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Editorial on the Research Topic 


The application of artificial intelligence in diagnosis, treatment and prognosis in urologic oncology


Artificial intelligence (AI) is reshaping and improving traditional decision-making patterns. Although the further integration of AI into clinical practice will take time, research in this field has been producing promising results. AI has the capability to aid in several aspects of disease management. In the specialty of oncology, for example, AI can assist in disease diagnosis, classification, treatment optimization, therapeutic response evaluation, prognosis prediction, and follow-up scheduling. The greatest strength of AI is its capability to extract and interpret information from a large amount of medical data, which is included in images, pathological films, and the electronic reporting system. AI can process and analyze clinical data, but the technology cannot be fully utilized by clinicians in an advanced, efficient, and intelligent manner in order to aid in clinical decision-making.

This edition of Frontiers in Oncology seeks to assist physicians in completely comprehending and accepting AI’s critical role and great potential in solving actual clinical problems, as well as to accelerate the clinical translation of relevant scientific findings. This issue consists of 10 manuscripts (including 8 original papers and 2 reviews) on the application of AI to urologic oncology and benign disease. Liu et al. develop a diagnostic tool utilizing deep learning systems (DLSs) to detect malignant cells in urine cytopathological images and then predict the histopathological results. The DLSs model achieves good predictive performance in both the internal set and extra set with an area under the curve (AUC) of 0.90 and 0.93, respectively. The model is expected to enhance the efficacy of urine biopsies and aid in the early detection and risk classification of patients with UC. The prediction model based on a large sample database can estimate the prognosis of patients more precisely and aid in the establishment of individualized treatment plans and follow-up care. Zhang et al. created a nomogram based on the SEER database to predict cancer-specific survival (CSS) and overall survival (OS) among the elderly PCa group. This model offers precise predictions for CSS and OS in both the training and validation sets. Deng et al. develop five different machine learning (ML) models to predict the presence of prostate cancer (PCa) in patients with PSA ≤ 20 ng/mL. The random forest (RF) model performs the best among five models, with an AUC of 0.871 in the training cohort and 0.78 in the validation cohort. The research conducted by Chen et al. also focuses on the PCa prediction. Based on traditional clinical variables, five different ML models are developed and compared in terms of their predictive performance. In the test dataset, the multivariate univariate logistic regression (LR) model exhibited the best discrimination (AUC=0.918). The predictive model built by Zhang and Chen can be utilized for preliminary screening of individuals with suspected PCa, potentially reducing the number of unnecessary biopsies and missed PCa diagnoses.

Radiomics is the integration of AI with image data. The extraction and interpretation of image data expands the clinician’s insight beyond the visible conventional information like lesion size, location, and shape. The acquisition of the region of interest (ROI) is a crucial step in the radiomics workflow. Manually drawing ROI is the most common method, but it is laborious and time-consuming. Chen et al. present a radiomics model based on auto-segmentation of ultrasound images to detect diabetic kidney disease (DKD) patients in three centers. DeepLabV3+ network, a DL-based anatomical-level segmentation system, demonstrates a good segmentation ability with mean pixel accuracy in the three centers of 0.890 ± 0.004, 0.870 ± 0.002 and 0.893 ± 0.007, respectively. The radiomics model delivers a fair ability for DKD recognition (AUC: 0.674 ± 0.074) and a good discriminative capability for DKD stage (AUC: 0.803 ± 0.037). Zhu et al. establish a cascaded DL model to automatically segment the whole prostate gland, the anatomic zones, and the csPCa region step by step based on biparametric MRI. The model employing cascaded convolutional neural networks (CNNs) could automatically detect and segment the suspicious csPCa lesions with excellent performance (sensitivity=95.6%, specificity=91.5%, accuracy= 92%) on MR images without any human intervention.

Ultrasound is another important imaging method for PCa diagnosis. Wang et al. propose a ML model based on 14 features extracted from transrectal ultrasound video clips of the whole prostate gland. The support vector machine (SVM) and random forest (RF) algorithms were used to establish radiomics models based on those features. The SVM model exceeds radiologist’s diagnostic ability based on MRI. Imaging provides information regarding the heterogeneity and microenvironment of a tumor. Yang et al. develop and externally validate a Transformer-based DL algorithm with CT images to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma (ccRCC). TransResNet, a framework network integrating CNNs, self-attention mechanisms and nonlinear classifier, outperforms conventional DL algorithms for ccRCC grade prediction with an AUC of 91.2%. This work presents a non-invasive approach for predicting the pathological grade of ccRCC, hence avoiding the complications associated with puncture biopsy.

Zhang et al. investigated the diagnostic performance of CT-radiomics in adrenal mass using a systematic review and meta-analysis. The quantitative analysis of nine studies shows that CT-based radiomics may help identify malignant adrenal tumors from benign ones with pooled sensitivity, specificity, and AUC of 0.80, 0.83, and 0.88, respectively. A mini-review by Huang et al. contains 12 articles concerning the use of radiomics in the prediction of muscle-invasive bladder cancer (BC). Radiomics utilizing CT or MRI images has the potential to detect muscle invasion.

The powerful combination of AI and medical data has yielded significant achievements in the last twenty years. Some achievements have been clinically transformed and accepted by clinicians. Studies with prospective design is required to expedite the clinical translation of AI-related findings. AI researchers should not only concentrate on the optimization of algorithms and the performance of models but also explore when and how to actualize the clinical utility of AI’s achievements.
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Background

Although deep learning systems (DLSs) have been developed to diagnose urine cytology, more evidence is required to prove if such systems can predict histopathology results as well.



Methods

We retrospectively retrieved urine cytology slides and matched histological results. High-power field panel images were annotated by a certified urological pathologist. A deep learning system was designed with a ResNet101 Faster R-CNN (faster region-based convolutional neural network). It was firstly built to spot cancer cells. Then, it was directly used to predict the likelihood of the presence of tissue malignancy.



Results

We retrieved 441 positive cases and 395 negative cases. The development involved 387 positive cases, accounting for 2,668 labeled cells, to train the DLS to spot cancer cells. The DLS was then used to predict corresponding histopathology results. In an internal test set of 85 cases, the area under the curve (AUC) was 0.90 (95%CI 0.84–0.96), and the kappa score was 0.68 (95%CI 0.52–0.84), indicating substantial agreement. The F1 score was 0.56, sensitivity was 71% (95%CI 52%–85%), and specificity was 94% (95%CI 84%–98%). In an extra test set of 333 cases, the DLS achieved 0.25 false-positive cells per image. The AUC was 0.93 (95%CI 0.90–0.95), and the kappa score was 0.58 (95%CI 0.46–0.70) indicating moderate agreement. The F1 score was 0.66, sensitivity was 67% (95%CI 54%–78%), and specificity was 92% (95%CI 88%–95%).



Conclusions

The deep learning system could predict if there was malignancy using cytocentrifuged urine cytology images. The process was explainable since the prediction of malignancy was directly based on the abnormal cells selected by the model and can be verified by examining those candidate abnormal cells in each image. Thus, this DLS was not just a tool for pathologists in cytology diagnosis. It simultaneously provided novel histopathologic insights for urologists.
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Introduction

Urothelial carcinoma (UC) is one of the most common cancers worldwide (1). UCs are often multifocal and tend to recur. Thus, thorough screening and frequent surveillance are mandatory. The diagnosis of UC typically relies on the histopathological assessment of tissue resected by cystoscopy, yet it is an invasive approach and not easily accessible.

Urine cytology has played an important role in the screening and surveillance of UCs for many years for its effective, inexpensive, noninvasive nature (2–4). However, in the context of urine cytology, there is currently no gold standard for cyto-histo correlation in urine (5).

One possible solution could be to use the deep learning systems (DLSs) to build such links. DLSs have demonstrated a capacity superior to manual workflows in shifting through massive images to retrieve similar patterns and establish associations with novel traits in many medical data analysis tasks (6–8). Three studies have successfully automated the urine cytology diagnosis through the use of DLSs (9–11). One of these previous studies has further proven that DLSs might be able to determine the malignant potential of tumors more accurately than classical cytology (11). Researchers used a 16-layer convolutional neural network (CNN). Weights trained for initial UC cell detection were reused for the first 7 layers. New training with histopathological data started at the eighth layer. The DLS determined the presence of stromal invasion and performed a nuclear grading of tumor cells in the corresponding histological specimens. Therefore, DLSs have become a method that could potentially link cytopathology findings with histopathology results.

In this study, we hypothesized that routine urine cytology images contain information about the presence of malignant tissue in urinary tracts. The rationale for this cyto-histo correlation is that malignant tissues in urinary tracts undergo constant exfoliation, which sheds tumor cells and influences tumor cell morphology in urine. Building on those previous studies, we systematically investigated the presence of such correlation and aimed to capture it through our DLS. We trained and tested the DLS to spot UC cells in cytology images before using it to predict if a case would get malignant surgical pathology within the next 1 year. The results demonstrated that the DLS could predict the presence of malignancy and display such associations between cytopathology and histopathology through likelihood even without further training with histopathology data. Thus, DLS cytology can be used as not only a pathological tool to assist cytopathological diagnosis but also a novel risk-stratification tool to predict histopathology. This could help urologists make therapeutic decisions.



Materials and Methods


Data Acquisition

All images were obtained from the archival glass of hematoxylin and eosin-stained urine cytocentrifugation cytology from consecutive patients who underwent examination, surgery, or both at Peking University First Hospital from 2014 to 2020 (Figure 1, Table 1). Urine cytology was routinely diagnosed using Papanicolaou’s classification at our institute (12). Classes III, IV, and V were defined as positive; class I and II (atypical) were defined as negative.




Figure 1 | The data acquisition process is illustrated here. We collected the cytology images retrospectively and consecutively from Sep 2014 to Jan 2020 and built a series of data sets for training, validation, and tests. For those who underwent surgeries within the next 1 year, surgical results were also followed. The preliminary test set was only used for cancer cell detection, while the internal and extra test sets were used for both cancer cell detection and malignancy prediction.




Table 1 | Baseline characteristics.



Among the 441 positive cases (patients diagnosed with UC based on cytologic examination), 211 received surgery (surgery within the next 1 year, if not otherwise clarified), all of which were diagnosed with UC based on histological examination (Table 2).


Table 2 | Surgical follow-up.



Among the 395 negative cases (patients diagnosed with benign diseases based on cytologic examination), all received surgery, of which 333 were diagnosed with UC based on histological examination and the rest 62 were diagnosed with benign disease based on histological examination (Table 2). For the above 333 cases with contradicted cytopathological and histopathological results, a blinded pathologist’s review was carried out to check for overlooked cancer cells. As a result, 63 cases actually had cancer cells in their cytology images confirmed by a pathologist and should be deemed as positive cases.

From the original slides, 1,280 × 960-pixel, Joint Photographic Experts Group (jpeg) format images were exported: 466 images from positive cases and 417 images from negative cases. Subsequently, the training–validation set and preliminary test set, internal test set, and extra test set were defined by the different cytopathological and histopathological diagnoses. The training–validation set and preliminary test set were allocated by 8:1 stochastically. This study was approved by the institutional review board of Peking University First Hospital.



Deep Learning System

We built our DLS on a ResNet101 Faster-RCNN (Figure 2). ResNet101 is a 101-layer Reidual Network proposed on the 2016 IEEE Conference on Computer Vision and Pattern Recognition by He et al. (13). Deeper and restructured, ResNet101 has shown a high performance in many contexts of use including skin lesion detection and brain disease detection in magnetic resonance images (14, 15).




Figure 2 | The overall design of the deep learning system. The ResNet 101 Faster-RCNN detected the UC cells while assigning a possibility to each of the cell, and an additional classifier picked the maximal possibility and predicted the histopathological malignant state according to the set threshold.



Faster-RCNN, short for faster region-based convolutional neural network, is a CNN that combines object detection and classification into one network (16). It extracts features, makes detections through these features, and quantifies the degree of fit at each detection using a value of possibility ranging from the worst of 0 to the optimum of 100. Evidence has shown that Faster-RCNN is especially good at detecting objects at multiple scales and aspect ratios, such as abnormal cervical cells in cytology images and cancer regions in colorectal biopsies (17, 18).

The model was implemented in Python 3.8 using TensorFlow (1.12.0) and Keras (2.0.3). Malignant cells with remarkable atypia in the jpeg images were annotated by a certified urological pathologist using the open-source software LabelMe (19). The images were then divided into 175 × 200-pixel panel subimages automatically, which were used for the training of the DLS.

ResNet101 was pretrained on the ImageNet database consisting of 1.2 million training images, with 1,000 classes of objects (20). The weight pretrained with ImageNet was used to initiate the weights of all convolutional layers, and all weights were trained with cytology images afterwards. The images passed through 33 convolution blocks and then through 1 dense layer. The SoftMax function was used as the activation function.

The training set and validation set were further allocated by 5:1 stochastically, for early stopping during network training to suppress overfitting. Spatial augmentation, including 90° rotation and vertical and horizontal flip, was applied in network training. We set 80 as the maximum epoch and stopped training if validation loss did not improve after 15 epochs.

For the prediction of malignancy, an additional classifier was added at the end of the initial DLS. The function of the classifier was to select the highest value of the possibilities in an image and to make a binary classification (benign or malignant) by comparing this value to the threshold (Figure 2). More details were provided in the Supporting Materials (Supporting File 1).



Evaluation Metrics

Performance was evaluated based on the testing results.

For the detection of UC cells, the annotations served as the reference standard. We used sensitivity, accuracy, and average false-positive cells per image. Sensitivities and accuracies were calculated using following formulas:

	

For the prediction of the malignancy, the surgical results served as the reference standard. We used sensitivity, specificity, the F1 score, and kappa score for evaluation. Cohen kappa scores reflect the agreement of the DLS with the pathologist reference standard (21). F1 scores were calculated using the following formula:

	




Results


Development of the Deep Learning System

The first step of our model is to detect just cancer cells. Therefore, we only annotated the cancer cells in the jpeg images for training and validation purposes, and treated all the other cells in the same image as background (Supporting File1). In total, 1,364 cells from 411 1,280 × 960-pixel images were labelled. A total of 1953 subimages were obtained. Each subimage contained at least one label in it. Sub-images were subsequently randomly allocated into the training and validation sets by the ratio of 5:1, and subjected to the pretrained DLS, as mentioned in Materials and Methods. Both the total loss and the system accuracy stabilized after 45–50 epochs for the validation set. A final model was chosen at 48 epochs when the total loss for the validation set hit the lowest point of 1.6. It was also where the classification accuracy for the validation set hit the highest point of 0.77.



Deep Learning System Performance to Detect Cancer Cells

We evaluated the ability of the DLS to detect cancer cells in the three test sets (Figure 3). We took advantage of the value of possibility generated by the DLS and adopted it as the threshold for cell detection.




Figure 3 | The examples of snapshot images from positive cases and the results by the deep learning system were provided. The malignant cells detected were labeled by the Faster-RCNN, and the possibilities of each detection were also shown.



For all sets, sensitivities increased at the cost of more cells mistakenly spotted as malignant by the DLS (Figure 4A). The accuracy initially increased with the thresholds for cell detection, and the rate of increase slowed down by approximately 50–55 (Figure 4B). Such a trend was observed in both preliminary and internal tests. Therefore, we chose 55 as the optimal threshold. Under this threshold, the sensitivity is 41% for the preliminary test at the cost of an average of 3.09 false-positive cells per image, 36% for the internal test at the cost of an average of 0.72 false-positive cells per image, and 41% for the extra test at the cost of an average of 0.31 false-positives cell per image (Figure 4A). The accuracy of cancer cell detection was 50.0, 50.3, and 14.5 for the preliminary test, internal test, and extra test, respectively (Figure 4B).




Figure 4 | The DLS performance to detect malignant cells is illustrated. (A) As the system tried to find more malignant cells (to achieve higher sensitivity), it made more mistakes classifying benign cells as malignant. The sensitivities at the optimal threshold for three sets were marked. (B) The accuracy at different thresholds. Thresholds were represented by their middle value (for example, x = 52.5 represented the interval of 50–55 points). Higher thresholds tend to have better detection accuracy. The performance at the optimal threshold of 50–55 points is highlighted by the dashed line. At this point, the increasing rates began to slow down.



For the subgroups of the extra test set, results are also calculated under the optimal threshold of 55: for the positive 64 images, sensitivity is 41% with an average of 0.95 false-positive cells per image; for the 281 negative images, the average false-positive cell per image is 0.16 while the sensitivity is not available due to no true positive (cancer cell).



Deep Learning System Performance to Predict Malignancy

We evaluated whether the exact same DLS can predict malignancy with no further transfer learning. Because the gold standard of malignancy is histopathology, we paired cytology with its corresponding surgical pathology. A total of 97 1,280 × 960-pixel images in the internal test set and 345 1,280 × 960-pixel images in the extra test set that could be paired with corresponding histopathological specimens were used. Here, we proposed a hypothesis that a case with positive cytology was more likely to have malignant surgical pathology. Therefore, the maximal value of possibility (the threshold for cell detection) in each image was adopted as the threshold for malignancy prediction.

Notably, the DLS was able to predict malignancy through cytology images. For the internal test, the AUC was 0.90 (95%CI 0.84–0.96) (Figure 5A). The highest kappa score is 0.71 at the threshold of 57 for malignancy prediction, and the highest F1 score is 0.78 at the threshold of 58 (Table 3). For the extra test, the AUC was 0.93 (95%CI 0.90–0.95) (Figure 5A). The highest kappa score is 0.60 at the threshold of 52 for malignancy prediction, and the highest F1 score is 0.69 at the threshold of 52 (Table 4).




Figure 5 | The DLS performance to predict malignancy is illustrated. (A) The receiver operating characteristics curve for the performance to predict malignancy for the internal and extra tests. (B) The distribution of maximal possibilities in the internal test set. Most images from benign histology were scored below 55. (C) The distribution of maximal possibilities in the extra test set. Most images from negative cases were also scored below 55 (highlighted by the dashed line).




Table 3 | Performance on the internal test set.




Table 4 | Performance on the extra test set.



Under the optimal threshold (threshold=55), the DLS also achieved good performance. For the internal test, 4 images that scored higher than 55 have benign histologic results (Figure 5B). Thus, sensitivity is 71% (95%CI 52%–85%); specificity is 94% (95%CI 84%–98%); the F1 score is 0.76; and there was a substantial agreement with the reference standard (kappa = 0.68 [95%CI 0.52–0.84]). For the extra test, 22 images that scored higher than 55 have benign histologic results (Figure 5C). Thus, sensitivity is 67% (95%CI 54%–78%); specificity is 92% (95%CI 88%–95%); the F1 score is 0.66; and there was a moderate agreement with the reference standard (kappa = 0.58 [95%CI 0.46–0.70]).




Discussion

In this study, we developed a DLS to predict the likelihood of the presence of tissue malignancy through urine cytopathology. Notably, the system achieved an AUC of 0.90 for the internal test and of 0.93 for the extra test. Under the optimal threshold, sensitivity is 71%, and specificity is 94% for the internal test; sensitivity is 67%, and specificity is 92% for the extra test. These results proved that the DLS was able to predict the presence of malignant tissue merely from urine cytology images.

It has been fully demonstrated that deep learning models can be used to establish a cytology diagnosis system. Vaickus et al. were the first to show that the analysis of urine cytology specimens could be reliably automated. They achieved an accuracy of more than 90% using a hybrid deep-learning and morphometric algorithm (9). Pantanowitz et al. further proved this idea using a much larger data set. They used a pure neural network to exploit and integrate both slide-level and cell-level features and achieved a sensitivity of 79.5% and a specificity of 84.5% for cytopathological diagnosis (10). For both studies, features were carefully engineered to ensure biological interpretability and reproducibility. Features such as the nuclear-cytoplasm ratio, chromatin quality, and the quantity of cells were included (Figure 6). Such a design made the system explainable and enables it to fulfill the aim to assist pathologists in cytology reading.




Figure 6 | Different designs in between different DLSs. The current DLS could make both cytopathological diagnosis and histopathological prediction, yet it did not need histopathological data in its training.



Although the principal indications for the use of cytology include the diagnosis, follow-up, and monitoring of patients with urothelial tumors, the gold standard for the diagnosis of tumor is still histopathology. Therefore, the cyto-histo correlation has become the bottleneck for the use of cytology in clinical settings. Previous studies have shown that deep learning techniques could discern subtle differences in image features that are not readily noticeable to pathologists between tissues from patients with different genetic subtypes, cancer grades, and survival (6–8). Thus, it was reasonable to wonder if deep learning could also distinguish differences in cytology images with different histopathological results.

Fujita et al. were the first to observe that the DLS could not only accurately detect UC cells but also distinguish characteristics traditionally determined using histopathology. They probed two specific characters: whether the lesions were invasive and whether the lesions were high grade. For both, the DLS achieved an AUC higher than 0.86 and F1 score higher than 0.82 (11). The study used a mixing-training model with the first half trained with cytopathological data and the other half trained with histopathological data (Figure 6). The results proved that at least part of the features could be shared for cytopathology diagnosis and histopathology prediction. This laid the foundation for a complete cyto-histo correlation.

For the purpose of proving this correlation more stringently, we improved the design of this study on the basis of previous ones. First, we trained the system with only positive cytology images instead of adding negative images as in previous studies. Therefore, this design could insure all the features used by the DLS derived from malignant cases. Second, during malignancy prediction, we did not train the initial DLS again. Instead, we added an additional classifier at the end of the initial DLS. This design rendered two models that shared a same set of convolutional network and detector and, thus, a same set of features. The additional classifier was designed based on the biological meaning of the degree of fit calculated by the DLS. During cancer cell detection, the degree of fit was the likelihood of a cell to be a cancer cell. Therefore, the maximal degree of fit in a certain image represented the likelihood of a case to get malignancy. There were no manually designed features in the DLS. Therefore, the process was explainable since the prediction of malignancy was directly based on the abnormal cells selected by the model and can be verified by examining those candidate abnormal cells in each image. Thus, the design made the DLS not only possible to testify the hypothesis better but also explainable in a unique way.

The test sets in this study included preliminary, internal, and extra test sets. The extra test set came from patients whose cytology was initially diagnosed as negative but later proved to have malignant histopathological results. Overlooked cancer cells in these images were carefully revised in the blinded review at the beginning of this study. Results showed that the extra test set had higher AUC than the internal test set during malignancy prediction. This indicated that the DLS had a good performance for the extra test despite the fact that these cases were among the most difficult to diagnose by traditional cytology. However, the sensitivity and specificity for the extra test under the optimal threshold were lower than that for the internal test. Moreover, during cancer cell detection, the accuracy for the extra test was also lower than that for the preliminary and the internal tests under the optimal threshold, and the accuracy for the extra test was still increasing after the threshold reached the optimal threshold. This indicated that the current optimal threshold using in this study, which was chosen based on the preliminary and internal tests, might not serve as the optimal threshold for the extra test. Future studies are needed for a better strategy to find the optimal threshold for DLS application. At the same time, it is also important to understand that pathologists are not able to spot every true cancer cell since no cytopathological scoring system used for cytology diagnosis at present is perfect. A DLS learnt from pathologists’ annotations inevitably inherited these bias and errors. Therefore, as pathologists had failed to perform excellent in the extra test set themselves, the DLS would only detect cancer cells with additional difficulties.

The results of the DLS performance to predict malignancy showed a relatively high specificity. The sensitivity, however, was not as good as the specificity. This indicated that most cases predicted to have tissue malignancy were indeed patients with UC, while some patients with UC were not successfully identified. This may be attributed to the fact that the DLS still needs further improvement or that some UCs do not present morphologically abnormal cells in urine. Meanwhile, it was not necessary to spot every cancer cell to make a prediction. Instead, it was adequate to find most of the cancer cells while mistaking as few normal cells as possible. These successfully spotted cancer cells were likely to be among the most atypical and, thus, gave the highest scores in an image. Biologically, it was also the patients whose cells in cytology had a higher degree of atypia who were more likely to get UC. Future studies are needed to identify UC in those patients without abnormal cells in urine.

There is currently no gold standard for cyto-histo correlation in urine. Many argue that a negative cytology with a concurrent positive surgical result is not a false negative. Similarly, a positive urine followed by a negative surgical result is not a false positive. However, results in this current study imply that when the DLS predicts a malignant state, it might focus on characteristics that are partially same with those used for UC cell detection. This indicates that there are features on cytology images correlated to histopathology results. Nevertheless, due to the lack of technical maneuver to untangle representative features in Faster-RCNN, we are not able to define each feature and apply them in classical cytology. This is one of the limitations of this study. Another limitation is that this is a retrospective study in a single center. Multicentered prospective studies are warranted to further prove these findings.

Collectively, the current results demonstrated that DLS cytology could be used to predict the likelihood of a case to have histological confirmed malignancy through a cyto-histo correlation. If a DLS can serve as a risk-stratification tool to distinguish clinically relevant malignancy at the time of cytology, urologists can plan in time therapeutic strategies at lower cost that benefit more patients.
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Objective

Prostate cancer (PC) is the most common non-cutaneous malignancy in men worldwide. Accurate predicting the survival of elderly PC patients can help reduce mortality in patients. We aimed to construct nomograms to predict cancer-specific survival (CSS) and overall survival (OS) in elderly PC patients.



Methods

Information on PC patients aged 65 years and older was downloaded from the Surveillance, Epidemiology, and End Results (SEER) database. Univariate and multivariate Cox regression models were used to determine independent risk factors for PC patients. Nomograms were developed to predict the CSS and OS of elderly PC patients based on a multivariate Cox regression model. The accuracy and discrimination of the prediction model were tested by the consistency index (C-index), the area under the subject operating characteristic curve (AUC), and the calibration curve. Decision curve analysis (DCA) was used to test the clinical value of the nomograms compared with the TNM staging system and D’Amico risk stratification system.



Results

135183 elderly PC patients in 2010-2018 were included. All patients were randomly assigned to the training set (N=94764) and the validation set (N=40419). Univariate and multivariate Cox regression model analysis revealed that age, race, marriage, histological grade, TNM stage, surgery, chemotherapy, radiotherapy, biopsy Gleason score (GS), and prostate-specific antigen (PSA) were independent risk factors for predicting CSS and OS in elderly patients with PC. The C-index of the training set and the validation set for predicting CSS was 0.883(95%CI:0.877-0.889) and 0.887(95%CI:0.877-0.897), respectively. The C-index of the training set and the validation set for predicting OS was 0.77(95%CI:0.766-0.774)and 0.767(95%CI:0.759-0.775), respectively. It showed that the proposed model has excellent discriminative ability. The AUC and the calibration curves also showed good accuracy and discriminability. The DCA showed that the nomograms for CSS and OS have good clinical potential value.



Conclusions

We developed new nomograms to predict CSS and OS in elderly PC patients. The models have been internally validated with good accuracy and reliability and can help doctors and patients to make better clinical decisions.





Keywords: nomogram, old age, prostate cancer, CSS, SEER



Background

Prostate cancer (PC) is the most common non-dermatological tumor in men worldwide. In 2022, the number of new prostate cancer patients in the United States will reach 268,490 (1). Most prostate cancer can be diagnosed early due to the popularity of prostate-specific antigen (PSA) screening and biopsy testing techniques. The treatment of prostate cancer mainly includes radical prostatectomy, androgen deprivation therapy (ADT), radiotherapy, and chemotherapy, which dramatically improves prostate cancer patients’ survival rate. At the same time, the total number of prostate cancer patients is also increasing. As of 2020, there were 3.65 million confirmed PC patients diagnosed in the United States, and the number is expected to increase to 5.02 million by 2030 (2). It should be noted that mortality rates among prostate cancer patients also rank second among cancer deaths worldwide due to their high morbidity. Although most patients with PC have a good prognosis, some patients still have a recurrence and distant metastasis, making significant differences in the prognosis of PC. In 2022,34,500 people are expected to die from PC in the United States or about 11% of male cancer deaths (1).

