeficiency virus-1; NRTI, nucleoside reverse transcriptase inhibitors; NNRTI, Non-nucleoside reverse transcriptase inhibitors; ASCVD, atherosclerotic cardiovascular disease; ART, anti-retroviral therapy;

HTN, hypertension; MI, myocardial infarct; HF, heart failure; FRS, Framingham risk score; CAD, coronary artery disease; CTA, computed tomography angiography.
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FIGURE 2

E�ect size between circulating oxidized low-density lipoprotein and atherosclerotic cardiovascular disease risk. Forest plots describing e�ect size (ES),

also known as the standard mean di�erence, with 95% confidence interval (CI) for all included observational studies. Squares represent study-specific

estimates; box sizes represent individual study weight; horizontal line represent 95% CIs; diamonds represent the total mean di�erence with its 95% CI.

to observe the association between oxLDL and CVD only within

chronic inflammatory disease populations. Thus, our aim for this

systematic review and meta-analysis was to: (1) to summarize

current literature on the relationship between oxLDL and CVD in

chronic inflammatory populations, and (2) to provide a standardized

representation of measured oxLDL levels across various studies.

Currently, no standardized units or reference levels exist for reporting

oxLDL measured by different biochemical assays (51–54). Thus,

our findings utilized the standardized mean difference to unify the

reporting of oxLDL across different studies.

Pharmacological perspective on oxLDL as a
potential therapeutic target

Low-density lipoprotein cholesterol is a prognostic circulating

biomarker for stratifying general cardiovascular risk (20, 21).

Consequently, lipid-lowering treatments, such as statins and fibrates,

are the mainstay treatments of lowering LDL-C levels as well as

decreasing triglycerides, increasing HDL-C levels, and reducing

hepatic cholesterol biosynthesis (55, 56). However, there is still

a need for more specific biomarkers with pathological relevance,

especially in chronically inflamed populations, to improve the

risk stratification of cardiovascular events (57). OxLDL may be

a promising candidate, as increased oxLDL levels are central to

atherosclerotic plaque formation and thus may be more causally

associated with CVD outcomes than LDL-C (31, 58). Several

studies have illustrated the association between elevated circulating

oxLDL and adverse CVD outcomes (31, 58, 59). More importantly,

Tsimikas et al. demonstrated that high dose atorvastatin reduced

total plasma oxidized phospholipids complexed with apolipoprotein

B-100 (ApoB-100), the primary protein of the LDL particle,

suggesting that statins may partly exert protective cardiovascular

effects through mobilization of pro-inflammatory oxidation species

from atherosclerotic lesions (60). Further, the “Standard vs. high-dose

therApy with Rosuvastatin for lipiD lowering” (SARD) randomized

clinical trial found that high dose rosuvastatin significantly reduced

levels of oxLDL when compared to low dose rosuvastatin (61). In the

setting of HIV, several studies showed that statin therapy reduced

noncalcified coronary plaque volume, total plaque volume, and

positively remodeled plaque in patients with HIV (62, 63) (Table 1).

Thus, using current statin therapy to treat elevated oxLDL levels

in addition to LDL-C may provide increased benefits in potentially

reducing the risk of adverse CVD events in such populations.

While statins are the mainstay lipid-lowering therapy, many

people are statin intolerant or cannot achieve goal LDL-C

levels on statin therapy alone and thus require alternative

therapy. Injectable lipid-lowering therapy currently used for

inherited hypercholesterolemia and high-risk CV patients have

demonstrated great benefit for such patients (64). Proprotein

convertase subtilisin/kexin type 9 (PCSK9) inhibitors are a type

of injectable lipid-lowering therapy targeting PCSK9, a protease

enzyme produced in hepatocytes involved in LDL binding,

internalization, and degradation (65, 66). Interestingly, PCSK9 is

also implicated in the oxLDL-induced inflammatory pathway. In

adult rat ventricular cardiomyocytes, oxLDL significantly impaired

contractile function via induction of PCSK9 (67). Tang et al.

found that PCSK9 small interfering RNA suppressed oxLDL-

induced inflammatory response in THP-1-derived macrophages (68).

Thus, PCSK9 inhibitors offer a novel therapeutic opportunity in

targeting oxLDL-related atherosclerotic outcomes (67). Evolocumab

is a PCSK9 inhibitor that when added to maximally tolerated

statin therapy was found to reduce the risk of cardiovascular

outcomes in patients with atherosclerotic CVD, while data from

the “ODYSSEY OUTCOMES” trial demonstrated decreased risk of

recurrent ischemic cardiovascular events in patients with previous

acute coronary syndrome treated with alirocumab in addition

to high-intensity statins (65, 69, 70). These findings illustrate

the importance of discovering additional treatment modalities for

patients at high risk for CVD complications.

In addition to oxLDL as a candidate biomarker for CVD,

there is a growing body of literature showing the potential role

of anti-oxLDL antibodies and other oxLDL-related moieties for

CVD risk stratification and promising therapeutic targets (71).

Autoantibodies to oxidation-specific epitopes on LDL, such as

MDA-modified LDL (MDA-LDL), are found in atherosclerotic

lesions of humans and animals (72, 73) and there is significant

research on the clinical correlates of these antibodies (74–76).

Karvonen et al. demonstrated that IgM autoantibodies to MDA-

LDL epitope had an inverse association with carotid atherosclerosis

in a population cohort study of 1,022 middle-aged men and

women (77). Soluble lectin-like oxLDL receptor 1 (sLOX-1) is an

inflammation-induced receptor for oxLDL that has been shown

to induce myocardial ischemia through unstable atherosclerotic
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plaque formation, suggesting an important role of LOX-1 in the

pathogenesis of oxLDL-related CVD (78, 79). Interestingly, increased

sLOX-1 levels have been associated with systemic inflammatory

diseases. sLOX-1 levels were higher in patients with RA with positive

rheumatoid factor and anti-citrullinated protein antibody serology

than those without, and continued to remain at high levels in non-

remission patients compared to those in remission irrespective of

treatment, highlighting the potential utility of sLOX-1 as a biomarker

for disease activity and remission in RA (80). SLE patients had two-

fold higher levels of sLOX-1, which positively associated with high-

sensitivity CRP levels, oxLDL, proinflammatory HDL, and impaired

HDL efflux, instead of traditional risk factors and SLE disease activity

(79). Further, the authors found that SLE patients with higher

sLOX-1 levels were younger than those with low levels, which is

concerning given that SLE patients are at greater risk of CVD and

is particularly evident in the younger female SLE population, as

54% of cardiac events that occur in female SLE patients are under

the age of 44 (81). Thus, elevated sLOX-1 levels may serve as an

useful biomarker of increased CVD risk, and sLOX-1 inhibition

may be a therapeutic opportunity for decreasing atherosclerosis

in these patients. Additionally, genetic modulation has become a

promising therapeutic approach for oxLDL treatment. For instance,

overexpression of the long non-coding RNA LINC00452 has been

shown to reverse oxLDL injury in human umbilical vein endothelial

cells (HUVECS) by regulating the miR-194-5p/IGF1R axis (82).

Additionally, miR-214-3p in HUVECS regulates oxLDL-initiated

macrophage autophagy, thus suggesting a potential therapeutic role

for miRNAs in atherosclerosis (83). Further studies are necessary to

elucidate more therapeutic targets aimed at the function and quantity

of oxLDL in the pathogenesis of cardiovascular disease.

Several articles excluded based on our exclusion criteria for

the meta-analysis were deemed important to include here for

their discussion of other oxLDL-related potential biomarkers for

optimization of CVD risk stratification in inflamed populations.

In a multicenter observational study, Nyyssönen et al. found that

increased LDL-conjugated diene concentrations, identified as one

of the first stages of LDL oxidation and subclinical atherosclerosis,

exhibited a positive relationship with increased CIMT in high-

risk subjects presenting with at least three vascular risk factors

(VRF) (27). Oxidation-specific biomarkers primarily oxidized

phospholipids (Ox-PLs) on apolipoprotein B-100-containing

lipoproteins (oxPL/ApoB-100), have been demonstrated as essential

in identifying the risk of peripheral artery disease (43). Other

studies have focused on the uptake pathway of oxLDL through

soluble lectin-like oxidized LDL receptor-1 (sLOX-1) to better

understand atherosclerosis. Dey et al. showed that in patients with

psoriasis, sLOX-1 associated with imaging markers of subclinical

atherosclerosis and increased psoriasis severity (42). Moreover,

patients with psoriasis had decrease in plasma levels of oxidation-

modified lipoproteins, including oxLDL under specific biologic

treatment (33, 42).

Other potential oxLDL-related biomarkers of
CVD and atherosclerosis

Other LDL-related lipoproteins, including sdLDL and Lp (a), are

prone to oxidation and associated with elevated cardiovascular risk
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(84–86). Because of their physical and compositional characteristics,

they have higher affinity for extracellular matrix, reduced binding

to LDL receptor, and increased residence time in the circulation

compared to large (buoyant) LDL particles (23, 87, 88). In patients

with psoriatic arthritis, sdLDL concentration was increased

independently of the presence of metabolic syndrome, suggesting

a potential mediation by sdLDL of atherosclerosis development

in psoriatic arthritis (89). Furthermore, a study comparing

HIV-positive with HIV-negative participants found increased

sdLDL levels in those with HIV (63). Both HIV infection and

combination antiretroviral therapy are thought to induce endothelial

dysfunction through endothelial cell activation, oxidative stress,

and inflammation that leads to increased cardiovascular disease in

these patients (90). Indeed, in a study by Post et al., the authors

found that suboptimal HIV RNA suppression and combined

antiretroviral therapy adherence were the main determinants of

coronary artery stenosis progression during a median follow-

up of 4.5 years (91). Lp (a) is also a candidate biomarker

and has been demonstrated to predict CIMT in HIV-positive

females (92). While these findings are promising, meta-analyses

investigating the role of oxidized lipids within systemically

inflamed populations are lacking and thus future studies will

continuously be necessary to further elucidate these relationships

(93, 94).

Our meta-analysis had several limitations. Firstly, the causal

association between oxLDL and CVD outcomes in our populations

of interest could not be defined because of the cohort or cross-

sectional nature of the included studies. Another limitation is

that studies using other techniques to estimate CVD outcomes

were not included in this meta-analysis. As observational studies

show more heterogeneity than randomized control trials and

several of the included studies were observational studies, this

factor must also be considered given that heterogeneity interferes

with the detection of publication bias (95, 96). The heterogeneity

sources may correlate with study design, participant ages, and

whether patients have atherosclerotic risk factors. While oxLDL

is a promising biomarker for CVD risk stratification, oxLDL

is not yet used in the clinic as a diagnostic tool for CVD.

Finally, we were unable to determine the effects of populational

characteristics or pharmacologic therapy on the progression of

CVD outcomes in relation to oxLDL in patients with chronic

inflammatory diseases.

Conclusion

Our systematic review and meta-analysis demonstrate that

patients with chronic inflammatory diseases, particularly RA

and HIV, have significantly higher levels of circulating oxLDL as

measured by effect size in relation to increased cardiovascular

risk. Thus, oxLDL may offer insight into optimizing CVD

risk stratification in chronically inflamed populations. We

also discussed additional atherogenic lipoprotein parameters

associated with oxLDL that offer a more nuanced understanding

of lipoprotein modifications linked with CVD in the setting

of inflammation. Larger meta-analysis and future mechanistic

studies are necessary to further elucidate the relationship between

oxidized lipoproteins and cardiovascular disease in patients with

long-standing inflammatory conditions.
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Background: The relationship between abnormal lipid levels and atherosclerotic

cardiovascular diseases is well established, but the association between remnant

cholesterol (RC) and coronary heart disease (CHD) remains uncertain. The aim of this

meta-analysis is to systematically evaluate the prognostic value of RC concentration

in patients with CHD.

Methods: PubMed, EMBASE, Cochrane, and Web of Science databases were

reviewed to identify relevant observational cohort studies published in English

up to December 2021. Random-effects meta-analysis compared the highest and

lowest RC concentration. The primary outcome was a composite of major adverse

cardiovascular events (MACEs) and all-cause mortality in patients with CHD.

Results: A total of 10 studies recruiting 30,605 patients with CHD were selected to

be included in this meta-analysis. Patients with CHD with elevated RC concentration

had an increased risk of the composite endpoint events (RR = 1.54, 95% CI: 1.26–

1.87) and MACEs (RR = 1.70, 95% CI: 1.54–1.88), but the risk of all-cause mortality

was not statistically significant (RR = 1.16, 95% CI: 0.79–1.69, P = 0.44). Subgroup

analysis showed consistent results.

Conclusion: Our results suggest that elevated concentration RC may independently

predict MACEs in patients with CHD. Determination of RC concentration may

improve risk stratification of prognosis in patients with CHD. However, more high-

quality studies are necessary to confirm this association.

KEYWORDS

remnant cholesterol, coronary heart disease, prognosis, dyslipidemia, meta-analysis

Introduction

Coronary heart disease (CHD) is the most common type of organ disease caused by
atherosclerosis, which is seriously threatening people’s life and health (1, 2). The prevalence
of CHD in the world is approximately 4.6–9.2%, and in 2019, the disease caused 9.14 million
deaths worldwide (1). Dyslipidemia is one of the important risk factors for CHD. Currently,
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lowering low-density lipoprotein cholesterol (LDL-C) is one of
the main intervention targets in the treatment of CHD. However,
previous studies found that even after reducing LDL-C to an
appropriate level and controlling other risk factors, there may be
significant differences in the prognosis of patients with CHD (3).
Therefore, it is important to find more reliable prognostic indicators
to evaluate the long-term prognosis of CHD and formulate the
best treatment plan.

