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Editorial on the Research Topic
Medical knowledge-assisted machine learning technologies in
individualized medicine

Machine learning (ML), a powerful tool for mining quantitative disease features in large
quantities of medical data, is arguably the most important method for extracting, integrating,
and modeling patient-specific and disease-specific factors for individualized medicine. ML
can provide clinical decision support for disease diagnosis, prognosis, and treatment in
practice. In reality, there is no universal ML model or solution for all medical problems and
clinical circumstances (Musolf et al., 2022), since both the fundamental biological
mechanisms and the modality of the clinically interested medical data differ from
disease to disease. In other words, biological and medical knowledge of the specific
domain is essential for the development of ML models for the corresponding medical
problems (You et al., 2022). For data scientists with rich modeling experience and limited
medical background knowledge, considering even the simplest basic medical knowledge will
significantly refine the structure of the ML framework and the process of model training,
offering an opportunity for the establishment of ML models with higher performance and
better interpretability (Chen et al., 2022). From another aspect, for biomedical researchers of
different specialties, effectively incorporating ML models with clinical information and
biological knowledge will lead to further insight into the pathogeneses of different diseases
and new biomedical findings (Jin et al., 2021; Eloranta and Boman, 2022), which may
translate into new drugs or therapeutic strategies for precision medicine. This Research
Topic collects some of the contributions from both sides, providing insights into the medical
knowledge-assisted ML studies for disease diagnosis, prognosis, and individualized
treatment management.

Currently, the ML technique is more and more adopted in the field of genomics analysis.
Albaradei et al. presented a pan-cancer model that takes the gene expression profile of the
primary site and predicts whether and where the metastasis has occurred. According to
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previous studies, metastasis does not occur randomly, noting that
the relationship between the metastasis clusters/cells and the specific
remote organ is similar to the relationship between the seed and soil
(Yuan et al., 2019). Following the “seed and soil” hypothesis,
Albaradei et al. identified metastasis-related primary tumor
transcriptome features of the common metastasis target organs,
such as the lung, liver, bone, and brain. Incorporating the
metastasis expression features for common metastasis target
organs, the established model of this study perform well in
pinpointing the metastasis site, aiding decision-making in clinical
practice. In another study, Nath et al. developed an integrative ML
model predicting everolimus treatment response based on in vitro
experimental results and gene expression data of a neoadjuvant
everolimus therapy cohort. Hormonal therapy is the mainstay of
the treatment for estrogen receptor-positive breast cancer, but many
estrogen receptor-positive cases resist endocrine therapy (Hanker
et al., 2020). The ML model established by Nath et al. integrated
experimentally verified everolimus response signatures with features
generated by in silico analysis of transcriptome data in the clinical
cohort, providing accurate everolimus response prediction for
individualized breast cancer treatment.

To advance ML-aided precision medicine, this Research Topic
also discusses studies of medical images. Images of computer
tomography (CT) are vital for the diagnosis, classification, and
risk evaluation of intracerebral hemorrhage (ICH) (Li et al.,
2021). Nijiati et al. pointed out that one of the most important
characteristics of the ICH CT images is the destruction of the
symmetrical structure of the brain tissue. With this prior
anatomical knowledge, the authors integrated a transformer-
based framework to capture the long-distance symmetric
information in their Sym-TransNet model, achieving higher ICH
lesion segmentation performance than the existing methods. In
addition to ICH, CT scans also play an important role in clinical
oncology. Li et al. proposed a multi-size convolutional neural
network-based model for colorectal cancer recurrence prediction
based on CT images. With the help of the human experts’
annotation of CT images, the model crop and magnify the
inputted CT images at different magnifications to extract
radiological features of multiple levels, turning each CT image
into a series of images containing both full-image level
information and detailed tumoral level information imitating the
CT scan reading behavior of the human experts. The model succeeds
in predicting patients with high recurrence risk, providing a reliable

tool for individualized prognosis evaluation. Except for CT,
ultrasonography also plays a part in clinical oncology. Zhu et al.
developed a diagnosis model for the evaluation of the malignant
degrees of renal tumors based on ultrasound images. The model
extract features from both B-mode ultrasound and contrast-
enhanced ultrasound-mode images that are annotated by senior
radiologists, reaching an expert-level accuracy in differentiating
benign cases from malignant cases.

In conclusion, the integration of medical knowledge into ML
technology has been regarded as a powerful computer-aided tool for
individualized medicine. Aiming at providing a broad view of the
fascinating development in the field, this Research Topic collected
articles that gave some insights to make good use of ML technology
in a clever way to deal with a variety of clinical or biological
problems. We envision this Research Topic of articles will
provide insights for researchers interested in medical data
science, speed up the development of medical knowledge-aided
ML methods, and reinforce the clinical applications of the ML
models for precision medicine.
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Effects of Inflammatory Response
Genes on the Immune
Microenvironment in Colorectal
Cancer
YaChen Wang†, Luping Zhang†, Guanghuan Shi, Mingqing Liu, Weidan Zhao, Yingli Zhang,
Ying Wang* and Nan Zhang*

Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China

Background: The close relationship between colorectal cancer and inflammation has
been widely reported. However, the relationship between colorectal cancer and
inflammation at the genetic level is not fully understood.

Method: From a genetic perspective, this study explored the relationship between
inflammation-related genes and the immune microenvironment in colorectal cancer.
We identified prognostic genes, namely CX3CL1, CCL22, SERPINE1, LTB4R, XCL1,
GAL, TIMP1, ADIPOQ, and CRH, by using univariate and multivariate regression analyses.
A risk scoring model for inflammatory response was established, and patients in The
Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database
were divided into two groups: high risk group and low risk group.

Results: The analysis showed that the prognosis of the two groups was significantly
different, and the low-risk group had a higher survival rate and longer survival time.
Pathways related to apoptosis, inflammatory response, and hypoxia were significantly
enriched as shown via Gene Set Enrichment Analysis (GSEA). Activated dendritic cell
infiltration was found in both the TCGA and GEO databases, and theCCL21 gene played a
significant role in the process of activated dendritic cell infiltration. CCL21 gene was also
positively correlated with inflammatory response, and the gene expression and risk score
were significantly different between the two groups.

Conclusion: In summary, inflammatory response has a direct impact on patients with
colorectal cancer in the prognosis and immune infiltration and further research studies on
the inflammatory response can help in advancing the development of immunotherapy for
colorectal cancer.

Keywords: inflammatory response, tumor microenvironment, colorectal cancer, immune cell infiltration, risk score
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INTRODUCTION

Colorectal cancer is the third most common cancer in the world
(Stoffel and Yurgelun, 2016). It is also one of the main causes of
cancer deaths in both men and women globally (Drewes et al.,
2016). The possible link between inflammation and tumors was
first revealed in the 19th century by Rudolf Virchow (Hooper
et al., 2012). Epidemiological and clinical studies have also shown
that patients who have Crohn’s disease and ulcerative colitis, the
two major types of inflammatory bowel disease, are at increased
risk of colorectal cancer (CRC) (Rizzo et al., 2011). The gut is
particularly rich in human microbes, and bacteria disrupt the
homeostasis by activating immune signaling pathways, leading to
an inflammatory environment (Brennan and Garrett, 2016).
Tumor microenvironment plays an important role in the
growth and development of tumors (Esteva et al., 2019;
Strasser and Birnleitner, 2019). Inflammation can cause the
aggregation and activation of immune cells, and the activated
immune cells promote the proliferation of tumor cells by
secreting pro-inflammatory cytokines and chemokines (Ferrari
et al., 2019). Therefore, the relationship between inflammatory
response and the immune microenvironment of colorectal cancer
has attracted much attention. In this study, we screened out the
inflammatory response genes related to the prognosis of intestinal
tumors and constructed an inflammatory response risk score
model. Enrichment of the model-related pathways was examined.
Furthermore, we screened out the genes which may influence
immune cell infiltration using the inflammatory response risk
score model. The purpose of this study was to examine the
relationship between inflammatory response and intestinal
tumor immune microenvironment at the genetic level.

MATERIALS AND METHODS

Data Sources
RNA sequences and clinical data of relevance in this study were
obtained from the TCGA and GEO (GSE39582) databases.
GSE39582 contains the largest sample size of CRC patients
with the most complete clinical information.

Construction of the PPI Network
We used a String database to construct the PPI network of genes
related to inflammatory response.

Construction and Grouping of Inflammatory
Response Models
We downloaded the genes related to inflammatory response,
and then screened for the genes associated with the prognosis of
colorectal cancer. The expression level of each gene in the
TCGA and GEO databases was multiplied by the expression
coefficient, followed by calculation of the risk score for each
patient. For further analyses, the patients in the two databases
were divided into high and low risk groups according to the
median value of the risk score obtained from the TCGA
database.

Survival Analysis
There were 445 patients in the TCGA database, and the follow-up
time was 12 years. There were 562 patients in the GEO database
who were followed for 16 years. The “survival” and “SurvMiner”
packages from R (4.0.3) language were used to analyze the
prognosis of these patients. Kaplan-Meier method was used to
draw the survival curves, and the log-rank test was used to test the
statistical significance. p < 0.05 was considered significant.

ROC Curve Analysis
The 1-, 3-, and 5-years survival rates of patients in two databases
were analyzed. The “survival,” “SurvMiner,” and “timeROC”
packages from R (4.0.3) language were used to analyze and
calculate the area under the ROC curve (AUC). If the area
under the curve of 1-, 3-, and 5-years survival rates gradually
increases and exceeds 0.5, it indicates that the model has a high
accuracy for predicting the survival of patients. The survival of the
two groups was represented by a risk column and risk curve.

Heat Map
The heatmap representing gene expression in this experiment was
drawn by the “PheatMap” package of R (4.0.3) language.

Cox Regression Analysis
Survival kit of R (4.0.3) language was used to analyze the
inflammatory response genes that were significantly correlated
with prognosis, and age, sex, T, N, M, and risk score were used for
single-factor and multi-factor prognostic analyses.

Gene Set Enrichment Analysis
We downloaded and extracted the genes associated with
inflammation from the 1 Gene Set Enrichment Analysis
(GSEA) website. Gene sets with NOM p < 0.05 and FDR q <
0.06 were considered to have statistical significance.

Analysis of the Correlation Between Genes
and Inflammatory Response
We downloaded the genes involved in regulating immune cells
and screened for the ones that play a crucial role in inflammatory
response. The “ggplot2,” “GGPUBR,” and “ggExtra” packages of
R (4.0.3) language were then used to analyze the correlation
between these genes and inflammatory response, as well as their
expression between the high and low risk groups.

RESULTS

Extraction and Screening of Inflammatory
Response-Related Genes
We downloaded the Ontology gene set from the Gene Set
Enrichment Analysis (GSEA) website and extracted the
inflammatory response-related genes from the data set. We
used the STRING protein-protein interaction (PPI) to
establish the relationship between the proteins of the
inflammatory response-related genes (Figure 1A). Because of
the large number of genes related to the inflammatory response,
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we selected 301 genes which were the largest number of adjacent
nodes for subsequent gene screening (Figure 1B). Next, we
downloaded gene expression data and clinical information of
intestinal tumors from the Cancer Genome Atlas (TCGA)
database and extracted the expression levels of inflammatory
response-related genes. Cox univariate analysis was used to
screen out genes related to CRC prognosis (Figure 1C). Since
there were several genes related to prognosis, we selected the

genes with p < 0.03 for subsequent modeling. CCL22 and CCRL2
were identified as low risk genes, while CX3CL1, CD36,
SERPINE1, LTB4, XCL1, GAL, TIMP1, ADIPOQ, S1PR3, and
CRH were identified high-risk genes. We included these genes in
subsequent Cox multivariate regression analysis. The final
prognosis model was constructed using CX3CL1, CCL22,
SERPINE1, LTB4R, XCL1, GAL, TIMP1, ADIPOQ, CRH, and
CCL22 which was a low-risk gene (Figure 1D).

FIGURE 1 | Screening of inflammatory response genes and their influence on prognosis. (A) Protein interaction network of inflammatory response genes. (B) The
301 inflammatory response genes with the largest number of adjacent nodes have been represented by a pie chart. (C) The genes with p value <0.03 were screened by
univariate Cox regression analysis. (D)Multivariate Cox regression analysis was performed to select the inflammatory response genes that can independently affect the
prognosis.
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Effects of Inflammatory Response-Related
Genes on Prognosis
Multivariate Cox regression analysis revealed nine inflammatory
response genes which were related to the prognosis of colorectal
cancer and were subsequently used to construct the prognosis
model. The risk score for each patient was obtained by
multiplying the amount of gene expression by the
corresponding regression coefficients (0.3864, −1.111, 0.2468,
0.6110, 0.7304, 0.2915, 0.4683, 0.2706, and 2.198 for CX3CL1,
CCL22, SERPINE1, LTB4R, XCL1, GAL, TIMP1, ADIPOQ, and
CRH, respectively). The median risk score of the patients in the
TCGA and GEO databases as the standard, the patients were
divided into high and low-risk groups.

Results of survival analysis for the two groups of patients is shown
in Figures 2A, B. Significant differences in the survival were
observed between the high-risk and low-risk groups (p < 0.05).
The area under the receiver operating characteristic (ROC) curve of
the TCGA database and GEO database was greater than 0.05
(Figures 2C, D). However, the area under the curve did not
increase with the increase in follow-up time for either the TCGA
or GEO databases. This shows that the prediction model has some
issues regarding the accuracy of prognosis and needs improvement.
In order to observe the survival of the patients in the high and low

risk groups more intuitively, we used a risk histogram to display the
survival status of patients in the TCGA and GEO databases (Figures
3A, B). Patients in the high-risk group had lower survival rates than
those in the low-risk group, indicating that our model can
distinguish the high-risk group from the low-risk group. Next, we
analyzed the relationship between the prognosis-related
inflammatory response genes in the model (Figures 3C, D). The
relationship between the risk score and survival rate of patients is
illustrated by risk curves in Figure 3 (E and F plotted the risk scores
of the patients in the high and low risk groups, respectively). Patients
in the medium-high risk group lived shorter lives than those in the
low-risk group (Figures 3G, H), and with increasing time, the
number of deaths also decreased. Finally, by using thermography,
we evaluated the expression of the genes in the high and low risk
groups in the model (Figures 3I, J).

Effect of Different Clinical Characteristics
on the Prognosis of CRC
Different clinical characteristics have different effects on the
prognosis of patients with CRC. Along with the risk score
obtained from the model, we analyzed the influence of
different clinical characteristics on the prognosis of patients

FIGURE 2 | Effect of the model on prognosis. (A,B) Patients with colorectal cancer were divided into high-risk group and low risk group using Kaplan Meier method
(TCGA, GEO). The log-rank test was used to compare the survival time between the high-risk and low-risk groups (p values were less than 0.001 and equal to 0.013,
respectively). (C,D) By using ROC curve to evaluate the accuracy of the prediction model. The area under the ROC curve of TCGA and GEO databases was greater
than 0.5.
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FIGURE 3 | Survival rate and prognosis of patients using the model, along with the expression of genes in the model in the high-risk and low-risk groups. (A,B)
Survival rates in the TCGA and GEO databases. (C,D) Relationship between the genes in the model. (E,F) Risk scores of patients in the TCGA and GEO databases.
(G,H) Survival time of patients in the high and low risk groups in the TCGA and GEO databases. (I,J) Expression of the genes in the model in the high and low risk groups
of the TCGA and GEO databases.
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FIGURE 4 | Relationship between the risk model and different clinical traits. (A,B) Univariate prognostic analysis was performed on age, sex, T, N, M stage, and risk
score of colorectal cancer patients in the TCGA and GEO databases. (C,D)Multivariate prognostic analysis was performed on age, sex, T, N, M stage, and risk score of
colorectal cancer patients in the TCGA and GEO databases. (E,F) Expression of genes between among T stages in the TCGA and GEO databases. (G,H) Heat maps of
the expression of inflammatory response genes among different T stages in models in the TCGA and GEO databases.
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with CRC. First, Cox univariate regression analysis was used to
determine the association between clinical features and the
prognosis of patients from the two databases (Figures 4A, B).
Sex had no effect on the prognosis of patients, whereas other
factors had an impact on the prognosis and were all high-risk
factors. The risk score of the prediction model in the TCGA and
GEO databases was also less than 0.05, which indicates that the
risk score is related to prognosis of patients. Multivariate
regression analysis of these factors showed that age, T, M, N,
and risk score were all significant independent prognostic factors
(p < 0.05) (Figures 4C, D). Next, we observed that there was a
difference in the expression of inflammatory response-related
genes between different T stages (Figures 4E, F). We found a
significant difference in the expression of SERPINE1 between
different T stages (p < 0.05). Figures 4G, H are thermograms
demonstrating the expression of the inflammatory response-
related genes between different T stages in the two databases.

Enrichment of Inflammation Related Gene
Pathways in the High and Low Risk Groups
There were also differences in the enrichment of inflammatory
response-related genes between the high and low risk groups. In

order to understand the enrichment of pathways, GSEA software
was used to analyze the pathways in the two risk groups. The
high-risk groups in the TCGA and GEO databases demonstrated
enrichment of a large number of apoptotic, hypoxia, and
inflammation related pathways, including apoptosis, hypoxia,
IL-2-STAT5 signaling, IL-6-JAK-STAT3- signaling, and the
P53-pathway (Figures 5A,B). The enriched pathways in the
low-risk group were mostly related to oxidative
phosphorylation and peroxidation including E2F-target,
oxidative-phosphorylation, peroxisomes, PI3K-AKT-mTOR
signaling, and reactive-oxygen-species pathways (Figures 5C,D).

Infiltration of Immune Cells
Inflammation often causes the infiltration of immune cells.
Therefore, we studied the infiltration of immune cells in each
risk group in the TCGA and GEO databases. Figures 6A, B
respectively show the infiltration of immune cells in the high-risk
groups and low-risk groups. In the TCGA database, the
infiltration of 11 kinds of immune cells was significantly
different between the high-risk and low-risk groups
(Figure 6C, p < 0.05). In the GEO database, the infiltration of
one kind of immune cell was different between the high-risk and
low-risk groups (Figure 6D, p < 0.05). Activated dendritic cells

FIGURE 5 | Enrichment of pathways in the high-risk and low-risk groups. (A) Enriched gene sets in the hallmark gene collection by the high-risk score in the TCGA
database. The lines with different colors represent different gene sets. The up-regulated genes are located near the origin of the coordinate on the left, while the down-
regulated genes are located on the right side of the x-axis. Gene sets with NOM p < 0.05 and FDR q < 0.06 were statistically signi fi cant. Only a few major gene sets are
shown. (B) Enriched gene sets in the hallmark collection by the high-risk score in the GEO database. Gene sets with NOM p < 0.05 and FDR q < 0.06 were
statistically significant. Only a few major gene sets are shown. (C) Enriched gene sets in the hallmark collection by the low-risk score in the TCGA database. Only gene
sets with NOM p < 0.05 and FDR q < 0.06 were considered statistically significant. Only a few major gene sets are shown. (D) Enriched gene sets in the hallmark
collection by the low-risk score in the GEO database. Gene sets with NOM p < 0.05 and FDR q < 0.06 were statistically significant. Only a fewmajor gene sets are shown.
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had different infiltration in the two databases. We downloaded
immune related genes from the website of Tracking Tumor
Immunophenotype and screened out the genes that regulate
the activation of dendritic cells. We created heat maps
(Figures 7A, B) to show the expression of genes regulating
the infiltration of dendritic cells in the TCGA and GEO
databases in the high and low risk groups. The expression of
the CCL21 gene was significantly different between the two
databases (p < 0.05). A correlation curve between CCL21 gene
expression and the risk score was drawn, which revealed that

CCL21 gene expression was positively correlated with the risk
score. Additionally, the expression of CCL21 gene was different
between the high-risk and low-risk groups (Figures 7C, D).

DISCUSSION

During tumor development, changes observed in the tumor sites
resemble chronic inflammation, a process described as “a tumor
is an unhealed wound” that promotes tumor survival

FIGURE 6 | Immune cell infiltration in high and low risk groups. (A,B) Thermography of inflammatory response-related gene risk scores and immune cell infiltration
in the TCGA and GEO databases. (C,D) Infiltrating immune cells in the TCGA and GEO databases were significantly associated with the risk scores.
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FIGURE 7 | Relationship between immune cell regulatory genes and risk scores of genes associated with inflammatory response. (A,B) Heat maps of the
expression of genes significantly related to immune cell regulation in different risk groups in TCGA and GEO databases (*p < 0.05; **p < 0.01; ***p < 0.001). (C,D)
Correlation between CCL21 gene significantly associated with immune cell regulation and risk score in the TCGA and GEO databases. The blue line in the figure fitted the
linear model between gene expression and risk score of genes related to inflammatory response, and Pearson’s coefficient was used to test the correlation. Box
chart showed the difference in CCL21 gene expression between groups with high and low risk of inflammatory response related genes (p < 0.05).

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8869499

Wang et al. Inflammation and Immunity in CRC

17

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


(Grivennikov et al., 2010). Studies have shown that chronic
inflammation is the leading cause of many cancers in humans
(Bernstein et al., 2001). Although inflammation can be used as a
strategy against microbes, it is also thought to be a marker of
cancer and plays a key role in tumorigenesis. Inflammatory
response plays a decisive role in different stages of tumor
progression, including initiation, promotion, malignant
transformation, invasion, and metastasis (Grivennikov et al.,
2010), and can promote carcinogenesis by inducing gene
mutations, stimulating angiogenesis and cell proliferation, or
inhibiting cell apoptosis (Rutter et al., 2004). Inflammation-
related genes are involved in these processes and act on
corresponding pathways or regulate immune cells. Our study
screened the inflammatory response genes associated with CRC
and identified the core genes, among which CX3CL1, CCL22,
SERPINE1, LTB4R, XCL1,GAL, TIMP1, ADIPOQ, and CRHwere
closely related to the prognosis of patients. CX3CL1 can induce
the ERK pathway and cell proliferation, and also plays a specific
tumor promoter role in breast cancer expressing ERBB2
(Tardáguila et al., 2013). CCL22 is a chemokine that is highly
expressed in tumors, and promotes tumor growth, in addition to
playing a role in tumor-related immunosuppression
(Wiedemann et al., 2016). SERPINE1 and TIMP1 promote the
migration and invasion of tumor cells (Song et al., 2016a;
Klimczak-Bitner et al., 2016). SERPINE1 may also promote the
invasion and metastasis of colorectal cancer (Simone et al., 2015).
LTB4R is a potent chemoattractant involved in inflammatory and
immune responses to the paeoniflora-like signaling pathway
(Wilson et al., 2014), which is involved in all inflammatory
diseases (Peters-Golden and Henderson, 2007). XCL1
promotes antitumor activity (Chou et al., 2020), and XCL1
expression is also significantly related to the number of tumor
infiltrating CD8+T cells as well as the expression of PD-L1 in
tumor cells (Tamura and Yoshihara, 2020). GAL methylation
status may be an important marker for predicting clinical
prognosis in patients who are with head and neck squamous
cell carcinoma (Misawa et al., 2017). ADIPOQ gene play a role in
chronic inflammation and cancer (Divella et al., 2017). CRH
expression is associated with the advanced stage of ovarian cancer
(Minas et al., 2007). It can be seen that these inflammatory
response-related genes are closely related to tumors.
Accordingly, we chose these nine genes to build an
inflammatory model.

Inflammatory responses are associated with poor prognosis in
a variety of tumors (Minas et al., 2007; Sano et al., 2018; Zhang
et al., 2019). In order to further examine the relationship between
the model and prognosis of patients, we evaluated the prognosis
of patients by taking the product of the expression level and
expression coefficient of the nine genes in the model in the two
databases as the risk score. Significant differences in prognosis
were found in the high-risk and low-risk groups, and patients in
the low-risk group lived significantly longer than those in the
high-risk group. However, in the process of using ROC curve to
evaluate the accuracy of survival analysis, we found that the AUC
value did not change much with the extension of time in the
TCGA and GEO databases. This indicates that the accuracy of the
ROC curve to evaluate survival was not ideal, which may be

related to the following factors: First, the survival rate of CRC is
73.8% (70.0% for rectal cancer, 75.9% for colon cancer) (Fatemi
et al., 2015), five- year survival rate is 68.4% (Kong et al., 2019),
and average survival time is 142.17 ± 21.60 months (Fatemi et al.,
2015). However, we evaluated 1-, 3-, and 5-years survival.
Therefore, the survival situation could not be accurately
reflected. Second, the sample was relatively small. Third,
TCGA and GEO databases were selected for this study, and
the predictive and prognostic accuracy of this model needs to be
verified using multiple databases. Lastly, adjuvant therapies such
as surgery and chemoradiotherapy also have an impact on the
prognosis of patients (Fatemi et al., 2015). This study analyzed
the impact of age, sex, T, M, N stage, and risk score on the
prognosis of patients, and found that the risk score had a
corresponding impact on the prognosis of patients in both
databases. However, in the multivariate analysis, the p value of
the risk score in the GEO database was >0.05, indicating that
the risk score could not be used as an independent prognostic
factor. On further examination, we found that all colorectal
cancer types in the GEO database were adenocarcinomas, and
the samples were all from France. Because of the limitations of
tumor types and sample sources, the results may not
accurately reflect the effect of inflammatory response on
prognosis of colorectal cancer patients. Some patients had
received chemotherapy, and the prognosis of CRC patients is
related to the depth of tumor invasion, presence of lymph
node metastasis (Haq et al., 2009), presence of other diseases,
presence of venous or lymphatic invasion, tumor grade
(Zlobec and Lugli, 2008), and genetic factors. These factors
were not taken into account in this study, which is a
limitation.

Furthermore, by using GSEA enrichment analysis to study the
pathway enrichment in the high-risk groups and low-risk groups
in the two databases. The study showed that the enriched
pathways were mostly associated with hypoxia, inflammatory
factors, and apoptosis.

Hypoxia and inflammation are closely related (Biddlestone
et al., 2015). The inflammatory environment itself tends to be
hypoxic (Watts and Walmsley, 2019), possibly because the
metabolically active cells such as neutrophils migrating from
the peripheral blood to the inflammatory tissue consume a
large amount of energy (Borregaard and Herlin, 1982; Pollard
and Borisy, 2003), and increase the oxygen demand (Rao and
Suvas, 2019). Moreover, inflammation often leads to activation of
the cellular hypoxia response pathways (Liu et al., 2014).
Infection activates keratinocytes, macrophages, dendritic cells,
and other cells, leading to the production of inflammatory
cytokines (Wong and Goeddel, 1986; Mooney et al., 1990).
Hypoxia also increases circulating proinflammatory cytokine
levels (Song et al., 2016b). Tumor development has been
shown to be associated with the inactivation of apoptosis (Xu
et al., 2009). The downregulation of the tumor suppressor gene
p53 can lead to reduced cell apoptosis and promote tumor growth
(Bauer and Helfand, 2006), which are associated with many
cancers (Rodrigues et al., 1990; Gasco et al., 2002). Some
scientists also believe that apoptosis drives the proliferation
and metastasis of tumor cells (Wang et al., 2013). Thus, there
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is a close relationship between inflammatory response,
inflammatory factors, and apoptosis.

The immune system plays a decisive role in the initial
inflammatory response to infection and injury and is the main
driver of the inflammatory protective response (Carrillo-Salinas
et al., 2019). Therefore, the inflammatory response often leads to
the infiltration of immune cells. In our study, the infiltration of 11
types of immune cells including activated dendritic cells,
macrophages M0, macrophages M1, neutrophils, activated
natural killer (NK) cells, NK cells, plasma cells, CD4 memory
T cells, helper T cells, CD8 T cells, and regulatory T cells was
significantly differently between the high-risk and low-risk
groups in the TCGA database. However, only the infiltrates of
activated dendritic cells in the GEO database were significantly
different in the high and low risk groups. Subsequently, the genes
regulating activated dendritic cells were screened, and it was
found that the expression of CCL2 gene was different in the
groups with high and low risk in the TCGA and GEO databases.
Other studies have also shown that the CCL2 gene is associated
with inflammatory responses. CCL2 is a chemokine that attracts
and activates monocytes (Conti and Rollins, 2004). CCL2 plays a
crucial role in tumor cell growth, metastasis, and host immune
response (Zhuang et al., 2018). Additionally, CCL2 has been
shown to have both tumor stimulating and antitumor effects.
Recent studies have suggested that CCL2 plays a major role in
tumor progression and metastasis (Li et al., 2013). CCL2 can
enhance themigration and invasion ability of prostate cancer cells
(Natsagdorj and Izumi, 2019), as well as induce the invasion of
liver cancer cells (Zhuang et al., 2018). High levels of CCL2
expression in various types of tumors are also associated with
poor prognosis (Yang et al., 2016); for example, the increased
level of CCL2 expression is related to poor prognosis in breast
cancer patients (Lebrecht et al., 2004; Fang et al., 2015). Although
many studies have elaborated the relationship between
inflammatory response and colorectal cancer from the
perspective of genetics and pharmacology, few articles have
explored the relationship between inflammatory response-
related genes and CRC at the genetic level. This study
analyzed the relationship between inflammatory response-
related genes and colorectal cancer at the genetic level, which
can facilitate further research on colorectal cancer.

However, this study only carried out bioinformatics
correlation analysis and did not explore the specific
mechanism of inflammation response genes affecting
prognosis. This study only proved that the risk scoring model
established by us was related to prognosis of patients with
colorectal cancer patients. Therefore, prospective studies, such

as some basic and clinical studies, are needed to explore the
specific mechanisms by which the genes we have identified
interact with colorectal cancer.

In conclusion, inflammatory response plays a significant
role in the prognosis of CRC patients and in the tumor
immune microenvironment. Understanding the relationship
between inflammatory response and immune cells is
conducive to the faster application of effective
immunotherapy for CRC treatment in the clinic, leading to
an improvement in the prognosis of colorectal cancer
patients.
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Artificial Intelligence Assisting the
Early Detection of Active Pulmonary
Tuberculosis From Chest X-Rays: A
Population-Based Study
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Abudoukeyoumujiang Abulizi 1, Abudoureyimu Kelimu4, Dongyu Zhang2, Guanbin Li2* and
Xiaoguang Zou5*
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Yat-sen University, Guangzhou, China, 4Department of Radiology, Kashi Area Tuberculosis Control Center, Kashi, China, 5Clinical
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As a major infectious disease, tuberculosis (TB) still poses a threat to people’s health in
China. As a triage test for TB, reading chest radiography with traditional approach ends up
with high inter-radiologist and intra-radiologist variability, moderate specificity and a waste
of time and medical resources. Thus, this study established a deep convolutional neural
network (DCNN) based artificial intelligence (AI) algorithm, aiming at diagnosing TB on
posteroanterior chest X-ray photographs in an effective and accurate way. Altogether,
5,000 patients with TB and 4,628 patients without TB were included in the study, totaling
to 9,628 chest X-ray photographs analyzed. Splitting the radiographs into a training set
(80.4%) and a testing set (19.6%), three different DCNN algorithms, including ResNet,
VGG, and AlexNet, were trained to classify the chest radiographs as images of pulmonary
TB or without TB. Both the diagnostic accuracy and the area under the receiver operating
characteristic curve were used to evaluate the performance of the three AI diagnosis
models. Reaching an accuracy of 96.73% and marking the precise TB regions on the
radiographs, ResNet algorithm-based AI outperformed the rest models and showed
excellent diagnostic ability in different clinical subgroups in the stratification analysis. In
summary, the ResNet algorithm-based AI diagnosis system provided accurate TB
diagnosis, which could have broad prospects in clinical application for TB diagnosis,
especially in poor regions with high TB incidence.

Keywords: tuberculosis, chest radiograph, machine learning, artificial intelligence, deep convolutional neural
network
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INTRODUCTION

Causing by Mycobacterium tuberculosis infection, pulmonary
tuberculosis (TB) is a kind of dangerous airborne chronic
respiratory infectious disease (Ragonnet et al., 2019). TB still
remains a major problem of disease control and poses a threat to
the health of the public in China (Tusun et al., 2021). The
incidence of TB in Kashi was 250.4/100,000 in 2020, reaching
4.3 times the national average incidence. TB epidemic remains
severe, especially in 12 counties/cities of Kashi prefecture,
Xinjiang Uygur Autonomous Region (Tusun et al., 2021).

A triage test using chest radiography is utilized for patients with
typical symptoms for TB or TB-related risk factors (Qin et al.,
2021a). Both the shortage of experienced radiologist and the high
inter-radiologist and intra-radiologist variability have been affecting
the performance and generalizability of the chest radiography,
especially in places with a high incidence of TB and without
access to high quality medical service (Organization, 2016).
However, during the last 10 years, the artificial intelligence (AI)
aided diagnostics systems have been developing and evolving at an
unprecedented pace, leading to its deployment and usage in clinical
settings, and many medical image analyzing AI algorithms, which
were based on deep learning and deep convolutional neural
networks (DCNNs), were being utilized for radiographs reading
at the same time (Rajpurkar et al., 2020; Qin et al., 2021b). Such deep
learning and DCNN algorithms are able to distinguish the features
and characteristics of the TB-related abnormalities in the chest X
-ray photographs. Considering the great improvement of AI-assisted
TB diagnosis, computer aided TB screening software is a better
substitute for physicians in digital chest radiographs reading and
analyzing, which was recommended by the updated guidelines of the
World Health Organization (WHO) in March 2021 (Organization,
2021). However, there remains uncertain about what kind of
algorithm or AI should be developed and put into clinical
practice, since the WHO didn’t give detailed recommendations
for specific products (Qin et al., 2021a).

To date, themajority of AI algorithms for TB diagnosis have been
based on small groups of individuals. Considering that a large sample
for training would further improve the performance of the AI

algorithm, the deep convolutional neural network (DCNN), a
kind of deep learning approach, has been widely utilized for
analyzing medical images. Thus, this study explored the TB
diagnosis ability of three kinds of DCNNs (Resnet, VGG, and
AlexNet algorithms) based on chest X-rays of 10,000 individuals.

MATERIALS AND METHODS

Study Setting and Population
In this retrospective study, we trained convolutional neural
network-based AI algorithms to read chest X-rays for
pulmonary TB diagnosis. The workflow of the study was
showed in Figure 1. In total, 9628 X-ray images and
corresponding clinical information were collected from
individuals with and without TB in Kashgar, Xinjiang, China,
between 2019 and 2020 (Table 1). The included cases were aged
≥15 years and underwent X-ray analysis. TB cases were diagnosed
by experienced physicians based on the symptoms and the results
of multiple tests and radiological examinations, including sputum
culture or smear tests, Xpert tests, chest X-ray films, interferon
gamma release assays and tuberculin skin tests and so on. In total,
5,000 images of TB cases and 4,628 images of non-TB cases were
collected with privacy information removed and split into the
training (n = 7,703) and testing sets (n = 1925) (Table 1).

X-Rays Images Preprocessing
As a tool widely used in medical image semantic segmentation,
U-Net has been applied to extract semantic information and
generate segmentation results (Ronneberger et al., 2015; Zunair
and Ben Hamza, 2021). In order to focus on pulmonary TB-
affected regions that appeared inside the lungs, U-Net was used
for the lung segment before TB classification. After image cropping
and resizing, the lung region images served as an input for the
classification convolutional neural network (Figure 2).

Development of AI Algorithms
For the classification network, we used ResNet34 (He et al.,
2016), VGG (Simonyan and Zisserman, 2014) and AlexNet

FIGURE 1 | The workflow of the study.
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(Krizhevsky et al., 2012). The structures of the three
convolutional neural networks were illustrated in Figure 2.
We loaded the pretrained model in ImageNet and replaced the
last linear classification layer with a new linear layer for
negative (individuals without TB) or positive (with TB)
prediction. The ResNet model was trained for 120 epochs in
total with chest X-ray images of the training set
(Supplementary Figure S1), setting the initial learning rate
at 1e−3 and using the inverse learning rate decay schedule.
VGG and AlexNet were also trained with the same settings,
and then three AI algorithms were validated on the testing set.

Comparison of AI Algorithms and
Stratification Analysis
To evaluate the performance of the three models, the accuracy,
sensitivity and specificity of the three models were calculated in both
sets for comparison (Table 2), and the plots of receiver operating
characteristic (ROC) curves with area under the curve (AUC) values
were also generated with the pROC package. The AI algorithm with
the best performance was chosen for the following analysis and
visualization. To further investigate the reliability and robustness of
the AI models, cases of the testing set were stratified into multiple
subgroups based on their age, sex and respiratory symptoms, and
then the AUC value of each model were calculated and compared
within each subgroup with the pROC package.

Interpretability Analysis and Feature
Visualization
After the comparison, ResNet algorithm was chosen for further
interpretability analysis and feature visualization. After the global
average pooling layer of ResNet, we obtained a 512-dimensional
vector for each image. To visualize the learned feature, we used the

t-SNEmethod, which could reduce the high-dimensional vector to a
low-dimensional vector (Van et al., 2008). Here, we reduced each
vector to 2-dimension and therefore, visualized the differences in
high-dimensional complex features between the positive and
negative images captured by the AI algorithm. We also obtained
sets of feature maps from the last convolution layer of ResNet. Then,
class activation maps (CAMs) were generated by the linear
combination of the fully connected layer weights and feature
maps (Zhou et al., 2016). Discriminative regions of the CAMs
were in red (hot areas), indicating the AI-predicted TB regions.

RESULTS

In the beginning of the study, 9628 X-ray images with detailed
clinical information were collected (Figure 1). Clinical
characteristics of the collected cases were summarized in Table 1.
Three different AI algorithms were trained on a large dataset
containing 4,000 images from patients with TB and 3,703 images
from individuals without TB (Figure 2). After training, these AI
algorithms were compared to each other on the testing set and the
training set. The accuracy, sensitivity and specificity of the three
algorithms were all higher than 94% when they were tested on the
testing set (Table 2). The ResNet model had the strongest diagnostic
ability among the three AI algorithms, whose accuracy, sensitivity
and specificity reached 96.73, 95.50 and 98.05%, respectively. The
performance of the AI models were further investigated with ROC
curves. All the AI algorithms performed well in both training set and
testing set (Figures 3A,B), with AUC values higher than 0.99
(Table 2). The AUC value of the AlexNet, VGG and ResNet
reached 0.9917, 0.9902 and 0.9944, respectively on the testing set.
These results suggested that the ResNet algorithm outperformed the
rest models, demonstrating its excellent diagnostic value for TB and
was selected for further analysis and visualization.

TABLE 1 | A summary of clinical characteristics of training and testing sets.

Training set Testing set

TB cases Non-TB cases TB cases Non-TB cases

Sex
Female 2,118 1885 463 478
Male 1882 1818 537 447

Age
<65 years 2,297 1971 461 580
≥65 years 1703 1732 539 345

Symptoms
Cough 3,304 6 782 8
Expectoration 2,726 4 606 1
Hemoptysis 461 5 128 4
Fever 1,563 4 429 0
Fatigue 1,143 0 248 0
Night Sweating 789 0 135 0

Bacteriological Test
Sputum Culture/Smear Positive 807 0 297 0
Bacteriological Test Positive 1788 0 509 0
Bacteriological Test Negative 2,212 3,703 491 925
Total 4,000 3,703 1,000 925

SputumCulture/Smear Positive: sputum culture positive or smear positive. Bacteriological Test Positive: sputum culture/smear positive or Xpert test positve. Bacteriological Test Negative:
sputum culture negative, sputum smear negative and Xpert test negative.
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To understand how the AI algorithms distinguished TB
radiographs from non-TB ones, the dimensional reduction t-SNE
algorithm was applied to reduce the high-dimensional differences in
visual-semantic information aggregated by theAI algorithmbetween
TB-positive and TB-negative images into a two-dimensional plot.
Here, takingResNet as an example, an evident boundarywas observed
between the positive and negative image groups, while clustered

distributions within each group were also observed, indicating that
the ResNet algorithm succeeded in recognizing shared features of TB-
positive images and features that distinguished the positive and
negative images (Figure 3C).

Apart from evaluating the diagnostic accuracy on the entire
testing set or training set, stratification analysis was also
conducted to verified the reliability and the robustness of the

FIGURE 2 | Overall structure of the DCNN-based AI diagnosis system. The workflow of the system could be divided into two parts: image segmentation network
(U-Net), image classification network (ResNet or VGG or AlexNet). Regions of the lung in the original chest X-ray photographs were recognized by the U-Net. Then, the
cropped and resized lung region images served as an input for image classification algorithms, which generated diagnoses.

TABLE 2 | The performance of the models.

Training set AUC (95% CI) Testing set AUC (95% CI)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AlexNet 98.34 98.58 98.08 0.9988 (0.9984–0.9992) 95.06 93.20 97.08 0.9917 (0.9889–0.9945)
VGG 99.03 99.75 98.24 0.9998 (0.9997–0.9999) 94.96 94.20 95.78 0.9902 (0.9872–0.9932)
ResNet 99.92 99.90 99.95 1 (1–1) 96.73 95.50 98.05 0.9944 (0.9921–0.9967)

AUC, the area under the receiver operator characteristic curve; 95% CI: 95% confidence interval.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8744754

Nijiati et al. Tuberculosis Diagnosis AI Study

25

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


ResNet algorithm. The ResNet model was the best performing
model with highest AUC value in all subgroups of the training set
and most subgroups of the testing set (Figure 4). The result of the
stratification analysis suggested that the ResNet algorithm was
capable of providing accurate TB diagnoses for people of all ages
and both sexes or patients with different respiratory symptoms.

In order to step further in assisting the TB diagnosis, we
visualized the ResNet algorithm recognized TB affected
regions of the chest radiographs using the OpenCV
package. Masked with red and alpha-blended with the
black-and-white input X-ray image, “hot regions” drawn by
AI provided accurate disease-affected areas and indicated high

consistency with the TB regions mapped by experienced
physicians and radiologists with bounding boxes (Figure 5).
Our method not only provided a correct diagnosis of
pulmonary TB but also identified precise TB regions with a
heatmap, which has great potential in assisting the diagnosis of
TB as an interpretable and reliable AI algorithm.

DISCUSSION

As an effective method for TB screening and diagnosis, chest
radiography is recommended by multiple clinical guidelines

FIGURE 3 | Diagnostic ability of the AI models. (A) ROC curves of three different AI models of the training set. (B) ROC curves of three different AI models of the
testing set. (C)Diagnostic ability of ResNet algorithm visualized by t-SNE algorithm. Blue and orange dots indicated TB and non-TB cases of the testing set, respectively.
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despite its high inter-radiologist and intra-radiologist
variability, moderate specificity and other limitations. In
contrast to manual diagnosis, deep learning based
computer-assisted diagnostic systems have the potential to
overcome the aforementioned drawbacks and provide
professional diagnosis for TB. Here, we established a
ResNet-based chest X-ray AI diagnosis system for TB,
which provided accurate diagnoses and was capable of
serving as triage tests at the bedside.

A previous study has reported that the AlexNet based machine
learning algorithm can accurately classify TB based on chest
radiography (Lakhani and Sundaram, 2017). Here, our results
indicated that the ResNet-based AI was superior to AlexNet and
VGG, which suggested that the ResNet diagnosis system would
better assist physicians in diagnosing TB.

Low interpretability is one of the major inherent problems
of the machine learning models, including deep learning
algorithms. Due to the complex calculating process and
tremendous amount parameters of the neural networks, it
remains difficult for us to learn about how they work and why
they come to certain conclusions that remarkably similar to
human experts’ opinions, suggesting that the neural networks,
especially deep neural networks, are so-called black boxes

(Wang et al., 2021). Even though depth of the DCNNs are
becoming sheerer and sheer, many tools, including t-SNE and
CAMs, are still available for the visualization of neural
networks and breaking up the black boxes, convincing us
that the neural network algorithm have the ability to
recognized features of abnormality in the medical images
rather than nonrelevant parts of the graphs. In this study,
we wanted to know whether the trained DCNN based AI
algorithm was focusing at regions of TB-associated
abnormality in the lung. As illustrated in Figure 5, the
discriminative regions, which were recognized by AI and
masked with red, were the exact TB regions recognized and
identified by doctors. This indicates that the ResNet-based AI
algorithm not only provides doctors with highly accurate
diagnoses but also interpretable marks of TB regions,
which is of great help in analyzing chest X-ray images and
recognizing TB in patients.

As a relatively remote and poor region with scarce medical
resources in the past years, Xinjiang has been troubled by the
continuous spread of TB (Zheng et al., 2021). Despite of
financial difficulties, Xinjiang has managed to carry out
many new policies and plans to boost investment in TB
prevention and control, aiming at the early detection and

FIGURE 4 | Stratification analysis. Subgrouping by important clinical characteristics, including sex (A,D), age (B,E) and respiratory symptoms (C,F), AUC values of
the three models were calculated and compared in both sets. Young: under 65 years old. Old: 65 years old or over 65 years old.
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proper treatment of TB cases. Early diagnosis of active TB is
the key to controlling the rapid rise of TB incidence.
Considering the excellent performance of the ResNet-based

AI diagnosis system, it would greatly prompt the early
diagnosis of active TB and help in preventing the spread of
TB in Xinjiang.

FIGURE 5 | CAMs generated by ResNet matched the precise regions of TB abnormalities. Bounding boxes [in (A,C,E)] meant the regions of abnormalities
identified by doctors and hot regions [in (B,D,F)] showed the discriminative regions generated by AI algorithm.
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However, there are several limitations in the study. First,
although sputum culture is the gold standard for active
pulmonary TB diagnosis, some patients of pulmonary TB
have negative sputum culture results. Taking the results of
multiple tests and typical clinical manifestation together,
patients of TB were diagnosed, which remains risks of
misdiagnoses and producing wrong labels for the chest
radiographs. Besides, the chest radiographs were collected
in two hospitals, suggesting that differences might exist
between images captured in the two centers. In addition, we
limited the study population to people aged ≥15 years, which
also limited the generalizability of our AI diagnosis system
towards pediatric cases.

In conclusion, our study established a ResNet-based AI diagnosis
system that was effective in diagnosing active TB from chest
radiographs without external clinical information assistance.
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DNA Repair–Related Gene Signature
in Predicting Prognosis of Colorectal
Cancer Patients
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Background: Increasing evidence have depicted that DNA repair–related genes
(DRGs) are associated with the prognosis of colorectal cancer (CRC) patients.
Thus, the aim of this study was to evaluate the impact of DNA repair–related gene
signature (DRGS) in predicting the prognosis of CRC patients.

Method: In this study, we retrospectively analyzed the gene expression profiles from
six CRC cohorts. A total of 1,768 CRC patients with complete prognostic information
were divided into the training cohort (n = 566) and two validation cohorts (n = 624 and
578, respectively). The LASSO Cox model was applied to construct a prediction model.
To further validate the clinical significance of the model, we also validated the model
with Genomics of Drug Sensitivity in Cancer (GDSC) and an advanced clear cell renal
cell carcinoma (ccRCC) immunotherapy data set.

Results: We constructed a prognostic DRGS consisting of 11 different genes to stratify
patients into high- and low-risk groups. Patients in the high-risk groups had significantly
worse disease-free survival (DFS) than those in the low-risk groups in all cohorts [training
cohort: hazard ratio (HR) = 2.40, p < 0.001, 95% confidence interval (CI) = 1.67–3.44;
validation-1: HR = 2.20, p < 0.001, 95% CI = 1.38–3.49 and validation-2 cohort: HR =
2.12, p < 0.001, 95% CI = 1.40–3.21). By validating the model with GDSC, we could see
that among the chemotherapeutic drugs such as oxaliplatin, 5-fluorouracil, and irinotecan,
the IC50 of the cell line in the low-risk group was lower. By validating the model with the
ccRCC immunotherapy data set, we can clearly see that the overall survival (OS) of the
objective response rate (ORR) with complete response (CR) and partial response (PR) in
the low-risk group was the best.
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Conclusions:DRGS is a favorable prediction model for patients with CRC, and our model
can predict the response of cell lines to chemotherapeutic agents and potentially predict
the response of patients to immunotherapy.

Keywords: DNA repair–related genes, prognostic, colorectal cancer, immunotherapy, microsatellite instability

BACKGROUND

With the third highest incidence rate in the world, colorectal cancer
(CRC) is a serious threat to human health (Bray et al., 2018).
Nowadays, due to lifestyle changes, there is an increasingly high
incidence of mortality from CRC (Zheng et al., 2014). As one of the
most common gastrointestinal tumors in general surgery, CRC is a
multifactorial disease with extremely complex pathogenesis
(Migliore et al., 2011). At present, the early diagnosis of CRC has
involved epigenetics, genomics, and so on (Marcuello et al., 2019).
DNA repair is a series of processes by which a cell recognizes and
corrects damage to the DNA molecules that encode its genome
(Zinovkina, 2018; Burdak-Rothkamm and Rothkamm, 2021), and it
is extremely important for maintaining the stability of the genome
and protecting the genome from damage by endogenous and
environmental agents (Friedberg, 2001). It is estimated that
human cells suffer more than 2 × 104 DNA damage events per
day (Lindahl and Wood, 1999), but generally speaking, cells can
respond to this damage through efficient and highly regulated DNA
repair mechanisms (Lindahl and Wood, 1999; Iyama and Wilson,
2013). Repair mechanisms include nuclear excision repair, base
excision repair, mismatch repair (MMR), and double-strand
break repair (Iyama and Wilson, 2013). As we all know, genomic
instability caused by the destruction of DNA damage and repair
mechanism can lead to cancer progression, and DNA repair genes
are often found to mutate in cancer (Knijnenburg et al., 2018).
Recently, Knijnenburg et al. (2018) discovered mutations related to
DNA damage response genes by analyzing the TCGA data and
found that several mutations in DNA damage response and repair
genes occur in the colon adenocarcinoma and rectal
adenocarcinoma data sets.

Due to the limited options for capturing the molecular
heterogeneity of the disease and the lack of consideration and
sufficient validation of other gene expressions, few of the
prognostic models of early stage CRC have been applied in clinical
practice (Guinney et al., 2015; Phipps et al., 2015). Thus, an accurate
method is needed to identify effective prognostic models to assess the
disease-free survival (DFS) of patients with CRC. The aim of the
present study is to examine the interrelationships between DNA
repair–related genes (DRGs) and CRC, to determine an effective
prognostic model to evaluate the DFS of patients with CRC and
provide guidance for clinicians in early diagnosis and treatment.

MATERIALS AND METHODS

Patients
We retrospectively analyzed the gene expression profiles of CRC
samples from six public cohorts. Totally, 1,768 samples were available
for analysis in the current study. The CIT/GSE39582 (n = 566) was

used for training themodel, andTheCancerGenomeAtlas colorectal
cancer (TCGA,n= 624)was selected to serve as a validation-1 cohort.
The remaining four microarray data sets (GSE14333, GSE33113,
GSE37892, and GSE39084) were merged into a validation-2 cohort
(n = 578) (Table 1). The transcriptome RNA-sequencing data of the
CRC samples were from the TCGAdata portal, and othermicroarray
data sets were acquired directly from the GEO database. The
institutional review board of our hospital approved this study, and
data were collected from 12 May to 10 October 2020.

Construction and Validation of DNA
Repair–Related Gene Signature
Firstly, a complete list of DRGs was available online from MSigDB
(version 6.2, https://www.gsea-msigdb.org/gsea/msigdb). We
identified a list of candidate genes differentially expressed between
relapsed samples and non-relapsed samples by using the “limma” R
package (Diboun et al., 2006). The genes with an absolute log2-fold
change of more than 1 and an adjusted p < 0.05 were considered for
subsequent analysis. In order tominimize over-fitting risk, we applied
a Cox proportional hazards regression model on CRC samples
combined with the least absolute shrinkage and selection operator
(LASSO) (Tibshirani, 1997). The penalty parameter was estimated by
10-fold cross-validation in the training data set at the minimum
partial likelihood deviance.

We divided patients into high-risk and low-risk groups by
determining the optimal threshold through the time-dependent
receiver operating characteristic (ROC) curve (survivalroc, version
1.0.3) at 5 y in the training data set. The ROC curve was estimated by
the Kaplan–Meier estimationmethod.We performed univariate and
multivariate Cox regression analyses of the cohort to verify that the
11-DRG signature was independent of other clinical features.

Functional Annotation Analysis
To evaluate the biological functions of the DNA repair–related gene
signature (DRGS), enrichment analysis for differentially expressed
genes in different groups was applied using the R package
“gProfileR.” We used the Bioconductor package “HTSanalyzeR”
to perform Gene Set Enrichment Analysis (GSEA) to predict
significant dysregulated pathways (Subramanian et al., 2005;
Wang et al., 2011). Gene sets of cancer hallmarks from MSigDB
(Liberzon et al., 2015) were examined.

Validation of Genomics of Drug Sensitivity in
Cancer Database, Immunotherapy
Database, and Tumor Immune Dysfunction
and Exclusion
To further explore the clinical application of our model, we used
Genomics of Drug Sensitivity in Cancer (GDSC) to analyze the
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differences of chemotherapeutic drugs between the high-risk
group and the low-risk group.

As known, immunotherapy is a hot topic, and we want to
know whether this model can predict immunotherapy. We
verified our model by using the data provided in the article
“Interplay of somatic alterations and immune infiltration
modulates response to PD-1 blockade in advanced clear cell
renal cell carcinoma (ccRCC)” published in Nature Medicine
(Braun et al., 2020). We constructed the DRGS in the data set of
advanced clear cell renal cell carcinoma and divided it into the
high-risk and low-risk groups according to the cutoff of our
original model. The overall survival (OS) curve was drawn using
the Kaplan–Meier method. In addition, we selected some
immune-related indicators in the data set and compared the
differences of these indicators between the high- and low-risk
groups by t-test. Besides, we also analyzed the OS curve of the
objective response rate (ORR) of immunotherapy.

The tumor immune dysfunction and exclusion (TIDE)
algorithm can be used to predict the tumor response to
immune checkpoint inhibition treatment and the function of
genes regulating tumor immunity, so as to effectively predict the
effect of immune checkpoint inhibition treatment.

Statistical Analysis
All the statistical analyses were performed on R (version 3.4.3,
www.r-project.org). The hazard ratios were calculated using
the “survcomp” package28 (version: 1.28.4) (Schröder et al.,
2011). The LASSO regression was implemented using
“glmnet” R package (version: 2.0.16). Cox regression
analysis was used for single-factor and multifactor analyses
of the results, and the receiver operating characteristic (ROC)
curve and C-index were used to evaluate the model. A p-value
of less than 0.05 was defined as statistical significance in
all tests.

TABLE 1 | Characteristics of cohorts included in this study.

Characteristics Training cohort GSE39582 Validation-1 TCGA Validation-2 (combination of
GSE14333, GSE33113, GSE37892,

and GSE39084)

Number of patients 566 624 578
Mean age 66.85 66.27 66.37
Gender
Male 256 (45.23%) 292 (46.79%) 270 (46.71%)
Female 310 (54.77%) 332 (53.21%) 308 (53.29%)

TNM stage
Stage I 37 (6.54%) 105 (16.83%) 53 (9.17%)
Stage II 264 (46.64%) 230 (36.86%) 280 (48.44%)
Stage III 205 (6.22%) 180 (28.85%) 164 (28.37%)
Stage IV 60 (10.60%) 88 (14.10%) 81 (14.01%)
NA - 21 (3.37%) -

Tumor location
Left 342 (60.42%) 354 (56.73%) 269 (46.54%)
Right 224 (39.58%) 270 (43.27%) 216 (37.73%)
NA - - 93 (16.09%)

RFS event
Yes 177 (30.62%) 100 (16.03%) 130 (22.50%)
No 380 (65.74%) 416 (66.67%) 382 (66.09%)
NA 9 (1.56%) 108 (17.31%) 66 (11.42%)

MMR status
MSI 75 (13.25%) 189 (30.29%) 44 (7.61%)
MSS 444 (78.45%) 431 (69.07%) 114 (19.72%)
NA 47 (8.30%) 4 (0.64%) 420 (72.66%)

CIMP status
Positive 91 (16.07%) NA 39 (6.75%)
Negative 405 (71.56%) NA 118 (20.42%)
NA 70 (12.37%) 624 (100%) 421 (72.84%)

TP53 status
Wide-type 161 (28.45%) - 39 (6.75%)
Mutation 190 (33.57%) - 29 (5.02%)
NA 215 (37.99%) - 510 (88.24%)

KRAS status
Wide-type 328 (57.95%) 34 (5.45%) 110 (19.03%)
Mutation 217 (38.34%) 30 (4.81%) 48 (8.30%)
NA 21 (3.71%) 560 (89.74%) 420 (72.66%)

BRAF status
Wide-type 461 (81.45%) 32 (5.13%) 133 (23.01%)
Mutation 51 (9.01%) 3 (0.48%) 25 (4.33%)
NA 54 (9.54%) 589 (94.39%) 420 (72.66%)
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RESULTS

Construction and Definition of the DNA
Repair-Related Gene Signature
A total of 1,768 CRC patients were included in the analysis.
The CIT data set (GSE39582, n = 566) was used as the training
cohort and genes with relatively high variation were
maintained as candidates (Table 1, Figure 1). With median
absolute deviation >0.5 and excluding the genes expressed less
in the median expression level, 1,286 genes were screened out
of 1,376 DRGs measured on all platforms from the data sets.
In addition, in order to improve the robustness of the
identification for the limited sample size, we further
selected DRGs by using the Cox proportional hazards
regression against 1,000 randomized trials (80% portion of
samples each time) to assess the correlation between each
candidate gene and patients’ DFS in the training cohort. A
total of 46 DRGs were robustly associated with individual
patients’ DFS. In order to minimize the over-fitting risk, we
applied a Cox proportional hazards regression model to the
CRC samples combined with the LASSO. By using LASSO Cox
regression, 11 prognostic DRGs were selected and combined
for the construction of DRGS (Figures 2A,B). The risk scores
were calculated by the formula designed by the Cox regression

model. The total risk score was imputed as follows (−0.1145 ×
POLR2B) + (−0.0653 × RAD1) + (0.0370 × CDA) + (0.1711 ×
NPR2) + (−0.0328 × UBE2D2) + (−0.0992 × BCL2) + (−0.0473
× PLD6) + (0.0896 × ERBB2) + (0.1220 ×ARPC1B) + (−0.1086
× FUT4) + (−0.0765 × PSME2). The time-dependent ROC
curve analysis showed that the optimal cutoff to stratify high-
and low-risk groups was −0.147 (Figure 2C).

Prognostic Evaluation of the DNA
Repair-Related Gene Signature
Six colorectal cancer transcription data sets containing
prognostic data were selected to assess the prognostic ability
of the DRGS. The GSE39582 data set (n = 566) was used as a
training data set (Figure 2D). The TCGA CRC dataset was
enrolled as validation-1 cohort (n = 624), and additional data
sets from the GEO were combined as validation-2 cohort (n =
578). Among the patients in the training and validation
cohorts, more recurrences were found in the high-risk
group than in the low-risk group (Figures 3A,D,G). When
applied to a follow-up duration, the promising prognostic
values of 2-, 3-, and 5-year AUC were 0.640, 0.664, and
0.653, respectively, in the training cohort. In the validation-
1 cohort, the values of 2-, 3-, and 5-year AUC were 0.620,

FIGURE 1 | Schematic flow chart of the study.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8722384

Lv et al. DRGs for CRC Patients

34

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


0.628, and 0.606, respectively. Furthermore, in the validation-2
cohort, the values of 2-, 3-, and 5-year AUC were 0.645, 0.631,
and 0.638, respectively (Figures 3B,E,H). The DRGS
significantly stratified patients into the high- and low-risk
groups in the training cohort (HR = 2.40, 95% CI =
1.67–3.44, p < 0.001), validation-1 cohort (HR = 2.20, p <
0.001, 95% CI = 1.38–3.49), and validation-2 cohort (HR =
2.12, p < 0.001, 95% CI = 1.40–3.21) (Figures 3C,F,I). Besides,
the OS in the low-risk group was better than in the high-risk
group (Supplementary Figure 1).

Compared to the risk scores calculated using the FDA-
approved assay Oncotype DX colon algorithm, we found that
the DRGS achieved better survival correlation in the training
cohort (C-index, 0.78 vs 0.60), validation-1 cohort (C-index, 0.65
vs 0.51), and validation-2 cohort (C-index, 0.66 vs 0.62)
(Table 2).

To further investigate whether the DRGS could serve as an
independent predictor of prognosis, univariate and multivariate
Cox proportional hazards regression analyses were performed.
As expected, age, sex, tumor stage, tumor location, and
pathologic gene status were associated with outcomes for
CRC patients (Table 3). In the univariate analysis, DRGS,
MMR status, and KRAS mutation status were significantly

correlated with worse prognosis in the training cohort. After
adjusting for clinical features such as age, gender, tumor
location, and molecular types, the DRGS remained an
independent prognostic factor in the multivariate analyses in
both validation cohorts.

Functional Annotation of Genomics of Drug
Sensitivity in Cancer
Gene Ontology (GO) analysis revealed that some biological
process pathways (extracellular region, cell proliferation, and
cell adhesion) were the main enriched pathways in the high-risk
group (Figure 4A). In addition, the GSEA in the high-risk group
when compared with the low-risk groups shown that the
metastasis-related pathways (i.e., angiogenesis, KRAS
signaling, epithelial mesenchymal transit, and myogenesis
pathways) were enriched in the high-risk group (Figure 4B,
Supplementary Table S1). Similarly, we obtained consistent
results in the TCGA and validation-2 cohorts (Supplementary
Figure 2). These findings suggest that the enrichment of
pathways provided evidence of molecular mechanisms
affected by the DRGS and thus can predict the prognosis
of CRC.

FIGURE 2 | (A) Identification and selection of prognostic genes by LASSOCox proportional hazards regression. (B) Establishment of 11 DNA repair–related genes
signature from the LASSO COX regression. (C) Optimal cutoff point of the prognostic gene signature at 5-y OS endpoint from the ROC curve. (D) Heat map of the 11
DNA repair–related genes in two risk groups.
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Validation of Genomics of Drug Sensitivity in
Cancer Database and Immunotherapy
Database
As known, MSI/MMR-deficient (dMMR) is widely considered
as a promising biomarker, suggesting greater efficacy for
immune checkpoint inhibitor (ICB) (Zhao et al., 2019). In
order to further investigate the clinical application of our

FIGURE 3 | (A,D,G) Distribution of the DRGS risk score and its correlation to recurrence in the training, validation-1, and validation-2 cohort. (B,E,H) Time-
dependent ROC analysis of disease-free survival for CRC patients in the training, validation-1, and validation-2 cohorts at the time points of 2, 3, and 5 y. (C,F,I)
Kaplan–Meier curves comparing survival of patients within the low- and high-risk groups in the training cohort, validation-1, and validation-2 cohorts. p-values were
calculated using log-rank tests.

TABLE 2 | C-index for DRGS risk compared with Oncotype DX.

Cohorts DNA repair risk Oncotype DX colon

C-index 95% CI C-index 95% CI

Training cohort 0.78 0.69–0.86 0.60 0.52–0.68
Validation-1 cohort 0.65 0.51–0.79 0.51 0.37–0.65
Validation-2 cohort 0.66 0.55–0.76 0.62 0.53–0.70
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model, we used GDSC to analyze the differences of
chemotherapeutic drugs between the high-risk and low-risk
groups. We selected 48 kinds of cell lines related to CRC.
After dividing the cell lines into the high-risk and low-risk
groups according to the cutoff of our model, we selected the
chemotherapeutic drugs commonly used in clinics to see the
IC50 of the cell lines in the high-risk and low-risk groups. We
can see that among the chemotherapeutic drugs such as
oxaliplatin, 5-fluorouracil, and irinotecan, the IC50 of the cell
line in the low-risk group was lower (Figure 5). It showed that
the cell lines in the low-risk group were more sensitive to these
three drugs.

To examine whether the DRGS could predict the survival for
ccRCC patients, the patients were divided into the high-risk and
the low-risk groups according to the cutoff of our original model.
The cutoff was still −0.147, and the prognosis data of these
patients were analyzed. The OS of the high-risk group was
worse than that of the low-risk group in ccRCC patients (HR
= 1.45, 95% CI = 1.09–1.92, p = 0.0103) (Figure 6A). When it
comes to the ORR of immunotherapy, we can clearly see the ORR
with complete response (CR) and partial response (PR) that had
better OS for both the high-risk and low-risk groups (p < 0.001).
Notably, the OS of the low-risk group with the CR + PR was the
best (Figure 6B).

Validation of Tumor Immune Dysfunction
and Exclusion Database
We applied the TIDE algorithmwhich can predict the response to
immunotherapy. The low-risk group had a lower TIDE score in
GSE39582 and TCGA data sets, indicating that this subgroup was
most likely to benefit from immunotherapy. Besides, the low-risk
group had higher interferon gamma (IFNG), higher
microsatellite instability (MSI) score, and lower cancer-
associated fibroblasts (CAFs) amount, which confirmed the
more activated immune landscape in this subgroup (Figure 7).

DISCUSSION

Colorectal cancer is the leading cause of death among
gastrointestinal cancers. The incidence and mortality from
colorectal cancer are increasing year by year, and its prognosis
is closely related to early diagnosis (Siegel et al., 2016; Siegel
et al., 2017). Numerous studies have highlighted the
biomarkers that are associated with the pathogenesis and
biology of CRC (Shah et al., 2014; De Rosa et al., 2016;
Lech et al., 2016; Das et al., 2017), and many multigene
prognostic signatures have been developed for CRC (Shah
et al., 2014; Kandimalla et al., 2018; Ozawa et al., 2018; Gao
et al., 2019; Kandimalla et al., 2019). Unfortunately, the
accuracy of their prognosis predictions remains uncertain
(Fung et al., 2014). We still need much more effort to
achieve good prognostic CRC prediction, which is still
considered a challenge.

In recent years, some studies have found some new results in
DNA pathway repair and DRGs research. DRGs inactivation mayT
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disrupt genomic integrity, which may increase the risk of
accumulation of gene mutations associated with cancer
development (Bouwman and Jonkers, 2012). MSI/dMMR is

widely considered as a promising biomarker, suggesting
greater efficacy for ICB despite some limitations (Zhao et al.,
2019). In this study, our purpose was to identify and validate a

FIGURE 4 | (A) Gene ontology of the differentially expressed genes between the two risk groups. “GeneRatio” is the percentage of total differential genes in the
given GO term. (B)GSEA showed several metastasis-related processes enriched in the high-risk group, including angiogenesis, KRAS signaling, epithelial mesenchymal
transit (EMT), and myogenesis signal pathways.
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reliable DRGS and improve the accuracy of survival prediction
for CRC patients.

A total of 1,768 CRC patients from one training cohort and
two validation cohorts were included in this study. Our
prognostic DRGS can stratify CRC patients into two groups
with different survival outcomes. A multivariate analysis
suggested that the DRGS remained an independent prognostic

factor and was significantly associated with poor prognosis in
CRC. Furthermore, the C-index results of the DRGS showed its
clinical superiority to Oncotype DX. Thus, it offers a significantly
promising prognostic biomarker potential compared to the
clinicopathological risk factors that are currently in use. The
GSEA revealed that the metastasis-related pathways
(i.e., angiogenesis, KRAS signaling, epithelial mesenchymal

FIGURE 5 | CRC cell lines in the GDSC database were divided into the high-risk and low-risk groups based on DNA repair–related signature and the differences in
response to chemotherapies between the two groups were analyzed. (A) Relationship between the cell line of the high-risk and low-risk groups and IC50 of oxaliplatin.
(B) Relationship between the cell line of the high-risk and low-risk groups and IC50 of fluorouracil. (C) Relationship between the cell line of the high-risk and low-risk
groups and IC50 of irinotecan.

FIGURE 6 | Patients in the advanced clear cell renal cell carcinoma (ccRCC) database were divided into the high-risk and low-risk groups based on the DNA
repair–related signature. (A) Kaplan–Meier curves comparing the survival of patients within the low- and high-risk groups in the ccRCC database. (B) OS curve of the
objective response rate (ORR) of immunotherapy in ccRCC database.
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transit, and myogenesis pathways) were enriched in the high-risk
group, all of which were well known to play a crucial role in the
progression and proliferation of CRC in numerous studies
(Cooks et al., 2013; De Simone et al., 2015; Lu et al., 2016).
Further studies are required to clarify the effects of DNA repair in
order to identify more targets and improve the prognosis of CRC
patients.

In order to further investigate the clinical application of our
model, we divided the CRC cell lines in the GDSC database into
the high-risk group and low-risk group according to the DRGS
and analyzed the differences in chemotherapy response between
the two groups. We can see that among the chemotherapeutic
drugs such as oxaliplatin, 5-fluorouracil, and irinotecan, the IC50
of the cell line in the low-risk group was lower. It showed that the
cell lines in the low-risk group were more sensitive to these three
drugs. On the contrary, the cell lines in the high-risk group were
more insensitive to these three chemotherapeutic drugs. This

indicated that our model could predict the response of cell lines to
chemotherapeutic agents. This may provide some guidance for
clinical medication.

We knew that MSI/dMMRwas widely considered as a potential
biomarker for predicting ICB (Zhao et al., 2019). We wanted to
know whether our model can predict immunotherapy, so we
verified our model by using the data provided in the article that
“Interplay of somatic alterations and immune infiltration
modulates response to PD-1 blockade in advanced clear cell
renal cell carcinoma (ccRCC)” published in Nature Medicine
(Braun et al., 2020). From the OS curve of the high- and low-
risk groups, we could see that the OS of the high-risk group was
worse in the ccRCC patients, and it suggested that our model can
also well predict the OS of patients with ccRCC. When it comes to
the ORR of immunotherapy, we can clearly see the ORR with CR +
PR that had better OS in both the high-risk and low-risk groups.
Notably, the OS of the low-risk group with CR + PR was the best.

FIGURE 7 | Tumor immune dysfunction and exclusion (TIDE) algorithm was validated in the training set GSE39582 (A,B,C,D) and the validation set TCGA
(E,F,G,H).
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This indicated that our model can potentially predict the response
of patients to immunotherapy. Our model can be used to further
identify cancer patients who aremore suitable for immunotherapy.

To further demonstrate that our model can predict the
response to immunotherapy, we used the TIDE algorithm for
validation in the training and validation data sets. From the
results, we can see that the TIDE score of the high-risk group was
higher than that of the low-risk group, indicating that the high-
risk group was less sensitive to immunotherapy than the low-risk
group. That is to say, the low-risk group was more effective for
immunotherapy. IFNG, produced by T cells in the immune
system and natural killer cells, is a potent viral inhibitor
(Jorgovanovic et al., 2020). MSI, caused by defects in MMR
genes, is an important molecular marker for prognosis and the
development of adjuvant treatment regimens in colorectal and
other solid tumors (Boland and Goel, 2010). CAFs are a group of
activated fibroblasts with significant heterogeneity and plasticity
in the tumor microenvironment, which have significant tumor-
promoting functions (Chen and Song, 2019). The low-risk group
had higher IFNG, higher MSI score, and lower cancer CAFs
amount, which showed that the immune landscape of the low-
risk group was more active. The consistent results of the training
and validation data sets not only proved the reliability and
robustness of our model but also proved that our model can
predict the response to immunotherapy, which may bring some
clinical benefits to CRC patients.

As for how to apply the model to the clinic, we can detect
these 11 genes for patients. Because it is a small panel of genes,
it can avoid the waste of large medical resources and reduce
the problem of high diagnostic cost for patients as much as
possible. By detecting the 11 small panel genes, we calculated
the risk score of patients and grouped them. With the help of
the prediction model, not only patients can make more
favorable choices for themselves but also doctors can make
better clinical decisions according to the patient’s risk score.

There are some limitations to our study. First, this is a
retrospective study, although we validated the signature in
independent data sets. In addition, the samples from primary
tumor or metastatic disease may have inconsistent genetic
heterogeneity, which could lead to sampling bias (NEJM
Group, 2012; Mimori et al., 2018). In addition, systematic
errors result from analyzing samples of disparate databases or
the influence of measuring instruments, and not all batch
effects can be eliminated based on their complexity. In
verifying whether the model could predict immunotherapy
response to CRC, we used immunotherapy data sets from
ccRCC as there is currently a lack of data sets for public
immunotherapy response to CRC. However, we also used the
TIDE algorithm to further verify that our model can predict
the immunotherapy benefit of patients. Therefore, we have
sufficient evidence to prove that our model can predict the
benefit of immunotherapy for patients. Although we
investigated as many genes as possible, further clinical and
pharmacological tests are needed to validate our results.

CONCLUSION

In summary, our work provides an accurate prognostic approach
for estimating the survival outcomes of CRC patients. Further
prospective studies are needed to evaluate the clinical application
of this signature for the prognosis of CRC.
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Background and Aims: Although the wait and watch (W&W) strategy is a treatment
choice for locally advanced rectal cancer (LARC) patients who achieve clinical complete
response (cCR) after neoadjuvant therapy (NT), the issue on consistency between cCR
and pathological CR (pCR) remains unsettled. Herein, we aimed to develop a deep
convolutional neural network (DCNN) model using endoscopic images of LARC patients
after NT to distinguish tumor regression grade (TRG) 0 from non-TRG0, thus providing
strength in identifying surgery candidates.

Methods: A total of 1000 LARC patients (6,939 endoscopic images) who underwent
radical surgery after NT from April 2013 to April 2021 at the Sixth Affiliated Hospital, Sun
Yat-sen University were retrospectively included in our study. Patients were divided into
three cohorts in chronological order: the training set for constructing the model, the
validation set, and the independent test set for validating its predictive capability. Besides,
we compared the model’s performance with that of three endoscopists on a class-
balanced, randomly selected subset of 20 patients’ LARC images (10 TRG0 patients with
70 images and 10 non-TRG0 patients with 72 images). The measures used to evaluate the
efficacy for identifying TRG0 included overall accuracy, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and area under the receiver
operating characteristic curve (AUROC).

Results: There were 219 (21.9%) cases of TRG0 in the included patients. The constructed
DCNN model in the training set obtained an excellent performance with good accuracy of
94.21%, specificity of 94.39%, NPV of 98.11%, and AUROC of 0.94. The validation set
showed accuracy, specificity, NPV, and AUROC of 92.13%, 93.04%, 96.69%, and 0.95,
respectively; the corresponding values in the independent set were 87.14%, 92.98%,
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91.37%, and 0.77, respectively. In the reader study, the model outperformed the three
experienced endoscopists with an AUROC of 0.85.

Conclusions: The proposed DCNNmodel achieved high specificity and NPV in detecting
TRG0 LARC tumors after NT, with a better performance than experienced endoscopists.
As a supplement to radiological images, this model may serve as a useful tool for identifying
surgery candidates in LARC patients after NT.

Keywords: treatment response, endoscopy, deep convolutional neural network, rectal cancer, neoadjuvant therapy

INTRODUCTION

The incorporation of neoadjuvant therapy (NT) can help
downstage and downsize primary rectal cancer, prevent local
recurrence, and increase the possibility of sphincter preservation
(Maas et al., 2010; Al-Sukhni et al., 2016). In contrast, radical
surgery is invasive and can lead to severe complications, including
permanent stoma, sexual, bladder, and bowel dysfunction. The
perioperative mortality rates of radical surgical resection of LARC
are as high as 2–5% (Borowski et al., 2010; Marijnen, 2015).
Hence, LARC patients who have a clinical complete response
(cCR, highly suspected as pathological CR [pCR]) after NT
sometimes opt for a wait and watch (W&W) strategy. Indeed,
some studies have found that among LARC patients who had a
cCR after NT, those who opted for a W&W strategy had the same
survival rate as those who underwent radical surgery (Coraglio
et al., 2020; Simpson et al., 2020).

However, there is no standardized definition of cCR (van der
Valk et al., 2018). High rates of residual tumor cells have been
found in tumor specimens resected from cCR patients, which
indicates poor consistency between cCR and pCR (Hiotis et al.,
2002; Guillem et al., 2005). Among patients with cCR but not pCR
who opt for the W&W strategy, a burst local recurrence within
2 years followed by difficult salvage surgery with more complex
complications are foreseeable problems. Thus, current evidence
suggests that the W&W strategy should be applied with caution.

Deep convolutional neural network (DCNN), a branch of
artificial intelligence (AI), has a unique capacity for the
integration of high-dimensional data, and is well suited to the
medical field, with promising applications in capturing the
features of deep layers (Li et al., 2018; Xie et al., 2020; Jiang
et al., 2021). The DCNN network mimics the structure and
activity of the brain neurons, which is logically in line with
human thinking, and optimized on this basis. A DCNN model
enables machines to train various given images derived from
different inspection equipment and extracts specific clinical
characteristics using a backpropagation algorithm. Based on
these clinical characteristics, the machine is able to make
diagnosis from newly acquired clinical images prospectively.
Few studies have investigated the utility of DCNNs for the
analysis of endoscopic images to detect TRG. The present
study mainly aimed to develop a DCNN model to evaluate
TRG0 using endoscopic images in LARC patients after NT,
and compare the model’s performance with that of
experienced gastrointestinal endoscopists on the same test set.
In this way, we hoped to avoid the incorrect application of the

W&W strategy, which would result in patients missing their
optimal time window for surgery.

MATERIALS AND METHODS

Ethics Statement
This study was conducted in concordance with the ethical
standards of the World Medical Association, the tenets of the
Declaration of Helsinki, and the Ethical Guidelines for Clinical
Research. In addition, the study was approved by the
institutional review board of the Sixth Affiliated Hospital,
Sun Yat-sen University (no. 2021ZSLYEC-063). Informed
consent was not required because pre-existing data were used.

Patient Selection
We initially evaluated 1,103 consecutive patients who were
pathologically diagnosed with rectal cancer. All the patients
underwent radical surgery after NT between April 2013 and
April 2021 in the Sixth Affiliated Hospital, Sun Yat-sen
University.

Patients who received neoadjuvant chemoradiotherapy were
given long-course radiotherapy of 50 Gy in 25 fractions or short-
course radiotherapy of 5 Gy once a day for 5 days to the clinical
target volume. The concurrent chemotherapy regimen was
mainly based on oral/intravenous 5-fluorouracil, or combined
with oxaliplatin/irinotecan. Patients treated with neoadjuvant
chemotherapy alone shared the same chemotherapy regimen
with the former.

The inclusion criteria were as follows: 1) patients, primary
T3-4/N+ rectal cancer with post-treatment restaging endoscopy
data stored in our center, 2) intervention, NT followed by radical
surgery, and 3) outcomes, tumor regression grade (TRG)
assessments (derived from surgical pathology reports)
available. We excluded patients who had 1) ambiguous
endoscopy images (e.g., low-resolution, under-focus, etc.), 2)
bleeding on the tumor surface by endoscopic procedure or
inadequate bowel preparation (Boston Bowel Preparation
Score lower than 2 for the examined regions of the rectum),
which blurs the tumor surface and hinders feature extraction, 3)
endoscopic imaging with operating forceps, 4) insufficient NT
courses (withdrawal from planned chemoradiotherapy
protocol), 5) simultaneous colorectal cancer, 6) familial
adenomatous polyps, Lynch syndrome, ulcerative colitis, or
other diseases with genetic susceptibility to colorectal cancer,
or 7) missing data. The raw screening process of the images was
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evaluated by two experienced endoscopists; when disagreement
occurred, the opinion of the third senior investigator was
requested. To create a more homogeneous model, at least
four images which met the prespecified requirements for
image quality of each person were required.

Data Preparation
Preoperative, unamplified, white-light endoscopic images with
diagnostic reports and postsurgical pathology reports were
collected from the digital image acquisition and pathology
report systems, respectively. Restaging endoscopic images
were collected 6–8 weeks after finishing NT. The interval
time from finishing NT to surgery was described as
6–12 weeks. We extracted tumor information such as
differentiation and TRG. As described by the AJCC 8th
edition staging system (Weiser, 2018), TRGs were defined as
follows: TRG0 (complete response), no viable cancer cells;
TRG1 (moderate response), single or small groups of cancer
cells; TRG2 (minimal response), residual cancer outgrown by
fibrosis; and TRG3 (poor response), minimal or no tumor kill
and extensive residual cancer. Patients’ demographic
information, including sex, age, and tumor biomarkers, was
acquired from electronic or paper health records.

Outcome and Group Assignment
The primary outcome of this study was to develop a DCNN
model to discriminate TRG0 from non-TRG0 (TRG1—TRG3)
among LARC patients who had received NT. We randomly
divided patients treated between April 2013 and October 2020
into a training set and a validation set at a ratio of 9:1; the training
set was used for constructing the DCNN model, while the
validation set was used to examine its predicting capability.
Patients treated between November 2020 and April 2021 were
assigned to a completely independent test set to externally
evaluate the model’s performance in tumor response
prediction. Receiver operating characteristic (ROC) curves

were plotted to detect the discriminative power, which was
quantified using the area under the ROC curve (AUROC).

To compare the performance of DCNN model with that of
veteran endoscopists, we did a manual review study (reader
study) in which three endoscopists reviewed the same test set
of 20 patients’ LARC images after NT (10 TRG0 patients with 70
images and 10 non TRG-0 patients with 72 images), which were
class-balanced and randomly selected from the independent test
set. Each endoscopist had more than 3 years of work experience
and performed over 5,000 endoscopy examinations.

DCNN Model Construction
After image preprocessing (details shown in the supplementary
method section, Supplementary Figure S1), we tailored a
modification of the ResNeSt-50 variant, an existing high-
performance neural network, and preprocessed the
pathological data to obtain more effective features. DCNN is
famous for its powerful ability of feature extraction and
classification and recognition. In this study, DCNN network
named ResNeSt-50 was used to identify endoscopic images as
TRG0 or non-TRG0.We overlayed the RGB three channels of the
image with the gray image with enhanced edge features, and
synthesize four channels as input information. DCNN used each
internal block to complete feature extraction, and continuously
upgraded the dimension in this process to extract some abstract
high-level features, and finally form several feature maps. At the
end of DCNN, these feature maps would be transformed into a
full connection layer (FC layer), and the regression operation
would be carried out by using softmax function to obtain the
results of TRG0 or non-TRG0 (Figure 1). To visualize the
characteristics of the lesions, we created a heat map (Figure 2)
to better display the features, making the network more sensitive
to the local details of the space and image. We used label
smoothing technology to prevent overfitting, thereby
increasing the fault tolerance rate, generating a better
calibration network, and ultimately incubating a more accurate

FIGURE 1 | The key architecture diagram of the DCNN model. DCNN, deep convolutional neural network.

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8809813

Chen et al. DCNN and LARC Tumor Response

46

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


prediction model on invisible data. In addition, a weighting
method was used to eliminate the bias caused by imbalanced
data distribution; the formula was as follows: category weight =
(total sample–current category samples)/total sample. Finally,
after pre-training by the ImageNet, we used our data for fine-
tuned learning and model training. The initial learning rate was
1e–4, and the momentum was 0.9; we stopped the training at 300
epochs.

Evaluation Indicators and Statistical
Analysis
Evaluation indicators, including AUROC, accuracy, sensitivity,
specificity, positive predictive value (PPV), and negative
predictive value (NPV). The 95% confidence interval (CI) was
calculated using a two-sided exact binomial test using the
Clopper-Pearson interval. For clinicopathological data,
continuous random variables with normal distributions were
presented as mean and standard deviation, and non-normally
distributed variables were presented as median and interquartile
range. Categorical variables were presented as frequencies and
percentages. For the sake of actual clinical practice, continuous
random variables were transformed into categorical variables
when appropriate. The chi-square test was used for qualitative
data. A stepwise binary logistic regression was performed to
identify factors that were independently associated with our
outcome of interest. The Pytorch (version 1.7.1) deep learning
platform was employed for training and validating our DCNN
model. For the reader study, TRG0 prediction agreement among
the endoscopists was calculated using Fleiss’ kappa. All the

analyses were carried out using Python (version 3.7, Python
Software Foundation, Wilmington, DE) and IBM SPSS
statistics (version 26.0, IBM Corp., New York, USA). A two-
sided p value of less than 0.05 was deemed statistically significant.

RESULTS

Patient Selection and Demographic
Characteristics
A total of 1,000 LARC patients with 6,939 images obtained
between April 2013 and April 2021 were included in this study
(Figure 3). Among them, 219 patients had TRG0, accounting
for 21.9% of the total population. The training and validation
sets included 930 patients (6,500 endoscopic images), of whom
206 patients (1,433 images) were TRG0, and 724 patients
(5,067 images) were non- TRG0. The independent set
comprised 70 patients (439 images), among which 13
(18.6%) patients with 83 images were TRG0, and 57
patients (356 images) were non- TRG0. The characteristics
of the two cohorts were comparable. The median age of the
patients was 57 years, and male patients accounted for majority
of subjects ( ~ 70%). All patients received neoadjuvant
chemotherapy, and >40% of patients were administered
neoadjuvant radiotherapy. Most of the cancers were
moderately or poorly differentiated, and located in the
middle or lower rectum. Obvious tumor regression could be
observed in terms of the T/N stage and carcinoembryonic
antigen (CEA) level after NT (Table 1). And we found that
patients who were less than 50 years old, had received

FIGURE 2 |Heat map to visualize the DCNNmodel. The heat map is mainly composed of red tones and blue tones. The red tones reveal the very region of the input
image that activates the category (TRG0 or non-TRG0), which is what we are interested in, while the blue tones are the regions of non-interest. The darker the red tone,
the more important the region. (A) Representative image of TRG0. (B) Representative image of non-TRG0. DCNN, deep convolutional neural network.
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neoadjuvant radiotherapy, had well-differentiated tumors, or
had negative preoperative serum CEA levels (<5 μg/ml) were
more likely to achieve TRG0. (Supplementary result section,
Supplementary Table S1).

Modified DCNN Model Showed Good
Performance in Predicting TRG
Classification
Using the modified ResNeSt-50 variant, we constructed a DCNN
model classifier to accurately predict tumor response in LARC
patients who had received NT. In the training cohort, the model
successfully recognized 4,308 images for non-TRG0 and 1,205 images
for TRG0, with 83 images misdiagnosed as non-TRG0 and 256
images misdiagnosed as TRG0, yielding an AUROC of 0.94 (95% CI:
0.93, 0.95), suggesting no departure from the perfect fit (Figure 4A),
and the overall accuracy of themodel was 94.21% (95%CI: 0.94, 0.95),
with a sensitivity, specificity, PPV, and NPV of 93.56% (95% CI: 0.92,
0.95), 94.39% (95% CI: 0.94, 0.95), 82.48% (95% CI: 0.80, 0.84), and
98.11% (95% CI: 0.98, 0.99), respectively. In the validation cohort, the
model successfully recognized 468 images for non-TRG0 and 129
images for TRG0; with 16 images misdiagnosed as non-TRG0 and 35
images misdiagnosed as TRG0, yielding an AUROC of 0.95 (95% CI:
0.92, 0.98) (Figure 4B), and the overall accuracy was 92.13% (95%CI:
0.90, 0.94), with a sensitivity, specificity, PPV, and NPV of 88.97%
(95% CI: 0.83, 0.93), 93.04% (95% CI: 0.90, 0.95), 78.66% (95% CI:
0.72, 0.84), and 96.70% (95% CI: 0.95, 0.98), respectively. In the
independent test set, the model successfully recognized 53 patients for
non-TRG0 and 8 patients for TRG0, with 4 patients misdiagnosed as
non-TRG0 and 5 patients misdiagnosed as TRG0, yielding an

AUROC of 0.77 (95% CI: 0.65, 0.93) (Figure 4C), and the overall
accuracy was 87.14% (95% CI: 0.76, 0.94), with a sensitivity,
specificity, PPV, and NPV of 61.53% (95% CI: 0.32, 0.85), 92.98%
(95%CI: 0.82, 0.98), 66.67% (95%CI: 0.35, 0.89), and 91.37% (95%CI:
0.80, 0.97), respectively, indicating perfect reproducibility of the
DCNN model (Table 2). We tested the performance of the
DCNN model by using Chi-square and univariate logistic
regression methods, and both showed that the model predicted
actual events well (Table 3).

For the reader study, the model successfully recognized 9
patients for non-TRG0 and 8 patients for TRG0, with 2 patients
misdiagnosed as non-TRG0 and 1 patient misdiagnosed as TRG0.
Thus, the DCNN model achieved an accuracy of 85% (95% CI:
0.64-0.95), sensitivity of 80% (95% CI: 0.49-0.94), specificity of
90% (95% CI: 0.60-0.98), PPV of 88.89% (95% CI: 0.57-0.98),
NPV of 81.82% (95% CI: 0.52-0.95), and AUROC of 0.85 (95%
CI: 0.68-1). The Fleiss’ kappa value was 0.722 (p < 0.01), which
showed significant inter- and intra-observer variability among
experts on the assessment of TRG status based on the
colonoscopic images. However, the DCNN model performed
significantly better than the three endoscopists almost in all
evaluating indicators (Table 4), and the performance of all
three endoscopists was below the model’s ROC (Figure 5).

DISCUSSION

To the best of our knowledge, the present study is the first to
develop an AI model by using endoscopic images from LARC
patients after NT for the prediction of TRG0. Our DCNN model

FIGURE 3 | Flow chart of the study. LARC, locally advanced rectal cancer; NT, neoadjuvant therapy.
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achieved good accuracy, high sensitivity, specificity, and NPV,
and was proved to outperform experienced endoscopists. This
model has the potential to serve as a robust supplementary tool to
radiographic examinations for precisely selecting surgery
candidates for LARC patients after NT.

NT followed by radical surgery is the standard of care for
LARC. However, the fibrosis in the rectum and surrounding
mesorectal tissue induced by NT increases the difficulty of radical
surgery. Moreover, radical surgery is associated with mortality
and morbidity such as permanent stoma, and can be physically,
mentally, and emotionally traumatic to patients (Hupkens et al.,
2017). Among LARC patients who achieve cCR, the W&W
strategy or surgery could be chosen through the “share-
decision making” policy in case of notifying specific risks.

Some studies indicated that the prognosis of those who
request the W&W strategy has not been found to be inferior
to the prognosis of those who undergo radical surgery, and the
absence of surgery greatly improves their quality of life (Sauer
et al., 2004; Roh et al., 2009; Sebag-Montefiore et al., 2009;
Valentini et al., 2011; Ortholan et al., 2012; Valentini et al.,
2015). However, no standard criteria for cCR are available,
cCR rates vary greatly from 10 to 78%, while the ensuing local
recurrence or distant metastasis rates range from 7 to 33% (van
der Valk et al., 2018; Pang et al., 2019; Asoglu et al., 2020; Pinto
et al., 2020). This is partially attributable to an inflated false-
positive rate due to estimations based on different standards.
Therefore, enrollment in the W&W strategy without establishing
proper surveillance protocols and salvage management might

TABLE 1 | Characteristics of locally advanced rectal cancer patients.

Training Set + Validation
Set

Independent Test Set p

TRG — — 0.64
0 206 (22.2%) 13 (18.6%) —

1 200 (21.5%) 12 (17.1%) —

2 415 (44.6%) 36 (51.4%) —

3 109 (11.7%) 9 (12.9%) —

Age 57 (47–64) 57.5 (50–64) 0.73
Sex — — 0.20
male 669 (71.9%) 47 (67.1) —

female 261 (28.1%) 12 (32.9) —

BMI 22.6 (20.5–24.8) 22.6 (20.8–24.1) 0.76
Neoadjuvant chemotherapy — — 1
yes 930 (100%) 70 (100%) —

no 0 (0) 0 (0) —

Neoadjuvant radiotherapy — — 0.74
yes 380 (40.9%) 30 (42.9%) —

no 550 (59.1%) 40 (57.1%) —

Differentiation — — 0.36
well 259 (27.8%) 14 (20.0%) —

moderate 592 (63.7%) 49 (70.0%) —

poor 79 (8.5%) 7 (10.0%) —

Pre-Ta — — 0.01b

2 34 (3.7%) 0 (0) —

3 573 (61.6%) 36 (51.4%) —

4 180 (19.4%) 22 (31.4%) —

Pre-Na
— — 0.25

0 158 (17.0%) 17 (24.3%) —

1 297 (31.9%) 18 (25.7%) —

2 315 (34.0%) 23 (32.8%) —

ypT — — 0.56
0 208 (22.4%) 13 (18.6%) —

1 67 (7.2%) 5 (7.1%) —

2 223 (24.0%) 17 (24.3%) —

3 417 (44.8%) 35 (50.0%) —

4 15 (1.6%) 0 (0%) —

ypN — — 0.56
0 706 (75.9%) 57 (81.4%) —

1 158 (17.0%) 9 (12.9%) —

2 66 (7.1%) 4 (5.7%) —

initial CEA 4.5 (2.4–10.5) 5.0 (2.5–12.0) 0.26
preoperative CEA 2.78 (1.90–4.71) 2.4 (1.7–3.2) 0.73
Distal margin from the anal verge/mmb 52 (36–72) 50 (32–65.8) 0.17

aIncomplete data.
bSignificant different.
TRG, tumor response grade; BMI, body mass index; pre-T, Pretreatment T stage.
Pre-N, Pretreatment N stage; CEA, carcinoembryonic antigen.
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result in dismal outcomes. The current study on the DCNN
model aimed to accurately identify candidates for surgery and
reduce the unsuitable application of watchful waiting.

Computerized tomography (CT), MRI, ultrasonography,
digital rectal examination, biopsy examination, and assessment

of certain morphological features on endoscopy have been
recommended as modalities for tumor-response assessment
during NT (Glynne-Jones et al., 2017; Dattani et al., 2018; van
der Valk et al., 2018), but none of them can precisely differentiate
between patients who require watchful waiting and those who

FIGURE 4 | ROC curves of the training set (A), validation set (B), and independent test set (C). ROC, receiver operating characteristic.
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require radical surgery. Liu et al. (Liu et al., 2018) assessed 124
LARC patients, and found that only 25% sensitivity could be
achieved regardless of the modality used to assess tumor response
after NT, namely, MRI, ultrasonography, and endoscopic mucosal
integrity. Although these techniques were associated with
specificities of >90%, their use resulted in the recommendation
of unnecessary surgery for at least 75% of pCR patients. Although
some clinical characteristics were reported to be useful TRG0
predictors, there were significant inter-observer variability among
three endoscopists in the reader study. Similarly, a study by van
der Sande et al. (van der Sande et al., 2021) investigating the utility
of endoscopic findings for TRG evaluation found that a flat scar
was the feature most predictive of CR, with a PPV of 70–80%.
However, due to the subjective nature of visual observation, only
poor-to-moderate inter-observer agreement could be achieved
among endoscopists. The potential of computer-aided systems
to assist clinicians in diagnosing and evaluating gastrointestinal
tumor lesions would help to deal with human subjectivity. Our
findings suggest that the present deep learning model could
provide added value as an automated screening tool of patient
triage for confirmatory testing.

Recently, several radiomics and AI studies based on MRI have
been conducted (Tang et al., 2019; Zhang et al., 2020). However,
no radiomics model has yet been used in clinical practice. Factors
that hamper the clinical application of radiomics are the lack of a
unified standard for feature extraction and lack of evidence for the
generalizability of the models across different MR scanners and
different magnetic field strengths. In contrast, we constructed a
DCNN model to predict TRG0 by using endoscopic images. The
TRG0 rates in the training, validation, and independent test sets were
22.2, 20.4, and 18.6%, respectively, which are consistent with
previous studies (Dattani et al., 2018; van der Valk et al., 2018).
When developing this model, we focused on whether its sensitivity,
specificity, and NPV were high enough to identify patients who
indeed required surgery and to maximally recognize TRG0. As a
result, although the diagnostic accuracy of themodelmay be affected
due to various quality of optical imaging in different time periods as
we divided the patients into three cohorts in chronological order, the
model in the independent test set still accurately identified 8 CR and
53 non-CR patients; among the remaining patients, 5 were
misdiagnosed with CR, and 4 were misdiagnosed with non-CR,
yielding an accuracy of 87.14%, a specificity of 92.98%, and NPV of

TABLE 2 | Efficacy of the DCCN model.

Sensitivity Specificity PPV NPV Accuracy AUROC

Training set 93.56% (95% CI:
0.92, 0.95)

94.39% (95% CI:
0.94, 0.95)

82.48% (95% CI:
0.80, 0.84)

98.11% (95% CI:
0.98, 0.99)

94.21% (95% CI:
0.94, 0.95)

0.94 (95% CI:
0.93, 0.95)

Validation set 88.97% (95% CI:
0.83, 0.93)

93.04% (95% CI:
0.90, 0.95)

78.66% (95% CI:
0.72, 0.84)

96.69% (95% CI:
0.95, 0.98)

92.13% (95% CI:
0.90, 0.94)

0.95 (95% CI:
0.92, 0.98)

Independent
test set

61.53% (95% CI:
0.32, 0.85)

92.98% (95% CI:
0.82, 0.98)

66.67% (95% CI:
0.35, 0.89)

91.37% (95% CI:
0.80, 0.97)

87.14% (95% CI:
0.76, 0.94)

0.77 (95% CI:
0.65, 0.93)

CI, confidence interval.
DCNN, deep convolutional neural network.

TABLE 3 | Correlation of the DCNN model and actual events.

Chi-Square Univariate Logistic Regression

χ2 P OR 95% CI P

DCNN model (training set) 3876.33 <0.01a 167.07 132.08–211.32 <0.01a
Validation set 388.48 <0.01a 108.62 56.72–208.04 <0.01a
Independent test set 24.19 <0.01a 0.04 0.01–0.19 <0.01a

aSignificant different.
DCNN, deep convolutional neural network.

TABLE 4 | Reader study.

Sensitivity Specificity PPV NPV Accuracy AUROC

DCNN model 80% (95% CI:
0.49, 0.94)

90% (95% CI:
0.60, 0.98)

88.89% (95% CI:
0.57, 0.98)

81.82% (95% CI:
0.52, 0.95)

85% (95% CI:
0.64, 0.95)

0.85 (95% CI: 0.69, 1)

Endoscopist 1 40% (95% CI:
0.17, 0.69)

70% (95% CI:
0.40, 0.89)

57% (95% CI:
0.25, 0.84)

53.8% (95% CI:
0.29, 0.77)

55% (95% CI:
0.34, 0.74)

0.55 (95% CI:
0.33, 0.77)

Endoscopist 3 80% (95% CI:
0.49, 0.94)

80% (95% CI:
0.49, 0.94)

80% (95% CI:
0.49, 0.94)

80% (95% CI:
0.49, 0.94)

80% (95% CI:
0.58, 0.92)

0.70 (95% CI:
0.49, 0.91)

Endoscopist 2 50% (95% CI:
0.24, 0.76)

80% (95% CI:
0.49, 0.94)

71.4% (95% CI:
0.36, 0.92)

61.5% (95% CI:
0.36, 0.82)

65% (95% CI:
0.43, 0.82)

0.65 (95% CI:
0.44, 0.86)

CI, confidence interval.
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91.37%. This means that if our DCNN model recommends surgery
for a patient, we have over 91% confidence to make this decision,
with a narrow false-negative rate ofmistaking TRG0 patients as non-
TRG0 patients. Generally, the DCNN model was superior to the
other models mentioned above; it both reduced unnecessary
watchful waiting and avoided missing the optimal time window
for surgery as well as controlled the false-positive rate within an
acceptable range. Last but not the least, unlike MRI-based predictive
models, our DCNN model can be easily applied using any standard
endoscopic system. Imaging that there is an AI module linkage
endoscopic equipment, when an LARC patient undergoes an
endoscopy, the AI module would capture tumor lesions
automatically and calculate the probabilities of TRG0 in real
time. A result of TRG0 would receive a W&W strategy
recommendation if the lymph nodes are radiologically negative in
the dialog box, otherwise a surgery advice. Sometimes we may find
residual lesions in the intestinal lumen even it shows TRG0, and a
transanal excision or endoscopic excision is warranted.

Several limitations of the present study should be noted. First, this
study only assessed the local luminal tumor regression grade, and did
not analyze lymph node involvement or distant metastasis status.
However, it has been reported that positive lymph nodes are seldom
found among patients with TRG0 (Debove et al., 2016). A
multimodality DCNN model comprising MRI, endoscopy images,
and clinicopathological characteristics is expected to overcome this
limitation. Second, as this was a retrospective study, selection bias could
not be avoided; however, the present study has the largest sample size
among related studies. We included a total of 1,000 patients in our
study, and performed image augmentation to further expand the

sample quantity. Last, our model was based on a single-center
study, and has not been validated by other centers, so our results
should be interpreted with caution. Despite these limitations, a DCNN
algorithm based on colonoscopy images could accurately reflect
heterogeneity within the tumor, and the model was not affected by
population distribution, making it possible to include more patients to
improve accuracy. Further prospective multi-center research studies
may improve the performance of ourmodel, and efforts to raisemodel
interpretability (e.g., by incorporating a visual representation of the
network’s output) might help to increase trust in deep learningmodels.

In conclusion, the proposed DCNN model achieved high
accuracy, sensitivity, specificity, and NPV in predicting TRG0
in LARC patients after NT, with a better performance than
experienced endoscopists. This tool may serve as an ideal
alternative method for monitoring treatment response during
NT and could add value in identifying surgery candidates.
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Predicting the Stone-Free Status of
Percutaneous Nephrolithotomy With
the Machine Learning System:
Comparative Analysis With Guy’s
Stone Score and the S.T.O.N.E Score
System
Hong Zhao1, Wanling Li2, Junsheng Li1, Li Li 1, Hang Wang2 and Jianming Guo2*

1Shanghai Xuhui Central Hospital, Shanghai, China, 2Zhongshan Hospital, Fudan University, Shanghai, China

Purpose: The aim of the study was to use machine learning methods (MLMs) to predict
the stone-free status after percutaneous nephrolithotomy (PCNL). We compared the
performance of this system with Guy’s stone score and the S.T.O.N.E score system.

Materials and Methods: Data from 222 patients (90 females, 41%) who underwent
PCNL at our center were used. Twenty-six parameters, including individual variables, renal
and stone factors, and surgical factors were used as input data for MLMs. We evaluated
the efficacy of four different techniques: Lasso-logistic (LL), random forest (RF), support
vector machine (SVM), and Naive Bayes. The model performance was evaluated using the
area under the curve (AUC) and compared with that of Guy’s stone score and the
S.T.O.N.E score system.

Results: The overall stone-free rate was 50% (111/222). To predict the stone-free status,
all receiver operating characteristic curves of the four MLMs were above the curve for
Guy’s stone score. The AUCs of LL, RF, SVM, and Naive Bayes were 0.879, 0.803, 0.818,
and 0.803, respectively. These values were higher than the AUC of Guy’s score system,
0.800. The accuracies of the MLMs (0.803% to 0.818%) were also superior to the
S.T.O.N.E score system (0.788%). Among the MLMs, Lasso-logistic showed the most
favorable AUC.

Conclusion: Machine learning methods can predict the stone-free rate with AUCs not
inferior to those of Guy’s stone score and the S.T.O.N.E score system.

Keywords: machine learning, prediction, percutaneous nephrolithotomy, stone-free status, Guy’s stone score,
S.T.O.N.E score system
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INTRODUCTION

Since the first description of the technique in 1976 (Fernstro¨m
and Johansson, 1976), percutaneous nephrolithotomy has been
widespread for the treatment of renal calculi. It is the golden
standard for the treatment of 2-cm kidney stones (Miernik et al.,
2014). PCNL’s success rate is between 56% and 96% in various
series (Matlaga et al., 2005; Akman et al., 2011; Rosette et al., 2011;
Labadie et al., 2015). Many factors contribute to the success of
stone clearance including the stone size, location, number, and
grade of hydronephrosis, as well as surgeon’s experience. To
predict the outcomes after PCNL, several scoring systems have
been devised including Guy’s stone score, S.T.O.N.E
nephrolithometry system, CROES nephrolithometry
nomogram, and S-ReSC score (Al Adl et al., 2020). Guy’s
stone score is easy to apply and has been validated in multiple
studies. The S.T.O.N.E. score is based on factors determined
through CT imaging, which is the currently preferred imaging
modality for patients with nephrolithiasis (Noureldin et al.,
2015a). The CROES nomogram was developed from data in a
large multicenter database and has high statistical power.
Determination of the S-ReSC score relies on stone location
only, providing a simple approach to grading disease
complexity (Noureldin et al., 2015b). Each system has
advantages and disadvantages, but several studies suggest that
their ability to predict the stone-free rate is comparable (Wu and
Okeke, 2017).

Machine learning techniques have been used extensively in the
field of clinical medicine, especially when used for the
construction of prediction models. The outperformance of ML
over conventional data analysis models has been shown in the
urology-oncology literature (Hung et al., 2018; Andras et al.,
2020; Rodrigo. et al., 2020; Ström et al., 2020).

In predicting post-lithotripsy outcomes with machine
learning, there are only three studies published until now (De
Perrot et al., 2019; Tayyebe. et al., 2019; Aminsharifi et al., 2020).
Aminsharifi et al. (2020) first used the machine learning method
for predicting post-PCNL outcomes compared to current scoring
systems. They found machine learning-based software was
superior in predicting SFS after PCNL, with an AUC of 0.915
compared to 0.615 (GSS) and 0.621 (CROES nomograms) (p <
0.01). More than 20 variables of 146 patients were inputted for the
training of machine learning in their study. Alireza used a support
vector machine (SVM) as the machine learning technique. We
know that the machine learning algorithm includes some other
methods, such as decision trees, random forests, artificial neural
networks, Bayesian learning, Deep Learning, and so on. In this
study, we used four machine learning methods (Lasso logistic,
random forests, SVM, and Naive Bayes) to predict the SFS of
PCNL with the information of 222 patients. We compared the
outperformance of ML to Guy’s score and the S.T.O.N.E score
system at the same time.

Patients and Methods
The study was approved by the independent ethics committee of
Xu-hui Central Hospital. Between July 2017 and January 2020,
222 patients who underwent PCNL performed by one single

surgeon (Dr. G.J.M.) were included in this retrospective study. All
patients had computed tomography (CT) scans and IVP before
surgery. Normal preoperative coagulation and negative urine
cultures were verified.

All percutaneous accesses were performed under general
anesthesia and in a prone position after retrograde ureteral
catheterization. Access to the selected calyx was performed by
Dr. G.J.M with the aid of ultrasound guidance by using an 18-
gauge needle. The tract was dilated with serial dilators from 8F to
20F sheath. An 18F nephroscope (Wolf) was used to inspect the
sheath, and we used a holmium laser to fragment stones with the
power ranging from 60 to 90W. Every case was demanded to
place an internal ureteral stent on a suspect for the presence of
mobile residual stones. A 14F nephrostomy tube was placed in the
renal pelvis or the involved calyx for most patients.

Antibiotic prophylaxis was used with the second-generation
cephalosporin. The medication was completed after the
nephrostomy tube was removed.

Plain radiography of the kidneys, ureters, and bladders was
obtained from postoperative day 1 to day 3, according to the state
of the patient. The nephrostomy tube was removed when there
were neither stone residues nor clinically insignificant residual
fragments (diameter less than 4 mm). (Harraz et al., 2017).

All patients were asked to take out the stent for outpatient
service 1 or 2 months after the surgery. If there were residual
stones, they would have repeated PCNL, ureteroscopy, and shock
wave lithotripsy (SWL). After that, all patients were evaluated
with an ultrasound test or non-contrast CT scan after 3–6 months
postoperatively. All patients accepted follow-ups for at least
1 year. PCNL was considered successful when the patient was
stone-free or did not need any further intervention [clinically
insignificant residual stone fragments (CIRF)] (Rassweiler et al.,
2000).

FIGURE 1 | Selecting lambda to screen characteristic variables.
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Machine Learning Methods
Four types of supervised machine learning algorithms (Lasso
logistic, random forests, SVM, and Naive Bayes) were applied in
this study. A set of input variables comprising individual variables
(age, sex, hypertension, diabetes, hyperlipidemia, urinary
infection, renal insufficiency, preoperative hemoglobin, use of
anticoagulants or antiplatelet medications, renal and stone factors
(previous surgery, stone burden, stone location, and
hydronephrosis), surgical factors (postoperative fever,
septicemia, need for transfusion, length of stay, stone-free
status, and ancillary procedures)) were included. The results of
the stone-free status were entered as binary values: 1 (stone
residues) and 0 (clinically insignificant residual stone fragments).

The machine learning models were fitted using scikit-learn
0.18 modules of Python throughout this study. Using lasso
regularization and cross-validation (n fold = 10) to select the
best regression, we selected lambda with 1se.lambda to screen
characteristic variables. The selected variables include stone size,
stone location (top/middle/bottom), and a total of four variables
(Figure 1).

The original data set is randomly divided into the training set
and the test set at 7:3 (156: 66). Lasso-logistic, SVM, and Naive
Bayes considered the results of lasso regression screening as
independent variables to establish a model and calculate the
prediction accuracy.

The RF model is a machine learning model built on decision
trees. In the decision tree, each node of the tree splits the data into
two groups using a cutoff value within one of the features. The RF
method can minimize the effect of the overfitting problem by
creating an ensemble of randomized decision trees, each of which

overfits the data and averages the results to find a better
classification.

Statistical Analysis
Continuous variables were compared using the independent
sample Student’s t-test. The model performance was evaluated
using the area under the receiver operating characteristic (ROC)
curve (AUC), which provides a measure of the discriminatory
performance of the model. Sensitivity is the proportion of true
positives that are classified as such; specificity measures the
proportion of correctly identified true negatives; and accuracy
is the proportion of correct predictions.

RESULTS

A total of 222 patients (132 males, 59.5%) were enrolled. The
mean age was 54.8 ± 13.3 years, and the mean stone burden was
563.4 ± 517.6 mm2. The mean Guy’s score was 3.2 ± 0.9, and the
mean S.T.O.N.E. score was 8.9 ± 1.8. Table 1 shows the
preoperative factors including individual variables and renal
and stone factors. Table 2 shows the actual postoperative data
for these patients. The overall SFS was 50% (111/222). Figure 2

TABLE 1 | Preoperative factors include individual variables and renal and stone
factors.

Age (mean ± SD) (years) 54.81 ± 13.31 %

Gender (male/female) 132/90 59.46
Guy’s score 3.27 ± 0.87
S.T.O.N.E score 8.91 ± 1.82
Stone burden (mm2)a 563.4 ± 517.6
History of diabetes n (%) 45 20.27
History of hypertension n (%) 70 31.53
History of hyperlipidemia n (%) 39 17.57
Solitary kidney n (%) 18 8.11
Renal insufficiency n (%) 30 13.51
Anemia n (%) 29 31.53
Preoperative urinary infection n (%) 111 50.00
Previous surgery in target kidney n (%) 77 34.68
SMWL 22 9.91
URSL 21 9.46
PCNL 24 10.81
Open surgery 26 11.71
Hydronephrosis n (%) 112 50.45
Stone location n (%)
Upper calyx 116 52.25
Mid calyx 136 61.26
Lower calyx 164 73.87
Renal pelvis 160 72.07
Ureter 50 22.52

aStone burden = Length × Width × 0.78.

TABLE 2 | Postoperative outcome variable (n = 222).

Hospitalization day 11.15 ± 4.98 10.49 (%)

Transfusion n (%) 9 4.1
Fever n (%) 42 18.9
Septicemia n (%) 19 8.6
Interventional therapy n (%) 3 1.4
Pleural injury n (%) 2 0.9
Ancillary procedures n (%) 12 5.4
Stone-free rate n (%) 111 50.0

FIGURE 2 | The stone-free rate in each subgroup of GSS grades and the
S.T.ON.E score systems.
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shows the stone-free rate in each subgroup of GSS grades and the
S.T.O.N.E score systems. The number of fever and infections
during hospitalization was 18.9% (42) and 8.6% (19).
Postoperative blood transfusion due to significant blood loss
happened in nine patients (4.1%). With the follow-ups for at
least 1 year, there were 12 patients (5.4%) who accepted ancillary
procedures to manage residual renal stones.

We have used four machine learning methods to analyze the
outcomes to predict the stone-free status. Table 3 shows the
AUC, sensitivity, specificity, and accuracy of each prediction
method to the results of the stone-free status. When using
AUC as a measure of the predictive model performance, as
shown in Table 3, the AUC of Lasso logistic was 0.879. It was
superior to those of RF, SVM, and Naive Bayes (0.803, 0.818, and
0.803, respectively). The AUCs of the GSS and S.T.O.N.E were
0.800 and 0.844, respectively, which were lower than the Lasso
logistic. Figure 3 shows the ROC curves of the fourMLMs, as well
as the GSS and S.T.O.N.E score system.

As shown in Table 3, the accuracies of the four MLMs were
also superior to those of the S.T.O.N.E score system. The
sensitivities of the MLMs were 75.8–83.3%, which were higher

than the S.T.O.N.E. score system. The machine learning system of
LL recognized stone burden and stone location as the most highly
weighted preoperative factors affecting the post-PCNL-SFR.

DISCUSSION

The incidence and prevalence of kidney stones have increased by
three times over the past 4 decades (Thongprayoon et al., 2020).
The prevalence of kidney stones is estimated at about 5–10% in
Europe, 4% in South America, and 1–19% in Asia currently
(Sorokin et al., 2017; Liu et al., 2018). Without a doubt, kidney
stones represent a considerable burden for public healthcare
systems.

Thomas et al. (2011) were the first to introduce Guy’s stone
score (GSS) to predict the success of the post-PCNL stone-free
status (SFS). The model is reproducible, provides quick and easy
office-based categorization of renal stones in four grades based on
stone shape and configuration, and correlates well with the SFS;
however, it fails to take into account the size and density of the
stone. The S.T.O.N.E. nephrolithometry scoring system of
Okhunov et al. (Zhamshid. et al., 2013) is based on non-
contrast CT (NCCT) having five variables; a score of 5–6 (low
complexity) has an overall SFS of 94–100%, and a score 9–13
(high complexity) has an overall SFS of 27–64%. Also, greater
S.T.O.N.E. scores are associated with a greater estimated blood
loss (EBL), longer operative times (LOTs), and increased length of
stay (LOS) in hospital. Smith et al. (2013) developed the CROES
(Clinical Research Office of the Endourological Society)
nomogram to predict the SFS after PCNL based on a global
database study of 5,830 patients. Six characteristics (stone burden,
number, location, multiple, staghorn, and institute-level case
volume) are included in this nomogram. It achieved a
remarkable prediction accuracy of 76%, but it is laborsome
and time-consuming.

Many studies have compared the predictive performance of
these score systems in post-PCNL SFR. Most studies have
examined the performance of these scoring systems to predict
SFR equally but not equally to predict complications. The AUC
ranges from 0.63 to 0.853 (Wu and Okeke, 2017), and the
different scoring system has its drawbacks or limitations. For
example, in Guy’s score system, partial staghorn stone was not
clearly defined. The S.T.O.N.E. nephrolithometry scoring system
relies solely on preoperative CT. The CROES nomogram requires
information that might not be readily available (case volume and
treatment history). So one simpler and easier application stone
score system is needed nowadays. Alireza and his colleagues
(Aminsharifi et al., 2017) were the first to use machine learning

TABLE 3 | AUC, sensitivity, specificity, and accuracy of each prediction method for the results of the stone-free status.

Outcome Lasso logistic Random forest Support vector machine Naive Bayes Guy’s score S.T.O.N.E score system

AUC 0.879 0.803 0.818 0.803 0.800 0.844
Sensitivity (%) 0.7576 0.7576 0.7576 0.8333 0.8180 0.7575
Specificity (%) 0.8788 0.8485 0.8788 0.7778 0.8480 0.8181
Accuracy (%) 0.8181 0.8030 0.8182 0.8030 0.8333 0.7878

FIGURE 3 | The ROC curves of the four MLMs as well as the GSS and
S.T.O.N.E score system.
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methods to evaluate the stone-free rate and complications after
PCNL. They used ANN to predict the stone-free rate. The accuracy
was 81.0–98.2%. The AUC was 0.861. In 2019, his team
(Aminsharifi et al., 2020) reported they used software to predict
the SFR after PCNL with the AUC of 0.915. In our study, we used
four machine learning methods to predict the SFR of PCNL
compared with Guy’s system and the S.T.O.N.E.
nephrolithometry system. The machine learning methods
(MLMs) include Lasso logistic, random forests, SVM, and Naive
Bayes. The AUC of the MLMs was superior than that of Guy’s
stone score system. The sensitivity and accuracy of MLMs were
superior to that of the S.T.O.N.E. nephrolithometry system.

Machine learning is built on the statistical framework.
Different approaches are designed to make the most accurate
prediction possible. It has been proved to have a good
performance to predict the SFR post-PCNL. Although we did
not have an advantageous performance of AUC of 0.915
(Aminsharifi et al., 2020), in this study, we found the MLMs
could predict the stone-free rate with the AUC not inferior to that
of Guy’s stone score or the S.T.O.N.E score system. The machine
learning algorithm mainly includes random forests, decision
trees, artificial neural networks, Bayesian learning, and Deep
learning. Each approach has its advantage and disadvantage.
We have tried four methods to predict the stone-free rate in
this study, and all of them got a fairly superior performance, as
well as the clinical scoring systems being currently available.
Machine learning methods are a good tool to predict the stone-
free rate with AUCs after PCNL.