Previously, the US Joint Commission on Cancer (AJCC) tumor-lymph node-metastatic (TNM) cancer staging system was used for the effective management of a variety of cancers (3). However, a growing number of studies have shown that the TNM stage alone does not accurately predict patient outcomes because of multiple factors clinically associated with PC prognosis (4–6), especially the Gleason score(GS) and prostate-specific antigen (PSA). GS is the most powerful tool for predicting outcomes of PC (7), developed by Donald Gleason Joint Urology Research Group between 1966 and 1974 (8) and revised in 2005 and 2014 (9, 10). PSA is mainly used for the screening of PC, causing a significant increase in the detection rate of PC. It is well known that PSA level is an essential factor in determining the aggressiveness of prostate cancer (11), and some studies show that PSA level is considered an essential prognostic factor in PC, with a linear relationship between PSA and PC prognosis (12, 13). However, some studies have shown that PSA screening does not reduce all-cause mortality in patients with PC (14, 15). Although the combination of PSA, histological grade, and TNM staging system can establish prognostic models, refining the stratification system can improve the discriminatory ability of prognostic models (16, 17). However, this model still cannot evaluate the impact of critical clinical variables, including age, marriage, race, and treatment mode, on the prognosis of PC patients.

A nomogram is a digital graphical tool that can predict the occurrence probability of a given event based on the data of known variables. It is considered superior to the conventional TNM staging system (18, 19). It has been widely used to predict the prognosis of multiple cancers, including glioma, bladder cancer, renal carcinoma, mammary cancer, and Colon cancer (20–24). There are also some nomograms for PC, but primarily for distant metastatic PC, PC with particular bone metastases, or patients with nonmetastatic PC. There are also nomograms designed specifically for PC patients with GS 3 + 4 and 4 + 3 scores (25–28).Elderly patients are a group with high incidence and mortality from PC, with a median age at diagnosis of 66 years (29). Moreover, with the aging population, the base of the elderly is also expanding, and the cancer health management of the elderly has become a major problem that cannot be ignored (30). More than 60 percent of PC patients are over the age of 65, and more than 90 percent of PC deaths occur in this age group (6), but there is no nomogram for PC patients more than 65 years old. Consider that elderly PC patients lead to many non-cancer-specific deaths due to comorbidities, affecting overall survival (OS). Therefore, our study aims to identify independent prognostic factors for elderly PC patients using the Surveillance, Epidemiological, and End Results (SEER) database and develop and validate nomograms for specific survival (CSS) and OS in elderly PC patients, as well as to provide a reference basis for the clinical diagnosis and treatment work.



Patients and Methods


Data Source and Data Extraction

We downloaded patient data from the SEER database, including patients aged 65 years and older diagnosed with PC between 2010 and 2018. The SEER database is a national cancer database containing 18 cancer registries covering approximately 30% of the population. Since the patient information in the SEER database is anonymized and the data is publicly available, ethical approval and patient informed consent were not required for our study. The research methodology used in this study follows the research guidelines published in the SEER database.

We collected clinicopathological information for all elderly PC patients, including age, race, year of diagnosis, marital status, histological tumor grade, TNM stage, surgery, radiotherapy, chemotherapy, PSA, and biopsy GS. Patient follow-up results, including survival status, cause of death, and survival time, are also available from the SEER database. Inclusion criteria: (1) patients age≥ 65;(2) with a pathological diagnosis of PC. Exclusion criteria: (1) patients younger than 65 years old; (2) tumor grade is unknown; (3) TNM stage is unknown; (4) surgical method is unknown; (5) PSA is not clear; (6) survival time is less than one month or survival time is unknown. The flowchart of patient inclusion and exclusion is shown in Figure 1.




Figure 1 | Flowchart for inclusion and exclusion of elderly patients with PC.



Patients were classified as white, Black, and other types (American Indian/AK Native, Asian/Pacific Islander). The histological classification of tumors includes high differentiation (grade I), moderate differentiation (grade II), low differentiation (grade III), and undifferentiated (grade IV). According to the SEER surgical code, the surgical methods are divided into non-surgical surgery (surgical code 0), local tumor resection (surgical code 10-30), and radical prostatectomy (surgical code 50-80).



Development and Validation of the Nomograms

We first randomly divided the patients into two groups for the development and internal validation of the nomogram. All data were randomly divided into the training set (70%) and the validation set (30%). In addition, the data of PC patients from 2016-to 2018 were externally validated in time. Univariate and multivariate Cox proportional regression models were used to identify independent risk factors affecting patients’ outcomes in the training set. We constructed nomograms based on a multivariate Cox regression model for predicting CSS and OS at 3-,5-, and 8-year. The calibration curves for 1,000 bootstrap samples were used to verify the accuracy of the nomograms. The consistency index (c-index) and the area under the subject operating characteristic curve (AUC) were used to test the accuracy and discrimination of the models.



Clinical Application

We use the decision analysis curve (DCA) to evaluate the clinical value of the nomograms for predicting CSS and OS at 3-,5-, and 8- years compared with the TNM staging system and D’Amico risk stratification system. Furthermore, we also calculated the risk for each patient from the nomograms. All patients were divided into high-risk and low-risk groups based on the cutoff value of the subject operating characteristic curve (ROC). The production principle of the ROC curve is to set several different critical values for the variable, calculate the corresponding sensitivity (sensitivity) and specificity (specificity) at each critical value, and then take the sensitivity as the ordinate and 1-specificity as the abscissa to draw the curve. Our ROC curves are time-dependent and are time-dependent. We used time-based ROC curves to test the nonlinear relationship of CSS or OS with risk values in the dataset and sought the closest risk score to HR=1 on the ROC curve as the cutoff. The Log-rank test and Kaplan-Meier (K-M) curves examined the differences in survival between high-risk and low-risk patients. In addition, surgical differences among patients in different risk groups were also analyzed.



Statistical Analysis

Continuous variables(age) were tested for normal distribution and conform to the normal distribution, described by the mean ± standard deviation. Chi-square or non-parametric U tests were used for comparison between groups. Other categorical variables were described by frequency (%), and the groups were compared using the chi-square test. The Cox regression models analyzed patient prognostic factors, and the log-rank test and K-M curves analyzed the survival differences of patients. All statistical methods were performed using R software version 4.1.0 and SPSS26.0. The R packages including “DynNom”, “RMS”, “Survival”, and “ggDCA” were used. A P value less than 0.05 was considered statistically significant.




Result


Clinical Features

A total of 135,183 patients between 2010 and 2018 were included in this study. All patients were randomly assigned to the training set (N=94764) and the validation set (N=40419). The mean age of both groups was 71.6 ± 5.1 years, and most of both groups were white (79.4%) and married (67.8%). The tumors included grade I (14.8%), II (40.3%), III (43.5%), and IV (1.44%).Patients with stage T1 (45.7%), T2 (39.1%), T3 (13.4%), and T4 (1.73%).Most patients were in stage N0 (95.8%) and staged M0 (95.5%).Patients with Non-surgical treatment (65.0%), patients who underwent local tumor resection (5.93%), and patients who underwent radical prostatectomy (29.1%).99% of patients received chemotherapy. 39.8% received radiotherapy, while 60.2% did not. Most patients had an unknown biopsy GS score (71.1%), and biopsy GS7 was about 20%. PSA 4-10ng/ml(57.1%), >10ng/ml(33.2%). The data did not show significant statistical bias in both groups, and the results are shown in Table 1.


Table 1 | Clinicopathological characteristics of elderly patients with PCa.





Univariate and Multivariate COX Regression Analysis

Univariate Cox regression models were first used in training set to analyze and screen for factors associated with patient survival. The results showed that these factors, including age, race, marriage, tumor grade, TNM stage, surgery, chemotherapy, radiotherapy, PSA, and biopsy GS, could all affect patient survival. Then, multivariate Cox regression models were used to screen for independent risk factors associated with CSS and OS of elderly PC patients. The results showed that age, race, marriage, tumor grade, TNM stage, surgery, radiotherapy, chemotherapy, PSA, and biopsy GS were prognostic factors affecting patient CSS and OS. The analysis results are shown in Tables 2 and 3.


Table 2 | Univariate and multivariate analyses of CSS in training cohort.




Table 3 | Univariate and multivariate analyses of OS in training cohort.





Nomograms Development for the 3-Year, 5-Year, and 8-Year CSS and OS

We constructed nomograms that predicted CSS and OS at 3-year,5-year, and 8-year in elderly PC patients based on multivariate Cox regression models (Figure 2). From the figure, age, TNM stage, tumor grade, surgery, PSA, and biopsy GS were the most influential factors for predicting CSS and OS in elderly PC patients. In addition, radiotherapy and chemotherapy are also essential factors. However, marriage and race had little effect on patient survival.




Figure 2 | The nomograms for predicting 3-,5-,8-year CSS and OS in elderly patients with PC. (A) The nomogram for predicting CSS in elderly patients with PC. (B) The nomogram for predicting OS in elderly patients with PC. ***P < 0.001 vs. reference.





Validation of the Nomograms

Internal cross-validation was used to test the accuracy and discriminability of models. The C-index of the training set and the validation set for predicting CSS is 0.883(95%CI:0.877-0.889) and 0.887(95%CI:0.877-0.897), respectively. The C-index of the training set and the validation set for predicting OS was 0.77(95%CI:0.766-0.774)and 0.767(95%CI:0.759-0.775), respectively. It indicated that the nomograms for CSS and OS have good recognition ability. In the training and validation set, the calibration curve shows that the predicted value of the nomograms for CSS and OS are highly consistent with the actual observed value (Figure 3). It shows that the nomograms have good accuracy. The AUC at 3-, 5-, and 8-years was 89.6,87.2, and 85.1, respectively, in the training set for CSS, and in the validation set for CSS, the AUC at 3-,5-, and 8-years was 89.9,88.4, and 85.7, respectively. In the training set for OS, the AUC at 3-, 5- and 8-years was 77.0,75.0, and 75.0, respectively, and in the validation set for OS, the AUC at 3-, 5- and 8-years was 77.4,75.4 and 74.5. The results show that the nomograms are very discriminative (Figure 4). The external validation set in time for predicting CSS was 0.903(95%CI:0.891-0.915), and the external validation set in time for predicting OS was 0.795(95%CI:0.785-0.805). The AUC at 1-and 2-year in the external validation set in time for CSS was 89.2 and 90.3, and the AUC in the external validation set in time for OS was 78.3 and 89.8 (Figure S1). Due to more than 75% of patients being classified as unknown GS groups, thus to bias the results, so we retrained the models after removing the unknown GS. The results showed that the C-index of the training set for CSS after removing the unknown GS is 0.785(95%CI:0.754-0.816), and the C-index of the training set for OS is 0.675(95%CI:0.657-0.693). The C-index of the validation set for CSS is 0.763(95%CI:0.708-0.818), and the C-index of the validation set for OS is 0.665(95%CI:0.640-0.690). Moreover, the AUC also showed that the model readiness and reliability would be decreased significantly after deleting the unknown GS (Figure S2).




Figure 3 | Calibration curve of the nomograms for predicting 3-,5-,8-year CSS and OS in elderly patients with PC. (A) Calibration curve of the nomograms for predicting 3-,5-,8-year CSS in the training set. (B) Calibration curve of the nomograms for predicting 3-,5-, and 8-year CSS in the validation set. (C) Calibration curve of the nomograms for predicting 3-,5-,8-year OS in the training set. (D) Calibration curve of the nomograms for predicting 3-,5-,8-year OS in the validation set. The horizontal axis is the predicted value in the nomogram, and the vertical axis is the observed value.






Figure 4 | AUC for predicting 3-, 5-, and 8-year CSS and OS in elderly patients with PC. (A) The AUC at 3-, 5-, and 8-year for CSS in the training set was 89.6,87.2, and 85.1. (B) The AUC for CSS in the validation set was 89.9,88.4, and 85.7. (C) The AUC at 3-, 5- and 8-year for OS in the training set was 77.0,75.0, and 75.0. (D) The AUC at 3-, 5- and 8-year for OS in the validation set was 77.4,75.4, and 74.5.





Clinical Application of the Nomograms

In both the training set and the validation set for CSS and OS, DCA suggested that the nomograms had good clinical potential value (Figure 5). The nomograms for CSS at the 3,5,8-year validation set showed the best clinical potential value, followed by the D’Amico risk stratification and TNM staging systems. The nomogram for CSS at 3,5-year also showed the best clinical potential value in the training set. In contrast, the nomogram for CSS at 8-year had no apparent advantages over the other two, indicating that the nomogram is close to the other two models in the long term and does not show apparent advantages. The nomogram for OS at 3,5,8 years showed the best application potential in both the training and validation set, followed by D’Amico risk stratification and TNM staging. Based on the nomogram, we calculated each patient’s risk value and the optimal cutoff value using the ROC curve. Patients were classified into the high-risk group (total score ≥293.59) and the low-risk group (total score <293.59) for predicting CSS, and patients were divided into the high-risk group (total score ≥184.88) and the low-risk group (total score <184.88) for predicting OS. The K-M curve showed that the CSS and OS rate of the patients in the high-risk group was significantly lower than that in the low-risk group both in the training and validation set (Figure 6). The 3-year, 5-year, and 8-year CSS rates of the patients in the high-risk group were 93.2%, 89.6%, and 84.7%, respectively. The low-risk group’s 3-year, 5-year, and 8-year CSS rates were 99.6%, 99.2%, and 98.2%, respectively. The 3-year, 5-year, and 8-year OS rates of the patients in the high-risk group were 86.0%.0,76.7%, and 62.2%, respectively. The low-risk group’s 3-year, 5-year, and 8-year OS rates were 96.8%, 93.9%, and 87.8%, respectively. We found that patients in the high-risk group had the highest CSS and OS rate for undergoing radical prostatectomy, but most patients did not receive surgery. Most patients in the low-risk group underwent radical prostatectomy or non-surgical treatment, with no significant difference in patient CSS and OS rate (Figure 7).




Figure 5 | DCA of the nomograms for predicting CSS and OS. (A) The nomogram for CSS at 3,5-year showed the best clinical potential value in the training set, while the nomogram for CSS at 8-year had no apparent advantages over the other two. (B) In the validation set, the nomogram for CSS at the 3,5,8-year showed the best clinical potential value, followed by the D’Amico risk stratification system and TNM staging system. (C, D) The nomogram for OS at 3-,5-,8-year showed the best application potential in both the training and validation sets, followed by D’Amico risk stratification and TNM staging.






Figure 6 | Kaplan-Meier curves of patients in the low-risk and high-risk groups. The K-M curve showed that the CSS rate of the patients in the high-risk group was significantly lower than that in the low-risk group both in the training set (A) and validation set (B). The K-M curve showed that the OS rate of the patients in the high-risk group was significantly lower than that in the low-risk group both in the training set (C) and validation set (D).






Figure 7 | Kaplan-Meier curves of patients with a different surgery. (A) The CSS rate of patients in the low-risk group underwent different surgery. (B) The CSS rate of patients in the high-risk group underwent different surgery. (C) The OS rate of patients in the low-risk group underwent different surgery. (D) The OS rate of patients in the high-risk group underwent different surgery.






Discussion

This study developed a nomogram using a population-based SEER database to predict CSS in elderly PC patients. With 135,183 patients included in this study, we successfully developed a nomogram to predict 3,5, and 8-year CSS in elderly PC patients, while internal validation demonstrated good calibration and discrimination of this nomogram. The nomogram consists of multiple independent prognostic factors, including age, marriage, Race, PSA, biopsy GS, radiotherapy, chemotherapy, surgical, tumor grade, and TNM stage.

In the past 170 years, PC has evolved from a rare disease to the most common non-cutaneous cancer; with the popularity of PSA screening, more and more patients can be detected in the early stages of the disease. PSA is the most common tumor marker in PC screening, although high levels of PSA in benign prostatic hyperplasia and prostatitis reduce PSA specificity as a cancer marker. However, many studies show that high levels of PSA are associated with a poor prognosis in prostate cancer patients (31). However, a previous study reported that low levels of PSA decreased the CSS in PC patients (32). Interestingly, different predictive models have opposite conclusions on the effects of PSA for the bone metastasis patients in PC, and the Indonesian nomogram suggests that higher PSA levels are associated with a worse prognosis (33). The SEER database also confirmed that high PSA levels were associated with poor prognosis (34). However, the Japanese nomogram suggests that PC patients with higher PSA suggest a better prognosis (35).In previous studies, PSA was generally divided into three grades: <4,4-10 and> 10 ng/ml (36, 37). This standard also graded our study. We also confirmed that PSA> 10 ng/ml was associated with a poor prognosis, consistent with most previous reports. However, the patient prognosis of PSA< 4 ng/ml and PSA 4-10ng/ml was inconsistent with the expression level of PSA. Considering the particularity of elderly PC patients, the PSA of most patients may be high, and the patients with PSA< 4 ng/ml are very few, which may bias the results. Secondly, it is reported that PSA 4-10 ng/ml itself is a “gray area” in PC (38), so the previous PSA classification criteria for elderly PC patients can not accurately respond to the actual situation. Moreover, we also made the corresponding nomogram for predicting OS, which showed the same conclusion that patients with PSA< 4 ng/ml had worse OS than PSA 4-10 ng/ml. Considering that it is inconsistent with clinical practice, we also recommend subsequent researchers adopt a new PSA classification standard for elderly PC patients over 65 years of age: PSA <10 ng/ml,10-20 ng/ml,> 20 ng/ml, instead of 4 ng/ml as the intermediate value, which may avoid outcome bias. SEER database-based studies have divided PSA into three levels: <10 ng/ml,10-20 ng/ml, and> 20 ng/ml. Most prediction models confirmed that PSA greater than 10 rather than 4 is associated with a poor prognosis (28, 34).

GS as an essential tool for predicting the prognosis of patients with PC has been revised multiple times since being proposed. The most common risk stratification for prostate cancer is the D’Amico classification, also used by the National Comprehensive Cancer Network (39), which divides Gleason scores into three Gleason score groups (2 – 6,7 and 8 – 10). However, the current GS system still has vast defects, especially with a total score of 7. The patient prognosis of GS 3 + 4 and GS 4 + 3 is very different, so the simple GS does not accurately predict the prognosis of PC patients. Therefore, a study developed a nomogram for patients with GS 4 + 3 and GS 3 + 4, which showed that patients with GS 4 + 3 had a worse prognosis than patients with GS 3 + 4 (28), and our study reached the same conclusion.Meanwhile, our nomogram showed that GS> 8 is associated with a worse prognosis, consistent with previous reports, but patients with GS<6 have a worse prognosis than those with GS7. We consider that the majority of patients did not undergo a needle biopsy for PC, resulting in more than 75% of cases being classified as biopsy GS unknown group, thus bias the results. After removing the unknown GS, the model was trained again. The result showed that deleting this part of the patients caused a significant decrease in the accuracy and reliability of the model and, therefore, poor availability.

PC treatment uses active monitoring, surgical resection, and androgen deprivation (ADT), combined with radiotherapy and chemotherapy. The surgical methods of PC mainly include: radical prostatectomy (RP) and local tumor resection (LTR), our prediction model showed that patients with RP had better outcomes than patients treated without surgery, which is consistent with previous reports (40, 41), and patients with LTR had the worst prognosis, considering many low-risk patients only need active monitoring rather than surgical treatment can obtain good prognosis, and many elderly PC patients who need RP but choose palliative surgery due to inability of tolerating prolonged general anesthesia, life expectancy is less than 10 years, etc. Therefore, our study found that for elderly patients with PC, patients with local tumor resection instead had a worse prognosis than those who did not receive surgical treatment. Radiation therapy (RT) is a conventional treatment method for PC patients, and it is mainly used clinically to treat patients with medium-risk or high-risk nonmetastatic prostate cancer (42, 43). RT is noninvasive and does not require considering the cardiorespiratory risks arising from systemic or local anesthesia. Therefore, it can be used to treat intolerable elderly patients with PC. At the same time, it does not require hospitalization, improving patient compliance while also reducing hospitalization costs. More importantly, RT can avoid some side effects of surgery, such as urinary incontinence. Our findings showed that elderly PC patients with RT had better outcomes than patients without RT, consistent with previous studies (44). Thus, RT is becoming a key component of multimodal therapy at multiple stages of PC. Unlike most solid tumors, chemotherapy (CT) is not the primary treatment for PC. Almost all PC will eventually develop metastatic castration-resistant prostate cancer (mCRPC), and in the 1970s and 1980s, although many chemotherapeutic drugs were tested in CRPC. Most drugs were tested in phase II clinical trials, and although many seemed promising, none were ultimately shown to prolong survival (45). As most of the patients did not receive chemotherapy, our predictive model also did not show a survival advantage of chemotherapy for elderly PC patients.

Cancer is now commonly evaluated through the tumor-lymph node-metastasis (TNM) system, which was previously considered the “gold standard” for staging and a benchmark for prognosis (46). Most nomograms of PC prognosis (28, 34) included traditional TNM stages, showing that T4 has the worst prognosis compared to other T stages, and patients with distant and lymph node metastasis had a worse prognosis compared to patients without distant and lymph node metastasis, which is consistent with our findings.

The social support provided by marital relationships can promote a healthy lifestyle and increase healthcare-seeking behavior, so marriage is associated with favorable outcomes for most cancer patients. Charlotte Salmon et al. emphasized the elevated risk of PC in single men (47). Libby Ellis et al. also demonstrated that marital status in prostate cancer patients is associated with prognosis (48). Our prediction model also shows the relationship between marital status and prognosis, proving that married patients often indicate a good prognosis, which may be related to the influence of marriage on mood, a medical decisions, etc. In addition, it may be due to the responsibility of married families. Married cancer patients can detect physical abnormalities and actively cooperate with treatment (49).In terms of race or ethnicity, previous studies showed that black men had the highest PC incidence and mortality rates (50). David A Siegel et al. reported 5-year survival (6) between 2001 and 2016, showing that 5-year survival was higher among other ethnic men (84.4%) and white men (82.8%) than among black men (79.1%). Our results showed that elderly Black and white patients with PC had a worse prognosis than other races, consistent with previous reports. Although survival rates of PC patients of different ages vary by stage, however, compared with younger patients, elderly patients likely secondary to the rapid development of resistant PC, reduced ability to receive available treatment, and the effects of comorbidities often have lower long-term survival (51), which is also supported by our results.

Although the nomogram based on the SEER database has good accuracy, there are potential limitations. First is the lack of critical clinicopathological variables, such as smoking, alcohol consumption, hemoglobin, etc. In addition, for PC patients, PSA is an important indicator related to prognosis. However, it was not included in the SEER database until 2010, so we can only choose the data after 2010 for building the prediction model. Meanwhile, ADT, as one of the non-surgical treatment options for PC patients, is usually used for high-risk local or systemic advanced disease that is not suitable for radical surgery. However, it lacks ADT-related data in the SEER database, so our model also lacks the relationship between ADT and prognosis.

Furthermore, database-based studies are all retrospective, which may risk selection bias. Further multi-center prospective studies with a large sample are needed to validate this nomogram. Finally, although our nomogram did not consider all related prognostic variables, we still included key variables and validated them, so there would not be a significant deviation.



Conclusion

We explored the factors influencing CSS and OS in elderly patients with PC and found that age, race, marriage, PSA, biopsy GS, surgical approach, radiotherapy, chemotherapy, tumor grade, and TNM stage were independent risk factors affecting patients’ CSS and OS. We established nomograms to predict the CSS and OS in elderly patients with PC. The models have been internally validated with good accuracy and reliability, and they can help make better clinical decisions for clinicians and patients.
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Supplementary Figure 1 | The AUC at 1-,2-year in the external validation set in time. A: The AUC at 1-,2-year in the external validation set for CSS was 89.2 and 90.3. B: The AUC in the external validation set for OS was 78.3 and 89.8.

Supplementary Figure 2 | The AUC at 3-,5-,8-year for predicting CSS and OS after deleting the unknown GS. A: The AUC at 3-,5-,8-year for predicting CSS after deleting the unknown GS was 76.4,82.6, and 82.3.B: The AUC at 3-,5-,8-year for predicting OS after deleting the unknown GS was 65.9,77.9 and 73.8.
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Background

An increasing proportion of patients with diabetic kidney disease (DKD) has been observed among incident hemodialysis patients in large cities, which is consistent with the continuous growth of diabetes in the past 20 years.



Purpose

In this multicenter retrospective study, we developed a deep learning (DL)-based automatic segmentation and radiomics technology to stratify patients with DKD and evaluate the possibility of clinical application across centers.



Materials and Methods

The research participants were enrolled retrospectively and separated into three parts: training, validation, and independent test datasets for further analysis. DeepLabV3+ network, PyRadiomics package, and least absolute shrinkage and selection operator were used for segmentation, extraction of radiomics variables, and regression, respectively.



Results

A total of 499 patients from three centers were enrolled in this study including 246 patients with type II diabetes mellitus (T2DM) and 253 patients with DKD. The mean intersection-over-union (Miou) and mean pixel accuracy (mPA) of automatic segmentation of the data from the three medical centers were 0.812 ± 0.003, 0.781 ± 0.009, 0.805 ± 0.020 and 0.890 ± 0.004, 0.870 ± 0.002, 0.893 ± 0.007, respectively. The variables from the renal parenchyma and sinus provided different information for the diagnosis and follow-up of DKD. The area under the curve (AUC) of the radiomics model for differentiating between DKD and T2DM patients was 0.674 ± 0.074 and for differentiating between the high and low stages of DKD was 0.803 ± 0.037.



Conclusion

In this study, we developed a DL-based automatic segmentation, radiomics technology to stratify patients with DKD. The DL technology was proposed to achieve fast and accurate anatomical-level segmentation in the kidney, and an ultrasound-based radiomics model can achieve high diagnostic performance in the diagnosis and follow-up of patients with DKD.





Keywords: ultrasound, radiomics, deep learning, diabetic kidney disease, multicenter



Introduction

Diabetic kidney disease (DKD) is a common microvascular complication in patients with diabetes and is the primary cause of kidney failure in ∼40% of diabetic patients (1, 2). In China, an increasing proportion of patients with DKD has been observed among incident hemodialysis patients in large cities, which is consistent with the continuous growth in diabetic patients in the past 20 years (3). DKD diagnosis is based on estimated glomerular filtration rate (eGFR), urinary abnormalities such as proteinuria and microhematuria, and kidney biopsy, which is often avoided in the early stages of DKD.

In patients with suspected kidney function injury, ultrasound imaging is the first imaging technique to be performed for the diagnosis and follow-up of its progression (4). Researchers have demonstrated that certain parameters such as cortical echogenicity and thickness in B-mode ultrasonography, resistance index in color Doppler sonography (4, 5), elastography scores (6) and time-intensity curve parameters in contrast-enhanced ultrasound imaging (7) can effectively reflect the kidney function in patients with chronic kidney disease (CKD). Ultrasound is frequently applied as an available and noninvasive technology for the diagnosis and follow-up of DKD in patients suffering from type II diabetes mellitus (T2DM) for a long duration. However, a conventional ultrasound examination is limited owing to the visual grayscale image, which reduces its potential for identifying a large amount of valuable information. Furthermore, the interpretation of ultrasound images is variable and unreliable owing to inexperienced sonographers, especially in the diffused form of the disease.

Radiomics is a rapidly growing discipline based on quantitative image analysis that reflects image textures and morphology using gray values, which provides a quantitative, solid, and objective foundation for analytic standardization to inform clinical decisions (8). In radiomics technology, a delineated region of interest (ROI) is vital for extracting radiomics variables; however, the accurate anatomical segmentation of ROIs is a time-consuming and experience-dependent process. Recent advances in image segmentation, classification, and registration through deep learning (DL) have considerably expanded the scope and scale of medical image analysis (9). A state-of-the-art network “DeepLabV3+” was reported for semantic image segmentation, which achieved high accuracy when compared to other networks (10).