In recent years, remnant cholesterol (RC) has been reported
to have a critical role in atherosclerosis and CHD, which might
indicate it may also be a critical component of the residual risk of
patients with CHD (3, 4). RC is the cholesterol content of all non-
low-density lipoprotein (LDL) and non-high-density lipoprotein
(HDL). Compared with LDL-C, RC had a stronger atherogenic ability
because it possesses a larger quantity and volume, carries more
cholesterol, and does not need oxidative modification (5, 6). Some
observational cohort studies have linked high RC concentrations
with an increased risk of CHD (7, 8). Furthermore, RC was found
to be causally associated with CHD development in previously
healthy individuals (9). However, the prognostic value of plasma
RC levels in secondary prevention settings is still undefined because
previous studies showed inconsistent and controversial results (10–
12). Meanwhile, it is yet to be established whether the prognostic
value of RC varies among populations, ages, or the classification of
CHDs. In particular, there is still a lack of a standardized method
for RC measurement, with strikingly different RC concentrations
across studies (10, 12, 13), which may also have contributed to the
discrepancy in the outcomes (14–16).

Therefore, our study aims to systematically review and compile
meta-analyses of the evidence on the relationship between RC
concentration and CHD outcome, by identifying the potential
confounders and investigating the prognostic value, which may
provide a novel perspective for risk assessment and treatment in
patients with CHD.

Materials and methods

Our meta-analysis was performed according to the
recommendation of the meta-analysis of Observational Studies
in Epidemiology (MOOSE) (17) and the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) statement (18).

Search strategy

We comprehensively searched four medical databases, including
PubMed, EMBASE, Cochrane, and Web of Science, to identify cohort
studies assessing the relationship between RC concentration and
cardiovascular outcomes published in English from inception up to
25 December 2021. The query syntax was set using Medical Subject
Headings (MeSH) and thesaurus search terms, including (“remnant
cholesterol” OR “remnant-like particle cholesterol” OR “triglyceride-
rich lipoprotein cholesterol”) AND (“coronary heart disease” OR
“coronary disease” OR “coronary artery disease”). The detailed search
strategy was presented in the Supplementary material. References
retrieved from the studies, as well as relevant reports, were also
hand-searched to reduce the likelihood of missing any publications.

Inclusion and exclusion criteria

The inclusion criteria for this study were presented as follows:
(1) cohort studies; (2) an inception cohort involving adults with
CHD; CHD included stable or unstable angina, and myocardial
infarction (MI); (3) the exposure factor was RC concentration; (4)
the endpoint was major adverse cardiovascular events (MACEs) and
all-cause mortality. MACEs included cardiac death, MI, ischemic
stroke, myocardial ischemia, heart failure, unstable angina requiring
readmission, and coronary revascularization; and (5) the highest
and lowest RC concentration groups of multivariate-adjusted relative
risks (RRs), odds ratios (ORs), or hazard ratios (HRs) and their
95% confidence intervals (95% CI) or the above indicators could be
calculated with the complete data (19).

Exclusion criteria included (1) case reports, commentary,
and conference abstracts; (2) animal, cross-sectional studies, or
randomized clinical trials; (3) studies carried out among pregnant
women or children; and (4) examined non-relevant outcomes.

YT did the screening of the titles and abstracts of the identified
articles, and pertinent articles were independently reviewed in full
text by two investigators (YT and WW). Thus, disagreement was
resolved through consensus.

Data collection and quality assessment

Data extraction was in a standardized style. Two investigators
(YT and LQ) independently extracted the following data: the first
author, publication year, population, study design, type of CHD,
sample size, percentage of women, age, exposure assessment method,
fasting status, follow-up duration, outcome assessment, categorical or
continuous, adjusted risk estimates, and adjustment for variables.

The quality of observational cohort studies was assessed using the
Newcastle–Ottawa Scale (NOS) (20), which was ranked as poor (score
1–3), fair (score 4–6), or good (score 7–9) according to the quality of
study participant selection, comparability, and outcome. Studies with
NOS ≥7 points were considered high quality. Any disagreements
were discussed and resolved by a chief investigator (HW), and a
consensus was reached in all cases.

Statistical analysis

Review Manager 5.4 software (The Cochrane Collaboration,
Oxford, UK) and Stata 16.0 (Stata Corporation, College Station, TX,
USA) were employed for statistical analysis. The I2 statistics and chi-
square Cochran’s Q-test were used to assess the heterogeneity across
studies. If P ≥ 0.05 and I2 < 50%, suggesting that no significant
heterogeneity could be found, a fixed-effect model was also applied.
In addition, if P < 0.05 and I2 ≥ 50%, a random-effect model was
cautiously applied, and then subgroup analysis was used to explore
the source of heterogeneity (21). The elimination of individual studies
one by one was also performed for sensitivity analysis in order to
explore the heterogeneity and assess the stability of the meta-analysis.
A funnel plot combined with Egger’s test was employed to investigate
the potential publication bias of the involved studies. Finally, the RR
with 95% CI was employed for the effect estimation metric, and HR
and OR were converted into RR (22–24). The p-value of < 0.05 meant
the difference was statistically significant.
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Results

Literature search results

A total of 2,308 articles were retrieved, and after 381 duplicates
were removed, 1,927 unique records remained. After screening the
titles and abstracts of the articles, 38 records were considered for
a detailed full-text screening. Of these studies, 28 articles were
excluded: studies with a non-CHD population (n = 11) (16, 25–34),
those with no interest outcome (n = 5) (35–39), those with potential
patients’ duplication with other articles (n = 5) (8, 9, 40–42), and
studies with ineligible study design (n = 7) (43–49). Finally, 10 articles
(4, 10–13, 50–54) covering 12 cohorts enrolling 30,605 subjects met
the selection criteria. Figure 1 depicts the literature screening process
and results in detail.

Study characteristics and quality
assessment

The main characteristics of the included studies are summarized
in Table 1. Of the 10 included studies, three were performed in China

(11, 50, 54), three in Japan (4, 13, 51), two in Denmark (52, 53),
one in the United States (12), and one collaborative study involving
multiple countries (10). The studies were published from 1999 (13)
to 2021 (11), of which nine were prospective cohort designs (4, 11–
13, 50–54) and one was retrospective cohort design (10). In addition,
two studies included two cohorts (50, 52). The sample size ranged
from 120 (51) to 6723 (11). The follow-up time ranged from 1.7
(51) to 7.0 (52) years, and participants’ age varied from 57.7 (11) to
68.0 (53) years. The average NOS scores for these studies included
were 7.3, demonstrating that the quality of the cohort study was
good.

Meta-analysis results

The results demonstrated that elevated RC concentration was
related to an increased risk of composite endpoint events (MACEs
and all-cause death) (RR = 1.54, 95% CI: 1.26–1.87, P < 0.0001) in a
random-effect model (Figure 2). Significant heterogeneity between
studies was observed (I2 = 85%, P < 0.0001), and sensitivity
analysis indicated that the total combined effect size did not change
significantly in each step, demonstrating that the meta-analysis
results were relatively stable. However, if the study conducted by

FIGURE 1

Flow diagram of the study search and selection process. From Moher et al. (65).
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TABLE 1 Main characteristics of the included studies.

First
author,
year

Population Type of
study

Partici-
pation

Sample
size

(number)

%
females

Age
(year)

RC
concen-
tration
(mg/dl)

Exposure
assessment

Fasting
status

Follow-
up

duration
(year)

Outcome
assessment

OR, RR,
or HR

(95%CI)

Categorical
or

continuous

Variables
adjusted1

NOS
score

Cao et al.
(50)

Chinese prospective
cohort study

CAD 4355 28.9 58.2 ± 9.7 5.0 (2.7–9.7) Automated assay Fasting 5.1 MACEs HR: 1.53
(1.16–2.02)

Q5 vs. Q1 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11,

12

9

Cao et al.
(50)

Chinese prospective
cohort study

CAD 4355 28.9 58.2 ± 9.7 9.0 (6.5–12.4) Immunosepa-
ration

Fasting 5.1 MACEs HR: 1.49
(1.12–2.09)

Q5 vs. Q1 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11,

12

9

Elshazly
et al. (10)

North and South
American, etc.

retrospective
cohort study

CAD 5754 28.0 58.1 ± 9.2 23.8 (19.1–30.8) Calculation Fasting 2.0 MACEs HR 1.62
(1.27–2.07)

Q4 vs. Q1 – 6

Fujihara
et al. (4)

Japanese prospective
cohort study

CAD 247 9.0 67 (60–74) 3.6 (2.5–5.5) Immunosepa-
ration

Fasting 3.2 MACEs HR 1.62
(1.26–2.07)

≥ 3.9 mg/dl
vs. < 3.9 mg/dl

4, 11, 13, 14, 15 8

Fukushima
et al. (51)

Japanese prospective
cohort study

CAD + DM 120 37.5 65.6 ± 8.4 5.8 (3.1–6.2) Immunosepa-
ration

Fasting 1.7 MACEs OR 2.2
(1.2–6.4)

> 4.7 mg/dl
vs. ≤ 4.7 mg/dl

1, 4, 7, 8, 9, 10,
11, 13, 16, 17,

18

6

Jepsen et al.
(52)

Danish prospective
cohort study

IHD 5414 30.3 64.4 14.4 (9.0–21.6) Calculation non-fasting 7.0 mortality HR: 1.5
(1.2–2.0)

Q4 vs. Q1 1, 2, 4, 6, 16 8

Jepsen et al.
(52)

Danish prospective
cohort study

IHD 5414 30.3 64.4 1.4 (0.7–3.4) Automated assay non-fasting 7.0 mortality HR: 1.2
(1.0–1.5)

Q4 vs. Q1 1, 2, 4, 6, 16 8

Kugiyama
et al. (13)

Japanese prospective
cohort study

CAD 135 34.0 65.0 ± 9.7 3.4 Immunosepa-
ration

Fasting 2.2 MACEs OR 6.38
(2.3–17.6)

highest vs. lowest
tertile

1, 2, 4, 5, 8, 10,
11, 16, 19, 20

7

Langsted
et al. (53)

Danish prospective
cohort study

MI/IS 2973 32.0 68 (61–74) NP Calculation non-fasting NR MACEs HR 1.71
(1.24–2.36)

Q4 vs. Q1 4, 9, 15, 16, 22 7

Liu et al.
(11)

Chinese prospective
cohort study

CAD 6723 26.2 57.7 ± 10.8 9.2 ± 5.0 NP NP 4.9 MACEs HR 1.79
(1.18–2.71)

Q4 vs. Q1 1, 2, 3, 4, 5, 6,
7, 9, 10, 11, 12,
16, 18, 21, 33

8

Martin
et al. (12)

American prospective
cohort study

AMI 2465 32.0 58 ± 12 20 (14–27) VLDL3-C + IDL-
C

NP 2.0 mortality HR 0.76
(0.64–0.91)

T3 vs. T1 1, 2, 3, 4, 5, 6,
9, 10, 16, 20,

23, 24, 25, 26,
27, 28, 29, 30,
31, 32, 33, 34,

35, 36

7

Zhao et al.
(54)

Chinese prospective
cohort study

NSTE-ACS 2419 28.2 60.08 ± 8.97 12.4 ± 7.6 Calculation Fasting 3.0 MACEs and
mortality

MACEs: HR
1.960

(1.558–2.465);
mortality: HR

2.207
(0.612–7.959);

highest vs. lowest – 7

NP, not provided; HR, hazard ratio; OR, odds ratio; RR, risk ratio; CI, confidence intervals; CAD, coronary artery disease; DM, diabetes mellitus; IHD, ischemic heart disease; MI, myocardial infarction; IS, ischemic stroke; AMI, acute myocardial infarction; NSTE-ACS,
non-ST segment elevation acute coronary syndrome; MACEs, major adverse cardiovascular events; T, tertile; Q4, quartile; Q5, quintile; NOS, Newcastle–Ottawa Scale.
1Adjustments: age (1), sex (2), body mass index (3), smoking (4), diabetes (5), statin use (6), family history of CAD (7), TC (8), LDL-C (9), HDL-C (10), triglyceride (11), hsCRP (12), HbA1c (13), ApoB (14), lipoprotein (a) (15), hypertension (16), three-vessel disease (17),
left ventricular ejection fraction (18), stenosis of left main coronary artery (19), number of diseased coronary arteries (20), creatinine (21), lipid-lowering therapy (22), the GRACE 1.0 score (23), site (24), race (25), insurance (26), education (27), alcohol use (28), physical
activity (29), kidney disease (30), heart failure (31), prior MI (32), ezetimibe (33), niacin (34), fibrate (35), and fish oil (36).
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Martin et al. (12) was eliminated, the heterogeneity decreased
significantly (I2 = 44%, RR = 1.61, 95% CI: 1.43–1.80).

In addition, as shown in Figure 3, eight of 10 studies reported the
MACEs as an outcome, and the other two studies addressed the all-
cause mortality outcome, in which one study reported both MACEs
risk and all-cause mortality risk. Furthermore, patients with CHD
with elevated RC concentration had an increased risk of MACEs
(RR = 1.70, 95% CI: 1.54–1.88, P < 0.0001) without significant
heterogeneity (I2 = 0%, P = 0.56) in a fixed-effect model. However, the
risk of all-cause mortality was not statistically significant (RR = 1.16,
95% CI: 0.79–1.69, P = 0.44), with significant heterogeneity (I2 = 89%,
P < 0.0001) in a random effect model. In addition, sensitivity analysis
showed that after removing the study of Martin et al. (12), the

heterogeneity decreased significantly, and the total combined effect
size changed as well (I2 = 32%, RR = 1.34, 95% CI: 1.10–1.63,
P = 0.003).

Subgroup analysis

In the subgroup analysis, the association remained constant,
suggesting a positive association between RC concentration and CHD
risks in studies conducted in the Asian region (RR = 1.72, 95% CI:
1.53–1.95, P < 0.0001) for those with the diagnosis of MI (RR = 1.64,
95% CI: 1.46–1.85, P < 0.0001) and with older age (≥65 years old)
(RR = 1.78, 95% CI: 1.46–2.15, P < 0.0001). In addition, this constant

FIGURE 2

Forest plots showing the pooled RR with 95% CI of composite endpoint events for the highest versus lowest remnant cholesterol concentration.