So far, in the field of urinary stones, there have been few
studies using machine learning methods to predict operative
outcomes or help make operative decisions. As one author
commented (Peng et al., 2021), to improve the application of
MLMs in uritholiasis, two categories should be considered: first,
more people including urologists, statisticians, and computer

experts need to be involved in this project; second, more data
from different regions or population should be collected for
future event prediction. We need to establish, manage, and
share a cross-country or nationwide database, through which
machine learning or AI would contribute to the field of calculi or
other issues in the near future.
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Multi-Size Deep Learning Based
Preoperative Computed Tomography
Signature for Prognosis Prediction of
Colorectal Cancer
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Background: Preoperative and postoperative evaluation of colorectal cancer (CRC) patients
is crucial for subsequent treatment guidance. Our study aims to provide a timely and rapid
assessment of the prognosis of CRC patients with deep learning according to non-invasive
preoperative computed tomography (CT) and explore the underlying biological explanations.

Methods: A total of 808 CRC patients with preoperative CT (development cohort: n = 426,
validation cohort: n = 382) were enrolled in our study. We proposed a novel end-to-end Multi-
Size Convolutional Neural Network (MSCNN) to predict the risk of CRC recurrence with CT
images (CT signature). The prognostic performance of CT signature was evaluated by Kaplan-
Meier curve. An integrated nomogram was constructed to improve the clinical utility of CT
signature by combining with other clinicopathologic factors. Further visualization and correlation
analysis for CT deep features with paired gene expression profiles were performed to reveal the
molecular characteristics of CRC tumors learned by MSCNN in radiographic imaging.

Results: The Kaplan-Meier analysis showed that CT signature was a significant prognostic
factor for CRC disease-free survival (DFS) prediction [development cohort: hazard ratio (HR):
50.7, 95% CI: 28.4–90.6, p < 0.001; validation cohort: HR: 2.04, 95% CI: 1.44–2.89, p <
0.001]. Multivariable analysis confirmed the independence prognostic value of CT signature
(development cohort: HR: 30.7, 95% CI: 19.8–69.3, p < 0.001; validation cohort: HR: 1.83,
95% CI: 1.19–2.83, p = 0.006). Dimension reduction and visualization of CT deep features
demonstrated a high correlation with the prognosis of CRC patients. Functional pathway
analysis further indicated that CRC patients with high CT signature presented down-regulation
of several immunology pathways. Correlation analysis found that CT deep features were mainly
associated with activation of metabolic and proliferative pathways.

Conclusions: Our deep learning based preoperative CT signature can effectively predict
prognosis of CRC patients. Integration analysis of multi-omic data revealed that some
molecular characteristics of CRC tumor can be captured by deep learning in CT images.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most prevalent cancers and
has become the third leading cause of cancer death (Siegel et al.,
2020). Stratification of CRC patients is quite essential to design
more accurate and personalized treatment according to their
clinical characteristics (Sorbye et al., 2007). Though the current
tumor-node-metastasis (TNM) system has been used for guiding
treatment decisions of CRC patients for over 50 years (Nagtegaal
et al., 2011), it is still inadequate for accurately assessing the
prognosis of some colorectal patients, especially for patients in
clinical stage II and III (Joachim et al., 2019). Even with the same
clinical stage, patients may be suitable to different treatment
options before and after surgery as heterogeneity of CRC
(Molinari et al., 2018). Thus, prognostic analysis of CRC
patients and evaluation of their preoperative and postoperative
interventional treatment options are recent research hotspots.

Previous studies on the molecular basis of cancer and the
discovery of cancer associated genes, oncogenes and tumor
suppressor genes indicates that cancer is a genetic disease
(Pierotti, 2017), which determines a natural advantage for
cancer survival analysis with genomics data (Walther et al.,
2009; Yu et al., 2015). However, the expensive cost and long
detection time severely limit its mass adoption. Radiomics is a
high-throughput analysis of quantitative tumor characteristics
from standard-of-care medical imaging, like computed
tomography (CT) and magnetic resonance imaging (MRI). By
further modeling with machine learning, radiomics can provide
better clinical-decision support systems for the clinicians, like
tumor diagnosis and prognosis prediction (Lambin et al., 2017).
Compared with genetic detection, radiographic testing is non-
invasive and does little harm to the weak patients. Especially,
comparing with MRI, CT is much cheaper, and its examination
results can be available faster. As a preoperative routine test for
CRC patients to locate the tumor before resection surgery, CT
imaging analysis can provide timely guidance on surgical
procedures and postoperative treatment. With sophisticated
image processing tools to obtain high-dimensional image
features, CT images contain abundant information which
provides a powerful application in multiple medical studies
(Limkin et al., 2017).

Typical radiomic features are mainly morphological
characteristics of the tumor lesion, such as tumor size,
shape and texture, which are customized according to
human recognition cognition or compliant with certain
human-defined rules (Gillies et al., 2016). The
standardization of radiomic features makes it possible to
quantify phenotypic characteristics on medical imaging (van
Griethuysen et al., 2017). Through successfully applications in
tumor differentiated grading (Kim et al., 2015), genomics
prediction (Yang et al., 2018), prognosis predicting (Huang
et al., 2016), evaluation of tumor immune microenvironment
(Jiang et al., 2020) and prediction of chemoradiation therapy
response (Shi et al., 2019), radiomic studies demonstrate that
radiographic images can provide abundant information for
cancer research. However, these radiomics features obtained
by typical method are still limited by the human definition. It

fails to consider the feature-to-feature relationship which plays
a vital role in tumor microenvironment. Deep learning, one
kind of machine learning based on artificial neural networks,
has a powerful ability in image analysis (LeCun et al., 2015)
with convolutional neural networks (CNNs). A few studies
based on deep learning have proved its effectiveness in tumor
assessment like lymph node status prediction (Zheng et al.,
2020) and tumor recurrence prediction (Liu et al., 2022).
Though with high prediction accuracy, deep learning is
known as a black box as lacks the interpretation for its
prediction, which makes it hard to be accepted by doctors.
Excavating the hidden biological mechanism for the deep
learning models will improve its interpretability and
promote the clinical utility. Thus, there is an urgent need
for developing a biologically interpretable deep learning model
for predicting the prognosis of colorectal cancer.

In this study, we investigated an end-to-end CNNs model to
quantify radiographic tumor characteristics and prognosis
prediction for CRC patients. Deep features of CT images were
extracted for correlation analysis with RNS-seq data from the
ICGC-ARGO project (The International Cancer Genome
Consortium-Accelerating Research in Genomic Oncology) to
further explore the underlying biological mechanism learned
by the Multi-Size Convolutional Neural Network (MSCNN)
model. Our results proved that deep CT features can reveal
the molecular information of tumors to some extent and
ultimately improve the stratification of CRC patients.

MATERIALS AND METHODS

Patients and Data Collection
In this retrospective study, a total of 808 colorectal cancer patients
who had cancer resection at the Sixth Affiliated Hospital of Sun
Yat-sen University from 22 Jan 2008 to 30 Jan 2018 were included
for analysis. Patients admitted during 2008-2013 were assigned to
the development cohort (n = 426) for model construction and the
rest of patients admitted during 2014-2018 were assigned to the
validation cohort (n = 382) for model validation. All patients had
CT examinations before the cancer resection surgery and the
image data were stored in DICOM (Digital Imaging and
Communications in Medicine) format. Region of interest
(ROI) for colorectal cancer tumor area was manually
delineated by experienced doctors with ITK-snap (Version 3.2)
software. Baseline clinicopathological information containing
age, gender, differentiated grade, lymph node metastasis and
microsatellite status. Among these patients, 236 patients were
enrolled in the ICGC-ARGO project and had paired RNA
sequencing data.

Data Preprocessing and Enhancement
Figure 1 shows the pipeline of our analysis from origin CT images
and their corresponding ROI to predict the disease-free survival
for each patient. Origin CT images size is 512 * 512 with slices
from 23 to 682 (mean = 162), and the valid slices which have
tumor lesion of ROI for each CT image range between 3 and 77.
To fit the deep learning model and reduce the computational
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parameters, all 3D CT images and ROIs only kept the slices with
valid areas and then were resized to 256 * 256 * 12 with SciPy
ndimage python submodule. To better conclude the tumor
boundary information, all ROIs were binarily dilated with five
pixels using morphology function in ndimage submodule. As the
tumor ROI area of colorectal cancer is usually quite small,
accounting for only 1–5% of the whole CT image, detailed
information for the tumor is hard to extract from the deep
learning model. To address this issue, the tumor area is
cropped and magnified at different magnifications. Meanwhile,
the cropped CT images were also augmented by rotating at
random angles and flipping with a certain probability. Finally,
all images for each patient were stacked together to feed into the
neural network.

Multi-Size Convolutional Neural Network
Model Construction
Convolutional Neural Network (CNN) is a powerful Deep
Learning algorithm that can extract relevant texture features
from the image. By stacking several CNNs, deep learning
model can learn deeper features from the image according
to the training task. Although model becomes much difficult to
train if there are too many layers in deep learning networks, a
residual neural network (ResNet (He et al., 2016)) is designed
to solve this problem. Our model was based on ResNet34,
which contains 34 convolutional neural networks and four
residual blocks. First, one subnetwork with CNNs of different
input sizes were designed for features extraction from the
origin CT image and its enhanced cropped images. Then all
features from these CNN were stacked together and following
one CNN layer and the rest residual blocks of RenNet34 were
used to extract higher and deeper features. Finally, one Fully
Connected (FC) layer which contains one hidden layer with 64

nodes and one output layer finished the patient disease-free
survival classification task.

Model Development and Validation
As shown in Supplementary Figure S1, for better training the
model, only patients with tumor recurrence in 3 years or
disease-free survival for more than 5 years were considered
in the model development stage. CT images with ROI were fed
into the deep learning model, and disease-free survival status
was used as the labels. Model training was performed by
updating the network weights using the backpropagation
algorithm according to the cross-entropy loss between the
prediction and the real outcomes. Adam optimizer was used in
model network weights updating, and the learning rate was
decayed to half for every 10 training epochs with an initial rate
of 0.001. During training, the loss was continuously
monitored, and model weights were saved when loss
decreased. If the loss was not decreased for more than 20
epochs, then training was ended and saved model with the
highest Area under the receiver operating characteristic (ROC)
Curve (AUC) was loaded for further validation. CT signatures
score was calculated on the whole development and validation
cohort through the MSCNN model with CT images. A
nomogram was constructed by incorporating the CT
signature with other clinicopathologic risk factors, and its
benefit was evaluated by the calibration curve and Decision
curves analysis (DCA).

Radiomics Method
To compare our deep learning based method with
conventional radiomics method, we constructed a model
with CT radiomics features. For each of CT image, a total
of 107 radiomics features were extracted using Pyradiomics
(van Griethuysen et al., 2017) package in python 3.8 platform.

FIGURE 1 |Workflow of MSCNN. (A)Multi-Size based data enhancement of CT images before fed into MSCNN. (B) Data preprocessing of CT images with ROIs.
(C) Network structure of MSCNN Multi-Size which includes a CNN to combine Multi-Size CT data, a ResNet34 network to extract image features of tumors from CT
images and a last classification network.
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Standard Deviation (SD) and Median Absolute Deviation
(MAD) were used to initially screen features with
significant differences. Z-score normalization was performed
to increase the comparability between the left radiomics
features. The least absolute shrinkage and selection operator
(LASSO) with cox regression was used to construct the final
radiomics based model.

Deep Features Visualization
To visualize how the MSCNN divides patients into high
recurrence risk and low recurrence risk, deep features from
the last two layers of the MSCNN model were exported for
further analysis. A correlation heatmap was performed on the 64
features from the hidden notes of the FC layer to show the most
related deep CT features with high recurrence risk and low
recurrence risk. Principal component analysis (PCA) analysis
was performed on 512 origin deep CT features from the ResNet34
network and 64 features from hidden nodes of the FC layer.

Correlating the Computed Tomography
Signature and Deep Computed
Tomography Features With Gene
Expression Data
To explore the biological characteristics of CT signature, Gene
Ontology analysis and Gene Set Enrichment Analysis (GSEA)
was conducted for differentially expressed genes between the risk
groups. To further figure out how the model captures the

underlying biological information from CT images, correlation
analysis was performed between 64 deep CT features and cancer-
related pathways. Functional spectra were calculated with the
DeepCC method to explore the most related biological pathways
with deep CT features (Gao et al., 2019). All hallmark pathways
which have significant correlations with these 64 deep CT features
were displayed in a bar plot.

Statistical Analyses
All statistical analyses were performed by R software (version
4.1.1). Kaplan-Meier curve was used to perform survival analysis
for model prediction results with R package “survival”. Log-rank
test was used to evaluate results of the univariable analysis of
model prediction results and other clinic-pathological factors
with disease-free survival (DFS). Multivariable analysis was
performed using the Cox proportional hazards regression
method with only the significant variables from univariable
analysis. Correlation analysis were performed using the
Pearson method. For all analyses, the two-sided value p value
< 0.05 was considered statistically significant.

RESULTS

Risk Prediction From Computed
Tomography Images
We calculated the recurrence risk of colorectal cancer patients
with CT images and ROI in an end-to-end deep learning method.

TABLE 1 | Baseline characteristic of patients in the development and validation cohort.

level Development cohort(n = 426) Validation cohort (n = 328)

Low Risk High Risk P Low Risk High Risk P

n 268 158 200 182

Age (mean (SD)) 58.732 (12.676) 59.816 (15.649) 0.4878 56.799 (13.099) 57.134 (13.191) 0.833

Sex (%) F 116 (43.28) 57 (36.08) 0.1735 92 (46.00) 68 (37.36) 0.1085
M 152 (56.72) 101 (63.92) 108 (54.00) 114 (62.64)

TNM stage (%) I 28 (10.45) 7 (4.43) <0.0001 38 (19.19) 35 (19.34) 0.0026
II 126 (47.01) 29 (18.35) 69 (34.85) 42 (23.20)
III 99 (36.94) 53 (33.54) 63 (31.82) 52 (28.73)
IV 15 (5.60) 69 (43.67) 28 (14.14) 52 (28.73)

T stage (%) T1 14 (5.22) 5 (3.18) 0.0001 9 (4.55) 8 (4.42) 0.6512
T2 23 (8.58) 4 (2.55) 35 (17.68) 29 (16.02)
T3 208 (77.61) 112 (71.34) 133 (67.17) 117 (64.64)
T4 23 (8.58) 36 (22.93) 21 (10.61) 27 (14.92)

N stage (%) N0 157 (58.80) 51 (32.90) <0.0001 118 (59.00) 84 (46.15) 0.0175
N1 84 (31.46) 65 (41.94) 58 (29.00) 60 (32.97)
N2 26 (9.74) 39 (25.16) 24 (12.00) 38 (20.88)

M stage (%) M0 253 (94.40) 89 (56.33) <0.0001 172 (88.21) 130 (78.31) 0.0168
M1 15 (5.60) 69 (43.67) 23 (11.79) 36 (21.69)

Differentiation grade (%) Low 57 (30.81) 29 (26.36) 0.0256 45 (36.00) 29 (25.44) 0.181
Moderate 117 (63.24) 64 (58.18) 76 (60.80) 79 (69.30)
High 11 (5.95) 17 (15.45) 4 (3.20) 6 (5.26)

Chemotherapy Adjuvant (%) No 68 (32.69) 32 (32.65) 1 108 (56.84) 102 (61.82) 0.3992
Yes 140 (67.31) 66 (67.35) 82 (43.16) 63 (38.18)
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After model training with the development cohort, a CT signature
score of each patient was calculated with the MSCNN model in
Supplementary Table S1. Patients with a recurrence risk of more
than 0.5 were classified into high risk groups, and the remain
patients were in low risk group. Patients’ clinical characteristics in
development and validation cohort were displayed in Table 1.

High Risk and Low Risk Patients Show
Significant Different Survival
In both development and validation cohorts, high risk patients show
worse mean survival (23 vs. 105months and 46 vs. 58months).
Kaplan-Meier curve revealed a significant association between CT
images risk prediction and patients’ DFS in the development cohort
(HR: 50.7, 95% CI: 28.4–90.6, p < 0.001) and validation cohort (HR:
2.04, 95% CI: 1.44–2.89, p < 0.001) (Figures 2A–D). Previous
research showed that clinicopathological information may be not
enough to accurately predict the recurrence risk for colorectal
patients with stage II and III (Tsikitis et al., 2014). Kaplan-Meier
survival curve in stage II and III patients showed that risk prediction

of our model can still divide those patients into significant survival
different groups (Figures 2E–H). Univariable and multivariable cox
regression analyses were performed to identity significant
clinicopathological factors associated with cancer recurrence.
Besides the risk scores calculated from CT images, clinical factors
sex, age, T stage, N stage, differentiation grade and Microsatellite
status were added to multivariable analysis. Forest plot showed risk
scores from CT images was an independent prognostic predictor of
cancer recurrence in both development and validation cohorts
(Figures 2I,J).

Radiomics Model and Risk Prediction
Standard Deviation and Median Absolute Deviation for each
radiomics features was calculated after z-score normalization
and only 50 features with SD > 1 and MAD > 3.5 were left for
subsequent modeling. Finally, 11 radiomics features were kept
with LASSO-cox regression to construct the classification
model. Radiomics score was calculated by a linear
combination of non-zero coefficients multiplied with these
11 radiomics features. To classify high and low risk groups, the

FIGURE 2 | Prognostic performance of MSCNN. The distribution of CT signature of MSCNN and its corresponding recurrence status in the development cohort (A)
and validation cohort (C). Kaplan-Meier curves showed a significant survival difference between the high and low risk groups in the development cohort (B) and validation
cohort (D). Prognostic analysis of CRC patients in stage II and III subgroups (E–H). Univariable and multivariable analysis of clinical factors in the development cohort (I)
and validation cohort (J).
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optimal cut-off of radiomics scores was determined by the
time-dependent ROC curve. Survival analysis showed
significant differences between high risk patients and low
risk patients according to radiomics scores (Supplementary
Figures S2B,D). Comparison between our MSCNN method
and Radiomics method were displayed with ROC curves and
the result proved that our model could obtain better prediction
of prognosis in both development and validation cohorts
(Supplementary Figures S2A,C).

Nomogram for Risk Prediction From
Radiomics
According to the multivariable analysis, the Cox regression model
which incorporated CT signature, T stage andN stagewas developed
and displayed as a CT signature based nomogram (Figure 3A). The
calibration curve of the radiomics nomogram showed good
concordance between the prediction and the actual DFS survival
(Figures 3B,C). DCA curve showed that nomogram achieved better
net benefit compared with TNM-stage only (Figures 3E,F).

FIGURE 3 | The developed nomogram incorporated CT signature with T & N stage (A). Coordinates length for each prognostic factor was determined by the
coefficients of the cox regression model. For each patient, the total score was calculated with all variable scores. The probability of DFS was derived from the mapping
relationship between the evaluation results and total score on specified patient survival time. (B,C) Calibration curves of nomogram for 5 years DFS in the development
and validation cohort. (D,E) Decision curve analysis for nomogram established in the development and validation cohort.
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Visualization for the Deep Features From
Radiomics
Deep features were extracted from the output of the ResNet34
network and hidden notes of the FC layer. 512 features were
exported from the ResNet34 network for each CT image, and
then the 64 features most related to tumor recurrence and
disease-free survival were extracted from the hidden layer. PCA
analysis showed deep features from the RseNet34 network were not
enough to accurately divide patients into high risk groups and low
risk groups (Figures 4A,B). However, recurrence related 64 features
extracted from the hidden layers achieved distinct classification
(Figures 4C,D). Unsupervised clustering of 64 deep CT features
displayed in the heatmap showed that these deep CT features were
significantly highly correlated with high and low risk subgroups of
CRC patients (Figure 4E).

Pathway Analysis of Radiomics Risk Group
and Deep Features
To further explore the biological interpretability of deep CT features
from the MSCNN model, Gene Ontology analysis of the different
groups and the GSEA showed significant enrichment of immune
pathways (Figure 5A) such as Interferon alpha response (p < 0.001),
Interferon Gamma Response (p < 0.001) and Inflammatory
response (p = 0.037) (Figure 5B). Significantly differential

expression genes of risk groups were shown in Supplementary
Figure S3. Besides, correlation analysis of the 64 deep CT features
(Figure 5C) found thatmost of these features were highly correlated.
Their further correlation analysis with the hallmark pathways was
performed to explore the biological mechanism of the MSCNN
model. Hallmark pathways were selected according to significant
association with those deep CT features, and the result showed those
features had a significant enrichment in some metabolism and
proliferative pathways (Figure 5D).

DISCUSSION

In this study, we proposed a deep learning based end-to-endmethod
to predict prognosis of colorectal cancer patients after tumor
resection surgery from CT images. Our deep learning model
successfully screened out high tumor recurrence risk patients
with significant prognostic differences from the others.
Univariable and multivariable analyses showed that CT signature
was an independent factor for CRC patient survival prediction. By
incorporating CT signature and clinical risk factors, we built a
nomogram that can facilitate the risk prediction for colorectal
cancer patients. Correlation analysis with genomic data indicated
that high risk patients showed downregulation of immune pathways
and deep CT features learned by MSCNN model were significantly
enriched in some metabolism and proliferative pathways.

FIGURE 4 | Dimension reduction for visualization and correlation analysis of deep CT features. Principle component analysis (PCA) on the 512 features of the
ResNet34 network (A,C) and 64 features (CT feature) of hidden notes of the FC network (B,D). Correlation heatmap between 64 deep CT features and prognostic
difference group (E).
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Traditional prognostic analysis based on genetic testing can
obtain good performance as expression of several genes were
highly related with patient’s tumor progression (Kandimalla et al.,
2018; Sveen et al., 2020). However high cost and long test time
cycle limited its large-scale applications. Compared with genetic
testing, CT imaging, a much cheaper non-invasive preoperative
routine test for CRC patients to locate the tumor before the
resection surgery, can provide more preoperative interventions.
Our study was based on deep learning model which focused
detailed and deeper information of CT images and acquired good
performance in prognostic prediction for CRC patients.

Deep learning model with CNN can learn the features of CT
images from low to high dimensions and their correlation
(Yamashita et al., 2018), which may be the key reason for high
performance in image analysis. Since most previous CT image
based prognostic research have only used pretrained deep
learning to extract images features, subsequent analysis
required subjective screening of these features to build the
machine learning model again (Huang et al., 2020; Park et al.,
2021; Liu et al., 2022). Besides, they did not consider the special

characteristics of medical images which mean generic pretrained
deep learning models were not suitable. Our MSCNN model was
an end-to-end method to quickly predict the prognosis for CRC
patients with CT images, which can also reduce the subjectivity of
human selection of image characteristics. In addition, the
percentage of tumors in CT images is often small, accounting
for only about 1–5%, which makes it difficult for ordinary CNN
models to learn the key information of CT images. Based on the
idea of multi-instance learning in pathology research (Bilal et al.,
2021; Sirinukunwattana et al., 2021), our MSCNN model
considered both full-image and local detail information of CT
images by cropping and deflating the ROI region, making the
prognostic predicting of our model more comprehensive and
accurate.

Recent rapid development of deep learning has generated a series
of CNN based studies for radiographic analysis, like treatment
response predicting (Xu et al., 2019; Lu et al., 2021) and
detection of Synchronous Peritoneal Carcinomatosis (Yuan et al.,
2020). However, few of them considered the interpretation of their
deep learning models, making it hard for clinicians to be convinced

FIGURE 5 | Global gene set pathway analysis. (A) Gene Ontology pathway enrichment analysis between CT signatures and RNA-Seq expression. (B) GSEA
showed several Immune related pathways were downregulated in high CT signature patients. (C,D) Correlation between 64 deep CT features and their enrichment
hallmark pathways.
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of their findings. Our study not only visualized the process of
classifying CRC patients in high and low risk groups, but also
found that the CT signature of our MSCNN model was
significantly correlated with several immune pathways.
Meanwhile, our results found that deep CT features showed
significant enrichment in some metabolic proliferative pathways
which was consistent with previous studies (Kandimalla et al., 2019;
Cai et al., 2020; La Vecchia and Sebastián, 2020).

However, despite satisfactory results with sufficient
biological interpretation, our study still has some
limitations. First, a prospective study was needed to further
confirm and optimize our model. In our study, all patients
included are from one single center, which may cause bias for
the model validation. In addition, our CT images for prognosis
predicting need manual ROI segmentation which is time-
consuming and seriously affects the applicability of our
model. This can be achieved by object detection through
deep learning with enough data. In this way, the ROI can
be directly learned from the model without manual sketching.

In conclusion, our study demonstrated that deep learning with
CT images can be effectively applied to cancer recurrence
prediction. By incorporating clinical factors, more accurate
results can be achieved than just routine TNM staging.
Correlation analysis with gene expression data showed that
deep CT features captured by our model did have a biological
meaning which gave credibility to our MSCNN model.
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S-Thyroid Computer-Aided Diagnosis
Ultrasound System of Thyroid
Nodules: Correlation Between
Transverse and Longitudinal Planes
Keen Yang1†, Jing Chen2†, Huaiyu Wu2, Hongtian Tian2, Xiuqin Ye2, Jinfeng Xu2*,
Xunpeng Luo3* and Fajin Dong2*

1The Second Clinical Medical College, Jinan University, Shenzhen, China, 2Department of Ultrasound, Shenzhen People’s
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Technology), Shenzhen, China, 3Department of Thyroid Surgery, Shenzhen People’s Hospital (The Second Clinical Medical
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Introduction: We compare the differences in the diagnostic results of S-thyroid, a
computer-aided diagnosis (CAD) software, based on two mutually perpendicular planes.

Methods: Initially, 149 thyroid nodules confirmed by surgical pathology were enrolled in
our study. CAD in our study was based on the ACR TI-RADS lexicon. t test, rank-sum test,
and Chi-square test were used. The interclass correlation coefficient and Cohen’s kappa
were used to explore the correlation between CAD features. Receiver operating
characteristic was plotted for different combinations of CAD features.

Results: The patient’s age, transverse diameter, longitudinal diameter, shape, margin,
echogenicity, echogenic foci, composition, TI-RADS classification, and risk probability of
nodules in the transverse and longitudinal planes were related to thyroid cancer (p < 0.05).
The AUC (95%CI) of TI-RADS classification in the transverse plane of CAD is better than
that of the longitudinal plane [0.90 (0.84–0.95) vs. 0.83 (0.77–0.90), p = 0.04]. The AUC
(95%CI) of risk probability of nodules in the transverse planes shows no difference from
that in the longitudinal plane statistically [0.90 (0.85–0.95) vs. 0.88 (0.82–0.94), p = 0.52].
The AUC (95% CI), specificity, sensitivity, and accuracy [TI-RADS classification (transverse
plane) + TI-RADS classification (longitudinal plane) + risk (transverse plane) + risk
(longitudinal plane)] are 0.93 (0.89–0.97), 86.15%, 90.48%, and 88.59%, respectively.

Conclusion: The diagnosis of thyroid cancer in the CAD transverse plane was superior to
that in the CAD longitudinal plane when using the TI-RADS classification, but there was no
difference in the diagnosis between the two planes when using risk. However, the
combination of CAD transverse and longitudinal planes had the best diagnostic ability.
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INTRODUCTION

Epidemiological studies show that thyroid cancer accounts
for 3% of new cancers in women, with 32,130 cases compared
to 12,150 cases in men. (Siegel et al., 2021). The increase in
the number of thyroid cancer diagnoses is due in large part to
the increasing use of diagnostic imaging technology and
medical surveillance, as well as improved access to health
care, all of which facilitate the detection of small, subclinical
thyroid nodules and small thyroid cancers (Grani et al., 2020;
Nambron et al., 2020).

Thyroid ultrasound (US) is the most effective tool for
detecting thyroid lesions, especially when remnants of
normal thyroid tissue are present, compared to other
imaging studies such as computed tomography and
magnetic resonance imaging (Grani and Fumarola, 2014;
Hoang et al., 2018; Filetti et al., 2019). However, the
repeatability and objectivity of the US are low, for the US
highly dependent on operator experience and does not allow
the analysis of image features quantitatively (Lee et al., 2016;
Persichetti et al., 2020; Zhang et al., 2021).

To improve diagnostic accuracy, computer-aided diagnosis
(CAD) systems have been developed (Shen et al., 2019;
Zhang et al., 2021). CAD systems allow for quantitative
assessment by efficiently analyzing large numbers of images,
a computer-based approach that facilitates interpretation
and diagnosis, and also reduces intra- and inter-observer
variability (Singh et al., 2011). S-thyroid, similar to S-detect,
is a computer-aided diagnostic software for ultrasound
identification and differentiation of benign and malignant
thyroid nodules. Some studies have investigated the
diagnostic value of S-detect (Samsung Medison Co.,
Seoul, South Korea) for benign and malignant thyroid
nodules (Choi et al., 2017; Kim et al., 2019; Xia et al.,
2019; Barczyński et al., 2020; Wei et al., 2020), but no
studies have been done on the diagnostic accuracy of
S-thyroid for thyroid nodules. What is more, whether it is
S-detect or S-thyroid, their diagnoses are based on a single
ultrasound image. This is different from an
ultrasonographer, who determines the benignity or
malignancy of a thyroid nodule based on a combination
of information from the transverse and longitudinal views of
the thyroid nodule. However, no studies have yet examined
the diagnostic variability of CAD between two mutually
perpendicular views of the thyroid.

Consequently, the purpose of this study was to explore the
differences between the diagnosis of thyroid nodules based on
two mutually perpendicular planes of the S-thyroid software and
the diagnostic efficacy of S-thyroid.

MATERIALS AND METHODS

Informed Consent
This retrospective study was approved by the institutional ethics
committee of our hospital.

Patients
This retrospective study was approved by the appropriate
institutional and research ethics committee. The inclusion and
exclusion criteria are listed as follows:

1) US and CAD can detect the thyroid nodules of a patient.
2) Thyroid nodules range from 2 to 50 mm.
3) Thyroid nodule pathology was finally confirmed by surgical

pathology.
4) Other non-thyroid cancers, such as lymphoma and metastatic

cancers, were excluded.

The flow chart is shown in Figure 1.

US AND CAD DETECTION

The thyroid US detection was performed by an
ultrasonographer with 15 years of experience in thyroid
US detection using a 3–17 MHz linear array probe and a
real-time US system (SonoScape Medical Corp., Shenzhen,
Guangdong Province, China). First, the ultrasonographer
performed a transverse scan to observe the entire thyroid
gland, followed by a longitudinal scan. The transverse plane
and longitudinal plane of the thyroid nodules with the most
malignant signs have been preserved sequentially.
Ultimately, the ultrasonographer measured the transverse
diameter (TD), longitudinal diameter (LD), and
anteroposterior diameter (AD) without knowing the
pathology and CAD results.

CAD in our study was based on the American College of
Radiology, Thyroid Imaging Reporting and Data System (ACR
TI-RADS) lexicon (Tessler et al., 2018), and using S-thyroid
software (SonoScape Medical Corp., Shenzhen, Guangdong
Province, China). The thyroid nodules included in this study
were not utilized for prior training or validation of the CAD
system.

The CAD data in our study were obtained by the
same ultrasonographer using the preserved images in
both transverse and longitudinal planes. First, open
S-thyroid, then without the need to outline the
nodules manually, the CAD will automatically outline the

FIGURE 1 | Flow chart.
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thyroid nodule margin and display the following
automatically as follows:

• TD, LD, AD;
• Composition: cystic or almost = 0; spongiform = 0;
mixed cystic and solid = 1; solid or almost completely
solid = 2;

• Echogenicity: anechoic = 0; hyperechoic or isoechoic = 1;
hypoechoic = 2; very hypoechoic = 3;

• Shape: wider-than-tall = 0; taller-than-wide = 3;
• Margin: smooth = 0; ill-defined = 0; lobulated or irregular =
2; extra-thyroidal extension = 3;

• Echogenic Foci: none or large = 0; macrocalcifications = 1;
peripheral (rim) calcifications = 2; punctate echogenic
foci = 3;

• TI-RADS: TR1 = 0; TR2 = 2; TR3 = 3; TR4 = 4–6; TR5≥7.
• Risk: the CAD system assigns a score of 0–1, representing
an increasing probability of malignancy in our study.

The relevant cases of CAD are shown in Figure 2.
What is more, two other sonographers with 5 and 10 years of

experience in thyroid ultrasound detection, respectively, also read
the saved images in the transverse and longitudinal planes and
then graded the thyroid nodules according to ACR TI-RADS
guidelines.

Difference Between Transverse and
Longitudinal Planes
To evaluate the difference between the transverse plane (view T)
and longitudinal plane (view L), we calculated the plane
difference (PD) and plane difference factor (PD2) through the
equations given below:

PDcomposition � compositionview L − compositionview T

PDechogenicity� echogenicityview L− echogenicityview T

PDshape� shapeview L − shapeview T

PDmargin� marginview L −marginview T

PDechogenic foci� echogenic fociview Lechogenic fociview T

PDrisk� risk scoreview L− risk scoreview T

PD2 � PD p PD

Clinical Findings
Patients’ gender, age, pathology results, and the location of the
nodules were recorded. We divided the thyroid gland into three
parts, including the left lobe, right lobe, and isthmus.

Statistical Analysis
The statistical analysis was performed by R (https://www.r-
project.org) and IBM SPSS 25, and the figures were
assembled with Adobe Illustrator CS6 and GraphPad
Prism 8. t test was used for the normally distributed
numerical variables, the rank-sum test was used for the
non-normally distributed numerical variables, and the
Chi-square test was used for the disordered classification
variables. p < 0.05, as standard, statistically significant
variables were included for further study.

The result consistency of numerical variables between the
transverse and longitudinal planes of CAD was analyzed by
the interclass correlation coefficient (ICC) while the result
consistency of disordered classification variables was analyzed
by Cohen’s kappa. Multivariate logistic regression was used to
construct the model, and then the ROC was plotted based on
the results of multivariate logistic regression, to combine
different CAD characteristics.

FIGURE 2 | A 37-year-old woman with a thyroid nodule and pathological findings suggestive of a micro papillary thyroid carcinoma. S-thyroid analyzes the features
of the lesion. (A) Transverse plane: shape = taller-than-wide; margin = lobulated or irregular; echogenicity = hypoechoic; echogenic foci = punctate echogenic foci;
composition = solid or almost completely solid; TI-RADS classification = TR5; risk = 0.95. (B) Longitudinal plane: shape = wider-than-tall; margin = lobulated or irregular;
echogenicity = hypoechoic; echogenic foci = none; composition = solid or almost completely solid; TI-RADS classification = TR4; risk = 0.99.
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RESULTS

Patients’ Sample
There were a total of 149 thyroid nodules (benign: malignant =
65:84) enrolled in our study. Themedian age of themwas 44 years
(interquartile range, 36–54 years). Among the 149 thyroid
nodules, 69 nodules (46%) are located in the left lobe of the
thyroid, 78 nodules (52%) are located in the right lobe of the
thyroid, and 2 nodules (1%) are located in the isthmus of the
thyroid. 25 (17%) of the patients were male and 124 (83%) of
themwere female. Gender (p = 0.53) and location (p = 1) were not
statistically significant with thyroid cancer while age (p = 0.02)
was statistically significant with thyroid cancer (Table1).

Characteristics of CAD
In the transverse plane of the thyroid, AD (p = 0.76) was not
statistically significant with thyroid cancer while TD (p < 0.01),
shape (p < 0.01), margin (p < 0.01), echogenicity (p < 0.01),
echogenic foci (p < 0.01), composition (p < 0.01), TI-RADS
classification (p < 0.01), and risk (p < 0.01) were statistically
significant with thyroid cancer (Table1).

In the longitudinal plane of the thyroid, AD (p = 0.85) was not
statistically significant with thyroid cancer while LD (p = 0.03),

shape (p < 0.01), margin (p < 0.01), echogenicity (p < 0.01),
echogenic foci (p < 0.01), composition (p < 0.01), TI-RADS
classification (p < 0.01), and risk (p < 0.01) were statistically
significant with thyroid cancer (Table1).

Patients’ data distribution between transverse and longitudinal
planes is shown in Figure 3.

Difference Between Transverse and
Longitudinal Planes
PD risk

2 (p < 0.01), PD shape
2 (p < 0.01), PD echogenic foci

2(p < 0.01),
and PD composition

2(p < 0.01) were statistically significant with
thyroid cancer (Table2). PD risk (p = 0.66), PD shape (p = 0.1),
PD margin (p = 0.05), PD margin

2 (p = 0.35), PD echogenicity (p = 0.21),
PD echogenicity

2 (p = 0.5), PD echogenic foci (p = 0.55), and PD
composition (p = 0.11) were not statistically significant with thyroid
cancer (Table2).

Consistency of CAD Features in Transverse
and Longitudinal Planes
The ICC of AD, TD, and LD between the ultrasonographer’s
diagnosis and CAD were 0.97 (0.95–0.98), 0.98 (0.98–0.99), and

TABLE 1 | Patients’ basic information.

Variable Total (n = 149) Benign (n = 65) Malignant (n = 84) p

Genderc 0.53
Male 25 (17) 9 (14) 16 (19)
Female 124 (83) 56 (86) 68 (81)

Aged 44 (36, 54 46 (41, 55 42 (34.75, 51.25 0.02
Locationc 1
Left Lobe 69 (46) 30 (46) 39 (46)
Right Lobe 78 (52) 34 (52) 44 (52)
Isthmus 2 (1) 1 (2) 1 (1)

Pathology
Hashimoto thyroiditis 7 (11%)
Nodular goiter 48 (74%)
Follicular adenoma 8 (12%)
Thyroid Hurthle cell adenoma 2 (3%)
Papillary carcinoma 34 (40%)
Micropapillary carcinoma 50 (60%)

TI-RADS classificationa, d <0.01
1 19 (13) 17 (26) 2 (2)
2 19 (13) 18 (28) 1 (1)
3 10 (7) 8 (12) 2 (2)
4 28 (19) 16 (25) 12 (14)
5 73 (49) 6 (9) 67 (80)

Riska, d 0.75 (0.15, 0.95 0.14 (0.07, 0.37 0.94 (0.81, 0.97 <0.01
TI-RADS classificationb, c <0.01
1 17 (11) 16 (25) 1 (1)
2 20 (13) 15 (23) 5 (6)
3 11 (7) 8 (12) 3 (4)
4 26 (17) 15 (23) 11 (13)
5 75 (50) 11 (17) 64 (76)
Riskb, d 0.87 (0.17, 0.97 0.21 (0.07, 0.57 0.96 (0.92, 0.98 <0.01

aBased on the CAD of the transverse plane.
bBased on the CAD of the longitudinal plane.
cNon-normally distributed numerical variables are shown by median (first quartile, third quantile).
dDisordered classification variables are shown by percentage.
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0.98 (0.97–0.98), respectively, while the ICC of risk between the
transverse plane and longitudinal plane of CAD was 0.81
(0.73–0.86), meaning that they have high consistency. The

Kappa (mean ± standard error) of TI-RADS classification and
shape between the transverse plane and longitudinal plane of
CAD are 0.40 ± 0.05 and 0.34 ± 0.08, respectively, meaning that

FIGURE 3 | Patients’ data distribution between transverse and longitudinal planes. TI-RADS lexicon is shown in (A,B). #Benign group patients’ data distribution.
*Malignant group patients’ data distribution. $Based on the CAD of the transverse plane. %Based on the CAD of the longitudinal plane. &Based on the ultrasonographer’s
diagnosis. TD: transverse diameter. LD: longitudinal diameter. AD: anteroposterior diameter. The risk score from the CAD system is shown in (C). The TD, LD, AD, and
age are shown in (D).

TABLE 2 | Data distribution of PD and PD2.

Variable Total (n = 149) Benign (n = 65) Malignant (n = 84) p

PD risk −0.02 (−0.12, 0.02) −0.02 (−0.21, 0.04) −0.02 (−0.06, 0.01) 0.66
PD risk

2 0 (0, 0.04) 0.01 (0, 0.08) 0 (0, 0.01) <0.01
PD shape 0 (0, 0) 0 (0, 0) 0 (0, 3) 0.1
PD shape

2 0 (0, 9) 0 (0, 0) 0 (0, 9) <0.01
PD margin 0 (0, 0) 0 (0, 0) 0 (0, 0) 0.05
PD margin

2 0 (0, 1) 0 (0, 0) 0 (0, 1) 0.35
PD echogenicity 0 (0, 0) 0 (0, 0) 0 (0, 0) 0.21
PD echogenicity

2 0 (0, 1) 0 (0, 1) 0 (0, 1) 0.5
PD echogenic foci 0 (0, 0) 0 (0, 0) 0 (0, 0) 0.55
PD echogenic foci

2 0 (0, 1) 0 (0, 0) 0 (0, 4) <0.01
PD composition 0 (0, 0) 0 (-1, 0) 0 (0, 0) 0.11
PD composition

2 0 (0, 0) 0 (0, 1) 0 (0, 0) <0.01

All the variables are shown by median (first quartile, third quantile), PD: plane difference, and PD2: plane difference factor.
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they have low consistency. The Kappa (mean ± standard error) of
margin, echogenicity, echogenic foci, and composition between
the transverse plane and longitudinal plane of CAD is 0.47 ± 0.06,
0.45 ± 0.06, 0.46 ± 0.06, and 0.54 ± 0.06, respectively, meaning
that they have moderate consistency (Table 3).

CAD Features’ Diagnosis Efficiency
In two mutually perpendicular planes, Figure 4A and Table 4
demonstrate the ROC for various combinations of TI-RADS
classifications and risk. TI-RADS classification and risk had
the best diagnostic performance among the 7 features recorded
by CAD in mutually perpendicular planes (Figures 4B–D).

The AUC (95% CI) of TI-RADS classification in the transverse
plane of CAD is better than that of the longitudinal plane [0.90
(0.84–0.95) vs. 0.83 (0.77–0.90), p = 0.04]. The AUC (95% CI) of
risk in the transverse plane of CAD shows no difference from that
in the longitudinal plane statistically [0.90 (0.85–0.95) vs. 0.88
(0.82–0.94), p = 0.52].

While combining the CAD features, the diagnosis efficiency
will be better. The AUC (95% CI), specificity, sensitivity, and
accuracy [TI-RADS classification (transverse plane) + TI-RADS
classification (longitudinal plane) + risk (transverse plane) + risk
(longitudinal plane)] are 0.93 (0.89–0.97), 86.15%, 90.48%, and
88.59%, respectively. The AUC (95% CI), specificity, sensitivity,
and accuracy [TI-RADS classification (transverse plane) + risk
(transverse plane)] are 0.91 (0.86–0.96), 86.15%, 89.29%, and
87.92%, respectively. The AUC (95% CI), specificity, sensitivity,
and accuracy [TI-RADS classification (longitudinal plane) + risk
(longitudinal plane)] are 0.90 (0.85–0.95), 89.23%, 80.95%, and
84.56%, respectively. The AUC (95%CI), specificity, sensitivity,
and accuracy [risk (transverse plane) + risk (longitudinal plane)]
are 0.92 (0.88–0.97), 84.62%, 89.29%, and 87.25%, respectively.
The AUC (95% CI), specificity, sensitivity, and accuracy [TI-
RADS classification (transverse plane) + TI-RADS classification
(longitudinal plane)] are 0.91 (0.86–0.96), 92.31%, 85.71%, and
88.59%, respectively.

Of the diagnoses made by ultrasonographers of different
seniority, the AUC (95% CI), specificity, sensitivity, and accuracy
of the 15 years experienced ultrasonographer were 0.90 (0.85–0.95),

81.54%, 89.29%, and 85.91% and that of 10 years experienced
ultrasonographer were 0.88 (0.82–0.94), 86.15%, 83.33%, and
84.56% and that of 5 years experienced ultrasonographer were
0.86 (0.80–0.92), 84.62%, 79.76%, and 81.88%, respectively.

DISCUSSION

The incidence of thyroid cancer is increasing year by year. However,
the mortality rate of thyroid cancer has not changed (Sosa et al., 2013;
Ahn et al., 2016; Leboulleux et al., 2016; Vaccarella et al., 2016). Thus,
it is necessary for clinicians to reduce punctures and surgeries for
thyroid nodules. ACR TI-RADS, a lexicon for imaging practitioners
reporting thyroid nodules, has developed a standardized risk
stratification system for thyroid nodules (Tessler et al., 2017;
Tessler et al., 2018). Unlike ultrasonographers who are rated
according to ACR TI-RADS, S-thyroid is reproducible and
objective according to ACR TI-RADS. The objective of our study
is to inform clinicians on how to respond when CAD scores different
risk scores based on two mutually perpendicular planes so that better
clinical protocol decisions can be made that are more beneficial to
patients.

We can see that TD, LD, and shape were statistically
significant with thyroid cancer while AD was not, and the TD
and LD of malignant nodules are smaller than those of benign
nodules. Since benign and cystic nodules have softer nodules and
less infiltration of surrounding tissue and are therefore more
easily compressed than malignant nodules (Yoon et al., 2010),
56%–89% of papillary thyroid cancers showed dense fibrosis
(Vickery, 1983; Isarangkul, 1993). This may be the reason why
malignant nodules are less likely to be compressed. However, the
reasons for the result of our study are more likely due to selection
bias. In the case of small nodules, it is likely that only those with
suspicious features underwent a biopsy or surgery. Further
expansion of the sample is needed to compare the statistical
results again.

In our study, we observed that the ACR TI-RADS lexicon
diagnosis of CAD based on the transverse plane did differ from
that of CAD based on the longitudinal plane, but the difference
was not statistically significant with thyroid cancer, while the
square of the difference was statistically significant with thyroid.
Surprisingly, the correlation of the TI-RADS classification of
CAD based on two mutually perpendicular planes was low,
but the correlation of risk was high. Therefore, the
ultrasonographer or clinician should give priority to the risk
score of CAD over the TI-RADS classification of CAD when
interpreting CAD reports. Similarly, the correlations of margin,
echogenicity, echogenic foci, and composition based on two
mutually perpendicular planes of CAD were moderate. This
may be the reason for the low correlation of the TI-RADS
classification based on two mutually perpendicular planes in
our study. We know that the images of thyroid nodules are
not consistent in both planes, so ultrasonographers base their
grading of thyroid nodules on the combined scan. This is different
from the TI-RADS classification of CAD, which is why the
previous results occur. However, this phenomenon has not

TABLE 3 | The consistency of CAD features.

ICC (95% CI)d Kappae

Anteroposterior diametera 0.97 (0.95–0.98) Shapec 0.34 ± 0.08
Transverse diametera 0.98 (0.98–0.99) Marginc 0.47 ± 0.06
Anteroposterior diameterb 0.96 (0.94–0.97) Echogenicityc 0.45 ± 0.06
Longitudinal diameterb 0.98 (0.97–0.98) Echogenic focic 0.46 ± 0.06
Riskc 0.81 (0.73–0.86) Compositionc 0.54 ± 0.06
TI-RADS classificationc 0.40 ± 0.05

aThe consistency between the ultrasonographer’s diagnosis and CAD of the
transverse plane.
bThe consistency between the ultrasonographer’s diagnosis and CAD of the
longitudinal plane.
cThe consistency between the transverse plane and longitudinal plane of CAD.
dShown by median (first quartile, third quantile).
eShown by mean ± standard error.
CAD, computer-aided diagnosis; ICC, interclass correlation coefficient; CI: confidence
interval.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 9092776

Yang et al. S-Thyroid Screening Thyroid Cancer

76

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


FIGURE 4 | Receiver operating characteristic (ROC). #Based on the CAD of the transverse plane. *Based on the CAD of the longitudinal plane.

TABLE 4 | ROC of different combination of CAD features’ diagnosis efficiency.

AUC
(95%CI)

Threshold Specificity Sensitivity Accuracy

TI-RADSc + TI-RADSd + riskc + riskd 0.93 (0.89–0.97) 0.58 86.15 90.48 88.59
Riskc + TI_RADSc 0.91 (0.86–0.96) 0.65 86.15 89.29 87.92
Riskd + TI-RADSd 0.90 (0.85–0.95) 0.77 89.23 80.95 84.56
Riskc + riskd 0.92 (0.88–0.97) 0.57 84.62 89.29 87.25
TI-RADSc + TI-RADSd 0.91 (0.86–0.96) 0.66 92.31 85.71 88.59
TI-RADSc 0.90 (0.84–0.95) 4.5 90.77 79.76 84.56
Riskc 0.90 (0.85–0.95) 0.5 81.54 90.48 86.58
TI-RADSd 0.83 (0.77–0.90) 4.5 83.08 76.19 79.19
Riskd 0.88 (0.82–0.94) 0.94 96.92 72.62 83.22

aBased on the CAD of the transverse plane.
bBased on the CAD of the longitudinal plane.
cNon-normally distributed numerical variables are shown by median (first quartile, third quantile).
dDisordered classification variables are shown by percentage.
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been analyzed before, so what should an ultrasonographer or
clinician do when interpreting CAD results that are inconsistent
based on two mutually perpendicular planes?

Therefore, this study also investigated the diagnostic efficacy
of TI-RADS classification and risk in CAD transverse and
longitudinal planes. It was found that the diagnosis of thyroid
cancer in the CAD transverse plane was superior to the CAD
longitudinal plane when using the TI-RADS classification, but
there was no difference in the diagnosis between the two planes
when using risk. What is more, the combination of both planes
can improve the diagnosis of thyroid cancer. Therefore, the
ultrasonographer or clinician should not interpret the CAD
results based on one plane alone but should combine the
results of both the transverse and longitudinal planes.

Wei Q et al. found that S-detect can improve diagnostic
performance for less experienced radiologists, and the
sensitivity and specificity of S-detect are 91.3% and 65.2%,
respectively (Wei et al., 2020). Kim HL et al. evaluated the
diagnostic performance of S-Detect 1 and S-Detect 2 for
detecting thyroid cancers and found that the sensitivity and
specificity of S-Detect 1 are 80.2% and 82.6% and that of
S-Detect 2 are 81.4% and 68.2%, respectively (Kim et al.,
2019). Xia S et al. found that CAD presents a higher
sensitivity but lower specificity in identifying malignant
thyroid nodules compared to experienced radiologists, and the
sensitivity and specificity of S-detect are 90.5% and 41.2%,
respectively (Xia et al., 2019). Barczyński M et al. found that
the CAD system has similar sensitivity to classify thyroid lesions
as a surgeon with expert US skills (Barczyński et al., 2020). In
conclusion, all the aforementioned studies demonstrated the high
sensitivity and low specificity of S-detect in the diagnosis of
malignant thyroid nodules. However, in our study, S-thyroid
showed high sensitivity and specificity for identifying thyroid
cancer with a combination of transverse and longitudinal planes,
90.48% and 86.15%, respectively. Interestingly, S-thyroid results
in either transverse or longitudinal planes alone have low
sensitivity and high specificity in the identification of thyroid
cancer. The reason for this result may be due to the different
algorithms of S-thyroid and S-detect, or it may be due to the fact
that the study sample of this study is different from the study
sample of the previous study, and further comparison of the two
CAD software with the same patient sample is needed.

There are several limitations to our study. First, we selected
patients who had undergone surgery, so the ratio of benign to
malignant thyroid nodules was not correct, and there were more
malignant nodules than benign ones, which may affect the

diagnostic performance of the CAD system. Second, non-mass
lesions were not included in the study population because the
CAD analysis was limited to non-mass lesions. Last but not the
least, the number of patient cases in this study was too small, and
further sample size studies are needed.

CONCLUSION

In our study, we explored the diagnostic capability of S-thyroid,
using CAD software for thyroid nodules based on two mutually
perpendicular planes and found that the best diagnostic capability
was achieved with a combination of CAD transverse and
longitudinal planes.
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Background: Sepsis is a clinical syndrome, due to a dysregulated inflammatory response
to infection. Accumulating evidence shows that human leukocyte antigen (HLA) genes play
a key role in the immune responses to sepsis. Nevertheless, the effects of HLA genes in
sepsis have still not been comprehensively understood.

Methods: A systematical search was performed in the Gene Expression Omnibus (GEO)
and ArrayExpress databases from inception to 10 September 2021. Random forest (RF)
and modified Lasso penalized regression were conducted to identify hub genes in multi-
transcriptome data, thus we constructed a prediction model, namely the HLA classifier.
ArrayExpress databases, as external validation, were utilized to evaluate its diagnostic,
prognostic, and predictive performance. Immune cell infiltration score was calculated via
CIBERSORTx tools and single-sample gene set enrichment analysis (ssGSEA). Gene set
variation analysis (GSVA) and ssGSEAwere conducted to determine the pathways that are
significantly enriched in different subgroups. Next, we systematically correlated the HLA
classifier with immunological characteristics from multiple perspectives, such as immune-
related cell infiltration, pivotal molecular pathways, and cytokine expression. Finally,
quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to validate
the expression level of HLA genes in clinical samples.
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Results: A total of nine datasets comprising 1,251 patients were included. Based on RF
and modified Lasso penalized regression in multi-transcriptome datasets, five HLA genes
(B2M, HLA-DQA1, HLA-DPA1, TAP1, and TAP2) were identified as hub genes, which
were used to construct an HLA classifier. In the discovery cohort, the HLA classifier
exhibited superior diagnostic value (AUC = 0.997) and performed better in predicting
mortality (AUC = 0.716) than clinical characteristics or endotypes. Encouragingly, similar
results were observed in the ArrayExpress databases. In the E-MTAB-7581 dataset, the
use of hydrocortisone in the HLA high-risk subgroup (OR: 2.84, 95% CI 1.07–7.57, p =
0.037) was associated with increased risk of mortality, but not in the HLA low-risk
subgroup. Additionally, immune infiltration analysis by CIBERSORTx and ssGSEA
revealed that B cells, activated dendritic cells, NK cells, T helper cells, and infiltrating
lymphocytes (ILs) were significantly richer in HLA low-risk phenotypes, while Tregs and
myeloid-derived suppressor cells (MDSCs) were more abundant in HLA high-risk
phenotypes. The HLA classifier was significantly negatively correlated with B cells,
activated dendritic cells, NK cells, T helper cells, and ILs, yet was significantly
positively correlated with Tregs and MDSCs. Subsequently, molecular pathways
analysis uncovered that cytokine-cytokine receptor (CCR) interaction, human leukocyte
antigen (HLA), and antigen-presenting cell (APC) co-stimulation were significantly enriched
in HLA low-risk endotypes, which was significantly negatively correlated with the HLA
classifier in multi-transcriptome data. Finally, the expression levels of several cytokines (IL-
10, IFNG, TNF) were significantly different between the HLA subgroups, and the ratio of IL-
10/TNF was significantly positively correlated with HLA score in multi-transcriptome data.
Results of qRT-PCR validated the higher expression level of B2M as well as lower
expression level of HLA-DQA1, HLA-DPA1, TAP1, and TAP2 in sepsis samples
compared to control sample.

Conclusion: Based on five HLA genes, a diagnostic and prognostic model, namely the
HLA classifier, was established, which is closely correlated with responses to
hydrocortisone and immunosuppression status and might facilitate personalized
counseling for specific therapy.

Keywords: sepsis, HLA genes, immune infiltration, immunosuppression, model

KEY MESSAGES

1) To the best of our knowledge, this is the first comprehensive
study to explore the HLA family based on multiple
transcriptome expression profiles in all-cause sepsis, leading
to the discovery of novel biomarkers to develop a diagnostic
and prognostic model, thus elucidating the model and
immune system (immune cells infiltration, immune-related
pathways, and cytokines) to find its additional clinical
implications.

2) Based on random forest and modified Lasso penalized
regression, a diagnostic and prognostic model (HLA
classifier) was constructed, which could be a robust tool to
diagnose sepsis earlier and to identify patients at risk of a poor
or even fatal outcome. Additionally, the HLA classifier is
closely correlated with responses to hydrocortisone and may
be useful for clinicians to tailor treatment decisions.
According to immune cell infiltration, immune-related

pathways, and cytokines level, the HLA classifier could
efficiently reflect immunological status, which may help
guide immune-modulating agents to achieve immune
homeostasis.

3) Results of qRT-PCR validated a higher expression level of
B2M as well as a lower expression level of HLA-DQA1, HLA-
DPA1, TAP1, and TAP2 in sepsis samples compared to
control samples, which were in accordance with the results
of bioinformatics analyses derived from the GEO datasets.

INTRODUCTION

Sepsis, a life-threatening syndrome characterized by organ failure
after infection, is caused by a dysregulated host response to
infection (Singer et al., 2016). Clinical epidemiological analyses
show that the estimated national cases and in-hospital mortality
cases of sepsis were approximately 48.9 million and 11.0 million,
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respectively, representing one-fifth of all causes of death, and
making it one of the major socioeconomic burdens all over the
world (Rudd et al., 2020). In the past decade, according to the
recommendations of the Surviving Sepsis Campaign (SSC) for the
management of sepsis patients, the mortality rate decreased from
about 37%–25%, whereas this figure is still too high to be
acceptable (Fleischmann et al., 2016). To fight the global
burden of sepsis, given the lack of obvious and nonspecific
clinical signs in early-stage disease, early diagnosis and
appropriate treatment is critical to improve patients’ outcomes,
on account of the fact that each hour of delay in initiating
treatment is associated with increased mortality rates (Ferrer
et al., 2014). Importantly, classification and identification of a
patient at high risk may aid clinicians to screen and identify
individuals who are most likely to benefit from additional
monitoring and treatment, or to detect an immunosuppressed
state which could benefit from targeted immunostimulating
therapies, and eventually improve patient prognosis.

As sepsis is a highly intricate condition and its clinical
evaluation is often challenging, the additional usage of
biomarkers for rapid diagnosis that help pinpoint high-risk
patients is an attractive solution. Currently, several
biomarkers, such as C-reactive protein (CRP), which is
characterized as a inflammatory marker, and procalcitonin
(PCT), which serves as a marker of bacteremia, have been
widely utilized as acute phase reactants in critically ill patients,
yet their diagnostic and prognostic performance for sepsis are
suboptimal (Henriquez-Camacho and Losa, 2014). Recently,
the quick sequential organ failure (qSOFA) score was
introduced as a bedside standard based on three clinical
elements, which was generated through a data-driven
approach. However, it has been controversial since it was
proposed, in terms of the diagnosis, it has high sensitivity
and low specificity, yet with regard to the prognosis, it has low
sensitivity and high specificity, which makes its
implementation problematic (Simpson, 2017). To date, none
of the signatures of the immune response or circulating blood
biomarkers that have been investigated detect sepsis quickly
enough or recognize high-risk patients with an acceptable
certainty, which was ascribed to the heterogeneity and
complex pathophysiology of sepsis. To a certain extent, the
heterogeneity can be related to the differential expression of
thousands of genes in response to infectious stimuli (Zhai
et al., 2020). Hence, transcriptomics, as promising new
biomarkers, can provide important predictive and
prognostic information.

Pathophysiologically, human leukocyte antigen (HLA),
cross-link innate and adaptive, plays an important role in
recognition, processing, and presentation of protein
antigens (such as organisms) to cognate T cells, NK cells,
etc., therefore, initiating an immune response, which is
involved in the pathogenesis of sepsis (Koşaloğlu-Yalçın
et al., 2018). HLA-DR, which belongs to HLA class II and is
located on chromosome 6, plays a crucial role in modulating
immune responses. Diminished monocyte HLA-DR (mHLA-
DR) expression on the cell surface was associated with
increased risk of death of septic patients or adverse

outcomes and increased susceptibility to nosocomial/
secondary infections (Hotchkiss et al., 2016). It is
noteworthy that mHLA-DR is considered an effective
indicator of the general immunoparalysis state of patients.
However, on account of inferior specificity and sensitivity, the
capacity of HLA-DR expression monitoring to predict
mortality is not completely recognized (Monneret et al.,
2006). Currently, no single biomarker can be useful for
diagnosing sepsis, prognosis, and disease monitoring due to
patient heterogeneity. A panel of markers (“sepsis signature”)
seems to be able to offer better predictive and prognostic
purposes. The availability of genome-sequencing data
opened up the possibility of comprehensively investigating
all HLA gene alterations of sepsis, resulting in the discovery of
new biomarkers for early identification, disease surveillance,
and to guide specific adjuvant therapy.

A comprehensive characterization of the HLA family in the
adult host response to all-cause sepsis has not previously been
done. In our current study, based on random forest (RF) and
modified Lasso penalized regression, we identified hub HLA
genes, and constructed a prediction model, namely the HLA
classifier. Subsequently, the predictive and prognostic values of
the model were tested in independent validation cohorts from
ArrayExpress databases. Finally, we systematically correlated
the HLA classifier with immunological characteristics from
multiple perspectives, such as immune-related cell infiltration,
pivotal molecular pathways, and cytokine expression.

MATERIALS AND METHODS

Sample Selection, Data Acquisition, and
Processing
A comprehensive search was performed in Gene Expression
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo) and
ArrayExpress (http://www.ncbi.nlm.nih.gov/geo) databases
from 9 July 2005 to 10 September 2021 to identify relevant
transcriptomic profiling datasets. The inclusion criteria were
the following: expression profiling by array or high-
throughput sequencing: sepsis; organism: homo sapiens;
samples size more than 50; adult patients (more than
18 years old). Ultimately, six GEO datasets, as discovery
cohorts, and three ArrayExpress databases, as external
validation cohorts, fulfilled our eligibility criteria and were
included for both qualitative and quantitative analysis. The
basic information of these microarray datasets is listed in
Table 1. Additionally, a panel of 28 HLA genes was
collected from published studies (Schaafsma et al., 2021)
(Supplementary Table S1). All data were normalized with
the edgeR package or Limma package in the R computing
environment.

Clinical Specimens
Peripheral bloodmononuclear cells (PBMCs) were collected from
50 clinical samples, including 25 sepsis samples and 25 healthy
controls. The study was reviewed and approved by the
institutional review board (Ethics Committee) of the Shunde
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Hospital, Southern Medical University (the First People’s
Hospital of Shunde).

Identification of Hub HLA Genes and
Construction of an HLA Classifier
To select out convincing hub HLA genes, machine learning
approaches, including modified Lasso penalized regression and
RF (random forest), were adopted. A Lasso regression was
performed with 10-fold cross-validation to identify candidate
HLA genes and was run for 1,000 cycles to select feature
variables based on minimum criteria or 1—s.e. criteria. RF
(random forest), a tree-based ensemble comprised of tree-
structured classifiers, was established to select feature variables via
the package “randomForest” with minimum error regression trees.
The importance of variables was ranked using IncNodePurity. The
real hubHLA genes were obtained from the intersection of the result
of Lasso and RF (GSE65682, GSE63042, and GSE95233 datasets),
which was used to develop a prediction model, namely the HLA
classifier. The HLA score was generated through a linear
combination of coefficients from logistic regression and the
relative expression of each HLA. According to this formula, each
patient’s HLA score was calculated, and patients were classified into
low-risk or high-risk groups on the basis of the optimal cut-off value
with the maximal sensitivity and specificity in a receiver operating
characteristic (ROC) curve.

Diagnostic and Prognostic Value of the HLA
Classifier
ROC analysis using the pROC package was carried out to evaluate
diagnostic performance with sepsis as the endpoint. Regarding a
prognostic aspect, first univariate andmultivariate logistic regression
analyses were utilized to adjudicate whether the predictive ability of
the HLA classifier remained independent of other clinical features
[including age, sex, diabetesmellitus (DM), sepsis response signature

(SRS), the Molecular Diagnosis and Risk Stratification of Sepsis
(MARS), and Acute Physiology and Chronic Health Evaluation
(APACHE II)] in multiple datasets. Then the prognostic value of the
HLA classifier was compared against age, SRS, MARS, and
APACHE II in the discovery and external validation cohorts.

Clinical Usefulness of the HLA Classifier
We explored whether there was an interaction between the HLA
classifier and the treatment (vasopressin versus norepinephrine;
hydrocortisone versus placebo) in logistic regression models, by
using the binary mortality outcome as the response variable in the
E-MTAB-7581 dataset. Additionally, to evaluate the clinical value
of the HLA classifier, decision curve analysis (DCA), calculating
the net benefit for a range of threshold probabilities which places
benefits and harms on the same scale (Vickers and Elkin, 2006),
was utilized to compare age, SRS, MARS, and APACHE II in the
discovery and external validation cohorts.

Evaluation of Immune Cell Infiltration by
CIBERSORTx and ssGSEA
To evaluate relative abundance of immune infiltrates,
CIBERSORTx (https://cibersort.stanford.edu/) (Newman et al.,
2015), which transforms the normalized gene expression matrix
into the composition of infiltrating immune cells, and is a kind of
deconvolution algorithm that utilizes 1,000 iterations, was used.
We filtered out samples with a CIBERSORTx output of a p-value
more than 0.05 for accurate forecast of immune cell composition.
The ggplot2 package was used to generate bar graphs visualizing
the content of 22 types of infiltrating immune cells in each sample
and violin plots were used to display variance analysis of immune
cells between HLA subgroups.

The GSVA package in R was used to conduct ssGSEA on a
metagene set of 26 immune cell subtypes (Supplementary Table
S2) that are representative of specific immune cells (Bindea et al.,
2013). To determine differential immune cell subtypes between
the two subgroups (p-value < 0.05), the two-tailed Wilcoxon test

TABLE 1 | Dataset included in the study.

Accession Cohort description Timing of
gene expression

profiling

Country Normal
sample

Mortality/
sepsis
sample

Sample
type

GSE65682 Sepsis due to CAP and HAP
+ AS

On ICU admission Netherlands and
United Kingdom

42 48/231 Whole blood

GSE54514 Sepsis Within 24 h of ICU admission Australia 18 9/35 Whole blood
GSE57065 Septic shock On ICU admission France 25 -/28 Whole blood
GSE63042 Sepsis Day of enrollment upon presentation

to the ED
United States — 28/106 Whole blood

GSE69528 Sepsis due to CAP On ICU admission United States 55 -/83 Whole blood
GSE95233 Septic shock Day 1 of ICU admission France 22 34/51 Whole blood
E-MTAB-
4421

Septic shock On ICU admission United Kingdom — 56/265 Whole blood

E-MTAB-
4451

Sepsis due to CAP On ICU admission United Kingdom — 57/114 Whole blood

E-MTAB-
7581

Septic shock At enrollment United Kingdom — 48/176 Whole blood

Abbreviations: CAP, community acquired pneumonia; HAP, hospital acquired pneumonia; AS, abdominal sepsis; ICU, intensive care medicine; ED, emergency room.
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was utilized to analyze the immunoscores, and violin plots were
used to visualize the results. Additionally, we explored the
correlation between the HLA classifier and immune cells
by Spearman correlation analyses in multiple
transcriptome datasets. A p < 0.05 would be considered
statistically significant.

Immune and Molecular Function Between
the HLA Subgroups by GSVA and ssGSEA
GSVA, which converts genes from a sample matrix into
predefined gene sets without a priori knowledge of experiment
design, is a non-parametric unsupervised approach. The KEGG
gene sets (c2.cp.kegg.v7.4.symbols.gmt), which were downloaded
from the Molecular Signatures Database (MSigDB) (http://
software.broadinstitute.org/gsea/index.jsp) (Hänzelmann et al.,
2013), were used to estimate variation of pathway activity in
each sample. The significantly enriched pathways in KEGG gene
sets were set at p-value < 0.05 and enrichment score change >1.0.
Additionally, ssGSEA, which generates an enrichment score to
signify the levels of absolute enrichment of a metagene set within
certain gene signatures in each sample, was applied to evaluate the
enrichment degree of immune-related pathways (Bindea et al.,
2013) in current immunology research. Supplementary Table S3
lists the metagene set. Additionally, we explored the relationship
between the HLA classifier and pivotal molecular pathways by
Spearman correlation analyses in multiple transcriptome
datasets. A p<0.05 would be considered statistically significant.

Analyses of the Cytokines
A panel of 27 clinically detectable inflammatory cytokines was
collected from published studies (Dong et al., 2019). To further
define cytokine expression between the HLA subgroups, two-
tailed variance analysis was conducted. Additionally, we explored
the relationship between the HLA classifier and cytokine
expression level by Spearman correlation analyses in multiple
transcriptome datasets. A p<0.05 would be considered
statistically significant.

Quantitative Real-Time PCR (qRT-PCR)
Following the manufacturer’s protocol, Trizol (Invitrogen) was
used to extract total RNA from peripheral blood mononuclear
cells (PBMCs). Reverse transcription of RNA was completed
using a RevertAid RT Reverse Transcription Kit (Thermo
Scientific). Quantitative PCR was performed using a
PowerUp™ SYBR™ Green Master Mix (Thermo Scientific).
The results were standardized with GAPDH. Quantitative
reverse transcription PCR was conducted using the ABI
7500 real-time PCR system (Applied Biosystems, Foster City,
CA, United States). Fold change was determined as 2−△△Ct in
gene expression. Gene-specific PCR primers are listed in
Supplementary Table S4.

Statistical Analysis
R software (R version 3.6.1) was utilized to conduct the statistical
analysis. Statistical significance was set at a two-sided p<0.05
except for where a certain p-value has been given.

RESULTS

Identification of Hub HLA Genes and
Construction of an HLA Classifier
The flow chart of the dataset selection procedure is shown in
Supplementary Figure S1.

Modified Lasso penalized regression was established to shrink
and select out hub HLA genes in the discovery cohort, as shown
in Figures 1A,B (GSE65682 set), in Supplementary Figures
S2A,B (GSE69528 set), and in Supplementary Figures S3A,B
(GSE95233 set). Likewise, an RF was also built with minimum
error regression trees for hub HLA genes in the discovery cohort,
as displayed in Figures 1C,D (GSE65682 set), in Supplementary
Figures S2C,D (GSE69528 set), and in Supplementary Figures
S3C,D (GSE95233 set). According to the result of Lasso
regression and RF in the discovery cohort, we took the
intersection of 6 results to acquire 5 hub genes (B2M, HLA-
DQA1, HLA-DPA1, TAP1, and TAP2) shared by ≥ 4 results
(Figure 1E). Additionally, Supplementary Figure S4 displays the
five hub HLA genes on the location of chromosomes. Finally, the
five hub HLA genes were used to develop a prediction model,
namely the HLA classifier, and the HLA score was computed.

Diagnostic and Prognostic Value of the HLA
Classifier
As displayed in Figure 2, the diagnostic ability of the HLA
classifier to distinguish sepsis from the control samples
showed superior diagnostic efficiency, with an AUC of 0.997
in the GSE65682 datasets, an AUC of 0.966 in the GSE57065
datasets, an AUC of 0.956 in the GSE69528 datasets, and an AUC
of 1 in the GSE95233 datasets. However, the diagnostic ability of
the housekeeping gene panel displayed inferior diagnostic
efficiency for sepsis, with an AUC less than 0.6. As for
prognostic value, univariate and multivariate Cox regression
analysis confirmed that the HLA score was an independent
predictor of unfavorable survival outcome, regardless of other
clinical characteristics, in multiple transcriptome datasets
(Table 2). In addition, as shown in Figure 3, ROC analysis
was performed to investigate the prognostic value of the HLA
classifier in the discovery cohorts, with an AUC of 0.716 in the
GSE65682 datasets, an AUC of 0.807 in the GSE63042 datasets,
an AUC of 0.813 in the GSE95233 datasets, and an AUC of 1 in
the GSE54514 datasets. Similarly, the HLA classifier showed a
favorable prognostic ability in the external validation cohort, with
an AUC of 0.752 in the E-MTAB-4421 datasets, an AUC of 0.691
in the E-MTAB-4451 datasets, and an AUC of 0.737 in the
E-MTAB-7851 datasets (Supplementary Figure S5). Based on
the optimal cut-off value from the ROC curve, patients were
categorized into the low-risk group (n = 133) or high-risk group
(n = 98) in the GSE65682 sets, low-risk group (n = 21) or high-
risk group (n = 14) in the GSE54514 sets, low-risk group (n = 58)
or high-risk group (n = 48) in the GSE63042 sets, low-risk group
(n = 25) or high-risk group (n = 26) in the GSE95233 sets, low-
risk group (n = 140) or high-risk group (n = 125) in the E-MTAB-
4421 sets, low-risk group (n = 29) or high-risk group (n = 77) in
the E-MTAB-4451 sets, and low-risk group (n = 69) or high-risk
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group (n = 107) in the E-MTAB-4421 sets. Patients in the high-
risk group showed a significantly higher mortality rate than in the
low-risk group (p <0.001 for Chi-square test) in multiple
transcriptome datasets (Figure 3 and Supplementary Figure
S5). Importantly, the HLA classifier (AUC: 0.716) performed
better in predicting mortality than age (AUC: 0.569) and MARS
endotypes (AUC: 0.477) in the GSE65682 datasets, the HLA
classifier (AUC: 0.813) performed better in predicting mortality

than age (AUC: 0.571) in the GSE95233 datasets, the HLA
classifier (AUC: 0.752) performed better in predicting
mortality than SRS endotypes (AUC: 0.570) and age (AUC:
0.675) in the E-MTAB-4421 datasets, the HLA classifier
(AUC: 0.691) performed better in predicting mortality than
age (AUC: 0.504) and SRS endotypes (AUC: 0.390) in the
E-MTAB-4451 datasets, and the HLA classifier (AUC: 0.737)
performed better in predicting mortality than age (AUC: 0.575),

FIGURE 1 |Hub HLA genes selected by Lasso regression analysis and random forest (RF) in GSE65682 datasets. (A) The two dotted vertical lines are drawn at the
optimal values by minimum criteria (left) and 1—s.e. criteria (right). (B) Lasso coefficient profiles of the four hub HLA genes. A vertical line is drawn at the optimal value by
minimum criteria and results in four non-zero coefficients. (C) Distribution diagram of regression tree and error. (D) Important variables ranked by IncNodePurity. (E)
UpSet plot presents the intersection of six results to identify hub HLA genes.
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SRS endotypes (AUC: 0.534), and APACHE II score (AUC:
0.681) in the E-MTAB-7851 datasets (Figure 4).

Clinical Usefulness of the HLA Classifier
The E-MTAB-7581 dataset was collected from the VANISH
randomized trial with patients randomized to receive either
vasopressin or norepinephrine followed by placebo or
hydrocortisone. In the HLA high-risk subgroup, the use of
hydrocortisone (OR: 2.84, 95% CI 1.07–7.57, p = 0.037) was
associated with increased risk of mortality. In the HLA low-risk
subgroup, the use of hydrocortisone (OR: 1.63, 95% CI 0.21–12.71,
p = 0.644) did not render significant alteration (Table 3). Notably,
the DCA chart showed that the HLA classifier outperformed age,
SRS, MARS, and APACHE II according to the net benefit of risk
stratification using the model (y-axis) and the continuity of
potential death threshold (x-axis) in the discovery and external
validation cohorts (Figure 5 and Supplementary Figure S6).

Immune Cell Infiltration Analysis
We analyzed the difference in composition of immune cells between
the HLA subgroups in multiple transcriptome sets. The

CIBERSORTx results demonstrated that compared with the HLA
high-risk subgroup, activated memory CD4 T cells (p = 0.036),
activated NK cells (p = 0.035), neutrophils (p = 0.001), and activated
mast cells (p = 0.003) were more abundant in the HLA low-risk
subgroup, while naive CD4 T cells (p = 0.003), regulatory T cells
(Tregs) (p = 0.004), M0 macrophages (p = 0.001), and resting mast
cells (p = 0.008) were more abundant in the high-risk subgroup than
in the low-risk subgroup (Figure 6A) in GSE65682 datasets. In
E-MTAB-4421 datasets, CD8 T cells (p < 0.001), resting memory
CD4 T cells (p < 0.001), resting NK cells (p < 0.001), monocytes (p <
0.001), and activated dendritic cells (p = 0.001) were more abundant
in the low-risk subgroup, but memory B cells (p < 0.001), naive CD4
T cells (p < 0.001), Tregs (p < 0.001), and M0 macrophages (p =
0.001) were more abundant in the high-risk subgroup than in the
low-risk subgroup (Figure 6B). In E-MTAB-4451 datasets, the
CIBERSORTx results uncovered that compared to the high-risk
group, resting NK cells (p = 0.002) were more abundant in the
low-risk subgroup, yet Tregs (p = 0.005) were more abundant in the
high-risk subgroup than in the low-risk subgroup (Figure 6C).
Supplementary Figure S7, Supplementary Figure S8, and
Supplementary Figure S9 display the distribution of 22 types of

FIGURE 2 | The diagnostic efficacy of the HLA classifier in the discovery cohorts. (A) GSE65682 datasets. (B) GSE57065 datasets. (C) GSE69528 datasets. (D)
GSE95233 datasets.
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immune cells in each sample for GSE65682 datasets, E-MTAB-4421
datasets, and E-MTAB-4451 datasets, respectively. In total, NK cells
were significantly enriched in the HLA low-risk
subgroup, whereas Tregs were more abundant in the HLA high-
risk subgroup.

In addition, we adopted ssGSEA, another cell-type
quantification method, to quantify the enrichment score of
immune cell types. Compared to the CIBERSORTx results, the
ssGSEA results revealed that significant infiltration of
immune cells was concentrated in the HLA low-risk
subgroup. In GSE65682 datasets, compared with the high-
risk subgroup, activated B cells (p < 0.001), activated CD8
T cells (p < 0.001), NK cells (p < 0.001), activated dendritic
cells (p = 0.024), T helper cells (p < 0.001), and infiltrating
lymphocytes (IL) (p < 0.001) were more abundant in the low-

risk subgroup, whereas Tregs (p < 0.001) and myeloid-derived
suppressor cells (MDSCs) (p = 0.002) were more enriched in
the high-risk subgroup than in the low-risk subgroup
(Figure 7A). Similar results were observed in E-MTAB-
4421 (Figure 7B) and E-MTAB-4451 datasets (Figure 7C),
which indicated that patients in the HLA high-risk subgroup
were characterized by immunosuppression.

Correlation Between HLA Classifier/Genes
and Immune Cells
We further explored whether our HLA classifier/genes were
related to immune cell infiltration in sepsis via Spearman
correlation analyses in multiple gene expression profiles. In
the GSE65682 dataset, the HLA score was significantly

TABLE 2 | Univariable and multivariable logistic regression analysis for prediction of survival in GEO and ArrayExpress databases.

Dataset Factors Subgroup Univariable analysis Multivariable analysis

OR (95%CI) p OR (95%CI) p

GSE65682 — — — — — —

Age — 1.02 (0.99–1.04) 0.114 NA NA
Sex Female 1 — — —

Male 1.42 (0.75–2.67) 0.284 NA NA
MARS 1–2 1 — — —

— 3–4 0.93 (0.67–1.31) 0.688 NA NA
DM No 1 — — —

— Yes 1.63 (0.71–3.74) 0.248 NA NA
HLA score — 5.13 (2.03–15.39) <0.001* 5.13 (2.03–15.39) <0.001*

GSE63042 — — — — — —

HLA score — 1.35 (4.22–43.18) <0.001* 1.35 (4.22–43.18) <0.001*
GSE54514 — — — — — —

HLA score — 1.19 (1.06–1.45) 0.006* 1.19 (1.06–1.45) 0.006*
GSE95233 — — — — — —

Age — 0.99 (0.95–1.03) 0.657 NA NA
Sex Female 1 — — —

— Male 0.65 (0.35–1.18) 0.156 NA NA
HLA score — 15.68 (3.04–80.93) <0.001* 15.68 (3.04–80.93) <0.001*

E-MTAB-4421 — — — — — —

Age — 1.05 (1.02–1.07) <0.001* 1.05 (1.03–1.08) <0.001*
Sex Female 1 — — —

— Male 1.16 (0.64–2.10) 0.620 NA NA
SRS 1 — — — —

— 2 1.77 (0.98–3.20) 0.060 NA NA
HLA score — 2.68 (1.44–4.97) 0.002* 2.93 (1.53–5.58) 0.001*

E-MTAB-4451 — — — — — —

Age — 1.00 (0.98–1.03) 0.934 NA NA
Sex Female 1 — — —

— Male 0.95 (0.40–2.28) 0.913 NA NA
SRS 1 — — — —

— 2 2.70 (1.18–6.19) 0.019 1.35 (0.50–3.70) 0.555
HLA score — 5.69 (2.08–15.58) 0.001* 5.69 (2.08–15.58) 0.001*

E-MTAB-7581 — — — — — —

Age — 1.02 (0.99–1.04) 0.091 NA NA
Sex Female 1 — — —

— Male 1.39 (0.71–2.72) 0.343 NA NA
SRS 1 — — — —

— 2 1.31 (0.68–2.55) 0.423 NA NA
APACHE II — 1.08 (1.04–1.13) 0.001* 1.24 (1.06–1.19) 0.001*
HLA score — 11.35 (3.85–33.44) <0.001* 17.74 (5.37–58.66) <0.001*

Abbreviations: OR, odds ratio; CI, confidence intervals; MARS, the Molecular Diagnosis and Risk Stratification of Sepsis; DM, diabetes mellitus, APACHE II, acute physiology and chronic
health evaluation; SRS, sepsis response signature. NOTE: NA, not available. These variables were eliminated in the multivariate logistic regressionmodel, so the HR, and p values were not
available.*p < 0.05.
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negatively correlated with B cells (p < 0.001), NK cells (p <
0.001), activated dendritic cells (p<0.01), ILs (p < 0.001), and T
helper cells (p < 0.001), whereas the HLA score was
significantly positively correlated with Tregs (p < 0.001) and

MDSCs (p < 0.05) (Figure 8A and Supplementary Table S5).
Likewise, in the E-MTAB-4421 dataset, the HLA score was
significantly negatively correlated with B cells (p < 0.001), NK
cells (p < 0.001), activated dendritic cells (p <0.001), ILs (p <

FIGURE 3 | The prognostic capacity of the HLA classifier and the distribution of mortality rate in different HLA subgroups in the discovery cohorts. (A,B)GSE65682
datasets. (C,D) GSE63042 datasets. (E,F) GSE95233 datasets. (G,H) GSE54514 datasets.
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0.001), and T helper cells (p < 0.001), whereas the HLA score
was significantly positively correlated with Tregs (p < 0.001)
and MDSCs (p < 0.001) (Figure 8B and Supplementary Table
S6). Similarly, in the E-MTAB-4451 dataset, the HLA score
was significantly negatively correlated with B cells (p < 0.001),

NK cells (p < 0.01), activated dendritic cells (p < 0.001), ILs
(p < 0.001), and T helper cells (p < 0.001), whereas the HLA
score was significantly positively correlated with Tregs (p <
0.01) and MDSCs (p < 0.001) (Figure 8C and Supplementary
Table S7). In addition, Figure 8 shows that B2M, HLA-DQA1,

FIGURE 4 | The evaluation of the performance of the HLA classifier compared against age, SRS, MARS, and APACHE II in the discovery and external validation
cohorts. (A) GSE65682 datasets. (B) GSE95233 datasets. (C) E-MTAB-4421 datasets. (D) E-MTAB-4451 datasets. (E) E-MTAB-7581 datasets.
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HLA-DPA1, TAP1, and TAP2 were significantly associated
with the infiltration of immune cells, HLA-DPA1 and HLA-
DQA1 in particular. Nevertheless, the housekeeping gene
panel is not correlated with immune cell infiltration
(Figure 8).

Immune and Molecular Function Between
the HLA Subgroups by GSVA and ssGSEA
To screen biological differences between the HLA subgroups,
GSVA was conducted to determine the gene sets enriched in
different HLA subgroups. In GSE65682 sets (Supplementary
Figure S10A), the results showed that the NOD-like receptor
signaling pathway, toll-like receptor signaling pathway, and
complement and coagulation cascades were enriched in the
HLA high-risk group, yet alanine aspartate and glutamate
metabolism and glyoxylate and dicarboxylate metabolism
were mainly involved in the HLA low-risk group. In
GSE95233 sets (Supplementary Figure S10B), primary
immunodeficiency, the PPAR signaling pathway, and
complement and coagulation cascades were mainly enriched
in the HLA high-risk group, but antigen processing and
presentation and aminoacyl tRNA biosynthesis were involved
in the HLA low-risk subgroup. In E-MTAB-4421 sets
(Supplementary Figure S10C), spliceosome, valine leucine,
and isoleucine degradation and RNA degradation were
enriched in the HLA high-risk subgroup, while starch and
sucrose metabolism, leukocyte transendothelial migration,
and neuroactive ligand receptor interaction were mainly
involved in the HLA low-risk subgroup. To sum up,
complement and coagulation cascades may play an important
role in the initiation and progression of sepsis.

In addition, ssGSEAwas utilized to investigate the given immune-
related pathway in sepsis. As a result, in GSE65682 datasets, all of the
significantly different immune-related gene sets were enriched in the
HLA low-risk subgroup, such as cytokine-cytokine receptor (CCR)

interaction, cytolytic activity, human leukocyte antigen (HLA),
inflammation−promoting, MHC class I, antigen processing
machinery, antigen-presenting cell (APC) costimulation,
parainflammation, the NF−kappa B signaling pathway, and the
JAK−STAT signaling pathway (Figure 9A). Analogously, in
GSE63042 datasets, the gene sets of the HLA low-risk group were
enriched in CCR, HLA, inflammation−promoting, antigen
processing machinery, APC coinhibition, APC costimulation,
parainflammation, IL6 JAK−STAT3 signaling, the NF−kappa B
signaling pathway, and the JAK−STAT signaling pathway
(Figure 9B). Homoplastically, in E-MTAB-4421 datasets, the
ssGSEA results showed that CCR, cytolytic activity, HLA,
inflammation-promoting, and APC costimulation were involved
in the HLA low-risk group (Figure 9C). Similarly, in E-MTAB-
4451 datasets, the ssGSEA results demonstrated that CCR, cytolytic
activity, HLA, inflammation-promoting, parainflammation, and
APC costimulation were mainly enriched in the HLA low-risk
group (Figure 9D). In short, the HLA high-risk group, compared
with the HLA low-risk group, was characterized by
immunosuppression in which many pivotal immune pathways
were suppressed such as CCR, HLA, inflammation-promoting,
and APC costimulation.

Correlation Between HLA Classifier/Genes
and Pivotal Molecular Pathways
We further tested whether our HLA classifier/genes were related to
molecular pathways in sepsis via Spearman correlation analyses in
multiple transcriptome sets. Encouragingly, the HLA score was
significantly negatively correlated with HLA (p <0.001), APC
costimulation (p < 0.001), parainflammation (p < 0.001),
antigen processing machinery (p < 0.001), and CCR (p < 0.001)
in GSE65682 sets; HLA (p < 0.001), APC costimulation (p < 0.001),
inflammation-promoting (p < 0.001), antigen processing
machinery (p < 0.001), and CCR (p < 0.001) in GSE63042 sets;
HLA (p < 0.001), APC costimulation (p < 0.001), inflammation-
promoting (p < 0.001), MHC class I (p < 0.001), and CCR (p <

TABLE 3 | Comparisons of the predictive value of the HLA classifier versus disease severity and SRS.

Models Univariable analysis

OR (95% CI) p

Use of hydrocortisone in the HLA low-risk subgroup 1.63 (0.21–12.71) 0.644
Use of hydrocortisone in the HLA high-risk subgroup 2.84 (1.07–7.57) 0.037*
Use of hydrocortisone in SRS 2 3.76 (1.41–10.04) 0.008*
Use of hydrocortisone in SRS 1 1.25 (0.47–3.36) 0.658
Use of hydrocortisone by APACHE II 0.94 (0.86–1.03) 0.210
Use of vasopressin in SRS 2 0.69 (0.18–2.62) 0.583
Use of vasopressin in SRS 1 1.50 (0.40–3.89) 0.403
Use of vasopressin in the HLA low-risk subgroup 2.91 (0.29–29.45) 0.366
Use of vasopressin in the HLA high-risk subgroup 1.26 (0.58–2.76) 0.559
Use of vasopressin by APACHE II 0.96 (0.87–1.06) 0.427

The logistic regression models integrating interactions between treatment allocation and SRS, HLA, classifier, or APACHE II, were built in the E-MTAB-7581, dataset. A total of six logistic
regressionmodels were built by usingmortality as the response variable and respective predictors and interactions were: hydrocortisone & class, hydrocortisone and SRS, hydrocortisone
and APACHE II, vasopressin and class, vasopressin and SRS, and vasopressin and APACHE II. A significant (p <0.05) interaction indicated that the classification method was of predictive
value because it identified that a subgroup of patients responded differently to treatment. SRS, classification was used as previously reported. Abbreviations: OR, odds ratio; CI,
confidence intervals; MARS, the Molecular Diagnosis and Risk Stratification of Sepsis; DM, diabetes mellitus, APACHE II, acute physiology and chronic health evaluation; SRS, sepsis
response signature.
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0.001) in E-MTAB-4421 sets; and HLA (p < 0.001), APC
costimulation (p < 0.05), inflammation-promoting (p < 0.001),
antigen processing machinery (p < 0.01), and CCR (p < 0.05) in
E-MTAB-4451 sets (Figure 10). In addition, Figure 10 shows that
B2M, HLA-DQA1, HLA-DPA1, TAP1, and TAP2 were
significantly associated with the enrichment score of immune-
related pathways, TAP1 and TAP2 in particular. Nevertheless, the
housekeeping gene panel is not correlated with immune-related
pathways (Figure 10).

Analyses of the Cytokines
To analyze the clinically detectable inflammatory cytokines
involved in sepsis, we applied the Wilcoxon test to compare
the expression levels of cytokines in different HLA endotypes. As
a result, in GSE65682 sets, the expression levels of CCL5, IL1B,
and IL15 were significantly higher in the HLA low-risk group, but
the expression levels of IL10 were significantly downregulated in
the HLA low-risk group (Figure 11A). Analogously, in GSE63042
sets, the expression levels of IL1B, TNF and VEGFA were

FIGURE 5 | The evaluation of the clinical usefulness of the HLA classifier compared with age, SRS, MARS, and APACHE II in the discovery and external validation
cohorts. (A) GSE65682 datasets. (B) GSE95233 datasets. (C) E-MTAB-4421 datasets. (D) E-MTAB-4451 datasets. (E) E-MTAB-7581 datasets.
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significantly higher in the HLA low-risk group, but the expression
levels of IL10 were significantly lower in the HLA low-risk group
(Figure 11B). Similarly, in E-MTAB-4421 sets, the expression
levels of CCL5, CXCL10, IFNG, and PDGFRB were significantly

higher in the HLA low-risk group, and the expression levels of
TNF exhibited a trend toward a higher expression in the HLA
low-risk group, but the expression levels of CCL11, IL10, and
IL1RN were significantly lower in the HLA low-risk group

FIGURE 6 | Comparison of infiltrating immune cells between different HLA subgroups based on CIBERSORTx in multiple transcriptome datasets. (A) GSE65682
datasets. (B) E-MTAB-4421 datasets. (C) E-MTAB-4451 datasets. Green indicates HLA low-risk, while red indicates HLA high-risk.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 87065713

Chen et al. Construction of HLA Classifier in Sepsis

92

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


(Figure 11C). In summary, pro-inflammatory cytokines were
upregulated in the HLA low-risk subgroup and anti-
inflammatory cytokines were upregulated in the HLA high-
risk subgroup.

In addition, we further explored whether our HLA classifier
was associated with the ratio of IL10/TNF in sepsis. As a results,
the HLA score was significantly positively correlated with IL10/
TNF (R = 0.36, p < 0.001) in GSE65682 sets, positively correlated

FIGURE 7 | Comparison of infiltrating immune cells between different HLA subgroups based on ssGSEA in multiple transcriptome datasets. (A) GSE65682
datasets. (B) E-MTAB-4421 datasets. (C) E-MTAB-4451 datasets. Green indicates HLA low-risk, while red indicates HLA high-risk.
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(R = 0.13, p = 0.037) in GSE63042 sets, and positively correlated
(R = 0.3, p = 0.0018) in E-MTAB-4421 sets (Figures 12A–C).

qRT-PCR
To further validate the expression of the five HLA genes, we
performed qRT-PCR in 50 clinical specimens. Compared with

healthy controls, B2M was significantly upregulated in sepsis
samples (Figure 12D) yet the expression level of HLA-DQA1,
HLA-DPA1, TAP1, and TAP2 was significantly lower in sepsis
specimens. Collectively, the results of qRT-PCR were in
accordance with the results of bioinformatics analyses derived
from the GEO datasets.

FIGURE 8 | Correlation between HLA classifier/genes and immune cells in multiple transcriptome datasets. (A) GSE65682 datasets. (B) E-MTAB-4421 datasets.
(C) E-MTAB-4451 datasets.
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DISCUSSION

After analyzing multiple gene expression profiling, according to
modified Lasso penalized regression and RF, five HLA genes
(B2M, HLA-DQA1, HLA-DPA1, TAP1, and TAP2) were
identified as hub genes, which were used to construct a
prediction model, namely the HLA classifier. In the discovery
cohort, the HLA classifier exhibited superior diagnostic efficacy
(AUC = 0.997) and performed better in predicting mortality
(AUC = 0.716) than clinical characteristics or MARS/SRS
endotypes. Encouragingly, similar results were observed in the
ArrayExpress databases. In the E-MTAB-7581 dataset, the use of
hydrocortisone in the HLA high-risk subgroup (OR: 2.84, 95% CI
1.07–7.57, p = 0.037) was associated with increased risk of
mortality. Immune infiltration analysis by CIBERSORTx
showed that NK cells were significantly enriched in the HLA
low-risk subgroup, while Tregs were more abundant in the HLA
high-risk subgroup. Intriguingly, ssGSEA also revealed that
B cells, activated dendritic cells, NK cells, T helper cells, and
ILs were significantly enriched in the HLA low-risk subgroup,
while Tregs and MDSCs were more abundant in the HLA high-
risk subgroup. The HLA score was significantly negatively
correlated with the infiltration score of B cells, activated

dendritic cells, NK cells, T helper cells, and ILs, yet was
significantly positively correlated with the infiltration score of
Tregs and MDSCs. Additionally, molecular pathways determined
via the ssGSEA algorithm uncovered that CCR, HLA, and APC
costimulation was significantly enriched in the HLA low-risk
subgroup, enrichment scores of which were significantly
negatively correlated with HLA score. Finally, the expression
levels of several cytokines (IL-10, IFNG, TNF) were significantly
different between the HLA phenotypes, and the ratio of IL-10/
TNF was significantly positively correlated with HLA score.
Results of qRT-PCR validated the higher expression level of
B2M as well as lower expression level of HLA-DQA1, HLA-
DPA1, TAP1, and TAP2 in sepsis samples compared to control
samples.

To the best of our knowledge, this is the first comprehensive
study to explore HLA gene sets based on amultiple transcriptome
expression profiles in all-cause sepsis, leading to the discovery of
novel biomarkers to develop a diagnostic and prognostic model,
thus elucidating the model and immune system (immune cell
infiltration, immune-related pathways, and cytokines) to find its
additional clinical implications.

At present, no single biomarker can be efficient in diagnosing
sepsis, prognosis, and monitoring disease with especially high

FIGURE 9 | Comparison of immune-related pathways between different HLA subgroups in the discovery cohorts. (A) GSE65682 datasets. (B) GSE63042
datasets. (C) E-MTAB-4421 datasets. (D) E-MTAB-4451 datasets. Blue indicates HLA low-risk, while red indicates HLA high-risk.
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performance uniformly according to the variety of factors and
processes involved in sepsis (Jensen and Bouadma, 2016). This is
most likely due to heterogeneity in the adult host response to
infection and fails to capture important pathophysiological
alterations, thus cannot uncover underlying mechanisms. HLA
gene sets, as promising novel biomarkers, may offer important
predictive and prognostic information. Machine learning
methods, which can decrease diagnostic uncertainties and
analyze the heterogeneity in transcriptome data (Baniasadi
et al., 2021), including RF based on minimum error regression
trees and modified Lasso coupled with adequate validation
metrics, were applied to identify reliable feature variables.
Based on RF and Lasso, five HLA genes (B2M, HLA-DQA1,
HLA-DPA1, TAP1, and TAP2) were identified as hub genes,
which were combined to construct an HLA classifier. As to
diagnostic ability, the AUC of the HLA classifier was more
than 0.95 in multiple transcriptome sets, which demonstrated
that the HLA classifier can efficiently discriminate sepsis from the
control samples. As for prognostic capacity, the HLA classifier
was an independent predictor of unfavorable survival outcome,

regardless of other clinical characteristics, in multiple
transcriptome datasets. Importantly, the performance of the
HLA classifier in predicting mortality outcomes was superior
to clinical features or MARS/SRS endotypes. In total, the model,
HLA classifier, could be a robust tool to diagnose sepsis earlier
and to identify patients at risk of a poor or even fatal outcome.

Up to now, prognostic biomarkers/models have mainly been
utilized for overall prognosis, which is not enough. Added
information should include how to stratify patients to guide
treatment. Interestingly, our results found that though the
HLA classifier could not modify the effect of norepinephrine
versus vasopressin, the HLA high-risk subgroup exhibited a
significantly higher mortality outcome when assigned to the
hydrocortisone group, consistent with the GAinS study where
the use of hydrocortisone in SRS1, which represents an
immunosuppressed phenotype including features of
downregulation of HLA class II, endotoxin tolerance, and
T-cell exhaustion, was associated with increased risk of
mortality (Davenport et al., 2016). The probable explanation is
that the HLA low-risk subgroup was relatively

FIGURE 10 |Correlation between HLA classifier/genes and immune-related pathways in multiple transcriptome datasets. (A)GSE65682 datasets. (B)GSE63042
datasets. (C) E-MTAB-4421 datasets. (D) E-MTAB-4451 datasets.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 87065717

Chen et al. Construction of HLA Classifier in Sepsis

96

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


immunocompetent with a lower mortality rate, and the HLA
high-risk subgroup was relatively immunocompromised with a
higher mortality rate. The use of hydrocortisone suppresses the
immune system (Steinhagen et al., 2020), which aggravates the
immunosuppression status of the HLA high-risk subgroup,
thereby increasing the mortality rate. The HLA high-risk

subgroup may not be suitable for the application of
hydrocortisone. Additionally, DCA results indicated that
survival-associated treatment decisions for sepsis patients
based on the HLA classifier had a net benefit compared to
treatment decisions based on other clinical features or MARS/
SRS endotypes, or treatment for all patients or none. To sum up,

FIGURE 11 | Comparison of the expression level of cytokines between different HLA subgroups in multiple transcriptome datasets. (A) GSE65682 datasets. (B)
GSE63042 datasets. (C) E-MTAB-4421 datasets. Pink indicates HLA low-risk, while red indicates HLA high-risk.
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the current HLA classifier could be useful for clinicians to tailor
survival-related treatment decisions.

Excessive immune activation and concurrent
immunosuppression are central to the pathophysiology of sepsis.
Immunosuppression results in a profound dysfunction in innate and
adaptive immune responses, which mainly manifests as the depletion
and exhaustion of lymphocytes, increased apoptosis of immune cells,
the expansion of Treg cells andMDSCs, downregulation of activating
cell-surface molecules (HLA-DR), and inhibitory proinflammatory
cytokine release (Hotchkiss et al., 2013). It is becoming increasingly
clear that most sepsis patients are not succumbing to an
overwhelming pro-inflammatory response early on, but rather to
immunoparalysis-related complications that occur later in the disease
trajectory (Cui et al., 2019). The severe suppression status of the
immune system hampers the patient from clearing the primary
infection and increases susceptibility toward secondary and
opportunistic infections, thereby leading to many adverse clinical
consequences.

Currently, mHLA-DR is a reliable biomarker for evaluating
immunosuppression and is widely utilized to guide
immunomodulation therapies. Unfortunately, innumerable clinical
trials of promising immunostimulation therapies have failed to
achieve the desired effect and the consensus is that heterogeneity,
especially in individual immune statuses, is responsible for these
dismal failures. Due to single biomarkers with limited statistical

power, multiple molecular signatures appear to provide better
predictive information. Surprisingly, the HLA classifier is closely
associated with the immunesuppressive state from multiple
perspectives, including infiltrating immune cells, immune-related
pathways, and cytokines level, which may act as an effective
indicator of immunological paralysis.

One hallmark is apoptosis of B cells and dendritic cells and the
depletion and exhaustion of T lymphocytes during sepsis-induced
immunoparalysis resulting in an acquired immune deficiency
syndrome that is associated with poor outcomes (Hotchkiss et al.,
2013). Similarly, deficiency of T helper cells (Th1, Th2, and Th17
cells) proves detrimental to sepsis patients by promoting
immunoparalysis, which is associated with increased mortality
(Wu et al., 2013). Analogously, the reduced NK cell number and
dysfunction may impair the host’s defense against pathogens and
make them more vulnerable to nosocomial infection, which
participates in sepsis-induced immunosuppression (Kjaergaard
et al., 2015). In our study, B cells, activated dendritic cells, ILs, T
helper cells, and NK cells were more abundant in HLA low-risk
phenotypes than inHLAhigh-risk phenotypes, andwere significantly
negatively correlated with the HLA classifier, which is in accordance
with the feature of immunosuppression. Conversely, Treg cells that
are upregulated in the immunoparalysis stage of sepsis, maintain self-
tolerance via inhibiting/suppressing neutrophils, monocytes, and
effector T cells, which are associated with clinical worsening and

FIGURE 12 |Correlation between the HLA classifier and the ratio of IL10/TNF inmultiple transcriptome datasets. (A)GSE65682 datasets. (B)GSE63042 datasets.
(C) E-MTAB-4421 datasets. (D) Comparison of gene expression levels of five HLA genes between controls and sepsis samples via qRT-PCR. Red indicates sepsis,
while blue indicates normal.
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mortality (Kumar, 2018). Likewise, MDSCs, a heterogeneous
population of inducible immature myeloid cells with
immunosuppressive properties (such as inducing the expansion of
Treg cells and suppressing T-cell responses), are expanded during
sepsis and serve as one of the contributing factors for sepsis-
associated mortality (Schrijver et al., 2019). In our research, Treg
cells and MDSCs were significantly more enriched in HLA high-risk
endotypes than in HLA low-risk endotypes, and were significantly
positively correlated with the HLA classifier, which is in accordance
with the characteristic of immunoparalysis. In total, the HLA
classifier is negatively associated with activated immune cells
defending against infectious, while is positively associated with
immunosuppression cells.

Intriguingly, from multiple transcriptome profiles, all of the
different immune-related gene sets were significantly enriched in
HLA low-risk phenotypes, such as CCR, cytolytic activity, HLA,
inflammation-promoting, parainflammation, MHC class I, antigen
processing machinery, and APC costimulation, particularly CCR,
inflammation-promoting, APC costimulation, and HLA. That is to
say, HLA high-risk endotypes were characterized by
immunosuppression where numerous activated immune pathways
were inhibited compared toHLA low-risk endotypes. In addition, the
HLA classifier was significantly negatively associated with CCR,
inflammation-promoting, APC costimulation, and HLA, which
hints that the HLA classifier can serve as a surrogate marker of
sepsis-induced immunosuppression.

Cytokines are one of the key causes underlying sepsis-related
immunosuppression and produced by immune cells. During sepsis, a
maladjusted and excessive release of pro-inflammatory and anti-
inflammatory cytokines will result in a cytokine storm in the early
stage of sepsis. However, in the immunosuppression stage of sepsis,
the release of proinflammatory cytokines is usually reduced, yet the
release of anti-inflammatory cytokines is increased or unchanged,
which is generally considered as “immunoparalysis” (or endotoxin
tolerance). In our study, pro-inflammatory cytokines (IFNG, IL1B,
and TNF) were upregulated in the HLA low-risk subgroup, whereas
anti-inflammatory cytokines (IL-10) were upregulated in the HLA
high-risk subgroup, which is in keeping with the feature of
immunocompromise. Additionally, elevated ratios of anti-
inflammatory and pro-inflammatory cytokines (e.g., IL-10/TNF)
are proposed markers of sepsis-induced immunosuppression and
are associated withmultiple organ failure (Loisa et al., 2003). Notably,
the HLA classifier was significantly positively related to ratios of IL-
10/TNF in our study, which implies that the HLA classifier can act as
a promising biomarker of sepsis-induced immunoparalysis.

Taken together, according to immune cell infiltration,
immune-related pathways, and cytokines level, the HLA
classifier could efficiently reflect immunological status, which
may help guide immune-modulating agents to achieve immune
homeostasis.

In spite of the remarkable results, it is inevitable that
limitations also existed in our research. First, though our
model, based on multiple transcriptome data, demonstrated
impressive performance in early diagnosis, identification of
high-risk patients, and recognition of immunosuppression
for sepsis, it is not yet suitable for general use prior to
validation of external datasets with large sample sizes in

prospective cohorts. Second, patients with sepsis included
in our analysis were not guaranteed to be free of other
diseases. Whereas, the influence of other diseases on our
results cannot be fully resolved because the original data
set did not offer complete details of other comorbidities/
diseases. Third, based on bulk RNA-seq data, the
CIBERSORTx deconvolution algorithm and ssGSEA with
metagenes may not accurately identify immune cell
subpopulations although different methods and different
data sets validate each other. It is necessary to use flow
cytometry or single-cell RNA-seq methods or fluorescence-
activated cell sorting to verify our results. Fourth, no further
in vivo experiments were conducted to validate these results
(hub HLA genes, immune infiltration cells, and pivotal
molecular pathways). Loss of function and overexpression
studies in vitro, as well as in animal models, will help to
further identify the exact role of hub HLA genes in the
regulation of the inflammatory response and related
pathogenic signaling in sepsis.

CONCLUSION

A diagnostic and prognostic model, namely the HLA classifier,
was established based on five HLA genes that were closely
correlated with responses to hydrocortisone and
immunosuppression state, and might facilitate individualized
interventions for specific therapy.
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Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the
leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs)
have been implicated in the initiation and progression of various cancers. LncRNA-
AC087588.2 (ENSG00000274976) is a novel lncRNA that is abnormally expressed in
diverse cancer types, including LUAD. However, the clinical significance, prognostic value,
diagnostic value, immune role, and the potential biological function of AC087588.2 LUAD
remain elusive. In this study, we found that AC087588.2 was upregulated and associated
with a poor prognosis in LUAD. In addition, univariate and multivariate Cox regression
analysis indicated that AC087588.2 could be an independent prognostic factor for LUAD.
Functionally, the knockdown of AC087588.2 restrained LUAD cell proliferation and
migration in vitro. Finally, we constructed a ceRNA network that included hsa-miR-
30a-5p and four mRNAs (ANLN, POLR3G, EHBP1, and ERO1A) specific to
AC087588.2 in LUAD. The Kaplan–Meier survival analysis showed that lower
expression of hsa-miR-30a-5p and higher expression of ANLN, POLR3G, EHBP1, and
ERO1Awere associated with adverse clinical outcomes in patients with LUAD. This finding
provided a comprehensive view of the AC087588.2-mediated ceRNA network in LUAD,
thereby highlighting its potential role in the diagnosis and prognosis of LUAD.

Keywords: lncRNA, lung adenocarcinoma, prognosis biomarker, immune infiltration, ceRNA, cell proliferation, cell
migration

INTRODUCTION

Lung cancer includes small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC).
NSCLC includes lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and large-
cell lung carcinoma. The NSCLC cancer accounts for approximately 85% of all cases (Molina et al.,
2008). Although the treatment of LUAD has improved, the new LUAD pathogenesis and

Edited by:
William C. Cho,

QEH, Hong Kong SAR, China

Reviewed by:
Jianyun Dong,

First Affiliated Hospital of Southern
University of Science and Technology,

China
Juncheng Zhang,

The First Affiliated Hospital of Sun
Yat-sen University, China

*Correspondence:
Luciano Mutti

luciano.mutti@temple.edu
Xiaoqun Niu

673409256@qq.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular Diagnostics and
Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 19 April 2022
Accepted: 04 May 2022
Published: 13 June 2022

Citation:
Jiang X, Chen X, Guo J, Zhou F, Pu J,
Mutti L and Niu X (2022) Identification
and Validation of lncRNA-AC087588.2

in Lung Adenocarcinoma: A Novel
Prognostic and Diagnostic Indicator.

Front. Mol. Biosci. 9:923584.
doi: 10.3389/fmolb.2022.923584

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 9235841

ORIGINAL RESEARCH
published: 13 June 2022

doi: 10.3389/fmolb.2022.923584

102

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.923584&domain=pdf&date_stamp=2022-06-13
https://www.frontiersin.org/articles/10.3389/fmolb.2022.923584/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.923584/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.923584/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.923584/full
http://creativecommons.org/licenses/by/4.0/
mailto:luciano.mutti@temple.edu
mailto:673409256@qq.com
https://doi.org/10.3389/fmolb.2022.923584
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.923584


noninvasive diagnostic biomarkers are still needed. Therefore, the
discovery of potential key prognostic markers with more
characteristics and value will help early prediction and
treatment of LUAD at the molecular level.

As a newly discovered non-coding RNA, the length of lncRNA
usually exceeds 200 nt without protein-coding capacity (Deng
et al., 2020). Emerging evidence demonstrates that lncRNA is
involved in various physiological and pathological processes,
including lung cancer (Lu et al., 2017). For instance, Wu et al.
found that linc00673 was highly associated with poor prognosis
in NSCLC. A further study showed that, by sponging miR-150-5p
and upregulating ZEB1 expression, linc00673 promotes NSCLC
proliferation, migration, invasion, and epithelial-mesenchymal
transition (Lu et al., 2017). LncRNA ZEB1-AS1 was found to be
correlated with the EMT process and adverse prognosis in LUAD
(Li et al., 2016). Shen et al. found that lncRNA FEZF1-AS1 was
increased in NSCLC tissues compared with adjacent normal
tissues. Mechanism research indicated that, by regulating the
wnt pathway, FEZF1-AS1 inhibited the EMT of NSCLC (He et al.,
2017). We recently used a new method, cross-value association
analysis (CVAA), to analyze the TCGA-LUAD dataset, and
identified numerous new differentially expressed genes
(DEGs), including lncRNA-AC087588. However, the clinical
value and biological function of AC087588.2 in LUAD have
not been explored.

In the present study, we use various databases to analyze
AC087588.2 expression, clinical significance, prognostic value,
diagnostic value, and immune infiltration and determine the
potential oncogenic function in LUAD. Meanwhile, qRT-PCR,
CCK8, wound healing, and transwell assays were employed to
determine the potential biological function of AC087588.2 in
LUAD progression.

MATERIALS AND METHODS

TCGA Datasets
Transcription and clinical information of LUAD was
downloaded from TCGA (https://portal.gdc.com) (Tomczak
et al., 2015). RNA-seq gene expression data of workflow type
FPKM were transformed into TPM format and log2
transformation for further study. The timeROC analysis was
used to compare the predictive accuracy of the AC087588.2
gene in LAUD. Clinical information of the LUAD patients
consisted of the pathological stage, TNM stage, smoker, OS,
DSS, and PFS.

Cox Regression Analysis and Kaplan–Meier
Survival Analysis
We utilized Cox regression analysis to examine the correlation
between AC087588.2 expression and overall survival and disease-
specific survival of patients using the TCGA databases. The
Kaplan–Meier method was used to assess the difference
between high- and low-risk groups based on the best
separation of AC087588.2 expression employing R packages of
survminer and survival.

Gene Set Enrichment Analysis
In the present research, we utilized the LinkeDomics database
(http://www.linkedomics.org/login.php) to obtain the co-
expression genes of AC087588.2 in LUAD. KEGG and GO
were employed to assess the potential functions of AC087588.
2 in LUAD with the R package ClusterProfiler (Yu et al., 2012).
GSEA software was used to explore the potential signaling
pathway involved by AC087588.2 in LUAD (Subramanian
et al., 2005; Yu et al., 2012; Vasaikar et al., 2018).

The Target Gene of miR-30a-5p Predicted
by Various Databases
StarBase (https://starbase.sysu.edu.cn/) is a database that includes
the miRNA-ceRNA, miRNA-ncRNA, and protein–RNA
interaction networks from large-scale CLIP-Seq data. In this
manuscript, we used StarBase to predict the target gene of
miR-30a-5p. StarBase was also utilized to determine the
relationship between miR-30a-5p expression and AC087588.2
in LUAD (Cho et al., 2013; Dweep et al., 2014; Li et al., 2014; Chen
and Wang, 2020).

Immune Infiltration Analysis by ssGSEA
In this study, the ssGSEA method was employed to analyze the
association between AC087588.2 expression and the infiltration
of 24 tumor-infiltrating lymphocytes (TILs) in LUAD (Bindea
et al., 2013)

Cell Culture Conditions
Lung cancer cell lines, including one human normal bronchial
epithelial cell (BEAS-2B) and three human lung adenocarcinoma
cells (H1975, SPC-A1, H1299, and A549 cells), were purchased
from the Chinese Academy of Sciences Cell Bank (CASCB,
China) and cultured in RPMI 1640 medium (Corning)
including 10% fetal bovine serum (FBS) and 1% penicillin/
streptomycin at 37°C an atmosphere containing 95% air and
5% CO2.

siRNA and Transfection
SiRNA for AC087588.2 and the matched negative controls were
designed and synthesized by RiboBio (Guangzhou, China).
Lipofectamine™ 3000 Reagent (Invitrogen, United States) was
used to transfect siRNA according to the manufacturer’s
instructions. The primer used in this study is as follows:
AC087588.2 siRNA#1: GCCTTGGTCATGAAACGATTA.

Quantitative Real-Time PCR
The qRT-PCR assay was performed as documented (Pan et al.,
2020). The primer sequences are as follows: AC087588.2 -F: GCA
CTTACTTTATAGCAGCAA, AC087588.2 -R: ATAAATATG
GTTTCTCAAGT; β-actin-F: CTTCGCGGGCGACGAT, β-
actin-R: CCATAGGAATCCTTCTGACC. The expression
quantification was obtained with the 2−ΔΔCt method.

Cell Migration Assay
For the transwell migration assay, 2.5×104 cells/well in 100 μL
serum-free medium were plated in a 24-well plate chamber insert,
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and the lower chamber was filled with 10% FBS. After incubation
for 24 h, cells were fixed with 4% paraformaldehyde, washed, and
then stained with 0.5% crystal violet for further pictures captured.

CCK8 Assay
We seeded cells in 96-well plates at 2.5 × 103 per well in 100 μl of
complete medium and 10 μl of CCK-8 reagent (RiboBio,
Guangzhou, China) for 1 h each day after 3 days of culture.
We then used a microplate to measure the absorbance of each
well at 450 nm. Each sample was evaluated in triplicate.

Statistical Analyses
The significance of the data between two experimental groups was
determined by Student’s t-test, and multiple group comparisons
were analyzed by one-way ANOVA. p < 0.05 (*), p < 0.01 (**),
and p < 0.001 (***) were significant.

RESULTS

Differential Expression of AC087588.2 in
LUAD Patients
To examine AC087588.2 expression in LUAD, we analyzed
AC087588.2 expression data in TCGA-LUAD and uncovered
that AC087588.2 was upregulated in 535 tumor tissues
compared to 59 normal lung tissues in LUAD and
upregulated in 502 tumor tissues compared to 49 normal
lung tissues in LUSC (Figures 1A,B). Further analyses of
one dataset of GEO obtained similar results (Figure 1C).
To determine the potential function of AC087588.2 in the
development of LUAD, we analyzed the correlation between
AC087588.2 expression and various clinical features. The
analysis indicated that AC087588.2 was significantly
associated with advanced pathological stage, T stage,
smoking, OS event, DSS event, and PFS event (Figures 1D–I).

AC087588.2 Modulates Cell Proliferation
and Migration of LUAD Cells
To explore the biological role of AC087588.2 in LUAD, we found
that AC087588.2 expression was significantly upregulated in H1975,
SPC-A1, H1299, and A549 cell lines (Figure 2A). Moreover, specific
siRNA for AC087588.2 was used to knock down the AC087588.2
expression (Figures 2B,C). It was shown that the depletion of
AC087588.2 inhibited the proliferative capacity of LUAD cells
(Figures 2D,E). Moreover, transwell and wound healing assay
confirmed that AC087588.2 knockdown inhibited the cell
migration of LUAD (Figures 2F–I). These data indicated that
AC087588.2 is functionally important in regulating LUAD
progression.

Association Between AC087588.2
Expression and Clinical Outcome in LUAD
Next, to determine the correlation between AC087588.2 expression
and clinical outcome of LUAD patients, the TCGA-LUAD datasets
were employed. Based on the median expression of AC087588.2 in
LUAD, the expression level of AC087588.2 in LUAD patients was
divided into two groups with high and low expression. Results
suggested that upregulation of AC087588.2 was significantly
associated with poor OS, DSS, and PFS in patients with LUAD
(Figures 3A–C). Based on the time-dependent ROC, the
AC087588.2 expression level had a relatively good performance
in predicting the 1-, 3-, and 5-year OS, DSS, and PFS in LUAD
patients (Figures 3D–F). We also utilized GEO datasets validation
the prognosis of AC087588.2 in lung cancer and obtained the same
results (Figures 3G–I). Moreover, an overall survival analysis was
conducted to determine the prognostic value of AC087588.2 in
different subgroups of LUAD patients stratified by stages II and III,
stage I, stages I and III, T1 and T2, T3 and T4, N0 and N1, N2 and
N3,M0, primary: CR, R0, female, male, age>65, and smoker. Results
suggested that increased AC087588.2 level is associated with poor
prognosis in patients with LUAD (Figures 4A–D).

FIGURE 1 | AC087588.2 was overexpressed in LUAD. (A–C) AC087588.2 was overexpressed in LUAD and LUSC examined by TCGA and GEO datasets. (D–I)
Correlation between AC087588.2 expression and clinical parameters, including the pathological stage, T stage, smoking, overall survival event, disease-specific survival
event, and progression-free survival event. *p < 0.05, **p < 0.01, and ***p < 0.001.
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AC087588.2 as an Independent Risk Factor
To determine whether AC087588.2 is an independent factor for
the prognosis of LUAD, we conducted the univariate and
multivariate Cox regression analyses based on the TCGA-
LUAD. Results suggested that the AC087588.2 expression,
pathological stage, and N stage could be independent risk
factors for LUAD (Figures 5A,B). Then, we constructed the
nomograms using the above independent prognosis factors (N
stage and AC087588.2 expression) to predict 1-, 3-, and 5-year
OS, DSS, and PFS of each LUAD patient (Figures 5C–E). The

calibration plot of survival suggested that this nomogram could
predicate OS, DSS, and PFS (Figures 5F–H).