Therefore, this multicenter retrospective study aimed to achieve an automatic anatomical-level segmentation of the kidney in T2DM patients with/without DKD and to build an ultrasound-image-based radiomics model for diagnosis and follow-up of patients with different stages of DKD. This method can extensively utilize the information contained in conventional ultrasound images and achieve acceptable accuracy, resulting in a quick process that uses easily available resources and demonstrates the potential for further clinical use.



Materials and Methods


Study Design and Patients

This study was registered at ClinicalTrials.gov No. NCT05025540 and the informed consent requirement was waived due to the retrospective study design. This multicenter retrospective study was approved by the ethics consultant committee of the Second Affiliated Hospital of Zhejiang University School of Medicine (SAHZU), the People’s Hospital of Yingshang (PHYS) and Tianjin Third Central Hospital (TJTCH), and 162 DKD and 131 T2DM patients were consecutively enrolled in this study between January 2016 and December 2020 and January 2018 and December 2020, respectively, as the control group from SAHZU. Moreover, 35 DKD and 52 T2DM patients from the People’s Hospital of Yingshang (PHYS) and 56 DKD and 63 T2DM patients from Tianjin Third Central Hospital (TJTCH) were also enrolled consecutively.

The following parameters were used to define DKD: 1) urinary albumin-to-creatinine ratio (UACR) > 30 mg/24 h, with an increase greater than twice the original value in three subsequent examinations conducted over 3-6 months; 2) eGFR < 60 ml min-1 for more than three months; 3) pathological result of kidney biopsy shows evidence of DKD.



Clinical Stage of Diabetic Kidney Disease (DKD)

The clinical stage of DKD was defined based on the Chinese guidelines for the diagnosis and treatment of DKD (11, 12). DKD stage I, called as high-filtration stage, was defined as having normal or a marginally elevated eGFR (> 90 mL/min/1.73 m2) and negative microalbuminuria; DKD stage II, called as microalbumin stage, was defined as having a urinary albumin excretion rate (UAER) of approximately 20-200 μg/min or 30-300 mg/24 h and eGFR > 60 mL/min/1.73 m2; DKD stage III, called as massive albuminuria stage, was defined as having normal UACR >300 mg/g, UAER > 200 ug/min or >300 mg/24 h and eGFR > 15 mL/min/1.73 m2; DKD stage IV, called as renal failure stage, was defined as having eGFR < 15 mL/min/1.73 m2. In this study, we defined the low DKD stage as the stage lower than stage II and high DKD stage as the stage higher than stage III.

The low-stage DKD was defined as the DKD stage that is lower than stage III; moreover, high-stage DKD was defined as the DKD stage that is higher than or equal to stage III.



Kidney Ultrasound Scan

A 3-5 MHz convex probe was used for the adult kidney scans. For the kidney, patients with left/right lateral or dorsal positions were scanned in the coronal plane, and B-mode images were recorded. The maximum longitudinal kidney images with the renal sinus and parenchyma were saved. Both sides of the kidney were recorded per patient.



Inclusive and Exclusive Criteria


Inclusive Criteria

Patients were enrolled according to the following criteria: 1) patients with a clinical diagnosis of T2DM and DKD; 2) patients with clear B-mode ultrasound images on both sides of the kidney (left and right); 3) there were no missing values of the selected clinical data such as eGFR and UACR in the electronic medical records.




Exclusive Criteria

The following criteria were considered for excluding patients: 1) patients with large kidney-space-occupying diseases, such as kidney renal cysts and tumors; 2) ultrasound images with severe shadows or incomplete kidney borders.



Data Extraction and Model Building

First, we manually and automatically delineated the ROI of the renal parenchyma and sinus.

The radiologists for ROI are at least three years in ultrasound diagnosis. Besides, the labelme software in python is used to draw ROIs. Then, collected images was transformed into JPG image format and imported into PyCharm software. Third, the radiomics data were extracted using the Python package PyRadiomics (13) and 1682 radiomics variables from each side of the kidney (841 parenchyma and 841 sinus) were extracted in this study. Moreover, we calculated the intraclass correlation coefficient (ICC) between the extracted data from the manually and automatically delineated ROIs. The ICC values of variables that were higher than 0.7 were selected for further model building. Least absolute shrinkage and selection operator (LASSO) regression was used to select the significant features (14). Finally, the radiomics scores were calculated and the diagnostic performance was compared using the receiver operating characteristic (ROC) curve (Figure 1A).




Figure 1 | The scheme of this study. (A) Flowchart of the Study; (B) Network Structure of DeepLabV3+; L, left; R, right; GLCM, gray level co-occurrence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; First_order, first order statistics; NGTDM, neighboring gray tone difference matrix; GLDM, gray level dependence matrix. Conv: Convolution layer; Hospital A: The Second Affiliated Hospital of Zhejiang University School of Medicine, SAHZU; Hospital B: Tianjin Third Central Hospital, THTCH; Hospital C: The People’s Hospital of Yingshang, PHYS.





Deep Learning (DL) Algorithm

DeepLabV3+ improves pyramid-shaped hole pooling, cascaded multiple hole convolutions, and extensively uses batch normalization. First, DeepLabV3+ uses an atrous spatial pyramid pooling structure to mine multiscale contextual content information. The decoding structure gradually reconstructs the spatial information to capture object boundaries more effectively. Second, a new decoding module was added to reconstruct the boundary information. Third, we attempted to use MobileNet module as the backbone of the network to reduce the number of parameters and increase the speed of the network. The network structure of DeepLabV3+ is shown in Figure 1B.



Data Enhancement

In the training set for DeepLabV3+, we first used the data enhancement strategies to extensively use ultrasound images, such as random horizontal flip, random scale change, and random Gaussian blur. After data enhancement, a five-fold increase in the number of pictures was achieved.



Experimental Environment

The DeepLabV3+ network was built using PyTorch version 1.9.0 with Compute Unified Device Architecture (CUDA) version 11.1 (15). NVIDIA GeForce RTX3070 Ti platform was used in a Windows 10 operating system. Statistical modeling (LASSO) was performed using R and RStudio.



Statistical Analysis

Continuous data with normal distribution are shown as mean ± standard deviation, and data with a non-normal distribution are shown as median (quartile interval). Categorical data are expressed as a number (percentage). The distributions of our data were measured using the Shapiro-Wilk test. In univariate analysis, continuous data were compared using Student’s t-test, one-way analysis of variance, Mann–Whitney U test, or Kruskal–Wallis H test, and categorical variables were compared using the χ2 test. Multiple comparisons were performed using Tukey correction.




Results


Baseline Characteristics Among the Three Medical Centers

A total of 499 patients were enrolled in this study: 131 T2DM patients and 53, 91, 18 patients with DKD stages II, III, IV, respectively, from SAHZU; 63 T2DM patients and 25, 31 patients with DKD stages II, III, respectively, from TJTCH; 52 T2DM patients and 13, 20, 2 patients with DKD stages II, III, IV, respectively, from PHYS.

The average ages were 57 (51–64), 59 (48-65), 57 (46-69) years for T2DM patients and 60 (51-68), 63 (51-75), 60 (49-70) years for DKD patients among the three datasets, respectively. Moreover, the percentages of male patients were 61.8, 57.1, and 25.0% among the T2DM patients and 59.3, 51.8, and 42.9% among the DKD patients in the three datasets, respectively.

In addition, among the three datasets, the average fasting blood glucose levels were 8.8 (6.4-12.2), 7.46 (5.72-9.99), 9.7 (7.0-12.0) mmol/L in T2DM patients, 7.4 (5.6-10.1), 8.8 (5.6-12.1), 9.4 (7.4-11.9) mmol/L in DKD patients, respectively. Further, among the three datasets, the eGFRs were 105.8 (94.8-115.8), 104.7 (85.7-123.8),100.2 (84.2-107.8) ml/min/1.73m2 in T2DM patients, 69.0 (33.3-105.3), 83.9 (47.0-99.1), 83.4 (47.9-100.4) ml/min/1.73m2 in DKD patients, respectively (Table 1).


Table 1 | The Basic Characteristics of Study Patients in Three Medical Centers. SAHZU.





DL-Based Anatomical-Level Segmentation

Two radiologists independently delineated the kidney border, renal parenchyma, and renal sinus in ultrasound images, and the inconsistency was resolved through discussions. The DeepLabV3+ network was applied as an automatic anatomical-level segmentation technology, whose structure is illustrated in Figure 1B. As shown in Figure 2, the trained DeepLabV3+ model showed good segmentation ability in patients with clear ultrasound images (Patient Nos. 1 and 2). To further verify the robustness and accuracy of DL technology, we tested the model using the ultrasound images of patients with inferior ultrasound images (Patient Nos. 3 and 4). The trained model showed that it could compensate for the missing border caused by inferior ultrasound windows and maintain high segmentation accuracy.




Figure 2 | Manual and Automatic Segmentation using Ultrasound Images of the Patients.



Moreover, we verified the segmentation ability of DeepLabV3+ on a separate test set (N=50) from SAHZU and two independent test datasets from TJTCH and PHYS. From Figure 3, Table 2, it can be observed that the mean intersection-over-union (Miou) and mean pixel accuracy (mPA) of the SAHZU test set were 0.812 ± 0.003 and 0.890 ± 0.004, respectively. Moreover, the Miou and mPA of the TJTCH dataset were 0.781 ± 0.009 and 0.870 ± 0.002, respectively, and those of the PHYS dataset were 0.805 ± 0.020 and 0.893 ± 0.007, respectively (Table 2). These results demonstrate that high robustness and accuracy can be achieved by DL-based technology, thus providing a faster method for delineating the ROI.




Figure 3 | Interclass Correlation Coefficients and Density Plots between Extracted Radiomics Variables. The Interclass Correlation Coefficients plot (A) and Density Plots (B) between parenchyma and sinus in T2DM and DKD group. The Interclass Correlation Coefficients plot (C) and Density Plots (D) between manual and automatic ROI drawing methods in T2DM and DKD group.




Table 2 | Mean Intersection-over-union and Mean Pixel Accuracy in Three Medical Centers.





Correlation Between Extracted Radiomics Variables

In total, 3364 radiomics variables were extracted per patient, including 841 from the renal parenchyma and 841 from the renal sinus per kidney.

First, we calculated the correlation between the extracted variables from the parenchyma and sinus. The extracted variables were completely irrelevant, with ICC values of 0.236 (0.142-0.356) and 0.249 (0.133-0.374) in T2DM and DKD patients, respectively (Figures 3A, B). These results demonstrate that different parts of the kidney can provide different information.

Next, we calculated the ICC between radiomics variables extracted using manual and DL-based automatic methods to select robust variables for further analysis. As expected, the variables extracted using manual and automatic methods were highly correlated. Moreover, the median and interquartile range of ICC in the parenchyma and sinus were 0.871 (0.728-0.937) and 0.860 (0.779-0.927), respectively (Figures 3C, D). The radiomics variables with ICC > 0.7 were selected in this study; thus, 2066 radiomics variables, including 974 and 1092 variables extracted from parenchyma and sinus, respectively, were used in the model building step.



Utilization of Radiomics Variables From Parenchyma and Sinus for Stratifying DKD Patients

The kidneys of patients with a high DKD stage tend to show higher echogenicity in both the parenchyma and sinus (Figure 4A), which can provide evidence that the radiomics variables have the potential to stratify DKD patients.




Figure 4 | Variables extracted from Parenchyma and Sinus. (A) The ROI of parenchyma and sinus in two DKD stage patients. (B) The Mean-square error plot of LASSO regression in parenchyma and sinus model. (C) The Density Plots between Extracted Radiomics Variables in parenchyma and sinus.



To reduce the dimensions of the variables, the LASSO procedure was performed. A total of 94 variables were selected, including 24 from the feature class of gray level co-occurrence matrix, 12 from gray level run length matrix, 12 from gray level size zone matrix, 16 from first order statistics, 3 from neighboring gray tone difference matrix, 6 from gray level dependence matrix, and 21 from wavelet decompositions (Figure 4B, Table 3).


Table 3 | Class of Extracted variables.



Note that 73 variables from parenchyma and 21 from sinus were selected (Figure 4B), as illustrated in the density plot (Figure 4C), and the value distribution of wavelet-H_Firstorder_Entropy (WHFE) and gradient_glcm_lmc2 (GGL) from the parenchyma were shifted to the left in the high DKD stage, whereas the value of wavelet-H_glrlm_shortRunEmphasis (WHGS) was shifted to the right in the high DKD stage. Moreover, the value of glrlm_shortRunHighGrayLevelEmphasis (GSHGLE) was shifted to the left in the high DKD stage, whereas the value of glszm_GrayLevelNonUniformyNormalized (GGLNUN) was shifted to the right in the high DKD stage. Further, the distribution of the value of wavelet-H_gldm_GrayLevelVariance (WHGGLV) in the high DKD stage was more spiculate than in the low DKD stage.

These results demonstrated that the variables extracted from both the parenchyma and sinus could provide positive diagnostic value in the diagnosis and follow-up of DKD, particularly in the low- and high-stage DKD (Figure 4).



Diagnostic Performance of Ultrasound-Based Radiomics in Stratifying DKD Patients

We randomly separated the data of the 499 patients from the three medical centers into three parts: 424 (85%) patients were divided into training and validation datasets and 75 (15%) patients were divided into independent test datasets. In the model building step, a k-fold cross-validation method was applied to the training and validation datasets to calculate the area under the curve (AUC), and the differences between the groups were compared. After the previous step, the best model was tested using independent test datasets, and the ROC and AUC were plotted and calculated.

While differentiating between DKD and T2DM patients, the radiomics model achieved moderate diagnostic performance with AUCs of 0.674 ± 0.074 in the parenchyma + sinus model, 0.6561 ± 0.0537 in the parenchyma model, and 0.6457 ± 0.0514 in the sinus model (Figure 5A). No statistical differences were found among the three models (all P > 0.05). In the independent test set, the AUCs of parenchyma + sinus, parenchyma, and sinus were 0.6779, 0.6536, and 0.6593, respectively (Figure 5B).




Figure 5 | Diagnostic Performance of ultrasound-based radiomics to stratify DKD patients. The diagnostic performance to differentiate DKD and T2DM patient in cross-validation datasets (A) and in independent test set (B). The diagnostic performance to differentiate high (≥ stage III) and low (≤ stage II) DKD stages in Cross-validation datasets (C) and in independent test set (D). AUC, Area under curve; *P < 0.05, **P < 0.01, ***P < 0.001; ns, no significance.



When differentiating between the high (≥ stage III) and low (≤ stage II) DKD stages, the radiomics model that combined the information from parenchyma and sinus achieved the highest diagnostic performance with AUC = 0.803 ± 0.037 (all P<0.05) after k-fold validation. Moreover, the AUCs of the radiomics model using only parenchyma and sinus variables were 0.75695 ± 0.038 and 0.716 ± 0.026, respectively (Figure 5C). In the independent test set, the AUCs of the models using parenchyma + sinus, parenchyma, and sinus variables were 0.8235, 0.7851, and 0.7304, respectively (Figure 5D).

In this study, the T2DM patients were a mix of T2DM patients without kidney function disorders and DKD stage I patients. These results demonstrated that the ultrasound images of patients in the early stage of DKD are similar to those of T2DM patients, which results in a moderate diagnostic performance of the radiomics model. However, the ultrasound-based radiomics model demonstrates good potential in differentiating between the low and high DKD stages, which is more useful for the stratification of patients with DKD.



Diagnostic Performance of DL-Based Automatic Segmentation, Radiomics for DKD

To further study the performance of the DL-based automatic segmentation, radiomics model in identifying DKD patients, we calculated and compared the AUC between the manual and automatic methods.

After k-fold cross-validation, the AUCs of the manual and automatic methods when differentiating between DKD and T2DM patients were 0.6797 ± 0.058 and 0.6626 ± 0.0547, respectively. Moreover, the AUCs of the manual and automatic methods of differentiating between patients at high and low DKD stages were 0.7967 ± 0.054 and 0.7732 ± 0.05478, respectively. There was no statistically significant difference between the AUCs of the manual and automatic methods (all P <0.05) Further, the AUCs of T2DM/DKD and high/low DKD stage while using manual and automatic methods were 0.692, 0.689, 0.8235, 0.7859, respectively, on the independent test set (Figure 6). The results demonstrated that manual and automatic segmentation, radiomics models achieved similar diagnostic performance.




Figure 6 | Diagnostic Performance of deep learning-based automatic segmentation, radiomics for diabetic kidney disease. ns, no significance.






Discussion

Ultrasonography is an ideal evaluation tool and is widely used for the identification and analysis of several diseases (16). Although, researchers can identify abnormal renal echogenicity, renal size, and other features in the diagnosis of kidney dysfunction through ultrasonography (17–19), the interpretation of ultrasound images by the naked eye is subjective and certain high-dimensional information can be missed; these problems can be solved using radiomics technology. However, accurate anatomical segmentation of the ROI, which is a time-consuming and experience-dependent process, is vital for effective utilization of radiomics technology. Therefore, in this retrospective multicenter study, we developed a DL-based automatic segmentation, radiomics technology to evaluate the diagnostic performance of radiomics technology for DKD patients and evaluated its potential for clinical application.

Moreover, in underdeveloped regions or primary clinics, it may be costly and challenging to train or recruit experienced doctors to fulfill the large medical demand. One of the solutions is fifth generation communication technology, which can achieve remote medical systems by connecting experienced doctors with patients online. In addition, the DL-based automatic segmentation, radiomics technology can perform the role of an intelligent machine doctor, which is portable if configured using a handheld ultrasound device and can quickly and effectively determine the results. This work demonstrates significant potential for achieving automatic labor-free diagnosis and follow-up of DKD, and is our further research focus.

However, this study has certain limitations. First, the retrospective nature of the study may have influenced the accuracy of the diagnostic performance to a certain extent. Second, the heterogeneity among the three medical centers may affect the degree of accuracy. Third, patients with stage I DKD were unavailable in this study. The clinical definition of these patients is primarily defined by pathologic findings that are difficult to access in clinical practice. This resulted in a mixture of T2DM patients without kidney function injury and DKD stage I patients in the dataset of T2DM participants.

In summary, we first verified the robustness of the automatic segmentation method using the DeepLabV3+ network. This result is supported by the research work of Yin et al. (20) the DL-based classification network can achieve good segmentation of the kidney. Moreover, we identified that the renal parenchyma and sinus can provide different information to support the classification model. Accurate anatomical-level segmentation was achieved in this study. The automatic segmentation network achieved superior performance in the segmentation of ultrasonography images with both good and bad ultrasound windows. The Miou and mPA of the automatic segmentation method were high for the independent test set and the datasets from the other independent medical centers. In fact, the DL-based segmentation could reduce the time for hand annotation from 1 h to lower than a few seconds for 100 images, which significantly reduces labor costs. Second, we demonstrated that the ultrasound-based radiomics model achieves a high diagnostic value when differentiating between different DKD stages and has the potential to stratify patients with DKD. The diagnostic performance of artificial intelligence (AI) technology has been supported by the work of Sudharson et al. (21) for certain kidney disorders. Moreover, the work of Chin-Chi Kuo et al. also supported our result (22) in which the authors reported that the prediction of the eGFR and accuracy (85.6%) by an AI-based model was higher than that by experienced nephrologists (60.3-80.1%). The AUC of ROC in our study was 0.803 ± 0.037, which is marginally lower than that reported by Chin-Chi Kuo et al. This may be due to the different clinical definitions of DKD and CKD and the relatively smaller number of patients with severe kidney dysfunctions (eGFR < 30 mL/min/1.73 m2) in our study (22). Li et al. reported that 3D ultrasound also has potential value in the diagnosis of diabetic nephropathy (DN) and may act as an auxiliary diagnosis for DN (23), which suggests that 3D ultrasound radiomics can be considered in future studies.



Conclusion

In this study, we developed a DL-based automatic segmentation, radiomics technology to stratify DKD patients, which could reduce the time for hand annotation from few hours to less than a few seconds for 100 images and could achieve satisfactory diagnostic performance in the diagnosis and follow-up of DKD patients.
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DKD, diabetic kidney disease; DL, deep learning; DN, diabetic nephropathy; T2DM, type II diabetes mellitus; Miou, mean intersection-over-union; mPA, mean pixel accuracy; AUC, area under the curve; ROI, region of interest, CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate, SAHZU, Second Affiliated Hospital of Zhejiang University School of Medicine; PHYS, People’s Hospital of Yingshang; TJTCH: Tianjin Third Central Hospital; UACR, urinary albumin-to-creatinine ratio; UAER, urinary albumin excretion rate; LASSO, Least absolute shrinkage and selection operator; ICC, intraclass correlation coefficient; CUDA, Compute Unified Device Architecture; BMI, body mass index; HbA1c, glycated hemoglobin A1c; FBG, fasting blood-glucose; ACR, Albumin-to-Creatinine Ratio; GLCM, gray-level co- occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; GLDZM, gray-level distance zone matrix; NGTDM, neighborhood gray tone difference matrix; NGDLM, neighboring gray-level dependence matrix; ROC, receiver operating characteristic; WHFE, wavelet-H_Firstorder_Entropy; GGL, gradient_glcm_lmc2; WHGS, wavelet- H_glrlm_shortRunEmphasis; GSHGLE, glrlm_shortRunHighGrayLevelEmphasis; GGLNUN, glszm_GrayLevelNonUniformyNormalized; WHGGLV, wavelet-H_gldm_GrayLevelVariance.
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Purpose

PSA is currently the most commonly used screening indicator for prostate cancer. However, it has limited specificity for the diagnosis of prostate cancer. We aim to construct machine learning-based models and enhance the prediction of prostate cancer.



Methods

The data of 551 patients who underwent prostate biopsy were retrospectively retrieved and divided into training and test datasets in a 3:1 ratio. We constructed five PCa prediction models with four supervised machine learning algorithms, including tPSA univariate logistic regression (LR), multivariate LR, decision tree (DT), random forest (RF), and support vector machine (SVM). The five prediction models were compared based on model performance metrics, such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, calibration curve, and clinical decision curve analysis (DCA).



Results

All five models had good calibration in the training dataset. In the training dataset, the RF, DT, and multivariate LR models showed better discrimination, with AUCs of 1.0, 0.922 and 0.91, respectively, than the tPSA univariate LR and SVM models. In the test dataset, the multivariate LR model exhibited the best discrimination (AUC=0.918). The multivariate LR model and SVM model had better extrapolation and generalizability, with little change in performance between the training and test datasets. Compared with the DCA curves of the tPSA LR model, the other four models exhibited better net clinical benefits.



Conclusion

The results of the current retrospective study suggest that machine learning techniques can predict prostate cancer with significantly better AUC, accuracy, and net clinical benefits.
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Introduction

Prostate cancer (PCa) is the second leading malignancy in men and the fifth leading cause of cancer mortality in men worldwide (1). Although PSA is still the most commonly used screening tool for prostate cancer, it has been controversial in recent decades (2). It is suggested that PSA screening improves the detection rate of localized and less aggressive prostate cancers but also reduces the proportions of advanced PCa and PCa-specific mortality (3–5). However, due to the obvious overlap of PSA levels in various conditions, such as benign prostatic hyperplasia, prostatitis, and prostate cancer, the specificity of PSA screening is low, which leads to a plethora of unrelated diseases for prostate biopsy (2). These unnecessary prostate biopsies result in not only a significant waste of medical resources but also an increased incidence of sepsis, which can be life-threatening to patients (6). Therefore, there is a need for a new convenient method to improve the diagnostic ability of PCa.

Machine learning is a branch of artificial intelligence (AI) in which machines are programmed to learn patterns from data, and the learning itself is based on a set of mathematical rules and statistical assumptions. It is widely used in biology because of its enormous advantages in dealing with large datasets (7, 8). It has also been rapidly developed and applied in the medical field, especially in the construction of predictive models (9). Therefore, using machine learning to construct PCa prediction models would be a feasible and promising approach.

In this study, we constructed generalizable machine learning predictive models to improve the accuracy of PCa risk assessment by using objective parameters present in electronic medical records and then evaluated their performance.



Methods


Data Sources

A total of 789 male patients in the First Hospital of Jilin University who underwent transrectal ultrasound-guided prostate biopsy from January 2013 to January 2021 were included. Indications for prostate biopsy included serum tPSA >4 ng/ml, abnormal digital rectal exam (DRE), or imaging findings suggestive of suspected prostate cancer. All patients underwent systematic biopsy with 10-12 cores. Patients with one of the following criteria were excluded from the study: taking medications that could affect serum PSA levels, unclear results of the prostate biopsy, and significant abnormal values or missing data. A final total of 551 patients were included in the study. All patient data were collected through electronic medical records, including age, BMI, hypertension, diabetes, total PSA (tPSA), free PSA (fPSA), the ratio of serum fPSA to tPSA (f/tPSA), prostate volume (PV), PSA density (PSAD), neutrophil-to-lymphocyte ratio (NLR), and pathology reports of prostate biopsy. All examinations were completed within one week before prostate biopsy. PSAD is the ratio of tPSA to PV. The calculation of PV was calculated by the following formula: maximal transverse diameter × maximal anterior-posterior diameter × maximal superior-inferior diameter × 0.52.



Model Development

R software (version 4.1.4, https://www.rproject.org/) was used to develop machine learning models. A total of five prediction models were constructed by dividing the data into a training dataset and a test dataset at a ratio of 3:1. The pathologic type of PCa or other benign disease was used as the dichotomous variable, and other variables were all used as continuous variables. For logistic regression (LR) model construction, the best predictive variables were first screened in the training dataset using stepwise regression, association plots between the variables were made to understand the magnitude of the association between the variables, and the presence or absence of collinearity between variables was judged according to the variance inflation factor (VIF). Then, LR models were constructed using the “lrm” function in the “rms” package. For the decision tree (DT) model, we used the “rpart” package for training, using two hyperparameters, the complexity parameters cp and spilt. The initial cp value was set to 0.001, and then the best cp value was found and pruned based on the best cp value. The input variables were obtained through the selection of important features, and the best DT model was then output. The random forest (RF) model screened the optimal input variables by significant feature selection. The RF model was trained using the “randomForest” package in R software, using two hyperparameters, ntree and mtry, which were set at 500 and 6, respectively. The support vector machine (SVM) model was filtered by the “caret” package for important features. Training was performed using the “e1071” package, using a Gaussian kernel function and setting the two hyperparameters, cost and gamma, to 1 and 0.1, respectively.



Model Performance Evaluation

The performance of the developed models was validated using a test dataset in a process that was completely independent of the algorithm training. The performance of the five models was then evaluated by comparing four metrics: the receiver operating characteristic (ROC) curve and its corresponding area under the curve (AUC) and the accuracy, sensitivity, and specificity. The calibration curve was used to evaluate the calibration of the model, the Brier score was used to assess the calibration, the Hosmer–Lemeshow goodness-of-fit test was used to judge whether there was a significant difference between the observed and predicted values, and clinical decision curve analysis (DCA) was used to assess the net benefit of the model.



Data Analysis

For comparative analysis between two samples, Student’s t test was used for normally distributed continuous variables, and the Mann–Whitney U test was used for categorical variables with nonnormal continuous variables. Continuous variables in the data were expressed as medians and IQRs or means and SDs, categorical variables were expressed as frequencies and percentages, and the bilateral significance level for the left-right test was set at 5% (p<0.05).




Results


Baseline Patient Characteristics

Table 1 shows the baseline characteristics of the patients. A total of 302 (54.8%) of the 551 patients were diagnosed with PCa. The PCa detection rate in patients ≥65 years old was higher than patients <65. The mean levels of tPSA, fPSA, and PSAD were significantly higher in the PCa group than in the non-PCa group. When tPSA>4 ng/ml, the PCa detection rate increased with increasing tPSA. In the subgroups of 4<tPSA<10, 10≤tPSA<20, 20≤tPSA<100, and tPSA≥100, the detection rates were 18.6%, 26.2%, 54.2%, and 97.2%, respectively. The mean neutrophil count, PV, and BMI were lower in the PCa group than in the non-PCa group. No significant differences in other variables were found between two groups.