FIGURE 3

Forest plots showing the pooled RR with 95% CI of major adverse cardiovascular events (MACEs) (A) and all-cause mortality (B) for the highest versus
lowest remnant cholesterol concentration.
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association continued in selected studies for those publications with
sample size <1,000 cases (RR = 1.88, 95% CI: 1.38–2.55, P < 0.0001),
those that used the immunoseparation method (RR = 1.72, 95% CI:
1.39–2.12, P < 0.0001) and fasting status test (RR = 1.70, 95% CI:
1.51–1.91, P < 0.0001) for RC assessment, and studies with a long
follow-up time (≥3 years) (RR = 1.54, 95% CI: 1.35–1.76, P < 0.0001)
(Table 2).

Publication bias test

As shown in Figure 4, the funnel plot was asymmetrical, and for
further quantitative analysis using Egger’s test, a publication bias was
suggested (P < 0.05).

Discussion

In the present study, the relationship between RC concentration
and the prognosis of the patients with CHD was evaluated by
meta-analysis for the first time. The results illustrated that elevated
RC concentration was significantly correlated with an increased
risk of the composite endpoint events and MACEs in patients
with CHD, but the risk of all-cause mortality was not statistically
significant. In addition, the prognostic significance of higher RC
concentration on CHD risks was also confirmed in the subgroup

analysis. This meta-analysis contributes to the increasing evidence
that higher RC concentration may be an independent predictor of
poor cardiovascular outcomes in patients with CHD.

Remnant cholesterol, also known as triglyceride-rich lipoprotein
cholesterol, is the cholesterol content of all non-LDL and non-HDL.
In the fasting state, RC is composed of liver-derived very low-
density lipoprotein (VLDL) and intermediate-density lipoprotein
(IDL) in the fasting state, as well as intestinal-derived chylomicron
remnants (CM) (27). Recently, an increasing number of studies
have demonstrated that RC concentration had a relationship to the
occurrence and development of atherosclerosis (27, 53). Particularly,
when LDL-C was controlled at an appropriate level, RC was assumed
to be the main reason for mediating residual risks in the patients with
CHD and even a better predictor of risk than LDL-C (52). Unlike
LDL-C, RC could easily penetrate the vessel wall and is directly
taken up by the scavenging receptors on macrophages without
oxidative modification, leading to forming foam cells and promoting
atherosclerotic plaque formation (55, 56). In addition, it could also
increase the production of reactive oxygen species free radicals, cause
endothelial cell dysfunction (57), and induce the expression of pro-
inflammatory mediators, as well as the production of cytokines,
interleukin, and atherosclerotic adhesion molecules (58). All of the
earlier mechanisms can lead to plaque formation and progressive
rupture and promote the occurrence of MACEs, which in turn
influences the prognosis of the patients.

TABLE 2 Subgroup analysis on composite endpoint events.

Subgroup No. of studies Pooled risk ration 95% confidence
interval

P-value Heterogeneity
between studies

Region

Asian 6 1.72 1.53–1.95 <0.0001 I2 = 8.9%, P = 0.361

No-Asian 4 1.55 1.25–1.93 <0.0001 I2 = 63%, P = 0.030

Participation

CAD 6 1.64 1.46–1.85 <0.0001 I2 = 0%, P = 0.55

MI 3 1.36 0.70–2.64 0.37 I2 = 96%, P < 0.001

Sample size

≥ 1000 7 1.44 1.15–1.81 0.0020 I2 = 87%, P < 0.001

< 1000 3 1.88 1.38–2.55 <0.0001 I2 = 44%, P = 0.17

Age

≥ 65 years old 4 1.78 1.46–2.15 0.005 I2 = 88%, P < 0.001

< 65 years old 6 1.42 1.11–1.81 0.04 I2 = 91%, P < 0.001

RC assessment

Calculation 4 1.69 1.49–1.91 <0.0001 I2 = 0%, P = 0.42

Immunosepa-ration 4 1.72 1.39–2.12 <0.0001 I2 = 33%, P = 0.21

Automated assay 2 1.32 1.05–1.67 0.0200 I2 = 52%, P = 0.15

Fasting status

Fasting 6 1.70 1.51–1.91 <0.0001 I2 = 11%, P = 0.35

Non-fasting 2 1.41 1.15–1.73 0.0009 I2 = 55%, P = 0.11

Follow-up duration

≥ 3 year 5 1.54 1.35–1.76 <0.0001 I2 = 50%, P = 0.06

< 3 year 4 1.54 0.87–2.74 0.14 I2 = 93%, P < 0.001
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FIGURE 4

Funnel plots for the analysis of remnant cholesterol concentration and composite endpoint events. Results compare participants in the highest versus
lowest remnant cholesterol concentration.

The previous clinical studies demonstrated similar conclusions
between RC concentration and prognosis in the general population
but not in patients with CHD. The latest study by Wadstrom et al. (8)
revealed that in the Copenhagen General Population Study, during
the 15-year follow-up of 106,937 people, elevated RC concentration
was relevant to an increased risk of MI up to multivariable-adjusted
HR of 4.2, as well as corresponding HRs were 1.8 for ischemic
stroke, and 4.8 for peripheral artery disease (PAD). In addition, in the
Copenhagen City Heart Study, corresponding HRs were 2.6 for MI,
2.1 for ischemic stroke, and 4.9 for PAD (8). Castañer et al. (27) also
reported that in the PREDIMED cohort study of high cardiovascular-
risk groups, every 10 mg/dl increase in RC concentration would
increase the risk of cardiovascular events by 21%. After multivariate-
adjusted analysis, it was concluded that the levels of triglyceride and
RC rather than LDL-C were related to the occurrence of MACEs in
the population who were overweight or obese and had a high risk
of cardiovascular diseases, which were independent of lifestyle and
other risk factors. A few other studies have also reached a similar
conclusion (32, 33, 59). However, in our study, RC concentration
had no effect on the risk of all-cause mortality, possibly due to the
available small sample size and high heterogeneity. Furthermore, it
seems the results were consistent across the populations and ages in
our subgroup analysis. Wang et al. (31) also indicated the importance
of preventive efforts across the adult life course. Obviously, these
results need further confirmation in more stratified cases.

In addition, genetic evidence has also been found that RC was
the risk factor for atherosclerosis. Varbo et al. (9) performed the
Mendelian randomization method by detecting the genes of 73,513
people from the Copenhagen study and selected 15 genotypes to
observe the incidence of ischemic heart disease (IHD) for each type
of gene. The results indicated that for every 1 mmol/l increase of non-
fasting RC concentration, the risk of IHD increased by 2.8 times.
In another Mendelian randomized trial, Varbo et al. (60) found
that elevated RC concentrations in non-fasting status were causally
related to inflammation and IHD, whereas increased LDL-C was only
related causally to IHD without inflammation. Jørgensen et al. (61)

also indicated that genetic variation in ApoA5 related to stepwise
increases of the RC concentration and with comparable increases in
the risk of MI. Thus, these results illustrated that exposure to elevated
RC concentrations caused by genetic abnormalities could bring a
greater risk of cardiovascular diseases.

In our study, sensitivity analysis found that the source of
heterogeneity might be the research conducted by Martin et al. (12).
In this study, the RC evaluation method was significantly different
from others, in which the sum of VLDL3-C and IDL-C was used
to calculate RC and fasting state was unknown. At present, no
uniform method to measure RC concentration has been provided,
and accurate measurement is still challenging, which might be the
main reason for conflict in the findings (14–16). This was mainly
because RC was composed of different lipids and lipoproteins. Then,
its rapid and continuous catabolism, the size, quantity, density,
and composition of lipoprotein residues were highly dynamic,
which was difficult to distinguish from its precursors (non-remnant
lipoproteins) (47). Currently, the simplest way to estimate RC
concentration is through calculation method (62); that is, RC was
calculated as total cholesterol (TC) minus LDL-C minus HDL-C [i.e.,
RC = (TC)–(LDL-C)–(HDL-C)]. Although it was not as accurate
as the method to direct the detection of RC, it has been widely
applied at present due to its convenience and simplicity (10, 52–54).
Apart from the calculation, there were also several direct methods
to identify and quantify RC depending on their specific ingredients,
such as immunoseparation (4, 13, 50, 51), direct homogenous
assays (50, 52), preparative ultrafiltration (63), and nuclear magnetic
resonance (64). In our study, subgroup analysis indicated that
elevated RC concentration measured by the immunoseparation
method had higher cardiovascular risk. Furthermore, whether in a
fasting state during the detection also had an impact on the RC
measurement. The subgroup analysis of our study indicated that
the CHD patients with elevated RC concentrations in the fasting
state had a higher risk of poor prognosis. Apparently, no optimal
way of accurately quantifying RC measurement currently exists, so
there was a lack of uniform RC cut-off levels to define high RC

Frontiers in Cardiovascular Medicine 07 frontiersin.org156

https://doi.org/10.3389/fcvm.2022.951523
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-951523 January 13, 2023 Time: 15:37 # 8

Tian et al. 10.3389/fcvm.2022.951523

concentration. However, as increasing importance has been attached
to RC, a consensus definition of RC with accurate and reproducible
quantitative measurement approaches is eagerly required.

Limitations

This study also had potential limitations. First, the studies
included in this study were all published in English, which might
have a language bias. Second, the differences in the types of
CHD and RC measurement approaches in each study may lead to
clinical heterogeneity. Third, the included studies adjusted some
confounders, but other unadjusted risk factors may exist. Some
traditional CHD factors cannot be extracted adequately from the
included studies, which might also lead to bias. Thus, further studies
of stratified analysis for the risk factors of CHD outcome are
necessary. Fourth, there were insufficient relevant data to compare
the prognostic effect between LDL-C and RC from the included
studies. Then, it is worth answering this valuable question in future
studies. Finally, there was a significant publication bias in our
study, suggesting the possible presence of negative results that were
not published. Therefore, future studies are needed before a firm
conclusion can be drawn concerning the association between RC
concentration and CHD outcome.

Conclusion

This meta-analysis of 10 cohort studies showed that CHD
patients with elevated RC concentrations had a higher risk of adverse
cardiovascular outcomes. Measurement of RC concentration has
the potential to improve risk classification in patients with CHD.
However, future larger sample sizes and higher quality studies are still
required to confirm the findings.
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Paraoxonase 1 (PON1), residing almost exclusively on HDL, was discovered because

of its hydrolytic activity towards organophosphates. Subsequently, it was also found

to hydrolyse a wide range of substrates, including lactones and lipid hydroperoxides.

PON1 is critical for the capacity of HDL to protect LDL and outer cell membranes

against harmful oxidative modification, but this activity depends on its location

within the hydrophobic lipid domains of HDL. It does not prevent conjugated

diene formation, but directs lipid peroxidation products derived from these to

become harmless carboxylic acids rather than aldehydes which might adduct

to apolipoprotein B. Serum PON1 is inversely related to the incidence of new

atherosclerotic cardiovascular disease (ASCVD) events, particularly in diabetes and

established ASCVD. Its serum activity is frequently discordant with that of HDL

cholesterol. PON1 activity is diminished in dyslipidaemia, diabetes, and inflammatory

disease. Polymorphisms, most notably Q192R, can affect activity towards some

substrates, but not towards phenyl acetate. Gene ablation or over-expression

of human PON1 in rodent models is associated with increased and decreased

atherosclerosis susceptibility respectively. PON1 antioxidant activity is enhanced

by apolipoprotein AI and lecithin:cholesterol acyl transferase and diminished by

apolipoprotein AII, serum amyloid A, and myeloperoxidase. PON1 loses this activity

when separated from its lipid environment. Information about its structure has

been obtained from water soluble mutants created by directed evolution. Such

recombinant PON1 may, however, lose the capacity to hydrolyse non-polar

substrates. Whilst nutrition and pre-existing lipid modifying drugs can influence

PON1 activity there is a cogent need for more specific PON1-raising medication to

be developed.

KEYWORDS

paraoxonase 1, paraoxonase 1 activity, cardiovascular disease, high density lipoprotein, lipid
peroxidation, PON1 polymorphism

Introduction

It is 20 years since our last review of the role of paraoxonase in atherogenesis (1). In that
time much has been learnt regarding the strength of the relationship of serum paraoxonase
activity with atherosclerotic cardiovascular disease (ASCVD). Despite this, all too frequently the
involvement of paraoxonase in atherogenesis is still regarded as controversial. However, whilst
some aspects of the role of paraoxonase may be as yet poorly understood, a great deal has been
clearly established. That will be the subject of this review.
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The development of the concept that
PON1 is anti-atherosclerotic

Paraoxonase was identified by Aldridge in 1953 as an enzyme
present in serum with the capacity to hydrolyse diethyl para-
nitrophenyl phosphate (2). It was originally termed “A” esterase
to distinguish it from “B” esterases, such as acetylcholinesterase
and butyrylcholinesterase, which are inhibited by diethyl
para-nitrophenyl phosphate, an organophosphate. Diethyl para-
nitrophenyl phosphate, which is now more commonly referred to
as paraoxon, is the potent neurotoxin produced by the metabolism
of the organophosphate pesticide, parathion. The “A” enzymes
hydrolysing paraoxon (EC.3.1.8.1, aryldialkylphosphatase) have thus
come to be known as paraoxonases. Paraoxonase, circulating in
blood and tissue fluid now designated as paraoxonase 1 (PON1),
was found to constitute the first line of defence against a panoply of
organophosphate toxins, including insecticides and military nerve
gasses. Because of its importance in toxicology, it was intensively
studied most notably by the research groups headed by Furlong (3) in
Seattle and Draganov and La Du (4) in Ann Arbor. However, it was
not until the mid-1980’s that Mackness, working in the toxicology
department at the University of Reading, demonstrated that the
location of paraoxonase was almost exclusively on HDL (5). Because
of the known association of low HDL with ASCVD, it was but a
short step to discovering that the serum activity was diminished in
myocardial infarction (MI) survivors (6). Towards the end of that
decade Mackness joined the lipoprotein group in Manchester and
we began to study PON1 in diseases associated with accelerated
atherosclerosis. We soon discovered that its activity was diminished
both in diabetes (7, 8) and familial hypercholesterolaemia (8).