KEGG Enrichment Analysis for AC087588.2
in LUAD
To examine the potential biological functions of AC087588.2 in
LUAD, we performed KEGG enrichment analysis on genes that
were significantly positively correlated with AC087588.2 expression
based on the TCGA-LAUD dataset (Figures 6A,B). The GO

FIGURE 2 | AC087588.2 modulates LUAD cell proliferation and migration in vitro. (A) The expression of AC087588.2 in LUAD cell lines examined by qPCR. (B–C)
qPCR assay examined the knockdown efficiency of AC087588.2 in A549 and H1299 cells (D–I) AC087588.2 knockdown inhibited cell proliferation and migration
examined by CCK8, transwell and wound healing assay. **p < 0.01, and ***p < 0.001. NC = negative control, siRNA = AC087588.2 siRNA.
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functional analyses suggested that AC087588.2 was mainly involved
in the regulation of DNA metabolic process, chromosome
segregation, and proteasomal protein catabolic process regulation
of chromosome organization (Figure 6C). Meanwhile, the KEGG
pathway analyses confirmed that AC087588.2-related pathways
involve the PI3K−Akt signaling pathway, MAPK signaling
pathway, JAK−STAT signaling pathway, and TNF signaling
pathway (Figure 6D). Gene set enrichment analysis (GSEA) also
showed that AC087588.2 was mainly involved in the cell apoptosis,
EMT, G2/M checkpoint, glycolysis, p53, MYC targets, and oxidative
phosphorylation (Figures 7A–D).

Correlation Between AC087588.2
Expression and Immune Infiltration
Immune infiltration has a crucial role in LUAD development
[25]. Therefore, we explore the correlation between

AC087588.2 expression and the infiltration levels of 24
types of immune cells in LUAD using the ssGSEA method.
Results suggested that the AC087588.2 expression in LUAD
was positively related to the infiltration of Th2 cells and
negatively associated with the abundance of B cells, Th17
cells, macrophages, DC, eosinophils, iDC, TFH, and mast
cells in LUAD (Figures 8A–C).

Given that immune checkpoints play a crucial role in tumor
immunosuppression, we analyzed the correlation between
AC087588.2 expression and that of the immune checkpoint-
related genes of CD274, CTLA4, HAVCR2, LAG3, PDCD1,
PDCD1LG2, TIGIT, and SIGLEC15 in LUAD using Pearson’s
correlation analysis. AC087588.2 expression was significantly
positively correlated with the expression of CD274, CTLA4,
LAG3, TIGIT, and SIGLEC15 in this analysis (Figure 8D).
These results confirmed that AC087588.2 played a crucial role
in immune infiltration in LUAD.

FIGURE 3 | ROC and Kaplan–Meier curves of AC087588.2. (A–C) OS, DSS, and PFS of AC087588.2 in LUAD determined using the TCGA-LUAD dataset. (D–F)
ROC curve of AC087588.2 in LUAD determined using the TCGA-LUAD dataset. (G–I) Validation of overall survival of AC087588.2 in lung cancer by GEO datasets.
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AC087588.2-Related miRNA–mRNA
Network in LUAD
To further explore the AC087588.2-mediated downstream
regulatory mechanism involved in LUAD progression, we used
the Annolnc2 (http://annolnc.gao-lab.org/) database to predict the
potential miRNAs binding with AC087588.2. We obtained 10
miRNAs (Figure 9A) (Ke et al., 2020). Based on the competitive
endogenous RNAs theory, lncRNA should be positively correlated

with mRNA and negatively correlated with miRNA. Among all the
10 miRNAs, only miRNA-30a-5p negatively correlated with
AC087588.2 in LUAD (Figure 9B). Moreover, we found that
has-miR-30a-5p had low expression in LUAD, which correlated
with poor prognosis in patients with LUAD (Figures 9C,D). ROC
curve analysis showed that the AUC value of has-miR-30a-5p is 0.
824 (Figure 9E). Therefore, we selected has-miR-30a-5p to conduct
downstream analysis.

FIGURE 4 |Overall survival of AC087588.2 based on the diverse subgroup. (A–D)Overall survival of AC087588.2 based on the diverse subgroup, including stages
II and III, stage I, stages I and III, T1 and T2, T3 and T4, N0 and N1, N2 and N3, M0, primary: CR, R0, female, male, age >65, smoker.
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FIGURE 5 | Univariate and multivariate Cox regression analysis. (A,B) Univariate and multivariate Cox regression analysis in LUAD. (C–E) The nomogram was
developed by integrating the AC087588.2 expression and T stage in the TCGA databases. (F–H) Predicting abilities of the nomogram.
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Identification of the Potential Downstream
Target of AC087588.2/miR-30a-5p in LUAD
We further investigated the target genes of miR-30a-5p that play
critical roles in the progression of LUAD. First, we predicted the
target in StarBase, miRDB, miRWalk, and miRGator (Cho et al.,
2013; Dweep et al., 2014; Li et al., 2014; Chen and Wang, 2020).
According to the prediction of target genes, we found that only
four genes (ANLN, POLR3G, EHBP1, and ERO1A) were
negatively correlated with the miR-30a-5p expression in
LUAD (Figure 9F). Importantly, the expression levels of
ANLN, POLR3G, EHBP1, and ERO1A were positively
correlated with those of AC087588.2in LUAD (Figure 9G).
Furthermore, we employed the TCGA to explore the
expression level and prognosis in LUAD. We found that the
expression levels of ANLN, POLR3G, EHBP1, and ERO1A were
significantly increased in LUAD and associated with OS, DSS,
and PFS in patients with LUAD (Figure 9H; 10A–C). ROC curve
was utilized to examine the diagnostic value of ANLN, POLR3G,

EHBP1, and ERO1A in LUAD, the AUC (area under the curve) of
which were 0.978, 0.669, 0.629, and 0.927, respectively
(Figure 10D), suggesting that ANLN, POLR3G, EHBP1, and
ERO1A were a potential prognostic and diagnostic biomarker in
LUAD. Finally, we used the ssGSEA method to determine the
correlations between ANLN, POLR3G, EHBP1, and ERO1A and
24 types of tumor-infiltrating immune cells. Results confirmed
that the expression levels of ANLN, POLR3G, EHBP1, and
ERO1A were positively correlated with the cell infiltrating of
Th2 cells in LUAD (Figure 10E).

DISCUSSION

At present, common treatments for lung cancer mainly include
surgical resection, radiation-chemotherapy, and
immunotherapy, but the therapeutic effect is not ideal.
Consequently, it is urgent to identify novel cancer
biomarkers and understand the potential molecular

FIGURE 6 | KEGG enrichment analysis of AC087588.2. (A,B) Gene–gene interaction network of AC087588.2 in LUAD. (C,D) GO and KEGG enrichment analysis
of AC087588.2 in LUAD.
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mechanisms involved in LUAD initiation and progression. It
has been confirmed that lncRNAs play an important role in
modulating cell proliferation, cell apoptosis, and cancer
progression (Dong et al., 2018).

Increasing evidence demonstrated the functional and clinical
role of lncRNAs involved in the progression (Jia et al., 2019; Xue
et al., 2021). For example, it has been shown that the increased
AC079630.4 expression is related to the progression and

FIGURE 7 | GSEA identification of AC087588.2-related signaling pathways. (A–D) Identification of AC087588.2-related signaling pathways by GSEA software.
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prognosis in lung cancer (Wang et al., 2021). Previous studies
indicated that LncRNAs have clinical predictor value in several
tumors (Chao and Zhou, 2019). For instance, Wang et al. found
that linc8087 was downregulated in NSCLC and its lower
expression was related to adverse prognosis in patients with
NSCLC (Qi et al., 2021).

In the current study, we uncovered that AC087588.2 was
overexpressed in LUAD, and its higher expression was
correlated with adverse OS, DSS, and PFS in patients with
LUAD. Additionally, ROC curve analysis confirmed that the
AUC value of AC087588.2 is 0.888. Results suggested that
AC087588.2 could serve as a sensitive indicator to predict the
prognosis of the patients, indicating the value of AC087588.2 as a
prognostic biomarker for LUAD. Multivariate analysis indicated
that the AC087588.2 expression was an independent prognostic
indicator for the OS, DSS, and PFS of LUAD patients.

Previous studies reported that lncRNA plays an important role
in the EMT and cell cycle (Jia et al., 2019; Geng et al., 2021). For
example, it has been confirmed that lncRNA-JPX modulates cell
proliferation and migration by sponging miR-33a-5p to increase
Twist1 expression (Pan et al., 2020). In this study, we found that
AC087588.2 was mainly involved in the cell apoptosis, EMT, G2/
M checkpoint, glycolysis, p53, MYC targets, and oxidative
phosphorylation.

It has been confirmed that lncRNA plays a central role in
facilitating tumor progression and immune escape (Zhang et al.,
2020). For example, lncRNA GATA3-AS1 promoted BRCA
immune escape by stabilizing PD-L1 (Zhang et al., 2020). In
this finding, we demonstrated that the AC087588.2 expression in
LUAD was positively associated with the infiltration of Th2 cells
and negatively correlated with the abundance of B cells, Th17
cells, macrophages, DC, eosinophils, iDC, TFH, and mast cells in

FIGURE 8 | Association between AC087588.2 expression and immune cell infiltration in LUAD. (A–C) Correlation between AC087588.2 expression and immune
cell infiltration in LUAD. (D) Correlation between AC087588.2 expression and immune checkpoint-related genes in LUAD. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 9 | Analysis of the potential miRNAs of AC087588.2. (A) Potential miRNAs of AC087588.2 determined by the Anbolnc2 database. (B). Correlations
between AC087588.2 expression and miR-30a-5p in LUAD. (C) Expression level of miR-30a-5p in LUAD. (D) Overall survival of miR-30a-5p in LUAD. (E) ROC curve of
miR-30a-5p in LUAD. (F) Correlations between the miR-30a-5p expression and ANLN, POLR3G, EHBP1, and ERO1A in LUAD. (G) Correlations between the
AC087588.2 expression and ANLN, POLR3G, EHBP1, and ERO1A in LUAD. (H) RNA level of ANLN, POLR3G, EHBP1, and ERO1A in LUAD.
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FIGURE 10 | Analysis of the prognostic and diagnostic value of ANLN, POLR3G, EHBP1, and ERO1A in LUAD. (A–C) OS, DSS, and PFS of ANLN, POLR3G,
EHBP1, and ERO1A in LUAD. (D) ROC curve of ANLN, POLR3G, EHBP1, and ERO1A in LUAD. (E) Correlation between ANLN, POLR3G, EHBP1, and ERO1A
expression and immune infiltration levels of 24 immune cells in LUAD.
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LUAD. Given that immune checkpoints play a crucial role in
tumor immunosuppression, we analyzed the correlation between
the AC087588.2 expression and that of the immune checkpoint-
related genes of CD274, CTLA4, HAVCR2, LAG3, PDCD1,
PDCD1LG2, TIGIT, and SIGLEC15 in LUAD using Pearson’s
correlation analysis. The AC087588.2 expression was
significantly positively correlated with the expression of
CD274, CTLA4, LAG3, TIGIT, and SIGLEC15 in this analysis
(Figure 8D). These results confirmed that AC087588.2 played a
crucial role in immune infiltration in LUAD.

Finally, we uncovered that AC087588.2 was significantly
upregulated in NSCLC cell lines, and the depletion of
AC087588.2 markedly inhibited cell proliferation and
migration in LUAD.

We also utilized various databases to identify the potential
target gene of AC087588.2/miRNA-30a-5p in LUAD, including
the ANLN, POLR3G, EHBP1, and ERO1A. Subsequent expression
and prognosis analysis confirmed that ANLN, POLR3G, EHBP1,
and ERO1Awere significantly greater in LUAD tissues than those
in the normal LUAD tissues, and the upregulation of ANLN,
POLR3G, EHBP1, and ERO1A expression was associated with
poor prognosis in patients with LUAD. In conclusion, this finding
provided a possible comprehensive view of the AC087588.2-
mediated ceRNA network in LUAD, thereby highlighting its
potential role in diagnosis and therapy. Finally, we uncovered
that AC087588.2 was significantly upregulated in NSCLC cell
lines and depletion of AC087588.2 markedly inhibited cell
proliferation and migration in LUAD.

This study improves our understanding of the correlation
between AC087588.2 and LUAD, but some limitations still exist.
First, although we explored the correlation between AC087588.2
and immune infiltration in LUAD patients, there is a lack of
experiments that validate the function of AC087588.2 in the

tumor microenvironment regulation of LUAD. Second, we
confirmed that the knockdown of AC087588.2 inhibited cell
proliferation and cell migration of LUAD. However, the
potential molecular mechanisms of AC087588.2 in cancer
progression need to be explored in further studies.

CONCLUSION

Our data confirmed that AC087588.2 could serve as a promising
diagnostic and prognostic biomarker for LUAD patients.
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ESRRG, ATP4A, and ATP4B as
Diagnostic Biomarkers for Gastric
Cancer: A Bioinformatic Analysis
Based on Machine Learning
Qiu Chen1†, Yu Wang2†, Yongjun Liu2 and Bin Xi2*

1Medical College, Yangzhou University, Yangzhou, China, 2College of Physics Science and Technology, Yangzhou University,
Yangzhou, China

Based on multiple bioinformatics methods and machine learning techniques, this study
was designed to explore potential hub genes of gastric cancer with a diagnostic value. The
novel biomarkers were detected through multiple databases of gastric cancer–related
genes. The NCBI Gene Expression Omnibus (GEO) database was used to obtain gene
expression files. Three hub genes (ESRRG, ATP4A, and ATP4B) were detected through a
combination of weighted gene co-expression network analysis (WGCNA), gene–gene
interaction network analysis, and supervised feature selection method. GEPIA2 was used
to verify the differences in the expression levels of the hub genes in normal and cancer
tissues in the RNA-seq levels of Genotype-Tissue Expression (GTEx) and The Cancer
Genome Atlas (TCGA) databases. The objectivity of potential hub genes was also verified
by immunohistochemistry in the Human Protein Atlas (HPA) database and transcription
factor–hub gene regulatory network. Machine learning (ML) methods including data pre-
processing, model selection and cross-validation, and performance evaluation were
examined on the hub-gene expression profiles in five Gene Expression Omnibus
datasets and verified on a GEO external validation (EV) dataset. Six supervised learning
models (support vector machine, random forest, k-nearest neighbors, neural network,
decision tree, and eXtreme Gradient Boosting) and one semi-supervised learning model
(label spreading) were established to evaluate the diagnostic value of biomarkers. Among
the six supervised models, the support vector machine (SVM) algorithm was the most
effective one according to calculated performance metrics, including 0.93 and 0.99 area
under the curve (AUC) scores on the test and external validation datasets, respectively.
Furthermore, the semi-supervised model could also successfully learn and predict sample
types, achieving a 0.986 AUC score on the EV dataset, even when 10% samples in the five
GEO datasets were labeled. In conclusion, three hub genes (ATP4A, ATP4B, and ESRRG)
closely related to gastric cancer were mined, based on which the ML diagnostic model of
gastric cancer was conducted.

Keywords: gastric cancer, machine learning, bioinformatics, WGCNA, diagnostic model

Edited by:
William C. Cho,

QEH, Hong Kong SAR, China

Reviewed by:
Yuan Zhu,

China University of Geosciences
Wuhan, China

Swakkhar Shatabda,
United International University,

Bangladesh

*Correspondence:
Bin Xi

xibin@yzu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Computational Physiology and
Medicine,

a section of the journal
Frontiers in Physiology

Received: 27 March 2022
Accepted: 10 May 2022
Published: 23 June 2022

Citation:
Chen Q, Wang Y, Liu Y and Xi B (2022)

ESRRG, ATP4A, and ATP4B as
Diagnostic Biomarkers for Gastric
Cancer: A Bioinformatic Analysis

Based on Machine Learning.
Front. Physiol. 13:905523.

doi: 10.3389/fphys.2022.905523

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9055231

ORIGINAL RESEARCH
published: 23 June 2022

doi: 10.3389/fphys.2022.905523

116

http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.905523&domain=pdf&date_stamp=2022-06-23
https://www.frontiersin.org/articles/10.3389/fphys.2022.905523/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.905523/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.905523/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.905523/full
http://creativecommons.org/licenses/by/4.0/
mailto:xibin@yzu.edu.cn
https://doi.org/10.3389/fphys.2022.905523
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.905523


1 INTRODUCTION

Gastric cancer (GC), reported as the sixth most common
cancer in the world, has an extremely high morbidity rate
(Sung et al., 2021). Latest global epidemiological data showed
that almost 1,089,103 people were diagnosed with gastric
cancer every year, and 768,793 people died of this disease,
which makes it the fourth most fatal cancer worldwide (Sung
et al., 2021). Although previous research studies have
successfully revealed the major risk factors of GC, such as
the genetic background, obesity, harmful mode of life, and
Helicobacter pylori infection, a high rate of misdiagnosis still
exists due to nonspecific symptoms at the beginning of the
disease (Van Cutsem et al., 2016). In other words, GC usually
has a late diagnosis at an advanced stage, resulting in its
proximity to morbidity and mortality (Asplund et al., 2018).
The prognosis of locally advanced gastric cancer is poor with a
5-year survival rate of 16.4% (Katai et al., 2018) and median
overall survival (OS) of 6–14 months in East Asia after being
diagnosed from extensive clinical studies (Hu et al., 2021). In
contrast, if GC is diagnosed at an early stage, the 5-year
survival rate is about 90% (Saragoni et al., 2013), indicating
the importance of early diagnosis and treatment. Novel
biomarkers screened through bioinformatics methods have
already shown their potentiality in cancer development and
diagnosis. Therefore, it is extremely meaningful to find novel
biomarkers of GC to assist in the early diagnosis and
treatment.

Recently, machine learning (ML) has been widely used as a
bioinformatics method in the realm of medical data mining
(Yang et al., 2020). Compared with traditional analyses, the
ML technique has an edge on discovering hidden relationships
and making predictions from complex datasets which have
already been successful in many clinical practices, such as
image-based cancer screening (Hu et al., 2018), constructing
effective prognostic models (Royston et al., 2004), and
identifying biomarkers based on the integration of omics
and phenotype data (Subramanian et al., 2020). On the
other side, biological networks such as weighted co-
expression network analysis (WGCNA) (Langfelder and
Horvath, 2008) and gene–gene interaction networks can
identify the associations between genes and the biological
processes. In accordance with biological network analyses,
novel genes and pathways related to human cancers are also
revealed (Boucher and Jenna, 2013; Farhadian et al., 2021).
Thus, combing the core concepts of ML such as feature
selection and classification with additional biological
network analyses may further assist in exploring biomarkers
with diagnostic values.

In this study, our purpose was to explore biomarkers based
on biological network analyses and ML techniques, the novelty
of which is further examined with ML diagnostic models.
Potential hub genes are screened by the feature selection
method and biological networks. ML diagnostic models are
constructed by supervised and semi-supervised ML methods
with stratified k-fold cross-validation and random
permutation validation, respectively.

2 MATERIALS AND METHODS

2.1 Data Collection and Preprocessing
The study design is shown in Figure 1. This systematic study
comprehensively downloaded six datasets from the Gene
Expression Omnibus (GEO) database and focused on the
gene sequencing results of GC patients with each dataset
containing more than 10 samples. These datasets were
produced using three different microarray platforms:
Affymetrix Human Genome U133 Plus 2.0 Array,
Affymetrix Human Exon 1.0 ST Array, and Affymetrix
Human Genome U133A Array. Raw data of these datasets
were preprocessed by R packages “oligo” (Carvalho and
Irizarry, 2010) and “affy” (Gautier et al., 2004), and then,
the background was corrected and normalized through the
Robust Multichip Average (RMA) function. In this study,
GSE66229 was used to construct a weighted gene co-
expression network due to the sufficient data and detailed
clinical characteristics of the gastric cancer samples. Five
datasets (GSE19826, GSE27342, GSE29272, GSE54129, and
GSE66229) were combined into a total dataset (TD) which
contains 780 samples and 11,181 genes for feature selection
and building ML models. TD includes 435 tumor samples and
345 normal ones, i.e., a mild imbalanced dataset. The combat
algorithm in the “sva” R package (Johnson et al., 2007) was
used to eliminate batch effects between different platforms and
experiments. GSE33335 acts as an independent dataset, based
on which an external validation (EV) was performed to
validate the authenticity of hub genes and the
reproducibility and generalizability of the ML diagnostic
models. Details of all datasets can be found in
Supplementary Table S1.

2.2 WGCNA
The R package “WGCNA” (Langfelder and Horvath, 2008)
was constructed to detect gene modules, and the correlation
of each module with sample type was evaluated. The specific
steps are as follows: (a) in the GSE66229 dataset, only normal
and cancer samples from the same individuals (196 samples)
were selected for further analysis. Then, the 196 samples
were divided into “tumor” and “normal” groups according to
their clinical records, with each group containing 98
samples; (b) the samples were clustered by the “hclust”
function to detect the outliers. After employing the
“hclust” function to the expression matrix evaluated by
the average method, 35 offending samples were removed
with a height cut at 125; (c) the best scale-free topology
fitting index (soft threshold) was selected as 7 to achieve a
higher average network connectivity with a scale-free fitting
number β � 0.86 ; d) the adjacency matrix was transformed
into a topological overlap matrix (TOM) to define the gene
co-expression similarity; (e) Based on the dissimilarity
measured by TOM, the “hclust” algorithm was employed
for gene hierarchical clustering; (f) the optimal module size
was set as 30, and the dynamic tree was used to cut the
identification module; (g) after each module was determined
based on the signature gene expression profile and the

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9055232

Chen et al. Diagnostic Biomarkers for Gastric Cancer

117

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


sample type of patients, the correlation of the module
signature genes with sample types was also determined.

2.3 Identification of the WGCNA Hub Genes
Cytoscape (Shannon et al., 2003) was used to visualize the co-
expression network in the modules of the highest correlations. All
genes in the selected modules were exported to Cytoscape and
analyzed with the “NetworkAnalyzer” plugin (Assenov et al.,
2007), which can give a comprehensive set of topological
parameters for gene–gene interaction networks. Hub genes are
defined as genes with high connectivity in the gene–gene
interaction network. According to connectivity, i.e., node
degrees in the output of “NetworkAnalyzer”, the top-ranked
10% genes in the two most significant modules “red” and

“turquoise” were selected (Fuxman Bass et al., 2013), which
may have important implications for the progression of gastric
cancer.

2.4 Supervised Feature Gene Selection With
the Fisher Score Algorithm
The feature selection technique is a process of reducing the
number of variables, especially important for developing a
predictive model (Ali et al., 2018). The feature selection
method can evaluate the relationship between each variable
and the output and select those variables with the strongest
relationship. Fisher score is one of the most widely used
supervised feature selection methods, which returns the ranks

FIGURE 1 | Flowchart of this study.
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of the variables based on the Fisher score in the descending order
(Gu et al., 2011). The Fisher score Si of the i-th feature is
calculated as follows:

Si �
∑

j
nj(μij − μi)

2

∑
j
njσ

2
ij

, (1)

where μij and σ ij are the mean and standard deviation of the i-th
feature in the j-th class, respectively. nj is the number of samples
in the j-th class, and μi is the mean of the i-th feature.

In this study, to select the most relevant genes that are strongly
related to the sample type, feature selection using the Fisher score
algorithm was applied to the combined five datasets. Here, a gene
was regarded as a feature, and TD was splitted into five folds
during feature selection. A list of genes ranked by their scores
returned in each fold, where we picked the top-ranked 10 feature
genes with a cutoff at Si ≈ 0.5 for each list for further study. The
feature genes were determined as the intersection of the features
of five folds. The final biomarkers in this study were obtained by
the intersection of the hub genes filtered by the gene–gene
interaction network and the feature genes.

2.5 Validation of the Final Hub Genes
GEPIA2 can be used to verify the expression difference of the hub
genes in tumor samples and normal ones (Tang et al., 2019). The
RNA-seq datasets used in GEPIA2 were based on UCSC Xena
(http://xena.ucsc.edu), which was computed by standard
pipelines to analyze the RNA-sequencing expression of tumor
and normal samples from the TCGA (Colaprico et al., 2016) and
GTEx (Lonsdale et al., 2013) datasets. In this study, we used the
TCGA and GTEx gastric cancer RNA-seq data integrated by the
GEPIA2 platform for a comprehensive validation. With |Log2FC|
cutoff = 1 and p-value cutoff = 0.01, box plots of the RNA-seq
data of the gastric cancer hub genes were drawn.

The immunohistochemistry (IHC) staining data for this study
were downloaded from the Human Protein Atlas (HPA) database
(Thul and Lindskog, 2018), and then, the results of gastric cancer
pathology and normal gastric tissue were processed.

The Cytoscape plugin “iRegulon” was used to analyze the
transcription factors regulating hub genes (Janky et al., 2014;
Gao et al., 2020). This plugin predicts transcription factors by
using the motif enrichment analysis and using track discovery

in a set of regulated genes. The cutoff criteria were as follows:
enrichment score threshold = 3.0, receiver operating
characteristic (ROC) threshold for area under the curve
(AUC) calculation = 0.03, rank threshold = 5,000,
minimum identity between orthologous genes = 0.0, and
false discovery rate (FDR) = 0.001. After all transcription
factors were outputted, the factor which regulates all hub
genes and ranks first in the normalized enrichment score
(NES) was defined as the most relevant transcription factor.

2.6 Development and Validation of Machine
Learning Models
2.6.1 Supervised Learning
At the first step, TD was randomly split into training and test
datasets, with ratios of 80 and 20%, respectively. Then, a
repeated stratified k-fold cross-validation was performed on
the training dataset. The stratified k-fold can ensure that
each fold has the same proportion of the sample type
compared to the whole one, which is more suitable to
imbalance datasets. The ML model was trained using of k-
1 folds and validated on the one remaining fold for k times.
The training performance of the model was reported on the
average over k times. At last, a final evaluation was
performed on the test dataset. The aforementioned steps
can be regarded as an internal validation since both training
and test datasets come from TD. To examine the robustness
of the ML models, an EV was further performed on the
independent dataset GSE33335.

In this study, k was set to 10, and the cross-validation was
repeated 100 times with different randomizations in each
repetition to ensure the estimated performance. The Matthews
correlation coefficient (MCC) metric (Chicco and Jurman, 2020)
was chosen as the performance score for the model evaluation
during the training process, which is suitable to imbalance
datasets.

To further reduce the affection of the dataset imbalance, the
synthetic minority oversampling technique (SMOTE) was
applied to the training dataset (Chawla et al., 2002). The
SMOTE can synthesize new samples based on randomly
picked existing samples and their k-nearest neighbors. In this
study, a grid search of k ranging from 1 to 7 was also performed.

TABLE 1 | All genes and their Fisher Scores were selected by the feature algorithm.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Gene name Fisher score Gene name Fisher score Gene name Fisher score Gene name Fisher score Gene name Fisher score

ATP4A 0.762 ATP4A 0.745 ATP4A 0.796 ATP4A 0.862 ATP4A 0.810
ESRRG 0.736 ESRRG 0.705 ESRRG 0.734 ESRRG 0.803 ESRRG 0.749
CBLIF 0.671 ATP4B 0.642 CBLIF 0.642 CBLIF 0.748 CBLIF 0.670
ATP4B 0.641 CBLIF 0.632 ATP4B 0.631 ATP4B 0.712 ATP4B 0.644
INHBA 0.548 TIMP1 0.574 SST 0.540 INHBA 0.618 KCNE2 0.553
KCNE2 0.541 KCNE2 0.517 MT1M 0.539 KCNE2 0.615 TIMP1 0.541
CPA2 0.533 INHBA 0.513 TIMP1 0.538 CPA2 0.601 INHBA 0.524
MT1M 0.531 CPA2 0.498 INHBA 0.522 TIMP1 0.595 CPA2 0.520
ALDH6A1 0.529 MT1M 0.491 KCNE2 0.511 MYRIP 0.587 MYRIP 0.505
TIMP1 0.510 GKN1 0.468 GKN1 0.501 MT1M 0.543 MT1M 0.494
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FIGURE 2 | Progress of the weighted gene co-expression network analysis in GSE66229. (A) Cluster dendrogram of 161 samples in GSE66229. (B) Soft
thresholds of the best scale-free topological model fitting index (left) and mean connectivity (right) were determined. The red horizontal line represents R2 = 0.86. (C)
Dendrogram of all genes clustered in GSE66229. Gene clustering into modules is based on a topological overlap matrix. Assigned modules are colored on the bottom
with gray denoting unassigned genes.
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In order to select a proper classifier for the ML diagnosis
model, six widely used algorithms, namely, support vector
machine (SVM) (Byvatov and Schneider, 2003), k-nearest
neighbors (KNN) (Zhang, 2016), decision tree (DT) (Chen
et al., 2011), random forest (RF) (Chen and Ishwaran, 2012),
neural network (NN) (Lancashire et al., 2009), and eXtreme
Gradient Boosting (XGB) (Chen and Guestrin, 2016), were
examined through their performance metrics for classification
results. Hyperparameters of all the models were finely tuned
using the scikit-learn GridSearchCV method, according to the
highest “MCC” scores. The best model for each algorithm was
selected after exploration of the whole grid. Best
hyperparameters and the corresponding training
performances of all supervised ML diagnostic models can be
found in Table 1. Finally, the performance of each model on
test and EV datasets was evaluated by these performance
metrics: accuracy (Heidaryan, 2018), specificity (Altman

and Bland, 1994), sensitivity (Altman and Bland, 1994),
precision (Heidaryan, 2018), F1 score (Chicco and Jurman,
2020), and MCC. Furthermore, the ROC curve and AUC are
also given.

2.6.2 Semi-Supervised Learning
To deal with a different problem, such as handling large amounts
of samples with only a few diagnosed ones, a semi-supervised
learning model based on a label-spreading algorithm is also
examined (Zhou et al., 2003). Semi-supervised learning can
learn from small amounts of labeled samples, combined with
the use of unlabeled data to better capture the underlying
properties and generalize better to new samples (Chapelle
et al., 2009). To some extent, semi-supervised learning can be
regarded as a hybrid of supervised and unsupervised learning. In
this study, TD was randomly split into a labeled dataset and an
unlabeled one, with five unlabeled ratios including 50, 60, 70, 80,

FIGURE 3 | Heatmap of the relationship between module eigengenes and clinical traits of GSE66229. WGCNA labeled heatmaps for GSE66229, each row
represents a module characteristic gene encoded by color, and the three columns represent clinical characteristics of overall survival time (OST), overall survival status
(OSS), and sample type, respectively. Each cell represents the Pearson correlation coefficient and p-value (in parentheses) of the corresponding module characteristics,
and the color of each cell represents the value of correlation.
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and 90%. For each ratio, the semi-supervised model was cross-
validated by 100 times of random permutations and further
evaluated on the EV dataset GSE33335. The performance
metrics of prediction on the unlabeled dataset and EV dataset
are given.

All supervised and semi-supervised ML models in this study
were implemented by Python language programming on Intel
Xeon silver 4110 CPU.

3 RESULTS

3.1 Construction of the GeneCo-Expression
Network
In order to find the correlation between clinical features and
genes, this study used the R “WGCNA” package to construct
20,862 genes and 161 samples in the GSE66229 dataset into a
gene network. A sample clustering figure was plotted
(Figure 2A). To guarantee a scale-free topology and zero
mean connectivity, the threshold was determined to be 7
(Figure 2B). The dissimilarity of the modules was set as 0.2,
and a total of 14 modules were generated (Figure 2C). Two
modules (red: r = 0.73 and P = 5e-28; turquoise: r = -0.84 and P =

6e-44) with the positive and negative highest correlations were
acquired as the significant modules for subsequent analyses
(Figure 3).

3.2 Feature Gene Selection
In order to select critical genes to the diagnostic model, feature
selection was performed for the combined five datasets using the
Fisher Score method on five folds. In each fold, a cutoff around
the Fisher Score Si ≈ 0.5 s was applied, and as a result, 10 genes
with the highest scores were selected. All selected genes as well as
their Fisher Scores are listed in Table 1. At last, the intersection of
all picked genes in the five folds is investigated, resulting in six
intersection elements: TIMP1, ATP4A, ESRRG, CBLIF, ATP4B,
and INHB.

3.3 Identification and Validation of Hub
Genes
In the results of WGCNA, two significant models, the red and
turquoise ones, were exported to Cytoscape. Two gene–gene
interaction networks were constructed and analyzed in
Cytoscape. Then, the top 10% target genes of each network
were selected, according to the connectivity degree. As a

FIGURE 4 | Gene–gene interaction network of the top-ranked 10% genes in red modules.
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FIGURE 5 | Validation of three hub gene expressions in the GEPIA2 platform. (A) Validation of three hub gene expressions in the GEPIA2 platform. The red and gray
boxes represent cancer and normal tissues in the TCGA and GTEx datasets, respectively. STAD, gastic cancer, and p < 0.01 (GEPIA2 website). (B)
Immunohistochemical staining of ESRRG, ATP4A, and ATP4B in the Human Protein Atlas (HPA) database. (C) Transcription factor–hub gene regulatory network of the
most relevant factor in the Cytoscape plugin “iRegulon”.

TABLE 2 | Tuned hyperparameters, k in the SMOTE, and the training performance of six machine learning models.

Model Tuned hyperparameters k MCC

SVM C: 3,000 and gamma: 0.01 5 0.666 ± 0.093
RF max_features: log2 and n_estimators: 1,500 5 0.641 ± 0.091
KNN metric: manhattan and n_neighbors: 29 3 0.649 ± 0.089
NN activation: tanh and hidden_layer_sizes: (200, 200, and 200) 6 0.633 ± 0.096
DT max_depth: 60, min_impurity_decrease: 0.2, and min_samples_leaf: 2 7 0.637 ± 0.090
XGB gamma: 1, max_depth: 2, and n_estimators: 100 5 0.658 ± 0.092
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FIGURE 6 | Performance of the six supervised machine learning models on the test and EV sets. Hyperparameters of all six models are tuned with the GridSearchCV
method, according to the “MCC”metric, and then, the six bestmodels were chosen after exploration of thewhole grid. Predictions on the test and EV sets aremadewith the best
models. Six models used in this study are support vector machine (SVM), k-nearest neighbors (KNN), decision tree (DT), random forest (RF), neural network (NN), and eXtreme
Gradient Boosting (XGB) in order. (A,B)Scores of accuracy, F1 score,MCC, precision, sensitivity, and specificity in the sixmodels on the test and valid datasets, respectively.
(C,D) Four terms of the confusion matrix (TP, TN, FP, and FN) in the six models on the test and valid datasets, respectively.

FIGURE 7 |ROC curves for the predicted probability on the test and EV sets of all six machine learning diagnostic models: (A) SVM, (B)RF, (C)KNN, (D)NN, (E)DT
and (F) XGB.
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result, 30 and 330 genes in the “red” and “turquoise” modules
were selected. The gene–gene network of 30 genes in the “red”
module is shown in (Figure 4), while genes in the “turquoise”
module are listed in Supplementary material S1. Together with
the six feature genes selected through the Fisher Score method,
three hub genes (ESRRG, ATP4A, and ATP4B) were finally
selected in the red module, while none was selected in the
turquoise module.

The expression of three genes in cancer and normal samples
was validated in GEPIA2. The box plot of GEPIA2 presented the
expression levels of the three genes in the standard of expression-
log2 (TPM+1) (Figure 5A). We observed that the expressions of
ESSRG, ATP4A, and ATP4B in tumor samples were significantly
lower than those in normal ones. This study also performed an
IHC analysis in the gastric data of hub genes from the HPA

database. The results of IHC staining are shown in Figure 5B,
which were consistent with GEPIA2.

Among all transcription factors regulating the three hub genes,
FOXA1with the highest NES (NES = 5.142) was considered as the
most important transcription factors (Figure 5C). Existing
studies have shown that the expression of FOXA1 affects the
proliferation and invasion of gastric cancer cells (Lin et al., 2018;
Dai Y. et al., 2021). The result verified the objectivity of the three
hub genes in gastric cancer.

3.4 Establishment and Validation of the
Machine Learning Model
After going through the hyperparameter grid and the SMOTE
grid, the best model was selected according to the MCC metric.

FIGURE 8 | Performance of the semi-supervised machine learning model with various ratios of unlabeled data. Semi-supervised machine learning models are built
with the label spreading (LS) algorithm. The ratios of randomly unlabeled samples include 50% (LS50), 60% (LS60), 70% (LS70), 80% (LS80), and 90% (LS90). In each
ratio, the semi-supervised model is cross-validated 100 times by random permutation. (A,B) Performance of the semi-supervised machine learning models on all
unlabeled data and the valid dataset with various ratios of unknown samples, respectively. Seven metrics are given, namely, accuracy, F1 score, MCC, precision,
sensitivity, specificity, and AUC.
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The corresponding hyperparameters, k-nearest neighbors in the
SMOTE, and values of MCC on the training dataset are listed in
Table 2. One might see that the SVM model has the best
performance with an average MCC score at
0.666 ± 0.093.With the fixed hyperparameters, the
performance of all six ML diagnostic models on the test
dataset is shown in Figure 6. The trained SVM had the
highest accuracy with 89.1%, while the RF showed the lowest
but a close accuracy with 85.3% (Figure 6A), which demonstrated
the robustness of both hub genes and ML methods.

Based on the results, the weakest performance of the sensitivity
metric was the KNN algorithm with a ratio of 81.7% (Figure 6A).
As a contrast, the SVM algorithm again had the highest sensitivity
of 93.9%, showing the great ability for predicting tumor samples
(Figure 6A). For specificity, the NN algorithm had the best
performance with a 90.5% specificity to predict normal
samples. The RF algorithm had the lowest specificity of 82.4%.
The SVM algorithm had the second lowest specificity of 83.8%
(Figure 6A). These results demonstrated the six models have
both advantages and disadvantages.

MCC and F1 scores could serve as more reliable metrics which
involve all four terms: true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) in the confusion matrix.
According to the ratios of the MCC and F1 scores, the SVM
should be the best model with 78.4 and 89%, respectively
(Figure 6A).

ROC curves for all six ML classification diagnostic assistants
were built using the predicted probability of belonging to
different classes. Except for the AUC of DT having the lowest
value of 85%, all the other models had an AUC of 93–95%
(Figure 7).

The prediction performance of six ML diagnostic assistants
was further evaluated on the EV dataset (25 tumor samples and
25 normal ones). The results showed the six models can classify
all the normal samples correctly with specificity and precision
both equaling to 1 (Figure 8B); however, the prediction on tumor
samples varies. SVM and NN have the best performances on
successively predicting 23 tumor samples (Figure 6D). As a
result, SVM and NN share the highest MCC and F1 scores of
92.3 and 96%, respectively (Figure 6B). The AUC of SVM and
NN on EV is 99% (Figures 7A, D). Therefore, one can conclude
that the SVMmodel based on the expression profiles of three hub
genes may have a potential diagnostic value for gastric cancer.

3.5 Semi-Supervised Diagnostic Model
Semi-supervised ML can learn from a combination of small
amounts of labeled samples and large amounts of unlabeled
ones, which is especially suitable for the scenario of annotating
large amounts of samples with expensive costs or miscellaneous
steps. In this study, the label spreading (LS) algorithm was tested
on 50% (LS50), 60% (LS60), 70% (LS70), 80% (LS80), and 90%
(LS90) randomly unlabeled samples in TD. Each learning model
was cross-validated 100 times with random permutation. The
results shown in Figure 8 demonstrate that the LS algorithm can
successfully learn and predict the sample type even when small
amounts of labeled data are available. The mean MCC and F1
scores are 0.649 ± 0.029 and 0.824 ± 0.015, respectively, with 50%

unlabeled samples. As the ratio of unlabeled samples increases,
the performance of the LS slightly decreases. However, with 90%
unlabeled data, the LS90 model still has meanMCC and F1 scores
of 0.635 ± 0.020 and 0.816 ± 0.012, respectively. Furthermore, all
LS models achieved a good prediction performance for the EV
dataset, for example, the LS90 model has mean MCC and F1
scores of 0.845 ± 0.066 and 0.919 ± 0.037, respectively.

4 DISCUSSION AND CONCLUSION

Gastric cancer is still a major disease threatening human health,
so it is particularly important to find a comprehensive and
effective set of biomarkers with diagnostic values. This study
systematically used a series of bioinformatics methods to select
key features, i.e., hub genes, which were further confirmed by
both, the GEPIA2 tool and IHC experiments. The transcription
factor–hub gene regulatory network confirmed that three genes
are closely associated with gastric cancer in the level of
transcription factors. Based on these features, ML diagnostic
assistants for the diagnosis of gastric cancer were established
by both supervised and semi-supervised learning. The
performance of the ML models on the EV dataset further
approves the potential diagnostic ability.

In this study, five GEO datasets were downloaded for
construction, and one independent GEO dataset GSE33335
was used for external validation. Comprehensive data collation
can make the construction of diagnostic assistants more objective
(Ahluwalia et al., 2021; Dai W. et al., 2021; Ye et al., 2021).
GSE66229 was used for the WGCNA analysis. WGCNA is a
widely used target therapy analysis tool, which clusters related
genes, according to some clinical characteristics of research
subjects. There have been many studies on gastric cancer
tumor markers in recent years, and most of the WGCNA
clusterings are based on differentially expressed genes (DEGs)
in the research dataset (Li et al., 2021; Xiang et al., 2021; Zhang
et al., 2022). In contrast, this study performed the WGCNA
analysis on all gastric cancer–related genes in one dataset and
fused them with selected features using a supervised learning
method, i.e., Fisher score algorithm on five combined datasets,
preserving the diversity of the gastric cancer hub genes. This also
reduces the hub gene bias caused by clustering with a certain
clinical feature traditionally (Yang et al., 2022). We putWGCNA-
significant modules into Cytoscape to construct a gene–gene
interaction network. Previous research shows that gene–gene
interaction networks can reveal the principle and mechanisms
of cancer (Zeng et al., 2013; Rana et al., 2020). In order to enhance
the objectivity and authenticity of the hub genes, genes that are
highly associated with gastric cancer screened by the gene–gene
interaction network were intersected with the selected
feature genes.

Three hub genes were crucial to the next machine learning-
based bioinformatics approach. Although no studies used them as
combined biomarkers for gastric cancer diagnosis, some studies
have screened these genes in the identification of gastric cancer
biomarkers and explored them to a certain extent in the field of
human and animal experiments on gastric cancer (Lozano-Pope
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et al., 2017; Peng et al., 2020; Liu et al., 2021). ESRRG belongs to
the estrogen-related receptor family. In one aspect, it has been
classified that ESRRG inhibits the occurrence of gastric cancer by
inhibiting the Wnt pathway by activating DY131 (Kang et al.,
2018). In another, ESRRG can directly bind to the TFF1
promoter, which is a recognized tumor suppressor and
inhibits Helicobacter pylori infection (Kang et al., 2021).
Helicobacter pylori infection is a common cause of chronic
atrophic gastritis, which is a precancerous lesion (Rolig et al.,
2012). ATP4A and ATP4B belong to a family of P-type cation-
transporting ATPases. These two genes belong to the gastric
proton pump and are antigens of gastric parietal cells, which are
diagnostic markers for immune gastric lesions including atrophic
gastritis. Through in vivo and in vitro experiments in animals and
humans, researchers have found that ATP4A and ATP4B were
partially or fully methylated in gastric cancer cells. It was also
verified that the reactivation and demethylation of ATP4A and
ATP4B can effectively inhibit the progression of gastric cancer
(Lin et al., 2017; Cao et al., 2020). Hence, ATP4A and ATP4B are
important tumor suppressor genes.

Six supervised diagnostic models and one semi-supervised
diagnostic model were developed based on different algorithms
including SVM, RF, KNN, DT, NN, and XGB (supervised), and
LS (semi-supervised). The performance was evaluated by seven
metrics, namely, accuracy, specificity, sensitivity, precision, MCC,
F1 score, and AUC. All the models were trained through cross-
validation and further examined on the EV dataset GSE33335.
The results suggested that SVM and LS can serve as the most
appropriate algorithm for prediction. For example, LS90 can
learn from only 10% of labeled data and achieve 0.906 ± 0.008
and 0.986 ± 0.007 AUC scores for 90% unlabeled data and the EV
dataset. Therefore, this study demonstrates the potential ability of
the ML diagnostic model created with three hub gene expression
profiles of 780 samples.

In recent years, bioinformatics analyses based on machine
learning have been popularly used in individual medicine. For
example, multi-classifiers and deep neural networks are being
applied in cancer research (Huang et al., 2018; Zhang et al., 2021).
Comparing to previous studies, our research may be more robust
in model development and evaluation. First, we included five
datasets with 780 samples in the model development and internal
validation. Second, we also used an independent dataset only for
external validation. Huang et al. (2018) applied multi-classifiers
to select gastric cancer-related miRNAs in one dataset and
validate their performance in another two datasets. Huang
et al. and our team both explored the application of SVM in
the diagnosis of gastric cancer. Their SVM diagnostic model’s
AUC was 95% in the training dataset, which is slightly higher
than our corresponding AUC (93%). However, their model
achieved a biased performance on the two valid datasets: one
was 97%, while the other was less than 80%. Relatively fewer
samples in model development may be responsible for this
performance. Moreover, their two validation datasets were also
involved in biomarker selection; thus, they might not be totally
independent. Compared with the WGCNA and network control
analyses used in our study to screen potential cancer-related
genes, Zhang et al. (2021) fused gene expression data and DNA

methylation data to obtain relatively more biomarkers for
training their deep neural networks. On one hand, their study
got an extremely high performance in six metrics. The accuracy,
precision, recall, F1 score, and AUC value were all around 99%.
On the other hand, the absence of an external validation report
makes the generalization ability of their study remain unclear.

More several strengths of this study should be emphasized. First
of all, data sources in this study come fromAsia. Consistency in data
sources may strengthen the pertinence of the model. Second, rich
data in six datasets are sorted and then integrated into a
comprehensive one to build an objective and effective diagnostic
model. Third, hub genes selected from three robust methods were
used in combination (WGCNA, gene–gene interaction network, and
feature gene selection). Fourth, the selected hub genes are multiple-
validated by GEPIA2, HPA databases, and transcription factor–hub
gene regulatory network, the results of which further confirm the
importance of the selected biomarkers. Finally, the diagnostic model
is improvedwith the SMOTE and passes advancedmachine learning
analysis on an EV dataset and presented more convincing statistical
results than previous studies. This study still has some flaws. First,
this study deserves to be verified by subsequent independent
experiments. Second, although comprehensive bioinformatics
analyses were conducted in this study, an in-depth mechanistic
study of three hub genes had not been advanced.

Finally, this study systematically established a gastric cancer
diagnostic assistant based on multi-database bioinformatics and
machine learning analysis. Our results have a moderate effect on
auxiliary diagnosis. We expect future research to test the stability
of the model.
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Diabetic retinopathy (DR) is one of the most threatening complications in diabetic patients,
leading to permanent blindness without timely treatment. However, DR screening is not
only a time-consuming task that requires experienced ophthalmologists but also easy to
produce misdiagnosis. In recent years, deep learning techniques based on convolutional
neural networks have attracted increasing research attention in medical image analysis,
especially for DR diagnosis. However, dataset labeling is expensive work and it is
necessary for existing deep-learning-based DR detection models. For this study, a
novel domain adaptation method (multi-model domain adaptation) is developed for
unsupervised DR classification in unlabeled retinal images. At the same time, it only
exploits discriminative information from multiple source models without access to any
data. In detail, we integrate a weight mechanism into the multi-model-based domain
adaptation by measuring the importance of each source domain in a novel way, and a
weighted pseudo-labeling strategy is attached to the source feature extractors for training
the target DR classification model. Extensive experiments are performed on four source
datasets (DDR, IDRiD, Messidor, and Messidor-2) to a target domain APTOS 2019,
showing that MMDA produces competitive performance for present state-of-the-art
methods for DR classification. As a novel DR detection approach, this article presents
a new domain adaptation solution for medical image analysis when the source data is
unavailable.

Keywords: diabetic retinopathy classification, multi-model, domain adaptation, convolutional neural network, deep
learning

1 INTRODUCTION

Diabetic retinopathy (DR) is a complication of diabetic patients and a significant cause of blindness
globally among the working population (Antonetti et al., 2021). There are 451 million suffering from
DR in the world, and this is projected to increase to 639 million in 2045 (Cho et al., 2018). In
diabetics, blood is provided to all retina layers through micro blood vessels that are sensitive to
unrestricted blood sugar levels. DRmay cause no symptoms or only mild vision problems at first, but
it can cause blindness eventually. When substantial glucose or fructose is collected in the blood, blood
vessels begin to collapse due to insufficient oxygen supply to the cells. Occlusion in these blood
vessels can cause serious eye damage. As a result, metabolic rate decreases, and abnormal blood
vessels accumulate in DR (Dai et al., 2021). Microaneurysms (MAs) are the early signs of DR, which
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cause changes in the size (swelling) of the blood vessels.
Moreover, hemorrhages (HMs), exudates (EXs), and abnormal
blood vessel growth are the symptoms of DR. The International
Clinical Diabetic Retinopathy (ICDR) scale is one of the most
commonly used clinical scales and is composed of five levels of
DR: normal, mild, moderate, severe and proliferative (Bodapati
et al., 2021). Generally, diabetic retinopathy is divided into
referable diabetic retinopathy (RDR) and non-referable
diabetic retinopathy (NRDR).

Blindness can be completely avoided by early diagnosis. Annual
regular clinical examination for diabetics is strongly recommended,
especially for middle-aged and older adults (Mohamed et al., 2007;
Ferris, 1993). Nevertheless, researchers find that a considerable
number of people with diabetes failed to have annual eye
examinations due to very mild symptoms, long examination
time, and a shortage of ophthalmologists (Owsley et al., 2006;
MacLennan et al., 2014; Chou et al., 2014). Therefore, it is
necessary to adopt automatic DR diagnosis methods to lighten
the workload on eye specialists and shorten the detection time,
making patients understand the condition and get treatment in time.

Artificial intelligence (AI) is a popular technique for
computer-aided automatic DR diagnosis to overcome these
obstacles and deep learning has achieved progress in
biomedical image analysis (Meng et al., 2021b; Preston et al.,
2021; Meng et al., 2021a). Yoo and Park (2013) utilized ridge,
elastic net, and LASSO to perform validation on 1052 DR
patients. Roychowdhury et al. (2013) proposed a novel two-
step approach for DR detection, where non-lesions or normal
images are rejected in the first step, and bright and red lesions are
classified as hard exudates and hemorrhages, respectively in the

second step. In addition to the machine learning methods, the
deep learning method becomes very popular in DR screening in
recent years. For instance, Vo and Verma (2016) used a deep
neural network improved upon GoogLeNet and VGGNet for DR
recognition, aiming to learn fine-grained features of retinal
images. Moreover, He et al. (2020) combined two attention
blocks with a backbone network to solve the imbalanced DR
data distribution problem and capture more detailed lesion
information, respectively. Ai et al. (2021) proposed an
algorithm adopting deep ensemble learning and attention
mechanism to detect DR. However, both traditional machine
learning methods (Yoo and Park, 2013; Roychowdhury et al.,
2013) and supervised deep learning methods (Vo and Verma,
2016; He et al., 2020; Mohamed et al., 2021; Ai et al., 2021) require
a large amount of labeled retinal images to train their models,
which fail to new data from other domains. As an effective
solution, domain adaptation always requires source data,
which is usually difficult to access in practical applications
because of the strict privacy rules in medical image
management agencies.

To tackle this critical problem in supervised deep learning
methods, this article attempts to develop a multi-model domain
adaptation (MMDA) to conduct transfer learning for DR
classification without access to source data. As shown in
Figure 1, the proposed method can sufficiently utilize the
knowledge of source models and unlabeled target images to
improve the DR detection performance.

In the MMDA framework, the target model is initially
parameterized, and the trained source models are provided.
We propose a model weight determination module to estimate

FIGURE 1 | The work flow of our method.We train the target prediction model to simply use pre-trainedmultiple sourcemodels and unlabeled target retinal images.
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the importance of each source model by measuring the average
distance between two retinal feature groups extracted from the
source models and target model. This module is optimized by a
weight determination loss to output realistic model weights in
target feature learning. By using the weights of source models, the
pseudo label of the target images is obtained in a feature-level
clustering-based way. Finally, we optimize the target model by
cross-entropy loss and information maximization loss to
guarantee the performance of diabetic retinopathy detection.

To evaluate the performance of MMDA, we conduct extensive
experiments on five publicly available retinal image datasets: DDR,
IDRiD,Messidor, Messidor-2, and APTOS 2019, obtaining excellent
performance without access to source data. The results demonstrate
that our proposedmethod can effectively complete the DR diagnosis
task with only unlabeled target data.

2 MATERIALS AND METHODS

2.1 Data Acquisition
In order to validate our method for diabetic retinopathy diagnosis,
we trained four source models from publicly available datasets
(DDR, IDRiD, Messidor, and Messidor-2) and employed APTOS
2019 as the target domain.

DDR dataset (Diabetic retinopathy detection, 2015) involves
12,522 fundus images from a 45° field of view. In detail, it has
6,266 normal fundus images and 6,256 abnormal samples.
Moreover, the class distribution of the dataset is imbalanced in
that the normal images are more than the abnormal data.

The IDRiD dataset (Porwal et al, 2018) contains 516 fundus
images which were captured by an ophthalmologist from an
Indian eye clinic. It provides adequate quality and clinically
relevant fundus images with ground truths.

The Messidor dataset (Decencière et al., 2014) is a publicly
available diabetic retinopathy dataset provided by the Messidor
program partners, which consists of 1,200 retinal images, and for
each image, two grades, retinopathy grade, and risk of macular
edema, are provided.

TheMessidor-2 dataset (Decencière et al., 2014) has been globally
used by researchers for DR detection algorithm analysis, which is an
extension of Messidor. It contains 1,748 retinal images of 874
examinations. Although there are no official annotations for this
dataset, the third-party grades for 1,744 out of the 1,748 images
adjudicated by a panel of three retina specialists are available for
researchers (Messidor-2 dr grades, 2018).

The APTOS 2019 dataset (Khalifa et al., 2019) is the most
recent publicly available Kaggle dataset from the APTOS
Blindness Detection competition on Kaggle for DR detection.
It contains 3,662 labeled fundus photography images.

The above datasets are graded into five stages from 0 to 4 for
no DR, mild DR, moderate DR, severe DR, and proliferative DR,
respectively, according to the ICDR severity scale. The label
distribution of the datasets and the division of the referable
and non-referable DR are shown in Table 1. Moreover, the
APTOS 2019 dataset is regarded as the target domain, and the
other four datasets are used as source datasets to train source
models.

2.2 Data Preprocessing
When collecting retinal images, the differences in lighting
conditions and camera types may cause a large data
inconsistency (Graham, 2015). Data preprocessing mitigates
noise and enhances image details, reducing inconsistency and
playing a significant role in improving performance.

In order to eliminate these negative effects and make data
consistent, we perform data preprocessing in the following two
steps (Figure 2):

Step 1: Resize and crop.
Considering various resolutions of retinal images in different

datasets, we resize all images to 1,024 pixels if their width or height is
bigger than that size. Then, we crop as much of the black space by
identifying the center and radius of the circle in the retinal images.

Step 2: Image enhancement.
In DR detection, the observation of hard exudates,

hemorrhages, and cotton wools is significant for eye specialists
to diagnose. However, the variations of brightness and resolution
not only make ophthalmologists produce misdiagnoses but also
make it difficult for a model to compose robust features. To
address this problem, we perform image enhancement after
resizing and cropping by the following formula:

Io x, y; σ( ) � λG x, y; σ( )pI x, y( ) + ωI x, y( ) + δ (1)
where I (x, y) denotes the input retinal image, G (x, y; σ) is a
Gaussian filter with standard deviation σ, “p” represents the
convolution operator. λ, ω and δ are manually adjusted
variables. In our study, λ, ω and δ are set to 4, -4 and 128,
respectively. By improving image contrast with Eq. 1, the lesion
area is easier to distinguish.

2.3 Multi-Model Domain Adaptation
Architecture
This subsection elaborates on our proposed MMDA method,
which aims to address the central problem that the labeled image
data cannot always be obtained in automatic DR detection.

2.3.1 Overview
Domain adaptation is one of the branches of transfer learning in
computer science. For a vanilla multi-source unsupervised domain

adaptation task, we have n source domains with fundus images, and

Ni
s labeled samples {xj

i , y
j
i }
Ni

s

j�1 from the ith source domain are given,

where xji ∈ X i, y
j
i ∈ Yi, and alsoNt unlabeled retinal images {xj

t }
Nt

j�1

TABLE 1 | Label distributions of DDR, IDRiD, Messidor, Messidor-2, and APTOS
2019 datasets.

Dataset Type Non-referable Referable

No Mild Moderate Severe Proliferative

DDR Source 6,266 630 4,477 236 913
IDRiD Source 168 25 168 93 62
Messidor Source 546 153 247 254 —

Messidor-2 Source 1,017 270 347 75 35

APTOS 2019 Target 1,805 370 999 193 295
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from the target domainDt where x
j
t ∈ X t. Domain adaptation aims

to obtain a target model to predict the labels {yj
t }
Nt

j�1, where y
j
t ∈ Yt.

Here, the goal of MMDA is to learn a target prediction model for

function ht: X t → Yt and infer {yi
t}Nt

i�1, with only {xi
t}Nt

i�1 and the

source prediction models for function: hi: X i → Yi available. Note

that, only trained source models can be utilized, without access to

FIGURE 2 | Representative retinal images adopting our preprocessing techniques. From top to bottom, the representative images are sampled from no DR,
moderate DR, and proliferative DR, respectively. The parts (A–C) denote the original, resized and cropped, and enhanced retinal images.

FIGURE 3 | The overview of MMDA architecture. After preprocessing, we obtain the features of target retinal images by sourcemodels fi |ni�1 and target model ft, and
calculate the weight of each model μi using the single-layer neural network. The output of the target classifier is defined by the source classifiers with fixed parameters.
Pseudo labels ŷt for each retinal image xi are obtained after the process of feature-level clustering-based pseudo-labeling.
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their data. Figure 3 illustrates the overview of ourMMDAmodel for

referable DR detection.
Suppose that we have multiple trained source models for DR

classification and an ImageNet pre-trained target model. Each
model contains two modules: the feature encoding module
fi: X i → Rd and the classifier module pi: R

d → RK,
i.e., hi(x) = pi (fi(x)). Here, d is the dimension of the feature,
and K represents the number of categories. We extract the
features of retinal images using the source and target feature
encoding modules firstly. A single-layer neural network is
integrated to determine the weights of each source model
using euclidean distance and weight determination loss. By
employing the weights and source classifiers, target
prediction logits are obtained. Then the pseudo labels ŷt of
the target images are generated in a feature-level clustering-
based way. Finally, the whole network is optimized using cross-
entropy loss and information maximization loss to make the
target feature encoding module has excellent DR diagnosis
capability.

2.3.2 Source Model Generation
We consider producing several source backbone pre-trained
source models, i.e., hi = pi◦fi (i = 1, 2, /n), by optimizing
them using the following cross-entropy loss:

Li
src fi;X i,Yi( ) � −E xi,yi( )∈X i×Yi

∑
K

k�1
qk log σk hi xi( )( ) (2)

where σk(a) � exp(ak)
∑i

exp(ai) denotes the kth element in the softmax

output of a K-dimensional vector a, and q is the one-hot encoding

of yi where qk is set to “1” if yi is the kth class and the rest is set to
“0”. In order to learn more discriminative feature representations
and further enhance the following target data alignment, we
adopt the label smoothing technique because it prevents the
model from becoming over-confident thus improving
generalization and performance (Müller et al., 2019). With
label smoothing, the objective loss function is modified as below:

Li
src,ls fi;X i,Y i( ) � −E xi,yi( )∈X i×Yi

∑
K

k�1
qk,ls log σk hi xi( )( ) (3)

where qk,ls = (1 − α)qk + α/K represents the smoothed label and α
is the smoothing factor which is set to 0.1 experientially.

2.3.3 Information Maximization Loss for Target Model
Due to the source classifier modules encoding the distribution
information of unseen source data, our framework is proposed to
learn the domain-specific feature encoding module while the
source classifier modules are fixed. Specifically, MMDA employs
the weighted source classifier modules during the target model
learning process:

pt ·( ) � ∑
n

i�1
μipi ·( ) (4)

where μi is the weight for the ith source model, which will be
explained in detail in the following subsection.

In essence, our goal is to obtain an optimal target feature
extractor ft: X t → Rd for target retinal images, in order that
the extracted target features can match source distributions well.
However, it is noteworthy that the source images are not
accessible in our study. As a result, there’s no way to
perform feature-level alignment since it is unfeasible to
estimate the source distribution in the absence of source
data. We look at the problem from a different angle that the
expected output logits of the target model should seem like one-
hot encoding but differ from each other if the domain gaps are
mitigated. To this end, we employ the information
maximization (IM) loss (Hu et al., 2017), which enhance the
certainty and diversity of target outputs. Specifically, we
optimize ft by IM loss LIM that consists of two objective
functions Lce and Ldiv:

Lce ft;X t( ) � −Ext∈X t ∑
K

k�1
σk ht xt( )( )log σk ht xt( )( )

Ldiv ft;X t( ) � ∑
K

k�1
Pk log Pk � DKL P,

1
K
1K( ) − log K

LIM � Lce + βLdiv

5)

where ht(x) = pt ( ft(x)) is the K-dimensional output logits of
each retinal images, 1K is an all-ones vector with K elements,
and P � Ext∈X t[σ(ft(xt))] represents the average output
probabilities of the whole target domain, β is the balance
factor. Information maximization would work better than
conditional entropy minimization (Grandvalet and Bengio,
2005) commonly used in traditional domain adaptation
works, since it can circumvent the trivial solution where
all unlabeled fundus images have the same one-hot
encoding via the fair diversity-promoting objective
function Ldiv.

2.3.4 Model Weight Determination
In the MMDA framework, a robust target feature encoder is
learned by bridging the domain gap between each source domain
and the target domain. However, the feature discrepancies
between each source domain and target domain are different.
To measure the feature discrepancies, we propose a Model
Weight Mechanism (MWM). Precisely, we first calculate the
average Euclidean Distance between the ith source domain
and the target domain:

τi � 1
Nt

∑
Nt

j�1
|fi xj( ) − ft xj( )| (6)

The closer the τi is, the more important the source model, i.e., the
greater the weight is. To this end, we integrate a single-layer neural
network, which is parameterized by a weight vector
w � (w1, w2,/wd) ∈ Rd×1. Formally, we learn model weight μi as

μi �
exp ReLU wTτi( )( )

∑N
j�1 exp ReLU( wTτj( )

(7)

where ReLU(·) = max (0, ·) is an activation function, which
guarantees the nonnegativity of μi. The role of the above softmax
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operation is to guarantee the model weight satisfy the following
property:

∑
n

i�1
μi � 1, μi ≥ 0 (8)

We optimize the weight vector of the single-layer neural
network w by minimizing the following loss function:

LWD w;X t( ) � 1
Nt

∑
n

i�1
∑
Nt

j�1
μi fi xj( ) − ft xj( )













2

2
(9)

That is, a larger distance ‖fi(xj) − ft(xj)‖2 between features fi(x)
and ft(x) enforces a smaller value μi.

2.3.5 Feature-Level Clustering-Based
Pseudo-Labeling
The role of IM loss in Eq. 5 is to enforce the similarity of one-hot
encoding output. Therefore, an accurate prediction network is
crucial to reduce this impact. For this purpose, a pseudo-labeling
strategy at the feature level is applied for better supervision during
the adaptation process.

First, the weighted features centroid of target retinal images
for each class is obtained, similar to weighted k-means
clustering.

m 0( )
k � ∑n

i�1∑xt∈X t
μiσk hi xt( )( )fi xt( )

∑xt∈X t
σk hi xt( )( ) (10)

These centroids can robustly and more reliably characterize
the distribution of different categories within the target domain.
Then, the pseudo labels can be attained via the nearest centroid
classifier:

ŷt � arg min
k

Dc ft xt( ), m 0( )
k( ) (11)

whereDc(a, b) � 1 − a·b
‖a‖‖b‖ represents the cosine distance between

vector a and b.
Based on generated ŷt previously , new centroids m(1)

k and
pseudo labels are computed:

m 1( )
k �

∑n

i�1∑xt∈X t
1 ŷt�k[ ]μifi xt( )

∑
xt∈X t

1 ŷt�k[ ]
ŷt � arg min

k

Dc ft xt( ), m 1( )
k( )

(12)

We refer to ŷt in Eq. 12 as the final pseudo labels.
To sum up, given n source models hi = pi◦fi (i = 1, 2, /n)

and the final pseudo labels ŷt generated from Eq. 12,
MMDA fixes the parameters of sources classifiers, pt(·) �
∑n

i�1μipi(·) and optimizes the feature extractor ft with the
overall loss as:

Loa ft( ) � LIM − γE xt,ŷt( )∈X t×Ŷt
∑K

k�1 1 k�ŷt[ ] log σk pt ft xt( )( )( )

(13)
where γ > 0 is a balancing hyper-parameter. The whole
implementation of MMDA model is shown in Algorithm 1.

Algorithm 1. Pseudo-code of MMDA training process

2.4 Implementation Details
In the experiments we first train the source models by corresponding
source retinal datasets, and eachmodel is designed following ResNet-
50 (He et al., 2016). As for the target model, it also employs ResNet-
50, initialized by pre-trained parameters from ImageNet (Deng et al.,
2009). We perform data argumentation by applying random
horizontal flips, vertical flips, and random rotation to prevent
overfitting. The input size of the MMDA is 224 × 224. We
trained 40 epochs for all the source models using the Stochastic
Gradient Descent (SGD) optimization algorithm (Kingma and Ba,
2014) with a learning rate decay factor of 1e−4. The learning rates for
DDR, IDRiD,Messidor, andMessidor-2 datasets are 5 × 10–3 equally.
For the target training, we adopt a mini-batch SGDwith momentum
0.9, weight decay 1e−4, and learning rate ζ = 1e−2. The balance factor
for IM loss β and the overall loss γ are set to 0.3 and 0.3, respectively.
In addition, a batch size of 64 is set for the entire experimental
process.MMDA is implemented on twoNVIDIARTX 2080TiGPUs
with 2 × 11 GB RAM using the PyTorch framework.

To validate the effectiveness of MWM (Section 2.3.4), we adjust
μi in Eqs 4, 10, 12. Moreover, hyper-parameters β in LIM and γ are
fine-tuned to analyze their influence on DR detection performance.
Details are described in Section 3.3 and Section 3.4. Note that we do
not integrate model weight mechanism and pseudo-labeling into the
target model until training the target model several epochs with IM
loss. That means we attach the model weight and pseudo-labeling
modules when the target model has a certain diagnosing capability.

3 RESULTS

3.1 Evaluation Metrics
To measure the performance of the MMDA model, we employ
accuracy and sensitivity as the measurements. The accuracy can be
defined as the percentage of correctly classified images. Sensitivity
measures the ability of a test to correctly identify samples with
referableDR,which is an effectivemetric tomeasure theDRdiagnosis.

This metric is calculated as follows. First, we compute the
accuracy by TP+TN

TP+FP+TN+FN, where TP is the correctly predicted
positive samples, TN denotes the correctly predicted negative
images, and FP represents the false predicted positive samples
and FN means the false predicted negative images. For the
sensitivity, it follows the formula,
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sensitivity � TP
TP + FN

(14)

3.2 Performance Compared With
Supervised Learning Methods
We first compare MMDA with the existing supervised learning
methods on the APTOS2019 dataset. Specifically, Xie et al. (2017)
present a simple, highly modularized network architecture for image
classification, which is often employed in DR detection; Vives-Boix
and Ruiz-Fernández (2021) conducted automated detection of DR by
directly interfering in both learning and memory by reinforcing less
common occurrences during the learning process; Narayanan et al.
(2020) proposed a hybridmachine learning architecture to detect and
grade the level of diabetic retinopathy; Farag et al. (2022) proposed an
automatic deep-learning-based model for severity detection by
utilizing a single color fundus photograph. From Table 2, it is

observed that MMDA achieves approving results with 90.6%
accuracy and 98.5% sensitivity. Our method performs a relatively
excellent accuracy compared with the compared methods, which
only remains a distance of 2.2%, and it presents the second-best
sensitivity of 98.5%, only weaker than Narayanan et al. (2020).
Although the results of MMDA are lower than these supervised
learning methods, huge amounts of labeled data are essentially
required in their training process. In contrast, we train MMDA
simply to utilize unlabeled retinal images and obtain satisfactory
performance, showing the superiority of our framework for DR
diagnosis.

3.3 Performance Analysis on Model Weight
Mechanism
We design a novel model weight mechanism (MWM) to assign a
learnable weight to each model. To verify the effect of the MWM,
we perform ablation studies to analyze the MWM for the source
classifier modules and the pseudo-labeling process using different
backbones.

MWM for source classifier modules: We fix the source classifier
modules, so we can fully utilize the source distribution information
in themodules when the source data is not available. Meanwhile, the
discrepancy between each source domain and the target domain
cannot be ignored. Specifically, we integrate the weight mechanism
into the classifiers by Eq. 4. To verify the effect of MWM in utilizing
the source distribution information, we conduct a study using
Average-weighted Classifier Multi-model Domain Adaptation
(ACDA), which is the MMDA model with μi � 1

n (i � 1, 2,/n)
in Eq. 4. As shown in Table 3, we obtain accuracy and sensitivity of
0.873 and 0.965 for VGG-16, 0.880 and 0.972 for RestNet-50, with
accuracy drops of 2.8%, 2.6% for VGG-16 and ResNet-50,
respectively, which demonstrates that MWM contributes huge
effectiveness on multi-model source distribution learning.

MWM for pseudo-labeling: To evaluate the contribution of
MWM in features centroid determination, we carry out an
experiment named APDA, which is a modified MMDA with μi �
1
n (i � 1, 2,/n) in Eqs 10–12. With this setting, this model performs
at accuracies of 0.882 and 0.902 for VGG-16 and ResNet-50

TABLE 3 | The DR classification results of MMDA with different backbones on the
APTOS 2019 dataset.

Backbone Method Accuracy Sensitivity δ Accuracy (%)

VGG-16 ACDA 0.873 0.965 ↓2.8
APDA 0.882 0.973 ↓1.9
MMDA 0.901 0.980 -

ResNet-50 ACDA 0.880 0.972 ↓ 2.6
APDA 0.902 0.960 ↓ 0.4
MMDA 0.906 0.985 -

The best results are in bold.

TABLE 4 | DR classification results using different β on the APTOS 2019 dataset.

β 0.1 0.2 0.3 0.4 0.5

Accuracy 0.899 0.903 0.906 0.902 0.851
Sensitivity 0.984 0.962 0.985 0.987 0.986

The best results are in bold.

TABLE 5 | DR classification results using different γ on the APTOS 2019 dataset.

γ 0.1 0.2 0.3 0.4 0.5

Accuracy 0.877 0.896 0.906 0.905 0.902
Sensitivity 0.976 0.982 0.985 0.966 0.963

The best results are in bold.

FIGURE 4 | ROC curve of DR diagnosis on the APTOS 2019 dataset.

TABLE 2 | Accuracy and sensitivity of MMDA for diabetic retinopathy diagnosis
compared with state-of-the-art supervised learning approaches on the
APTOS 2019 dataset.

Method Accuracy (%) Sensitivity (%)

Xie et al. (2017) 92.8 86.8
Vives-Boix and Ruiz-Fernández (2021) 94.5 90.0
Narayanan et al. (2020) 98.4 98.9
Farag et al. (2022) 97.0 97.0

MMDA (Ours) 90.6 98.5
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respectively. All results are lower than the original MMDA model.
This is because the average model weight cannot determine accurate
centroids of features, which results in incorrect pseudo labels and
failing to bridge the domain gap between each source domain and
target domain. With MWM, the importance of each source model
can be determined, which helps to obtain a more accurate pseudo
label and improve the model performance.

3.4 Performance Analysis on
Hyper-Parameters
To further validate the effectiveness of each component in
MMDA, we explore the influence of hyper-parameters on the
performance of our model.

The choice of β in LIM: β is a balancing factor that adjusts the
contribution of fair diversity-promoting objective Ldiv. The DR
classification performance of MMDA with β from 0.1 to 0.5 is
shown in Table 4. As reported, both accuracy and sensitivity is
improved with the increase of β, and MMDA achieves the best
performance when β is set to 0.3. However, when we further
increase the value of β, the results start to decrease. We consider
that the high β value weakens the effect of Lce, which leads the
decision boundary to go through the high-density region.

The choice of γ: γ is a balancing factor of the information
maximization loss LIM and the cross-entropy loss in the overall
loss Loa. In this section, we investigate the effectiveness of this
hyper-parameter. The results shown in Table 5 demonstrate that
MMDA achieves the highest effectiveness when γ is set to 0.3. The
cross-entropy loss in the overall loss Loa acts as a guide of the
target model. If γ is too small, the effect of the pseudo labels is
reduced. If γ is too large, the generalization of the target model
will be limited. In order to learn more discriminative features in
the target domain and enhance the DR diagnosis performance of
the model, it is necessary to adjust the best value of γ.

3.5 Visual Analysis of Model Performance
Furthermore, in order to prove the superiority of the MMDA
framework for practical applications, the ROC curve, and t-SNE
plot are adopted to visualize our model.

ROC curve: The receiver operating characteristic curve is a
graphical plot that illustrates the diagnostic ability of a binary
classifier system as its discrimination threshold is varied. The
ROC curve is created by plotting the true positive rate (TPR)
against the false positive rate (FPR) at various threshold settings.
In the ROC curve, the closer the apex of the curve toward the upper
left corner, the greater the discriminatory ability of the test. The ROC
curve of MMDA for diabetic retinopathy classification is drawn in
Figure 4, which obtains the area under the ROC curve of 0.94 and is
above the diagonal and close to the point in the upper left corner,
demonstrating thatMMDAhas a satisfying prediction performance.

t-SNE plot: t-Distributed Stochastic Neighbor Embedding
(t-SNE) is a technique for dimensionality reduction that is
particularly well suited for the visualization of high-dimensional
data. It maps high-dimensional data to two or more dimensions
suitable for human observation. In order to validate the
effectiveness of MMDA, we perform a t-SNE plot using the
target image features extracted by the trained target feature
encoding module (ft). As shown in Figure 5, retinal images of
non-referable DR and referable DR are well separated, because
MMDA can learn discriminative features to detect referable
diabetic retinopathy. The relatively clear boundaries in Figure 5
suggest that it is practical to train a robust prediction model using
MMDA in the absence of labeled target data.

4 DISCUSSION

Retinal images are usually used to build an automatic diabetic
retinopathy diagnosis system (Gardner et al., 1996; Acharya et al.,

FIGURE 5 | The t-SNE plot of DR classification on the APTOS 2019 dataset.
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2009; Ram et al., 2010; Gulshan et al., 2016; Lam et al., 2018; Jiang
et al., 2019; Preston et al., 2021). However, whether using
traditional machine learning methods (Gardner et al., 1996;
Acharya et al., 2009; Ram et al., 2010) or deep supervised
learning methods (Gulshan et al., 2016; Lam et al., 2018; Jiang
et al., 2019; Preston et al., 2021), they all need a large amount of
labeled data during training. In the biomedical image analysis
field, labeling work is expensive and the privacy issue is highly
sensitive. To tackle this challenge, we consider developing an
unsupervised method that the DR diagnosis performance is
excellent but labeled retinal images are unnecessary.

In this article, we present a novel MMDA that incorporates
model weight mechanism into the MMDA technique. MMDA can
be trained in an end-to-end manner with merely unlabeled target
retinal images for DR classification. To the best of our knowledge,
MMDA is the first attempt to automatically diagnose diabetic
retinopathy by adopting an unsupervised domain adaptation
technique with multiple source models. The main advantage of
this article is that the MMDA can learn helpful knowledge only
from source models without any source data, which can relieve the
limitation of data privacy from different medical agencies.

Our proposed MMDA method aims to exploit the source
knowledge and relationship between the source models and the
target model, instead of learning from labeled retinal images
directly, thus helping protect the patients’ privacy and no need to
label images.

In order to fully explore the discrepancy between each source
domain and target domain, we propose a model weight mechanism.
By incorporating the mechanism into the source classifiers and
feature-level clustering-based pseudo-labeling process, the diagnosis
performance of the target model is improved.

Extensive experiments and ablation studies on the
APTOS2019 dataset demonstrate that MMDA achieves
competitive DR diagnosis performance in comparison with
state-of-the-art supervised learning methods. However, the DR
classification performance still has a distance from the advanced
supervised methods due to the discrepancy between source and
target models, especially for the invalid access to source data.

Model visualizations (Figures 4, 5) suggest that non-referable
(grade 0, 1) and referable cases (from grade 2 to 4) can be
diagnosed well. We will focus on the fine-grained classification
of the DR grading task (Zheng et al., 2017) in the future.

5 CONCLUSION

When incorporating deep learning techniques in the automatic DR
diagnosis system, time-consuming labeling work and privacy issues

are critical problems. The present study is designed to exploit
existing models and unlabeled retinal images for DR diagnosis to
resolve these issues. Ablation studies show the effectiveness of our
proposed modules, and the comparison with state-of-the-art
supervised learning approaches demonstrates the superiority of
our method. Moreover, model visualization indicates that our
method can effectively diagnose non-referable and referable
cases, with excellent diagnosing results.
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A Predictive Model for the 10-year
Overall Survival Status of PatientsWith
Distant Metastases From
Differentiated Thyroid Cancer Using
XGBoost Algorithm-A Population-
Based Analysis
Shuai Jin1†, Xing Yang2†, Quliang Zhong3†, Xiangmei Liu4, Tao Zheng1, Lingyan Zhu5*† and
Jingyuan Yang6*†
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Purpose: To explore clinical and non-clinical characteristics affecting the prognosis of
patients with differentiated thyroid cancer with distant metastasis (DTCDM) and establish
an accurate overall survival (OS) prognostic model.

Patients and methods: Study subjects and related information were obtained from the
National Cancer Institute’s surveillance, epidemiology, and results database (SEER).
Kaplan-Meier analysis, log-rank test, and univariate and multivariate Cox analysis were
used to screen for factors influencing the OS of patients with DTCDM. Nine variables were
introduced to build a machine learning (ML) model, receiver operating characteristic (ROC)
was used to evaluate the recognition ability of the model, calibration plots were used to
obtain prediction accuracy, and decision curve analysis (DCA) was used to estimate clinical
benefit.

Results: After applying the inclusion and exclusion criteria, a total of 3,060 patients with
DTCDM were included in the survival analysis from 2004 to 2017. A machine learning
prediction model was developed with nine variables: age at diagnosis, gender, race, tumor
size, histology, regional lymph node metastasis, primary site surgery, radiotherapy, and
chemotherapy. After excluding patients who survived <120months, variables were sub-
coded and machine learning was used to model OS prognosis in patients with DTCDM.
Patients 6–50 years of age had the highest scores in the model. Other variables with high
scores included small tumor size, male sex, and age 51–76. The AUC and calibration
curves confirm that the XGBoost model has good performance. DCA shows that our
model can be used to support clinical decision-making in a 10-years overall survival model.

Conclusion: An artificial intelligence model was constructed using the XGBoost
algorithms to predict the 10-years overall survival rate of patients with DTCDM. After

Edited by:
Xin Gao,

King Abdullah University of Science
and Technology, Saudi Arabia

Reviewed by:
Eman Toraih,

Tulane University, United States
Lei Zhu,

Fifth Affiliated Hospital of Wenzhou
Medical University, China

Hongzhou Liu,
Chinese PLA General Hospital, China

*Correspondence:
Lingyan Zhu

zhuling_happy@126.com
Jingyuan Yang

yangjingyuan@gmc.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 15 March 2022
Accepted: 16 June 2022
Published: 08 July 2022

Citation:
Jin S, Yang X, Zhong Q, Liu X, Zheng T,
Zhu L and Yang J (2022) A Predictive
Model for the 10-year Overall Survival

Status of Patients With Distant
Metastases From Differentiated
Thyroid Cancer Using XGBoost

Algorithm-A Population-
Based Analysis.

Front. Genet. 13:896805.
doi: 10.3389/fgene.2022.896805

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 8968051

ORIGINAL RESEARCH
published: 08 July 2022

doi: 10.3389/fgene.2022.896805

140

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.896805&domain=pdf&date_stamp=2022-07-08
https://www.frontiersin.org/articles/10.3389/fgene.2022.896805/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.896805/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.896805/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.896805/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.896805/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.896805/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhuling_happy@126.com
mailto:yangjingyuan@gmc.edu.cn
https://doi.org/10.3389/fgene.2022.896805
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.896805


model validation and evaluation, the model had good discriminative ability and high clinical
value. This model could serve as a clinical tool to help inform treatment decisions for
patients with DTCDM.

Keywords: differentiated thyroid cancer, Xgboost algorithm, machine learning, distant metastases, predictive
model, SEER database

INTRODUCTION

Differentiated thyroid cancer (DTC) is the most common
endocrine malignancy, with the global incidence increasing
dramatically in recent decades (Cabanillas et al., 2016; Siegel
et al., 2020). Most DTC patients have a good long-term prognosis
because of biological characteristics and effective responses to
treatment modalities (Lim et al., 2017; Liu et al., 2018). For TC
patients with distant metastasis (DM), however, the overall
prognosis is significantly worse (Durante et al., 2006; Sugitani
et al., 2008; Farooki et al., 2012; Nies et al., 2021).

The main histological subtypes of DTC include papillary
thyroid carcinoma (PTC), and follicular thyroid carcinoma
(FTC), <10% of people with DTC will develop DM (Durante
et al., 2006). Most DTCDM is asymptomatic and only detected

during systematic surveillance or systemic metastatic
examination of malignant lymph nodes. The common site of
distant metastases from thyroid cancer is the lung, followed by the
bone, brain, and liver (Chesover et al., 2021; Liu et al., 2021).
Because the incidence of DM is low and there is often an absence
of symptoms, it is frequently overlooked at the time of initial TC
diagnosis. Ten-year survival rates are often used to assess DTC
treatment efficacy and characterize risk factors. For patients with
metastatic thyroid cancer, treatment is often individualized and
usually consists of thyroid surgery with adjuvant radiotherapy or
chemotherapy (Sampson et al., 2007). While prognostic models
have been developed to study factors influencing different
primary cancer subtypes (Zhao et al., 2019; Zhou et al., 2020;
Jin et al., 2021; Kong et al., 2021), the 10-years overall survival of
patients with DTCDM is unclear, especially because OS has not

FIGURE 1 | Sample screening process.
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changed significantly in recent decades (Goffredo et al., 2013). In
addition, there are few prognostic models for DTCDM that can
help to inform patient follow-up and treatment decisions (Chen
et al., 2021).

Machine learning (ML) is an emerging multi-disciplinary
approach used to correlate multiple discrete variables and
accurately predict outcomes. Following the development of
evidence-based medicine and the need for more advanced
tools to collect medical data with complex structures and large
sample sizes, ML emerged as an alternative approach to disease
diagnosis and prognosis, with high predictive performance and a
wide range of applications (Goecks et al., 2020; May, 2021). ML
algorithms are now being successfully applied to predict cancer
survival (Angraal et al., 2020). The XGBoost algorithm (XGB), in
particular, is shown to have excellent prediction performance in
previous studies (Senders et al., 2020; Jiang et al., 2021).

The Surveillance, Epidemiology, and End Results (SEER)
program is a population-based cancer registry system
sponsored by the United States’ National Cancer Institute
(NCI) that currently covers about 28% of the population in 18
registered states (Noone et al., 2016). Using the considerations
listed above, a prognostic modeling analysis of patients with
DTCDM was conducted using SEER data. This study assessed
the ability of clinical and non-clinical factors to predict DTCDM
using the XGB model. The XGB model was also built to predict
the 10-years OS rate of TC patients with DM. The performance of
the XGBoost model using logistic regression (LR), random forests
(RF), and support vector machine (SVM)models were compared.

MATERIALS AND METHODS

Study Population
This study used the SEER database (https://seer.cancer.gov/)
developed by the National Cancer Institute, a free cancer
registry in the United States. A data use agreement was signed
with the SEER database official and all authors followed the
specified conditions. Because SEER data is freely available to
researchers and patient personal information is officially
withheld, no moral or ethical support from the host institution
was required for this study.

Data was downloaded from the SEER 18 regs plus database
using SEER*Stat (Version 8.3.9.2, https://seer.cancer.gov/data-
software/). Data were selected from patients with histologically
confirmed distant metastatic thyroid cancer using the following
criteria: 1) primary site code is C73.9 - thyroid gland, 2) dates
ranging from 2004 to 2017, 3) PTC (histologic codes 8050, 8260,
8340–8344, 8350, 8450–8460), FTC (8290, 8330–8335), and 4)
diagnosis confirmation combined with a summary stage for the
distant future. Exclusion criteria included 1) sequence numbers
for second or later occurrences, 2) unknown race, 3) unclear
tumor size, 4) unknown surgery, 5) unknown regional nodes
positive (RN_positive), and 6) survival time of 0 or unknown. A
total of 3,060 patients were included in the survival analysis to
clarify possible factors influencing the prognostic model. Of these,
1,487 patients who had survived <120 months by the follow-up

cut-off date were excluded and 1,573 patients were included in the
prediction model and grouped in the training set (n = 1,101; 70%)
or the validation set (n = 472; 30%) at a 7:3 ratio (Figure 1).

Variable Selection and Endpoints
To take full advantage of ML, several established demographic
and clinical characteristics were selected as independent variables
for analysis. Pathology variables commonly used in thyroid
cancer research, including tumor size, histological type,
regional lymph node status, surgical modality, radiotherapy,
and chemotherapy, and demographic indicators, including age,
gender, and ethnicity were included. Age and tumor size were
optimally stratified for processing using X-tile software (https://
medicine.yale.edu/lab/rimm/research/software/) and included in
the survival analysis. These analyses were performed before
excluding patients who survived for <120 months. The 10-
years OS rate for patients with DTCDM was defined as the
model endpoint.

Statistical Analysis
All statistical analyses and model building in this study were
performed using R (version 4.1.2, https://www.r-project.org/).
The Kaplan–Meier method, with both univariate and
multifactorial Cox, was used to screen for OS prognostic
factors in thyroid cancer patients, and all variables were used
to construct prognostic models. The Chi-square test was then
used to analyze differences between the training and validation
cohorts. The training set was used to build the XGBoost model
and the model was evaluated with the test set. The model
capability evaluation includes the following three items: 1)
receiver operating characteristic (ROC) curves were used to
analyze model discrimination and the area under the ROC
curve (AUC) was used to assess predictive model accuracy
(Hanley and McNeil, 1982; Wolbers et al., 2009); 2)
calibration plots were used to assess the performance of the
model, which calibrates how well model predictions agree with
the actual observations (Leonard et al., 2020); and 3) decision
curve analysis (DCA) was used to assess the clinical usefulness
and net benefit of predictive model performance by calculating
the difference between the true and false positive rates, weighted
by the probability of the chosen risk threshold to assess the net
benefit of the model (Vickers and Elkin, 2006). Logistic
regression, SVM, and random forest models were built for
comparison to the XGBoost model.

RESULTS

Baseline Characteristics and Survival
Analysis
A total of 3,060 patients with DTCDM were included in the
survival analysis for variable screening. The best cut-off values
for age were 50 and 76 years old, and the tumor size was 27 and
65 mm (Supplementary Figure S1). Most of the study
population (54.02%) was 51–76 years of age with a higher
proportion of females than males. Most patients’ tumor size
was <6.5 cm and the most common histological type was PTC
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(86.41%), and FTC type has about 14%. Above half of patients had
regional node metastases (56.44%) and total thyroidectomy,
radiotherapy, and chemotherapy were used for 56.44%, 76.16%,
and 5.33% of patients, respectively. After validation using the
Kaplan–Meier method and log-rank test, only survival rates of
DTCDM patients did not differ between races (Figure 2C), and all
other variables differed at all scales (Figures 2A,B,D–I). We
performed univariate and multivariate Cox models for age,
gender, race, tumor size, histological type, RN_positive, surgery,
radiotherapy, and chemotherapy, respectively. The multivariate
model showed that all variables were independent prognostic
factors for DTCDM, except for the race (Table 1).

Prognostic Model Construction
Using survival analysis, the following nine variables were included
in the prognosticmodel: age, sex, race, tumor size, histological type,
RN_positive, surgery, radiation, and chemotherapy. Most patients
(65.9%) with DTCDM ≥10 years were 51–76 years of age, and a
higher proportion were women (59.0%) and had PTC histologic
staging (81.8%), total thyroidectomy (76.7%), radiotherapy
(72.3%), and chemotherapy (7.6%). Analysis of the differences
between the two groups for each variable showed no statistical
difference, indicating good comparability between the training and
validation sets (Table 2).

Unlike associated studies (Hou et al., 2020; Wei et al., 2021),
categorical variables were included in the prediction model as

“dummy variables”, age: >76 years, sex: female, race: black,
histological type: FTC, tumor size: >65mm, surgery: no,
radiation: no, chemotherapy: no, and RN_positive negative as a
control. The XGB algorithm identifies the importance of features
based on the magnitude of the gain value obtained for each variable
(relative importance scores out of 100), with higher values indicating
greater importance to the predicted target. The variables with the
highest scores are: age: 6–50 years (39points), tumor size: 1–27mm
(11 points), sex: male (7 points), age: 51–76 years (6 points),
RN_positive: not examined (5 points), tumor size: 28–65mm (5
points), and radiation: yes (5 points) (Figure 3). These variables were
included in the LR, SVM, RF models, along with the XGBmodel for
performance testing.

Model Performance
The optimal model performance parameters were determined
after several validations and debugging. To assess the ability of the
XGB, SVM, LR, and RF models to identify the OS of patients with
10-years DTCDM, the training and validation sets were plotted,
and the AUC was calculated.

In the training cohort, the AUC of the XGB model was 0.948,
higher than the AUC of the other models (SVM AUC, 0.888; LR
AUC 0.873, RF AUC,0.881), and The AUC of XGB in the test group
was 0.864, slightly lower than the AUCs of LR and SVM (0.889 and
0.871) and higher than the AUC of the RFmodel (0.858) (Figure 4).
The calibration plots of the 10-years TCDMOS for the training and

FIGURE 2 | Kaplan–Meier survival curves to evaluate the impact of each classified characteristic.
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test sets showed good linear agreement between predicted and actual
observations from the XGB model. The XGB and LR models fit
better than the SVM and RFmodels (Figure 5). The DCA curves for
the XGB, SVM, RF, and LRmodels were plotted for the training and
test cohorts. The y-axis of the decision curve represents the net
benefit, the decision analysis metric that determines whether the
benefits of a particular clinical decision outweigh the harms. Each
point on the x-axis represents a threshold probability that
distinguishes between patients who die and those who survive.
The analysis shows that the XGB, LR, RF, and SVM models all
achieve a net clinical benefit (Figure 6).

DISCUSSION

Survival prediction is very difficult inmalignancy but important for
treatment planning and patient management (Cheon et al., 2016).
Compared to the empirical predictions of clinicians, the XGBoost
model provides a more reliable option for the 10-years survival
status of patients with distant metastases from thyroid cancer. The
current study found that XGB had a good predictive value and
could help clinicians to develop a rational individualized treatment
and management plan. Although thyroid cancer is a relatively

slow-growing cancer, once distant metastasis has occurred, the
tumor grows exponentially at the location of metastasis, explaining
why patients with DM have a worse prognosis (Rajan et al., 2020).
While DTC generally has a favorable prognosis, the clinical course
can be poor (See et al., 2017). Assessing the survival of patients with
DTCDM is thus of great clinical importance.

This study used survival analysis to screen for factors that may
affect the OS of patients with DTCDM. Although, the multiple
Cox model we developed showed that race is not a prognostic
factor for DTCDM patients. One study showed that race does
affect the survival of patients with differentiated thyroid cancer
and that treatment options need to be specific to different racial
groups (Tang et al., 2018). However, Crepeau et al. (Crepeau et al.,
2021) found that thyroid cancer prognosis and recurrence did not
differ by race following the same surgical approach, especially
when all patients receive the same quality of care. It is likely that
differences in the prognosis of TC patients by race are the result of
social and economic differences between racial groups.

The XGB algorithm is a new type of AI algorithm that is easy
to use, efficient and accurate. This algorithm is becoming
increasingly popular in the medical field and is now widely
used for disease prediction and early diagnosis. The current
study used the prognostic variables obtained from survival

TABLE 1 | The baseline characteristics, univariate and multivariate cox analysis.

Characteristics Total Univariate Multivariate

(n, %) HR (95% CI) p HR (95% CI) p

Age at diagnosis, years
77–99 376 (12.29) References References
6–50 1031 (33.69) 0.07 (0.06–0.09) <0.001 0.10 (0.08–0.13) <0.001
51–76 1653 (54.02) 0.41 (0.36–0.47) <0.001 0.49 (0.43–0.57) <0.001
Sex
Female 1862 (60.85) References References
Male 1198 (39.15) 1.59 (1.41–1.79) <0.001 1.27 (1.12–1.43) <0.001

Race
Black 212 (6.93) References References
Other 497 (16.24) 0.82 (0.64–1.07) 0.141 0.98 (0.75–1.27) 0.858
White 2351 (76.83) 0.85 (0.68–1.06) 0.143 1.04 (0.83–1.31) 0.714

Tumor size, mm
66–680 418 (13.66) References References
28–65 1357 (44.35) 0.53 (0.46–0.61) <0.001 0.7 (0.70–0.82) <0.001
1–27 1285 (41.99) 0.25 (0.21–0.29) <0.001 0.41 (0.34–0.49) <0.001

Histologic
FTC 416 (13.59) References References
PTC 2644 (86.41) 0.42 (0.36–0.48) <0.001 0.78 (0.66–0.91) <0.001

RN positive
Negative 450 (14.71) References References
Not examined 883 (28.86) 2.08 (1.71–2.52) <0.001 1.34 (1.09–1.64) 0.005
Positive 1727 (56.44) 1.15 (0.95–1.39) 0.145 1.47 (1.21–1.79) <0.001

Surgery
No 227 (7.42) References References
Other 253 (8.27) 0.33 (0.26–0.41) <0.001 0.53 (0.42–0.67) <0.001
Total thyroidectomy 2580 (84.31) 0.16 (0.13–0.18) <0.001 0.35 (0.28–0.42) <0.001

Radiation
No 760 (24.84) References References
Yes 2300 (76.16) 0.66 (0.58–0.75) <0.001 0.86 (0.75–0.98) 0.029

Chemotherapy
No 2897 (94.67) References References
Yes 163 (5.33) 4.73 (3.89–5.75) <0.001 2.55 (2.07–3.13) <0.001

RN, positive, regional nodes metastases.
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analysis to develop a prognostic model for DTCDMOS using the
XGB algorithm. The model was validated by combining the
clinical and non-clinical variables and was shown to be highly
effective. Additional factors that may affect OS and provide more
clinical information about DTCDM, were also reported.
Traditional ML LR also performed well, possibly because of
the study data or because LR performs just as well as ML in
clinical prediction models (Christodoulou et al., 2019).

Age was the highest-scoring, and thus most significant,
variable in the XGB model, Patients <51 years of age had
significantly higher OS than patients >80 years of age. The role
for age in predicting TC has been confirmed by other studies, with
older patients having a poorer prognosis than younger patients
(Sampson et al., 2007; Nixon et al., 2012). Compared with the 8th
edition of the TNM staging system with a cut-off value of
55 years, the optimal cut-off values for age in this study were
50 and 77 (Amin et al., 2017). This implies that the cut-off value
for age may need to be studied in depth for patients with distant
metastatic thyroid cancer. In the current study, there was also a
significant score for the 51–79 age group. These findings suggest
that treatment should be tailored to patients in different age
groups.

The results of one study confirm that patients with PTC with
distant metastases have a good prognosis after treatment (Sampson
et al., 2007). Another study found that sex is a prognostic factor for
DTCDM, likely because estrogen production limits cancer
progression (Suteau et al., 2021). The current study found that
tumor size was an important factor affecting DTCDM OS, with
relatively significant scores for both 1–27mm and 28–65mm, a
finding supported by Nguyen et al. (Nguyen et al., 2018). Han et al.
reported that 15–20mm tumors do not affect the OS of TCDM
patients (Han et al., 2017). Unexamined metastases and those
localized in the lymph nodes also scored highly. The number of
lymph node metastases correlates strongly with the presence of DM
while the risk of DM can be assessed based on the number of lymph
nodes (Jeon et al., 2016). These findings may help to resolve
controversy over the indication of lateral lymph node dissection
(Fan et al., 2018). The regional metastatic status of the lymph nodes
should be assessed in all patients with DTCDM.

Radiotherapy had a relatively significant score in the OS prognostic
model of patients with DTCDM. Studies indicate that radioactive
iodine (RAI) treatment is very effective in patients with small
metastases, indicating that early diagnosis improves outcomes
(Durante et al., 2006; Sampson et al., 2007). Diagnosis of DM and

TABLE 2 | The baseline characteristics of the training and validation sets used in the prognostic model.

Characteristics Total cohort Training cohort Validation cohort χ2 p

n (%) n (%) n (%)

1573 (100.0) 1101 (70.0) 472 (30.0)
Age at diagnosis, years 2.011 0.366
77–99 281 (17.9) 202 (18.3) 79 (16.7)
6–50 375 (23.8) 252 (22.9) 123 (26.1)
51–76 917 (58.3) 647 (58.8) 270 (57.2)
Sex 0.003 0.959
Female 928 (59.0) 650 (59.0) 278 (58.9)
Male 645 (41.0) 451 (41.0) 194 (41.1)
Race 1.895 0.388
Black 108 (6.9) 81 (7.4) 27 (5.7)
Other 256 (16.3) 183 (16.6) 73 (15.5)
White 1209 (76.9) 837 (76.0) 372 (78.8)
Tumor size, mm 0.752 0.687
66–680 273 (17.4) 197 (17.9) 76 (16.1)
28–65 745 (47.4) 519 (47.1) 226 (47.9)
1–27 555 (35.3) 385 (35.0) 170 (36.0)
Histologic 1.961 0.161
FTC 286 (18.2) 210 (19.1) 76 (16.1)
PTC 1287 (81.8) 891 (80.9) 396 (83.9)
RN positive 0.18 0.914
Negative 220 (14.0) 154 (14.0) 66 (14.0)
Not examined 585 (37.2) 413 (37.5) 172 (36.4)
Positive 768 (48.8) 534 (48.5) 234 (49.6)
Surgery 0.944 0.624
No 189 (12.0) 133 (12.1) 56 (11.9)
Other 178 (11.3) 130 (11.8) 48 (10.2)
Total thyroidectomy 1206 (76.7) 838 (76.1) 368 (78.0)
Radiation
No 436 (27.7) 312 (28.3) 124 (26.3) 0.704 0.401
Yes 1137 (72.3) 789 (71.7) 348 (73.7)

Chemotherapy 0.042 0.837
No 1453 (92.4) 1018 (92.5) 435 (92.2)
Yes 120 (7.6) 83 (7.5) 37 (7.8)

RN, positive, regional nodes metastases.
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initiation of RAI therapy before overt metastases appear, especially in
children and adolescents for whom selective treatment is more
appropriate (Sugino et al., 2020). While RAI treatment is beneficial
for TC survival, however, high-quality RAI accumulationmay increase
the risk of secondary tumor mutations and more aggressive disease,
thus negatively impacting patient survival (Su et al., 2015; Pasqual et al.,
2022). Nies et al. concluded that repeated RAI treatment is unlikely to

benefit TC patients and may do more harm than good over their
lifespan (Nies et al., 2021). In summary, studies differ on whether and
how to treat DTC patients with RAI (Jeon et al., 2016; Lin et al., 2018).

Total thyroidectomy and other surgical procedures were
important in the prognostic model. Sampson et al. concluded
that a total thyroidectomy should be performed alongside RAI
treatment (Sampson et al., 2007). It is also suggested that, where

FIGURE 3 | The XGB model was used to calculate the importance of each feature. The bar chart depicts the relative significance of the variables.

FIGURE 4 | ROC curves of the models for the training (A) and test (B) cohorts.
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FIGURE 5 | Calibration plots for predicting 10-years DTC development with DM in the training (A,C,E,G) and test (B,D,F,H) cohorts. DTC: differentiated thyroid
cancer, DM: distant metastasis, XGB: XGBoost, SVM: support vector machines, RF: random forest, LR: logistic regression.
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possible, local curative surgery with RAI and thyroid hormone
suppression should be performed in patients with DTCDM (Ito
et al., 2010). However, the survival benefit of thyroid cancer surgery
may vary depending on the site of metastasis (Besic et al., 2016).
The current study found that chemotherapy was a strong predictor
of OS in patients with DTCDM and a risk factor for OS in survival
analysis. Chemotherapy is often administered to patients with large
tumors who are no longer candidates for surgery or show iodine
resistance. However, a study indicates that chemotherapy is highly
toxic and is associated with a poor response rate (Schmidbauer
et al., 2017). The high mortality rate of chemotherapy patients may
be due to the relative severity of the disease in this group of patients,
in addition to the toxic impact of the treatment. Recent studies
have shown that targeted therapies such as tyrosine kinase
inhibitors (TKIs) offer high survival rates and that patients may
have a better outcome if targeted treatments are combined with
chemotherapy (Kraeber-Bodéré et al., 2010; Carling and
Udelsman, 2014; Viola et al., 2016; Lorusso et al., 2021).

Although the predictive model used in this study had a good
performance, there were some limitations. First, the study relied on
regression data and some samples with missing information were
removed, which may have biased the model. Second, outcome data
for individuals receiving targeted therapies were not included in the
sample, which may have made the prediction model less
comprehensive. Finally, more work needs to be done to explain
the predictive efficacy of ML versus traditional statistical methods.

CONCLUSION

This study analyzed the clinical characteristics and prognosis of
patients with DTCDM and constructed prognostic models using
four machine learning methods. The XGB model was effective at
predicting the 10-years OS of patients with DTCDM and may
help clinicians to make more accurate and personalized clinical

decisions. This is particularly important to improve the long-term
prognosis of high-risk patients.
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Deep learning has massive potential in predicting phenotype from different

omics profiles. However, deep neural networks are viewed as black boxes,

providing predictions without explanation. Therefore, the requirements for

these models to become interpretable are increasing, especially in the

medical field. Here we propose a computational framework that takes the

gene expression profile of any primary cancer sample and predicts whether

patients’ samples are primary (localized) or metastasized to the brain, bone,

lung, or liver based on deep learning architecture. Specifically, we first

constructed an AutoEncoder framework to learn the non-linear relationship

between genes, and then DeepLIFT was applied to calculate genes’ importance

scores. Next, to mine the top essential genes that can distinguish the primary

and metastasized tumors, we iteratively added ten top-ranked genes based

upon their importance score to train a DNN model. Then we trained a final

multi-class DNN that uses the output from the previous part as an input and

predicts whether samples are primary or metastasized to the brain, bone, lung,

or liver. The prediction performances ranged from AUC of 0.93–0.82. We

further designed the model’s workflow to provide a second functionality

beyond metastasis site prediction, i.e., to identify the biological functions

that the DL model uses to perform the prediction. To our knowledge, this is

the first multi-class DNN model developed for the generic prediction of

metastasis to various sites.

KEYWORDS

machine learning, deep learning, artificial intelligence, metastasis, metastasis site,
gene expression, clinical decision-making
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1 Introduction

Precision medicine is a path that could profoundly change

and improve medical practices. This idea proposes using genetic

data of individual patients to enhance clinical decision-making,

and “omics” technologies now provide a means to acquire such

patient data, making precision medicine feasible. Clinical

decision-making includes diagnosis, prognosis, choosing the

most appropriate treatment, etc. One avenue pursued to

support clinical decision-making is building classifiers using

gene expression profiles that can function as forms of artificial

intelligence (AI).

Many machine learning methods, including support vector

machines, random forest, and boosting, are among the primary

tools currently being used to make biological discoveries from the

vast amount of available gene expression data (Libbrecht and

Noble, 2015). However, deep learning (DL) is emerging as a more

powerful machine learning method (Goodfellow et al., 2016),

although the primary DL application domain is image

recognition and speech recognition. Nonetheless, DL is

showing promise in many other fields of science, especially in

precision medicine and genomics data analysis (Grapov et al.,

2018; Martorell-Marugán et al., 2019), as DL can extract intricate

structures in high-dimensional data (Najafabadi et al., 2015).

However, DL is still new in the bioinformatics community; thus,

only a few published works show its application to gene

expression-based models (Daoud and Mayo, 2019).

Furthermore, unlike images or text data, gene expression data

has no clear structure that we can exploit in a neural network

architecture. Thus, many new architectures are surfacing for

metastasis prediction from gene expression data, such as

multilayer perceptron architecture (Albaradei et al., 2019;

Albaradei et al., 2021a; Albaradei et al., 2021b) , autoencoder

architectures (Sharifi-Noghabi et al., et al.; Albaradei et al., 2021c;

Fakoor et al., 2013) and Graph deep learning (Xu et al., 2021).

Most of these proposed models try to solve a binary classification

problem that classifies samples as metastatic or non-metastatic

(Albaradei et al., 2021a). However no generic computational

framework based on DL that accepts raw gene expression data to

predict whether cancer is primary or has spread to various

metastasis sites exists.

The main concern of DL used in medical applications is the lack

of interpretability. The reason being, DL networks can be viewed as

black boxes that form an input layer (wherein we place the gene

expression profile of patients) and an output layer (offering

predictions without interpretability). Suppose we do not meet this

interpretability criterion at a good standard. In that case, physicians

will not be able to trust the decision of the neural network, as they

need interpretable data to ensure patients’ safety. Specifically, they

need data about neurons, genes, and related biological processes

involved in the prediction and the decision-making process to make

informed decisions. Thus, researchers are now attempting to make

the DL networks more interpretable.

In this work, we attempted to develop an AImethod that could

translate into a tool that supports clinical decision-making with

regard to identifying metastasis and pinpointing the metastasis site

(Figure 1). In this process, we also show the biological functions

that the model uses to perform the prediction. That is, current

work that interprets DLmodels identifies the genes that impact the

prediction. Here, we propose interpreting the hidden neurons by

linking the neurons to the enriched biological functions. In this

work, we developed such a DL model. The DL framework takes as

input raw gene expression data for a sample and predicts whether

it is primary ormetastasized to the brain, bone, lung, or liver. In the

first phase, we used AutoEncoder (AE) to reduce the dimension of

the expression data. Then, we applied DeepLIFT to compute an

importance score (i.e., the impact of each input layer neuron on the

latent layer neurons) used to rank the genes. Finally, to mine the

genes that can distinguish the primary and tumor samples

metastasized to different sites, we iteratively fed ten top-ranked

genes (based upon the importance score) to the DNN model for

training. In the second phase, we trained and evaluated a final

multi-class DNN model to make the metastasis site predictions.

Here, we also used the DeepLIFT approach to identify the essential

neurons that lead to the prediction and the set of genes that activate

these critical neurons. Then, we linked these critical genes to Gene

Ontology (GO). We also provided analyses using Molecular

Signatures Database (MSigDB) and the Disease Gene Network

(DisGeNet) to support and increase the biology extracted from the

essential neurons’ list of genes.

2 Method and materials

2.1 Gene expression datasets

We searched for gene expression datasets in Gene Expression

Omnibus (GEO) (Edgar et al., 2002) using the following query:

“metastas* AND (bone OR brain OR lung OR liver) AND Homo

sapiens” filtered by “Expression profiling by array” in September

2021. We retrieved 837 entries which we sifted through and found

microarray gene expression data for primary tumors (breast,

colorectal, kidney, liver, lung, pancreatic, and prostate cancer

samples), and tumors metastasized from these primary tumors

to the bone, brain, lung, or liver. Table 1 provides the GEO

accession numbers of the samples used in this study, along

with the sample statistics. Similar to the approach used in

(Chereda et al., 2019), we used the RMA probe-summary

algorithm (Irizarry et al., 2003) to process each dataset, after

which they were combined based on the HG-U133A array

probe names, and quantile normalization was applied across all

datasets. In cases where multiple probes were mapped to one gene,

the probe with the highest average value was taken. Finally, we

used the integrated datasets for each of the four sites as input for

the DL models. However, before we fed the data to the DL model,

we used the synthetic minority oversampling technique (SMOTE)
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to oversample the minority class using the imbalanced-learn

python library (Chawla et al., 2002), as the number of samples

is imbalanced between the primary and metastasized group.

2.2 Deep learning framework

The first part of our model’s framework comprises three key

components, namely the AE (Hinton and Salakhutdinov, 2006),

DeepLIFT (Shrikumar et al., 2017), and the deep neural network

(DNN) (Svozil et al., 1997) (Figure 2).

First, the AE-based component is an unsupervised deep neural

network with multiple stacked hidden layers composed of two parts,

an encoder, and a decoder. The encoder maps the original (high-

dimensional) data X to a reduced representation (100 dimensions)

through the bottleneck layer. The purpose of the decoder is to

reconstruct the original data X̂ from the low-dimensional

representation by minimizing the difference between X and X̂.

In this manner, the AE extracts features that differ from the original

features and functions as a feature extraction method. We used the

Python Keras library (https://github.com/fchollet/keras) to

implement an AE consisting of three fully connected hidden

FIGURE 1
General overview of the proposed computational framework that takes the gene expression profile of any primary cancer sample and predicts
whether patients’ samples are primary (localized) or had been metastasized to brain, bone, lung, or liver based on deep learning architecture.

TABLE 1 The gene expression datasets from GEO with the number of primary and metastasized samples for each site.

Bone Brain Lung Liver

Breast 220 Primary, 27 Primary, 47 Primary, 28 Primary,

72 Metastasized [GSE 2034,
GSE137842]

65 Metastasized [GSE12276, GSE125989,
GSE46928, GSE18549]

18 Metastasized [GSE16554,
GSE5327]

16 Metastasized
[GSE18549]

Colorectal 0 10 Primary, 186 Primary, 219 Primary,

23 Metastasized [GSE14108] 47 Metastasized [GSE18549,
GSE41258]

86 Metastasized
[GSE41258, GSE18549,
GSE6605]

Kidney 0 0 10 Primary, 0

10 Metastasized [GSE22541]

Liver 0 0 31 Primary, 0

31 Metastasized [GSE141016]

Lung 14 Primary, 15 Primary, 0 0

19 Metastasized [GSE10096] 23 Metastasized [GSE18549]

Pancreas 0 0 0 15 Primary,

14 Metastasized
[GSE19279]

Prostate 16 Primary, 0 0 0

17 Metastasized [GSE18549,
GSE43332]
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layers containing 500, 100, and 500 neurons. For each layer, we used

“relu” as the activation function. Given m samples, each has a gene

expression profile containing n genes; the input vector is

reconstructed through a series of matrix transformations of

multiple network layers. Training an AE involves finding

parameters that minimize a specific loss function; we used mean

absolute error (MAE) as the loss function. In addition, we added an

L2 regularization penalty to control overfitting and used the early

stopping technique. Finally, we trained the AE using the Adam

(Kingma and Ba, 2014) optimization algorithmwith 500 epochs and

a 10% dropout.

Second, the DeepLIFT-based component is a feature scoring

algorithm to calculate the contribution scores of each neuron. In

our computing framework, we used DeepLIFT to calculate a

contribution score for every gene of each input sample. The

obtained contribution scores express the importance of the

corresponding genes for the compression features of the low-

dimensional representation (bottleneck) layer. Then, we ranked

the genes based on their importance scores.

Third, the DNN-based component is a neural network with

three hidden layers with 64, 32, and 8 neurons, respectively, and

uses “relu” as the activation function. We used the Python Keras

library to design the DNNmodel to predict if a sample is primary

or metastasized. Finally, we iteratively added ten top-ranked

genes (based on the importance scores) to train the DNN model.

The second part of our model uses the output from the first part,

i.e., themost important genes for all sites, as an input to the finalmulti-

class DNN model (Figure 3). This multi-class DNN consists of three

hidden layers, eachwith 100 neurons, anduses a “relu” activation layer

followed by an output layer with five output neurons (one for each

class: primary, andmetastasized to bone, brain, lung, or liver) that use

the soft-max function to do the prediction. We then used the

DeepLIFT to identify the most relevant neurons in each hidden

layer for each of the five predictions (see 2.3 for details). Finally, the

FIGURE 2
The workflow represents the first part of our model’s framework. (A) The architecture of AutoEncoder, (B) Applying DeepLIFT to compute the
importance scores in the Encoder network, (C) Using DNN as a baseline method to perform the metastasis prediction.
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model was implemented in Python v.3.6 scripting language (https://

www.python.org/), using the Keras deep learning and DeepLIFT

frameworks (Figures 2B,C). Concerning time complexity, the time

needed to train the model was 20.4 min for around 100 epochs for all

samples using a workstation with Linux Ubuntu 18.04.5 LTS Intel

Xeon Platinum 8,176, 64-bit OS and two GPUs: Quadro and Titan,

with CUDA version 11.0.

2.3 Identifying the biological functions
that the DL model uses to perform the
prediction

We interpreted the prediction for each class by first computing

the relevance scores through the DL network and identifying the

most essential neurons that allow predicting the class. Then, we

connected each important neuron with the list of the input genes

affecting the neuron activation. In this manner, we associated

biological functions with each layer based on its essential neurons.

The first step is to identify the neurons that most influence the

predictions for each class (Bach et al., 2015; Hanczar et al., 2020).

For this, we computed the relevance scores R of all neurons using

the Deep-LIFT approach for each predicted class at each layer.

Next, we used the mean of these relevance scores to obtain the

average relevance of neuron i in layer L, representing this neuron’s

influence on the DL network to predict the class. The relevance

score for neuron i in layer L is defined as the sum of incoming

scores from each neuron j in layer L+1.

Finally, we ranked the neurons according to their average

relevance scores and chose the most essential ones. Similar to

(Hanczar et al., 2020), assuming that the average relevance scores

follow a Gaussian distribution, we used the two-side t-test (p-value at

0.05 ) to determine each class’s most essential neurons in each layer.

For a given important neuron in layer L, its activation is back

propagated using the Deep-LIFT approach to compute the

relevance score of each input gene. We then identified the

most critical inputs that have an impact on the activation of

the neuron. Similar to identifying the essential neurons, we used a

two-sided t-test to select the essential input genes.

The second step is to connect each essential neuron to

biological functions from GO, signature gene-set from

MSigDB, and diseases from DisGeNET. Finally, we used an R

interface to the Enrichr database EnricherR (Kuleshov et al.,

2016) to identify the over-represented functions in the list of

genes connected with each important neuron.

3 Results and discussion

3.1 Determining the gene set that provides
optimal prediction performance

In the first part of our model’s framework, we used GEO samples

to train an AE and applied DeepLIFT to calculate importance scores

for each gene for ranking. Then, ten top-ranked genes (based on the

importance scores) were iteratively fed to the DNNmodel to identify

FIGURE 3
The workflow represents the second part of our model’s framework, which determines the significant neurons in the network to predict
metastasis status.
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the gene set that provides maximum performance when determining

if a sample is primary or metastasized. The DNN reaches its

maximum performance when including 60, 80, 20, and 30 top-

ranked genes in metastasis to bone, brain, lung, and liver data,

respectively (Figure 4). For the metastasis to bone, lung, and liver

samples, the DNN achieved anAUCof 1.0. However, the DNN could

only achieve an AUC of 0.9597 for the metastasis to brain samples.

This might result from the brain samples having less than 50 primary

samples, while the metastasis to bone, lung, and liver samples were

analyzed usingmore than 200 primary samples. Addingweight to this

suggestion is the number of metastasized samples used for each site

being relatively the same (about 100 samples each).

3.2 Cross-site generalization analysis

After removing the duplicates, the 190 essential genes for all sites

identified in the part of the model’s framework were reduced to

184 genes. The 184 genes were used as an input to the final multi-

class DNN model. This model takes these 184 genes and predicts if

the input samples are primary or metastasized to the bone, brain,

lung, or liver site. Figure 5 provides the prediction performance for

the final multi-class DNN model. The best prediction performance

was achieved for the primary samples (AUCof 0.93), followed by the

metastasis to bone and lung samples (AUC of 0.88). The metastasis

to liver and brain samples achieved lower prediction performances

with an AUC of 0.84 and 0.82, respectively. Here, we expected the

prediction performance for metastasis to the brain to be the lowest,

based on themaximum performance the DNN achieved in Figure 3.

However, the final multi-class DNN model achieved a more than

acceptable prediction performance in all categories.

3.2.1 Testing the robustness of the final DNN
model

The final multi-class DNNmodel achieved a good prediction

performance; however, the prediction performance does not

FIGURE 4
AUC is based on different numbers of featured genes using DNN for bone, brain, lung, and liver sites. AUC is indicated in blue, while error rate is
shown in red.
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indicate the robustness of the final DNN model. Thus, we

further evaluated the model’s performance using external

testing data from the TCGA datasets (Figure 6) and using a

population-based cohort (Figure 7). Also, by using external

datasets as a validation technique to show how accurately our

predictive model will perform in practice, we eliminate any

concerns about over/under -fitting. First, the external set was

extracted from the human cancer metastasis database

(HCMDB) (Zheng et al., 2018), where we found

378 samples, 250 primary, and 21,2, 44, and 61 were

FIGURE 5
The prediction performance of the final multi-class DNN model.