Table 1 | Characteristics of Patients, stratified by biopsy outcomes.





LR Algorithm-Based PCa Prediction Model

First, the tPSA univariate LR model was constructed in the training dataset by including only one single factor, tPSA. This model showed that tPSA was positively correlated with the diagnosis of PCa (coefficient=0.034). Then, a multivariate LR model was constructed by including all variables through a stepwise regression method. When the VIC value reached the minimum value, a total of seven best predictive variables were selected, including age, tPSA, fPSA, PV, NLR, peripheral blood neutrophil count and lymphocyte count. The two LR models are shown in Supplementary Table 1. In the multivariate LR model, age, tPSA, and fPSA were positively correlated with PCa, while PV and neutrophil count were negatively correlated with PCa (Supplementary Figure 1). In addition, there was a significant association between peripheral blood neutrophil count and NLR, tPSA and fPSA, suggesting their respective possible collinearity. The variance inflation factor (VIF) was subsequently calculated for verification, and all VIF values were less than 5, indicating no collinearity between any of the variables.



DT Algorithm-Based PCa Prediction Model

The optimal cp value for the DT model was 0.008. Based on the corresponding ranking of important features, the final input variables for the DT model were age, tPSA, fPSA, PV, PSAD, NLR, f/tPSA, and biopsy results (Supplementary Figure 2A). The process and results of model classification are shown in Supplementary Figure 2B. This model correctly classified 87.7% (363/414) of the cases in the training dataset.



RF Algorithm-Based PCa Prediction Model

After ranking the important features of the RF model, seven features with the highest predictive accuracy were selected as the input features, including age, tPSA, fPSA, PV, PSAD, NLR, and peripheral blood neutrophil count (Supplementary Figure 3A). The error of the model gradually decreased as the number of decision trees increased, and the minimum error value of the RF model was reached when the number of decision trees was 313 (Supplementary Figure 3B).



SVM Algorithm-Based PCa Prediction Model

The best SVM model was screened by the “rfe” function in the caret package using a 10-fold cross-validation method. The number of variables was screened one by one from 1 to 12, and the best model was obtained when the number of variables was 5. The input variables at this time were age, PSAD, tPSA, fPSA, and PV.



Performance of the Developed Models

In the training dataset, the RF and DT models performed particularly well in differentiation with the AUCs of 1.0 and 0.922, respectively (Table 2). The model with the lowest AUC was the tPSA univariate LR model (0.842). The calibration in all five models was very good, which suggested that the predicted values of the models were in high agreement with the actual values (Figure 1A). The Brier scores of the multivariate LR, DT, RF, SVM and tPSA LR models were 0.119, 0.122, 0.121, 0.118 and 0.154, respectively. The p values for the Hosmer–Lemeshow test were all greater than 0.05, indicating that there was no statistical bias in the near-perfect fit between the predicted and actual values. Therefore, the models we constructed were valid and reliable.


Table 2 | Diagnostic performance of different machine learning models.






Figure 1 | Performance of machine learning models. (A) Calibration curves of five prediction models in the training dataset. The predicted probabilities are plotted on the X-axis, and the actual probabilities are plotted on the Y-axis. (B) The ROC curves of the tPSA LR, multivariate LR, DT, RF, and SVM models in the test dataset. (C) Clinical decision curve analysis (DCA) of the five models in the test dataset.



All characteristics of samples were comparable in the training and test datasets (Supplementary Table 2). In the test dataset, the specificity of the tPSA LR model was highest, reaching 93.2%; however, the sensitivity and accuracy were relatively low, at 63.9% and 77.1%, respectively (Table 2). The sensitivity and accuracy of the multivariate LR model were improved significantly in the test dataset compared with the training dataset, although there was a slight decrease in specificity. The diagnostic performance of the SVM model was not outstanding in either the training or the test dataset, but most outcomes were improved in the test dataset. Thus, the multivariate LR model exhibited the best discrimination, and the extrapolation and generalization abilities of the multivariate LR and SVM models were relatively strong. In contrast, although the DT and RF models performed well in the training dataset, their performances in the test dataset decreased significantly. The corresponding ROC curves for the five models are shown in Figure 1B. To further evaluate the potential clinical benefits of these prediction models, we performed DCA curves using the test dataset (Figure 1C). All models demonstrated significant net benefits. Compared with the tPSA LR model, the other four models showed significantly higher net clinical benefits.

To evaluate the performance of constructed models in the subgroups of PSA of 4-10 ng/ml and 4-20 ng/ml, we used these two subgroups as the test datasets, and evaluated their AUCs, sensitivities, specificities, and accuracies (Supplementary Tables 3, 4). The diagnostic performances of the RF algorithm-based machine learning prediction model showed best in both subgroups. The AUCs were 0.856 and 0.94 respectively. Although the sensitivity decreased compared with it in the training dataset, the specificity and accuracy were still relatively high. The performance of other algorithms-based developed models were not outstanding.




Discussion

In the past decade, PSA has been widely used as the most valuable diagnostic and prognostic marker for PCa (10). However, some studies have shown that less than 30% of men with PSA levels in the gray zone (4-10 ng/ml) have pathologically confirmed PCa, indicating that a large proportion of patients have undergone unnecessary biopsies and been overdiagnosed (11). In our study, the detection rate of PCa with tPSA in the gray zone was only 18.6%. Similar detection rates were reported in other studies (12–15). Even if PSA is not in the gray zone, for example, between 10 and 20 ng/ml, the detection rate in our study was only 26.2%. In recent years, DRE, PSAD, PSAV, 4Kscore, f/tPSA ratio, prostate health index (PHI) and age-specific PSA have been proposed as predictors for PCa (3, 16–18). However, it may be difficult to achieve good predictive results with any single factor.

In this study, we constructed prediction models of PCa based on machine learning algorithms. Four algorithms were used, and a total of five models were constructed. First, we constructed a univariate logistic regression model using tPSA. As shown in Table 2, in the test dataset, although the specificity of the tPSA LR model reached 0.932, its sensitivity was decreased to only 0.639. The AUC of this model was only 0.846, which was significantly lower than that of the other models, showing the limitations of using tPSA alone as a predictor of PCa. Among them, the multivariate LR model had higher specificity, sensitivity, accuracy, and AUC in the test dataset, showing good predictive ability. Therefore, the shortcomings of low sensitivity and accuracy of the tPSA LR model were complemented very well by the inclusion of more variables. In our study, the multivariate LR model also had outstanding extrapolation and generalization ability due to the small number of changes between the training and test datasets. As a model similar to traditional statistical analysis methods, the results of the LR model had strong interpretability, which could help clinicians predict PCa based on relevant factors. The output of the DT model was similar to the clinical pathway. It is a clinician- and patient-friendly model and has strong clinical operability. Anyone can follow the predicted model from the root node to the leaf node to make decisions. However, in our study, the performance of the constructed DT model decreased significantly when it was validated in the test dataset and had very low specificity. The RF and SVM models had average diagnostic performance in our study, and their “black box” style reduced the clinical interpretability slightly.

The PCa detection rate in patients with PSA<20 ng/ml was relatively low in our study. Thus it is important to predict PCa in this population. The RF model performed best in both subgroups PSA of 4-10 ng/ml and 4-20 ng/ml. This suggested that the machine learning models we constructed based on overall population might also be applicable in patients with PSA ranged 4-10 or 4-20 ng/ml. In the training dataset, the RF model outperformed other models with the AUC of 1.0, while its performance decreased significantly in the test dataset. But in these two PSA subgroups, about 72% of samples overlapped with the samples in the training dataset, and were involved in the construction of models. That may lead to the outperformance of RF model rather than other models in PSA subgroups. Future study should focus on this population and develop more accurate machine learning models.

In recent years, some studies on the prediction of PCa by machine learning models have been published. In the study of Peter Ka-Fung Chiu et al., four variables, PSA, DRE, PV and transrectal ultrasound findings, were included, and SVM, LR, and RF models were constructed. All models were shown to have better prediction for PCa and clinically significant PCa than PSA and PSAD alone (19). Similarly, Nitta et al. suggested that compared to the AUCs of the PSA level, PSAD, and PSAV alone, the AUCs of artificial neural network (ANN), RF, SVM machine learning models were all improved when age, PSA level, PV, and white blood cell count in urinalysis were incorporated (20).In a study including patients with tPSA<10 ng/ml, a PSA-based machine learning model was constructed based on dense neural network with an AUC of 0.72, which was improved compared to PSA alone, age, fPSA and f/tPSA alone (21). In another study, multiparametric MRI (mpMRI) combined with other characteristics of patients was included to construct a machine learning model. The SVM and RF yielded similar diagnostic accuracy and net benefit and spared more biopsies at 95% sensitivity for the detection of clinically significant PCa compared with logistic regression (15).

Recently, a meta-analysis showed that the performance of selectMDx test in urine was comparable to that of mpMRI with regards to PCa detection. The AUC of selectMDx only was 0.854, and the AUC of one or both positive finding with selectMDx and/or mpMRI could reach 0.909. However, the multivariate LR model in our study still shows strength with AUC of 0.918 in test dataset (22). The integrative machine learning model was constructed to predict negative prostate biopsy utilizing both radiomics and clinical features. Although that model got high performance with negative predictive value of 98.3%, the AUC, sensitivity, and specificity were 0.798, 83.3%, and 75.2%, respectively, which were relatively lower compared with those in our models (23). Considering that all variables in our models are objective indicators, reducing possible errors of manual evaluation, we believe that the advantages of our models are more obvious.

Although machine learning-based models for PCa prediction have been constructed and validated, there are several limitations in our study. First, our study is retrospective in nature and may be potentially biased, and the sample size may not be adequate for some machine learning algorithms. Second, both the training and test datasets were from the same hospital, so further external validation at other centers is needed to confirm the findings. Third, some important factors or variables were not included in our models. For example, it has been shown that mpMRI provides more imaging information than conventional ultrasound, not only improving the detection of PCa but also helping to distinguish clinically significant PCa (24). Limited by insufficient data, mpMRI and its PI-RADS data were not included in our study. It is hoped that incorporating mpMRI into machine learning models may help to further improve the diagnostic performance of models in the future.



Conclusion

In conclusion, by retrieving electronic medical records, we developed, validated, and compared machine learning models to predict PCa in the biopsy population. All models showed clinical benefits based on DCA. Multivariate LR, DT, RF, and SVM models were better than tPSA univariate LR. Among these models, multivariate LR performed best, with an AUC of 0.918 in the test dataset. Constructing machine learning-based models and predicting PCa is feasible. This could enhance the detection of PCa and help to avoid unnecessary prostate biopsy.
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Bladder cancer is a common malignant tumor in the urinary system. Depending on whether bladder cancer invades muscle tissue, it is classified into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). It is crucial to accurately diagnose the muscle invasion of bladder cancer for its clinical management. Although imaging modalities such as CT and multiparametric MRI play an important role in this regard, radiomics has shown great potential with the development and innovation of precision medicine. It features outstanding advantages such as non-invasive and high efficiency, and takes on important significance in tumor assessment and laor liberation. In this article, we provide an overview of radiomics in the prediction of muscle-invasive bladder cancer and reflect on its future trends and challenges.
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1 Introduction

Bladder cancer (BC) is the second most common cancer among urological malignancies, with an estimated 573,200 people diagnosed with BC worldwide in 2020 (1). The rates of bladder cancer increase with age. The risk of BC is multifactorial, with smoking (2) being the most important risk factor. Uroepithelial carcinoma accounts for approximately 90% of bladder cancer cases and typically presents as multifocal and recurrent; other subtypes are squamous cell carcinoma (6-8%) and adenocarcinoma (3).

Determining the invasion of the tumor into the muscle layer of the bladder wall is probably the most critical step in clinical management, as it directly affects the patient’s treatment strategy. Bladder cancers are classified into non-muscle-invasive bladder cancer (NMIBC) (≤ T1 stage) and muscle-invasive bladder cancer (MIBC) (≥ T2 stage) according to whether they invade muscle tissue or not. NMIBC is mostly in the early stages of the disease, with a 5-year probability of recurrence and progression of 78% and 45%, respectively (4), while MIBC has a poor prognosis, with approximately 50% (5) of patients developing metastases within 2 years after radical cystectomy(RC). NMIBC is usually treated by transurethral resection of bladder tumors(TURBT) with or without intravesical chemotherapy (6). Whereas MIBC is usually treated with radical cystectomy(RC), radiotherapy, chemotherapy, or combination therapy (5). Currently, pathological examination of TURBT specimens is the gold standard for identification of MIBC. However, according to previous studies, the error rate is about 20-80% due to problems such as differences in resection (7). Even though the error rate can be reduced by repeating TURBT, underestimation of staging and delayed treatment of the condition may lead to disease progression and worse prognosis, and this invasive operation also carries some safetyoperational risks. Faced with the above problems, scholars have searched for an alternative, non-invasive and efficient diagnostic tool to accurately predict muscle-invasive bladder cancer, so they have turned their attention to “radiomics” - a hot and promising diagnostic technology. Radiomics is the extraction and analysis of quantitative imaging features from imaging tools (CT, MRI, PET-CT, etc.) for the development of descriptive and predictive models (8). Machine learning (ML), a branch of artificial intelligence, is a typical approach used in radiomics model generation (9). Through the inferential training of datasets, ML aids in the development of highly accurate and effective predictive models based on radiomics analysis (10). In this paper, we review the current existing research related to our topic, summarize the results of using machine learning to accurately predict muscle-invasive bladder cancer, and reflect on the future directions and challenges of the topic.



2 Search criteria

A comprehensive review of current literature was performed using the PubMed-Medline and Web of Science database up to April 5, 2022 using “bladder cancer”, combined with one of the following terms: “radiomics”, “machine learning”, and “artificial intelligence” in combination with “muscle invasive”.

	The exclusion criteria for the articles were as follows:

	(1) Published in a language other than English.

	(2) The purpose of the article study was not to predict muscle invasion of bladder cancer.

	(3) The article was not studied with imaging tools.

	(4) Reviews, conference abstracts, and editorials were excluded.

	The inclusion criteria for the article were as follows:

	(1) Background introduction of radiomics, machine learning, deep learning or artificial intelligence and bladder cancer.

	(2) The purpose of the article study was to predict muscle invasion of bladder cancer.

	(3) The article was studied with imaging tools(CT, MRI, PET-CT, SPECT e.g.).

	In accordance with the PRISMA criteria, Figure 1 was included to delineate our article

	selection process.






Figure 1 | PRISMA flowchart of included studies.





3 Results

The final collection of 12 relevant publications found that the first study started in 2017, reflecting the fact that radiomics is a relatively new concept in the field of BC. The literature related to machine learning for predicting muscle-invasive bladder cancer is summarized in Table 1 (11–22). For studies in this field, four were based on enhanced CT and the remaining eight were related to MRI. Only 16.7% (2/12) of the studies were multi-center studies.


Table 1 | Studies included in the systematic review.





4 Discussion


4.1 Traditional diagnostic imaging

In current clinical practice, medical imaging techniques including CT, MRI and other non-invasive and safe diagnostic modalities are increasingly recognized for their performance in predicting muscle invasion and staging of bladder cancer. MRI has mainly been found to play a crucial role in the early localization and invasive diagnosis of BC. T2-weighted imaging(T2WI) is able to illustrate detailed structural information of the lesion and bladder wall, thus potentially reflecting the depth of invasion of the bladder wall of BC. The low signal line of the detrusor muscle is interrupted by MIBC, whereas the detrusor muscle is complete in NMIBC. Diffusion Weighted Imaging(DWI) and Apparent Diffusion Coefficient(ADC) have a good ability to reflect signal intensity differences between muscle, peritumoral inflammation and fibrosis (23, 24). The significance of dynamic contrast enhanced MRI(DCE-MRI) in assessing tumor aggressiveness depends on the neoangiogenesis of the tumor, which is an important factor in tumor growth; the more neovascularization there is, the higher the tumor stage and grade (25). In studies on dynamic enhancement sequences, the tumor, bladder mucosa and submucosa show early enhancement, but the bladder wall muscle maintains its low signal and delays enhancement. As early as 2000, Hayashi et al. observed that image signs of submucosal linear enhancement (SLE) at the base of the tumor were frequently seen on DCE images of NMIBC patients (26). This discovery is unquestionably a watershed moment in imaging-based BC staging and muscle-invasive status (MIS) diagnosis. Takeuchi et al (27) followed up by reporting an important feature found in most NMIBC on DWI, the tumor stalk, which improved the accuracy and robustness of imaging-based BC staging and MIS diagnosis. The accuracy of staging based on tumor stalk was 91.3% in Wang et al. study, while the accuracy of SLE staging was 91.3% (23). Panebianco et al (28) proposed Vesical Imaging-Reporting and Data System (VI-RADS) to quantify these signs on Multi-Parametric Magnetic Resonance Imaging (mpMRI) and to standardize the diagnostic procedure for image-based MIS prediction based on these features. This scoring system has effective diagnostic performance. In the Ueno et al. study, for example, the combined area under the curve(AUC) of five radiologists diagnosing MIBC was as high as 0.90 (29). Another prospective study also demonstrated the high diagnostic reliability of the VI-RADS score (AUC value of 0.94), especially for scores 1-2 and 3-5 (sensitivity 91.9%, 95%; specificity 91.1%, 95%) (30). The VI-RADS scoring method relies on expert visual perception judgment, yet it is still semi-qualitative. As a result, research into the objective and accurate radiomic detection of bladder cancer muscle invasion is required.



4.2 Radiomics

Radiomics is a relatively young concept, and Prof. Lambin originally described it in 2012 (31). Radiomics refers to the high-throughput extraction of image features from the region of interest (ROI) of radiological imaging techniques (CT, MR, but also PET, etc.) for automated analysis, using machine and deep learning techniques to extract critical information for accurate quantitative assessment of lesions, and ultimately for aiding in the diagnosis, classification, or grading of diseases. Radiomics inherits the technological benefits of reproducible, non-invasive radiological imaging over biopsy, making patient status monitoring and prognosis safer and more reliable.

Radiomics techniques can be classified into two groups: those using manual radiomics features and those using deep learning radiomics (32, 33) Traditional manual radiomics has the following four main processing tasks: image acquisition and preprocessing; image segmentation; feature extraction and quantification; and model building. The difference is that segmentation is not a necessity in the automated radiomics pipeline (33).. Radiomics has been increasingly studied in medical field for lung cancer, breast cancer, glioma, prostate cancer and other disorders (34–37). One of the current topics in bladder cancer research is the radiomics prediction of MIBC.

The pertinent radiomics literature is described below in terms of modality selection, volumes of interest (VOIs) segmentation, feature selection, model construction, and integration of clinical features, respectively.


4.2.1 Input modality

It mainly based on enhanced CT, MRI, with MRI accounting for (8/12) of the included literature. Since CT is weaker than MRI in discriminating soft tissues and the borders and bases of lesions are rarely distinguishable in discriminating MIS (38), there is a greater preference for MRI, mainly around T2WI, DWI and ADC and DCE sequences. In 2017, Garapati (11) and Xu et al. (12)established a precedent for using radiomics to predict MIS using CT and MRI, respectively, and inspired readers to combine additional MRI sequences to improve the possibility of differentiation task performance. As a result, extensive research on the precise differentiation of NMIBC and MIBC using radiomic methods with multi-parametric MRI images started to be conducted. Xu et al. obtained mean accuracies of 79.63%, 81.37%, and 91.22% for T2WI, DWI, and the combined of both sequences, with AUCs of 0.8828, 0.8884, and 0.9756, respectively (14). The superiority of DWI sequences over T2WI sequences in reflecting heterogeneous differences between NMIBC and MIBC (14, 16) has been repeatedly demonstrated. This might be because muscle-infiltrating tumors have a propensity to impede water molecule diffusion by shrinking extracellular space (39–41), which is better captured by DWI and the related ADC maps. And multi-sequence MRI was more helpful to predict the muscle invasion condition of BC preoperatively compared with single sequence T2WI and DWI, which was consistent with previous knowledge.



4.2.2 Volumes of interest segmentation

The three basic methods of delineating the area of interest are manual, semi-automated, and automatic. Even with computerized techniques, radiologists still need to examine and manually adjust them to assure the correctness of ROI descriptions because the majority of them are still primarily manual, which takes time and is tiresome. Initially, academics mostly concentrated on the overall tumor volume. As research developed, it was generally acknowledged that the information in the region around the tumor also held a lot of relevant information. The body of literature suggests that the determination of muscle invasiveness is related to bladder tumors as well as the tumor’s base (15) and adjacent bladder tissue (13). In addition, most of the relevant experiments have been conducted so far at the 3D level. Compared to 2D system analysis, 3D has higher precision and AUC (95.24% and 0.9864 vs. 92.86% and 0.9705) (18) which reflects the importance of 3D processing as it provides a comprehensive BC assessment with full descriptive information and details.



4.2.3 Feature extraction and quantization

Currently, there are mainly shape and intensity features based on histogram, texture features including gray level co-occurrence matrix (GLCM), gray Level run length matrix (GLRLM), gray-level size zone matrix (GLSZM), gray level dependence matrix (GLDM), neighborhood gray-tone difference matrix (NGTDM), and higher-order feature wavelet features. The global, local and regional distribution features of image grayscale can be comprehensively described. Although there are a large number of features available for analysis, redundancy of features can seriously affect prediction performance. So feature selection is essential for developing optimal prediction models. Combined with other advanced selection strategies for statistical analysis, such as support vector machine (SVM)-based recursive feature elimination (SVM-RFE), the least absolute shrinkage and selection operator

(LASSO), max-relevance and min-redundancy(mRMR), these methods are widely used to reduce the impact of feature redundancy, and other methods such as Boruta are also used. After feature selection, Xu et al. found that the run length matrix (RLM) features accounted for a greater proportion of 13/19 in the optimal subset (14), better reflecting the regional heterogeneity differences between NMIBC and MIBC. The Co-occurrence matrices(CM), RLM and GLSZM features were found to be favorable feature classes for predicting BCa muscle invasion condition by Wang et al. (16).



4.2.4 Model construction

Different machine learning classifiers can be employed with the chosen features to create predictive models. Classifiers that are typically used include LASSO, SVM, random forest (RF), logistic regression, etc. Convolutional neural networks (CNN) are the most commonly used artificial neural networks for deep learning. SVM-RFE was the most commonly used machine learning method (7/12), among all the methods used for the classification task. Table 2 demonstrates how different models’ prediction efficacy varies. NN, SVM, and RF classifier diagnostic performance were tested by Hammouda et al. in descending order (18). Garapati et al. observed that the AUC for morphological and texture features was roughly 0.90 (11); for various other mri-based radiomics models, the AUC ranged from 0.87 to 0.98 (14–17). However, all of the preceding experiments have the disadvantage of lacking independent external validation, so the true validity of the diagnostic performance of these models must be confirmed further. In contrast, so far, the prediction model developed by Zhang et al. is the only experiment with external validation results. But the AUC (0.791-0.936) of the study by Zhang et al. was slightly lower (19). This may be the risk of misclassification of some models influenced by tumor size, which may lead to a decrease in the diagnostic performance of the model, and therefore tumor size is one of the critical features to determine the muscle invasion condition of BC.


Table 2 | Radiomic characteristics of studies included in the systematic review.





4.2.5 Integration of other clinical factors

It has become a trend to include clinical risk factors in the prediction model in order to better predict MIS and improve clinical diagnostic performance and application value. These include tumor size (15), tumor stalk (16), proteinuria and multiple sclerosis (21), as well as VI-RADS (20) and TURBT (14).The radiomic model incorporating clinical factors performed significantly better than the conventional MRI examination and simply radiomic model in terms of calibration and discrimination. Radiomic-clinical nomogram can be used as a reliable and non-invasive adjunct to differentiate MIBC from NMIBC preoperatively (15).



4.2.6 Method for validating results

83.3 percent (10/12) of the retrieved literature were single-center studies (11–15, 17, 18, 20–22), and the internal validation method was primarily used for model validation. Only two paper performing external validation of the results (16, 19). Because of the lack of externally validated results, the reliability of the remaining articles’ results in terms of diagnostic efficacy is questionable. The sensitivity, specificity, and AUC of the internal validation cohort in Zhang’s prediction model were 0.733, 0.810, and 0.861, respectively, while those of the external validation cohort were 0.710, 0.773, and 0.791, respectively (19).





5 Future and prospects

Of these 12 studies, all were retrospective, subject to selection bias and prone to data loss. Because the sample size was insufficient, cross-validation was essentially required to make up for it. Additionally, only two of the results were externally validated using radiomics models, with the rest being single-center, internally validated results that were not convincing. The current radiomics models are mainly based on single-modality or dual-modality MRI, and there is no multi-modality study combining the three sequences of “T2WI, DWI and DCE”, which needs to be further validated to improve the differentiation performance. Therefore, investigations should be planned in a more thorough and subtle manner for a variety of therapeutic applications to increase the reliability of the results. To completely understand the diagnostic usefulness of machine learning in predicting MIBC, more prospective multi-center and various machine trials will be required in the future. In addition, for future optimization of this new approach, more studies are needed to test the potential of optimizing predictive models by combining imaging biomarkers with other non-imaging biomarkers, such as urine and serum biomarkers. Although there have been significant advances in a number of studies, from fundamental tumor identification to precise staging and grading, recent research has also been gradually moving toward the prediction of treatment outcomes. The needs of the clinical market can no longer be met by illness diagnosis alone. After a bladder cancer diagnosis, increasing focus will be placed on how well machine learning predicts the response to treatment and prognosis outcome of the disease In the future.
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Objective

The aim of this study was to develop a predictive model to improve the accuracy of prostate cancer (PCa) detection in patients with prostate specific antigen (PSA) levels ≤20 ng/mL at the initial puncture biopsy.



Methods

A total of 146 patients (46 with Pca, 31.5%) with PSA ≤20 ng/mL who had undergone transrectal ultrasound-guided 12+X prostate puncture biopsy with clear pathological results at the First Affiliated Hospital of Guangxi Medical University (November 2015 to December 2021) were retrospectively evaluated. The validation group was 116 patients drawn from Changhai Hospital(52 with Pca, 44.8%). Age, body mass index (BMI), serum PSA, PSA-derived indices, several peripheral blood biomarkers, and ultrasound findings were considered as predictive factors and were analyzed by logistic regression. Significant predictors (P < 0.05) were included in five machine learning algorithm models. The performance of the models was evaluated by receiver operating characteristic curves. Decision curve analysis (DCA) was performed to estimate the clinical utility of the models. Ten-fold cross-validation was applied in the training process.



Results

Prostate-specific antigen density, alanine transaminase-to-aspartate transaminase ratio, BMI, and urine red blood cell levels were identified as independent predictors for the differential diagnosis of PCa according to multivariate logistic regression analysis. The RandomForest model exhibited the best predictive performance and had the highest net benefit when compared with the other algorithms, with an area under the curve of 0.871. In addition, DCA had the highest net benefit across the whole range of cut-off points examined.



Conclusion

The RandomForest-based model generated showed good prediction ability for the risk of PCa. Thus, this model could help urologists in the treatment decision-making process.