The prevailing dogma to explain the epidemiologically observed
inverse relationship between HDL and ASCVD was that HDL was
critical for reverse cholesterol transport. The evidence that HDL
is rate-limiting for this process in typical human atherosclerosis
was and remains scant (9). However, there were reports that HDL
might protect LDL against potentially atherogenic modifications to
its structure. As early as 1979 it had been found that the cytotoxicity
of LDL to human vascular smooth muscle and endothelial cells in
tissue culture could be abolished, if HDL was also present (10). Later
it was found that:

(a) HDL decreased lipid peroxidation products measured as
thiobarbituric acid reacting substances accumulating on LDL
during Cu2+- or endothelial cell—induced oxidation (11).

(b) HDL diminished the increase in electrophoretic mobility of LDL
following Cu2+-induced oxidation (12).

(c) HDL decreased the accumulation of malondiadehyde in LDL
during oxidation induced by Fe2+ or by prolonged incubation
(13). Fogelman’s group in Los Angeles then found that HDL
prevented the minimally oxidised LDL-induced migration of
human blood monocytes through a layer of cultured endothelial
cells (14).

It was uncertain whether these effects (11–14) were due to
transfer of lipid peroxides from LDL to HDL (probably for
subsequent disposal by the liver) or was due to their breakdown by
an enzyme present on HDL. Lecithin: cholesterol acyl transferase
(LCAT) was considered for the latter role, but none of the groups was
aware of the presence of PON1 on HDL. We began to speculate that

PON1, which had no known physiological role, might be involved
(15). We studied Cu2+-induced in vitro oxidation of LDL in the
presence and absence of HDL, using the method of El-Saadani et al.
to measure lipid peroxides (16) on LDL and HDL. We discovered
in 1991 that Cu2+-induced LDL lipid peroxidation was not only less
when co-incubated with HDL, but that it was also unaccompanied
by any increase in lipid peroxides on the HDL and that the total
lipid peroxides in the system were less when HDL was present
(17; Figure 1). It was thus likely that HDL did not simply receive
lipid peroxidation products from LDL, but that it also catalysed
their conversion to products not detected as lipid peroxides in our
assay. To explain this phenomenon, PON1 free of LCAT activity was
isolated from HDL in lipid micelles and found to be a potent inhibitor
of the accumulation of lipid peroxides on LDL when incubated
with Cu2+ (17). A series of publications from our group followed
supporting the hypothesis that PON1 was critical for the protection
afforded to LDL against oxidative modification and extending this to
include the concept that HDL, which is the predominant lipoprotein
in tissue fluid, protected cell membranes against oxidative and other
damaging processes (18–20). This seemed to provide an attractive
anti-atherosclerotic role for PON1 on HDL. Interest in the oxidative
theory of atherogenesis was, however, waning because of the failure of
fat-soluble antioxidant vitamins to suppress atherosclerosis in clinical
trials (see later) despite evidence that they prevent the formation
of conjugated dienes in the initial stage of LDL lipid peroxidation
by being more susceptible to oxidation than unsaturated fatty acyl
groups. However, once they themselves are oxidised they are pro-
oxidant and furthermore they increase cholesteryl ester transfer
protein (CETP) activity (21, 22). PON1 on the other hand decreases
the accumulation of the lipid peroxides generated after conjugate
diene formation and does so over a longer time period.

In 1995 independent confirmation that prevention of oxidative
modification of LDL by HDL was due to PON1 was provided

FIGURE 1

The accumulation of lipid peroxides on LDL and HDL when incubated
alone and together in the presence of Cu2+. LDL + HDL significantly
different from LDL alone. ∗P < 0.05; ∗∗P < 0.001.
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by Fogelman’s group in Los Angeles (23). It was reported
that the minimally oxidised LDL-induced migration of human
blood monocytes through a layer of cultured endothelial cells
was diminished in the presence of PON1 purified from HDL.
Furthermore, by a mass spectrometry method, when purified PON1
was incubated with minimally oxidised LDL, it was found that
oxidation products of phosphatidyl choline were decreased. Later,
using electrospray ionisation mass spectrometry, we confirmed the
marked decrease in histidine residues modified by 4-hydroxy-2-
non-enal (HNE) (a break-down product of peroxidised linoleic acid
typically present at the Sn2 position of phosphatidyl choline) in the
tryptic fragments of LDL, which had been subject to Cu2+-induced
oxidation when co-incubated with HDL possessing PON1 (24).

The oxidation products observed by the Los Angeles group to
be present on minimally oxidised LDL in the absence of PON1
could themselves stimulate monocyte migration. The effect of
PON1 in decreasing monocyte migration and phosphatidyl choline
peroxidation products was enhanced by platelet activating factor
acetyl hydrolase (PAFAH) (23). However, as we discuss later much
of the PAFAH activity on HDL is probably due to PON1. Other
factors proposed to explain the protective effect of HDL against
lipid peroxide accumulation were LCAT and apo A1 (11, 25,
26). Experiments reported by our group showed that neither of
these acting alone were effective in protecting LDL against lipid
peroxidation in comparison to PON1 (27). However, enhancement
of the effect of PON1 was observed from the addition of either
LCAT or apo A1 to purified PON1 (27). This was greater after
4–8 h of co-incubation with LDL and PON1 than in the first 4 h
(28). These observations were made under experimental conditions
designed to determine whether PON1 has the capacity to prevent
oxidative modification of LDL and, as we discuss later, the intensely
hydrophobic environment created on HDL produced by the presence
of apoA1 and the action of LCAT in converting pre-beta HDL to
more mature HDL (29) is likely to be more critical in vivo for PON1
to exert its anti-oxidative, anti-atherogenic role. These and other
HDL components which may contribute to anti-oxidant activity
have recently been reviewed by us (30). However, in support of
an important role for PON1, genetic deficiency of neither apoA1
nor LCAT in humans is, unlike PON1 deficiency, conspicuously
associated with premature atherosclerosis (31, 32). Susceptibility
to experimental atherosclerosis in APOA1 or LCAT ablated mouse
models requires an additional mutation, such as apoE deficiency or
LDL receptor deficiency (33, 34) and even then may involve decreased
PON1, whereas PON1 knock-out mice are prone to atherosclerosis
induced simply with atherogenic chow even without cross-breeding
with apolipoprotein E (apoE) ablated mice (35).

Under oxidising conditions, regardless of the presence or absence
of LDL, lipid peroxides begin to form on HDL at an early stage,
but their accumulation then ceases remaining at a low level relative
to LDL (Figure 1). In 1998 a consortium in Ann Arbor and Haifa
(36) showed in experiments, involving enrichment of HDL with
purified PON1 and specific inhibition of PON1 present in HDL, that
the resistance of HDL to lipid peroxidation was due to its PON1
component.

To test our theory that HDL by virtue of its PON1 component
might have a wider role by providing a system to protect
cell membranes against oxidative damage, we determined the
concentration of PON1 in experimental blister fluid as a surrogate
for interstitial fluid (37). PON1 concentration was approximately one
fifth that in serum and, although it was still associated with apoA1,

the ratio between the two had decreased which was interpreted as
likely to be due to sequestration of PON1 by the tissues. Later James’
group in Geneva showed that PON1 could exchange between HDL
and outer cell membranes where it decreased cellular susceptibility
to loss of function induced by oxidising conditions (38). This fitted
well with our earlier immunohistochemical study of atheroma in the
human aorta (39). ApoA1, clusterin (apoJ), and PON1 were found
to be present in healthy coronary arteries, staining with increasing
intensity as atheroma progressed (39).

It would be wrong to create the impression that the concept that
PON1 can explain the anti-oxidative activity of HDL has not been
without criticism. Firstly, a persisting effect of HDL to prevent LDL
oxidation even when no PON1 activity can be detected, for example
in the presence of EDTA (40) and secondly, failure of highly purified
or recombinant PON1 to protect LDL against lipid peroxidation (41–
43) have been interpreted as denying the theory. These assertions
have been challenged by direct experimentation (44). Furthermore,
the evidence that PON1 activity was absent due to inhibition by
EDTA was based on measurements made using phenyl acetate as
the substrate (40). Hydrolysis of phenyl acetate by PON1 is highly
Ca2+-dependent whereas PON1 anti-oxidant activity can persist
even in the presence of EDTA (45). Also, in experiments where highly
purified or recombinant PON1 did not protect LDL against oxidative
modification, it can be argued that in purifying PON1 to a high
degree, whether from serum or tissue culture fluid, it is extremely
difficult to maintain a lipid environment in which the conformation
of PON1 necessary for its anti-oxidant activity can be maintained
(41). Water-soluble PON1 mutants are even less likely to interact
with the lipid environment physiologically to provide hydrolytic
activity against highly hydrophobic substrates. Interestingly too,
recombinant PON1 has cytotoxic properties (44) most likely due
to its PAFAH-like activity in producing lysophosphatidyl choline
(46), which, when it occurs outside the safe environment of HDL, is
intensely damaging to tissues.

PON gene family and PON1
polymorphisms

Whilst the major paraoxonase in serum is PON1, it was found
that there are two other members of its family whose genes cluster on
chromosome 7 (47). Paraoxonase 2 (PON2) is a widely distributed,
highly expressed intracellular enzyme, which contributes to the
intracellular anti-oxidant defences. Paraoxonase 3 (PON3) is another
member of the paraoxonase family located on HDL, but at much
lower concentration than PON1. It has very limited arylesterase
and practically no organophosphatase activity. As lactonases, the
substrate specificity of PON1 and PON3 overlap, but differ by degree
with PON3 showing a preference for higher molecular mass lactones.

Paraoxonase 1 is highly polymorphic and it was found even
before the advent of gene sequencing technology that at least one
of these polymorphisms conferred variation in activity to different
substrates (48). This variation in activity did not apply when phenyl
acetate, which has a high molar rate of hydrolysis compared to other
substrates including paraoxon. In the case of paraoxon, however,
the frequency distribution of PON1 activity in Europid population
revealed that almost half have a low activity, around 8–9% high
activity and the rest form an intermediate peak. The heritability
of these activities led to the discovery that PON1 was allelic with
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low activity and high activity homozygotes in Hardy-Weinberg
equilibrium with heterozygotes. By the early 1990’s sequencing of
PON1 and PON1 revealed that this difference in activity was largely
determined by a substitution of glycine (Q) for arginine (R) at
position 192 resulting in a 192Q isoenzyme with low PON1 activity
and a 192R isoenzyme with high activity. This gene variant is
also known as rs662. It should be noted that the activity of these
isoenzymes was reversed with some substrates other than paraoxon,
such as diazoxon (49). Although naturally humans are unlikely to
be exposed to paraoxon or diazoxon, these examples suggested the
polymorphism may have evolved to permit a population to withstand
a wider range of toxins than would otherwise be the case (see
later). The prevalence of 192R and Q alloenzymes varies in different
populations and tends to reflect their typical hydrolytic activity
towards paraoxon (48).

In 1995 Ruiz and colleagues reported that in type 2 diabetes the
192R isoenzyme of PON1 was associated with coronary heart disease
(50). Initially this seemed counter-intuitive, because the hydrolytic
activity of this isoenzyme, at least with paraoxon as substrate, is
higher than that of 192Q. The explanation proved to be that, per
mg of HDL protein, 192R was slightly less effective than the 192Q
alloenzyme in protecting LDL against lipid peroxidation (51, 52).
In other words, the anti-atherosclerotic activity of PON1 is greater
for the isoenzyme which is less effective in hydrolysing paraoxon.
None the less the 192R isoenzyme does have anti-oxidative activity
and, if present at high concentration, it will protect perhaps more
than in an individual expressing the 192Q polymorphism at lower
concentration. Although the polymorphism at position 192 does not
affect PON1 serum concentration, others for example at position 55
(53) and in the promoter region (54) do and there are a huge number
of epigenetic and acquired factors, including diabetes, inflammatory
disorders, infections and nutrition, reviewed elsewhere (55, 56)
that contribute to variation in concentration and activity which in
different individuals can vary by as much as 16-fold and 40-fold,
respectively (57).

Epidemiology: Mendelian
randomisation and serum PON1
activities

In epidemiological studies EDTA plasma is typically stored, but to
test the association between PON1 activity and atherosclerosis when
phenyl acetate, paraoxon, diazoxon, or a lactone are employed as
substrate, serum is required, because all these activities are highly
Ca2+-dependent (1). Genotyping, however, which can be done
on any stored material likely to yield DNA, has since the 1990’s
become increasingly easy. We were amongst the groups whose results
were negative (58) with respect to an association between the Q
allele and ASCVD risk, but others reported positively. By 2001 our
meta-analysis showed a weak association between the Q allele and
ASCVD, which was approximately what would be expected from our
experiments (51, 52). In a subsequent meta-analysis by Wheeler et al.,
producing similar findings (59), it was considered that the association
could also be explained by publication bias, with which we agreed
(58). However, these authors concluded that their findings made it
unlikely that PON1 was critical in atherogenesis. This was based
on the unrealistic assumption that a gene coding for variation in
PON1 activity towards paraoxon could provide results interpretable

according to the principles of Mendelian randomisation. For this
to be the case the influence of the 192 variants on atherosclerosis
should have been similar in magnitude to its effect on in vitro
paraoxon hydrolysis. The conclusion from meta-analysis of the
192 polymorphisms must be that it does not deny the hypothesis
that low PON1 is associated with atherosclerosis: either the 192
genotype contributes nothing (publication bias) or it is supportive.
Subsequently, meta-analyses, some without publication bias (60)
have continued to show a small contribution of the 192Q allele to
ASCVD risk, most obviously when diabetes is also present (60–62).