FIGURE 6
The prediction performance of the finalmulti-class DNNmodel using external testing data from the TCGA datasets. Note, for the brain there are
only 2 samples in the test set).
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metastasized to bone, brain, lung, and liver (see the complete

list of TCGA IDs in Supplementary Table S1), respectively. In

addition, we used the gene expression profiles of fresh breast

cancer tissue of 45 (21 primary and 24 metastasized) Saudi-

Arabian subjects deposited on GSE36295 to test the

performance of our model on a population-based cohort

(real data).

Figure 6 provides the prediction performance using the

external set in terms of the area under the ROC curve and

shows several other metrics, including accuracy, sensitivity,

specificity, precision, and F1 score, ranging between 74%–80%.

The prediction performance using the external data followed the

same trend with the highest prediction performance achieved for

the primary (AUC of 0.85) samples followed by the metastasis to

lung (AUC of 0.78), bone (AUC of 0.72), liver (AUC of 0.61) and

brain (AUC of 0.50) samples, respectively. This result shows that

the multi-class model exhibits robustness concerning the three

categories: the primary and metastasis to lung and bone samples.

However, the prediction performance for the metastasis to the

brain and liver samples dropped by 32% and 23 %, respectively.

This suggests that we may have to re-establish the gene set that

provides maximum performance using a larger cohort of samples

(when the samples become available). Beyond that, here it should

also be taken into consideration that for the brain we only had two

samples in the test set.

Nonetheless, the prediction performance using samples from

a population-based cohort shows that the multi-class DNN

model achieved good prediction performance based on area

under the ROC curve (AUC of 0.72), when distinguishing

between the primary and metastatic samples (Figure 6), and

shows several other metrics, including accuracy, sensitivity,

specificity, precision, and F1 score, ranging between 73%–

85%. This result gives an indication of the potential of our

model to accurately predict metastasis sites.

3.2.2 The biological functions associated with
the genes used by the DL model to perform the
prediction

We further designed the model’s workflow to provide a

second functionality beyond metastasis site prediction, i.e., to

identify the biological functions that the DL model uses to

perform the prediction (Figure 8).

We achieved this through the biological interpretation of the

neural network predicting the metastasis. That is, for each class,

the essential neurons of each layer are selected based on the mean

of the relevance scores by using the method described in Section

2.3. We identified 89, 56, 41, 16, and 53 essential neurons in

hidden layer one for primary, metastasized to bone, brain, lung,

and liver, respectively. We also identified 36, 40, 99, 11, and

18 essential neurons in hidden layer two for primary,

metastasized to bone, brain, lung, and liver, respectively.

Finally, we identified 54, 48, 22, 84, and 35 essential neurons

in hidden layer three for primary, metastasized to bone, brain,

lung, and liver, respectively.

For each essential neuron’s list of genes, we determined GO

biological functions based on a p-value < 0.05. Figure 9 provides

the GO biological functions associated with the list of genes used

to differentiate the primary samples from the metastasized ones.

The critical neurons in each layer can be grouped depending on

the functions enriched among the significant genes they contain.

Overall, the enriched functions in layer one belonged to five main

categories: “Metabolic process,” “Cellular process,” “Immune

response,” “Transport”, and “Cell cycle.” The enriched

functions from the essential neurons of layer two included

FIGURE 7
The prediction performance of the final multi-class DNN model using a specific population-based cohort.
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“Adaptive thermogenesis,” “Extracellular matrix disassembly,”

“Regulation of transport,” and “Regulation of cell motility.” The

enriched functions from the essential neurons of layer three

belonged to “Cell-cell adhesion,” “Ion transport,” “Apoptotic

process.” The first layer exhibits more general function categories

but more specific functions are appearing in subsequent neural

network layers.

To support and increase the biological insights extracted

from the essential neurons’ list of genes, we also performed

MSigDB enrichment. In this analysis, we only considered

MSigDB enrichments significant to at least three metastasis

sites. Only three enriched categories were significant to all

four sites, namely “Epithelial Mesenchymal Transition,”

“Apoptosis,” and “IL-2/STAT5 Signaling” (Table 2). The

apoptosis category is enriched based on the interpretation

of the neural network (Figure 9) and the MSigDB enrichment.

This is interesting as metastasis cells are subjected to various

apoptotic stimuli and epithelial-mesenchymal transition

(EMT) (which also features in the MSigDB enrichment)

allows a polarized epithelial cell to undergo several

biochemical changes to become a mesenchymal cell

phenotype with enhanced resistance to apoptosis and

increased migratory capacity and invasiveness and

production of ECM components (Jason et al., 2003; Kalluri

and Weinberg, 2009). Specifically, extracellular matrix

disassembly (a GO biological function highlighted by the

neural network) enzymes facilitates the remodeling of the

extracellular matrix to create a microenvironment in the

distant organ that promotes metastasis (Scheau et al., 2019;

Winkler et al., 2020). Cell-cell adhesion, another GO

FIGURE 8
The biological interpretation of our deep neural network approach.

FIGURE 9
A simplified network showing each layer’s enriched pathways based only on the metastasis sites.

Frontiers in Molecular Biosciences frontiersin.org09

Albaradei et al. 10.3389/fmolb.2022.913602

159

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.913602


biological function highlighted by the neural network, is also a

key element of metastasis. For example, it has been shown that

S100A8/A9 from tumor cells bind to RAGE on myeloid-

derived suppressor cells (MDSCs) and promotes the

migration and accumulation of MDSC, while periostin

from MDSCs participates in pre-metastatic niche (PMN)

formation through promoting extracellular matrix

remodeling to facilitate the metastatic colonization of

disseminated tumor cells (Cheng et al., 2008; Sinha et al.,

2008; Wang et al., 2016). Overall, these biological functions

suggest the gene lists used in the DL model to perform the

prediction are to a large extent metastasis-specific and can be

used to retrieve metastasis-specific biological functions

beyond its metastasis site prediction capabilities (Sinha

et al., 2008).

We also performed DisGenNET enrichment. In this analysis,

we only considered DisGenNET disease enrichments significant

to at least two metastasis sites. Only eight enriched disease

categories were significantly associated with at least two

metastasis sites, namely Autoimmune Diseases, Carcinoma

breast stage IV, Cirrhosis, Dermatomyositis, Giant Cell

Tumors, Leukemia, Metastatic malignant neoplasm to brain,

and Rheumatoid Arthritis (Table 3). Four disease categories

are associated with cancer, and noteworthy is the late-stage

and metastasized cancer that is being picked up. Beyond this,

Dermatomyositis (Luu et al., 2015), Rheumatoid Arthritis

(Racanelli et al., 2008), and Autoimmune Diseases (Milkiewicz

et al., 1999) are recognized paraneoplastic syndromes, which are

symptoms that occur at sites distant from a tumor or its

metastasis site (Pelosof and Gerber, 2010). In addition, several

of our differentially expressed genes, including HLA-DMA,

SOCS1, HLA-C, CTNNB1, KRAS, MET, and CD244, are

associated with Liver Cirrhosis (Knouse et al., 2019), CD79A,

HLA-DMA, SOCS1, HLA-B, HLA-C, IFI35, CD68, MET,

PTHLH, CD244, and C2 with Rheumatoid Arthritis (Roy

et al., 2011), HLA-B, HPRT1, and C2 with dermatomyositis

(Bonnetblanc et al., 1990), and RB1, HLA-DMA, CXCR4, and

CTGF with Cirrhosis (Shah and Casciola-Rosen, 2015). We also

have several genes, including FTO, HLA-DMA, GAP43, SCN8A,

HLA-C, CD68, and CDR2, associated with Multiple Sclerosis

(Plantone et al., 2015), which suggest Multiple Sclerosis and

Cirrhosis may possibly be a paraneoplastic syndrome that arises

with metastasis.

We further determined the overlapping genes between the

primary and metastasis samples for the four sites. This analysis

includes only the genes used by the DL to perform the

classification. If we only considered genes common to at least

three sites, we found the products of two genes, HIP1 and

LARP4, with expression levels downregulated in the primary

samples but upregulated in the metastasis samples. HIP1 was

used by the DL to predict metastasis to the bone, brain, and lung,

while LARP4 was used to predict metastasis to the brain, lung,

and liver. This is interesting as HIP1 is one of the essential

proteins involved in clathrin-mediated endocytosis (CME)

(Chang et al., 2015), and crosstalk between CLCb/Dyn1-

mediated adaptive CME and epidermal growth factor receptor

(EGFR) signaling increases metastasis (Chen et al., 2017). Also,

LARP4, a known RNA-binding protein (RBP) (Yang et al., 2011;

Chothani et al., 2019) that repress or activate the translation of

target genes, change the cell shape (which has been correlated

with metastatic potential) and LARP4 depletion increases cell

migration and invasion (Lyons et al., 2016; Seetharaman et al.,

2016). Other proteins also upregulated and common to at least

three sites (but do not appear in the primary samples gene list)

include CC2D1A (Kumar et al., 2019), CD68 (Huang et al.,

2018), EFCAB1 (Fagone et al., 2017), HLA-DMA (Li et al.,

2020a), PRAME (Huang et al., 2016; Al-Khadairi et al., 2019),

and ULBP2 (Paschen et al., 2009), all of which was linked to

TABLE 2 MSigDB enrichment analysis.

p-value

MSigDB Bone Brain Lung Liver

Allograft rejection 2.60E-02 5.27E-03 Na 3.60E-03

Apoptosis 2.15E-02 2.00E-03 2.09E-02 2.15E-02

Coagulation 1.41E-02 na 1.82E-02 1.88E-02

DNA repair 1.53E-02 na 1.27E-02 2.02E-02

Epithelial mesenchymal transition 2.60E-02 1.98E-02 1.66E-02 2.60E-02

Glycolysis 2.60E-02 na 2.53E-02 3.11E-02

IL-2/STAT5 signaling 2.59E-02 2.02E-03 2.52E-02 2.59E-02

Interferon alpha response na 1.39E-03 8.68E-04 1.39E-03

mTORC1 signaling 2.60E-02 na 1.66E-02 2.60E-02

Oxidative phosphorylation 3.60E-03 na 1.37E-03 3.28E-04

UV response up 2.12E-02 1.63E-02 2.06E-02 Na

aEnrichment associations that are significant to at least three sites
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metastasis in previous studies. In fact, 87 % of the essential genes

are associated with metastasis-related functions based on the

current literature (Table 4).

4 Concluding remarks

Metastasis remains the leading cause of cancer-related deaths

worldwide, and our inability to identify the tumor cells colonizing

distant sites means that the physician cannot treat the metastasized

tumors. Here, we developed a DL model that can be fed raw gene

expression data to predict whether a sample is primary or

metastasized to the brain, bone, lung, or liver. The final multi-

class DNN model achieved more than acceptable prediction

performance in all categories. We achieved the best prediction

performance for the primary samples (AUC of 0.93), followed by

themetastasis to bone and lung samples (AUCof 0.88). On the other

hand, the metastasis to liver and brain samples achieved lower

prediction performance with an AUC of 0.84 and 0.82, respectively.

We observed the same trend when evaluating the prediction

performance using external data, i.e., the highest prediction

performance for the primary (AUC of 0.85) samples followed by

the metastasis to lung (AUC of 0.78), bone (AUC of 0.72), liver

(AUC of 0.61) and brain (AUC of 0.50) samples, respectively.

However, the prediction performance for the metastasis to the

brain and liver samples dropped by 32% and 23 %, respectively.

Many factors may contribute to the result we obtained for the

brain samples, as this data had the highest number of DEGs and

required the highest amount of top-ranked genes to be included

in the model, indicating biological complexity associated with the

metastasis to the brain. Additionally, the brain samples had less

than 50 primary samples. In contrast, we analyzed the metastasis

to bone, lung, and liver samples using more than 200 primary

samples (the number of metastasized samples used for each site

was similar, about 100 samples each). Beyond that, the brain only

had two samples in the test set for the external data that exhibited

the massive drop in prediction performance. Having this lower

number of brain samples may also be contributing to the much

lower prediction performance achieved with it. Thus, in the

future, we will re-establish the gene set that provides

maximum performance using a larger cohort of samples

(when the data become available). Nonetheless, we further

evaluated the prediction performance using samples from a

population-based cohort to show that the multi-class DNN

model achieved good prediction performance (AUC of 0.72)

when distinguishing between the primary and metastatic

samples, which shows the potential of our model.

We further designed the model’s workflow to provide a second

functionality beyond metastasis site prediction, i.e., to identify the

biological functions that the DL model uses to perform the

prediction. We achieved this by associating GO biological

functions (p-value < 0.05) with the neuron’s list of genes that

differentiate the primary samples from the metastasized ones in

the DL model. The critical neurons in each layer are grouped

depending on the functions enriched. Thus, the first layer exhibits

more general function categories, but more specific functions

appear in subsequent neural network layers. Finally, we

compared the enrichments retrieved through the DL model

neuron interpretations with the MSigDB enrichment analysis.

We found only a few functional categories common to both

analyses but several inter-related categories. For example, the

literature shows “Epithelial Mesenchymal Transition’ involves

‘Ion transport,” and “Extracellular matrix disassembly,” and it is

linked to “Cell-cell adhesion,” “regulation of cell motility” and

“apoptosis process” (Jason et al., 2003; Cheng et al., 2008; Sinha

et al., 2008; Kalluri andWeinberg, 2009; Wang et al., 2016; Scheau

et al., 2019;Winkler et al., 2020). Overall, these biological functions

suggest that the gene lists used in the DL model to perform the

prediction are to a large extent metastasis-specific, which is further

supported by literature showing 87% of the genes used by the DL

have already been linked tometastasis. These results clearly suggest

that our DL model can be used to retrieve metastasis-specific

biological functions beyond its metastasis site prediction

capabilities.

TABLE 3 DisGeNET enrichment analysis.

p-value

DisGeNET Bone Brain Lung Liver

Autoimmune Diseases 5.12E-04 na 6.43E-05 Na

Carcinoma breast stage IV 2.68E-05 na 4.90E-04 Na

Cirrhosis 3.80E-04 na 0.00E+00 1.37E-02

Dermatomyositis 2.57E-05 2.57E-05 Na Na

Giant Cell Tumors 5.69E-06 na 7.84E-08 Na

leukemia 7.13E-05 7.13E-05 Na Na

Metastatic malignant neoplasm to brain 1.84E-04 na 3.43E-07 Na

Rheumatoid Arthritis 4.84E-05 na 2.71E-06 Na

aDisease associations that are significant to at least two sites
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5 Availability

We also developed a web server that the scientific

community can access. The web-based tool, MetastaSite

https://www.cbrc.kaust.edu.sa/metastasite/, provides a

means to implement the final multi-class DNN model

developed in the current study. It allows the users to

predict the metastasis site (primary, metastasized to bone,

brain, lung, or liver). The user needs to provide the raw gene

expression for every sample.

TABLE 4 Literature linking the genes used by the DL to metastasis.

Gene Link Gene Link Gene Link Gene Link

ACTC1 Ohtaki et al. (2017) FTO Ding et al. (2020) NDUFC2-
KCTD14

NA RUBCN Marsh and Debnath,
(2020)

ADAM10 Xu et al. (2010) GABARAP Liu et al. (2021a) NF1 Kitamura et al. (2010) SCIN NA

ANO1 Zhang et al. (2021a) GAP43 Zhang et al. (2018a) NOL3 Medina-Ramirez et al.
(2011)

SCLY Hartung et al. (2017)

ATP5PD Song et al. (2016) GAPDHS Liu et al. (2017) OCLN Wang et al. (2018a) SCN8A (Hartung et al. (2017);
Lopez-Charcas et al.
(2018))

ATP5PO McLaren and University
of Western Australia,
(2009)

GINS3 Li et al. (2021) PACS2 Madreiter-Sokolowski et al.
(2021)

SIGLEC1 Strömvall et al. (2017)

C2 NA GNL3L Kannathasan et al.
(2020)

PCNX2 Yamaguchi et al. (2016) SLC6A16 Nałęcz, (2020)

C5orf22 Schulten et al. (2017) HIP1 Sun et al. (2021) PFAS Lv et al. (2020) SNORD107 Xu et al. (2016)

C7orf25 NA HIP2 Wu et al. (2020) PIAS1 Wang et al. (2018b) SNORD19B Xu et al. (2016)

CC2D1A Kumar et al. (2019) HIP3 NA PRAME Huang et al. (2016) SNORD42A NA

CD244 Johnson et al. (2003) HLA-B (Cordon-Cardo et al.
(1991); Jiang et al.
(2014))

PRKACA Honeyman et al. (2014) SOCS1 David et al. (2014)

CD68 Huang et al. (2018) HLA-C Cordon-Cardo et al.
(1991)

PRR14 Li et al. (2019a) SSH3 Hu et al. (2019a)

CD79A Luger et al. (2013) HLA-
DMA

Li et al. (2020a) PTHLH (Li et al. (2019a); Pitarresi
et al. (2021))

SSX1 NA

CD82 Di Giacomo et al. (2017) HPRT1 J Sedano et al. (2020) RAB15 Iacobas et al. (2018) ST20-
MTHFS

NA

CD83 Giorello et al. (2021) HPS4 Liu et al. (2018) RAB26 Liu et al. (2021b) SUOX Yano et al. (2021)

CDR1 Harrison et al. (2020) HSPA9 Yi et al. (2008) RAD51B Seguin et al. (2018) TEP1 (Hwang et al. (2001);
Yano et al. (2021))

CDR2 Balamurugan et al.
(2009)

IFI35 Hu et al. (2021) RB1 Ku et al. (2017) TMSB4Y Wong et al. (2015)

CHD1L He et al. (2012) IFITM2 Xu et al. (2017) RHOB Ju et al. (2020) TPT1P8 NA

CHRNA1 Chang et al. (2013) JAM3 (Xu et al. (2017); Zhou
et al. (2019a))

RHOBTB2 Ling et al. (2010) TREX1 Feng et al. (2016)

CTGF Okusha et al. (2020) KRAS Boutin et al. (2017) RPL13 Ebright et al. (2020) TUBA3C Zhou et al. (2019b)

CTNNB1 Wen et al. (2019) KRT1 Han et al. (2021) RPL21 Li et al. (2020b) TUBGCP3 NA

CXCR4 Zhang et al. (2021b) LARP4 Egiz et al. (2019) RPL9 Baik et al. (2016) UBA6 Cheng et al. (2021)

EFCAB1 Fagone et al. (2017) LCP1 Ge et al. (2020) RPP30 NA UBD Cheng et al. (2021)

ERCC3 Zhang et al. (2020) LDHAL6B (Ge et al., 2020; Liu et al.,
2020)

RPS24 Wang et al. (2020) ULBP2 Cheon et al. (2011)

ESR2 Song et al. (2018) MET Zhang et al. (2018b) RPS6KA2 NA USP6 Zeng et al. (2018)

FAM153A NA MME Li et al. (2019b) RPS8 Mao-De and Jing, (2007) ZNF236 NA

FAXDC2 NA MMP Gonzalez-Avila et al.
(2019)

RRP12 Hu et al. (2019b) ZNF764 NA

FGF23 Ewendt et al. (2020) NBEAL2 Rae et al. (2015)
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Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of lung

cancer, including both non-small cell lung cancer and small cell lung cancer.

Despite the promising results of immunotherapies, ICI-related pneumonitis

(ICIP) is a potentially fatal adverse event. Therefore, early detection of patients at

risk for developing ICIP before the initiation of immunotherapy is critical for

alleviating future complications with early interventions and improving

treatment outcomes. In this study, we present the first reported work that

explores the potential of deep learning to predict patients who are at risk for

developing ICIP. To this end, we collected the pretreatment baseline CT images

and clinical information of 24 patients who developed ICIP after

immunotherapy and 24 control patients who did not. A multimodal deep

learning model was constructed based on 3D CT images and clinical data.

To enhance performance, we employed two-stage transfer learning by pre-

training the model sequentially on a large natural image dataset and a large CT

image dataset, as well as transfer learning. Extensive experiments were

conducted to verify the effectiveness of the key components used in our

method. Using five-fold cross-validation, our method accurately

distinguished ICIP patients from non-ICIP patients, with area under the

receiver operating characteristic curve of 0.918 and accuracy of 0.920. This

study demonstrates the promising potential of deep learning to identify patients

at risk for developing ICIP. The proposed deep learning model enables efficient

risk stratification, closemonitoring, and promptmanagement of ICIP, ultimately

leading to better treatment outcomes.

KEYWORDS

immune checkpoint inhibitor-related pneumonitis, deep learning, transfer learning,
contrastive learning, CT images, lung cancer
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1 Introduction

Since the first immune checkpoint inhibitor (ICI)

ipilimumab was approved by the Food and Drug

Administration for treating melanoma in 2011, ICIs have

become standard treatments for many cancers such as lung

cancer, renal cell carcinoma, Hodgkin lymphoma, and

hepatocellular carcinoma (Akinleye and Rasool, 2019; Xin Yu

et al., 2019; Robert, 2020; Vaddepally et al., 2020). Although ICIs

produce remarkable immune response by immune upregulation

and demonstrate improved cancer-related outcomes, they induce

a unique spectrum of toxicities, called immune-related adverse

events (irAEs) (Martins et al., 2019; Ramos-Casals et al., 2020).

These irAEs can occur in multiple organ systems, where

uncontrolled immune response is generated against healthy

tissue. Due to different organ systems affected, there are

various types of irAEs, including dermatitis, encephalitis,

uveitis, hepatitis, and pneumonitis. Among these, immune

checkpoint inhibitor-related pneumonitis (ICIP) is one of the

most concerned adverse events because it is potentially life-

threatening (Naidoo et al., 2017).

Lung cancer is the second most common cancer and the

leading cause of cancer death worldwide. ICIs have shown

significant clinical benefit in the treatment of advanced non-

small cell lung cancer (NSCLC) (Reck et al., 2016). The incidence

of ICIP in NSCLC is 4.1% as reported in a prospective study,

while some real-word studies outside of clinical trials report a

much higher incidence, ranging from 7% to 19% (Sears et al.,

2019; Atchley et al., 2021). The time to onset of ICIP can vary

from 9 days to 24.3 months after the initiation of

immunotherapy (Nishino et al., 2015; Naidoo et al., 2017),

with a median time of 52.5 days (Atchley et al., 2021). Most

patients with ICIP have high severity that requires

hospitalization, and about 27% of them die during the

treatment for ICIP (Atchley et al., 2021). Unfortunately, the

pathogenesis of ICIP has not been clearly elucidated. Possible risk

factors include prior thoracic radiotherapy, pulmonary

comorbidities, smoking status, and PD-1 inhibitors (Howell

et al., 2015; Delaunay et al., 2017; Khunger et al., 2017; Pillai

et al., 2018; Winer et al., 2018). However, it is challenging to

accurately predict ICIP based on these clinical risk factors. In

order to improve lung cancer treatment and outcomes, there is an

urgent need for early prediction of ICIP, which enables risk

stratification before starting immunotherapy and allows a close

monitoring of high-risk patients during treatment.

Radiomics is a rapidly evolving research area in personalized

precision medicine that aims to extract informative radiomic

features from medical images and relate these features to clinical

and biological endpoints. Computed tomography (CT) is

routinely used for diagnosing lung cancer and assessing

treatment response. CT-based quantitative radiomics

approaches have been successfully applied to various tasks,

such as lesion classification (Naidoo et al., 2017; Gitto et al.,

2021; Xu et al., 2021), prediction of prognosis and treatment

response (van Timmeren et al., 2017; Yang et al., 2019; Chetan

and Gleeson, 2021), and genotype-phenotype associations (Rios

Velazquez et al., 2017; Thawani et al., 2018; Zanfardino et al.,

2019; Wu et al., 2021). There are very few studies focusing on the

prediction of ICIP using radiomics. To the best of our knowledge,

we only found two closely related ones. The first study reported a

100% accuracy of classification based on baseline chest CT

images, but only two ICIP patients were enrolled (Colen et al.,

2018). Mu et al. (2020) performed a radiomics analysis of PET/

CT images to predict severe immune-related adverse events and

achieved an area under the receiver operating characteristic curve

(AUC) of 0.88 in a prospective validation cohort (Mu et al.,

2020).

Predicting ICIP by conventional radiomics methods has two

limitations regarding to the two steps in radiomics analysis

pipeline. Radiomics requires first the segmentation of region

of interest (ROI) and then the extraction of a fixed set of features

from ROI. The first limitation is that it is unclear what region in

pretreatment CT images should be used as ROI due to the lack of

guidance for regional predilection of pneumonitis. The second

limitation is that the predefined set of features may not be

optimal for the final prediction task. Recent studies have

demonstrated the excellent performance of deep learning

models in computer-aided diagnosis (Yu et al., 2020; Zheng

et al., 2020; Cheng et al., 2022b; Qian et al., 2022). Compared with

hand-crafted features, deep learning models can directly learn

discriminative features from images without prior segmentation

of ROI and thus may provide a better prediction of ICIP.

In this study, we aim to develop a deep learning model based

on clinical data and pretreatment chest CT images to predict the

risk of ICIP in lung cancer patients. To this end, we collect a

relatively large dataset consisting of ICIP and non-ICIP patients

and propose a deep learning model in which multimodal data,

two-stage transfer learning, and contrastive learning are used.

Extensive experiments are conducted to assess the performance

of different settings. The results demonstrate that the use of the

aforementioned three strategies is effective and achieves state-of-

the-art performance with an AUC of 0.918.

2 Materials and methods

2.1 Patients and data collection

This study was approved by the Ethics Committee of

Guangdong Provincial People’s Hospital, and the requirement

for informed consent was waived. Figure 1 shows the detailed

inclusion and exclusion criteria for preparing the patient cohort.

A total of 353 lung cancer patients were treated with ICIs between

January 2016 and December 2020 at our institute. We excluded

51 patients who received thoracic radiotherapy because

radiotherapy can induce radiation pneumonitis which is
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difficult to be distinguished from ICIP. Among the remaining

patients, 30 of them developed ICIP, resulting in an incidence of

8.50% which is comparable to the data reported in previous

studies (Sears et al., 2019; Atchley et al., 2021). We used the same

criteria in a previous study to define ICIP (Cheng et al., 2022a).

After excluding six patients who did not have CT scans before the

start of immunotherapy, we finally got 24 patients for the ICIP

dataset. To match the sample size of the ICIP dataset, we

randomly chose 24 patients who did not develop ICIP to

construct the control dataset, i.e., the non-ICIP dataset.

The collected chest CT images are within 6 months before

the start of immunotherapy, which were produced by two

different scanners, Philips iCT 256 and Philips ingenuity CT.

Thoracic CT scans containing the whole lung were analyzed

using a multi-slice helical technique at 120 kVp, mean

exposure of 205 mAs, axial resolution of 5 mm, and mean

in-plane resolution of 0.8174 mm.

2.2 Development of the deep learning
model

2.2.1 Data preprocessing
For 3D CT scans, cropping, padding, and resizing

techniques were used to convert the CT volume into a 192 ×

192 × 224 matrix as the network input. We used a suitable

window width for lung tissue from -500 to 1500 Hounsfield

units (Zhang et al., 2020) to linearly rescale the pixel value to (0,

1) by the min-max method. Common data augmentation

techniques including random flipping, noise, and affine

transformation were used. For clinical information, as shown in

Table 1, categorical variables were converted to distinct numbers

so as to be input to models.

2.2.2 Network architecture
The overall network architecture is shown in Figure 2. To

predict ICIP, we first built an image network and a clinical

network based on pretreatment CT images and clinical data,

respectively. Duo to the relatively small size of our dataset, a

lightweight network, 3D ResNet18, was chosen as the

backbone of the image network. Then, a multimodal fusion

network was constructed by combining the nine clinical

features (Table 1) and the image features learned from the

image network. The clinical features and image features were

fused by direct concatenation. Cross-entropy loss was used to

supervise the ICIP prediction task. To enhance the prediction

performance, two-stage transfer learning and contrastive

learning strategies were used, which are introduced in the

following sections.

2.2.3 Transfer learning
A two-stage transfer learning strategy inspired by (Altaf

et al., 2021) was used to train our image network. We first

downloaded the pre-trained model which was built using

two massive natural image datasets (Kay et al., 2017;

Monfort et al., 2020). The pre-trained weights may not be

appropriate for our ICIP prediction task due to

distributional shift between natural images and medical

images. Therefore, in the second stage we fine-tuned the

network using a large CT image dataset associated with

FIGURE 1
Flowchart for patient enrollment.
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pneumonia (CC-CCII dataset) (Zhang et al., 2020). After the

transfer of knowledge from a related task, the domain gap

between the source and target tasks was significantly

reduced. The two-stage transfer learning flowchart is

shown in Figure 3.

2.2.4 Contrastive learning
Besides transfer learning, contrastive learning was also

adopted to further boost the performance of the image

network. The key idea of contrastive learning is to learn an

embedding space in which positive sample pairs stay close to each

TABLE 1 Patient characteristics. p values less than 0.05 are highlighted with an asterisk.

Characteristic ICIP
dataset (n = 24)

Non-ICIP
dataset (n = 24)

p value

Sex 0.022*

Female 0 (0.0%) 6 (25.0%)

Male 24 (100.0%) 18 (75.0%)

Age 0.261

Median 60 59

Range 38–75 37–77

Lesion location 0.9999

Upper left 9 (37.5%) 10 (41.7%)

Upper right 9 (37.5%) 7 (29.2%)

Lower left 3 (12.5%) 2 (8.3%)

Lower right 3 (12.5%) 3 (12.5%)

Mediastinal 0 (0.0%) 1 (4.2%)

Middle right 0 (0.0%) 1 (4.2%)

Histologic type 0.337

Adenocarcinoma 16 (66.7%) 16 (66.7%)

Squamous cell carcinoma 7 (29.2%) 4 (16.7%)

Adenosquamous carcinoma 0 (0.0%) 1 (4.2%)

Small cell endocrine carcinoma 1 (4.2%) 0 (0.0%)

Large cell endocrine carcinoma 0 (0.0%) 1 (4.2%)

Lymphoepithelioma-like carcinoma 0 (0.0%) 2 (8.3%)

T stage 0.496

T0 1 (4.2%) 1 (4.2%)

T1 5 (20.8%) 2 (8.3%)

T2 6 (25.0%) 11 (45.8%)

T3 4 (16.7%) 2 (8.3%)

T4 8 (33.3%) 8 (33.3%)

N stage 0.233

N0 1 (4.2%) 2 (8.3%)

N1 0 (0.0%) 0 (0.0%)

N2 13 (54.2%) 7 (29.2%)

N3 10 (41.7%) 15 (62.5%)

M stage 0.461

M0 6 (25.0%) 3 (12.5%)

M1 18 (75.0%) 21 (87.5%)

Surgery before immunotherapy 0.666

Yes 4 (16.7%) 2 (8.3%)

No 20 (83.3%) 22 (91.7%)

Radiotherapy before immunotherapy 0.023*

Yes 8 (33.3%) 1 (4.2%)

No 16 (66.7%) 23 (95.8%)
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other while negative ones are far apart. In essence, contrastive

learning allows the model to learn high-level features about the

data. The contrastive learning can be broken into three basic

steps: sample pair construction, encoding, and loss minimization

of representations. In our study, positive sample pairs were

samples from the same class while negative sample pairs were

samples from different classes. We then used 3D ResNet18 to

encode the images as vector representations (Figure 2). Lastly, we

maximized the similarity of the two vector representations of the

positive sample pair and minimized that of the negative sample

pair by minimizing a contrastive loss function. We took the

cosine as the similarity metric. The contrastive loss function is

defined by the following equations:

sim(x1, x2) � x1 · x2

‖x1‖ · ‖x2‖, (1)

lossCL � ∑
x

sim(x, x−) −∑
x

sim(x, x+). (2)

Here, sim represents the cosine similarity metric (x, x_) and

(x, x+) respectively denote the negative sample pair and positive

sample pair. The overall loss function is defined by

lossall � lossCE + γlossCL, (3)

FIGURE 2
Overview of the network architecture for ICIP prediction. The top and bottom boxes show the image network and clinical network using CT
images and clinical data, respectively, as input. The middle box represents the multimodal fusion network that combines image features and clinical
features for ICIP prediction.

FIGURE 3
Flowchart of two-stage transfer learning.
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where lossCE is the typical cross entropy loss, and γ is a

hyper-parameter to control the weight of contrastive learning

loss.

2.3 Implementation details

The proposed method was implemented using PyTorch on

a workstation equipped with four NVIDIA RTX A6000 GPUs

(48 GB memory each). In all comparative studies, we

employed ResNet18 (He et al., 2016) as the backbone.

Adam optimizer with the learning rate of 1e-4, 1e-4, and

5e-5 was employed to train the baseline model (without

transfer learning), one-stage transfer learning model, and

two-stage transfer learning model, respectively. The batch

size and γ were set to 6 and 0.02, respectively, which were

selected by grid search. Specifically, a finite number of values

were tried, and the one with the best performance was

selected. In all experiments, five-fold cross-validation was

used, and the average performance was reported.

2.4 Statistical analysis

To compare the data distribution between the ICIP and non-

ICIP datasets, Fisher’s exact test was used for categorical

variables, and Mann-Whitney U test was used for continuous

variables. Two-tailed tests are used to determine significance at

the 5% level. All statistical analyses were conducted using

Statistical Product and Service Solutions (IBM SPSS,

version 20.0).

To evaluate the classification performance, several typical

metrics were used, including accuracy, sensitivity, specificity,

precision, and F1-score. We considered ICIP as the positive

class and non-ICIP as the negative class, so true positive (TP),

false positive (FP), true negative (TN), and false negative (FN)

can be accordingly defined. After getting the numbers of TP, FP,

TN, and FN, the abovementioned performance metrics can be

calculated using Eqs. 4–8. Since we used five-fold cross-

validation, the average of these metrics were reported. We

also used the area under the receiver operating characteristic

(ROC) curve to evaluate model performance. Since every patient

was tested for and only for once in five-fold cross-validation, we

gathered the results across all the five folds, then plotted ROC

curves, and calculated AUCs.

Accuracy � TP + TN

TP + FP + TN + FN
(4)

Sensitivity � TP

TP + FN
(5)

Specificity � TN

TN + FP
(6)

Precision � TP

TP + FP
(7)

F1 − score � 2Precision p Specificity

Precision + Specificity
(8)

3 Results

3.1 Patient characteristics

Among the 48 patients, there were 42 men and 6 women with

an overall mean age of 58.00 years ± 9.75 (standard deviation).

We collected nine clinical characteristics for the 48 patients.

Table 1 shows these characteristics separately for the ICIP and

non-ICIP datasets. Among the nine characteristics, there were

significant differences between the two datasets for sex (Fishers’

exact test p value = 0.022) and radiotherapy before

immunotherapy (Fishers’ exact test p value = 0.023), whereas

no significant differences were observed for the remaining

characteristics.

3.2 Performance of deep learning model
to predict Immune checkpoint inhibitors-
related pneumonitis

To explore and validate the effectiveness of the key

components used in our method, we conducted extensive

experiments. The comparison of quantitative performance is

presented in Table 2. The details of different methods are

provided as follows:

• Cli denotes the clinical network

• Im denotes the image network without using transfer

learning and contrastive learning

• CI denotes the multimodal network built on both clinical

data and CT images

• Im-1T denotes the image network with one-stage transfer

learning

• Im-2T denotes the image network with two-stage transfer

learning

• Im-2T-C denotes the image network with two-stage

transfer learning and contrastive learning

• CI-2T denotes the multimodal network with two-stage

transfer learning

• CI-2T-C denotes the multimodal network with two-stage

transfer learning and contrastive learning

3.2.1 Effectiveness of multimodal data fusion
We first evaluated the effectiveness of combining images and

clinical data to predict ICIP. To this end, we compared the

classification performance of the multimodal network with that

of the image network and the clinical network (CI vs. Cli and Im,

Table 2). As shown in Table 2, the image network achieved an
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AUC of 0.753 (Im, Table 2), which was superior to the clinical

network that yielded an AUC of 0.701 (Cli, Table 2). By

utilizing both images and clinical data, the classification

performance was significantly improved up to 0.797 (CI,

Table 2). Other metrics in Table 2 also indicates that

multimodal data fusion is beneficial to ICIP prediction. ROC

curves are shown in Figure 4.

3.2.2 Effectiveness of two-stage transfer
learning

We next evaluated the effectiveness of the proposed two-

stage transfer learning strategy. To this end, we first used the

image network without transfer learning as the baseline and then

gradually incorporated one-stage and two-stage transfer

learning. Compared with the baseline model trained from

scratch, one-stage transfer learning brought large performance

gain from 0.753 to 0.821 in term of AUC (Im vs. Im-1T, Table 2).

Moreover, the use of the two-stage transfer learning further lifted

the prediction performance. The AUC, accuracy, sensitivity, and

specificity were 0.854, 0.855, 0.800, and 0.910, respectively (Im-

2T, Table 2). The increasingly better performance from Im, Im-

1T to Im-2T suggests that using a pre-trained network and fine-

tuning on a large related dataset are essential to obtain good

performance. ROC curves are shown in Figure 5.

3.2.3 Effectiveness of contrastive learning
Finally, we evaluated the effectiveness of the contrastive

learning strategy in the image network and the multimodal

network. The image network with two-stage transfer learning

but without contrastive learning achieved AUC of 0.854,

accuracy of 0.855, sensitivity of 0.800, and specificity of 0.910

(Im-2T, Table 2). Adding contrastive learning gave a boost in

TABLE 2 Quantitative analysis of key components in our method. The best results are highlighted in bold.

Method AUC Accuracy Sensitivity Specificity Precision F1-score

Cli 0.701 0.730 ± 0.045 0.660 ± 0.134 0.800 ± 0.200 0.817 ± 0.171 0.723 ± 0.041

Im 0.753 0.725 ± 0.075 0.740 ± 0.195 0.710 ± 0.175 0.728 ± 0.079 0.717 ± 0.081

CI 0.797 0.815 ± 0.078 0.790 ± 0.143 0.840 ± 0.089 0.837 ± 0.096 0.814 ± 0.079

Im-1T 0.821 0.830 ± 0.120 0.700 ± 0.200 0.960 ± 0.089 0.837 ± 0.096 0.824 ± 0.125

Im-2T 0.854 0.855 ± 0.087 0.800 ± 0.200 0.910 ± 0.125 0.920 ± 0.110 0.851 ± 0.090

Im-2T-C 0.901 0.920 ± 0.084 0.960 ± 0.089 0.880 ± 0.179 0.910 ± 0.131 0.918 ± 0.087

CI-2T 0.865 0.880 ± 0.130 0.920 ± 0.110 0.840 ± 0.167 0.860 ± 0.142 0.879 ± 0.131

CI-2T-C 0.918 0.920 ± 0.084 0.920 ± 0.110 0.920 ± 0.179 0.943 ± 0.128 0.918 ± 0.087

FIGURE 4
ROC curves for the Cli, Im, and CI networks to show the
effectiveness of multimodal data fusion.

FIGURE 5
ROC curves for the Im, Im-1T, and Im-2T networks to show
the effectiveness of two-stage transfer learning.
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performance. The resulting AUC, accuracy, sensitivity, and

specificity were 0.901, 0.920, 0.960, and 0.880, respectively

(Im-2T-C, Table 2). Similarly, performance gain was also

observed when incorporating contrastive learning into the

multimodal network. The multimodal network with two-stage

transfer learning yielded AUC of 0.865, accuracy of 0.880,

sensitivity of 0.920, and specificity of 0.840 (CI-2T, Table 2).

The use of contrastive learning increased the performance by a

large margin. The resulting AUC, accuracy, sensitivity, and

specificity were 0.918, 0.920, 0.920, and 0.920, respectively

(CI-2T-C, Table 2). ROC curves are shown in Figure 6.

3.3 Visualization

To gain an understanding of why the performance was

improved when the key components such as two-stage

transfer learning were introduced to the model, the class

activation maps were generated by the gradient of the deep

learning to highlight the important regions within the input

image (Gotkowski et al., 2021). As shown in Figure 7, the primary

attention of the one-stage transfer learning model (Im-1T, first

row) was not focused on the lung area. However, the use of two-

stage transfer learning and especially contrastive learning

brought more attention to the lung area (Im-2T and Im-2T-

C, second and third rows). Interestingly, fusing clinical and

image features made the network concentrate on the whole

lung (CI-2T-C, fourth row), indicating that the whole lung is

crucial and informative for ICIP prediction. This makes sense as

ICIP can occur anywhere in lung.

4 Discussion

As ICI treatment is becoming more frequently used in lung

cancer patients, an increasing number of irAEs (i.e., ICIP) are

being reported. ICIP is potentially fatal. Thus, early prediction of

ICIP is crucial for improving treatment outcomes. However,

based on clinical factors or pretreatment CT images, it is very

challenging for doctors to predict whether ICIP will occur prior

to immunotherapy. Therefore, there is a critical need for an

accurate and automated approach to assist doctors in identifying

patients at risk for ICIP before immunotherapy, which allows

personalized treatment options and reduces the number of

deaths due to severe ICIP. In this study, we developed the

first deep learning model for predicting ICIP using clinical

information and pretreatment baseline chest CT images. In

addition to the use of multimodal data, we also introduced

two-stage transfer learning and contrastive learning in our

model development. We evaluated our method using five-fold

cross-validation on 24 ICIP patients and 24 non-ICIP patients.

The results demonstrated that the deep learning model accurately

differentiated between ICIP and non-ICIP patients, with an AUC

of 0.918.

Few prior studies have demonstrated the utility of radiomics

to predict irAEs. Colen et al. (2018) presented the first reported

work exploring the potential of CT-based radiomics to predict

patients at risk for developing ICIP and reported an AUC of 1

(Colen et al., 2018). Although the performance was extremely

high, this study only included 2 ICIP cases and suffered from

severe class imbalance problem. By contrast, our study used a

balanced dataset consisting of 24 ICIP cases and 24 non-ICIP

cases. Mu et al. proposed a PET/CT based radiomics approach to

predict severe irAEs in patients with NSCLC (Mu et al., 2020). A

total of 30 cases with severe irAEs and 164 control cases were

curated in the patient cohorts. The radiomics approach yielded

an AUC of 0.88 in the prospective validation cohort. However,

this work is based on PET/CT which is not widely available in

hospitals and thus has limited utility. In contrast to the

traditional radiomics methods that extracted a fixed set of

image features, our study proposed a deep learning model

that can directly learn discriminative features from CT images

and demonstrated a better performance with an AUC of 0.918.

The superiority of our method can be attributed to the use of

multimodal data fusion, two-stage transfer learning, and

contrastive learning in our deep learning model. The

effectiveness of these key components was validated by

extensive ablation studies. The multimodal data fusion model

outperformed the models built on either clinical data or CT

images by a large margin. This suggests that the two kinds of data

harbor complementary information. Thus, the ICIP prediction

task can greatly benefit from this fusion approach. Training deep

learning models requires a large dataset. However, in medical

applications, oftentimes, only a small dataset is available due to

low incidence of disease or expensive cost of data collection. Our

FIGURE 6
ROC curves for the Im-2T, Im-2T-C, CI-2T, and CI-2T-C
networks to show the effectiveness of contrastive learning.
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results confirm that transfer learning is helpful in this case.

Simply using a pre-trained model learned on a large unrelated

dataset (one-stage transfer learning) or subsequently retraining

the model on a large related dataset (two-stage transfer learning)

can improve the performance of ICIP prediction markedly.

Moreover, contrastive learning can further enhance the feature

representation ability by contrasting similar (positive) and

dissimilar (negative) samples.

This study has several limitations. First, although our method

was rigorously validated by five-fold cross-validation, the data used

in this study was collected from a single institution, future efforts will

concentrate on validating the findings in a larger multi-institutional

cohort. Second, tomaintain a balance of sample size between classes,

we randomly selected a portion of patients without ICIP to match

the sample size of the ICIP dataset. There might be an issue with this

strategy as it does not reflect a real-world class distribution. Third,

duo to the retrospective nature of this study, it may be prone to

biases from missing data and reliance on available medical

documentation for review. Prospective studies are needed in the

future.

In conclusion, patients who will develop ICIP have subtle

changes at their pretreatment baseline CT scans that could not

be identified by the naked eye but could be detected by quantitative

analysis. Our study presents the first deep learning model based on

clinical data and CT images to predict patients at risk for developing

ICIP. This model can accurately predict ICIP patients with an AUC

of 0.918, which enables efficient risk stratification, close monitoring,

and prompt management of ICIP. This will potentially improve ICI

treatment outcomes in patients with lung cancer.
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Background: Glioma is the most prevalent malignant intracranial tumor. Many

studies have shown that angiogenesis plays a crucial role in glioma

tumorigenesis, metastasis, and prognosis. In this study, we conducted a

comprehensive analysis of angiogenesis-related genes (ARGs) in glioma.

Methods: RNA-sequencing data of glioma patients were obtained from

TCGA and CGGA databases. Via consensus clustering analysis, ARGs in

the sequencing data were distinctly classified into two subgroups. We

performed univariate Cox regression analysis to determine prognostic

differentially expressed ARGs and least absolute shrinkage and selection

operator Cox regression to construct a 14-ARG risk signature. The

CIBERSORT algorithm was used to explore immune cell infiltration, and

the ESTIMATE algorithm was applied to calculate immune and stromal

scores.

Results: We found that the 14-ARG signature reflected the infiltration

characteristics of different immune cells in the tumor immune

microenvironment. Additionally, total tumor mutational burden increased

significantly in the high-risk group. We combined the 14-ARG signature with

patient clinicopathological data to construct a nomogram for predicting 1-, 3-,

and 5-year overall survival with good accuracy. The predictive value of the

prognostic model was verified in the CGGA cohort. SPP1 was a potential

biomarker of glioma risk and was involved in the proliferation, invasion, and

angiogenesis of glioma cells.

Conclusion: In conclusion, we established and validated a novel ARG risk

signature that independently predicted the clinical outcomes of glioma

patients and was associated with the tumor immune microenvironment.
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Introduction

Glioma is the most common malignant tumor of the central

nervous system (CNS), accounting for approximately 15% of all

brain tumors (Ostrom et al., 2019). By degree of malignancy,

gliomas are classified into low-grade gliomas (LGGs) and

glioblastoma multiforme (GBM) (Louis et al., 2016). Despite the

availability of a variety of treatment options including surgery,

radiotherapy and chemotherapy, immunotherapy, and targeted

therapy (Aldape et al., 2019), prognosis in glioma has remained

poor; this is especially true in GBM patients, whose median survival

time is < 15 months (Chen et al., 2017; Xu et al., 2020a). This poor

prognosis is largely attributed to aberrant angiogenesis, high

invasiveness, and therapeutic resistance (Furnari et al., 2007; Tan

et al., 2018). According to previous research, gliomas with IDH

mutation and 1p/19q codeletion have a relatively favorable

prognosis (Eckel-Passow et al., 2015). The methylation status of

the MGMT promoter has emerged as a key predictive biomarker of

glioma and a potential predictor of response to temozolomide (Wick

et al., 2014; Butler et al., 2020). However, additional research is

needed to explore novel prognostic biomarkers and identify new

therapeutic targets.

Angiogenesis refers to the formation of new blood vessels in the

existing vasculature, which plays a pivotal role inmany physiological

and pathological processes such as embryonic development, wound

healing, and tumor progression (Carmeliet, 2005). The

pathophysiological processes of angiogenesis are reported to play

critical roles in glioma development and therapeutic resistance

(Onishi et al., 2011). Due to the important role of angiogenesis

in gliomas, the use of angiogenesis-related genes (ARGs) to

effectively stratify risk determining potential targets for

individualized treatment is a promising research strategy.

However, there have been few studies on the link between ARGs

and prognosis in patients with glioma.

More recently, numerous studies have shown that the tumor

immune microenvironment (TIME) plays a critical role in tumor

progression and response to therapeutics (Quail and Joyce, 2017).

Tumor-infiltrating immune cells can regulate tumor growth and

invasion and are key components of the tumor microenvironment

(TME) (Xu et al., 2020a; Xu Y. et al., 2020c). `The existing body of

research on the TME suggests that immunotherapy is a promising

method for the treatment of malignant tumors (Kruger et al., 2019;

Xu et al., 2020b). In addition, the components of the TIME are

closely correlated with the efficacy of immunotherapy.

In this study, we used data from the Cancer Genome Atlas

(TCGA) and the Chinese Glioma Genome Atlas (CGGA)

databases to explore the expression profiles and prognostic

value of ARGs in gliomas. Then, based on ARG expression,

we constructed clustering subgroups and risk models to verify the

predictive value of ARGs in risk stratification and clinical

outcome. We also evaluated the associations between the ARG

expression risk signature and the immune microenvironment,

tumor mutational burden (TMB), and immunotherapy response.

Finally, to validate the clinical application of the ARG expression

signature, a nomogram model was developed to predict the

overall survival (OS) rates of glioma patients. The flow chart

of this study is shown in Figure 1.

Materials and methods

Data resources

The TCGA dataset provided raw counts of RNA-sequencing

data (FPKM values) and accompanying clinical information for

glioma samples. The expression data and clinical information of the

validation RNA-seq cohort CGGA693 were acquired from the

CGGA website. We transformed the FPKM values into transcript

per million (TPM) values (Wagner et al., 2012); all values of the

expression data were log2 (x + 1)-transformed. The characteristics of

patients in the TCGA and CGGA cohorts are summarized in

Supplementary Table S1.

FIGURE 1
Flow chart of the study.
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Consensus clustering analysis

We used the R package ConsensusClusterPlus, version

1.54.0, for consistency analysis. The maximum number of

clusters was 6, and 80% of the total sample was drawn

100 times, clusterAlg = “hc,” innerLinkage = ’ward.D2.’ CDF

and consensus matrices were used to calculate the appropriate

number of subtypes. Then, we used PCA to detect differential

gene expression between the two subtypes.

Construction of the angiogenesis-related
gene signature

Univariate Cox regression analysis was performed to screen out

ARGs significantly correlated with survival (p < 0.001). Next,

biomarkers of the 28 ARGs were identified from the LASSO Cox

regression algorithm using the glmnet package in R. We calculated

the risk score of each glioma patient by the following formula:

Riskscore � ∑
n

i�1
(Coefipxi),

where Coefi is the coefficient of each ARG and xi is the expression

level of each ARG. In the risk score model, samples were

subdivided into high- and low-risk groups according to the

median risk score value.

Tumor-infiltrating immune
microenvironment analysis

CIBERSORT is a deconvolution method for expression

matrices of immune cell subsets (Newman et al., 2019).

LM22 is a gene signature matrix that specifies the content

of immune cell types. We used the CIBERSORT package in R

to calculate the number of immune cells per sample, setting

the permutation to 1,000 and selecting p < 0.05 as the

screening threshold. The ESTIMATE algorithm was used to

evaluate immune score, tumor purity, and stromal score

(Yoshihara et al., 2013). We calculated abundances of

immune infiltrates, including B cells, CD4+ T cells, CD8+

T cells, neutrophils, macrophages, and dendritic cells

(DCs), using Tumor IMmune Estimation Resource

(TIMER) (Li et al., 2017).

Single-sample gene set enrichment
analysis

We used the ssGSEA method with the Gene Set Variation

Analysis (GSVA) package in R to evaluate infiltration levels of

different immune cells, the related expression pathways, and the

activity of immune-related functions.

Tumor mutational burden analysis

We used the Maftools package to analyze and visualize

somatic-mutation data in order to study the mutational

landscapes of glioma patients (Mayakonda et al., 2018). TMB

was defined as the total number of somatic mutations per million

bases.

Survival analysis

We conducted Kaplan–Meier (KM) analysis to characterize

the differences in survival of glioma patients using the R packages

survival and survminer. The significance of differences in

survival time was determined by using the log-rank test

(p < 0.05).

Building and verification of the nomogram

The nomogram was constructed using the rms package in R.

We created a calibration curve to examine the consistency

between the actual survival rate and expected survival rate.

We built the nomogram model based on our multivariate Cox

regression results. We created calibration plots of the nomogram

for 1-, 3-, and 5-year OS using the “calibrate” function in rms.

Decision curve analysis (DCA) was used to assess the clinical net

benefit.

Protein–protein interaction

The protein–protein interaction (PPI) analysis of ARGs was

performed by using the STRING website (https://www.string-db.

org/). The interaction analysis was conducted by Cytoscape

software. The hub nodes were identified by the MCC method

of cytoHubba plugin.

Cell culture

We cultivated the glioma cell lines U87 and LN229 in high-

glucose Dulbecco’s modified Eagle’s medium (DMEM) with 10%

fetal bovine serum (FBS), 100 U/ml penicillin, and 100 μg/ml

streptomycin at 37°C with 5% CO2. SPP1 small-interfering RNA

(siRNA) sequences were as follows: si-SPP1-1: CCAGTTAAA

CAGGCTGATT; si-SPP1-2: GTCTCACCATTCTGATGAA.
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Western blotting

Western blot (WB) analysis was performed as previously

reported (Han et al., 2017). Briefly, we extracted total proteins

using a Total Cell Protein Extraction Kit (KeyGen Biotechnology,

Nanjing, China). Equal amounts of protein were electrophoresed,

transferred onto nitrocellulose membranes, and blocked with 2%

bovine serum albumin (BSA). We used primary antibodies against

SPP1 (1:1,000; ab69498; Abcam, Cambridge, United Kingdom) to

detect the expression of this protein. After washing them four times

with Tris-buffered saline + Polysorbate 20 (TBST)/0.1% Tween-20,

we incubated the membranes with the corresponding secondary

antibody. A glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

protein band was used as a control to normalize protein levels. We

visualized protein bands using a chemiluminescence kit (Beyotime

Biotechnology, Beijing, China).

Cell viability assay

We inoculated the treated U87 and LN229 cells in 96-well

plates at a density of 1 × 103 cells/well for 24, 48, 72, 96, and 120 h.

The plates were examined using a cell viability assay kit (Promega

Corp., Fitchburg, WI, United States) in accordance with the

manufacturer’s protocol, as described previously (Wang et al.,

2021).

5-ethynyl-2′-deoxyuridine cell
proliferation assay

We performed an EdU assay to visualize the proliferating

cells and used a Click-iT EdU Alexa Fluor 488 Imaging kit

(Invitrogen Corp., Carlsbad, CA, United States) to detect cell

proliferation as per the manufacturer’s instructions. We

photographed EdU+ cells under a fluorescence microscope and

counted them using ImageJ software (National Institutes of

Health [NIH], Bethesda, MD, United States).

Transwell invasion assay

We performed a transwell invasion assay according to

previously described methods (Han et al., 2015). U87 and

LN229 cell invasion was assessed using a Matrigel-coated filter

over the lower compartment for 20 h. We counted the invading

cells under a microscope (Olympus, Tokyo, Japan).

Co-culture

Glioma cells and human brain microvascular endothelial

cells (hBMECs) were co-cultured in Boyden chambers. Briefly,

hBMECs were cultured in 6-well plates, while glioma cells were

seeded in chambers.

Tube formation assay

A pre-cooled 96-well plate was coated with 50 μl Matrigel

(BD Biosciences, United States) per well and incubated at 37°C

for 30 min. PBS was used to wash the tumor cells, and 0.25%

trypsin was used for digestion. Cells were collected and counted

using a hemocytometer after centrifugation. Then, the cells were

resuspended with serum-free DMEM, and 2 × 104 cells/well were

inoculated on the surface of Matrigel. After 12 h, tube formation

was photographed using a microscope (Olympus, Tokyo, Japan).

ImageJ software was used to quantify and analyze tubule

intersections.

Statistical analysis

Statistical analyses and visualization were carried out in R.

We performed time-dependent receiver operating characteristic

(ROC) curve analysis to evaluate the predictive value of the

constructed risk model using the R package survivalROC. The

Wilcoxon test was used for comparisons between two groups,

and the Kruskal–Wallis test was used for comparisons between

multiple groups. A two-sided p < 0.05 was considered to be

statistically significant.

Results

Consensus cluster analysis for
angiogenesis-related gene expression
profiles

The set of ARGs we obtained from Gene Set Enrichment

Analysis—Hallmark, Angiogenesis (GSEA) included 36 genes

that are upregulated in tumorigenic angiogenesis (Subramanian

et al., 2005; Ren et al., 2020). We performed consensus clustering

in the glioma patient training cohort to analyze the prognostic

implications of the ARGs (Figure 2A). The empirical cumulative-

distribution function (CDF) plot revealed the lowest rangeability

at 0.2–0.8, with k = 2 (Figure 2A); the delta area scores were the

highest also at k = 2 (Figure 2A). In addition, the maximum

consistency was found at k = 2 in the consensus matrix plot

(Figure 2A; Supplementary Figure S1). Therefore, k = 2 was

shown to have the best clustering stability. Cluster 1 (n = 260)

and cluster 2 (n = 403) were generated from a total of

663 patients. We used principal component analysis (PCA) to

display differences in gene expression levels between the two

subgroups (Figure 2A). The heatmap shows the expression

pattern of 36 ARGs in clusters 1 and 2 (Figure 2B). We found
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that immune score was significantly higher (p < 0.05), while

tumor purity was significantly lower (p < 0.05) in cluster 1 than in

cluster 2 (Figure 2C). Furthermore, a KM curve showed that the

OS outcome of cluster 1 was worse than that of cluster 2

(Figure 2D). In addition, cluster 1 had significantly higher

abundances of B cells, CD8+ T cells, neutrophils,

macrophages, and DCs than cluster 2 (p < 0.05), while there

was no between-cluster difference in CD4+ T cells (Figure 2E).

These results indicated that the cluster assignment based on

ARGs was closely related to prognosis and TIME in glioma.

FIGURE 2
(A)Consensus clustering, CDF, and relative change in the CDF AUCwith k = 2–6. (B)Heatmap of clinical information of the two clusters among
36 ARGs. (C) Tumor purity and ESTIMATE, stromal, and immune scores. (D) KM curve of glioma patients. (E) Content of six immune cells.
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Establishment and validation of the risk
signature based on angiogenesis-related
gene expression

First, we conducted univariate Cox regression analysis to

screen out 29 OS-related ARGs (p < 0.001) in the TCGA cohort

(Figure 3A). Subsequently, we selected these genes to conduct an

additional least absolute shrinkage and selection operator

(LASSO) Cox regression analysis (Figures 3B,C). The formula

was as follows: risk score = (LUM × −0.11114) + (SLCO2A1 ×

0.11913) + (VEGFA × 0.01235) + (POSTN × 0.06287) + (FSTL1 ×

0.14389) + (PRG2 × 0.00485) + (SERPINA5 × 0.07829) +

(MSX1 × 0.13564) + (PDGFA × 0.08695) + (TIMP1 × 0.1885)

+ (SPP1 × 0.18423) + (KCNJ8 × −0.00092) + (ITGAV × 0.08581)

FIGURE 3
(A) Univariate Cox regression analysis of the 36 ARGs in the TCGA cohort. (B) LASSO coefficient profiles of the common genes. (C) Cross-
validation for tuning parameter screening in the LASSO regressionmodel. (D)GO and KEGG enrichment analysis across the 14 genes. (E) Functional-
enrichment map of pathways of the 14 ARGs.
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FIGURE 4
Prognostic value of the risk score in TCGA and CGGA. (A,B) Distribution of risk score and survival status. (C,D) Expression pattern of 14 ARGs in
the high- and low-risk groups. (E,F) KM analysis of the risk model. (G,H) Time-dependent ROC curve analysis of the risk model.
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+ (TNFRSF21 × −0.0817). GO and KEGG enrichment analysis

was performed by R package “clusterProfiler” (Yu et al., 2012).

These genes were shown to be involved in extracellular

structure organization and the PI3K-Akt signaling pathway

(Figures 3D,E). Differential analysis was performed to detect

14 ARGs (Supplementary Figure S2). Patients in the training

cohort (TCGA) were divided into high- and low-risk groups

based on the median risk score. According to our findings, the

number of patients who died increased as their risk score

increased (Figures 4A,B). Differential expression levels of the

14 ARGs in the high- and low-risk groups are shown in

heatmaps (Figures 4C,D). To evaluate the role of the 14-

ARG signature in glioma, we drew KM curves for the high-

and low-risk groups of the TCGA cohort (Figure 4E). These

two subgroups significantly differed in OS (p < 0.0001).

Thereafter, we used a time-dependent ROC curve to predict

the efficacy of the risk signature. The area under the curve

(AUC) of the prediction model was 0.91 over 1 year, 0.91 over

3 years, and 0.86 over 5 years in the TCGA training cohort

(Figure 4G).

To assess the predictive value of the risk model, we used the

risk score algorithm in the CGGA cohort. The results in the

validation cohort revealed that glioma patients in the high-risk

group had worse survival rates than those in the low-risk group

(Figure 4F). The AUCs for 1-, 3-, and 5-year survival were 0.69,

0.75, and 0.75, respectively (Figure 4H). These findings suggested

that the 14-ARG risk model could accurately predict the

prognoses of patients with glioma.

Association between angiogenesis-
related gene risk signature and clinical
information

Expression of the 14 ARGs in low- and high-risk patients in

the TCGA and CGGA datasets is depicted by heatmaps (Figures

5A,C). Other than those of TNFRSF21, expression of the 13 other

ARGs increased significantly (p < 0.05) in the high-risk group

(Figure 5B) of the TCGA cohort. All 14 ARGs were highly

expressed in the high-risk group in the CGGA database (p <

FIGURE 5
(A,C) Heatmap of the 14-ARG expression pattern in clinicopathologic characteristics and risk score in the TCGA and CGGA databases. (B,D)
Expression differences in the 14 ARGs between the low- and high-risk groups in the TCGA and CGGA databases.
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FIGURE 6
(A) Relationship between risk score and each clinicopathological characteristic (IDH-mutant status, 1p/19q codeletion, MGMT promoter
methylation, age, WHO grade, and histology). (B) KM analyses of patients in the CGGA dataset stratified by IDH-mutant status, 1p/19q codeletion,
MGMT promotermethylation, age, andWHOgrade in the TCGA cohort. ROC curve analysis of the riskmodel in predicting 1-, 3- and 5-year OS in the
TCGA–LGG cohort and 1-, 2- and 3-year OS in the TCGA–GBM cohort.
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0.05; Figure 5D). We also performed survival analysis of single

ARGs in glioma patients (Supplementary Figures S3,S4). The

results showed that for glioma patients in the TCGA cohort, all of

the ARGs were prognostic-risk factors, except for TNFRSF21.

Thereafter, we evaluated differences in risk score between

different clinicopathological characteristics of glioma patients

in the training and validation cohorts, including IDH mutation

status, 1p/19q codeletion, MGMT promoter methylation, age,

WHO grade, and histology. The results showed that in the TCGA

dataset, the risk score was elevated in the IDH wild-type (WT),

1p/19q non-codeletion subtype, MGMT promoter unmethylated

subtype, older patients, and high-grade glioma (p < 0.05); we

validated these results in the CGGA dataset (Figure 6A;

Supplementary Figure S5A). Next, we drew KM curves of the

risk score signature stratified by IDH-mutant status, 1p/19q

codeletion, MGMT promoter methylation, age, and WHO

grade in the glioma patients of the training and validation

cohorts. The KM curve suggested the predictive value of the

ARG risk score signature in prognosis in the LGG and GBM

subgroups (Figure 6B; Supplementary Figure S5B). The results

demonstrated the power of the ARG risk score signature’s

prognostic value in the glioma subgroups of the TCGA cohort

(Figure 6B), and these results were consistent in the CGGA

cohort (Supplementary Figure S5B).

Because different grades of glioma have different clinical

features and prognoses, we performed subgroup analyses of LGG

and GBM. The relationships between risk score and each clinical

characteristic (IDH-mutant status, 1p/19q codeletion, MGMT

promoter methylation, age) in the TCGA/CGGA-LGG and

TCGA/CGGA-GBM subgroups are shown in Supplementary

Figures S6A,S6D and in Supplementary Figures S7A,S7D,

respectively. Tumor purity was significantly higher (p < 0.05)

and ESTIMATE, immune, and stromal scores significantly lower

(p < 0.05) in the low-risk group in the LGG and GBM subgroups

(Supplementary Figures S6B,S6E, Supplementary Figures

S7B,S7E). Expression differences of the 14 ARGs between the

high- and low-risk groups of the LGG and GBM subgroups are

shown in Supplementary Figures S6C,S6F and in Supplementary

Figures S7C,S7F. The ROC curve showed the efficiency of the risk

signature in these two subgroups. The AUC of the prediction

model was 0.896 over 1 year, 0.850 over 3 years, and 0.729 over

5 years in the LGG subgroup and 0.712 over 1 year, 0.665 over

2 years, and 0.683 over 3 years in the GBM subgroup (Figure 6B;

Supplementary Figure S5B). These results indicated the

predictive stability of the 14-ARG risk score model’s

prognostic value in both these subgroups.

Next, we performed univariate and multivariate Cox

regression analyses in the TCGA and CGGA cohorts to assess

the independent prognostic value of the ARG risk signature. We

observed that in univariate analysis, age,WHO grade, IDH status,

chromosome 1p/19q status, and risk score were significantly

correlated with prognosis in both the TCGA and CGGA cohorts

(Figures 7A,C). However, multivariate analysis indicated that

age, grade, and risk score were independent prognostic factors in

the TCGA cohort (Figure 7B; p < 0.05). In the validation cohort

(CGGA), we also found that risk score was an independent

prognostic factor (Figure 7D; p < 0.05).

Furthermore, we compared the prognostic predictive abilities of

20 different risk signatures of gliomas in TCGA from published

articles, including inflammatory response-related gene (IRRG)

signature (Yan et al., 2022), DNA damage and repair-related

gene (DDRRG) signature (Li et al., 2022c), CXCR members

signature (He et al., 2022), pyroptosis-related gene signature

(Zhang M. et al., 2021b; Chao et al., 2022; Yang et al., 2022;

Zhang et al., 2022), ECM-related gene (ECMRG) signature (Li

et al., 2022b), tripartite motif (TRIM) family gene signature (Xiao

et al., 2022), antigen presentation machinery (APM) signature

(Chen et al., 2022), natural killer cell-related gene (NKRG)

signature (Li C. et al., 2022a), IL-4-related gene (IL4RG)

signature (Qi et al., 2022), hypoxia-related gene (HRG) signature

(Gao et al., 2021), S100 family-based signature (Hu et al., 2021),

TIME signature (Zhang C. et al., 2021a), focal adhesion-related gene

(FARG) signature (Li et al., 2021), m6A RNAmethylation regulator

signature (Cong et al., 2021), HDAC1-related signature (Fan et al.,

2021), RNA-binding protein (RBP)-based signature (Chen et al.,

2021a) and ferroptosis-related gene (FRG) signature (Chen et al.,

2021b). The results of univariate and multivariate Cox analyses

showed that our ARG signature had independent predictive ability

(p < 0.001, Table 1).

Based on the abovementioned comprehensive analyses, we

considered the effect of risk score on prognosis to be accurate

and stable.

Angiogenesis-related gene risk signature
and the tumor immunemicroenvironment

The heatmap of immune responses based on the ESTIMATE

algorithms and single-sample GSEA (ssGSEA) is depicted in

Figure 8A. Tumor purity was substantially lower (p < 0.05) in the

high-risk group, but ESTIMATE, immune and stromal scores

were significantly higher (Figure 8B). We calculated the

proportions of 22 types of immune cells in each glioma

sample based on the CIBERSORT algorithm. Next, we

compared differences in proportions of immune cells between

the high- and low-risk groups in the TCGA database.

Abundances of CD8+ T cells, follicular helper T (Tfh) cells,

regulatory T cells (Tregs), gamma delta (γδ) T cells, resting

natural-killer (NK) cells, M0, M1, and M2 macrophages, and

neutrophils were significantly more enriched in the high-risk

than in the low-risk group (Figure 8C). Additionally, we

identified two immune subtypes based on immune-genomic

profiling of 29 immune signatures in ssGSEA. We found a

significantly higher risk score in the immunity-high subtype

than the immunity-low subtype (Figure 8D). We also

compared six immune cell types via the TIMER algorithm,
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and results showed that abundances of B cells, CD8+ T cells,

neutrophils, macrophages, and DCs were significantly higher in

the high-risk group (Figure 8E). We obtained similar TIME

infiltration results in the validation cohort (Supplementary

Figure S8), indicating greater infiltration of CD8+ T cells, Tfh

cells, Tregs, and M0 macrophages in the high-risk group

(Supplementary Figure S8C), and risk score remained higher

in the immunity-high subtype (Supplementary Figure S8D).

These results demonstrated that the ARG risk signature was

closely associated with infiltration of immune cells.

Angiogenesis-related gene risk signature
and mutational profile

The mutational landscapes between the low- and high-risk

groups of each glioma patient in TCGA were analyzed and are

displayed as a waterfall plot (Figures 9A,B). Compared with the

low-risk group, TMB was significantly high (p < 0.001) in the

high-risk group (Figure 9C). A log rank test and the KM curve

showed that the high-TMB group had worse survival outcomes

than the low-TMB group (p < 0.001; Figure 9D). We also drew

the survival curve of the TMB combined risk score (Figure 9E);

the results showed that the high-TMB plus high-risk score group

had a worse survival outcome (p < 0.001).

Angiogenesis-related gene risk signature
and immunotherapy

The association between risk score and immunotherapeutic

effect was also explored.We found that risk scores were positively

correlated with expression of crucial immune checkpoints

(B7H3, PD-L1, PD-L2, HAVCR2, LAG-3, PD-1, CTLA4, and

the inflammatory factors HLA-A, HLA-B, and HLA-C) in the

TCGA and CGGA databases (Figures 10A,B). Furthermore, we

evaluated immune checkpoint and HLA complex expression

levels. The high-risk group of the training and validation

cohorts had considerably greater expressions of both. (p <
0.05; Figures 10C,D). Collectively, the results suggested that

risk stratification could help predict the effect of

immunotherapy in gliomas.

Construction and validation of the
prognostic-nomogram model

To evaluate the prognostic significance of the ARG signature

in glioma patients, we established a nomogram model based on

age, WHO grade, and risk score (Figure 11A; Supplementary

Figure S9A) using our multivariate-analysis results. The C-index

of the nomogram model was generated to assess discriminating

FIGURE 7
(A,B) Univariate and multivariate Cox regression analyses in the TCGA cohort. (C,D) Univariate and multivariate Cox regression analyses of
clinicopathologic features in the CGGA cohort.
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abilities, and it performed well (TCGA training cohort, 0.875;

CGGA validation cohort, 0.735). In the TCGA and CGGA

cohorts, the calibration curves revealed a favorable consistency

between expected and observed survival rates (Figures 11B–D;

Supplementary Figures S9B–D). In addition, we used DCA to

examine the suitability of the nomogram in clinical settings. The

model exhibited an excellent net benefit (Figures 11E–G;

Supplementary Figures S9E–G). Taken together, the results

described above suggested that the nomogram model had

good reliability in predicting OS in glioma patients.

Knockdown of SPP1 significantly inhibited
cell proliferation, invasion, and
angiogenesis

SPP1 was overexpressed in the high-risk group of glioma

patients and was correlated with poor prognosis. The results of

PPI analysis and the MCCmethod of cytoHubba suggested SPP1

may be the hub gene (Figure 12A). In the U87 and LN229 glioma

cell lines, we determined the role of SPP1 using in vitro

experiments. SiRNA was used to reduce expression of SPP1 in

both U87 and LN229 cells; SPP1 protein expression levels are

shown in Figure 12B.We used a cellular-viability assay to analyze

the effects of SPP1 on the proliferation of U87 and LN229 cells.

The results, which were presented as the mean ± standard

deviation (SD) of three independent experiments, suggested

that SPP1 knockdown significantly reduced the viability of

glioma cells (Figure 12C; p < 0.05). Meanwhile, the results of

EdU assay suggested that SPP1 inhibited the proliferation

capacity of the glioma cell lines (Figure 12D). Transwell

experiments suggested that knockdown of SPP1 could also

inhibit migration and invasion of U87 and LN229 cells

Figure 12E). hBMECs co-cultured with si-SPP1 glioma cells

showed attenuated network formation when compared with

controls (Figure 13), which suggested knockdown of SPP1

inhibited angiogenesis.

Discussion

Despite advances in surgical and medical treatment, glioma

remains a fatal disease. Numerous studies indicate that aberrant

angiogenesis is involved in the processes of tumorigenesis,

development, invasion, and poor prognosis in glioma (Tan

et al., 2018). To date, there are still few studies on ARG in

TABLE 1 Univariate and multivariate Cox regression analyses of different risk signatures.

Characteristics Univariate analysis Multivariate analysis

Hazard
ratio (95% CI)

p Value Hazard
ratio (95% CI)

p Value

Our ARG signature 3.032 (2.648–3.470) < 0.001 3.019 (1.808–5.041) <0.001

IRRG signature 13.574 (9.597–19.200) < 0.001 0.785 (0.342–1.804) 0.569

DDRRG signature 6.885 (5.419–8.748) < 0.001 2.899 (1.363–6.165) 0.006

CXCR member signature 1.251 (1.089–1.438) 0.002 0.971 (0.838–1.125) 0.698

PRG signature (Chao B et al.) 6.134 (4.858–7.745) < 0.001 0.714 (0.387–1.321) 0.283

PRG signature (Yang Z et al.) 2.555 (2.257–2.892) < 0.001 0.971 (0.698–1.350) 0.860

PRG signature (Zhang M et al.) 2.218 (2.013–2.444) < 0.001 1.165 (0.825–1.645) 0.385

PRG signature (Zhang Y et al.) 2.751 (2.413–3.135) < 0.001 1.177 (0.828–1.675) 0.364

ECMRG signature 5.518 (4.477–6.800) < 0.001 0.455 (0.182–1.136) 0.092

TRIM family gene signature 23.500 (14.501–38.083) < 0.001 0.904 (0.351–2.332) 0.835

APM signature 4.157 (3.333–5.185) <0.001 0.578 (0.341–0.979) 0.041

NKRG signature 1195154.632 (130202.538–10970558.754) < 0.001 5.857 (0.187–183.904) 0.315

IL4RG signature 266.447 (124.392–570.730) < 0.001 0.738 (0.117–4.646) 0.746

HRG signature 2.974 (2.532–3.495) < 0.001 0.923 (0.681–1.251) 0.606

S100 family-based signature 2.833 (2.475–3.244) < 0.001 0.784 (0.524–1.172) 0.235

TIME signature 5.365 (4.355–6.607) < 0.001 1.365 (0.704–2.646) 0.357

FARG signature 2.974 (2.502–3.535) < 0.001 0.689 (0.510–0.931) 0.015

m6A RNA methylation regulators signature 3.852 (3.236–4.586) < 0.001 0.845 (0.562–1.269) 0.416

HDAC1-related signature 3.605 (3.033–4.284) < 0.001 1.158 (0.796–1.685) 0.444

RBP-based signature 3.130 (2.673–3.664) < 0.001 1.081 (0.808–1.445) 0.602

FRG signature 2.786 (2.456–3.159) < 0.001 1.569 (1.053–2.338) 0.027

The bold values are p < 0.05.
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glioma (Biterge-Sut, 2020; Wang et al., 2022). Two major aspects

of glioma biological processes that contribute to treatment

resistance are abnormal formation of new blood vessels via

angiogenesis and invasion of glioma cells along white-matter

tracts (Carmeliet, 2005; Onishi et al., 2011). Although using

immunohistochemistry (IHC) to analyze the expression level

of a single angiogenesis gene is convenient (Tan et al., 2018; Peng

et al., 2021), multi-gene signature analysis can reveal the complex

interactions among various factors that affect angiogenesis in the

pathophysiology of gliomas. Therefore, application of multi-gene

methods might help researchers better describe the

characteristics of tumor biology, thereby guiding clinical

decision-making for accurate cancer diagnosis and treatment.

The effectiveness of single-ARG targeted treatment is still limited

(Onishi et al., 2011), suggesting that angiogenesis in glioma likely

results from multiple genes and factors and that exploration of

multi-gene signatures might provide guiding significance for

multi-target combined therapy.

In this study, we performed consensus clustering based on

the ARG expression level to create two clusters. KM analysis

showed that glioma patients in cluster 1 had unfavorable clinical

outcomes. Moreover, immune cell infiltration in cluster 1 was

greater than that in cluster 2. These results indicated that high

immune scores and high infiltration of immune cells were

correlated with poor prognosis, which was consistent with

that in previous studies (Deng et al., 2020; Tian et al., 2020;

Xu et al., 2021). Next, we identified 14 ARGs of significance and

applied them to build a risk model by combining LASSO and Cox

regression analyses. The risk score showed a favorable predictive

value for the survival rate of glioma patients in the training and

validation cohorts. Moreover, the risk score was found to be an

independent predictor of glioma prognosis in multivariate Cox

regression analyses. Furthermore, we established and validated a

nomogram model to predict OS in glioma. The calibration curve

revealed high concordance between predicted and actual OS

rates, indicating good prediction performance of the

nomogram model.

The biological functions of 14 ARGs have been moderately

studied in various cancers, but not as much in gliomas.

Crocker et al., (2011) found that TIMP-1 serum level is

positively correlated with TIMP-1 expression in tumor

tissue and inversely correlated with survival time of glioma

FIGURE 8
Relationship between risk signature and TIME in the TCGA database. (A)Heatmap of risk score and the two immunity subtypes based on ssGSEA.
(B) Comparison of tumor purity and of ESTIMATE, immune, and stromal scores in the high- and low-risk groups. (C) Association between immune
cells and the risk signature. (D) Comparison of risk score between the immunity-high and immunity-low subtypes. (E) Abundances of six immune
cells in the high- and low-risk groups.
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patients. VEGFA is a critical target of anti-angiogenic

treatment for a variety of malignant tumors, including

gliomas, since it is a fundamental mediator of tumor

angiogenesis (Tamura et al., 2019). In addition to

angiogenesis, VEGFA can inhibit the maturation of DCs to

inhibit tumor immune response and induce

immunosuppressive cells (Lindau et al., 2013). Previous

research studies have shown that elevated VEGFA

expression levels are related to poor prognosis in many

tumors, including gliomas (Hicklin and Ellis, 2005). Reddy

et al., (2008) found that overexpression of FSTL1 is a

biomarker of poor prognosis in GBM patients, and Jin

et al., (2017) demonstrated that this gene is a critical

modulator that promotes cell proliferation and cell cycle

progression. Overexpression of SPP1 is associated with

poor OS in patients with glioma (Chen et al., 2019). The

results of our functional experiments showed that SPP1

knockout could inhibit the proliferation, invasion, and

angiogenesis of glioma cell lines U87 and LN229.

Therefore, we believe that SPP1 might affect the prognosis

of glioma by helping regulate angiogenesis and cell

proliferation. The abovementioned evidence indicated that

the 14 ARGs might play important roles in angiogenesis,

invasiveness, and the TIME of gliomas. This also suggested

that the ARG risk signature could help support clinical

decision-making in glioma patients.

Previous studies have shown that immune infiltration

plays an important role in determining therapeutic effect

and prognosis in glioma patients (Gentles et al., 2015;

Pereira et al., 2018; Kruger et al., 2019; Xu et al., 2020b).

Tumor angiogenesis facilitated by hypoxia in the TIME leads

to an antitumor immune response (Abou Khouzam et al.,

2020). Macrophages are abundant cell components in the

glioma microenvironment, which can promote

proliferation, invasion, and migration of glioma (Uneda

et al., 2021). Researchers have found that a high level of

FIGURE 9
Mutational profile and TMB in the low- and high-risk groups. (A)Mutational profile in the low-risk group. (B) Mutational profile in the high-risk
group. (C) Difference in TMB between low- and high-risk groups. (D) KM analysis of the high- and low-TMB groups. (E) Survival curve of the TMB
combined risk score.
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infiltrating CD8+ T cells is correlated with poor prognosis in

glioma (Zhai et al., 2017; Weenink et al., 2019; Guo et al.,

2020). Therefore, we further explored the relationship

between immune cell infiltration and risk stratification.

Data from the ESTIMATE algorithm showed that ARG risk

stratification was negatively correlated with tumor purity and

positively correlated with immune and stromal scores, which

suggested higher infiltration levels of immune and stromal

cells in the TME of the high-risk group. Numerous studies

have shown that TAMs might promote the proliferation and

progression of gliomas by enhancing immunosuppression,

migration, invasion, and angiogenesis (Li and Graeber,

2012; Coniglio and Segall, 2013; Kennedy et al., 2013;

Zhang Y. et al., 2021c). In our study, we found that the

high-risk group had a higher infiltration of

immunosuppressive cells such as M2 macrophages and

Tregs, which create an immunosuppressive

microenvironment and inhibit NK cell activation. The

abundance of activated NK cells in the high-risk group was

lower than that in the low-risk group. In general, we speculate

that the poor prognosis of glioma patients in the high-risk

group might be related to the tumor immunosuppressive

microenvironment.

Multiple studies have reported that glioma acquires

aggressive characteristics depending on a series of genome

alterations (Kim et al., 2015; Yin et al., 2020). TMB has

become a novel potential biomarker for predicting the

efficacy of immune checkpoint therapy in many cancers

(Braun et al., 2016; Chan et al., 2019). We explored the

mutational profiles and TMBs of the high- and low-risk

groups to investigate the predictive value of the risk model.

We found that TMB increased significantly in the high-risk

group and that patients with high TMB had poor prognoses.

Consistent with our findings, Yin et al., (2020) found that

TMB is negatively correlated with OS in glioma patients.

Previous studies have suggested that immune checkpoints

and the HLA complex have been implicated in the

treatment response and prognosis of glioma (Luoto et al.,

2018; Cloughesy et al., 2019; Feng et al., 2019). Kim et al.,

(2020) found that HAVCR2 (TIM-3) plays specific

intracellular and intercellular immunoregulatory roles in

the TME of gliomas. Studies have shown that the HLA level

is positively related with development of gliomas (Machulla

et al., 2001). In this study, risk score was positively correlated

with expression of immune checkpoint molecules and HLA

complex. These findings demonstrated the 14-ARG risk

model’s accuracy in the prediction of the TIME of glioma,

which therapeutic targets based on this signature might alter.

The ARG expression signature could be used to predict

clinical prognosis and efficacy of immunotherapy in glioma

FIGURE 10
(A,B) Correlation of risk score to immune checkpoints and HLA complex expression levels. (C,D) Difference in expression of immune
checkpoints and the HLA complex between the high- and low-risk groups.
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FIGURE 11
Construction and validation of the nomogram to predict OS in glioma patients. (A) The nomogramwas established using age, WHO grade, and
the ARG risk signature in the TCGA cohort. (B–D) Calibration curve of the nomogram for predicting the probability of OS at 1, 3, and 5 years in the
TCGA cohort. (E–G) DCA of the OS-related nomogram at 1, 3, and 5 years in the TCGA cohort.
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FIGURE 12
SPP1 experiments. (A) PPI analysis and the MCCmethod of cytoHubba showed that SPP1 had the highest hub node score. (B) SPP1 knockdown
using two independent SPP1 siRNAs (si-SPP1-1, si-SPP1-2) in U87 and LN229 cells was evidenced by WB analysis. GAPDH was using as loading
control. (C) Cellular-viability assays demonstrated that silencing SPP1 inhibited the growth of U87 and LN229 cells. (D) Representative images of
cellular-proliferation assays using EdU staining (left) and quantification of EdU+ cells (right). Nuclei were counterstained with Hoechst 33,342
(scale bar: 50 μm). (E) Matrigel assay demonstrated that knockdown of SPP1 inhibited U87 and LN229 invasion (scale bar: 100 μm).
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patients, and it might itself constitute a potential therapeutic

target.

Conclusion

In summary, the study analyzed the expression pattern

and predictive value of ARGs in gliomas. Furthermore, we

used a risk model based on the expression of ARGs to predict

survival, and the risk score was correlated with the TIME in

gliomas. The risk score can be used as an independent

prognostic indicator. However, further studies using

prospective, large-scale, multicenter clinical cohorts are

needed to validate the risk model.
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Medical terminology-based
computing system: a lightweight
post-processing solution for
out-of-vocabulary multi-word
terms

Nadia Saeed and Hammad Naveed*

Computational Biology Research Lab, Department of Computer Science, National University of
Computer and Emerging Sciences (NUCES-FAST), Islamabad, Pakistan

The linguistic rules of medical terminology assist in gaining acquaintance

with rare/complex clinical and biomedical terms. The medical language

follows a Greek and Latin-inspired nomenclature. This nomenclature aids

the stakeholders in simplifying the medical terms and gaining semantic

familiarity. However, natural language processing models misrepresent rare

and complex biomedical words. In this study, we present MedTCS—a

lightweight, post-processing module—to simplify hybridized or

compound terms into regular words using medical nomenclature.

MedTCS enabled the word-based embedding models to achieve 100%

coverage and enabled the BiowordVec model to achieve high

correlation scores (0.641 and 0.603 in UMNSRS similarity and

relatedness datasets, respectively) that significantly surpass the n-gram

and sub-word approaches of FastText and BERT. In the downstream task

of named entity recognition (NER), MedTCS enabled the latest clinical

embedding model of FastText-OA-All-300d to improve the F1-score

from 0.45 to 0.80 on the BC5CDR corpus and from 0.59 to 0.81 on the

NCBI-Disease corpus, respectively. Similarly, in the drug indication

classification task, our model was able to increase the coverage by 9%

and the F1-score by 1%. Our results indicate that incorporating a medical

terminology-based module provides distinctive contextual clues to

enhance vocabulary as a post-processing step on pre-trained

embeddings. We demonstrate that the proposed module enables the

word embedding models to generate vectors of out-of-vocabulary

words effectively. We expect that our study can be a stepping stone for

the use of biomedical knowledge-driven resources in NLP.

KEYWORDS

medical terminology, named entity recognition, linguistic approach, natural language
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1 Introduction

Familiarity with medical terminology assists medical

practitioners and other stakeholders like doctors, nurses, and

clinicians to understand rare and complex vocabulary. The

evolution of medical terminology presents challenges in

promoting the use of electronic health and medical records.

For example, most medical terms originate from Greek and

Latin words, making reading and spelling difficult Henderson

and Dorsey (2019); Banay (1948). Medical researchers acquire

conceptual skills with thorough learning of medical terms,

dictionaries, and references such as Merriam-Webster

Merriam-Webster (2018), WebMD WebMD (2012), and

MedicineNet MedicineNet (2007), etc.

The electronic health records (EHRs) contain the diagnoses,

pharmacological, and drug-disease concepts that provide a

complete view of a patient’s health. EHRs can inform drug

discovery, treatment pathways, and real-world safety

assessments. Unstructured text from EHRs can be encoded in

a structured format (vectors) for downstream analysis using NLP

methods. Unfortunately, the word embedding models faced the

Out-of-vocabulary (OOV) words problem or used ineffective

sub-word representations that caused low performance in

intrinsic tasks to retrieve conceptual properties.

Popular embedding models including BERT (Devlin et al.,

2019), ELMO (Peters et al., 2018), and FastText (Bojanowski

et al., 2017) solve the OOV problem by using pre-processing

tokenization techniques based on WordPiece (Wu et al., 2016),

characters, and n-grams. These traditional NLP approaches are

not built to understand the unique vocabulary and grammar of

medical texts. For example, mastodynia is a disease whose

meaning can be approximated from related and simple words

like breast, pain, and discomfort rather than to approximate it

with its non-logical sub-words or n-grams like

[CLS],mast,##ody, and ##nia [SEP].

Biomedical and clinical terms have unique and complex

characteristics such as prefixes, roots, suffixes, etc., therefore

requiring a more focused effort around methodologies within

the medical NLP domain (Banay, 1948; Meystre et al., 2008;

Cohen and Demner-Fushman, 2014; Leaman et al., 2015;

Henderson and Dorsey, 2019). In recent years, biomedical and

clinical embedding models such as BioWordVec (Zhang et al.,

2019) and BioNLP (Chiu et al., 2016) models have been trained

under low capacity resource requirements like the Gensim library

(Řehřek and Sojka, 2011). However, these models generally

follow the Word2Vec (Mikolov et al., 2013a; Mikolov et al.,

2013b) and GloVe (Pennington et al., 2014) algorithms, which

face the OOV problem. The embedding models trained using the

FastText algorithm (Bojanowski et al., 2017) claim to have solved

the OOV problem, however they are ineffective.

The pre-trained embedding models generate either context-

sensitive or distributed representations of word vectors. The

context-sensitive models generate multiple embeddings for a

word that capture the context based on its positional

encoding learned using transformers or recurrent neural

networks (RNN). Bidirectional Encoder Representations from

Transformers (BERT) is a popular embedding model (Devlin

et al., 2019), that has been extended to clinical and biomedical

domains [ClinicalBERT Huang et al. (2019) and BioBERT Lee

et al. (2020)]. These models tackle the OOV problem with the

WordPiece algorithm (Wu et al., 2016) that represents a word by

its frequent sub-words, e.g., immunoglobulin →
(i,mm,uno,g,lo,bul,in). Embeddings from Language Models

(ELMO) is another context-sensitive model that generates

word-level embeddings using multiple convolutional neural

networks (CNNs) with bi-directional LSTM (BiLSTM) (Peters

et al., 2018). ELMO has also been extended to generate

biomedical and clinical embeddings (Zhu et al., 2018; Jin

et al., 2019; Subramanyam and Sangeetha. 2020). These

studies deal with the OOV problem through character-level

embeddings. Boukkouri et al. showed that character-level

embedding was a better approach to removing biases in sub-

words for biomedical terms than WordPiece e.g.,

choledocholithiasis → (cho,led,och,oli,thi,asi,s) (Boukkouri

et al., 2020; Wu et al., 2016). The context-sensitive models are

expensive, both in terms of computational and space resources

since they train millions of hyperparameters with multiple

attention heads.

The distributed representation models learn embeddings

based on the word usage in a given corpus. The resultant

vectors capture the contextual similarity between words. These

static models generate a single vector per word and are trained

either under Word2Vec (Mikolov et al., 2013b), GloVe

(Pennington et al., 2014), or FastText (Bojanowski et al.

(2017)). FastText enriches each word vector with its respective

n-grams. It handles the OOV problem by leveraging the sum of

n-gram vectors of the unknown word, e.g., n = 3, myocarditis

→<my, myo, yoc, oca, car, ard, rdi, dit, iti, tis, is> . On the other

hand, the embedding models trained by Word2Vec and GloVe

face the OOV problem. These models replace unknown words

with tags such as <UNK> or a randomly generated vector,

where different unknown words lose their uniqueness.

In this study, we proposed MedTCS, a novel medical

terminology-based module that assists the pre-trained

embedding models to generate vectors for unknown words

and compound terms. It is an innovative post-processing

solution that explores the given search space for those terms

that are not directly present but whose semantic information is.

MedTCS turns the word into its meaningful sub-words using the

biomedical segmentation model. Ultimately, MedTCS helps the

distributed representation models handle the OOV problem

effectively.

We have compared MedTCS with recent state-of-the-art

embedding models to investigate the effectiveness of capturing

semantic information without encountering OOV problems. Our

results showed that MedTCS enhanced the performance of pre-
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trained models significantly in terms of coverage and/or semantic

correlation. Moreover, we conducted experiments to assess the

usefulness of enriched embedded vectors for downstream NER

tasks (disease name identification and drug indication

classification). MedTCS performed better than FastText in

terms of performance and resource consumption on all tasks.

The MedTCS module enhanced the performance of the FastText

word vectors as compared to the n-gram and sub-word

approaches used for unknown words (Flamholz et al., 2022).

Furthermore, MedTCS is extensible with new terminologies and

content.

2 Methodology

MedTCS is a lightweight module implemented in Python. It

is a knowledge-driven system for forming terms by pluralizing,

singularizing, and deconstructing words.

2.1 Meta-data collection

2.1.1 Word component dictionary
In MedTCS, we build meta-dictionaries for the prefixes,

roots, and suffixes defining the meanings of medical term

components. In addition to the lexical normalization and

plural conversion of the unknown term, we have developed

medical terminology-based look-up dictionaries for the parser

by collecting information from “Medical Terminology for

Dummies” (Henderson and Dorsey, 2019). The three semantic

dictionaries contain 467 root words, 432 prefixes, and

112 suffixes, along with their corresponding meanings as

shown in Figure 1.

2.1.2 Word segmenter model
MedTCS used Morfessor as a word segmenter model (Smit

et al., 2014). In order to train the semi-supervised Morfessor

2.0 model, we used a corpora of 240 k words consisting of

medical academic word list, e-biology, e-chemistry, and NLTK

words (Bird and Loper, 2004; Wang et al., 2008).

2.2 MedTCS framework

Figure 2 provides a high-level description of our MedTCS

module to encode OOV words from a set of sentences or words.

In step (a), the OOV words are normalised for multiple

morphological rules (represented as Nr
1,...,n). In step (b), the

remaining OOV words are exchanged with its plural or

singular form by applying medical terminology-based rules

(represented as Rr
1,...,n). At each step, the normalized terms are

encoded into vectors. In the succeeding steps (c) and (d), the

words are passed to the parser, where dictionaries of prefix p, root

r, and suffix s are used to tokenize them (represented as Pp,r,s
1,...,n).

Each component of the term is replaced with their respective

meaning in the dictionary as a word list (represented as

M
pwi,..wk

,rwi ,..wk,swi ,..wk
1,...,n ). The encoder encodes the tokens into its

mean vector. Finally, the remaining non-encoded words are

FIGURE 1
Understanding biomedical terms by mapping term components to human organ system.
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FIGURE 2
MedTCS framework: (A) MedTCS detector normalizes the unknown terms and search in vocabulary; (B) Rule-based pluralizer or singularizer
sub-module used to normalize the unknown terms; (C) Architecture for term-parser, where the compound words encode for its components that
infer from the dictionary for its semantic words that encode as its mean vector; (D) Architecture for term segmenter, a pre-trained segmentation
model segments the word into subwords that encodes as its mean vector.

TABLE 1 Statistics of Datasets.

Evaluation Dataset Corpus size Type

Intrinsic Evaluation UMNSRS-similarity Pakhomov et al. (2010) 566 term pairs Pairwise similarity

UMNSRS-relatedness Pakhomov et al. (2010) 588 term pairs Pairwise relatedness

MyoSRS Pakhomov et al. (2011) 101 term pairs Pairwise relatedness

EHR-RelB Schulz et al. (2020) 3630 term pairs Pairwise relatedness

Extrinsic Evaluation Dataset

BC5CDR Wang et al. (2019) 1500 articles Disease Name

NCBI-Disease Wang et al. (2019) 793 abstracts Disease Name

DICE Bhatt et al. (2021) 7231 sentences Drug Indication
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passed to the pre-trained term segmenter model to intra-tokenize

into meaningful words (that are also encoded as mean vectors).

2.2.1 MedTCS OOV word detector
The MedTCS OOV word detector identifies whether a token

is known or unknown for a given vocabulary. The unrecognized

word is passed through multiple normalization steps: 1) lexical

property of the alphabetic case is applied, 2) intra-term

punctuation marks are retained while ignoring starting and

ending symbols, and 3) apostrophe symbols for OOV word

detection are normalized.

2.2.2 MedTCS pluralizer/singularizer
TheMedTCS pluralizer is based on the plural rules defined in

medical terminology and implemented as a finite state machine.

The sigularizer acts as a reverse finite state machine of the

pluralizer.

2.2.3 MedTCS term parser
The MedTCS term parser was applied to an unknown word

in two parts. First, the rule-based parser breaks the word into

components of medical terminology, i.e., root, prefix, and suffix.

Second, this parser implemented a dictionary lookup algorithm

on each component to map its meaning. These dictionaries

contained the definitions of the components of the medical

terms collected from medical notes (Banay, 1948; Cohen and

Demner-Fushman, 2014; Henderson and Dorsey, 2019). Each

component in the dictionary belonged to one of the following

human organ systems as shown in Figure 1 e.g., -pnea →

breathing was a suffix belonging to the respiratory system.

The root component is normalized for its combined form, like

pneum/o → lung. Each component incrementally contributes in

generating the vector representation of the unknown word. Each

discovered vector by MedTCS term parser belonged to the lexical

part of the unknown word and had attributes defined in the

medical terminology. For example, choledocholithiasis →
[“choledoch” (prefix)]+[“o”]+[“lithiasis” (suffix)] → [common

bile duct]+[calculus or stone]. In case the term parser does not

return a valid vector, the term segmenter was executed to

determine meaningful sub-words of the unknown word.

2.2.4 MedTCS term segmenter
The MedTCS term segmenter is a wrapper around the

Morfessor 2.0 module to acquire the meaningful sub-word

units of an unknown term (Virpioja et al., 2013; Smit et al.,

2014). We trained the system on a subset of Biology, Chemistry,

and English corpora. Our word-level segmentation system

returned the average vector of meaningful sub-words of an

unknown term (like seasickness → sea + sick + ness).

2.3 Datasets

In addition to the widely tested UMNSRS similarity and

relatedness datasets (Pakhomov et al., 2010), and the MyoSRS

dataset (Pakhomov et al., 2011), our intrinsic evaluation included

the latest and comparatively large benchmark named the EHR-

RelB dataset Schulz et al. (2020). These datasets consist of word

FIGURE 3
Comparison of performance variations in biomedical embedding model after adding MedTCS module on datasets of Table 1 for intrinsic
evaluation.
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pairs with their similarity or relatedness scores assigned by

medical experts.

We checked the applicability of the MedTCS module to

extract disease names from two publicly available datasets

[NCBI-Disease and BC5CDR-Disease, Wang et al. (2019)]

using the BIO scheme. BIO is used to encode entity

annotations as token tags, where B indicates the beginning

of the phrase, I is the element within the phrase, and O is the

element outside of the phrase. Table 1 gives the details of

benchmark datasets used for performance evaluation. We

also used the Drug Indication Classification and

Encyclopedia (DICE) dataset Bhatt et al. (2021) to check

the performance enhancement achieved by MedTCS on

classifying a sentence into indication or non-indication

defined for five categories (indications, contradictions, side

effects, usage instructions, and clinical observations). The

dataset contained 7,231 sentences that were categorized into

4,297 indications, 1,673 clinical observations,

FIGURE 4
Comparison of performance variations in clinical embeddingmodel after adding MedTCSmodule on datasets of Table 1 for intrinsic evaluation.

TABLE 2 Comparison of sub-word embeddings with word embedding + MedTCS on the UMNSRS-Similarity datasets.

Model Version Sp

BERT BERT Devlin et al. (2019) bert-base-uncased 0.07

BioBert Lee et al. (2020) dmis-lab/biobert-v1.1 0.30

BlueBert Peng et al. (2019) bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12 0.36

Bio_ClinicalBERT emilyalsentzer/Bio_ClinicalBERT 0.23

Model Alsentzer et al. (2019) allenai/scibert_scivocab_uncased 0.18

SciBERT Beltagy et al. (2019)

PubMedBERT Gu et al.(2022) microsoft/BiomedNLP-PubMed BERT-base-uncased-abstract-fulltext 0.23

CODER Yuan et al. (2022) GanjinZero/UMLSBert_ENG 0.47

Word2Vec PubMed-w2v PubMed-w2v.bin 0.52

+MedTCS

PubMed-PMC-w2v // 0.49

Model +MedTCS

Wiki-PubMed-PMC-w2v // 0.49

+ +MedTCS

Bio-NLP-30 Chiu et al. (2016) Bio-NLP-30 0.63

MedTCS +MedTCS

BioWordVec Zhang et al. (2019) BioWordVec 0.64

+MedTCS
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701 contraindications, 492 usage instructions, and 68 side

effects.

All the datasets discussed in Table 1 are publicly available in

split form.

2.4 Evaluation metrics

In NLP, intrinsic evaluation extracts the semantic properties

of pre-determined ground truth concepts with encoded vectors.

On the other hand, extrinsic evaluation decodes the encoded

information of embedding models and evaluates their efficiency

in performing downstream tasks like NER. For the extrinsic

evaluation, the coverage percentage is based on the number of

encoded tokens of a dataset with the respective embedding

model.

cosine_similarity A, B( ) � A.B
‖A‖×‖B‖, (1)

recall � TruePositives

TruePositives + FalseNegatives
, (2)

precision � TruePositives

TruePositives + FalsePositives
, (3)

F1_score � 2 × precision × recall( )
precision + recall

. (4)

In intrinsic evaluation, the similarity scores are computed

between the encoded term pairs using the cosine similarity as

given in Eq. 1. Furthermore, these similarity scores are used with

TABLE 3 Comparison of the word embedding + MedTCS best scores with latest reported results.

Model UMNSRS-Similarity UMNSRS-
Relatedness

Model description

#566 Sp #587 Sp

BioWordVec+ 480 0.629 473 0.590 A combined model of Graph

Graph convolutional network (GCN)

Embeddings a path-based graph embedding

(GCN) Mao and Fung (2020) with BioWordVec embedding

Context2Vec+ 471 0.634 484 0.561 Composite model of contextual

BioWordVec+ embedding with BioWordVec

PubMed + PMC concatenated with PubMed and

Singh and Jin (2020) PMC word embedding to

achieve these results

CoderBERT 543 0.543 564 0.473 A BERT-based model obtained

Kalyan and Sangeetha (2021) by fine-tuned a pre-trained

BioBERT on UMLS

synonyms and relations

SapBERT-S 543 0.585 564 0.505 A BERT-based model fine-tuned

Kalyan and Sangeetha (2021) a pre-trained PubMedBERT on

UMLS using a self-alignment

objective to cluster the term

concept

BioWordVec 566 0.641 587 0.603 BioWordVec with our composed

+MedTCS MedTCS module, to extract the

vector representation of a known

and unknown term

Results with highest values of correlation and coverage scores are shown in bold.
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the rankings by human experts to compute the Spearman (Sp)

correlation coefficients with SciPy (Virtanen et al., 2020).

In extrinsic evaluation, the task of tagging the biomedical

entities is performed by using a machine learning model trained

on the encoded vectors. The performance measures used for this

are recall, precision, and F1_score (Eqs 2–4).

3 Results

We compared the semantic and conceptual functionality of

MedTCS with the pre-trained sub-word models (derivative

models of BERT Devlin et al. (2019) and FastText Bojanowski

et al. (2017)) for the biomedical and clinical domains.

3.1 Intrinsic evaluation

We evaluated the capability of MedTCS to enable the pre-

trained word embedding models for encoding the OOV terms.

MedTCS assisted the pre-trained word embedding models to

achieve full coverage of all the conceptual pairs in the datasets.

Moreover, we compared our model with related embedding

models trained with FastText and BERT algorithms.

FIGURE 5
Comparison of performance variations in biomedical word embeddingmodel after adding MedTCSmodule on datasets of Table 1 for NER task.

FIGURE 6
Comparison of performance variations in clinical FastText embedding model after adding MedTCS module on datasets of Table 1 for NER task.
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In this experiment, we included popular embedding models as a

baseline, such as BioWordVec (Zhang et al., 2019), BioNLP (Chiu

et al., 2016), PubMed-w2v, PubMed-PMC-w2v, and Wiki-PubMed-

PMC-w2v (Moen and Ananiadou, 2013), most of which are defined

under theWord2Vec algorithm (Mikolov et al., 2013b). Our baseline

has the same encoder and decoder method for the NLP task without

the MedTCS module. As the selected datasets include multi-word

terms; therefore, the average vectors of each word are calculated with

and without the MedTCS module.

Our analysis showed that the MedTCS module enabled all pre-

trained embedding models to achieve full coverage with persuasive

correlation scores on all datasets (Figure 3). For example, on the

EHR-RelB dataset, the coverage of the BiowordVec model was

enhanced from 2,857 terms pair to 3,630 terms pair and the

Spearman (Sp) correlation also improved from 0.393 to 0.405.

Overall, our results show that all models achieved 100% coverage

of all the datasets with a slight decrease in correlation scores. As the

OOV words are being approximated, therefore, a slight decrease in

correlation scores is naturally expected.

We also enhanced the latest clinical word embedding models

with MedTCS. The PMC Open Access Subset-Case reports (OA-

CR) embedding models trained using word2vec/GloVe

encountered the OOV word problem while working on the

UMNSRS-Similarity dataset (Flamholz et al., 2022). MedTCS

improved the coverage of all word embedding models from

approximately 62% → 98% Supplementary Case S1.

Similarly, we analyzed the functionality of FastText to handle

the OOV problem on the PMC Open Access subsets - Clinical

Report (OA-CR) models and the PMC Open Access subsets - all

manuscripts (OA-All) models (Flamholz et al., 2022). FastText

trains each word vector along with its n-gram vectors. In the case

of any OOV word, the average of its n-gram vectors are used to

encode it (Bojanowski et al., 2017). For the FastText based OA-

CR-600 embedding model, the Spearman (Sp) correlation value

improved from 0.38 → 0.47 Supplementary Case S2. In

conclusion, the MedTCS module enabled the different variants

of OA-CR models to encode the vector for OOV terms from its

search space effectively.

The OA-CR models have a small vocabulary; MedTCS

enabled these models to achieve 100% coverage on all

datasets as shown in Figure 4. Moreover, the MedTCS

assisted the OA-CR models and the OA-ALL models to have

significantly improved correlation scores, e. g., the FastText

OA-All-300d model on the EHR-RelB dataset achieved 100%

coverage and improved the Spearman (Sp) correlation scores

from 0.25 → 0.35. The results on other variants of the OA-CR

and OA-ALL embedding models for intrinsic evaluation are

similar, as shown in Supplementary Figure S3.

On the other hand, BERT models use sub-words to solve the

OOV word problem. We compared the proposed model with

BERT and its derivative models defined for the clinical and

biomedical domain [available on HuggingFace Wolf et al.

(2019); Wolf et al. (2020)]. MedTCS outperformed BERT-

based models by a significant margin in terms of correlation

scores on the UMNSRS-Similarity dataset (Table 2). Moreover,

in (Table 3), we have compared our best achieved results with

recently reported scores of UMNSRS datasets (Mao and Fung,

2020; Singh and Jin, 2020; Yuan et al., 2022). MedTCS achieved

significantly better coverage and correlation scores.

3.2 Extrinsic evaluation

Extrinsic evaluation requires training a system for the related

downstream NLP tasks like NER, classification, etc,. The existing

word embedding models achieve sub-optimal results due to the

ineffective handling of OOV words (encoded unknown words

with their n-gram vectors or a randomly generated vector). We

FIGURE 7
Model performances enhanced with MedTCS for Drug indication classification.
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tested the enriched vectors (by MedTCS) in identifying disease

names from documents. We trained a bidirectional long-short

term memory with a convolutional neural network (BiLSTM-

CNN) Chiu and Nichols (2016) on the annotated corpus of

BC5CDR and NCBI-disease (Table 1).

Figure 5 showed the performance enhancement in terms of

coverage and F1 score (in percentage) achieved after replacing

the randomly generated vector approach with our MedTCS

module for OOV words. The MedTCS module with PubMed-

w2v embedding enabled improved the coverage up to 13% on the

NCBI-Disease dataset. Overall, MedTCS enabled word

embedding models to achieve 100% coverage with an

improved F1 score.

Similarly, we compared the MedTCS module with the

n-gram approach for the NER task. Figure 6 showed that

MedTCS improved the F1-score between 10 and 20% for the

various embedding models as compared to the FastText n-gram

vectors under the same parameters as for the BiLSTM NER

system (Chiu and Nichols, 2016). The FastText OA-All-300d

model with MedTCS achieved an F1-score of 0.80 (an

improvement of 0.35) on the BC5CDR corpus and an F1-

score of 0.81 (an improvement of 0.32) for the NCBI-disease

TABLE 4 Examples of the sub-word tokenization schemes followed by the different algorithmswith themedical terminology-basedMedTCSmodule.

Term MedTCS FastText BioBert CODER

Bojanowski et al. (2017) Lee et al. (2020) Yuan et al. (2022)

mastodynia breast, pain <ma,mas,ast [CLS],mast,## [CLS],mast,##

discomfort sto,tod,ody ody,##nia, [SEP] odynia, [SEP]

dyn.yni,nia,ia>

prostatism prostate, gland <pr,pro,ros,ost,sta [CLS],pro,##sta [CLS],prost,##

state,of,or,condition tat,ati,tis,ism,sm> ##tism, [SEP] atism, [SEP]

prostatorrhea prostate, gland <pr,pro,ros,ost.sta [CLS],pro,##sta [CLS],prost,##

flow, excessive tat,ato,tor,orr,rrh ##tor,##r,##hea ator,##rh,##ea

discharge rhe,hea,ea> [SEP] [SEP]

blepharospasm eyelid,or,eyelash <bl,ble,lep,eph,pha [CLS],b,##le,## [CLS],ble,##

sudden,or har,aro,ros,osp,spa pha,##ros,## pha,#rosp,##

involuntary pas,asm,asm> pas,##m, [SEP] asm, [SEP]

dyslipidemia painful,fat,a <dy,dys,ysl,sli,lip [CLS],d,##ys,## [CLS]

blood, condition pii,pid,ide,dem lip,##ide,## dyslipidemia

emi,mia,ia> mia, [SEP] [SEP]

dyspnea painful, breathing <dy,dys,ysp,spn [CLS],d,##ys,## [CLS],dyspnea

pne,nea,ea> p,##nea, [SEP] [SEP]

urethrorrhea urethra, flow <ur,ure,ret,eth,thr [CLS],u,##ret,## [CLS],ureth,##

excessive hro,ror,orr,rrh,rhe hr,##or,##r,## ro,##r,##rh,##

discharge hea,ea> hea, [SEP] ea, [SEP]

arteriosclerosis artery, hardening <ar,art,rte,ter,eri [CLS],art,##eri [CLS],arterio

rio,ios,osc,scl,cle ##os,##cle,## ##sc,##ler,##

ler,ero,ros,osi,sis,is> rosis, [SEP] osis, [SEP]

dermatitis Skin <de,der,erm,rma [CLS],der,##mat [CLS]

inflammation mat,ati,tit,its,ts> ##itis, [SEP] dermatitis

[SEP]
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corpus. Similar results were achieved on the other variants of the

OA-CR and OA-ALL embedding models for the NER task

(Supplementary Figure S4).

Bhatt et al. (2021) recently developed a Drug Indication

Classification and Encyclopedia (DICE) based on FDA approved

human prescription drug labeling. They also generated

“DrugLabelling-W2V” embeddings based on Word2Vec

and used them to classify each sentence into one of the

five classes (indications, contradictions, side effects, usage

instructions, and clinical observations). We enhanced the

“DrugLabelling-W2V” embedding with the MedTCS

module and improved the coverage by 9% and the

F1_score by 1% (Figure 7).

4 Discussion

Curating a large corpus is the traditional approach in NLP

to cover more concepts and enhance the vocabulary of word-

level embedding models. For example, meta-data from

dictionaries, meta-thesaurus, and hierarchical relationships

from ontologies were also used as corpus. In the biomedical

and clinical domains, the larger corpus of PubMed-PMC from

MEDLINE and Wikipedia (Denoyer and Gallinari, 2006) was

used to enlarge the vocabulary. Similarly, the NCBI sources,

including the Medical Subject Heading (MeSH) (Lipscomb,

2000), the Unified Medical Language System (UMLS)

metathesaurus concepts (NLM, 2004), and the Systemized

Nomenclature of Medicine—Clinical Terms (SNOMED CT)

concepts (Donnelly, 2006) have also been used as meta-

corpus. The semantic content of the ontologies and the

meta-data like Web Ontology Language (OWL) has also

been used to train embedding vectors (Grau et al., 2008).

In spite of these efforts, while encoding some rare terms and

concepts, the embedding models still faced the OOV problem

like in the BioWordVec embedding model (Zhang et al.,

2019).

We have developedMedTCS, amodule that generates the vector

representation for unknown words based on medical knowledge.

Different approximation techniques derived from medical

knowledge bases have been used to encode the OOV words. To

the best of our knowledge, this is the first-ever post-processing and

run-time solution for the OOV problem that is specifically designed

for pre-trained biomedical/clinical word embedding models. Each

OOV word is parsed into its components, which are replaced with

their meanings to generate the semantic vectors. In addition,

MedTCS’s segmentation model tokenizes compound words into

its word units, as shown in Figure 2. The MedTCS module

outperforms the FastText n-gram approach to handle OOV

words as shown in Figure 4.

In an empirical analysis of the BERT and its derivative

models, we have observed that these models can have a high

cosine similarity value between pairs given in datasets (Table 1).

However, in the task to measure the degree of contextual

relatedness and similarity between biomedical and clinical

terms, they showed decreased performance (Table 2).

Furthermore, according to our findings on BERT models,

CODER Yuan et al. (2022) has better performance, probably

because it encodes most of the words without splitting them into

their sub-words, as shown in Table 4.

Word embedding models are of great importance for

various biomedical NLP applications, however they

currently face a major problem of assigning vectors for

unknown and rare words. To fill this gap, we have

developed the MedTCS module to facilitate the pre-trained

word representation models in encoding medical terms. We

hope that our module will be considered as a standard

medical term tokenizer for the application of NLP in the

biomedical domain. MedTCS can also allow other biomedical

NLP researchers to develop knowledge-based modules in a

variety of real-world applications. Moreover, our research

highlighted that there is a need to not only train large

embedding models but also some knowledge-driven

modules for the medical and clinical domains. According

to our knowledge, MedTCS is the first post-processing and

run-time solution for the OOV problem that improves the

applicability and semantic efficiency of pre-trained

embedding of medical terms.
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Background: Ovarian cancer (OC) is a highly heterogeneous disease, of which

the mesenchymal subtype has the worst prognosis, is the most aggressive, and

has the highest drug resistance. The cell cycle pathway plays a vital role in

ovarian cancer development and progression. We aimed to screen the key cell

cycle genes that regulated the mesenchymal subtype and construct a robust

signature for ovarian cancer risk stratification.

Methods: Network inference was conducted by integrating the differentially

expressed cell cycle signature genes and target genes between the

mesenchymal and non-mesenchymal subtypes of ovarian cancer and

identifying the dominant cell cycle signature genes.

Results: Network analysis revealed that two cell cycle signature genes (POLA2

and KIF20B) predominantly regulated the mesenchymal modalities of OC and

used to construct a prognostic model, termed the Cell Cycle Prognostic

Signature of Ovarian Cancer (CCPOC). The CCPOC-high patients showed

an unfavorable prognosis in the GSE26712 cohort, consistent with the

results in the seven public validation cohorts and one independent internal

cohort (BL-OC cohort, qRT-PCR, n = 51). Functional analysis, drug-sensitive

analysis, and survival analysis showed that CCPOC-low patients were related to

strengthened tumor immunogenicity and sensitive to the anti-PD-1/PD-

L1 response rate in pan-cancer (r = −0.47, OC excluded), which indicated

that CCPOC-low patients may be more sensitive to anti-PD-1/PD-L1.

Conclusion:We constructed and validated a subtype-specific, cell cycle-based

prognostic signature for ovarian cancer, which has great potential for predicting

the response of anti-PD-1/PD-L1.
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Introduction

Ovarian cancer (OC) is the leading cause of cancer death in

women (Siegel et al., 2019). Due to lack of effective early

screening methods and lack of obvious symptoms, most of the

patients were diagnosed at an advanced stage, resulting in an

overall 5-year survival rate of less than 50% (Lheureux et al.,

2019). Clinical risk assessment factors include tumor stage,

tumor grade, histopathological classification, de-bulking status,

etc. Despite the good initial treatment effect, most ovarian cancer

patients still suffer from tumor recurrence and eventually

develop drug resistance to chemotherapy (Coleman et al.,

2013). Currently, serum CA-125 level is a clinical biomarker

for risk assessment of ovarian cancer. Due to its low specificity,

the overall assessment effect is not as expected (Bottoni and

Scatena, 2015). The high degree of heterogeneity and

aggressiveness of OC often leads to treatment failure (Cancer

Genome Atlas Research Network, 2011; Konecny et al., 2014).

Therefore, there is a need to integrate tumor heterogeneity to

identify novel prognostic predictors for OC.

Gene expression-based biomarkers for cancer risk

assessment have been extensively explored (Mo et al., 2020).

Several studies have established OC prognostic biomarkers based

on gene expression (Pan and Ma, 2020; Yang et al., 2021).

However, due to the heterogeneity of OC, most of the

biomarkers have low prognostic efficacy and cannot be

directly used in clinical practice. Recently, four ovarian cancer

molecular subtypes with distinct molecular and clinical

characteristics were found (Cancer Genome Atlas Research

Network, 2011), among which, the mesenchymal subtype had

the poorest prognosis. Afterward, the mesenchymal subtype is

consistent in several other subtyping systems (Konecny et al.,

2014; Chen et al., 2018). Importantly, the mesenchymal subtype

of OC shows poor clinical outcomes, indicating the need to

integrate the intrinsic modalities of this malignant subtype for

risk management in OC.

Cancer manifests itself as an infinite proliferation of cells,

the main reason for which is related to improper cell cycle

regulation (Williams and Stoeber, 2012). The cell cycle is

precisely regulated by cyclin-dependent kinases (CDKs)

(Bertoli et al., 2013). However, relevant cell cycle-based

biomarkers are rare and still lacking in ovarian cancer.