Keywords: prostate cancer, prostate-specific antigen, diagnosis, machine learning, predictive model, real-world study



Introduction

Prostate cancer (PCa) remains the most common malignancy in men. According to the latest cancer statistics published in 2022, PCa accounts for 27% of newly diagnosed malignancies in males, and is also the second leading cause of death among men with cancer (1). Serum total prostate-specific antigen (tPSA) is a specific tumor biomarker of PCa in the clinical setting. It has high tissue specificity, but is also associated with missed diagnoses and misdiagnoses (2, 3). A variety of benign diseases of the prostate, including benign prostatic hyperplasia and prostatitis, can lead to elevated serum tPSA levels (4, 5). In particular, tPSA levels in the range of 4 to 20 ng/mL are associated with a PCa incidence of less than 25%. In addition, patients with serum tPSA levels ≤4 ng/mL still carry the risk of PCa, and the detection rate in these patients may reach up to 20% (6, 7). Prostate puncture biopsy is currently the standard modality for diagnosing PCa, but as an invasive procedure, it carries a risk of infection. Moreover, the PCa detection rates on initial prostate puncture biopsies range from 23% to 42%. These limitations have greatly restricted its clinical use (8–11).

Given the limitations of the currently used diagnostic methods, a large number of studies are currently devoted to identifying new predictors of PCa. For example, PSA-derived indices, such as free-to-total PSA (F/T) values and prostate-specific antigen density (PSAD), have been found to exhibit greater diagnostic accuracy than PSA alone (12–14). In addition, several inflammatory and neurotrophic markers, including neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, monocyte-to-lymphocyte ratio (15, 16), gamma-glutamyl transpeptidase-to-lymphocyte count ratio (17, 18), red cell distribution width-to-platelet ratio (19, 20), and alanine transaminase-to-aspartate transaminase ratio (21, 22), have previously been shown to have predictive value not only as inflammatory markers but also as indicators for the diagnosis and prognosis of malignancies. To date, studies focusing on the role of these composite indicators in the differential diagnosis of PCa are limited.

Machine learning (ML), as an important branch of artificial intelligence, can continuously optimize the performance of predictive or diagnostic models by learning and analyzing data, and can handle non-linear relationships better than traditional statistical scores. As a result, ML-based models have great potential for the diagnosis and prognosis of diseases (23–25). Therefore, our goal was to develop a new decision-support ML model based on real-world data for diagnosing PCa in patients with PSA levels ≤20 ng/mL.



Materials and methods


Ethics statement

This study was approved by the institutional review board of the First Affiliated Hospital of Guangxi Medical University. Written informed consent was obtained from all patients for the storage of their information for the purpose of research. All the research procedures were conducted in accordance with the Declaration of Helsinki.



Data collection

Data from patients with PCa or benign prostatic hyperplasia who underwent systematic prostate puncture biopsy at our hospital between November 2015 and December 2021 were collected and retrospectively analyzed. We included adult patients with tPSA levels ≤20 ng/ml who underwent transrectal ultrasound (TRUS)-guided prostate puncture biopsy for at least systemic 12 cores with clear pathological results. The exclusion criteria were (1) a history of prostate cancer, prostate surgery, or 5-alpha-reductase inhibitor/drug for the treatment of endocrine dyscrasia in prostate cancer; (2) a diagnosis of prostatitis; (3) digital rectal examination (DRE), transrectal ultrasonography, or cystoscopy within two weeks before PSA detection (as these examinations may affect serum PSA levels); and (4) missing hematological data prior to puncture biopsy. Serum PSA concentrations (tPSA and fPSA) were measured before DRE and TRUS by enzyme-linked immunoassay. Prostate volume (PV) was calculated using the following formula:

PV = 0.52 × anterior/posterior diameter (cm) × left/right diameter (cm) × upper/lower diameter (cm)

TRUS was performed by experienced ultrasonologists.



Statistical analysis

Continuous variables were converted into categorical variables. The optimum cutoff values obtained from ROC curve analysis were determined by maximizing the Youden index. Logistic regression analysis was applied to calculate the odds ratio (OR) with 95% confidence interval (CI). P < 0.05 was considered to indicate statistical significance. We used five different ML algorithms to analyze our data: logistic regression (LR), XGBoost (XGB), RandomForest (RF), multilayer perceptron (MLP), and k-nearest neighbor (kNN). After training, the model with the highest average AUC was chosen as the best algorithm. Furthermore, the ML-based model was tuned to avoid overfitting, and the accuracy of the algorithm was tested using the ten-fold cross-validation method. All variables were tested for Spearman correlations, and the results are presented as a heat map.




Results


Demographic features

A total of 146 eligible patients were included in this study. The optimal cut-off value of tPSA was 8.47 ng/mL, and the optimal cut-off value of BMI was 23.6 kg/m2. The detailed clinical characteristics of all the patients are presented in Table 1. Among the evaluated clinical characteristics, PSA, F/T, BMI, alanine transaminase-to-aspartate transaminase ratio (LSR), red cell volume distribution width (RDW), alkaline phosphatase (ALP), and urine RBC level were correlated with the risk of PCa. Based on the correlation heat map (Figure 1), eight highly correlated features were chosen as predictors. Weight is inextricably linked to BMI and, to a lesser degree, height. Therefore, we used BMI instead of height or weight, since it is a better indicator of obesity. The external validation cohort was screened based on inclusion and exclusion criteria consistent with the training cohort. Most of the externally validated variables did not differ statistically from the training cohort.


Table 1 | Clinical characteristics of patients in the training cohort.






Figure 1 | Heat map depicting the correlations between the examined variables.





Univariate and multivariate logistic regression analyses

According to univariate logistic regression analysis (Table 2), tPSA, PSAD, F/T, BMI, LSR, RDW, and blood glucose level were significant predictors of the occurrence of PCa in the overall population (P > 0.05). PSA and PSAD are significantly correlated, and the univariate analysis indicated that PSAD was more statistically significant as a predictor than PSA. Therefore, we only included PSAD in the multivariate analysis. The significant characteristics identified from the univariate analysis above were included in multivariate logistic regression analysis (Table 3). The odds ratios (ORs) calculated indicated the relative risk of PCa. The results showed that PSAD (OR = 11.539, 95% CI = 4.388–33.993), LSR (OR = 0.189, 95% CI = 0.059–0.561), BMI (OR = 2.638, 95% CI = 1.067–6.871), and urine RBC level (OR = 0.136, 95% CI = 0.018–0.620) were independent predictors of PCa. In addition, ALP (OR = 6.00, 95% CI = 1.052–34.212) was also identified as a significant independent predictor (P = 0.044) in univariate logistic regression analysis, but it was not included in further analysis as there were too many missing values (n = 31), Supplementary  Tables 2, 3.


Table 2 | Univariate logistic regression in the differential diagnosis of prostate cancer in the whole data cohort.




Table 3 | Multivariate logistic regression in the differential diagnosis of prostate cancer in the whole data cohort.





Performance of ML algorithms

To compare the predictive performance of the six ML algorithm models, ten-fold cross validation and decision curve analysis was applied (Figure 2). As shown in the figure, the RF model exhibited the best performance in the differential diagnosis of PCa, with an average AUC of 0.871 (95% CI = 0.808–0.933). The ML algorithm-based models outperformed PSA and its derivatives F/T and PSAD individually by a significant margin (AUC of PSA = 0.589, AUC of F/T = 0.599, AUC of PSAD = 0.737). Therefore, the RF model was finally regarded as the preferred prediction model. In the external validation group (Figure 3), RF (AUC = 0.780, 95% CI = 0.691–0.869), LR (AUC = 0.781, 95% CI = 0.692–0.871) and XGB (AUC = 0.780; 95% CI = 0.692–0.868) showed good AUC values of 0.780. Based on the findings for the training cohort and the external validation cohort together, we finally choose the RF algorithm model as the best model and used it for further analysis.




Figure 2 | ROC and decision curve analyses of the five ML algorithms. (A–F) ROC curve analysis of a ten-fold cross-validation of five machine learning algorithms for predicting the risk of PCa in the training cohort. (G) Decision curve analysis demonstrating the net benefit associated with the use of the models for the prediction of upstaging.






Figure 3 | ROC curve analysis of five machine learning algorithms for predicting the risk of PCa in the external cohort.





Relative importance of the analyzed variables

The importance of the included features based on the RF algorithm differed from each other, and PSAD was identified as the most important variable. They were arranged as follows in descending order of importance: PSAD, LSR, urine RBC level, and BMI (Figure 4).




Figure 4 | Analysis of the RF model. (A) Importance of the variables included in the RF model in the training cohort. (B) Learning curves of the RF model in the training cohort.






Discussion

One of the main topics of research on urological prostate cancer is the improvement of prediction accuracy before prostate puncture biopsy in order to reduce unnecessary patient pain without compromising on early intervention in patients with a confirmed diagnosis. The study variables included in this study were non-invasive, and data on these variables were readily available prior to biopsy. Therefore, obtaining the data for these variables did not involve any unduly demanding conditions or excessive medical overhead. Previous studies have mostly been limited to PSA and its derivatives, and there are not enough studies on the differential value of other inflammatory markers (26–28). Further, the currently used prediction nomogram based on the conventional algorithm also has room for further improvement.

The clinical application of ML algorithms may facilitate a paradigm shift in the medical field, as these algorithms are efficient, objective, and reproducible when it comes to large amounts of nonlinear data (24, 29–32). They also have the potential to improve the quality of early diagnosis, identify disease progression, and increase the likelihood of predicting patient-specific outcomes (25, 33, 34). These advantages can facilitate the sharing of information for decision-making between clinicians and patients and promote efficient planning and visualization of the use of healthcare services. In addition, the model can be actively retrained over time to continuously improve its own predictive accuracy.

The AUC value of our RF algorithm was 0.871 in the training cohort, and this value is significantly higher than the individual AUC values of PSA (AUC = 0.589), F/T PSA (AUC = 0.599), and PSAD (AUC = 0.737). The RF-based model performed well in the external validation cohort, with an AUC value of 0.78, a sensitivity of 0.712, and a specificity of 0.85. Decision curve analysis was used to validate the efficacy and potential benefits of our novel model. This ML-based model can be used as a screening tool for prostate biopsy and has the potential to avoid missed diagnosis of PCa. Four independent predictors for PCa diagnosis were identified in our analysis: PSAD, BMI, LSR, and urine RBC level. Previous studies have suggested that obese patients have a higher risk of developing prostate cancer. This is probably because periprostatic fat is biologically active and can secrete factors that promote cancer growth. However, it is unclear whether reversing obesity can mitigate the progression of prostate cancer (35–38). The presence of a visible hematuria is a common sign of prostatic disease. We believe that urine RBC level emerged as a predictive factor in this study because there was a high percentage of patients with benign lesions, and prostatic hyperplasia is associated with a lower incidence of urinary tract symptoms. Difficulty in urination can cause damage to the microvasculature of the urinary system, and this can manifest as urine occult blood. In contrast, PCa in its early clinical stage is often insidious, and most patients only seek treatment when elevated PSA is detected during routine physical examination. In previous studies, LSR has been applied in the evaluation of gestational diabetes (21), diagnosis of cirrhosis (22), and prognosis of different cancers (39, 40). The levels of alanine aminotransferase and aspartate aminotransferase may be affected by obesity (41, 42), and fluctuations in these two indicators may influence the diagnosis of PCa in a similar way that BMI influences PCa. Although ALP was not further analyzed in the current study due to missing data, ALP may still be a promising indicator for the diagnosis of prostate cancer. Further, it has been suggested that prostate cancer may exhibit overexpression of tumor-derived ALP, but this needs to be validated in further studies (43)

Our study has several limitations. First, the small sample size may affect the conclusions of the statistical analysis. Second, our study was a single-center retrospective analysis, so there is a possibility of a selection bias that may have affected the accuracy of our model. Future external validation is needed to assess the clinical application of our ML model by using data from other institutions. Finally, some meaningful indicators may not have been included in our analysis because of the absence of some hematological data, and this may have affected the efficacy of the model. Therefore, these findings need to be confirmed in future investigations on larger patient samples.



Conclusion

We established an efficient ML model for the differential diagnosis of PCa. Our model exhibited excellent predictive accuracy and practical clinical utility, and may help guide the decision-making process of the urologist, avoid unnecessary prostate puncture biopsy, and increase the detection rate of PCa.
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Objective

To build a machine learning (ML) prediction model for prostate cancer (PCa) from transrectal ultrasound video clips of the whole prostate gland, diagnostic performance was compared with magnetic resonance imaging (MRI).



Methods

We systematically collated data from 501 patients—276 with prostate cancer and 225 with benign lesions. From a final selection of 231 patients (118 with prostate cancer and 113 with benign lesions), we randomly chose 170 for the purpose of training and validating a machine learning model, while using the remaining 61 to test a derived model. We extracted 851 features from ultrasound video clips. After dimensionality reduction with the least absolute shrinkage and selection operator (LASSO) regression, 14 features were finally selected and the support vector machine (SVM) and random forest (RF) algorithms were used to establish radiomics models based on those features. In addition, we creatively proposed a machine learning models aided diagnosis algorithm (MLAD) composed of SVM, RF, and radiologists’ diagnosis based on MRI to evaluate the performance of ML models in computer-aided diagnosis (CAD). We evaluated the area under the curve (AUC) as well as the sensitivity, specificity, and precision of the ML models and radiologists’ diagnosis based on MRI by employing receiver operator characteristic curve (ROC) analysis.



Results

The AUC, sensitivity, specificity, and precision of the SVM in the diagnosis of PCa in the validation set and the test set were 0.78, 63%, 80%; 0.75, 65%, and 67%, respectively. Additionally, the SVM model was found to be superior to senior radiologists’ (SR, more than 10 years of experience) diagnosis based on MRI (AUC, 0.78 vs. 0.75 in the validation set and 0.75 vs. 0.72 in the test set), and the difference was statistically significant (p< 0.05).



Conclusion

The prediction model constructed by the ML algorithm has good diagnostic efficiency for prostate cancer. The SVM model’s diagnostic efficiency is superior to that of MRI, as it has a more focused application value. Overall, these prediction models can aid radiologists in making better diagnoses.
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Introduction

Prostate cancer (PCa) is one of the most common cancers in males, and its prevalence has increased at an alarming rate over the last several decades (1). According to GLOBOCAN 2020, in 2020 there were approximately 1,414,259 new cases of PCa and 375,304 PCa-related deaths worldwide, with a particularly high prevalence in developed countries (2). The early clinical manifestations of prostate cancer are sufficiently nonspecific that patients often ignore it in its early phases and therefore only seek treatment when it has already developed. Therefore, early diagnosis of PCa is crucial. Prostate-specific antigen (PSA) testing, digital rectal examinations (DRE), and transrectal ultrasonography (TRUS) guided prostate system biopsies are the most used PCa screening methods in clinics (3, 4), but these diagnostic tools may still lead to a certain degree of overdiagnosis (5).

In the past decade, the role of MRI in the diagnosis of prostate cancer stages has significantly developed. The introduction of coil imaging in the rectum and the advent of some basic techniques, such as magnetic resonance spectrum imaging, dynamic contrast-enhanced MRI, and diffusion-weighted imaging (DWI), have improved the diagnostic accuracy of MRI and its potential to improve the treatment decision-making process (6). However, it must be emphasized that multiparametric magnetic resonance imaging (mpMRI) has been evaluated only in patients in whom the risk of clinically significant PCa was judged sufficiently high to warrant biopsy. Therefore, a prebiopsy mpMRI must not be used as an initial screening tool. Indeed, based on its low specificity, mpMRI in very low-risk patients would result in an increase in false-positive findings and subsequent unnecessary biopsies (5). Another classical imaging diagnosis of PCa has largely relied on ultrasonography (US), including transrectal ultrasound (TRUS), contrast-enhanced ultrasonography (7), and ultrasound elastography (8). However, sonologists’ evaluations of tumor tissue have primarily relied on semantic features from the visual perspective, which is an approach that misses many image features that represent tumor heterogeneity. Therefore, early accurate diagnosis of prostate cancer remains a clinical challenge.

As a new frontier, ML-based radiomics could extract many quantitative features from encrypted digital images, which could then be used to deeply mine the biological information of tumors and analyze the heterogeneity of tumors, thus aiding clinical decision making (9). However, it has been reported that the ML ultrasound diagnostic model is rarely used to evaluate PCa because prostate cancers located in the central zone are often difficult to detect visually—they are confused with the hypoechoic endoglandular background tissue. Plus, the application of ML methods on prostate cancer prediction is mostly based on static transrectal images, which cannot fully display the patient's tissue information, meaning that the application of ML methods for prostate cancer prediction based on transrectal video clips remains problematic.

Accordingly, we adopted ML models based on whole prostate transrectal ultrasound video clips on PCa prediction. The ML algorithms were better at forming predictions because they could use the ultrasound video clips to make a prediction based on global information from whole prostate transrectal tissue. To test the performance of the ML algorithms, we compared their diagnostic results with radiologists’ diagnosis based on MRI, finding that the SVM algorithm adopted in this paper had better performance in terms of PCa prediction. In addition, we creatively proposed a machine learning models aided diagnosis algorithm (MLAD) to evaluate the performance of ML models in computer-aided diagnosis (CAD).



Materials and methods

Local ethics committees approved the study (2022-YX-047).


Study participants

We obtained the ultrasound video clips data from Dongyang Hospital, which is affiliated with Wenzhou Medical University. From January 2021 to December 2021, we recruited 276 patients with PCa and 225 patients with benign lesions of the prostate, which included benign prostatic hyperplasia, fibromuscular tissue, atypical glandular tissue, and chronic prostatitis.

The inclusion criteria were as follows: (a) was an elderly male (aged above 55); (b) had solid prostate masses found by digital rectal examination, TRUS, or MRI; (c) had undergone prostate biopsy or surgery and obtained the pathological diagnosis results; and (d) had not received treatment for prostate diseases before TRUS. In addition, we excluded patients with rectal malformation or rectal surgery who could not be examined by transrectal ultrasound.

Finally, of the 231 patients—113 having PCa and 118 benign lesions—we randomly selected 170 for the purpose of training and validating an ML model, while using the remaining 61 to test derived models. The processes underlying the inclusion and exclusion of study participants are shown in Figure 1.




Figure 1 | The flowchart of inclusion and exclusion of the study population.





Video clips acquisition

We collected all ultrasound data related to the prostate using the Esaote MyLab™ ClassC ultrasound machine (Esaote, Genoa, Italy) with the TRT33 Transrectal Biplane Transducer (frequency range 3–13MHz). Four sonologists, each with over ten years of experience in transrectal ultrasound, performed all ultrasound scans. First, they placed a condom on the TRT33 probe, then inserted it into the rectum, adjusted the probe depth, and rotated the probe for multidirectional prostate examination. Second, they scanned the entire transverse section of the prostate grayscale ultrasound, before scanning the prostate from top to bottom and storing 10 seconds of video clips.



Manual segmentation

For manual segmentation, we loaded the video clips into the 3D Slicer v.4.11. Two sonologists (S1 and S2, each with more than five years of TRUS prostate diagnosis experience) manually segmented the region of interest (ROI) from the prostate. They were blinded to the MRI and pathological results. We drew the entire prostate gland as an ROI from every video frame and used intra- and inter-class correlation coefficients (ICCs) to evaluate the reproducibility of radiomics feature extraction. First, S1 and S2 separately segmented video clips of 30 randomly selected patients, and then, two weeks later, S2 segmented images of the 30 patients once more. After that, S1 performed the remaining video clip segmentation. We only included the features with an ICC value equal to or higher than 0.8 that indicated excellent reproducibility in the other feature selection process.



Feature extraction and selection

We performed extractions of radiomics features by using a radiomics extension of a 3D Slicer software, SlicerRadomics (Version 3.0.1) (10). For this, we extracted 851 radiomics features from each patient, including shape features (14), first-order statistical features (18), gray-level co-occurrence matrix features (24), gray-level dependence matrix features (14), gray-level run-length matrix features (16), gray-level size zone matrix features (16), neighborhood gray-tone difference matrix features (5), and wavelet-based features (744).

We performed feature selection using programs written in Python (Version 3.8.8, Python Software Foundation). First, according to pathological results, we divided all data into benign and malignant groups and inserted labels 0 and 1 into the data. Second, we used the two independent samples t-test and Mann-Whitney U test to test all the features, before deleting the features in the benign and malignant groups that failed to meet either of the first two tests. Third, the least absolute shrinkage and selection operator (LASSO) regression selected features in the training and validation set. We excluded the features with zero variance using the variance filtering method. Fourth, we performed the LASSO method for further dimensionality reduction of the features and selected the most valuable features (11). We then repeated the 10-fold cross-validation on training and validation set process 100,000 times to obtain the optimal value of parameter λ, which we introduced into the LASSO method to calculate the regression coefficients of each feature. Finally, we selected the features with non-zero coefficients.



Machine learning

Python scikit-learn 0.24.2 package (12) was used to support vector machine modeling and evaluation. We randomly divided the training and validation set into the training set and the validation set at a ratio of 8:2. First, we used a Gaussian kernel support vector machine (SVM) model and a random forest (RF) model to classify features in the training set and established two nonlinear classifiers. In the SVM classifier, kernel size parameters (γ, gamma) and regularization parameters (C, cost) of the SVM kernel function were optimized. We then selected the parameters with the best performance through 10-fold cross-validation on the training set. In the RF classifier, the number of estimators (n_estimator) was optimized through 10-fold cross-validation on the training set. Finally, we applied the SVM model and RF model to the validation set and test set.



MRI results collection

Participants underwent prostate MRIs with a 1.5T Siemens Magnetom Avanto magnetic resonance scanner (Erlangen, Germany), including the standard T2-weighted MRI, T1-weighted MRI, and diffusion-weighted MRI. We included the MRI results of the validation and test set in the analysis. Two junior radiologists (each with less than 5 years of experience) and two senior radiologists (each with more than 10 years of experience) reviewed each case in order to provide an independent diagnosis.



Machine learning models aided diagnosis algorithm

Using the SVM model and RF model, we can obtain the probabilities of PCa separately. To evaluate the performance of ML models in CAD, we proposed a machine learning models aided diagnosis algorithm (MLAD) (Equation 1) which integrates the prediction performance of SVM, RF, and radiologists’ diagnosis. In this algorithm, we chose SVM as the main model and RF as the sub model.

 

PSVM: probability of PCa from SVM model; PRF: probability of PCa from RF model; VR: result value of PCa from radiologists’ diagnosis (0: benign, 1: malignant); SSVM: prediction confidence score of SVM; SRF: prediction confidence score of RF



Statistical analysis

We used SPSS 25.0 software to conduct a statistical analysis and tested the normality of continuous variables using the Levene test. We analyzed continuous variables obeying a normal distribution by using the independent samples t-test and analyzed those not obeying a normal distribution by using the Mann-Whitney U test. We then compared categorical variables using the chi-square test. Unless otherwise specified, we expressed the continuous variables as median (standard deviation, SD) and the categorical variables as n (%). We also evaluated the area under the curve (AUC) as well as the sensitivity, specificity, and precision of the SVM model and MRI in diagnosing prostate cancer by employing receiver operator characteristic curve (ROC) analysis. P< 0.05 indicated a significant difference. The overall flowchart of the study is outlined in Figure 2.




Figure 2 | Overall flow chart of the study, including image acquisition and segmentation, feature extraction, feature selection, machine learning, and evaluation.






Results


Clinicopathological features of the patients

The clinicopathological features in the training set, validation set, and test set are shown in Table 1. The average ages of patients in the training set, validation set, and test set were 72.02, 71.21, and 69.64, respectively, while the respective mean PSA values were 19.91, 22.77, and 46.98. The number of benign lesions were 83 (48.8%), 15 (44.1%), and 30 (49.2%). The number of PCa were 87 (51.2%), 19 (55.9%), and 31 (50.8%). We found no significant differences between the validation and test set in terms of age, PSA, or pathological results (p > 0.05).


Table 1 | Characteristics of patients in the training, validation and test datasets.





Feature selection

From each patient, we extracted 851 features from the ultrasound video clips using the LASSO regression model in the training set. In the LASSO model, we repeated the 10-fold cross-validation process 100,000 times in order to generate the optimal penalization coefficient lambda (λ).

Finally, we chose a λ value of 0.029470517025518096. After dimensionality reduction with LASSO regression, 14 features were selected, consisting of original (3) and wavelet features (11). The subset of features ultimately selected by the LASSO algorithm is shown in Table 2. Figure 3, meanwhile, shows the selection of significant parameters in features in the training set and the definition of the linear predictor, while Figure 4 shows the generation of the optimal penalization coefficient lambda.


Table 2 | The subset of radiomics features ultimately selected by the LASSO algorithm.






Figure 3 | Selection of significant parameters in features in the training set and definition of the linear predictor. (A) Spearman’s correlation coefficients were calculated for the fourteen selected features. (B) Characters classification weight of the features.






Figure 4 | Generation of the optimal penalization coefficient lambda. (A) Ten-time cross-validation for tuning parameter selection in the LASSO model. (B) LASSO coefficient solution path for the 14 features.





Modeling and effectiveness

We first selected the SVM algorithm to establish the radiomics model based on the selected 14 features. Traditionally, the prediction performance has been optimized for the following parameters: C, gamma, and the shape of the kernel. We then constructed a pipeline with two steps: a scaling step and an SVM step. It is best to scale data before passing them to an SVM. Next, we varied the relevant RBF parameters, C and gamma, logarithmically, varying by one order of magnitude at a time. We used a 10-fold cross-validation scheme. Finally, we identified the best SVM estimator (C=45.20, gamma=0.001) and stored it as an SVM model. As with the SVM model, in the RF algorithm, we varied the number of estimators by one order of magnitude at a time in order to obtain the best RF model (n_estimators=10000). The AUC, sensitivity, specificity, and precision of the SVM and RF model in the diagnosis of PCa in the validation set and the test set were as follows: (1) SVM results: 0.78, 63% (95%CI: 0.38–0.83), 80% (95%CI: 0.51–0.95), 80% (0.51–0.95); 0.75, 65% (95%CI: 0.45–0.80), 67% (95%CI: 0.47–0.82), 67% (95%CI: 0.47–0.82); (2) RF results: 0.77, 63% (95%CI: 0.39–0.83), 87% (95%CI: 0.58–0.98), 86% (95%CI: 0.56–0.97); 0.69, 45% (95%CI: 0.28–0.64), 93% (95%CI: 0.76–0.99), 88% (95%CI: 0.60–0.98). For comparison, two junior radiologists (each with less than 5 years of experience) and two senior radiologists (each with more than 10 years of experience) respectively gave their independent diagnosis of PCa based on MRI results. The AUC, sensitivity, specificity, and precision of two radiologists in the diagnosis of PCa based on MRI were as follows: (1) JR results: 0.65, 63% (95%CI: 0.39–0.83), 67% (95%CI: 0.39–0.87), 71% (95%CI: 0.44–0.87); 0.65, 71% (95%CI: 0.52–0.85), 60% (95%CI: 0.41–0.77), 65% (95%CI: 0.46–0.80); (2) SR results: 0.75, 63% (95%CI: 0.39–0.83), 87% (95%CI: 0.58–0.98), 86% (95%CI: 0.56–0.97); 0.72, 61% (95%CI: 0.42–0.78), 83% (95%CI: 0.65–0.93), 0.79 (95%CI: 0.57–0.92) (Table 3). According to the statistical results, the SVM model was superior to radiologists’ diagnosis based on MRI (AUC, 0.78 vs. 0.65/0.75 and 0.75 vs. 0.65/0.72) (Figure 5), and the results of the SVM model and SR were statistically significant (p< 0.05). To evaluate the performance of ML models in CAD, we integrated the SVM model and RF model with JR and SR diagnosis through MLAD separately (SVM+RF+JR and SVM+RF+SR). The AUC, sensitivity, specificity, and precision of the MLAD model in the diagnosis of PCa in the validation set and the test set were as follows: (1) SVM+RF+JR: 0.8, 74% (95%CI: 0.49–0.90), 87% (95%CI: 0.58–0.98), 88% (95%CI: 0.60–0.98); 0.72, 68% (95%CI: 0.49, 0.83), 70% (95%CI: 0.50, 0.85), 70% (95%CI: 0.50, 0.85); (2) SVM+RF+SR: 0.86, 74% (95%CI: 0.49–0.90), 93% (95%CI: 0.66–0.99), 93% (95%CI: 0.66–0.99); 0.81, 81% (95%CI: 0.62, 0.92), 80% (95%CI: 0.61–0.92), 81% (95%CI: 0.62–0.92). According to the statistical results, the MLAD model with senior radiologists’ diagnosis (SVM+RF+SR) was superior to senior radiologists’ diagnosis based on MRI and the SVM model (AUC, 0.85 vs. 0.75/0.78 and 0.81 vs. 0.72/0.75) (Figure 5), and the results were statistically significant (p< 0.05). The results thus demonstrated that the SVM model and RF model can improve the predictive performance of PCa through MLAD.