After the initial case-control study showing an association
between PON1 activity and myocardial infarction (6), we performed
another study in which it was found that serum PON1 activity was
already low in samples taken within 2 h of the onset of symptoms of
acute myocardial infarction (63). There followed other case-control
studies in which serum PON1 activity was, as expected, more closely
related to the presence of ASCVD than PON1 genotypes (58, 64). The
critical epidemiological test of whether PON1 activity was relevant
to future atherosclerosis, however, came with reports of prospective
studies. Serum PON1 was found to be independently associated
with the likelihood of future ASCVD events, generally contributing
to variation in risk with a similar magnitude to established risk
factors, including HDL cholesterol (65–70). The first prospective
results came from the Caerphilly Heart Study (65) of middle-aged
men (Figure 2). Kunutsor et al. performed a meta-analysis (70)
of these results combined with those of an additional five reports
(65–69). There were 15,064 participants and 2,958 incidences of
ASCVD. In three studies paraoxon was employed as substrate (65,
66, 69) and in three phenyl acetate (67, 68, 70). The age-adjusted
pooled relative risk for ASCVD per 1SD higher PON1 activity
was a 0.87, which was highly statistically significant. There was
no evidence of publication bias. The literature in general does
not reveal a close correlation between PON1 activity and HDL
cholesterol or apoA1. Kunutsor et al. (70), however, did not find
that PON1 activity could contribute more than HDL cholesterol to
a multivariate equation to predict the likelihood of future ASCVD
events. That could have been, because individual variation in
serum PON1 activity is greater than for HDL for cholesterol and
thus regression dilution bias would favour HDL cholesterol. The
potentially greater biological significance of PON1 and discordance
between HDL cholesterol and PON1 was emphasised by the report of
Corsetti et al. of decreased PON1 activity in people with premature
ASCVD despite high HDL cholesterol levels (71). In the meta-
analysis by Kunutsor et al. (70) PON1 measured as aryl esterase
activity (phenyl acetate hydrolysis), which is unaffected by the 192
polymorphism, predicted ASCVD more strongly than paraoxonase
(paraoxon hydrolysis) activity. PON1 activity predicted new ASCVD
events particularly strongly in people with established ASCVD,
such as those who had undergone coronary revascularisation. The
study by Bhattacharyya et al. (72) was of particular interest in the
latter context. They studied 1,399 people who underwent coronary
angiography at the Cleveland Clinic. PON1 measured both as aryl
esterase and paraoxonase activity was strongly inversely associated
with the incidence of new ASCVD event over a minimum follow-
up of 3 years (Figure 3). In a subgroup of 150 participants
matched for the PON1 192 polymorphism (equal numbers with
the QQ, QR, and RR) serum PON1 activity was strongly correlated
(P < 0.001) with concentrations of fatty acid oxidation products
(hydroxyeicosatetraenoic acid, HETE; hydroxyloctadecadienoic acid,
HODE, and 8-isoprostane prostaglandin F2α, 8-isoPGF2α).
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FIGURE 2

The risk of ASCVD relative to the lowest risk quartile or quintile (RR) as a function of serum paraoxonase 1 (PON1) activity studied prospectively in
(A) Caerphilly and Speedwell (CHD only) (65), (B) cleveland clinic (ASCVD and all-cause mortality) (72), and (C) meta-analysis by Kunutsor et al. (ASCVD)
(70). Closed circles are RR unadjusted for other risk factors and open circles after adjustment for some of these (see references for details).

Because of the theory that PON1 has evolved as a lactonase
(see later), it has been proposed that use of a lactone substrate,
such as homocysteine thiolactone or dihydroxycoumarin (73, 74)
might provide a more biologically relevant estimate of PON1
activity. There is as yet no prospective epidemiological evidence
that the lactonase activity of PON1 provides a superior indicator
of ASCVD risk (75). The significance of PON1 lactonase activity in
human disease is emergent territory (76). Specifically, in the case
of atherosclerosis some evidence suggests homocysteine thiolactone,
which, like glucose and lipid peroxides, can bind to apoB, may
be associated with ASCVD incidence (77). Urinary homocysteine
thiolactone excretion has been reported to be increased in people
with low serum PON1, particularly in carriers of the PON1-192R
allele (73).

Evolution and biological plausibility

Polymorphisms of PON1, by broadening the range of
organophosphate neurotoxin resistance, will increase the survival of
an exposed population without the need to await a new mutation with
greater detoxifying properties, albeit at the expense of individuals
with the less favourable variant (78). Darwinian evolution takes
vastly longer and extinction may occur before a more successful
mutation occurs. In this context, we have reported that agricultural
workers involved in sheep-dipping with diazinon (active metabolite
diazinoxon) are less likely to experience neuropsychiatric symptoms
if they possess the 192Q PON1 allele associated with higher serum
PON1 measured as diazoxonase activity (79). The organophosphates
which led to the discovery of PON1 were synthetic, but a vast array of
organophosphates is naturally produced. The habitat of the earliest
hominids was on the shores of the great lakes of Africa, where
cyanobacteria (blue-green algae) (80), which can produce large
quantities of neurotoxic organophosphates, at times, would have
threatened human survival. However, modern man has been present
for a mere 6 million years, not long enough to explain the evolution
of the paraoxonase family of proteins, the ancestral protein for which
may have existed hundreds of millions or even billions of years ago.
It is likely that PON1 evolved from PON2, its intracellular relative
(49). Beyond that we know that paraoxonases are not homologous
to serine esterases, carboxyesterases, or arylesterases and thus do not
have similar ancestry (49). The capacity to synthesise cholinesterases

and to respond to acetyl choline dates to before metazoa emerged
and the evolution of any recognisable nervous system (81). The
potential for organophosphate toxicity must have been present
for at least as long. Organophosphates produced in the anaerobic
conditions around deep sea hydrothermal vents must have been
incorporated into the earliest life forms. So it may not be too fanciful
to consider that the ancestral protein giving rise to paraoxonases
may have existed many aeons ago and have long had a role in
organophosphate metabolism. Other examples of enzymes with
organophosphatase activity conserved across the domains of living
organisms are: diisopropylfluorophosphatase (DFPase) (eukaryocyte
squid) (82), organophosphate hydrolase, organophosphate acid
anhydrolase and phosphotriesterase (bacteria) (83) and SsoPox an
organophosphatase/lactonase from Sulfolobus solfataricus (archea)
(84). Of these the structure of rePON1 resembles that of squid
DFPase. Both are six-bladed propellers with each blade consisting of
four β-sheets. Moreover, in both structures two calcium ions can be
found in their central tunnel (82).

With the advent of photosynthetic organisms an atmosphere rich
in oxygen was created and thus the scene was set for the evolution of
life with more rapid metabolism (energised by oxidative respiratory
chain phosphorylation) than could be sustained by simple glycolysis.
However, simultaneously the necessity for protection against the
toxicity of oxygen also became essential. Paraoxonases and the other
anti-oxidative enzymes would have contributed to that (85).

Elias and Tawfik in a fascinating review have strongly argued that
paraoxonases may have evolved, not as esterases, but as lactonases
with a promiscuous esterase activity (86). Although not related
in other aspects of their structure, their active site has features
more in common with lactonases than esterases. Many single-
celled organisms signal to each other by producing lactones, such
as N-acylhomoserine lactones, usually when their colony size has
reached some critical point (quorum sensing), altering expression
of genes regulating such processes as bioluminescence, biofilm
formation, virulence factor expression, and motility. Just as for a
hormone to excite rather than inhibit there must be a process
to destroy it after receptor binding (ironically, for example, acetyl
choline and acetyl cholinesterase), so a lactonase could have a role in
quorum sensing. PON1 has the capacity to metabolise homocysteine
thiolactone, which has been implicated in atherogenesis (87).
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FIGURE 3

Symbolic representation of the peroxidation of phosphatidyl choline with linoleate in Sn2 by reactive oxygen species (hydroperoxy radical in this
example). A superscript dot preceding an atom indicates an unpaired electron. (1) Hydrogen abstraction from the hydrocarbon chain leads to (2)
rearrangement in which the double bonds between carbon 6 and 9 are no longer separated by 2 single bonds but by only one (conjugated diene
formation). (3) Addition of oxygen then leads to peroxy radical formation with the potential for initiating a chain reaction and (4) spontaneous breakdown
to aldehydes and ketones which can adduct to apolipoprotein B of LDL altering its receptor-binding. When PON1 in HDL is present breakdown to
carboxylic acids rather than aldehydes and ketones is believed to occur.

However, this activity is dwarfed beside that of biphenyl hydrolase-
like protein, making a critical role for ancestral PON1 in that regard
less likely (73, 76, 77, 88).

The view that PON1 may have a more generalised role in the
immune system has been proposed by Camps et al. (89) based on
their finding of an increase in chemokine (C-C motif) ligand 2
(CCL2) production in PON1 deficiency. CCL2 induces migration
and infiltration of immune cells into target tissues in a range of
inflammatory disorders, which could include the arterial wall.

An apparently quite different role for PON1 which might
have selective advantage is its capacity to inactivate gram negative
bacterial endotoxin (90). This endotoxin is a lipopolysaccharide,

which introduces yet another class of substrates which PON1can
hydrolyse with important biological consequences.

Thus paraoxonases appear to have diverged from other enzymes
early in evolution. They display great substrate promiscuity and
their primary function (organophosphatase, anti-oxidant, lactonase,
lipopolysaccharidase) may have been different at various times in
evolutionary history and in different classes or even orders of living
organisms. Myocardial infarction was unknown before the 20th
century (91). It is thus inconceivable that PON1 has evolved to
combat atherosclerosis. Nonetheless it is very possible that an enzyme
which has provided survival success in some other context might
by virtue of its promiscuity protect against ASCVD (“wide substrate
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specificity” might be better terminology than “promiscuity” when
considering virtue).

Evidence from animal experiments
that PON1 protects against
atherosclerosis

Birds do not express serum PON1 and they are not only
susceptible to organophosphate poisoning, but their HDL lacks the
capacity to impede the accumulation of lipid peroxides in human
LDL under oxidising conditions (92). Mammals display serum
PON1 activity, although with considerable species variation (93).
Experimental atherosclerosis in rodents has provided consistent
evidence that PON1 infusion or over-expression can suppress
atherogenesis or that inhibition or ablation of the PON1 gene
promotes atherogenesis. Thus the PON1 knockout mouse, which,
like birds is susceptible to organophosphate toxicity, also produces
HDL which has a diminished capacity to protect LDL against
oxidative modification. It is susceptible both to atherosclerosis
induced nutritionally and by apoE deficiency (35). Consistent with
this, rabbits fed an atherogenic diet developed more advanced
atherosclerotic lesions when PON1 activity was inhibited with
nandrolone (94). As long ago as 2002 a US patent was registered (95)
for the prevention of atherosclerosis by injection of a preparation
of PON1 192Q isoform based on a mouse model. Over-expression
of PON1 has been achieved in mouse (96–100), rabbit (101–
103), and rat (104) models. Such experiments have consistently
revealed decreased susceptibility to atherosclerosis and enhanced
HDL functionality. Ablation or over-expression of the PON1 gene
causes little if any effect on lipoprotein metabolism, unlike knock
out or overexpression of major genes sometimes considered to
be important in atherogenesis, such as apoA1 and LCAT. The
small decrease in blood pressure in PON1 deficiency (105) would
be expected to oppose rather than increase atherogenesis. Thus,
a major role for PON1 in atherogenesis is the only plausible
explanation for the results of animal experiments. Furthermore, in
experiments to test the contribution of risk factors other than PON1
to atherosclerosis, the atherogenic diet used in, for example rabbits,
would have decreased PON1 and contributed to atherogenesis from
whatever other cause was being examined (106).

Physical and structural properties of
PON1

For its antioxidative activity towards lipid hydroperoxides,
PON1 requires an intensely hydrophobic environment. Its molecular
structure contains long sequences of hydrophobic amino acids
creating regions eschewing water and allowing PON1 to exist
within the lipid-rich domains of HDL. The strong detergent
properties of apoA1 (107) are likely to be crucial in this respect.
The hydrophobicity of PON1 makes it resistant to crystallisation.
Removed from its lipid environment, naturally occurring PON1 is
unstable and tends to aggregate in the absence of detergents. This
is true whether wild-type PON1 (wtPON1) is isolated from serum
or from the culture medium of E coli expressing wtPON1. This has
had two major effects on progress in research into the involvement of

PON1 in atherosclerosis. Firstly, its structure remained the subject
of speculation, which was unresolved until it was submitted to
directed evolution in order to increase its solubility (108). Secondly,
as methods were developed for increasing purification of wtPON1,
dispute ensued about how much of its capacity to prevent the
accumulation of lipid peroxides on LDL was retained (41–44).

Family shuffling of four PON1 genes (human, mouse, rabbit, and
rat) resulted in many variants that could be expressed in E. coli. One
of them produced crystals of a quality suitable for X-ray diffraction
studies (108). This was the recombinant-PON1 (rePON1) G2E6
variant, which exhibits 91% homology to the wt rabbit PON1 and
86% homology to the human PON1 (109). Structural analysis using
X-ray crystallography revealed the six-bladed β-propeller structure of
PON1 with a central tunnel that houses two calcium ions. There is a
unique addition to the β-propeller scaffold in the form of three α-
helices, which are located on the top of the propeller. These helices
are likely to be involved in anchoring of PON1 to HDL particles.