Considering the highly heterogeneous nature of OC, by

integrating mesenchymal modalities and the cell cycle

signature underlying the mesenchymal subtype, a network-

based approach was adopted to identify the dominant cell

cycle signature, which regulates the most aggressive OC

subtype. Subsequently, we established a prognostic model,

termed Cell Cycle Prognostic Signature of Ovarian Cancer

(CCPOC), and exploration of the prognosis capacity of

CCPOC in OC. Our signature incorporates cell cycle system

and tumor heterogeneity and would be used to screen OC

patients who may benefit from a more precise treatment.

Materials and methods

Public dataset preparation and
preprocessing

We obtained 1,798 OC samples from eight publicly available

datasets. The training dataset was the GSE26712 (Bonome et al.,

2008) cohort (n = 182). Validation cohorts were the TCGA(Cancer

Genome Atlas Research Network, 2011) (n = 578), GSE9891

(Tothill et al., 2008) (n = 285), ICGC-AU (Patch et al., 2015)

(n = 111), GSE138866 (Hu et al., 2020) (n = 130), GSE32062

(Yoshihara et al., 2012) (n = 260), GSE14764 (Denkert et al., 2009)

(n = 80), and GSE51088 (Karlan et al., 2014) (n = 172) datasets.

Together with the corresponding clinical information, the

normalized expression datasets sourced from the GEO database

were downloaded via the GEOquery package (version 2.58.0). The

transcription data (Affymetrix U133A) and relevant clinical

information on TCGA were retrieved from the Firebrowse

(http://firebrowse.org/) database. The standardized expression

profile and clinical information of ICGC-AU were downloaded

from the International Cancer Genome Consortium (ICGC,

https://icgc.org) OV-AU (Ovarian cancer-Australia) database.

For the microarray data, the gene expression data probe IDs

were transformed into gene symbols; if multiple probe IDs were

mapped to the same gene symbol, the one with the highest average

value was selected. The molecular subtyping information was

retrieved from Verhaak’s study (Verhaak et al., 2010). The

detailed clinical parameters of all cohorts are listed in Table 1.

Clinical samples

For the independent internal validation cohort (BL-OC

cohort), we retrospectively collected 51 formalin-fixed

paraffin-embedded (FFPE) blocks from patients who

underwent surgery in Beilun People’s Hospital (from 1st

January, 2015 to 1st January, 2021), Ningbo, China. Criteria

for patient sample selection: longer follow-up (> 5 years) and had

evaluation of adjuvant chemotherapy efficacy and no history of

cancer other than ovarian cancer. This study was approved by the

Ethics Committee of the Beilun People’s Hospital.

Network analysis screening key regulated
cell cycle genes for the mesenchymal
subtype

We obtained 313 cell cycle-related genes (CRGs) through the

concatenation of the cycle-related genes from the MSigDB database

(Version 7.2; KEGG cell cycle pathway, HALLMARK G2M

pathway) and Cuzick’s study (Cuzick et al., 2011). CRGs with

expression in all datasets were retained for subsequent analysis.

We integrated differentially expressed target genes and cell cycle
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genes between the mesenchymal subtype and other subtypes and

performed a network analysis by using the RTN package (version

2.10.0) to infer and investigate the relationship between cell cycle

genes and potential target genes. Specifically, the network analysis

consists of three parts: first, the mutual information (MI) between a

cell cycle signature gene and all potential target genes is calculated,

and insignificant associations are removed by permutation analysis;

second, unstable interactions are removed by bootstrapping; and

finally, the ARACNe algorithm is applied to reduce redundant

indirect regulations. Together, the GSE26712 dataset was used as

the training cohort. Univariate Cox regression analysis screened

34 cell cycle genes (p <0.1) for a subsequent analysis. Subsequently,
12 cell cycle genes (|log2 FC| > 0.25, BH-adjusted p < 0.05) and

1,704 target genes (log2 FC > 0.25, BH-adjusted p < 0.05) were

determined differentially expressed in the mesenchymal subtype

compared with non-mesenchymal subtypes. Then, a master

regulator analysis (Fletcher et al., 2013) (MRA) was performed to

examine the overrepresentation of themesenchymal signature in the

regulation of each cell cycle gene by a hypergeometric test. After the

hypergeometric test results for all cell cycle signature genes, adjusted

p-values were calculated using the Benjamini–Hochberg procedure.

Two cell cycle signature genes of top significance

(Benjamini–Hochberg-adjusted p-value < 0.05) were selected as

master regulators. For detailed calculation steps and calculation

code, please refer to the Vignettes of the RTN package

(bioconductor.org/packages/release/bioc/vignettes/RTN/inst/doc/

RTN.html).

Development and evaluation of the risk
model for ovarian cancer in public cohorts

Network analysis revealed that two cell cycle genes (POLA2

and KIF20B) were the key regulators of the mesenchymal

TABLE 1 Overview of the clinical and pathologic characteristics of all the datasets.

Training
cohort

Public validation cohorts Internal
validation

GSE26712 TCGA GSE9891 ICGC-
AU

GSE138866 GSE32062 GSE14764 GSE51088 BL-OC

Number of patients 182 578 285 111 130 260 80 172 51

Age (years)

Mean, years (STD) 62 (11.9) 60 (11.6) 60 (10.6) 59 (8.7) 62 (11.9) 58 (12.6) 58 (11.2)

Histopathology

Serous 182 (100%) 568 (98%) 264 (93%) 111 (100%) 130 (100%) 260 (100%) 68 (85%) 122 (71%) 58 (100%)

Others 10 (2%) 21 (7%) 12 (15%) 50 (29%)

Stage

I 16 (3%) 24 (8%) 8 (10%) 22 (13%)

II 27 (5%) 18 (6%) 2 (2%) 1 (1%) 9 (5%)

III 144 (79%) 436 (75) 218 (76%) 96 (86%) 106 (82%) 204 (78%) 69 (86%) 103 (60%)

IV 36 (20%) 84 (15%) 22 (8%) 15 (14%) 22 (17%) 56 (22%) 2 (3%) 17 (10%)

Unknown 2 (1%) 15 (3%) 3 (1%)

Grade

Well 6 (1%) 19 (7%) 3 (4%) 16 (9%)

Moderately 69 (12%) 97 (34%) 15 (14%) 131 (50%) 23 (29%) 14 (8%)

Poorly 479 (83%) 163 (57%) 66 (59%) 130 (100%) 129 (50%) 54 (68%) 119 (69%)

Unknown 23 (4%) 6 (2%) 30 (27%) 23 (13%)

Debulking

Optimal 88 (48%) 367 (63%) 160 (56%) 107 (82%) 103 (40%) 39 (49%)

Suboptimal 94 (52%) 140 (24%) 88 (31%) 15 (12%) 157 (60%) 23 (29%)

Unknown 71 (12%) 37 (13%) 8 (6%) 18 (22%)

Vital status

Alive 55 (30%) 270 (47%) 169 (59%) 23 (21%) 31 (24%) 139 (53%) 59 (74%) 40 (23%) 16 (31%)

Dead 127 (70%) 290 (50%) 113 (40%) 88 (79%) 99 (76%) 121 (47%) 21 (26%) 112 (65%) 35 (69%)

NA 18 (3%) 3 (1%) 20 (12%)

Median OS,
months (±SE)

38.2 (2.6) 29.4 (1.1) 28.5 (1.4) 32.4 (3.0) 33.7 (4.6) 41.5 (1.5) 35.0 (1.7) 49.7 (4.0) 37.5 (4.6)
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subtype, which is the most aggressive subtype of ovarian cancer.

Subsequently, the multivariable Cox regression model was used

to construct a prognostic signature, termed Cell Cycle

Prognostic Signature of Ovarian Cancer (CCPOC), in the

GSE26172 cohort with these two signature genes. The risk

score formula was constructed based on a linear

combination of the expression levels weighted with the

regression coefficients: CCPOC = (−0.6527 × POLA2) +

(0.4975 × KIF20B). Based on the upper quantile score of

each cohort calculated by the risk score formula, patients

were divided into CCPOC-high and CCPOC-low subgroups.

The prognostic relevance of CCPOC was evaluated in seven

public independent validation datasets (TCGA, GSE9891,

ICGC-AU, GSE138866, GSE32062, GSE14764, and

GSE51088) with the Kaplan–Meier analysis. Univariate and

multivariate analyses were performed with other clinical factors

to test whether the CCPOC can be considered an independent

prognostic predictor.

Validation of the signature genes in the
internal ovarian cancer cohort by
quantitative reverse transcription PCR
(qRT-PCR)

Fifty-one OC tissues were obtained from Beilun People’s

Hospital. This study was approved by the Ethics Committee

of Beilun People’s Hospital. Total RNA was extracted by

using the High Pure RNA paraffin kit (Roche Applied

Science, Indianapolis, IN) from FFPE tissues of the BL-OC

cohort. Reverse transcription was performed with High

Capacity cDNA (Thermo Scientific). qRT-PCR was

performed with the QuantStudio™ 12 K Flex Real-Time

PCR System (Thermo Scientific) according to the

manufacturer’s recommended operating conditions. β-
Actin was tested for data normalization. The primers of

each gene are listed as follows: POLA2: F CACCACATC

TGACAGCATCACG, R CCACCTGTTCATGCTTAGCAT

CC; KIF20B: F GCTGACTTTAAGGAGACTCTGCT, R

GTGGCACAAATGTCTTTCGCTGC; and β-Actin: F CAC

CATTGGCAATGAGCGGTTC, R AGGTCTTTGCGGATG

TCCACGT. The expression of each gene was calculated

using the log2 (2–ΔΔCT) method.

Functional analysis

Gene Set Enrichment Analysis (GSEA) was carried out to test

the dysregulated pathways in different CCPOC risk groups by

using the HTSanalyzeR package (Wang et al., 2011) (version

2.3.5) with 1,000 permutations. Hallmark

(h.all.v7.2.symbols.gmt) and KEGG

(c2.cp.kegg.v7.2.symbols.gmt) gene sets were downloaded from

MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/). Only

gene sets with >five genes were included in the analyses. To

evaluate the immunobiological difference between different

CCPOC risk groups, CIBERSORT (Newman et al., 2015), a

de-convolution algorithm, was used to characterize 22 types of

immune cell abundance for each sample. For the TCGA-OV

mutation, data were downloaded from the cBioPortal database

(https://www.cbioportal.org/).

Data sources for chemotherapy,
immunotherapeutic, and pan-cancer
analysis

GSE146965 (Jiménez-Sánchez et al., 2020) and

PMID17290060 (Dressman et al., 2007) containing

chemotherapy response information were used for

chemotherapy sensitivity analysis. Two immunotherapeutic

cohorts: the IMvigor210 cohort (Mariathasan et al., 2018)

was an advanced urothelial cancer with the intervention of

atezolizumab, an anti-PD-L1 antibody; the GSE78220 cohort

(Hugo et al., 2016) was metastatic melanoma treated with

pembrolizumab, an anti-PD-1 antibody. For the

IMvigor210 cohort, expression data and clinical data were

downloaded from https://github.com/SiYangming/

IMvigor210CoreBiologies. The TCGA PanCancer Atlas gene

expression profiles and clinical information were downloaded

by the TCGAbiolinks package (version 2.18.0). The infiltration

status of different immune cell populations in the TCGA

PanCancer Atlas was downloaded from Tamborero’s study

(Tamborero et al., 2018). The marker genes of MHC,

immunoinhibitory, and immunostimulatory molecules were

reported by Charoentong et al. (2017). DNA damage

response (DDR) signature genes were extracted from the

study of Theo et al. (Knijnenburg et al., 2018). The

expression of the proteins encoded by the signature genes

was validated in the Human Protein Profiles (http://www.

proteinatlas.org) database. The objective response rate (ORR)

was obtained from public research (listed in Supplementary

Table S6).

Statistical analysis

The immune genes and potential target genes between the

mesenchymal and non-mesenchymal subtypes underwent

differential analysis with the R limma package (version

3.42.2). Kaplan–Meier analysis was performed to test

survival differences between different groups with the log-

rank test using the R survival package (version 2.41.3). The

prognostic value of the selected cell cycle signature was shown

using the univariate Cox regression analysis. The independent

prognostic effect of CCPOC was tested using univariate and
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multivariate Cox regression analyses. The survival prediction

was assessed by the concordance indices (C-index) and the

robust hazard ratio (D-index), which were calculated using

the survcomp package. Student’s t-tests and Kruskal–Wallis

tests were used to conduct difference comparisons of three or

more groups. The correlations between the CCPOC scores and

the ORR were evaluated using Pearson’s correlation. p <
0.05 was considered significant. All statistical analyses were

performed in R (version 3.6.1, *p < 0.05, **p < 0.01, ***p <
0.001).

Results

The integrative analysis identifies two cell
cycle genes as key regulators in the
mesenchymal subtype

The mesenchymal subtype has the worst prognosis and shortest

overall survival (Supplementary Figure S1). We intended to integrate

the molecular modalities under this subtype to improve the OC risk

assessment thereafter. Focusing on the mesenchymal subtype, we

FIGURE 1
Network inference identified two cycle signature genes (POLA2 and KIF20B) as the key regulators in the mesenchymal subtype of OC. (A) Study
design of the present work. (B) Volcano plot of the differentially expressed target genes and cell cycle signature genes in the mesenchymal subtype.
(C) Integrated network showing the relationships between the expression data of the cell cycle signature genes and target genes. (D) Master
regulator analysis results.
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applied a network-based approach to investigate the regulatory role of

the cell cycle, which is important in the progression of OC. Eight

public datasets and one independent internal cohort with a total

sample of 1,849 OC cases were included in this study (Table 1).

313 cell cycle-related genes (CRGs) (Supplementary Table S1) were

downloaded from the MSigDB database and Cuzick’s study (Cuzick

et al., 2011). Based on the GSE26712 cohort, we performed an initial

screening of the cell cycle genes by the univariate Cox regression

analysis, and a total of 34 cell cycle genes (p <0.1) were screened for

subsequent analysis. Subsequently, we conducted a differential

analysis of the selected cell cycle genes and potential target genes

between the mesenchymal and non-mesenchymal subtypes

(Figure 1A). Twelve cell cycle genes (|log2 FC| > 0.25, BH-

adjusted p < 0.05) and 1,704 target genes (log2 FC > 0.25, BH-

adjusted p < 0.05) were determined to be differentially expressed in

the mesenchymal subtype (Figure 1B). Based on the expression

profiles of these prioritized cell cycle genes and target genes, we

constructed a regulatory network by calculating the mutual

information between a cell cycle gene signature and its potential

targets (Figure 1C). Based on hypergeometric tests, amaster regulator

analysis (MRA) was performed to screen core regulators for the

mesenchymal subtype (Supplementary Table S2). We identified

19 and 22 EMT genes enriched in the regulons of POLA2 (BH-

adjusted p = 0.013) and KIF20B (BH-adjusted p = 0.045) (Figure 1D),

respectively. Compared to the non-mesenchymal subtypes

(immunoreactive, proliferative, and differentiated), the two

candidate genes were significantly lower expressed in the

mesenchymal subtype (Supplementary Figures S2A, B).

Compared to normal tissues, these two candidate cell cycle

genes were all significantly highly expressed in OC tissues in the

TCGA cohort (Figure 2A). Moreover, we checked the protein

levels encoded by these two genes in the Human Protein Profiles

database. POLA2 and KIF20B were moderately positive detected

in OC clinical specimens when compared to their expression

levels in normal samples (Figure 2B). Therefore, in the future, it is

possible to evaluate the prognosis of OC patients by detecting the

expression of these two genes on clinical specimens by IHC.

Furthermore, the survival analysis revealed a prognostic

association with overall survival in the public cohorts

(Figure 2C) and the BL-OC cohort (Figure 2D). Together, the

network-based approach identified two cell cycle genes, with a

prognostic value, as key regulators in the mesenchymal subtype.

Construction and evaluation of the cell
cycle prognostic signature in public
cohorts and the BL-OC cohort

Based on the GSE26172 cohort, the risk model called “Cell

Cycle Prognostic Signature of Ovarian Cancer” (CCPOC) was

FIGURE 2
Expression and survival analyses for POLA2 and KIF20B in OC. (A) Expression levels of POLA2 and KIF20B in OC and normal tissues. (B) Protein
levels encoded by POLA2 and KIF20B in normal and OC using clinical samples from the Human Protein Profiles. Survival analysis of POLA2 and
KIF20B in public cohorts (C) and the BL-OC cohort (D).
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constructed based on a linear combination of the expression

levels weighted with the regression coefficients of these two cell

cycle genes derived from the multivariate Cox regression

analysis. Risk score = (−0.6527 × POLA2) + (0.4975 ×

KIF20B). Subsequently, risk scores were calculated for all

patients in the public cohorts and our in-house validation BL-

OC cohort (Supplementary Tables S3–S4). The CCPOC score

showed prognostic efficiency with an AUC of 0.77 at 2 years and

0.79 at 5 years in the BL-OC cohort (Supplementary Figure S3).

Based on the upper quantile score of each cohort calculated by

FIGURE 3
Assessment of the prognostic value of the CCPOC. (A) Comparison of prognostic efficiencies between the CCPOC and its individual
constituents. (B) Kaplan–Meier survival analysis showing that the CCPOC-high group had an unfavorable OS in the training cohort (GSE26712). In the
seven public validation cohorts (C–I), the CCPOC-high group stably showed a significantly poor prognosis for OS. (J) Evaluation of the prognostic
value of CCPOC in the BL-OC cohort.
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the risk score formula, patients were divided into CCPOC-high

and CCPOC-low subgroups. Suboptimal samples were enriched in

the CCPOC-high group; meanwhile, KIF20B was highly expressed

in the CCPOC-high group, while POLA2 was highly expressed in

the CCPOC-low group (Supplementary Figure S4). The CCPOC

showed stronger prognostic efficiency than its individual

constituents (Figure 3A). In the GSE26172 cohort, patients in

the CCPOC-high group had significantly poorer OS than patients

(Figure 3B, Supplementary Table S5). Moreover, the CCPOC-high

group had significantly reduced OS compared to the CCPOC-low

group in the seven public validation cohorts (Figure 3C–I,

Supplementary Table S5) and our internal validation BL-OC

cohort (Figure 3J, Supplementary Table S5). In addition, the

CCPOC remains effective at discriminating survival after

adjusting for clinical factors, including sex and de-bulking

status (p < 0.05, Supplementary Figure S5). To test whether the

CCPOC was an independent prognostic predictor, univariate and

multivariate Cox regression analyses were conducted in the

GSE26172 cohort and meta-validation of public cohorts. After

adjusting for the clinicopathological parameters, the CCPOC

remained independently prognostic (Table 2). Together, these

findings indicated that the CCPOC was an independent

prognostic signature.

Comparison with existing prognostic
models

Next, in order to compare the prognostic value of the

CCPOC with published OC prognostic models, referred to as

Bao et al. (2020), Hu et al. (2021), Zhang et al. (2021), Pan’s (Pan

andMa, 2020), Qi’s (Ye et al., 2021),Wang et al. (2022), and Yang

et al. (2021) prognostic system, based on the OS data of the

GSE138866, GSE32062, GSE51088, GSE9891, and ICGC-AU

cohorts, the C-index and D-index were calculated. As

presented in Figure 4, the C-index was significantly higher in

CCPOC than existing Bao and Wang models (Figures 4A, C).

Like the C-index, the D-index was significantly higher in CCPOC

than in most of the existing prognostic systems (Figures 4B, D).

Illustrating the immune
microenvironment composition,
dysregulated pathways, and drug
sensitivity in CCPOC-low and CCPOC-
high groups

Earlier, we showed that the CCPOC could help risk stratification

of OC patients. Next, we explored the immune microenvironment

composition in CCPOC-low and CCPOC-high groups.

Immunomodulators have been classified into three types of

molecules which include immune-inhibitors, immuno-

stimulators, and major histocompatibility complex (MHC)

molecules. The DNA damage response (DDR) refers to the

process by which the cell maintains integrity of the genome after

insult. The CCPOC-high group presented lower expression ofMHC

I/II molecular, immuno-inhibitor markers, immuno-stimulator

markers (Figure 5A), and DDR markers (Figure 5B). The

immune cell infiltration results showed that the CCPOC-high

group was enriched with T cell CD4 memory resting cells

(Figure 5C). Then, we conducted GSEA between the CCPOC-

high and CCPOC-low groups (Supplementary Table S6). The

EMT, TGF-β, and Wnt pathways were upregulated in the

CCPOC-high group (Figure 6A). When analyzing CCPOC to

predict chemotherapy sensitivity in the GSE146965 and

PMID17290060 cohorts, chemotherapy effectiveness was lower in

the CCPOC-high group than in the CCPOC-low group (Figure 6B).

Immunotherapy, represented by a PD-L1/L1 blockade, has become

a new breakthrough in cancer treatment. We analyzed the

association between CCPOC and the response to immune

checkpoint blockade therapy in two immunotherapy cohorts. In

both the anti-PD-L1 cohort (IMvigor210) and the anti-PD-1 cohort

(GSE78220), patients within the CCPOC-low group showed

prolonged survival (Figures 6D,F). Treatment results showed that

patients within the CCPOC-low group showedmore efficacy against

anti-PD-1/L1 immunotherapy than CCPOC-high group patients

(Figure 6E and 6G-H). The aforementioned data indicate that the

CCPOC-high group had lower tumor immunogenicity and lower

efficacy of chemotherapy and anti-PD-1/L1 immunotherapy

treatment response.

TABLE 2 Univariate and multivariate prognostic analyses of the cell cycle signature and clinicopathological factors in the training cohort and meta-
validation of public cohorts.

GSE26712 Meta-validation of public cohorts

Univariate Multivariate Univariate Multivariate

HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p

Grade* (3 vs. 1&2) 1.75 (0.44–7.07) 0.43 1.63 (0.40–6.58) 0.49 2.63 (1.52–4.55) 5.0E-04 2.09 (0.87–5.05) 0.10

Debulking (optimal vs. suboptimal) 1.32 (1.02–1.71) 0.03 1.29 (0.99–1.68) 0.05 1.31 (1.10–1.54) 2.0E-03 1.27 (1.08–1.51) 4.0E-03

CCPOC (high vs. low risk) 1.40 (1.08–1.81) 0.01 1.29 (1.00–1.69) 0.04 1.61 (1.39–1.88) 3.4E-10 1.55 (1.30–1.85) 1.2E-06

*One well-differentiated; two moderately differentiated; three poorly differentiated.

Numbers in bold indicate significance of 0.05 or less.
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Exploring the prognostic significance and
the immune therapy response in pan-
cancer

Next, we explored the CCPOC signature in pan-cancer. As

shown in Figure 7A, the CCPOC scores of OC were medium in

the 33 cancers. Then, we explored the prognostic significance of

CCPOC in pan-cancer. As presented in Figure 7B, CCPOC acted

as a prognostic factor in almost 25% of cancer types. In addition,

the CCPOC-high group presented low lymphocyte infiltration,

such as CD8+ T cell, B cells, and NK cells (Figure 7C). Through

an extensive literature search, we identified 15 tumor types for

which data regarding the ORR of anti-PD-1/PD-L1 were

available (OC excluded, Supplementary Table S7). In line with

our suggestion, the CCPOC was negative to anti-PD-1/PD-

L1 response in pan-cancer (r = −0.47, OC excluded)

(Figure 7D). These data showed that CCPOC could be a

biomarker in predicting the prognosis and anti-PD-1/PD-

L1 response in other cancer types.

Discussion

Ovarian cancer (OC) is the most lethal gynecological cancer

with pathological andmolecular heterogeneity characteristics (Siegel

et al., 2019). Various multi-gene prognostic biomarkers have been

developed (Pan andMa, 2020; Yang et al., 2021), but their prediction

efficiencies are still uncertain. Therefore, a new signature that can

accurately recognize OC patients with poor prognoses is urgently

needed. Based on transcriptome data, OC has been unsupervised

FIGURE 4
Comparison of published classifiers with CCPOC. Forest plot reporting of the (A) concordance index (C-index) and (B) D-index (robust hazard
ratio) for CCPOC and published classifiers. The tables illustrate the superiority of CCPOC compared with published classifiers for Meta C-index (C)
and Meta D-index (D).
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and classified into four molecular subtypes (immunoreactive,

differentiated, proliferative, and mesenchymal) with distinct

molecular and clinical characteristics (Cancer Genome Atlas

Research Network, 2011). The mesenchymal subtype highly

expressed the mesenchymal signature and was associated with

worse clinical outcomes. The prognostic signature screened based

on molecular portraits specific to the worst prognosis subtype may

be used for risk stratification of OC patients. In addition, many

studies have explored the role of cell cycle in the prognosis

prediction of tumors (Hui et al., 2021; Jiang et al., 2021).

However, most studies have only studied the prognostic

relevance of cell cycle without considering tumor heterogeneity.

FIGURE 5
Immune microenvironment composition in CCPOC groups. (A) Expression levels of immuno-inhibitors, MHC I/II molecular, and immuno-
stimulator markers within the CCPOC groups. (B) Heatmap of the expression of DDR markers between the CCPOC-high and CCPOC-low groups.
(C) Distribution of 22 immune cells in the CCPOC groups. (*p < 0.05 and **p < 0.01).
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In this study, we applied a network-based approach to integrate cell

cycle signature andmodalities underlying the mesenchymal subtype

to establish a prognostic signature termed “Cell Cycle Prognostic

Signature of Ovarian Cancer” (CCPOC). To our knowledge, no

prognostic cell cycle-based signature has been constructed by

incorporating molecular subtyping information of OC.

The CCPOC was constructed by two cell cycle genes

(POLA2 and KIF20B) which were key regulators of the

mesenchymal subtype and could stratify patients into different

risk groups. Within these two cell cycle genes, KIF20B can

promote cell proliferation and could be a potential therapeutic

target in pancreatic cancer (Chen et al., 2021). Koh et al. reported

that the knockdown of POLA2 increases chemo-resistance in human

lung cancer cells (Koh et al., 2016). The defined CCPOC-high group

showed a worse OS than the CCPOC-low group. To confirm this

finding, we validated the results in seven independent cohorts

measured by various platforms and one independent internal

cohort (BL-OC cohort) and found that the signature successfully

stratified the prognosis in all cohorts. The CCPOC remained an

independent prognostic predictor in the multivariate Cox

proportional hazards analysis after adjusting for other clinical

factors. In line with the findings, we found that the C-index and

D-index of the CCPOC were significantly higher than those of the

published prognostic models, which was superior to the current

genomic classification. These data suggest that the CCPOC has a

strong and reproducible prognostic value for risk stratification of OC.

In addition, we also found that the CCPOC was related to weakened

tumor immunogenicity and inflamed antitumor immunity, and the

correlation analysis showed that CCPOCwas negatively related to the

ORR in pan-cancer (OC excluded), which indicated that the

CCPOC-low group may be sensitive to anti-PD-1/PD-L1 therapy.

Together, these findings show that the CCPOC could serve as a

robust prognostic signature in OC.

This study still has some limitations. First, the prognostic

signature was screened from gene expression profiles generated

from microarray platforms, which are expensive, difficult to

FIGURE 6
Dysregulated pathways and drug sensitivity within the CCPOC groups. (A) Enrichment of dysregulated pathways between the high- and low-
CCPOC groups. (B) and (C) chemotherapy sensitivity analysis. Survival analyses for the CCPOC groups in the GSE78220 cohort (D) and the
IMvigor210 cohort (F). Proportion of patients with response to anti-PD-1/L1 immunotherapy in low- or high-CCPOC groups in the GSE78220 cohort
(E) and the IMvigor210 cohort (G). (H) Distribution of the CCPOC scores in CCPOC groups. CR, complete response; PR, partial response; SD,
stable disease; PD, progressive disease.
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operate, and involve professional bioinformatics expertise, so it is

difficult to be popularized in daily clinical application. Second,

the training and validation datasets were all from retrospective

studies in the study, including fresh frozen samples. Therefore, in

practice, we need to detect the expression of signature genes

using conventional clinical techniques, such as RT-PRC or IHC,

and then reconstruct the new model and perform large-scale

multicenter cohorts to validate the validity and robustness of the

model.

In conclusion, using multi-dimensional network inference

underlying the mesenchymal subtype of OC, we have

identified and validated a two cell cycle signature, named

CCPOC, to risk-stratify patients and provide an easy method

for the exploration of new effective therapeutic options,

including novel target drugs and immune therapy in the

future.
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FIGURE 7
Pan-cancer analysis of the prognostic significance and anti-PD-1/PD-L1 response for CCPOC. (A)Distribution of CCPOC scores in pan-cancer.
(B) Prognostic relevance of CCPOC in various cancer types. (C) Heatmap of the correlation of immune cells and CCPOC scores across various
cancer types. (D) Correlation between CCPOC and anti-PD-1/PD-L1 ORR of various cancer types. (*p < 0.05, **p < 0.01, and ***p < 0.001).
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Otomycosis accounts for over 15% of cases of external otitis worldwide. It is

common in humid regions and Chinese cultures with ear-cleaning custom.

Aspergillus and Candida are the major pathogens causing long-term infection.

Early endoscopic and microbiological examinations, performed by otologists

and microbiologists, respectively, are important for the appropriate medical

treatment of otomycosis. The deep-learning model is a novel automatic

diagnostic program that provides quick and accurate diagnoses using a large

database of images acquired in clinical settings. The aim of the present study

was to introduce a machine-learning model to accurately and quickly diagnose

otomycosis caused by Aspergillus and Candida. We propose a computer-aided

decision-making system based on a deep-learning model comprising two

subsystems: Java web application and image classification. The web

application subsystem provides a user-friendly webpage to collect consulted

images and display the calculation results. The image classification subsystem

mainly trained neural network models for end-to-end data inference. The end

user uploads a few images obtained with the ear endoscope, and the system

returns the classification results to the user in the form of category probability

values. To accurately diagnose otomycosis, we used otoendoscopic images

and fungal culture secretion. Fungal fluorescence, culture, and DNA

sequencing were performed to confirm the pathogens Aspergillus or

Candida spp. In addition, impacted cerumen, external otitis, and normal

external auditory canal endoscopic images were retained for reference. We

merged these four types of images into an otoendoscopic image gallery. To

achieve better accuracy and generalization abilities after model-training, we

selected 2,182 of approximately 4,000 ear endoscopic images as training

samples and 475 as validation samples. After selecting the deep neural

network models, we tested the ResNet, SENet, and EfficientNet neural

network models with different numbers of layers. Considering the accuracy

and operation speed, we finally chose the EfficientNetB6 model, and the

probability values of the four categories of otomycosis, impacted cerumen,

external otitis, and normal cases were outputted. After multiple model training

iterations, the average accuracy of the overall validation sample reached

92.42%. The results suggest that the system could be used as a reference

for general practitioners to obtain more accurate diagnoses of otomycosis.
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1 Introduction

The goal of machine learning is for machines to learn

automatically from training data and update their capabilities

(Shen et al., 2017). Deep learning is a field of machine learning

in which machine learning is implemented using deep neural

networks (Giger, 2018). For example, the deep convolutional

neural network (CNN) is used by machines to acquire image

data and identify the contents in the image (Kooi et al., 2017).

Deep learning, or deep neural networks, has been successfully

used in some medical fields. For example, in the field of

ophthalmology, machine learning can automatically detect

retinopathy in patients with diabetes (Horsch et al., 2011;

Chougrad et al., 2018).

Otomycosis externa, or fungal otitis externa, is a

superficial fungal infection of the external auditory canal

that occasionally invades the middle ear. The incidence of

otomycosis externa is high in hot and humid climates found

in tropical and subtropical regions (Li and He 2019). Patients

with this infection usually present with symptoms such as

itching, otorrhea, and hearing loss. Aspergillus and Candida

are the most common pathogens causing otomycosis (Kamali

Sarwestani et al., 2018). Although otomycosis is rarely fatal,

it is difficult to treat because of a long treatment period

and easy recurrence. Antifungal drugs show varying

sensitivity/resistance to pathogenic bacteria, often leading

to poor therapeutic effects (Li et al., 2020). The diagnosis of

otomycosis is mainly done clinically by

otorhinolaryngologists, and insufficient attention is paid to

mycological detection, particularly the subsequent

pathogen culture and drug sensitivity test results.

To date, the deep CNN model with various structures has

achieved good results in image classification and

recognition (Hapfelmeier and Horsch, 2011; Lee et al.,

2017). However, the tests were based on standard image

galleries and have not been applied in the field of

otoendoscopy.

The aim of this study was to establish a comprehensive

identification system for otomycosis by comparing the effects

of several typical deep CNN models using otoendoscopic

images and web applications and selecting three models with

the best recognition effects. To diagnose otomycosis

accurately, we used otoendoscopic images and fungal

culture secretions. The pathogen was identified as

Aspergillus or Candida by fungal fluorescence, culture, and

DNA sequencing. In addition, images of impacted cerumen,

external otitis, and normal external auditory canal were used

as reference to identify otomycosis. We combined these four

types of images into a gallery of otoendoscopic images.

2 Materials and methods

2.1 Design

Figure 1 summarizes the overall design of the web-based

computer-aided diagnosis system used in this study. The system

comprises three subsystems: front-end page subsystem based on

React, business logic subsystem based on SpringBoot, and image

classification subsystem based on PyTorch. React is a JavaScript

language library for building user interfaces, enabling

component-based user interaction pages for easy extension.

SpringBoot is a Java language-based framework for quickly

building standalone, production-level Java Web services

applications. PyTorch is an open-source framework for deep

learning based on Python and developed with support from

Facebook (Zhang et al., 2019).

According to manufacturer’s instructions, we uploaded a

batch of otoendoscopic RGB images up to four at a time to

the specific storage space of the server via the front-end

subsystem. Subsequently, the business logic subsystem verified

and cleaned the images. Finally, the image classification

subsystem predicted the images for otomycosis, impacted

cerumen, external otitis, and the normal external auditory

canal. At the end of the model calculation, each image was

assigned a percentage of the four categories, adding up to 100%,

with the value of each category indicating the probability that the

image belonged to that category. Finally, the data were delivered

to the front-end page via the business subsystem using web

services to provide users with diagnostic references. To classify

and predict RGB images, we used an end-to-end deep CNN

model (Esteva et al., 2017). To train weight parameters, we

inputted the classified and labeled training sample images to

the model.

2.2 Sample

The database used in our study was created at the

Department of Otolaryngology - Head and Neck Surgery,

Jingzhou Hospital Affiliated to Yangtze University. The study

protocol was approved by the Research Ethics Committee of

Jingzhou Hospital Affiliated to Yangtze University (protocol

number: 2021-093-01). Written informed consent was

obtained from patients and caregivers of patients under

18 years of age. All the procedures were carried out in

accordance with the tenets of the Declaration of Helsinki.

An otorhinolaryngologist evaluated the patients. Patient age

ranged from 5 to 72 years. Images with otomycosis, impacted

cerumen, external otitis, or the normal external auditory canal
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were preserved in the otoscopy room. Figures 2A–D shows the

representative images of all categories.

To obtain a better training result, we prepared two external

auditory canal image datasets: one comprising 2,652 external

auditory canal images used to train the model and the other

comprising 552 images that were not used to train the model but

to test the robustness and accuracy of the model.

2.3 Data preprocessing

First, we selected the otoendoscopic RGB image as the system

input. The key contents to be identified were in a circular area in

the image, while the other areas were black. Due to inter-user

differences in operation habits, the circular area varied in size,

with the center of the circular area often not coinciding with the

center of the image. To maximize the feature data to be

recognized by the model for training, we used Hough

transform to perform ring detection (Hough ring detection).

The center and radius of the circle were detected to calculate the

minimum rectangular coordinates. From the rectangular cutting

of the original image, excess black boxes were removed (Moses

et al., 2018).

Second, because the model was in the training process, the

dataset was reused in each iteration of the training. To enhance

the robustness of the model, we added the function of random

angle rotation to the dataset (Varma and Zisserman, 2009) such

that when each sample was removed, the image was rotated

randomly.

Third, data standardization was performed. To accelerate the

training process, the possibility of the model falling into the local

optimum during training was reduced. We treated the input data

for data standardization, i.e., according to the image color

channel for the unit, the mean and standard deviation values

of the training images were calculated. After normalization of

each image pixel value, the mean value was subtracted and

divided by the standard deviation value. The images with a

mean value of 0 and a standard deviation of one were

considered normally distributed (Shin et al., 2016). Due to

limited memory, 600 training sample otoendoscopic images

were randomly selected. The calculated mean value of the

RGB channel was [0.5317, 0.3899, 0.3003], while the standard

deviation was [0.3482, 0.2748, 0.2329]. The formula for the

standard deviation was as follows: X ’ � x−μ
σ

2.4 Deep CNN model

The deep CNNmodel was used in this study. It could analyze

the features in its “field of vision” (local receptive field) through

FIGURE 1
General scheme of the computer-aided system approach to assist the diagnosis of otomycosis.
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FIGURE 2
(A) Images labeled “otomycosis”. (B) Images labeled “impacted cerumen”. (C) Images labeled “external otitis”. (D) Images labeled “normal case”.
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neuronal learning of the hidden layer. To enable the CNNmodel

to learn better features from images, many deep CNN models

have been proposed (Spasov et al., 2018). We selected three CNN

models for training: ResNet, SENet, and EfficientNet (Lee et al.,

2020). The algorithm characteristics and design ideas of each

model are described below:

2.4.1 ResNet
The main design idea is to introduce a residual network

structure (cross-layer jump connection) to resolve SGD

optimization difficulties when the neural network model is

stacked to a deeper level, and the reverse derivative gradient

disappears or explodes, resulting in the deterioration of model

performance (Talo et al., 2019). Using the neural network model

with a residual structure, the network can be designed deeper,

and the training is faster. Because it does not introduce additional

parameters or computational complexities and only performs

simple addition operation, the computational power

consumption is negligible compared to convolution operation.

ResNet has designed floors of 18, 34, 50, 101, and 152. Regarding

efficiency and cost, ResNet of 101 was used in this study. Figure 3

shows the algorithm and design of this model.

2.4.2 SENet
This conventional CNN model aggregates information of

image space and feature dimension into a feature channel

through the convolution operation of multiple convolution

kernels in the local receptive field, and the data of each

feature channel are equal (Zhang et al., 2019). However, in

real settings, each image is a key feature area, and attention

should be paid to the channel data of this part of data conversion.

The SE module was designed by the makers of SENet to obtain

scaling coefficients (importance) of the channel data through a

series of fully connected activation operations of global average

pooling and 1 × 1 convolution kernels, which were then weighted

to previous features by multiplication. This completed the

recalibration of the original feature on the channel dimension.

The SE module and ResNet were combined to obtain SENet. In

this study, we used the 101-layer SENet. Figure 4 shows the

algorithm and design of this model.

2.4.3 EfficientNet
Scaling (model extension) improves the performance of

CNN models (Godinez et al., 2017). The expansion direction

of the model is mainly divided into the network width (channel,

number of convolution kernels), depth (number of layers), and

resolution (accuracy of input image); however, these expansions

consume abundant additional computing resources.

EfficientNetB0 is a simple baseline network with grid

structure search. Subsequently, a compound coefficient is used

to synthesize the aforementioned dimensions of model extension

such that additional consumption of computational power

resources can be optimized to improve accuracy. In this study,

we used EfficientNetB6.

2.5 Deep CNN model training process

2.5.1 Input and output
The size of otoendoscopic RGB images was 515 × 547 pixels,

and the standard input size of ResNet101 and SENet101 models

was 224 × 224 pixels. Therefore, we added a convolution layer in

FIGURE 3
ResNet model.

FIGURE 4
SENet model.
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front of the input layer of the standard ResNet101 and SENet101.

The kernel size was 7 × 7. The stride and padding were two and

three, respectively, such that the input size of the model became

448 × 448. The input size of the EfficientNetB6 model was 528 ×

528. Therefore, the image was scaled to the required size of the

model before training. To adapt the output of the model to the

objective of our study, the otoendoscopic images were classified

into four categories. We replaced the last full connection layer of

the standard ResNet101, SENet101, and EfficientNetB6 models

with a new full connection layer with four output nodes (Geras

et al., 2019).

2.5.2 Optimization of model training
To obtain better training results, we assigned a set of

hyperparameters, including whether or not to use pretraining

weights, whether or not to carry out center circle interception,

batch size, learning rate, and optimizer (Zhang and Suganthan,

2017).

Each time the model was trained, a value was randomly

selected from each item.We used the PyTorch framework on two

graphics processing units (RTX-2080Ti Gpus). After repeated

training of multiple models, we obtained the optimal

hyperparameters: using pretraining weight, using center circle

interception, batch size of 4, learning rate of 0.001, and SGD

optimizer.

2.6 Set classifier

Based on the accuracy of the test images, the best training

results from among the three models were selected. The average

highest accuracies of the ResNet101, SENet101, and

EfficientNetB6 models were 78.32, 87.16, and 88.21%,

respectively. Table 1 shows the highest accuracies for the four

categories. Table 2 shows the weighted mean values of the models

for the four categories. The set classifier was obtained by

multiplying each model by the weighted mean of each model

and category. Table 3 shows the highest accuracy of the final set

classifier.

The performance of the set classifier was measured using the

obfuscation matrix, precision, recall, precision–recall (PR) curve,

and receiver operating characteristic (ROC) curve (Tan et al.,

2017).

The confusion matrix represented the number of instances

corresponding to the predicted and actual classes. This

concept is often used for binary classifications but can be

extended to multiclass predictions, with the corresponding

class on the diagonal of the matrix and the misclassified class

outside the diagonal. We used the set classifier to conduct

prediction tests on the verification test set comprising

475 otoendoscopic images. Table 4 shows the confusion

matrix.

The accuracy refers to the number of predicted positive

sample results that are correctly classified. It is calculated

using the following formula: precision = true positive/(true

positive + false positive). Recall refers to the number of

positive sample results that are correctly classified. It is

calculated using the following formula: recall = true positive/

(true positive + false negative). Table 5 shows the results of the

precision and recall.

The PR curve is used to sort the samples according to the

predicted results of the classifier. The samples considered

“most likely” to be positive by the classifier were in the

front row, while those considered “least likely” to be

positive by the classifier were in the back row. In this

order, the samples were considered examples of positive

prediction, and the current recall and precision were

calculated each time. With accuracy as the vertical axis and

TABLE 1 Highest accuracies of the four categories of otoendoscopic images trained by three models.

Otomycosis (%) Impacted cerumen (%) External otitis (%) Normal case (%)

ResNet101 73.8 78.69 71.19 86.75

SENet101 89.25 78.69 83.33 89.82

EfficientNetB6 95.19 78.69 80.0 86.83

TABLE 2 Weighted mean values of the models for four categories of otoendoscopic images.

Weighted mean model Otomycosis Impacted cerumen External otitis Normal case

ResNet101 0.28578066 0.33333333 0.3035562 0.329347

SENet101 0.34560873 0.33333333 0.35532151 0.34100227

EfficientNetB6 0.3686106 0.33333333 0.3411223 0.32965073
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recall as the horizontal axis, the PR curve was drawn. With the

true-positive rate as the vertical axis and the false-positive rate

as the horizontal axis, the ROC curve was drawn. Figures 5A,B

show the results of the PR and ROC curves, respectively.

3 Results

We chose a deep CNN model to obtain a system that could

help doctors accurately diagnose otomycosis. Three CNNmodels

TABLE 3 Highest accuracies of four categories of otoendoscopic images by the ensemble classifier.

Otomycosis (%) Impacted cerumen (%) External otitis (%) Normal case (%) Average accuracy (%)

Set classifier 94.65 90.16 88.33 92.22 92.42

Evaluation index.

TABLE 4 Confounding matrix results of the test set verified on otoendoscopic images.

Prediction fact Otomycosis Impacted cerumen External otitis Normal case

Otomycosis 177 3 4 3

Impacted cerumen 2 55 0 4

External otitis 1 0 53 6

Normal case 5 1 7 154

TABLE 5 Accuracy and recall of the four categories of otoendoscopic images.

Indicators Category

Otomycosis (%) Impacted cerumen (%) External otitis (%) Normal case (%)

Precision 95.68 93.22 82.81 92.22

Recall 94.65 90.16 88.33 92.22

FIGURE 5
(A,B) Precision–recall and receiver operating characteristic curves of the four categories of otoendoscopic images.
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were selected for training, and the weighted mean of each model

produced the highest verification accuracy.

To obtain better accuracy and generalization ability after

model training, we selected 2,182 samples from approximately

4,000 otoendoscopic images as training samples and 475 samples

as verification samples (Table 6). To select the deep CNN model,

we tested the ResNet, SENet, and EfficientNet models with

different layers. The optimal training results among the three

models were selected. The average highest accuracies of

ResNet101, SENet101, and EfficientNetB6 models were 78.32,

87.16, and 88.21%, respectively (Table 1). Considering the

accuracy and speed of operation, we chose the

EfficientNetB6 model to output the probability values of four

types of otomycosis, impacted cerumen, external otitis, and the

normal external auditory canal. After multiple iterative model

training, the average accuracy of the overall validation sample

was 92.42% (Table 3). The results suggest that the system could

be used by doctors, or even patients, to better diagnose

otomycosis.

We proposed a computer-aided decision system based on a

deep learning model, which includes Java web application and

image classification subsystems. The web application subsystem

mainly provides a user-friendly page to collect images of

consultation and display the calculation results. The image

classification subsystem mainly uses a trained neural network

model to perform end-to-end data reasoning. Finally, on

TABLE 6 Data distribution in the classification test of otoendoscopic images.

Classification Training set Validation set Test set Total

Otomycosis 803 187 30 1,020

Impacted cerumen 264 61 30 355

External otitis 395 60 30 485

Normal case 720 167 30 917

FIGURE 6
Screenshot of the authentication results on the webpage.
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uploading a few otoendoscopic images, the system returns the

classification results to the user as the category probability value.

We released a beta web application at http://175.178.230.

136/. Guests can login with a username and password and upload

otoendoscopic images up to four at a time for diagnoses. The

image size should not exceed 2 MB, and the image should be in

the JPEG format. The “picture identification” button should be

clicked to obtain probability values of the four categories. The

uploaded image should be clicked to enlarge, read, and confirm

the identification. Figure 6 shows the screenshot of the

identification results on the website.

4 Discussion

Otomycosis is mainly diagnosed based on clinical

manifestations and mycological examination results. However,

differences in the pathogenic fungi species directly affects the

positive rate of direct microscopic examination results (Ali et al.,

2018). By culturing isolated specimens, further morphological

and molecular biological identifications can be carried out, and

the pathogenic species can be identified (Merad et al., 2021).

However, conventional identification methods are time-

consuming and prone to cross-contamination of specimens,

which often leads to failure of clinicians to select effective

antifungal drugs at a timely and early stage, affecting the

prognosis (Hagiwara et al., 2019). Otoendoscopy has the

advantages of a broad field of vision, close observation, and

less invasive injury and has been widely used in the diagnosis and

treatment of outer and middle ear diseases in recent years (Ulku,

2017). To treat otomycosis, we usually remove the fungal focus

under ear endoscopy and select the appropriate drug according

to the fungal culture results. Therefore, otoendoscopy and fungal

culture are required to diagnose otomycosis. In our study,

otoendoscopic images of impacted cerumen, external otitis,

and the normal external auditory canal were used

simultaneously. The established image library accumulated

sufficient data to diagnose otomycosis by deep learning of

otoendoscopic images.

We developed a computer-aided support system to assist

physicians in the diagnosis of otomycosis. To ensure a diagnostic

accuracy comparable to that of ear, nose, and throat specialists

and provide the best care to patients, the most appropriate

feature extraction methods and learning models were selected.

A neural network model with different layers was tested, and the

best training results of the three models was selected considering

the accuracy and operation speed. The performance of the

EfficientnetB6 model was found to be the highest. The

weighted mean values of the models in the four categories

were obtained. The result of each model was multiplied by the

weighted mean value of each model and classification to obtain

the average accuracy of the total validation sample of the set

classifier (Table 1, Table 2, and Table 3). Classical machine

learning techniques, such as SVM, K-NN, and decision tree,

provide high performances in classification tasks, particularly

with reasonably sized datasets (Van Gestel et al., 2002). These

techniques are easy to understand, simplifying model tuning and

calibration. Other more complex models, such as CNNs, can be

used to overcome the same challenges but must be trained with

larger database to achieve comparable performance.

The binary classification method of still color images of the

eardrum has been used to identify the normal ear and otitis

media, with accuracy rates of 73.1 and 68.3%, respectively (Tran

et al., 2018; Cai et al., 2021). In both cases, color information was

used to train the learningmodels. However, color alone cannot be

used to obtain an accurate classification. In a previous study,

classifying cases of normal ear and otitis media (Shie et al., 2014),

the color, texture, and geometric information were used to train

support vector machines with an accuracy exceeding 88.1%

achieved by previous authors. However, the system’s specific

ability to correctly identify healthy individuals was 79.9%. A

study implemented a system to distinguish the normal eardrum,

otitis media, and blocked ear canals with an accuracy of 86.8%

(Myburgh et al., 2018). Whether these results were obtained

through classification stages using validation or test sets remains

unclear. The evaluation index of the deep CNNmodel selected in

our studymainly depends on the performance of the set classifier,

which is measured using the obfuscation matrix, precision, recall,

and PR and ROC curves. The confusion matrix represents the

number of instances corresponding to the predicted and actual

classes (Table 4). To diagnose otomycosis, there were 187 images

of otomycosis, 177, three, four, and three images of which were

predicted to be of otomycosis, impacted cerumen, external otitis,

and normal external auditory canal, respectively. Table 5 shows

the statistics of the precision and recall. Figure 5 is drawn with the

precision ratio as the vertical axis and the recall ratio as the

horizontal axis to obtain the PR curve.

Previous studies on deep learning methods have distinguished

between normal or abnormal conditions of the eardrum (Senaras

et al., 2018). Two different deep learning architectures were used in

this study, with an accuracy of 84.4%, a sensitivity of 85.9%, and a

specificity of 82.8%. Another study proposed a diagnosis system

based on deep CNN, with an average accuracy of 93.6% (Cha et al.,

2019). The study divided ear diseases into five categories:

invagination of the eardrum, perforation of the tympanum,

tympanitis, external auditory canal tumors, and normal cases.

However, the model performance, i.e., accuracy, depends on the

number of images trained. If the number of images decreases, the

performance degrades. A common limitation of deep learning

approaches is the influence of database on the model (Zhang et

al., 2020). In addition, a large database, particularly in

otolaryngology, may be unavailable.

We introduced a novel beta web application, which is user-

friendly. After several iterations of sample training, the average

accuracy of the overall validation sample was 92.42%. Clinicians can

login on the website and upload otoendoscopic images to accurately

Frontiers in Molecular Biosciences frontiersin.org09

Mao et al. 10.3389/fmolb.2022.951432

233

http://175.178.230.136/
http://175.178.230.136/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.951432


diagnose otomycosis (Figure 6). In the future, doctors and patients

would be able to upload images to their smartphones or other

devices to obtain diagnoses by installing software. The web

application has a learning function. Therefore, the program can

learn the uploading of identification images for improved accuracy.

To create a database of images of otomycosis, we collected

otoendoscopic images of the external auditory canal obtained in

clinical practice. According to the clinical manifestations and

otoendoscopic images, otomycosis was considered, and

specimens from these patients were collected for fungal

species identification. The diagnostic system was relatively

easy to implement and could significantly impact primary

healthcare. Most blurred and unqualified images are deleted,

and a few blurred images can also be analyzed and processed by

artificial intelligence algorithms, thus increasing the diagnostic or

classification accuracy. Although we randomly selected a large

sample of cases, all possible imaging presentations of otomycosis

may not have been covered. Therefore, image selection will have

a potential bias. However, to avoid bias and improve accuracy,

our database includes images of different tympanic membranes

and external auditory canal projections.

Finally, we only evaluated four conditions that were presented

during endoscopy, while the diagnosis of external auditory canal

mycosis should include the differential diagnosis of other rare

diseases in clinical practice. Whether our method would show

reduced or improved accuracy if more conditions are included

remains unknown. Therefore, the characteristics of otoendoscopy

should be evaluated in detail in future studies. Nevertheless,

compared to previous studies, our study achieved greater

accuracy in the diagnosis of otomycosis in a real clinical setting

through conditions that had not been previously assessed.

In future studies, we aim to integrate other rare types of

otomycosis, although their diagnosis is a challenge even for

specialists. In addition, we would train deep CNNs for other

learning models, which may allow the integration of more

classifications to maintain high performance.
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Background: The polypyrimidine tract-binding protein (PTBP) nuclear

ribonucleoprotein family of proteins, including PTBP1, PTBP2 and PTBP3,

regulate the process of cell proliferation, differentiation, apoptosis and

carcinogenesis. PTBPs exhibit oncogenic effects in certain tumors. However,

the role of PTBPs in pan-cancer remains unclear. Our study examined the

clinical significance and mechanism of PTBPs in pan-cancer.

Methods: We compared the expression of PTBPs in paired and unpaired tissue

samples from the Cancer Genome Atlas (TCGA) database. Univariate and

multivariate Cox regression, Kaplan–Meier curves, and time-dependent

receiver operating characteristic (ROC) curves were used to assess the

prognostic significance of PTBPs in pan-cancer. The cBioPortal database

also identified genomic abnormalities in PTBPs. TISIDB, TCGA, and Cellminer

were used to investigate the relationship between PTBP expression and

immune subtypes, immune checkpoint (ICP) genes, tumor mutational

burden (TMB), microsatellite instability (MSI), tumor-infiltrating immune cells,

and chemosensitivity. cBioPortal was used to search for PTBP co-expressing

genes in pan-cancer, and GO and KEGG enrichment analyses were performed

to search for PTBP-related signaling pathways.

Results: PTBPs were shown to be widely upregulated in human tumor tissues.

PTBP1 showed good prognostic value in ACC, KIRP, and LGG; PTBP2 in ACC

and KICH; and PTBP3 in ACC, LGG, and PAAD, with AUC >0.7. PTBPs were

differentially expressed in tumor immune subtypes and had a strong correlation

with tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment

(TME). In addition, PTBP expressions were related to ICP, TMB, and MSI,

suggesting that these three PTBPs may be potential tumor

immunotherapeutic targets and predict the efficacy of immunotherapy.

Enrichment analysis of co-expressed genes of PTBPs showed that they may

be involved in alternative splicing, cell cycle, cellular senescence, and protein

modification.

OPEN ACCESS

EDITED BY

Teng Ma,
Capital Medical University, China

REVIEWED BY

Fengqiang Yang,
Tongji University, China
Hongyu Zhao,
Wake Forest University, United States

*CORRESPONDENCE

William C. Cho,
chocs@ha.org.hk
Dong Li,
lidong@tongji.edu.cn

†These authors have contributed equally
to this work.

SPECIALTY SECTION

This article was submitted to Molecular
Diagnostics and Therapeutics,
a section of the journal
Frontiers in Molecular Biosciences

RECEIVED 14 June 2022
ACCEPTED 02 August 2022
PUBLISHED 23 August 2022

CITATION

Chen C, Shang A, Gao Y, Huang J, Liu G,
Cho WC and Li D (2022), PTBPs: An
immunomodulatory-related prognostic
biomarker in pan-cancer.
Front. Mol. Biosci. 9:968458.
doi: 10.3389/fmolb.2022.968458

COPYRIGHT

© 2022 Chen, Shang, Gao, Huang, Liu,
Cho and Li. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 23 August 2022
DOI 10.3389/fmolb.2022.968458

236

https://www.frontiersin.org/articles/10.3389/fmolb.2022.968458/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.968458/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.968458/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.968458/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.968458&domain=pdf&date_stamp=2022-08-23
mailto:chocs@ha.org.hk
mailto:lidong@tongji.edu.cn
https://doi.org/10.3389/fmolb.2022.968458
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.968458


Conclusion: PTBPs are involved in themalignant progression of tumors. PTBP1,

PTBP2 and PTBP3 may be potential biomarkers for prognosis and

immunotherapy in pan-cancer and may be novel immunotherapeutic targets.

KEYWORDS

biomarkers, immunotherapy, pan-cancer, polypyrimidine tract-binding proteins,
prognosis

Introduction

Cancer is a life-threatening disease to humans worldwide.

The incidence and mortality rates of various cancers have been

increasing year by year, and lung cancer, colorectal cancer, liver

cancer and gastric cancer have the highest mortality rates (Sung

et al., 2021). The field of precision medicine is advancing through

new developments in technology and medicine, but the present

state of practice is far from ideal (König et al., 2017). Therefore,

the identification of tumor-related diagnostic, prognostic, and

therapeutic biomarkers is a research hotspot.

Polypyrimidine tract-binding proteins (PTBPs) are

important RNA-binding proteins (RBPs) which influence cell

growth and development by regulating mRNA stability,

translation and alternative splicing (Singh et al., 1995;

Mickleburgh et al., 2014). The PTBP family consists of

PTBP1, PTBP2 and PTBP3, and these proteins show

similarities and differences in expression, structure, and

biological function (Oberstrass et al., 2005; Tan et al., 2015).

Studies have shown that up-regulation of PTBP1 is associated

with the poor prognosis and disease progression in non-muscle-

invasive bladder cancer. Therefore, PTBP1 may become a

possible outcome-predictor for bladder cancer (Bielli et al.,

2018). PTBP2 was also shown to stimulate the proliferation,

migration, and metastasis of colorectal cancer cells (Ji et al.,

2014). Previous studies demonstrated that PTBP3 enhances the

invasion and metastasis of breast cancer and regulates the

expression of drug resistance proteins in gastric cancer,

suggesting that PTBP3 may serve as a potential novel

therapeutic target for gastric cancer (Liang et al., 2017; Hou

et al., 2018; Liang et al., 2020). These studies have indicated that

PTBPs may function in cancer. However, research has been

restricted to a small number of tumor types, and the function

of PTBPs in pan-cancer has not been examined.

A growing body of evidence has revealed the close

relationship between the tumor microenvironment (TME)

and the effectiveness of immunotherapy (Donlon et al.,

2021; Newnes et al., 2021). Immune checkpoint (ICP)

inhibitors, including PD-1, CTLA4, LAG3, and TIM-3,

have potent tumor suppressor effects and can interfere with

immune escape; these inhibitors are currently the first-line

treatment options for multiple malignancies (Ribas and

Wolchok, 2018; Tu et al., 2020). Tumor infiltrating

immune cells in TME, such as macrophages, neutrophils,

T cells, Treg cells, T helpers, and NK cells, can affect the

immunological features of malignancies. Unfortunately, this

tumor heterogeneity among individuals influences the efficacy

of clinical immunotherapy (Keenan et al., 2019). Thus far,

precision medicine has not completely manifested in human

tumors. Researchers agree on the need to explore better

treatment targets.

In this study, we evaluated the clinical importance and

prognostic usefulness of PTBPs in pan-cancer. We used the

Cancer Genome Atlas (TCGA) to examine the expression

levels of PTBP1, PTBP2, and PTBP3 in normal and tumor

tissues, and cBioPortal was used to examine the genomic

alterations. We also examined the link between PTBP

expression and tumor immune subtype, tumor-infiltrating

lymphocytes (TILs), ICP, tumor mutational burden (TMB),

microsatellite instability (MSI), and chemosensitivity using

multiple databases. Finally, we constructed a PTBP-interacting

protein network and performed enrichment analysis of co-

expressed genes. Our findings have demonstrated the

prognostic value of PTBPs in pan-cancer. PTBPs may have

excellent potential to be therapeutic targets and predict the

efficacy of immunotherapy. We also predicted the molecular

mechanisms and biological signaling pathways of PTBPs using

databases and experimental data.

Materials and methods

Study overview

A total of 30 tumor types were studied in this article. A

schematic flow chart of our research is shown in Supplementary

Figure S1.

Difference and correlation analysis of
PTBP1, PTBP2, and PTBP3 expression

Gene expression, clinical data, and survival information for

30 different types of tumors were downloaded from TCGA

database (https://portal.gdc.cancer.gov), and the RNA-seq data

in level 3 HTSeq-FPKM format were log2-transformed. The

Mann–Whitney U test was used to analyze the differences in

the expression levels of PTBP1, PTBP2, and PTBP3 in unpaired

tissue samples, and the Wilcoxon signed rank test was used for

paired samples.
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To analyze the expression correlation between PTBP1,

PTBP2, and PTBP3 genes, we excluded the tumor types with

less than three normal samples and then log2-transformed the

ratio of the mean expression of PTBPs in tumors and normal

samples of the remaining 21 tumor types. All details are shown in

Supplementary Table S2.

Copy number alterations and mutations

Copy number alterations and mutations of PTBP genes were

analyzed using the online database cBioPortal (http://www.

cbioportal.org).

Cox regression analysis, Kaplan–Meier
curve, time-dependent receiver operating
characteristic curve and prognostic
nomogram

First, univariate Cox regression analysis was performed on

the expressions of PTBP1, PTBP2, and PTBP3 in pan-cancer.

Factors with p ≤ 0.05 were included in multivariate Cox

regression analysis and displayed in a forest plot. We used

Cox regression models to predict survival and plotted

Kaplan–Meier (KM) curves. The accuracy of the model in

predicting prognosis at a specific time was tested by a time-

dependent receiver operating characteristic (ROC) curve, and the

prognostic value of PTBPs in pan-cancer was determined. Taking

the tumor “ACC” as an example, we constructed prognostic

nomograms using PTBP expressions and pathological stage, and

the accuracy of the nomogram was evaluated by a calibration

curve. We examined overall survival (OS) in our analyses.

Analysis of PTBP expression and tumor
immune subtypes

We analyzed the associations between PTBP expression and

immune subtypes in human cancers using TISIDB, an online

integrated website (http://cis.hku.hk/TISIDB/index.php). p ≤ 0.

05 was considered statistically significant.

Relationship between PTBP expression
and tumor-infiltrating lymphocytes in
pan-cancer

Using the ssGSEA algorithm to calculate the score of tumor-

infiltrated immune cells in TCGA database, we selected 24 TILs

to evaluate the relationship between PTBP expressions and

tumor-infiltrating lymphocytes (TILs) in pan-cancer. The TILs

included activated DCs (aDCs), B cells, CD8 T cells, cytotoxic

cells, DC, eosinophils, immature DCs (iDCs), macrophages, mast

cells, neutrophils, NK CD56bright cells, NK CD56dim cells, NK

cells, plasmacytoid DCs (pDCs), T cells, T helper cells, T central

memory (Tcm), T effector memory (Tem), T follicular helper

(Tfh), T gamma delta (Tgd), Th1 cells, Th17 cells, Th2 cells, and

Tregs (Bindea et al., 2013). Neutrophils and macrophages were

selected for detailed display.

Correlation analysis of PTBP expressions
with immune checkpoint, tumor
mutational burden, and microsatellite
instability

Spearman correlation analysis was performed to examine the

relation of the expression levels of PTBPs and four immune

checkpoint (ICP) genes (PD-1, CTLA4, LAG3, and TIM-3

genes). We used Spearman correlation analysis to determine

the correlation of PTBP expressions with tumor mutational

burden (TMB) and MSI in human cancers. RNA-seq data and

clinical information were obtained from TCGA database. The

TMB data and microsatellite instability (MSI) data were derived

from the studies of Thorsson et al. (2018) and Bonneville et al.

(2017), respectively. p ≤ 0.05 was considered statistically

significant.

Correlation analysis with drug
susceptibility

Transcriptome data (RNA: RNA-seq) and drug sensitivity

data (compound activity: DTP NCI-60) were downloaded from

Cellminer (https://discover.nci.nih.gov/cellminer); these data are

derived from the same 60 samples. Only FDA approved samples

were analyzed. A positive correlation indicated that the higher

the expression of PTBP, the more sensitive that the cells were to

the drugs.

Protein-protein interaction network
analysis

We performed the analysis of Protein-Protein Interaction

(PPI) networks using the STRING website (https://string-db.org/

). The parameters for finding the interacting proteins of PTBPs

were set as follows: minimum required interaction score

[“Medium confidence (0.400)”], meaning of network edges

(“evidence”) and active interaction sources (“experiments”).

The parameters for finding the interaction relationship among

PTBP1, PTBP2 and PTBP3 were set as follows: minimum

required interaction score [“Medium confidence (0.400)”],

meaning of network edges (“evidence”), active interaction

sources (“textmining, experiments, databases, co-expression,
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co-occurrence”), and max number of interactors to show (“no

more than 10 interactors”).

Co-expressed genes of PTBPs in pan-
cancer

We downloaded the dataset “Pan-cancer analysis of whole

genomes (ICGC/TCGA, Nature 2020)” on cBioPortal and

screened several mRNAs co-expressed with PTBPs using the

absolute value of Spearman’s correlation coefficient ≥0.4 and p <
0.05. Data were obtained from 991 samples.

GO enrichment and KEGG pathway
analysis

We performed ID conversion on 926 PTBP1-related mRNAs,

657 PTBP2-related mRNAs, and 874 PTBP3-related mRNAs

obtained in the previous step and analyzed their functions by

GO and KEGG enrichment analysis. After correcting the p-value

by the BH method, items with p. adjust ≤0.05 were selected for

partial visualization.

Statistical analysis

R (version 3.6.3) was used for statistical analysis and

visualization. The following R packages were used in this

study: ggplot2 package [version 3.3.3], ggpubr package

[version 0.1.4] for basic drawing, limma package [version

3.28.14] for differential analysis, survminer package [version

0.4.9], survival package [version 3.2–10] for statistical analysis

of survival data, timeROC package [version 0.4] for ROC curve

analysis, rms package [version 6.2–0] for building nomograms,

impute package [version 1.68.0] for processing the missing

value, GSVA package [version 1.34.0] for immune

infiltration analysis, org. Hs.eg.db package [version 3.10.0]

for id conversion, and the clusterProfiler package [version

3.14.3] for enrichment analysis.

Results

Expression levels of PTBPs in tissues of
pan-cancer

We analyzed the expression levels of PTBPs in tumor

tissues and normal/adjacent tissues from 30 cancer types, and

the abbreviations of tumor types are shown in Supplementary

Table S1. Paired differential expression analysis was then

performed for 18 cancer types with more than three normal

samples. Among PTBPs, PTBP1 showed the highest RNA

expression level in tumor tissues, followed by PTBP3; the

expression level of PTBP2 was the lowest among the three

genes. PTBP1 was upregulated in tumor tissues compared

with normal tissues in BLCA, BRCA, CESC, CHOL, COAD,

ESCA, GBM, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC,

PRAD, READ, STAD, and UCEC. PTBP2 was upregulated

in CHOL, HNSC, KIRC, LIHC, LUAD, and LUSC and

downregulated in BLCA, BRCA, CESC, GBM, KICH,

PCPG, PRAD, READ, THCA, and UCEC. PTBP3 was

upregulated in BLCA, BRCA, CESC, CHOL, COAD,

ESCA, GBM, HNSC, LIHC, LUAD, LUSC, READ, STAD,

and UCEC and downregulated in KICH, KIRC, KIRP, and

THCA (Figures 1A–C). The results of differential expression

analysis for paired samples are shown in Figures 1D–F.

Furthermore, we predicted the structures of these three

proteins based on AlphaFold (Jumper et al., 2021; Varadi

et al., 2022) (Supplementary Figures S2–S4), among which,

PTBP1 and PTBP2 were highly similar in structure.

Expression correlation among PTBP1,
PTBP2, and PTBP3

Expression correlation analysis was performed on

21 cancer types with more than three normal samples. As

shown in the circular heatmap in Figure 1G, PTBP1 and

PTBP3 are expressed similarly, while PTBP2 and PTBP1/3

have the opposite expression in multiple cancers.

Genetic alterations of PTBPs

We next used the public dataset “Pan-cancer analysis of

whole genomes (ICGC/TCGA, Nature 2020)” from cBioPortal

to examine copy number alterations and mutations. The

dataset includes a total of 2565 patients, and information

on these three genes was available in 174 patients. The copy

number alterations and mutation data of PTBPs in pan-cancer

are shown in Figure 2A. PTBP1 was the most altered among

the PTBPs, with the main genetic alteration types being

amplifications and deep deletions. PTBP1 was frequently

altered in colorectal cancer, pancreatic cancer, and ovarian

cancer; PTBP2 was frequently altered in non-small cell lung

cancer, lung cancer, and ovarian cancer; and PTBP3 was

frequently altered in pancreatic cancer, soft tissue sarcoma,

and colorectal cancer (Figures 2B–D).

PTBPs are clinically significant tumor-
associated factors

We next analyzed the relationship between PTBP

expression and stage, grade, or other clinical features in
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pan-cancer and drew violin plots using data from TCGA

(Figure 3). The expression of PTBP has a strong correlation

with the clinical characteristics of various tumors, indicating

that PTBPs are related to the occurrence and development of

tumors. For example, the expression of PTBP3 was

significantly higher in high-grade BLCA than that in low-

grade BLCA (p = 0.002). PTBP2 expression in IDH-mutant

GBM was significantly higher than that in IDH-wildtype GBM

(p < 0.001). The expression of PTBP1 was related to the

pathological stage of ACC: PTBP1 expression in stage IV

ACC was significantly higher than that in stage I ACC (p =

0.004). Multivariate Cox regression analysis showed that the

HR of PTBP1 in ACC was 3.97 (p = 0.01) (Figure 4A). Patients

with high expression of PTBP1 had a lower probability of

survival (Figure 4D), indicating that PTBP1 is an independent

risk factor for ACC and has the potential to be a prognostic

indicator.

Prognostic value of PTBPs in pan-cancer

We downloaded RNA-seq data and corresponding clinical

information of tumor tissues from 30 cancer types in TCGA

database. Univariate and multivariate Cox regression analyses

were performed on the OS data to analyze the hazard ratio

(HR), 95% confidence interval (95%CI), and p value of PTBPs in

pan-cancer (Table 1). Throughmultivariate Cox regression analysis,

we found that PTBP1 was significantly associated with poor

prognosis in ACC, KIRP, LGG, LUAD, MESO, PRAD, and

SKCM (HR > 1, p < 0.05). PTBP2 is a risk factor for ACC,

KICH, LIHC, and UCEC (HR > 1, p < 0.05) and a protective

factor for OV, SKCM, and UCS (HR < 1, p < 0.05). PTBP3 was

significantly associated with poor prognosis in ACC, LGG, PAAD,

and PCPG (HR > 1, p < 0.05), but predicted better prognosis in

KICH and KIRC (HR < 1, p < 0.05). The above-listed tumors were

chosen to make the forest plots (Figures 4A–C).

FIGURE 1
The expression levels of PTBP in pan-cancer tissues and the expression correlation among the three PTBP genes. RNA-seq data were obtained
from the TCGA database. (A–C) Differential expression of PTBPs in unpaired samples of 30 tumor types. (D–F) Differential expression of PTBPs in
paired samples of 30 tumor types (*p < 0.05; **p < 0.01; ***p < 0.001; ns: not significant). (G)Correlation analysis of the expressions of PTBP1, PTBP2,
and PTBP3 in various tumor types.
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FIGURE 2
Characterization of genetic alterations in PTBPs. (A) General profile of genetic alterations in PTBPs in the pan-cancer dataset from cBioPortal.
(B–D) Genetic alterations of PTBPs in specific tumor types, in descending order of alteration frequency.

FIGURE 3
Expression levels of PTBPs in clinical parameters of interest (*p < 0.05; **p < 0.01; ***p < 0.001; ns: not significant).
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FIGURE 4
Evaluation of the prognostic value of PTBPs in pan-cancer. The multivariate Cox regression analysis results of (A) PTBP1, (B) PTBP2, and (C)
PTBP3were visualized and presented as forest plots (*p < 0.05; **p < 0.01; ***p < 0.001). (D–F)OS-KM survival curves of PTBPs in multiple cancers.
(G–I) Time-dependent ROC curves of PTBPs to evaluate the utility of PTBPs as prognostic markers in selected tumor types. (J–O) Prognostic
nomograms of PTBP expression combined with pathological stage in ACC. (M–O) The calibration curves for nomograms.
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TABLE 1 Univariate and multivariate Cox regression analysis of PTBP expressions and overall survival in pan-cancer.

Cancer
(OS)

n PTBP1 univariate
analysis

PTBP1 multivariate
analysis

PTBP2 univariate
analysis

PTBP2 multivariate
analysis

PTBP3 univariate
analysis

PTBP3 multivariate
analysis

HR (95%CI) p
value

HR (95%CI) p
value

HR (95%CI) p
value

HR (95%CI) p
value

HR
(95%CI)

p
value

HR
(95%CI)

p
value

ACC 79 6.748
(2.433–18.713)

<0.001 *** 3.970
(1.384–11.390)

0.010 ** 4.346
(1.859–10.159)

<0.001 *** 3.089
(1.226–7.782)

0.017 * 4.343
(2.376–7.940)

<0.001 *** 2.723
(1.387–5.344)

0.004 **

BLCA 413 0.849
(0.551–1.308)

0.457 0.828
(0.554–1.237)

0.357 0.892
(0.711–1.120)

0.325

BRCA 1082 0.911
(0.532–1.560)

0.733 0.787
(0.529–1.171)

0.238 1.226
(0.924–1.628)

0.158

CESC 306 1.139
(0.475–2.732)

0.771 0.640
(0.338–1.215)

0.173 1.012
(0.641–1.598)

0.96

CHOL 36 0.450
(0.066–3.089)

0.416 0.711
(0.269–1.876)

0.491 0.464
(0.163–1.322)

0.151

COAD 477 1.239
(0.747–2.056)

0.406 0.906
(0.537–1.529)

0.711 0.890
(0.682–1.162)

0.392

ESCA 162 1.121
(0.496–2.536)

0.783 0.931
(0.514–1.687)

0.814 1.208
(0.729–2.001)

0.463

GBM 168 1.061
(0.765–1.472)

0.723 0.684
(0.468–1.002)

0.051 1.012
(0.672–1.523)

0.954

HNSC 501 0.988
(0.670–1.456)

0.950 0.640
(0.406–1.007)

0.054 1.054
(0.823–1.350)

0.675

KICH 64 38.073
(2.640–549.096)

0.008 ** 4.222
(0.280–63.719)

0.298 ns 44.174
(6.571–296.980)

<0.001 *** 19.281
(1.913–194.340)

0.012 * 0.425
(0.191–0.945)

0.036 * 0.429
(0.187–0.985)

0.046 *

KIRC 539 1.267
(0.769–2.086)

0.353 1.232
(0.832–1.825)

0.298 0.578
(0.434–0.770)

<0.001 *** 0.578
(0.434–0.770)

<0.001 ***

KIRP 288 4.002
(1.391–11.511)

0.010 ** 4.002
(1.391–11.511)

0.010 ** 0.692
(0.342–1.402)

0.306 1.318
(0.837–2.076)

0.233

LGG 527 2.424
(1.802–3.262)

<0.001 *** 1.801
(1.260–2.574)

0.001 *** 0.684
(0.442–1.060)

0.089 2.702
(1.900–3.844)

<0.001 *** 1.717
(1.134–2.599)

0.011 *

LIHC 373 1.850
(1.256–2.725)

0.002 ** 1.663
(0.994–2.782)

0.053 ns 2.087
(1.370–3.179)

<0.001 *** 1.792
(1.067–3.010)

0.027 * 1.382
(1.068–1.789)

0.014 * 0.909
(0.617–1.338)

0.627 ns

LUAD 526 1.866
(1.293–2.693)

<0.001 *** 1.866
(1.293–2.693)

<0.001 *** 0.792
(0.586–1.072)

0.131 1.184
(0.923–1.517)

0.183

LUSC 496 1.030
(0.728–1.456)

0.868 0.934
(0.666–1.311)

0.695 1.238
(0.944–1.625)

0.123

MESO 85 3.760
(1.568–9.015)

0.003 ** 3.760
(1.568–9.015)

0.003 ** 0.964
(0.448–2.072)

0.925 1.377
(0.916–2.070)

0.124

OV 377 0.723 0.033 * 0.033 * 0.205

(Continued on following page)

Fro
n
tie

rs
in

M
o
le
cu

lar
B
io
scie

n
c
e
s

fro
n
tie

rsin
.o
rg

C
h
e
n
e
t
al.

10
.3
3
8
9
/fm

o
lb
.2
0
2
2
.9
6
8
4
5
8

243

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.968458


TABLE 1 (Continued) Univariate and multivariate Cox regression analysis of PTBP expressions and overall survival in pan-cancer.

Cancer
(OS)

n PTBP1 univariate
analysis

PTBP1 multivariate
analysis

PTBP2 univariate
analysis

PTBP2 multivariate
analysis

PTBP3 univariate
analysis

PTBP3 multivariate
analysis

HR (95%CI) p
value

HR (95%CI) p
value

HR (95%CI) p
value

HR (95%CI) p
value

HR
(95%CI)

p
value

HR
(95%CI)

p
value

0.948
(0.707–1.272)

0.811
(0.670–0.983)

0.811
(0.670–0.983)

1.160
(0.922–1.458)

PAAD 178 1.082
(0.561–2.087)

0.814 0.600
(0.326–1.106)

0.102 2.101
(1.369–3.223)

<0.001 *** 2.101
(1.369–3.223)

<0.001 ***

PCPG 183 7.151
(0.269–190.171)

0.240 0.053
(0.001–2.006)

0.113 3.819
(1.074–13.581)

0.038 * 3.819
(1.074–13.581)

0.038 *

PRAD 499 23.975
(2.154–266.880)

0.010 ** 16.775
(1.486–189.408)

0.023 * 5.099
(0.489–53.212)

0.173 3.753
(0.941–14.970)

0.061

READ 166 0.448
(0.162–1.238)

0.122 1.281
(0.287–5.718)

0.745 0.629
(0.335–1.180)

0.149

SARC 263 2.586
(1.552–4.310)

<0.001 *** 3.207
(0.635–16.210)

0.159 ns 0.918
(0.690–1.220)

0.554 1.278
(0.905–1.806)

0.163

SKCM 456 1.491
(1.048–2.122)

0.026 * 1.456
(1.020–2.081)

0.039 * 0.685
(0.494–0.950)

0.023 * 0.703
(0.508–0.974)

0.034 * 0.892
(0.722–1.103)

0.292

STAD 370 0.742
(0.532–1.036)

0.079 1.193
(0.838–1.699)

0.326 0.856
(0.663–1.105)

0.232

THCA 510 1.098
(0.088–13.772)

0.942 2.768
(0.717–10.688)

0.140 1.960
(0.615–6.249)

0.255

TGCT 139 0.476
(0.031–7.289)

0.594 0.364
(0.036–3.691)

0.393 3.799
(0.587–24.563)

0.161

UCEC 551 0.716
(0.425–1.206)

0.209 1.588
(1.137–2.220)

0.007 ** 1.588
(1.137–2.220)

0.007 ** 1.008
(0.777–1.307)

0.955

UCS 56 1.653
(0.665–4.110)

0.280 0.337
(0.156–0.728)

0.006 ** 0.337
(0.156–0.728)

0.006 ** 1.335
(0.786–2.268)

0.285

UVM 80 1.319
(0.341–5.098)

0.688 0.891
(0.356–2.231)

0.805 1.822
(0.967–3.434)

0.064
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We divided samples into high and low expression groups

using the median value of PTBP expression, predicted survival

possibility, and plotted OS-KM curves. Except for PRAD (p >
0.05), the survival time of patients with ACC, KIRP, LGG, LUAD,

MESO, and SKCM was shorter when PTBP1 was highly

expressed, with statistical significance (HR > 1, p ≤ 0.05)

(Figure 4D). Patients with ACC, KICH, and LIHC with high

PTBP2 expression had a shorter OS (HR > 1, p ≤ 0.05), while

patients with UCS with high PTBP2 expression had a longer

survival time (HR = 0.32, p = 0.003). No significant differences in

OS were observed in OV, SKCM, and UCEC (p > 0.05)

(Figure 4E). When PTBP3 was highly expressed, patients with

ACC, LGG, and PAAD had lower survival probability and poorer

prognosis (HR > 1, p ≤ 0.05), while patients with KIRC had a

longer OS and better prognosis (HR = 0.55, p < 0.001); there was

no significant differences observed in patients with KICH and

PCPG (p > 0.05) (Figure 4F).

By comprehensively analyzing the results of multivariate Cox

regression and the OS-KM curve, we concluded that PTBP1 is a

risk factor for ACC, KIRP, LGG, LUAD, MESO, and SKCM, and

high expression of PTBP1 predicts a shorter survival time. PTBP2

is a risk factor in ACC, KICH, and LIHC and a protective factor

in UCS. PTBP3 is a risk factor for ACC, LGG, and PAAD but a

protective factor for KIRC.

Next, we assessed the prognostic value of the three genes in

the above tumors. We analyzed the predictive ability of PTBP

genes for prognosis at 1, 3, and 5 years by time-dependent

ROC curves to confirm the accuracy of these candidate

markers (Supplementary Table S3). Our results indicated

that PTBP1 may serve as a prognostic biomarker for ACC,

KIRP, and LGG at the three time points according to the

criterion of AUC >0.7 (Figure 4G). PTBP2 showed good

prognostic value in ACC and KICH (Figure 4H), and

PTBP3 showed good prognostic value in ACC, LGG, and

PAAD (Figure 4I), indicating these PTBPs may function as

prognostic biomarkers in these tumors.

Our results showed that all three PTBPs were associated

with poor prognosis in ACC, and therefore we determined the

prognostic nomogram of ACC. Pathologic stage and PTBP

expression were included in Cox regression analysis to

establish prognostic nomograms. A vertical line was drawn

to connect corresponding points and calculate the total score

to estimate the 3-, 5-, and 8-years survival probability of ACC

patients (Figures 4J–L). Calibration curves used to observe the

predictive effect of the nomogram are shown in

Figures 4M–O.

The expression of PTBPs in tumor immune
subtypes

In 2018, Scientists performed an extensive immune genomic

analysis of 33 cancer types (Thorsson et al., 2018). Six immune

subtypes, including C1 (wound healing), C2 (IFN-gamma

dominant), C3 (inflammatory), C4 (lymphocyte depleted), C5

(immunologically quiet), and C6 (TGF-β dominant), were

identified by macrophage and lymphocyte markers, the ratio

of Th1 cells to Th2 cells, and immune regulatory genes. This

tumor heterogeneity leads to suboptimal outcomes of

immunotherapy in the clinic.

We investigated the expression levels of PTBPs in

different tumor immune subtypes by TISIDB. The results

showed that PTBP1 expression was associated with tumor

immune subtypes of BLCA, BRCA, COAD, ESCA, GBM,

KIRC, KIRP, LGG, LIHC, LUAD, LUSC, PRAD, SARC,

SKCM, STAD, TGCT, and UCEC (Figure 5A). PTBP2

expression correlated with tumor immune subtypes of

BLCA, BRCA, LGG, LUAD, PAAD, PCPG, PRAD, READ,

SARC, SKCM, STAD, TGCT, THCA, and UCEC (Figure 5B).

PTBP3 expression correlated with tumor immune subtypes

of BLCA, BRCA, ESCA, KIRC, KIRP, LGG, LIHC, LUAD,

LUSC, OV, SARC, SKCM, STAD, TGCT, and UCEC

(Figure 5C). The expression of PTBPs in immune subtypes

of other cancers is shown in Supplementary Figures S5–S7.

PTBP expression and immune infiltrating
cells in the tumor microenvironment

The Spearman correlations between PTBPs and TILs in

various tumor types were further investigated. We found

strong positive correlations of PTBP1 with Th2 cells

(Figure 6A), PTBP2 with T helper cells and Tcm (Figure 6B),

and PTBP3 with T helper cells, Tcm, and Th2 cells (Figure 6C) in

most tumor types. Overall, the expression of PTBPs was highly

correlated with the number of TILs in the TME. These results

suggest that PTBPs may have a regulatory effect on the tumor

microenvironment (TME) (Geng et al., 2021).

We also examined PTBP expression with macrophages

and neutrophils (Figures 6D–F). Most tumor types had an

infiltration of macrophages and neutrophils, and this was

inversely linked with the expression of PTBP1 and PTBP2.

However, in many tumor types, PTBP3 levels were favorably

linked with macrophage and neutrophil counts. These details

are shown in Supplementary Table S4.

Correlation analysis of PTBPs and immune
checkpoint

Studies have shown that the immune checkpoint (ICP) genes

have a great influence on the efficacy of immunotherapy. PD-1,

CTLA4, LAG3, and TIM-3 are four ICPs that are frequently

examined in the clinic, and inhibitors targeting these factors have

shown potent tumor-killing effects in a variety of tumors (Sun et al.,

2021; Yang et al., 2021; Gaikwad et al., 2022; Tian et al., 2022). To
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FIGURE 5
The relationship between PTBP expression and tumor immune subtype. (A) Expression levels of PTBP1 in immune subtypes. (B) Expression
levels of PTBP2 in immune subtypes. (C) Expression levels of PTBP3 in immune subtypes. These results are statistically significant.
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explore the potential of PTBPs in immunotherapy, we analyzed the

relationship between PTBPs and four ICP genes in pan-cancer

(Supplementary Table S5). In the 30 tumor types, PTBP1

expression had the most prevalent positive correlation with LAG3

and PD-1 expression (in Figure 7A). Similarly, PTBP2 was generally

positively correlated with CTLA4 and PTBP3 with CTLA4 and TIM-

3. These results suggest that PTBPsmay serve as potential targets for

immunotherapy.

PTBP expression correlates with tumor
mutational burden and microsatellite
instability and can predict immunotherapy
efficacy

TMB and MSI are demonstrated biomarkers that predict the

efficacy of immunotherapy, with higher TMB or MSI indicating a

better response to ICP inhibitors (Chan et al., 2019; Diao et al.,

2021). Using the criteria of |R| ≥ 0.3 and p < 0.05, the radar chart

showed that the expression of PTBP1 in ACC, LGG, MESO, and

STAD was positively correlated with TMB. PTBP2 expression was

negatively correlated with TMB in UVM. PTBP3 expression was

positively correlated with TMB in ACC and STAD (Figure 7B).

In KICH and LUSC, PTBP1 expression associated favorably

with MSI, but it correlated negatively in READ. PTBP2 expression

was positively correlated with MSI in READ (Figure 7C). The

detailed expression data were presented in Supplementary Table

S6, and the correlations were shown in Supplementary Table S7.

These evidences supported the finding that PTBPs may predict

response to immunotherapy and play a role in tumor immunity.

Correlation analysis of PTBPs and
chemical drug sensitivity

We next analyzed the Pearson correlation of PTBP

expression with the sensitivity of 263 FDA-approved

drugs in 60 tumor cell lines using the Cellminer database

(Figures 8A–C) and obtained the top six drugs with the

strongest correlation with PTBPs. For example, the

expression of PTBP1 was proportional to the sensitivity of

cells to gemcitabine (R = 0.409, p = 0.001): the higher the

expression of PTBP1, the more sensitive the cell was to

gemcitabine. Therefore, the expression of PTBPs may be a

predictor of tumor response to chemotherapeutic drugs.

The analysis of protein-protein interaction

We mapped the PPI networks of PTBP1, PTBP2, and PTBP3

(Figure 9A) respectively and visualized the interaction among these

three molecules using STRING (Figure 9B). It showed that

PTBP1 was closely related to heterogeneous nuclear

ribonucleoproteins (hnRNPs), YBX1, and SFPQ (Meissner et al.,

FIGURE 6
Correlation of PTBP expression with tumor-infiltrating lymphocytes in the tumor microenvironment in pan-cancer. (A–C) Heatmap of the
correlation of PTBP expression with 24 TILs in pan-cancer. (D–F) The correlation of PTBP expression with macrophages and neutrophils in various
tumors is shown in detail in lollipop plots (*p < 0.05; **p < 0.01).
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2000; King et al., 2014). There are four relationships between

PTBP1 and PTBP2: experimentally determined interactions,

databases recorded interactions, protein homology, and text

mining. However, PTBP3 did not seem to interact with

PTBP1 and PTBP2 (Figure 9B).

Functional enrichment analysis of PTBP-
related genes

Spearman correlation analysis on the pan-cancer dataset from

cBioPortal yielded 926 mRNAs co-expressed with PTBP1,

657 mRNAs co-expressed with PTBP2, and 874 mRNAs co-

expressed with PTBP3 (|R| ≥ 0.4, p < 0.05) (Supplementary

Table S8). We further analyzed PTBP-related mRNAs using GO

(including BP, CC, and MF) and KEGG enrichment analyses

(Figures 9C–E). The results revealed that PTBP1 may function

through “Cell cycle,” “Human T-cell leukemia virus one infection,”

“RNA transport,” “Spliceosome,” “DNA replication,” “Cellular

senescence” and “Apoptosis.” PTBP2 may be associated with

“Herpes simplex virus one infection” and “Spliceosome”

pathways, while PTBP3 may affect tumor progression through

“Amyotrophic lateral sclerosis,” “Viral carcinogenesis,” “Cell

cycle” and “Homologous recombination” pathways

FIGURE 7
Spearman correlation analysis of PTBP expression with immune checkpoint genes, tumor mutational burden and microsatellite instability in
pan-cancer. (A) Correlation of PTBP expression with ICPs (PD-1, CTLA4, LAG3 and TIM-3) in pan-cancer (*p < 0.05; **p < 0.01). (B) Correlation of
PTBP expression with TMB. (C) Correlation of PTBP expression with MSI. p values are marked in the figures.
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FIGURE 8
Pearson correlation of PTBP expression with drug sensitivity scores in various tumor cell lines in Cellminer. The top six drugs with the largest
absolute value of the correlation coefficient are displayed. (A) Correlation of PTBP1 with drug sensitivity. (B) Correlation of PTBP2 with drug
sensitivity. (C) Correlation of PTBP3 with drug sensitivity. The correlation coefficient and p value are marked in the figure.

FIGURE 9
Protein-protein interaction networks and functional enrichment analysis of PTBPs in pan-cancer. (A) Experimentally validated interacting
proteins of PTBPs using STRING. (B) The interaction relationship among the three protein molecules. Line colors in the legend indicate different
relationships. (C–E) GO enrichment and KEGG pathway analysis results for co-expressed mRNAs of PTBPs.
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(Supplementary Table S9). Together, the results above have

established a novel theoretical framework for the investigation of

PTBP regulation mechanism in malignancies.

Discussion

PTBPs are RNA-binding proteins that are involved in

alternative splicing, mRNA stability, and translation. The PTBP

family includes PTBP1, PTBP2 and PTBP3. PTBP1 can be expressed

in almost all types of cells; PTBP2 is only expressed in the

neurological system while PTBP3 is found mostly in immune

cells (Spellman et al., 2007). Among the PTBP family members,

PTBP1 is most frequently linked with cancer, followed by PTBP3. It

is reported that PTBP1 promotes lung cancer metastasis by

regulating the alternative splicing of Mena mRNA (Li et al.,

2019). PTBP3 is upregulated in breast cancer and regulates ZEB1

mRNA stability to promote epithelial-mesenchymal transition in

BRCA (Hou et al., 2018; Liang et al., 2020). Most research has

focused on the function of PTBPs in tumor cells, but little attention

has been paid to their interaction with immune cells in the TME

(Sasanuma et al., 2019; Geng et al., 2021). In addition, reports of

PTBPs in uncommon tumors are rare. Thus, we investigated the

expression, function, and immune characterization of PTBP1,

PTBP2, and PTBP3 in pan-cancer.

We first performed differentiation analysis and correlation

analysis on the expression of the PTBP1, PTBP2, and PTBP3

genes in 30 tumor types using TCGA. The results showed that in

most tumor types, the expression levels of PTBP1 and PTBP3 in

tumor tissues were significantly higher than that in non-tumor

tissues. In contrast, the expression level of PTBP2 was lower in

tumor tissues compared with that in normal tissues.

Interestingly, when we analyzed the expression correlation of

PTBPs, we found that PTBP1/3 appeared to have opposite

expression trends to PTBP2 in pan-cancer. Our results were

consistent with other scholars’ findings. Previous studies

suggested that PTBP1 is a repressor of PTBP2 and that there

was a “switch” between the two molecules (Boutz et al., 2007;

Spellman et al., 2007). SON may be an on-off regulator of the

expression of PTBP1 and PTBP2 in GBM (Kim et al., 2021), and

PTBP2 compensates for the absence of Ptbp1 during B cell

development in mice (Monzón-Casanova et al., 2020).

Furthermore, we found a co-expression trend between PTBP1

and PTBP3 which deserved to be further investigated.

It has been reported in the literature that PTBP1 can be used

as a biomarker for poor prognosis in bladder cancer (Bielli et al.,

2018), and PTBP3 as a therapeutic target for gastric cancer (Liang

et al., 2017). Here we further comprehensively explored the

association of PTBP expression with prognosis in pan-cancer.

Through multivariate Cox regression analysis and OS-KM

survival curves, we found that patients with ACC, LGG, and

PAAD had poor prognosis when PTBP3 was highly expressed,

but patients with KIRC had better prognosis. Given that the

expression of PTBP3 in KIRC tumor tissues was significantly

lower than that in control tissues, PTBP3 may be a tumor

suppressor molecule in KIRC. Thus, more research is required

to examine the function and molecular mechanism of PTBP3 in

KIRC. Time-dependent ROC curves were used to verify the

prognostic value of PTBPs in pan-cancer. Compared with the

ordinary ROC curve, the time-dependent ROC curve detects the

accuracy of candidate markers at specified times. We finally

identified PTBP1 in ACC, KIRP, and LGG; PTBP2 in ACC and

KICH; and PTBP3 in ACC, LGG, and PAAD as potential

prognostic biomarkers that may be involved in tumor

progression in these tumor types.

We then analyzed the expression of PTBPs in different immune

subtypes. The results indicated that PTBPs might participate in

immune regulation. The expression of PTBPs was significantly

different across multiple immune subtypes and strongly correlated

with the number of TILs in the TME. Remarkably, PTBP1 on

Th2 cells, PTBP2 on T helper cells and Tcm, and PTBP3 on T

helper cells, Tcm, and Th2 cells may have broad positive regulatory

effects in pan-cancer. PTBPs are also strongly associated with

macrophages and neutrophils in the TME. For example, PTBP3

expression was positively correlated with macrophages and

neutrophils in GBM, LGG, PRAD, SARC, MESO, KIRC, OV,

and THCA. These results demonstrated the important role of

PTBPs in tumor immunity and the tumor microenvironment.

The immune microenvironment in tumor tissues leads to

tumor heterogeneity, which influences the clinical efficacy of

anticancer drugs. Immune checkpoint inhibitors are used as

treatment options for cancer patients. We found that PTBP

expression showed a strong correlation with PD-1, CTLA4,

LAG3, or TIM-3 in pan-cancer. Therefore, PTBPs may be a

class of potential therapeutic targets, providing a new direction

for combined targeted immunotherapy in the future.

We also analyzed the correlation of PTBPs with TMB and

MSI. Tumor cells with high TMB usually have higher levels of

neoantigens, which help the immune system to recognize the

tumor and activate the anti-tumor effect of T cells. Therefore,

higher TMB generally indicates better outcome of

immunotherapy, and TMB is highly correlated with the

efficacy of PD-1/PD-L1 inhibitors (Yarchoan et al., 2017;

Chan et al., 2019). MSI works similarly. TMB and MSI have

become predictive markers of tumor immunotherapy efficacy in

recent years. The correlation of PTBP expression with TMB and

MSI in pan-cancer suggests that PTBPs may become novel

biomarkers for predicting patients’ response to immunotherapy.

We alsomade other notable findings. Gemcitabine is an effective

anti-tumor drug for NSCLC (stage III and IV), OV, BRCA, BLCA,

and other malignant tumors (Ferrazzi and Stievano, 2006; Mornex

and Girard, 2006), and 5-fluorodeoxyuridine is a common

chemotherapeutic drug for BRCA, STAD, READ, and BLCA

(Koizumi et al., 1993). PTBP1 expression was proportional to the

sensitivity of cells to gemcitabine (R = 0.409, p = 0.001) and 5-

fluorodeoxyuridine (R = 0.407, p = 0.001). This result indicates that
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the expression of PTBPs may predict the therapeutic effect of

chemotherapeutic drugs.

When we investigated “interacting proteins”, we found that all

PTBP family proteins can tightly interacts with hnRNPs andELAVL1

(also known as HuR), which was verified by co-immunoprecipitation

or reported in literature (Hegele et al., 2012). The presence of such

protein complexes may increase their effect. For example, PTBP1 can

interact with HuR and jointly upregulate the translation of HIF-1α

mRNA in human cervical carcinomaHeLa cells (Galbán et al., 2008).

In the enrichment analysis of co-expressed genes, we inferred

that PTBPs may function in the cell cycle, RNA splicing and RNA

localization. PTBP1 and PTBP3 were enriched in telomere-related

signaling pathways, suggesting that they may be involved in cellular

senescence pathways. Scientists found that PTBP1 can regulate

alternative splicing of genes involved in intracellular trafficking to

control the senescence-associated secretory phenotype (SASP).

Inhibition of PTBP1 blocks the tumor-promoting effect of SASP

and impair immune surveillance (Georgilis et al., 2018). Sayed et al.

also found that knockdown of PTBP1 in cancer cells reduced hTERT

full-length splicing and telomerase activity (Sayed et al., 2019). The

important role of PTBP1 and PTBP3 in cellular senescence and

immunity should be further explored.

This study has several limitations. First, our conclusions are

limited by sequencing technologies and analytical methodologies

from the database, and the data may be lacking in granularity and

precision. This has become a pervasive problem in bioinformatics

research. Second, whether PTBPs can be used as biomarkers for

prognosis and immunotherapy requires validation in more clinical

samples. At present, there is no immune-targeted drug against

PTBPs, so it is not possible to clinically verify the effect of these

targets. Third, the involvement of PTBPs in immune regulation and

cellular senescence need to be supported by in vitro and in vivo

experimental evidence.

Conclusion

This study comprehensively and systematically analyzed the

prognostic value, genetic variation, and signaling pathways of

PTBP1, PTBP2, and PTBP3 and the correlation of PTBP

expression with TILs, ICP, TMB, MSI, and drug sensitivity from

a pan-cancer perspective. Our results indicate that PTBPs may be

promising prognostic biomarkers and predict the response to

immunotherapy in pan-cancer. We found that PTBPs are closely

related to tumor progression and cell senescence, which provides a

theoretical reference for subsequent research.
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Computer-aided diagnosis of
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neural networks from
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resonance imaging
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Objectives: To evaluate a new deep neural network (DNN)–based computer-

aided diagnosis (CAD) method, namely, a prostate cancer localization network

and an integrated multi-modal classification network, to automatically localize

prostate cancer on multi-parametric magnetic resonance imaging (mp-MRI)

and classify prostate cancer and non-cancerous tissues.

Materials and methods: The PROSTAREx database consists of a “training set”

(330 suspected lesions from 204 cases) and a “test set” (208 suspected lesions

from 104 cases). Sequences include T2-weighted, diffusion-weighted, Ktrans,

and apparent diffusion coefficient (ADC) images. For the task of abnormal

localization, inspired by V-net, we designed a prostate cancer localization

network with mp-MRI data as input to achieve automatic localization of

prostate cancer. Combining the concepts of multi-modal learning and

ensemble learning, the integrated multi-modal classification network is

based on the combination of mp-MRI data as input to distinguish prostate

cancer from non-cancerous tissues through a series of operations such as

convolution and pooling. The performance of each network in predicting

prostate cancer was examined using the receiver operating curve (ROC),

and the area under the ROC curve (AUC), sensitivity (TPR), specificity (TNR),

accuracy, and Dice similarity coefficient (DSC) were calculated.

Results: The prostate cancer localization network exhibited excellent

performance in localizing prostate cancer, with an average error of only

1.64 mm compared to the labeled results, an error of about 6%. On the test

dataset, the network had a sensitivity of 0.92, specificity of 0.90, PPV of 0.91,

NPV of 0.93, and DSC of 0.84. Compared with multi-modal classification

networks, the performance of single-modal classification networks is slightly

inadequate. The integrated multi-modal classification network performed best

in classifying prostate cancer and non-cancerous tissues with a TPR of 0.95,

TNR of 0.82, F1-Score of 0.8920, AUC of 0.912, and accuracy of 0.885, which

fully confirmed the feasibility of the ensemble learning approach.
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Conclusion: The proposed DNN-based prostate cancer localization network

and integrated multi-modal classification network yielded high performance in

experiments, demonstrating that the prostate cancer localization network and

integrated multi-modal classification network can be used for computer-aided

diagnosis (CAD) of prostate cancer localization and classification.

KEYWORDS

deep neural networks (DNN), computer-aided diagnosis (CAD), prostate cancer
localization, prostate cancer classification, multi-parametric magnetic resonance
imaging (MP-MRI)

1 Introduction

Prostate cancer is the most common malignant tumor of the

male genitourinary system and has become the second most

common malignant tumor in men worldwide, second only to

lung cancer (Sung et al., 2021). Image information is of great

significance for the diagnosis of prostate cancer. Transrectal

prostate color Doppler ultrasound can be used as a screening

tool for prostate cancer. Magnetic resonance examination is widely

used to evaluate prostate cancer, and pathological examination and

Gleason score are an important basis for prostate grading (Litwin

and Tan, 2017). In the clinical diagnosis of prostate cancer, a

radiologist is required to separate the prostate tissue from the

surrounding tissues and organs in the prostate MRI. The

meaningful information extracted by this segmentation process

includes shape, the relative position of organs, volume, and

abnormal signals. Because the area of prostate tissue in MRI is

small, less valid information is available, and the size, shape, and

location of prostate tissue vary from patient to patient. Precise

localization of the prostate and identification of prostate cancer

remains difficult for radiologists.

In recent years, deep learning technology has developed

rapidly in the medical field, which can extract features from

image data in a supervised or unsupervised manner for image

classification or segmentation. Deep neural network (DNN) is an

artificial neural network that imitates the function of human

neurons and can perform tasks such as classification (Ciresan

et al., 2012), image segmentation (Quan et al., 2021), and entity

reconstruction (Nguyen et al., 2020). It has a stronger expressive

ability and can fit almost any function, but it also has problems

such as many network parameters, a large training amount, and

difficulty in training. The specific structure of DNN is shown in

Supplementary Figure S1. The use of DNNs is growing

exponentially, and researchers have used DNNs to correctly

classify a large number of different classes of images (Deng

et al., 2009). One of the main uses of DNN in medicine is to

aid in the diagnosis of certain types of cancer, which are often

identified clinically by skilled radiologists from medical images.

Cancer detection methods based on artificial intelligence and MRI

are widely used in daily clinical diagnosis, which has achieved

higher diagnostic success rates than experienced radiologists. The

study shows that the success rate of lung cancer detection and

breast cancer detection using DNN is significantly better than the

results of manual detection by radiologists (Becker et al., 2017;

Coudray et al., 2018). In addition to the use of DNN onMRI, other

studies have shown that the use of DNN can help determine the

accuracy of results from transrectal biopsies for the diagnosis of

prostate cancer (Takeuchi et al., 2019).

Therefore, DNN-based automatic localization of prostate MRI

and prostate cancer diagnosis is a study with good clinical

application prospects, which can assist radiologists in better

diagnosis of prostate cancer. We propose a computer-aided

diagnosis (CAD) method for localization and classification of

prostate cancer based on DNN and mp-MRI, called prostate

cancer localization network and integrated multi-modal

classification network, aiming to improve the efficiency of

radiologists. First, we used MR images provided by public

prostate cancer databases and preprocessed them for training

localization and classification models (Armato et al., 2018). The

previously defined metric algorithm was then fully evaluated using

a test set and a validation set. Finally, the output contains the image

locations of possible malignancies and the likelihood of detecting

prostate cancer based on the patient’s multi-parametric MRI.

2 Materials and methods

The goal of this study was to propose a new diagnostic assistant

technology for prostate cancer, which uses multiple prostate MRIs

of each patient as the input of the localization and classification

model, and the output is the specific location of the localization and

the classification of benign and malignant tissue, aiming to identify

potential tumors. It is worth stating that our proposed localization

network and classification network are both studied independently.

2.1 Data set

The PROSTATEx public database used in this study is part of

the SPIE-AAPM-NCI Prostate MR Classification Challenge,

which aims to advance the diagnostic classification of prostate

cancer by analyzing prostate MRI (Armato et al., 2018). The

database, collected by Radboud University Medical Centre

(Radboudumc), covers more than 300,000 prostate MRIs from

Frontiers in Physiology frontiersin.org02

Yi et al. 10.3389/fphys.2022.918381

255

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.918381


346 patients, including T2-weighted image (T2WI), proton

density–weighted image (PdWI), dynamic contrast

enhancement (DCE), and diffusion-weighted (DW) images.

Each patient has a Ktrans image, one or more DW images,

and one or more T2 images.

In the DICOM file of the PROSTATEx dataset, the header

information consists of the acquisition information of the image

with the basic information of the case. Among them, the image

acquisition information includes acquisition time, size, repetition

time, pixel spacing, image position, and orientation. The dataset

provides the coordinates of one or more points of interest (POIs)

and information on the prostate area. Based on human

experience, the characteristics of prostate lesions vary from

region to region. Four prostate zones are associated with the

POI provided: the peripheral zone (PZ), the transitional zone

(TZ), the anterior fibromuscular stroma (AS), and the seminal

vesicle (SV). The details of the dataset are shown in Table 1. The

specific image classification of the database is shown in Table 2.

The training set of the PROSTAREx dataset contains

204 cases with 330 suspicious cancer lesions, of which 76 are

gold standard “True” lesions, and the remaining 254 are gold

standard “False” lesions. The test set contains 104 cases and

208 suspicious lesions to be diagnosed.

2.2 Data preprocessing

We observed the PROSTATEx dataset using ITK-SNAP and

concluded that there are three problems in MR image

preprocessing of the prostate: 1) abnormal data acquisition,

such as missing sequences and different acquisition order; 2)

different image resolution and gray value distribution among

sequences; 3) insufficient sample size, containing only

TABLE 1 Details of PROSTATEx dataset.

Category PZ TZ As SV Total

Training set 191 82 55 2 330

Test set 113 59 34 2 208

AS, anterior fibromuscular stroma; PZ, peripheral zone; SV, seminal vesicle; TZ,

transitional zone.

TABLE 2 PROSTATEx database image classification, including Ktrans, ADC, and t2-weighted images.
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330 training samples, and the network training is prone to

overfitting.

To solve the problems existing in the dataset and further

reduce the redundant information of network learning, the

following preprocessing steps are proposed in this article, as

shown in Figure 1. The prostateMRI data are first read so that the

format is consistent between sequences, and then image

resampling is performed so that the pixel spacing is consistent

FIGURE 1
Prostate MRI data preprocessing steps.

FIGURE 2
Prostate MR image alignment results, where (A) ADC image, (B) T2-weighted image, and (C) overlap map after image alignment.
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from case to case and from sequence to sequence. Next, the

grayscale values are adjusted to ensure a consistent histogram

distribution for each sequence. To further reduce redundant

information, prostate tissue is extracted to reduce the learning

of background information by the network. After generating a

region of interest (ROI) that matches the network input

structure, image enhancement is performed to expand the

sample size.

We performed data cleaning on the training set and

eliminated the cases with missing sequences. This decision

reduced two cases, leaving 202 cases after elimination, each

containing four sequences, namely, T2WI sequences, DWI

sequences, Ktrans sequences, and ADC sequences. To expand

the sample size, we used the common image enhancement

methods of flip, pan, rotate, and zoom for multiple images of

prostate MRI, and in addition, used the data enhancement

method of Mixup to improve the linear expression between

different samples.

The prostate alignment transformation used in this study is

the B spline transformation. To make the alignment easier, two

resolutions are used, first using a low resolution for the alignment

and then a high resolution for the alignment. In performing the B

spline transformation, a mutual information function with an

increased penalty for rigidity is used as the optimization objective

using an adaptive gradient descent algorithm. Finally, the rigid

transform and B spline transformation were combined to obtain

the final transform results. The results of prostate MR image

alignment are shown in Figure 2.

2.3 Prostate cancer localization network
structure

For anomaly localization, previous research studies have

created a 3D convolutional DNN specifically for medical

image segmentation. The architecture used in this study is

based on V-net (Milletari et al., 2016), a well-known image

segmentation network for medical imaging. The main

modification made in this study is the redefinition of the

input and output tensors and activation functions. Both input

and output tensors are of size (128,128,16,1), and Leaky ReLU is

used as the activation function because the original PreLU

activation function increases the risk of overtraining in small

databases. At the same time, the output layer uses the sigmoid

activation function, which can get the binary position of the

tumor, and the output is reflected as the segmentation of the

same position in the figure. The specific architecture is shown in

Figure 3 to facilitate its repeatability.

2.4 Single-modal classification network
structure

To address abnormal single-modal image classification, a

lightweight architecture based on Inception-V3 and VGG-16

networks is proposed (Rueckauer et al., 2017). Typically, in this

type of architecture, ReLU is chosen as the activation function

(Dahl et al., 2013). However, to avoid problems such as gradient

FIGURE 3
Network structure of the V-Net–based prostate cancer anomaly localization system.
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FIGURE 4
(A) Single-mode classification network structure. (B) Input tensor multi-modal classification network structure. (C) Integrated multi-modal
classification network structure.
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decay, LeakyReLU is still chosen as the activation function. The

specific structure is shown in Figure 4A.

According to the order in the network structure, each process

is introduced in turn:

1) Multiscale stage: Since tumors may be of different sizes or

located in different locations, applying a series of multiscale

3D convolutions to the input data enables us to detect possible

anomalies. This technique comes from the inception-v3

network, as it has been shown that multiscale filter banks

can give good results on classification problems (Chollet and

Ieee, 2017).

2) Processing stage: This stage starts from the max-pool layer,

which allows obtaining the features of the maximum value.

Convolutional filter banks are then used to obtain more

complex features for further refinement of classification.

This filter-based design is inspired by networks such as

VGG-16 (Zhang et al., 2016). After this, a vectorized layer

is used to unify all dimensions for dimensionality reduction.

3) Classification stage: The dense layer is used for classification.

Experience has shown that the best training results are

obtained using two dense layers with ten neurons.

2.5 Multi-modal classification network
structure

Based on the single-modal classification network, we propose

a multi-modal classification network structure, which tries to use

multiple medical image data of patients and tries to combine the

information of different attributes to achieve a better

classification effect. This work proposes two different multi-

modal classification network structures:

2.5.1 Input tensor multi-modal classification
network structure

The goal of the multi-modal classification network structure

design is to have an accurate classification effect, and it can be

trained using different modes of 3D volume channels to have

multiple perspectives on the diagnosis of the same lesion

location. The model uses five images of the same patient as

input, for which it is necessary to preselect patients with more

than five images available, reducing the training set. The rest of

the neural network structure is the same as the single-modal

classification structure in Figure 4A, but the input consists of five

images each time instead of a single image. The specific network

structure is shown in Figure 4B.

2.5.2 Integrated multi-modal classification
network structure

This model is the most complex in the article and is designed

to use all the information previously obtained to generate a more

accurate model. The network structure is based on the concept of

multi-model ensemble learning (Xiao et al., 2018), which uses

several lower-complexity classifiers to obtain a classifier with

stronger performance. The model input uses all five types of

images, but unlike the input tensor multi-modal classification

structure, each type of image is now evaluated in its specific

single-modal network structure, and the previously obtained

weights are used to adjust the model parameters for best

results. The outputs of these five sub-networks are processed

in two convolutional layers, and the corresponding neurons use

the leaky-RELU activation function and the Sigmoid activation

function, respectively, to achieve the effect of binary

classification. The specific structure is shown in Figure 4C.

2.6 Training parameters

Our model is implemented in python (version 3.8) and uses

Tensorflow, Keras, OpenCV, and Cuda Toolkit as the backend

DNN learning library.

We designed comparison experiments to select

hyperparameters for training the classification network,

including optimizers (ADAM, AdaGrad, and RMSProp),

learning rate, epoch, and batch size. 1e−4 and 1e−5 learning

rates were used to compare the performance of the algorithms

in the comparison experiments. The model was applied to

training with batches of sizes 4 and 8, while the

corresponding epoch size grew from 50 to 200, increasing by

50 each time.

The parameters chosen for training the model are as follows.

1) Optimizer: The ADAM optimizer was used in this study

(Zhang, 2018). The reason for choosing ADAM is that it

combines the advantages of the two optimization

algorithms, AdaGrad and RMSProp, and

comprehensively considers the first-order moment

estimation of the gradient (that is, the mean value of the

gradient) and the second-order moment estimation (that

is, the uncentered variance of the gradient) and calculates

out the update step size. Parameter updates in ADAM are

not affected by gradient scaling. Hyperparameters are well

interpretable and usually require little or no tuning. At the

same time, it can naturally realize the step size annealing

process (automatically adjust the learning rate), which is

very suitable for large-scale data and parameter scenarios

such as medical image processing.

2) Batch size: Due to the small size of the database, the batch size

was set to 4. This is a small-scale case and can lead to

confusion in the direction of gradient descent.

3) Number of iterations: The number of iterations was set to 200,

while retaining the weights of those excellent results in the

validation set, thus, avoiding overfitting.

4) Learning rate: The learning rate was set to 1e−5, which is

determined by the batch size.
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5) Loss function: The loss function used in this study was focal

loss, which is used to solve the problem of imbalance between

positive and negative samples. The imbalance between

positive and negative samples can cause the model training

to fall into the local minimum of the loss function. Focal loss

is used in medical image classification problems to reduce the

weight of easy-to-classify samples so that the model can focus

more on the hard-to-classify samples during training (Lin

et al., 2020). The focal loss is calculated by multiplying the

cross-entropy loss by the variable weights. Let p be the

probability that the predicted sample is a positive sample

(p ∈ [0, 1]) and y denote the predicted outcome (y ∈ {−1, 1});

TABLE 3 Prediction results of prostate cancer localization network.

Table 3 shows the results for four different patients in the dataset. The first column shows the patient ID., The second column shows the 2D Ktrans map, represented by a “viridis” color

band for better visualization. The third and fourth columns show the two-dimensional images of the prediction results of the artificial labeling and localization network after inputting

Ktrans images, which are all grayscale images, and it can be observed that the prediction results are very close to the label image. Due to the small size of the prostate, it is, on average, 40 ×

30 × 20 mm. Numerically, the error between the predicted results and the labeled results for the four patients was less than 3 mm, with an average error of only 1.64 mm, and the prediction

results were only about 6% error compared to the normal prostate volume. Therefore, it can be considered that the prostate cancer localization network has excellent performance and

accurate prediction results, and the results can be further improved by using a larger database or better data preprocessing in the future.
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then, the operation rules for the cross-entropy loss and focal

loss of a sample are defined as follows:

CE(p, y) � { −log(p), if y � 1
−log(1 − p), otherwise (1)

FL(p, y) � {−(1 − p)γ log(p), if y � 1
−pγ log(1 − p), otherwise (2)

When the sample is an easy-to-classify sample, i.e., the closer

p is to 0 or 1, the smaller the calculated weight coefficient is, the

smaller the proportion of the sample to the total loss, when

constant; when the sample is a hard-to-classify sample, i.e., when

p is close to 0.5, the larger the weight coefficient is, the larger the

proportion of the sample to the total loss when ? is constant. The

focal loss used in this study makes γ = 2 to apply weights to the

loss values of the hard and easy samples during the training

process, making the model learning more focused on the hard-

learned samples.

In the experiment, a five-fold cross-validation method was

used to divide the 328 suspected lesions from the preprocessed

PROSTATEx dataset into five folds according to the systematic

classification to ensure that the distribution of data in each fold is

consistent in terms of lesion area and benignity and malignancy,

and also to avoid the problem of data leakage as much as possible.

After five training sessions, the average AUC was taken as the

final evaluation score.

2.7 Evaluation metrics

Network performance can be evaluated using metrics such as

root mean square error (RMSE), true positive rate (TPR), true

negative rate (TNR), F1-score and AUC, accuracy and

confidence interval, Jaccard index, PPV, NPV, and DSC.

The RMSE is in the marked circle centroid, and the surface

centroids obtained in the post-threshold prediction are

calculated; RMSE is defined as follows:

RMSE(X, h) �
�������������������
1
m
∑m

i�1(h(x(i)) − y(i))2
√

(3)

where RMSE (X, h) is the loss function measured in the sample

set using hypothesis h, and h is the prediction function of the

system, also known as the hypothesis. m is the number of

instances in the dataset, x(i) is a vector of all eigenvalues of the

ith instance in the dataset, and y(i) is the expected output value.

TPR, TNR, PPV, and NPV are defined as follows:

TPR � TP
TP + FN

� 1 − FNR (4)

TNR � TN
TN + FP

(5)

PPV � TP
TP + FP

(6)

NPV � TN
TN + FN

(7)

F1-score is the harmonic value of the precision and recall

evaluation indicators, the best value is 1, which is defined as

follows:

F1 − Score � 2 · TPR · PPV
TPR + PPV

(8)

AUC refers to the area under the ROC curve, which can be

used to evaluate the classification quality of the classifier. The

larger the value, the higher the quality of the classifier.

Accuracy is defined as follows:

Accuracy � TP + TN

TP + TN + FP + FN
(9)

The confidence in the accuracy is assessed using 95%

confidence intervals, by which the range of the model’s

accuracy for the overall sample can be estimated, and 95%

confidence intervals are defined as follows:

P(μ̂ − 1.96
σ��
n

√ ≤M≤ μ̂ + 1.96
σ��
n

√ ) ≈ 0.95 (10)

where n represents the number of selected accuracies, μ̂

represents the mean of all accuracies, σ represents the

standard deviation of all accuracies, and M represents the

desired 95% confidence interval.

TABLE 4 Performance of prostate cancer localization network compared with previous classical segmentation methods.