Table 3 | Diagnostic performance of machine learning model and MRI on a per-lesion basis.






Figure 5 | Comparison of ROC between the ML models and MRI in the validation set and test set. (A) shows the ROC curves of the validation set. (B) shows the ROC curves of the test set. (MRI-JR: junior radiologists’ diagnosis based on MRI, MRI-SR: senior radiologists’ diagnosis based on MRI).






Discussion

ML-based radiomics transforms visual image information into in-depth feature quantitative data, extracts a large amount of image characteristic information from medical images, and constructs pre-measurement models based on feature information (13, 14). In this study, we carried out feature extraction of the prostate creatively from ultrasound video clips. The prediction model constructed by the ML algorithm has good diagnostic efficiency in PCa, and, compared with the SVM model with an MRI, the diagnostic efficiency is better and has a more specific application value.

TRUS is widely used in clinical practice because it is safe, radiation-free, inexpensive, and easy to perform (15, 16). The outline of the prostate is usually clearly displayed, and the boundary between the isoechoic peripheral and hypoechoic central zone is demarcated. Approximately 70% of PCa is located in the peripheral area, and most PCa is hypoechoic. However, tumors in the central location are often difficult to detect because they are confused with the low-echoic endoglandular background tissue. Thus, TRUS has only moderate accuracy in PCa detection in the general population (17). Therefore, we used the video clips of the prostate to serve as the feature extraction data in order to avoid losing a key portion of the information.

By extracting high-throughput data and establishing an efficient and stable prediction model, radiomics can provide an auxiliary diagnosis for clinical practice. Features selection is the key to ML research. However, data redundancy and over-fitting will occur if the high-throughput feature extraction is not selected (18–20). Jin et al. used the ML method to predict lymph node metastasis of early cervical cancer and extracted 106 imaging omics features from lymph node ultrasound images. Through a combination of LASSO and ridge regression, they selected the key features from the high-dimensional features to avoid overfitting. They then selected six features for classification research, which represented the texture complexity of tumors and correlated with the high degree of tumor heterogeneity (21). By contrast, in our study, we extracted a total of 851 features. We used the LASSO algorithm to filter all the features and retained only the 14 non-zero features with a solid correlation with PCa. The results show that the AUC of the prediction model in the PCa of the training set, validation set, and test set were respectively 0.82, 0.78, and 0.75. The difference was not statistically significant (p >0.05) and it has been shown that the feature selection method used in this study can effectively restrain data overfitting.

Out of 14 selected image omics features (22), one was taken from the first-order range, i.e., the range of gray values in the ROI; one was from the gray-level co-occurrence matrix (GLCM), which describes the second-order joint probability function of an image region constrained by the mask; one was from the gray-level size zone matrix (GLSZM), which quantifies gray level zones in an image; and the remaining 11 were taken from wavelet (23), subsets of texture features. Among the selected radiomics features, texture features based on wavelet account for the majority, which indicates that texture features have a good classification function. Furthermore, they are related to the composition of heterogeneous cells with noticeable molecular and microenvironmental differences in malignant tumors, indicating that the texture characteristics of tumors are highly correlated with heterogeneity (21).

The commonly used modeling methods of radiomics are mainly divided into statistical and ML-based methods. ML approaches are then typically subdivided into supervised and unsupervised learning, with SVM and RF being the most widely used approaches in supervised learning (24–28). Previous literature has reported that both SVM and RF show good stability. Specifically, SVM and RF show good diagnostic efficiency in constructing a small sample prediction model (29). The basic principle of SVM is to divide a hyperplane into a given training queue space to distinguish different types of samples (30). In this study, we used SVM and RF to construct a radiomics prediction model. The AUC of SVM in the validation and test set was 0.78 and 0.75, respectively, showing that the model had high diagnostic efficiency and stability.

To evaluate the diagnostic efficacy of the ML prediction SVM model in PCa, we compared the SVM model with MRI diagnosis. In Rosenkrantz et al.’s study, it was reported that the sensitivity, specificity, and precision of PCa detection using a fusion of T2-weighted images and diffusion-weighted images were 60.8%, 80.3%, and 71.0%, respectively (31). The results of Katahira et al.’s study, meanwhile, which used T2WI and DWI to detect prostate cancer, showed that the sensitivity, specificity, and AUC were 61.2%, 82.6%, and 0.755, respectively (32). In our study, the AUC, sensitivity, specificity, and precision of two radiologists in the diagnosis of PCa based on MRI were 0.65/0.75, 63%/63%, 67%/87%, 71%/86%; 0.65/0.72, 71%/61%, 60%/83%, 65%/79% (the former is the diagnosis results of JR, and the latter is the diagnosis results of SR). The diagnostic power of MRIs in this study was similar to that observed in previous studies. The results show that the SVM model had higher diagnostic efficiency than a diagnosis based on MRI (AUC, 0.78 vs. 0.65/0.75 and 0.75 vs. 0.65/0.72). In the extended experiment, the MLAD model with SR diagnosis (SVM+RF+SR) showed the best performance in statistics, which means the SVM model and RF model can improve radiologists’ diagnosis performance.

In spite of its findings, it must be acknowledged that this study suffers from some limitations. The most obvious limitation is that it was a retrospective study with a small sample size, limiting its power and precluding firm statistical conclusions. For example, the CI of AUC sensitivity, specificity, and precision has a large range. The second limitation is that it was a single-center study, and thus we cannot exclude single-centered effects. Finally, we carried out ROI segmentation manually, which is inefficient and may lead to bias among different delineators, thus resulting in the reduced diagnostic capability of the prediction model. Although the radiomics model performed well in this study, future studies must combine clinical factors closely related to PCa to build a more robust model.

It is rare to use the ML ultrasound diagnostic model to evaluate PCa. Therefore, we aimed to build an ultrasound diagnostic prediction model based on ML to provide a solid theoretical basis for the accurate and individualized treatment of PCa.



Conclusions

In our study, we innovatively used ultrasound video clips instead of images to form a dataset on which we could build an ML model. The ML-based prediction models have good diagnostic efficiency in PCa. In the SVM model, the precision, sensitivity, and specificity are better than that seen in diagnosis based on MRI. Thus, based on our MLAD, the SVM model and RF model can contribute to improve radiologists’ diagnosis performance based on MRI; indeed, the MLAD model in conjunction with senior radiologists’ diagnosis shows the best performance among all models. In our future work, we intend to combine the ultrasound transverse and longitudinal video clips of the prostate to build a better ML model and use deep learning and neural networks in the ultrasonic diagnosis of prostate cancer. The model developed in our study could contribute to reducing barriers and providing a convenient way for community hospitals to improve PCa diagnosis.
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Objectives

(1) To assess the methodological quality and risk of bias of radiomics studies investigating the diagnostic performance in adrenal masses and (2) to determine the potential diagnostic value of radiomics in adrenal tumors by quantitative analysis.



Methods

PubMed, Embase, Web of Science, and Cochrane Library databases were searched for eligible literature. Methodological quality and risk of bias in the included studies were assessed by the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS). The diagnostic performance was evaluated by pooled sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC). Spearman’s correlation coefficient and subgroup analysis were used to investigate the cause of heterogeneity. Publication bias was examined using the Deeks’ funnel plot.



Results

Twenty-eight studies investigating the diagnostic performance of radiomics in adrenal tumors were identified, with a total of 3579 samples. The average RQS was 5.11 (14.2% of total) with an acceptable inter-rater agreement (ICC 0.94, 95% CI 0.93–0.95). The risk of bias was moderate according to the result of QUADAS-2. Nine studies investigating the use of CT-based radiomics in differentiating malignant from benign adrenal tumors were included in the quantitative analysis. The pooled sensitivity, specificity, DOR and AUC with 95% confidence intervals were 0.80 (0.68-0.88), 0.83 (0.73-0.90), 19.06 (7.87-46.19) and 0.88 (0.85–0.91), respectively. There was significant heterogeneity among the included studies but no threshold effect in the meta-analysis. The result of subgroup analysis demonstrated that radiomics based on unenhanced and contrast-enhanced CT possessed higher diagnostic performance, and second-order or higher-order features could enhance the diagnostic sensitivity but also increase the false positive rate. No significant difference in diagnostic ability was observed between studies with machine learning and those without.



Conclusions

The methodological quality and risk of bias of studies investigating the diagnostic performance of radiomics in adrenal tumors should be further improved in the future. CT-based radiomics has the potential benefits in differentiating malignant from benign adrenal tumors. The heterogeneity between the included studies was a major limitation to obtaining more accurate conclusions.
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Introduction

Due to the increasing use of abdominal imaging, the discovery of adrenal incidentalomas has kept rising. It is reported that adrenal incidentalomas account for 4-5% of patients without malignancy (1). Although most adrenal masses are benign and non-functional, their functional status and malignant potential should be evaluated when they are detected, according to the latest recommendations (2). However, it is challenging for radiologists to accurately diagnose adrenal masses via conventional imaging assessments (3, 4). To begin, imaging features of pitfalls and mimics that are related to various abnormalities and aberrant appearances may potentially lead to misdiagnosis (3). For example, large adenomas usually present as heterogeneous masses on computed tomography (CT) images can not be easily differentiated from adrenocortical carcinoma visually (5, 6). Secondly, conventional imaging assessments depend largely on the experience and knowledge level of the radiologist. Consequently, exploring better approaches to improve the diagnostic value of adrenal imaging is crucial, considering that inappropriate diagnosis can lead to increased treatment costs or unnecessary examination (7).

Radiomics, first pioneered by Philippe Lambin, generally aims to extract quantitative and reproducible data that are imperceptible to the human eye from biomedical images for a series of medical purposes (8, 9). Extracted features, divided into shape-based, first-, second-, and higher-order statistics, can be translated into high-throughput and quantitative data for analysis (10, 11). The features that contribute the most to the objective will be selected for constructing the model via statistical approaches and artificial intelligence. Furthermore, radiomics features may achieve complementarity and improve accuracy when combined with clinically acquired, treatment-related, and genomic data (12). As artificial intelligence advances by leaps and bounds, radiomics has been extensively tested and applied in various aspects of oncology, including diagnosis, classification, and prognosis prediction (10). Recently, an increasing number of studies also established that radiomics could offer a risk-free and efficient method to increase the value of diagnostic imaging of adrenal masses. Nakajo et al. investigated the diagnostic performance of standardized uptake value (SUV)-related and texture parameters of F-18-fluorodeoxyglucose positron emission tomography/computedtomography (FDG PET/CT) between benign and metastatic adrenal tumors (13). In one study, texture analysis was applied to evaluate CT-abnormal adrenal glands in order to differentiate between malignant and benign tumors in patients with lung cancer (14). Moreover, Kong et al. designed a radiomic-based nomogram for pheochromocytoma diagnosis and achieved robust performance (15).

Although radiomics offers a relatively objective and quantitative diagnostic pattern, it is also subjected to data collection, radiomics characteristics processing, and modeling methods. Considering that the quality and results of published studies are mixed, diagnostic performance and feasibility of radiomics in adrenal masses remain elusive. Hence, the aim of the present review was to assess the methodological quality and risk of bias of radiomics studies investigating diagnostic performance in adrenal masses and to determine the potential diagnostic value of radiomics in adrenal tumors by quantitative analysis.



Materials and methods

This review followed the Cochrane Handbook for Systematic Reviews of Interventions and was conducted in accordance with the PRISMA-DTA (Preferred Reporting Items for Systematic Reviews and Meta-analysis for Diagnostic Test Accuracy) statement (16, 17). The protocol of this review is available through PROSPERO (CRD 42022331999).


Literature search

PubMed, Embase, Web of Science, and Cochrane Library databases were searched by two independent observers to identify eligible studies in May 2022. Additionally, the reference lists of the included studies were manually searched for studies that might meet the inclusion criteria.



Study selection

The titles and abstracts of potentially relevant studies were screened by two reviewers (HZ and HL) independently. Then, the same two reviewers analyzed the full texts of eligible studies and determined the pieces of literature that met the inclusion criteria. Discrepancies between the two investigators were resolved by consensus with a third reviewer (JP).

All single, comparative studies, and primary studies that met the following PICO criteria were selected:

	P (patients): Patients with benign or malign adrenal tumors;

	I (interventions): Radiomics or texture analysis;

	C (comparison): Standard-of-care imaging including computed tomography (CT) and magnetic resonance imaging (MRI), and positron emission tomography/computedtomography (PET/CT);

	O (outcome): Histologic typing (including differentiation between different adrenal masses and differentiation between benign and malign adrenal tumors).



The exclusion criteria were as follows: (a) letters, reviews, editorials, expert opinions, case reports, meeting abstracts and comments; (b) non-human research; (c) the study was not written in English. The full search terms are outlined in Table S1.



Quality assessment

The Radiomics Quality Score (RQS) and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tools were utilized to assess the methodological quality and risk of bias of the included studies, respectively (18, 19). RQS comprises a total of 16 criteria, and the score of each item corresponds to the importance of the methodological quality of the study. The total score ranges from -8 to +36 points, with -8 to 0 points defined as 0% and 36 as 100% (16). The QUADAS-2 tool includes four evaluation criteria: (a) patient selection; (b) index test; (c) reference standard; and (d) flow and timing. Two independent reviewers (HZ and HL) performed the quality assessment, and disagreements between the two reviewers were resolved by consensus with a third reviewer (JP).



Meta-analysis

A meta-analysis may be performed only when a sufficient number of studies attempt to answer a similar question. In this study, we performed a meta-analysis of all studies investigating the diagnostic performance of CT-based radiomics between malign and benign adrenal tumors. Data from all the eligible studies were extracted by two independent reviewers (HZ and HL). Discrepancies were resolved by consensus with a third reviewer (JP). Only studies from which a two-by-two contingency table could be extracted or reconstructed were included. If there were multiple models in the study, only the one with the highest area under the curve (AUC) was extracted. Moreover, the data from the model with the highest Youden’s Index was selected if AUC was not reported. When multiple publications were from the same research, only the study with the higher methodological quality was included.



Statistical analysis

Pooled sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) with 95% confidence intervals (CIs) were employed to quantify the diagnostic performance. In addition, diagnostic accuracy was outlined by the summary receiver operating characteristic curve (SROC) and area under the curve (AUC). The heterogeneity of studies was assessed by calculating the I 2 index, where an I 2 value of 0–25% represents insignificant heterogeneity, >25–50% indicates low heterogeneity, >50–75% indicates moderate heterogeneity, and >75% indicates high heterogeneity (20). A p < 0.05 was considered statistically significant. A random-effects model was employed to evaluate effect size and pool studies. Forest plots were constructed for visualization of the results. Spearman’s correlation coefficient was used to assess the threshold effect between sensitivity logit and (1-specificity) logit. In order to investigate the source of heterogeneity, a subgroup analysis was also conducted with the following covariates: (a) CT Type; (b) CT Feature Type; (c) Machine Learning; (d) Reference. The sensitivity analysis was performed by eliminating the included studies one after another. Publication bias was explored using the Deeks’ funnel plot, and statistical significance was assessed by Deeks’ asymmetry test. Clinical utility was examined using a Fagan plot, which provided the posttest probability when pretest probabilities were calculated (21).

Stata software (Stata Corporation, College Station, TX, USA, version 16.0) and the Open Meta-analyst (a completely open-source, cross-platform software) were used to conduct the meta-analysis. The interclass correlation coefficient (ICC), which described inter-rater agreement for the RQS and QUADAS-2 and Spearman’s correlation coefficient, was determined by SPSS software (IBM, Armonk, NY, USA, version 25.0).




Results


Included studies

The PRISMA flow-chart of the literature search of this systematic review and meta-analysis is presented in Figure 1. 613 studies were screened following the removal of 316 duplicate records. Then, 574 articles were excluded by evaluating the abstract and title. After thoroughly screening the full-text, 3 studies were excluded for being reviews or meta-analyses; 6 for being meeting abstracts; one for being a letter; and one for being in a non-English language. Eventually, 28 studies were enrolled in this research. Table 1 summarizes the characteristics of the included studies.




Figure 1 | Flow diagram of study selection.




Table 1 | Characteristics of the included studies.



All 28 studies were retrospective cohort studies, and the sample size (number of lesions) ranged from 19 to 377. Most objectives of the included studies were differentiation between benign and malignant adrenal neoplasms by radiomics, followed by the differentiation between pheochromocytoma and adenoma. Other studies distinguished adrenal adenomas from non-adenomas or identified subtypes of adrenal adenomas. The majority of studies focused on the diagnostic performance of radiomics using CT imaging (n=19), while a quarter was based on magnetic resonance imaging (n=7). Additionally, one study explored the use of radiomics based on a combination of CT and MR and one based on FDG PET/CT. More than 78% (22/28) of studies used manual segmentation. Radiomics feature types used by different studies varied. Interestingly, over half of the included studies (n=17) extracted second or higher-order features for analyses. As for the modeling method, 12 studies conducted logistic regression, eight studies did not provide relevant information and the remainder employed other algorithms such as support vector machine, random forest, extra trees classifier and so forth. More than half studies utilized histopathology as the gold reference (n=15). Ten studies combined histopathology and follow-up imaging. Two articles exclusively considered clinical and imaging follow-ups, and one study failed to report the reference standard. Outcomes of the included studies are summarized in Table 2.


Table 2 | Outcomes of the included studies.





Data quality assessment

The included studies achieved an mean ± standard deviation RQS of 5.11 ± 7.70, a median of 3.5, interquartile range 14, and a range of -5 to 25. The mean RQS proportion was 14.2%, with a maximum of 69.4%. The mode scores for the 16 dimensions are summarized in Table 3. The individual scores of each study and final scores of RQS are presented in Tables S2 and S3, respectively.


Table 3 | Elements of the RQS and average rating achieved by the studies included in this systematic review.



The majority of studies provided details about the imaging scheme, applied discrimination statistics and achieved their potential clinical utility. Conversely, none of the included studies employed phantoms, considered biological correlates or assessed the repeatability of radiomics analysis at multiple time points. Moreover, feature reduction or adjustment of multiple tests were performed in 16/28 (57%) studies, and non-radiomics features were applied in 3/28 (11%) studies. Only a few studies conducted model calibration, assessed the cost-effectiveness and publicly shared segmentations or code. The inter-reader agreement was found to be moderate to excellent for radiomics features in 39% (11/28) of the included studies. Nevertheless, validation of more than half of the included studies was missing (15/28, 50%). Only one study (28) compared the diagnostic performance of the classifier with an expert radiologist, but no significant differences were noted. In general, the quality of included articles was acceptable, and the assessment of the risk of bias and applicability of the 28 included studies are illustrated in Figure 2. The detail of the individual and final evaluation of the risk of bias and applicability concerns are presented in Tables S4 and S5, respectively.




Figure 2 | The risk of bias and concerns regarding applicability of 28 included studies.



Inter-rater agreements of RQS and QUADAS-2 were also assessed by the ICC. The ICC for the RQS was 0.94 (95% CI 0.93–0.95). Six criteria of RQS reached a moderate agreement, while ten items achieved substantial or almost perfect agreement (Table 4). The ICC for the QUADAS-2 was 0.96 (95% CI 0.95–0.97). Except for two dimensions reaching a moderate agreement, the others exceeded 75% agreement (Table 5).


Table 4 | Inter-rater agreement in RQS assessment.




Table 5 | Inter-rater agreement in QUADAS-2 assessment.





Meta-analysis

We performed a meta-analysis investigating the use of CT-based radiomics in differentiating malignant from benign adrenal tumors and enrolled nine eligible studies, from which a two-by-two contingency table could be extracted or reconstructed. As shown in Table 6, the mean values and 95% CIs of the pooled sensitivity, specificity, PLR, NLR, and DOR for the radiomics signature based on CT in differentiating malignant adrenal tumors from benign tumors were 0.80 (0.68-0.88), 0.83 (0.73-0.90), 4.70 (2.80-8.00), 0.25 (0.15-0.41) and 19.06 (7.87-46.19) respectively. The summary receiver operating characteristic curve showed an overall pooled AUC of 0.88 (95% CI 0.85–0.91) (Figure 3). Significant heterogeneity in sensitivity (I 2 = 87.09%) and specificity (I 2 = 72.1%) were noted, as depicted in Figure 4. Consequently, diagnostic threshold analysis was carried out, which revealed that there was no threshold effect, given that the Spearman’s correlation coefficient was -0.036 and the p-value was 0.932. In order to further explore the cause of heterogeneity, subgroup analysis was also performed, as outlined in Table 6.


Table 6 | The results of subgroup analysis.






Figure 3 | Summary receiver operating characteristic (SROC). AUC, area under the curve.






Figure 4 | Forest plots of the sensitivity and specificity of CT-based radiomics in differentiating malignant from benign adrenal tumors. I2 >50% indicates substantial heterogeneity among included studies.



Four studies with radiomics based on unenhanced and contrast-enhanced CT demonstrated higher sensitivity (0.87 vs. 0.66) but lower specificity (0.74 vs. 0.80) than studies using only contrast-enhanced CT. Studies (n=2) that only included first-order features had lower sensitivity (0.72 vs. 0.81) but higher specificity (0.86 vs. 0.77) compared to those that combined with second-order or higher-order features. Interestingly, the studies (n=3) that applied machine learning gained equivalent sensitivity (0.79 vs. 0.78) as well as specificity (0.77 vs. 0.79) compared to those did not use (n=6). Four studies that considered histopathology or follow-up imaging as a reference had higher specificity (0.91 vs. 0.72) and equivalent sensitivity (0.82 vs. 0.83) than studies (n=3) using only histopathology. The corresponding forest plots for sensitivity and specificity are delineated in Figures S1–S4.

As shown in Table S6, we can hardly identify significant changes in the pooled effect value when eliminating studies one by one. There was no publication bias based on the Deeks’ funnel plot (p=0.77), as presented in Figure 5. Furthermore, the clinical utility was also evaluated using a Fagan plot. Using a CT-based radiomics model would increase the posttest probability to 54% from 20% with a PLR of 5 when the pretest was positive and reduce the posttest probability to 6% with an NLR of 0.25 when the pretest was negative, as depicted in Figure S5.




Figure 5 | Deeks funnel plot reveals the possibility of publication bias is low with a p value of 0.77. ESS, effective sample size.






Discussion

Radiomics has recently attracted the attention of oncology researchers, given that it can noninvasively and effectively reflect tumor heterogeneity, treatment response, prognosis, and other information (47–49). Published studies involving radiomics for adrenal tumors mainly focused on the differentiation of benign and malignant tumors and the differentiation of histological types of adrenal masses, but no clinical transformation or practical application has been described so far. Considering that the research of radiomics remains in its infancy, there are a host of problems to be addressed, such as the lack of a robust workflow based on standardized and strict methods to ensure the stability and reliability of the results (50, 51).

It is well-established that the quality of reporting of existing predictive models is poor (52). Lambin et al. proposed a comprehensive and clear standard to evaluate all aspects of predictive models in the field of radiomics to enhance their qualities (18). In our systematic review, the overall quality was relatively low (mean RQS of 5.11, ranging from -5 to 25). The primary causes impacting the RQS score included the absence of feature reduction, scarcity of open science and source, deficiency in internal or external validation and prospective data support, minimal consideration of cost-effectiveness, and so on. Reducing features that are poorly reproducible is crucial for reducing the risk of overfitting when the number of radiomics features exceeds the number of patients (53). 43% of studies did not conduct feature reduction or adjustment in our review owing to specific diagnostic algorithms or processing, which may partially undermine the stability of the models. Following internal and external validation, the diagnostic performance of the model can be confirmed. Furthermore, the practical application of radiomics in clinical practice also requires multi-center validation and prospective testing (54, 55). Regrettably, over half of the included studies failed to process validation attributable to the limited sample size. Most of the remaining studies merely conducted internal validation in a single center. Furthermore, only one study performed validation with multiple data sets and tested prospectively (15). Furthermore, comparing the diagnostic performance with the radiologist is also a pivotal step in verifying the performance of the model. Because only when the diagnostic effect is better than that of the radiologist can the superiority of radiomics be demonstrated. However, most studies did not compare the diagnostic performance with a radiologist. The choice of scanner manufacturer and model, 2D or 3D segmentation of the region of interest, acquisition, and reconstruction parameters all lead to the heterogeneity of imaging data. Most studies (25/28) provided image acquisition parameters in our review, but values varied considerably. Zwanenburg et al. designed the Image Biomarker Standardization Initiative (IBSI) to enhance the reproducibility of radiomics research, including establishing general feature naming, definition, general radiological image processing scheme, and so on (56). Thus, open science and the source of radiomics is the premise to realizing reproducibility. In the present review, only three included studies publicly shared segmentations or code. The challenge of open science and validation based on a sufficient sample size may hinder further development and practice of radiomics in the diagnosis of adrenal masses. Besides, the cost-effectiveness analyses of radiomics cannot be overlooked because it may boost the superiority of this technology.

Although radiomics studies differ methodologically from conventional trials, and there may be potential unsuitability of the QUADAS-2 tool, the results that reflected the risk of bias and applicability of included studies is advisable to some extent. The results of QUADAS-2 exposed that the risk of bias needs to be minimized in terms of patient selection, index test, and reference standards. The concerns regarding applicability are excellent except for the reference standard. The reliablity of individual ratings needs to be assessed by inter-rater agreement analysis. In this review, the ICC was applied to describe the inter-rater agreement of RQS and QUADAS-2. The fact that most items achieved substantial or almost perfect agreement while others had moderate agreement demonstrates that the scores accurately reflect the quality of the included studies.

Since there are few pieces of literature included in the meta-analysis, the results should be treated with caution. In our meta-analysis, radiomics technology showed promise for differentiating malignant from benign adrenal tumors, with a pooled sensitivity, specificity, and AUC of 0.8, 0.83, and 0.88, respectively. Nonetheless, it cannot be ignored that there was distinct heterogeneity between the studies. The threshold effect is one of the chief causes of heterogeneity in DTA studies (57). A threshold effect will result in a correlation coefficient between sensitivity and a false positive rate of 0.6 or higher (58). The result of the Spearman correlation coefficient showed no threshold effect in this meta-analysis. Consequently, we attempted to determine the causes of heterogeneity via subgroup analysis. Our results demonstrated that the radiomics group based on unenhanced and contrast-enhanced CT had a higher DOR than studies using contrast-enhanced CT only. This is likely due to the fact that unenhanced CT provides additional features for analysis and bring higher sensitivity. Different levels of radiomics features contain distinct dimensions of information regarding the lesion. First-order statistics features describe the distribution of voxel values without concern for their spatial relationships (11). Second-order statistics, which describe spatial relationships between voxels with similar gray levels within a lesion, can provide a measure of intralesional heterogeneity (11, 59). Higher-order statistics are obtained after imposing filter grids on an image, and the processing can confirm repetitive or non-repetitive patterns, suppress image noise, highlight details, and so on (60). According to our results, studies that only included first-order features had lower sensitivity but higher specificity compared to those that combined second-order or higher-order features. This finding signals that more complex and deeper texture features analyses can improve diagnostic sensitivity while also increasing the false positive rate. Since deeper texture features analyses inevitably yield a large number of unstable and unrepeatable features, advanced features have higher requirements for feature selection and modeling algorithms. Machine learning is a broad term for a class of statistical analysis algorithms that can iteratively improve the predictive performance of a model by “learning” from data (61). Reliable machine-learning approaches can drive the success of radiomic applications in clinical care (62). In our subgroup analysis, studies with machine learning achieved equivalent diagnostic performance to those without. However, the number of studies (n=3) is insufficient to represent the true impact of machine learning. We recommend that further studies be conducted to determine whether machine learning is beneficial to the diagnosis of adrenal tumors using radiomics. Some studies included in this meta-analysis enrolled patients without histopathology results and regarded follow-up imaging as the diagnostic reference (29, 32, 36, 37, 44). On the one hand, these studies may lower selection bias, as potential bias will be generated if studies only include patients who underwent surgeries (those with high suspicion of malignancy are more likely to be operated on). On the other hand, the diagnostic accuracy of this method based on follow-up images remains to be determined. The 2017 American College of Radiology white paper (63) suggests that stability for 1 year or more indicates that uncertain adrenal nodules are benign, whereas enlarged nodules are suspected to be malignant. However, benign tumors can also grow, and the threshold growth rate to consider malignancy remains unknown. Studies that regarded histopathology or follow-up imaging as the reference had higher diagnostic specificity than studies using histopathology only. The reason may be that the true negative ratio was overestimated since some follow-up imaging failed to detect potential malignancies. Additionally, the possibility that heterogeneity was caused by other factors that have not been considered cannot be ruled out.