Each calcium ion, depending on its location within the enzyme,
plays an important part in the activity of PON1. The calcium ion
located closer to the tunnel entrance has a structural role that may
be necessary for some conformational aspects of PON1 important
for some of its substrates, such as organophosphates. It may be less
critical to, say phospholipids, with which it is surrounded within
HDL. The other calcium ion which lies deep in the active site cavity
has a catalytic role and is important for substrate positioning and
ester bond activation. Differences in the active site configuration and
positioning of a calcium ion are likely to be important in explaining
the differential substrate specificity of the 192 polymorphisms, but
with such a wide spectrum of substrates no single mechanism may
exist (110). Engineered variants with increased aqueous solubility
and tagged to simplify purification have at the time of writing led
to 21 rePON1 products being available from 8 suppliers. Generally,
the evidence that these retain enzymic activity in initial screening
has been based on phenyl acetate hydrolysis. The commercial
incentive has been to produce rePON1 variants for the treatment of
organophosphate poisoning or prevention. The aim has thus been to
create rePON1’s that are more active in hydrolysing organophosphate
neurotoxins than wtPON1, which is less active than squid DFPase,
a rival target for bio-engineering. The hydrophobicity of rePON1
must necessarily have been diminished. This may not impair its
capacity to hydrolyse molecules such as phenyl acetate and simple
organophosphates, but hydrolysis of more intensely hydrophobic
long chain fatty acyl lipid substrates may be abolished.

Mechanism by which HDL and PON1
act to protect against lipid peroxide
accumulation

Polyunsaturated fatty acyl groups are susceptible to peroxidation
due to oxygen free radicals leaking from cells or deliberately produced
in the tissue fluid by inflammatory cells (myeloperoxidase, NADPH
oxidase). In the human, linoleate (C18:2) is the major circulating
polyunsaturated fatty acid, typically occurring at the Sn2 position
of phosphatidyl choline. The earliest phase of lipid peroxidation
is hydrogen abstraction. This leads to conjugated diene formation
detectable by ultraviolet spectroscopy (111). The double C = C bonds
(outer orbitals occupied by an electron from a single hydrogen)
in linoleate are separated by two single C-C bonds (outer orbitals
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occupied by electros from two hydrogens). A conjugated diene is
formed when one of the double bonds flips over, because one of its
hydrogen atoms is attracted by hydroxyl radicals (OH• created by the
reaction of O2

• with water) with their unpaired electrons (Figure 3).
The newly created double bond is separated from the next double
bond by a single bond (conjugated diene), an assemblage which
resonates with ultraviolet light. This early phase of lipid peroxidation
is opposed by chain-breaking lipid soluble antioxidants, such as α-
tocopherol (vitamin E), β-carotene, and ubiquinol-10, which offer
themselves as electron donors in preference to linoleate, but it is
largely unaffected by PON1. The major effect of PON1 present in
HDL is in decreasing the accumulation of lipid peroxides in LDL
derived from these conjugated diene free radicals in the later phase
of the oxidation of linoleate (21). The failure of clinical trials with,
for example, vitamin E (112) is frequently seen as dismissing the
oxidative modification of LDL theory of atherosclerosis. However, it
is not at the early stage of conjugated diene formation that LDL is
chemically modified, allowing arterial wall macrophage and smooth
muscle cell receptor-mediated uptake (111). This occurs later when
oxygen becomes bound to linoleate causing its decomposition firstly
into, for example, 9-hydroperoxy-10,12-octodecadienoic acid (9-
HPODE), and thence aldehydes (e.g., propanedial, hexanal, nonanal),
unsaturated aldehydes (e.g., hexenal, nonenal) and their various
hydroperoxy derivatives. It is these aldehydes which adduct to the
side chains of proline and arginine residues of apoB, leading to
fragmentation of the apoB molecule, which thereby becomes a ligand
for macrophage and transformed smooth muscle cell scavenger
receptors, such as scavenger receptor class B type 1 (SCARB1) (111,
113–119). Possibly some derivatives of oxidised polyunsaturated fatty
acids have a steric resemblance to lactones (120).

For PON1 to protect LDL or cell membranes against aldehyde
adduction it must come into physical contact with their phosphatidyl
choline and cholesteryl ester components. In tissue fluid this may be
achieved through the engagement of HDL particle with outer cell
membranes (38, 121). In the circulation, particularly in humans in
whom cholesterol esterification occurs on HDL due to the action
of LCAT, huge amounts of phospholipid and of free and esterified
cholesterol are transferred between HDL and apoB-containing
lipoproteins. This process is greatly facilitated by cholesteryl ester
transfer protein (CETP) and phospholipid transfer protein (PLTP)
(122–124). Esterification of cholesterol by LCAT yields one molecule
of the highly cytotoxic lysophosphatidyl choline for every molecule
of cholesterol esterified (125). HDL retains this lysophosphatidyl
choline safely until it passes through the hepatic sinusoids where it
is released to hepatocytes for re-esterification.

Arriving on HDL, phosphatidyl choline with, as the consequence
of oxygen free radical attack, fatty acyl hydroperoxide/conjugated
dienes at Sn2, the initial phase of detoxification is likely to be the
release of these fatty acyl molecules from Sn2 by the PAFAH (platelet
activating factor; syn phospholipase A2, PLA2)-like activity of PON1.
Quite possibly this is facilitated not at the lactonase active site deep
in the catalytic tunnel of PON1, but perhaps more superficially and
might even take place to some extent spontaneously. It is, however,
likely that the oxidised linoleate products released can reach the
deeper PON1 catalytic site (whatever its teleology) (45) where they
are converted to harmless carboxylic acids as opposed to reactive
aldehydes (20, 23, 126; Figure 4). This concept of PON1 activity
has been challenged by a report that highly purified PON1 lacks
both PAFAH activity and the capacity to prevent the accumulation
of phosphatidylcholine oxidation products (41). Nonetheless, as has

FIGURE 4

Schematic representation of the mechanism by which HDL impedes
the atherogenic modification of LDL. ApoA1, apolipoprotein AI;
ApoAII, apolipoprotein AII; apoB, apolipoprotein B; ApoM,
apolipoprotein M; PON1, paraoxonase 1; PLA2, phospholipase A2 (syn:
PAFAH, platelet activating factor hydrolase); LCAT, lecithin cholesterol
acyl transferase; SAA, serum amyloid A; PLTP, phospholipid transfer
protein; CETP, cholesteryl ester transfer protein; SCARB1, scavenger
receptor class B1; oxLDL, oxidatively modified LDL; LDLR, LDL
receptor; L, lipid; •LOOH, hydroxylipid radical; ROS, reactive oxygen
species (containing oxygen with an unpaired electron giving it an
outer shell resembling fluorine).

been previously discussed, PON1 divorced from HDL may not be
able to hydrolyse intensely hydrophobic substrates and there is no
denying the antioxidant activity of intact HDL or the evidence from
gene manipulation that PON1 makes a crucial contribution to this.

Epigenetic factors and modulators of
PON1 activity

A host of diseases and nutritional factors are associated with
variation in PON1 activity. These and potential mechanisms for
their associations with PON1 have recently been reviewed (55,
56). Both dyslipidaemia (8, 127–134) and diabetes mellitus (8,
135–145) are associated with decreased activity (see later). The
composition of HDL has a major effect on PON1 activity. In
inflammation HDL has decreased PON1 activity (146–148). At the
same time the apolipoprotein AI and clusterin (syn. apolipoprotein J)
content of HDL also diminish whereas apoliporotein AII (apoAII)
and serum amyloid A (SAA) increase (146–149). The resulting
pro-inflammatory HDL has decreased antioxidant capacity. SAA
increases in inflammation. Experimentally SAA can displace PON1
from HDL (148) but the mechanism for the replacement of PON1
by SAA in pro-inflammatory HDL may also involve inhibition of
hepatic PON1 expression and stimulation of that of SAA (146–150).
The antioxidant activity of PON1 is also limited by myeloperoxidase
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(MPO), a pro-oxidant enzyme secreted by neutrophils (151–155) to
kill bacteria by showering them with oxygen free radicals. MPO is
taken up by HDL where it may form a complex with PON1. The anti-
oxidative activity of HDL may thus reflect a balance between those
two. Bearing in mind that HDL is the dominant lipoprotein in tissues,
it may not be fanciful to speculate that it may operate to confine pro-
oxidant activity to sites of inflammation and to limit the spread of
oxygen free radicals systemically. When infection or inflammation
becomes generalised, as in, say, septicaemia (90, 156) or systemic
lupus erythematosus (157) PON1 activity has declined.

Diabetes and metabolic syndrome

Both type 1 and type 2 diabetes are associated with decreased
PON1 activity and low PON1 activity is related to both macro- and
microvascular complications (8, 135–145). Furthermore low PON1
may predispose to the development of type 2 diabetes (143, 158, 159).

It is reported that in vitro glycation of PON1 by incubation with
glucose at high concentration decreases its activity (160, 161). This,
of course, cannot explain the low serum PON1 activity in metabolic
syndrome (prediabetes) before the onset of hyperglycaemia. What
is of much greater interest is the occurrence of glycated apoB in
the circulation. In non-diabetic people some 4% of serum apo B
is glycated and in diabetes the percentage is typically twice this
(162). The concentration of glycated apoB is also raised when LDL
is increased even in the absence of diabetes, for example in familial
hypercholesterolaemia. The concentration of glycated apoB, whether
in diabetic or non-diabetic people, is higher than oxidatively modified
apoB (162, 163). ApoB in the smaller, denser subfractions of LDL
(SD-LDL) is more heavily glycated than in VLDL and less dense
LDL (164–166). This may be because more of the apoB molecule is
exposed to glucose in SD-LDL or because it has a longer residence
time in the circulation or both. Glycation of apoB occurs at the
arginine and proline residues to which ketones and other derivatives
of lipid peroxidation adduct (167). Glycated apoB, like oxidatively
modified apoB, is taken up by macrophages to form foam cells (168).
In vitro apoB in LDL is resistant to glycation. Prolonged incubation
of normal LDL with high concentrations of glucose does raise its
level, but not usually to the same extent as is found in diabetes
(165, 168). The explanation may be that the more highly oxidative
environment in vivo allows prior adduction of, say aldehydes to
arginine, which is then replaced by glucose (166, 169) or a more
reactive derivative of glucose, such as gluconolactone or methyl
glyoxal, is generated during glycolysis (170–172). Either mechanism
might suggest a possible effect of HDL in protecting LDL apoB against
glycation which has been reported in vitro with HDL from people
with above median serum PON1 activity opposing glycation more
than HDL from those with lower activity (173). More work is needed
to explore the possibility that HDL might protect against atheroma
and more specifically diabetic complications by this mechanism.

Future directions: Therapeutic and
diagnostic potential

There is a plethora of nutritional studies of PON1 activity.
Unsurprisingly, given the different substrates used to measure
PON1 activity, the small size and the inadequate design of many,
findings often appear conflicting or unconvincing. No amount

of meta-analysis can provide clarification. The impression gained
is that obesity is often associated with decreased PON1 activity,
albeit most obviously when triglycerides are raised or diabetes
is present (127, 128, 132–145, 174). It is also clear that HDL
cholesterol concentration is often discordant with changes in
PON1 activity. The Mediterranean diet may increase PON1 activity
(175) and various fruit juices, most conspicuously pomegranate
juice, can raise PON1 activity (176). Dyslipidaemia, whether
due to familial hypercholesterolaemia or hypertriglyceridaemia,
is associated with diminished PON1 activity (8, 127, 128, 130–
134) with perhaps its most profound decreases occurring in
familial dysbetalipoproteinaemia [unpublished observation]. Statin
(177), fibrate (178), ezetimibe (179), probucol (128), niacin (180),
and metformin (181) drugs raise serum PON1 activity whilst
sulphonamides may decrease it (182).

A pharmacological approach to raising PON1 activity is
attractive, but traditionally it is easier to block rather than activate
enzymes. Raising HDL by CETP inhibition was ineffective in
preventing atherosclerosis except by its LDL lowering effect (183).
CETP may be necessary for the transfer of oxidised phospholipid
and cholesteryl ester to HDL for PON1 to act on them and the HDL
particles created are large (184) and not the smaller, desirable particles
rich in PON1 capable of facilitating cholesterol efflux. PON1-rich
HDL infusion is probably not a practical possibility, particularly
as rePON1, which is easily produced may have little anti-oxidant
capacity [see earlier]. Evidence suggests that HDL mimetics, some
of which could be given orally, can raise PON1 activity in particles
resembling physiological HDL (185, 186). It will also be important to
be aware of effects on PON1 of the various antisense oligonucleotides
for lowering LDL and triglycerides as they emerge. There also exists
the theoretical possibility of raising PON1 activity by promotion of its
gene or expression of a gain-of-function variant (but without a polar
tag so that it is incorporated physiologically into HDL) (187).

Paraoxonase 1 has the potential to contribute to the clinical
assessment of ASCVD risk. However, continuing uncertainties about
identification of the substrate critical in its anti-atherosclerotic
activity have slowed progress in that direction. Is it important, for
example, to employ a long chain fatty acid peroxide or lactone
rather than, say, phenyl acetate or paraoxon as the substrate in
an assay? However, whilst discovery of the key substrate(s) in
the mechanism by which PON1 protects against atherosclerosis is
essential for our understanding of its role, this may not be critical
to make use of it clinically. Alkaline phosphatase is one of the
most frequently requested and informative biochemical tests in
clinical practice, but its physiological role remains obscure, and
the substrate used in its measurement artificial (188). Currently,
measurement of PON1 hydrolytic activity has generally been more
closely associated with ASCVD than PON1 protein concentration,
because the specific activity of PON1 is variable, for example in
diabetes (see earlier discussion). PON1 hydrolyses phenyl acetate at a
much higher rate than paraoxon. The PON1 192 polymorphism does
not affect the hydrolysis of phenyl acetate but does that of paraoxon.
On the other hand, if the true physiological role of PON1 is its
lactonase activity, then potentially there could be advantages to using
lactones, such as dihydrocoumarin or homocysteine thiolactone,
as assay substrates (73–75). However, this has yet to be proven.
Undoubtedly too, mistakes, such as the use of plasma rather than
serum and inclusion of B esterase and non-specific hydrolysis in some
methods for determination of A esterase (PON1) activity, have led
to some confusion. A carefully conducted laboratory investigation
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using a variety of candidate substrates (189–192) linked to an
epidemiological study is required.