Model Sensitivity Specificity Jaccard index PPV NPV DSC

U-Net 0.80 0.83 0.79 0.76 0.80 0.74

U-Net++ 0.82 0.84 0.82 0.81 0.83 0.75

DenseNet 0.86 0.88 0.87 0.85 0.89 0.81

FCN 0.85 0.89 0.86 0.90 0.89 0.82

SegNet 0.91 0.87 0.87 0.86 0.90 0.78

Our Method 0.92 0.90 0.89 0.91 0.93 0.84

DSC, dice similarity coefficient; NPV, negative predictive value; PPV, positive predictive value. Best performance values are in bold.
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Jaccard index is used to compare the similarity and difference

between finite sample sets. The larger the value of the Jaccard

coefficient, the higher the sample similarity. Given two sets, A

and B, the Jaccard coefficient is defined as the ratio of the size of

the intersection of A and B to the size of the concurrent set of A

and B. It is defined as follows:

J(A, B) � |A ∩ B|
|A ∪ B| �

|A ∩ B|
|A| + |B| − |A ∩ B| (11)

FIGURE 5
(A) Confusion matrix of five single-modal classification networks. (B) ROC curves of five single-mode classification networks.
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Dice similarity coefficient (DSC) is used to measure the

similarity of two sets, the value range is (0,1), and the larger

the value, the more similar the two sets, commonly used in

calculating the similarity of the closed region, defined as follows:

DSC � 2TP
FP + 2TP + FN

(12)

3 Results

The performance of the selected different optimizers,

learning rate, epoch, and batch size in the training network

is shown in Supplementary Table S1. According to

Supplementary Table S1, the Adam algorithm achieved the

highest performance with a learning rate of 1e−5, 200 epochs,

and 4 min-batches.

3.1 Prostate cancer localization network
results

The results of the prostate cancer localization network are

shown in Table 3. It presents experimental results from both

quantitative and qualitative perspectives.

The first is the qualitative result, which visualizes the 2D

portion of the 3D volume segmentation, and both the labeled

images and the network predictions detect the presence of

cancerous tissue. The second is the quantitative result, which

expresses the root mean square error (RMSE) of each

experimental image as the average RMSE in the database in

millimeters while taking into account the resolution of the

instrument and other issues. The use of viridis ribbons is

intended to improve the readability of graphics for readers

with common forms of color blindness and color vision

deficiencies. Color graphics are also uniform in perception,

both in regular form and when converted to black and white

for printing. The performance of the prostate cancer localization

network compared with previous classical segmentation methods

is shown in Table 4.

As shown in the table, the prostate cancer localization

network proposed in this study has improved in each index

compared with previous methods, with sensitivity, specificity,

Jaccard index, PPV, NPV, and DSC of 0.92, 0.90, 0.89, 0.91, 0.93,

and 0.84, respectively.

Once the model is trained using multi-modal datasets, the

performance of the network can be quantitatively evaluated by

volumetric or regional overlapping metrics, e.g., Dice scores, as

stated in the study by Yang et al. (2022). The experimental data in

Table 4 fully illustrate the interpretability of the model, which

FIGURE 6
(A) ROC curve of input tensor multi-modal classification network. (B) Confusion matrix of input tensor multi-modal classification network. (C)
ROC curve of integrated multi-modal classification network. (D) Confusion matrix of integrated multi-modal classification network.
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enhances its credibility and transparency of the model, and also

facilitates future improvements of the model.

3.2 Single-modal classification network
results

3.2.1 Confusion matrix
Figure 5A shows the resulting confusion matrix for five

different types of images as input to a single-modal

classification architecture. According to Figure 5A, the Ktrans

and ADC modal images perform best, and the true positive rate

(TPR) and true negative rate (TNR) values are quite balanced,

with an average of about 82% (85 and 80.5%, respectively).

In T2-weighted images, however, there was a large difference

between the results of the three-parameter imaging. The COR

image performed the best with an average of 77%, and its results

were inferior to Ktrans and ADC. The mean values of SAG

images and TRA images were 74 and 75%, respectively. They are

not good indicators for detecting prostate cancer.

3.2.2 ROC curve
Figure 5B shows the ROC curves of the results obtained with

five different types of images as input to a single-modal

classification network. The ROC curve graph is a curve

reflecting the relationship between sensitivity and specificity.

The X-axis of the abscissa is 1-specificity, also known as the

false positive rate (FPR), and the closer the X-axis is to zero, the

higher the accuracy; the Y-axis of the ordinate is called the

sensitivity, also known as the true positive rate (TPR), and the

larger the Y-axis, the better the accuracy. So, the closer the curve

is to (0,1), the better its performance.

It can be seen from Figure 5B that the performance of the

Ktrans and ADC modes is relatively better. Ktrans has a

smoother curve and better response, while ADC has a more

abrupt response. Compared with the former two, the curves

obtained by T2-weighted COR, SAG, and TRA are less suitable

for the detection of prostate cancer localization.

3.2.3 Overall results
Supplementary Table S2 contains the comprehensive

evaluation indicators of five single-mode classification

networks, including TPR, TNR, F1-Score, AUC, and accuracy.

It can be observed that Ktrans performs the best, exceeding

0.85. ADC and COR performed slightly worse, stable at around

0.8. While SAG and TRA performed the worst, both less than 0.8.

0.8 was chosen as the threshold; based on this metric, the Ktrans

modality was considered the most suitable input modality.

It can be observed that Ktrans and ADC still have good

performance, reaching 85 and 83% of the area, respectively. The

AUCs of the three modes of T2-weighted all fluctuate around

75%, which is not excellent.

The accuracy indicator selects 0.8 as the threshold. It was

observed that among the five single-modal classification

networks, Ktrans performed the best with an accuracy of 85%,

followed by ADC with an accuracy of 81%.

3.3 Multi-modal classification network
results

3.3.1 Input tensor multi-modal classification
network results

In this network, five MRIs of the same patient with different

modes are used as input. The following analyze and compare

various indicators to judge whether the integration and fusion of

the models can bring better performance. As shown in Figure 6A,

the model obtained an AUC of 0.900, which is better than the

highest value of 0.853 for the single-mode classification network.

At the same time, it can be seen from the confusion matrix

(Figure 6B) that the TPR and TNR values of the network are

90 and 82%, respectively, and the average value is 86%, which is

slightly higher than Ktrans (average 85%), which is the best result

obtained in single-mode networks and variants at present.

We compare the input tensor multi-modal classification

network with five single-modal classification networks using

detailed metrics in Supplementary Table S3. It can be

TABLE 5 Indicators of integrated multi-modal classification network, input tensor multi-modal classification network, and five single-modal
classification networks.

Modality TPR TNR F1-score AUC Accuracy

Integrated Multi-modal Classification Network 0.95 0.82 0.8920 0.912 0.885

Input Tensor Multi-modal Classification Network 0.90 0.82 0.8654 0.900 0.86

Ktrans 0.90 0.80 0.8571 0.853 0.85

ADC 0.89 0.72 0.8203 0.826 0.805

T2-Weighted COR 0.85 0.68 0.7834 0.741 0.765

T2-Weighted SAG 0.64 0.84 0.7636 0.735 0.74

T2-Weighted TRA 0.80 0.69 0.7583 0.775 0.745

ADC, apparent diffusion coefficient; AUC, area under curve; COR, coronal; TNR, true negative rate; TPR, true positive rate; SAG, sagittal; TRA, transverse. Best performance values are in

bold.
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observed that the input tensor multi-modal classification

network outperforms the above single-modal classification

network on almost all metrics, and although the lead may not

be large, these small improvements play a role in the clinical

detection and diagnosis of prostate cancer.

3.3.2 Integrated multi-modal classification
network results

The network integrates five single-mode classification

models, in each of which images of the corresponding

modality of the same patient are processed. The ROC curve of

the network is shown in Figure 6C. The model obtained an AUC

of 0.912, which is higher than all previous models proposed in

this study and has the best classification performance with a 1.2%

improvement over the results of the input tensor classification

network.

The confusion matrix of the integrated multi-modal

classification network is shown in Figure 6D; the values of TPR

and TNR are 95 and 82%, respectively, which exceed the previous

best values of 90 and 82% obtained by the input tensor multi-

modal classification network. This shows that the integratedmulti-

modal classification network, through the integration of the single-

modal classification model, is not only more robust and less

coupled but also optimizes the results obtained by the single-

modal classification network and the input tensor multi-modal

classification network to a certain extent. To test this claim, Table 5

presents the data for the remaining indicators.

Table 5 contains all the results for all the models in this study.

The integrated multi-modal classification network has the optimal

value for all the other indicators except TNR. For example, the

prediction accuracy is improved by about 4% compared to the

Ktrans single-modal classification network. Although the absolute

value of the improved accuracy is not high, the higher the previous

accuracy, the more significant the improvement obtained.

Meanwhile, we also conducted experiments on whether the

reduction in the number of training samples would affect the

classification performance of the model by setting the sample size

to 50, 100, 150, and 200, respectively, and the network model was

selected as the best-performing integrated multi-modal

classification network in the abovementioned experiments,

and the specific results are shown in Supplementary Table S4.

TABLE 6 Effect of the number of modalities on model performance.

Modality TPR TNR F1-score AUC Accuracy

Ktrans + ADC 0.91 0.80 0.8575 0.864 0.851

Ktrans + T2-Weighted 0.89 0.81 0.8424 0.859 0.834

ADC + T2-Weighted 0.87 0.81 0.8281 0.853 0.842

Ktrans + ADC + T2-Weighted 0.95 0.82 0.8920 0.912 0.885

AUC, area under curve; TNR, true negative rate; TPR, true positive rate. Best performance values are in bold.

TABLE 7 Comparison between different classification networks, stratified by accuracy and 95% confidence interval.

Model Modality Average accuracy, 95%
confidence interval

Integrated Multi-modal Classification Network - 0.885 [0.881, 0.889]

Input Tensor Multi-modal Classification Network - 0.86 [0.852, 0.868]

Single-modal Classification Network Ktrans 0.85 [0.84, 0.86]

ADC 0.805 [0.702, 0.818]

T2-Weighted COR 0.765 [0.75, 0.78]

T2-Weighted SAG 0.74 [0.721, 0.759]

T2-Weighted TRA 0.745 [0.727, 0.763]

TABLE 8 Comparison of the classification model proposed in this
article with the results of previous classification models.

Model Author AUC

Inception V3 Quan Chen 0.83

VGG-16 Quan Chen 0.81

XmasNet Saifeng Liu 0.84

SVM Jarrel C.Y. Seah 0.84

3D Convolutional Neural Networks Alireza Mehrtash 0.80

Single-modal Classification Network - 0.853

Input Tensor Multi-modal Classification Network - 0.900

Integrated Multi-modal Classification Network - 0.912
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From Supplementary Table S4, it can be seen that the number

of training samples increases from 50, 100 to 150, with the

increase of training samples, the indexes have a large

improvement, where the accuracy increases significantly by

20%, from 0.683 to 0.885. In the subsequent increase of

training samples, from 150 to 200 to use all training samples,

it can be seen that the accuracy is stable above 0.85, and the values

of TPR, TNR, F1-score, and AUC indexes are stable around 0.92,

0.80, 0.86, and 0.88. It can be seen that the size of the training set

has a certain influence on the performance of the classification

system. With the increase of the training scale, the classification

performance gradually improves, but after a certain scale, the

classification performance does not change much and remains at

a more stable value.

Table 6 shows the performance comparison of the integrated

multi-modal classification network using some of the modalities

for learning, divided into four groups for ablation experimental

comparison.

Table 7 shows the comparison of the average accuracy 95%

confidence intervals of the three models mentioned in the article

and their different modalities. It can be observed that the average

accuracy 95% confidence interval of the integrated multi-modal

classification network has the least fluctuation of 0.004, which

indicates that this model is more stable compared to other models.

To evaluate the classification network proposed in this

article, previous networks designed using the PROSTATEx

dataset were selected for comparison, as shown in Table 8.

4 Discussion

Ourmethod successfully achieves accurate segmentation of the

prostate on magnetic resonance images, and experiments with the

prostate cancer localization network obtained an average root

mean square error of 1.64 mm, which is approximately less

than 6% error compared to the normal size of the prostate. The

error of 6% is an acceptable error range, which indicates that the

localization network of the prostate proposed in this study

possesses a good performance. Compared with the classical

medical segmentation network U-Net, the method in this study

has improved by 0.12 and 0.07 in sensitivity and specificity,

respectively. In terms of the Jaccard index, the performance of

DenseNet, FCN, and SegNet is respectable and slightly lower than

the results of this study’s method by 1–3%. The prediction results

of the prostate cancer localization network can be used as an

evaluation index to assist radiologists in diagnosis so that doctors

can locate prostate cancer more quickly and accurately.

Grand Challenges and the SPIE Medical Imaging

Symposium launched an open competition in 2017 on

prostate cancer prediction on magnetic resonance images to

promote advances in prostate cancer detection algorithms

(Litjens et al., 2014). Currently published research studies on

deep learning–based prostate classification algorithms are mainly

focused on PROSTATEx contestants published in

PROCEEDINGS OF SPIE, where the use of convolutional

neural networks is mostly based on the abovementioned VGG

network modification. Chen et al. used a migration learning

approach with Inception V3 and VGG-16, pre-trained on

ImageNet, as the base network (Simonyan and Zisserman,

2014; Szegedy et al., 2016). In addition, because of the

different number of positive and negative sample distributions

in the cancer lesion regions, a network was trained on each

region, and finally, the results of the different networks were

weighted and averaged. The performance of the competition

results on the PROSTATEx test set is AUC = 0.83 and AUC =

0.81, respectively (Chen et al., 2017). Liu et al. also built a new

deep learning architecture, called XmasNet, based on VGG net,

and obtained seven results by combining training between

different sequences and calculating the weights of the seven

models using a greedy algorithm, and the prediction results

were taken as a weighted average, and the performance on the

test set was reflected as AUC = 0.84 (Liu et al., 2017). Similar to

their study, we first propose a single-modal classification network

structure based on Inception-V3 and VGG-16 networks. Based

on this, we further propose an input tensor multi-modal

classification network structure. Combined with multi-modal

ensemble learning, we propose an integrated multi-modal

classification network structure. The multi-modal classification

network combines the current emerging multi-modal learning

and ensemble learning techniques to transfer the knowledge

learned on the information-rich modality to the information-

poor modality so that the learning of each modality can assist

each other to achieve better classification results (Xiao et al.,

2018). The integrated multi-modal classification network

improved the AUC by 8.2 and 7.2% compared to Chen et al.

and Liu et al.’s network, respectively, with an AUC of 0.912.

Mehrtash et al. designed a three-branch three-dimensional

convolutional neural network to exploit the spatial information

of the lesion and introduced regional information of the lesion

location in the fully connected layer. The CNN architecture

consists of three input streams: ADC map, maximum b-value

from DWI, and Ktrans from DCE-MRI. Its model input is a

32*32*12 3D ROI centered on the lesion. The prediction result on

the test set is AUC = 0.80 (Mehrtash et al., 2017). Unlike their

design, our input stream also includes T2-weighted images, and

conventional T2WI has a greater diagnostic value for prostate

cancers occurring in the peripheral zone, where 70–80% of

prostate cancers are clinically located (Lee et al., 2015; Israel

et al., 2020). Therefore, the T2-weighted image is not only

indispensable for unimodal classification networks but also

has an active role in multi-modal fusion learning. Seah et al.

concluded that the contrast and brightness of prostate MR

images are important factors affecting the judgment of the

benignity and malignancy of lesions, so they designed the

auto windowing module, which can adjust the contrast and

brightness of images adaptively according to the input data
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and reduce the steps of image preprocessing. In addition to this,

additional information such as the patient’s age, the area, and the

angle at which the lesion was located was used. Finally, by model

integration, the network had an AUC = 0.84 on the test set (Seah

et al., 2017). For the characteristics and problems of the

PROSTATEx challenge dataset, we proposed image alignment,

resampling, noise reduction, and normalization preprocessing

methods in this study. To solve the problem of small sample data,

we propose image panning, rotation, zooming, flipping, and

Mixup image enhancement methods, and finally, achieve an

AUC of 0.912.

As can be seen from Table 8, the AUCs of the integrated multi-

modal classification network and input tensor multi-modal

classification network models proposed in this study are both

significantly better than the mentioned existing mainstream

classification models, which are 0.912 and 0.900. Compared with

the best-performing SVMandXmasNet, the integratedmulti-modal

classification network improves the AUC by 7.2%. Therefore, it can

be proved that the proposed integrated multi-modal classification

network has better classification performance.

The experimental results of our classification network show

that the Ktrans modality in the single-modal classification

network performs the best with an accuracy of 85%.

Subsequently, by integrating and fusing different classifiers,

the accuracy of the input tensor multi-modal classification

model was improved to 86%. Finally, the best results are

achieved in the integrated multi-modal classification model,

with a small improvement of 2.5% and an accuracy of 88.5%.

Therefore, we can conclude that the integration and fusion of

models can lead to better performance, and the input tensor

multi-modal classification network improves the performance by

1–2% compared to the single-modal classification network. On

this basis, the performance of the integrated multi-modal

classification network is improved by 2.5% compared to the

input tensor multi-modal classification network. The successful

integration of multiple models not only makes the new structure

more robust and achieves the goal of low coupling but also proves

that images can be combined in a decoupled manner because

each single-modal classification model can be trained in a

decoupled manner, and only the final network weights need

to be adjusted. Huang et al. showed that the quality of the latent

representation space directly determines the effectiveness of the

multi-modal learning model, and the richer the variety of

modalities, the more accurate the estimation of the

representation space and the better the learning effect with

sufficient training data (Huang et al., 2021). As can be seen

from Table 6, the combination of Ktrans + ADC + T2-weighted

with the highest number of modalities still achieves the best

performance in all evaluation metrics, and the modal

combination of Ktrans + ADC performs well in TPR, F1-

Score, AUC, and accuracy, but not as well as Ktrans + T2-

weighted and ADC + T2-weighted in TNR. This suggests that

although T2-weighted images do not perform as well as Ktrans and

ADC on single-modal classification networks, they have an active

role in multi-modal fusion learning. Taking the assisted diagnosis

of prostate cancer MRI as an example, multi-modal learning can

aggregate information from multiple sources of data, make the

representation learned by the model more complete, transfer the

knowledge learned on the information-rich modality to the

information-poor modality, and make the learning of each

modality assist each other to achieve better classification results.

Both the prostate cancer localization network and the single-

modal and multi-modal classification networks have achieved

good results, but these models cannot be considered accurate

enough to be used as a single diagnostic criterion. It is better

suited as a support system or second opinion for radiologists,

capable of detecting overlooked positive cases or speeding up the

detection of possible positive cases.

Other publicly available prostateMRI datasets can be used in the

future to optimize model training with the study of prostate cancer

tissue contour segmentation, such as the PROMISE12 competition

dataset, the main theme of which is prostate segmentation using

T2WI sequences of the prostate. The data provided include

50 training samples and the corresponding prostate masks and

30 test samples. Also, in the future, when facing the multicenter

prostate cancer MRI data fusion problem, it is necessary to consider

the problem of certain disparity in imaging results due to scanner,

parameters, and environment (Nan et al., 2022). In addition, it is

possible to use a deep learning-based approach to construct scanner

image invariant encoding based on the existing methods (Moyer

et al., 2020). As for the interpretability of the model, in the next step,

we add visual interpretationmethods such as gradient interpretation

method, GradCAM interpretation method, and RISE interpretation

method to further solve the problem of opaque model details and

achieve a “trustworthy” and “interpretable” diagnosis process.

Our study has some limitations. First, medical ethics requires

that the effectiveness and safety of any new technology in the

clinical application must be fully tested. Medical artificial

intelligence alone has certain risks in judging diseases based

on imaging data. The results of this study can only be used as a

reference for radiologists’ diagnoses. Second, our research is

purely based on mp-MRI and does not add other types of

medical indicators as parameters to the design and training of

the model, such as the patient’s age, weight, and PSA, to improve

the generalization ability of the model. Third, in the diagnosis of

prostate cancer, the DNN technology based on magnetic

resonance examination is based on its database or public

database and lacks external verification of a large sample size,

which is also our future research direction. We look forward to

developing new single-modal classification models in future

work that achieve higher accuracy in the T2-weighted

modality, thereby indirectly improving the performance of an

integrated multi-modal classification network. Furthermore, we

will cooperate with the Radiology Department of Xiangya

Hospital to create our database and test our system in a real

medical environment and consider inter-observer variability.
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5 Conclusion

CAD of prostate cancer remains a challenging topic. In this

article, we propose a localization and classification network for

prostate cancer based on DNN and mp-MRI to assist radiologists

in the diagnosis of such diseases. We constructed four different

localization and classification networks, namely, prostate cancer

localization network, single-modal classification network, input

tensor multi-modal classification network, and integrated multi-

modal classification network, and analyzed them in detail

through experiments. The results show that the DNN-based

prostate cancer localization network and integrated multi-

modal classification network obtain high performance in

experiments and can be used to assist radiologists in more

easily localizing and classification of prostate cancer.

Data availability statement

The prostate MR images data sets generated and analyzed in

this article were obtained from the PROSTATEx challenge held by

Grand Challenges in conjunction with the SPIE Medical Imaging

Symposium (https://PROSTATEx.grand-challenge.org/).

Ethics statement

Ethical review and approval were not required from patients

due to the use of existing data from PROSTATEx Challenge.

Author contributions

ZY: project development, methodology, software, investigation,

formal analysis, and writing—original draft; ZO: data curation,

resources, supervision, and writing—original draft; JH: data

collection, software, and validation; DQ: visualization and

supervision; CQ: data curation and investigation; BO:

visualization and writing—review and editing; YW:

conceptualization, funding acquisition, and writing—review

and editing; LW: conceptualization, resources, supervision,

and administrative support.

Acknowledgments

The authors thank the PROSTATEx database for providing

valuable data.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphys.

2022.918381/full#supplementary-material

References

Armato, S. G., Huisman, H., Drukker, K., Hadjiiski, L., Kirby, J. S., Petrick, N.,
et al. (2018). PROSTATEx Challenges for computerized classification of prostate
lesions from multiparametric magnetic resonance images. J. Med. Imaging 5 (4),
044501. doi:10.1117/1.JMI.5.4.044501

Becker, A. S., Marcon, M., Ghafoor, S., Wurnig, M. C., Frauenfelder, T., and Boss,
A. (2017). Deep learning in mammography diagnostic accuracy of a multipurpose
image analysis software in the detection of breast cancer. Invest. Radiol. 52 (7),
434–440. doi:10.1097/RLI.0000000000000358

Q. Chen, X. Xu, S. L. Hu, X. Li, Q. Zou, and Y. P. Li (Editors) (2017). “A Transfer
learning approach for classification of clinical significant prostate cancers from
mpMRI scans,” Conference on medical imaging - computer-aided diagnosis
(Orlando, FL. BELLINGHAM: Spie-Int Soc Optical Engineering).

F. Chollet, Ieee, Editors (2017). “Xception: Deep learning with depthwise
separable convolutions,” in 30th IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (Honolulu, HI, NEW YORK: IEEE).

D. Ciresan, U. Meier, and J. Schmidhuber, Ieee, Editors (2012). “Multi-column
deep neural networks for image classification,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (Providence, RI. NEW YORK: IEEE).

Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M.,
Fenyo, D., et al. (2018). Classification and mutation prediction from non-small
cell lung cancer histopathology images using deep learning. Nat. Med. 24 (10),
1559–1567. doi:10.1038/s41591-018-0177-5

G. E. Dahl, T. N. Sainath, and G. E. Hinton, Ieee, Editors (2013). “Improving deep
neural networks for lvcsr using rectified linear units and dropout,” in IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
(CANADA, NEW YORK: IEEE Vancouver).

A. Mehrtash, A. Sedghi, M. Ghafoorian, M. Taghipour, C. M. Tempany, W.W.Wells,
et al. Editors (2017). “Classification of clinical significance of MRI prostate findings using
3D convolutional neural networks,” Conference on medical imaging - computer-aided
diagnosis (Orlando, FL. BELLINGHAM: Spie-Int Soc Optical Engineering).

J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, F. F. Li, et al. Editors (2009). “ImageNet: A
large-scale hierarchical image database,” IEEE-Computer-Society conference on computer
vision and pattern recognition workshops (Miami Beach, FL. NEW YORK: IEEE).

Huang, Y., Du, C., Xue, Z., Chen, X., Zhao, H., and Huang, L. (2021).What makes
multimodal learning better than single (provably). Preprints from arXiv (https://
arxiv.org/pdf/2106.04538.pdf)

Frontiers in Physiology frontiersin.org16

Yi et al. 10.3389/fphys.2022.918381

269

https://PROSTATEx.grand-challenge.org/
https://www.frontiersin.org/articles/10.3389/fphys.2022.918381/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2022.918381/full#supplementary-material
https://doi.org/10.1117/1.JMI.5.4.044501
https://doi.org/10.1097/RLI.0000000000000358
https://doi.org/10.1038/s41591-018-0177-5
https://arxiv.org/pdf/2106.04538.pdf
https://arxiv.org/pdf/2106.04538.pdf
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.918381


Israel, B., van der Leest, M., Sedelaar, M., Padhani, A. R., Zamecnik, P., and
Barentsz, J. O. (2020). Multiparametric magnetic resonance imaging for the
detection of clinically significant prostate cancer: What urologists need to know.
Part 2: Interpretation. Eur. Urol. 77 (4), 469–480. doi:10.1016/j.eururo.2019.10.024

Lee, J. J., Thomas, I. C., Nolley, R., Ferrari, M., Brooks, J. D., and Leppert, J. T.
(2015). Biologic differences between peripheral and transition zone prostate cancer.
Prostate 75 (2), 183–190. doi:10.1002/pros.22903

Lin, T. Y., Goyal, P., Girshick, R., He, K. M., and Dollar, P. (2020). Focal loss for
Dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42 (2), 318–327.
doi:10.1109/TPAMI.2018.2858826

Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., and Huisman, H. (2014).
Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging 33
(5), 1083–1092. doi:10.1109/TMI.2014.2303821

Litwin, M. S., and Tan, H. J. (2017). The diagnosis and treatment of prostate
cancer: A review. Jama 317 (24), 2532–2542. doi:10.1001/jama.2017.7248

S. F. Liu, H. X. Zheng, Y. S. Feng, and W. Li (Editors) (2017). “Prostate cancer
diagnosis using deep learning with 3D multiparametric MRI,” Conference on
medical imaging - computer-aided diagnosis (Orlando, FL. BELLINGHAM:
Spie-Int Soc Optical Engineering).

F. Milletari, N. Navab, and S. A. Ahmadi, Ieee, Editors (2016). “V-Net: Fully
convolutional neural networks for volumetric medical image segmentation,” in 4th
IEEE International Conference on 3D Vision (3DV) (Stanford, CA. NEW YORK:
IEEE Stanford Univ).

Moyer, D., Ver Steeg, G., Tax, C. M., and Thompson, P. M. (2020). Scanner
invariant representations for diffusion MRI harmonization. Magn. Reson. Med. 84
(4), 2174–2189. doi:10.1002/mrm.28243

Nan, Y., Del Ser, J., Walsh, S., Schonlieb, C., Roberts, M., Selby, I., et al. (2022).
Data harmonisation for information fusion in digital healthcare: A state-of-the-art
systematic review, meta-analysis and future research directions. Inf. Fusion 82,
99–122. doi:10.1016/j.inffus.2022.01.001

Nguyen, H., Wang, Y. Z., and Wang, Z. Y. (2020). Single-shot 3D shape
reconstruction using structured light and deep convolutional neural networks.
Sensors 20 (13), E3718. doi:10.3390/s20133718

Quan, T. M., Hildebrand, D. G. C., and Jeong, W. K. (2021). FusionNet: A deep
fully residual convolutional neural network for image segmentation in
connectomics. Front. Comput. Sci. 3, 12. doi:10.3389/fcomp.2021.613981

Rueckauer, B., Lungu, I. A., Hu, Y. H., Pfeiffer, M., and Liu, S. C. (2017).
Conversion of continuous-valued deep networks to efficient event-driven
networks for image classification. Front. Neurosci. 11, 682. doi:10.3389/
fnins.2017.00682

J. C. Y. Seah, J. S. N. Tang, and A. Kitchen (Editors) (2017). “Detection of prostate
cancer on multiparametric MRI - a ProstateX challenge runner up,” Conference on
medical imaging - computer-aided diagnosis (Orlando, FL. BELLINGHAM: Spie-Int
Soc Optical Engineering).

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. Preprints from arXiv (https://arxiv.org/pdf/1409.
1556.pdf).

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71 (3),
209–249. doi:10.3322/caac.21660

Szegedy C., Vanhoucke V., Ioffe S., Shlens J., and Wojna Z. leee. Rethinking the
Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Seattle, WA: Ieee, 2818–26.

Takeuchi, T., Hattori-Kato, M., Okuno, Y., Iwai, S., and Mikami, K. (2019).
Prediction of prostate cancer by deep learning with multilayer artificial
neural network. CUAJ-Can Urol. Assoc. J. 13 (5), E145–E150. doi:10.5489/
cuaj.5526

Xiao, Y. W., Wu, J., Lin, Z. L., and Zhao, X. D. (2018). A deep learning-based
multi-model ensemble method for cancer prediction. Comput. Methods Programs
Biomed. 153, 1–9. doi:10.1016/j.cmpb.2017.09.005

Yang, G., Ye, Q. H., and Xia, J. (2022). Unbox the black-box for the medical
explainable AI via multi-modal and multi-centre data fusion: A mini-review,
two showcases and beyond. Inf. Fusion 77, 29–52. doi:10.1016/j.inffus.2021.
07.016

Zhang, X. Y., Zou, J. H., He, K. M., and Sun, J. (2016). Accelerating very
deep convolutional networks for classification and detection. IEEE Trans.
Pattern Anal. Mach. Intell. 38 (10), 1943–1955. doi:10.1109/TPAMI.2015.
2502579

Z. J. Zhang, Ieee, Editors (2018). “Improved Adam optimizer for deep neural
networks,” in 26th IEEE/ACM International Symposium on Quality of Service
(IWQoS) (Banff, CANADA, NEW YORK: IEEE).

Frontiers in Physiology frontiersin.org17

Yi et al. 10.3389/fphys.2022.918381

270

https://doi.org/10.1016/j.eururo.2019.10.024
https://doi.org/10.1002/pros.22903
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TMI.2014.2303821
https://doi.org/10.1001/jama.2017.7248
https://doi.org/10.1002/mrm.28243
https://doi.org/10.1016/j.inffus.2022.01.001
https://doi.org/10.3390/s20133718
https://doi.org/10.3389/fcomp.2021.613981
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2017.00682
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://doi.org/10.3322/caac.21660
https://doi.org/10.5489/cuaj.5526
https://doi.org/10.5489/cuaj.5526
https://doi.org/10.1016/j.cmpb.2017.09.005
https://doi.org/10.1016/j.inffus.2021.07.016
https://doi.org/10.1016/j.inffus.2021.07.016
https://doi.org/10.1109/TPAMI.2015.2502579
https://doi.org/10.1109/TPAMI.2015.2502579
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.918381


Multimodal ultrasound fusion
network for differentiating
between benign and malignant
solid renal tumors

Dongmei Zhu1,2†, Junyu Li3,4,5†, Yan Li2, Ji Wu6, Lin Zhu2, Jian Li1,
Zimo Wang1, Jinfeng Xu1*, Fajin Dong1* and Jun Cheng3,4,5*
1Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen, China,
2Department of Ultrasound, The Affiliated Nanchong Central Hospital of North Sichuan Medical
College, Nanchong, China, 3National-Regional Key Technology Engineering Laboratory for Medical
Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University,
Shenzhen, China, 4Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University,
Shenzhen, China, 5Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen,
China, 6Department of Urology Surgery, The Affiliated Nanchong Central Hospital of North Sichuan
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Objective: We aim to establish a deep learning model called multimodal

ultrasound fusion network (MUF-Net) based on gray-scale and contrast-

enhanced ultrasound (CEUS) images for classifying benign and malignant

solid renal tumors automatically and to compare the model’s performance

with the assessments by radiologists with different levels of experience.

Methods: A retrospective study included the CEUS videos of 181 patients with

solid renal tumors (81 benign and 100 malignant tumors) from June 2012 to

June 2021. A total of 9794 B-mode and CEUS-mode images were cropped

from the CEUS videos. The MUF-Net was proposed to combine gray-scale and

CEUS images to differentiate benign and malignant solid renal tumors. In this

network, two independent branches were designed to extract features from

each of the twomodalities, and the features were fused using adaptive weights.

Finally, the network output a classification score based on the fused features.

The model’s performance was evaluated using five-fold cross-validation and

compared with the assessments of the two groups of radiologists with different

levels of experience.

Results: For the discrimination between benign and malignant solid renal

tumors, the junior radiologist group, senior radiologist group, and MUF-Net

achieved accuracy of 70.6%, 75.7%, and 80.0%, sensitivity of 89.3%, 95.9%, and

80.4%, specificity of 58.7%, 62.9%, and 79.1%, and area under the receiver

operating characteristic curve of 0.740 (95% confidence internal (CI):

0.70–0.75), 0.794 (95% CI: 0.72–0.83), and 0.877 (95% CI: 0.83–0.93),

respectively.
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Conclusion: The MUF-Net model can accurately classify benign and malignant

solid renal tumors and achieve better performance than senior radiologists.

Key points: The CEUS video data contain the entire tumor microcirculation

perfusion characteristics. The proposedMUF-Net based on B-mode andCEUS-

mode images can accurately distinguish between benign and malignant solid

renal tumors with an area under the receiver operating characteristic curve of

0.877, which surpasses senior radiologists’ assessments by a large margin.

KEYWORDS

renal tumor, artificial intelligence, classification, deep learning, contrast-enhanced
ultrasound

Introduction

Nowadays, cancer remains a serious threat to human health

worldwide. The incidence of renal cancer is increasing annually,

with more than 400,000 new cases every year worldwide

(Shingarev and Jaimes, 2017; Sung et al., 2021). Clear cell

renal cell carcinoma (ccRCC) is the most common type of

renal cell carcinoma (RCC), accounting for 80% of all RCCs.

Most renal tumors do not cause obvious clinical symptoms

(Ljungberg et al., 2019). About 20%~30% of patients with

renal tumor resection were preoperatively misdiagnosed,

resulting in unnecessary surgery with a final post-surgical

diagnosis of being benign (Schachter et al., 2007). The

diagnostic accuracy needs to be improved, especially for

differentiating between hypoechoic benign solid tumors and

malignant tumors. Noninvasive imaging modalities such as

ultrasound, computed tomography (CT), and magnetic

resonance imaging (MRI) have improved sensitivity and

specificity in preoperatively differentiating among benign,

malignant, and borderline tumors. Compared with these

imaging modalities, contrast-enhanced ultrasound (CEUS) is

more sensitive in visualizing the microcirculatory perfusion

characteristics of renal tumors and thus is widely used.

However, the diagnostic accuracy varies in terms of different

lesion locations and radiologists.

Deep learning has shown promising results in the

classification and diagnosis of renal tumors over the past few

years (Oktay et al., 2018; Hussain et al., 2021; Wang et al., 2021),

which does not require subjectively defined features and can

capture the entirety of biological information from images

compared with traditional machine learning (Sun et al., 2020;

Bhandari et al., 2021; Giulietti et al., 2021; Khodabakhshi et al.,

2021). The literature indicates that deep learning algorithms are

better than human experts in diagnosing many kinds of diseases,

such as liver, breast, lung, fundus, skin lesions (Wu et al., 2017;

Lin et al., 2020; Li et al., 2021; Liu et al., 2021). These studies have

shown that deep learning is stable and generalizable and can

compensate for the diagnostic discrepancy among doctors with

different levels of experience. To the best of our knowledge, there

are no ultrasound-based radiomics studies for the differentiation

between benign and malignant solid renal tumors (Esteva et al.,

2017; Kokil and Sudharson, 2019; Zabihollahy et al., 2020; Hu

et al., 2021; Mi et al., 2021).

In this study, we aim to establish a multimodal fusion deep

neural network based on gray-scale ultrasound and CEUS images

to discriminate between benign and malignant solid renal

tumors. The performance of the multimodal fusion model is

compared with that of the models built on single-modal data, as

well as junior and senior radiologists’ assessments.

Materials and methods

Patients

This retrospective study was approved by our joint

institutional review boards, and anonymized data was shared

through a data-sharing agreement between institutions (The

Second Clinical Medical College, Jinan University, and The

Affiliated Nanchong Central Hospital of North Sichuan

Medical College) (No. 18PJ149 and No. 20SXQT0140).

Individual consent for this retrospective analysis was waived.

From June 2012 to June 2021, the information for 1547 cases was

FIGURE 1
Flow diagram of patient enrollment.
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obtained from the surgical pathology database in the Pathology

Department of The Second Clinical Medical College of Jinan

University and The Affiliated Nanchong Central Hospital of

North Sichuan Medical College.

The inclusion criteria were as follows: (1) preoperative CEUS

examinations were performed before surgery, and (2) all cases

were confirmed by pathological diagnosis after surgery. Patients

were excluded based on the following criteria: (1) renal pelvis

cancer and other rare types of renal malignancies; (2) patients did

not receive the ultrasound and CEUS examinations; (3) poor

image quality, and (4) pathologic stage ≥ T2b. Figure 1 shows the

flow diagram of patient enrollment for this study. Finally,

181 patients (100 solid malignant tumors and 81 solid benign

tumors) were left. Patients’ demographic and clinical

characteristics are shown in Table 1.

Contrast-enhanced ultrasound Imaging

CEUS examinations were performed using the following

three ultrasound systems: LOGIQ E9 (GE Healthcare, Unites

States), Resona7 (Mindray Ultrasound Systems, China), and

IU22 (Philips Medical Systems, Netherlands), with a

1.0–5.0 MHz convex probe. CEUS was carried out by

ultrasound machines with contrast-specific software and a

bolus of 1.0~1.2 ml microbubble contrast agent (SonoVue;

Bracco, Milan, Italy) via an antecubital vein followed by

5.0 ml normal saline with a peripheral 18~22 G needle. The

CEUS digital video was at least 3~5 min long each time.

During contrast-enhanced imaging, low-acoustic power modes

were used with a mechanical index of 0.05~0.11. All the CEUS

examination videos were retrospectively analyzed by two groups

of radiologists with different levels of experience (three junior

radiologists with more than 5~6 years of experience in CEUS

imaging and three senior radiologists with more than

10~15 years of experience in CEUS imaging).

In this study, we used the following phase terms: (1) cortical

phase began 10~15 s after injection, and (2) medullary phase

approximately began 30~45 s after injection until the

microbubble echoes disappeared. The entire course of CEUS was

saved as Digital Imaging and Communication in Medicine format.

Data annotation and preprocessing

CEUS videos were annotated using the Pair annotation

software package (Liang et al., 2022; Qian et al., 2022). In each

CEUS video, about 50~60 images were selected from the cortical

and medullary phases. A senior radiologist classified the tumor as

either benign or malignant and annotated its location in each

selected image by a bounding box. Then, according to the bounding

boxes, these images were cropped into smaller images as region of

interest to exclude the non-tumor regions (Figure 2). This resulted

in a total of 9794 images, of which 3659 images were benign

(including 1531 from 36 atypical benign cases and 2128 images

from 45 typical benign cases and 6135 images were malignant

(including 2964 images from 62 ccRCC cases; 2114 images from 25

pRCC cases; 1057 images from 13 chRCC cases) (Table 2).

Multimodal ultrasound fusion network

The dataset used in this study contained B-mode and CEUS-

mode images, and they were in one-to-one correspondence.

Therefore, we proposed the MUF-Net to take full advantage

of the multimodal features, which can independently extract

features from each of the two modalities and learn adaptive

weights to fuse features for each sample.

TABLE 1 Patient characteristics.

Malignant (n = 100) Benign (n = 81) p Value

Gender: n (%) ＜ 0.001*

Male 74 (74.0%) 23 (28.4%)

Female 26 (26.0%) 58 (71.6%)

Age: mean ± STD 58.36 ± 14.06 53.31 ± 14.00 0.017*

BMI: mean (IQR) 23.0 (22.0–25.0) 23.0 (21.0–24.0) 0.275

Tumor mean size: mean (IQR) 4.0 (3.0–6.0) 4.0 (3.0–5.0) 0.918

Clinical sign: n (%) 0.588

Waist discomfort/Fatigue 46 (46.0%) 34 (42.0%)

No symptoms 54 (54.0%) 47 (58.0%)

Surgery: n (%) 0.475

Partial nephrectomy 41 (41.0%) 29 (35.8%)

Radical nephrectomy 59 (59.0%) 52 (64.2%)

BMI, body mass index; IQR, interquartile range; STD, standard deviation.

*Statistically significant.
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The overall architecture of MUF-Net is shown in Figure 3,

IB−mode and ICEUS−mode represented the B-mode and CEUS-mode

images, respectively. We used two independent EffecientNet-b3

as the backbone to extract features from B-mode and CEUS-

mode images. The backbone had an input size of 300 × 300 ×

3 and an output size of 10 × 10 × 1536 after five down sampling

blocks. To reduce the parameters of the network and prevent

overfitting, we used a global average pooling layer to downsample

the output feature maps of each backbone from 10 × 10 × 1536 to

1 × 1 × 1536. Subsequently, we fused the features of the two

modalities. Considering that the features of the two modalities in

each sample may contribute differently to the final prediction, we

designed two attention blocks sharing weights to produce

adaptive weights α and β for modality fusion. The feature

maps of the two modalities were subsequently weighted and

summed based on the adaptive weights, yielding a fused feature

map of 1 × 1 × 1536. Finally, through a fully connected layer and

a softmax layer, the classification result was given.

Notably, to improve the feature learning ability of each

backbone, we added two classifiers CB−mode and CCEUS−mode

for each single modality, as shown in Figure 3, which

independently took B-mode features and CEUS-mode features

as input and calculated the loss of each mode (LB−mode and

LCEUS−mode), respectively. The total loss was defined by Eq. 1. The

two losses, LB−mode and LCEUS−mode, were only used during

training, and the final classification result was given by the

multimodal classifier, CB+CEUS. Due to this reason, the

multimodal loss, LB+CEUS, had a higher weight than the other

two losses. For the calculation of the three losses in Eq. 1, we

employed the class-balanced focal loss (Zhang et al., 2021).

Ltotal � 3LB+CEUS + LB−mode + LCEUS−mode (1)

Implementation details

All experiments were conducted using five-fold cross-

validation. For data splitting, we ensured that the images from

the same patient went into either the training set or the test set to

avoid the data leakage problem. To avoid model overfitting, data

FIGURE 2
Data annotation and preprocessing.

TABLE 2 Number distribution of patients and images among histologic types.

Benign Malignant

Total Atypical Typical Total ccRCC pRCC chRCC

Patients 81 36 45 100 62 25 13

Images 3659 1531 2128 6135 2964 2114 1057

ccRCC, clear cell Renal cell carcinoma; chRCC, chromophobe renal cell carcinomas; pRCC, papillary renal cell carcinomas.
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augmentation techniques were applied to the training set, which

included random spatial transformations, random non-rigid

body transformations, and random noise.

The dataset used in this study had a weak class imbalance

problem. The ratio of benign images tomalignant images was 3:5.

Re-sampling techniques (Zhang et al., 2021) were popularly used

for dealing with long-tailed problems. We used class-balanced

sampling to alleviate class imbalance by first sampling a class and

then selecting an instance from the chosen class (Kang et al.,

2019).

All backbones used in these experiments were pretrained

on ImageNet. All models used in the experiments were

implemented by PyTorch on a NVIDIA 3090 GPU. The

stochastic gradient descent optimizer was used with a

learning rate of 0.05 which was halved every 10 epochs. In

each round of five-fold cross-validation, models based on

B-mode, CEUS-mode, and B + CEUS mode were trained

for 100 epochs, respectively, and the models with the

highest accuracy on the validation set were saved.

Radiologists’ assessments

Original uncropped CEUS videos and images were evaluated

by three junior and three senior radiologists and manually

classified as benign or malignant. The radiologists were

blinded to any clinical information of the patients. Intraclass

correlation coefficients (ICCs) were used to evaluate the inter-

rater agreement within each radiologist group, with an ICC

greater than 0.75 indicating good agreement.

Statistical analysis

All statistical analyses were performed using the SciPy package

in Python (version 3.8). Depending on whether data conformed to a

normal distribution, continuous variables were compared using the

Student’s t-test or the Mann-Whitney U test. The non-ordered

categorical variables were compared by the chi-square test. Receiver

operating characteristic (ROC) curve analysis was used to evaluate

the performance of junior radiologists, senior radiologists, individual

modality-based networks, and MUF-Net. In addition, we also used

other metrics to evaluate model performance from various aspects,

including sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (NPV). Comparison of the difference

between areas under the ROC curve (AUCs) was performed

using the Delong test. A two-sided p value ＜ 0.05 was

considered statistically significant.

Results

Patient characteristics

The age of the patients in the benign tumor group was less

than that of the patients in the malignant tumor group (58.36 ±

FIGURE 3
Overall architecture of the proposed MUF-Net framework.
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14.06 vs. 53.31 ± 14.00 years) (p = 0.017). Regarding gender

distribution, there was a significant difference between these two

groups (p＜0.001), withmale patients beingmore frequent in the

malignant group than in the benign group. Patient characteristics

are shown in Table 1.

Performance of radiologists’ assessments

The ICCs in the junior and senior radiologist groups were

0.81 and 0.83, respectively, indicating good inter-rater

agreement. Each radiologist classified a tumor as benign or

malignant, and the radiologists’ assessments in each group

were merged by majority voting. The performance of

radiologists’ assessments is shown in Table 3. The AUC,

accuracy, sensitivity, specificity, PPV, and NPV of junior

radiologists were 0.740 (95% confidence interval (CI):

0.70–0.75), 70.6%, 89.3%, 58.7%, 58.0%, and 89.5%,

respectively. The AUC, accuracy, sensitivity, specificity, PPV,

and NPV of senior radiologists were 0.794 (95% CI: 0.72–0.83),

75.7%, 95.9%, 62.9%, 62.3%, and 95.9%, respectively. The ROC

curves for the test set were shown in Figure 4.

Performance of deep learning models

The AUC, accuracy, sensitivity, specificity, PPV, and

NPV of EffecientNet-b3 network trained on B-mode

images were 0.820 (95% CI: 0.72–0.83), 74.5%, 75.0%,

77.0%, 73.4%, and 62.3%, respectively (Table 3). The AUC,

accuracy, sensitivity, specificity, PPV, and NPV of

EffecientNet-b3 network trained on CEUS-mode images

were 0.815 (95% CI: 0.75–0.89), 73.9%, 73.8%, 73.2%,

72.5%, and 62.2%, respectively. The AUC, accuracy,

sensitivity, specificity, PPV, and NPV of MUF-Net trained

on B-mode and CEUS-mode images were 0.877 (95% CI:

0.83–0.93), 80.0%, 80.4%, 79.1%, 86.9%, and 70.0%,

respectively. The proposed MUF-Net significantly

outperformed junior and senior radiologists (p < 0.001).

Discussion

This study explored the performance of deep learning based

on ultrasound images for benign/malignant classification of solid

renal tumors. We proposed the MUF-Net for fusing

complementary features of two modalities, which used two

independent EffecientNet-b3 as backbones to extract features

from B-mode and CEUS-mode ultrasound images. Our method

reached expert-level diagnostic performance and had a higher

diagnostic PPV compared with radiologists.

CEUS is an important supplement to conventional

ultrasound, CT, and MRI in diagnosing solid renal tumors.

Compared with conventional ultrasound, CEUS can display

perfusion characteristics of renal tumors in cortical and

medullary phases in real-time, which is an important tool for

improving differential diagnosis of benign and malignant renal

tumors. In this study, we observed that the deep learning models

built on either B-mode or CEUS-mode images achieved better

performance than junior or senior radiologists. Moreover, the

TABLE 3 Classification performance of deep learning models and radiologists.

AUC (95% CI) Accuracy (%) Sensitivity (% Specificity (%) PPV (%) NPV (%)

Junior radiologists 0.740 (0.70–0.75) 70.6 89.3 58.7 58.0 89.5

Senior radiologists 0.794 (0.72–0.83) 75.7 95.9 62.9 62.3 95.9

B-mode-Net 0.820 (0.70–0.83) 74.5 75.0 77.0 73.4 62.3

CEUS-mode-Net 0.815 (0.75–0.89) 73.9 73.8 73.2 72.5 62.2

MUF-Net 0.877 (0.83–0.93) 80.0 80.4 79.1 86.9 70.0

CI, confidence interval; CEUS-mode, contrast-enhanced ultrasound mode; MUF-Net, multimodal ultrasound fusion network; AUC, area under the receiver operating characteristic curve;

PPV, positive predictive value; NPV, negative predictive value.

FIGURE 4
The receiver operating characteristic curves of the MUF-Net,
single-mode models, and radiologists’ assessments in the test
cohort.
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deep learning model combing B-mode and CEUS-mode images

further improved the classification performance. This indicates

that B-mode and CEUS-mode images have complementary

information for diagnosing solid renal tumors. To verify this

point, we used class activation maps (Xu et al., 2022) to visualize

the important regions that the model paid attention to in B-mode

and CEUS-mode images. As shown in Figure 5, the important

regions contributing to the final prediction were different

between B-mode and CEUS-mode images. In other words, the

MUF-Net can automatically extract complementary features

from different modalities to improve the classification

performance.

According to the results from the comparative experiments,

we found that the performance was similar between the two

models built on B-mode or CEUS-mode images. The B-mode

images-based model had slightly better performance, which

might be due to the different microcirculatory perfusion

characteristics of solid renal tumors. Solid renal tumors of

different histopathological types have different vascular

density, fat content, blood flow velocity, and the severity of

arteriovenous fistulas.

Lin et al. reported an AUC of 0.846 for the classification of

benign and malignant renal tumors on enhanced CT images

using inception-v3 (Lin et al., 2020). Xu et al. used ResNet-18

to classify multimodal MRI images of renal tumors, with

AUCs of 0.906 and 0.846 on T2WI and DWI, respectively

(Xu et al., 2022). The AUC was improved to 0.925 by fusing

the two modalities, exceeding the diagnostic performance of

highly qualified radiologists. The results of this study were

similar. The MUF-Net based on multimodal data surpassed

the models based on individual modalities by a large margin.

Therefore, we inferred that the adaptive weights learned by

MUF-Net could help the network acquire the complementary

information from the two modalities to improve the

classification performance.

This study had several limitations. First, the classical and

well-established convolutional neural network, EffecientNet-b3,

was selected as the backbone based on previous experiments,

which may not be optimal. The characteristics of multimodal

ultrasound imaging data need to be analyzed in-depth, and other

deep neural networks will be attempted in the future to see if

better performance can be achieved. Second, only images of

tumor regions were cropped and used in data analyses, and

regions of tumor periphery might be able to provide more

information to improve model performance, which requires

further experimental analyses. Third, our model was

implemented using the ultrasound images collected from two

hospitals only. A larger dataset acquired from more hospitals

with different types or models of ultrasound equipment may have

the potential to further improve the performance and

generalization ability of our model.

Conclusion

In this study, the proposedMUF-Net is able to classify benign

and malignant solid renal tumors accurately, by extracting

complementary features from B-mode and CEUS-mode

images, which outperforms senior radiologists by a large margin.
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FIGURE 5
Feature heatmaps of a benign tumor and amalignant tumor to show B-mode and CEUS-mode images contain complementary information for
diagnosis. The red color represents higher weights (i.e., the network pays more attention to this region).
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Background: Previous studies have shown that Leukocyte cell-derived

chemotaxin2 (LECT2) is associated with the development of HCC. However,

there are still no studies with a comprehensive analysis of the role of LECT2 in

hepatocellular carcinoma (HCC).

Methods: TCGA data sets were used to analyze the expression of LECT2 in

HCC. In addition, the prognostic value of LECT2 in HCC was also investigated.

DriverDBv3 was used to analyze the Mutation, CNV, and methylation profiles of

LECT2. And, validated by immunohistochemistry in 72 HCC samples. The

prognostic value of LECT2 and the correlation with clinicopathological

features were analyzed. The GO/KEGG enrichment analysis of LECT2 co-

expression and gene set enrichment analysis (GSEA) was performed using

the R software package. The PPI interaction network was constructed by

Search Tool for the Retrieval of Interacting Genes (STRING) database.

Immune infiltration was estimated by the XCELL, TIMER, QUANTISEQ,

MCPCOUNTER, EPIC, CIBERSORT abs and CIBERSORT algorithms, and

Spearman was used to analyzing their correlation with LECT2. Moreover, we

analyzed the correlation of LECT2 expression with immune checkpoint

molecules and HLA genes. Finally, we analyzed the IC50 values of six

chemotherapeutic drugs by the pRRophetic package.

Results: Reduced LECT2 expression levels found in HCC patients. Moreover,

decreased levels of LECT2 were associated with poor overall survival, disease-

free survival, disease-specific survival, and progression-free survival. Besides,

methylation was significantly associated with LECT2 expression. The functional

enrichment analysis revealed that LECT2 may affect HCC progression through

various pathways such as JAK/STAT signaling pathway, cell cycle, and pathways

in cancer. Additionally, the results showed that LECT2 expressionwas negatively

correlated with immune infiltration of B cells, Neutrophil, Monocyte, Cancer-

associated fibroblast, and Myeloid dendritic cell, and positively correlated with

T cell CD8+ naive, Endothelial cell, and Hematopoietic stem cell.

LECT2 expression was negatively correlated with multiple immune

checkpoint molecules and HLA genes. Chemosensitivity analysis showed

that chemosensitivity was lower in the LECT2 high expression group. We
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validated the prognostic value of LECT2 and analysis of clinicopathological

features showed a lower TNM stage in the groupwith high expression of LECT2.

Conclusion: Low expression of LECT2 in HCC is closely associated with poor

prognosis, LECT2 may have potential clinical applications due to its unique

immunological effects.

KEYWORDS

leukocyte cell-derived chemotaxin2, HCC, immune, bioinformatics analysis, prognosis

Introduction

Cancer is the leading cause of death in most countries of the

world in the 21st century, and the increase in cancer incidence and

mortality has caused widespread concern worldwide (Sung et al.,

2021). Immunotherapy is one of the breakthroughs in cancer

treatment and is becoming increasingly popular (Zhang and

Zhang, 2020). However, a large number of cancer patients still

have a poor prognosis due to distant metastases and cancer

recurrence, with 5-years survival rates below 20% for many

cancer subtypes (Bengtsson et al., 2020). Therefore, it is crucial

to discovermeaningful biomarkers to assess the prognosis of cancer.

Leukocyte cell-derived chemotaxin2 (LECT2) is a 16-kDa

secreted protein (Ito et al., 2003), LECT2 was first reported as a

chemotactic factor to promote the migration of neutrophils

(Yamagoe et al., 1996). Recent evidence suggests that

LECT2 is strongly associated with multiple disease

progression, including renal amyloidosis (Comenzo, 2014),

diabetes (Lan et al., 2014), and sepsis (Ando et al., 2012). In

addition, identified as a hormone-like hepatokine, LECT2 is

highly expressed in the liver (Zhu et al., 2022). Therefore,

LECT2 is also closely associated with a variety of liver

diseases, such as non-alcoholic fatty liver disease (NAFLD)

(Yoo et al., 2017), and liver fibrogenesis (Xu et al., 2019), and

hepatocellular carcinoma (Chen et al., 2016). We recently

reported that LECT2 can suppress the migration and tube

formations of endothelial cells via binding to Tie1 (Xu et al.,

2019). Loss of LECT2 results in an increase of CD4+ T cells in the

spleen (Greenow et al., 2018). By activating LPS signaling in

macrophages, LECT2 links obesity to hepatic inflammation

(Takata et al., 2021). All of this evidence suggests that

LECT2 is closely associated with immune cell infiltration and

may serve as a promising target for cancer immunotherapy.

Our study found that the expression level of LECT2 in HCC

correlated with prognosis. According to the report, HCC

progression is inhibited by LECT2 by controlling

inflammatory monocytes (L’Hermitte et al., 2019). However,

there is a lack of comprehensive studies on the prognostic

value and the role of LECT2 in HCC in terms of

immunotherapy. In this study, we investigated the expression

and prognostic value of LECT2 in HCC. We also searched for

possible signaling pathways by which LECT2 affects HCC and

focused on exploring the correlation between LECT2 and

immune infiltration. In addition to this, we performed a

comprehensive analysis of the clinicopathological information

of LECT2 in HCC patients. To our knowledge, this is the first

study to analyze in detail the role of LECT2 in HCC, providing a

reference for the use of LECT2 in HCC patients.

Materials and methods

Data download

The mRNA expression profile data from 33 different cancer

patients from The Cancer Genome Atlas (TCGA, https://tcga-

data.nci.nih.gov/tcga/), and missing data were removed

information.

Expression and survival analysis of LECT2

Using the limma package, we analyzed differential gene

expression in 33 cancers and finally identified LECT2 with

high expression levels in HCC and CHOL. Survival curves of

high and low LECT2 expression level groups in HCC and CHOL

were plotted using the Kaplan-Meier method to determine their

prognostic value, with prognostic endpoints including overall

survival (OS), disease-free survival (DFS), disease-specific

survival (DSS) and progression-free survival (PFS).

Exploring gene mutation, CNV (copy
number variations), and methylation
spectrum of LECT2

We explored the LECT2 gene mutation, CNV, and

methylation spectrum using DriverDBv3 (http://driverdb.tms.

cmu.edu.tw/). These data are developed and obtained for free.

Enrichment analysis of LECT2 and PPI
analysis

LinkedOmics database (http://www.linkedomics.org/login.

php) is a fully functional multi-omics database that can be
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used for association analysis between genes (Vasaikar et al.,

2018). LECT2 co-expression analysis was determined by

Spearman correlation coefficients and displayed in the form of

volcano and heat maps. Gene ontology (GO) function and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis of co-expressed genes were performed by

cluster profile package of R software, and we performed a

visualization analysis of the data using the ggplot2 package.

The PPI interaction network was constructed by Search Tool

for the Retrieval of Interacting Genes (STRING) database (http://

string-db.org/).

Gene set enrichment analysis (GSEA)

GSEA is an approach that focuses on gene sets to explain

biological pathways enriched by different populations

(Subramanian et al., 2005). The samples were divided into

high and low expression groups according to the median

LECT2 expression, and then GSEA functional analysis was

performed using the “limma”, “enrichplot”, “clusterProfiler”

and “org.Hs.eg.db” packages. Gene set “c2. cp.kegg.v7.4.

symbols.gmt” are obtained from GSEA website (https://www.

gsea-msigdb.org/gsea/index.jsp).

Immune infiltrate analysis

For a more comprehensive estimation of immune cell

infiltration, we applied seven algorithms to estimate the

immune cell infiltration status in the samples, including

XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC,

CIBERSORT abs, and CIBERSORT. These immune cell

infiltration level results can be obtained from TIMER2.0 (Li

et al., 2020) (http://timer.cistrome.org/). The relationship

between LECT2 expression and immune infiltrating cells was

calculated using Spearman correlation analysis. The significance

threshold was set at p < 0.05.

Correlation between LECT2 expression
with immune checkpoint molecules and
HLA genes

We calculated the relationship between LECT2 expression

with 48 immune checkpoint molecules and 19 HLA genes using

Spearman correlation analysis.

Chemotherapy drug sensitivity analysis

We calculated the semi-inhibitory concentrations (IC50) of

six commonly used chemotherapeutic drugs using the

pRRophetic package to evaluate the sensitivity of HCC

samples to the six chemotherapeutic drugs. IC50 difference

between low and high expression groups was compared using

Wilcoxon signed-rank test.

Immunohistochemistry (IHC)

We examined 72 paraffin-embedded HCC tissues and adjacent

tissue samples from the First Affiliated Hospital of Anhui Medical

University using immunohistochemistry. These tissue specimens

were obtained from patients who underwent liver resection from

2014 to 2015. All patients provided written informed consent and

adhered to the Declaration of Helsinki. Ethical approval was

obtained from the Ethics Committee of the First Affiliated

Hospital of Anhui Medical University. Two experienced

pathologists independently calculated immunohistochemical

scores A score greater than or equal to three was considered

high expression and less than three was considered low expression.

Statistical analysis

In the comparison of clinicopathological features. Student’s

t-test and Chi-square test were performed according to different

types of variables. The results were considered statistically

significant at a two-sided p < 0.05.

Result

LECT2 expression levels comparison

The full names and abbreviations of the 33 cancers are shown

in Supplementary Table S1. We analyzed the expression levels of

LECT2 in 33 cancers in the TCGA database. Compared with the

normal tissues, the results showed that LECT2 was differentially

expressed in 14 of the 33 cancers (BLCA、BRCA、CHOL、

ESCA、GBM、HNSC、KICH、KIRC、HCC、LUAD、LUSC、

PCPG、PRAD、UCES). In particular, the expression levels of

LECT2 were decreased in HCC and CHOL (Figure 1A).

Meanwhile, we ranked the expression levels of LECT2 in

33 cancers and found that LECT2 had higher expression levels

only in HCC and CHOL (Figure 1B).

Prognostic value of LECT2

We further analyzed the prognostic value of LECT2 in

cancers with differential expression. Because LECT2 is

expressed only at high levels in CHOL and HCC and is too

low in other cancers, we focused on the prognostic value of

LECT2 in CHOL and HCC. Patients were divided into high
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expression group and low expression group, and we used

Kaplan-Meier survival analysis to draw the survival curve of

patients. In addition to OS, we also explored other important

prognostic indicators such as DFS, DSS, and PFS. The results

showed that the expression level of LECT2 did not affect the

prognostic profile of CHOL patients, including OS (p = 0.106,

Figure 2A), DFS (p = 0.236, Figure 2B), DSS (p = 0.138,

Figure 2C) and PFS (p = 0.147, Figure 2D). However, the

expression level of LECT2 significantly affected the prognosis

of HCC patients. Patients with high expression of LECT2 had

better OS (p < 0.001, Figure 2E), DFS (p < 0.001, Figure 2F), DSS

(p = 0.004, Figure 2G) and PFS (p = 0.002, Figure 2H). The

results showed that LECT2 is associated with the prognosis

of HCC.

FIGURE 1
LECT2 expression levels comparison. (A) The differential expression analysis between tumor and normal groups of LECT2 in 33 cancers (B) The
expression of LECT2 in 33 cancers (from high to low). “ns” represents no significance, "*" represents p < 0.05, "**" represents p < 0.01, and "***"
represents p < 0.001 ".
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FIGURE 2
Prognostic analysis of LECT2. OS (A), DFS (B), DSS (C), and PFS (D) of CHOL patients were grouped by high and low expression of LECT2. OS (E),
DFS (F), DSS (G), and PFS (H) of HCC patients were grouped by high and low expression of LECT2. OS: overall survival, DFS: disease-free survival, DSS:
disease-specific survival, PFS: progression-free survival.
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Mutation, CNV, and methylation profiles
of LECT2

We further analyzed the possible reasons for the differential

expression of LECT2 in HCC. To comprehensively analyze the

mutational, CNV, and methylation spectrum of LECT2, we used

DriverDBv3 to explore the mutational and CNV in all cancer

types in the TCGA database. The DriverDBv3 database results

showed no mutations and CNV of LECT2 in HCC (Figures 3A,

B). Then we explored the correlation between LECT2 expression

levels and methylation levels in HCC. The results showed that

methylation levels were negatively correlated with

LECT2 expression, with hypermethylation usually implying

lower LECT2 expression (p < 0.001, Figure 3C). We think

that methylation is one of the possible reasons for differential

expression of LECT2 in HCC.

Expression, prognostic value and
clinicopathological features of
LECT2 in HCC

Given the unique expression pattern and prognostic value of

LECT2 in HCC, we further validated the expression and

prognostic value of LECT2 in HCC. representative IHC maps

of LECT2 in HCC tissues and adjacent normal tissues are shown

in Figures 4A,B. Further we examined the expression levels of

LECT2 in 72 pairs of HCC and adjacent tissues. Consistent with

the results of TCGA database, we found that the expression level

of LECT2 was higher in adjacent tissues than in HCC tissues

(Figure 4C). Meanwhile, we analyzed the prognostic and

clinicopathological characteristics of 72 samples. The results

showed that HCC patients in the high LECT2 expression

group had better OS (p = 0.003, Figure 4D). In addition, the

results showed that LECT2 expression levels correlated with

TNM stage (p = 0.011), and TNM stage was higher in the low

LECT2 expression group (Table 1).

Enrichment analysis of LECT2 in HCC and
PPI network analysis

To find out the biological role of LECT2 in HCC, we analyzed

the co-expression of LECT2 in HCC using the LinkedOmics

database. As shown in Figure 5A, 3348 genes are positively

related to LECT2, and 7,873 genes are negatively related to

LECT2 (p < 0.05). The first 50 important genes that are

positively (Figure 5B) and negatively (Figure 5C) correlated

with LECT2 are shown in the heat map. After the GO and

KEGG analysis of the top 200 co-expressed genes positively

related to LECT2 expression. The top 15 results for GO

including Biological Process (BP), Cellular Component (CC),

and Molecular Function (MF) are shown in the bubble chart.

Similarly, it showed the top 10 results for KEGG. The results of

GO function showed that LECT2 co-expression is enriched in the

small molecule catabolic process and cellular amino acid

metabolic process (Figure 5D). The results of KEGG showed

that LECT2 co-expression is correlated with Fatty acid

degradation, Pyruvate metabolism, PPAR signaling pathway,

and Peroxisome (Figure 5E). We studied the PPI network of

LECT2 using the STRING database to learn more about the

potential mechanisms of action of LECT2. We found that

FIGURE 3
Mutation, CNV, and methylation profiles of LECT2. (A) The
mutation status of LECT2 in various tumors according to the
DriverDBv3 database (B) The CNV of LECT2 in various tumors (C)
The methylation of LECT2 in HCC.
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LECT2 is mainly related to LECT1 (0.775), SVIL (0.642), FGG

(0.610), and DDX46 (0.601) which are the first four proteins

(Figure 5F). The results showed that the expression of LECT2 is

associated with several metabolic and disease pathways.

GSEA of LECT2

Considering the strong correlation between LECT2 and

HCC, we decided to investigate the potential pathways of

FIGURE 4
Expression levels and prognostic analysis of LECT2. (A–B) Representative IHC maps of LECT2 expression in HCC tissues and adjacent normal
tissues (C) The expression levels of LECT2 in 72 cases of HCC and normal tissues, blue represents HCC tissue, yellow represents adjacent normal
tissues (D) The prognostic analysis of LECT2 in 72 cases of HCC.

TABLE 1 Clinicopathological features of LECT2 in HCC.

Factor IHC score of LECT2 p-value

High (n = 36) Low (n = 36)

Age, year 56.33 ± 11.50 57.67 ± 12.80 0.644

Sex

Male 30 (83.3%) 30 (83.3%) 1.000

Female 6 (16.7%) 6 (16.7%)

TNM stage

I + II 33 (91.7%) 23 (63.9%) 0.011

III + IV 3 (8.3%) 13 (36.1%)

Grade

G1 8 (22.2%) 5 (13.9%) 0.634

G2 19 (52.8%) 22 (61.1%)

G3 9 (25.0%) 9 (25.0%)

The longest diameter of tumor 4.97 ± 3.35 5.89 ± 3.33 0.251

TNM, Tumor-Node-Metastasis. IHC, Immunohistochemistry.
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LECT2 dysregulation in HCC.HCC patients were divided into

high- and low-expression groups according to the median

mRNA expression of LECT2 in the HCC cohort in TCGA.

Further functional enrichment analyses showed in the

LECT2 high expression group, the five most significant

pathways, including KEGG DRUG METABOLISM

FIGURE 5
Enrichment analysis and PPI analysis of LECT2 in HCC. (A) Genes highly correlated with LECT2 identified in HCC by Spearman correlation
analysis (B) Top 50 genes positively correlatedwith LECT2 in HCC. (C) Top 50 genes negatively correlatedwith LECT2 in HCC (D) Enrichment of gene
ontology (GO) for genes correlated with LECT2. (E) Enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) for genes correlated with
LECT2 (F) Protein-protein interaction network of LECT2.
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CYTOCHROME P450, KEGG FATTY ACID METABOLISM,

KEGG METABOLISM OF XENOBIOTICS BY

CYTOCHROME P450, KEGG RETINOL METABOLISM

and KEGG RIBOSOME were enriched (Figure 6A). In the

LECT2 low expression group, the five most significant

pathways, including KEGG CELL CYCLE, KEGG

CYTOKINE RECEPTOR INTERACTION, KEGG

GLYCOSAMINOGLYCAN BIOSYNTHESIS KERATAN

SULFAT, KEGG JAK STAT SIGNALING PATHWAY and

KEGG PATHWAYS IN CANCER were enriched (Figure 6B).

FIGURE 6
Gene Set Enrichment Analysis of LECT2 in HCC. (A) The five pathways were most significantly enriched in the LECT2 high-expression group (B)
The five pathways were most significantly enriched in the LECT2 low-expression group.
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Detailed GSEA analysis information is shown in

Supplementary Table S2.

Correlation between LECT2 and immune
cells infiltrating

We further explored the relationship between

LECT2 and the tumor immune microenvironment. The

results showed that LECT2 expression was negatively

correlated with immune infiltration of B cells, Neutrophil,

Monocyte, Cancer-associated fibroblast, and Myeloid

dendritic cell, and positively correlated with T cell CD8+

naive, Endothelial cell, and Hematopoietic stem cell.

Meanwhile, the relationship between LECT2 expression

and macrophages and macrophage M2 showed different

results in different methods (Figure 7). The results

suggested that Lect2 expression may affect the level of

multiple immune cell infiltration in the tumor

microenvironment of HCC.

Correlation between LECT2 and predictive
immune markers (Checkpoint and HLA)
molecules

In addition, immunotherapy targeting immune checkpoint

molecules is a promising target for immunotherapy in HCC

patients. We then analyzed the relationship between

LECT2 expression and 48 immune checkpoint molecules. We

found that LECT2 was positively correlated with two immune

checkpoint molecules, and negatively correlated with 31 immune

checkpoint molecules (Figure 8). Therefore, HCC patients in the

LECT2 low expression group may be more sensitive to immune

checkpoint inhibitors, such as PD1 inhibitors and CTLA-4

inhibitors. HLA genes are important immune genes in the

human body, and tumor-induced immune escape can change the

expression of theHLA gene so that the tumor can evade the immune

system without being killed (McGranahan et al., 2017). The results

showed that LECT2 was negatively correlated with 18 of 19 HLA

genes (Figure 9). In summary, LECT2 was negatively correlated with

most of immune checkpoint molecules and HLA genes.

FIGURE 7
Correlations of LECT2 expression with immune infiltration level in HCC.
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FIGURE 8
Correlation analysis of LECT2 expression with 48 immune checkpoint molecules.
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Correlation analysis of LECT2 expression
with chemotherapy drugs

In addition, we also explored the relationship between the

expression of LECT2 and the sensitivity of HCC patients to

several common chemotherapeutic drugs. Sorafenib (Figure 10A),

Cisplatin (Figure 10B), Rapamycin (Figure10C), Mitomycin (Figure

10D), Doxorubicin (Figure 10E), Bleomycin (Figure 10F). The

results showed that high expression of LECT2 was associated

with higher IC50 of Cisplatin (p < 0.01), Rapamycin (p < 0.001),

andMitomycin. C (p< 0.05) chemotherapy drugs (Figure 10). These

results implied that patients with different LECT2 expression levels

have different sensitivities to a variety of common chemotherapeutic

drugs.

Discussion

LECT2 is a 16-kDa secreted protein. It is mainly produced by

hepatocytes (Yamagoe et al., 1998) and is usually expressed in

FIGURE 9
Correlation analysis of LECT2 expression with 19 HLA genes.
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vascular cells, endothelial cells, and VSMC (Slowik and Apte,

2017). A large number of studies have now shown that

LECT2 is associated with the progression of a variety of

cancers. For example, LECT2 is considered one of the

potential prognostic risk biomarkers for colon

adenocarcinoma (Yin et al., 2020). By inhibiting

angiogenesis, LECT2 inhibits tumor growth in HCC (Chen

et al., 2016). HCC with low LECT2 expression has a higher

grade and inflammatory infiltrates (L’Hermitte et al., 2019).

However, there are no systematic and comprehensive studies

on the role of LECT2 in HCC. Therefore, there is a need to

further explore the potential mechanisms of LECT2 in HCC.

FIGURE 10
Correlation analysis of LECT2 expression with chemotherapeutic drug sensitivity. Difference analysis of the sensitivity of six chemotherapeutic
drugs (A) Sorafenib, (B) Cisplatin, (C) Rapamycin, (D)Mitomycin, (E) Doxorubicin, (F) Bleomycin in LECT2 high expression group and low expression
group, green represents low LECT2 expression, red represents high LECT2 expression. “ns” represents no significance, "*" represents p < 0.05, "**"
represents p < 0.01, and "***" represents p < 0.001 ".
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According to our knowledge, this is the first study to assess the

role and significance of LECT2 in HCC regarding clinical,

biological, and genomic aspects, laying the foundation for the

clinical application of LECT2.

In the present study, we found higher expression levels of

LECT2 in HCC and CHOL, and we reported significantly

lower expression levels of LECT2 in HCC and CHOL samples

compared to normal tissue. We further analyzed the

prognostic value of LECT2 in HCC and CHOL. We found

that LECT2 could affect both OS, DFS, DSS, and PFS in HCC

patients and that low expression of LECT2 levels was a factor

in poorer prognosis in HCC patients. Furthermore, we found

that LECT2 mutations and CNV are uncommon times in

HCC, but the abnormal expression of LECT2 may be due

to abnormal methylation. Then, the results of 72 HCC clinical

samples were consistent with the TCGA database, with HCC

tissues having lower LECT2 levels than adjacent tissues. And

the results showed that HCC patients in the LECT2 high

expression group had better OS. Analysis of

clinicopathological features showed a lower TNM stage in

the group with high expression of LECT2. This suggests that

high levels of LECT2 inhibit the progression of HCC.

Lu et al. found that LECT2 may inhibit HCC cell glycolysis

during aerobic glycolysis, and reduced glycolysis by

LECT2 might be linked to the inhibitory effect on HCC

cells (Lu et al., 2020). However, there have been no studies

on the functional enrichment analysis of LECT2 co-expression

in HCC. In the present study, by GO and KEGG analysis of

200 genes associated with LECT2, we found that co-expression

of LECT2 was mainly enriched in the small molecule catabolic

process and cellular amino acid metabolic process. And we

found that the LECT2 co-expression was mainly related to the

Fatty acid degradation, Pyruvate metabolism, PPAR signaling

pathway, and Peroxisome by KEGG analysis. It has been

shown that the PPAR signaling pathway plays a key role in

tumors (Wagner and Wagner, 2020). PPI analysis found that

LECT2 has the strongest correlation with LECT1, SVIL, FGG,

and DDX46. The study of LECT1 on osteosarcoma cells in vivo

showed that it inhibited their growth and proliferation (Lin

et al., 2017). Knockdown of DDX46 inhibited osteosarcoma

cell proliferation and tumor growth in vivo (Jiang et al., 2017).

SVIL (Houlier et al., 2020) and FGG (Peng et al., 2021) also

have corresponding roles in the tumor process. At the same

time, the GSEA pathway enrichment analysis showed that the

JAK/STAT signaling pathway, cell cycle, and pathways in

cancer were enriched in the low LECT2 expression

group. Interestingly, blockade of the JAK/STAT signaling

pathway mediated by SOCS3 was recently reported to

inhibit the progression of HCC (Liu et al., 2021). These

pathways may be potential mechanisms for LECT2 to

regulate HCC. We suggest that LECT2 has other

biological functions in HCC besides participating in

glycolysis in HCC.

It is well documented that the tumor microenvironment

plays an indispensable role in malignant tumors, and among

them, immune cells are significant, and the level of various

tumor immune cells affects the therapeutic effect (Hinshaw

and Shevde, 2019). Therefore, the present study focused on

exploring the correlation between tumor immune infiltration

and LECT2. We used seven common methods for assessing

immune cell infiltration. The results showed that

LECT2 expression was negatively correlated with immune

infiltration of B cells, Neutrophil, Monocyte, Cancer-

associated fibroblast, and Myeloid dendritic cell, and

positively correlated with T cell CD8+ naive, Endothelial

cell, and Hematopoietic stem cell. The cancer-associated

fibroblasts can increase angiogenesis, inflammation,

proliferation, survival, EMT, and alter immune surveillance

to promote HCC (Affo et al., 2017). Similarly, LECT2 loss

contributes to the proliferation of inflammatory monocytes in

HCC (L’Hermitte et al., 2019). These results are consistent

with our analysis of the tumor suppressive role played by

LECT2 in HCC, suggesting that LECT2 may regulate the

progression of HCC by affecting these immune cells. In

addition, our results showed that LECT2 was negatively

correlated with 31 immune checkpoint molecules, including

PD1 and CTLA-4, and was negatively correlated with 18 of

19 HLA genes. Moreover, in the LECT2 high expression group,

the IC50 of chemotherapy drugs such as Cisplatin, Rapamycin,

and Mitomycin. C was increased. In conclusion, these results

provide a reference for the clinical use of drugs in HCC

patients.

In conclusion, by comprehensively elucidating the

expression, prognostic value, association with

clinicopathological factors, co-expression network, pathway

enrichment analysis, and crosstalk with immune infiltration in

HCC, LECT2 may be a new potential prognostic and

diagnostic biomarker for hepatocellular carcinoma with

potential clinical applications.

Conclusion

This study is the first to provide a comprehensive and

detailed analysis of the role of LECT2 in HCC and to show

that LECT2 is a new potential diagnostic and prognostic

biomarker for hepatocellular carcinoma. However, further

research is needed to explain the mechanisms of

LECT2 involvement in HCC.
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Automated measurement of
endometrial peristalsis in cine
transvaginal ultrasound images
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Ruijie Sun1, Chan Huang2, Bin Yao2 and Huifang Wang1*
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Objectives: Endometrial peristalsis (EP) in non-pregnant uterine can be assessed

by visual assessment of transvaginal ultrasound (TVUS). However, visual

assessment is subjective, and the outcome depends on the sonographers and

video analysts. This study aimed to create a newly developed automatic analysis

algorithm for measuring the EP compared to visual assessment.

Methods: A retrospective analysis was performed using the datasets from in vitro

fertilization and embryo transfer (IVF-ET), who underwent the evaluation of EP by

TVUS within 5 days prior to transplantation. 158 cine TVUS images were used to

develop the automated analysis algorithm, and 37 cine TVUS images were

evaluated by both visual and automated analysis algorithms. The algorithm was

developed by applying the optical flow technology and enabled objective analysis

of the number, direction, and intensity of EP.

Results: The number of peristaltic waves counted by visual assessment was

4.2 ± 2.3 (mean ± standard deviation) and 4.1 ± 2.1 for doctors one and two,

respectively. The number of waves counted with the algorithm was 3.6 ± 2.1 at

first evaluation and 3.7 ± 2.0 at repeated evaluation. A significant difference was

found between the algorithm count and visual assessment (p = 0.001, 0.002,

0.003, 0.008). The ICC values for algorithm versusmanuals ranged from0.84 to

0.96 and 0.87 to 0.96. The numbers of the cervix-to-fundus (CF), fundus-to-

cervix (FC), and both cervix-to-fundal and fundus-to-cervix (CF + FC) directions

of EP counted by the algorithm were 50, 52, and 32, respectively. The numbers

counted by visual assessment were 43, 45, and 46, respectively. The number of

EP was the same in 87% of the two algorithm counts. The number was lower

between the algorithm and visual analysis (79% with complete agreement). The

EP intensity assessed by the algorithm was 2.6 ± 1.1, and the peristalsis velocity

was 0.147 (0.07) mm/s.

Conclusion: The fully automated analysis algorithm can be used to quantify

uterine peristalsis comparable to visual assessment.

KEYWORDS

endometrial peristalsis, automated analysis algorithm, in vitro fertilization and embryo
transfer, optical flow technology, transvaginal ultrasonography
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1 Introduction

Endometrial peristalsis (EP) is a stripping movement of

the endometrium caused by subtle, wave-like contractions of

the sub-endometrial myometrium (Pinto et al., 2015).

Peristaltic frequency, direction, and intensity vary according

to the menstrual cycle phases under hormonal variations

(Wray et al., 2014; Young, 2016). EP plays essential roles in

sperm transportation, menstrual discharge, and embryo

implantation, which favor pregnancy and the early

development of embryos. It has been reported that any

change in the velocity and direction of EP compared to its

typical characteristics may lead to infertility or pregnancy

failure (Kuijsters et al., 2017; Soares et al., 2019). Various

diagnostic technologies, such as intrauterine pressure

measurement (IUPs), magnetic resonance imaging (MRI),

and transvaginal ultrasonography (TVUS), have been

introduced to investigate the EP. MRI is costly and not

readily available. In the case of IUPs, a significant drawback

is that the irritation induced by an intrauterine device may

interfere with physiological contraction characteristics, which

causes discomfort for patients and makes routine use

impractical (Kuijsters et al., 2017; Liu et al., 2018). TVUS,

considered a non-invasive, cost-effective, and safe approach

for measuring EP, is currently the most appealing method for

evaluating EP (Huang et al., 2018; Kuijsters et al., 2019).

However, visual assessment is subjective, and the outcome

depends on the sonographers and video analysts. The

necessary knowledge and skills of a doctor, and thus the

need for training and appropriate qualifications (not

routinely held at the basic stage of education), are necessary

for assessing EP. In addition, the observation and

interpretation of EP were too time-consuming to be used in

daily practice, even for experienced sonographers (Kuijsters

et al., 2019). To overcome these disadvantages, automated

analysis of EP in TVUS videos could be a solution. However,

the EP is slow and sporadic, different from those shown by

cardiac contractility, is regular and distinct, and is not easily

assessed automatically. This study aimed to evaluate EP by an

automated technique that enables objective analysis using a

newly developed automatic analysis algorithm based on

optical flow technology and then to compare these results

with those from traditional visual assessment by TVUS

findings.

2 Materials and methods

2.1 Study population

A retrospective analysis was performed of 267 patients who

underwent in vitro fertilization and embryo transfer (IVF-ET) in

the reproductive medical center of Peking University Shenzhen

hospital between October 2020 and December 2021. Within

5 days prior to transplantation, all patients underwent the

evaluation of EP by TVUS. None of the patients had received

anticholinergic medications and anti-spasticity agents. The

exclusion criteria were the women with uterine pathologies

such as adenomyosis, uterine anomaly, uterine fibroids, and

polys. Women with intrauterine devices were also excluded.

Finally, a total of 195 patients were included in the study.

Recorded cine ultrasound images were extracted from a

picture archiving and communication system (PACS). Of

the 195 cine TVUS images extracted, 158 were used to

develop the automated analysis algorithm, and 37 were

evaluated by both visual and automated analysis algorithms.

Ethical approval was given by the Ethics Committee of

Peking University Shenzhen Hospital (No. 2022002). A waiver

of informed consent has been obtained for this retrospective

study.

2.2 Cine transvaginal ultrasound images
acquisition

Two ultrasound machines available at our outpatient clinic

were used to acquire the cine TVUS images: Resona7 (Mindray

Medical Systems, Shenzhen, China), with a 2–9 MHz

endovaginal volume transducer (DE10-3WU); and Voluson

E8 (GE Healthcare, United States), with a 5–9 MHz

endovaginal volume transducer (RIC 5-9-D). These systems

had a built-in video record, and the recorded file was later

digitized into an AVI/MP4 file.

A standardized scanning protocol was set up, and all the

scans were performed according to the following protocol: 1) Let

the patient lie in a supine position, keep the body still, and

breathe normally. Any artifacts due to respiratory or intestinal

movement were excluded; 2) Find the section of the uterus with

the largest longitudinal section and the operator holding the

probe steady; 3) Collect video data for 2 min; 4) Visual inspection

of these ultrasound recordings, replayed at two times the regular

speed, was independently performed by two doctors with more

than 5 years of TVUS experience and 1 year of experience

evaluating EP; 5) When peristalsis occurred, the algorithm

and visual assessment evaluated the number and direction of

peristalsis. The algorithm only evaluated the intensity and

velocity of EP. The number is EP’s number in a time, and the

direction of EP was defined by the line connecting the cervix to

the fundus. The direction of peristaltic waves was classified as

cervix-to-fundus (CF), fundus-to-cervix (FC), and both cervix-

to-fundal and fundus-to-cervix (CF + FC). The EP’s velocity is

defined as the time it takes one peristalsis wave from the

beginning to the end. The velocity is the length of a path

(mm) divided by the time (s) it takes for the peristalsis to

complete the path. The EP’s intensity is to calculate each peak

on the peristaltic wave curve and generate a point with a
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peristaltic range on the x-axis and peristaltic amplitude on the

y-axis in the coordinate system.

2.3 Development of automated analysis
algorithm

The algorithm had three main processing stages: inputting

cine images for feature extraction, model establishment, and

evaluation.

2.3.1 Algorithm establishment
2.3.1.1 Motion capturing

1) Feature points generation: when the video was imported, the

rectangle was determined that encircle the endometrium area

and fill this rectangle area with aligned feature points. The

feature points are equally spaced, and the interval is usually

15-pixel-length. The initial coordinates of each feature point

are recorded then (Figure 1A).

2) Displacement of feature points: the unit time “t” was assumed

as the time duration of two adjacent video frames. Then the

velocity of each feature point is simplified to its displacement

between two adjacent frames, Δx. Furthermore, the new

coordinates can be expressed as xt � x0 + Δx (Figure 1B).

3) Temporal and spatial filtering: Due to the background noise

of ultrasound, the gray value of the picture is constantly

changing, which can cause an error during calculation. After

coordinate data were collected from each frame, the motion

information could not be obtained from this data directly.

Instead, temporal and spatial smoothing processing was

needed first.

4) Computing feature value: Since the peristalsis of the

endometrium is a continuous motion, which has spatial

continuity. It means the displace of each single feature

point will not describe the whole motion and should

consider this question from a macro viewpoint. If we

regard points in each row as a line, we fit points whose

initial position is in the same row with a straight line. And

then, the peristalsis will deform the straight line into a curve.

If we compare the left and right sides of Figure 2, one can

observe that the line curves in the same direction with

peristalsis, and the curvature is in proportion to the

magnitude of peristalsis. In this condition, we can say that

the curvature of those fitting curves can present the

magnitude of endometrium peristalsis. We use the

variation of curvature of two frames instead of curvature

from a single frame since it is static. So we calculate the

difference by subtracting the curvature in the frame that is five

frames ahead of the curvature in the current frame, and the

variation is Δτ. (If there are less than five frames ahead of the

current frame, then subtract with the first frame). In addition,

we prefer to record this variation data in two parts: sign and

absolute value. The absolute value presents the magnitude,

and the sign stands for direction, which we will discuss later.

2.3.1.2 Motion amplifying

1) Salient motion determinant: we define the absolute value of

curvature variation as the peristalsis magnitude parameter.

Since the numerical value of magnitude from samples is

different, we need to normalize the curvature variation

data obtained from the last step to make it easier to

determine the magnitude level. We use a linear

normalization function that can map all the magnitude

data into sections [0, 1] uniformly:

y0 � ϕ(|Δτ|) ∈ [0, 1]. (1)

And then, we can define a threshold value α, for a value y0
larger than α can be regarded as salient peristalsis. The one less

than α will be regarded as non-peristalsis. (The threshold value α

FIGURE 1
(A) Feature points generation. First, determined the rectangle that encircles the endometrium area and filled this rectangle area with aligned
feature points. The feature points are equally spaced, and the interval is usually 15-pixel-length; (B) Displacement of feature points.
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can be modified from 0 to 1, in this experiment, we

choose α � 0.6):

y1 � y0 − α. (2)

2) Rendering weight parameter: We wish to visualize the

peristalsis in a color rendering way: the more salient the

peristalsis is, the brighter the peristalsis area will be (High

rendering weight); and vice-versa, the area without peristalsis

will not be rendered (Low rendering weight). We modify the

weight parameter by the Sigmoid function:

y2 � sigmoid(y1, β) � 1
1 + e−β·y1

. (3)

β controls the slope of the Sigmoid function, a larger slope

means the peristalsis area will have higher weight, and the non-

peristalsis area will get lower weight.

3) Rendering display: To display the final rendering results, we

multiply the color value with the rendering weight and add

them into the RGB channel of the original frame. We also

need interpolation to the whole endometrium area since we

only have the value in feature points (Figure 3). As can be

seen, the area with salient peristalsis is bright red. On the

contrary, the area with no peristalsis keeps the same grey

value.

4) Motion graph generation: Since the diversity of the

endometrium orientation in different samples, we define

the left orientation (for horizontal position) and downward

orientation (for vertical position) as “forward direction”; The

right orientation and upward orientation correspond for

“backward direction.” Remember, we have recorded the

sign of Δτ, which presents the peristalsis direction: “+1”

stands for “forward direction” and “−1” stands for

“backward direction.”

FIGURE 2
Computing feature value. (A) Regard points in each row as a line and fit points whose initial position is in the same row with a straight line; (B)
Peristalsis deforms the straight line into a curve. The line curves in the same direction as peristalsis, and the curvature is in proportion to the
magnitude of peristalsis.

FIGURE 3
Rendering display. Multiply the color value with the renderingweight and add the value into the RGB channel of the original frame. The area with
salient peristalsis was bright red, and no peristalsis kept the same grey value.
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We only concern the salient peristalsis area, the feature

points with amplitude parameters larger than α. We count the

number of those points of ‘forward direction’ and ‘backward

direction’ separately and then label them as “n_+” and “n_−.”We

plot “n_+” and “n_−” on the Cartesian coordinate, then obtain

the motion graph. In the graph, the number of the feature points

presents the size of the peristalsis area, and the curve’s color

presents the direction of the peristalsis (Figure 4). It is easy to

observe some features of peristalsis with different modes:

A) In a one-way peristalsis motion graph, the curve presenting

the “forward direction” (or “backward direction”) is always

above the other one, and the curve of the opposite direction

will always keep zero value.

B) For the peristalsis that first move “forward” and then move

“backward” (or first “backward” then “forward”), its graph

has the feature that the “peak” of the curve will appear

alternately.

C) If the “forward” and “backward” peristalsis happen

simultaneously, then their “peak” of curves will also

appear simultaneously in the graph.

2.3.2 Algorithm evaluation
(1) The established algorithm evaluated EP’s number in 37 cine

ultrasound datasets twice, and two physicians also evaluated

the number. The repeatability of the algorithm evaluation

and the agreement between the algorithm and the visual

assessment was calculated.

(2) Researchers extracted 134 cine ultrasound images containing

only one EP from 37 datasets. The algorithm and two

sonographers evaluated EP’s direction in 134 cine

ultrasound images simultaneously. The consistency of EP’s

direction evaluation between the algorithm and the visual

assessment was calculated.

(3) Quantitative assessment of EP intensity and velocity

1) The intensity of EP was calculated at each peak on the

peristaltic wave curve and generated a point with a

peristaltic range on the x-axis and peristaltic amplitude

on the y-axis in the coordinate system (Figure 5). The

classification of EP’s intensity is defined according to the

following criteria:

A) weak: the peristalsis wave range and peristalsis

amplitude are both less than 1;

B) moderate: either peristalsis wave range or peristalsis

amplitude is greater than 1;

C) strong: both the peristalsis wave range and amplitude

are greater than 1;

2) Even if the peristaltic range is the same, some waves are

fast while others are slow. We use the ratio of wave peak

to wavelength (i.e., the ratio of ordinate to abscissa) as the

indicator of peristalsis velocity (Figure 6).

2.4 Statistical analysis

Continuous data were expressed as mean plus/minus

standard deviation, and normal distribution was tested using

the Shapiro-Wilk test. The EP’s numbers counted by the

FIGURE 4
In the graph, the number of the feature points presents the
size of the peristalsis area, and the curve’s color presents the
direction of the peristalsis.

FIGURE 5
Quantitative assessment of EP intensity. Calculate each peak
on the peristaltic wave curve and generate a point with peristaltic
range on the x-axis and peristaltic amplitude on the y-axis in the
coordinate system.
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algorithm and visual assessment were compared with the

Wilcoxon signed-rank test. The concordance was computed

using the intraclass coefficient correlation (ICC). The

repeatability of two algorithm counts for one video was

evaluated using ICC; ICC evaluated the agreement between

algorithm and visual analysis; ICC evaluated the inter-reader

agreement between two visual assessments. ICC of less than

0.20 denotes poor repeatability, 0.21–0.40 fair,

0.41–0.60 moderate, 0.61–0.80 good, and 0.81–1.00 excellent

repeatability (Youssef et al., 2016). All statistical analyses were

performed using SPSS Statistics 26 (IBM SPSS Statistics for Mac,

Version 26.0).

3 Results

1. In Supplementary Video S1 was an example of the automated

analysis algorithm that evaluated EP. The red lines were the

peristalsis from the cervix to the fundus, and the blue lines

were the fundus to the cervix. The video shows three

peristalsis waves from the cervix to the fundus and two

from the fundus to the cervix.

FIGURE 6
The ratio of wave peak to wavelength (i.e., the ratio of ordinate to abscissa) as the indicator of peristalsis velocity.

FIGURE 7
The distributions of the number of EP. AI, Artificial intelligence
algorithm; V, visual analysis.
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2. Repeatability and consistency of EP’s number counts

The algorithm and visual assessment analyzed a total of

37 cine ultrasound images. The datasets of EP’s number did

not conform to a normal distribution according to a Shapiro-

Wilk test (p = 0.000). The mean (and standard deviation) of

the EP’s number counted by visual assessment was 4.2 ±

2.3 and 4.1 ± 2.2 for doctors one and two, respectively. The

EP’s number counted with the algorithm was 3.6 ± 2.1 at

first evaluation and 3.7 ± 2.0 at repeated evaluation. A

significant difference was found between the algorithm

counts and visual assessments (p = 0.001, 0.002, 0.003,

0.008). The distributions of the EP’s number are shown in

Figure 7.

The repeatability of the two algorithm counts was

excellent, with an ICC value of 0.97 (p = 0.000). The

number of five datasets was different; among them, three

datasets had a difference of 1 peristalsis wave, and two

datasets had a difference of 2 peristalsis waves. The

algorithm counts also showed excellent agreement with the

visual assessment of docotor1 (ICC values ranging from

0.84 to 0.96, p = 0.000) and doctor 2 (ICC values ranging

from 0.87 to 0.96, p = 0.000). The inter-reader agreement

between doctors 1 and 2 was excellent (ICC values ranging

from 0.92 to 0.98, p = 0.000). ICCs value is summarized in

Table 1.

3. EP direction assessment

A total of 134 cine ultrasound images containing only one

EP were analyzed by algorithm evaluation and visual

assessment. The number of cine ultrasound images with the

direction of EP classified into CF, FC, and CF + FC per method

is shown in Table 2. Mixed CF + FC direction was observed in

24% of cine ultrasound images by algorithm, while this

pattern was slightly less frequent in visual assessment

(22%). In the algorithm, the number of same-direction EP

was the same in 87% of the two algorithm counts. The ratio

was lower between the algorithm evaluation and visual

assessment (79%) and between the two sonographers (66%)

(Table 2).

4. Themean EP intensity assessed by the algorithmwas 2.6 ± 1.1,

and the mean peristalsis velocity was 0.147 (0.07) mm/s.

TABLE 1 Agreement in number of endometrial peristaltic waves counted by different methods.

Methods Mean
(and standard deviation)

ICC

Algorithm evaluation 1st 3.6 (2.1)

Algorithm evaluation 2nd 3.7 (2.0)

Visual reader 1 4.2 (2.3)

Visual reader 2 4.1 (2.2)

Algorithm evaluation 1st vs.2nd 0.97

Visual reader 1 vs. 2 0.96

Algorithm evaluation 1st vs. visual reader 1 0.91

Algorithm evaluation 1st vs. visual reader 2 0.93

Algorithm evaluation 2nd vs. visual reader 1 0.91

Algorithm evaluation 2nd vs. visual reader 2 0.94

TABLE 2 Direction of endometrial peristaltic waves evaluated by different methods.

The same number Percentage
in total (%)

Algorithm evaluation 1st vs. 2nd 116 0.87

Algorithm evaluation 1st vs. visual reader 1 106 0.79

Algorithm evaluation 1st vs. visual reader 2 97 0.72

Algorithm evaluation 2nd vs. visual reader 1 97 0.72

Algorithm evaluation 2nd vs. visual reader 2 88 0.65

Visual reader 1st vs. 2nd 89 0.66
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4 Discussion

The developed algorithm could automatically measure the

number, direction, velocity, and intensity of EP in cine

ultrasound images. The results indicated that the algorithm is

reliable, objective, and reproducible for measuring EP. The study

demonstrated that the algorithm had good repeatability in

evaluating EP’s number. The number was precisely the same

between the two evaluations in 32 out of 37 cine ultrasound

images, and the remaining five showed only one or two

differences in the repeated evaluation. The results also showed

that the algorithm evaluation was in close agreement with the

visual assessment. The number recognized by the algorithm was

less than that recognized by visual assessment (3.6 vs. 4.2), and

the difference is statistically significant. By analyzing the cine

ultrasound images, it was found that most differences occurred in

the video with the CF + FC peristalsis wave. The possible reason

might be that the sensitivity of vision to time resolution is inferior

to the algorithm. The visual evaluated CF + FC as two EPs while

the algorithm as one. The algorithm evaluation of EP direction

was consistent with the visual assessment. In addition to the

common CF, FC, and CF + FC, the EP direction also has the

following conditions: 1) Peristalsis starts in the middle of the

uterine corpus and then peristalsis to the uterine fundus and

cervix at the same time; 2) Peristalsis co-occurs in different

directions at multiple starting points; 3) The direction of

peristalsis is inconsistent with the longitudinal axis of the

uterus, showing irregular peristalsis. The above conditions

lead to difficulty in judgment by visual assessment and

algorithm evaluation. In this study, there were no datasets

with 0 number of EP by visual assessment, so it was

impossible to judge the advantage of the algorithm over visual

assessment in spatial resolution.

This study has two noteworthy strengths. First, an

assessment based on a multi-indicator approach could provide

more comprehensive information for the clinical practice. Not

only the number and direction but also the velocity and intensity

of EP could be evaluated by the algorithm. Peristaltic waves of the

same number and direction must have different physiological

and physical effects on the endometrium if the peristaltic range is

too extensive or the velocity is too fast. No published studies have

assessed the intensity and velocity of peristalsis by ultrasound.

Second, EP’s four indicators are presented in coordinates, the

number of peristalses was the number of waves, the direction was

different colors up and down the X-axis, and the amplitude of the

wave displays the intensity of the peristalsis. The velocity of

peristalsis is the wave’s speed in the video’s coordinate system.

Although EP has been extensively studied as a factor affecting

fertility since the 1990s, the assessment is currently not used as a

routine examination in clinical practice, mainly due to the lack of

an efficient, objective, accurate assessment method. IUPs are

theoretically the most accurate and objective for determining all

effects and dimensions of EP. A significant drawback of IUPs is

that the device causes the patient discomfort. In addition,

irritation induced by an intrauterine device may interfere with

physiological contraction characteristics (Wray et al., 2014). MRI

can measure the frequency of EP but not amplitude. MRI has a

higher detection rate because it is more advantageous in

displaying sub-endometrial wave conduction. However, MRI

is expensive and time-consuming (Kido et al., 2011; Nakai

et al., 2012; Watanabe et al., 2014). Tasnim’s team (Tasnim

et al., 2019) and Watanabe’s team (Watanabe et al., 2014)

investigated the number of EPs automatically assessed by MRI

imaging.

Van Gestel et al. (2007) used ultrasound to evaluate EP. The

study showed that the interobserver agreement among the three

investigators resulted in a kappa value of 0.83, reflecting strong

agreement. The study did not explore the consistency of

contraction amplitude. Mori’s team established a model for

predicting pregnancy outcomes by ultrasound assessment of

uterine motion velocity (Morizaki et al., 1989). Huang’s team

applied speckle tracking technology to automatically assess the

velocity and direction of contraction waves (Huang et al., 2018).

Limitations of our study include its retrospective nature and

the small sample size. EP was only analyzed from a

methodological point of view and was not evaluated in

conjunction with clinical pregnancy outcomes. Future

prospective studies of EP combined with clinical pregnancy

outcomes and different menstrual cycles are needed. As the

algorithm is in the experimental stage, technical problems

such as complex programs and motion artifacts will be solved

in the future.

In conclusion, we developed the automated analysis

algorithm based on optical flow technology, which can

comprehensively evaluate EP’s number, direction, intensity,

and velocity in cine ultrasound images. The algorithm can

improve the efficiency of clinical evaluation of EP and has

potential application prospects.
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SUPPLEMENTARY VIDEO S1
An example of the automated analysis algorithm evaluated EP. The red
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were the fundus to the cervix. The video shows three peristalsis waves
from the cervix to the fundus and two from the fundus to the cervix.
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Purpose: The study aimed to assess the value of the resting-state

electroencephalogram (EEG)-based convolutional neural network (CNN)

method for the diagnosis of depression and its severity in order to better

serve depressed patients and at-risk populations.

Methods: In this study, we used the resting state EEG-based CNN to identify

depression and evaluated its severity. The EEG data were collected from

depressed patients and healthy people using the Nihon Kohden EEG-1200

system. Analytical processing of resting-state EEG data was performed using

Python andMATLAB software applications. The questionnaire included the Self-

Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS), Symptom

Check-List-90 (SCL-90), and the Eysenck Personality Questionnaire (EPQ).

Results: A total of 82 subjects were included in this study, with 41 in the

depression group and 41 in the healthy control group. The area under the curve

(AUC) of the resting-state EEG-based CNN in depression diagnosis was 0.74

(95%CI: 0.70–0.77) with an accuracy of 66.40%. In the depression group, the

SDS, SAS, SCL-90 subscales, and N scores were significantly higher in the major

depression group than those in the non-major depression group (p < 0.05). The

AUC of the model in depression severity was 0.70 (95%CI: 0.65–0.75) with an

accuracy of 66.93%. Correlation analysis revealed that major depression AI

scores were significantly correlated with SAS scores (r = 0.508, p = 0.003) and

SDS scores (r = 0.765, p < 0.001).

Conclusion: Our model can accurately identify the depression-specific EEG

signal in terms of depression diagnosis and severity identification. It would

eventually provide new strategies for early diagnosis of depression and its

severity.
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1 Introduction

Depression is a common mood disorder that has negative

impacts on a patient’s physical and mental health (McCarron

et al., 2021; Unursaikhan et al., 2021). The clinical presentation

included depressed mood, slowed thinking, and decreased

willpower activity. In severe cases, patients might also develop

suicidal attempts (Smith, 2014). With the continuous

development of human society, the number of people with

depression is increasing year by year worldwide (Moreno-

Agostino et al., 2020). The World Health Organization

(WHO) showed that more than 300 million people worldwide

suffer from depression, and about 800,000 of them commit

suicide (Levey et al., 2019). Untimely identification of

depression may be one of the leading causes of this result.

Therefore, early diagnosis of depression is critical.

However, the objectivity and accuracy of depression

diagnosis are limited by the current diagnostic criteria for

depression. Some facts must be admitted: the diagnostic

technique in psychiatry has historically lagged behind other

domains (Murray et al., 2021). Fortunately, this challenge is

being alleviated by the application of electroencephalogram

(EEG) measurement. To date, EEG has been widely used in

neuroscience to get insights into brain activity (Latreille et al.,

2016; Schönenberg et al., 2017;Wu et al., 2020; Dimitriadis, 2021;

Simonato et al., 2021). EEG recordings benefit from shorter test

times and lower prices than functional magnetic resonance

imaging (fMRI), making them more suitable for diagnosing

several types of mental diseases (Čukić et al., 2020). In

addition to using traditional EEG images for analysis, the

frequency domain features of EEG images have also been

shown to be one of the most useful pragmatic markers for

diagnosing depression. The frequency domain analysis realizes

the conversion of the EEG signal from the time domain to the

frequency domain. The frequency domain analysis results in the

energy value distribution at each frequency, that is, the power

value. For example, Stewart et al. (2010) found that the average

alpha power difference measured in the left hemisphere and the

right hemisphere in depression patients is larger than that in

normal people. Compared with normal people, the left

hemisphere activity of depression patients is reduced

(expressed as increased alpha power). At the same time, a

study suggested that the energy asymmetry of the frontal lobe

alpha wave in patients with depression was more obvious to the

left, and the severity of symptoms was positively correlated with

laterality (Grünewald et al., 2018).

With the rise of computational psychiatry (Geng et al., 2022),

EEG-based machine learning (ML) to detect illness phenotypes

has attracted growing interest, which provides a theoretical basis

and feasibility for disease diagnosis. Since Ahmadlou et al. (2012)

initially used ML approaches to detect depression early, much

relevant research has been published with promising findings,

especially in depression diagnosis (Puthankattil and Joseph,

2012; Hosseinifard et al., 2013; Faust et al., 2014; Bairy et al.,

2015). For example, Khodayari-Rostamabad et al. (2010)

proposed a diagnostic model trained using EEG data. The

model was able to differentiate between subjects with major

depressive disorder, chronic schizophrenia, bipolar depression,

and healthy subjects by analyzing patients’ EEG data. Meanwhile,

Kang et al. (2020) converted the asymmetric features of EEG

signals into matrix images, used them as the input of the

convolutional neural network, and obtained 98.85% accuracy

in depression screening. All of the aforementioned research

demonstrates that combining machine learning with EEG

signaling can be an effective tool for screening depression

patients.

Feature extraction and selection is an essential step in ML,

which could improve the model’s performance. Many

researchers have proposed various feature extraction and

selection methods to improve the performance of resting-state

EEG-basedML in differentiating depressed patients from normal

controls (Wan et al., 2019; Duan et al., 2020). Despite the

advantages mentioned previous to these steps, it has

drawbacks, particularly the length of training time needed to

obtain reliable classification results. Because of this, more and

more researchers have applied deep learning (DL), especially

convolutional neural networks (CNNs) (Zhang et al., 2021), to

disease diagnosis (Morabito et al., 2017; Ortiz et al., 2021). CNN

was a new disease detection model with adaptive learning

capability. Its advantage was that, without the need to

manually select features, it could shorten the experimental

process. Acharya et al. (2018) initially used the CNN to

identify the resting-state EEG data on normal and depressed

patients with good classification performance, which has

attracted significant attention. Many studies have considered

that the CNN could be used as a clinically effective computer-

aided diagnosis (CAD) system for depression (Kang et al., 2020;

Uyulan et al., 2021).

However, the significant limitations to previous studies were two

aspects. First, most studies are too strict on resting-state EEG signal

preprocessing, which leads to a large number of valuable missing

resting-state EEG signals and may overestimate the accuracy of the

model.More realistic and high-quality data would help CNN identify

the full range of depression in a more clinically meaningful and

generalizable way. Second, most studies have only discriminated

normal individuals from depression patients without predicting

depression severity. It was reported that the severity of depression

determined the symptoms, manifestations, and prognosis of the

disease (Zimmerman et al., 2018). The clinical potential of deep

learning has been undermined by the lack of external validation of

models driven by a single dataset and by the increasing use of opaque

decision-making frameworks. Therefore, overcoming these

challenges is critical to harness the potential of deep learning

algorithms to improve patient care and pave the way for

interpretable, evidence-based machine learning in the medical

imaging community.
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It is worth noting that previous studies have been strict with

the preprocessing of image information when using EEG

modeling (raw EEGs were preprocessed and retained only the

image features of depression that had been identified in previous

studies). Although this strategy maximizes model accuracy, it

also misses the opportunity to discover new depression-specific

EEG features. Therefore, we chose to simplify the EEG processing

conditions in an attempt to obtain new depression-specific EEG

signatures.

Our study ensured realistic and high-quality data by reducing

EEG preprocessing and adding EEG screening. In addition, this

study would also predict the severity of depression to provide a

reliable basis for achieving an accurate diagnosis or clinical

decision-making. We chose to simplify the EEG processing

conditions in an attempt to obtain new depression-specific

EEG features. Using this strategy, we were able to identify

new depression-specific EEG signatures in subsequent studies

by using techniques such as ‘deconvolutional neural networks’

and to further explore the physiological impact of depression.

Our study provides new strategies for the clinical diagnosis of

depression.

2 Manuscript formatting

2.1 Methods

2.1.1 Subjects
A total of 41 depressed patients hospitalized in The First

Affiliated Hospital of Nanchang University from September

2020 to April 2021 were selected as the depression

group. Meanwhile, 41 healthy people were selected as the

healthy control group. Enrollment criteria for the depression

group included age 16–65 years, and the patients reached the

diagnostic criteria for depression using the International

Classification of Diseases, 10th edition (ICD-10). Exclusion

criteria included the following: prior diagnosis of somatic

disorders, bipolar disorder, schizophrenia, and other

psychiatric disorders. Enrollment criteria of the healthy

control group included age 16–65 years, and none met the

diagnostic criteria for any psychiatric disorder using ICD-10.

Exclusion criteria included the following: prior diagnosis of any

somatic disorders. Informed verbal consent was obtained for

all participants. Moreover, the research was approved by

the Research Ethics Board at The First Affiliated Hospital

of Nanchang University (approval number:

2022CDYFYYLK(06-030)). All subjects were asked to

complete the Self-Rating Depression Scale (SDS) to assess

the severity of depression.

2.1.2 Sample for model training/testing
Of the 62 eligible study subjects, there were 30 healthy people

(without brain disease), 16 with mild to moderate depression,

and 16 with severe depression (the diagnosis of mild, moderate,

and moderate depression is performed using the SDS) Each

patient’s EEG can be cut into 60 images that meet the

requirements. Thus, a total of 1800 images of healthy people,

960 images of patients with mild to moderate depression, and

960 images of patients with severe depression were taken.

Both models use a 10-fold crossover method to divide the

image dataset into training and test sets in a ratio of 8:2. In the

“Distinguishing Depression Model” (patients with mild to

moderate depression and patients with severe depression are

divided into a whole), 1440 images of healthy people and

1536 images of patients with depression are included in the

training set, and 360 images of healthy people and 384 depression

images were included in the test set.

In the “Model for Distinguishing Depression Severity,”

768 images of patients with non-major depression (mild to

moderate depression) and 768 images of patients with major

depression (severe depression) were included in the training

set; 192 images of patients with non-major depression and

192 images of patients with major depression were included in

the test set.

2.1.3 Study design
In this study, resting-state EEG signals were collected from

the depression group and the healthy control group using the

Nihon Kohden EEG-1200 system. A clinical questionnaire survey

and disease duration were conducted in the depression

group. Gender and age were recorded for all participants. The

CNN was used as a classification prediction model for

depression. A flowchart of the study is listed as follows (seen

in Figure 1).

Due to the characteristics of CNN and the technical

limitations to the research group, we cannot use

untransformed EEG signals for training (CNN technology

uses image data for analysis to obtain different groups of

image features and achieve classification). In this study, we

selected qualified EEGs of patients who met the requirements

and obtained their 600s EEG signals. According to the setting of

taking one image in 10 s, we could obtain 19-channel images of a

single patient.

2.1.3.1 Measurement

The measurements contained the following four parts: the

Self-Rating Anxiety Scale, Self-Rating Depression Scale,

Symptom Check-List-90, and the Eysenck Personality

Questionnaire.

Self-Rating Anxiety Scale (SAS): The questionnaire is a

validated tool for screening anxiety disorders with good

reliability and validity (Ding and Yao., 2020; Dunstan et al.,

2020). The SAS consisted of 20 items with a total score of 100. A

higher score reflects a severer anxiety symptom.

Self-Rating Depression Scale (SDS): This is a widely used

measure to screen for depression in clinical settings (Dunstan
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et al., 2019; Ding and Yao., 2020). The SDS consisted of 20 items.

A higher score reflects a severer depression symptom. In this

study, we defined a major depression group as having a SDS

score≥73. Conversely, the others were defined as non-major

depression groups.

Symptom Check-List-90 (SCL-90): This scale is one of the

most widely used mental health measures and has high reliability

and validity (Derogatis et al., 1973). It consists of 90 items that

could be divided into the symptom dimensions of somatization,

obsessive-compulsive disorder, interpersonal sensitivity,

depression, anxiety, hostility, phobic anxiety, paranoid

ideation, and psychoticism. Mental disorder is determined by

total score≥160 points or>2 points for any factor.

Eysenck Personality Questionnaire (EPQ): This is a common

self-report personality questionnaire with high validity and

reliability. The scale comprised 88 items summarized as

extraversion (E), neuroticism (N), psychoticism (P), and lying

scales (L) (EPQ, Chinese version) (Gong, 1984). The higher the

score, the more likely the patient has the personality traits listed

on the scale (Chen et al., 2022).

2.1.3.2 EEG recording

Here, 10 min of resting-state EEG signals were acquired in

the eye-closed (EC) conditions according to the

10–20 electrode placement standard. EEG signals were

recorded in the frontal (FP1, FP2, F3, F4, F7, F8, and Fz),

temporal (T3, T4, T5, and T6), parietal (P3, P4, and Pz),

occipital (O1 and O2), and central (C3, C4, and Cz) regions. In

addition, we used the bilateral mastoids (A1 and A2) as

reference electrodes. EEG signals were collected from

19 channels at a sample rate of 500 Hz. These signals were

filtered with a 0.5 Hz–50 Hz bandpass filter and an additional

50-Hz notch filter. The impedance of all electrodes was within

a reasonable range.

2.1.3.3 EEG preprocessing and selecting

Signal preprocessing of resting-state EEG was performed

through the public MATLAB toolbox EEGLAB (Delorme and

Makeig, 2004). The steps for selecting resting-state EEG signals

with more than 50% effective segments are as follows: first, EEG

signals were filtered offline using an FIR bandpass filter

(0.5–50 Hz), and then, a notch filter was applied to remove

the power frequency interference at 50 Hz. Second, EEG signals

were segmented into 2 s long epochs with 300 epochs. Third,

bad electrodes were removed with subsequent interpolation.

Fourth, independent component analysis (ICA) was applied to

identify and remove the eye blink artifacts. Fifth, epochs

containing EEG amplitudes that were greater than ±70 uV

were rejected automatically. Finally, the effective EEG signals

were preprocessed by the aforementioned step 1 and were saved

in standard EDF format for future analysis (seen in Figure 2).

2.1.3.4 EEG feature extraction

EEG features were extracted using Python and the MNE

toolbox (version 0.23.4) (www.martinos.org/mne). The

main steps included the following: 1) the number of

electrodes and the amplitude information of each electrode

were extracted. 2) The time domain features of the EEG signal

were generated by aggregating the amplitude information of

all electrodes in the EEG signal. 3) The time domain features

FIGURE 1
Flowchart illustrating the main content of this study. Note: D group, depression group; HC group, health control group; non-MD group, non-
major depression group; MD group, major depression group.
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were then segmented by a window slide (length of time

duration window: 10 s) with a window step of 10 s and no

overlap between time duration windows, resulting in a

resting-state EEG feature map. For each case of resting-

state EEG signals that met the inclusion criteria, 60 images

of resting-state EEG features were generated in the PNG

format (seen in Figure 2).

2.1.3.5 CNN architecture

This study adopts a deep learning model using a CNN. The

model consisted of three convolutional, two maximum pooling,

and three fully connected layers. The convolutional layer extracts

the EEG signal features, each with 128, 256 output units. The

pooling layer can reduce redundant information. Dropout and

L2 regularization were added in the fully connected layers to help

FIGURE 2
Block diagram for EEG preprocessing, selecting, and feature extraction.

FIGURE 3
Illustration of the EEG-based CNN for diagnosis of depression and its severity. Note: 1) D group, depression group; HC group, health control
group; non-MD group, non-major depression group; MD group, major depression group. 2) CONV1 (11*11, 128): 11*11 represents the size of the
convolution kernel, representing height and width, respectively, and 128 represents the number of convolution kernels; CONV2 (5*5, 256):
5*5 represents the size of the convolution kernel, representing height and width, respectively, and 256 represents the number of convolution
kernels.
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prevent overfitting. The network input was a 400 × 400-pixel

image. The training set was calculated using stochastic gradient

descent. The validation set was used to hyper-parameterize all the

networks to finalize the optimal learning rate of 0.001, and the

batch size was 32. A total of 32 images were put into the training

each time, with a training count of 20, to build the CNN model.

The test set was put into the model for testing, and each image

was calculated to obtain an AI score from 0 to 1. In fact, each

image can obtain the AI score in the model (seen in Figure 3). It

illustrates the EEG-based CNN for depression diagnosis and its

severity. In our study, the probability of the image being

diagnosed with major depression in the depression group was

defined as the image’s major depression AI score.

2.1.3.6 Performance evaluation of the CNN

Data were partitioned into three sets (64/16/20) to obtain

training, validation, and test sets using the 10-fold cross-

validation strategy. The training set was used for model

training, while the validation set was used for external

validation of the model. The test set was used for evaluating

the final performance of the trained model. In addition, we also

used the area under the curve (AUC), accuracy (AC), precision,

recall, and F1-score (F1) to evaluate the performance of the

proposed model. The evaluation metrics are defined as follows:

AC � (TP + TN)
(TP + FN + TN + FP) (1)

Precision � TP
(TP + FP) (2)

Recall � TP
(TP + FN) (3)

F1 � (2 × TP)
(2 × TP + FP + FN) (4)

where TP means true positive, TN means true negative, FP

means false positive, and FN means false negative.