To the best of our knowledge, there are two previous reviews related to similar topics. One study systematically reviewed the diagnostic accuracy of CT texture analysis in adrenal tumors (64). In another review, Stanzione et al. summarized the application of radiomics in adrenal cross-sectional imaging and assessed the methodological quality by RQS (65). Generally, more comprehensive and in-depth analyses of diagnostic performance of radiomics in adrenal masses were done in our study. First of all, we focused on diagnostic performance of radiomics in various radiological imaging of adrenal tumors. Secondly, RQS and QUADAS-2 of the included studies were independently evaluated by two reviewers. Besides, inter-rater agreement for RQS and QUADAS-2 were also assessed, which can reflect the true quality of the included studies better. In addition to a systematic review of the included studies, we also conducted a meta-analysis investigating the role of CT-based radiomics in differentiating malignant from benign adrenal tumors. Although the heterogeneity was significant, it reflected the diagnostic value of radiomics in differentiating benign and malignant adrenal masses to some extent.

There are several limitations of this review that warrant consideration. To begin, grey literature was not included in this review since it was limited to special circulation channels, which might have led to publication bias. Secondly, the overall quality of the included studies was not optimal (mean RQS 14.2%), which may have partly influenced the quality of the subsequent analysis. Thirdly, it is worthwhile mentioning the heterogeneity of studies included in the quantitative synthesis. Except for CT type, CT feature type, machine learning, and diagnostic reference, the heterogeneity may be pertinent to diversity in pathological types, methods of image segmentation and reconstruction, and feature extraction and modeling algorithms. However, because the subgroup distribution was scattered, we were unable to analyze these detailed features. Hence, the results of the quantitative analysis should be interpreted with caution. Fourthly, the diagnostic performance of radiomics between specific adrenal histologic types could not be assessed because of a lack of studies for the same objective. Lastly, given that only a few studies compared the diagnostic performance with a radiologist, the added value of radiomics in comparison to the accuracy of human assessment could not be explored.



Conclusion

In conclusion, we systematically reviewed studies investigating the diagnostic performance of radiomics in adrenal masses and conducted a meta-analysis. Collectively, the results of quantitative synthesis outline the potential benefits of CT-based radiomics in differentiating malignant from benign adrenal tumors. However, the existing limitations of relevant studies, including the lack of validation and prospective tests, the lack of comparison with a radiologist, and the absence of a standardized radiomics process, hinder the further development of radiomics. We postulate that the translational gap between radiomics research and clinical applications in the field of adrenal tumors diagnosis will be overcome in the future by addressing the aforementioned shortcomings.
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Background

Clear cell Renal Cell Carcinoma (ccRCC) is the most common malignant tumor in the urinary system and the predominant subtype of malignant renal tumors with high mortality. Biopsy is the main examination to determine ccRCC grade, but it can lead to unavoidable complications and sampling bias. Therefore, non-invasive technology (e.g., CT examination) for ccRCC grading is attracting more and more attention. However, noise labels on CT images containing multiple grades but only one label make prediction difficult. However, noise labels exist in CT images, which contain multiple grades but only one label, making prediction difficult.



Aim

We proposed a Transformer-based deep learning algorithm with CT images to improve the diagnostic accuracy of grading prediction and to improve the diagnostic accuracy of ccRCC grading.



Methods

We integrate different training models to improve robustness and predict Fuhrman nuclear grade. Then, we conducted experiments on a collected ccRCC dataset containing 759 patients and used average classification accuracy, sensitivity, specificity, and AreaUnderCurve as indicators to evaluate the quality of research. In the comparative experiments, we further performed various current deep learning algorithms to show the advantages of the proposed method. We collected patients with pathologically proven ccRCC diagnosed from April 2010 to December 2018 as the training and internal test dataset, containing 759 patients. We propose a transformer-based network architecture that efficiently employs convolutional neural networks (CNNs) and self-attention mechanisms to extract a persuasive feature automatically. And then, a nonlinear classifier is applied to classify. We integrate different training models to improve the accuracy and robustness of the model. The average classification accuracy, sensitivity, specificity, and area under curve are used as indicators to evaluate the quality of a model.



Results

The mean accuracy, sensitivity, specificity, and Area Under Curve achieved by CNN were 82.3%, 89.4%, 83.2%, and 85.7%, respectively. In contrast, the proposed Transformer-based model obtains a mean accuracy of 87.1% with a sensitivity of 91.3%, a specificity of 85.3%, and an Area Under Curve (AUC) of 90.3%. The integrated model acquires a better performance (86.5% ACC and an AUC of 91.2%).



Conclusion

A transformer-based network performs better than traditional deep learning algorithms in terms of the accuracy of ccRCC prediction. Meanwhile, the transformer has a certain advantage in dealing with noise labels existing in CT images of ccRCC. This method is promising to be applied to other medical tasks (e.g., the grade of neurogliomas and meningiomas).





Keywords: tumor grading, ensemble learning, clear cell renal cell carcinoma, transformer network, deep learning



1 Introduction

Renal cell carcinoma (RCC) is the most common kidney tumor (1, 2). Clear cell RCC (ccRCC) is the predominant hypotype of RCC, accounting for about 75-80 (3). With the background of population aging, kidney cancer, especially RCC, keeps rising. When ccRCC progresses to intermediate and advanced stages, lymph node metastasis or distant organ metastasis probably occurs, which leads to dangerous clinical symptoms and a poor prognosis (4, 5). At present, one of the most important pieces of clinical evidence for judging the malignancy degree of ccRCC is given by the Fuhrman grading system, which defines four pathological grades based on nuclear size, shape, staining, and nucleoli (5). Generally, tumors with low invasiveness are classified as grades I–II, and those with high invasiveness are classified as grades III–IV (6).

The preoperative biopsy is the gold standard for evaluating the grade of ccRCC. However, patients undergoing biopsy are at risk of complications, e.g., hematuria (with more than 80% incidence), perirenal hematoma (with about 60%–90% incidence), and infection (7). The procedure of preoperative biopsy is complex and invasive. Besides, biopsy cannot reflect the Fuhrman grade of the whole tumor (8) because of the high spatial and temporal heterogeneity. Thus, preoperative evaluation of ccRCC using a noninvasive procedure for clinical diagnosis is urgently needed. CT examination is the most commonly used non-invasive technique for preoperative diagnosis and follow-up and plays an essential role in diagnosing and treating renal carcinoma, e.g., detection, localization, characterization, and grading of lesions. In some studies, it has been used to evaluate the preoperative ccRCC classification, such as (9–12).

Preoperative noninvasive prediction of ccRCC is conducive to delivering an individualized treatment. Previous studies (12, 13), using radiation characteristics based on multiphase CT, investigated the predictive performance of different machine learning models for discriminating ccRCC. Beyond that (14–17), have shown that convolutional neural networks based on single or multiphase CT images are beneficial for evaluating ccRCC grading. However, the biggest challenge of CT image grading is the existence of noise labels in the image (8). What is a “noise label?” One CT image may contain multiple grades but may have only one label. For example, the grade III–IV grade CT image contains grade I–II tumor areas because the label was obtained from the biopsy of the most severe tumor area of the whole kidney. When encountering noise labels, convolutions uniformly process all tumor regions regardless of their importance, which leads to the inefficiency of classification. CNN makes decisions based on the convolution kernel, which only focuses on the local pixel subset, resulting in the network tending to learn the local mode rather than the global context.

The transformer network, a branch of deep learning, is considered a promising technology for analyzing medical images because it can capture global representations and establish long-distance relationships within the image (18, 19). Therefore, the transformer is suitable for handling CT images with noise labels. We propose a transformer classifier, TransResNet, to predict high-grade ccRCC using CT images. To the best of our knowledge, there have been no investigations about discriminating the low and high nuclear grade ccRCC by combining transformer network and radiological features.

As a result, this research aims to investigate an efficient transformer classifier for predicting the Fuhrman grading of ccRCC based on three-phased CT images.



2 Materials and methods


2.1 Data preparation

Patient cohort: This diagnostic and observational study was approved by the institutional review board (West China Hospital, Sichuan University), and written informed consent was obtained from all patients. Consecutive patients were collected from April 2010 to December 2018 in one hospital. We cleaned the original data according to the following rules: (1) there is no obvious noise in the image of the patient; (2) the patient image has no apparent artifacts. Specifically, all of the pathologically proven ccRCC grades are reconfirmed by experienced radiologists. This work uses the Fuhrman nuclear grading system as the standard grading system. Finally, 759 patients were included in this work.

CT images: All patients underwent a multi-slice CT scan with three phases, including unenhanced, arterial, and portal venous phases, using the following systems: LightSpeed VCT (GE Healthcare), Sensation 64 CT (Siemens), or Sensation 16 CT (Siemens). The PCP, CMP, and NP of the MDCT (multidetector CT) examination were acquired for each patient with the following protocol. By using a high-pressure injector at a rate of 3.5 ml/s, 70–100 ml of contrast agents were injected into the antecubital vein. The CMP is the corticomedullary phase contrast-enhanced scan starting 30 s after the contrast agent injection. The NP is the nephrographic phase contrast-enhanced scan starting 90 s after the contrast materials injection. Spiral scanning and thin-slice reconstruction were used for all three phases. The CT scanning parameters of the phases were as follows: the tube voltage was 120 KV; the reconstruction thickness was 1 mm to 5 mm, and the matrix was 512 × 512. All CT scans of patients are converted to color-scale images and reviewed by experienced radiologists in abdominal imaging. The ccRCC images collected from the CMP phase are used in experiments.

CT Processing: Medical CT slices are diverse and complex. If CT slices are selected to be the input of the classification model, the results are imperfect and require further optimization. To make a more accurate diagnosis, we preprocess the original CT image by detecting the organ or lesion area from medical scanning. We utilize a tumor detection network to quickly and efficiently obtain the rectangular region of interest of the tumor in each phase image. As shown in Figure 1, to reduce the complexity of direct tumor segmentation, the detection frame is divided into two stages: (1) renal organ detection: this detection module is composed of VGG16 (20) without the classification layers (pre-trained on ImageNet (21)), aiming to find the rectangular region of kidneys to mitigate the influence of background of CT scans and reduce the search space of tumors; (2) tumor detection: aims to regress the rectangular region of the tumor accurately and predict the possibility of the tumor.




Figure 1 | (A) shows the flow frame of data processing, in which stage one is the kidney detection network and stage two is a tumor detection network. (B) shows the details of the detection network.



Because medical data are scarce and difficult to label, large deep learning models rely on data augmentation to improve performance. To study the impact of data enhancement, we will consider several common enhancements here. There are two types of data augmentation in the vision computer domain. One is appearance transformation, such as sharpness, brightness, contrast, saturation, gray processing, Gaussian blur, and elasticity (22), another involves spatial geometric transformation, such as horizontal flipping, rotation, cropping, and resizing (23). Every enhancement strategy can transform data stochastically with internal parameters (e.g., rotation degree, noise level). Our model adopted strategies including random clipping, Affine, Gaussian blur, and Gaussian noise. Figure 2 visualizes the augmentations that we study in this work.




Figure 2 | Illustrations of the results using various data augmentation (A) shows the original CT image; (B) is the CT image after 180° rotation; (C) is the CT image after Affine transformation; (D) shows the CT image after crop and resize transformation; (E) is the CT image with Gaussian blur; (F) is the CT image with Gaussian noise.





2.2 ccRCC classification network

To make the features extracted from the ccRCC dataset correspond to the label as much as possible, we introduced a transformer module into convolutional networks to improve performance. We illustrate the overall diagram in Figure 3A. Firstly, the input image is processed with several convolution blocks, and then the processed feature map is provided to the transformer block. At the end of the network, the class tokens are applied for the prediction of ccRCC. Our insights into taking advantage of convolutions and transformers are: (1) in the early network, using convolution to learn densely distributed and low-level features requires less computational cost than the transformer; and (2) in the later network, applying the transformer to learn higher-level semantic concepts and long-range dependencies in the image.




Figure 3 | A simple network framework for TransResNet. (A) represents the overall architecture, mainly including the CNN structure and the transformed structure. (B) shows the details of TransResNet. The network framework contains 12 transformer blocks (i.e., L = 12).



The network framework, termed TransResNet, is composed of convolution blocks, transformer blocks, and classifier (one FC layer). The convolution block adopts a pyramid structure, in which the resolution of feature mapping decreases with the increase in network depth while the number of channels increases. It consists of four phases: the first phase is a 3 × 3 convolution with stride 1 and padding 1, which is used to extract initial local features. In the last three stages, we refer to the first three layers of ResNet, in which the output channels of each layer are 16, 32, and 64, respectively. The Transformer block contains 12 repeated transformers. As shown in Figure 3B, each transformer consists of a multi-head self-attention (MSA) module and a multi-layer perceptron (MLP) block.

In the Transformer, we consider the input feature map X∈ℛc×h×w with c channels and the feature shape of h × w. Self-attention estimates the relationship between one part of a feature map and other parts (e.g., which tumor masses are likely to come together into a complete tumor mass with maximum grade). Therefore, the feature map is divided into a sequence X={x1,x2,…,xn}   with n patches. The goal of self-attention is to capture the interaction among all n patches by encoding each patch in terms of global contextual information. The output of the MSA layer is computed with the feature map X using the following equation:

 

where Queries WQ , Keys WK, and Value Wv are learnable weights to automatically learn the importance of each patch. The input sequence X is projected onto these weight matrices to get Q=XWQ , K=XWK and V=XWV . The dk is the dimension of key vector k, providing an appropriate normalization to make the gradient more stable. LN represents the linear normalization, Xclass and Xposition are randomized parameters representing classification and position information, respectively. To capture the structure of object image, position and classification information are merged into the self-attention feature map for training.

After the self-attended feature map Z passes through the linear layer, we put it into a MLP including two linear transformations and a GELU activation to perform the same operation on the vector of each position. The output can be obtained:

 

Referring to ViT (24), we take the classification information Xclass instead of extracted image features as the input of the classifier FC to classify directly. We train our network using the cross-entropy (CE) loss between prediction and ground truth, which can be written as:

 

where the y is the real label and   is the predicted probability. The loss function represents the difference between the real label and the predicted probability.

We constructed TransResNet with three residual blocks and 12 transformer blocks. The major hyper-parameters are as follows: the optimizer is Stochastic Gradient Descent (SGD) with an initial learning rate of 0.01, momentum of 0.9, and weight decay of 5e−4. The batch size is 100 per worker. For the epochs, the learning rate is scaled linearly from 0.01 to 0.00001, and then it is divided by 10 at epochs 50, 100, and 150. The proposed model is implemented using Pytorch 1.0.1. We ran the experiments on an Ubuntu 16.04.3 server with four NVIDIA GeForce GTX 1080 cards. Specific details of the code can be seen at: https://github.com/yangmeiyi/ccRCC_project.git.



2.3 Model ensembles

To a certain degree, ensemble learning can improve prediction accuracy. To achieve a strong classifier, we train multiple different classifiers. We selected the following five networks as sub-networks of the integration model:

	TransResNet: In medical, ResNet (25) is the preferred model because it is simple and efficient. The most common model, ResNet50, is ineffective on our dataset due to serious over-fitting. Finally, we decided to pair Transformer and resnet34.

	TransDenseNet: DenseNet (26) found that some layers are randomly lost at each step in the training process, which can significantly improve the generalization performance of ResNet. Similarly, we chose to combine Transformer and DenseNet-121 with the smallest model parameters as our sub-network.

	TransInception: Compared with the structure of ResNet, Inception (27) not only increases the width of the network but also embeds features of different scales. Similarly, Inception-V3 was selected by us.

	TransSENet: Different from the previously mentioned networks, improving the performance through spatial latitude, SENet (28) establishes the interdependence between feature channels.

	TransRegNet: RegNet (29) proposes a new design paradigm that estimates the overall network design space (depth and width) to obtain the best design. Similarly, we chose RegNetY-200MF with the minor model parameters.



We combine them through the average method. These classifiers and TransResNet are constructed in the same way. The difference lies in the construction of convolution blocks, such as TransDenseNet uses a dense convolutional network and TransInception adopts an inception network.

Suppose we have got N trained different classifiers. Facing a test sample x (x ∈ test dataset), the prediction results of the integrated model are a N-dimensional vector {S1,S2,…,Sn} . The final score using averaging is formulated as follows:

 




3 Results


3.1 Clinical characteristics

This study included 759 patients, which comprised 477 low-grade [grade I (n = 25, 5.24%) and II (n = 452, 94.76%)] ccRCC patients and 282 high-grade [grade III (n = 232, 82.27%) and IV (n = 50, 17.73%)] ccRCC patients. Male and female patients are equally represented, accounting for 64% and 46%, respectively. The patient characteristics of the training and testing cohorts are shown in Table 1.


Table 1 | The demographic and clinical statistics of patients with ccRCC.





3.2 Performance of proposed algorithm

To validate this model, we choose Accuracy (ACC), Area Under Curve (AUC), Sensitivity (SE), and Specificity (SP) as evaluation criteria.

Performance with data enhancement: To comprehend the role of enhancement strategy in detail, the individual and different combinations of them are discussed. With inconsistent images of the ccRCC, cropping as the basic data processing is applied. Figure 4 shows the evaluation results under single and combined transformations. Even though Affine is a very effective enhancement for the model, any single transformation is insufficient for representation learning. One augmentation composition stands out: random Affine and random Gaussian noise. The best combination is more than two enhancements, such as random Rotate, random Affine, and random Crop, making the model obtain 87% ACC and 91% AUC.




Figure 4 | Illustrations of data augmentation operators.



Performance on different architectures. This section shows the effect of the transformer on ResNet (25), DenseNet (26), Inception (27), SENet (28), and RegNet (29). Each model has its own unique advantages. We present the ACC, AUC, SE, and SP of TransResNet, TransDenseNet, TransInception, TransRegNet, and TransSENet on the ccRCC dataset in Table 2. Each architecture was performed under the enhancement method of Crop, random Horizontal Flip, random Rotation, and random Affine.


Table 2 | The impact of transformer on different network structures. .



Table 2 shows the experimental results of different network architectures. The Receiver Operating Characteristic (ROC) curve is a metric that can provide a pure index of accuracy, which has been accepted by every researcher and applied in medical studies. We show the ROC curve in Figure 5.




Figure 5 | Receiver operating characteristic (ROC) curves for the task of tumor classification using a positive ratio feature.



Ensemble results: Ensemble learning is a popular way to improve robustness and accuracy by training a group of heterogeneous models. These heterogeneous models are combined by different strategies such as voting, averaging, stacking, and blending. This study analyzes various ensemble strategies, and the results are shown in Table 3. The integrated model consists of a single model: TransResNet, TransDenseNet, TransInception, TransRegNet, and TransSENet.


Table 3 | Ensemble results under different strategies.





3.3 Comparison with SOTA methods

Does our proposed solution lead to better performance than pure transformers? To answer this question, we compared pure transformer networks ViT (24) and CaiT (30) with the smallest parameters and a hybrid network Conformer (31) trained in parallel by convolution and transformer in Table 4. In the training process, ViT-Small and CaiT-Small are suitable for our dataset, but the results are still unsatisfactory. In particular, the hybrid structure Conformer with huge model parameters is difficult to train on small dataset ccRCC, resulting in the worst performance, although its classification results on ImageNet are better than ViT and CaiT.


Table 4 | Comparison with the state-of-the-art transformer.



Does the transformer improve performance compared to CNN? For CNN, we have done a series of experiments with ccRCC for comparison. The experiments included Data Enhancement, CNN architecture, Transfer Learning, and the Regularization Method. The experimental results are shown in Figure 6. In the experiment of data enhancement, the performance of the CNN model has definite improvements after random Affine. However, other data enhancement methods are not effective for the dataset. We found that the CNN architectures have little effect on the Fuhrman Grade of ccRCC, although the advantages of each structure are different. From various experimental results, the model based on CNN is difficult to break through the bottleneck of AUC (e.g., 85 AUC). Our method, TransResNet, easily surpasses CNN algorithms using various tricks in ACC and AUC.




Figure 6 | A series of experimental results about CNN.





3.4 Comparison with transfer learning

Transfer learning is widely used in medical image processing, such as type 2 diabetes (32), 3D genome folding (33), and papillary thyroid carcinoma (34), etc. Many factors make it impossible to establish large-scale datasets such as ImageNet in the medical field, so the limited data restricts the performance of deep neural networks. Some studies reckon that the pre-trained model obtained on ImageNet can be fine-tuned on the medical dataset to acquire high performance. The experiment by Shin et al. proved that although there are differences between natural images and CT images, CNN fully trained on large-scale well-annotated datasets may still be transmitted to make the medical image recognition task more effective (35). Therefore, we compared the performance of our method and transfer learning on ccRCC. We transferred the ResNet, DenseNet, and ViT trained with ImageNet to ccRCC for fine-tuning, respectively. In transfer learning, to make the network training more thorough, we follow the method of (35): all CNN layers are fine-tuned with a learning rate 10 times lower than the default learning rate, except for the last layer. The last fully connected layer is randomly initialized and newly trained to adapt to the new object categories in the ccRCC application. Its learning rate remains at the original 0.01. The results are shown in Table 5.


Table 5 | The comparison results of our method and transfer learning.



In the experiment, we found that although transfer learning can speed up convergence early in training, it does not improve final accuracy. As shown in Table 5, the accuracy of our proposed method can quickly catch up with the best of transfer learning and stay higher.



3.5 Analysis of noise labels

Previous articles (15, 17) studied the impact of CNN-based deep learning on ccRCC. These studies prove that the features from CT images extracted by CNN can be effectively used for ccRCC grading and obtaining the SOTA performance. Due to the inconsistency between extracted features and labels, some data are always misclassified by the CNN-based algorithm. For example, 21 CT images in our test set could not be classified correctly, including three low-grade images and 18 high-grade images. This phenomenon is consistent with the fact that high-grade images contain more noise information. In other words, the features extracted from tumor images scanned by high-grade ccRCC CT scans are not always related to Fuhrman nucleus grades III and IV, and some of the features are related to Foreman nucleus grades I and II. Figure 7 shows the case of misclassification data, in which Figure 7A is a positive sample, but it is classified as a negative example. Figure 7B is a negative example sample of classification error. Figure 7C is a class activation map of a positive example sample of classification error. Figure 7D is a class activation map of a positive example sample of classification error. We found that: (1) similar CT images with different categories are difficult to distinguish (e.g., Figures 7A, B), and (2) some CT images are not activated correctly (e.g., Figures 7C, D).




Figure 7 | The demonstration of error classification. It mainly includes four categories. (A) shows the the CT image of positive samples; (B) shows the the CT image of negative samples; (C) shows the CT image of positive samples and corresponding class activation map; (D) shows the CT image of negative samples and corresponding class activation map.



The Transformer offers many advantages over traditional CNN algorithms for ccRCC grading. For example, Transformer can capture the representation of global images and establish long-distance relationships in CT images, reflecting the microscopic heterogeneity changes of tumors more comprehensively and providing a more accurate diagnosis than all CNN algorithms. In addition, the complementary strengths between CNN and Transformer can be adapted to the requirements of specific clinical environments. After the optimized classifier TransRsenet, 14 CT images in our test set could not be correctly classified, including two low-grade images and 12 high-grade CT images. Figure 8 shows the class activation map of these error data to show the shift of attention of the model during training. Compared with the convolutional network, the model with the proposed method makes objects clearer and more accurate than the original ones.




Figure 8 | Visualization of the class activation map generated by the last transformer layer on images from the ccRCC. The yellow box indicates the lesion area. The color red denotes higher attention values, and the color blue denotes lower. (A) is the original image; (B) shows the class activation map of the CNN model; and (C) is the class activation map of the TransResNet model.



In addition to the comparison of convolution algorithms, we also compared the network architecture of SOTA, such as the transformer-based ViT, CaiT, and Conformer, obtaining the best grading results under ACC, SE, SP, and AUC. In conclusion, we demonstrated the effectiveness of the Transformer module over ccRCC grading. Furthermore, the combination of CNN and Transformer mitigates the noise label problem in ccrRCC.



3.6 External validation

We evaluate our model based on one external validation dataset, the Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) (36, 37). The TCGA-KIRC focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal, while the radiological data is stored in The Cancer Imaging Archive (TCIA). Here we just use the CT radiological data. We selected 20 patients (e.g., 10 low-grade samples and 10 high-grade samples) from 227 patients as our external validation data. The results of our model TransResNet on the data are: 81.9% ACC, 85.4% AUC, 76.6% SE, and 87.2% SP.




4 Discussion

This retrospective study comprehensively investigates the pros and cons of different deep learning models based on two-phase CT images for discriminating low- and high-grade ccRCC. According to data scarcity and noise labels, a transformer-based deep learning model, TransResNet, is proposed. After a thorough comparison, the proposed discriminative model, TransResNet, achieved satisfactory performance. In addition, we find that this model can effectively alleviate the impact of noise labels.

At present, the analysis of radiomics is a common paradigm to predict the ccRCC. Previous studies analyzed the texture of non-enhanced CT through machine learning to obtain universal features for higher accuracy. For example, Coy et al. have shown that high-grade ccRCC lesions are significantly larger and have more calcifications, necrosis, aggregation system infiltration, and unclear tumor margins than low-grade ccRCC lesions (38). In addition, several studies (39, 40) have proved that high-grade tumors tend to be larger than low-grade. However, our experiment found high-grade lesions are not significantly different from low-grade CT images. This is consistent with the findings of (12) and (13). The performance of image-based quantitative indicators varies on different datasets, and their adequacy needs further verification. In this study, we use deep learning to analyze the CT images, which can automatically discover pixel-level features, supporting a more powerful model.

In ccRCC, some high-grade lesions have low-grade features due to unavoidable sampling bias. It was also interesting to find that convolution-based networks focus on local pixel subsets, which results in a tendency to learn local patterns so that the relationships within images are ignored. As a result, in the complex samples, the convolution kernel cannot effectively make decisions, which leads to unsatisfactory grading accuracy. CNNs uniformly process CT images regardless of their importance. In contrast, the transformer uses a self-attention mechanism instead of a CNN, which can establish long-range dependencies in images. The Transformer has been widely used for medical tasks with high accuracy, e.g., prostatic segmentation (41), delineating the epicardium and endocardium (42), multi-modal medical image classification (18), etc. The Transformer can not only be used for segmentation but also carries an advantage in processing images with noisy labels due to its way of capturing image features. However, transformer networks require a large-scale dataset for training because the transformer lacks inductive bias (24). Thus, scarce medical data leads to severe over-fitting, which may further reduce the reliability of the classifier. Therefore, we take advantage of the CNN and a transformer to extract the features of CT images. The introduced transformer module can help CNN obtain the relationship between the pixel blocks inside the image. We find that this hybrid classifier is superior to a single classifier, with ACC increasing from 83% to 87% and AUC increasing from 85% to 90%.