Measurement of serum PON1 activity also provides an indication
of where the HDL present in individuals is in the spectrum of
pro- to anti-inflammatory and pro- to anti-atherosclerotic capacity
(100, 193). Cholesterol efflux capacity is another indicator, but its
measurement is more difficult and more prone to error (194). Because
decreased PON1 activity is frequently associated with increased SAA
in HDL the ratio of SAA concentration to PON1 activity has been
proposed as better index of the type of HDL present than either
measurement singly (148).

Conclusion

Serum PON1 activity is inversely associated with ASCVD
incidence both in human and animal studies. Although this was
discovered due to the presence on HDL of PON1 and its contribution
to the anti-oxidative capacity of HDL, the lactonase activity of PON1
may also contribute to the mechanism by which it reduces ASCVD
risk. PON1 provides a potential additional means of clinical ASCVD
risk assessment and is an indicator of the extent to which HDL has
retained its anti-atherogenic and anti-inflammatory properties. It has
the potential for therapeutic exploitation.
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75. Petrič B, Kunej T, Bavec AA. Multi-omics analysis of PON1 lactonase activity in
relation to human health and disease. Omics. (2021) 25:38–51. doi: 10.1089/omi.2020.
0160

76. Jakubowski H. Homocysteine modification in protein structure/function and
human disease. Physiol Rev. (2018) 99:555–604. doi: 10.1152/physrev.00003.2018

77. Borowczyk K, Piechocka J, Głowacki R, Dhar I, Midtun Ø, Tell G, et al. Urinary
excretion of homocysteine thiolactone and the risk of acute myocardial infarction in
coronary artery disease patients: the WENBIT trial. J Inter Med. (2019) 285:232–44.
doi: 10.1111/joim.12834

78. Smith J. The theory of evolution. 3rd ed. Cambridge: Cambridge University Press
(1975).

79. Cherry N, Mackness M, Durrington P, Povey A, Dippnall M, Smith T, et al.
Paraoxonase (PON1) polymorphisms in farmers attributing ill health to sheep dip.
Lancet. (2002) 359:763–4. doi: 10.1016/S0140-6736(02)07847-9

80. Zanchett G, Oliveira-Filho E. Cyanobacteria and cyanotoxins: from impacts on
aquatic ecosystems and human health to anticarcinogenic effects. Toxins. (2013) 5:1896–
917. doi: 10.3390/toxins5101896

81. Venter J, di Porzio U, Robinson D, Shreeve S, Lai J, Kerlavage A, et al. Evolution
of neurotransmitter receptor systems. Prog Neurobiol. (1988) 30:105–69. doi: 10.1016/
0301-0082(88)90004-4

82. Blum M, Chen J. Structural characterization of the catalytic calcium-binding site
in diisopropyl fluorophosphatase (DFPase)–comparison with related beta-propeller
enzymes. Chem Biol Interact. (2010) 187:373–9. doi: 10.1016/j.cbi.2010.02.043

83. Thakur M, Medintz I, Walper S. Enzymatic bioremediation of organophosphate
compounds-progress and remaining challenges. Front Bioeng Biotechnol. (2019) 7:289.
doi: 10.3389/fbioe.2019.00289

84. Hiblot J, Gotthard G, Chabriere E, Elias M. Characterisation of the organophosphate
hydrolase catalytic activity of SsoPox. Sci Rep. (2012) 2:779. doi: 10.1038/srep00779

85. Lei X, Zhu J, Cheng W, Bao Y, Ho Y, Reddi A, et al. Paradoxical roles of antioxidant
enzymes: basic mechanisms and health implications. Physiol Rev. (2016) 96:307–64.
doi: 10.1152/physrev.00010.2014

86. Elias M, Tawfik D. Divergence and convergence in enzyme evolution: parallel
evolution of paraoxonases from quorum-quenching lactonases. J Biol Chem. (2012)
287:11–20. doi: 10.1074/jbc.R111.257329

87. McCully K. Homocysteine and the pathogenesis of atherosclerosis. Expert Rev Clin
Pharmacol. (2015) 8:211–9. doi: 10.1586/17512433.2015.1010516

88. Marsillach J, Suzuki S, Richter R, McDonald M, Rademacher P, MacCoss M,
et al. Human valacyclovir hydrolase/biphenyl hydrolase-like protein is a highly efficient
homocysteine thiolactonase. PLoS One. (2014) 9:e110054. doi: 10.1371/journal.pone.
0110054

89. Camps J, Castañé H, Rodríguez-Tomàs E, Baiges-Gaya G, Hernández-Aguilera A,
Arenas M, et al. On the role of paraoxonase-1 and chemokine ligand 2 (C-C motif) in
metabolic alterations linked to inflammation and disease. A 2021 update. Biomolecules.
(2021) 11:971. doi: 10.3390/biom11070971

90. Camps J, Iftimie S, García-Heredia A, Castro A, Joven J. Paraoxonases and infectious
diseases. Clin Biochem. (2017) 50:804–11. doi: 10.1016/j.clinbiochem.2017.04.016

91. Herrick J. Landmark article (JAMA 1912). Clinical features of sudden obstruction
of the coronary arteries. By James B. Herrick. JAMA. (1983) 250:1757–65. doi: 10.1001/
jama.250.13.1757

92. Mackness B, Durrington P, Mackness M. Lack of protection against oxidative
modification of LDL by avian HDL. Biochem Biophys Res Commun. (1998) 247:443–6.
doi: 10.1006/bbrc.1998.8803

93. Meyer W, Jamison J, Richter R, Woods S, Partha R, Kowalczyk A, et al. Ancient
convergent losses of paraoxonase 1 yield potential risks for modern marine mammals.
Science. (2018) 361:591–4. doi: 10.1126/science.aap7714

94. Amani M, Darbin A, Pezeshkian M, Afrasiabi A, Safaie N, Jodati A, et al. The role of
cholesterol-enriched diet and paraoxonase 1 inhibition in atherosclerosis progression. J
Cardiovasc Thorac Res. (2017) 9:133–9. doi: 10.15171/jcvtr.2017.23

95. Radtke K. Method of using PON-1 to decrease atheroma formation. USA patent US
6,391,298 B1. Pittsburgh, PA: Bayer Corporation (2002).

96. Zhang C, Peng W, Wang M, Zhu J, Zang Y, Shi W, et al. Studies on protective effects
of human paraoxonases 1 and 3 on atherosclerosis in apolipoprotein E knockout mice.
Gene Ther. (2010) 17:626–33. doi: 10.1038/gt.2010.11

97. Mackness B, Quarck R, Verreth W, Mackness M, Holvoet P. Human paraoxonase-
1 overexpression inhibits atherosclerosis in a mouse model of metabolic syndrome.
Arterioscler Thromb Vasc Biol. (2006) 26:1545–50. doi: 10.1161/01.ATV.0000222924.
62641.aa

98. Guns P, Van Assche T, Verreth W, Fransen P, Mackness B, Mackness M, et al.
Paraoxonase 1 gene transfer lowers vascular oxidative stress and improves vasomotor
function in apolipoprotein E-deficient mice with pre-existing atherosclerosis. Br J
Pharmacol. (2008) 153:508–16. doi: 10.1038/sj.bjp.0707585

99. She Z, Zheng W, Wei Y, Chen H, Wang A, Li H, et al. Human paraoxonase gene
cluster transgenic overexpression represses atherogenesis and promotes atherosclerotic
plaque stability in ApoE-null mice. Circ Res. (2009) 104:1160–8. doi: 10.1161/
CIRCRESAHA.108.192229

100. Ikhlef S, Berrougui H, Kamtchueng Simo O, Zerif E, Khalil A. Human paraoxonase
1 overexpression in mice stimulates HDL cholesterol efflux and reverse cholesterol
transport. PLoS One. (2017) 12:e0173385. doi: 10.1371/journal.pone.0173385

101. Burillo E, Tarin C, Torres-Fonseca M, Fernandez-García C, Martinez-Pinna
R, Martinez-Lopez D, et al. Paraoxonase-1 overexpression prevents experimental
abdominal aortic aneurysm progression. Clin Sci. (2016) 130:1027–38. doi: 10.1042/
CS20160185

102. Bai J, Zhou H, Yang X, Liu H, Meng Y. Inhibitory effect of the paraoxonase gene on
the formation of rabbit coronary atherosclerosis. Asian Pac J Trop Med. (2013) 6:544–7.
doi: 10.1016/S1995-7645(13)60093-0

103. Miyoshi M, Nakano Y, Sakaguchi T, Ogi H, Oda N, Suenari K, et al. Gene delivery
of paraoxonase-1 inhibits neointimal hyperplasia after arterial balloon-injury in rabbits
fed a high-fat diet. Hypertens Res. (2007) 30:85–91. doi: 10.1291/hypres.30.85

104. Wang F, Xue J, Wang D, Wang X, Lu S, Tan M. Treatment of atherosclerosis
by transplantation of bone endothelial progenitor cells over-expressed paraoxonase-1
gene by recombinant adeno-associated virus in rat. Biol Pharm Bull. (2010) 33:1806–13.
doi: 10.1248/bpb.33.1806

105. Gamliel-Lazarovich A, Abassi Z, Khatib S, Tavori H, Vaya J, Aviram M,
et al. Paraoxonase1 deficiency in mice is associated with hypotension and increased
levels of 5,6-epoxyeicosatrienoic acid. Atherosclerosis. (2012) 222:92–8. doi: 10.1016/j.
atherosclerosis.2012.01.047

106. Mackness M, Boullier A, Hennuyer N, Mackness B, Hall M, Tailleux A, et al.
Paraoxonase activity is reduced by a pro-atherosclerotic diet in rabbits. Biochem Biophys
Res Commun. (2000) 269:232–6. doi: 10.1006/bbrc.2000.2265

107. Lund-Katz S, Phillips M. High density lipoprotein structure-function and role in
reverse cholesterol transport. Subcell Biochem. (2010) 51:183–227. doi: 10.1007/978-90-
481-8622-8_7

108. Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, et al.
Structure and evolution of the serum paraoxonase family of detoxifying and anti-
atherosclerotic enzymes. Nat Struct Mol Biol. (2004) 11:412–9. doi: 10.1038/nsmb767

109. Harel M, Berchansky A, Sussman JL, Prilusky J, Hodis E, Brumshtein B, et al.
Serum Paraoxonase. (2020). Available online at: https://proteopedia.org/wiki/index.php/
Serum_Paraoxonase (accessed September 14, 2022).

110. Karabulut S, Mansour B, Casanola-Martin G, Rasulev B, Gauld J. The hydrolysis
rate of paraoxonase-1 Q and R isoenzymes: an in silico study based on in vitro data.
Molecules. (2022) 27:6780. doi: 10.3390/molecules27206780

111. Esterbauer H, Gebicki J, Puhl H, Jürgens G. The role of lipid peroxidation and
antioxidants in oxidative modification of LDL. Free Radic Biol Med. (1992) 13:341–90.
doi: 10.1016/0891-5849(92)90181-F

112. Myung S, Ju W, Cho B, Oh S, Park S, Koo B, et al. Efficacy of vitamin and
antioxidant supplements in prevention of cardiovascular disease: systematic review and
meta-analysis of randomised controlled trials. BMJ. (2013) 346:f10. doi: 10.1136/bmj.f10

113. Spiteller P, Kern W, Reiner J, Spiteller G. Aldehydic lipid peroxidation products
derived from linoleic acid. Biochim Biophys Acta. (2001) 1531:188–208. doi: 10.1016/
S1388-1981(01)00100-7

114. Frankel E. Lipid oxidation. Sawston: Woodhead Publishing (2003).

115. Yoshida Y, Umeno A, Akazawa Y, Shichiri M, Murotomi K, Horie M. Chemistry of
lipid peroxidation products and their use as biomarkers in early detection of diseases. J
Oleo Sci. (2015) 64:347–56. doi: 10.5650/jos.ess14281

116. Ahmed Z, Ravandi A, Maguire G, Emili A, Draganov D, La Du B, et al. Multiple
substrates for paraoxonase-1 during oxidation of phosphatidylcholine by peroxynitrite.
Biochem Biophys Res Commun. (2002) 290:391–6. doi: 10.1006/bbrc.2001.6150

117. Poznyak A, Nikiforov N, Markin A, Kashirskikh D, Myasoedova V, Gerasimova
E, et al. Overview of OxLDL and its impact on cardiovascular health: focus on
atherosclerosis. Front Pharmacol. (2020) 11:613780. doi: 10.3389/fphar.2020.613780

118. Steinberg D, Witztum J. Oxidized low-density lipoprotein and atherosclerosis.
Arterioscler Thromb Vasc Biol. (2010) 30:2311–6. doi: 10.1161/ATVBAHA.108.179697

119. Glass C, Witztum J. Atherosclerosis. The road ahead. Cell. (2001) 104:503–16.
doi: 10.1016/S0092-8674(01)00238-0

120. Gilad D, Atiya S, Mozes-Autmazgin Z, Ben-Shushan R, Ben-David R, Amram E,
et al. Paraoxonase 1 in endothelial cells impairs vasodilation induced by arachidonic