2.1.3.7 Obtaining the optimal model parameters

In the training set, we use the 10-fold cross-validation

method to divide the data into an internal training set and an

internal validation set by 8:2. The internal training set

participates in the training of the model, and the internal

validation set is used to initially evaluate the model’s

performance. In this study, we set the number of iterations to

20, and the optimal learning rate is 0.0001. At the same time,

during the training process, we can output the accuracy of the

internal training set and internal validation set after each

iteration. To avoid overfitting, the model with the highest

accuracy of the two was chosen, which is regarded as the

optimal model (Kiliç et al., 2022).

3.1.4 Statistical analysis
The measurement data conforming to the normal

distribution were expressed as means ± standard deviation.

Otherwise, the data were expressed as the median (lower and

upper quartiles). The independent samples t-test or

Mann–Whitney U test was conducted for the intergroup

comparisons accordingly. The count data were expressed as

rates and were compared using the chi-squared test. Then,

Spearman’s correlation analysis was used to explore the

correlation between clinical characteristics and the major

depression AI score. p < 0.05 was considered to be statistically

significant. All data analyses were performed by SPSS

26.0 software.

2.2 Results

2.2.1 Demographic characteristics and clinical
differences

A total of 82 subjects were included in this study, with 41 in

the depression group and 41 in the healthy control group. In the

depression group, 31.71% were male, and the median age was

21 years (17–37), with a median disease duration of 1 year

(0.38–3). The mean scores of the SAS and SDS were 61.13 ±

2.14 and 69.97 ± 13.39, respectively. The mean scores of the

SCL-90 subscales were as follows: somatization (2.47 ± 1.00),

obsessive-compulsive disorder (2.98 ± 0.97), interpersonal

sensitivity (2.87 ± 1.16), depression (3.21 ± 1.14), anxiety

(3.04 ± 1.09), hostility (2.65 ± 1.28), phobic anxiety (2.68 ±

1.15), paranoid ideation (2.50 ± 1.17), and psychoticism (2.60 ±

1.07). The following are the mean scores of the EPQ subscales: E

(40.03 ± 14.28), N (62.72 ± 11.69), P (54.37 ± 9.74), and L

(41.92 ± 9.53). In the healthy control group, 36.59% were male,

and the median age was 28 years (24–47.5). The median age for

the healthy control group was higher than that for the

depression group (p < 0.05). There was no significant

difference in gender between the two groups (P > 0.05)

(seen in Table 1).

The depression group consists of 22 patients with non-major

depression and 19 patients with major depression. The SDS, SAS,

SCL-90 subscales, and N score were significantly higher in the

major depression group than those in the non-major depression

group (p < 0.05), whereas for E, P, and L, no difference existed

among groups. In addition, the median age for the non-major

depression group was higher than that for the major depression

group (p < 0.05). There was no significant difference in gender

between the two groups (P > 0.05) (seen in Table 2).

2.2.2 Resting-state EEG screening
In the depression group, the resting-state EEG data met the

inclusion criteria in 32 cases, with an inclusion rate of 78.05%,

and the number of valid segments per EEG data was 231.33 ±

47.74. In the healthy control group, their resting-state EEG data

met the inclusion criteria in 30 cases, with an inclusion rate of

73.17% and a valid number of segments per EEG data of

225.61 ± 41.29.
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TABLE 1 Clinical and demographic characteristics in the depression group and the healthy control group.

D group (n = 41) HC group (n = 41) χ2/Z P

Gender, male (%) 13 (31.71) 15 (36.59) 0.22 0.64

Age (years) 21.00 (17.00, 37.00) 28.00 (24.00, 47.50) 2.49 0.01

Disease duration (years) 1.00 (0.38, 3.00) — — —

SDS (mean, SD) 69.97 ± 13.39 — — —

SAS (mean, SD) 61.13 ± 2.14 — — —

SCL-90 (mean, SD)

Somatization 2.47 ± 1.00 — — —

Obsessive-compulsive disorder 2.98 ± 0.97 — — —

Interpersonal sensitivity 2.87 ± 1.16 — — —

Depression 3.21 ± 1.14 — — —

Anxiety 3.04 ± 1.09 — — —

Hostility 2.65 ± 1.28 — — —

Phobic anxiety 2.68 ± 1.15 — — —

Paranoid ideation 2.50 ± 1.17 — — —

Psychoticism 2.60 ± 1.07 — — —

EPQ (mean, SD)

E 40.03 ± 14.28 — — —

N 62.72 ± 11.69 — — —

P 54.37 ± 9.74 — — —

L 41.92 ± 9.53 — — —

D group, depression group; HC, group, health control group; E, extraversion; N, neuroticism; P, psychoticism; L, lying scales.

TABLE 2 Clinical and demographic characteristics in the non-major depression group and the major depression group.

Non-MD
group (n = 22)

MD group (n = 19) χ2/Z/t P

Gender, male (%) 7 (31.82) 6 (31.58) 0 0.99

Age (years) 25.00 (20.00, 42.00) 18.00 (16.00, 26.00) −2.51 0.01

Disease duration (years) 1.00 (0.25, 5.25) 1.00 (0.50, 2.00) −0.07 0.95

SDS (mean, SD) 63.75 (56.25, 69.06) 78.75 (76.25, 85.00) −5.47 <0.001
SAS (mean, SD) 53.47 ± 10.92 70.00 ± 11.16 −4.79 <0.001
SCL-90 (mean, SD)

Somatization 2.07 ± 0.87 2.95 ± 0.95 −3.10 0.004

Obsessive-compulsive disorder 2.53 ± 0.92 3.51 ± 0.73 −3.73 0.001

Interpersonal sensitivity 2.28 ± 1.01 3.56 ± 0.94 −4.17 <0.001
Depression 2.53 ± 0.98 4.01 ± 0.72 −5.45 <0.001
Anxiety 2.50 ± 0.98 3.67 ± 0.87 −4.04 <0.001
Hostility 2.27 ± 1.39 3.10 ± 0.98 −2.17 0.04

Phobic anxiety 2.18 ± 1.05 3.26 ± 1.00 −3.39 0.002

Paranoid ideation 1.91 ± 0.90 3.18 ± 1.09 −4.10 <0.001
Psychoticism 2.04 ± 0.82 3.26 ± 0.96 −4.41 <0.001
EPQ (mean, SD)

E 43.30 ± 15.89 36.25 ± 11.42 1.61 0.12

N 58.76 ± 12.76 67.30 ± 8.50 −2.48 0.02

P 53.14 ± 10.76 55.78 ± 8.48 −0.86 0.39

L 41.80 ± 11.44 42.05 ± 7.00 −0.08 0.94

Note: non-MD, group, non-major depression group; MD, group, major depression group; E, extraversion; N, neuroticism; P, psychoticism; L, lying scales.
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In the non-major depression group, the resting-state EEG

data met the inclusion criteria in 16 cases, with an inclusion

rate of 72.73% and a valid number of segments per EEG data

(238.69 ± 45.26). In the major depression group, the resting-state

EEG data met the inclusion criteria in 16 cases, with an inclusion

rate of 84.21% and a valid number of segments per EEG data

(223.06 ± 45.81).

2.2.3 CNN performance
In this study, the area under the curve (AUC) of the

resting-state EEG-based CNN in depression diagnosis was

0.74 (95%CI: 0.70–0.77) (seen in Figure 4), with an accuracy of

66.40%, precision of 83.84%, recall of 43.23%, and F1 score of

57.04%. In addition, the AUC of the resting-state EEG-based

CNN in depression severity was 0.70 (95%CI: 0.65–0.75)

(seen in Figure 5), with an accuracy of 66.93%, precision of

63.49%, recall of 79.69%, and F1 score of 70.67% (seen in

Table 3).

2.2.4 Correlation of clinical characteristics and
major depression AI score

In the depression group, Spearman’s correlation analysis

revealed that major depression AI scores were significantly

correlated with SAS scores (r = 0.508, p = 0.003) and SDS

scores (r = 0.765, p < 0.001) (seen in Figure 6 and Figure7),

but the scores were not remarkably correlated with EPQ subscale

scores (P, r = 0.011, p = 0.953; E, r = -0.305, p = 0.090; N, r =

0.322, p = 0.072; L, r = 0.208, p = 0.253).

The analysis was also performed between major depression

AI scores and SCL-90 subscale scores. It showed that major

depression AI scores were significantly correlated with

somatization (r = 0.492, p = 0.004), obsessive-compulsive

disorder (r = 0.546, p = 0.001), interpersonal sensitivity (r =

0.530, p = 0.002), depression (r = 0.653, p < 0.001), anxiety (r =

0.506, p = 0.003), hostility (r = 0.496, p = 0.004), phobic anxiety

(r = 0.485, p = 0.005), paranoid ideation (r = 0.522, p = 0.002),

and psychoticism (r = 0.531, p = 0.002).

2.3 Discussion

To the best of our knowledge, there was no previous study

that added the EEG screening process in their research. The

step was critical considering the vulnerability of the EEG

signal (Müller-Putz, 2020). In this study, the AUC of the

resting-state EEG-based CNN for differentiating between

depression patients and healthy people was 0.74, with an

accuracy of 66.40%. The accuracy was within a close

approximation to the findings of the previous study (Cai

et al., 2018). However, our model got lower AUC and

accuracy in depression diagnosis compared to the results of

most previous studies (Acharya et al., 2018; Kang et al., 2020;

Uyulan et al., 2021). This might be associated with the

following reasons: first, some EEG artifacts might be

retained, owing to the fewer preprocessing steps (Jiang

et al., 2019). The residual EEG artifacts tend to have a

great impact on the CNN performance. Second, the amount

of data included in this study was relatively small compared to

FIGURE 4
ROC of the EEG-based CNN in depression diagnosis.

FIGURE 5
ROC of the EEG-based CNN in depression severity.
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the previous studies. This also might have influenced the

performance of the classification model (Li et al., 2011).

Despite that, more steps of EEG preprocessing and feature

selection were disadvantageous for assisting clinicians in rapid

decision-making. As a result, it suggested that CNN’s accuracy

in clinical depression diagnosis might have been exaggerated

in previous studies.

Furthermore, our study also evaluated depression severity

with the model. Similar to the results of previous studies, SDS,

SAS, SCL-90 subscales, and N score were significantly higher in

the major depression group than those in the non-major

depression group. Because people who have co-morbidity

with anxiety are more likely to suffer from depression, the

enhanced level of anxiety might be related to that of negative

emotions (Goldberg and Fawcett, 2012; Choi et al., 2020). In

addition, the impairment of cognitive function and strained

interpersonal relationships was identified to be the most

strongly associated with depression severity (Douglas et al.,

2018). Furthermore, this study found that major depression

patients had a higher risk of psychotic symptoms (Dubovsky

et al., 2021). Major depression with psychotic symptoms tended

to have a higher risk of comorbidity and suicide (Gaudiano

et al., 2009; Dold et al., 2019), which had a greater impact on the

quality of life of patients (Wang et al., 2021). Meanwhile, worse

results were anticipated with the treatment of pharmacotherapy

and psychotherapy in major depression with psychotic

symptoms (Craig et al., 2007; Dold et al., 2019). Therefore, it

was particularly important to accurately identify major

depression. In this study, the AUC of the resting-state EEG-

based CNN for differentiating between non-major depression

patients and major depression patients was 0.70 with an

accuracy of 66.93%. Although different modeling methods

and data processing strategies were used, the AUC and

accuracy of our model were close to those of previous

studies (Dibeklioglu et al., 2018; Mahato et al., 2020; Kwon

and Kim, 2021). It might suggest that the model has better

performance and stability in depression grading of severity.

Furthermore, we found that major depression AI scores were

positively correlated with depression symptoms, which further

clarified the aforementioned result.

In this study, major depression AI scores were also

positively correlated with anxiety symptoms, somatization,

TABLE 3 Performance of the CNN model in depression diagnosis and its severity.

AUC Accuracy (%) Precision (%) Recall (%) F1 score (%)

Depression diagnosis 0.74 (95%CI: 0.70–0.77) 66.40 83.84 43.23 57.04

Depression severity 0.70 (95%CI: 0.65–0.75) 66.93 63.49 79.69 70.67

Note: 95% CI: 95% confidence interval.

FIGURE 6
Correlation of the SDS score with the major depression AI
score.

FIGURE 7
Correlation of the SAS score with the major depression AI
score.
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obsessive-compulsive disorder, interpersonal sensitivity,

hostility, phobic anxiety, paranoid ideation, and

psychoticism. These results further showed that the

aforementioned symptoms were remarkably associated with

major depression and indicated that depressed patients with

the symptoms were prone to diagnosis with major depression

in our model. Meanwhile, it somewhat indicated that the

model could be generalized to identify other psychiatric

disorders associated with the aforementioned symptoms in

the future. In particular, schizophrenia (Shoeibi et al., 2021),

bipolar disorder (Li et al., 2021), anxiety disorders (Xing et al.,

2019), and obsessive-compulsive disorder (Cohn et al., 2018)

should be considered. Unfortunately, we did not find a

significant correlation between major depression AI scores

and EPQ subscale scores, which were approximately

consistent with the clinical results except for neuroticism.

It might indicate that personality traits have a limited

contribution to identifying depression severity. Meanwhile,

it is worth noting that the aforementioned conclusions still

should be considered with caution, owing to the restrictions of

our results. More analysis will be performed in future

research.

In addition, there were still some limitations to this study:

first, the lack of questionnaire information on the healthy

people and the lack of clinical information on the

patients, such as treatment with antidepressants. Second,

the groups did not match in age. Third, using a single

EEG signal as a data-driven ML model for depression

diagnosis lacks clinical value and accuracy compared to

existing ML models that include multimodal data. Fourth,

we did not build a “diagnostic model of depression” by

grouping mild, moderate, and severe image data. Further

research can group the three types of data and models

separately to obtain a more accurate diagnosis model of

depression.

Therefore, further studies with more rigorous

experimental design and clinical information are expected.

In particular, regional cooperation and multi-center research

studies should be encouraged (Geng et al., 2022). The

most recent approaches to the diagnosis of depression have

focused primarily on graph theory in neuropsychiatry

(Aydin et al., 2022; Kilic et al., 2022). Using GT-based

network analysis, researchers can estimate global

connectivity measures from multichannel EEG recordings.

We will pay more attention to network measurement

based on graph theory in future research directions.

Meanwhile, we would continue to integrate multi-model

data such as EEG, fMRI, and DNA methylation data to

create more accurate artificial prediction models, eventually

providing new strategies for early depression diagnosis and its

severity.

3 Conclusion

In this study, our model can accurately identify the depression-

specific EEG signal, both in terms of depression diagnosis and its

severity identification. Based on this, we conclude that the model

could be a useful aid for depression diagnosis and its severity. It

would eventually provide new strategies for early depression

diagnosis and its severity.
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Predicting clinical response to
everolimus in ER+ breast cancers
using machine-learning

Aritro Nath1*, Patrick A. Cosgrove1, Jeffrey T. Chang2 and
Andrea H. Bild1*
1City of Hope Comprehensive Cancer Center, Department of Medical Oncology and Therapeutics,
Monrovia, CA, United States, 2Department of Integrative Biology and Pharmacology, University of
Texas Health Science Center at Houston, Houston, TX, United States

Endocrine therapy remains the primary treatment choice for ER+ breast

cancers. However, most advanced ER+ breast cancers ultimately develop

resistance to endocrine. This acquired resistance to endocrine therapy is

often driven by the activation of the PI3K/AKT/mTOR signaling pathway.

Everolimus, a drug that targets and inhibits the mTOR complex has been

shown to improve clinical outcomes in metastatic ER+ breast cancers.

However, there are no biomarkers currently available to guide the use of

everolimus in the clinic for progressive patients, where multiple therapeutic

options are available. Here, we utilized gene expression signatures from 9 ER+

breast cancer cell lines and 23 patients treated with everolimus to develop and

validate an integrative machine learning biomarker of mTOR inhibitor response.

Our results show that the machine learning biomarker can successfully

distinguish responders from non-responders and can be applied to identify

patients that will most likely benefit from everolimus treatment.

KEYWORDS

machine-learning, biomarker, everolimus, estrogen receptor positive breast cancer,
prognostic model, random forest, feature selection

Introduction

Breast cancer is now the most commonly diagnosed malignancy and cause of cancer-

related death in women worldwide (Houghton and Hankinson, 2021). In the

United States, one in eight women will be diagnosed with breast cancer throughout

their lifetime (Siegel et al., 2019). At the molecular level, nearly 3 in 4 breast cancers

display increased expression of the estrogen receptor (ER+) and do not express the human

epidermal growth factor receptor 2 (HER2-). The primary systemic treatment of ER+/

HER2- breast cancer is endocrine therapy, which targets the dependency of these tumors

on the estrogen signaling pathway for proliferation. These include selective estrogen

receptor modulators (SERMs) like tamoxifen, selective estrogen receptor degraders

(SERDs) like fulvestrant, and aromatase inhibitors (AIs) like exemestane (Smith and

Dowsett, 2003; Patel and Bihani, 2018).

Patients with primary or early-stage ER+/HER2- breast cancer generally have a

favorable outlook, with excellent 5-year survival rates on endocrine therapy, even without
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the use of adjuvant chemotherapy (Early Breast Cancer Trialists’

Collaborative et al., 2012). However, the response rates tend to be

lower in patients with metastatic disease, with only 30% of the

patients displaying tumor regression on endocrine therapy

(Osborne and Schiff, 2011). This outcome has been attributed

to primary or acquired endocrine resistance in progressive

tumors. Studies have shown that advanced and metastatic

ER+ breast cancers can develop endocrine resistance through

various mechanisms, such as mutations in the ER-alpha gene,

amplification/overexpression of epidermal growth factor and

fibroblast growth factor receptor family genes, and activation

of downstream signaling via the PI3K/AKT/mTOR signaling

pathway (Musgrove and Sutherland, 2009; Clarke et al., 2015).

Consequently, add-on drugs that target the resistance

mechanisms, such as the PI3K inhibitor alpelisib and the

mTOR inhibitor everolimus, have shown promising results in

clinical trials for advanced ER+ breast cancers. For example, the

SOLAR-1 trial reported an improvement of median overall

survival in PIK3CA mutated cancers from 5.7 months in the

fulvestrant group to 11 months in the alpelisib plus fulvestrant

group. The BOLERO-2 trial showed significant improvement in

progression-free survival in post-menopausal ER+ breast cancers

from 2.8 months on exemestane alone to 6.9 months on

everolimus plus exemestane (Baselga et al., 2012).

Unlike the PI3K inhibitors, currently, there are no clinically

relevant biomarkers available for the selection of everolimus as

the treatment for ER+ breast cancers. In the absence of suitable

guidelines, this choice is primarily based on patient and caregiver

preferences. We have previously shown that effective prognostic

and response biomarkers can be developed from the baseline

(pre-treatment) transcriptomes of the tumors using systems

biology and machine learning (Nath et al., 2019; Nath et al.,

2022). In this study, we apply a machine learning framework to

develop a novel biomarker model to predict clinical response to

everolimus. We adopt a hybrid approach that integrates

signatures of treatment response from well-controlled in vitro

experimentation of cell lines treated with everolimus with

empirical signatures derived from the baseline tumor

transcriptomes of 23 patients. Using this approach, we

develop and validate a predictive model of everolimus

response and demonstrate its potential application in

identifying candidates for mTOR inhibitor treatment.

Materials and methods

Breast cancer cell line culture and drug
treatment

Nine ER+/HER2- breast cancer cell lines were used in this

study. CAMA-1, LY2, and MCF7 cell lines were grown and

cultured in Dulbecco’s Modified Eagle Medium (DMEM,

Gibco, Cat# 11995073) + 10% heat-inactivated Fetal Bovine

Serum (FBS, Sigma-Aldrich, Cat # F4135) + 1x antibiotic-

antimycotic (Gibco, Cat# 15240062). T47D, BT-483, ZR-75-1,

HCC1428, MDA-MB-134-VI, and MDA-MB-175-VII were

grown and cultured in RPMI-1640 (Gibco, Cat# 11875119)

+ 10% heat-inactivated FBS + 1x antibiotic-antimycotic. Cell

lines were authenticated by STR profiling (at City of Hope

Integrative Genomics Core) and tested negative for

mycoplasma contamination using MycoAlert Mycoplasma

Detection Kit (Lonza, Cat# LT07-118).

To determine an effective concentration of everolimus and

exemestane for everolimus plus exemestane signature each cell

line was plated at 1,000 cell/well in a 384-well flat bottom TC-

treated plate (Corning, Cat# 3764) and allowed to adhere at 37°C

humidified incubator + 5% CO2. After 24hrs post-plating, cells

were incubated with a dose-response of everolimus or

exemestane or 0.2% DMSO control for 4 days (40 μL total

volume). Viability was assessed as a measure of total ATP

using the CellTiter-Glo assay (Promega, Cat# G7573)

according to manufacturer instructions. See Supplementary

Table S1 and Supplementary Figure S1.

Each cell line was plated at 250,000 cells/well in 2 ml of the

respective culture media on a 6-well tissue culture treated plate

(Costar, Cat# 3506) and allowed to adhere at 37°C humidified

incubator + 5% CO2. After 24 h post-plating, the cells were

treated with either 0.2% DMSO (control) or a combination of

0.5 nM everolimus + 25 μM exemestane (Selleck Chemicals, Cat#

S1120, S1196 respectively) in their respective culture media.

Following treatment, the cells were incubated for 6 h at 37°C

+ 5% CO2 in a humidified incubator.

Cell lines RNA extraction, cDNA synthesis,
library preparation, and sequencing

After 6 h of treatment, the plated cells were rinsed one time

with ice-cold 1x PBS (Gibco, Cat# 10010049) followed by

collection via cell scrapping in ice-cold 1x PBS. Collected cells

were stored frozen overnight at -80°C in RNAlater (Invitrogen,

Cat# AM7023). Frozen cells were thawed at 4°C, washed in 1x

PBS, and RNA was isolated using the AllPrep DNA/RNA Mini

Kit (Qiagen, Cat# 80204) according to the manufacturer’s

instructions. Sequencing libraries were prepared and ran at

Fulgent Genetics (Temple City, CA) using NEBNext Ultra II

Directional RNA Library Prep Kit (New England Biolabs, Cat#

E7760L) and sequenced on Illumina NovaSeq 6000 with S4 flow

cell (2 × 150 cycles) with 20 M PE reads per sample.

Cell lines RNA-seq data preprocessing

Raw sequencing read files (fastq) were pre-processed using

the Bioinformatics ExperT System (BETSY) (Chen and Chang,

2017). Sequencing quality was assessed using FastQC and
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adapter trimming was performed using trimmomatic (0.33)

(Bolger et al., 2014). Sequences were aligned using STAR

(2.7.6a) (Dobin et al., 2013), followed by counts estimation

using HTSeq (Anders et al., 2015) and estimation of gene

expression levels using RSEM (1.3.1) (Li and Dewey, 2011).

Transcript per million (TPM) values from RSEM were

log2(x+1) transformed and filtered to remove genes with the

lowest variance (25th percentile) and lowest expression (30th

percentile).

Developing signature for in vitro
everolimus response using bayesian
binary regression

Filtered TPMmatrix for the nine cell lines was used to train a

supervised Bayesian binary regression model based on the

method developed by West et al. (West et al., 2001) and

implemented in the GenePattern module SIGNATURE

(Chang et al., 2011). Expression values were quantile

normalized and a set of 100 features (genes) were obtained

that were correlated with the treatment status (DMSO vs.

everolimus plus exemestane). A prediction model based on

Bayesian regression that used the two metagenes (principal

component of the signature gene matrix) with Monte-Carlo

simulations was used to obtain classification accuracy in leave-

one-out cross-validation (LOOCV) analysis. Based on the

successful classification of the cell lines using this model, the

selected features were used for further analysis.

Patient microarray data preprocessing

Gene expression data from patients in a neoadjuvant

everolimus trial (Sabine et al., 2010) were obtained from

NCBI GEO accession GSE119262. We used expression data

from the pre-treatment tumors to train and validated the

model. The tumor samples were profiled using Illumina

HumanRef-8 v2 Expression BeadChips and quantile

normalized using BeadArray (Sabine et al., 2010). We

aggregated the expression matrix by first averaging data from

multiple probes at the gene level and then averaging the

expression levels of replicates. The log-transformed expression

levels were standardized such that each gene had a mean = 0 and

standard deviation = 1 across the samples.

Integrative machine-learning framework
for response prediction

We implemented a LOOCV framework using the caret

package for R (Kuhn, 2021) to combine the in vitro signature

genes with genes selected from the clinical dataset to develop an

integrative biomarker. In each iteration of the cross-validation,

we first selected a set of relevant features using Fast Correlation

Based Filter for Feature Selection implemented (FCBF) using the

FCBF package for R (Lubiana and Nakaya, 2021). We then

obtained an integrative signature by combining the in vitro

signature and the FCBF selected features and used this set of

genes as predictors in a random forest model, with the patient

response as the outcome variable. This was performed using the

randomForest R package (Liaw and Wiener, 2002). An internal

cross-validation was performed within each iteration to tune the

mtry hyperparameter. All analyses were performed in R version

4.1.0 (R Core Team, 2021).

Functional enrichment analyses

Pathway enrichment analyses were performed using the g:

Profiler2 package for R (Kolberg et al., 2020). Genes in the in vitro

signature were split into two lists (up or down in everolimus

treated cells) and analyzed for enrichment of GO:BP, KEGG, and

REACTOME pathway terms. Functional enrichment was

performed for the over-representation of genes using the

hypergeometric test and adjusted for multiple comparisons.

Enrichment plots and tables were created using the g:

Profiler2 package, with color coding in the tables showing the

level of evidence associated with the terms. A dark blue color

indicated weaker evidence whereas an orange color indicated

strong, experimentally derived evidence for the term.

Results

An integrative machine learning
framework

We developed an integrated biomarker development

approach that harnessed evidence from controlled in vitro

experiments with ER+/HER2- breast cancer cell lines treated

with everolimus and combined this with data from a

neoadjuvant clinical trial of ER+ breast cancer patients

treated with everolimus. The outline for our approach is

shown in Figure 1. First, we cultured nine cancer cell lines,

including MCF7, T47D, CAMA1, ZR-75-1, HCC1428, MDA-

MB-134, BT483, LY2 and MDA-MB-175 in either 0.2%

DMSO (control) or a combination of 0.5 nM everolimus +

25 µM exemestane. The treatment concentration for the

experiment was determined based on the dose-response

curves of the nine cell lines (Supplementary Figure S1;

Supplementary Table S1). After 6 h of treatment, total RNA

was extracted from each pair of untreated and treated cell lines

and sequenced at a target read depth of 20 M reads. We then

filtered the pre-processed gene expression (RSEM) from each

cell line to retain the most informative genes by removing low
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expression and low variance genes. The expression levels were

quantile normalized, followed by feature selection, and fitting

a Bayesian binary regression model with treatment status as

the outcome (Figure 1A). Concurrently, we obtained gene

expression data from pre-treatment biopsies of 23 ER+ breast

cancers that received neoadjuvant everolimus for about

2 weeks (Sabine et al., 2010). This trial reported clinical

response as a change in Ki67 staining percentage at the end

of 11–14 days of treatment, with patients showing more than a

10% decrease in Ki67 staining classified as responders. We

then implemented a LOOCV framework that used two sets of

features: 1. A set of signature genes from used in the Bayesian

binary regression model of the cell lines treated with

everolimus and exemestane and 2. A set of features that

were selected using FCBF. This integrated set of features

was used to train a random forest classifier within each

fold of the LOOCV (Figure 1B).

Transcriptomic signature of in vitro
everolimus response

We created an in vitro everolimus response signature using

RNA-seq profile of the nine ER+ breast cancer cells, with the

treatment status (DMSO vs. everolimus plus exemestane) as the

outcome variable. Starting with a matrix of filtered gene

expression data across cell lines, we first defined the signature

set by selecting genes using Pearson correlation that best

differentiated the cell lines based on treatment status

(Figure 2A). A Bayesian binary regression model was then fit

FIGURE 1
Outline of integrative approach for mTOR inhibitor biomarker development. (A) The in vitro signature was developed using 9 ER+ breast cancer
cell lines. Each cell line was treated with either DMSO or everolimus plus exemestane. Total RNAwas extracted, and cDNA libraries were prepared for
RNA-seq. The raw transcripts were pre-processed, followed by quantile normalization and feature selection using the Bayesian binary regression
framework. (B) Microarray data from early-stage ER+ breast cancer patients treated with neoadjuvant everolimus were pre-processed and
analyzed within a leave-one-out cross-validation (LOOCV) framework. Each iteration of the LOOCV generated a list of features correlated with
response. These features were integrated with the response signature derived from cell lines to obtain an integrated signature. The integrated
signature was then used as a set of predictors in random forest model to predict the response in the test sample.
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on the first two principal components of the signature gene

expression matrix to classify the cells. This model was sampled

using a Markov chain Monte Carlo algorithm to obtain posterior

probabilities and 95% confidence intervals (Figure 2B). A

probability closer to 1 indicated that the signature genes were

active in cells treated with everolimus. As shown in Figure 2B, the

signature could clearly distinguish cell lines based on treatment

status.

Further examination of the signature genes revealed key

biological processes and pathways activated or inactivated in

the cell lines post treatment. Enrichment analysis for GO:BP,

KEGG and REACTOME terms in the genes expressed at higher

levels in cells treated with everolimus revealed activation of

pathways related to cell death and apoptosis (Figure 3A;

Supplementary Table S2). For example, some of the key

enriched pathways included response to oxidative stress,

regulation of apoptosis, ferroptosis and pexophagy, which are

well-known consequences of mTOR inhibition in vitro. On the

other hand, genes that were downregulated were enriched in

terms associated with translation and cell proliferation

(Figure 3B; Supplementary Table S3). Again, this agreed with

the expectation that mTOR inhibition would lead to reduced

protein turnover and proliferation rates.

Predicting clinical response using
integrative model

A clinical study of ER+ breast cancers evaluated

everolimus response by measuring percentage

Ki67 staining change over the course of treatment of

2 weeks (Sabine et al., 2010). This clinical trial reported

response data from 23 pre-treatment biopsies and 21 post-

treatment biopsies. We used the pre-treatment gene

FIGURE 2
In vitro everolimus response signature and validation. (A) Heatmap of genes selected by the binary regression model to classify and predict
everolimus response in 9 ER+/HER2- breast cancer cell lines. The genes in the signature are listed in rows and the columns indicate cell lines. Both
rows and columns are shown as hierarchical clusters, with the columns split into two clades, resulting in clustering by treatment status (DMSO and
everolimus plus exemestane). (B) LOOCV analysis of the 9 breast cancer cell lines. Hollow circles indicate cell lines treated with DMSOwhile the
solid circles indicate cell lines treated with everolimus plus exemestane. The X-axis indicates metagene score, calculated from the principal
component of the genes in the signature. Y-axis indicates predicted probability of response, with a value closer to 1 indicating response. The vertical
bars indicate 95% confidence interval of the prediction probability.
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expression data to develop a biomarker that can predict

response to everolimus treatment. This analysis was

performed within an LOOCV framework, where each

iteration of the cross validation involved selecting relevant

features associated with treatment response in the training

split, integrating the selected features with the in vitro gene

signature, and training and validation of a random forest

model. We used FCBF algorithm to select the features

associated with treatment response. This algorithm

utilized symmetrical uncertainty, an information theory

derived concept that selected genes with high correlation

with the outcome but low correlation with other variables.

The genes selected with FCBF were integrated with the

in vitro signature to train and evaluate the random forest

model. LOOCV analysis showed that the predicted

probabilities of response based on pre-treatment gene

FIGURE 3
Enrichment analysis of in vitro gene signature. (A,B) The dotplots show significance of the enrichment terms from GO:BP, KEGG and
REACTOME signatures, with Y-axis showing −log10 of the FDR-adjusted p-value from the enrichment test. Key significant terms enriched in genes
that were (A) expressed at higher levels in the treated cells or (B) expressed at higher cells in the untreated cells are annotated in the table below. The
term size indicated number of genes in the original signature, while the color code indicates strength of evidence associated with the term.
Terms supported by experimental evidence are shown in orange.
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expression data agreed with the actual clinical outcomes, as

reported by the clinical trial (Figure 4A). Similarly, the

predicted probabilities of non-response agreed with the

reported clinical response (Figure 4B). Overall, the

random forest model fit on the complete clinical dataset

of 23 pre-treatment tumor samples was highly accurate, with

consistently high accuracies (>0.9) achieved in the LOOCV

analyses for tuning the hyperparameters of the random forest

model fit on the full dataset (Figure 4C).

Identifying potential candidates for
everolimus treatment

Given the high prediction accuracy of the model in

LOOCV analyses, we applied the random forest model

trained on the full clinical dataset of 23 pre-treatment

samples to predict mTOR inhibitor response in the

METABRIC cohort of ER+/HER2- tumors (Curtis et al.,

2012). This cohort included 833 breast cancer patients that

FIGURE 4
Developing integrated model with patient response data. (A,B) LOOCV analysis of the GSE119262 datasets comparing the prediction
probabilities of (A) response or (B) non-response (resistance) calculated using the integrated model combining the in vitro response signature with
the FCBF-selected features. The density plots on the left show distribution of the prediction probabilities in samples grouped by actual clinical
response, with red indicating patients that were clinical non-responders (<10% decrease in Ki67% staining after 2–4 weeks) and blue indicating
patients that were clinical responders (>10% decrease in Ki67% staining after 2–4 weeks). The boxplots on the right show statistical comparison of the
prediction probabilities between patients grouped by actual clinical response. (C) Dot plot showing trends in change of accuracy of the random
forest model in LOOCV analysis with varying values of the mtry hyperparameter. An accuracy of ~0.95 was achieved with mtry = 8 and used to
construct the final prediction model.
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had received endocrine therapy and were either alive at study

completion or died due to the disease. We had previously

developed a biomarker model to predict patients with high

risk of death on endocrine therapy in this cohort. This model,

called ENDORSE, could successfully stratify patients based on

predicted endocrine resistance. We had also noted that the

patients with ENDORSE risks showed activation of the mTOR

signaling pathway. Therefore, we compared the predicted

probabilities of mTOR inhibitor response with the

ENDORSE classes in the METABRIC cohort. Here, we

found that the predicted mTOR response were significantly

higher in medium and high-risk groups than the low-risk

groups (Figure 5A). Moreover, a large proportion of the high-

risk tumors (>40%) showed a high probability of mTOR

inhibitor response (>0.75) compared to medium-risk (15%)

or low-risk tumors (10%). We further investigated the

biological signals enriched in the tumors with a high

probability of mTOR inhibitor response (>0.75).
Interestingly, we found an overwhelming majority of the

biological processes and signaling pathways at the top of

the list of significant terms to be associated with immune

signaling and communication (Figure 5B; Supplementary

Table S4). In contrast, the signatures enriched in non-

responders were associated with estrogen signaling or

FIGURE 5
Application of the mTOR inhibitor model on external dataset. (A) The boxplots show predicted probability of mTOR inhibitor response in
METABRIC ER+/HER2- patients (n = 833). The patients were classified as endocrine sensitive (low-risk), endocrine intermediate (medium-risk) and
endocrine resistant (high-risk) using the ENDORSE model. The adjusted p-values annotated above the boxplots show pairwise comparisons
obtained from Tukey’s HSD test applied to a one-way ANOVA model (B,C). The dotplots show significance of the enrichment terms from GO:
BP, KEGG and REACTOME signatures, with Y-axis showing -log10 of the FDR-adjusted p-value from the enrichment test. Key significant terms
enriched in genes that were (B) expressed at higher levels in the tumors predicted to be responsive to mTOR inhibitor treatment or (C) expressed at
higher levels in the tumors non-responsive tomTOR inhibitor treatment are annotated in the table below. The term size indicated number of genes in
the original signature, while the color code indicates strength of evidence associated with the term. Terms supported byweak evidence are shown in
blue while experimentally derived signatures are shown in orange.
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smoothened signaling pathways (Figure 5C; Supplementary

Table S5). These suggested the tumors predicted to be non-

responsive to mTOR inhibitors were still largely dependent on

estrogen signaling or bypassed mTOR signaling via the

smoothened pathway for growth and proliferation.

Discussion

The use of mTOR inhibitors such as everolimus has shown

promising results in improving outcomes of ER+/HER2- breast

cancer patients(Ellard et al., 2009; Baselga et al., 2012; Andre

et al., 2014; Piccart et al., 2014). However, there are several

treatment options available for progressive and advanced ER+

breast cancers, which include drugs that target the PI3K and

mTOR signaling pathways. While the presence of activating

mutations on the PIK3CA gene guide the use of PI3K

inhibitors such as alpelisib (Narayan et al., 2021), the decision

to use mTOR inhibitors like everolimus is completely based on

patient and provider choice. Therefore, our goal was to

systematically develop a new biomarker that may be useful in

predicting clinical outcomes for mTOR inhibitors. We have

previously developed a prognostic model for endocrine

resistance in breast cancer patients using the tumor baseline

transcriptomic data (Nath et al., 2022). Here, we extended our

approaches to develop a novel machine learning biomarker for

everolimus response.

To date, only one clinical trial with any mTOR inhibitor has

reported genomic information from breast cancer patients before

and after treatment (Sabine et al., 2010). This trial was of limited

size of only 23 pre-treatment samples, which made it challenging

to train and develop an effective biomarker model. We addressed

this issue by first identifying which genes are expressed in

response to everolimus in a well-controlled in vitro

environment. Such approaches have been extensively used to

generate gene expression signatures by directly manipulating the

expression of genes or using chemical perturbations in vitro. For

example, the curated and oncogenic signature collection in the

molecular signatures database contains over 3000 such signatures

generated using genetic or chemical perturbations (Liberzon

et al., 2011) that are frequently used in prognostic and drug

response signatures (Sonachalam et al., 2012; Tan et al., 2019;

Kong et al., 2020; Zeng et al., 2022).

As the in vitro environment is less affected by the inter-

sample variances typically observed in animal and patient-

derived data, our approach allowed us to pick genes with high

confidence that show a significant change upon everolimus

treatment and are likely good candidate features for a

machine learning biomarker model (Figure 2). These genes

were sensible and associated with expected biological

phenomenon (Figure 3). We then implemented an approach

that leveraged pre-treatment tumor transcriptomes and clinical

outcomes data from the 23 patients combined with the in vitro

signature. This integrated model was highly accurate in

predicting clinical everolimus response in the LOOCV

analyses of the patient data (Figure 4).

We further applied the biomarker to predict mTOR inhibitor

response in an independent cohort of ER+/HER2- breast cancer

patients from the METABRIC study (Curtis et al., 2012). We

obtained gene expression and overall survival data from

833 patients. These patients had received only endocrine

therapy and were classified using a prognostic model that

predicted risk of death on endocrine therapy (Nath et al.,

2022). We had previously found that the METABRIC patients

with high risk of death on endocrine therapy showed elevated

pathway activity of PI3K/AKT/mTOR signaling pathway (Nath

et al., 2022). By applying our biomarker, we found that indeed a

vast proportion of the predicted mTOR responsive patients were

those in the high risk group (Figure 5). Activation of mTOR

signaling is a well-documented phenomenon associated with

endocrine resistance and poor prognosis of ER+ breast cancer

patients (Ciruelos Gil, 2014; Paplomata and O’Regan, 2014;

Dong et al., 2021; Nunnery and Mayer, 2020). Thus, our

novel biomarker could be useful in identifying the patients

that are most likely to benefit from mTOR inhibitor treatment.

Another interesting aspect of our study were the biological

signatures and pathways activated in vitro upon everolimus

treatment and the ones enriched in patients predicted to be

responsive. The in vitro signature largely showed enrichment of

expected biological pathways, including cellular oxidative stress

(Piao et al., 2014), autophagy (Crazzolara et al., 2009) and

apoptosis (Tai et al., 2017). In comparison, the patient data

showed a large proportion of immune activation pathways as the

most significant signatures. mTOR signaling is well-known to

play an important role in directing adaptive immune response by

receiving microenviromental signals and activating T-cells and

dendritic cells (Delgoffe and Powell, 2009). In the tumor

microenvironment, mTOR signaling regulates the activity of

macrophages and T-cells through inflammatory factors like

IL-10, TGF-beta, and membrane bound CTLA-4 and PD-1

(Kim et al., 2017). This has been linked with a shift in

balance from an anti-tumor to a pro-tumor immune

microenvironment by reducing the proportion of anti-tumor

CD8+ T-cells and increasing the proportion of Treg and tumor-

associated M2 macrophages (Kim et al., 2017; Mafi et al., 2021).

Thus, the enrichment of these immune activation-related terms

in the patient data captures a known effect of elevated mTOR

pathway activity and supports the biomarker-driven

classification of the patients as likely responders to mTOR

inhibition. We also observed an enrichment of smoothened

receptor pathway signatures in the mTOR-resistant tumor. As

a major component of the hedgehog signaling pathway, both the

canonical and non-canonical activation of the smoothened

pathway has been linked with stem-cell like traits,

invasiveness and metastatic progression of breast cancers

(Jeng et al., 2020). Consequently, multiple interventions
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targeting the hedgehog and smoothened signaling pathway are

currently being evaluated in breast cancer (Bhateja et al., 2019).

Key limitations of this study are lack of a large-scale training

dataset and an additional independent validation dataset for the

biomarker model. The clinical training data used in the study

consisted of only 23 pre-treatment samples, with a large number

of potential predictive features. We attempted to mitigate this

challenge by systematically reducing the number of predictive

features using the in vitro signature and selecting a limited

number of empirical features from the clinical datasets for

model construction. Furthermore, we performed the model

development and validation in a LOOCV framework, where

the empirical features from the clinical dataset were only

picked from the training split. The model was then applied to

predict outcome in the left-out test sample. This approach helped

in diminishing problems associated with overfitting models to

the data and overestimating model accuracies. Nevertheless,

clinical translation of the biomarker will benefit greatly from

additional validation and refinement using prospective biopsies

or through retrospective analyses of banked samples.

Given that patients progressing on endocrine therapy have

multiple treatment options, including aromatase inhibitors,

chemotherapy, PI3K inhibition or mTOR blockage,

development of biomarkers to guide therapy selection of these

patients can help ensure they are treated with the most effective

drug regimen. This study uses both experimental and patient-

based data to develop a biomarker for response to everolimus,

and to understand the signaling underlying inhibition of mTOR

signaling in ER+ breast cancer.
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Accurate and reproducible tissue identification is essential for understanding

structural and functional changes that may occur naturally with aging, or

because of a chronic disease, or in response to intervention therapies.

Peripheral quantitative computed tomography (pQCT) is regularly employed

for body composition studies, especially for the structural and material

properties of the bone. Furthermore, pQCT acquisition requires low

radiation dose and the scanner is compact and portable. However, pQCT

scans have limited spatial resolution and moderate SNR. pQCT image quality

is frequently degraded by involuntary subject movement during image

acquisition. These limitations may often compromise the accuracy of tissue

quantification, and emphasize the need for automated and robust

quantification methods. We propose a tissue identification and quantification

methodology that addresses image quality limitations and artifacts, with

increased interest in subject movement. We introduce a multi-atlas image

segmentation (MAIS) framework for semantic segmentation of hard and soft

tissues in pQCT scans at multiple levels of the lower leg. We describe the stages

of statistical atlas generation, deformable registration and multi-tissue classifier

fusion. We evaluated the performance of our methodology using multiple

deformable registration approaches against reference tissue masks. We also

evaluated the performance of conventional model-based segmentation against

the same reference data to facilitate comparisons. We studied the effect of

subject movement on tissue segmentation quality. We also applied the top

performing method to a larger out-of-sample dataset and report the

quantification results. The results show that multi-atlas image segmentation

with diffeomorphic deformation and probabilistic label fusion produces very

good quality over all tissues, even for scans with significant quality degradation.

The application of our technique to the larger dataset reveals trends of age-

related body composition changes that are consistent with the literature.
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Because of its robustness to subject motion artifacts, our MAIS methodology

enables analysis of larger number of scans than conventional state-of-the-art

methods. Automated analysis of both soft and hard tissues in pQCT is another

contribution of this work.

KEYWORDS

tissue segmentation, tissue quantification, multi-atlas techniques, subject movement,
clinical application, pQCT

1 Introduction

Accurate segmentation of tissues using medical imaging is

key for the quantification of changes in the structure and

composition of tissues, which may result from diseases, aging,

and other risk factors related to the tissue(s) in question

(Cordova et al., 2014; Töpfer et al., 2015; Owen et al., 2019;

Rodrigues and Pinheiro 2019; Wong and Manske 2020). Recent

advances of artificial intelligence (AI) in the field of medical

imaging have also drawn the interest of researchers in the

application of computer techniques in the area of bone and

muscle imaging (Burns et al., 2020). In clinical studies,

segmentation of bone, muscle, and adipose tissue can be used

for computing objective measures and descriptors of body

composition and for exploring the causes and effects of

differences of these descriptors between subject groups

(Lauretani et al., 2008; Makrogiannis et al., 2018).

In the past 2 decades, peripheral quantitative computed

tomography (pQCT) and high resolution peripheral

quantitative computed tomography (HR-pQCT) have emerged

as essential technologies for segmentation and quantification of

bone, muscle and adipose tissue properties at the diaphyseal

regions of the limbs. Segmentation of hard and soft tissues in

pQCT and HR-pQCT imaging has been used to assess the effects

of type-2 diabetes mellitus (T2DM) (Starr et al., 2018),

osteoporosis (Simon et al., 2022) and osteoarthritis (Chen

et al., 2018), to establish measures for characterizing sex-,

ethnic-, site-, and age-related outcomes (Gabel et al., 2018), to

study the effect of exercise on the muscle and fat cross-sectional

areas (Rowe et al., 2019), and in studies of aging and age-related

diseases (Chow et al., 2022; Liu et al., 2022). A challenge in

pQCT-based segmentation is subject movement and the

associated motion artifacts. Subject movement, subtle or

obvious, occurs frequently in standard pQCT and HR-pQCT

scans (Wong 2016). It may degrade the image quality and affect

the assessment of bone and muscle properties (Pialat et al., 2012;

Chan et al., 2018). pQCT motion has been assessed by visual

inspection followed by a pass or fail decision. Usual criteria are

the presence of discontinuities and streaks at the cortical bone

and changes in intensity of trabecular bone. Motion streaks

originating from the cortical bone extend into the muscle.

Quantitative evaluation methods have been proposed for

pQCT (Blew et al., 2014) and HR-pQCT (Pauchard et al.,

2011; Sode et al., 2011). Thresholding (Blew et al., 2014) and

watershed segmentation techniques (Wong 2016) have been

employed to identify and assess motion streaks in the muscle.

Motion artifact correction and automatic segmentation are

desirable.

However, to the best of our knowledge, there is no previous

report in the literature on pQCT segmentation techniques

explicitly addressing subject movement and the limited

contrast-to-noise ratio that are characteristic of this modality.

In this work we propose to address this gap by developing a

multi-atlas image segmentation (MAIS) framework (Rohlfing

et al., 2001, 2005; Shen and Hammer, 2002; Langerak et al., 2010;

Sotiras et al., 2013; Iglesias and Sabuncu 2015) for identification

of soft and hard tissues in pQCT scans of the lower leg. TheMAIS

framework includes the stages of statistical atlas generation,

linear and non-linear registration, and label fusion for tissue

segmentation. In these stages we use pQCT images of the lower

leg at 4%, 38%, and 66% of the tibial length. We validated

segmentation performance against manual reference masks

using the Dice Similarity Coefficient (DSC). We evaluated the

performance of multiple atlas-based tissue segmentation

techniques and an established model-based tissue

segmentation technique. We expect that the segmentation

performance of multi-atlas based methods is largely unaffected

by motion. We have also applied our framework to a larger out-

of-sample dataset and reported our results on age-related tissue

composition changes. Figure 1 summarizes the main

components of the proposed framework and related

experiments.

2 Our methodology

2.1 Atlas-based tissue segmentation

We formulate the problem of atlas-based segmentation next.

Given a subject S, an atlas A and its atlas label map SA, we aim to

produce the segmentation of S by warping the atlas to the spatial

domain of the subject. This stage is called image registration, and

is followed by pixel-wise assignment of tissue labels from the

warped segmentation atlas to the subject (Figure 2). Since a single

atlas is used for segmentation, we refer to this method as single

atlas image segmentation (SAIS).

In multi-atlas image segmentation (MAIS), multiple atlases

Ai, i = 1, . . . , N and corresponding segmented atlases SAi, i = 1,
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. . . , N are used to produce a segmentation of the subject S. The

main stages of a multi-atlas-based segmentation algorithm are

registration, label propagation and label fusion. Figure 3 shows

the main stages of MAIS. In the following subsections, we

elaborate on our method based on these stages. We will use A

when referring to each atlas Ai, i ∈ {1, . . . , N}.

2.2 Image registration

Image registration is a key stage of atlas-based

segmentation as described in the previous section. The goal

of registration is to align the spatial domain of a subject with

that of an atlas. In other words, we wish to find the optimal

FIGURE 1
Main components of the proposed framework. STAPLE (STPL), free-form deformation (FFD), symmetric diffeomorphic demons (SDD),
symmetric normalization (SyN), symmetric normalization - only (SyNO), dice similarity coefficient (DSC), true positive rate (TPR), precision (PR)
squared-Spearman’s correlation coefficient (R2), and coefficient of variation - root mean squared difference (CV-RMSD).

FIGURE 2
Illustration of single atlas based image segmentation (SAIS) stages of lower leg scans at 4%, 38% and 66% tibia. First row: subject (S), statistical
atlas (A) and segmented atlas label map (SA) for each tibial length that are used as inputs for segmentation. Second row: linear registration, nonlinear
registration and label propagation output. The tissue labels are color-coded as follows: trabecular bone (yellow), cortical bone (cyan), muscle (red),
and SAT (white). μ denotes linear transformation, τ◦μ denotes the composition of linear (μ) with nonlinear (τ) transformations.
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deformation τ* in the set {τ, τ : (A, ΩA) → (S, ΩS)} of all

transformations from the spatial domain of the source image

(or atlas) (A, ΩA) to the subject space (S, ΩS), that minimizes

the following energy functional (Sotiras et al., 2013;

Vercauteren et al., 2007),

E τ( ) ≔ λζζ S, A◦τ( ) + λρρ τ( ), (1)

where ζ is the similarity term, ρ is the regularization term, λζ
and λρ are the weights of the similarity and regularization terms,

respectively. Therefore,

τp � argmin
τ

E τ( ). (2)

To ensure accurate registration we applied both linear and

nonlinear registrations. Linear registration is used to capture

the rigid displacement of the subject while nonlinear

registration is used to capture the local deformation of the

anatomical structures of the subject. Anatomical structures are

the tissue types, i.e., the trabecular bone, cortical bone, muscle,

and subcutaneous adipose tissue as shown in Table 1. Figure 2

shows examples of rigid displacements of atlas A denoted by

μ(A), and local deformations τ◦μ produced by nonlinear

registration τ◦μ. Our techniques for linear and nonlinear

registration are described below.

2.2.1 Linear registration
Given a subject S and for each atlas A, we estimate the

parameters of a linear transformation μ from atlas space (A, ΩA)

to the subject space (S,ΩS) that defines the rigid motion between

the atlas and the subject. Our linear transformation is modeled

using affine transformations. We utilize the Mattes’ mutual

information similarity measure (Mattes et al., 2003) given in

Eq. 3,

ζ S, A◦μ( ) � −∑
ι

∑
κ

p ι, κ|μ( )log
p ι, κ|μ( )

pA ι|μ( )pS κ( ) (3)

and a regular step gradient descent optimizer, to estimate the

parameters of the affine transformation μ,where p, is the joint

probability distribution of subject and the atlas, pA and pS are the

marginal probability distributions of the atlas and the subject

respectively, ι = 1, . . . , nA and κ = 1, . . . , nS are the indices of

the histogram bins for the source and target image. The image μ(A)

of the atlas A lives in the subject space and approximates the rigid

motion between the subject and the atlas (Figure 2).

2.2.2 Nonlinear registration
In this stage, the goal is to correct the local deformations

between the subject and the atlas. Hence we seek the parameters

of deformation τ : (μ(A), ΩS) → (S, ΩS) from μ(A) ⊂ S onto S. We

introduce the use of three nonlinear deformable registration

techniques, free-form deformation (FFD), symmetric

diffeomorphic demons (SDD), and symmetric image

normalization (SyN, SyNO) for our multi-atlas-based registration.

We discuss the nonlinear methods for our multi-atlas-based image

segmentation below.

2.2.2.1 Free-form deformations

Free-form deformation was originally proposed by Rueckert

et al., 1999 and was applied to automated registration of breast

FIGURE 3
Flowchart that shows the main stages of our multi-atlas based segmentation methodology.

TABLE 1 Tissues to quantify in each anatomical site.

Anatomical
site

Tissues to quantify

4% tibia Trabecular Bone (TB)

38% tibia Cortical Bone (CB), Trabecular Bone

66% tibia Cortical Bone, Trabecular Bone, Subcutaneous Adipose
Tissue (SAT), Muscle
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MRI scans. It uses a spline interpolation kernel to compute the

deformation values between the control points that produces a

locally controlled, globally smooth transformation.

Given a 2D spatial domainΩ = {x = (x, y)|0 ≤ x <X, 0 ≤ y < Y}

of an image, let Φ denote an nx × ny mesh of control points ϕi,j=

(iδ, jδ) with uniform spacing δ. Rueckert et al., 1999 proposed a

method that seeks the optimal FFD (displacement field τ) written

as the 2-D tensor product of 1-D cubic B-Splines

τ x( ) � ∑
2

l�0
∑
2

m�0
Bl u( )Bm v( )ϕi+l,j+m (4)

that optimizes the energy functional in Eq. 1. In Eq. 4, i = �x/nx� −
1, j = �y/ny� − 1, u = x/nx − �x/nx�, v = y/ny − �y/ny�, and Bl
represents the lth basis function of the B-spline. The

regularization term ρ is given by the bending energy of a

thin-plate of metal, which controls the smoothness of the

transformation, defined by

ρ τ( ) � 1
|Ω|∫∫Ω

zτ

zx
+ zτ

zy
( )

2

dΩ, (5)

where |Ω| is the cardinality of the image spatial domain. We

employed Matte’s mutual information (Mattes et al., 2003)

defined in Eq. 3 as the similarity measure ζ. We used λζ = −1

and λρ = 0.01 in the energy function of Eq. 1. The optimization

process is based on updating control points via the gradient of the

cost function. We employed Limited-memory

Broyden–Fletcher–Goldfarb–Shannon optimization to find the

energy minimum of Eq. 1. We embedded this method in a

hierarchical multi-scale structure to be able to capture a wide

range of deformations. This structure contains a coarse and fine

scale for optimization. At the coarse scale, the optimizer can capture

extensive deformations, but the solution may have limited precision.

So we use the coarse solution to initialize the optimization at the fine

scale and find a more precise deformation field.

2.2.2.2 Symmetric diffeomorphic demons

We utilize a variant of the Demons algorithm that is

optimized in the log domain as proposed in Vercauteren

et al., 2008. This is a variational method that seeks to

minimize the following energy functional:

E c, τ( ) � 1

λ2ζ

1
2|Ωp| ∑

x∈Ωx

|S x( ) − A τ x( )( )|2 + 1

λ2h
‖log τ−1◦c( )‖2

+ 1

λ2ρ
‖∇log τ( )‖2

(6)
where the variable c was introduced to approximate the error in

the correspondence between image pixels, λh accounts for spatial

uncertainty on the correspondences, and Ωp is the region of

overlap between S and A◦τ.

In the update step, and under the assumption that the current

transformation τ is expressible as an exponential of smooth

vector fields v, i.e., τ = exp(v), the Baker-Campbell Hausdorff

(BCH) approximations are used to seek a smooth velocity field Z

(v, εu), such that exp(Z(v, εu) ≈ τ◦ exp(εu), where ε is a weight
parameter. Then u is given by

u x( ) � − S x( ) − A◦τ x( )( )
‖Jp‖2 + λ2ζ x( )/λ2h( )( )

⎛⎝ ⎞⎠Jx
⊤
, (7)

and J is the Jacobian matrix. In the log-domain, the inverse of a

spatial transform τ−1, parametrized by τ = exp(v), can be obtained

efficiently by backward computation τ−1 = exp (−v). A symmetric

transformation can be obtained from a nonsymmetric one by

making the global energy symmetric, i.e.,

τopt � argmin
τ

Esym ≔ E S, A◦τ( ) + E A, S◦τ−1( )( ). (8)

The minimization of the energy functional in Eq. 8 can be

formulated as a constrained equation using two diffeomorphisms

τopt, τ
−1
opt[ ] � arg min

τ,τ−1[ ] Esym. (9)

2.2.2.3 Symmetric image normalization

This method uses diffeomorphisms as the transformation

model (Avants et al., 2008). SyN performs the normalization by

minimizing the energy functional defined in Eq. 10. SyN searches

for a symmetric diffeomorphic spatiotemporal mapping, τ ∈
Diff0: = {the space of diffeomorphic mappings with

homogeneous boundary conditions} that minimizes the energy

functional in the optimization problem defined in Eq. 10.

Esym S, A( ) � inf
τ1

inf
τ2

∫
1
2

t�0
‖]1 τ1 x, t( ), t( )‖2L + ‖]2 τ2 x, t( ), t( )‖2L{ }dt + ∫

Ω
ζ S τ2 0.5( )(( , A τ1 0.5( )( )dΩ

subject to each τ ∈ Diff0 the solution of :dτ x, t( )/dt � ]i τ i x, t( ), t( )
with τi x, 0( ) � I, and τ−1i τ i( ) � I, τ i τ−1i( ) � I

(10)

The first integral in Eq. 10 corresponds to the regularization term

that is induced by a functional norm ‖·‖L through a linear

differential operator L = a∇2 + bI, with constants a and b,

and I is the identity mapping. The second integral

corresponds to the similarity term between the reference and

input image, where ζ is Mattes’mutual information defined in Eq.

3, Ω is the common spatial domain of the images, ](x, t) is the
velocity field, and t is the time. The optimization process

performs gradient descent to update the deformation field

and a fixed point method calculates the inverse

transformation. The velocity fields ]i are computed

iteratively, and they update the deformation τi, i = 1, 2. The

deformable registration stage is preceded by rigid and affine

transformation steps to address global misalignments as

described in.
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2.3 Shape modeling - statistical atlas
generation

We generate the statistical atlases by iteratively averaging

subject scans that are mapped onto a common reference space.

We first choose one subject to serve as the reference scan.

Then, we linearly register all subjects to the selected reference

and compute the group average. In the second iteration, we

use as reference the average image produced by linear group

registration. Next, we map all subjects to the new computed

template using nonlinear registration, and compute the

average. In the remaining iterations we only apply

nonlinear mappings to update the average image. We

repeat the above steps until the final iteration i = K. This

process converged to an atlas template within K = 5 iterations

on our data.

The above steps generate sequences of transformations

τ(n)i , where n = 0, 1, 2, . . . ,N is the nth image and i = 0, 1, . . . , K

is the ith iteration. Rohlfing et al., 2001 showed that in each

iteration i, the transformation τ(n+1)i and the preceding

transformation τ(n)i differ only by a small amount of

deformation. Finally, a human operator labeled the

trabecular bone, cortical bone, muscle, and SAT using the

MIPAV software suite (McAuliffe et al., 2001) by manual

selection of control points and spline interpolation. In the first

row of Figure 2, we display our computed atlas image and the

atlas label map for 4%, 38% and 66% of the tibia length,

respectively. In the first row, third, sixth and ninth columns of

Figure 2, we display the color-coded atlas labels, for each tibial

site under consideration.

2.4 Multi-atlas based tissue segmentation

2.4.1 Label propagation
Label propagation is the process of assigning labels from the

warped atlas labels to the reference space. We use the linear (μ)

and nonlinear (τ) transformations between S and A that we

found in the registration stage, to map labels from the atlas to the

subject space. Label propagation is achieved by nearest neighbor

interpolation after warping the atlas label to the subject domain

via the estimated deformation τ≔τ◦μ. The segmentation map is

produced by τ(SA).

2.4.2 Label fusion
This is a key stage of MAIS. Here, we combine all the

propagated atlases to obtain a final segmentation (Iglesias

and Sabuncu 2015). Various methods have been proposed

for this stage including best atlas selection, a selective and

iterative method for performance level estimation

(SIMPLE), joint label fusion, majority voting, weighted

majority voting, and simultaneous truth and performance

level estimation (STAPLE) algorithm (Warfield et al., 2004;

Langerak et al., 2010; Wang et al., 2013; Iglesias and Sabuncu

2015). In this work, we utilized STAPLE for fusing

segmentation results by individual atlases. We utilize

STAPLE for label fusion because it has performed very

well over a range of applications Cardoso et al., 2013;

Weston et al., 2019.

STAPLE can be formulated using probabilistic classification

terms. Given K segmentations (classifications) of a subject S

havingN pixels, let ek(x) be the decision of classifier k at voxel x. If

the (unknown) ground truth label for voxel x is l, we say that x ∈
Cl. The performance of classifier k is determined by two

parameters p (sensitivity) and q (specificity), referring to the

fractions of true positives and true negatives among the classified

voxels, that maximizes the complete log likelihood function, (p,

q) = argmaxp,q ln f (D, T|p, q), where T � ∪n
l�1Cl is the true

segmentation, also called missing or hidden data, and D = [ek(x)]

is an N × K decision matrix.

For each classifier k, and each class Cl, the parameters p and q

are modeled independently as the following conditional

probabilities: pk = Pr (ek(x) = l|x ∈ Cl)and qk = Pr (ek(x) ≠ l|

x∉Cl). The process of estimation of p and q is achieved by the

Expectation-Maximization (EM) algorithm.

The final segmentation Ŝ at voxel x is computed by E(x) =

argmaxiP (x ∈ Ci|e1(x), . . ., eK(x)). The probability p (x ∈ Ci|e)

follows from the classifier’s decisions and their performance

parameters using Bayes’ rule (Rohlfing et al., 2005).

3 Data description and performance
evaluation measures

3.1 Overview of dataset

We used pQCT data obtained from the InCHIANTI

clinical study to evaluate the performance of the methods.

InCHIANTI is a longitudinal study of risk factors for

mobility disability performed in a representative sample of

the middle aged and older populations living in Tuscany,

Italy (Ferrucci et al., 2000; Lauretani et al., 2008;

Makrogiannis et al., 2018). The validation dataset is

randomly sampled from the original InCHIANTI baseline

database as in Makrogiannis et al., 2018. It consists of pQCT

scans of the lower leg acquired at the 4%, 38% and 66% tibial

length of the lower leg. Our randomly sampled dataset

contains a total of 77 samples, that is 30 samples at 4%,

27 samples at 38% and 20 samples at 66% tibial length. The

pQCT scans of the right lower leg were acquired using a XCT

2000 scanner (Stratec Medizintechnik GmbH, Pforzheim,

Germany). The slice thickness of each scan is 2.1 mm and the

in-plane slice is 0.5 mm. At each tibial location, we used three

templates for MAIS. One of these three samples was used to

initialize statistical atlas generation. We cross-validated the

performance of each method on the testing samples that
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remained after removing the three templates. We focused on

specific tissue(s) of interest at each tibial location: trabecular

bone at 4%; cortical and trabecular bone at 38%;

subcutaneous adipose tissue (SAT), muscle, cortical bone

and trabecular bone at 66% as shown in Table 1.

3.2 Motion artifacts

Unique characteristics of the test data that made it

suitable for our analysis and clinically relevant are: 1) the

strong representation of older persons who are likely to

experience walking difficulties, 2) the different locations of

the tibial length that we considered for identification of six

different tissue types (Table 1), 3) the incidence of motion

artifacts in the dataset making it complicated for

segmentation. Motion artifacts occur as a result of the

voluntary and involuntary movement of the subject during

image acquisition.

Frequent criteria for motion assessment are discontinuities

and streaks in the cortical bone, and blurring and shifting of

trabecular bone. A clinical specialist used the above visual

inspection criteria and a grading system from 1 to 5 (1: no

artifacts) to classify the subject motion artifacts as described in

Wong 2016. This effect was more evident at the 66% tibial length

with more than 50% of the samples having significant motion

artifacts corresponding to grades 4 and 5.

3.3 Validation

We performed quantitative analysis of the performance of

the atlas-based tissue identification schemes by calculating the

Dice Similarity Coefficient (DSC), sensitivity or True Positive

Rate (TPR), and Precision (PR) between segmentation results

and their ground truths T. We cross-validated the

performance metrics by excluding the two subjects we used

as templates in MAIS, and the subject we used as template for

statistical atlas generation. We made comparisons across

single- and multi-atlas based image segmentation methods

with respect to registration algorithms. We compared the

results obtained by multi-atlas- based techniques with those

obtained by the automated tissue identification and

quantification (TIDAQ) method (Makrogiannis et al.,

2018), to emphasize the performance of MAIS techniques.

We chose TIDAQ for our comparisons because it is a model-

based tissue segmentation method that has produced good

results for images of good quality, but may be challenged by

images that have moderate to significant motion artifacts. We

performed nonparametric Wilcoxon rank sum tests to

examine the effects of motion artifacts on tissue

identification using pQCT scans of 66% tibia. The sample

size is n = 20.

3.4 Tissue quantification

We provide an extension of our analysis to non-labeled pQCT

scans of the lower leg from the InCHIANTI dataset to quantify body

composition changes caused by aging. Our aim is to show the

reliability of the MAIS-technique using SDD-STPL for tissue

quantification on an extended clinical dataset and evaluate the

agreement of our results with clinical observations. We decided

to quantify the baseline InCHIANTI dataset that includes a total of

2,425 pQCT scans. We applied the following procedures to prepare

the data for analysis. With the help of TIDAQ software, we sorted

the scans according to anatomical sites, selected scans at 4%, 38%,

and 66% of tibial length and removed scans with different

orientations. We then separated the remaining scans according to

their gender (male and females). After data preparation, we had a

total of 1748 scans for quantification thatmay be grouped as follows:

585 scans (males: 272, and females: 313) at 4%; 583 scans (males:

272, females: 311) at 38%; and 580 scans (Males: 270, females: 304) at

66%. A summary of our quantification dataset, including gender and

age distribution, is provided in Table 2.To characterize the effect of

aging on body composition, we calculated the cross-sectional area

(CSA) and density of the trabecular bones at 4% tibia, cortical bones

at 38% tibia, and muscle and subcutaneous adipose tissue (SAT) at

66% tibia. To obtain these measures, we ran our SDD-STPL

technique on all datasets to automatically identify these tissues

and computed the total CSA and the average density for each

tissue type. We decided to perform analyses of both genders jointly,

as well as separate gender-conditional analyses.

We used scatter plots and regression analyses of

quantification results to study the changes in body

composition (response variable) with respect to age (predictor

variable). We utilized the following statistical measures to

analyze the relationship between the two variables: the square

of the correlation coefficient (R2), the coefficient of variation of

TABLE 2 Summary of the unlabeled pQCT scans of the lower leg from
the InCHIANTI Study.

Site (%) Gender N Age (yrs)

Min Max Med Ave Std

4 Male 272 28 104 74 87.3 14.2

Female 313 26 104 74 87.4 15.0

Total 585 26 104 73 87.4 14.6

38 Male 272 28 104 73 69.2 14.5

Female 311 26 104 74 69.4 14.7

Total 583 26 104 74 69.3 14.6

66 Male 270 28 104 73 69.2 14.3

Female 304 26 104 73 69.1 14.8

Total 580 26 104 73 69.1 14.5

Frontiers in Physiology frontiersin.org07

Makrogiannis et al. 10.3389/fphys.2022.951368

335

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.951368


the root mean squared difference (CV-RMSD) (Eq. 11) between

the reference (y) and the predicted (ŷ) measurements, the slope

and intercept of the regression line, and the p − values.

CV − RMSD � 1
μ

�������������
∑N

k�1 yk − ŷk( )2

N

√

; μ � ∑N
k�1yk

N
(11)

4 Experiments and results

Here we evaluate the performances of the fourMAIS techniques

and an automated model-based tissue quantification method

(TIDAQ) (Makrogiannis et al., 2018). We then explore the effect

of subject movement artifacts on tissue segmentation performance.

Finally, we expand our analysis to quantify the complete

InCHIANTI baseline dataset.

Our aim is to support or reject the hypotheses that 1) MAIS

techniques, in general, improve the segmentation performance of

SAIS, 2) STAPLE on SDD mappings produces better segmentation

quality than the other methods, 3) MAIS is more resilient to subject

movement than model-based segmentation.

We analyzed the performance of the deformable methods

by validating the SAIS results of statistical atlases against

reference standards, T. Reference standard is a tissue label

map that was generated manually by a clinical specialist. We

evaluated single atlas segmentation performances of STAT-

FFD, STAT-SDD, STAT-SyN, and STAT-SyNO, where

‘STAT’ represents the statistical atlas. The MAIS techniques

we developed and evaluated in this framework are STPL-FFD,

STPL-SDD, STPL-SyN, and STPL-SyNO. ‘SyNO’ denotes an

‘Symmetric Normalization with our own linear registration’

and ‘STPL’ denotes ‘STAPLE.’

TABLE 3 4% Trabecular Bone Segmentation Performance (mean ±
standard deviation). DSC: Dice Similarity Coefficient, TPR: True
Positive Rate, PR: Precision.

Method DSC TPR PR

STAT-FFD 0.947 ± 0.045 0.96 ± 0.021 0.939 ± 0.084

STPL-FFD 0.936 ± 0.056 0.971 ± 0.018 0.911 ± 0.103

STAT-SDD 0.959 ± 0.019 0.939 ± 0.037 0.981 ± 0.015

STPL-SDD 0.972 ± 0.009 0.965 ± 0.021 0.98 ± 0.014

STAT-SyNO 0.906 ± 0.072 0.922 ± 0.081 0.9 ± 0.103

STPL-SyNO 0.914 ± 0.068 0.936 ± 0.07 0.902 ± 0.104

STAT-SyN 0.947 ± 0.05 0.972 ± 0.017 0.93 ± 0.122

STPL-SyN 0.947 ± 0.054 0.975 ± 0.02 0.928 ± 0.128

TIDAQ 0.941 ± 0.022 0.913 ± 0.038 0.972 ± 0.024

FIGURE 4
Comparisons of tissue segmentation by MAIS and model-based
methods at 4% tibia and38% tibia. Two subjects (subject (A) and subject
(B)) are selected at each tibial site to demonstrate the performance of
the compared methods. At 4% the trabecular bone is delineated
by the green contour, and at 38% the cortical bone and the trabecular
bone are delineated by the green and magenta contours, respectively.
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4.1 4% tibia segmentation

Table 3 displays the summarized performance measures

obtained by the single-atlas image segmentation using the

statistical atlas and multi-atlas image segmentation methods,

and TIDAQ for identification of the trabecular bone (TB)

over the test-set. In Figure 4, column 1 we show examples of

multi-atlas segmentations of the trabecular bone at 4% tibia by

the compared methods, delineated by the green contours.

A comparison of single-atlas and multi-atlas segmentation

results in Table 3 shows that the use of multiple atlases improves

segmentation quality. With respect to multi-atlas image

segmentation techniques, we examined the performance

quality of the methods and the effect of label fusion on the

improvement of the results. The range and mean ± standard

deviation of DSC values produced by STPL-SDD are [0.944,

0.992] and 0.972 ± 0.009, by STPL-FFD are [0.739, 0.991] and

0.936 ± 0.056, by STPL-SyN are [0.743, 0.990] and 0.947 ± 0.054,

and by STPL-SyNO are [0.731, 0.991] are 0.914 ± 0.068,

respectively, as can be seen in Table 3. In summary, we

observe that STPL-SDD outperformed the other multi-atlas

techniques.

The range of DSC values produced by TIDAQ for trabecular

bone identification is [0.897, 0.967] with mean ± standard

deviation of 0.941 ± 0.022. The results in Table 3 indicate that

TIDAQ outperformed STPL-FFD, and STPL-SyNO registration

techniques. On the other hand, TIDAQ was less accurate than

STPL-SDD, and STPL-SyN.

4.2 38% tibia segmentation

Tables 4 and 5 contain the performance measures produced

by these experiments. Figure 4 displays examples of tissue

delineations, on two of our test subjects.

Overall, quantitative results of the methods reported in

Tables 4 and 5, show that SDD produced better segmentation

quality than the other deformable models, followed by SyN.

Low DSC values are produced by SyN, FFD, and SyNO

models (in decreasing order) for both cortical and

trabecular bone in some subjects. SyNO missed the

trabecular bone in few subjects producing zero DSC. We

also noticed that all deformable methods produced DSC

means that are greater than 75% for cortical and

trabecular bone except SyNO in the trabecular bone. We

infer that the range of DSC values for SDD is more compact

than the other deformable models. The minimum value of

DSC produced by SDD is greater than 85% for cortical bone,

and about 82% for trabecular bone. The DSC values produced

by SyN are fairly compact in the identification of bone

compartments, and their mean values are greater than 85%

with standard deviations about 10%.

In Tables 4 and 5, we observe that FFD results for both

single- and multi-atlas image segmentation techniques show a

wider DSC dispersion than SDD, the former producing values

lower than 60% for cortical bone and about 45% for

trabecular bone.

SyNO results show wider DSC spread than all of the other

deformable models. SyNO produced the least mean DSC of about

78% for identification of cortical bone and about 68% for

trabecular bone. This error is usually caused by linear

registration failures propagated to the symmetric

normalization stage.

TIDAQ performed very well in the identification of

trabecular bone, and much better in the identification of

cortical bone. Overall, the identification accuracy is promising

with DSC mean ± standard deviation of 89.7 ± 2.2% for cortical

bone and 82.5 ± 16.7% for trabecular bone. Despite the good

performance of TIDAQ, STPL-SDD outperformed it in the

identification of cortical bone, while STPL-SDD and STPL-

SyN outperformed it in the identification of trabecular bone.

This shows that multi-atlas image segmentation techniques have

the potential to produce higher tissue identification accuracy

than TIDAQ.

TABLE 4 38% Cortical Bone Segmentation Performance (mean ±
standard deviation). DSC: Dice Similarity Coefficient, TPR: True
Positive Rate, PR: Precision.

Method DSC TPR PR

STAT-FFD 0.809 ± 0.126 0.933 ± 0.064 0.721 ± 0.125

STPL-FFD 0.781 ± 0.136 0.889 ± 0.135 0.706 ± 0.153

STAT-SDD 0.932 ± 0.022 0.965 ± 0.025 0.902 ± 0.032

STPL-SDD 0.947 ± 0.021 0.949 ± 0.036 0.947 ± 0.023

STAT-SyNO 0.78 ± 0.174 0.891 ± 0.173 0.704 ± 0.184

STPL-SyNO 0.76 ± 0.215 0.841 ± 0.233 0.704 ± 0.216

STAT-SyN 0.871 ± 0.07 0.983 ± 0.026 0.787 ± 0.104

STPL-SyN 0.873 ± 0.112 0.96 ± 0.079 0.807 ± 0.141

TIDAQ 0.897 ± 0.15 0.954 ± 0.156 0.847 ± 0.147

TABLE 5 38% Trabecular Bone Segmentation Performance (mean ±
standard deviation). DSC: Dice Similarity Coefficient, TPR: True
Positive Rate, PR: Precision.

Method DSC TPR PR

STAT-FFD 0.823 ± 0.084 0.774 ± 0.145 0.917 ± 0.121

STPL-FFD 0.797 ± 0.131 0.759 ± 0.177 0.891 ± 0.155

STAT-SDD 0.92 ± 0.027 0.868 ± 0.052 0.981 ± 0.019

STPL-SDD 0.939 ± 0.019 0.91 ± 0.041 0.972 ± 0.026

STAT-SyNO 0.703 ± 0.294 0.627 ± 0.282 0.831 ± 0.309

STPL-SyNO 0.687 ± 0.343 0.624 ± 0.338 0.807 ± 0.363

STAT-SyN 0.849 ± 0.079 0.764 ± 0.081 0.97 ± 0.109

STPL-SyN 0.877 ± 0.08 0.811 ± 0.11 0.972 ± 0.078

TIDAQ 0.825 ± 0.167 0.726 ± 0.156 0.96 ± 0.187
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4.3 66% tibia segmentation

Figure 5 displays segmentation results produced by the

compared approaches on two scans with low motion

degradation and two scans with high motion degradation. The

mean ± standard deviation values of DSC, TPR and PR of each

tissue over all testing samples are given in Tables 6–9. Overall,

SDD exhibited better performance across the three metrics than

the other deformable models for the identification of all tissues,

followed by SyN and TIDAQ. In addition, SDD produced DSC,

true positive rate, and precision values of lower dispersion

(expressed by smaller standard deviation) than the other

methods. STPL-SDD yielded the top DSC performance for

SAT, muscle, and trabecular bone segmentation. The DSC

minimum values for this method were about 62.7% for SAT,

89% for muscle, 75% for cortical bone, and 86.2% for trabecular

bone. All MAIS techniques produced mean DSC greater than

89%, mean TPR greater than 84%, andmean PR greater than 95%

in muscle segmentation. Conversely, all tested methods yielded

FIGURE 5
Segmentation comparisons of scans at 66% tibial length
with low and high levels of artifacts caused by subject motion.
Scans (A,B) have low motion artifacts, while scans (C,D) have
high motion artifacts. The delineation of the
subcutaneous adipose tissue (SAT) is represented by the green
contour, muscle by magenta color, cortical bone by cyan
color, and trabecular bone by yellow color.

TABLE 6 66% SAT Segmentation Performance (mean ± standard
deviation). DSC: Dice Similarity Coefficient, TPR: True Positive
Rate, PR: Precision.

Methods DSC TPR PR

STAT-FFD 0.682 ± 0.158 0.953 ± 0.051 0.562 ± 0.2

STPL-FFD 0.73 ± 0.16 0.912 ± 0.085 0.649 ± 0.227

STAT-SDD 0.708 ± 0.151 0.939 ± 0.042 0.594 ± 0.189

STPL-SDD 0.771 ± 0.144 0.917 ± 0.057 0.692 ± 0.202

STAT-SyNO 0.684 ± 0.152 0.938 ± 0.065 0.572 ± 0.2

STPL-SyNO 0.729 ± 0.161 0.892 ± 0.093 0.659 ± 0.229

STAT-SyN 0.677 ± 0.147 0.935 ± 0.079 0.565 ± 0.197

STPL-SyN 0.734 ± 0.157 0.889 ± 0.078 0.664 ± 0.225

TIDAQ 0.746 ± 0.228 0.845 ± 0.14 0.702 ± 0.267

TABLE 7 66% Muscle Segmentation Performance (mean ± standard
deviation). DSC: Dice Similarity Coefficient, TPR: True Positive
Rate, PR: Precision.

Methods DSC TPR PR

STAT-FFD 0.893 ± 0.032 0.837 ± 0.067 0.962 ± 0.037

STPL-FFD 0.902 ± 0.034 0.857 ± 0.074 0.959 ± 0.037

STAT-SDD 0.922 ± 0.029 0.891 ± 0.057 0.958 ± 0.032

STPL-SDD 0.938 ± 0.028 0.914 ± 0.057 0.966 ± 0.029

STAT-SyNO 0.894 ± 0.038 0.847 ± 0.073 0.953 ± 0.054

STPL-SyNO 0.911 ± 0.038 0.874 ± 0.078 0.959 ± 0.048

STAT-SyN 0.893 ± 0.035 0.844 ± 0.077 0.957 ± 0.051

STPL-SyN 0.913 ± 0.04 0.875 ± 0.084 0.962 ± 0.045

TIDAQ 0.904 ± 0.085 0.861 ± 0.131 0.963 ± 0.025
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mean DSC less than 80%, and a top PR of 70.2% in SAT

segmentation.

In SAT delineation, FFD and SyNO models compete with

each other in the identification of SAT, but SyNO

outperforms free-form deformation in the identification

of other tissues by at least 10% accuracy. Except

for cortical bone, we observe that MAIS outperformed

TIDAQ.

4.4 Effects of subject motion on tissue
identification at 66% tibia

In this experiment, we studied the effect of artifacts on

segmentation performance. The motion was assessed using 5-

level visual grading as described in Wong (2016). We separated

the samples into low level of motion determined by grades 1–3,

and high level of motion with grades 4 and 5, and compared the

performance of all methods. As stated above, 12 out of 20 pQCT

scans at 66% tibia contain high to severe motion artifacts (grades

4 and 5).

The next step is to explore the differences in segmentation

performance between the two groups. Table 10 summarizes the

segmentation performance measured by DSC, true positive rate

(TPR) and precision (PR) for each tissue type and each method.

This table also contains the relative differences of the

performance measures. To estimate the statistical significance

of the differences in segmentation performance, we applied

nonparametric Wilcoxon rank sum tests between the two

groups and we report the p-values.

Considering SAT, we observe consistent decrease of average

DSC and PR with increasing motion artifacts for all methods. We

observe that TIDAQ shows the highest decrease in all

performance measures. The Wilcoxon tests indicate

statistically significant performance differences for TIDAQ in

DSC and precision, and for STPL-SDD in DSC and true

positive rate.

4.5 Tissue composition assessment

We applied our STPL-SDD method to the baseline

InCHIANTI dataset that we described in Section 3 and

summarized in Table 2. We then analyzed the quantification

results of cross-sectional areas and average densities for each

tissue to explore changes in its composition as a function of age.

The scatter plots and regression results in Figures 6, 7 lead to the

following observations. Trabecular bone density decreases with

age at similar rates for males and females. The CSA of cortical

bone decreases with age at similar rates for males and females.

Cortical bone density decreases with age for males and females,

and the rate of decrease is higher for females. Muscle CSA

decreases with age for males and females, and the rate of

decrease is higher for males. Muscle density decreases with

age at similar rates for males and females. Our analysis does

not reveal significant changes with age for SAT CSA, SAT

density, and trabecular bone CSA.

In addition, the statistical results reported in Tables 11–13

show that there is increased correlation of cortical bone density

with age, and trabecular bone density with age, especially for

females, relative to the other tissues. In addition, there is

noticeable correlation between muscle CSA and age for males.

The CV-RMSD values show decreased variation mostly for

cortical density and muscle density for each gender. We also

observe that the gender-conditional analyses produce lower

variability than joint analyses of males and females as we

expected.

4.6 Method implementation and
execution time

We developed the programs of the proposed methodologies

in C++, Python 3.7, and used the ITK library. We implemented

TABLE 8 66% Cortical Bone Segmentation Performance (mean ±
standard deviation). DSC: Dice Similarity Coefficient, TPR: True
Positive Rate, PR: Precision.

Methods DSC TPR PR

STAT-FFD 0.665 ± 0.152 0.668 ± 0.121 0.677 ± 0.196

STPL-FFD 0.668 ± 0.132 0.696 ± 0.11 0.666 ± 0.19

STAT-SDD 0.681 ± 0.094 0.55 ± 0.112 0.911 ± 0.059

STPL-SDD 0.829 ± 0.083 0.776 ± 0.118 0.898 ± 0.064

STAT-SyNO 0.721 ± 0.156 0.708 ± 0.145 0.754 ± 0.201

STPL-SyNO 0.765 ± 0.194 0.792 ± 0.181 0.761 ± 0.225

STAT-SyN 0.718 ± 0.147 0.719 ± 0.084 0.737 ± 0.21

STPL-SyN 0.788 ± 0.152 0.827 ± 0.112 0.769 ± 0.194

TIDAQ 0.851 ± 0.115 0.987 ± 0.032 0.76 ± 0.157

TABLE 9 66% Trabecular Bone Segmentation Performance (mean ±
standard deviation). DSC: Dice Similarity Coefficient, TPR: True
Positive Rate, PR: Precision.

Methods DSC TPR PR

STAT-FFD 0.825 ± 0.087 0.902 ± 0.124 0.783 ± 0.124

STPL-FFD 0.827 ± 0.085 0.911 ± 0.123 0.783 ± 0.138

STAT-SDD 0.86 ± 0.049 0.983 ± 0.023 0.769 ± 0.08

STPL-SDD 0.913 ± 0.045 0.968 ± 0.037 0.869 ± 0.088

STAT-SyNO 0.843 ± 0.179 0.91 ± 0.203 0.803 ± 0.142

STPL-SyNO 0.868 ± 0.167 0.913 ± 0.191 0.838 ± 0.14

STAT-SyN 0.856 ± 0.116 0.946 ± 0.073 0.791 ± 0.149

STPL-SyN 0.895 ± 0.105 0.939 ± 0.077 0.862 ± 0.133

TIDAQ 0.871 ± 0.221 0.816 ± 0.216 0.994 ± 0.026
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the symmetric normalizations, -SyN and -SyNO (originally

-SyNOnly) of ANTs on the ANTsPY python library (antspyx

version 0.2.5) with default parameters to generate the

segmentation results corresponding to these nonlinear

registration algorithms. The TIDAQ backend is implemented

in C++ and uses ITK, while the user interface is a Java plugin. We

executed our experiments on a system with Linux CentOS 7, 2 x

Intel(R) Xeon(R) CPU E5-2,690 v4 2.60 GHz, and 128 GB RAM.

We computed the execution time of SAIS andMAIS, with respect

to the deformable registration algorithms, for all subjects at the

different tibia location. We calculated the mean ± standard

deviation of the execution time over all subjects in the

segmentation set and report the values in Table 14. We

observe that the execution time of STAT-SDD is about 27 s

for 4% tibia, and about 32 s for 38% and 66% tibia, while the

execution time of STPL-SDD is about 102 s for 4%, 118 s for 38%,

and 148 s for 66%.

5 Discussion

5.1 Method comparisons, tissue
separability and technical characteristics

Tissue delineation is an important, but challenging task in

medical image analysis. The accuracy of tissue delineation

TABLE 10 Effect of motion artifacts on segmentation performance.

Dice similarity coefficient (DSC)

TISSUE 66%-SAT 66%-MUSCLE 66%-CB 66%-TB

MOTION Low High Diff% p Low High Diff% p Low High Diff% p Low High Diff% p

STPL-FFD 0.799 0.703 −11.9% 0.208 0.919 0.896 −2.5% 0.143 0.691 0.660 −4.5% 0.849 0.785 0.843 7.4% 0.173

STPL-SDD 0.866 0.734 −15.2% 0.046 0.964 0.928 −3.8% 0.004 0.876 0.810 −7.5% 0.059 0.908 0.914 0.7% 0.849

STPL-SyN 0.794 0.711 −10.5% 0.246 0.926 0.908 −2.0% 0.503 0.792 0.786 −0.8% 0.173 0.845 0.914 8.2% 0.453

STPL-SyNO 0.814 0.697 −14.4% 0.173 0.936 0.901 −3.7% 0.095 0.813 0.747 −8.1% 0.143 0.900 0.856 −4.9% 0.775

TIDAQ 0.922 0.678 −26.4% 0.014 0.978 0.876 −10.5% 4.7·10–4 0.956 0.811 −15.2% 2.3·10–4 0.960 0.837 −12.8% 0.035

TRUE POSITIVE RATE (TPR)

TISSUE 66%-SAT 66%-MUSCLE 66%-CB 66%-TB

MOTION Low High Diff% p Low High Diff% p Low High Diff% p Low High Diff% p

STPL-FFD 0.914 0.912 −0.3% 0.703 0.882 0.847 −4.0% 0.443 0.695 0.697 0.2% 0.633 0.952 0.895 −6.0% 0.633

STPL-SDD 0.958 0.901 −5.9% 0.007 0.950 0.901 −5.1% 0.117 0.819 0.760 −7.2% 0.336 0.966 0.969 0.3% 0.387

STPL-SyN 0.886 0.890 0.5% 0.775 0.894 0.868 −2.9% 0.775 0.822 0.829 0.8% 0.849 0.925 0.944 2.1% 1.000

STPL-SyNO 0.903 0.888 −1.6% 0.703 0.911 0.860 −5.7% 0.246 0.843 0.772 −8.4% 0.387 0.980 0.887 −9.4% 0.143

TIDAQ 0.911 0.820 −10.0% 0.336 0.978 0.817 −16.4% 2.3·10–4 1.000 0.982 −1.8% 0.185 0.925 0.774 −16.3% 0.035

PRECISION (PR)

TISSUE 66%-SAT 66%-MUSCLE 66%-CB 66%-TB

MOTION Low High Diff% p Low High Diff% p Low High Diff% p Low High Diff% p

STPL-FFD 0.732 0.617 −15.7% 0.503 0.964 0.957 −0.6% 0.924 0.719 0.645 −10.3% 0.387 0.672 0.826 23.0% 0.026

STPL-SDD 0.797 0.651 −18.3% 0.289 0.980 0.960 −2.0% 0.173 0.958 0.875 −8.7% 0.002 0.868 0.870 0.3% 0.775

STPL-SyN 0.747 0.631 −15.5% 0.443 0.966 0.961 −0.6% 0.775 0.794 0.759 −4.4% 0.117 0.791 0.890 12.6% 0.443

STPL-SyNO 0.766 0.617 −19.4% 0.246 0.967 0.956 −1.1% 1.000 0.814 0.740 −9.1% 0.117 0.838 0.839 0.2% 0.566

TIDAQ 0.933 0.613 −34.3% 0.010 0.979 0.957 −2.2% 0.117 0.915 0.700 −23.5% 2.3·10–4 1.000 0.992 −0.8% 1.000
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depends on many factors, including the intrinsic characteristics

of the technique, image modality, artifacts or noise, and the

number of tissues to be identified in each scan. Peripheral

quantitative computed tomography imaging quality is

significantly affected by artifacts caused by subject movement.

Overall, the proposed multi-atlas image segmentation techniques

address the aforementioned factors. Furthermore, the multi-atlas

symmetric diffeomorphic demons technique proved to be more

robust to reduced image quality than the other methods, followed

by symmetric image normalization.

Visual inspection of tissue densities in the image at multiple

tibial sites that are displayed in Figure 8, second row, shows that

the distributions of different tissues significantly overlap with one

another. At 4% tibia, we observe a clear overlap between the

distribution of all leg tissues and the trabecular bone. An

optimized thresholding technique based on tissue densities,

for example, may not separate the distributions accurately,

because of high false positives and false negatives. At 38%

tibia, although it appears that there is a valley between the

cortical and trabecular bones, yet there is still significant

overlap between the distributions of the trabecular bone

tissues and all leg tissues. At 66% tibia, we note the extensive

overlap among the distributions of SAT, muscle, and trabecular

bone. These distributions illustrate the difficulties that would be

FIGURE 6
Scatter plots of tissue of interest’s cross sectional area versus age for males, females, and both genders at 4%, 38% and 66% tibia.
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encountered by segmentation techniques that rely on density

alone. Yet, the proposed MAIS technique STPL-SDD, yields high

segmentation accuracy (DSC >90%), in almost all tissue

delineations at different sites, except for 66%-SAT and 66%-

cortical bone.

Specific properties of these methods that improved the tissue

delineation accuracy are their 1) symmetric nature, and 2)

diffeomorphism. Concerning symmetry, the method in

question provides equal treatment to both fixed and moving

images. In addition, the interactive force between the two images

can produce accurate registration of one part of the image to the

other, and vice versa (Rogelj and Kovačič, 2006). On the other

hand, diffeomorphism affords the algorithms the ability to

handle both large and small deformations (Sotiras et al.,

2013). It is important to note that large deformations are a

result of large strains or rotations, which are caused by subject

movement. Thus, symmetric diffeomorphic demons and

symmetric normalization are robust to local image artifacts or

large image deformations that are difficult to register.

The segmentation results shown in Figure 4, at 4% and 38%

tibial length, correspond to subjects corresponding to variable

levels of delineation challenges, caused by either the condition

of the subject (in the 4% examples) or subject motion (in the

38% examples). At both anatomical sites, subject ‘B’ presents

FIGURE 7
Scatter plots of tissue of interest’s density versus age for males, females, and both genders at 4%, 38% and 66% tibia.
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TABLE 11 Statistical measures of the relationships between tissue properties and age for males and females.

Measurement Site R2 CV-RMSD Slope Intercept p-value

Trabecular CSA 4 0.031 3.646 2.235 1,045.3 < 10−4

Trabecular density 4 0.181 4.799 −1.603 361.4 < 10−4

Cortical CSA 38 0.033 4.661 −0.728 349.8 < 10−4

Cortical density 38 0.178 1.260 −1.784 1,194.3 < 10−4

SAT CSA 66 0.013 7.361 −6.810 3,221.9 0.0054

SAT density 66 0.011 18.583 0.110 12 0.0123

Muscle CSA 66 0.058 3.967 −17.048 7,206.7 < 10−4

Muscle density 66 0.113 1.663 −0.127 83.4 < 10−4

TABLE 12 Statistical measures of the relationships between tissue properties and age for females.

Measurement Site R2 CV-RMSD Slope Intercept p-value

Trabecular CSA 4 0.102 2.159 3.052 887.9 < 10−4

Trabecular density 4 0.348 3.025 −1.911 358.5 < 10−4

Cortical CSA 38 0.086 2.528 −0.779 313.3 < 10−4

Cortical density 38 0.307 0.977 −2.643 1,233 < 10−4

SAT CSA 66 0.010 5.122 −6.067 3,498.9 0.0870

SAT density 66 0.044 17.826 0.132 −0.3 0.0002

Muscle CSA 66 0.034 2.428 −9.817 6,238.6 0.0013

Muscle density 66 0.150 1.185 −0.142 83.3 < 10−4

TABLE 13 Statistical measures of the relationships between tissue properties and age for males.

Measurement Site R2 CV-RMSD Slope Intercept p-value

Trabecular CSA 4 0.013 1.950 1.246 1,229.6 0.0611

Trabecular density 4 0.127 2.704 −1.219 362.7 < 10−4

Cortical CSA 38 0.048 1.937 −0.627 388.7 0.0003

Cortical density 38 0.081 0.554 −0.756 1,147.1 < 10−4

SAT CSA 66 0.032 4.019 −7.441 2,895.9 0.0032

SAT density 66 0.009 5.721 0.075 26.5 0.1141

Muscle CSA 66 0.135 2.362 −26.153 8,364.7 < 10−4

Muscle density 66 0.087 1.098 −0.110 83.5 < 10−4

TABLE 14 Mean ± standard deviation (in seconds) of the execution times of SAIS and MAIS with respect to nonlinear registration models.

Tibia site Method FFD SDD SyN SyNO

4% SAIS 56.47 ± 3.34 27.01 ± 0.81 5.55 ± 0.30 37.25 ± 2.91

MAIS 191.45 ± 9.54 101.82 ± 1.72 41.27 ± 0.99 136.48 ± 5.61

38% SAIS 55.49 ± 7.00 31.15 ± 1.46 5.67 ± 0.33 37.16 ± 1.90

MAIS 189.31 ± 18.62 117.18 ± 3.97 41.88 ± 1.34 140.61 ± 15.20

66% SAIS 55.47 ± 3.96 31.48 ± 1.29 4.42 ± 4.42 36.38 ± 1.30

MAIS 209.66 ± 31.41 147.18 ± 36.05 52.51 ± 13.25 151.13 ± 25.72
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more segmentation challenges than subject ‘A’. Visual

inspection of subject ‘B’ at 4% tibia in Figure 4 shows that

STPL-FFD and STPL-SyNO could not delineate the trabecular

bone accurately when compared to STPL-SDD and STPL-SyN.

Similarly, under 38%-tibia scans in Figure 4, we observe that

due to the higher presence of streaks in subject ‘B’ than in

subject ‘A’, STPL-FFD and STPL-SyNO produced lower tissue

delineation accuracy than STPL-SDD and STPL-SyN. This

observation provides insight into the improved delineation

accuracy produced by symmetric diffeomorphic demons and

symmetric normalization.

5.2 Effects of subject motion on tissue
identification at 66% tibia

The effect of motion artifacts is less pronounced on muscle

identification in terms of the relative differences. We observe

statistically significant differences in DSC for STPL-SDD and

TIDAQ. TIDAQ also showed statistically significant decrease of

muscle true positive rate.

In the cortical bone, most performance changes are not

statistically significant. TIDAQ produced p-values smaller

than 0.05 for DSC and precision, and STPL-SDD for precision

only. In the trabecular bone, STPL-FFD produced p-values

smaller than 0.05 for precision, and TIDAQ for DSC and true

positive rate. DSC and precision values of the trabecular bone

produced by STPL-FFD and STPL-SyN increase from low to high

motion group, because of segmentation errors in subjects of the

low motion group.

We observe that TIDAQ is significantly affected by motion

artifacts, as average DSC clearly decreases from the low to high

subject motion group. MAIS techniques and especially STPL-

SyN are more resilient to subject motion. STPL-SDD still

produces the highest DSC and precision values in the high

motion group overall.

5.3 Tissue composition assessment

The results in Figures 6, 7 and Tables 11–13 are consistent

with findings of clinical studies of aging that used semi-manual

quantification workflows (Makrogiannis et al., 2018; Ferrucci

et al., 2000). These results indicate that our automated

methodology can help to increase the throughput of

sophisticated cross-sectional and longitudinal analyses of

tissue properties. We also note that the proposed

methodology enables the analysis of both hard and soft tissues

in pQCT. This is a desirable and innovative feature as pQCT has

beenmostly restricted to quantification of bone in the past (Gabel

et al., 2018; Wong and Manske, 2020). Our methodology opens

the door for efficient exploration of muscle properties in the

lower leg using pQCT. On the other hand, a greater number of

reference segmentation masks may be needed to improve the

statistical power of performance evaluations.

6 Conclusion

We introduced multi-atlas segmentation methods for soft

and hard tissue segmentation in the lower leg using pQCT data.

Our results indicate that the MAIS technique, STPL-SDD,

produced more accurate tissue delineation as measured by

DSC than all compared methods. STPL-SyN is largely resilient

FIGURE 8
Examples of the pQCT scans, masks and tissue distributions. Top row: image-mask pairs of pQCT scans at 4%, 38%, and 66% tibial length
respectively. Bottom: distributions of tissues corresponding to the above tibia sites. On the masks, air, trabecular bone, cortical bone, muscle, and
subcutaneous adipose tissue (SAT) are identified by black, yellow, cyan, red, and white colors, respectively.

Frontiers in Physiology frontiersin.org16

Makrogiannis et al. 10.3389/fphys.2022.951368

344

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.951368


to subject motion artifacts and noise. The results of our

experiments indicate that our methodology can analyze data

with degradations caused by subject motion that conventional

methods cannot analyze. Future directions of this work include

extending this framework to 3D imaging data, and using the

segmentation and quantification results for disease prognosis and

diagnosis.
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Background: Accurate localization and classification of intracerebral

hemorrhage (ICH) lesions are of great significance for the treatment and

prognosis of patients with ICH. The purpose of this study is to develop a

symmetric prior knowledge based deep learning model to segment ICH

lesions in computed tomography (CT).

Methods: A novel symmetric Transformer network (Sym-TransNet) is designed

to segment ICH lesions in CT images. A cohort of 1,157 patients diagnosed with

ICH is established to train (n = 857), validate (n = 100), and test (n = 200) the

Sym-TransNet. A healthy cohort of 200 subjects is added, establishing a test set

with balanced positive and negative cases (n = 400), to further evaluate the

accuracy, sensitivity, and specificity of the diagnosis of ICH. The segmentation

results are obtained after data pre-processing and Sym-TransNet. The DICE

coefficient is used to evaluate the similarity between the segmentation results

and the segmentation gold standard. Furthermore, some recent deep learning

methods are reproduced to compare with Sym-TransNet, and statistical

analysis is performed to prove the statistical significance of the proposed

method. Ablation experiments are conducted to prove that each component

in Sym-TransNet could effectively improve the DICE coefficient of ICH lesions.

Results: For the segmentation of ICH lesions, the DICE coefficient of Sym-

TransNet is 0.716 ± 0.031 in the test set which contains 200 CT images of ICH.

The DICE coefficients of five subtypes of ICH, including intraparenchymal

hemorrhage (IPH), intraventricular hemorrhage (IVH), extradural hemorrhage

(EDH), subdural hemorrhage (SDH), and subarachnoid hemorrhage (SAH), are

0.784 ± 0.039, 0.680 ± 0.049, 0.359 ± 0.186, 0.534 ± 0.455, and 0.337 ± 0.044,

respectively. Statistical results show that the proposed Sym-TransNet can

significantly improve the DICE coefficient of ICH lesions in most cases. In

addition, the accuracy, sensitivity, and specificity of Sym-TransNet in the

diagnosis of ICH in 400 CT images are 91.25%, 98.50%, and 84.00%,

respectively.
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Conclusion: Compared with recent mainstream deep learning methods, the

proposed Sym-TransNet can segment and identify different types of lesions

from CT images of ICH patients more effectively. Moreover, the Sym-TransNet

can diagnose ICH more stably and efficiently, which has clinical application

prospects.

KEYWORDS

intracerebral hemorrhage, lesion segmentation, deep learning, symmetric knowledge,
transformer

Introduction

Intracerebral hemorrhage (ICH) is one of the most

devastating subtypes of stroke, accounting for 10%–20% of all

stroke cases (Zhao et al., 2020). ICH is commonly caused by

trauma, hypertension, and vascular malformation, and more

than half of the ICH patients have a long-term disabilities

(Rindler et al., 2020). According to symptom onset time, the

patients are divided into hyperacute stage (≤6 h), acute stage

(7–72 h), subacute stage (3 days–2 weeks), and chronic stage

(after 2 weeks) (Vijayan and Reddy, 2016). Depending on the

hemorrhage site, ICH can be divided into five types, which

include intraparenchymal hemorrhage (IPH), intraventricular

hemorrhage (IVH), extradural hemorrhage (EDH), subdural

hemorrhage (SDH), and subarachnoid hemorrhage (SAH)

(Chilamkurthy et al., 2018). Different bleeding types

determine the treatment plan and prognosis of patients.

Therefore, accurate detection and classification of ICH are of

great significance for saving the life and neurological function of

patients (Li et al., 2021).

Neuroimaging is an important tool for the detection,

characterization, and prediction of acute stroke, including

ischemic and hemorrhagic subtypes (Lee et al., 2019).

Computed tomography (CT) is the first choice for

emergency diagnosis of ICH due to its high imaging speed

(Chan, 2007). However, reading and analyzing a large amount

of CT images is time-consuming and tricky work for clinic

doctors, which increases the possibility of missed diagnosis and

misdiagnosis (Cho et al., 2019). At present, emergency

craniocerebral CT diagnosis, especially on the night shift, is

mostly provided by the junior radiologist, and then reviewed by

the senior radiologist (Lal et al., 2000; Erly et al., 2002). Several

studies have shown that initial diagnosis provided by junior

radiologists has different degrees of missed diagnosis and

misdiagnosis (Erly et al., 2002). However, due to the high

variability of the location, contrast, and shape of bleeds,

accurate localization of them can be challenging and time-

consuming even for experienced radiologists. In addition, due

to limited medical conditions and resources in some

underdeveloped areas, patients with ICH cannot receive an

accurate diagnosis and timely treatment the first time, resulting

in a threat to patients life. Therefore, it is very important to

diagnose and classify ICH timely and accurate (Li et al., 2021).

Artificial intelligence (AI) technology is a rapidly developing

field, which is regarded as a promising approach for fast and

efficient image analysis (He et al., 2016; Li Y. et al., 2022). In

recent years, AI has been applied in the medical imaging field of

acute cerebrovascular diseases, including as a tool for

classification, quantification, monitoring, and prediction

(Ironside et al., 2019; Sun et al., 2020; Zhu et al., 2020). The

convolutional neural network (CNN) is one of the representative

deep learning algorithms that utilize image high-dimensional

digital information by extracting image features (Badrinarayanan

et al., 2017; Roy et al., 2019). In the field of medical image

segmentation, the U-shaped network (U-Net) is one of the most

representative convolutional neural networks (Ronneberger

et al., 2015). In several years, many deep learning methods

based on convolutional neural networks have been

successfully applied to ICH lesion segmentation and achieved

relatively ideal results. Inkeaw et al. proposed a 3D convolutional

neural network, which processes CT images with different

resolutions through four parallel paths, and segments different

types of bleeding lesions through the region-growing method.

The median DICE coefficient of segmentation for each bleeding

subtype was higher than 0.37 (Inkeaw et al., 2022). Xu et al.

(2021) adopted the densely connected U-Net architecture to test

on nearly 300 ICH images and achieved a DICE coefficient of

0.89. Nevertheless, IVH and SAHwere not included in this study.

A supervised multi-task aiding representation transfer learning

network (SMART-Net) was proposed to overcome the complex

training process of the current deep learning model and the

inefficient prediction accuracy on the patient’s level (Kyung et al.,

2022). Kwon et al. (2019) utilized a healthy brain template as

auxiliary information for segmentation and employed U-Net to

capture the difference between the input CT image and healthy

template to segment ICH lesions more efficiently. The generative

adversarial network (GAN) is also a common approach used in

medical image segmentation tasks. A residual segmentation

method with GAN (ReSGAN) was designed to learn a

distribution of pseudo-normal brain CT scans and delineate

the hemorrhaging areas (Toikkanen et al., 2021). To capture

the interaction information between adjacent hematoma slices in

CT images, Li et al. designed a slice expansion module and

proposed two information transmission paths to expand the

forward/backward slice respectively (Li X. Y. et al., 2022). The

complicated annotation process of ICH lesions in CT images is
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one of the important factors which restricts the segmentation

performance of the deep learning model. In order to make

efficient utilization of unlabeled data, the semi-supervised

learning approach such as the mean-teacher framework has

also been transplanted by researchers for lesion segmentation

(Cui et al., 2019).

However, the lesions of some hemorrhage types, such as

SAH, are extremely extensive in the brain. The CNN-based

methods which utilize local convolution kernel to obtain

image features are difficult to effectively capture the long-

distance dependencies in CT (Guo and Terzopoulos, 2021;

Huang et al., 2022). Currently, the combination of the

Transformer structure and CNN has been proven to be

beneficial for capturing long-distance dependencies in images,

which inspired us to use the Transformer structure for the

segmentation of ICH lesions in this paper (Liu et al., 2020).

In addition, the structure of the brain is roughly symmetrical

(Liang et al., 2021). In a hemorrhagic stroke, this symmetry is

commonly broken. Therefore, the symmetry change of brain

structure can also be utilized for the segmentation of ICH lesions

in CT images.

To solve the problem that the traditional CNN-basedmethods

are difficult to capture the long-distance dependencies of CT

images and the insufficient utilization of the symmetric

structure of the brain, we proposed a novel deep learning

method called symmetric Transformer network (Sym-

TransNet) in this paper. The Sym-TransNet combines the

Transformer structure with the traditional U-Net and adopts

the symmetry prior knowledge in the network, which effectively

improves the accuracy of segmentation and classification of ICH,

reducing the workload of clinicians and providing a certain clinical

basis for timely and accurate treatment of patients with ICH.

Materials and methods

In this retrospective study, a large number of CT images were

collected clinically for training and testing of the proposed Sym-

TransNet. Then we calculate the performance indicators of the

proposed Sym-TransNet in the segmentation and diagnosis task

of ICH, and visualize the results. The specific process is shown in

Figure 1. Ethical approval for this study was waived by The

Medical Ethics Committee of The First People’s Hospital of

Kashi Prefecture because this study used anonymous data

which was collected as part of routine diagnosis and treatment.

Patients

A consecutive non-contrast head CT dataset, which

retrospectively enrolled 1,157 patients who were diagnosed

with ICH from January 2019 to April 2022 at the First

People’s Hospital of Kashi Prefecture, was established in this

study for the training, validation, and test of our proposed deep

learning model. We developed three patient inclusion criteria as

follows: 1) patients (age≥18 years) who were diagnosed with

ICH; 2) the diagnoses coincided with non-contrast head CT

scans and radiology reports; 3) the CT scans were performed

within 3 days after onset of symptoms. In addition, we also

integrated three exclusion criteria: 1) patients who refused to

sign informed consent; 2) CT Scans with excessive motion/

artifacts (image quality not suitable for ICH diagnosis); 3)

patients with both hemorrhagic and ischemic strokes. In

addition, CT scans of 200 healthy subjects were collected to

evaluate the diagnostic specificity of our deep learning model.

These CT scans were obtained during the physical examination

FIGURE 1
The workflow of the study.
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in the First People’s Hospital of Kashi Prefecture from September

2019 to April 2022.

Data collection and annotation

All CT scans diagnosed with ICH utilized in this research were

obtained by CT scanners produced by Siemens, Philips, United

Imaging, and General Medical System. The slice thickness of the

CT scans is mainly 5 mm. Specifically, the numerical distribution

of themanufacturermodel name in our ICH dataset is displayed in

Figure 2. The dataset contained 678 male and 478 female patients

with intracerebral hemorrhage, and the gender of one scan was

unknown. In our ICH dataset, CT slices of 857 patients are

adopted to train the deep learning model, CT slices of

100 patients are used to adjust parameters during the training

stage, and CT slices of 200 patients are employed to evaluate the

overall segmentation performance. After anonymizing sensitive

information in original DICOM (Digital Imaging and

Communications in Medicine) data, lesions in five sub-types of

ICH, including IPH, IVH, EDH, SDH, and SAH, were annotated

by six experienced radiologists. Based on the above stages, two

senior neurologists with more than 5 years of experience corrected

the mislabeling of preliminary lesion annotations and further

refined the outline, location, and categories of hemorrhage

lesions. The final segmentation gold standard was determined

by senior neurologists after reaching a consensus.

Data pre-processing

To better adapt to the training stage of the deep learning

network, we pre-process the CT images in our dataset. Specifically,

the window level (WL)/window width (WW) of each CT image is

set as 50/100 and normalized to have zero mean and unit variance

(Yu et al., 2022). To reduce the consumption of computing

resources, the size of each CT slice is resized to 512 × 512. In

the test stage, all segmentation results obtained by the proposed

model are upsampled to the original size for performance index

calculation. Furthermore, some CT slices in the dataset are

randomly flipped horizontally to increase the diversity of the

training data. Due to the head position of the patient during

the CT scan is not uniquely deterministic, the reconstructed brain

structure in the CT slice is usually not horizontally symmetrical.

To effectively utilize the medical prior knowledge that the brain

structure is symmetrical, the symmetry-based alignment network

(Wang et al., 2020) is utilized in this study to horizontally align the

brain in all CT slices. As shown in Figure 3, the brain structure in

the CT slice is transformed from asymmetric to horizontal

symmetry after being processed by the alignment network.

FIGURE 2
Distribution of CT information in the dataset. (a) Distribution of patient sex. O: unknown; F: female; M:male. (b) Distribution of themanufacturer
model name.
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Symmetric prior knowledge-based deep
learning model

The convolutional neural network, which obtains high-level

features in images through the convolution kernels and the

down-sampling operation, is an efficient deep learning model

utilized in various research fields. In the field of medical image

segmentation, the U-Net is one of the most representative

convolutional neural networks. The U-Net extracts and

restores image features through interconnected codec paths,

and has satisfactory performance in different segmentation

tasks (Ibtehaz and Rahman, 2020). As shown in Figure 4, the

proposed deep learning model is based on the U-Net framework,

containing an image encoding path and an image decoding path.

FIGURE 3
The diagram of the CT slice alignment through symmetric based alignment network.

FIGURE 4
The framework of the proposed Sym-TransNet.
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The bottom of the two paths is connected by a symmetric

Transformer. We name this network the symmetric

Transformer network (Sym-TransNet). The image

preprocessed by the alignment network, which is regarded as

the input of our Sym-TransNet, is transformed into a tensor of

size B × C × H × W by the 3 × 3 convolution kernel, where B is

the batch size which is pre-set in the training stage, C is the

number of image channels, and H and W are the height and

width of the image. In this paper, parameters B, C,H, andW are

set to 64, 64, 512, and 512, respectively. The encoding path

captures the high-level semantic information in CT images by

using continuous 3 × 3 convolution and max-pooling and finally

generates image features with the size of B × 8C × H
8 × W

8 .

The structure of the brain is roughly symmetrical. When a

hemorrhagic stroke occurs, this symmetry is destroyed.

Therefore, we can segment the bleeding area by capturing

changes in symmetry in the brain CT image. However, the

CNN which employs local convolution kernels is difficult to

efficiently capture the long-distance symmetric relations in CT

images. In recent years, the Transformer structure becomes a

powerful approach for capturing long-distance dependencies in

images and has achieved great success in computer vision tasks.

Based on the medical prior knowledge that the brain structure is

symmetrical, we propose a new Transformer structure named

symmetrical Transformer to model long-distance symmetric

relations in brain CT images. The structure of the proposed

symmetrical Transformer is shown in Figure 5. We regard the

image featureX obtained from the coding path as the input of the

symmetric Transformer, and then flip it horizontally to get the

flipped feature ~X. The feature embedding and the layer

normalization are employed to map the above two features

into sequence features Z and ~Z, which are both adapted to

the Transformer structure. From Figure 5, the symmetrical

Transformer mainly consists of two parts: the multi-head self-

attention MHSA(·) and multi-layer perceptron MLP(·). The
input Q, V, and K of the MHSA can be calculated as follows:

Q � ZWQ (1)
V � ZWV (2)
K � Z̃WK (3)

where the WQ, WV, and WK are learnable parameters, called a

query transform matrix, a value transform matrix, and a key

transform matrix, respectively. Further, the output of the MHSA

XMHSA can be calculated as:

XMHSA � Softmax(
QKT

��
d

√ )V (4)

where d is a scaling factor that can solve the small gradient of the

Softmax function. Thus, the output of the symmetrical

Transformer Y can be represented as follows:

Y � Reshape(MLP(LN(~Y)) + ~Y) (5)
~Y � XMHSA + Feature Embedding(X) (6)

where Reshape(·), MLP(·), LN(·), and Feature Embedding(·)
denote image reshape operation, multi-layer perceptron, layer

normalization, and feature embedding operation.

The features processed by the symmetrical Transformer are

fed to the decoding path, and the image features are restored to

the original resolution through continuous convolution

operation and upsampling operation. Similar to the traditional

FIGURE 5
The diagram of the symmetrical Transformer.
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U-Net, we adopt a skip connection between the encoding path

and decoding path to obtain multi-scale features. Finally, 1 ×

1 convolution and softmax function are utilized to generate the

final segmentation result.

Model training and evaluation metrics

The proposed Sym-TransNet is implemented based on

PyTorch deep learning framework and is trained and

evaluated on 4 NVIDIA RTX graphic cards. In the training

stage, the Adam optimizer is adopted to optimize model

parameters. In addition, cross-entropy and DICE loss

functions are used to measure the distance between the

segmentation results of the deep learning model and the

golden standards during gradient backpropagation. We set

the initial learning rate as 1 × 10−5 and the parameter weight

decay as 1 × 10−3, then utilize the exponential decay strategy

to dynamically adjust the learning rate to avoid the local

minimum. We set the maximum training epoch as 100,

selecting the model with the best performance in the

validation set to conduct performance evaluation on the

test set.

In the test stage, the DICE coefficient is employed to evaluate

the accuracy of the segmentation of ICH lesions. Assuming P is

the prediction result of our proposed Sym-TransNet and G is the

segmentation gold standard, the DICE coefficient can be

calculated as:

DICE � 2 × |P ∩ G|
|P ∪ G| (7)

In addition to calculating the DICE coefficient of lesion

segmentation, we also evaluate the accuracy (Acc), sensitivity

(Sen), and specificity (Spe) of the proposed Sym-TransNet on the

ICH diagnosis task. The diagnosis results are divided into four

categories: true positive (TP), true negative (TN), false positive

(FP), and false negative (FN). Thus, the Acc, Sen, and Spe can be

calculated as follow:

Acc � TP + TN

TP + FP + TN + FN
(8)

Sen � TP

TP + FN
(9)

Spe � TN

TN + FP
(10)

Statistical analysis

To statistically analyze the segmentation results obtained by

the deep learning model, we utilized Wilcox rank-sum test to

conduct pair-wise statistical tests (on DICE coefficient) between

the proposed Sym-TransNet and several existing deep learning

methods which are widely used in medical imaging (Wu et al.,

2021). All of the statistical analysis in this paper was

implemented in Python. We defined that the two methods

were statistically different when the p-value <0.05.