Correctly grading complex samples is one of the significant indicators for evaluating the strength and stability of a deep learning model, which reflects the ability to extract general features. Our method shows some advantages when faced with noise samples and difficultly graded examples (see Analysis of noise labels section). As is known to all, different models have respective preferences for data, and the features learned from a single model are not necessarily reliable. This paper trains a set of heterogeneous models to improve robustness and accuracy by integrating their extracted features, with ACC increasing from 85.8% to 86.5% and AUC increasing from 90% to 91.2%. This study shows that our method can effectively reduce the difficulty of grading caused by noise labels. This method can be widely applied to other medical grading tasks, e.g., the grade of neurogliomas and meningiomas.

Our study has several limitations. First, Fan et al. (12) found that the classifier based on a three-phase CT image is better than that based on a single-phase CT image. Theoretically, non-enhanced CT images can provide additional information for diagnosis. However, this study only used the data from the arterial and portal vein phases due to fewer non-enhanced CT images and inapparent texture information. Additionally, we did not collect additional validation sets because the original DICOM data of the ccRCC are difficult to obtain. However, the superiority of the transformer in the feature extraction can be reflected in the training and testing.



5 Conclusion

This paper studies the application of transformer architecture to ccRCC classification. We first collected a high-quality ccRCC CT scan dataset containing more than 759 patients with pathological proven. Then, a hybrid structure, termed TranResNet, is proposed, which compromises the merits of CNN and Transformer. Unlike other transformer models, TranResNet does not require pre-training on large-scale datasets. Finally, we conducted extensive experiments on ccRCC datasets to verify our method. TransResNet achieves good performance over ConvNets and other related transformer architectures, demonstrating promising results in ccRCC classification. We hope it will help future research on this subject, and it can cooperate with radiologists to classify the ccRCC in an actual clinical situation.
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Purpose

To develop a cascaded deep learning model trained with apparent diffusion coefficient (ADC) and T2-weighted imaging (T2WI) for fully automated detection and localization of clinically significant prostate cancer (csPCa).



Methods

This retrospective study included 347 consecutive patients (235 csPCa, 112 non-csPCa) with high-quality prostate MRI data, which were randomly selected for training, validation, and testing. The ground truth was obtained using manual csPCa lesion segmentation, according to pathological results. The proposed cascaded model based on Res-UNet takes prostate MR images (T2WI+ADC or only ADC) as inputs and automatically segments the whole prostate gland, the anatomic zones, and the csPCa region step by step. The performance of the models was evaluated and compared with PI-RADS (version 2.1) assessment using sensitivity, specificity, accuracy, and Dice similarity coefficient (DSC) in the held-out test set.



Results

In the test set, the per-lesion sensitivity of the biparametric (ADC + T2WI) model, ADC model, and PI-RADS assessment were 95.5% (84/88), 94.3% (83/88), and 94.3% (83/88) respectively (all p > 0.05). Additionally, the mean DSC based on the csPCa lesions were 0.64 ± 0.24 and 0.66 ± 0.23 for the biparametric model and ADC model, respectively. The sensitivity, specificity, and accuracy of the biparametric model were 95.6% (108/113), 91.5% (665/727), and 92.0% (773/840) based on sextant, and were 98.6% (68/69), 64.8% (46/71), and 81.4% (114/140) based on patients. The biparametric model had a similar performance to PI-RADS assessment (p > 0.05) and had higher specificity than the ADC model (86.8% [631/727], p< 0.001) based on sextant.



Conclusion

The cascaded deep learning model trained with ADC and T2WI achieves good performance for automated csPCa detection and localization.





Keywords: deep learning, prostatic neoplasms, magnetic resonance imaging, detection, localization



Introduction

Prostate cancer (PCa) is one of the most common malignant tumors in men worldwide. The clinical behavior of PCa ranges from low-grade indolent that is generally considered to be non-life-threatening to high-grade aggressive tumors with a Gleason of Score 7–10, i.e. clinically significant PCa (csPCa), that may progress rapidly to metastatic disease and may be life-threatening (1). Multiparametric magnetic resonance imaging (mpMRI) has adopted an increasingly significant role in the detection and localization of csPCa, as well as in guiding targeted biopsy (2). Recent large-scale clinical trials have demonstrated that the use of mpMRI before biopsy increases the detection of csPCa, while reducing the detection of those deemed clinically insignificant (3, 4). Furthermore, using mpMRI to triage male patients may enable a quarter to half of them to avoid the need for biopsy (3, 5). To standardize and improve the interpretation of prostate mpMRI, the use of the Prostate Imaging Reporting and Data System (PI-RADS) has been recommended and updated (2, 6). However, the interobserver agreement for subjective evaluation using PI-RADS (version 2) is moderate and influenced by the readers’ experience (7, 8). Additionally, PI-RADS (version 2.1) has shown no significant improvements in overall diagnostic performance compared to PI-RADS (version 2.0) (9, 10). As there is arguably a trend in more people with clinically suspected csPCa undergoing prostate mpMRI, it is clinically desirable to develop more accurate and automated methods for prostate mpMRI interpretation.

In the recent years, artificial intelligence (AI) methods, particularly deep learning, have achieved promising results in automated csPCa diagnosis of mpMRI (11–14). A range of proposed deep learning algorithms were trained based on prior annotated regions of interest (ROIs) to classify them as cancerous or noncancerous lesions (11, 15), or slices, in which each individual image was classified as cancerous or not (16, 17). These methods were unable to precisely detect and locate csPCa, and such predicted results may not be directly applied to clinical practice. Some computer-aided diagnosis (CAD) systems developed for csPCa were based on the manual or semi-automatic segmentation of the prostate gland (13, 18), which also limits their direct clinical use. With the development of the deep convolutional neural network (CNN), some approaches for csPCa detection have been fully automatic with an area under the receiver operator characteristics curve of 0.75–0.86 (12, 19, 20). More studies are needed to improve and optimize these models. Although many generalized AI models have been developed, few studies have reported on how to integrate AI-based prediction into the clinical workflow. More explorations are demanded to move the prostate AI systems from the laboratory to the clinic with perfect output.

Our study aimed to develop a fully automated cascaded deep learning model for the detection and localization of csPCa using apparent diffusion coefficient (ADC) maps and T2-weighted imaging (T2WI), as well as to seamlessly integrate these AI predictions into the radiological workflow using the structured report.



Materials and methods


Study subjects

Our institute’s review board approved this retrospective study and waived the need for informed consent. The inclusion criteria for the study were mpMRI scans performed on a GE 750 3.0T MRI scanner at Peking University First Hospital from March 2017 to February 2020 on consecutive patients who underwent mpMRI before a biopsy, with a clinical suspicion of PCa due to an elevated serum prostate-specific antigen (PSA) level, abnormal digital rectal examination (DRE), and/or abnormal transrectal ultrasound (TRUS) results. Exclusion criteria were patients without a subsequent biopsy performed within 3 months after mpMRI examination, a negative biopsy for csPCa without clinical follow-up >1 year, or showing potential csPCa during the clinical follow-up (progression of PSA or MR findings), as well as images with severe artifacts or incomplete pathology results which could not be matched with MR images. In total, 347 patients were included. Figure 1 displays the flow diagram for the inclusion of patients in the study. In this study, csPCa was defined as the International Society of Urological Pathology Gleason grade group ≥2, i.e., Gleason Score ≥7. The characteristics of the 235 patients with csPCa included are shown in Table 1. The other 112 patients without csPCa (labeled non-csPCa with a mean age of 64.1 ± 7.5 years) had a median PSA level of 8.0 ng/ml, with an interquartile range of 6.6–13.1 ng/ml. The patients were randomly selected to populate the datasets for training (145 csPCa, 35 non-csPCa), validation (21 csPCa, 6 non-csPCa), and testing (69 csPCa, 71 non-csPCa).




Figure 1 | Flow diagram for inclusion of patients into the study.




Table 1 | Characteristics of patients with csPCa.





MRI sequences

All of the mpMRI examinations were performed on a 3-T MR machine (Discovery MR750, GE Medical Systems). A 32-channel abdominal phased array coil was used as the receiving coil. All patients were scanned following the unified prostate mpMRI protocol. The main sequence parameters are summarized in Table 2. The ADC map was automatically generated by the MR vendor software based on diffusion-weighted imaging (DWI) data with different b values. Concerning the patients included in this study, anonymized images were exported in the Digital Imaging and Communication in Medicine (DICOM) format.


Table 2 | The main sequence parameters in this study.





PI-RADS assessment

All of the mpMRI cases in the dataset of the test were retrospectively interpreted according to PI-RADS (version 2.1) by a urogenital radiologist with 10 years of experience in prostate MRI diagnosis. The radiologist was informed of the clinical information of the patients, such as age, biopsy history, PSA, etc., but was blinded to the pathology results and the previous MRI reports. The lesions detected were delineated on a prostate sector map.



Reference standard and annotation

All of the patients in this study underwent TRUS-guided systematic and targeted biopsy using 12- or six-core needles. For cognitive targeting, lesions suspected of malignancy on mpMRI had been marked on a prostate sector map (6) using structured reports by five dedicated urogenital radiologists during the clinical routine. Before the biopsy, MR images would be reviewed by at least one urogenital radiologist and one urologist at a multidisciplinary meeting to ensure the accuracy of suspicious lesions localization. The urologists obtained additional needle cores (two- to five-core needles) for each of the suspicious lesions during the TRUS-guided biopsy. Histopathology analysis of each specimen was performed by a urogenital pathologist with 11 years of experience.

Two experienced urogenital radiologists (X and Y with 7 and 13 years of experience in prostate MRI diagnosis, respectively) retrospectively reviewed all csPCa cases and mapped the detailed pathology results of the csPCa foci to the MR images with consensus. The ground truth of the csPCa lesion segmentation was obtained using manual delineation by the urogenital radiologist (X), in consensus with and under the supervision of the other urogenital radiologist (Y), using the open-source segmentation software ITK-SNAP (version 3.6 2015; available at www.itksnap.org) (21). The format of ADC and T2WI was converted from DICOM to NIFTI. Three-dimensional volumes of interest (VOIs) were manually drawn along the boundaries of the csPCa lesions on consecutive axial sections of ADC images.



Image preprocessing

After collecting the mpMRI data, the first step of image preprocessing is T2WI and DWI/ADC image registration. Patient motion is minimal and the two sequences are temporally close to each other during the scanning. T2WI and DWI/ADC images were registered via rigid transformation using the coordinate information stored in the DICOM image headers. B-spline interpolation to the third order was employed for all MR image interpolation tasks, while Gaussian label interpolation was used for the csPCa and prostate segmentation masks. Following this, a coarse segmentation of the prostate was obtained by K-means clustering in DWI high b value images to localize the prostate region. Once the prostate region was identified, the images were cropped to a patch of size 128 × 128. The prostate region of interest was then normalized into the range of [0, 1]. We augmented the data in the training set by mirroring, random rotation (rotation angle within 10°), and adding noise (within 0.001, which means each pixel value randomly fluctuates within one thousandth).



Deep learning framework

The base architecture for the deep learning framework used in this study is a CNN inspired by the 2D U-Net (22) and Res-Net (23) architectures and is termed Res-UNet. U-Net is one of the end-to-end methods of deep learning, which is also a pixel-to-pixel method and, with long skip connections, considers feature maps of the encoder path to obtain good segmentation performance in medical images. Res-Net (23) proposed a residual connection architecture to make the network deeper and avoid gradient vanishing and take advantage of strengths from both architectures by modifying the original U-Net architecture and adding residual blocks into the contracting and symmetric expanding paths of the U-Net architecture. In building the Res-UNet, we define a basic convolution operator by a 3 × 3 convolution (Conv) followed by a batch normalization (BN) and a rectified linear unit (ReLu). The residual block was designed by using a 1 × 1 Conv layer, plus an addition operation and ReLU function. Figure 2 depicts the Res-UNet architecture.




Figure 2 | The briefarchitecture of the proposed weighted Res-Unet and the overall pipeline of our approach.



Following McNeal’s criterion (24), the prostate is typically partitioned into two distinct zones: the Central Gland (CG, including both the transition zone and the central zone) and the Peripheral Zone (PZ). PCa lesions vary in frequency and malignancy depending on the zone, and there are different evaluation criteria for different regions in the PI-RADS. Therefore, just like a radiologist, a model for automated PCa detection and classification will invariably benefit from having both CG and PZ mask priors provided as inputs, in addition to the mpMRI. Accordingly, a cascading system of a three-segmentation Res-UNet which was previously developed in our institution (25) was developed for automatic prostate CG and PZ segmentation and PCa lesion segmentation. The cascade is designed to decompose the multi-task segmentation problem into a sequence of three smaller binary segmentation problems according to the subregion hierarchy. As can be seen in Figure 2, the first Res-UNet model takes prostate MR images (T2WI + ADC or only ADC) as inputs and produces a prostate segmentation mask as an output. Then, the second model takes the MR images and the prostate segmentation mask which were obtained in the previous step as inputs and produces a PZ segmentation mask. The CG segmentation mask can be computed by subtracting the PZ mask from the prostate mask. Finally, the last model takes the MR images, the PZ mask, and the CG mask as inputs and segments to the csPCa.



Training setup

All of the training steps were performed using a GPU NVIDIA Tesla P100 16G at Peking University First Hospital, using the operating system Ubuntu 16.04. The software and packages used included Python 3.6, Pytorch 0.4.1, Opencv 3.4.0.12, Numpy 1.16.2, and SimpleITK 1.2.0. The input data were 128 × 128 images of ADC alone and ADC combined with T2WI, respectively, with an annotation of the csPCa lesions. The automated segmentation of the whole prostate gland and its different zones was completed using the previously developed and described method (25). For training the architectures for csPCa segmentation, the batch size was set as 20 with a learning rate of 0.0001. The networks were trained for 120 epochs. The pixel classification threshold was 0.5, while Adam was used as a training optimizer. The Dice similarity coefficient (DSC) was used to evaluate the performance of the networks in the segmentation of the csPCa, which is calculated as

	

here X is the pixel set of csPCa segmented manually as the ground truth and Y is the pixel set of csPCa prediction by the model.



Prediction results integrated into the structured report

Initially, the prediction results were “csPCa” or “non-csPCa” depending on the patient concerned. When “csPCa” was the output, the three-dimensional diameter of the suspicious csPCa lesions and the whole prostate gland would be filled into the structured report, as well as the key image of the suspicious csPCa lesions (Supplementary Figure S1). Furthermore, sextant localization of the suspicious csPCa lesions would be labeled in the prostate sector map. The prostate sextant is defined according to the standard sextant biopsy (26), based on the automatic segmentation of the prostate gland.



Statistical analysis

Statistical analysis was carried out using SPSS 20.0 and MedCalc 15.8. We evaluated the performance of the biparametric (ADC + T2WI) model, ADC model, and PI-RADS assessment using the testing set. For PI-RADS assessment, PI-RADS ≥3 was considered positive for csPCa. For per-lesion analysis, to limit the influence of very small overlap regions, only the predicted lesions of the model overlapping ≥50% of the manual csPCa segmentation lesions in at least one slice were considered as true positive. Otherwise, the predicted lesions were considered to be false positives. For sextants analysis, only sextants overlapping at least 50% of an MRI lesion, or being occupied at least 50% by an MRI lesion, were considered to contain the MRI lesion (13). For per-patient analysis, if a patient had one or more than one csPCa lesions, the prediction of the model or PI-RADS assessment, was considered as true positive when at least one csPCa lesion was detected. On the other hand, for a patient without csPCa, the prediction was considered as false positive as long as one lesion was predicted. The performance of the models and PI-RADS assessment for csPCa detection and localization were evaluated based on the lesions, sextants, and patients, respectively. The sensitivity, specificity, and accuracy of the models and PI-RADS were evaluated and compared using the McNemar test. A p value of less than 0.05 was considered statistically significant.




Results


Based on lesions

In the test set, 88 csPCa lesions were included and the mean greatest dimension was 1.6 ± 0.7 cm. Table 3 depicts the sensitivity of the models and PI-RADS assessment on the per-lesion analysis. The per-lesion sensitivity of the biparametric model, ADC model, and PI-RADS assessment was 95.5% (84/88), 94.3% (83/88), and 94.3% (83/88), respectively, with all p > 0.05. For the csPCa lesions with the greatest dimension ≥1.5cm, the sensitivity of the biparametric model was 100%, and the sensitivity of the ADC model and PI-RADS assessment was 97.6% (40/41, with p > 0.05). The sensitivity showed no significant difference between the models and PI-RADS regardless of whether the csPCa lesions were in the PZ or the TZ.


Table 3 | Per-lesion sensitivity of the models and PI-RADS assessment.



In addition, the mean DSC based on csPCa lesions in the test were 0.64 ± 0.24 and 0.66 ± 0.23 for the biparametric model and the ADC model, respectively. Figure 3 demonstrates examples of the csPCa segmentation of the biparametric model.




Figure 3 | (A–F) Examples of the csPCa lesion segmentation performance of the biparametric model. The prediction results (A–F), yellow line on the ADC map were highly consistent with the manual annotation (A–F), blue line on ADC map by experienced urogenital radiologists according to pathological results.





Based on sextants

A total of 840 sextants from the test set were analyzed, including 113 sextants of csPCa and 727 sextants of non-csPCa. The diagnostic efficacy and comparisons of the models and the PI-RADS assessment based on sextants are summarized in Tables 4 and 5. The biparametric model and PI-RADS assessment both had relatively high sensitivity, specificity and accuracy, i.e., 95.6% (108/113) vs. 92.9% (105/113), 91.5% (665/727) vs. 92.2% (670/727), and 92.0% (773/840) vs. 92.3% (775/840), respectively, all with p > 0.05. The ADC model demonstrated a comparable sensitivity of 91.2% (103/113) when compared with the biparametric model where p = 0.125, while the ADC model had a specificity of 86.8% (631/727) and accuracy of 87.4% (734/840), which were both lower than the biparametric model (all p< 0.001). Considering all the mpMRI sequences and detailed pathological results, 61.5% (59/96) of the false-positive sextants from the ADC model were hyperplastic nodules and asymmetric central zone, which is shown in Figure 4, while the ratio was 45.2% (28/62) for the biparametric model.


Table 4 | Performance of the models and PI-RADS assessment based on sextants and patients.




Table 5 | Comparisons of the models and PI-RADS assessment based on sextants and patients.






Figure 4 | (A–C) Axial MR images obtained in a 56-year-old patient with a PSA level of 4.2 ng/ml and with negative biopsy findings. T2WI (A) showed a heterogeneous encapsulated nodule in the left transition zone (arrow) and the ADC map (B) showed hypointensity (arrow). The ADC model (C) appeared false positive (red region). (D–F) Axial MR images obtained in a 64-year-old patient with a PSA level of 5.9 ng/ml and with negative biopsy findings. T2W (D) and ADC (E) showed a normal left central zone, while the ADC model (F) appeared false positive in this area (red mark). The biparametric model gave negative predictive values for both cases.





Based on patients

For the 140 patients (csPCa, 69; non-csPCa, 71) in the test set, the performance and comparisons of the models and the PI-RADS assessment based on patients are shown in Tables 4 and 5. Biparametric model and PI-RADS assessment had comparable per-patient sensitivity, specificity, and accuracy, i.e. 98.6% (68/69) vs. 98.6% (68/69), 64.8% (46/71) vs. 66.2% (47/71) and 81.4% (114/140) vs. 82.1% (115/140), respectively (all p > 0.05). ADC model had a similar sensitivity of 97.1% (67/69) compared with the combined model and PI-RADS assessment. The specificity and accuracy of the biparametric model were slightly higher than those of the ADC model (specificity, 54.9%; accuracy, 75.7%); however, the statistical significance was not reached (p = 0.118, 0.077).




Discussion

Our approach using cascaded CNNs could automatically detect and segment the suspicious csPCa lesions on MR images without any human intervention. The whole prediction process could be completed within a few seconds per case, which was much faster than human interpretation using PI-RADS, which normally takes several minutes. There are several benefits of using a cascaded framework for the segmentation of hierarchical structures. First, many proposed methods try to solve the segmentation problem using a single neural network. Considering the great variability in the shape, size, texture, and appearance of the prostate gland and PCa, we suggest using cascaded CNNs for the segmentation task to improve the segmentation accuracy, and each network can focus on one segmentation problem. Thus, they are easier to train and can reduce over-fitting. Second, in consideration of the PCa lesions, these can vary in frequency and malignancy depending on the zone; the hierarchical pipeline follows the anatomical structures of the prostate and uses them as spatial constraints. Thus, the model for automated csPCa detection and classification will likely benefit.

The results demonstrated that the biparametric model had high sensitivity (95.5%, 95.6%, and 98.6% based on lesions, sextants, and patients respectively) and acceptable specificity (64.8%, 91.5%; based on patients and sextants) and had comparable performance to PI-RADS evaluation by an experienced radiologist, which is consistent with Schelb’s findings (13). The preliminary results of our study add to the evidence that fully automated deep learning models for csPCa detection have now even reached the level of an experienced radiologist (13, 27). Further prospective studies based on large consecutive data are needed for clinical validation. Furthermore, our model could also determine the boundary of csPCa precisely. The DSC based on csPCa lesions was 0.64 and 0.66 for the biparametric model and ADC model, respectively, which was higher than that in similar studies on csPCa detection that reported 0.35–0.58 (13, 28, 29). The good segmentation performance would facilitate the 3D prostate MRI-TRUS fusion targeted biopsy. Additionally, a 3D model for the visualization of csPCa and the adjacent vital structures, based on accurate segmentation, may be helpful for the urologist in the surgery, as well as for patient education (30). However, DSC as a voxel-level metric remains limited for lesion-level PCa detection and can misrepresent the accuracy for evaluating the localization of multifocal PCa (31, 32). Therefore, our study based on the actual clinical practice mainly used sensitivity and specificity at the lesion, sextant, and patient levels to comprehensively evaluate the performance of the model.

T2WI and ADC derived from DWI are recommended by PI-RADS as the most important sequences for the evaluation of TZ and PZ lesions, respectively. Many studies demonstrated that the diagnostic performance of biparametric MRI without DCE was similar to those of mpMRI (33, 34). Therefore, this study mainly used those two parameters to develop the model. Additionally, the ADC of DWI is considered to be the current best monoparametric sequence of prostate MRI assessment, which is reported to have a strong relationship with the Gleason scores (GS) of PCa and is even superior to TRUS-guided prostate biopsy for the assessment of PCa aggressiveness (35–37). For this reason, the proposed model trained with monoparametric ADC was evaluated specifically. The results of our study demonstrated that the monoparameter ADC model had a high sensitivity for csPCa detection (94.3% [83/88] and 97.1% [67/69], based on lesions and patients, respectively), which showed no significant difference (p > 0.05) with the biparametric model and PI-RADS assessment, regardless of whether the csPCa lesions were located on the PZ or TZ. Zabihollahy et al.’s study also showed that deep learning using only ADC was highly sensitive and could even reach a 100% sensitivity at the level of dominant PZ tumor detection (12), which is slightly higher than ours. The reason may be that their study only considered the most dominant lesion on PZ, which was easily identifiable, while our study detected all the csPCa on the MR images. Further research with larger volumes of testing data is needed to verify the performance of the ADC model. The specificity of the biparametric model in our study was higher than that of the ADC model based on sextants (p< 0.001). When compared with the ADC model, the biparametric model outputted fewer false-positive lesions such as hyperplastic nodules and the central zone. Nevertheless, the high sensitivity of the ADC model using a single parameter instead of time-consuming mpMRI may facilitate the promotion of prostate MRI screening.

In contrast with studies that were training models using public data (15, 38), the data in our study were collected consecutively based on real-world clinical scenarios, which would allow the model to be more easily integrated into a clinical setting. The amount of data in the training and validation sets (145 and 21 csPCa cases, including 1204 slices and 173 slices, respectively, after automatic prostate segmentation) was comparable to that used in some studies (11, 12), and was larger than that in other studies (19, 20). Therefore, we put more data in the testing set (69 csPCa, 71 non-csPCa cases) to better evaluate and verify the generalization ability of the model. Our proposed biparametric model yielded high sensitivity of 98.6% for csPCa detection based on patients, as well as other studies with the sensitivity ranging from 82.9% to 97% (13, 14, 39–41). However, it is worth noting that the specificity was not as high as expected in our study (64.8%) and in other studies (47%–76%) (12–14, 39). That is to say, the success of the AI came at the cost of a high false-positive rate of even 50% (42). Yu et al. (43)proposed a cascaded approach to reduce the false positive for PCa detection, where the second-stage classifier was able to reduce false positives at the expense of nearly an 8% decrease in detection sensitivity. Saha et al. (29) present a multi-stage 3D CAD model for csPCa localization in biparametric MRI with the addition of a residual patch-wise 3D classifier to improve the model specificity. The results demonstrated that up to 12.89% less false positives were generated per patient, while retaining the same sensitivity (92.29%) as before. Min et al. (44) explored the feasibility of controlling the false positives/negatives during training by incorporating the cost-sensitive classification losses. More studies are needed to further explore how to improve the specificity of the prostate CAD.

An optimal AI model should not only have good performance for csPCa diagnosis but should also have a perfect output form facilitating clinical practice. One advantage of the proposed approach is that it had a perfect output and added AI into the radiological workflow seamlessly by automatically integrating the prediction results into structured reports, which makes this approach more convenient for clinical application. At present, our model can output whether a patient has csPCa or not and the size of the prostate gland. If csPCa lesions were found, it would further output the size of csPCa lesions and also mark the area of csPCa on MR images. These prediction results could be automatically transferred into a structured report before radiologists open the reporting system. However, a complete structured report includes many other contents, such as whether the csPCa lesions invade the prostate capsule and adjacent structures, as well as lymph node condition, bone metastasis, etc. Our institution is now exploring each of the above, and some of them have achieved good performance (45). Our ultimate goal was to develop a fully automatic intelligent structured report, thereby freeing radiologists from heavy clinical paperwork. When radiologists open structured reports, they just need to check the accuracy of each item.

Several limitations of our study were as follows. First, all of the images were from a single MR machine in a single institution. Multi-center and multi-machine data functionality should be added to improve the generalization ability of the model in further studies. Secondly, this U-Net model was trained only using ADC and T2WI. Future research involving the addition of more MRI sequences and/or clinical information may be investigated to improve the performance of the model. On the other hand, the model in this study achieved good results with biparametric MRI, so streamlining MRI sequences with an advanced algorithm may be another possible research direction. Thirdly, even though the reference standard using TRUS-guided systematic and targeted biopsy had high sensitivity for csPCa, it still has a false-negative rate when compared with radical prostatectomy. Nevertheless, our cohorts may be optimal, for radical prostatectomy cohorts would exclude many patients who only had a prostate biopsy and could lead to bias. Finally, this model was only applicable to the detection and localization of csPCa instead of staging and active surveillance.



Conclusion

In conclusion, our study demonstrated that a cascaded deep learning model trained with ADC and T2WI achieved good performance for the fully automated detection and segmentation of csPCa and demonstrated comparable performance with an experienced radiologist using PI-RADS (version 2.1). The proposed approach can automatically integrate prediction results into the radiological workflow seamlessly by using a structured report. As a preliminary exploration, this study provided a reference for future AI clinical implementation. Further studies are needed to explore the optimal paradigm of AI clinical integration.
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