Frontiers in Cardiovascular Medicine 12 frontiersin.org171

https://doi.org/10.3389/fcvm.2023.1065967
https://doi.org/10.3390/jcm8091357
https://doi.org/10.1001/jama.299.11.1265
https://doi.org/10.1001/jama.299.11.1265
https://doi.org/10.1096/fj.201800346R
https://doi.org/10.1016/j.cca.2019.09.016
https://doi.org/10.1089/omi.2020.0160
https://doi.org/10.1089/omi.2020.0160
https://doi.org/10.1152/physrev.00003.2018
https://doi.org/10.1111/joim.12834
https://doi.org/10.1016/S0140-6736(02)07847-9
https://doi.org/10.3390/toxins5101896
https://doi.org/10.1016/0301-0082(88)90004-4
https://doi.org/10.1016/0301-0082(88)90004-4
https://doi.org/10.1016/j.cbi.2010.02.043
https://doi.org/10.3389/fbioe.2019.00289
https://doi.org/10.1038/srep00779
https://doi.org/10.1152/physrev.00010.2014
https://doi.org/10.1074/jbc.R111.257329
https://doi.org/10.1586/17512433.2015.1010516
https://doi.org/10.1371/journal.pone.0110054
https://doi.org/10.1371/journal.pone.0110054
https://doi.org/10.3390/biom11070971
https://doi.org/10.1016/j.clinbiochem.2017.04.016
https://doi.org/10.1001/jama.250.13.1757
https://doi.org/10.1001/jama.250.13.1757
https://doi.org/10.1006/bbrc.1998.8803
https://doi.org/10.1126/science.aap7714
https://doi.org/10.15171/jcvtr.2017.23
https://doi.org/10.1038/gt.2010.11
https://doi.org/10.1161/01.ATV.0000222924.62641.aa
https://doi.org/10.1161/01.ATV.0000222924.62641.aa
https://doi.org/10.1038/sj.bjp.0707585
https://doi.org/10.1161/CIRCRESAHA.108.192229
https://doi.org/10.1161/CIRCRESAHA.108.192229
https://doi.org/10.1371/journal.pone.0173385
https://doi.org/10.1042/CS20160185
https://doi.org/10.1042/CS20160185
https://doi.org/10.1016/S1995-7645(13)60093-0
https://doi.org/10.1291/hypres.30.85
https://doi.org/10.1248/bpb.33.1806
https://doi.org/10.1016/j.atherosclerosis.2012.01.047
https://doi.org/10.1016/j.atherosclerosis.2012.01.047
https://doi.org/10.1006/bbrc.2000.2265
https://doi.org/10.1007/978-90-481-8622-8_7
https://doi.org/10.1007/978-90-481-8622-8_7
https://doi.org/10.1038/nsmb767
https://proteopedia.org/wiki/index.php/Serum_Paraoxonase
https://proteopedia.org/wiki/index.php/Serum_Paraoxonase
https://doi.org/10.3390/molecules27206780
https://doi.org/10.1016/0891-5849(92)90181-F
https://doi.org/10.1136/bmj.f10
https://doi.org/10.1016/S1388-1981(01)00100-7
https://doi.org/10.1016/S1388-1981(01)00100-7
https://doi.org/10.5650/jos.ess14281
https://doi.org/10.1006/bbrc.2001.6150
https://doi.org/10.3389/fphar.2020.613780
https://doi.org/10.1161/ATVBAHA.108.179697
https://doi.org/10.1016/S0092-8674(01)00238-0
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-10-1065967 February 11, 2023 Time: 14:30 # 13

Durrington et al. 10.3389/fcvm.2023.1065967

acid lactone metabolite. Biochim Biophys Acta Mol Cell Biol Lipids. (2019) 1864:386–93.
doi: 10.1016/j.bbalip.2018.12.008

121. Berrougui H, Loued S, Khalil A. Purified human paraoxonase-1 interacts with
plasma membrane lipid rafts and mediates cholesterol efflux from macrophages. Free
Radic Biol Med. (2012) 52:1372–81. doi: 10.1016/j.freeradbiomed.2012.01.019

122. Christison J, Rye K, Stocker R. Exchange of oxidized cholesteryl linoleate between
LDL and HDL mediated by cholesteryl ester transfer protein. J Lipid Res. (1995)
36:2017–26. doi: 10.1016/S0022-2275(20)41119-8

123. Hine D, Mackness B, Mackness M. Cholesteryl-ester transfer protein enhances the
ability of high-density lipoprotein to inhibit low-density lipoprotein oxidation. IUBMB
Life. (2011) 63:772–4. doi: 10.1002/iub.508

124. Kim D, Burt A, Ranchalis J, Vuletic S, Vaisar T, Li W, et al. PLTP activity inversely
correlates with CAAD: effects of PON1 enzyme activity and genetic variants on PLTP
activity. J Lipid Res. (2015) 56:1351–62. doi: 10.1194/jlr.P058032

125. Myant N. The biology of cholesterol and related steroids. Oxford: Butterworth-
Heinemann (1981). doi: 10.1016/B978-0-433-22880-6.50009-6

126. Rosenblat M, Gaidukov L, Khersonsky O, Vaya J, Oren R, Tawfik D, et al. The
catalytic histidine dyad of high density lipoprotein-associated serum paraoxonase-1
(PON1) is essential for PON1-mediated inhibition of low density lipoprotein oxidation
and stimulation of macrophage cholesterol efflux. J Biol Chem. (2006) 281:7657–65.
doi: 10.1074/jbc.M512595200

127. Brites F, Verona J, Schreier L, Fruchart J, Castro G, Wikinski R. Paraoxonase 1 and
platelet-activating factor acetylhydrolase activities in patients with low hdl-cholesterol
levels with or without primary hypertriglyceridemia. Arch Med Res. (2004) 35:235–40.
doi: 10.1016/j.arcmed.2004.02.002

128. Inagaki M, Nakagawa-Toyama Y, Nishida M, Nakatani K, Nakaoka H, Kawase M,
et al. Effect of probucol on antioxidant properties of HDL in patients with heterozygous
familial hypercholesterolemia. J Atheroscler Thromb. (2012) 19:643–56. doi: 10.5551/jat.
12807

129. Itabe H, Obama T, Kato R. The dynamics of oxidized LDL during atherogenesis. J
Lipids. (2011) 2011:418313. doi: 10.1155/2011/418313

130. Roest M, Jansen A, Barendrecht A, Leus F, Kastelein J, Voorbij H. Variation at
the paraoxonase gene locus contributes to carotid arterial wall thickness in subjects
with familial hypercholesterolemia. Clin Biochem. (2005) 38:123–7. doi: 10.1016/j.
clinbiochem.2004.10.005

131. Roest M, Rodenburg J, Wiegman A, Kastelein J, Voorbij H. Paraoxonase genotype
and carotid intima-media thickness in children with familial hypercholesterolemia. Eur
J Cardiovasc Prev Rehabil. (2006) 13:464–6. doi: 10.1097/00149831-200606000-00025

132. Rosenblat M, Ward S, Volkova N, Hayek T, Aviram M. VLDL triglycerides inhibit
HDL-associated paraoxonase 1 (PON1) activity: in vitro and in vivo studies. Biofactors.
(2012) 38:292–9. doi: 10.1002/biof.1021

133. Rozek L, Hatsukami T, Richter R, Ranchalis J, Nakayama K, McKinstry L, et al. The
correlation of paraoxonase (PON1) activity with lipid and lipoprotein levels differs with
vascular disease status. J Lipid Res. (2005) 46:1888–95. doi: 10.1194/jlr.M400489-JLR200

134. van Himbergen T, van Tits L, Hectors M, de Graaf J, Roest M, Stalenhoef A.
Paraoxonase-1 and linoleic acid oxidation in familial hypercholesterolemia. Biochem
Biophys Res Commun. (2005) 333:787–93. doi: 10.1016/j.bbrc.2005.05.176

135. Abbott C, Mackness M, Kumar S, Olukoga A, Gordon C, Arrol S, et al.
Relationship between serum butyrylcholinesterase activity, hypertriglyceridaemia and
insulin sensitivity in diabetes mellitus. Clin Sci. (1993) 85:77–81. doi: 10.1042/cs0850077

136. Abbott C, Mackness M, Kumar S, Boulton A, Durrington P. Serum paraoxonase
activity, concentration, and phenotype distribution in diabetes mellitus and its
relationship to serum lipids and lipoproteins. Arterioscler Thromb Vasc Biol. (1995)
15:1812–8. doi: 10.1161/01.ATV.15.11.1812

137. Mackness B, Mackness M, Arrol S, Turkie W, Julier K, Abuasha B, et al.
Serum paraoxonase (PON1) 55 and 192 polymorphism and paraoxonase activity
and concentration in non-insulin dependent diabetes mellitus. Atherosclerosis. (1998)
139:341–9. doi: 10.1016/S0021-9150(98)00095-1

138. Mackness B, Durrington P, Abuashia B, Boulton A, Mackness M. Low paraoxonase
activity in type II diabetes mellitus complicated by retinopathy. Clin Sci. (2000) 98:355–
63. doi: 10.1042/cs0980355

139. Mackness B, Durrington P, Boulton A, Hine D, Mackness M. Serum paraoxonase
activity in patients with type 1 diabetes compared to healthy controls. Eur J Clin Invest.
(2002) 32:259–64. doi: 10.1046/j.1365-2362.2002.00977.x

140. Wu D, Wu C, Zhong Y. The association between paraoxonase 1 activity
and the susceptibilities of diabetes mellitus, diabetic macroangiopathy and diabetic
microangiopathy. J Cell Mol Med. (2018) 22:4283–91. doi: 10.1111/jcmm.13711

141. Srikanthan K, Feyh A, Visweshwar H, Shapiro J, Sodhi K. Systematic review of
metabolic syndrome biomarkers: a panel for early detection, management, and risk
stratification in the west virginian population. Int J Med Sci. (2016) 13:25–38. doi:
10.7150/ijms.13800

142. Hashemi M, Mousavi E, Arab-Bafrani Z, Nezhadebrahimi A, Marjani A. The most
effective polymorphisms of paraoxonase-1 gene on enzyme activity and concentration of
paraoxonase-1 protein in type 2 diabetes mellitus patients and non-diabetic individuals:
a systematic review and meta-analysis. Diabetes Res Clin Pract. (2019) 152:135–45. doi:
10.1016/j.diabres.2019.05.007

143. Koren-Gluzer M, Aviram M, Meilin E, Hayek T. The antioxidant HDL-associated
paraoxonase-1 (PON1) attenuates diabetes development and stimulates β-cell insulin
release. Atherosclerosis. (2011) 219:510–8. doi: 10.1016/j.atherosclerosis.2011.07.119

144. Shokri Y, Variji A, Nosrati M, Khonakdar-Tarsi A, Kianmehr A, Kashi Z, et al.
Importance of paraoxonase 1 (PON1) as an antioxidant and antiatherogenic enzyme
in the cardiovascular complications of type 2 diabetes: genotypic and phenotypic
evaluation. Diabetes Res Clin Pract. (2020) 161:108067. doi: 10.1016/j.diabres.2020.
108067

145. Vaisar T, Kanter J, Wimberger J, Irwin A, Gauthier J, Wolfson E, et al. High
concentration of medium-sized HDL particles and enrichment in HDL paraoxonase 1
associate with protection from vascular complications in people with long-standing type
1 diabetes. Diabetes Care. (2020) 43:178–86. doi: 10.2337/dc19-0772

146. Barter P, Nicholls S, Rye K, Anantharamaiah G, Navab M, Fogelman A.
Antiinflammatory properties of HDL. Circ Res. (2004) 95:764–72. doi: 10.1161/01.RES.
0000146094.59640.13

147. Ribas V, Sánchez-Quesada J, Antón R, Camacho M, Julve J, Escolà-Gil J, et al.
Human apolipoprotein A-II enrichment displaces paraoxonase from HDL and impairs
its antioxidant properties: a new mechanism linking HDL protein composition and
antiatherogenic potential. Circ Res. (2004) 95:789–97. doi: 10.1161/01.RES.0000146031.
94850.5f

148. Kotani K, Yamada T, Gugliucci A. Paired measurements of paraoxonase 1 and
serum amyloid A as useful disease markers. Biomed Res Int. (2013) 2013:481437. doi:
10.1155/2013/481437

149. Yang N, Qin Q. Apolipoprotein J: a new predictor and therapeutic target in
cardiovascular disease? Chin Med J. (2015) 128:2530–4. doi: 10.4103/0366-6999.164983

150. Han C, Chiba T, Campbell J, Fausto N, Chaisson M, Orasanu G, et al.
Reciprocal and coordinate regulation of serum amyloid A versus apolipoprotein A-I and
paraoxonase-1 by inflammation in murine hepatocytes. Arterioscler Thromb Vasc Biol.
(2006) 26:1806–13. doi: 10.1161/01.ATV.0000227472.70734.ad

151. Castellani L, Chang J, Wang X, Lusis A, Reynolds W. Transgenic mice express
human MPO –463G/A alleles at atherosclerotic lesions, developing hyperlipidemia and
obesity in –463G males. J Lipid Res. (2006) 47:1366–77. doi: 10.1194/jlr.M600005-JLR200

152. Liu C, Desikan R, Ying Z, Gushchina L, Kampfrath T, Deiuliis J, et al. Effects of
a novel pharmacologic inhibitor of myeloperoxidase in a mouse atherosclerosis model.
PLoS One. (2012) 7:e50767. doi: 10.1371/journal.pone.0050767

153. Huang Y, Wu Z, Riwanto M, Gao S, Levison B, Gu X, et al. Myeloperoxidase,
paraoxonase-1, and HDL form a functional ternary complex. J Clin Invest. (2013)
123:3815–28. doi: 10.1172/JCI67478

154. Khine H, Teiber J, Haley R, Khera A, Ayers C, Rohatgi A. Association
of the serum myeloperoxidase/high-density lipoprotein particle ratio and incident
cardiovascular events in a multi-ethnic population: observations from the dallas heart
study. Atherosclerosis. (2017) 263:156–62. doi: 10.1016/j.atherosclerosis.2017.06.007

155. Bacchetti T, Ferretti G, Carbone F, Ministrini S, Montecucco F,
Jamialahmadi T, et al. Dysfunctional high-density lipoprotein: the role of
myeloperoxidase and paraoxonase-1. Curr Med Chem. (2021) 28:2842–50.
doi: 10.2174/0929867327999200716112353

156. Scavone D, Sgorbini M, Borges A, Oliveira-Filho J, Vitale V, Paltrinieri S. Serial
measurements of Paraoxonase-1 (PON-1) activity in horses with experimentally induced
endotoxemia. BMC Vet Res. (2020) 16:422. doi: 10.1186/s12917-020-02629-4
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