Results

Satisfactory performance of Sym-
TransNet for ICH lesion segmentation

After the parameters of the proposed Sym-TransNet are

optimized on the training dataset, we evaluate the

performance on the test dataset. To demonstrate that the

proposed method has satisfactory segmentation performance

compared with existing deep learning models, we faithfully

reproduce several approaches commonly utilized in the field

of medical image processing in recent years for comparison,

including the U-Net, the U-Net with the dilated convolution

(DU-Net) (Yu et al., 2017), the U-Net with SE block (SEU-Net)

(Roy et al., 2019), the Dual-Attention Network (DA-Net) (Fu

et al., 2019), and the High-Resolution Network (HR-Net) (Sun

et al., 2019; Wang et al., 2021). The performance of the above

methods in the segmentation of ICH lesions and the

segmentation of five subtypes of ICH lesions is listed in

Table 1. As shown in Table 1, our Sym-TransNet achieves an

average DICE of 0.716, where the 95% confidence interval (95%

CI) is 0.685–0.747, on the test dataset containing 200 patients

with ICH, which is the best performance compared with the

current methods in Table 1. Furthermore, for the segmentation

of different subtypes of ICH lesions, the average DICE of IPH,

IVH, EDH, SDH, and SAH by the Sym-TransNet is 0.784 (95%

CI: 0.745–0.824), 0.680 (95% CI: 0.631–0.730), 0.359 (95% CI:

0.173–0.545), 0.534 (95% CI: 0.455–0.613), and 0.337 (95% CI:

0.293–0.382). In terms of IPH segmentation, the HR-Net is the

model with the highest DICE among the comparison methods in

Table 1, and our Sym-TransNet has improved by 0.26 on this

basis. In the IVH case, the Sym-TransNet reaches the highest

DICE score of all methods and 0.26 higher than the second-place

method HR-Net. In addition, compared with other methods, the

segmentation DICE coefficient of our method in EDH and SDH

has been significantly improved. The reason why the

performance of SDH and EDH is not as satisfactory as IPH

and IVH are that the two kinds of bleeding lesions are close to the

skull, resulting in the symmetry prior knowledge is not

significantly beneficial to distinguishing the two kinds of

lesions when they appear at the same time. As the lesions of

SAH are very irregular in shape and often diffuse into the sulci,

the traditional CNN methods based on local information

modeling have low segmentation performance for SAH. The

Sym-TransNet has improved the segmentation of SAH

compared with the method based on CNN alone because of

the combination of the Transformer structure that can capture
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the long-distance dependencies in the CT scan. The HR-Net is

the best method among the compared methods for SAH

segmentation because the multi-resolution method utilized in

HR-Net captures more global information in SAH than other

CNN-based methods. Compared with the HR-Net, the proposed

Sym-TransNet further improves the DICE coefficient of 0.2 on

SAH, indicating that the Transformer structure is effective in the

segmentation of SAH.

In addition to the DICE coefficient comparison, to more

intuitively demonstrate the effectiveness of our method, the

segmentation results of some ICH are also visualized in

Figure 6. As far as the segmentation of cerebral hemorrhage

lesions is concerned, the proposed Sym-TransNet can obtain the

edges of lesions more consistent with manual labeling and can

detect some small lesions missed by other methods. For IPH and

IVH segmentation, when parenchymal hemorrhage breaks into

TABLE 1 Segmentation performance of deep learning methods on ICH dataset.

Method Parameters
(1 × 106)

ICH lesions
(95% CI)

IPH
(95% CI)

IVH
(95% CI)

EDH
(95% CI)

SDH
(95% CI)

SAH
(95% CI)

U-Net 2.47 0.624 (0.587, 0.661) 0.688 (0.638,
0.738)

0.518 (0.457,
0.580)

0.222 (0.083,
0.361)

0.321 (0.239,
0.404)

0.245 (0.206,
0.284)

DU-Net 4.83 0.611 (0.573, 0.649) 0.674 (0.622,
0.725)

0.496 (0.432,
0.560)

0.119 (0.014,
0.224)

0.256 (0.171,
0.341)

0.226 (0.186,
0.265)

SEU-Net 2.47 0.629 (0.592, 0.666) 0.691 (0.642,
0.741)

0.538 (0.478,
0.598)

0.253 (0.101,
0.405)

0.381 (0.304,
0.459)

0.256 (0.216,
0.295)

DA-Net 26.97 0.669 (0.636, 0.702) 0.739 (0.695,
0.782)

0.605 (0.550,
0.660)

0.244 (0.112,
0.375)

0.434 (0.348,
0.520)

0.269 (0.227,
0.311)

HR-Net 17.12 0.686 (0.656, 0.717) 0.758 (0.715,
0.802)

0.654 (0.603,
0.706)

0.205 (0.046,
0.364)

0.531 (0.458,
0.606)

0.317 (0.306,
0.389)

Ours 43.06 0.716 (0.685, 0.747) 0.784 (0.745,
0.824)

0.680 (0.631,
0.730)

0.359 (0.173,
0.545)

0.534 (0.455,
0.613)

0.337
(0.293,0.382)

FIGURE 6
Visual comparison of segmentation results. The red, green, yellow, and blue pixels represent lesions of IPH, IVH, SDH, and SAH.
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the ventricle, the Sym-TransNet can more clearly define the

interface between the two types of hemorrhage at the ventricle.

For EDH and SDH, the Sym-TransNet reduces the risk of

misidentifying the skull as bleeding. In addition, compared

with other methods, our model can detect SAH diffusing in

sulci more sensitively.

We also conduct pairwise statistical tests (between the Sym-

TransNet and other methods) on the segmentation results of ICH

lesions and five hemorrhage subtypes, as shown in Table 2.

Except for EDH, the Sym-TransNet improves the

segmentation performance of the U-Net, DU-Net, and SEU-

Net with statistical significance (all p-values < 0.05). For DA-Net

and Sym-TransNet, p-values were all less than 0.05 in ICH lesion,

IPH, IVH, and SAH. For HR-Net, our Sym-TransNet improved

ICH lesion segmentation significantly, but there was no statistical

difference in the segmentation of the five bleeding subtypes.

Transformer and symmetric prior
knowledge improves the segmentation
accuracy

To prove the validity of the Transformer structure and

symmetric prior knowledge utilized in this paper, we conduct

ablation experiments for the Transformer structure and

symmetric prior knowledge. The results of the ablation

experiment are shown in Table 3. In the ablation experiment,

the original U-Net is regarded as the baseline method, and the

Transformer structure and symmetric prior knowledge are

combined to observe the changes in the segmentation

performance. As shown in Table 3, with the addition of the

Transformer structure, the DICE coefficient of ICH lesions is

significantly improved (from 0.624 to 0.691). In addition, the

DICE coefficient of five different subtypes of ICH lesions is also

increased (IPH: from 0.688 to 0.761, IVH: from 0.518 to 0.624,

EDH: from 0.222 to 0.233, SDH: from 0.321 to 0.451, SAH: from

0.245 to 0.284). The improved segmentation performance of

SAH lesions indicates that the combination of U-Net and

Transformer structure is beneficial to the network to capture

long-distance dependence in CT images and improve the

segmentation accuracy of irregular lesions. Furthermore, after

the fusion of symmetric prior knowledge, the segmentation

performance of ICH lesions is improved (from 0.691 to

0.716). The segmentation DICE of the five subtypes also

increase to different degrees (IPH increased by 0.023, IVH

increased by 0.056, EDH increased by 0.126, SDH increased

by 0.083, SAH increased by 0.053). The most obvious

improvement is in the segmentation of IPH lesions because

IPH contains abundant symmetric information (IPH lesions

usually only appear on one side of the brain tissue), which

TABLE 2 Statistical test results (p-value) between Sym-TransNet and other methods.

Methods types ICH lesions IPH IVH EDH SDH SAH

U-Net 2.95 × 10−5 1.09 × 10−5 4.63 × 10−5 2.6 0 × 10−1 8.20 × 10−4 3.89 × 10−3

DU-Net 7.06 × 10−6 2.84 × 10−7 9.73 × 10−6 1.19 × 10−1 9.25 × 10−5 5.19 × 10−4

SEU-Net 9.71 × 10−5 3.69 × 10−5 2.33 × 10−4 2.25 × 10−1 5.86 × 10−3 9.30 × 10−3

DA-Net 8.22 × 10−3 4.01 × 10−4 1.62 × 10−2 2.36 × 10−1 9.08 × 10−2 2.61 × 10−2

HR-Net 4.04 × 10−2 1.17 × 10−1 3.41 × 10−1 3.55 × 10−1 8.29 × 10−1 7.72 × 10−1

TABLE 3 Ablation results of Sym-TransNet.

Method ICH lesions
(95% CI)

IPH
(95%CI)

IVH
(95%CI)

EDH
(95%CI)

SDH
(95%CI)

SAH
(95%CI)

U-Net☑

Transformer☒ 0.624 (0.587, 0.661) 0.688 (0.638, 0.738) 0.518 (0.457, 0.580) 0.222 (0.083, 0.361) 0.321 (0.239, 0.404) 0.245 (0.206, 0.284)

Symmetric Prior☒

U-Net☑

Transformer☑ 0.691 (0.659, 0.723) 0.761 (0.719, 0.802) 0.624 (0.569, 0.678) 0.233 (0.086, 0.379) 0.451 (0.370, 0.533) 0.284 (0.242, 0.326)

Symmetric Prior☒

U-Net☑

Transformer☑ 0.716 (0.685, 0.747) 0.784 (0.745, 0.824) 0.680 (0.631, 0.730) 0.359 (0.173, 0.545) 0.534 (0.455, 0.613) 0.337 (0.293, 0.382)

Symmetric Prior☑
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indicates that the combination of symmetric information in the

network is conducive to the improvement of the segmentation

accuracy of ICH lesions. We visualize the results of the ablation

experiment in Figure 7. It can be seen from Figure 7 that the

combination of Transformer structure with U-Net results in

clearer edge details of lesions and reduced part of false

positive lesions. In particular, the Transformer structure

improves the segmentation result of the deep learning model

for SAH lesions which are widely distributed in the CT image,

and reduces false positives in U-Net segmentation results,

demonstrating that the Transformer structure can effectively

capture the long-distance dependencies in the CT image. In

addition, with the utilization of symmetric prior knowledge, the

segmentation results of IPH and IVH are closer to the gold

standard than the other two methods. As shown in Figure 7, the

use of symmetric prior knowledge also refines the interface

between IPH and IVH lesions, further improving the

segmentation performance of the model.

Sym-TransNet effectively diagnose
patients with ICH

Clinically, the accurate diagnosis of ICH is of great

significance for the follow-up treatment of patients. To

demonstrate that the proposed deep learning model can

sensitively detect patients with ICH while maintaining

considerable specificity, we analyze the accuracy, sensitivity,

and specificity of our model on 400 CT data (200 positive

cases and 200 negative cases). Specifically, after the model

obtains the segmentation results of the above 400 CT images,

we determine whether the model classifies the corresponding

data as ICH by calculating whether there are lesions in the

segmentation results. Assuming that the data is a positive case

and the segmentation result includes lesions, we record the

segmentation result of this case as true positive (TP), and vice

versa as false negative (FN). Assuming that the data is negative

cases and there is no segmented lesion in the output of ourmodel,

we record the segmentation result of this case as true negative

(TN), and otherwise as false positive (FP). As shown in Table 4,

for the 200 positive samples, 197 cases are correctly diagnosed

and only 3 cases are misdiagnosed as negative. Of the

200 negative samples, 168 are identified as negative and

32 were misdiagnosed as positive. Therefore, according to Eqs

8–10, we can calculate that the diagnostic accuracy, sensitivity,

and specificity of the proposed model are 91.25%, 98.5%, and

84%, respectively. We also evaluate the diagnostic performance

of the baseline method U-Net for ICH. The comparison of

performance indexes between the two methods is shown in

Table 5. Compared with the baseline method U-Net, the

proposed Sym-TransNet has improved accuracy, sensitivity,

and specificity (3%, 0.5%, and 5.5%, respectively), indicating

that our method can effectively improve the overall performance

of the ICH detection task based on the baseline model.

Discussion

In this study, we verify that the proposed Sym-TransNet has

better segmentation performance than the existing mainstream

deep learning methods in the segmentation of ICH lesions and

the segmentation of five ICH subtypes. Compared with the

FIGURE 7
Visualization results of ablation experiments. The red, green, yellow, and blue pixels represent lesions of IPH, IVH, SDH, and SAH.
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baseline model U-Net, the proposed deep learning model

improves accuracy, sensitivity, and specificity in diagnosing

ICH. Specifically, aiming at the five subtypes of ICH, the

proposed Sym-TransNet achieves the highest DICE coefficient

in intracerebral hemorrhage (comparison of DICE coefficients of

five subtypes: IPH>IVH>SDH>EDH>SAH). Subdural

hemorrhage and subarachnoid hemorrhage are the most easily

missed or misdiagnosed subtypes of ICH due to irregular shape,

unclear edge, and certain particularity of the site of hemorrhage.

Subarachnoid hemorrhage is an example in which the lesions are

filled with sulci, fissures, and cistern in casting shape, and the

distribution is extensive and irregular. In addition, in the

annotation process of segmentation gold standard, due to the

existence of the CT volume effect, radiologists are difficult to

accurately locate lesions of the subject who was diagnosed with

EDH or SAH with less bleeding. The imprecise segmentation

gold standard makes it difficult to train the deep learning model

and directly affects its segmentation performance on the test set

(the segmentation DICE coefficients of the model on EDH and

SAH are 0.359 and 0.337, respectively). In order to alleviate the

problems that exist in the process of annotation, many semi-

supervised methods were proposed and have achieved better

segmentation performance than fully supervised methods with a

limited amount of labeled data. Therefore, the combination of the

semi-supervised learning strategy may be an effective means to

solve this problem, which is also our future research direction. In

addition, researchers can also use the average value of multiple

professional physicians as the final gold standard to alleviate the

impact of inaccurate labeling on segmentation performance.

The segmentation performance of Sym-TransNet on IPH

and IVH is significantly improved compared with existing

methods. For the above two types of ICH, Sym-TransNet

improved the DICE coefficient by 0.26 on the basis of the

HR-Net. In terms of visualization of segmentation results, the

segmentation results obtained by Sym-TransNet are more

consistent with manual annotation, and some microscopic

lesions missed by the other methods are detected. When IPH

invades the ventricle, Sym-TransNet can more clearly distinguish

the interface between the two types of hemorrhage. For EDH and

SDH, Sym-TransNet reduced the risk of misidentifying the skull

as a bleeding point. Moreover, compared with other deep

learning methods, our model is more sensitive to detecting the

SAH lesions in the sulci. Therefore, the proposed Sym-TransNet

can more effectively segment different types of ICH lesions from

CT images of ICH patients, which has potential clinical

application prospects.

However, this study also has some limitations. From the

perspective of data collection, as a retrospective study, selection

bias may exist in this paper. Although a large number of CT data

were included as the training set in this study, the sample size of

the test set was insufficient, which probably results in accidental

segmentation performance. Therefore, it is necessary to

increase the test sample size to verify the model

performance. Additionally, all of our CT scans came from a

single center, and the diversity of samples can be further

improved. From the perspective of the number of trainable

parameters for deep learning models, the proposed Sym-

TransNet is not optimal. We list the number of parameters

for several mainstream models used for performance

comparisons in this paper in Table 1. As shown in Table 1,

Sym-TransNet has the highest number of model parameters.

This is because the self-attention mechanism in the

Transformer model requires a large amount of computation

to obtain the long-distance dependence information. In the

future, we will explore a more lightweight Transformer model

for ICH lesion segmentation, which will be better applied in

clinical practice.

In summary, Sym-TransNet proposed in this paper can

accurately segment the ICH lesions and the five hemorrhage

subtypes, improving the performance on the basis of the U-Net

for the diagnosis of ICH. Sym-TransNet is expected to help

relieve the workload of radiologists and reduce the rate of

misdiagnosis of ICH in clinical practice, providing a basis for

assisting clinical decision-making.
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TABLE 4 Diagnostic results on CT data of 400 cases.

Total cases: 400
(positive: 200 negative: 200)

Positive (predict) Negative (predict)

Positive (Actual) 197 (TP) 3 (FP)

Negative (Actual) 32 (FN) 168 (TN)

TABLE 5 Comparison of diagnostic performance of ICH.

Methods Acc (%) Sen (%) Spe (%)

U-Net 88.25 98.00 78.50

Our Method 91.25 98.50 84.00
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Recent advances in single cell RNA sequencing (scRNA-seq) technologies have

been invaluable in the study of the diversity of cancer cells and the tumor

microenvironment. While scRNA-seq platforms allow processing of a high

number of cells, uneven read quality and technical artifacts hinder the ability

to identify and classify biologically relevant cells into correct subtypes. This

obstructs the analysis of cancer and normal cell diversity, while rare and low

expression cell populationsmay be lost by setting arbitrary high cutoffs for UMIs

when filtering out low quality cells. To address these issues, we have developed

a novel machine-learning framework that: 1. Trains cell lineage and subtype

classifier using a gold standard dataset validated using marker genes 2.

Systematically assess the lowest UMI threshold that can be used in a given

dataset to accurately classify cells 3. Assign accurate cell lineage and subtype

labels to the lower read depth cells recovered by setting the optimal threshold.

We demonstrate the application of this framework in a well-curated scRNA-seq

dataset of breast cancer patients and two external datasets. We show that the

minimum UMI threshold for the breast cancer dataset could be lowered from

the original 1500 to 450, thereby increasing the total number of recovered cells

by 49%, while achieving a classification accuracy of >0.9. Our framework

provides a roadmap for future scRNA-seq studies to determine optimal UMI

threshold and accurately classify cells for downstream analyses.

KEYWORDS

ScRNA-seq, UMI (unique molecular identifier), QC, quality control, threshold,
optimization, gene, cut off
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Introduction

One of the key objectives in cancer genomics is characterizing

the composition and diversity of cancer and normal cells in the

tumor microenvironment (TME) (Ren et al., 2018). Several

studies have shown that the composition of the TME, such as

the prevalence of infiltrating lymphocytes, polarity of myeloid

cells and signaling from stromal components play a critical role

in the maintenance and progression of malignant cells, and can

serve as indicators of therapeutic potential and response (Gooden

et al., 2011; Awad et al., 2018; Maibach et al., 2020; Wu et al.,

2020; Geng et al., 2021). The study of the TME has been greatly

enhanced by the introduction of single cell RNA sequencing

(scRNA-seq), which enabled characterizing the diversity and

phenotypes of cells in a tumor at a fine resolution (Rubio-

Perez et al., 2021; Tang et al., 2022).

Since the introduction of scRNA-seq more than a decade ago,

several incremental technological advances have improved the

accessibility and quality of transcriptomic analyses (Hwang et al.,

2018; Chen et al., 2019). One such advance is the introduction of

unique molecular identifiers (UMIs) which allows direct

quantification of available transcripts (Islam et al., 2013).

While non-UMI scRNA-seq platforms as Smart-Seq2 provide

an improved transcript coverage and high level of mappable

reads, UMI platforms such as 10X and drop-seq benefit from the

limited amplification bias from highly abundant transcripts

(Picelli et al., 2014; Zhang et al., 2019). The higher

throughput of UMI platforms also improves the detection

rates of rare cell populations, such as certain immune cells,

within tumor samples (Azizi et al., 2018). Thus, scRNA-seq

technologies have greatly enhanced the ability to characterize

the diversity of cancer cells and the TME.

However, the ability to accurately classify the cell types in

scRNA-seq dataset is often limited by technical factors, such as

read quality of the cells. The quality control (QC) process in a

typical scRNA-seq pipeline involves identification and filtering

out cells of low quality, typically based on the number of UMIs,

number of unique genes, and/or the percentage of mitochondrial

DNA (mtDNA). The stress induced by droplet-based UMI

methods introduces a challenge in ensuring that the UMIs

map to healthy cells (Chittur et al., 1988). For example, cells

with leaky or damaged membranes can result in a drop in the

number of UMIs and genes detected, while the number of UMIs

mapping mtDNA may become relatively high (Luecken and

Theis, 2019). This complicates the distinction between true

low-quality cells and quiescent, small, and/or rare cell

populations, thus creating a trade-off between cell quality and

diversity during the QC process (Luecken and Theis, 2019).

Since mitochondrial DNA content varies significantly across

organisms and tissues, comprehensive analysis of these variables

helps to establish universal organism and tissue-specific

threshold guidelines (Osorio and Cai, 2021). However, due to

the variability in the number of UMI and genes owing to

biological and technical factors, a similar universal threshold

cannot be established a priori. A probabilistic model was

proposed to sort out low-quality cells but its accuracy was

limited by the prevalence of low-quality cells, which is usually

unknown (Hippen et al., 2021). Additionally, several scRNA-seq

pre-processing pipelines included different approaches for QC

including the option to view the UMI distribution per cell type

using user-defined marker genes (McCarthy et al., 2017; Guo

et al., 2021; Grandi et al., 2022). However, these approaches

generally depend on the user’s judgment to detect outliers (low-

quality cells) from reads and/or gene distribution curve. The

scRNA-seq literature shows the number of reads threshold

selected at QC can vary from as low as 100 and up to

2500 UMIs, yet the rationale for selecting such thresholds is

usually missing (Liu et al., 2021; Gambardella et al., 2022; Gao

et al., 2022; Karademir et al., 2022; Lian et al., 2022). Another

approach which involves an iterative process between the QC

step and downstream analysis was also proposed to improve the

detection of low-quality cells (Luecken and Theis, 2019). But the

mechanism by which the downstream information can be used to

optimize an initial reads threshold is not yet defined.

To address the lack of a systematic approach to determine an

optimal reads threshold for filtering cells and classifying cells

with high accuracy, we have developed a novel machine learning

framework that uses cell identity information collected from a

high-quality gold standard. Using this approach, we can identify

the lowest reads cut-off that can be implemented in an scRNA-

seq data and accurately classify cell lineages and subtypes. We

used expert-labelled lineage and cell type identities from a gold

standard breast cancer scRNA-seq dataset to train the predictive

classifiers. We systematically downsampled the reads per cell in

the gold standard dataset using a Poisson model and then applied

the classifier to predict cell types. We then calculated the

prediction accuracies of the classifiers using the known

identities of the cells. This allowed us to determine the

optimal threshold at which sufficient biological information

was retained. Using this approach, we rescued 49% more cells

from the gold standard dataset, which is valuable for downstream

analyses of the TME. Using two external datasets, we show that

our approach can be applied to low expression cells and to

subtypes of major cell types as neutrophils and T-cell subtypes,

respectively. Importantly, our framework can be extended to any

scRNA-seq dataset where users seek to rescue and classify

additional cells at optimal read depths.

Methods

Analysis workflow

The analysis pipeline consists of the following main steps

(Figure 1). We applied a stringent QC threshold on the FELINE

dataset (raw UMIs) to filter for the high-confidence, high-quality
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cells. A combination of unsupervised and supervised expert-

led approaches was used to generate the high-quality cell

lineage and subtype labels which were used at the gold

standard for downstream analysis. For each dataset, we

first split it into training and test sets (50/50). Next, the

training set was used to train the classification models to

predict cell lineage and subtypes. The test set was then

downsampled using Poisson model at different target UMI

thresholds. We then assessed the accuracy of the

classification models on the test set at different target

UMI thresholds. The analysis steps are described in more

details in the subsections below.

Gold standard scRNA-seq dataset pre-
processing

We used the FELINE clinical trial scRNA-seq dataset which

spans 35 patients with ER-positive HER2-negative early stage

breast cancer (Griffiths et al., 2021). The patient samples were

processed using the 10X Chromium platform and sequenced

using 150-bp paired-end sequencing at a median depth of

34,000 reads per cell (Griffiths et al., 2021). The reads were

aligned to a reference genome (GRChg38) using Bioinformatics

the ExperT SYstem and CellRanger v.3.0.2 pipelines (Chen and

Chang, 2017). FeatureCounts was then used to generate a matrix

of gene transcript UMIs for each cell, which we refer to as

“original dataset” in this manuscript (Liao et al., 2014).

To generate the gold standard dataset, we applied a stringent

QC filter which retained cells with >1,500 reads,

500—7,000 unique genes, and less than 20% mitochondrial

content, as reported in the original study (Griffiths et al.,

2021). After filtering out “low-quality” cells and doublets, we

retained 176,644 “high-quality” cells. To generate Uniform

Manifold Approximation and Projection (UMAP), we log-

normalized, scaled the count matrix, and ran principal

component analysis (PCA) on the 2000 highly variable genes

using R package Seurat v.4.1.1 (Butler et al., 2018). We then

FIGURE 1
Analysis plan workflow. Flow chart shows the process of initial QC and generation of gold standard cell type annotations from the FELINE
dataset. This is followed by a 50/50 split of a subsample into training and test sets for both SingleR and SingleCellNet classifiers for all datasets. The
test set counts were then transformed using a Poisson model using different thresholds which is then used to determine the classification accuracy
of lineage and cell type labels.
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constructed the K nearest neighbor and using Seurat’s

FindNeighbor function on 10 principal components which

was used to construct the UMAP. We then used SingleR to

generate a preliminary cell type label for each cell using

Human Primary Cell Atlas (HPCA) as a reference

(Mabbott et al., 2013; Aran et al., 2019). These labels were

used to annotate the clusters as either epithelial, stromal, or

immune based on the most frequent cell type labels by

SingleR. The SingleR labels were validated using lineage

marker gene expression for epithelial cells (KRT19,

CDH1), stromal cells (FAP, HTRA1), and immune cells

(PTPRC) (Griffiths et al., 2021). SingleR cell type labels

were also validated using cell type marker gene expression

for macrophages (CSF1R, CD163), T-cells (CD2, CD247),

B-cells (MS4A1, IGHM), fibroblasts (COL5A1, FBLN1),

endothelial cells (VWF), pericytes (RGS5), and

adipocytes (CIDEA). To identify putative cancer cell, we

used InferCNV which predicts copy number alterations

based on the positional gene expression intensity across

all chromosomes (Korsunsky et al., 2019). We used

stromal and immune cells as normal references for

InferCNV and labelled epithelial cells with positive copy

number alterations (CNA) profile as cancer cells (Griffiths

et al., 2021). All downstream analyses excluded non-

malignant epithelial cells. The raw (un-normalized) UMI

count matrix of the gold standard dataset was used for

model training and assessment. A random unbiased

subsample of the gold standard dataset (n = 35,000) was

used to create a Seurat object for downstream analysis. We

removed cells with >15,000 reads to account for any missed

doublets.

External datasets

In addition to the FELINE dataset, we used a subset of whole

blood scRNA-seq dataset (GSE163668) which we will refer to as

“Combes dataset” (Combes et al., 2021). We combined 3 pooled

libraries (GSM4995425, GSM4995426, GSM4995427) spanning

8 patients, removed RBCs and used the remaining cells with the

authors’ cell type labels in our analysis. We also used a

PeripheralBlood Mononuclear Cells (PBMC) dataset freely

available from 10X Genomics which we will refer to as the

“PBMC dataset” (10x Genomics, 2016). We processed this

dataset as described in “Seurat-Guided Clustering Tutorial”

(Hoffman et al., 2022). Cells with more than 5%

mitochondrial counts or more than 2,500 genes or less than

200 genes were filtered out. After clustering the cells, cell types

were annotated using the canonical markers as follows: Naive

CD4+ T (IL7R, CCR7), CD14+ Mono (CD14, LYZ), Memory

CD4+ (IL7R, S100A4), B cells (MS4A1), CD8+ T (CD8A),

FCGR3A + Mono (FCGR3A, MS4A7), NK (GNLY, NKG7),

DC (FCER1A, CST3), Platelet (PPBP).

Low-quality cells subset

For “low-quality” cells which that were excluded from the

gold standard dataset, we predicted the cell type labels using

SingleR and human primary cell atlas (HPCA) as a reference

(Mabbott et al., 2013; Aran et al., 2019). To generate lineage

labels, we aggregated cell type predictions into lineage labels as

follows: epithelial (epithelial cells), stromal (fibroblasts,

endothelial cells, chondrocytes, osteoblast, smooth muscles),

immune (T-cells, B-cells, macrophages, monocytes, NK cells,

neutrophils). To study the outcome of the initial and optimized

thresholds on cell retention rate, we combined the gold standard

subsample (n = 35,000) with a low-quality subsample (n =

35,000) for a total of 70,000 cells.

Training lineage and cell subtype
classification modes

We used two different multi-class prediction algorithms for

the analysis, SingleCellNet (SCN) and SingleR. SCN is a Random

Forest classifier developed for scRNA-seq datasets and

implemented as R package singleCellNet v.0.1.0 (Tan and

Cahan, 2019). SingleR is a reference-based cell type classifier

where after an internal marker genes identification step, cell

identity is determined by Spearman correlation between the

expression profile of the unknown cell and the reference

samples e.g., HPCA (Aran et al., 2019). Due to the infeasibility

to train a random forest classifier on all genes, we applied Seurat’s

FindAllMarkers function (test.use = “negbinom”, min.pct = 0.5,

max.cells.per.ident = 2000, logfc.threshold = 0.5) to generate

lineage and cell type marker gene sets. For either lineage or cell

type levels, we sampled 400 cells per label using splitCommon

function implemented in R package singleCellNet v.0.1.0. The

lineage and cell type samples were split 1:1 into a training and test

set. For the SCN classifier, the UMI matrices of both training sets

were filtered for the corresponding marker gene set previously

identified. The SCN classifier was trained using scn_train function

(nTopGenes = 100, nRand = 50, nTrees = 1000, nTopGenePairs =

200) implemented in the singleCellNet package. In contrast, the

SingleR classifier was trained on all available genes in UMI

matrices without filtering using trainSingleR function

implemented in the R package SingleR v.1.6.1.

Systematic downsampling of reads and
genes

To simulate reduce average reads per cell at a pre-specified

threshold, we downsampled the reads from high-quality cells.

We used a Poisson distribution model to calculate a

transformation factor. The probabilities density function for

an integer vector x is defined as:
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p(x) � λxe−λ

x!

where, λ is the point mass (Poisson rate). For each cell, we

generated a vector of random deviates of length = number of

genes, and λ = target threshold/total reads. Reads from each

cell were multiplied by their transformation factor to reduce

the total counts per cell to the desired threshold.

To downsample the genes of the FELINE dataset, we first

converted the UMI matrix into binary expression. For cells

where n> = 1, we reduced random n genes from being

expressed to not expressed (1 → 0) where n is the number

of genes above test threshold. Each transformed matrix was

then used to assess the accuracy of classification for the

corresponding threshold. In the non-binary experiments,

the remaining binary matrix was converted back to a non-

binary UMI matrix for assessment while in binary-

experiments, both the training and downsampled matrices

were binary.

Model assessment

Using the SCN and SingleR trained models, we generate

the predicted labels for all downsampled matrices using

scn_predict and classifySingleR functions, respectively.

We then used the true labels to calculate the Area Under

Receiver Operating Characteristic Curve (AUROCC) for

both models at each threshold using the R package pROC

v.1.18.0.

Results

Cell retention rates in gold standard
scRNA-seq dataset

The diversity of cell populations within the TME

introduces a challenge when applying a UMI threshold

across tumor samples: a stringent, high UMI threshold

would remove most of the low-quality cells, but also lose

important populations with low reads like immune cells. In

contrast, a lenient threshold would retain the low-UMI

populations, but this could also increase the noise and

possibly skewing the results of the downstream analysis.

In addition, the QC step is usually performed early in the

analysis pipeline where biological information (cell

identities) is not yet available. Thus, a biology-driven

revision of QC thresholds can be easily overseen. In the

FELINE dataset, we had used 1,500 reads as a threshold

for low-quality cells (Figure 1) (Griffiths et al., 2021). To

construct the gold standard dataset, we used InferCNV to

identify cancer cells and SingleR to predict normal cell

identities which were verified by marker gene expression

(Supplementary Figures S1A,B).

After meticulous cell type labelling of high-quality cells, a

closer view of UMI distribution across cell lineages showed a

high level of retention of epithelial cells (87%) post-QC. In

contrast, only around half of the stromal and immune cells

were retained (Figure 2). As breast cancer cells are of epithelial

origin (Noureen et al., 2022), it is expected that actively

FIGURE 2
Post-QC retention rate varies across different lineages and cell types in the FELINE dataset. Density plots depict the reads-per-cell distribution
across different lineages and cell types within a subsample of the original dataset (n = 70,000). The initial QC count cut-off (1,500 reads), as dashed
line, splits the fraction of cells considered as “high-quality”, highlighted in blue, from the cells considered as “low-quality”, highlighted in red, across
different cell populations. The average count and the fraction of “high-quality” cells are annotated for each population.
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proliferating cancer cells were driving a higher average UMI

among epithelial cells (5,354 UMIs) than stromal

(3,114 UMIs) or immune cells (2,154 UMIs) (Figure 2). In

addition, at the finer cell subtype annotation level, two-thirds

of macrophages/monocytes were retained, while only a third

of the sequenced population of T and B lymphocytes were

retained (Figure 2). Since B- and T-lymphocytes have the

lowest average UMIs per cell in this cohort (1,813 and

1,639 respectively), the initial QC threshold only retained a

small fraction of these cells for downstream analyses,

suggesting an optimization of the initial threshold might be

required.

FIGURE 3
Accurate lineage and cell type classification at 450 UMIs in the FELINE dataset. (A,B) Boxplot showing the post-transformation distributions of
observed UMIs (A) and number of unique genes (B) across all thresholds and untransformed control. Mean and median values for each distribution
are denoted. (C,D) Area under the receiver operating characteristic curve (AUROCC) values are shown for the raw (untransformed) counts as well as
the downsampled counts at different thresholds using the SingleR model (C) and the SingleCellNet model (D). The AUROCC values for both
lineage and cell type assessments are shown for each model as well as the selected AUROCC cut-off value (>0.9), dashed line.
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Machine learning framework guides
threshold optimization and accurate
classification

We developed a novel framework that systematically

identified the lowest read depth threshold that can be used

to accurately classify cell lineages and subtypes. Our approach

trained classifiers for lineage and subtypes on a training subset

of the gold standard dataset, and then predicted the cell

lineage and subtypes of a held-out test or validation subset

from the gold standard dataset at progressively diminished

read depths. By following this approach, we could identify

what is the minimum number of average reads required to

accurately classify cells.

We used SCN and SingleR multi-class prediction algorithms

to determine the lowest UMI threshold where sufficient

biological signal was retained. We then applied a Poisson

model to the test datasets to downsample to a set of desired

reads threshold including 0, 50, 100, 150, 200, 250, 300, 350, 400,

450, 500, 600, 700, 800, 900, 1000, 1500, 2000, 3000 and

4000 UMIs.

Following the transformation, the mean number of UMIs in

the downsampled cells were close to the desired UMI thresholds

(Figure 3A). Indeed, the reads in the downsampled cells

followed a Poisson distribution, as the variance increased at

higher thresholds. Noticeably, the number of unique genes

followed a Poisson distribution as well (Figure 3B). We used

the trained classifiers to predict lineage and cell type labels for

the downsampled cells. The ground truth and predicted labels

were used to generate a confusion matrix to calculate the area

under the receiver operator curve (AUROCC) at each

threshold. We considered AUROCC values above 0.9 to be

accurate classifications. The SingleR classifier showed an

accurate prediction of both lineage and cell types at an

average read depth of 450 UMIs or ~200 genes (Figure 3C).

However, the model progressively lost its predictive ability at

below the 250 UMIs threshold. On the other hand, the SCN

classifier showed an accurate prediction for both classes at an

average read depth of 1,500 UMIs or ~650 genes, while its

predictive ability was gradually lost at thresholds below

800 UMIs (Figure 3D). The accuracy of the SingleR classifier

relatively plateaued at the 350 UMI threshold. However, the

accuracy of the SCN classifier increased linearly throughout

with the increasing thresholds. As expected, almost all the

AUROCC values for the broader lineage class were equal or

higher than the narrower cell type class. It’s worth mentioning

that SingleR classifier showed an overall higher classification

accuracy which we attribute to the fact that SingleR calculates

the spearman correlation between each cell’s expression profile

and reference cells regardless of expression values while SCN

only considers expressed genes e.g., non-zero expression values.

Consequently, we selected the conservative 450 UMIs from the

more accurate classifier at the finer cell type resolution as the

optimized threshold.

FIGURE 4
Loss of distinct cell clusters on UMAP below 450 UMIs in the FELINE dataset. Dimension reduction using Uniform Manifold Approximation and
Projection (UMAP) shows that as count thresholds fall below 450 reads, a gradual loss of the distinct cell clusters is observed on lineage (A), and cell
type levels (B) (n = 1,500).
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In addition, we performed downsampling of gene numbers by

dropping random genes at different maximum number of genes

thresholds (Supplementary Figures S2A,B). Like the UMI

downsampling, accurate classification (AUROCC >0.9) of lineages
and cell types was achieved using 200 and 600 genes for SingleR and

SCN classifier, respectively (Supplementary Figures 2C,D). We then

applied the same transformation to a binary countmatrix for training

and test sets (Supplementary Figures S3A,B). Both classifiers yielded

similar performance to non-binary counts at 250 and 450 genes

for SingleR and SCN, respectively (Supplementary Figures

S3C,D). Given the typical correlation between observed

between UMIs and number of genes, it was not surprising

that similar thresholds were obtained using the UMI-based

and the gene number approaches.

FIGURE 5
Significant number of stromal and immune cells are rescued after applying the optimized threshold of 450 UMIs in the FELINE dataset. (A)
Density plots shows the UMI distribution across lineages and cell types within high- and low-quality cells subset (n = 70,000). The initial threshold
(1,500UMIs), dashed line to the right, and the optimized threshold (450UMIs), dashed line to the left, are shown for each plot. The initial “high-quality”
cells, the rescued cells after applying the revised cut-off, and the low-quality cells are highlighted in blue, green, and red, respectively. The
fraction and number of cells gained relative to initially retained cells is denoted under each plot. (B) Bar plot showing the cell number and percentage
gain for lineage and cell types after applying the optimized threshold. (C) Heatmap showing the relative frequency of different cell types before and
after applying the optimized UMI threshold of 450 in 92 tumor samples.
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Loss of distinct clustering below the
optimized threshold

To see the effect of downsampling on the low

dimensional data structure, we analyzed the downsampled

cells from the 1500, 450, 350, 250, and 150 read thresholds

using uniform manifold approximation and projections

(UMAPs). Similar to the initial 1500 UMI threshold, the

cells at the 450 UMI threshold showed distinct separate

clusters at the lineage level (Figure 4A). As threshold was

reduced, the inter-cluster distances gradually decreased. On

the cell type level, the cells at the 450-threshold not only

clustered by lineage but retained a rational biological

hierarchy as shown by subtype cluster grouping

(Figure 4B). As with the lineage level, the distinct

clustering was gradually lost at lower thresholds (Figures

4A,B). This suggests that biological information retained at

as low as 450 reads-per-cell maintains cell identity in our

dataset.

Optimized QC threshold rescue
substantial number of cells with low
transcription level

To increase the number of stromal and immune cells

available for downstream analysis, we applied the

optimized threshold of 450 reads-per-cell to a subsample of

the original dataset (n = 70,000). Relative to number of cells

retained by the initial threshold of 1,500 reads, the optimized

threshold rescued an additional 8,813 stromal cells and

6,535 immune cells, an increase of 77% and 113%,

respectively (Figures 5A,B). The gain was even more

prominent among the cells with low average reads as

FIGURE 6
Accurate lineage and cell type classification at 250 and 150 UMIs in the Combes and PBMC datasets, respectively. For Combes dataset, (A,B)
Boxplot showing the post-transformation distributions of observed UMIs (A) and number of unique genes (B) across all thresholds and
untransformed control. Mean and median values for each distribution are denoted. (C,D) Area under the receiver operating characteristic curve
(AUROCC) values are shown for the raw (untransformed) counts as well as the downsampled counts at different thresholds using the SingleR
model (C) and the SingleCellNet model (D). For PBMC dataset, (E, F) Boxplot showing the post-transformation distributions of observed UMIs (E) and
number of unique genes (F) across all thresholds and untransformed control. Mean and median values for each distribution are denoted. (G,H) Area
under the receiver operating characteristic curve (AUROCC) values are shown for the raw (untransformed) counts as well as the downsampled
counts at different thresholds using the SingleR model (G) and the SingleCellNet model (H). The AUROCC values for cell type assessment are shown
for each model as well as the selected AUROCC cut-off value (>0.7), dashed line.
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2,976 T-cells and 1,298 B-cells were rescued which is 176%

and 151%, respectively, more cells compared to the

populations retained by the initial threshold. The gain

among fibroblasts and macrophages/monocytes was also

notable as the initial populations increased by more than

40% after applying the optimized threshold. The inclusion

of rescued cells markedly improved the representation of

diversity across all tumor samples, previously dominated by

epithelial cells (Figure 5C). With the new thresholds, we

observed a notable gain in lymphocytes across several

tumors. We also noted that the optimized threshold led to

the gain of 10 additional tumor samples that were excluded by

the initial threshold. Thus, threshold optimization allowed the

re-evaluation of cells initially penalized and discarded for

their natively low expression. These rescued cells can then

be incorporated in downstream analysis to characterize

the TME.

Applications in datasets containing cells
with low expression and fine-grain labels

To test the applicability of our approach to cell types with low

gene expression, we used the Combes dataset (see Methods),

which contains cell types with low expression levels, including as

neutrophils and platelets. As with the FELINE dataset, we applied

the transformation based on Poisson distribution to

systematically downsample the counts in the Combes dataset.

The resultant UMI means were reflective of the desired target

UMI thresholds (Figures 6A,B). Using the original published cell

type labels as ground truth, the cell type classification AUROCC

for the untransformed counts were about 0.9, reflecting the low

average read depth of this dataset (1599 UMIs) and very low

coverage in some cell types, such as neutrophils (621 UMIs) and

platelets (740 UMIs). SingleR achieved AUROCC >0.7 for this

dataset at 250 UMIs or ~90 genes while SCN achieved this level of

accuracy at 350 UMIs or ~115 genes (Figures 6C,D).

Similarly, we used the 10X PBMC dataset test (see methods

for details) to demonstrate that the application of the framework

in cell types with fine-grain labels. The PBMC dataset (average

2371 UMIs) contains fine-grain classification of monocytes and

T cells. In addition to CD14+ and FCGR3A + monocytes, this

dataset contains different T cells subtypes like naïve CD4+,

memory CD4+, and CD8+ T cells. Again, we applied the

transformation based on Poisson distribution to systematically

downsample and obtain resultant UMIs that were reflective of

the desired target thresholds (Figures 6E,F). SingleR classified

cells with AUROCC >0.7 at 150 UMIs or ~70 genes threshold,

while the SCN classifier achieved this level of accuracy at

400 UMIs or ~170 genes (Figures 6G,H). Taken together,

these results demonstrate that our framework can be applied

to datasets containing cell types with low expression and fine

granularity.

Discussion

Single cell RNA-seq of tumor samples have proved

indispensable for TME studies. This has allowed researchers

to perform analyses such as in-depth classification of the

composition of tumors, identifying the key signaling

mechanisms operating in cancer and non-cancer cells and

characterizing the heterogeneity and evolution of cancer cells,

which were not previously feasible using bulk-RNA sequencing

(Nath and Bild, 2021). However, the detection of rare cell

populations among the diverse TME is limited by the number

of cells the scRNA-seq platform can handle. The introduction of

UMI-based platforms allowed for higher cell capacity which

better captures the diversity of the TME. However, arbitrary

UMI thresholding during the standard scRNA-seq QC risks

losing considerable number of cells, such as immune cells

with low expression. This can lead to inaccurate assessment of

the composition of the TME and overlook critical associations

between diversity and tumor traits. For example, the presence of

cytotoxic T cells in the TME is strongly associated

immunotherapy response in multiple cancers (Sade-Feldman

et al., 2018; Kim et al., 2021; Nagasaki et al., 2022). Therefore,

assessment of immune response based on diversity of infiltrating

lymphocytes could improve by optimizing the UMI thresholds.

Recent studies to characterize the communication networks

between various individual cell types within breast tumor have

revealed unique signaling networks operate in tumors resistant or

sensitive to cell cycle inhibitor therapy (Griffiths et al., 2022).

Resolving these communication links also requires optimizing

the UMI thresholds to ensure that the TME measured using

scRNA-seq reflects the true composition of the tumor.

To develop a framework that enables optimization of UMI

thresholds, we used a systematic approach to downsample UMIs

and accurately classify cells by lineage and cell type. We trained

two classifiers, SCN and SingleR, on expert-labelled subsample of

our gold standard FELINE dataset which was originally filtered

using a stringent UMI threshold. We then downsampled the

FELINE dataset using a Poisson transformation and evaluated

the classification accuracies at various thresholds. Using a

conservative AUROCC >0.9 as the cut-off for accurate

classification in the FELINE dataset, we determined a

significantly lower new threshold at 450 UMIs, corresponding

to slightly more than 200 genes, compared to the initial threshold

at 1,500 UMIs. The optimized threshold retrieved substantial

number of additional cells that were initially disposed-off during

filtering. The gain was prominent among cells with lower average

reads than cancer cells such as stromal and immune cells.

Notably, B- and T-lymphocytes populations increased more

than 150% by applying the optimized threshold. We also

noticed that the downsampled cells at this threshold retained

similar distinct clustering patterns across lineages and cell type

groups on the UMAP as the gold standard dataset. However, this

was not the case at lower thresholds where the inter-cluster
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distances were gradually lost. We also explored gene

downsampling using random gene removal at different

thresholds using binary and non-binary input which resulted

in similar optimal threshold to the UMI downsampling.

We further extend the application of our framework to two

additional datasets. Analyses with the Combes dataset revealed

that cells with low average expression, like neutrophils, can also

be used in our framework to optimize thresholds. Similarly,

analyses with the PBMC dataset showed that fine grain

classification of cells can be accommodated in the framework.

While this approach improved the diversity of major lineages

and cell types of the FELINE, Combes and PBMC datasets, its

current application depends on the original labeling

accuracy for cell identities. This can be challenging for

some cell populations, such as cells that lack established

RNA markers. Currently, the framework relies on reliable

labeling of cell types in the high-quality cells. A future

addition to this framework could integrate additional

biological information such as pathway level information

and molecular signatures to identify biologically relevant

clusters and improve classification accuracy.

Our machine learning framework provides a systematic

approach to optimize the initial UMI/reads threshold commonly

used in scRNA-seq pipelines based on cell type annotations of cells

with high read depth. This is especially valuable in rescuing cells with

natively low expression like immune cells. Optimizing the QC reads

threshold significantly improves the efficiency of cell diversity TME

studies while maintaining accurate classification of lineage and cell

type. Notably, this framework can be applied to any scRNA-seq

dataset where rescuing rare or low expression cells is crucial for

downstream analysis.
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Machine learning models for
predicting one-year survival in
patients with metastatic gastric
cancer who experienced upfront
radical gastrectomy
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Xiao-Peng Zhang3, Zhi-Jun Wu4, Min-Min Xie1, Ying Feng1,
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1Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
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Anhui, China, 3Department of Noncommunicable Diseases and Health Education, Hefei Center for
Disease Control and Prevention, Hefei, Anhui, China, 4Department of Oncology, Ma’anshan Municipal
People’s Hospital, Ma’anshan, Anhui, China

Tumor metastasis is a common event in patients with gastric cancer (GC) who

previously underwent curative gastrectomy. It ismeaningful to employ high-volume

clinical data for predicting the survival of metastatic GC patients. We aim to establish

an improvedmachine learning (ML) classifier for predicting if a patientwithmetastatic

GC would die within 12 months. Eligible patients were enrolled from a Chinese GC

cohort, and the complete detailed information frommedical records was extracted

to generate a high-dimensional dataset. Appropriate feature engineering and feature

filter were conducted before modeling with eight algorithms. A 10-fold cross

validation (CV) nested in a holdout CV (8:2) was employed for hyperparameter

tuning and model evaluation. Model selection was based on the area under the

receiver operating characteristic (AUROC) curve, recall, and precision. The selected

model was globally explained using interpretable surrogate models. Of the total

399 cases (median survival of 8.2months), 242 patients survived less than 12months.

The linear discriminant analysis (LDA), support vector machine (SVM), and random

forest (RF) model had the highest AUROC (0.78 ± 0.021), recall (0.93 ± 0.031), and

precision (0.80 ± 0.026), respectively. The LDA model created a new function that

generally separated the two classes. The predicted probability of the SVMmodelwas

interpreted using a linear regressionmodel visualized by a nomogram. Thepredicted

class of the RF model was explained using a decision tree model. In summary,

analyzing high-volumemedical data byML is helpful to produce an improvedmodel

for predicting the survival in patients with metastatic GC. The algorithm should be

carefully selected in different practical scenarios.

KEYWORDS

stomach neoplasms, neoplasm metastasis, survival analysis, supervised machine
learning, electronic medical record, clinical laboratory information system
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Introduction

Gastrectomy with adequate lymphadenectomy provides a

potential opportunity of cure for resectable gastric cancer

(GC) (Smyth et al., 2020); however, a substantial

proportion of patients still develop recurrence or metastasis

afterward (Chen et al., 2021; Hisamori et al., 2021). The

prognosis of metastatic GC is expected to be poor; the

survival time after relapse varies from 3–15 months (Smyth

et al., 2020), depending on the metastatic site (Chau et al.,

2004; Lee et al., 2007; Kim et al., 2008; Custodio et al., 2017),

performance status (Chau et al., 2004; Lee et al., 2007; Kim

et al., 2008; Custodio et al., 2017), palliative chemotherapeutic

regimen, and other factors (Custodio et al., 2017; Zhu et al.,

2022). Several models have been established based on clinical

trials or real-world data, aiming to precisely estimate the

survival probability in these patients (Chau et al., 2004; Lee

et al., 2007; Kim et al., 2008; Koo et al., 2011; Custodio et al.,

2017). Although different sets of variables have been

incorporated, the ability of survival prediction in the

traditional model is dissatisfactory. A Spanish multicenter

study (the AGAMENON study) developed a nomogram-

based model to predict the survival of patients with

advanced GC (AGC), with an accuracy of 0.67 in the

validation set (Custodio et al., 2017). A Korean single-

center study constructed a score-based model with an

accuracy of 0.58 (Koo et al., 2011), then externally

validated another three models (Chau et al., 2004; Lee

et al., 2007; Kim et al., 2008), and showed similar

performances in the same population (Koo et al., 2011).

Our previous work also developed a score-based model in a

Chinese cohort with a c-index of 0.67 (Ma et al., 2021).

Meanwhile, we validated seven published models (Chau

et al., 2004; Lee et al., 2007; Kim et al., 2008; Koo et al.,

2011; Takahari et al., 2014; Wang et al., 2016; Kim et al., 2020)

in a Chinese population, and the results showed that the area

under receiver operating characteristic (AUROC) curves was

only about 0.60 (Xu et al., 2021).

The traditional prognostic model is frequently built by the

logistic or Cox regression analysis on the basis of the well-known

clinical and pathological variables, for example, performance

status (Chau et al., 2004; Lee et al., 2007; Kim et al., 2008;

Takahari et al., 2014), tumor differentiation (Custodio et al.,

2017; Kim et al., 2020), metastatic sites (Kim et al., 2008; Takahari

et al., 2014; Wang et al., 2016), and routine laboratory tests (Koo

et al., 2011; Custodio et al., 2017; Kim et al., 2020; Ma et al., 2021).

The selection of candidate variables is typically guided by the

clinical experience and previous literature. In the era of digital

medicine, the electronic medical record (EMR) and laboratory

information system (LIS) make massive medical data readily

available; nevertheless, we are still far from taking full advantage

of them. One possible reason is the incompetence of the classic

statistical method in dealing with numerous independent

variables, which emphasizes the need for adopting a new

strategy of statistics.

Machine learning (ML) is increasingly used for data mining

due to its capacity to tackle big data. In order to utilize the

abundant digital medical records and further improve model

performance in predicting the survival of GC patients with

recurrence or metastasis after radical gastrectomy, we enroll

eligible participants from a retrospective GC cohort, build a

high-dimensional dataset from the EMR and LIS, identify the

most relevant prognostic factors, and implement modeling using

several ML algorithms.

Materials and methods

Study setting and population

In this retrospective study, we trained ML models using

different algorithms to predict if a GC patient would die

within 12 months after the first metastasis or recurrence

because 12 months is typically recognized as the median

survival time for patients with AGC (Smyth et al., 2020). The

participants were enrolled from a registered hospital-based GC

cohort (ChiCTR1800019978, http://www.chictr.org.cn/). The

consecutive gastric or esophagogastric junction carcinoma

patients who underwent radical gastrectomy and developed

disease recurrence or metastasis were included and followed

up in the cohort. Those patients with multiple primary

malignant tumors or with no records of laboratory

examinations at the time of metastasis were excluded. The

EMR and LIS were retrieved to obtain data for analysis. The

survival information was acquired from the death register system

or by telephonic follow-up conducted every 3 months. The

overall survival (OS) was defined as the interval between the

first metastasis and death or the last follow-up. The workflow of

the study is illustrated in Figure 1.

All procedures performed in the study involving human

participants were in accordance with the 1964 Helsinki

Declaration and its later amendments or comparable ethical

standards. The studies involving human participants were

reviewed and approved by the Ethics Committee of The First

Affiliated Hospital of Anhui Medical University (reference

number: Quick-PJ-2021-05-19). The Ethics Committee waived

the requirement of written informed consent for participation.

Dataset and feature engineering

All features are listed in Supplementary Table S1. Briefly, the

dataset included information about demography, histopathology,

surgical resection, postoperative adjuvant chemotherapy, first-

line palliative chemotherapy, radiotherapy, baseline laboratory

records at the time of metastasis (routine blood test,
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biochemistry, coagulation, immunology, and tumor biomarkers),

and survival. Each aspect had several items to record the details,

so a high-dimensional dataset was generated.

Categorical features were transformed by one-hot

encoding. Numerical features were standardized, normally

transformed, or grouped where appropriate. In our dataset,

missing values generally occurred at random, so they were

deleted (the fraction of the missing values over the total cases

was more than 30%) or imputed using decision tree

algorithm.

ML model performance may suffer from high

dimensionality, so, here, some features were filtered out

prior to modeling. A feature with zero or near-zero

variance was first dropped because it provided no useful

information to a model. The rule of detecting a near-zero

variance feature was (Smyth et al., 2020) that the fraction of

unique values over the sample size was less than 10% and

(Hisamori et al., 2021) the ratio of the frequency of the most

prevalent value to the frequency of the second most prevalent

value was more than 20% (Boehmke and Greenwell, 2019).

Next, we used the importance value calculated by the random

forest (RF) algorithm to rank the features and select a number

of them that contributed most to the model. The specific

number was tuned by a random search during model

development. All these data-dependent preprocessings were

conducted in isolation of each resampling iteration in order to

avoid data leakage.

Model development

First, the entire dataset was randomly split into a training set

and a validation set (8:2) as the outer layer. Then, the training set

was further randomly split by 10-fold cross-validation (CV) as

the inner layer. The inner layer was used to tune hyperparameters

by random search, and the best configuration was passed on the

validation set from the outer layer to evaluate the model

performance. The nested CV design reduced the risk of

overestimation of the model because the information of the

training set was not leaked into the validation set. The whole

process was repeated five times for averaging the effect of

randomness, so we used the mean value to measure the

model performance. The AUROC curve was the primary

indicator to evaluate the model because it did not have any

bias toward classifiers on balanced or imbalanced binary

prediction problems (He and Ma, 2013). Precision and recall

were also crucial as they reflected the false-positive error and the

false-negative error of the model, respectively. In addition,

accuracy and F1 score (the harmonic mean of precision and

recall) were also calculated.

We used eight common classification algorithms for

modeling: kernel K-nearest neighbor (KKNN), linear

discriminant analysis (LDA), support vector machine (SVM),

RF, XGBoost, ridge regression, LASSO regression, and elastic net

regression. For each algorithm, the hyperparameters that needed

to be tuned and the optimal settings are given in Supplementary

FIGURE 1
Flow diagram of patient selection. Abbreviation: GC, gastric cancer.
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Table S2. The whole project was deployed using RStudio

1.4.1717 with packages “mlr3verse” (modeling pipeline and

framework), “kknn” (KKNN algorithm), “e1071” (SVM

algorithm), “MASS” (LDA algorithm), “ranger” (RF

algorithm), “xgboost” (XGBoost algorithm), and “glmnet”

(ridge, LASSO, and elastic net regression). To make a

comparison with the traditional method, we used the logistic

regression as a reference algorithm.

A learning curve is used to diagnose if the sample size is

adequate for modeling and if an overfitting or underfitting

problem occurs. It comprises two lines that represent the

errors of the training set and the validation set, respectively,

in relation to the sample size. The training learning curve shows

how well the model is learning, and the validation curve shows

how well the model is generalizing. If a model is underfitting, the

error of the training set is close to that of the validation set, so

obtaining more samples is unlikely to improve the performance.

In contrast, if a model is overfitting, the gap between the errors of

the training set and validation set is large, so adding more

samples is likely to be helpful.

Model interpretation

Only the selected models were interpreted, which comprised

the LDA, the SVM, and the RF-based model. The model

interpretation was based on the final model built on the entire

dataset with the tuned hyperparameters or model configuration.

The general theories of the three algorithms were briefly

demonstrated. The LDA aims to learn a new line, called the

discriminant function (DF) that combines the original features in

a linear fashion, weighting greater for “better” predictors and less

for “poorer” predictors. The value that gives the weight for each

feature is called the DF coefficient, which indicates how much it

contributes to class discrimination. The DF separates the

centroid of each class (OS longer than or equal to 12 months

versus shorter than 12 months in the case) by maximizing the

difference between the class centroids and minimizing the

within-class variance when the data being projected onto the

DF (Rhys, 2020).

The SVM and the RF algorithms are more alike “black-box”

models. The SVM algorithm finds an optimal linear hyperplane that

best separates the two classes and is penalized for having cases inside

its decision boundary defined by the support vectors. The algorithm

can also add a kernel, namely, an extra dimension, to deform the

feature space, so that a linear hyperplane can separate the classes

(Rhys, 2020). The RF algorithm is an implementation of a bagging

technique for decision tree algorithm. It randomly samples cases and

features to create a large number of tree classifiers on a binary

prediction task that are highly uncorrelated. Then, new data are

passed to the trees to make their own prediction, and the model

prediction is made based on the majority of the predictions from

each tree (Rhys, 2020).

Global surrogate is a common global model-agnostic method

to interpret a black box model (e.g., SVM or RFmodel) by using a

surrogate model with a good intuition. In this case, we train a

linear regression model or a decision tree model to fit the black

box-predicted probability or response, respectively. R-square was

used to measure how close the surrogate model is to the black box

model (Elshawi et al., 2019).

Results

As shown in Figure 1, 399 GC patients developing metastasis

or recurrence after curative intent gastrectomy were enrolled for

modeling. The median survival after metastasis was 8.2 months.

Two lost to follow-up cases were removed. Fourteen patients

were still alive (survival time ranged from 20.7 to 144.0 months,

median 95.1 months), so all the living patients had an OS of no

less than 12 months and were assigned to the negative

subgroup. Of 385 patients who reached the endpoint (mOS =

7.8 months), 143 patients survived for no less than 12 months

(negative subgroup). Overall, the negative subgroup consisted of

157 cases, and the positive subgroup (post-metastatic survival

time <12 months) consisted of 242 cases. The ratio of the

majority to the minority was 1.54:1. The five most frequent

metastasis sites were 46.1% for distant lymph nodes (n = 184),

26.8% for the liver (n = 107), 19.8% for the peritoneum (n = 79),

15.8% for bone (n = 63), and 15.5% for the chest (n = 62). The

baseline information is briefly presented in Table 1. No missing

value existed.

After excluding some features with massive missingness, a

total of 62 laboratory indexes were in the feature space, and the

distribution of missing values was generally at random

(Supplementary Figure S1A). No clear pattern was observed

when comparing these indexes between the positive and the

negative subgroups (Supplementary Figure S1B,C). The feature

filter process returned a feature list ordered by the RF importance

and then passed it into further modeling. Interestingly, the highly

important features were generally the laboratory information at

metastasis, i.e., inflammatory index, blood cell test, and

biochemistry. Supplementary Figure S1C illustrates the

30 most important features for brevity.

After tuning the optimal number of the features and the

hyperparameters, the model performances are shown in Table 2.

The LDA model had the highest AUROC (m ± sd; 0.78 ± 0.021),

followed by the SVMmodel with an AUROC of 0.77 ± 0.014 and

the RF model with an AUROC of 0.77 ± 0.0064. The SVMmodel

ranked first with respect to recall (0.93 ± 0.031), and the RF

model ranked first with respect to precision (0.80 ± 0.026). So, we

further look into these three models.

The LDA itself had no hyperparameter to be tuned, so only

the number of the included features should be tested. Figure 2A

shows that the inclusion of the first 25 or 40 features yielded the

lowest error in the validation set, so 25 was chosen to make the
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TABLE 1 Baseline characteristics of the patients enrolled for modeling.

Overall (n = 399) Negative (n = 157) Positive (n = 242) p-value

General information

Sex (male) 283 (70.93) 108 (68.79) 175 (72.31) 0.519

Age at surgery, y 62.00 (54.00, 68.50) 60.00 (51.00, 68.00) 64.00 (56.00, 69.00) 0.012

DFS, mo 11.87 (5.94, 21.72) 11.43 (4.40, 21.70) 12.02 (6.56, 21.70) 0.378

Age at first metastasis, y 64.00 (55.00, 70.00) 62.00 (53.00, 69.00) 65.00 (56.00, 71.00) 0.014

OS, mo 8.23 (3.77, 17.20) 21.40 (14.90, 31.13) 4.46 (2.51, 7.34) <0.001
Pathological information

T stage 0.048

T1 12 (3.01) 6 (3.82) 6 (2.48)

T2 26 (6.52) 17 (10.83) 9 (3.72)

T3 231 (57.89) 89 (56.69) 142 (58.68)

T4a 105 (26.32) 38 (24.20) 67 (27.69)

T4b 21 (5.26) 7 (4.46) 14 (5.79)

Tx 4 (1.00) 0 (0.00) 4 (1.65)

N stage <0.001
N0 59 (14.79) 38 (24.20) 21 (8.68)

N1 81 (20.30) 41 (26.11) 40 (16.53)

N2 105 (26.32) 28 (17.83) 77 (31.82)

N3a 112 (28.07) 36 (22.93) 76 (31.40)

N3b 39 (9.77) 14 (8.92) 25 (10.33)

Nx 3 (0.75) 0 (0.00) 3 (1.24)

Grade 0.093

G1 5 (1.25) 2 (1.27) 3 (1.24)

G2 84 (21.05) 43 (27.39) 41 (16.94)

G3 273 (68.42) 98 (62.42) 175 (72.31)

G4 5 (1.25) 3 (1.91) 2 (0.83)

Gx 32 (8.02) 11 (7.01) 21 (8.68)

Location¶

Cardia 223 (55.89) 93 (59.24) 130 (53.72) 0.327

Body 137 (34.34) 51 (32.48) 86 (35.54) 0.603

Pylorus 125 (31.33) 44 (28.03) 81 (33.47) 0.301

Linitis plastica 4 (1.00) 1 (0.64) 3 (1.24) >0.999
Histology¶

Adenocarcinoma, NOS 333 (83.46) 136 (86.62) 197 (81.40) 0.218

Mucinous adenocarcinoma 54 (13.53) 14 (8.92) 40 (16.53) 0.043

SRC 25 (6.27) 7 (4.46) 18 (7.44) 0.323

Borrmann type 0.819

I 18 (4.51) 8 (5.10) 10 (4.13)

II 111 (27.82) 42 (26.75) 69 (28.51)

III 223 (55.89) 93 (59.24) 130 (53.72)

IV 25 (6.27) 9 (5.73) 16 (6.61)

Unknown 22 (5.51) 5 (3.18) 17 (7.02)

Treatment information

Resection site 0.731

Proximal 16 (4.01) 8 (5.10) 8 (3.31)

Distal 101 (25.31) 35 (22.29) 66 (27.27)

Total 273 (68.42) 112 (71.34) 161 (66.53)

Others 9 (2.26) 2 (1.27) 7 (2.89)

(Continued on following page)
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model simpler. The learning curve illustrated that, with

25 features being considered, the gap between the train and

the validation error became steady as the sample size exceeded

200 (Figure 2B). The DF coefficient for each included feature is

shown in Figure 2C. The absolute value of the coefficient reflected

the contribution of the feature to the model. By summing up the

product of the DF coefficient and the feature, a DF was calculated

for each case. The distribution of the DF in each class was a bell-

shaped curve, with a clearly distinct summit from each other

(Figure 2D). As expected, the mean of the DF in each class was

statistically different (Figure 2E). The plot of the DF (x-axis) over

the probability of being predicted as positive by the final model

(y-axis) demonstrated that, as the DF became greater, the

probability of being predicted as positive declined (Figure 2F),

which was consistent with the DF distribution across the classes

(Figure 2E).

The SVM model with the tuned hyperparameters

(Supplementary Table S2) performed best with respect to

recall. Figure 3A shows that the sample size was sufficient to

stabilize the validation error from the SVM model. Figures 3B,C

TABLE 1 (Continued) Baseline characteristics of the patients enrolled for modeling.

Overall (n = 399) Negative (n = 157) Positive (n = 242) p-value

Procedure 0.557
Open gastrectomy 364 (91.23) 141 (89.81) 223 (92.15)

Laparoscopic gastrectomy 34 (8.52) 16 (10.19) 18 (7.44)

Unknown 1 (0.25) 0 (0.00) 1 (0.41)

Lymphadenectomy 0.695

D1 128 (32.08) 54 (34.39) 74 (30.58)

D2 212 (53.13) 83 (52.87) 129 (53.31)

Unknown 59 (14.79) 20 (12.74) 39 (16.12)

Radiotherapy (yes) 4 (1.00) 1 (0.64) 3 (1.24) 0.939

Adjuvant chemotherapy (yes) 298 (74.69) 116 (73.89) 182 (75.21) 0.858

Adjuvant chemotherapy cycles§ 5 (3, 6) 5 (3, 6) 5 (3, 6) 0.290

Palliative chemotherapy (yes) 317 (79.45) 137 (87.26) 180 (74.38) 0.003

First-line drugs¶

Platinum 45 (11.28) 26 (16.56) 19 (7.85) 0.012

Fluorouracil 72 (18.05) 33 (21.02) 39 (16.12) 0.267

Taxane 28 (7.02) 14 (8.92) 14 (5.79) 0.319

Abbreviations: DFS, disease-free survival; SRC, signet-ring cell.
¶ In this variable, the count of each category did not sum up to the total number of cases within a subgroup due to overlapping distribution; therefore, a chi-squared or Fisher’s exact test was

conducted within each row. Otherwise, the test for categorical variables was conducted within each matrix.
§ Only the patients who had a history of adjuvant chemotherapy were summarized.

Continuous variables were presented by the median (interquartile range).

TABLE 2 Comparison of model performance across different machine learning algorithms for predicting 12-month survival in patients with
metastatic gastric cancer.

Algorithm AUROC Recall Precision F1-score Accuracy

LR 0.68 ± 0.055 0.76 ± 0.058 0.69 ± 0.083 0.72 ± 0.033 0.68 ± 0.045

ER 0.75 ± 0.006 0.74 ± 0.031 0.76 ± 0.037 0.75 ± 0.033 0.70 ± 0.041

KNN 0.75 ± 0.014 0.85 ± 0.039 0.74 ± 0.014 0.79 ± 0.017 0.73 ± 0.018

LASSO 0.76 ± 0.016 0.74 ± 0.027 0.76 ± 0.046 0.75 ± 0.035 0.70 ± 0.046

LDA 0.78 ± 0.021 0.84 ± 0.018 0.78 ± 0.023 0.81 ± 0.016 0.76 ± 0.023

RF 0.77 ± 0.006 0.82 ± 0.039 0.80 ± 0.026 0.81 ± 0.019 0.76 ± 0.022

RR 0.76 ± 0.016 0.74 ± 0.027 0.76 ± 0.046 0.75 ± 0.035 0.70 ± 0.046

SVM 0.77 ± 0.015 0.93 ± 0.031 0.72 ± 0.02 0.81 ± 0.015 0.74 ± 0.022

XGBoost 0.73 ± 0.035 0.84 ± 0.162 0.72 ± 0.037 0.77 ± 0.092 0.70 ± 0.083

Abbreviations: AUROC curve, area under the receiver operating characteristic curve; LR, logistic regression; ER, elastic-net regression; KNN, K-nearest neighbor; LASSO, least absolute

shrinkage and selection operator; LDA, linear discriminant analysis; RF, random forest; RR, ridge regression; SVM, support vector machine.

The bold value indicates the highest performance in the column.
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simulate hyperparameter tuning by grid search, showing that a

combination of a radial kernel function, a natural log-

transformed cost of about -3 and a natural log-transformed

gamma of about -2, gave the highest AUROC in the

validation set. It was consistent with the configuration of the

actual model tuned by random search (Supplementary Table S2).

Because this model only picked the first eight features, it is

possible and more intuitive to interpret the SVM model by a

FIGURE 2
Construction of the LDAmodel. (A)Correlation between the predicted error in the validation set and the number of features. (B) Learning curve
of the LDA model. (C) DF coefficient of the features in the model. All the features were scaled, so the absolute value of the coefficient reflected the
contribution of a feature to the model. (D) Distribution of the DF in the positive or the negative subgroup. (E) Difference of the median DF in each
subgroup was examined by the Wilcoxon test. (F) Plot of the DF over the predicted probability of being positive by the final LDA model.
Abbreviations: LDA, linear discriminant analysis; DF, discriminant function; PINI, prognostic inflammatory nutrition index; SIRI, systemic inflammation
response index; LYM, lymphocyte; PREALB, prealbumin; LAR, lymphocyte–albumin ratio; DIBL, direct bilirubin; T_PRO, total protein; NEU,
neutrophil; HCT, hematocrit; IBIL, indirect bilirubin; LPR, lymphocyte platelet ratio; LMR, lymphocyte–monocyte ratio; ALRI, aspartate
aminotransferase–lymphocyte ratio index; RBC, red blood cell; DFS, disease-free survival; MON, monocyte; ALB, albumin; POS_LN, number of
positive lymph node; CEA, carcinoembryonic antigen; NLR, neutrophil–lymphocyte ratio; LDH, lactic dehydrogenase; BIL, bilirubin; PNI; prognostic
nutrition index.

Frontiers in Molecular Biosciences frontiersin.org07

Zhang et al. 10.3389/fmolb.2022.937242

378

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.937242


linear regression model visualized by a nomogram (Figure 3D).

Of the eight features, the linear model, namely, the surrogate

model, automatically chose six features by a stepwise method

(Figure 3D). The R-square was 0.68.

The RF model with the tuned hyperparameters

(Supplementary Table S2) had the highest precision.

Figure 4A shows that the model performance stabilized when

the number of trees was greater than 400 and reached the best

when approximately 700 trees were aggregated. The simulation

test showed the optimal combination of the mtry and the

nodesize by grid search (Figure 4B). The rank of the feature

demonstrated that the baseline white cell count, platelet count,

and prealbumin were the most crucial predictors in the RFmodel

(Figure 4C). This model chose 29 features, so it was more

appropriate to use a decision tree algorithm, with a cp of

0 and a maxdepth of 4, as a surrogate model to approximate

the response predicted by the RF model (Figure 4D). The

R-square was 0.57.

Discussion

This study demonstrates that the LDA, SVM, and RF models

outperform other algorithms in predicting the survival of

patients with metastatic GC. The model performance assessed

by a single holdout CV is not reliable because of the effect of

randomness in splitting data into training and validation sets.

Here, this issue is addressed by repeating the holdout CV five

FIGURE 3
Construction of the SVMmodel. (A) Learning curve of the SVMmodel. (B) Simulation test of the tuning kernel functionmeasured by the AUROC.
(C) Simulation test of tuning cost and gamma measured by the AUROC. (D) Global surrogate model visualized by a nomogram to approximate the
predicted probability of being positive by the SVM model. Abbreviations: SVM, support vector machine; AUROC curve, area under the receiver
operating characteristic curve; LAR, lymphocyte–albumin ratio; LMR, lymphocyte–monocyte ratio; LPR, lymphocyte–platelet ratio; NLR,
neutrophil–lymphocyte ratio; POS_LN, number of positive lymph node; PREALB, prealbumin.
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times, so the performance is unbiased in the local cohort, as

measured by AUROC, recall, and precision. All the AUROCs of

the three models exceed 0.75, which is higher than those in the

previous reports (Koo et al., 2011; Custodio et al., 2017; Ma et al.,

2021). In addition, our earlier work selected the patients with

AGC receiving first-line chemotherapy from the same local

cohort and compared the performances of seven survival

prediction models on it, showing the best model having an

AUROC of 0.60 (Xu et al., 2021). The present study does not

impose restrictions on treatment or other factors, so the

population is of wider heterogeneity, which may help the

model generalize well due to closely reflecting the

characteristics of the patients in a real-world setting.

The LDA model performs the best as measured by the

AUROC. This model is relatively the most interpretable

model among the algorithms tested because it constructs a

single and intuitive DF from the original features for

classification, which is similar to the well-known logistic

FIGURE 4
Construction of the RF model. (A) Correlation of the out-of-bag error with the number of trees. (B) Simulation test of tuningmtry and nodesize
measured by the AUROC. (C) Feature importance as measured by the RF algorithm. (D) Global surrogate model visualized by a decision tree to
approximate the predicted response by the RF model. Abbreviations: RF, random forest; AUROC curve, area under the receiver operating
characteristic curve; LMR, lymphocyte–monocyte ratio; NLR, neutrophil–lymphocyte ratio; PREALB, prealbumin; IBIL, indirect bilirubin; RBC,
red blood cell; DFS, disease-free survival; GAR, γ-glutamyl transpeptadase–albumin ratio; LDH, lactic dehydrogenase; LAR, lymphocyte–albumin
ratio; GLO, globulin; MON, monocyte; ALB, albumin; MCH, mean corpuscular hemoglobin; RETIMRTC, moderate fluorescence–reticulocyte ratio;
HCT, hematocrit; RDW, red cell distribution width; AAPR, albumin-to-alkaline phosphatase ratio; RETI, reticulocyte count; ALP, alkaline
phosphatase; PHOS, phosphorus.

Frontiers in Molecular Biosciences frontiersin.org09

Zhang et al. 10.3389/fmolb.2022.937242

380

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.937242


regression. In contrast, the SVM and RF models are less

explainable; however, they perform the best as measured by

recall and precision, respectively. In clinical practice, if we

want to identify as many patients as possible with less than 1-

year survival by the model, i.e., avoid a false-negative event, we

should consider the SVM model because it has the highest recall.

If we want to be confident with the ML’s prediction, i.e., avoid a

false-positive event, we should consider the RF model due to its

highest precision. Therefore, model selection is closely related to

the specific practical scenario.

Almost all the features included for modeling are the baseline

index of systemic inflammation and malnutrition, albeit with a

few exceptions, which is in line with the previous studies. For

patients receiving first-line treatment, Kim et al. (2020) identified

the clinically relevant features as NLR, neutrophil count, alkaline

phosphatase, albumin, lymphocyte count, and white blood cell

count. The AGAMENON nomogram weights the neutrophil-to-

lymphocyte ratio (NLR) greater than tumor differentiation,

metastasis site, or HER2+-treated (Custodio et al., 2017).

Hsieh et al. (2016) selected NLR, modified Glasgow

prognostic score (mGPS), and Patient-Generated Subjective

Global Assessment (PG-SGA) as the most relevant predictors

(all of them are inflammation- or nutrition-based scores),

compared with age, physical status, differentiation, and

metastasis site. In fact, the laboratory index is frequently

adopted in models for predicting the survival of metastatic

GC patients (Chau et al., 2004; Lee et al., 2007; Kim et al.,

2008; Takahari et al., 2014; Wang et al., 2016; Kim et al., 2020), as

extra information added on the well-recognized predictors. The

present study further emphasizes the prediction value of the

index in a setting of a more heterogeneous population with GC.

In other words, the ML model “considers” that the post-

metastasis survival is mainly attributed to the characteristics

of the patients at the time of metastasis, other than the

history of staging, surgery, adjuvant chemotherapy, and so on.

This may explain the prognoses of the patients with

metachronous or synchronous GC being the same as long as

the cancer is at an advanced stage (Patel et al., 2007).

The current study has several limitations. First, the models

are confident to generalize well in the local population because

they are unbiasedly evaluated by repeated CV; however, the case

is uncertain in other situations due to lack of external validation.

Second, the ensemble technique, a common method to enhance

model performance (Rhys, 2020), is not utilized for modeling.

We consider there is a trade-off between model complexity and

model performance: using ensemble is very likely to improve the

model at the cost of long running time and poor interpretability

and vice versa. So, here we prefer an easier model, at the cost of

performance, in order to facilitate real clinical practice. Third,

there are still over 20 features in some models, albeit feature

filtering has been conducted. This would impede the models

from being used as a quick screening tool for practitioners.

In conclusion, on the basis of the readily available

information from the EMR and LIS, the mainstream ML

method can produce satisfactory models for predicting

survival in patients with metastatic GC who experienced

prior radical gastrectomy. The algorithm should be selected

according to the measurement and its meaning in a practical

scenario.
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Background:Growing evidence suggests the links betweenmoyamoya disease

(MMD) and autoimmune diseases. However, the molecular mechanism from

genetic perspective remains unclear. This study aims to clarify the potential

roles of autoimmune-related genes (ARGs) in the pathogenesis of MMD.

Methods: Two transcription profiles (GSE157628 and GSE141025) of MMD were

downloaded from GEO databases. ARGs were obtained from the Gene and

Autoimmune Disease Association Database (GAAD) and DisGeNET databases.

Differentially expressed ARGs (DEARGs) were identified using “limma” R

packages. GO, KEGG, GSVA, and GSEA analyses were conducted to elucidate

the underlying molecular function. There machine learning methods (LASSO

logistic regression, random forest (RF), support vector machine-recursive

feature elimination (SVM-RFE)) were used to screen out important genes. An

artificial neural network was applied to construct an autoimmune-related

signature predictive model of MMD. The immune characteristics, including

immune cell infiltration, immune responses, and HLA gene expression in MMD,

were explored using ssGSEA. The miRNA-gene regulatory network and the

potential therapeutic drugs for hub genes were predicted.

Results: A total of 260 DEARGs were identified in GSE157628 dataset. These

genes were involved in immune-related pathways, infectious diseases, and

autoimmune diseases. We identified six diagnostic genes by overlapping the

three machine learning algorithms: CD38, PTPN11, NOTCH1, TLR7, KAT2B, and
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ISG15. A predictive neural network model was constructed based on the six

genes and presented with great diagnostic ability with area under the curve

(AUC) = 1 in the GSE157628 dataset and further validated by GSE141025 dataset.

Immune infiltration analysis showed that the abundance of eosinophils, natural

killer T (NKT) cells, Th2 cells were significant different between MMD and

controls. The expression levels of HLA-A, HLA-B, HLA-C, HLA-DMA, HLA-

DRB6, HLA-F, and HLA-G were significantly upregulated in MMD. Four

miRNAs (mir-26a-5p, mir-1343-3p, mir-129-2-3p, and mir-124-3p) were

identified because of their interaction at least with four hub DEARGs.

Conclusion: Machine learning was used to develop a reliable predictive model

for the diagnosis of MMD based on ARGs. The uncovered immune infiltration

and gene-miRNA and gene-drugs regulatory network may provide new insight

into the pathogenesis and treatment of MMD.

KEYWORDS

moyamoya disease, machine learning, bioinformatics, immune infiltration,
autoimmune-related genes

Introduction

Moyamoya disease (MMD) is an uncommon, chronic

cerebrovascular disorder characterized by progressive occlusion of

the supraclinoid internal carotid artery (ICA) and its main branches

within the circle ofWillis. MMD, also known as an abnormal netlike

vascular disease at the base of the brain, is a term coined by Suzuki

and Takaku in 1969 to describe the classic angiographic

appearance—a puff of cigarette smoke drifting in the air (Suzuki

and Takaku, 1969). Important clinical features include ischemic

stroke, often presented in childhood, and hemorrhagic stroke,

generally observed in adults. The incidence rate is twice higher in

females than males, and children around 5 years and adults in their

mid-40s are particularly affected (Kuroda andHoukin, 2008).MMD

is the most common pediatric cerebrovascular disease in Japan,

affecting approximately three out of every 100,000 children (Scott

and Smith, 2009).MMDconventionally refers to patients with above

idiopathic pathology without a previously diagnosed condition.

Distinct from the definitive MMD, Moyamoya (MM) syndrome

(also named Quasi-Moyamoya disease, secondary Moyamoya

disease, and akin-Moyamoya disease) is the occurrence of

angiographic MM in association with acquired (i.e., autoimmune

diseases) or inherited disorders [i.e., neurofibromatosis type 1, sickle

cell anemia, Down syndrome (DS)] (Scott and Smith, 2009).

The exact etiology of MMD remains unknown; however,

hereditary, immunogenic inflammatory, and hemodynamic

factors are known to be responsible. The close relationship

between patients with MM syndrome and autoimmune

diseases, such as type 1 diabetes mellitus, thyroid disease,

systemic lupus erythematosus (SLE), and DS has been

reported (Huang et al., 2017). A study in a primarily white,

midwestern United States population showed that the prevalence

of autoimmune diseases was significantly higher in patients with

MMD, particularly type 1 diabetes mellitus (8.5% versus 0.4% in

the general population), thyroid disease (17.0% versus 8.0% in the

institutional general patient population), and hyperlipidemia

(27.7% versus 16.3% in the general population). A meta-

analysis conducted in 2014 revealed that elevated thyroid

autoantibodies and elevated thyroid function are

independently associated risk factors for MMD (Lei et al.,

2014). Autoimmunity is the main link between SLE and MM

syndrome since immune complexes lead to vasculitis and narrow

or occluded vessels (El Ramahi and Al Rayes, 2000; Jeong et al.,

2008). Chen et al. (2016) found that the overall prevalence of

autoimmune diseases in patients with unilateral MMD was

significantly higher than that in patients with bilateral MMD.

Although the close relationships between autoimmune diseases

and MDD diseases have been recognized, the underlying

mechanisms remain to be clarified.

Advances in molecular biology and next-generation

sequencing technologies have made it possible to study disease

mechanisms at the genetic and mRNA levels. Gene expression

profiling through methods such as microarray and RNA

sequencing based on the Gene Expression Omnibus (GEO)

database is widely used to explore differentially expressed

genes (DEGs), analyze potential function pathways, and

determine molecular mechanisms involved in various

cerebrovascular diseases (Chen et al., 2022). A recent

bioinformatics study identified the potential neutrophil-

associated genes in MMD (Jin and Duan, 2022). However, the

role of autoimmune-related genes (ARGs) in the

pathophysiology of MMD is still unclear. In recent years, the

development of machine learning algorithms has provided more

choices for diagnostic models as precision medical predictive

tools. Our study integrated least absolute shrinkage and selection

operator (LASSO) logistic regression, random forest (RF),

support vector machine-recursive feature elimination (SVM-

RFE), and artificial neural network to screen and identify
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diagnostic markers and construct an autoimmune-related

signature predictive model of MMD. The immune

characteristics, including immune cell infiltration, immune

responses, and HLA gene expression in MMD, were explored.

The miRNA-gene regulatory network and the potential

therapeutic drugs for hub genes were predicted.

Materials and methods

Downloading and processing of data

Microarray data containing two transcription profiles

(GSE157628 and GSE141025) were downloaded from the

NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/). The

dataset of GSE157628 was utilized as the exploratory dataset, and

the GSE141025 profile acted as the validation dataset. The

GSE157628 profile included micro-samples of the middle

cerebral artery (MCA) collected from 11 patients with MMD

and nine age- and gender-matched control samples (three from

patients with epilepsy and six from patients with ICA aneurysms)

at the platform of GPL16699. The expression profiles of MCA

samples from four patients with MMD and four matched

superficial temporal artery controls in GSE141025 were

extracted for dataset validation. If multiple probes matched

one gene, the probe with the maximal median expression

values was annotated into the homologous gene symbol

through the platform’s annotation information.

Collection of autoimmune-related genes

ARGs were obtained from the Gene and Autoimmune

Disease Association Database (GAAD) (Lu et al., 2018) and

DisGeNET databases (Piñero et al., 2020) after deleting

duplicate genes. GAAD contained 44,762 associations between

49 autoimmune-related diseases and 4,249 genes through text

mining and manual curation. DisGeNET (v7.0), one of the

largest publicly available collections of genes and variants

associated with human diseases, contained 1,134,942 gene-

disease associations (GDAs), between 21,671 genes and

30,170 diseases, disorders, traits, and clinical or abnormal

human phenotypes.

Identification of differentially expressed
autoimmune-related genes

The principal component analysis was conducted by using

the factoextra R package. To identify the DEARGs, we performed

differential expression analysis using the “limma” package in R

software to detect DEGs between the MMD and control groups

in the training dataset (GSE157628). The DEGs were screened

with the criteria of |log2FoldChange| > 1 and p < 0.05. Volcano

maps and clustering heatmaps were prepared to visualize the

differences using the “ggplot2” and “ComplexHeatmap”

packages in the R software. We intersected the DEGs with

ARGs to identify DEARGs and visualized them with the

“VennDiagram” package.

Functional enrichments between
moyamoya disease tissues and controls

To uncover the biological function in MMD, gene set

enrichment analysis (GSEA) was used to enrich the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways using

the “clusterProfiler” package. Gene set variation analysis (GSVA)

algorithm was used to calculate the Reactome

(“c2.cp.reactome.v7.5.1.symbols” gene set from the Molecular

Signatures Database) (Liberzon et al., 2015) processes score using

the “GSVA” R package.

Authentication of the organ/tissue-
specific expressed DEARGs

To understand the tissue/organ-specific expression of these

DEARGs, we analyzed the gene distribution in tissues using the

online tool BioGPS (http://biogps.org/) (Wu et al., 2009). The

following criteria had to be met (Wang et al., 2020): 1) the

expression level of transcripts mapped to a single organ system

was >10 times the median, and 2) the second-highest level was

not more than one-third of the highest expression level.

Protein-protein interaction network and
functional annotation of DEARGs

The PPI network of DEARGs was prepared using the online

tool STRING (https://string-db.org/) with a minimum required

interaction score of 0.4. We downloaded the interaction

information and visualized the PPI network using Cytoscape

software (v3.8.2). ClueGO, a plugin app of Cytoscape for the

function enrichment, was used to annotate the biological

processes (BP) of Gene Ontology (GO) and KEGG pathways

of this network and the genes participating in these terms. The R

package “DOSE” was used to perform Disease Ontology (DO)

analysis (Yu et al., 2015).

Screening for crucial DEARGs and
candidate signatures

First, we applied five methods (Closeness, Degree,

MCC(Maximal Clique Centrality), MNC (Maximum
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neighborhood component), and Radiality) in cytoHubba to select

the top 30 genes and intersected them through the Venn plot to

find the common genes (Chin et al., 2014). Based on common

genes, we constructed a co-expression network via GeneMANIA

(http://www.genemania.org/) to identify internal associations

(Warde-Farley et al., 2010).

Second, to further identify the crucial DEARGs and candidate

signatures, three machine learning [LASSO logistic regression, RF,

and support vector machine (SVM)] algorithms were adopted. The

LASSO logistic regressionmodel was used to select optimal variables

using the penalty coefficient. RF is a machine learning algorithm

with an ensemble of multiple decision trees that combines the

knowledge generated by a collection of individual trees using

randomness. The top 10 variables were selected as the most

important features in the methods. SVM is a supervised machine

learning technique widely utilized for classification and regression.

To avoid over-fitting, the SVM-RFE requires training multiple

classifiers on subsets of features of decreasing size to search for

the best features. In the present study, we overlapped genes identified

by the three methods and designated the communal gens as our

candidate signatures for constructing the next diagnostic model.

Construction of the artificial neural
network diagnostic model

We constructed a back propagation artificial neural network

model using the “neuralnet” package. The expression profiles of

the above screened signatures in the GSE157628 dataset were

extracted and normalized. The min-max method was selected,

and the data were mapped in the range of zero to one before

training the neural network. The number of neurons was

between the input and output layer sizes, usually two-thirds of

the input size. A single hidden layer with four nodes was used.

We calculated the classification score of the obtained disease

neural network model as follows:

Predicting score � ∑gene expression*neural networkweight

The diagnostic ability was evaluated through the receiver

operating characteristic (ROC) curve and confusion matrix.

Another external dataset, GSE141025, was used to validate thismodel.

Immune characteristics of the moyamoya
disease microenvironment

xCell Aran et al. (2017), a novel gene signature-based method

to identify 64 immune and stromal cell types, was used to score

the abundance of immune cells in MMD. Single sample gene set

enrichment analysis (ssGSEA) was used to analyze the immune

cells and activities between MMD and controls. We also

compared the expression levels of HLA molecules between the

two groups. The significantly different immune characteristics

were depicted with boxplots and heatmaps.

The association of the crucial gene signatures with the scores

of infiltrating immune cells, immune activities, and expression of

HLAmolecules was explored using Pearson’s correlation analysis

in R software. The resulting associations were visualized as a

heatmap prepared with the “ggplot2” package.

Prediction of a miRNA-genes regulatory
network and potential drugs

NetworkAnalyst is a user-friendly online tool to create PPI

networks, cell-type or tissue-specific PPI networks, gene

regulatory networks, gene co-expression networks, and

networks for toxicogenomics and pharmacogenomics studies

(Zhou et al., 2019). We used the NetworkAnalyst to predict

the miRNA-genes regulatory network through the Tarbase

database (Karagkouni et al., 2018).

The Drug-Gene Interaction Database (DGIdb) (http://www.

dgidb.org/) is an online database to predict drug-gene interaction

based on the data mined from DrugBank, PharmGKB, Chembl,

Drug Target Commons, and TTD. The DGIdb was searched to

make predictions on potential molecule-related drugs that

interact with crucial DEARGs. Only the drugs with identified

interaction types persisted, and the Drugs-Genes interactions

were visualized through a Sankey diagram.

Sample collection and real-time
quantitative polymerase chain reaction

We recruited ten patients who were diagnosed with MMD in

Xiangya Hospital of Central South University for this research

between June 2022 and October 2022. A total of 10 healthy

controls with gender and age matched were also selected.

The detailed procedures of RT-qPCR were described in our

previous studies (Li et al., 2022a; Li et al., 2022b). Birefly,

peripheral blood monocytes (PBMCs) were isolated from the

blood samples of patients and health persons. We extracted the

total RNA from the PBMCs, performed reverse transcription

reactions, and then amplified the cDNA. The results were

analyzed using the 2−ΔΔCT method and expressed as ratio of

the internal control, GAPDH. The primer sequences used for RT-

qPCR are listed in Supplementary Table S1.

Results

Differential expression analysis

The study flowchart is depicted in Figure 1. Principal

component analysis showed that the MMD tissues and
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FIGURE 1
Flow chart of the study. DEGs, differentially expressed genes; GSEA, gene set enrichment analysis; ssGSEA, Single sample gene set enrichment;
GSVA, gene set variation analysis; GO: BP, Gene Ontology: biological processes; KEGG, Kyoto Encyclopedia of Genes and Genomes; DO, Disease
Ontology; ARGs, autoimmune-related genes; DEARGs, differentially expressed autoimmune-related genes; LASSO, the least absolute shrinkage and
selection operation; RF, random forest; SVM-RFE, Support vector machine-recursive feature elimination; ML, machine learning; BP neural
network, back propagation neural network; ROC, Receiver operating characteristic curve.

FIGURE 2
PCA and DEG analysis between MMD tissues and controls. (A) Principal component analysis between MMD tissues and controls. (B) A volcano
plot shows the DEGs. Blue dots show the down-regulated genes and red dots represent the up-regulated genes. (C) A heat map shows the
expression patterns of DEGs. PCA, principal component analysis; DEGs, differentially expressed genes; MMD, moyamoya disease.

Frontiers in Molecular Biosciences frontiersin.org05

Li et al. 10.3389/fmolb.2022.991425

387

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.991425


controls could be clearly distinguished in the GSE157628 dataset

(Figure 2A). Differential expression analysis was further

performed to screen for DEGs. Based on the selection criteria,

1696 DEGs (750 upregulated and 946 downregulated) were

identified (Figure 2B). The expression patterns of these DEGs

were visualized through a hierarchical clustering heatmap

(Figure 2C).

Functional enrichment analyses in
moyamoya disease

GSEA and GSVA were performed to reveal the underlying

biological pathways in MMD. The KEGG and Reactome

analysis focus on the biological pathways. Compared with

the comprehensive KEGG pathway, the Reactome pathway

has more specific functions and focuses more on

biochemical reactions. In our analysis, both methods were

adopted. The KEGG analysis based on GSEA showed that

the autoimmune thyroid disease, cell adhesion molecules,

and rheumatoid arthritis pathways were upregulated

(Figure 3A). In contrast, metabolism-related pathways

(arginine and proline metabolism, lysine degradation, and

one carbon pool by folate) were downregulated in MMD

tissues (Figure 3B) compared with controls. The top

20 significantly differential Reactome pathways between

MMD and controls are presented in Figure 3C, showing

upregulated sodium-coupled phosphate cotransporters,

chylomicron remodeling, and ligand-receptor interactions

pathways. At the same time, aggrephagy and regulation of

PTEN localization were downregulated in MMD tissues

compared with controls (Figure 3C).

FIGURE 3
Biological KEGG and Reactome pathways involved in MMD based on GSEA and GSVA. (A) and (B) Up-regulated and down-regulated KEGG
pathways from GSEA results, respectively. (C) The top differentially regulated reactome pathways from GSVA results.
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Construction of protein-protein
interaction network of DEARGs

After combining the GAAD and DisGeNET databases,

4371 ARGs were obtained. We overlapped the DEGs and

ARGs, resulting in 260 DEARGs in MMD (Figure 4A). To

elucidate the molecules’ functional associations, we imported

these genes into the STRING database to construct a PPI network

and further visualized it in Cytoscape. After removing nodes

without interaction with other genes, a PPI network with

225 nodes and 602 edges was constructed (Figure 4B).

Functional enrichment analyses of
DEARGs

For exploring the function and pathway of the DEARGs, we

used ClueGO, a plugin of Cytoscape, and the “DOSE” package.

The biological processes-genes network showed that

mononuclear cell migration and regulation of viral life cycle

were most enriched for DEARGs (Figure 5A and Supplementary

Figure S1A). The cAMP signaling pathway, PI3K-Akt signaling

pathway, antigen processing and presentation, and microbial

infection-related pathways were enriched in the KEGG analysis

(Figure 5B and Supplementary Figure S1B). To uncover the

diseases that these genes may be involved in, a DO analysis

was conducted, which showed that these genes participated in the

development of different cancers, infectious diseases, and

autoimmune diseases.

Identification of tissue/organ-specific
expressed genes

A total of 70 tissue/organ-specific expressed genes were

identified for 260 DEARGs by BioGPS (Table 1). We observed

FIGURE 4
Identification and PPI network construction of DEARGs. (A) A venn plot show 260 DEARGs in MMD. (B) PPI network of DEARGs. The blue nodes
represent the down-regulated genes and the red nodes represent the up-regulated genes. The dot size indicates the degree of the nodes. DEARGs,
differentially expressed autoimmune-related genes.
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that the system with the greatest distribution of tissue-

specific expressed genes was the hematologic/immune

system (30/70, 42.90%). The second organ-specific

expressed system was the nervous system, which included

11 genes (11/70, 15.70%), followed by the digestive system (7/

70, 10.00%), endocrine system (5/70, 7.10%), and genital

system (4/70, 5.70%).

Screening for crucial DEARGs and
candidate signatures

First, we integrated five methods (Closeness, Degree,

MCC, MNC, and Radiality) in cytoHubba and overlapped

the top 30 genes from each method for robustness

(Supplementary Figure S2 and Supplementary Table S2). A

total of 15 shared genes were identified (Figure 6A). A co-

expression network was constructed (Figure 6B), and

20 genes were identified that interacted with the 15 key

DEARGs. In the complex PPI network, the interaction of

the physical interactions accounted for 38.45%, predicted for

35.98%, co-expression for 20.16%, and colocalization

for 3.44%.

Second, we applied three machine learning algorithms

(LASSO regression, RF, and SVM-RFE) to screen further

the most important signatures. Seven genes were

determined by LASSO regression with the optimal values

(Figures 7A, B). We selected the top 10 genes ranked by

the variable importance in RF (Figure 7C). The error fell to

the lowest perigee, and the accuracy reached the peak when

the number of features was set to 14 in the SVM-RFE method

(Figures 7D, E). We identified six diagnostic genes by

overlapping the three algorithms (Figure 7F): CD38,

PTPN11, NOTCH1, TLR7, KAT2B, and ISG15. The detailed

descriptions of the six diagnostic signatures are listed in

Table 2. The correlation among these genes was studied by

Pearson’s method and presented with a heatmap

(Supplementary Figure S3).

FIGURE 5
Biological annotations and DO analysis of DEARGs. (A) and (B) The enrichment network of biological processes and KEGG pathways with the
participated genes in Cluego software. (C) The diseases of DEARGs involved through Disease Ontology analysis. DEARGs, differentially expressed
autoimmune-related genes; DO, Disease Ontology.
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Construction and validation of the
biological processes neural network
diagnostic model

Based on the above screened six diagnostic signatures, we

used the GSE157628 dataset as the training set to construct the

back propagation artificial neural network model using the R

package “neuralnet”. After performing the preprocessing and

scaling of this dataset, a neural network model with one hidden

neuron layer was established. According to the output results of

the neural network model (Figure 8A, Supplementary Table S3,

and Supplementary Figure S4), the entire training was performed

in 179 steps with an error of 0.021. Among the output results, the

predicted weights of each hidden neuron layer

were −14.758, −1.778, −5.728, and 13.268 for MMD. The

confusion matrix and ROC curves show that the predicted

scores (namely neuroMMD) present great diagnostic ability

with AUC = 1 in the GSE157628 dataset (Figures 8B, C). The

relative expression levels of these six diagnostic signatures are

depicted through raincloud plots, indicating that CD38,

NOTCH11, TLR7, and ISG15 were upregulated, and PTPN11

and KAT2B were downregulated (Figure 8D). We also recruited

an external GSE141025 dataset that demonstrated the

discriminatory performance of neuroMMD scores for MMD.

The confusion matrix and ROC curves validated the great

diagnostic ability of neuroMMD scores in MMD (Figures 8E,

F). Although these genes from the verifying dataset showed the

same expression trends as the training dataset, only CD38 and

PTPN11 reached statistical significance (Figure 8G). Our RT-

qPCR results also verified the same expression trends of

CD38 and PTPN11 as the GSE157628 and

GSE141025 datasets, and we also found the significant up-

regulation of NOTCH1 of MMD patients in our results

(Supplementary Figure S5).

Identification of differential immune
characteristics between moyamoya
disease and controls

Based on xCell analysis results, we identified three immune

cells (eosinophils, natural killer T cells, and Th2 cells) with

significant infiltration differences between diseased tissues and

controls. Among them, eosinophils and NKT were increased in

diseased tissues, while Th2 cells were decreased. We also

assessed the differences in immune activities and responses

between MMD and controls using the ssGSEA algorithm

(Figure 9A). Three immune activities (interleukins,

interferon, and LCK molecules) showed significant

differences between groups (Figure 9B). Seven differential

expressed HLA molecules were also discovered (Figure 9C),

and all were upregulated. The differential immune

characteristics between MMD and controls are depicted

through a heatmap (Figure 9D).

The correlation analysis between six hub DEARGs and

differential immune characteristics showed that the

upregulated genes were positively correlated with increasing

immune characteristics and negatively with decreasing

immune characteristics. In contrast, the downregulated genes

showed inverse effects.

TABLE 1 70 Identified tissue/organ-specific expressed genes by BioGPS.

System/Organ Counts Frequency
(%)

Genes

Haematologic/Immune
cells

30 42.90 TNFRSF17, CTSS, FPR2, HLA-DMA, HLA-DRB5, ICAM3, ITGA4, KLRD1, STAT4, MBD4, CARD8,
KLRK1, PTPN22, TLR7, CCL4, INPP5D, NLRP12, PYCARD, OAS2, ISG20, KCNJ2, FCHSD2, FUT1,
TOP1, CBLN2, XRN2, C3AR1, ZCCHC7, SPATA13, MILR1

Nervous 11 15.70 FGF1, GRIA2, PPP2R2B, TAC1, UCHL1, PPP1R17, SERPINI1, DNAJC6, PDE2A, AAK1, NMNAT2

Digestive 7 10.00 MBL2, SLC22A1, PEMT, CEBPA, SPRY4, APCS, APOA2

Endocrine 5 7.10 CALCA, CA3, FAM47E, SLC26A4, SPINK1

Genital 4 5.70 PGF, PRKAA1, DIAPH2, ARHGAP35

Bonemarrow 3 4.30 BPI, CAMP, DEFA3

Smooth muscle 3 4.30 BDNF, CCL7, CCL11

Adipocyte 2 2.90 COMP, MME

Immune organs 2 2.90 LEF1, NLRP11

Heart 1 1.40 NPPA

Respiratory 1 1.40 LAMP3

Tongue/Skeletal Muscle 1 1.40 TTN
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Establishment of miRNA-gene and drug-
gene regulatory networks

To identify the regulatory and therapeutic mechanisms for

MMD, we predicted the miRNA and drugs targeting the six hub

DEARGs through the Tarbase and DGIdb databases,

respectively. A total of 131 miRNAs were found to potentially

regulate the hub ARDEGs (Figure 10A). Genes with the most

regulated miRNAs were identified as KAT2B (regulated by

56 miRNAs), followed by PTPN11 (43 miRNAs), NOTCH1

(35 miRNAs), ISG15 (29 miRNAs), CD38 (13 miRNAs), and

TLR7 (5miRNAs) (Supplementary Table S4).We also discovered

that four miRNAs (mir-26a-5p, mir-1343-3p, mir-129-2-3p, and

mir-124-3p) interacted with four hub genes.

The DGIdb was applied to predict possible medicines or

molecular compounds reacting with the hub ARDEGs. After

excluding drugs/compounds for which the interaction types with

genes were not clear, 13 potential target drugs/compounds

remained for MMD treatment (Figure 10B and

Supplementary Table S5). Of these, six drugs interacted with

TLR7; two targeted CD38, KAT2B, and NOTCH1; one drug

targeted ISG15. PTPN11 interacted with no potential drug.

Discussion

As the most common pediatric cerebrovascular disease in

Japan, the incidence of frequently recurrent ischemic episodes

(transient ischemic attacks or strokes) is 70%–80% in children

with MMD (Currie et al., 2011). MMD cannot be effectively

treated with pharmacological interventions alone; therefore,

surgical procedures for revascularization (direct, indirect, and

combined bypass) are required. There is much controversy

surrounding the optimal treatment for this disorder (Jang

et al., 2017; Deng et al., 2018). The incidence of perioperative

complications such as stroke, hyperperfusion syndrome, and

acute thrombogenesis is also concerning (Kim et al., 2016). It

is of profound significance to understand the pathophysiologic

processes of MMD and prevent the occurrence of this disorder.

However, the molecular etiology of MMD remains unclear.

FIGURE 6
Venn diagram and co-expression of key DEARGs. (A) A Venn diagram shows that 15 key DEARGs are common genes from five cytoHubba
methods. (B) 15 key DEARGs and their co-expressed genes analyzed by GENEMANIA. DEARGs, differentially expressed autoimmune-related genes.
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Previous studies have suggested the role of comorbidities as the

link between autoimmune diseases and MMD (Kim et al., 2010;

Chen et al., 2016). Therefore, analysis of ARGs may help

determine the pathogenesis of MMD.

This study aimed to elucidate the critical processes and ARGs

responsible for developing MMD by integrating bioinformatics

and machine learning methods. Machine learning and artificial

intelligence have become indispensable productivity tools for the

21st century for precision medicine. Machine learning and

artificial intelligence differ from traditional biomedical

research because they use huge volumes of data to uncover

natural laws, which are then applied to medical research. The

field of bioinformatics involves the development of

computational tools and approaches for acquiring, storing,

visualizing, and interpreting medical or biological data.

Combining machine learning and bioinformatics will facilitate

the generation, analysis, maintenance, and interpretation of

information derived from molecular genetics tests. Apart from

FIGURE 7
Screen for crucial DEARGs based on machine learning algorithms. (A,B) Feature selection by LASSO regression model (A) The coefficients
change of different genes with different lambda (B) By verifying the optimal parameter (lambda) in the LASSO model, the partial likelihood deviance
(binomial deviance) curve was plotted vs log(lambda). (C) The genes ranked by the feature importance based on random forest algorithm. The darker
the color, the more important the gene is. (D) and (E) The error and accuracy of model changed with different number of features in support
vector machine-recursive feature elimination method, respectively. (F) A Venn diagram demonstrating six diagnostic markers shared by the three
algorithms.

TABLE 2 Detail information about the six hub genes identified by machine learning.

Gene Description Chromosome logFC P.Value Change

CD38 CD38 molecule 4 1.257 0.029 UP

PTPN11 protein tyrosine phosphatase non-receptor type 11 12 −1.021 0.007 DOWN

NOTCH1 notch receptor 1 9 1.104 0.005 UP

TLR7 toll like receptor 7 X 1.417 0.006 UP

KAT2B lysine acetyltransferase 2B 3 −1.435 0.046 DOWN

ISG15 ISG15 ubiquitin like modifier 1 1.072 0.023 UP
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the field of oncology research, the integrated approach is widely

applied in cardiovascular diseases, such as myocardial infarction

(Wu et al., 2022), heart failure (Tian et al., 2020), and aortic valve

calcification (Xiong et al., 2022). Through machine learning and

bioinformatics technology, our study revealed the differential

expression of ARGs and their potential biological functions in

MMD for the first time. A predictive model with hub ARGs was

constructed by using an artificial neural network. Immune cell

infiltration, immune activities, and HLA molecule expression

were investigated in MMD. The elucidated correlations between

ARGs and immune characteristics may help further explain the

interplay of ARGs and the immune microenvironment in MMD.

In our study, a total of 1696 DEGs (750 upregulated genes

and 946 downregulated genes) between MMD and controls were

screened. In biological function analysis, the pathways of

autoimmune diseases (such as autoimmune thyroid disease,

rheumatoid arthritis, the intestinal immune network for IgA

production, and SLE), cell adhesion molecules (CAMs), and

chylomicron remodeling were more enriched in MMD than

controls. When overlapped with the ARGs, we further

intersected 260 DEARGs involved in bacterial infectious

disease, rheumatic disease, and collagen disease in DO

analysis. Moyamoya vasculopathy in patients with the

underlying causal condition is usually regarded as “MM

syndrome”. MMD concurrent with Graves’ disease (GD) was

first reported by Kushima et al. (1991). Over the past two

decades, reports of these two concurrent diseases have

increased (Tendler et al., 1997; Ni et al., 2014; Chen et al.,

FIGURE 8
Construction and validation a BP neural network diagnostic model. (A) Results of neural network visualization. The positive weights are
connected with red lines, and the negative weights are connected with gray lines. The thickness of the lines reflects the value of the weights. (B) A
confusionmatrix shows the classification ability of neural network in training dataset. (C) ROC curve shows the diagnostic ability of neural network in
training dataset. (D) The expression levels of six hub DEARGs in training dataset. (E) A confusion matrix shows the classification ability of neural
network in test dataset. (F) ROC curve shows the diagnostic ability of neural network in test dataset. (G) The expression levels of six hub DEARGs in
test dataset.
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FIGURE 9
The significantly differential immune characteristics between MMD and controls. (A) The significantly differential immune cells. (B) The
significantly differential immune activities. (C) The significantly differential expressed HLA molecules. (D) A heat map shows the landscapes of
immune characteristics between MMD and controls. (E) The correlation of immune characteristics and six hub DEARGs. Significance level was
denoted by *p-value <0.05, **p-value <0.01, ***p-value <0.001.

FIGURE 10
The miRNA-Genes regulatory network (A) and Drug-Genes interactions (B).
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2015). The associations between thyroid function and thyroid

autoantibodies with MMD were also discovered (Kim et al.,

2010). A case-control study found that compared with control

subjects, the thyroid function and thyroid autoantibodies are

elevated in pediatric patients with MMD (Li et al., 2011), further

supported by another study without age stratification (Lei et al.,

2014). Studies about SLE associated with MM syndrome have

rarely been conducted and are published mostly in the form of

case reports (El Ramahi and Al Rayes, 2000; Jeong et al., 2008).

According to a recent review, MMD complicated with SLE

mostly occurred in female patients [84.6% (11/13)], and most

of these patients developed MMD by the age of 30 years (Tanaka

et al., 2020). Among the 13 patients, 10 were from East Asian

countries. Complications with rheumatoid arthritis and MMD

are rare (Paciaroni et al., 2005). The common molecular

characteristic of SLE and rheumatoid arthritis is the change in

CAMs (da Rosa Franchi Santos et al., 2020), which was also

identified by our enrichment analysis in MMD. CAMs, which are

transmembrane proteins that facilitate cell-to-cell or cell-to-

extracellular matrix binding, may be categorized into three

different types named immunoglobulin supergene family

members, selectins, and integrins. CAMs regulate the

inflammatory response and endothelial function. Therefore,

they may be targeted in cardiovascular disease (Kunutsor

et al., 2017), such as atherosclerosis (Ling et al., 2012) and

ischemic stroke (Yilmaz and Granger, 2008). DIAPH1 may be

a novel MMD risk gene that impairs vascular cell actin

remodeling that may cause neointimal expansion and

progressive narrowing of the bilateral internal carotid arteries

in MMD pathogenesis (Kundishora et al., 2021). Soriano et al.

(2002). found significantly elevated levels of soluble CAMs in the

cerebrospinal fluid of children with MM syndrome compared

with the control group, suggesting the potential roles of CAMs in

MMD. These results indicate the crucial association between

MMD and autoimmune diseases. By examining the common

pathogenesis of these disorders, we can clarify the etiology of

MMD. CAMs may act as a bridge that triggers the common

pathogenesis processes.

We also performed enrichment analysis of DEARGs in

MMD, suggesting that infectious diseases (such as

Staphylococcus aureus infection, Epstein-Barr virus infection,

and tuberculosis), cAMP signaling pathway, and PI3K-Akt

signaling pathway were involved. The infection hypothesis has

occasionally been proposed as one of three mechanisms while

investigating the pathogenesis of MMD, apart from autoimmune

and HLA abnormality. Infections associated with MMD have

been reported in many cases, including bacterial meningitis due

to pneumococcus, tuberous infection, and viral infection by the

varicella-zoster virus, Epstein-Barr virus, and Leptospira

infection (Houkin et al., 2012). Czartoski proposed that the

inflammation and subsequent post-infectious autoimmune

response associated with meningitis can lead to a progressive

vasculopathy, which may cause arterial occlusions in MM

syndrome after autopsy in a patient with pneumococcal

meningitis (Czartoski et al., 2005). Despite suggesting a

possible infectious cause in MMD, these results were only

based on case studies, and no specific pathogen has been

identified. A large-sample study is indispensable to finding the

relationship between infections and MMD. The DEARGs we

identified as associated with these diseases may provide a

molecular-level explanation.

A PPI network was constructed based on the DEARGs to

explore relationships among proteins. We found 15 potential

genes overlapping the top 30 genes identified by six algorithms

(Closeness, Degree, MCC, MNC, and Radiality) in cytoHubba.

To further screen out the hub genes, three machine learning

methods (LASSO regression, RF, and SVM-RFE) were applied,

and six genes (CD38, PTPN11, NOTCH1, TLR7, KAT2B, and

ISG15) were selected to construct a predictive model using BP

artificial neural network in the GSE157628 dataset. The

GSE141025 dataset also verified the predictive performance

with great diagnostic ability, which proved the applicability of

our model. Type I interferons (IFNs) induce the expression of

over 500 genes, collectively referred to as IFN-stimulated genes

(ISGs). ISG15 is a ubiquitin-like protein that can conjugate to

substrate proteins (ISGylation) in response to microbial

infection. This IFN-α/β-inducible ISG15 does not serve as a

substrate for ISGylation-based antiviral immunity but for

regulating IFN-α/β by USP18 and preventing IFN-α/β-
dependent auto-inflammation (Zhang et al., 2015). The

antiviral and antineoplastic roles of ISG15 have been

extensively studied (Mustachio et al., 2018; Perng and

Lenschow, 2018). RNF213 is an interferon-induced mega

protein frequently mutated in MMD as a susceptibility gene

(Liu et al., 2011). A recent study pointed out that RNF213, an

ISG15 interactor, can act as a sensor for ISGylated proteins to

counteract infection (Thery et al., 2021). In our immune

infiltration analysis, we observed that the activity of IFNs and

the expression of ISG15 genes were higher in MMD than in

controls. Therefore, the overexpression of ISG15 induced by

IFNs may be involved in the pathogenesis of MMD through

its interaction with RNF213. This finding may provide a new

direction for basic experiments in the future. PTPN11, the gene

encoding the protein tyrosine phosphatase SHP2, is a

ubiquitously expressed non-receptor tyrosine phosphatase that

regulates cell survival, proliferation, differentiation, migration,

and adhesion. Germline mutations in PTPN11 cause Noonan

syndrome, the clinically related LEOPARD syndrome (LS), and

leukemogenesis (Tartaglia et al., 2006; Alfayez et al., 2021). Seki

et al. found that the expression of SHP2 was markedly elevated in

the thickened aortic intima in rats with balloon-induced injury in

an atherosclerosis animal model (Seki et al., 2002). The inhibition

of SHP2 can protect against atherosclerosis by inhibiting smooth

muscle cell proliferation (Chen et al., 2018). The most prominent

pathological change in MMD is the inner elastic lamellar’s

breakage and smooth muscle cells’ destruction and
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proliferation in the tunica media (Huang et al., 2017). There are

some common pathogenesis links between MMD and

atherosclerosis. MMD susceptibility variant

RNF213 p. R4810K can increase the risk of recurrent

cerebrovascular events, such as ischemic stroke caused by

large-artery atherosclerosis (Okazaki et al., 2019; Kim et al.,

2021). Considering no direct evidence connecting CD38,

PTPN11, NOTCH1, TLR7, and KAT2B with the pathogenesis

of MMD, their roles in atherosclerosis may also provide a new

perspective and direction for future research on the molecular

targeted therapy of MMD (Salagianni et al., 2012; Briot et al.,

2015; Xu et al., 2016; Qi et al., 2021).

Considering the important roles of immune activities in

MMD, we also studied the immune characteristics from the

perspective of immune cell infiltration, activities of immune

responses, and HLA molecule expression. Our results showed

that the abundance of eosinophils and natural killer T (NKT)

cells is significantly elevated while Th2 cells were decreased in

MMD compared to controls. The expression levels of HLA-A,

HLA-B, HLA-C, HLA-DMA, HLA-DRB6, HLA-F, and HLA-G

were significantly upregulated inMMD. The abnormality of HLA

is considered one of the molecular mechanisms leading to the

occurrence ofMMD.Hong et al. (2009) found that the phenotype

frequencies of HLA-DRB1(*) 1302 and DQB1(*) 0609 were

significantly increased in familial MMD compared to both

controls and non-familial Korean patients with MMD. In a

Japanese case-control study on MMD, the HLA-DRB1*04:

10 allele was found to be a predisposing genetic factor, and

the frequency of autoimmune thyroid diseases was increased in

HLA-DRB1*04:10-positive patients with MMD compared with

that in HLA-DRB1*04:10-negative patients with MMD (Tashiro

et al., 2019). Recent research in Chinese Han population

indicated that the genetic polymorphism of HLA-DQA2 and

HLA-B was identified as a risk factor for MMD (Wan et al.,

2021).

Gene-miRNAs modify the appearance of proteins with the

progression of diseases by targeting their main targets. In this

study, we also constructed a gene-miRNA regulatory network,

and four miRNAs (mir-26a-5p, mir-1343-3p, mir-129-2-3p, and

mir-124-3p) were identified because of their interaction at least

with four hub DEARGs. Mir-26a-5p can alleviate cardiac

hypertrophy and dysfunction (Shi et al., 2021) and protect

against myocardial ischemia/reperfusion injury (Xing et al.,

2020). Mir-1343-3p plays a significant role in the development

of human cancers such as lung cancer (Zhang et al., 2020),

colorectal carcinoma (Bhat et al., 2022), and hepatocellular

carcinoma (Mou and Sun, 2022). The involvement of mir-

1343-3p in cardiovascular diseases is also reported (Sharma

et al., 2020). The potential role of mir-129-2-3p in ischemic

stroke was identified by suppressing SYK gene expression

(Huang et al., 2019). Mir-124-3p contributes to the

development of different cardiovascular diseases, such as

atherosclerosis, myocardial infarction, and ischemic stroke (de

Ronde et al., 2017; Badacz et al., 2021). These four miRNAs may

be used as interventional targets for examining the mechanisms

of ARGs in MMD since they interact with at least four hub

DEARGs. Moreover, a total of 13 potential drugs/compounds

were predicted for MMD treatment by targeting the hub ARGs in

our study.

Further studies are warranted to address some limitations of

the present study. First, although the diagnostic model

constructed by an artificial neural network performed well in

the training and testing datasets, the sample size was very small,

especially for the validation dataset, where only four samples

were available in each group. Therefore, studies with larger

sample sizes are essential. Second, in the GSE157628 dataset,

six control samples were collected from theMCA of patients with

ICA aneurysms. Considering the different hemodynamic and

genetic effects, the normal artery of patients with aneurysms may

differ from normal vessels at the transcriptional level. However,

the collection of normal vessels from healthy control, in essence,

is against medical ethics. Setting the normal artery from patients

with aneurysms as the control group in studying MMD is

acceptable (Kanamori et al., 2021). Third, the results were

based on bioinformatics and conducted RT-qPCR, but in vitro

and in vivo experiments should be conducted to verify the results.

Conclusion

In our analysis, a total of 260 DEARGs were identified in

MMD, which were involved in autoimmune-related diseases and

immune responses. Six ARGs (CD38, PTPN11, NOTCH1, TLR7,

KAT2B, and ISG15) were selected by three machine learning

methods (LASSO regression, RF, and SVM-RFE). They were

finally used to construct a predictive model using BP artificial

neural network that could be used to identify patients with

MMD. Immune infiltration analysis showed that immune

activities and HLA expression levels in MMD were enhanced.

Finally, a gene-miRNA network was prepared, and

pharmacological agents targeting hub genes were predicted as

potentially effective in treating MMD.
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